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Abstract

Many practical applications, such as environmental monitoring or placing sensors for event detection, require

to select among a set of informative but possibly expensive observations. When monitoring spatial phenomena

with sensor networks or mobile robots, for example, we need to decide which locations to observe in order to

most effectively decrease the uncertainty, at minimum cost. These problems are usually NP-hard. Previous

approaches for tackling these sensing problems have mainly relied on myopic heuristics, i.e., approaches which

only consider the next best observation to add, without planning ahead for future sensing opportunities. For those

approaches, typically no performance guarantees are known. Existing nonmyopic approaches have involved com-

putationally intensive techniques which are very difficult to scale to larger problems.

In this Thesis, we present a new class of approaches for observation selection, using techniques from com-

binatorial optimization. We show that many observation selection objectives satisfy submodularity, an intuitive

diminishing returns property – adding a sensor to a small deployment helps more than adding it to a large deploy-

ment. Examples include mutual information for spatial prediction and placing sensors for outbreak detection.

We also develop a suite of non-greedy approaches that systematically exploit this submodularity property in

order to efficiently obtain provably near-optimal solutions to complex sensing problems. For example, the chosen

observations often need to be robust against sensor failure or uncertainty about model parameters. Examples in-

clude minimizing the maximum posterior variance in spatial prediction and robust experimental design. We show,

that many such problems require the optimization of an adversarially chosen submodular objective function. We

will demonstrate that for this problem, existing greedy algorithms perform arbitrarily badly. We develop an algo-

rithm, SATURATE, which performs near-optimally in this setting.

In addition to the problem of finding the best k observations (sensor locations), we consider problems with

complex combinatorial constraints. For example, when placing wireless sensor networks, the chosen locations

should not only be very informative, but also allow efficient communication. When using robots for making ob-

servations, the chosen locations need to lie on a collection of paths. We present PSPIEL, an efficient algorithm

which finds solutions which near-optimally trade off sensing quality and cost.

When deploying wireless sensor networks, another fundamental constraint is battery lifetime. Since every

measurement draws power, sensors can typically be activated only a fraction of the time. Hence, the problem

of scheduling the sensors becomes of crucial importance. Traditionally, sensor placement and scheduling have

been considered separately from each other. In this Thesis, we present ESPASS, an efficient algorithm for simul-

taneously optimizing the placement and scheduling. We show that this simultaneous approach leads to drastic

improvements in network lifetime when compared to the traditional, stage-wise approach.

A key question in many observation selection problems is how much better a sequential algorithm, which

decides on the next observation based on previous observations, can perform when compared to the best fixed

set of observations chosen a priori. We present a partial answer to the question for spatial prediction in Gaussian

Processes. We develop a theoretical bound quantifying the gap between the best sequential and a priori selections,

and use it to develop an exploration–exploitation approach for active learning in Gaussian Processes.

Lastly, we look beyond submodular observation selection problems, and consider the problem of selecting

optimal observations in graphical models. We show that in chain-graphical (Markovian) models, it is possible to

efficiently find the optimal sequential policy. However, even for slightly larger classes of graphical models, we

prove strong hardness results.

In addition to providing algorithms and theoretical analyses, we present extensive empirical evaluation of

our approaches on several real-world case studies. These include building a sensing chair for posture recognition,

monitoring environmental phenomena with mobile robots, securing municipal water distribution networks, and

selecting informative weblogs to read on the Internet.



v



Acknowledgments

I would like to thank everybody who helped to make this Thesis possible. First and
foremost, I am deeply grateful to my advisor, Carlos Guestrin, who continuously encouraged,
challenged and supported me. His guidance extended well beyond my thesis research, most
recently to my successful job search. Through his invaluable advice I learned so much about
doing research and being part of the scientific community.

I would also like to thank Anupam Gupta for many interesting discussions and fruitful col-
laborations. I am also thankful to the other members of my thesis committee, Tom Mitchell,
Tommi Jaakkola and William Kaiser, for their helpful and careful feedback.

To Dan Siewiorek, my undergraduate thesis mentor, I am also very thankful, as he taught
me so much about research and encouraged me to pursue an academic career.

It was very enjoyable and rewarding to collaborate with all my coauthors – Carlos Guestrin,
Anupam Gupta, Jure Leskovec, Jon Kleinberg, Ajit Singh, Amarjeet Singh, Vipul Singhvi,
William Kaiser, Jeanne VanBriesen, Christos Faloutsos, Brendan McMahan, Natalie Glance,
Bilge Mutlu, Eric Horvitz, Jodi Forlizzi, Jessica Hodgins, Feng Zhao, Aman Kansal and Ram
Rajagopal – on the research that eventually became part of this Thesis, and beyond. I am
also thankful to Jeff Bilmes and Mukund Narasimhan for many interesting discussions about
submodularity in machine learning.

I would also like to thank all the members of the SELECT lab for great discussions
and many fun meetings: Carlos Guestrin, Geoff Gordon, Stanislav Funiak, Khalid El-Arini,
Joseph Gonzalez, Sue Ann Hong, Jonathan Huang, Anton Chechetka, Joseph Bradley, By-
ron Boots, Austin McDonald, Alexandra Meliou, Ram Ravichandran, Sajid Siddiqi, Dafna
Shahaf, Ajit Singh, Gaurav Veda, Felipe Trevizan and Miro Dudik.

Many thanks to all my friends at CMU. In particular, Jure Leskovec, Joseph Gonzalez,
Khalid El-Arini and Stano Funiak for sharing thoughts and advice, for conquering (or be-
ing conquered by) the winds with me, playing squash, hiking and many other fun activities.
Also thanks to Jim Ferla and the members of the Guitar Ensemble at CMU – it was a great
pleasure and a lot of fun to rehearse and perform music with them. There are many more
wonderful people I met at CMU, in Munich and elsewhere, who I am thankful to for many
great discussions, for lending a helpful hand and getting me away from my laptop.

Last but not least, I cannot thank enough my family for always being there for me, for
giving everything and letting me choose my way, and Kathrin for her endless patience, support
and inspiration. Without them, I would never have been able to accomplish what I have.



Contents

I Background and Survey 1

1 Introduction 3
1.1 Thesis Statement and main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Submodular sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Non-greedy algorithms for complex sensing problems . . . . . . . . . . . . . . . 5
1.1.3 Algorithms for sequential sensing problems . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Hardness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 Applications and empirical studies . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Summary of key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background on Observation Selection 13
2.1 Model-based observation selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Probabilistic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Quantifying sensing quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Shannon entropy and mutual information . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Predictive variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Decision theoretic value of information . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Penalty reduction for outbreak detection . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Quantifying cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Additive cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Subadditive cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Superadditive cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Formulation of sensing problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Constrained maximization vs. coverage . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 A priori vs. sequential design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Some background on approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . 22

3 Survey of Related Work 23
3.1 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Geometric approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Probabilistic model-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Optimization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Combinatorial search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Continuous relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



3.2.3 Probabilistic planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Observation selection applications in Machine Learning . . . . . . . . . . . . . . . . . . . 29

3.3.1 Feature selection and dimension reduction . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Active learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II Submodular Sensing 31

4 Overview of Part II 33

5 Submodularity 35
5.1 Submodular set functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 An example: Set coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 The greedy algorithm for nondecreasing submodular set functions . . . . . . . . . . . . . 37

5.2.1 Greedy maximization algorithm in the unit cost case . . . . . . . . . . . . . . . . 37
5.2.2 Greedy maximization algorithm in the non-constant cost case . . . . . . . . . . . 38
5.2.3 Greedy covering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Online bounds for submodular maximization problems . . . . . . . . . . . . . . . . . . . 40
5.4 Lazy evaluations and the CELF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Exact algorithms for optimizing submodular functions . . . . . . . . . . . . . . . . . . . 42

5.5.1 Mixed integer programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5.2 Branch and bound search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Existing work on submodular function maximization . . . . . . . . . . . . . . . . . . . . 44
5.7 Minimization of submodular functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Matlab Toolbox for optimizing submodular functions . . . . . . . . . . . . . . . . . . . . 45

6 Sensor Placements for Spatial Prediction 47
6.1 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Modeling sensor data using the multivariate normal distribution . . . . . . . . . . 49
6.1.2 Modeling sensor data using Gaussian Processes . . . . . . . . . . . . . . . . . . . 50
6.1.3 Nonstationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Optimizing sensor placements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.1 The entropy criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2 An improved design criterion: mutual information . . . . . . . . . . . . . . . . . 54

6.3 Approximation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.1 The greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.2 An approximation bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.3 Sensor placement with non-constant cost functions . . . . . . . . . . . . . . . . . 59
6.3.4 Online bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.5 Exact optimization and using mixed integer programming . . . . . . . . . . . . . 59

6.4 Scaling up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.1 Lazy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.2 Local kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5.1 Relationship to canonical correlation analysis . . . . . . . . . . . . . . . . . . . . 63
6.5.2 Relationship with the disk model . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5.3 Fast Gaussian Process methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



6.5.4 Sensor placement with model uncertainty . . . . . . . . . . . . . . . . . . . . . . 64
6.5.5 Non-constant cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6.1 Data sets used in our experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.6.2 Comparison of stationary and nonstationary models . . . . . . . . . . . . . . . . . 66
6.6.3 Comparison of data-driven placements with geometric design criteria . . . . . . . 67
6.6.4 Comparison of the mutual information and entropy criteria . . . . . . . . . . . . . 67
6.6.5 Comparison of mutual information with classical experimental design criteria . . . 69
6.6.6 Empirical analysis of the greedy algorithm . . . . . . . . . . . . . . . . . . . . . 72
6.6.7 Results on local kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Selecting Informative Variables in Graphical Models 79
7.1 Selecting most informative variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Submodularity of information theoretic objectives . . . . . . . . . . . . . . . . . . . . . . 82

7.2.1 Submodularity of the joint entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2.2 Submodularity of the information gain . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4 Hardness of approximation for optimizing information gain . . . . . . . . . . . . . . . . . 84
7.5 Approximating conditional entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.6.1 Temperature data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.6.2 Highway traffic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7 Case study: Sensor placement for posture recognition . . . . . . . . . . . . . . . . . . . . 90
7.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Sensing for Outbreak Detection in Networks 109
8.1 The outbreak detection problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.1.2 Placement objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.1.3 Submodularity of the placement objectives . . . . . . . . . . . . . . . . . . . . . 113
8.1.4 Multicriterion optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.1.5 Speeding up function evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 Case study: Water networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2.2 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2.3 Solution quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2.4 Multicriterion optimization and results from BWSN . . . . . . . . . . . . . . . . 118
8.2.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3 Case study: Blog Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.2 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.3.3 Solution quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.3.4 Cost of a blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

ix



8.3.5 Comparison to heuristic blog selection . . . . . . . . . . . . . . . . . . . . . . . . 122
8.3.6 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.4 Discussion and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4.1 Relationship to Influence Maximization . . . . . . . . . . . . . . . . . . . . . . . 124
8.4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

III Non-greedy Algorithms for Complex Sensing Problems 127

9 Overview of Part III 129

10 Robust Sensing Problems 131
10.1 Robust submodular observation selection . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10.1.1 Submodular observation selection . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.1.2 The robust submodular observation selection (RSOS) problem . . . . . . . . . . . 133

10.2 Hardness of the robust submodular observation selection problem . . . . . . . . . . . . . 135
10.3 SATURATE: The submodular saturation algorithm . . . . . . . . . . . . . . . . . . . . . . 135

10.3.1 Algorithm overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.3.2 Algorithm details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.4 Hardness of bicriterion approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.5 Examples of robust submodular observation selection problems . . . . . . . . . . . . . . . 140

10.5.1 Minimizing the maximum Kriging variance . . . . . . . . . . . . . . . . . . . . . 140
10.5.2 Variable selection under parameter uncertainty . . . . . . . . . . . . . . . . . . . 141
10.5.3 Robust experimental designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.5.4 Sensor placement for outbreak detection . . . . . . . . . . . . . . . . . . . . . . . 142
10.5.5 Robustness against sensor failures and feature deletion . . . . . . . . . . . . . . . 143

10.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.6.1 Non-integral objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.6.2 Non-constant thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.6.3 Non-uniform observation costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.6.4 Handling more complex cost functions . . . . . . . . . . . . . . . . . . . . . . . 146
10.6.5 Trading off average-case and worst-case scores . . . . . . . . . . . . . . . . . . . 147

10.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.7.1 Minimizing the maximum Kriging variance . . . . . . . . . . . . . . . . . . . . . 150
10.7.2 Robust experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.7.3 Outbreak detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.7.4 Sensor failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.7.5 Parameter uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.8 Robustness and regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.8.1 Results on blog data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.9 Reducing the number of objective functions . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.9.1 Removal of dominated strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.9.2 Constraint generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.10Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.10.1 Robust discrete optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.10.2 Robust methods in statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

x



10.10.3 Robust sensor placement and facility location . . . . . . . . . . . . . . . . . . . . 165
10.10.4 Relationship to game theory and allocation problems . . . . . . . . . . . . . . . . 166
10.10.5 Relationship to Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.11Existing work on submodular function maximization . . . . . . . . . . . . . . . . . . . . 167
10.12Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11 Sensing under Complex Cost Functions 169
11.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

11.1.1 What is communication cost? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
11.1.2 Overview of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

11.2 Predicting communication cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
11.3 Problem structure in sensor placement under complex cost functions . . . . . . . . . . . . 175

11.3.1 Examples of (r, γ)-local submodular functions . . . . . . . . . . . . . . . . . . . 176
11.3.2 The greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11.4 Approximation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
11.4.1 Padded decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
11.4.2 The greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
11.4.3 The modular approximation graph G′ . . . . . . . . . . . . . . . . . . . . . . . . 181
11.4.4 Solving the covering and maximization problems in G′ . . . . . . . . . . . . . . . 181
11.4.5 Transferring the solution from G′ back to G . . . . . . . . . . . . . . . . . . . . . 181
11.4.6 Additional implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 182

11.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.5.1 System implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.5.2 Proof-of-concept study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.5.3 Indoor temperature measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 184
11.5.4 Precipitation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

11.6 Robust Sensor Placements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.6.1 Algorithm details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.6.2 Experiments on robust optimization . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.7 Modular approximation for other combinatorial problems: Informative path planning . . . 189
11.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

11.8.1 Sensor placement to monitor spatial phenomena . . . . . . . . . . . . . . . . . . . 192
11.8.2 Sensor placement under communication constraints . . . . . . . . . . . . . . . . . 192
11.8.3 Statistical models for modeling link quality . . . . . . . . . . . . . . . . . . . . . 192
11.8.4 Related work on submodular optimization . . . . . . . . . . . . . . . . . . . . . . 193

11.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12 Simultaneous Placement and Scheduling of Sensors 195
12.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

12.1.1 Sensor placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
12.1.2 Sensor scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
12.1.3 Simultaneous placement and scheduling . . . . . . . . . . . . . . . . . . . . . . . 198

12.2 A naive greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
12.2.1 Theoretical guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
12.2.2 The greedy algorithm can lead to unbalanced solutions . . . . . . . . . . . . . . . 202

12.3 The ESPASS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
12.3.1 Algorithm overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

xi



12.3.2 Algorithm details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
12.3.3 Improving the bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

12.4 Trading off power and accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
12.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

12.5.1 Case study I: Highway monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 209
12.5.2 Case study II: Community Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 211
12.5.3 Case study III: Contamination detection . . . . . . . . . . . . . . . . . . . . . . . 215
12.5.4 Case study IV: Multiple weblog coverage . . . . . . . . . . . . . . . . . . . . . . 216
12.5.5 Comparison with existing techniques . . . . . . . . . . . . . . . . . . . . . . . . 218

12.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
12.6.1 Sensor placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
12.6.2 Sensor Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
12.6.3 Submodular optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

IV Sequential Sensing 223

13 Overview of Part IV 225

14 Nonmyopic Active Learning of GPs 227
14.1 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
14.2 Observation selection policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

14.2.1 The sequential entropy criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
14.2.2 The sequential mutual information criterion . . . . . . . . . . . . . . . . . . . . . 230

14.3 Bounds on the advantage of active learning strategies . . . . . . . . . . . . . . . . . . . . 231
14.4 Exploration–exploitation approach towards learning GPs . . . . . . . . . . . . . . . . . . 232

14.4.1 Exploitation using submodularity . . . . . . . . . . . . . . . . . . . . . . . . . . 232
14.4.2 Implicit and explicit exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

14.5 Actively learning nonstationary GPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
14.5.1 Nonstationary model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
14.5.2 Efficient nonstationary active learning . . . . . . . . . . . . . . . . . . . . . . . . 237

14.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
14.6.1 River Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
14.6.2 Temperature Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
14.6.3 Precipitation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
14.6.4 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

15 Optimal Value of Information 245
15.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

15.1.1 Optimization criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
15.1.2 Cost of selecting observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

15.2 Decomposing rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
15.3 Efficient algorithms for optimizing value of information . . . . . . . . . . . . . . . . . . . 252

15.3.1 Efficient algorithms for optimal subset selection in chain models . . . . . . . . . . 252
15.3.2 Efficient algorithms for optimal conditional planning in chain models . . . . . . . 254

xii



15.3.3 Efficient algorithms for trees with few leaves . . . . . . . . . . . . . . . . . . . . 258
15.4 Theoretical limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

15.4.1 Brief review of relevant computational complexity classes . . . . . . . . . . . . . 259
15.4.2 Complexity of computing and optimizing value of information . . . . . . . . . . . 260

15.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
15.5.1 Temperature time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
15.5.2 CpG-Island detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
15.5.3 Part-of-Speech Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

15.6 Applying chain algorithms to more general graphical models . . . . . . . . . . . . . . . . 264
15.6.1 Approximate sensor scheduling by lower bound maximization . . . . . . . . . . . 265
15.6.2 Proof of concept study on real deployment . . . . . . . . . . . . . . . . . . . . . 267

15.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
15.7.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
15.7.2 Value of information in graphical models . . . . . . . . . . . . . . . . . . . . . . 269
15.7.3 Bandit problems and exploration / exploitation . . . . . . . . . . . . . . . . . . . 269
15.7.4 Relationship to machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

15.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

V Open Problems and Conclusions 271

16 Open Problems 273
16.1 The simultaneous placement and tasking problem . . . . . . . . . . . . . . . . . . . . . . 273
16.2 Supermodular cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
16.3 Relationship to probabilistic planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
16.4 Transfer learning and predicting informativeness . . . . . . . . . . . . . . . . . . . . . . 274
16.5 Other resource constraints for observation selection . . . . . . . . . . . . . . . . . . . . . 275
16.6 Observation selection for symbolic reasoning . . . . . . . . . . . . . . . . . . . . . . . . 276
16.7 Online optimization, dynamic phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . 276
16.8 High dimensional and continuous spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

17 Conclusions 277
17.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

17.1.1 Submodular sensing problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
17.1.2 Non-greedy algorithms for complex sensing problems . . . . . . . . . . . . . . . 278
17.1.3 Sequential sensing problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
17.1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
17.1.5 Summary of key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

17.2 Further research plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
17.2.1 Identifying structure in sensing and information acquisition. . . . . . . . . . . . . 281
17.2.2 New sensing architectures and applications. . . . . . . . . . . . . . . . . . . . . . 281
17.2.3 Privacy and attention as fundamental constraints. . . . . . . . . . . . . . . . . . . 281

A Review: Learning Gaussian Processes 283
A.1 Learning stationary GPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
A.2 Overview of nonstationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
A.3 Learning nonstationary kernels by extrapolating estimated covariances . . . . . . . . . . . 285

xiii



B Proofs 287
B.1 Proofs from Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
B.2 Proofs from Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
B.3 Proofs from Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
B.4 Proofs from Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
B.5 Proofs from Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
B.6 Proofs from Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
B.7 Proofs from Chapter 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
B.8 Proofs from Chapter 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
B.9 Proofs from Chapter 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Bibliography 313

xiv



Part I

Background and Survey

1





Chapter 1

Introduction

Consider the problem, where we want to place a set of sensors in order to monitor a complex spatiotem-
poral phenomenon, such as temperature and light in a building, pollution in a lake, precipitation in an
extended geographic region, traffic conditions in a road network or water quality in a municipal water dis-
tribution network. Or let us think about an online service which crawls the web, deciding which weblogs
and news websites to suggest to its users. Or about a physician deciding between which tests to administer
to a patient in order to decide on the treatment.

In such problems, we can make observations by placing a set of sensors or detector stations, display a
set of links to blogs to a user, or apply a medical testing procedure. In practice, such observations are
typically expensive, measured, e.g., in terms of sensor and deployment cost, power consumption, time
and effort required for performing an experiment, patience and attention of a user, or cost for performing
medical tests. A key question common to all these problems is thus:

Which observations should we make, in order to acquire the most useful information
as cost-effectively as possible?

We call this class of problems sensing problems, where we take a wide definition of the notion of a
“sensor”. Such sensing problems have gained much attention, in areas such as statistical experimental de-
sign, decision theory, operations research, probabilistic planning, sensor networks. Most of the optimiza-
tion problems are NP-hard, thus in general not likely to be amenable for efficient exact solution.

There are typically two classes of approaches: Heuristic approaches, which do not strive for optimality, but
quickly find solutions with often reasonable performance. However, typically, no performance guarantees
are known for these approaches. These approaches include myopic algorithms such as greedy heuristics,
or continuous relaxation approaches. On the contrary, nonmyopic approaches try to find the optimal
solution, but often are very difficult to scale to larger problems. These approaches include techniques
such as probabilistic planning using Partially Observable Markov Decision Processes, or Mixed Integer
Programming.
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1.1 Thesis Statement and main contributions

In this Thesis, we present a new class of nonmyopic approaches for solving complex sensing problems.
We claim the following statement:

In many practical applications, it is important to select among useful but expensive
observations. By exploiting problem structure, one can efficiently and near-optimally
solve many of the resulting sensing problems.

In order to substantiate this claim, we present the following contributions.

1.1.1 Submodular sensing

We first consider subset selection problems, where we choose all observations (locations to place sensors,
links to blogs to present) before acquiring the information. In sensor placement problems for example, we
are given a set V of possible sensing locations, and would like to pick a small subset A ⊆ V of locations
that maximizes a (problem-specific) sensing quality function F (A). For example, when placing sensors to
monitor temperature in a building, F (A) can model the reduction in prediction error after obtaining mea-
surements at locationsA. When placing sensors for outbreak detection, F (A) could measure the expected
improvement in the time required to detect some event after placing sensors at locations A.

We show that a large class of sensing problems satisfy submodularity, an intuitive diminishing returns
property: Adding a sensor to an existing deployment helps more if we have placed few sensors so far,
and less if we have already placed many sensors. A fundamental result by Nemhauser et al. [1978] then
guarantees that a simple greedy algorithm, which iteratively adds the sensor that increases the sensing
quality of the network the most, achieves a near-optimal solution. Hence identifying submodularity in a
problem is very useful, as it allows to use a simple, efficient greedy algorithm to near-optimally solve a
complex, NP-hard optimization problem.

Traditionally, many sensing problems have been modeled as a set cover problem [c.f., Abrams et al., 2004,
Bai et al., 2006, Deshpande et al., 2008, Hochbaum and Maas, 1985, Kershner, 1939]. In such problems,
each sensor is associated with a fixed sensing region, and the sensing quality F (A) of a set A of sensors
is the total area covered by the union of all selected sensing regions. The set cover function F (A) is an
example of a submodular function. However, in many practical sensing problems, this traditional assump-
tion is too strong. For example, when placing sensors for environmental monitoring, we are interested
in directly optimizing the prediction performance of the sensor network. Hence, traditional algorithms
developed for the set cover sensing quality function cannot be applied to such sensing problems.

In Part II of this Thesis, we show that much more complex sensing quality functions are submodular as
well. Examples that we study in detail include spatial prediction in Gaussian Processes, sensor placement
for outbreak detection and selecting informative variables in graphical models. By exploiting this struc-
tural property of submodularity, many sensing problems can be cast as submodular optimization problems.
In this Thesis, we will demonstrate many benefits of this insight. Our research in this area received the
Best Paper Runner Up award at UAI 2005 and ICML 2005, as well as the Best Student Paper award at
KDD 2007.
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(a) Demo (b) NIMS-AQ

Figure 1.1: (a) Live demonstration of PSPIEL for trading off informativeness and communication cost
at IPSN 2006 (also demonstrated at NIPS 2005). The demonstration setup uses light sensor motes and a
video projector. (b) The NIMS-AQ system (image courtesy of CENS) for environmental monitoring of
lakes.

1.1.2 Non-greedy algorithms for complex sensing problems

In Part III of this Thesis, we study complex sensing problems that go beyond selecting a set of obser-
vations maximizing a submodular sensing quality function. As we show, for these problems, the greedy
algorithm fails arbitrarily badly. In order to tackle these sensing problems, we develop efficient non-greedy
algorithms with strong theoretical guarantees.

Robust sensing problems. An important requirement, which frequently arises in practice, is robustness.
For example, when deploying a network of sensors, hardware failures can occur, resulting in reduced
coverage. Often, when using models for prediction, there is uncertainty in the model parameters. We show
how this robustness requirement leads to the problem of simultaneously maximizing multiple submodular
sensing quality functions F1, . . . , Fm, e.g., each quantifying informativeness under a different parameter
setting. In order to obtain robust solutions to the resulting sensing problems we then have to optimize
the minimum of the submodular functions, i.e., maximize mini Fi. We present an efficient non-greedy
algorithm, SATURATE, which provides strong theoretical guarantees for this problem.

Complex combinatorial constraints. In practice, often complex constraints are associated with the
sensing task. For example, when placing a network of wireless sensors, the sensors need to be able to
reliably communicate over lossy links, constraining their locations not to be too far apart. When using
robots to collect observations, the chosen sensing locations need to lie on a path traversed by the robot.
Fuel and time constraints limit the length of this path. We present PSPIEL, an efficient, randomized, non-
greedy approximation algorithm, which exploits problem structure to nonmyopically select observations
even under such complex constraints. Figure 1.1(a) shows a demonstration of our PSPIEL approach that
we presented at IPSN 2006 and NIPS 2005. Our research in this area was awarded the Best Paper award
at IPSN 2006.
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Figure 1.2: Sensys Networks wireless traffic sensor. (left) encased unit, (middle) sensor deployed in
pavement, (right) GPRS/CDMA base station.

Simultaneous placement and scheduling. When deploying sensor networks, battery power is a fun-
damental constraint. For many practical applications, such as using sensors for traffic monitoring, where
placing sensors requires closing roads from traffic, a minimum network lifetime is required to ensure fea-
sibility of the deployment. Since every measurement that a sensor acquires drains its battery, often, the
only possibility to meet such lifetime requirements is to schedule sensors, i.e., decide when to activate
each sensor. Traditionally, sensor placement and scheduling have been considered separately from each
other: One first places the sensors, and then optimizes the schedule to maximize lifetime. We develop a
novel algorithm, ESPASS, that can simultaneously optimize the sensor placement and the schedule. We
apply ESPASS to the problem of increasing the deployment lifetime of traffic sensors (as shown in Fig-
ure 1.2) under California highways. In this and other applications, our simultaneous approach drastically
outperforms the traditional, stage-wise approach.

1.1.3 Algorithms for sequential sensing problems

In sensor placement and many other sensing problems it is natural to commit to all observations (sensor
locations) before any measurements are made. In other sensing problems, however, we would like to take
into account measurements made in the past before we adaptively decide on the next observation (sensing
location).

In Part IV of this Thesis, we study such sequential sensing problems. Instead of optimizing for a set
of locations, we try to find a policy (e.g., a decision tree, conditional plan), which decides on the next
observation based on the previous measurements. Since submodularity is a property of sets of observations
(and not policies), this concept cannot be used to analyze sequential sensing problems. However, we show
that in some interesting cases it is nevertheless possible to exploit problem structure in order to develop
nonmyopic algorithms.

The adaptivity gap for sequential sensing. A key question in sequential observation selection is the
following: How much better can a sequential algorithm possibly perform compared to the best fixed
a priori set of observations? We present a theoretical bound quantifying this adaptivity gap for the im-
portant case of spatial prediction in Gaussian Processes, and develop an efficient, nonmyopic, sequential
algorithm with sample complexity guarantees. This bound exploits a structural property of Gaussian Pro-
cesses.
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(a) Sensor network deployment (b) Intelligent workplace

Figure 1.3: (a) A deployment of a sensor network with 54 nodes at the Intel Berkeley Lab. (b) Intelligent
Workplace at CMU Architecture Department.

Optimal sequential sensing in chain models. Lastly, we show how conditional independence, another
kind of problem structure, can be exploited to develop algorithms which find the optimal sequential strat-
egy for an interesting class of graphical models, containing Hidden Markov models. Even though our
algorithms can only find the optimal solutions for chain graphical models, they nevertheless perform well
on more general graphical models. We apply our algorithms to several tasks, including active learning for
named entity recognition and sensor scheduling in a building management testbed deployment, as shown
in Figure 1.4(a).

1.1.4 Hardness results

In addition to developing new algorithms for sensing problems, we present several hardness results, which
in some cases even match the performance of our algorithms.

For example, we show that for the problem of selecting most informative variables in graphical models,
the constant factor (1 − 1/e) approximation guarantee obtained by the greedy algorithm is in fact best
possible, unless P = NP. We also show strong hardness results for solving robust sensing problems.
These results imply that, under reasonable complexity theoretic assumptions, our algorithm SATURATE

provides best possible guarantees for this problem.

Most notably, we present a surprising result about optimizing sensing in graphical models. Most problems
in graphical models, such as probabilistic inference, which can be efficiently solved for chain (Markovian)
models, generalize to polytrees, i.e., models with tree-like conditional independence structure. While
optimal sensing is tractable for chains, we show, that even for the slight generalization to polytrees, the
problem becomes wildly intractable (NPPP-complete).

1.1.5 Applications and empirical studies

One important goal of this work is to provide empirical evidence of the effectiveness of the proposed
algorithms on several real-world sensing problems.
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(a) Building management testbed (b) Metropolitan area Water Network

Figure 1.4: (a) Our testbed for the building automation setting. We schedule sensors to only turn on in
situations which most improve our sensing quality. Our techniques lead to a factor of four improvement
in deployment lifetime. (b) Example sensor placement in a realistic water network.

Sensor placement for building monitoring. A major focus of this Thesis are spatial prediction prob-
lems in the context of Gaussian Processes. We provide empirical studies on data from real sensor network
deployments in the area of building and environmental monitoring. In addition to extensive compari-
son of our algorithms with existing techniques on standard data sets (such as data from a sensor network
deployment at Intel Research, Berkeley, Figure 1.3(a)), we performed a full proof-of-concept study.

In this study, our goal was to compare the performance of our placement methods to manual placements
and existing algorithms. We deployed a network of 46 wireless sensor nodes in the Intelligent Workplace
at CMU (c.f., Figure 1.3(b)). As a baseline deployment, we manually selected 20 locations that seemed
to capture the overall variation in light intensity. We also used our algorithms to propose optimized
placements. In this case study, which is described in detail in Chapter 11, our algorithms drastically
reduced the prediction error by about 50% compared to the manual deployment.

Securing municipal water distribution networks. Drinking water distribution networks are complex
dynamical systems, which are of fundamental importance to our everyday lives. The intentional intro-
duction of a contaminant disrupts the system and could be detected by a network of sensors placed in the
system. Optimal placement is crucial and especially difficult in this application domain, because the sys-
tem has complex temporal dynamics and the number of possible intrusion scenarios is vast. On the other
hand, sensors are very expensive (roughly $14,000 per unit), and hence only a small number of sensors
could potentially be deployed.

In August 2006 we participated in the Battle of the Water Sensor Networks, an international challenge of
designing sensor network deployments for realistic, metropolitan-area-sized water distribution networks.
The goal was a multi-criterion optimization problem, trading off several natural objective functions: min-
imizing the time to detection, minimizing the population affected and contaminated water consumed prior
to detection and maximizing the detection likelihood. We showed that all these objectives are submodu-
lar, which allowed us to apply the algorithms developed in this Thesis. Empirically, our algorithms often
found the optimal solution.
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Figure 1.5: Expensive high fidelity sensor (4032 point sensors). We achieve comparable classification
accuracy using only 20 flat and point sensors.

We applied our approach to a large realistic distribution system, comprising more than 12,000 nodes
respectively (c.f., Figure 1.4(b)), simulated over several days at high resolution, and determined optimal
locations for a budget of 20 sensors. We were the only group who managed to accurately compute the
above-mentioned objective criteria by exhaustive simulation of all possible intrusion scenarios, therefore
being able to prove guarantees about our solutions. We solved this massive computational challenge,
involving Terabytes of simulation data, using distributed computation. This massive amount of simulation
data additionally allowed us to get empirical insights on the relationship between the different objective
criteria. Our results showed significant improvement over randomly placed sensors and over sensors
placed using more simplistic models. We presented our results at the Water Distribution System Analysis
Symposium 2006 [Krause et al., 2006b], and our solution obtained the top score in the competition.

Sensor placement for seating activity recognition. Motivated by the fact that a large part of the popu-
lation spends most of their day sitting on a chair (in the office, in a car, etc.) we consider the problem of
seating activity recognition. Using a high fidelity sensor (one measurement per cm2, c.f., Figure 1.5), we
achieve a high classification accuracy for distinguishing between ten different postures of 84% when gen-
eralizing between different people. The best performance achieved by previous work on this benchmark
data set was 79%. Unfortunately, the sensor is very expensive (roughly $16,000). In addition, handling
the high resolution pressure data in real-time is difficult for, e.g., application in a car. These reasons moti-
vated us to apply our sensor placement algorithms. We used our algorithms to optimize for placements of
increasing size. Surprisingly, using only 20 optimally placed sensors we achieve 82% accuracy compared
to 84% when using all 4032 sensors, at a small fraction of the cost and computational load. We study
this application in collaboration with the Human Computer Interaction Department at CMU and the Ford
Motor Company.

Monitoring environmental phenomena using mobile sensors. In collaboration with the Center of
Networked Embedded Sensing at the University of California, Los Angeles, we considered the problem of
monitoring the ecological state of San Joaquin River and Lake Fulmor in James Reserve, CA. High levels
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Figure 1.6: Information cascade. We would like to select blogs that participate in the large cascades as
early as possible.

of pollutants, such as nitrates, can lead to the development of algal blooms. These nuisance algal blooms
impair the beneficial use of aquatic systems, by blocking sunlight to underwater vegetation, consuming
oxygen in the water, and producing surface scum and odors. The precise sensing of pollutants, nutrients,
and oxygen levels can provide biologists with a fundamental characterization of the state of such a lake.
Unfortunately, such sensors are expensive, and we are not able to cover the lake in sufficient detail with
such static sensors. An alternative to deploying a static sensor network is to coordinate a set of robotic
sensors to move such sensors to various locations in the lake (c.f., Figure 1.1(b)). In order to enable this
coordination, we apply the algorithms developed in this Thesis. We also study monitoring problems such
as placing sensors for monitoring precipitation in the Pacific Northwest of the United States.

Selecting informative weblogs. All applications introduced above include some form of physical sens-
ing. However, the algorithms developed in this Thesis apply to more general information gathering prob-
lems as well. To support this claim, we apply our algorithms to an online information network rather than
a physically connected sensor network: We study the problem of selecting informative weblogs to read on
the Internet. Our approach is based on the intuitive notion of an information cascade: A blogger writes a
posting, and, after some time, other blogs link to it (c.f., Figure 1.6). An information cascade is a directed
acyclic graph of vertices (each vertex corresponds to a posting at some blog), where edges are annotated by
the time difference between the postings. Based on this notion of an information cascade, we would like
to select blogs, that detect big cascades (containing many nodes) as early as possible (i.e., we want to learn
about an important event before most other readers). We show how one can formalize this intuition using
a nondecreasing submodular function that measures the informativeness of a subset of all blogs. We per-
form extensive experimentation on a large data set containing 45,000 blogs, 10.5 million postings and 16.2
million links. After we published our results, our project website http://www.blogcascades.org
experienced a “Slashdot effect” with over 30,000 visits. Our research was also reported on in ACM Tech-
News (November 08) and on MSNBC (January 08).
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1.2 Summary of key contributions

The following table summarizes the key contributions of this Thesis, and their organization in the three
main parts of this Thesis.

Part Algorithms Hardness results Applications
Submodular CELF for approximate (1− 1/e) inapproxim- Environmental monit-
sensing budgeted optimization ability of optimizing oring, Sensing chair,

information gain Water networks,
Informative blogs

Non-greedy SATURATE for robust sensing, Inapproximability of Environmental monit-
algorithms for PSPIEL for complex robust optimization oring, Water networks,
complex sensing constraints, ESPASS for Traffic monitoring
problems placement and scheduling
Sequential EEGP for active learning NPPP-completeness Environmental monit-
sensing in Gaussian processes, of optimizing value oring, Sensing for

VOIDP for value of of information in building management
information in chain models polytree models

1.3 Organization of this Thesis

In Part I of this Thesis, we will provide background on observation selection, and introduce relevant
terminology and concepts (Chapter 2). We will also survey existing work that is relevant to most chap-
ters of this thesis (Chapter 3). More specific discussions of work related is presented in the subsequent
chapters.

In Part II, we will review the concept of submodularity (Chapter 5), and review existing results on opti-
mizing submodular set functions. We will then establish submodularity for several important classes of
observation selection problems, including problems of spatial prediction in Gaussian Processes (Chap-
ter 6), outbreak detection (Chapter 8) and diagnosis in graphical models (Chapter 7). We also report on
results obtained by applying existing algorithms for submodular function maximization.

Part III presents novel approximation algorithms for observation selection. In Chapter 10, we develop an
algorithm for selecting observations under adversarial notions of robustness. In Chapter 11, we consider
the problem of placing sensors subject to communication constraints. In Chapter 12, we propose ESPASS,
an efficient algorithm for simultaneously optimizing sensor placements and schedules.

Part IV presents results on sequential observation selection, in the case of Gaussian Processes (Chapter 14)
and chain graphical models (Chapter 15).

Lastly, in Part V we consider interesting open problems for future work (Chapter 16) and present our
conclusions (Chapter 17).

In Appendix A, we review learning of nonstationary Gaussian Process models, as used in several chapters
of this Thesis. Appendix B presents the proofs of all theoretical results described in this Thesis.
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Chapter 2

Background on Observation Selection

In this chapter, we will provide background on observation selection problems, as well as the terminology
used in this Thesis.

2.1 Model-based observation selection

In observation selection, our goal is to acquire the most useful information as cost-effectively as possible.
Key questions which have to be answered in observation selection hence are the following:

How useful would it be to me if I had a piece x of information? How expensive would
it be to acquire this information?

These questions lead to further questions, such as “What does useful mean?”, “How do we quantify cost?”
or, “What am I likely to observe”? Such questions cannot be answered without a model of the world, and
without the definition of the task we are trying to solve by acquiring the information. In this Thesis, we will
adopt a Bayesian framework, and use probabilistic models which describe the uncertainty about the state
of the world. By making observations, this uncertainty can be reduced. We can then quantify usefulness,
e.g., by measuring how much this decrease in uncertainty can help us make better decisions.

2.2 Probabilistic models

Let us consider a finite set V indexing the possible observations we can make. Each s ∈ V corresponds,
e.g., to a possible location where we can place a sensor, information we can present to a user of an
online service, or a possible medical test which we can perform. With each element s ∈ V , we associate
a random variable Xs. The random variables can be real-valued or discrete. For a subset A ⊆ V , with
A = {s1, . . . , sk}, we useXA to refer to the random vector (Xs1 , . . . ,Xsk

). A realization xA is a vector of
values xA = (xs1 , . . . , xsk

). A probabilistic model is a joint probability distribution (a prior distribution)
over all the random variables XV . Hence, it assigns, to each realization xV , a probability (or density,
which we assume to exist in this Thesis, in the case of continuous distributions) P (XV = xV). Later in
this Thesis, we will consider specific instances of the probability distributions P .
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Upon observing a realization of a subset A of the variables, XA = xA, we can use probabilistic infer-
ence [c.f., Koller and Friedman, 2008] to estimate a posterior distribution over the unobserved variables,
P (XV\A | XA = xA). This posterior distribution encodes our belief about the state of the world, which
we can use to make decisions.

For sets A,B ⊆ V of observations, we use

E[XA] =
∫

xAP (xA)dxA

to refer to the expectation of XA, and

E[XA | xB] =
∫

xAP (xA | xB)dxA

to refer to the conditional expectation of XA given XB = xA.

2.2.1 Examples

In spatial prediction, our goal is to estimate some hidden spatial process1, such as temperature in a build-
ing, precipitation over extended geographic regions, etc. A common approach in the geostatistics commu-
nity has been to think about the hidden process as a sample from a probability distribution. Here, every
random variable Xs, for example, models the temperature at some location s. One possible distribution
that has been considered in the literature [c.f., Deshpande et al., 2004] is to use the multivariate Gaussian
distribution,

P (XV = xV) =
1

(2π)n/2|ΣVV |
e−

1
2
(xV−µV )T Σ−1

VV (xV−µV ),

where µV is the mean vector and ΣVV is the covariance matrix. The advantage of the multivariate Gaussian
distribution is that it can be compactly represented (only the mean vector µV ∈ Rn and the covariance
matrix ΣVV ∈ Rn×n have to be specified or estimated from data). It also allows efficient inference, i.e.,
computation of conditional distributions P (XA | XB).

While useful for many spatial modeling problems [c.f., Deshpande et al., 2004], in some applications, the
Gaussian distribution does not model the phenomena of interest well. When modeling medical diagnosis
(as done, e.g., by Bayer-Zubek [2004], Heckerman et al. [1993]) for example, the random variables de-
scribe the absence or presence of a particular disease, as well as the outcomes of a collection of possible
tests which can be performed. In such settings the variables of interest are often discrete, or take only
positive or bounded continuous values. Completely specifying a joint distribution over n binary random
variables requires 2n − 1 free parameters, which is intractable for most practical problems. Probabilistic
graphical models have been developed as a powerful tool to overcome such challenges. In these models,
the joint distribution is modeled as

P (XV = xV) =
1
Z

m∏
j=1

ψj(XBj ),

where Z is a normalization constant, and ψ1, . . . , ψm are nonnegative potential functions defined over
subsets of variables B1, . . . ,Bj ⊆ V respectively. The advantage of such models is that they often al-
low to compactly represent complex joint distributions. Moreover, for certain classes of graphical mod-
els, efficient inference procedures are available. Instead of giving a general introduction to the topic of

1Many of the results presented in this Thesis apply to spatio-temporal processes as well.
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probabilistic graphical models, we will refer to Koller and Friedman [2008], and only introduce specific
concepts as they become necessary in latter chapters of this Thesis.

In outbreak detection, we think about a phenomenon spreading smoothly over some space. One example,
which we consider in this Thesis, are contamination events spreading over a municipal water distribution
network. In this case, a set of differential equations can be used in order to model the spreading of a
contaminant through the network. If we consider random (e.g., accidental) contaminant introductions into
the network, then the contaminant concentration Xs,t at each node s and point in time t is again modeled
probabilistically. Here, we can quantify usefulness by measuring, e.g., the time a hypothetical sensor
network deployment takes until the outbreak is detected.

2.3 Quantifying sensing quality

In order to decide which observations to select, we need to define a notion of sensing quality that allows
us to prefer one set of observations over another. We consider the following formulation, which goes back
to Howard [1966] and Lindley and Smith [1972]. Hereby, we consider a utility function u(xV ,A) which
depends on the state of the world, xV , and the chosen observations, A ⊆ V . The sensing quality of a set
of observations A is then the expected utility

F (A) =
∫
p(xV)u(xV ,A)dxV , (2.1)

which is a set function F : 2V → R, mapping subsets A of observations to the real numbers. Our goal is
to choose a set A such that this set function is maximized. Without loss of generality, we will require that
u(xV , ∅) = 0, and hence F (∅) = 0, i.e., no observations provide no utility. Lindley [1956] proposed this
approach for the special case of

u(xV ,A) = H(Θ)−H(Θ | xA) = −
∫
p(θ) log2 p(θ)dθ +

∫
p(θ | xA) log2 p(θ | xA)dθ,

i.e., the most informative set of observations A is the one which maximizes the reduction of Shannon
entropy [Shannon, 1948] about some unknown set of parameters. Here, and in the following, we will use
the notation Θ to refer to a designated subset of the random variables XV , with instantiations Θ = θ. With
this notation, Lindley [1956] considered the case of F (A) = H(Θ)−H(Θ | XA).

The formulation (2.1) is very general; it makes the only assumption, that there is some known prior
distribution P (XV) about the state of the world. This distribution can be estimated from data or specified
as a belief in the subjective Bayesian sense. However, in practice it is sometimes difficult to determine this
distribution. In Chapter 10, we will hence consider problems where even this assumption is relaxed.

By choosing different forms for u(xV ,A), we can model very different classes of observation selection
problems. In the following, we give a few examples. In Part II of this Thesis, we will examine particular
utility functions u and the associated sensing problems in more detail.

2.3.1 Shannon entropy and mutual information

One sensing quality function that is commonly used in practice [c.f., O’Hagan, 1978, Shewry and Wynn,
1987], is the entropy criterion, where

u(xV ,A) = − log2 p(xA).
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In this case, the sensing quality F (A) is the Shannon entropy, F (A) = H(XA) of the random vector
XA. Hence, when maximizing this criterion, the goal is to select observations that are as uncertain as
possible.

Often, in practice, the goal of selecting observations is to reduce the uncertainty in unobserved variables.
For example, in a sensor placement example, our goal would be to select sensor locations which are
maximally informative about the unobserved locations. Hereby, we can, similarly to the case considered
by Lindley [1956], be interested in reducing the uncertainty about a specified set B ⊆ V of variables of
interest, corresponding to, e.g., the temperature at a set of points of interest. In this case, the choice

u(xV ,A) = − log2 p(xB) + log2 p(xB | xA)

leads to the objective function

F (A) = H(XB)−H(XB | XA) = I(XB;XA). (2.2)

Hereby, we use I(XB;XA) = I(XA;XB) to refer to the mutual information between the observation sets
A and B (c.f.,Cover and Thomas 1991). This criterion is known under the name of Bayesian D-optimality
[c.f., Chaloner and Verdinelli, 1995]. We consider this criterion in the context of graphical models in detail
in Chapter 7.

If we are interested in predicting, e.g., the temperature at all unobserved locations, we can set B =
V \ A, i.e., the locations of interest depend on the observed locations A. In this setting, our goal is to
maximize

F (A) = H(XV\A)−H(XV\A | XA).

This criterion has been first considered in the context of spatial prediction by Caselton and Zidek [1984],
and we will study this criterion in detail in Chapter 6.

2.3.2 Predictive variance

Another important sensing quality function for spatial prediction is the reduction of predictive variance.
Hereby, for some set B of reference points, we choose

u(xV ,A) =
∑
s∈B

Var(Xs)−Var(Xs | xA),

where
Var(Xs | xA) = E

[
(Xs − E[Xs | xA])2 | xA

]
denotes the predictive variance of Xs after observing XA = xA. This criterion is also known under the
name of Bayesian A-optimality (c.f., Chaloner and Verdinelli 1995). We will consider this criterion in
Chapters 10 and 12.

2.3.3 Decision theoretic value of information

Often, the goal of observation selection is not to minimize the uncertainty about a set of variables of
interest. Instead, observations are acquired in order to facilitate a decision making process.
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A general, decision-theoretic formulation was proposed by Howard [1966]. In this setting, there is some
set of parameters Θ which encode the information relevant for making a decision. For example, in a
medical domain, Θ would encode the presence or absence of a particular disease. Observations A ⊆ V
can be selected from a set of possible tests V . Upon observation of XA = xA, a decision d is made from
a set of possible decisions D. If the true state of the world is Θ = θ, then this decision would result in a
utility g(d, θ). For example, if θ encodes the presence of a disease, then typically the utility of choosing
the “treat” decision would be higher than that for not treating. Since θ is unobserved, one would choose
the decision d maximizing the expected utility, i.e., select

d∗ = argmax
d∈D

∫
P (θ | xA)g(d, θ)dθ.

Typically, g also encodes some kind of cost associated with obtaining the information. Hence, e.g., if the
information obtained does not help the diagnosis much, but the cost of the applied medical procedure is
high, the value of information can be negative.

We can encode this decision making process by encoding u in (2.1) as

u(xV ,A) = max
d∈D

∫
P (θ | xA)g(d, θ)dθ.

The goal would then be to select observations A ⊆ V such that the decision theoretic value of informa-
tion

F (A) =
∫
P (xV)u(xV ,A)dxV =

∫
max
d∈D

∫
g(d, θ)P (θ | xA)P (xA)dθdxA (2.3)

is maximized. We study this objective in detail in Chapter 15.

2.3.4 Penalty reduction for outbreak detection

The last class of objective functions we will consider is related to the following application. We consider
dynamic phenomena, where an event (e.g., contaminant introduction in a water network) originates from
a node s′ ∈ V of a network G = (V, E), and spreads through the network, affecting other nodes (e.g., by
flow through pipes). Eventually, it reaches a monitored node s ∈ A ⊆ V (i.e., pipe junction we instrument
with sensors), and gets detected. During the time the outbreak is not detected, some negative impact is
incurred, which we want to minimize. We can model this setting in the following way.

Let Xs,t describe the state (i.e., contaminant concentration; 0 if not contaminated) of node s ∈ V at time t.
Hereby, t ∈ T ranges over a discrete sequence of time points T . For each possible state of the world, we
evaluate a penalty function π(xV ,A) which depends on the state of the network xV,T at all nodes and all
times, as well as the placementA. This class of penalty functions is very general. For example, in the water
monitoring example, it can estimate the expected population affected by consuming contaminated water
until the placed sensor network A detected the contamination at time t (i.e., xs,t > 0 for some monitored
node s ∈ A and time t). We discuss concrete examples of penalty functions in Chapter 8. Based on this
notion of a penalty function π, we can then define the utility by the penalty reduction:

u(xV,T ,A) = π(xV,T , ∅)− π(xV,T ,A).

The penalty reduction satisfies the property that selecting no sensors gives zero sensing quality. If we
assume a probability distribution P (xV,T ) over the state of contamination, the problem of minimizing the
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expected negative impact is hence equivalent to the problem of maximizing

F (A) =
∫
P (xV,T )u(xV,T ,A)dxV,T = const−

∫
P (xV,T )π(xV,T ,A)dxV,T .

2.4 Quantifying cost

In practice, the observations A are typically expensive (e.g., in terms of sensor hardware or deployment
cost), and we only have limited resources we can spend on making observations. While we could, in
principle, incorporate the cost directly into the utility u(xV ,A), we choose to model the cost C(A) as a
separate set function

C : 2V → R,

mapping sets of observations A ⊆ V to the real numbers. Without loss of generality, we will require that
C(∅) = 0, i.e., selecting no observations does not cost anything.

In the following, we consider several classes of possible cost functions.

2.4.1 Additive cost functions

In the case of additive cost functions, which we will mainly consider in this Thesis (with the exception of
Chapter 11), we assign a cost c(s) ∈ R to each possible observation s ∈ V , and define the cost of a set
C(A) to be

C(A) =
∑
s∈A

c(s).

For example, if we only care about the number of observations made (e.g., sensors placed), then we would
set c(s) = 1, and hence C(A) = |A|.

However, in practice, different observations often have different costs. For example, when placing a sensor
network, some locations might be more easily accessible than others, hence their deployment costs would
vary. Similarly, we might have different types of sensors – some expensive high accuracy sensors, as well
as cheaper, but lower-fidelity sensing devices. In these cases, the per-sensor cost function c(s) would not
be constant.

2.4.2 Subadditive cost functions

Often in practice, observations get cheaper, the more observations we have already selected. For example,
if we want to send out a robot to make measurements for us, a natural cost function is the length of the
path (or time) the robot takes to collect all observations. Consider the case presented in Figure 2.1, where
the robot, starting at location s, can decide to visit and make observations at locations v1, v2 or v1 and
v2. Since the robot does not have to go back to its starting point between each observation, the cost
of observing C({v1, v2}) = 5.5 is less than the sum C({v1}) + C({v2}) = 6 of observing v1 and v2
separately.

Similarly, in a medical scenario, performing a set of tests might be cheaper than the sum of the costs of the
tests taken separately. For example, whether we want to study only one parameter (like the hemoglobin
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Figure 2.1: Cost of visiting v1 and v2 together is cheaper than the sum of the costs of visiting them
separately.

value) or multiple parameters of a patient’s blood, we nevertheless incur the cost of physically acquiring
the blood sample. In this case, the cost of multiple observations can be far less than the sum of the
individual costs.

Another example of such a “buy in a bulk” property arises when we consider computational cost for
computing features as a preprocessing step to data analysis. Whether we we are interested in only a small
part of a frequency spectrum of a signal, or the entire spectrum, we nevertheless typically have to perform
the FFT of the entire signal.

In all these examples, the cost function is subadditive: For any two sets of observations,A,B ⊆ V it holds
that

C(A ∪ B) ≤ C(A) + C(B).

In Chapter 11, we present an algorithm, PSPIEL, that can solve sensing problems even under some com-
plex cost functions C.

2.4.3 Superadditive cost functions

In some application, the opposite property of subadditivity holds: A cost functionC is called superadditive
if for all sets A,B ⊆ V it holds that

C(A ∪ B) ≥ C(A) + C(B).

A typical example is the computational cost of running an algorithm. Here, the set V of possible obser-
vations corresponds to some features/dimensions of the data, and C(A) models the computational cost
required to process the data. Many algorithms scale superlinearly with the dimensionality of the data, i.e.,
C(A) = h(|A|) where h is a monotonically increasing convex function, e.g., h(n) = n3 for a cubic-time
algorithm.

2.5 Formulation of sensing problems

Using the concepts of sensing quality and cost functions, in this section we will consider various kinds of
sensing problems.
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2.5.1 Constrained maximization vs. coverage

Our general goal is to select observations A ⊆ V such that the sensing quality F (A) is maximized, and
simultaneously the cost C(A) is minimized. Technically, this is a multicriterion optimization problem
(c.f., Boyd and Vandenberghe 2004), and two sets A and B can be incomparable, i.e., F (A) > F (B) but
C(A) > C(B).

One possibility is to consider a budget B ∈ R, and then try to find the set A∗ such that

A∗ = argmax
A⊆V

F (A) subject to C(A) ≤ B, (2.4)

i.e., to find the most informative set of observations subject to a constraint on the cost. We call Prob-
lem (2.4) a maximization problem.

Similarly, we can specify a quota Q ∈ R, and then try to find the set A∗ such that

A∗ = argmin
A⊆V

C(A) subject to F (A) ≥ Q, (2.5)

i.e., try to find the cheapest solution, which achieves a specified level Q of information. Problem (2.5) is
called a covering problem.

An alternative approach is to use scalarization [c.f., Boyd and Vandenberghe, 2004]. Here, we would
specify a cost-to-sensing quality conversion factor λ, and then try to find the set A∗ such that

A∗ = argmax
A⊆V

F (A)− λC(A), (2.6)

i.e., try to find the solution with maximum overall value. Problem (2.6) is called a scalarized (maximiza-
tion) problem. In fact, it can be shown that if we are able to solve problems (2.4) and (2.5) for arbitrary
choices of B and Q, we can obtain all optimal solutions of (2.6), but not necessarily vice versa [Boyd
and Vandenberghe, 2004, Papadimitriou and Yannakakis, 2000]. Hence, in this Thesis, we concentrate on
Problems (2.4) and (2.5).

Instead of specifying feasibility of observation sets A by requiring that C(A) ≤ B (2.4) or F (A) ≥ Q
(2.5), we can consider more general classes of constraints, by defining a collection of feasible sets A ⊆ 2V ,
and require that the chosen sets A satisfy A ∈ A. In this case, we would like to solve

A∗ = argmax
A

F (A) such that A ∈ A. (2.7)

For example, while we might be interested in predicting a spatial phenomenon at all locations V , not all of
these locations might be accessible for sensor placement. In this case, we could have constraints restricting
the possible sensor placementsA to only consist of accessible locations. Incorporating a particular class of
constraints (called matroid constraints, c.f., Section 5.6) will allow us to develop the ESPASS algorithm
for simultaneous placement and scheduling of sensors (Chapter 12).

2.5.2 A priori vs. sequential design

So far, we considered problems, where our goal is to select a set of observations A ⊆ V . In these
problems, we commit to the chosen observations a priori, i.e., before getting to see the observed values.
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These a priori selection problems are appropriate in cases where we, e.g., place a network of sensors, or
design an experiment.

In some applications however it makes sense to sequentially select observations, i.e., decide on the next
observation based on values which have been observed in the past. We can extend the concepts described
in this section to this more general setting as follows. Instead of reasoning about sets, we reason about
policies (sometimes called conditional plans). A policy

π : R|V| → 2V

is a set-valued random function, mapping the state of the world xV to a subset A ⊆ V . Hereby, π(xV) is
the set of observations chosen by the policy if the world is in state XV = xV .

For two policies π and π′, we say π ⊆ π′ if for all xV it holds that π(xV) ⊆ π′(xV), i.e., in any state of
the world, π selects a subset of the observations of policy π′. We say |π| = m if for all xV ∈ V it holds
that |π(xV)| = m, and |π| ≤ m if for all xV ∈ V it holds that |π(xV)| ≤ m.

We will require the policy π to be sequential2, i.e., be the output of a deterministic algorithm, which, after
having observed a set of values XA = xA, decides which observation to make next solely based on the
observations made so far. We can formalize this notion of sequential selection in the following way:
Definition 2.1. A policy π, |π| ≤ m is called sequential, if the following two conditions hold:

• There exist a sequence of policies, ∅ ⊆ π1 ⊆ · · · ⊆ πm = π such that for all 1 ≤ i ≤ m it holds that
|πi| ≤ i. In this case, we write π1:i to refer to the i-step policy πi. We use the convention π1:0 = ∅.

• Let 0 ≤ i < m, A ⊆ V and let xV and x′V be two states such that xA = x′A (i.e., xV and x′V agree
on A). Furthermore suppose that π1:i(xV) = A. Then it must hold that π1:i+1(xV) = π1:i+1(x′V).

The second condition in above definition implies that if two states xV and x′V of the world agree on
a set A, and π1:i selects this set A in state xV , then the next element s = π1:i+1(xV) \ π1:i(xV) is
uniquely determined, and its choice cannot depend on any unobserved part of the state, i.e., any xs for
s ∈ V \ A.

Using this notation, we can define a sequential notion of sensing quality as

F (π) =
∫
p(xV)u(xV , π(xV))dxV . (2.8)

Note, that in contrary to (2.1), the sensing quality u now depends on the selected observations π(xV).
Setting π(xV) = A for all xV recovers (2.1) as a special case.

Similarly, we can define an expected cost as

C(π) =
∫
p(xV)C(π(xV))dxV . (2.9)

Based on these notions of expected sensing quality and cost, we can consider the same optimization
problems as described in Section 2.5.1. For example, we can consider a sequential maximization problem
of the form

π∗ = argmax
π

F (π) subject to C(π) ≤ B.

2Technically, we also require the mapping to be measurable, i.e., for any subset A ⊆ V , π−1(A) has to be a subset of R|V|

which is measurable [c.f., Dudley, 2003] with respect to the probability distribution P (XV).
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We will consider sequential design in Part IV of this Thesis. There we will consider particular instances
of policies π, and provide more intuition about the concept.

2.6 Some background on approximation algorithms

A main focus of this Thesis will be to develop algorithms for solving sensing problems such as those
discussed in Section 2.5.1. Most of these optimization problems are computationally complex, so that
we cannot expect to find the optimal solutions for general problems. Instead, our goal will be to de-
velop efficient algorithms, for which we can prove that the obtained solutions will be close to the optimal
solution.

Any instance of Problem (2.4) (the following definitions for Problem (2.5) are analogous) is defined by a
ground set V , sensing quality function F , cost function C and budget B. A solution A which satisfies the
constraintC(A) ≤ B is called feasible. Since V is finite, there is at least one optimal solutionA∗ for which
F (A∗) ≥ F (A) for all feasible solutions A. This solution A∗ obtains the optimal value OPT = F (A∗).
In this Thesis, we will consider restricted sets I of problem instances. For example, I could consider
the set of problem instances, where F (A) is the mutual information, as defined in Section 2.3.1, for
a restricted class of probabilistic models (such as Gaussian Processes), C(A) = |A| is the cardinality
function, and B is a nonnegative integer. Each instance I ∈ I has an optimal value OPTI . Similarly, a
(deterministic) algorithm a will compute a solution a(I) ⊆ V for each instance I ∈ V . Let α : I → (0, 1]
and ε : I → [0,∞) be functions that map problem instances I ∈ I to real numbers.
Definition 2.2. We call a an approximation algorithm with multiplicative error α and additive error ε for
problem instances I if for all I ∈ I it holds that

F (a(I)) ≥ α(I)OPTI − ε(I).

Often, we require α to depend the “size” of the problem instance, for example, on |V|. If α is constant, a is
called a constant factor approximation algorithm. A more formal definition of approximation algorithms
can be found in [Vazirani, 2003].
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Chapter 3

Survey of Related Work

There is a large body of work related to the selection of observations for the purpose of coverage, predic-
tion and for optimizing value of information. Variations of this problem appear in spatial statistics, active
learning, experimental design, decision analysis and operations research. Generally, the methods define
an objective function (Section 3.1), such as area coverage, predictive accuracy or detection time, and then
apply a computational procedure (Section 3.2) to optimize this objective function. In this chapter, we
review related work that is relevant to most chapters of this thesis. In each subsequent chapter, we will
review additional related work that is specific to the respective chapter.

3.1 Objective functions

In the context of sensing for spatial prediction (which is an important part of this Thesis), we distinguish
geometric and model-based approaches, which differ according to their assumptions made about the phe-
nomenon to be monitored.

3.1.1 Geometric approaches

Geometric approaches do not build a probabilistic model of the underlying process, but instead use geo-
metric properties of the space in which the process occurs. The most common approaches for optimizing
sensing using geometric criteria assume that sensors have a fixed region [c.f., Bai et al., 2006, Gonzalez-
Banos and Latombe, 2001, Hochbaum and Maas, 1985]. These regions are usually convex or even circular.
Furthermore, it is assumed that everything within this region can be perfectly observed, and everything
outside cannot be measured by the sensors.

In the case where the sensing area is a disk (the disk model), Kershner [1939] has shown that an arrange-
ment of the sensors in the centers of regular hexagons is asymptotically optimal, in the sense that a given
set is fully covered by uniform disks. In Chapter 6, we experimentally show that when we apply the
disk model to nonstationary phenomena, which frequently arise on spatial prediction problems, the geo-
metric disk model approach leads to worse sensing configurations in terms of prediction accuracy, when
compared to probabilistic model-based approaches.
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If many sensing locations can be chosen, then one can optimize the deployment density instead of se-
lecting a discrete set of individual sensing locations [Toumpis and Gupta, 2005]. The sensing locations
are then assumed to be randomly sampled from this distribution. In the applications we consider, sen-
sors and measurements are quite expensive, and optimal placement or selection of a small set of them is
desired.

3.1.2 Probabilistic model-based approaches

In this Thesis, we consider model-based approaches, in which one takes a probabilistic model of the
world (c.f., Section 2.1) and selects observations which facilitate inferences in and decisions based on this
model.

Many different objective functions have been proposed for model-based observation selection. In the
statistics community, classical and Bayesian experimental design focused on the question of selecting ob-
servations to maximize the quality of parameter estimates or predictions, with a special focus on linear
models [c.f., Atkinson, 1988, Lindley, 1956]. In spatial statistics, information-theoretic measures, notably
entropy, have been frequently used [Caselton and Hussain, 1980, Caselton and Zidek, 1984, Caselton et al.,
1992, Federov and Mueller, 1989, Guttorp et al., 1992, Shewry and Wynn, 1987, Wu and Zidek, 1992].
These objectives minimize the uncertainty in the spatial prediction, after the observations are made.

Classical experimental design criteria

In the statistics literature, the problem of optimal experimental design has been extensively studied [c.f.,
Atkinson, 1988, 1996, Boyd and Vandenberghe, 2004, Pukelsheim, 1987]. The problem commonly ad-
dressed there is to estimate the parameters θ of a function,

y = fθ(x) + w,

where w is normally distributed measurement noise with zero mean and variance σ2, y a scalar output and
x a vectorial input. The assumption is, that the input x can be selected from a menu of design options,
{x1, . . . ,xn}. Each input corresponds to a possible experiment which can be performed. When using
experimental design for sensor placement, one x would be associated with each sensing location, y would
be the measurement at the location, and θ would correspond to the values of the phenomenon at the
unobserved locations. Usually, the assumption is that fθ is linear, i.e. y = θTx + w.

For the linear model y = θTx + w, if all n observations were available, then

Var(θ̂) = σ2(XTX)−1 (3.1)

Var(ŷi) = σ2xT
i (XTX)−1xi, (3.2)

where X is the design matrix, which consists of the inputs x1, . . . ,xn as its rows. We can see that the
variance of both the parameter estimate θ̂ and the predictions ŷi depends on the matrix M = (XTX)−1,
which is called the inverse moment matrix. If this matrix is “small”, then the parameter estimates and
predictions will be accurate. A design consists of a selection A of the inputs (with repetitions allowed).
We write XA to denote the selected experiments, and MA for the corresponding inverse moment matrix.
Classical experimental design considers different notions of “smallness” for this inverse moment matrix
MA; D-optimality refers to the determinant, A-optimality to the trace and E-optimality to the spectral
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radius (the maximum eigenvalue). There are several more scalarizations of the inverse moment matrix,
and they are commonly referred to as “alphabetical” optimality criteria. We will empirically compare our
approaches to these classical experimental design criteria in Chapter 6.

Equation (3.2) shows that the distribution of the test data is not taken into account, when attempting
to minimize the inverse moment matrix MA. Yu et al. [2006] extend classical experimental design to
the transductive setting, which takes the distribution of test data into account. The information-theoretic
approaches, described below, also directly take into account the unobserved locations, as they minimize
the uncertainty in the posterior P (XV\A | XA).

Bayesian design criteria

Classical experimental design is a Frequentist approach, which attempts to minimize the estimation error
of the maximum likelihood parameter estimate. If one places a prior on the model parameters, one can
formalize a Bayesian notion of experimental design. We introduced this Bayesian formalism (which was
originally proposed by Lindley [1956]) in Section 2.3. By choosing different sensing quality functions
u(xV ,A), Bayesian versions of A-, D-, and E- optimality can be developed [Chaloner and Verdinelli,
1995].

Usually, Bayesian experimental design considers the task of parameter estimation [Paninski, 2005, Se-
bastiani and Wynn, 2000, Ylvisaker, 1975]. In this setting, a subset of the random variables Θ ⊆ V ,
called the parameters, is of special interest. Lindley [1956] suggested using Shannon information as sens-
ing quality function, u(xV ,A) = H(Θ) − H(Θ | xA), which is equivalent to maximizing the expected
Kullback-Leibler divergence between the posterior and prior over the parameters.

If we consider distributions P (XV\A) over all unobserved variables XV\A instead of a subset of param-
eters P (Θ), this formulation exactly recovers the mutual information of Caselton and Zidek [1984] (as
introduced in Section 2.3 and, in more detail, in Chapter 6) between the observed and unobserved vari-
ables.

Information-theoretic criteria

The special case of Bayesian experimental design, where an information-theoretic functional (such as en-
tropy or mutual information) is used as a sensing quality function, and where the predictive uncertainty
in the unobserved variables is concerned (as in Equation (2.2)) is of special importance for spatial predic-
tion.

Such information-theoretic criteria have been used as design criteria in a variety of fields and applications.
Maximizing the posterior entropy H(XA) of a set of observations, as discussed in Section 2.3, has been
used in the design of computer experiments [Currin et al., 1991, Sacks et al., 1989], function interpo-
lation [O’Hagan, 1978] and spatial statistics [Shewry and Wynn, 1987]. This criteria is sometimes also
referred to as D-optimality, since the scalarization of the posterior variance in the spatial literature and the
scalarization of the parameter variance in classical experimental design both involve a determinant.

Maximizing mutual information between sets of random variables has a long history of use in statistics
[Bernardo, 1979, Lindley, 1956], machine learning [Luttrell, 1985, MacKay, 1992]. The mutual informa-
tion between a set of chosen variables and its complement, I(XA;XV\A) (as introduced in Section 2.3),
has been used in spatial statistics [Caselton and Zidek, 1984, Caselton et al., 1992]. Mutual information
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requires an accurate estimate of the joint model P (XV), while the entropy criterion only requires an accu-
rate estimate at the selected locations, P (XA). Caselton et al. [1992] argue that latter is easier to estimate
from a small amount of data, thus arguing against mutual information. Nowadays, however, effective tech-
niques for learning complex nonstationary spatial models are available (c.f., Chapter 6 for more details),
thus mitigating these concerns and enabling the optimization of mutual information.

Decision theoretic value of information

Decision-theoretic value of information has been frequently used for principled information gathering [c.f.,
Heckerman et al., 1993, Howard, 1966, Lindley, 1956], and popularized in decision analysis in the context
of influence diagrams [Howard and Matheson, 1984]. In a sense, value of information problems are special
cases of Bayesian experimental design problems, where the prior distribution has a particular structure,
typically given by a graphical model as considered in Chapters 7 and 15. While value of information
problems have been studied in a variety of areas, the predominant approach is to use myopic, i.e., greedy
approaches for selecting observations [Dittmer and Jensen, 1997, Kapoor et al., 2007, Scheffer et al.,
2001, van der Gaag and Wessels, 1993]. In Chapter 15, we will present an efficient, optimal, nonmyopic
algorithm for optimizing value of information in an interesting class of graphical models.

Bandit problems and exploration / exploitation

An important class of sequential value of information problems is the class of Bandit problems. In the
classical k-armed bandit problem, as formalized by Robbins [1952], a slot machine is given with k arms.
A draw from arm i results in a reward with success probability pi that is fixed for each arm, but different
(and independent) across each arm. When selecting arms to pull, an important problem is to trade off
exploration (i.e., estimation of the success probabilities of the arms) and exploitation (i.e., repeatedly
pulling the best arm known so far). A celebrated result by Gittins and Jones [1979] shows that for a fixed
number of draws, an optimal strategy can be computed in polynomial time, using a dynamic programming
based algorithm. In general, bandit problems are optimization problems – rather than accurately estimating
the success probability of all arms, the focus is on quickly identifying the best arm. In this Thesis, we
will focus mainly on prediction and detection rather than such optimization problems. In Chapter 15
however, we will present a dynamic programming algorithm, different from the Gittins index algorithm,
which can be used to solve a particular instance of bandit problems, where the arms are not required to be
independent.

3.2 Optimization techniques

All of the criteria discussed thus far yield challenging combinatorial optimization problems. Several
approaches are used to solve them in the literature, which can be roughly categorized into those that
respect the integrality constraint and those which use a continuous relaxation.
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3.2.1 Combinatorial search

For both geometric and model-based approaches, one must search for the best design or set of observa-
tions (e.g., sensor locations) among a very (usually exponentially) large number of candidate solutions.
In a classical design, e.g., the inverse moment matrix on a set of selected experiments XA can be written
as

MA =

(
n∑

i=1

kixixT
i

)−1

,

where ki is the number of times experiment xi is performed in design A. Since ki must be an integer,
a combinatorial number of potential experimental designs has to be searched. Similarly, when placing a
set A of k sensors out of a set V of possible locations, as we will do in Chapter 6, all sets of size k have
to be searched. For both entropy (Ko et al. 1995), mutual information (Chapter 6) and value of informa-
tion (Chapter 15), this search can be shown to be NP-hard, hence efficient exact solutions are likely not
possible.

Since exhaustive search is usually infeasible, local, heuristic searches without theoretical guarantees have
commonly been applied. Approaches to the difficult combinatorial optimization include simulated an-
nealing [Meyer and Nachtsheim, 1988], pairwise exchange [Cook and Nachtsheim, 1980, Fedorov, 1972,
Mitchell, 1974a,b, Nguyen and Miller, 1992], forward and backward greedy heuristics [Caselton and
Zidek, 1984, MacKay, 1992] and shortest path search [Zhao et al., 2002]. All these approaches provide
no guarantees about the quality of the solution. Since optimal solutions are highly desirable, mixed inte-
ger program formulations [Koushanfary et al., 2006] and branch-and-bound approaches to speed up the
exhaustive search have been developed [Ko et al., 1995, Welch, 1982]. Although they enable exhaustive
search for slightly larger problem instances, the computational complexity of the problems puts strong
limits on their effectiveness.

For geometric approaches, where sensors are associated with a fixed sensing region, and a spatial domain
needs to be covered by the regions associated with the selected sensors, special properties of the sensing
quality function can be used to develop approximation algorithms with theoretical guarantees. Examples
include the art gallery approach to sensor placement [Hochbaum and Maas, 1985] and algorithms for sen-
sor scheduling Abrams et al. [2004]. Deshpande et al. [2008] presents an approach for this problem based
on semidefinite programming (SDP), handling more general constraints and providing tighter approxima-
tions. However, none of these approaches can handle objective functions based on complex probabilistic
models.

By exploiting submodularity, in this Thesis, we provide the first approach to optimizing sensing which
applies to such complex objectives, and has guarantees both on the runtime and on the quality of the
achieved solutions.

3.2.2 Continuous relaxation

In some formulations, the integrality constraint is relaxed. For example, in classical experimental design,
the number of experiments to be selected is often large compared to the number of design choices. In
these cases, one can find a fractional design (i.e., a non-integral solution defining the proportions by which
experiments should be performed), and round the fractional solutions. In the fractional formulation, A-, D-
and E-optimality criteria can be solved exactly using a semi-definite program [Boyd and Vandenberghe,
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2004]. There are however no known bounds on the integrality gap, i.e., the loss incurred by this rounding
process.

In other approaches [Seo et al., 2000, Snelson and Ghahramani, 2005], a set of locations is chosen not
from a discrete, but a continuous space. If the objective function is differentiable with respect to these
locations, gradient-based optimization can be used instead of requiring combinatorial search techniques.
Nevertheless, optimality of the solution is not guaranteed since there is no known bound on the discrepancy
between local and global optima.

Another method that yields a continuous optimization, in the case of geometric objective functions, is
the potential field approach [Heo and Varshney, 2005, Howard et al., 2002]. An energy criterion similar
to a spring model is used. This optimization results in uniformly distributed (in terms of inter-sensor
distances), homogeneous placements. The advantage of these approaches is that they can adapt to irregular
spaces (such as hallways or corridors), where a simple grid-based deployment is not possible. Since the
approach uses coordinate ascent, it can be performed using a distributed computation, making it useful for
robotics applications where sensors can move.

Another well-known example of a continuous relaxation technique is the LASSO for subset selection in
linear regression [Tibshirani, 1996]. Instead of solving the combinatorial problem of searching through all
possible subsets of explanatory variables, a `1 penalty on the coefficients is introduced which encourages
sparse solutions. Continuous relaxation techniques using `1 penalties have also been particularly success-
ful in sparse reconstruction / Compressive Sensing [Candès et al., 2006, Donoho, 2006]. These results
state that a high-dimensional signal can be reconstructed from a small number of measurements if it is
known a priori that the true signal has a sparse representation in some (unknown) basis. For example,
Candès et al. [2006] prove that a discrete time signal f ∈ CN which is sparse (i.e., has at most T nonzero
entries) whose Fourier coefficients f̂(ω) are known for a set of frequencies ω ∈ Ω, where

|T | ≤ O(|Ω|/ logN)

can be reconstructed exactly as the solution of the optimization problem

min
g∈CN

||g||`0 such that ĝ(ω) = f̂(ω) for all ω ∈ Ω.

Hereby, ||g||`0 is the number of non-zero elements of the complex vector g. However, solving this opti-
mization problem requires to solve a combinatorial optimization problem, searching for the smallest subset
of nonzero coefficients of g. Surprisingly, as Candès et al. [2006] show, if the set Ω of frequencies is cho-
sen at random, then with overwhelmingly high probability the optimal solution of the above optimization
problem is obtained using the following convex relaxation, which can be solved efficiently:

min
g∈CN

||g||`1 such that ĝ(ω) = f̂(ω) for all ω ∈ Ω,

i.e., replacing ||·||`0 by the ||·||`1 norm. This celebrated result led to a number of extensions and follow-up
work. For example, instead of requiring to observe Fourier coefficients, it suffices to use random mea-
surements (more generally, linear measurements that satisfy a particular incoherence requirement). For
a detailed introduction to the topic see [Candès and Wakin, 2008]. Instead of using random measure-
ments, Tropp [2004] analyzes greedy selection using Orthogonal Matching Pursuit (originally proposed
by Chen et al. [1989]). He shows that if the measurements that the algorithm can choose from are suf-
ficiently incoherent, the greedy algorithm provides an O(

√
k) approximation to the best reconstruction
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error achievable when expanding the signal as a linear combination of at most k terms from the dictio-
nary. While a number of sensing devices that implement the acquisition of incoherent measurements (as
required for compressed sensing) have been developed [c.f., Duarte et al., 2008], for the monitoring prob-
lems in this Thesis, compressive sensing theory does not apply, as the local, point measurements do not
satisfy the required incoherence condition. Instead, the approaches described in this Thesis exploit prior
knowledge about the signal that should be reconstructed. Our approaches also apply to a large variety of
objective functions, beyond the squared reconstruction error. In addition, our algorithms apply to settings
where there is a complex cost function associated with the set of chosen measurements (such as the one
arising when using robots to obtain measurements, where the cost corresponds to the length of a shortest
path connecting the measurements, considered as nodes in a graph, c.f., Chapter 11).

3.2.3 Probabilistic planning

Optimized information gathering has been also extensively studied in the planning community. Bayer-
Zubek [2004] for example proposed a heuristic method for optimizing value of information based on the
Markov Decision Process framework. However, her approach makes approximations without theoretical
guarantees.

The problem of optimizing decision theoretic value of information can be naturally formalized as a
(finite-horizon) Partially Observable Markov Decision Process (POMDP) [Smallwood and Sondik, 1973].
Hence, in principle, algorithms for planning in POMDPs, such as the anytime algorithm by Pineau et al.
[2006], can be employed for optimizing value of information. Unfortunately, the state space grows expo-
nentially with the number of variables that are considered in the selection problem. In addition, the com-
plexity of planning in POMDPs grows exponentially in the cardinality of the state space, hence doubly-
exponentially in the number of variables for selection. This steep increase in complexity makes application
of black-box POMDP solvers infeasible. Recently, Ji et al. [2007] demonstrated the use of POMDP plan-
ning on a multi-sensor scheduling problem. While presenting promising empirical results, their approach
however uses approximate POMDP planning techniques without theoretical guarantees.

In the robotics literature, Stachniss et al. [2005], Sim and Roy [2005] and Kollar and Roy [2008] have
presented approaches to information gathering in the context of Simultaneous Localization and Mapping
(SLAM). None of these approaches however provide guarantees about the quality of the obtained solu-
tions.

3.3 Observation selection applications in Machine Learning

Several important observation selection problems arise in Machine Learning, including feature selection
and active learning. Further, more specific connections will be reviewed in subsequent chapters.

3.3.1 Feature selection and dimension reduction

Observation selection is closely related to dimension reduction approaches. However, while dimension
reduction techniques such as Principal Component Analysis (PCA) or Canonical Correlation Analysis
(CCA) can be used to find a lower dimensional representation of high dimensional data, these techniques
usually find projections which are non-sparse, i.e., which are linear combinations of (almost) all input
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variables. However, for interpretation purposes (and considering data acquisition cost), one often desires
sparse projections, which are linear combinations of only a small subset of input variables. Moghaddam
et al. [2005] and Moghaddam et al. [2006] consider the problem of selecting such sparse linear projections
(subject to a constraint on the number of nonzero entries) of minimum reconstruction error (for PCA) and
class separation (for LDA). In order to find these sparse projections, they propose two approaches: A
mixed integer program, which can solve the problem optimally – albeit generally not in polynomial time,
and a heuristic approach, using a greedy forward search followed by a greedy backward elimination. They
provide several theoretical bounds, including a guarantee that this backward greedy algorithm achieves a
solution of at least k

nλmax where n = |V|. This guarantee however depends on the problem size n.

3.3.2 Active learning

In the machine learning community, information-theoretic criteria have been used for active learning,
techniques which allow the learning algorithm to influence the choice of training samples. For example,
information-theoretic criteria have been used in the analysis of query-by-committee to select samples
[Axelrod et al., 2001, Freund et al., 1997, Sollich, 1996]. Following Lindley [1956], MacKay [1992]
proposes selecting observations that maximize expected information gain, either in terms of entropy or
cross entropy, using Federov exchange. As opposed to the results presented in this Thesis, which address
the optimization problem of selecting near-optimal observations, MacKay [1992] focuses on comparing
the different objective criteria. Cohn [1994] proposes scoring each potential observation by measuring
the average reduction in predicted variance at a set of reference points (a sequential implementation of
Bayesian A-optimal design). A similar approach has been applied for observation selection in Gaussian
process regression [Seo et al., 2000]. Common to all these active learning approaches, as well as to
problems presented in this Thesis, is the problem of selecting a set (or sequence) of most informative
observations. Unlike the results presented in this Thesis however, we are not aware of any prior work in
this area which provides rigorous approximation guarantees for active learning using (sequential) Bayesian
experimental design.

There is also a body of work on identifying the classes of learning problems for which active learning
can achieve asymptotically faster error reduction than standard passive learning for classification [c.f.,
Dasgupta, 2005] and regression [c.f., Castro et al., 2005]. Often, the resulting algorithms [Balcan et al.,
2006, Dasgupta et al., 2007, Dasgupta, 2004] are efficient in terms of label complexity, but intractable
in general in terms of computational complexity. In contrast, the emphasis of the results presented in
this Thesis is to develop observation selection algorithms that are both efficient and perform provably
near-optimally, albeit under somewhat stronger (Bayesian) assumptions.
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Part II

Submodular Sensing
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Chapter 4

Overview of Part II

In Part II of this Thesis, we consider three examples of observation selection problems: selecting obser-
vations for spatial prediction in Gaussian Processes, selection of informative variables in a graphical
model, and selecting observations for detecting outbreaks spreading over a graph.

Submodularity of sensing problems. We will show that in all three applications, the sensing quality
function (c.f., Section 2.3) satisfies an intuitive diminishing returns property: Adding a sensor helps more
if we have placed few sensors so far, and less if we have already placed many sensors. This intuition can
be formalized using the notion of submodular set functions, which we will review in Chapter 5.

Identifying submodularity in a problem is extremely useful. For example, suppose we want to find the
best k locations to place sensors. In this setting, a fundamental result by Nemhauser et al. [1978] proves
that a simple greedy algorithm, which iteratively adds a sensor at the location which increases the utility
the most results in a near-optimal solution, obtaining a constant fraction of 63% of the optimal value of
this NP-hard optimization problem (c.f., Theorem 5.2).

Each of the three settings which we will study in Part II of this Thesis does not allow to directly apply
the existing results about maximizing submodular functions however, and we will discuss approaches for
extending the existing results to these settings.

Sensor placement for spatial monitoring in Gaussian Processes. In Chapter 6, we consider the prob-
lem of selecting measurement locations that maximize the mutual information criterion for spatial predic-
tion (Chapter 6). While this sensing quality function is submodular, it is not nondecreasing, as required
by most existing results for maximizing submodular functions, such as Theorem 5.2. The key contribu-
tion provided in this chapter is the realization, that mutual information is approximately nondecreasing, if
the number of placed sensors is small in comparison to the number of locations we can select from. We
generalize the existing results about maximizing nondecreasing submodular functions to the setting of ap-
proximately nondecreasing functions, thus deriving the first approximation algorithm for placing sensors
in Gaussian Processes. We also provide an extensive set of empirical results on several real-world sensor
placement problems.

33



Selecting informative variables in graphical models. In Chapter 7, we consider the problem of select-
ing most informative variables in a graphical model. More formally, we address the problem of selecting a
set of k variables which maximize the information gained about a set of target variables of interest. While
the information gain objective about target variables in general is not submodular, we show that under
some conditional independence assumptions, it does satisfy submodularity. Unfortunately, even in these
cases, computing the information gain is difficult even for graphical models, where efficient inference is
possible. We nevertheless show that the information gain can be approximated efficiently using sampling.
We extend the methodology for maximizing submodular functions described in Chapter 5 to this case,
and provide a randomized approximation algorithm for selecting the most informative set of variables in
graphical models. We empirically analyze our algorithm on a real-world traffic prediction problem.

Sensor placement for outbreak detection. In the case of outbreak detection (Chapter 8), we deal with
the problem that observations have non-constant cost, and the existing algorithms for optimizing such
problems do not scale to the size of the outbreak detection problems considered in this chapter. In addition,
we consider cases where multiple criteria (e.g., time to detection and detection likelihood) need to be
simultaneously optimized. We present extensive experiments, on two real-world problems: Placing a set
of sensors for contamination detection in a real water distribution network, and deciding which weblogs
to read, in order to effectively capture most important information cascades.

Summary of contributions. The key contributions of this part of the Thesis are:

1. We prove that several important sensing quality functions satisfy submodulariy. These include

• mutual information for spatial prediction in Gaussian Processes,
• information gain with respect to a set of target variables in graphical models and
• outbreak detection in networks.

2. We show how this submodularity can be exploited to

• obtain provably near-optimal solutions for selecting the k most informative sensing locations,
by invoking powerful existing results about optimizing submodular functions,

• speed up algorithms using lazy evaluations and
• compute novel tight, data dependent-bounds.

3. We prove hardness of sensing problems. Under reasonable complexity theoretic assumptions, opti-
mizing information gain is hard to approximate within a factor of (1 − 1/e) even for Naive Bayes
models. This bound matches the performance of the greedy algorithm for this problem.

4. We demonstrate our approach on several real-world case studies, including

• sensor placement for spatial prediction in Gaussian Processes,
• sensor placement for posture recognition on a sensing chair, where our algorithms obtain 30-

fold reduction in hardware cost without significant reduction in prediction accuracy,
• sensor placement for outbreak detection in a metropolitan-area drinking water distribution

network, where our algorithms obtained a top score in an international competition and
• selecting informative weblogs to read on the Internet, showing that our algorithms scale to a

blog data set with 45,000 blogs and millions of postings.
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Chapter 5

Submodularity

As we will show in the subsequent Chapters 6, 7 and 8, many observation selection problems satisfy an
intuitive diminishing returns property: Adding an observation helps more, if we have observed little so
far, and helps less, if we already have made a lot of observations. This concept is formalized by the
combinatorial property of submodularity (c.f., Nemhauser et al. 1978). In this chapter, we review the con-
cept of and classical results about submodularity, and give examples of its usefulness. In a strong sense,
submodularity is the discrete analogue to convexity [Lovasz, 1983]. Just as convexity makes continuous
functions more amenable to optimization, so does submodularity in the case of combinatorial problems.
We also provide several contributions, including the CELF algorithm for maximizing submodular func-
tions subject to arbitrary non-constant cost functions, as well as analyses using approximate oracles and
online bounds.

5.1 Submodular set functions

Consider a set function
F : 2V → R,

which maps subsets A ⊆ V of a finite ground set V to the real numbers. F is called submodular [c.f.,
Fujishige, 2005, Nemhauser et al., 1978] if, for all A,B ⊆ V it holds that

F (A) + F (B) ≥ F (A ∪ B)− F (A ∩ B).

Note, that if F is nonnegative (i.e., F (A) ≥ 0 for all A), submodularity implies subadditivity, as consid-
ered in Section 2.4.2. Hence, from a sensing optimization perspective, combining two sets of information
has less sensing quality than the sum of the sensing qualities of the individual sets.

An equivalent characterization of submodular set functions is the following:
Proposition 5.1 (Nemhauser et al. [1978]). A set function is submodular if and only if, for allA ⊆ B ⊆ V
and s ∈ V \ B, it holds that

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B). (5.1)

This second characterization is the formalization of diminishing returns alluded to in the introduction:
Adding an element s helps at least as much if we add it to a small set A than if we add it to a superset
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B. In addition to this intuitive interpretation, the characterization (5.1) is typically easier to verify when
proving submodularity.

A function F such that −F is submodular is called supermodular. A set function is additive (or modular)
if and only if it is both submodular and supermodular [Lovasz, 1983].

Another important property of some set functions is nondecreasingness: A set function F is called non-
decreasing, if for all A ⊆ B ⊆ V it holds that F (A) ≤ F (B). This is an intuitive requirement for sensing
quality functions: Gathering more information can never reduce the sensing quality.

5.1.1 An example: Set coverage

An important example of a nondecreasing submodular set function is the following. Consider finite sets V
andW . With each element s ∈ V , we associate a subset Bs ⊆ W . Define a set function F on V by

F (A) =

∣∣∣∣∣⋃
s∈A
Bs

∣∣∣∣∣ . (5.2)

It is straightforward to verify that F is nondecreasing and submodular. Using the unit cost function,
C(A) = |A|, Problem (2.5) with Q = |W|, i.e., the problem

A∗ = argmin
A⊆V

|A| such that F (A) = F (V),

is called the set cover problem. Similarly, for B = k, the problem (2.4), i.e.,

A∗ = argmax
|A|≤k

F (A),

is called the max-k-cover problem. F is often called the set cover function or the cardinality-of-union
function.

Note, that this objective function has an intuitive interpretation in the observation selection context. Con-
sider the case, where we have a spatial regionW to cover, and with each location s ∈ V , we associate a
sensing region Bs (e.g., a disk). Then, our goal would be to, e.g., place k sensors such that the covered
area

∣∣⋃
s∈A Bs

∣∣ is maximized. Indeed, this objective function has been extensively used in the sensor
placement literature [c.f., Abrams et al., 2004, Bai et al., 2006, Deshpande et al., 2008, Hochbaum and
Maas, 1985, Kershner, 1939].

We can also fit this example into our utility-based formulation (2.1): Define a random variable Z which is
uniformly distributed over the index setW . With each possible observation s ∈ V associate an indicator
variable Xs = [Z ∈ Bs], which is 1 iff Z takes a value in Bs, 0 otherwise. Define a sensing quality
function u(xV ,A) = maxs∈A xs. Hence, u(xV ,A) = 1 if any of the chosen observations “detects” Z,
i.e., Z ∈

∣∣⋃
s∈A Bs

∣∣, and 0 otherwise. Then

F (A) =
∫
P (xV)u(xV ,A)dxV =

1
|W|

∣∣∣∣∣⋃
s∈A
Bs

∣∣∣∣∣ .
Note, that it is straightforward to associate a nonnegative “importance” weight w(x) with each element
x ∈ W . The modified objective

F (A) =
∑

x

w(x)

[
x ∈

⋃
s∈A

]
(5.3)
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Algorithm 5.1: GREEDY: Greedy algorithm for maximizing submodular function F .

Input: Submodular function F : 2V → R, k
Output: Subset A ⊆ V
begin
A ← ∅;
for j = 1 to k do

for y ∈ V \ A do
δs ← F (A ∪ {s})− F (A);1

end
s∗ ← argmaxs∈V\A δs;2

A ← A∪ {s∗};
end

end

remains submodular and nondecreasing.

We can allow even more extensions: For example, we can allow each element x ∈ W to be covered
multiple times. This is useful in sensor placement problems, where we want to achieve coverage which
is robust against sensor failures. Examples of such set multi-cover or even multi-set multi-cover problems
are given by Rajagopalan and Vazirani [1998]. All these problems remain nondecreasing and submodular,
and have useful observation selection interpretations.

This example already suggests that submodularity is an interesting structural property of observation se-
lection problems. In the next sections, we will see how submodularity is very useful in practice.

5.2 The greedy algorithm for nondecreasing submodular set functions

For many nondecreasing submodular set functions, the maximization and covering problems (2.4) and (2.5)
are NP-hard. One example is the max-k-cover problem, where the best set A of size at most k maximiz-
ing the set cover objective F is desired [Feige, 1998]. Hence we cannot expect to solve such problems
efficiently in general, unless P = NP. As discussed in the following, the simple greedy algorithm pro-
vides the best possible performance achievable in polynomial time in general under reasonable complexity
theoretic assumptions.

5.2.1 Greedy maximization algorithm in the unit cost case

A simple heuristic approach to solving the maximization problem (2.4) is the greedy algorithm (sometimes
also called forward selection), which starts with the empty set A = ∅, and iteratively adds the element
s∗ ∈ V \ A which maximally increases the objective value, i.e.,

s∗ = argmax
s∈V\A

F (A ∪ {s}), (5.4)

until k elements have been selected. Algorithm 5.1 provides pseudo-code for this procedure.
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Perhaps surprisingly, the greedy algorithm provides strong theoretical guarantees:
Theorem 5.2 (Nemhauser et al. [1978]). Let F be a nondecreasing submodular function defined on a
ground set V such that F (∅) = 0, and k be an integer. Then the solution Agreedy returned by the greedy
algorithm satisfies

F (Agreedy) ≥

(
1−

(
k − 1
k

)k
)

OPT ≥ (1− 1/e) OPT,

where OPT = max|A|≤k F (A) is the value obtained by an optimal solution.

Hence, the greedy algorithm is guaranteed to obtain a solution which achieves at least a constant fraction
of (1 − 1/e) ≈ 63% of the optimal value. Perhaps even more surprisingly, if P = NP, the greedy
algorithm is in a strong sense optimal for maximizing submodular functions:
Theorem 5.3 (Feige [1998]). If there were a constant α > (1 − 1/e), and a polynomial-time algorithm
which, for any nondecreasing submodular function, integer k would be guaranteed to find a solution such
that

F (Agreedy) ≥ αOPT,

then P = NP.

Hence, for any nondecreasing submodular function F , and for C(A) = |A|, the greedy algorithm solves
the problem (2.4) near-optimally.

What if the greedy rule (5.4) can not be evaluated exactly? This problem can arise, e.g., if F can only be
evaluated approximately (e.g., through sampling). In the following, we consider the case where, instead
of F , an approximate version F̂ of F is evaluated. We say F̂ evaluates F with multiplicative error α ≥ 1,
if for all A ∈ V it holds that

1
α
F (A) ≤ F̂ (A) ≤ αF (A).

We say F̂ evaluates F with additive error ε ≥ 0, if for all A ∈ V it holds that

|F (A)− F̂ (A)| ≤ ε.

We can generalize Theorem 5.2 to the case, where F is evaluated only approximately:
Theorem 5.4. If F̂ evaluates F with multiplicative error α or absolute error ε, then the solution Agreedy

returned by the greedy algorithm applied to F̂ satisfies

F (Agreedy) ≥
(
1− 1/e

1
α

)
OPT−kε,

where OPT = max|A|≤k F (A) is the value obtained by an optimal solution.

The proof of Theorem 5.4 and all other results in this Thesis is presented in the Appendix. This result was
shown previously by Kempe et al. [2003] for the special case of multiplicative error.

5.2.2 Greedy maximization algorithm in the non-constant cost case

If the cost function is additive, but the cost c(s) of each element varies, then the simple greedy algorithm,
which adds elements until the specified budget B is exhausted, can perform arbitrarily badly, since it
is indifferent to the costs (i.e., a very expensive element providing reward r is preferred over a cheaper
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element providing reward r − ε. To avoid this issue, the greedy algorithm can be modified to take costs
into account, by selecting the next element s∗ after j − 1 elements have already been chosen as

s∗ = argmax
s∈V\A

F (A ∪ {s})− F (A)
c(s)

. (5.5)

i.e., the greedy algorithm picks the element maximizing the benefit/cost ratio. The algorithm stops once
no element can be added to the current setA without exceeding the budgetB. Unfortunately, this intuitive
generalization of the greedy algorithm can perform arbitrarily worse than the optimal solution. Consider
the case where we have two locations, s1 and s2, c(s1) = ε and c(s2) = B. Let our objective function F
satisfy F (∅) = 0, F ({s1}) = 2ε, and F ({s2}) = B. Now, (F ({s1})−F (∅))/c(s1) = 2, and (F ({s2})−
F (∅))/c(s2) = 1. Hence the greedy algorithm would pick s1. After selecting s1, it cannot afford s2
anymore, and our total objective value would be ε. However, the optimal solution would pick s2, achieving
a total value ofB. As ε goes to 0, the performance of the greedy algorithm becomes arbitrarily bad.

However, the greedy algorithm can be improved to achieve a constant factor approximation. This new
algorithm, CEF (for cost-effective forward-selection) computes the solution AGCB using the benefit-
cost greedy algorithm, using rule (5.5), and also computes the solution AGUC using the unit-cost greedy
algorithm (ignoring the costs), using rule (5.4). For both rules, CEF only considers elements which do not
exceed the budget B. CEF then returns the solution with higher score. Even though both solutions can be
arbitrarily bad, the following result shows that there is at least one of them which is not too far away from
optimum, and hence CEF provides a constant factor approximation.
Theorem 5.5. Let F be a nondecreasing submodular function with F (∅) = 0. Then

max{F (AGCB), F (AGUC)} ≥ 1
2
(1− 1/e) max

A,C(A)≤B
F (A).

Theorem 5.5 was proved by Khuller et al. [1999] for the special case of the set-covering objective function.
We extend their result and analysis to arbitrary nondecreasing submodular functions. Theorem 5.5 states
that the better solution of AGBC and AGUC (which is returned by CEF) is at most a constant factor
1
2(1− 1/e) ≈ 0.31 of the optimal solution.

We can generalize Theorem 5.5 to the case where F is evaluated only approximately:
Theorem 5.6. If F̂ evaluates F with multiplicative error at most α, or additive error at most ε, then

max{F (AGCB), F (AGUC)} ≥ 1
2α

(1− 1/e1/α) max
A,C(A)≤B

F (A)− (1 + α)
(

B

2cmin

)
ε.

For an algorithm similar to CEF, Wolsey [1982b] proved a slightly tighter bound of 1−e−β with β chosen
as the solution of eβ = 2 − β. This bound evaluates to 1 − e−β ≈ 0.35, whereas 1

2(1 − 1/e) ≈ 0.31.
However, Wolsey [1982b] did not consider the case of approximate function evaluations, which will be
required for our analysis in the subsequent chapters.

Note that the running time of CEF is O(B|V|) in the number of possible locations |V| (if we consider
a function evaluation F (A) as atomic operation, and the lowest cost of a node is constant). Sviridenko
[2004] showed that even in the non-constant cost case, the approximation guarantee of (1 − 1/e) can be
achieved. However, his algorithm is Ω(B|V|4) in the size of possible locations |V| we need to select from,
which is prohibitive in the applications we consider.
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5.2.3 Greedy covering algorithm

We now consider the covering Problem (2.5). An intuitive algorithm for covering is an alternative version
of the greedy algorithm, which does not stop until F (A) = F (V), i.e., the maximum attainable score has
been achieved. We again consider the setting of arbitrary nonnegative additive cost functions, and use the
greedy rule (5.5). The following result is known about this algorithm: (c.f.,
Theorem 5.7 (Wolsey [1982a]). Let F be a nondecreasing, integer-valued, submodular function defined
on a ground set V such that F (∅) = 0, and let C(A) be a nonnegative, additive cost function. Then the
solution Agreedy returned by the greedy covering algorithm satisfies

C(Agreedy) ≤
(

1 + ln
(

max
s∈V

F ({s})
))

OPT

where OPT = minA:F (A)=F (V)C(A) is the cost incurred by an optimal solution.

Hence, the solution returned by the greedy algorithm is at most a logarithmic factor more expensive than
the optimal solution. Similarly to the maximization problem, it is possible to show that this guarantee is
best possible for the covering case as well:
Theorem 5.8 (Feige [1998]). If there were a constant α > 0, and a polynomial-time algorithm which, for
any nondecreasing submodular function would be guaranteed to find a solution such that

C(Agreedy) ≤ (1− α)
(

lnmax
s∈V

F ({s})
)

OPT,

then P ⊆ DTIME(nlog log n).

Hereby, DTIME(nlog log n) is a class of slightly superpolynomial algorithms, and the inclusion P ⊆
DTIME(nlog log n) is considered unlikely [Feige, 1998].

Note that if F (A) is nondecreasing and submodular, the function F ′(A) = min(F (A), Q) is submodular
as well [Fujito, 2000]. Furthermore, if Q ≤ F (V), then F ′(A) = F ′(V) = Q if and only iff F (A) ≥ Q.
Hence, the greedy covering algorithm can be used to approximately solve Problem (2.5) for arbitrary
submodular functions and arbitrary quotas Q.

5.3 Online bounds for submodular maximization problems

For nondecreasing submodular functions, Theorems 5.2 and 5.5 prove an offline approximation guarantee
of (1− 1/e), which we can state a priori, i.e., before running the algorithm. As we will show empirically
Chapters 6 and 8, for many practical problems, this bound is very loose.

In the case of additive cost functions with unit cost, the following observation allows to compute online
bounds on the optimal value of the maximization problem with sets of size k:
Proposition 5.9 (Minoux [1978]). Let F be a nondecreasing submodular function on V , and let A ⊆ V ,
|A| = k. For all s ∈ V \ A, let δs = F (A ∪ {s})− F (A). Sort the δs in decreasing order, and consider
the sequence δ(1), . . . , δ(k) of the first k elements. Then max|A′|⊆k F (A′) ≤ F (A) +

∑k
i=1 δ

(i).

The proof of this proposition follows directly from submodularity. In many applications, especially for
large placements, this bound can be much tighter than the bound guaranteed by Theorem 5.2.
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Algorithm 5.2: GETBOUND: Getting bound F̂ on optimal solution.
Input: Reward function F , cost function C, budget B
Output: bound on optimal value
begin
A ← ∅; B ← ∅; F̂ = F (A);
foreach s ∈ V do δs ← F (A ∪ {s})− F (A); rs = δs

C({s}) ;
while ∃s ∈ V \ (A ∪ B) : C(A ∪ B ∪ {s}) ≤ B do

s∗ ← argmax
s∈V\{A∪B},C(A∪B∪{s})≤B

rs;

F̂ ← F̂ + δs∗ ; B ← B ∪ {s∗};
end
s∗ ← argmax

s∈V\{A∪B},C(A∪B∪{s})≤B
rs; λ← B−C(A∪B)

C({s∗}) ;

return F̂ + λδs∗ ;
end

The following result allows to compute online bounds on the optimal value of the maximization problem
for arbitrary additive cost functions.
Theorem 5.10. For a set A ⊆ V , and each s ∈ V \ A, let δs = F (A ∪ {s})− F (A). Let rs = δs/c(s),
and let s1, . . . , sm be the sequence of locations with rs in decreasing order. Let k be such that C =∑k−1

i=1 c(si) ≤ B and
∑k

i=1 c(si) > B. Let λ = (B − C)/c(sk). Then

max
A′,C(A′)≤B

F (A′) ≤ F (A) +
k−1∑
i=1

δsi + λδsk
. (5.6)

Theorem 5.10 presents a way of computing how far an arbitrary given solution A (obtained using CEF
or any other algorithm) is from the optimal solution. In Chapters 6 and 8, we show, how this online bound
can be much tighter than the offline guarantee of (1− 1/e) for many applications.

This theorem can be readily turned into an algorithm, as formalized in Algorithm 5.2.

We start with set Â, compute the benefit-cost ratios ri, arrange them in decreasing order, and keep on
adding their marginal benefits δi to F (Â) according to this order, until our budget is exhausted. We then
pick the next best element, and add it fractionally according to the weight λ. The resulting score is our
bound. Algorithm 5.2 presents pseudo-code for this procedure. In our experiments, we empirically show
that this bound is much tighter than the bound 1

2(1 − 1/e), which is roughly 31%, or even the (1 − 1/e)
bound obtained using the GREEDY algorithm. Furthermore, we can essentially compute it for free when
running CEF.

For additional practical usefulness of the offline and online bounds (Theorem 5.2, Theorem 5.5 and The-
orem 5.10), note that they can be used to automatically derive an online performance guarantee for any
other algorithm maximizing a submodular function F .
Remark 5.11. Let F (A) be the value of the solution which is guaranteed (e.g., by Theorem 5.10) to
achieve at least a factor 0 < α ≤ 1 of the optimal value. Let F (A′) be the value of a feasible solution
computed by another algorithm. Then F (A′) is guaranteed to be a αF (A′)

F (A) approximation, and we can
compute the guarantee at runtime.
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While fairly straightforward, this observation is very useful for the analysis of stochastic approximation
algorithms such as simulated annealing [Kirkpatrick et al., 1983], which are in certain cases guaranteed to
converge to the optimal solution with high probability, but for which one usually does not know whether
they have already achieved the optimum or not. Remark 5.11 provides a lower bound on the quality of
approximation achieved and a stopping criterion for these algorithm. The CEF solution is also a viable
starting point for such local search heuristics.

5.4 Lazy evaluations and the CELF algorithm

It is possible to improve the performance of Algorithm 5.1 directly under certain conditions by lazy eval-
uation of the incremental improvements in Line 1. The idea of lazy evaluations is due to Minoux [1978],
and has been used by Robertazzi and Schwartz [1989] in the context of D-optimal design. The key insight
is that the improvements

δs(A) = F (A ∪ {s})− F (A),

which are used in greedy selection, are monotonically nonincreasing in A. Furthermore, the greedy al-
gorithm produces such a monotonically increasing sequence of sets A. This insight can be exploited in a
lazy variant of the greedy algorithm in the following way.

At the start of the algorithm, all δs will be initialized to +∞. The algorithm will maintain information
about which δs are current, i.e., have been computed for the current set A. Now, the greedy rule in Line 1
will find the element s with largest δs. If this δs has not been updated for the current A, the value is
updated and reintroduced into the queue. This process is iterated until the location with maximum δs has
an updated value. As we show in Chapters 6 and 8, this lazy approach can save significant computation
time.

To understand the efficacy of this procedure, consider the following intuition: If a location s∗ is selected,
nearby locations will become significantly less desirable and their marginal increases δy will decrease
significantly. When this happens, these location will not be considered as possible maxima for the greedy
step for several iterations.

Note, that this lazy evaluation technique can be applied to the CEF algorithm as well. We call the
resulting algorithm CELF (for Cost-effective Lazy Forward-Selection), which is formalized in Algo-
rithm 5.4.

This approach can be efficiently implemented by using a priority queue to maintain the advantages δs.
Line 2 (or Line 3 respectively) calls deletemax with complexity O(log n) and Line 4 uses the insert
operation with complexity O(1). Also, as stated Line 1 has an O(n) complexity, and was introduced for
simplicity of exposition. In reality, we annotate the δs’s with the last iteration that they were updated,
completely eliminating this step.

5.5 Exact algorithms for optimizing submodular functions

Even though maximizing submodular functions is NP-hard in general, for certain special cases, the opti-
mal solution can be found efficiently.
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Algorithm 5.3: LAZYFORWARD: Lazy unit cost/cost-benefit greedy algorithm.
Input: Reward function F , cost function C, budget B, type∈ {UC,CB}
Output: Node selection A ⊆ V
begin
A ← ∅; foreach s ∈ V do δs ← +∞;
while ∃s ∈ V \ A : C(A ∪ {s}) ≤ B do

foreach s ∈ V \ A do curs ← false;1

while true do
if type=UC then s∗ ← argmax

s∈V\A,C(A∪{s})≤B
δs;

2

if type=CB then s∗ ← argmax
s∈V\A,C(A∪{s})≤B

δs
C({s})

;
3

if curs then A ← A∪ {s∗}; break ;
else δs ← F (A ∪ {s})− F (A); curs ← true;4

end
end
return A;

end

Algorithm 5.4: CELF: The CELF algorithm.
Input: Reward function F , cost function C, budget B
Output: Node selection A ⊆ V
begin
AUC ←LazyForward(F,C,B,UC);
ACB ←LazyForward(F,C,B,CB);
return argmax{F (AUC), F (ACB)}

end

5.5.1 Mixed integer programming

One approach, which can be used to get even tighter online bounds than those of Theorem 5.10, or even
compute the optimal solution in certain cases, is based on mixed integer programming.

The mixed integer program for this approach, which is due to Nemhauser and Wolsey [1981], is given
by:

max η;

η ≤ F (B) +
∑

si∈V\B

αi[F (B ∪ si)− F (B)], ∀B ⊆ V; (5.7)

∑
i

αi ≤ k, ∀i; (5.8)

αi ∈ {0, 1}, ∀i;

where αi = 1 means that location si ∈ V should be selected. Note that this MIP can be easily extended
to handle the case in which each location can have a different cost, by replacing the constraint (5.8) by∑

i αici ≤ B, where B is the budget and ci = c(si).
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Unfortunately, this MIP has exponentially many constraints. Nemhauser and Wolsey [1981] proposed the
following constraint generation algorithm: Let αA denote an assignment to α1, . . . , αn such that αi = 1
iff si ∈ A. Starting with no constraints of type (5.7), the MIP is solved, and one checks whether the current
solution (η, αB) satisfies η ≤ FMI(B)). If it does not, a violated constraint has been found. Since solving
individual instances (even with only polynomially many constraints) is NP-hard, we need to resort to
search heuristics such as Branch and Bound and Cut during the constraint generation process.

The analysis of this MIP, as presented by Nemhauser and Wolsey [1981], assumes that F is nondecreas-
ing. There is another MIP formulation for maximizing general submodular functions without requiring
nondecreasingness. The details can be found in Nemhauser and Wolsey [1981].

5.5.2 Branch and bound search

By exploiting specific properties of submodular functions, Goldengorin et al. [1999] developed a branch
and bound search approach for maximizing arbitrary (not necessarily nondecreasing) submodular func-
tions. Similarly to the mixed-integer programming approach, this approach can potentially be used to
avoid exhaustive search, but it is not guaranteed to find the optimal solution in polynomial time.

5.6 Existing work on submodular function maximization

In their seminal work, Nemhauser et al. [1978] and Wolsey [1982a] analyze the greedy algorithm for op-
timizing nondecreasing submodular functions. Sviridenko [2004] presents an algorithm for the budgeted
maximization of submodular functions, as discussed in Section 5.2.2.

Another interesting submodular optimization problem is the problem of maximizing a nondecreasing sub-
modular function subject to a matroid constraint, i.e., where the set A in Problem (2.7) consists of inde-
pendent sets of a matroid. Hereby, a matroid is a pair (V,A) where A ⊆ 2V is a collection of subsets of V
called independent sets, satisfying

1. ∅ ∈ A, i.e., the empty set is independent.

2. If A ⊆ B, and B ∈ A, then A ∈ A, i.e., subsets of independent sets are independent.

3. If A,B ∈ A, |A| < |B| then there exists a s ∈ B \ A such that A ∪ {s} ∈ A. I.e., if A and B are
independent, andA is smaller than B, then there is an element s in B which can be added toA such
that the resulting set is still independent.

Matroid theory originated from generalizing the notion of linear independence in vector spaces to other
combinatorial problems. One well-known example is the following: Take a graph with edges E , and call
a subset A ⊆ E independent (i.e., A ∈ A) if A has no cycle. Then (E ,A) is a matroid. Also note that
for any set V and the collection of sets A = {A ⊆ V : |A| ≤ k}, (V,A) is a matroid as well, called the
uniform matroid. Hence, the maximization problem

A∗ = argmax
|A|≤k

F (A)

is a special case of the problem of maximizing a submodular function subject to a matroid constraint. As
Nemhauser et al. [1978] proved, the greedy algorithm gives a (1 − 1/e) approximation to this problem.
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Until very recently, the problem of whether a (1 − 1/e) approximation is possible for arbitrary matroid
constraints was open. Fisher et al. [1978] proved the powerful result:
Theorem 5.12 (Fisher et al. [1978]). Let V be a finite set, and (V,A1), . . . , (V,Ap) be matroids, and F a
nondecreasing submodular function. Then the greedy algorithm results in a solution AG such that

F (AG) ≥ 1
p+ 1

max
A

F (A) such that A ∈ A1 ∩ · · · ∩ Ap.

In the case of a single matroid constraint (p = 1), this theorem guarantees a factor 1/2 approximation
to the problem of maximizing a submodular function to a matroid constraint, which is slightly weaker
than the (1− 1/e) guarantee for the uniform matroid. Vondrak [2008] proved that a (1− 1/e) guarantee
can be obtained for arbitrary matroid constraints, albeit using a more complex algorithm than the greedy
algorithm. In Chapter 12 we will see how matroids are extremely useful for solving complex sensor
scheduling problems.

5.7 Minimization of submodular functions

A large part of the theory of optimizing submodular functions is concerned with minimizing instead of
maximizing a single submodular function. Queyranne [1995] present the first algorithm for minimiz-
ing symmetric submodular functions; Iwata et al. [2001] and Schrijver [2000] present combinatorial al-
gorithms for minimizing arbitrary (not necessarily symmetric) submodular functions. Narasimhan and
Bilmes [2006, 2004], Narasimhan et al. [2005] present several results exploiting these minimization algo-
rithms to solve difficult machine learning problems such as clustering and structure learning of graphical
models. While these approaches show promise for solving complex machine learning problems, we have
not yet identified applications in the context of optimized information gathering.

5.8 Matlab Toolbox for optimizing submodular functions

All the algorithms for optimizing submodular functions presented in this Thesis are available in a Mat-
lab toolbox, which is available at our website http://www.submodularity.org. The toolbox
implements CELF for budgeted maximization, SATURATE for robust optimization, PSPIEL for opti-
mization under complex cost functions, as well as ESPASS for simultaneous placement and scheduling.
The Branch and Bound algorithm by Goldengorin et al. [1999] for exact maximization of submodular
functions is included as well.

In addition, the toolbox also implements various algorithms for submodular function optimization beyond
this thesis, including the Minimum Norm Point algorithm by Fujishige [2005], the algorithm for mini-
mizing symmetric submodular functions by Queyranne [1995] as well as the submodular-supermodular
procedure by Narasimhan and Bilmes [2006]. All algorithms are illustrated by optimization tasks arising
from machine learning problems such as active learning and experimental design, clustering and inference
in Markov Random Fields.
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Chapter 6

Sensor Placements for Spatial
Prediction

When monitoring spatial phenomena, such as temperatures in an indoor environment as shown in Fig-
ure 6.1, using a limited number of sensing devices, deciding where to place the sensors is a fundamental
task. One approach is to assume that sensors have a fixed sensing radius and to solve the task as an instance
of the art-gallery problem [c.f., Gonzalez-Banos and Latombe, 2001, Hochbaum and Maas, 1985], similar
to the set covering approach discussed in Section 5.1.1. In practice, however, this geometric assumption
is too strong; sensors make noisy measurements about the nearby environment, and this “sensing area” is
not usually characterized by a regular disk, as illustrated by the temperature correlations in Figure 6.2(a).
In addition, note that correlations can be both positive and negative, as shown in Figure 6.2(b), which
again is not well-characterized by a disk model. Fundamentally, the notion that a single sensor needs to
predict values in a nearby region is too strong. Often, correlations may be too weak to enable prediction
from a single sensor. In other settings, a location may be “too far” from existing sensors to enable good
prediction if we only consider one of them, but combining data from multiple sensors we can obtain accu-
rate predictions. This notion of combination of data from multiple sensors in complex spaces is not easily
characterized by existing geometric models.

An alternative approach from spatial statistics [c.f., Caselton and Zidek, 1984, Cressie, 1991], making
weaker assumptions than the geometric approach, is to use a pilot deployment or expert knowledge to
learn a probabilistic Gaussian process (GP) model for the phenomena, a non-parametric generalization of
linear regression that allows for the representation of uncertainty about predictions made over the sensed
field. We can use data from a pilot study or expert knowledge to learn the (hyper-)parameters of this GP.
The learned GP model can then be used to predict the effect of placing sensors at particular locations, and
thus optimize their positions.1

Given a GP model, many criteria have been proposed for characterizing the quality of placements, includ-
ing placing sensors at the points of highest entropy (variance) in the GP model, and A-, D-, or E-optimal
design, and mutual information (c.f., Shewry and Wynn 1987, Caselton and Zidek 1984, Cressie 1991,

1This initial GP is, of course, a rough model, and a sensor placement strategy can be viewed as an inner-loop step for a
sequential, or active learning algorithm [MacKay, 2003]. We discuss such approaches in more depth in the last part of this
Thesis. Alternatively, if we can characterize the uncertainty about the parameters of the model, we can explicitly optimize the
placements over possible models [Zhu and Stein, 2006, Zidek et al., 2000, Zimmerman, 2006]. More details on this approach are
given in Chapter 10
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Zhu and Stein 2006, Zimmerman 2006). A typical sensor placement technique is to greedily add sensors
where uncertainty about the phenomena is highest, i.e., the highest entropy location of the GP [Cressie,
1991, Shewry and Wynn, 1987]. Unfortunately, this criterion suffers from a significant flaw: entropy is an
indirect criterion, not considering the prediction quality of the selected placements. The highest entropy
set, i.e., the sensors that are most uncertain about each other’s measurements, is usually characterized by
sensor locations that are as far as possible from each other. Thus, the entropy criterion tends to place
sensors along the borders of the area of interest [Ramakrishnan et al., 2005], e.g., Figure 6.5. Since a
sensor usually provides information about the area around it, a sensor on the boundary “wastes” sensed
information.

An alternative criterion, proposed by Caselton and Zidek [1984], mutual information, seeks to find sensor
placements that are most informative about unsensed locations. This optimization criterion directly mea-
sures the effect of sensor placements on the posterior uncertainty of the GP. In this chapter, we consider the
observation selection problem of selecting placements which maximize this criterion. We first prove that
maximizing mutual information is an NP-complete problem. We then show that mutual information is
a submodular function (c.f., Chapter 5). Unfortunately, mutual information does not satisfy nondecreas-
ingness, a requirement which is fundamental, e.g., in the analysis of the greedy algorithm as discussed
in Chapter 5. A key result which we establish in this chapter is that if the number of placed sensors is
small in comparison to the total number of possible locations, then mutual information is approximately
nondecreasing. This result allows us the apply the techniques described in Chapter 5 to optimize sensor
placements. For example, the CELF algorithm is guaranteed to provide a constant-factor approximation
to the problem of finding the best set of sensor locations in polynomial time. To the best of our knowledge,
no such guarantee exists for any other GP-based sensor placement approach.

Though polynomial, the complexity of our basic algorithm is relatively high due to the cost of inference
in the GP – O(kn4) to select k out of n possible sensor locations. We address this problem in two ways:
First, we show that the lazy evaluation technique discussed in Section 5.4 typically significantly reduces
the number of sensor locations that need to be checked, thus greatly speeding up computation. Second,
we show that if we exploit locality in sensing areas by trimming low covariance entries, we reduce the
complexity to O(kn).

We provide a very extensive experimental evaluation, showing that data-driven placements outperform
placements based on geometric considerations only. We also show that the mutual information criterion
leads to improved prediction accuracies with a reduced number of sensors compared to several more
commonly considered experimental design criteria, such as an entropy-based criterion, and A-optimal,
D-optimal and E-optimal design criteria.

In summary, in this chapter,

• We approach the problem of maximizing the information-theoretic mutual information criterion of
Caselton and Zidek [1984] for optimizing sensor placements, empirically demonstrating its advan-
tages over more commonly used criteria.

• Even though we prove NP-hardness of the optimization problem, we present a polynomial time ap-
proximation algorithm with constant factor approximation guarantee, by exploiting submodularity.
To the best of our knowledge, no such guarantee exists for any other GP-based sensor placement
approach, and for any other criterion.

• We also show that submodularity provides online bounds for the quality of our solution, which can
be used in the development of efficient branch-and-bound search techniques, or to bound the quality
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Figure 6.1: A deployment of a sensor network with 54 nodes at the Intel Berkeley Lab.

of the solutions obtained by other algorithms.

• We provide two practical techniques that significantly speed up the algorithm, and prove that they
have no or minimal effect on the quality of the answer.

• Extensive empirical evaluation of our methods on several real-world sensor placement problems
and comparisons with several classical design criteria.

This chapter is organized as follows. In Section 6.1, we introduce Gaussian Processes. We review the
mutual information criterion in Section 6.2, and describe our approximation algorithm to optimize mu-
tual information in Section 6.3. Section 6.4 presents several approaches towards making the optimization
more computationally efficient. Section 6.5 describes related work, and Section 6.6 presents our experi-
ments.

6.1 Gaussian Processes

In this section, we review Gaussian Processes, the probabilistic model for spatial phenomena that forms
the basis of our sensor placement algorithms.

6.1.1 Modeling sensor data using the multivariate normal distribution

Consider, for example, the sensor network we deployed as shown in Figure 6.1 that measures a temperature
field at 54 discrete locations. In order to predict the temperature at one of these locations from the other
sensor readings, we need the joint distribution over temperatures at the 54 locations. A simple, yet often
effective [c.f., Deshpande et al., 2004], approach is to assume that the temperatures have a (multivariate)
Gaussian joint distribution. Denoting the set of locations as V , in our sensor network example |V| = 54,
we have a set of n = |V| corresponding random variables XV with joint distribution:

P (XV = xV) =
1

(2π)n/2|ΣVV |
e−

1
2
(xV−µV )T Σ−1

VV (xV−µV ),
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Figure 6.2: Correlations are often nonstationary as illustrated by (b) temperature data from the sensor
network deployment in Figure 6.1, showing the correlation between a sensor placed on the blue square
and other possible locations; (c) precipitation data from measurements made across the Pacific Northwest,
Figure 6.12(b).

where µV is the mean vector and ΣVV is the covariance matrix. Interestingly, if we consider a subset,
A ⊆ V , of our random variables, denoted by XA, then their joint distribution is also Gaussian.

6.1.2 Modeling sensor data using Gaussian Processes

In our sensor network example, we are not just interested in temperatures at sensed locations, but also at
locations where no sensors were placed. In such cases, we can use regression techniques to perform pre-
diction [Golub and Van Loan, 1989, Hastie et al., 2003]. Although linear regression often gives excellent
predictions, there is usually no notion of uncertainty about these predictions, e.g., for Figure 6.1, we are
likely to have better temperature estimates at points near existing sensors, than in the two central areas
that were not instrumented. A Gaussian process (GP) is a natural generalization of linear regression that
allows us to consider uncertainty about predictions.

Intuitively, a GP generalizes multivariate Gaussians to an infinite number of random variables. In analogy
to the multivariate Gaussian above where the the index set V was finite, we now have a (possibly uncount-
ably) infinite index set V . In our temperature example, V would be a subset of R2, and each index would
correspond to a position in the lab. GPs have been widely studied [c.f., Lindley and Smith, 1972, MacKay,
2003, O’Hagan, 1978, Paciorek, 2003, Seeger, 2004a, Shewry and Wynn, 1987], and generalize Kriging
estimators commonly used in geostatistics [Cressie, 1991].

An important property of GPs is that for every finite subset A of the indices V , which we can think about
as locations in the plane, the joint distribution over the corresponding random variables XA is Gaussian,
e.g., the joint distribution over temperatures at a finite number of sensor locations is Gaussian. In order to
specify this distribution, a GP is associated with a mean functionM(·), and a symmetric positive-definite
kernel function K(·, ·), often called the covariance function. For each random variable with index u ∈ V ,
its mean µu is given byM(u). Analogously, for each pair of indices u, v ∈ V , their covariance σuv is
given by K(u, v). For simplicity of notation, we denote the mean vector of some set of variables XA by
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Figure 6.3: Posterior mean and variance of the temperature GP estimated using all sensors: (a) Predicted
temperature; (b) predicted variance.

µA, where the entry for element u of µA isM(u). Similarly, we denote their covariance matrix by ΣAA,
where the entry for u, v is K(u, v).

The GP representation is extremely powerful. For example, if we observe a set of sensor measurements
XA = xA corresponding to the finite subset A ⊆ V , we can predict the value at any point y ∈ V
conditioned on these measurements, P (Xy | xA). The distribution of Xy given these observations is a
Gaussian whose conditional mean µy|A and variance σ2

y|A are given by:

µy|A = µy + ΣyAΣ−1
AA(xA − µA), (6.1)

σ2
y|A = K(y, y)− ΣyAΣ−1

AAΣAy, (6.2)

where ΣyA is a covariance vector with one entry for each u ∈ A with value K(y, u), and ΣAy = ΣT
yA.

Figure 6.3(a) and Figure 6.3(b) show the posterior mean and variance derived using these equations on 54
sensors at Intel Labs Berkeley. Note that two areas in the center of the lab were not instrumented. These
areas have higher posterior variance, as expected. An important property of GPs is that the posterior
variance (6.2) does not depend on the actual observed values xA. Thus, for a given kernel function, the
variances in Figure 6.3(b) will not depend on the observed temperatures. This property will be important
when analyzing sequential design in GPs (c.f., Chapter 14).

6.1.3 Nonstationarity

In order to compute predictive distributions using (6.1) and (6.2), the mean and kernel functions have to
be known. The mean function can usually be estimated using regression techniques. Estimating kernel
functions is difficult, and usually, strongly limiting assumptions are made. For example, it is commonly
assumed that the kernel K(u, v) is stationary, which means that the kernel depends only on the difference
between the locations, considered as vectors v, u, i.e., K(u, v) = Kθ(u− v). Hereby, θ is a set of parame-
ters. Very often, the kernel is even assumed to be isotropic, which means that the covariance only depends
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Figure 6.4: Example kernel function learned from the Berkeley Lab temperature data: (a) learned co-
variance function K(x, ·), where x is the location of sensor 41; (b) “ground truth”, interpolated empirical
covariance values for the same sensors. Observe the close match between predicted and measured covari-
ances.

on the distance between locations, i.e., K(u, v) = Kθ(||u − v||2). Common choices for isotropic kernels
are the exponential kernel,

Kθ(δ) = exp
(
−|δ|
θ

)
, (6.3)

and the Gaussian kernel,

Kθ(δ) = exp
(
−δ

2

θ2

)
. (6.4)

These assumptions are frequently strongly violated in practice, as illustrated in the real sensor data shown
in Figures 6.2(a) and 6.2(b). In Section 6.5.2, we discuss how placements optimized from models with
isotropic kernels reduce to geometric covering and packing problems.

In this chapter, we do not assume that K(·, ·) is stationary or isotropic. Our approach is general, and
can use any kernel function. In our experiments, we use the approach of Nott and Dunsmuir [2002]
to estimate nonstationary kernels from data collected by an initial deployment. More specifically, their
assumption is that an estimate of the empirical covariance ΣAA at a set of observed locations is available,
and that the process can be locally described by a collection of isotropic processes, associated with a set of
reference points. Details of this method are reviewed in Appendix A.3. An example of a kernel function
estimated using this method is presented in Figure 6.4(a). In Section 6.6.2, we show that placements
based on such nonstationary GPs lead to far better prediction accuracies than those obtained from isotropic
kernels.

6.2 Optimizing sensor placements

Usually, we can only deploy a small number of sensors, and thus must carefully choose where to place
them. In spatial statistics this optimization is called sampling or experimental design: finding the k best
sensor locations out of a finite subset V of possible locations, e.g., out of a grid discretization of R2.
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6.2.1 The entropy criterion

We first have to define what a good design is. Intuitively, we want to place sensors which are most
informative with respect to the entire design space. A natural notion of uncertainty is the conditional
entropy of the unobserved locations V \ A after placing sensors at locations A,

H(XV\A | XA) = −
∫
p(xV\A,xA) log p(xV\A | xA)dxV\AdxA, (6.5)

where we use XA and XV\A to refer to sets of random variables at the locations A and V \ A. Intuitively,
minimizing this quantity aims at finding the placement which results in the lowest uncertainty about all
uninstrumented locations V \ A after observing the placed sensors A. A good placement would therefore
minimize this conditional entropy, i.e., we want to find

A∗ = argmin
A⊆V:|A|=k

H(XV\A | XA).

Using the identity H(XV\A | XA) = H(XV)−H(XA), we can see that

A∗ = argmin
A⊆V:|A|=k

H(XV\A | XA) = argmax
A⊆V:|A|=k

H(XA).

In the terminology of Section 2.3, this criterion corresponds to choosing the sensing quality function

u(xV ,A) = − log2 P (xA),

and then solving the maximization problem (2.4) with the cost C(A) defined as C(A) = |A|, and budget
B = k. So we can see that we need to find a set of k sensors A which is most uncertain about each other.
Unfortunately, this optimization problem, often also referred to as D-optimal design in the experiment
design literature [c.f., Currin et al., 1991], has been shown to be NP-hard [Ko et al., 1995]:
Theorem 6.1 (Ko et al., 1995). Given rational M and rational covariance matrix ΣVV over Gaussian
random variables V , deciding whether there exists a subsetA ⊆ V of cardinality k such thatH(XA) ≥M
is NP-complete.

Therefore, the following greedy heuristic has found common use [Cressie, 1991, McKay et al., 1979]:
One starts from an empty set of locations, A0 = ∅, and greedily adds sensors until |A| = k. At each
iteration, starting with set Ai, the greedy rule used is to add the location y∗H ∈ V \ A that has highest
conditional entropy,

y∗H = argmax
y

H(Xy | XAi), (6.6)

i.e., the location we are most uncertain about given the sensors placed thus far. If the set of selected
locations at iteration i is Ai = {y1, . . . , yi}, using the chain-rule of entropies, we have that:

H(XAi) = H(Xyi | XAi−1) + ...+H(Xy2 | XA1) +H(Xy1 | XA0).

Note that the (differential) entropy of a Gaussian random variable Xy conditioned on some set of variables
XA is a nondecreasing function of its variance:

H(Xy|XA) =
1
2

log(2πeσ2
Xy |XA) =

1
2

log σ2
Xy |XA + const, (6.7)
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Figure 6.5: An example of placements chosen using entropy and mutual information criteria on a subset
of the temperature data from the Intel deployment. Diamonds indicate the positions chosen using entropy;
squares the positions chosen using MI.

which can be computed in closed form using Equation (6.2). Since for a fixed kernel function, the variance
does not depend on the observed values, this optimization can be done before deploying the sensors, i.e.,
a sequential, closed-loop design taking into account previous measurements bears no advantages over an
open-loop design, performed before any measurements are made. If the parameters are not known, this is
not necessarily true. We will study this sequential design problem in Chapter 14.

6.2.2 An improved design criterion: mutual information

The entropy criterion described above is intuitive for finding sensor placements, since the sensors that are
most uncertain about each other should cover the space well. Unfortunately, this entropy criterion suffers
from the problem shown in Figure 6.5, where sensors are placed far apart along the boundary of the space.
Since we expect predictions made from a sensor measurement to be most precise in a region around it,
such placements on the boundary are likely to “waste” information. This phenomenon has been noticed
previously by Ramakrishnan et al. [2005], who proposed a weighting heuristic. Intuitively, this problem
arises because the entropy criterion is indirect: the criterion only considers the entropy of the selected
sensor locations, rather than considering prediction quality over the space of interest. This indirect quality
of the entropy criterion is surprising, since the criterion was derived from the “predictive” formulation
H(XV\A | XA) in Equation (6.5), which is equivalent to maximizing H(XA).

Caselton and Zidek [1984] proposed a different optimization criterion, which searches for the subset of
sensor locations that most significantly reduces the uncertainty about the estimates in the rest of the space.
More formally, we consider our space as a discrete set of locations V = S ∪ U composed of two parts: a
set S of possible positions where we can place sensors, and another set U of positions of interest, where
no sensor placements are possible. The goal is to place a set of k sensors that will give us good predictions
at all uninstrumented locations V \ A. Specifically, we want to find

A∗ = argmax
A⊆S:|A|=k

H(XV\A)−H(XV\A | XA), (6.8)
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that is, the set A∗ that maximally reduces the entropy over the rest of the space V \A∗. Note that this cri-
terion FMI(A) ≡ H(XV\A)−H(XV\A | XA) is equivalent to finding the set that maximizes the mutual
information I(XA;XV\A) between the locations A and the rest of the space V \ A. In the notiation from
Section 2.3, this criterion corresponds to choosing the utility function

u(xV ,A) = log2 P (xV\A | xA)− log2 P (xV\A).

In their follow-up work, Caselton et al. [1992] and Zidek et al. [2000], argue against the use of mutual
information in a setting where the entropy H(XA) in the observed locations constitutes a significant part
of the total uncertainty H(XV). Caselton et al. [1992] also argue that, in order to compute FMI(A), one
needs an accurate model of P (XV). Since then, the entropy criterion has been dominantly used as a place-
ment criterion. Nowadays however, the estimation of complex nonstationary models for P (XV), as well
as computational aspects, are quite well understood and handled. Furthermore, we show empirically, that
even in the sensor selection case, mutual information outperforms entropy on several practical placement
problems.

On the same simple example in Figure 6.5, this mutual information criterion leads to intuitively appropri-
ate central sensor placements that do not have the “wasted information” property of the entropy criterion.
Our experimental results in Section 6.6 further demonstrate the advantages in performance of the mutual
information criterion. Notice that in our notation FMI(A) = I(XA;XV\A) the process X and the set of
locations V is implicit.

Similarly to the entropy criterion, mutual information is also hard to optimize:
Theorem 6.2. Given rational M and a rational covariance matrix ΣVV over Gaussian random variables
V = S ∪ U , deciding whether there exists a subset A ⊆ S of cardinality k such that FMI(A) ≥ M is
NP-complete.

Due to the problem complexity, we cannot expect to find optimal solutions in polynomial time in general.
However, if we implement the simple greedy algorithm for the mutual information criterion (details given
below), and optimize designs on real-world placement problems, we see that the greedy algorithm gives
almost optimal solutions, as presented in Figure 6.6. In this small example, where we could compute the
optimal solution, the performance of the greedy algorithm was at most five percent worse than the optimal
solution. In the following sections, we will give theoretical bounds and empirical evidence justifying this
near-optimal behavior.

6.3 Approximation algorithm

Optimizing the mutual information criterion is an NP-complete problem. In the following, we show that
the greedy algorithm provides a constant-factor approximation guarantee, by exploiting the concept of
submodularity (c.f., Chapter 5).

6.3.1 The greedy algorithm

The greedy algorithm simply adds sensors in sequence, choosing the next sensor which provides the
maximum increase in mutual information. More formally, using FMI(A) = I(XA;XV\A), our goal is to
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Figure 6.6: Comparison of the greedy algorithm with the optimal solutions on a small problem. We
select from 1 to 5 sensor locations out of 16, on the Intel Berkeley temperature data set as discussed in
Section 6.6. The greedy algorithm is always within 95 percent of the optimal solution.

Algorithm 6.1: Approximation algorithm for maximizing mutual information.
Input: Covariance matrix ΣVV , k, V = S ∪ U
Output: Sensor selection A ⊆ S
begin
A ← ∅;
for j = 1 to k do

for y ∈ S \ A do δy ←
σ2

y − ΣyAΣ−1
AAΣAy

σ2
y − ΣyĀΣ−1

ĀĀΣĀy

;
1

y∗ ← argmaxy∈S\A δy;2

A ← A∪ {y∗};
end

end

greedily select the next sensor y that maximizes:

FMI(A ∪ {y})− FMI(A) = H(XA ∪ {Xy})−H(XA ∪ {Xy} | XĀ)−
[
H(XA)−H(XA | XĀ∪{y})

]
,

= H(XA ∪ {Xy})−H(XV) +H(XĀ)− [H(XA)−H(XV) +H(XĀ ∪ {Xy})]
= H(Xy | XA)−H(Xy | XĀ). (6.9)

Note that the greedy rule for entropy in Equation (6.6) only considers the H(Xy | XA) part of Equa-
tion (6.9), measuring the uncertainty of location y with respect to the placements A. In contrast, the
greedy rule for mutual information trades off this uncertainty with −H(Xy | XĀ), which forces us to
pick a y that is “central” with respect to the unselected locations Ā, since those “central” locations will
result in the least conditional entropy H(Xy | XĀ). Expanding the definition of conditional entropy in
Equation (6.7), Algorithm 6.1 summarizes the greedy sensor placement algorithm.
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Figure 6.7: Mutual information of greedy sets of increasing size. It can be seen that clearly mutual infor-
mation is not nondecreasing. MI is nondecreasing, however, in the initial part of the curve corresponding
to small placements. This allows us to prove approximate nondecreasingness.

6.3.2 An approximation bound

We now prove that, if the discretization V of locations of interest in the Gaussian process is fine enough,
our greedy algorithm gives a (1 − 1/e) approximation, approximately 63% of the optimal sensor place-
ment: If the algorithm returns set Â, then

FMI(Â) ≥ (1− 1/e) max
A⊂S,|A|=k

FMI(A)− kε,

for some small ε > 0.

To prove this result, we use the concept of submodularity as reviewed in Chapter 5. In order to verify this
property, we use the diminishing returns characterization of submodularity: a set function F is submodular
if for all A ⊆ A′ ⊆ V and y ∈ V \ A′ it holds that F (A ∪ {y}) − F (A) ≥ F (A′ ∪ {y}) − F (A′). In
the case of F (A) = FMI(A), we need to consider the increments, FMI(A ∪ {s}) − FMI(A) which are
equal to H(y | A) − H(y | Ā) as shown above. Now, the “information never hurts” bound proves that
H(y | A) ≥ H(y | A′) whenever A ⊆ A′ [Cover and Thomas, 1991]. Hence, this bound immediately
proves that

FMI(A′ ∪ {y})− FMI(A′) ≤ FMI(A ∪ {y})− FMI(A),

whenever A ⊆ A′, and for an arbitrary choice y ∈ V \A′, i.e., adding y to A helps more than adding y to
A′. Hence we have shown:
Lemma 6.3. The set function A 7→ FMI(A) is submodular.

As explained in Chapter 5, the analysis of the greedy algorithm by Nemhauser et al. [1978] does not only
require submodularity, but also nondecreasingness, i.e., that FMI(A) ≤ FMI(A′) whenever A ≤ A′.
The third requirement, FMI(∅) = I(∅;V) = 0 is clearly satisfied.
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However, the nondecreasingness of mutual information is not apparent. Since

FMI(V) = I(V, ∅) = I(∅,V) = FMI(∅) = 0,

the objective function will increase and then decrease, and, thus, is not nondecreasing, as shown in Fig-
ures 6.7(a) and 6.7(b). Fortunately, the proof of Nemhauser et al. [1978] does not use nondecreasingness
for all possible sets, it is sufficient to prove that FMI is nondecreasing for all sets of size up to 2k. Intu-
itively, mutual information is not nondecreasing when the number of chosen sensor locations approaches
|V|/2. If the discretization level |V| is significantly larger than 2k points, then mutual information should
meet the conditions of the proof of Theorem 5.2.

Thus the heart of our analysis of Algorithm 6.1 will be to prove that if the discretization of the Gaussian
process is fine enough, then mutual information is approximately nondecreasing for sets of size up to 2k.
More precisely we prove the following result:
Lemma 6.4. Let X be a Gaussian process on a compact subset C of Rm with a positive-definite, contin-
uous covariance kernel K : C × C → R+

0 . Assume the sensors have a measurement error with variance
at least σ2. Then, for any ε > 0, and any finite maximum number k of sensors to place there exists a
discretization V = S ∪ U , S and U having mesh width δ such that

FMI(A ∪ {y}) ≥ FMI(A)− ε

for all A ⊆ S, |A| ≤ 2k and y ∈ V \ A.

If the covariance function is Lipschitz-continuous, such as the Gaussian Radial Basis Function (RBF) ker-
nel, the following corollary gives a bound on the required discretization level with respect to the Lipschitz
constant:
Corollary 6.5. If K is Lipschitz-continuous with constant L, then the required discretization is

δ ≤ εσ6

4kLM (σ2 + 2k2M + 6k2σ2)
,

where M = maxx∈C K(x, x), for ε < min(M, 1).

Corollary 6.5 guarantees that for any ε > 0, a polynomial discretization level is sufficient to guarantee that
mutual information is ε−approximately nondecreasing. These bounds on the discretization are, of course,
worst case bounds. The worst-case setting occurs when the sensor placements A are arbitrarily close to
each other, since the entropy part H(Xy | XA) in Equation (6.9) can become negative. Since most GPs
are used for modeling physical phenomena, both the optimal sensor placement and the sensor placement
produced by the greedy algorithm can be expected to be spread out, and not condensed to a small region
of the sensing area. Hence we expect the bounds to be very loose in the situations that arise during normal
operation of the greedy algorithm.

Combining our Lemmas 6.3 and 6.4 with Theorem 5.2, we obtain our constant-factor approximation
bound on the quality of the sensor placements obtained by our algorithm:
Theorem 6.6. Under the assumptions of Lemma 6.4, Algorithm 6.1 is guaranteed to select a set A of k
sensors for which

FMI(A) ≥ (1− 1/e)(OPT−kε),

where OPT is the value of the mutual information for the optimal placement.
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Note that our bound has two implications: First, it shows that the greedy algorithm has a guaranteed
minimum performance level of 1 − 1/e when compared to the optimal solution. Second, our approach
also provides an upper-bound on the value of the optimal placement, which can be used to bound the
quality of the placements by other heuristic approaches, such as local search, that may perform better than
our greedy algorithm on specific problems.

If the locations s ∈ V can have different costs, we can use Theorem 5.6 to still get approximation guaran-
tees. Analogously we can also extend the online bounds, lazy evaluation and mixed integer programming
techniques described in Chapter 5 to the case of ε-nondecreasing submodular functions.

6.3.3 Sensor placement with non-constant cost functions

In many real-world settings, the cost of placing a sensor depends on the specific location. As described in
Section 2.4, such cases can often be formalized by specifying an additive cost function C(A) and a total
budget B, and the task is to select placements A whose total cost C(A) is within our budget C(A) ≤ B.
Recently, the submodular function maximization approach of Nemhauser et al. [1978] has been extended
to address this budgeted case [Sviridenko, 2004] in the case of additive cost functions. The combination
of the analysis in this chapter with these new results also yields a constant-factor (1− 1/e) approximation
guarantee for the sensor placement problem with non-uniform costs.

6.3.4 Online bounds

Since mutual information is approximately nondecreasing and submodular, Theorem 6.6 proves an a
priori approximation guarantee of (1 − 1/e). For most practical problems however, this bound is very
loose. The bounds provided in Section 5.3 can be extended to the case of approximately nondecreasing
submodular functions as formalized in the following observation:
Proposition 6.7. Assume that the discretization is fine enough to guarantee ε-nondecreasingness for mu-
tual information and sets of size at most k. Let A ⊆ S be a placement of k sensors, and for all y ∈ S, let
δy = FMI(A∪{y})−FMI(A). Sort the δy in decreasing order, and consider the sequence δ(1), . . . , δ(k)

of the first k elements. Then OPT ≤ FMI(A) +
∑k

i=1 δ
(i) + kε.

The proof of this proposition follows directly from submodularity and ε-nondecreasingness. In many
applications, especially for large placements, this bound can be much tighter than the bound guaranteed
by Theorem 6.6. Figures 6.8(a) and 6.8(b) compare the a priori and online bounds for the data sets
discussed in Section 6.6.1.

6.3.5 Exact optimization and using mixed integer programming

There is another way to get even tighter bounds, or even compute the optimal solution. This approach is
based on branch & bound algorithm for solving a mixed integer program for nondecreasing submodular
functions by Nemhauser and Wolsey [1981], as discussed in Section 5.5.1. We used this algorithm to
bound the value of the optimal solution in Figure 6.6.
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Figure 6.8: Online bounds: mutual information achieved by the greedy algorithm, the (1 − 1/e) and
1− (1− 1/k)k a priori bounds and the online bound described in Section 5.3.

The mixed integer program is given by:

max η;

η ≤ FMI(B) +
∑

yi∈S\B

αi

[
FMI(B ∪ {yi})− FMI(B)

]
, ∀B ⊆ S; (6.10)

∑
i

αi ≤ k, ∀i; (6.11)

αi ∈ {0, 1}, ∀i;

where αi = 1 means that location yi should be selected. The MIP is solved using constraint generation,
as detailed in Section 5.5.1.

The analysis of this MIP, as presented by Nemhauser and Wolsey [1981], assumes nondecreasingness. In
the case of mutual information, the objective is only approximately nondecreasing. In particular, consider
a a placement defined by αA. Then, by submodularity, for all B, we have that:

FMI(B) +
∑

yi∈S\B

αAi [FMI(B ∪ {yi})− FMI(B)] = FMI(B) +
∑

yi∈A\B

[FMI(B ∪ {yi})− FMI(B)],

≥ FMI(A ∪ B).

By approximate nondecreasingness:

FMI(A ∪ B) ≥ FMI(A)− kε.

Thus, (η̂, αA), for η̂ ≤ FMI(A) − kε is a feasible solution for the mixed integer program. Since we are
maximizing η, for the optimal solution (η∗, αA

∗
) of the MIP it holds that

FMI(A∗) ≥ OPT−kε.

There is another MIP formulation for maximizing general submodular functions without the ε-nondecreasingness
requirement. The details can be found in Nemhauser and Wolsey [1981]. We however found this formu-
lation to produce much looser bounds, and to take much longer to converge.
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6.4 Scaling up

Greedy updates for both entropy and mutual information require the computation of conditional entropies
using Equation (6.7), which involves solving a system of k = |A| linear equations. For entropy maximiza-
tion, where we considerH(Xy|XA) alone, the complexity of this operation isO(k3). To maximize the mu-
tual information, we also need H(Xy|XĀ) requiring O(n3), for n = |V|. Since we need to recompute the
score of all possible locations at every iteration of Algorithm 6.1, the complexity of our greedy approach
for selecting k sensors is O(kn4), which is not computationally feasible for very fine discretizations
(large n). In Section 6.4.1 we first observe, that a lazy strategy (as discussed in Section 5.4) can be used
even though mutual information is only approximately nondecreasing. This strategy frequently reduces
the number of evaluations of the greedy rule, thereby often reducing the complexity to O(kn3). In Sec-
tion 6.4.2 we present a way of exploiting the problem structure by using local kernels, which often reduces
the complexity to O(kn). Both approaches can be combined for even more efficient computation.

6.4.1 Lazy evaluation

In Chapter 5, we discussed how the greedy algorithm can be made more efficient by using lazy evaluations.
These lazy evaluations rely on the fact, that, for a submodular function F , the greedy increments,

δy ≡ δy(A) ≡ F (A ∪ {y})− F (A),

are monotonically nonincreasing in A, i.e., δy(A) ≥ δy(A′) whenever A ⊆ A′. Note that this prop-
erty does not require nondecreasingness, hence it applies to the case of mutual information F (A) =
FMI(A).

6.4.2 Local kernels

In this section, we exploit locality in the kernel function to speed up the algorithm significantly: First,
we note that, for many GPs, correlation decreases exponentially with the distance between points. Often,
variables which are far apart are actually independent. These weak dependencies can be modeled using
a covariance function K for which K(x, ·) has compact support, i.e., that has non-zero value only for a
small portion of the space. For example, consider the following isotropic covariance function proposed
by Storkey [1999]:

K(x, y) =

{
(2π−∆)(1+(cos∆)/2)+ 3

2
sin ∆

3π , for ∆ < 2π,
0, otherwise,

(6.12)

where ∆ = β‖x − y‖2, for β > 0. This covariance function resembles the Gaussian kernel K(x, y) =
exp(−β‖x− y‖22/(2π)) as shown in Figure 6.9, but is zero for distances larger than 2π/β.

Even if the covariance function does not have compact support, it can be appropriate to computeH(y|B̃) ≈
H(y|B) where B̃ results from removing all elements x from B for which | K(x, y)| ≤ ε for some small
value of ε. This truncation is motivated by noting that:

σ2
y|B\x − σ

2
y|B ≤

K(y, x)2

σ2
x

≤ ε2

σ2
x

.
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This implies that the decrease in entropy H(Xy|XB\{x})−H(Xy|XB) is at most ε2/(σ2σ2
x) (using a sim-

ilar argument as the one in the proof of Lemma 6.4), assuming that each sensor has independent Gaussian
measurement error of at least σ2. The total decrease of entropy H(Xy | XB̃) −H(Xy | XB) is bounded
by nε2/σ4. This truncation allows to compute H(Xy | XĀ) much more efficiently, at the expense of this
small absolute error. In the special case of isotropic kernels, the number d of variables x withK(x, y) > ε
can be computed as a function of the discretization and the covariance kernel. This reduces the complexity
of computing H(Xy|XĀ) from O(n3) to O(d3), which is a constant.

Our truncation approach leads to the more efficient optimization algorithm shown in Algorithm 6.2. Here,
H̃ε refers to the truncated computation of entropy as described above, and N(y∗; ε) ≤ d refers to the set
of elements x ∈ S for which | K(y∗, x)| > ε. Using this approximation, our algorithm is significantly
faster: Initialization (Line 6) requiresO(nd3) operations. For each one of the k iterations, finding the next
sensor (Line 6) requires O(n) comparisons, and adding the new sensor y∗ can only change the score of
its neighbors (N(y∗; ε) ≤ d), thus Line 6 requires O(d · d3) operations. The total running time of Algo-
rithm 6.2 is O(nd3 + kn + kd4), which can be significantly lower than the O(kn4) operations required
by Algorithm 6.1. Theorem 6.8 summarizes our analysis:
Theorem 6.8. Under the assumptions of Lemma 6.4, guaranteeing ε1-approximate nondecreasingness
and truncation parameter ε2, Algorithm 6.2 selects A ⊆ S such that

FMI(A) ≥ (1− 1/e)(OPT−kε1 − 2knε2/σ4),

in time O(nd3 + nk + kd4).

This approach can be efficiently implemented by using a priority queue to maintain the advantages δy. Us-
ing for example a Relaxed Heaps data structure, the running time can be decreased toO(nd3 +kd log n+
kd4): Line 6 uses the insert operation with complexity O(1), Line 6 calls deletemax with complexity
O(log n), and Line 6 uses delete and insert, again with complexity O(log n). This complexity improves
on Algorithm 6.2 if d log n� n. This assumption is frequently met in practice, since d can be considered
a constant as the size n of the sensing area grows. Of course, this procedure can also be combined with
the lazy evaluations described in the previous section for further improvement in running time.
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Algorithm 6.2: Approximation algorithm for maximizing mutual information using local kernels.
Input: Covariance ΣVV , k, V = S ∪ U , ε > 0
Output: Sensor selection A ⊆ S
begin
A ← ∅;
foreach y ∈ S do
δy ← H(Xy)− H̃ε(Xy|XV\y);1

end
for j = 1 to k do

y∗ ← arg maxy δy;2

A ← A∪ {y∗};
foreach y ∈ N(y∗; ε) do

δy ← H̃ε(Xy|XA)− H̃ε(Xy|XĀ);3

end
end

end

6.5 Related work

In this section, we will review the related work that specific to this chapter, and that has not been reviewed
in Chapter 3 yet.

6.5.1 Relationship to canonical correlation analysis

Given that the joint distribution of XA and XV\A is Gaussian, their mutual information is also

FMI(A) = −1
2

∑
i

log (1− ρ2
i ) (6.13)

where ρ2
1 ≥ · · · ≥ ρ2

|V| are the canonical correlation coefficients between XA and XV\A [Caselton and
Zidek, 1984]. McCabe [1984] show that maximizing the canonical correlations between observed and
unobserved variables can be interpreted as a form of principal components analysis, where one realizes
that selecting subsets of variables is a special kind of linear projection. A similar analysis is presented
for entropy and other common design criteria. Using Equation (6.13), a similar relationship can be made
to canonical correlation analysis (CCA; Hotelling 1936), which finds linear projections for V \ A and A
that maximize the correlations in the lower dimensional space. By considering these lower-dimensional
projections, one can determine how much variance is shared (jointly explained) by V \ A and A.

6.5.2 Relationship with the disk model

The disk model for sensor placement [c.f. Bai et al., 2006, Hochbaum and Maas, 1985] assumes that each
sensor can perfectly observe everything within a radius of r and nothing else. Hence we can associate
with every location y ∈ V a sensing region Dy, which, for a discretization of the space, corresponds to
the locations contained within radius r of location y. For a set of locations A, we can define the coverage
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FD(A) =
⋃

y∈ADy. It can be easily seen that this criterion is nondecreasing submodular and F (∅) = 0.
Hence optimizing placements for the disk model criterion is a submodular maximization problem, and the
greedy algorithm can guarantee a constant factor (1− 1/e) OPT approximation guarantee for finding the
placement of k sensors with maximum coverage.

There is a sense, in which the approach of sensor placements in GPs can be considered a generalization of
the disk model. If we assume an isotropic GP with local kernel function as the one presented in Figure 6.9,
then a sensor measurement is correlated exactly with the locations within a disk around its location. If
the process has constant variance, then the greedy algorithm will, for the first few sensors placed, only
try to achieve a disjoint placement of the disks, and as such behave just like the greedy algorithm for disk
covering.

However, once enough sensors have been placed so that these “disks” start to overlap, the behavior of the
two approaches begins to differ: in a disk model there is no advantage in placing sensors that lead to over-
lapping disks. In a GP model, even an isotropic one, “overlapping disks” lead to better predictions in the
overlapping area, a very natural consequence of the representation of the uncertainty in the process.

6.5.3 Fast Gaussian Process methods

Information-theoretic criteria are also used in sparse GP modeling, which attempts to reduce the cost of
inference by selecting a representative subset of the training data. Sample selection criteria have included
KL-divergence [Seeger et al., 2003] and entropy [Lawrence et al., 2003]. In contrast to sensor placement,
where locations are chosen to minimize predictive uncertainty, in sparse GP methods, the samples are cho-
sen such that the approximate posterior matches the true posterior (which uses the entire training set) as
accurately as possible. Instead of choosing a subset of the training data, Snelson and Ghahramani [2005]
propose to optimize the location of a set of “hallucinated” inputs. This approach results in a continuous
optimization problem, which appears to be easier to solve (albeit with no performance guarantees) than
the discrete subset selection problem.

6.5.4 Sensor placement with model uncertainty

The discussion thus far has focused on the case where the joint model P (XV) is completely specified, i.e.,
the mean and covariance of the GP are known2. With model uncertainty, one has to distinguish between
observation selection for predictive accuracy in a fixed model and observation selection for learning pa-
rameters. Model uncertainty also introduces computational issues. If the mean and covariance are fixed in
a Gaussian process then the posterior is Gaussian. This makes it easy to compute quantities such as entropy
and mutual information. If the mean and covariance are unknown, and we have to learn hyperparameters
(e.g., kernel bandwidth of an isotropic process), then the predictive distributions and information-theoretic
quantities often lack a closed form.

Caselton et al. [1992] extend their earlier work on maximum entropy sampling to the case where the mean
and covariance are unknown by using a conjugate Bayesian analysis. The limitations of this approach
are that the conjugate Bayesian analysis makes spatial independence assumptions in the prior and that

2Or one assumes the uncertainty on these parameters is small enough that their contribution to the predictive uncertainty is
negligible.
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complete data with repeated observations are required at every potential sensing site. This leads to a de-
terminant maximization problem, much like D-optimality, that precludes the use of submodularity.

Another approach is the development of hybrid criteria, which balance parameter estimation and pre-
diction. For example, Zimmerman [2006] proposes local EK-optimality, a linear combination of the
maximum predictive variance and a scalarization of the covariance of the maximum likelihood parameter
estimate. While this criterion selects observations which reduce parameter uncertainty and predictive un-
certainty given the current parameter, it does not take into account the effect of parameter uncertainty on
prediction error. To address this issue, Zhu and Stein [2006] derive an iterative algorithm which alternates
between optimizing the design for covariance estimation and spatial prediction. This procedure does not
provide guarantees on the quality of designs.

An alternative approach to addressing model uncertainty, in the context of classical experimental design,
is presented by Flaherty et al. [2006]. There, instead of committing to a single value, the parameters
of a linear model are constrained to lie in a bounded interval. Their robust design objective, which is
based on E-optimality, is then defined with respect to the worst-case parameter value. Flaherty et al.
[2006] demonstrate how a continuous relaxation of this problem can be formulated as a SDP, which can
be solved exactly. No guarantees are given however on the integrality gap on this relaxation.

By exploiting submodularity, we can extend our approach described in this chapter to handle parameter
uncertainty as well. Details will be discussed in Chapter 10.

6.5.5 Non-constant cost functions

In Section 6.3.3, we discuss the case where every sensor can have a different cost, and one has a budget
which one can spend. An alternate approach to sensor costs is presented by Zidek et al. [2000]. They
propose a criteria that makes a trade off between achieved reduction in entropy using an entropy-to-cost
conversion factor, i.e., they optimize the sum of the entropy with a factor times the cost of the placements.
This criterion yields an unconstrained optimization problem. Our approach to sensor costs (Section 6.3.3)
yields a constrained optimization, maximizing our criteria given a fixed budget that can be spent when
placing sensors. Such a budget-based approach seems more natural in real problems (where one often has
a fixed number of sensors or amount of money to spend). Moreover, our approach provides strong a priori
theoretical guarantees and tighter online bounds, which are not available for the approach of Zidek et al.
[2000].

6.6 Experiments

We performed experiments on two real-world data sets, as described in Section 6.6.1. In Section 6.6.2 we
compare placements on stationary and nonstationary GP models. In Sections 6.6.3, 6.6.4 and 6.6.5 we
compare mutual information with the disk model, with entropy and with other classical experimental de-
sign criteria, in terms of prediction accuracy. In 6.6.6 we compare the performance of the greedy algorithm
with other heuristics, and in Section 6.6.7 we analyze the effect of exploiting local kernels.
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6.6.1 Data sets used in our experiments

We first introduce the data sets we consider in our experiments. In our first data set, we analyze temper-
ature measurements from the network of 46 sensors shown in Figure 6.1. Our training data consisted of
samples collected at 30 sec. intervals on 3 consecutive days (starting Feb. 28th 2004), the testing data
consisted of the corresponding samples on the two following days.

Our second data set consists of precipitation data collected during the years 1949 - 1994 in the states of
Washington and Oregon [Widmann and Bretherton, 1999]. Overall 167 regions of equal area, approx-
imately 50 km apart, reported the daily precipitation. To ensure the data could be reasonably modeled
using a Gaussian process we applied a log-transformation, removed the daily mean, and only considered
days during which rain was reported. After this preprocessing, we selected the initial two thirds of the
data as training instances, and the remaining samples for testing purposes. From the training data, we es-
timated the mean and empirical covariance, and regularized it by adding independent measurement noise3

of σ2 = 0.1.

We computed error bars for the prediction accuracies in all of our experiments, but due to the violated in-
dependence of the collected samples (which are temporally correlated), these error bars are overconfident
and hence not reported here. The estimated standard errors under the independence assumption are too
small to be visible on the plots.

6.6.2 Comparison of stationary and nonstationary models

To see how well the stationary and nonstationary models capture the phenomenon, we performed the fol-
lowing experiment: We learned both stationary and non-stationary GP models from an increasing number
of sensors. The model with stationary correlation function used an isotropic Exponential kernel with band-
width fitted using least-squares fit of the empirical variogram [Cressie, 1991]. We also learned a nonsta-
tionary GP using the technique from Nott and Dunsmuir [2002]. Both GP models were estimated from an
initial deployment of an increasing number of sensors. We used non-stationary the same variance process
for both stationary and nonstationary models (i.e., giving more information to the stationary model than
commonly done). Since with increasing amount of data, the empirical covariance matrix will exactly cap-
ture the underlying process, we consider the empirical covariance as the ground truth both for placements
and prediction. Hence we also selected placements using the entire estimated covariance matrix.

We optimized the designs using mutual information on all the models, and evaluated the prediction ac-
curacy for an increasing number of near-optimally placed sensors, using the estimated model and the
measured values for the selected sensors. Figure 6.10(a) presents the results for the temperature data set.
We can see that the nonstationary model learned from 10 sensors performs comparably to the stationary
model with 40 sensors, even with non-stationary variance process. As we increase the number of sensors
in the initial deployment, the Root Mean Squared error (RMS) prediction accuracies we get for place-
ments of increasing size converge to those obtained for optimizing the placements based on the empirical
covariance matrix.

Figure 6.10(b) presents the results of the same experiment for the precipitation data. Here we can see that
the nonstationary model estimated using 20 sensors leads to better RMS accuracies than the stationary
model, even if latter is estimated using 160 sensors.

3 The measurement noise σ2 was chosen by cross-validation.
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Figure 6.10: RMS curves for placements of increasing size, optimized using stationary and nonstationary
GPs. Prediction is done using estimated models. (a) Stationary GP estimated for the temperature data
from 40 sensors (S40), nonstationary GPs estimated from 10, 30 and 40 sensors (N10, N30, N40). (b)
Stationary GP estimated for the precipitation data from 160 sensors (S160), nonstationary GPs estimated
from 20, 40, 80 and 160 sensors (N20, N40, N80, N160).

6.6.3 Comparison of data-driven placements with geometric design criteria

We now compare placements based on our data-driven GP models with those based on the traditional disk
model. This model assumes that every sensor can perfectly measure the phenomenon within a radius of
r, and have no information outside this radius. Since choosing an appropriate radius for the disk model
is very difficult in practice, we decided to choose r = 5m since for this radius 20 sensors could just
spatially cover the entire space. We also learned stationary and non-stationary GP models as discussed in
Section 6.6.2.

For the disk model, we used the greedy set covering algorithm. The design on both GP models was
done using our greedy algorithm to maximize mutual information. For an increasing number of sensors,
we compute the Root Mean Squares (RMS) prediction error on the test data. In order to separate the
placement from the prediction task, we used the empirical covariance matrix estimated from the training
data on all 46 locations for prediction, for all three placements.

Figure 6.11(a) presents the results of this experiment. The geometrical criterion performs poorly compared
to the model based approaches. We can see that the placements based on the empirical covariance matrix
perform best, quite closely followed by the accuracies obtained by the designs based on the nonstationary
process. Figure 6.11(b) shows the results for the same experiment on the precipitation data set.

6.6.4 Comparison of the mutual information and entropy criteria

We also compared the mutual information criterion to other design criteria. We first compare it against the
entropy (variance) criterion. Using the empirical covariance matrix as our process, we use the greedy algo-
rithm to select placements of increasing size, both for mutual information and for entropy. Figure 6.13(a)
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Figure 6.11: RMS curves for placements of increasing size, optimized using the disk model, stationary
and nonstationary GPs. Prediction for all placements is done using the empirical covariance. Stationary
GPs and nonstationary GPs estimated from 30 sensors (N30, S30, for temperature data) or 40 sensors
(N40, S40, for precipitation data).

and Figure 6.13(b) show the results of this comparison on models estimated for the morning (between 8
am and 9 am) and noon (between 12 pm and 1 pm) in the Intel lab data. Figure 6.13(a) and Figure 6.13(b)
plot the log-likelihood of the test set observations with increasing number of sensors for both models.
Figure 6.13(e) presents the RMS error for a model estimated from the Intel lab data for the entire day. We
can see that mutual information outperforms entropy, achieving better prediction accuracies with a smaller
number of sensors.

Figure 6.13(f) presents the same results for the precipitation data set. Mutual information significantly
outperforms entropy as a selection criteria – often several sensors would have to be additionally placed for
entropy to reach the same level of prediction accuracy as mutual information. Figure 6.12(b) shows where
both objective values would place sensors to measure precipitation. It can be seen that entropy is again
much more likely to place sensors around the border of the sensing area than mutual information.

To gain further insight into the qualitative behavior of the selection criteria we learned a GP model using
all sensors over one hour starting at noon. The model was fit with a isotropic Gaussian kernel and quadratic
trend for the mean, using the geoR Toolkit [Ribeiro Jr. and Diggle, 2001]. Figures 6.14(a) and 6.14(b)
show the posterior mean and variance for the model. Using our algorithms, 22 sensors were chosen
using the entropy and mutual information criteria. For each set of selected sensors, additional models
were trained using only the measurements of the selected sensors. Predicted temperature surfaces for
the entropy and mutual information configurations are presented in Figures 6.14(c) and 6.14(d). Entropy
tends to favor placing sensors near the boundary as observed in Section 6.2, while mutual information
tends to place the sensors on the top and bottom sides, which exhibited the most complexity and should
have a higher sensor density. The predicted variances for each model are shown in figures 6.14(e) and
6.14(f). The mutual information version has significantly lower variance than the entropy version almost
everywhere, displaying, as expected, higher variance in the unsensed areas in the center of the lab.
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(a) Placements of temperature sensors (b) Placements of rain sensors

Figure 6.12: Example sensor placements for temperature and precipitation data. Squares indicate loca-
tions selected by mutual information, diamonds indicate those selected by entropy. Notice how entropy
places sensors closer to the border of the sensing field.

6.6.5 Comparison of mutual information with classical experimental design criteria

In order to compare the mutual information placements with the classical optimality criteria, we performed
the following experiment. We uniformly selected 12 target locations U in the lab as locations of interest.
We then set up the linear model

xS = ΣSUΣ−1
UU xU + w.

Hereby, xS denotes measurements at the locations S, among which we choose our placement, xU are the
values at the locations of interest (no sensors can be placed there), and w models independent normal
measurement noise with constant variance. After subtraction of the training set mean, this model uses the
Best Linear Unbiased (Kriging) estimator for predicting xS from xU .

The problem becomes to select the sensor locations A ⊆ S which allow most precise prediction of the
variables of interest, in the sense of minimizing the error covariance 1

σ2 (ATA)−1, where A = ΣSUΣ−1
UU .

The different classical design criteria vary in how the scalarization of the error covariance is done. D-
optimal design minimizes the log-determinant, A-optimal design minimizes the trace, and E-optimal de-
sign minimizes the spectral radius (the magnitude of the largest eigenvalue) of the error covariance. Note
that this problem formulation favors the classical design criteria, which are tailored to minimize the er-
ror of predicting the values at the target locations U , whereas mutual information and entropy just try to
decrease the uncertainty in the entire space.

In order to solve the classical experimental design problems, we use the formulations as a semidefinite
program (SDP) as discussed by Boyd and Vandenberghe [2004]. We use SeDuMi [Sturm, 1999] for solv-
ing these SDPs. Since the integral optimization is hard, we solve the SDP relaxation to achieve a fractional
design. This fractional solution defines the best way to distribute an infinite (or very large) budget of ex-
periments to the different choices on the design menu (the variables in S). In the sensor selection problem
however, we have to solve the integral problem, since we face the binary decision of whether a sensor
should be placed at a particular location or not. This is a hard combinatorial optimization problem. Since
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Figure 6.13: Prediction error for temperature (a-e) and precipitation (f) data in sensor network deploy-
ments, for an increasing number of sensors.
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Figure 6.14: Comparison of predictive quality of subsets selected using MI and entropy.
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no near-optimal solution is known, we select the locations corresponding to the top k coefficients of the
design menu, as is common practice. We compare the placements using the classical design criteria to
those using the mutual information and entropy criteria, and evaluate each of them on the RMS prediction
accuracy on the hold-out locations U .

Figure 6.15(a) presents the results of this experiment on the temperature data. We can see that even though
mutual information optimizes for prediction accuracy in the entire space and not specifically for the target
locations U , it incurs the least RMS prediction error, apart from the placements consisting only of a
single sensor. E-optimal design performs comparably with the entropy criterion, and D- and A-optimality
perform worse.

When we performed the same experiment with the precipitation data, SeDuMi ran out of memory (1 GB)
for the SDP required to solve the A-optimality criterion. The largest subsample we could solve for all
A-, D- and E-optimality on this data set was limited to 111 locations. Figure 6.15(b) presents the re-
sults. For the entire data set of 167 locations, we could still solve the D- and E-optimality SDPs. The
results are presented in Figure 6.15(c). We can observe that for the 111 locations, D-optimality slightly
outperforms mutual information. We have to consider, however, that the classical criteria are optimized
to minimize the error covariance with respect to the locations U of interest, whereas mutual information
merely tries to achieve uniformly low uncertainty over the entire space. For the full set of 167 locations,
mutual information outperforms the other design criteria.

Figure 6.15(d) presents the running time for optimizing A-, D-, E-optimality, and mutual information,
mutual information with truncation parameter ε = 1 and entropy on the 111 node subsample of the pre-
cipitation data on a Pentium M 1.7 GHz processor. We can see that optimizing entropy is fastest, closely
followed by the truncated mutual information criterion described in Section 6.4.2 that is further evalu-
ated in Section 6.6.7. Even without truncation, optimizing mutual information is three times faster than
(fractionally) optimizing D-optimality and 24 times faster than A-optimality.

6.6.6 Empirical analysis of the greedy algorithm

To study the effectiveness of the greedy algorithm, we compared the mutual information of the sets se-
lected by our greedy algorithm to random selections, to a hill climbing method that uses a pairwise ex-
change heuristic, and – for small subsamples – to the bounds proved by the MIP from Section 6.3.5.

In this experiment, we used the empirical covariance matrix as the input to the algorithms. Figure 6.16(b)
shows that the greedy algorithm provided significantly better results than the random selections, and even
the maximum of a hundred random placements did not reach the quality of the greedy placements. Fur-
thermore, we enhanced the random and greedy selections with the pairwise exchange (PE) heuristic, which
iteratively finds exchanges of elements y ∈ A and y′ ∈ S \A such that exchanging y and y′ improves the
mutual information score. Figure 6.16(a) presents objective values of these enhanced selection methods
for a subset size of 12, for which the maximum over 100 random selections enhanced with PE actually
exceeded the greedy score (unlike with most other subset sizes, where random + PE did about as well as
the greedy algorithm). Typically, the objective values of random + PE, greedy + PE and greedy did not
differ much. Note that as mentioned in Section 6.3, the performance guarantee for the greedy algorithm
always provides an online approximation guarantee for the other heuristics.

For a 16 node subsample of the temperature data set, we used the MIP from Section 6.3.5 to compute
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Figure 6.15: Comparison with classical experimental design. We plot RMS prediction error on 25% hold
out target locations U .

bounds on the optimal mutual information. Figure 6.6 presents the results. It can be seen, that for this
small subsample, the greedy solution is never more than 5 percent away from the optimal solution, which
is a much tighter bound than the a priori approximation factor of (1− 1/e).

We also experimented with the lazy evaluation strategy discussed in Section 6.4.1. For example when
picking placements of size 50 for the precipitation data set, the number of mutual information compu-
tations decreased from 7125 to 1172, and the computation time on a Pentium M 1.7 GHz processor
decreased from 41.3 seconds to 8.7 seconds. The results for both temperature and precipitation data sets
are presented in Figures 6.17(a) and 6.17(b).
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Figure 6.16: Comparison of the greedy algorithm with several heuristics.

6.6.7 Results on local kernels

We also performed experiments to assess the running time versus quality trade-off incurred by using
approximate local kernels. To provide intuition about the covariance structure, note that the 25, 50 and
75 percentiles of the absolute covariance entries were 0.122, 0.263 and 0.442, the maximum was 3.51,
the minimum was 8.78E− 6. For the variance (the diagonal entries), the median was 1.70, and the
minimum was 0.990. Figure 6.18(a) shows that the computation time can be drastically decreased as we
increase the truncation parameter ε from 0 to the maximum variance. Figure 6.18(b) shows the RMS
prediction accuracy for the 20 element subsets selected by Algorithm 6.2. According to the graphs, the
range ε ∈ [0.5, 1] seems to provide the appropriate trade-off between computation time and prediction
accuracy.

In order to study the effect of local kernels on the placements, we performed the following experiment. We
created a regular 7 by 7 grid with unit distance between neighboring grid points, and generated covariance
matrices using two different GPs, one using the Gaussian (squared exponential) kernel, and the other
using the the local kernel (Equation (6.12)). We exponentially increased the bandwidth in eight steps
from 0.1 to 12.8. Figures 6.21 and 6.22 show the corresponding placements using mutual information to
select the locations. From this experiment, we can see that the placements obtained using the non-local
Gaussian kernel tend to be spread out slightly more, as one might expect. Overall, however, the placements
appear to be very similar. In light of the computational advantages provided by local kernels, these results
provide further evidence in the spirit of Section 6.6.7, namely that local kernels can be a valuable tool for
developing efficient model-based sensor placement algorithms.
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Figure 6.17: Performance improvements by using lazy evaluations of mutual information.

6.7 Summary

In this chapter, we tackled the problem of maximizing mutual information in order to optimize sensor
placements, i.e., select observations for the purpose of spatial prediction. We proved that the exact opti-
mization of mutual information is NP-complete, and provided an approximation algorithm that is within
(1 − 1/e) of the maximum mutual information configuration by exploiting the submodularity in the cri-
terion. We also illustrate that submodularity can be used to obtain online bounds, which are useful for
bounding the quality of the solutions obtained by any optimization method, and for designing branch
and bound algorithms for the mutual information criterion. In order to scale up the application of our
approach, show how to exploit lazy evaluations and local structure in GPs to provide significant speed-
ups. We also extend our submodularity-based analysis of mutual information to incorporate robustness to
sensor failures and model uncertainty.

Our very extensive empirical results indicate that data-driven placements can significantly improve the
prediction accuracy over geometric models. We find, in contrast to previous work [Caselton et al., 1992,
Zidek et al., 2000], that the mutual information criterion is often better than entropy and other classical
experimental design criteria, both qualitatively and in prediction accuracy. In addition, the results show
that a simple greedy algorithm for optimizing mutual information provides performance that is very close
to the optimal solution in problems that are small enough to be solved exactly, and comparable to more
complex heuristics in large problems.
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Figure 6.19: Placements under Gaussian kernel, entropy criterion, increasing bandwidth
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Figure 6.20: Placements under local kernel, entropy criterion, increasing bandwidth
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Figure 6.21: Placements under Gaussian kernel, mutual information criterion, increasing bandwidth
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Figure 6.22: Placements under local kernel, mutual information criterion, increasing bandwidth
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Chapter 7

Selecting Informative Variables in
Graphical Models

In Chapter 6, we have seen that in Gaussian Processes, the problem of selecting the locations that are most
informative about the non-selected locations, i.e.,

A∗ = argmax
|A|≤k

H(XV\A)−H(XV\A | XA)

requires maximization of a (approximately) nondecreasing submodular function. In this chapter, we will
consider a generalization of this problem, where we want to reduce the uncertainty about a specified set
of target variables U ⊆ V ,

A∗ = argmax
|A|≤k

H(XU )−H(XU | XA).

We furthermore consider the general setting where the probability distribution P is specified by a graph-
ical model over discrete random variables. This problem arises, for example, in feature selection for
classification, where U is a single class variable we would like to predict, and XV is a collection of noisy
features.

Unfortunately, in contrast to Gaussian models, where the information gain can be computed efficiently,
this is not true for general graphical models, even if efficient inference can be performed, as we will
discuss below. For this reason, similarly as in the setting of spatial prediction (as discussed in Chapter 6),
it has been common practice [c.f., Bayer-Zubek, 2004, Dittmer and Jensen, 1997, Ramakrishnan et al.,
2005, van der Gaag and Wessels, 1993] to myopically (greedily) select the most uncertain (instead of the
most informative) variable as the next observation, or, equivalently, the set of observations with maximum
joint entropy. Unfortunately, selecting observations with maximal joint entropy is an indirect measure of
progress towards the minimization of the remaining uncertainty about the target variables U .

Additionally, in contrast to the mutual information criterion H(XV\A) − H(XV\A | XA) considered in
Chapter 6, the “targeted” information gain H(XU ) − H(XU | XA) is not submodular in general, as we
will show below.

While the information gain is not submodular in general, in this chapter, we prove that submodularity
does in fact hold under certain conditional independence conditions. However, due to the difficulty in
evaluating conditional entropies H(XU | XA) for general graphical models, we cannot implement the
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greedy algorithm directly. Fortunately, we are able to approximately compute H(XU | XA) by a sampling
based algorithm with polynomial sample complexity guarantees.

Combined, these results allow us to leverage the theory of submodular functions (as discussed in Chap-
ter 5), to present the first efficient algorithm for finding a near-optimal set of informative variables, pro-
viding a constant factor (1 − 1/e − ε) approximation guarantee for any ε > 0 with high confidence,
for any graphical model where inference can be performed efficiently, and the conditional independence
conditions for submodularity are satisfied.

We furthermore prove that no polynomial time algorithm can provide an approximation with a constant
factor better than (1− 1/e), unless P = NP.

Finally, we empirically evaluate our approach on several real-world sensing tasks, including building and
traffic monitoring.

7.1 Selecting most informative variables

In this section, we formalize the problem addressed in this chapter: nonmyopic selection of the most
informative subset of variables for graphical models.

Consider, as a running example, a temperature monitoring task, where wireless temperature sensors are
distributed across a building as shown in Figure 7.1(a). Our goal in this example is to become most
certain about the temperature distribution, whilst minimizing energy expenditure, a critically constrained
resource [Deshpande et al., 2004]. In this example, we want to select the subset of sensors from our
deployment indicated in Figure 7.1(a) that most effectively decreases expected uncertainty about temper-
atures in different areas of the lab.

More generally, as in Chapter 2, let V be a finite set indexing a set of random variables XV . the finite
set of discrete random variables in our graphical model, and F : 2V → R be a set function, where F (A)
measures the reduction in uncertainty after by observing XA ⊆ XV . In most applications, observations are
associated with cost, measuring, for example, the energy required to measure temperatures at particular
locations. Given, a cost function C : 2V → N and a budget B, we are interested in computing

A∗ = argmax
A⊆V:C(A)≤B

F (A). (7.1)

A basic version of this problem is the unit cost case, where every observation has unit cost, C(A) = |A|,
and we are allowed to observe up to B sensors. Apart from the unit cost case, we will also present results
for the budgeted case, where the cost function C is linear, i.e., each variable s ∈ V has a positive integer
cost c(s) ∈ N associated with it, and C(A) =

∑
s∈A c(s). Note that our approach easily extends to

settings where certain variables cannot be observed at all, by setting their cost to a value greater than
B.

A commonly used criterion for measuring uncertainty is the entropy of a distribution P : {x1, . . . , xd} →
[0, 1],

H(P ) = −
∑

k

P (xk) logP (xk),

which, for discrete distributions as considered in this chapter, measures the number of bits required to
encode {x1, . . . , xd} [Cover and Thomas, 1991]. If XA is a discrete random vector XA = {X1, . . . ,Xn},
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Figure 7.1: Sensor network deployment.

then its entropy H(XA) is defined as the entropy of its joint distribution. The conditional entropy H(XA |
XB) for two vectors XA,XB ⊆ XV is defined as

H(XA | XB) = −
∑

xA,xB

P (xA,xB) logP (xA | xB),

measuring the expected uncertainty about variables XA after variables XB are observed.

Similar to maximum entropy sampling Gaussian Processes (c.f., Chapter 6), in practice, a commonly used
algorithm for selecting observations is to greedily select the next variable to observe as the most uncertain
variable given the ones observed thus far:

Xk := argmax
X

H(X | {X1, . . .Xk−1}). (7.2)

Similarly as in Chapter 6, using the chain-rule of entropies [Cover and Thomas, 1991], H(XA ∪ XB) =
H(XA | XB) +H(XB), we can decompose the entropy H(XA) of a set of variables XA = {X1, . . . ,Xk}
as

H(XA) = H(Xk | X1, . . . ,Xk−1) + ...+H(X2 | X1) +H(X1),

thus, suggesting that the greedy rule in Equation (7.2) is a heuristic that defines observation subset selec-
tion task in Equation (7.1) as the problem of selecting the set of variables that have the maximum joint
entropy:

argmax
A:C(A)≤B

H(XA). (7.3)

A major limitation of this approach is that joint entropy is an indirect measure of information: It aims
to maximize the uncertainty about the selected variables, but does not consider prediction quality for
unobserved variables. In our sensor networks example, the entropy criterion often leads to the selection of
sensors at the border of the sensing field, as sensors that are far apart are most uncertain about each other.
Since sensors usually provide most information about the area surrounding them, these border placements
“waste” part of their sensing capacity, as noticed in Chapter 6

A more direct measure of value of information is the information gain I(XB;XA), which is defined
as

I(XB;XA) = H(XB)−H(XB | XA),
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i.e., the expected reduction in uncertainty over the variables in XB given the observations XA. The analo-
gous subset selection problem for the information gain is to compute

argmax
A⊆V:C(A)≤B

I(XV ;XA). (7.4)

For example, we can model our temperature measurement task as indicated in by the graphical model in
Figure 7.1(b). The temperature in the different rooms is modeled by a set U = {U1, . . . ,Un} of hidden
nodes, whereas the sensors are modeled as a set of observable nodes S = {S1, . . . ,Sm}. For a set of
sensors A ⊆ S, H(XU | XA) measures the expected uncertainty about U given the observations from
the sensors in A. Our goal is to define the set of sensor locations that most reduces uncertainty about
the hidden target variables U . In contrast to the mutual information criterion discussed in Chapter 6, this
criterion allows specification of the target variables of interest XU .

7.2 Submodularity of information theoretic objectives

In this section, we prove that under certain conditions, the information gain criterion is submodular (c.f.,
Chapter 5). This property will be leveraged by our constant-factor approximation algorithms presented in
Section 7.3.

7.2.1 Submodularity of the joint entropy

The first observation selection criterion we consider is joint entropy H(XA) in Equation (7.3). To prove
the submodularity, we use the “information never hurts” principle (c.f., Chapter 6, Cover and Thomas
1991), H(Xs | XA) ≤ H(Xs), i.e., in expectation, observing A cannot increase uncertainty about Xs.
Since the marginal increase can be written as F (A ∪ {s}) − F (A) = H(Xs | XA), submodularity is
simply a consequence of the information never hurts principle:

F (A ∪ {s})− F (A) = H(Xs | XA) ≥ H(Xs | XA′) = F (A′ ∪ {s})− F (A′).

Submodularity of entropy has been established before [Fujishige, 1978]. Contrary to the differential en-
tropy (c.f., Chapter 6), which can be negative, in the discrete case, the entropy H is guaranteed to be
nondecreasing, i.e., F (A∪{s})−F (A) = H(Xs | XA) ≥ 0 for all setsA ⊆ V . Furthermore, H(∅) = 0.
Hence the approximate maximization result of Nemhauser et al. [1978], Theorem 5.2, can be used to
provide approximation guarantees for observation selection based on the entropy criterion.

7.2.2 Submodularity of the information gain

As discussed in Section 7.1, information gain F (A) = I(XU ;XA) is a more direct objective function for
observation selection. Again using the information never hurts principle, we have that information gain is
a nondecreasing function, and, by definition, that F (∅) = 0. Unfortunately, the following counter-example
shows that information gain is not submodular in general:
Example 7.1. Let X ,Y be independent boolean random variables with Pr[X = 1] = Pr[Y = 1] = 1

2 .
Let Z = X XOR Y . Here, H(Z) = H(Z | X ) = H(Z | Y) = 1, but H(Z | X ∪ Y) = 0. Thus,
H(Z | X ) − H(Z) ≥ H(Z | X ∪ Y) − H(Z | Y), which implies that information gain, I(Z; ·) =
H(Z)−H(Z | ·), is not submodular.
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Since submodularity is required to use the approximation result (Theorem 5.2) of Nemhauser et al. [1978],
their result is not applicable to information gain, in general. Fortunately, under some weak conditional
independence assumptions, we prove that information gain is guaranteed to be submodular:
Proposition 7.2. Let S,U be disjoint subsets of V , such that the variables XS are independent given XU .
Furthermore letW ⊆ S ∪ U . Then the set function

F (A) = H(XU )−H(XU \ XA | XA)

is submodular and nondecreasing onW , and F (∅) = 0.

The assumptions of Proposition 7.2 are satisfied, e.g., for graphical models with structure similar to Fig-
ure 7.1(b), where the variables U form a general graphical model, and the variables in S each depend on
subsets of U . In our sensor network example, we can interpret Proposition 7.2 in the following way: We
want to minimize our uncertainty on the temperatures U , which are measured by noisy sensors S. We can
select sensors in S, and potentially make additional, more complicated measurements to estimate certain
temperature variables in U directly (at some, potentially larger, cost).

The following observation identifies the joint entropy as a special case of our setting:
Corollary 7.3. Let F (A) = H(XA) = H(XV) − H(XV\A | XA). Then F is submodular and nonde-
creasing on any subset of V , and F (∅) = 0.

The information gain is another interesting special case:
Corollary 7.4. Let S,U be subsets of V such that the variables in S are independent given U . Let
F (A) = I(XU ;XA) = H(XU ) − H(XU | XA). Then F is submodular and nondecreasing on S, and
F (∅) = 0.

Note that Corollary 7.4 applies, for example, to the problem of attribute selection for Naive Bayes clas-
sifiers. Hence our algorithms also provide performance guarantees for this important feature selection
problem. A convenient property of submodular functions is that they are closed under positive linear
combinations. This allows us, for example, to have temperature models for different times of the day, and
select sensors that are most informative on average for all models.

7.3 Approximation algorithms

In this section, we present approximation algorithms for the unit-cost and budgeted cases, leveraging the
submodularity established in Section 7.2. These algorithms are based on the greedy algorithm (Algo-
rithm 5.1) by Nemhauser et al. [1978].

We first consider the unit-cost case, where c(si) = 1 for all variables si, and we want to select B ob-
servations. This is exactly the setting addressed by Nemhauser et al. [1978], who prove that the greedy
algorithm selects a set that is at most a factor of 1− (1− 1/B)B > (1− 1/e) worse than the optimal set.
In our setting, the greedy rule is given by:
Proposition 7.5. Under the same assumptions as for Proposition 7.2, when a set A ⊆ W has already
been chosen, the greedy heuristic for information gain must select the element s∗ ∈ W which fulfils

s∗ ∈ argmax
s∈W\A

{
H(Xs | XA)−H(Xs | XU ), for s ∈ S,
H(Xs | XA), otherwise.

�

83



Algorithm 7.1: Approximation algorithm for the unit cost case.
Input: B > 0, graphical model G for V = S ∪ U ,W ⊆ V
Output: Sensor selection A ⊆ W
begin
A := ∅;
for j := 1 to B do

foreach s ∈ W \ A do
∆s := H(Xs | XA);
if s ∈ S then ∆s := ∆s −H(Xs | XU );

end
s∗ := argmax{∆s : s ∈ W \ A};
A := A ∪ {s∗};

end
end

Proposition 7.5 has an interesting interpretation: our greedy rule for information gain is very similar to
that of the greedy heuristic for maximizing joint entropy, but our information gain criterion is penalized
for selecting sensors s ∈ S which are “unrelated” to the variables of interest, i.e., those whereH(Xs | XU )
is large.

The greedy algorithm using the rule from Proposition 7.5 is presented in Algorithm 7.1, and we summarize
our analysis in the following Theorem:
Theorem 7.6. Algorithm 7.1 selects a subsetA ⊆ W of size B such that F (A) ≥ (1− 1/e)OPT , where
OPT is the information gain of the optimal set as defined in Equation (7.4), usingO(B|W|) computations
of conditional entropies.

The result of Nemhauser et al. [1978] only provides guarantees for the maximization of F (A) for the case
where the cost of all observations is the same, and we are simply trying to find the best B observations.
Often, different variables have different costs. In our sensor network example, if our sensors are equipped
with solar power, sensing during the day time might be cheaper than sensing during the night. In general,
the deployment cost for sensors might depend on the location. These considerations motivate the consid-
eration of more general cost functions C(A) =

∑
s∈A c(s), where each variable has a fixed cost c(s). In

this case, we can apply the CELF algorithm (Algorithm 5.4) to obtain a near-optimal solution.

7.4 Hardness of approximation for optimizing information gain

In this section, we prove that the problem of maximizing the information gain, even in our formulation
using conditional independence, cannot be approximated by a constant factor better than (1−1/e), unless
P = NP.

We formalize the optimization problem MAXINFOGAIN in the following way: The instances of the
problem consist of an integer B and a set V = U ∪ S of random variables such that the variables in S
are independent given all U , and a polynomial time Turing machine M for computing I(U ;A) for any
subset A ⊆ S of size up to B. The Turing machine is specified in binary, along with an integer N
providing a runtime guarantee. This runtime guarantee is necessary in order to enable the verification of
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Algorithm 7.2: Sampling algorithm for conditional entropy.
Input: N > 0, graphical model G for V , B ⊆ V , s ∈ V \ B
Output: ≈ H(Xs | XB)
begin

Ĥ := 0;
for i = 1 to N do

generate sample xB of XB from G;
use prob. inference in G to compute P (Xs | xB);
H(Xs | xB)← −

∑
xs
P (xs | xB) logP (xs | xB);

Ĥ ← Ĥ + 1
NH(Xs | xB);

end
return Ĥ;

end

the computations. The solutions comprise the maximum information gain achieved by a subset of size at
most B.
Theorem 7.7. The problem MAXINFOGAIN is not approximable within a constant factor better than
(1− 1/e), unless P = NP.

Technically, we have to note that even computing conditional entropies can be an intractable problem on
its own. Hence, we state our result for problem instances for which these computations can be carried out
efficiently, as is the one used in our reduction.

7.5 Approximating conditional entropies

The algorithms presented in Section 7.3 require the evaluation of the marginal increases F (A ∪ {s}) −
F (A). Proposition 7.5 states that this quantity can be computed using one-dimensional conditional en-
tropies. Unfortunately, there is no known efficient algorithm for computing conditional entropies even for
discrete polytree graphical models. In fact, given the hardness results which we will develop in Chap-
ter 15, it seems unlikely that such an efficient algorithm can exist. This observation motivates the need
for approximating these entropies. In this section, we describe a sampling approach that only requires
a polynomial number of samples to approximate conditional entropies by an arbitrary ε difference, with
high confidence. Our method in Algorithm 7.2, which applies to any problem where conditional entropies
have to be computed, has sample complexity stated in the following Lemma:
Lemma 7.8. Algorithm 7.2 approximates H(Xs | XB) with absolute error ε and confidence 1− δ using

N =

⌈
1
2

(
log |dom(Xs)|

ε

)2

log
1
δ

⌉

samples, for any ε > 0 and δ > 0.

In order to use this approximation method for conditional entropies in our observation selection algo-
rithm, we have to ensure that the approximate computation of the marginal increases does not signif-
icantly worsen our approximation guarantee. Fortunately, if we can compute the marginal increases

85



(a) Placements for hierarc. model

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Number of sensors

Te
st

se
t p

re
di

ct
io

n 
er

ro
r

Entropy

Information Gain

(b) Prediction error

(c) Placements for violating model

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Number of sensors

Te
st

se
t p

re
di

ct
io

n 
er

ro
r

Entropy

Information Gain

(d) Prediction error

Figure 7.2: Results for sensor network deployment.

F (A ∪ {s}) − F (A) with an absolute error of at most ε, an argument very similar to the one presented
by Nemhauser et al. [1978] shows that the greedy algorithm will then provide a solution Â such that
F (Â) ≥ (1 − 1/e)OPT − 2Bε with high confidence. The following Theorem summarizes our analysis
of Algorithm 7.1, using Algorithm 7.2 for approximate computation of conditional entropies:
Theorem 7.9. Algorithm 7.1 computes a set Â such that

F (Â) ≥ (1− 1/e)OPT − ε,

with probability at least 1− δ, in time

O

(
cinf B |W|

⌈(
B logK

ε

)2

log
B|W|
δ

⌉)
for any ε > 0 and δ > 0 where cinf is the cost of probabilistic inference, and K = maxs∈W |dom(Xs)|.

Similar guarantees can be obtained for the CELF algorithm (c.f., Chapter 5) in the case of non-constant
cost functions.
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Note that, in order to guarantee polynomial running time for Algorithm 7.1, the cost cinf of sampling
from the graphical model and the probabilistic inference step in Algorithm 7.2 has to be polynomial. For
the case of discrete polytrees however, efficient sampling and inference are possible, as is for all graphs of
bounded treewidth.

7.6 Experimental results

In this section, we present empirical evidence of the effectiveness of method on two real-world data
sets.

7.6.1 Temperature data

In our first set of experiments, we analyzed temperature measurements from the sensor network deploy-
ment at Intel Research Berkeley, as mentioned in our running example (and as considered in Chapter 6).
We fit a hierarchical model to the data, as indicated in Figure 7.2(a). The overlapping rectangles corre-
spond to larger areas of the research lab, where each region is associated with a random variable repre-
senting the mean of all sensors contained in this region. Since our regions overlap, sensors may be in
more than one region. The sensors are assumed to be conditionally independent given the values of all
aggregate nodes.

Our training data consisted of samples collected at 30 sec. intervals from 6 am till 8 pm on five consecutive
days (starting Feb. 28th 2004). The test data consisted of the corresponding samples on the two following
days. Data was discretized into five bins of three degrees Celsius each. We used our approximation algo-
rithms to learn informative subsets of the original sensors. Figure 7.2(a) shows the sensors selected by the
information gain criterion (circles) and by the entropy criterion (diamonds) for the unit-cost optimization
with B = 10. Figure 7.2(b) compares the prediction quality (measured as misclassification errors) on the
aggregate nodes for both subset selections, using varying subset sizes. The prediction quality of the subset
selected by our information gain criterion is significantly better than that of the entropy criterion. Us-
ing only five sensors, information gain achieved a prediction accuracy which was not met by the entropy
criterion even for subset sizes up to 20 sensors.

To verify whether the algorithm for maximizing the information gain achieves viable results even in the
case where its assumptions of conditional independence are violated, we performed another experiment.
In addition to the identical hierarchical structure, our new graphical model connects adjacent sensors as
indicated in Figure 7.2(c), which also shows ten sensor subsets selected using the entropy and information
gain criteria. Figure 7.2(d) presents the test set prediction errors for both criteria. It can be seen that, in
comparison to Figure 7.2(b), the prediction accuracy is not much improved by this more complex model,
though our information gain criterion manages to decrease the prediction error to below 20 percent, which
posed a hard barrier for the basic model.

Figure 7.3(a) presents the time required for computing the greedy update steps for a varying number of
samples, both for the basic and complex model. As predicted in Theorem 7.6, the run time is linear in
the number of samples, the total number of sensors and the size of the selected subset. To assess how the
number of samples affects the performance of Algorithm 7.1, Figure 7.3(b) displays the information gain
computed for five element subsets for a varying number of samples. There is no significant increase of the
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mean information gain, suggesting that the bounds presented in Theorem 7.8 are very loose for practical
applications.

7.6.2 Highway traffic data

In our second set of experiments, we analyzed highway traffic from the San Francisco Bay area [UC
Berkeley, PATH and Caltrans, 2005]. Each detector station, 77 in total, computed aggregated measure-
ments over 5 minutes, reporting the total number of vehicle miles traveled divided by the total vehicle
hours for its region.

As for the the temperature data, we fit a hierarchical model, shown in Figure 7.3(c). The bay area was
logically segmented into overlapping regions, covering bridges and major highway segments. The dia-
monds represent the aggregate nodes, and the detector stations (squares) are assumed to be conditionally
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Figure 7.3: Results for sensor network deployment and highway traffic data.

independent given all aggregate nodes. The data was collected over 18 days, of which the last two days
were chosen for testing prediction accuracy. We chose a discretization into five bins: below 50 mph,
between 50-60, 60-65, 65-70 and more than 70 mph, and the task was to predict the minimum speed
over all detectors within each region. Figure 7.3(d) compares the prediction accuracy for subsets selected
using the entropy and information gain criteria. Information gain significantly outperforms the maximum
entropy selection. Figures 7.3(e) and 7.3(f) show the selected sensor locations for information gain and
entropy.

In another experiment, we compared the information gain objective values computed for subsets selected
using the greedy heuristic for both information gain and entropy criteria, and random selections; Fig-
ure 7.3(g) presents these results. Interestingly, the average information gain for randomly chosen subsets is
even slightly higher than using the greedy entropy maximization. This indicates that maximizing entropy
and information gain appear to be conflicting goals, resulting in qualitatively different behaviors.

Analogously to the temperature data, we performed another experiment with a different model. Instead
of a hierarchical model satisfying the conditional independence assumptions for maximization of the in-
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Figure 7.4: On the left is the commercially-available high-resolution Tekscan ConforMat sensor (with
2048 sensors) installed on a Herman Miller Aeron Chair. One the right is our deployed system (with 19
sensors) installed on the same chair.

formation gain, we fit a larger Bayesian network for which the 153 detector stations along the highways
were connected, as indicated in Figure 7.3(h). This figure also indicates the placement of the most in-
formative sensors, which are concentrated on very similar locations as in the hierarchical model (c.f.,
Figure 7.3(f)).

7.7 Case study: Sensor placement for posture recognition

In this section, we present a detailed case study that uses the greedy algorithm for optimizing the infor-
mation gain H(XU )−H(XU | XA) in order to place sensors for seating posture recognition.

Many people spend a large part of their day sitting, be it in an office chair, couch or car seat. In these con-
texts, sustained poor sitting posture can cause significant adverse effects. For example, back pain affects
60 % to 80% of adults in the U.S. at some time in time in their lives, causing expensive absence from work
[Deyo, 1994]. Elderly nursing home residents, who often spend long periods of time seated, are likely to
develop ulcers from sitting for long times [AHCPR, 1992, Brandeis et al., 1994, Smith, 1995]. Improved
seating comfort for these individuals augmented with technology interventions may have significant im-
pact on health productivity and injury prevention.

Posture is a primary measure of sitting comfort (and discomfort) [de Looze et al., 2003]. Posture infor-
mation could also help predict a sitter’s state. For instance, subtle changes in seating posture (e.g., when
talking to other people in the car) can indicate attentiveness; unattentive driving can lead to an increased
chance of accidents. Hence, posture information can potentially be used to reduce severe adverse effects
(health problems, decreased productivity or car accidents).

Previous work in posture recognition [Tan et al., 2001, Z. et al., 1997, Zhu et al., 2003] used a high-fidelity
pressure sensor placed on the seat to acquire posture information. While these approaches demonstrated
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significant potential for using posture recognition as input modality, their approach had several practical
limitations:

• While they reported high classification accuracies on familiar subjects (subjects on which the pos-
ture recognition system was trained), the classification accuracy on unfamiliar subjects (not seen
during the training process) is either not reported or significantly lower than results with familiar
subjects. However, the training process is rather expensive and time-consuming, so for a widespread
deployment, the recognition must generalize across subjects.

• They used an expensive sensor to acquire the necessary pressure information for classification. This
high cost makes widespread deployment difficult.

• Due to the high resolution, signal processing is expensive, requiring sophisticated hardware satisfy-
ing high computational demand.

In our case study, we consider an alternative approach to the posture recognition problem in order to
address these challenges. By using our variable selection algorithms, we replace the expensive, high res-
olution sensor by a small set of near-optimally placed sensors. Hence the amount of sensor data collected
is reduced as well, reducing the computational load, and enabling real-time classification performance.
Our system achieves high classification accuracy on unfamiliar subjects, while using less than 1% of the
sensors (and less cost, even for our prototype deployment) when compared to previous work.

7.7.1 Methodology

Our goal is to recognize (classify) seating postures. As input, we are using sensor data acquired from a
collection of pressure sensors placed on the seat and back of a chair, as displayed in Figure 7.4. At given
intervals, sensor data is acquired, processed, and a label for the posture (such as sitting straight, leaning
left, and slouching) is predicted, which can then be used as input to an adaptive system. Discussion on
possible applications are provided at the end of the case study.

Learning in our problem context requires (1) an algorithm for learning and prediction of postural informa-
tion, and (2) a set of features that explain the posture data. While there is a large literature on how classifier
g can be learned from training data, both the training algorithm and the set of features should be selected
with a deep understanding of the recognition problem. Therefore, as a first step in choosing an algorithm
and creating meaningful features for our classification, we did extensive analyses of postural data.

Understanding Posture Data

In the posture classification problem, at every time step t our system is given the sensor values XV , where
m is the number of sensors. Our goal is to output a class label Y ∈ {1, . . . , C}, indicating the sitter’s
posture. The sensor values xV are in the following referred to as pressure maps – Figure 7.5 presents
examples of such pressure maps for different postures, obtained by the Tekscan high resolution pressure
sensor used in earlier work [Tan et al., 2001, Z. et al., 1997, Zhu et al., 2003]. Given a set of training
data Dtrain = {(x1, y1), . . . , (xn, yn)}, we would like to learn a classifier g – such that Y ≈ g(xV), i.e.,
g(xV) is approximately the true class label, not just on the training set, but also on unseen input data.
This requirement is known as generalization. In posture recognition, we specifically want the classifier to
generalize between different subjects, i.e., to work well on unfamiliar subjects.
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Figure 7.5: Sample data on pressure applied to the seat and back of an office chair. Samples display
postures: (1) Left leg crossed, (2) Right leg crossed, leaning left, (3) Leaning back, (4) Leaning forward,
(5) Leaning left, (6) Leaning right, (7) Left leg crossed, leaning right, (8) Seated upright, (9) Right leg
crossed, (10) Slouching.

When we use the high-resolution Tekscan sensor, the number m of sensor values is very large, and we
incur what is known as the curse of dimensionality problem [Bellman, 1957a] – generalization in a high
dimensional data set is very difficult. Consequently, the two prior approaches in posture recognition [Tan
et al., 2001, Zhu et al., 2003] deal with this problem by explicitly reducing the dimensionality of the in-
put data using Principal Component Analysis (PCA) and Sliced Inverse Regression (SIR) respectively.
These dimension reduction techniques aim at finding a low dimensional subspace which most effectively
represents the training data, in the sense of minimizing the mean square reconstruction error. 1

In our analyses of the data, we explored how domain knowledge could be used to engineer a small set
of features f , and learn a classifier g mapping the feature values to the class label, i.e., Y ≈ g(f). Our
experimental results show that this approach leads to improved generalization performance on unfamiliar
subjects, compared to existing work. Furthermore, we demonstrate that, contrary to all work to date, our
approach does not depend on the Tekscan high-resolution sensor – in the following, we show how we
can reconstruct the chosen features from a small set of near-optimally placed sensors, thereby achieving
similar classification accuracy at a fraction of the material and computational cost. Figure 7.6 provides a
diagrammatic illustration of our approach.

1The difference in their approaches is that while PCA is independent of the classification labels, SIR (as a generalization of
Linear Discriminant Analysis) aims at selecting features (dimensions) which are capture most of the class specific variance. Both
approaches however do not explicitly select features which are tailored to improve the classification results.
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Figure 7.6: A diagrammatic illustration of our classifier.

Features

Zhu et al. [2003] proposed a normalization step for preprocessing, in which the pressure maps are cropped
to contain only areas where the sensor reading is non-zero. We argue that this cropping step discards valu-
able information about user’s posture. Furthermore, our experiments have shown that where pressure
is applied is more informative about user’s posture than the amount of pressure applied on the surface.
However, prediction is improved by knowing how much pressure is applied, but maximized when sensor
readings are aggregated into equal subdivisions of the pressure areas.

Our features represent these two kinds of information; (1) where the pressure was applied at the bottom
of the seat and at the back of the seat, and how these two areas are interrelated (illustrated with items
(1) to (4) in Figure 7.7), and (2) how much pressure was applied in these areas (item (5) in Figure 7.7).
Following this framework, we designed a set of 51 features and used a feature selection algorithm to find
the most informative features based on classification accuracy [Guyon et al., 2002] to identify a subset of
30 features that are the most informative of the class to be predicted (see Figure 7.10).

Description of Features.

1. The position and size of the bounding box of the pressure area on each surface (seat and back). In
finding the bounding boxes, we first apply Hysteresis thresholding [Canny, 1986] to eliminate noisy
edges for better detection of the pressure areas. The pressure areas are computed using a simple
connected components algorithm [Rosenfeld and Pfaltz, 1966] and finding the bounding boxes of
the clustered areas.

2. The distance of the bounding boxes of the pressure areas at the bottom and the back to the edges of
the seat.

3. The distance and angle between the centers of the pressure areas at the back and the bottom surfaces.

4. The centers, radii, and orientations of two ellipses fit to the pressure areas created by the sitter’s
buttocks. These ellipses are calculated using a Least-Squares ellipse fitting algorithm described by
Fitzgibbon et al. [1999].
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Figure 7.7: Our set of features derived from geometric and physical variability in seated postures as well
as pressure information. (1) to (4) describe geometric features. (5) shows pressure applied to the bottom
seating area divided into 16 equal aggregated pressure areas, which among all other divisions that we
tested (pressure area divided into equal 1, 4, 9, and 25 regions) provided us with the highest classification
accuracy.

5. Pressure applied to the bottom area divided into 16 aggregated sub-regions. We decided on dividing
the pressure area into 16 aggregated sub-areas empirically. This division outperformed other can-
didate divisions (into 1, 4, 9, 16, or 25 regions) in a cross-validation experiment using a Logistic
Regression classifier.

We tested the performance of our features against features used by existing work. For instance, the method
described by Tan et al. [2001] uses Principal Component Analysis to reduce the dimensionality of the data
and extract the features (Principal Components) that are most informative of the data. A cross-validation
experiment using our features outperformed the accuracy provided by Tan et al. [2001]. We also tested
linear separation performance achieved by our features F against that of PCA. Figure 7.8 displays the
results of this experiment where our features achieved significantly less misclassified instances.

Learning Algorithm

After we extract the feature values from the training data, we train a classifier based on Logistic Regres-
sion, a classification technique which finds a linear decision boundary to separate the classes. For instance,
to separate two postures, the classifier finds a vector w = (w1, . . . , wm) such that wT f =

∑m
l=1wlfl is

positive for feature values f = (f1, . . . , fm) from one posture, and negative for the other. For k postures,
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Figure 7.8: Best linear separation achieved using PCA (top) and our features (F at the bottom), for distin-
guishing postures (2) Right leg crossed, leaning left and (9) Right leg crossed. Big circles mark misclas-
sified examples. For both PCA and F, we train a Logistic Regression classifier, and project the examples
(i.e., compute wT f ) along the normal vector w of the respective decision boundary. F achieves signifi-
cantly better separation.
it models the conditional likelihood of posture j, P (y = j | F = f) given features F = f as

P (y = j | F = f) =
exp(−wT

j f)∑k
l=1 exp(−wT

l f)
.

Hereby, wl are posture specific vectors found by the training algorithm. In order to classify an unseen
example f , the algorithm would select the most probable posture, i.e., select j such that P (y = j | F = f)
is maximized.

One way to find the coefficients wl is maximum conditional likelihood estimation, i.e., to find the coeffi-
cients which maximize the likelihood of observing all labels y(i) for all features f (i), where i is the index
of the training example. Another approach, which often is more robust, is to assume a sparse representa-
tion of wj . In this sparse representation, each weight vector wj (for the j-th posture) depends only on a
small set of features, i.e., has only few non-zero entries. Note that these non-zero entries can be different
for each posture, i.e., every posture can be characterized by a different subset of features. This sparse ap-
proach favors simpler models, which leads to improved generalization to unseen data. The SimpleLogistic
algorithm [Landwehr et al., 2003] finds such a sparse representation by using the LogitBoost algorithm
of Friedman et al. [1998] to optimize an additive logistic regression model; each additive component is a
simple linear function h depending on a single feature h(f) = wlfl for some scalar weight wl and index l.
The additive components are optimized on an appropriately weighted training set. Hereby, the weights for
each new component are chosen as to minimize the residual classification error, i.e., a new weight is added
to a new feature, such that the number of examples (misclassified using the existing weights) is minimized.
This iterative procedure stops when the classification accuracy cannot substantially be improved by adding
more features. Details of this approach can be found by Friedman et al. [1998], Landwehr et al. [2003].
We selected this approach after empirical comparison with several other classification techniques.

The advantage of using Logistic Regression in addition to achieving high classification accuracy, is that
instead of simply outputting a class label, it outputs a probability distribution over class labels, which
contains an estimate of the predictive uncertainty. This notion of confidence may be important for the
application using the posture information.
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Near-Optimal Sensor Placement

Although the approach described in the previous section achieves high classification accuracy, it requires
input data from a high resolution pressure sensor, in order to accurately compute the features discussed
above. The cost of this sensor provides a significant burden for its large scale deployment, e.g., in au-
tomobiles, wheelchairs, or office chairs. In addition, the features need to be computed from the high
dimensional data in real-time, demanding high computational performance. In order to avoid these prob-
lems, we would like to replace this high resolution sensor with a small set of pressure sensors, placed in
order to provide similar classification accuracy. If V is the set of all possible sensor locations (e.g., the
grid cells of the Tekscan sensor), we want to find a subset A ⊆ V of these sensors, such that, given the
pressure xA at only these locations, our system can classify the posture as accurately as possible.

The high performance of our features motivated the following approach towards selecting near-optimal
sensor locations: Our algorithm selects sensor locations, which allow us to reconstruct the features f (e.g.
the bounding box of pressure, angle between mass centroids, etc.) as accurately as possible. After re-
construction, we use the classifier trained on the features f to classify the posture. In order to achieve the
reconstruction, our classifier learns a probabilistic model that describes the correlation between the mea-
sured sensor values and the predicted feature values. This probabilistic model allows us to select sensor
locations that minimize the uncertainty in the prediction of the feature variables.

More formally, we model the pressure maps using random variables XV , where each Xs ∈ XV for s ∈ V
represents the sensor value obtained from the Tekscan sensor at location s. Furthermore, we define random
variables F that model the values of the features (that depend on the sensor values). If we assume that we
have a statistical model for the joint distribution, P (XV ,F) (we will describe how we fit the model later),
and if we know the values of all the sensors, XV = xV , we can compute the feature values F = f exactly,
without any uncertainty. If we can only observe a subset A ⊆ V of the sensor values, i.e., XA = xA, then
the conditional probability P (F = f | XA = xA) can be computed, and feature values f that maximize
this conditional probability can be predicted.

Based on this model, we can then choose sensor locations A that are most informative about the fea-
ture variables F . Hence, we need to find the subset of variables A which has the highest information
gain

F (A) = I(F ,XA) = H(F)−H(F | XA)

with respect to the feature variables, as considered earlier in this chapter2. In our optimization, we con-
strain the set A to have a fixed number k of elements. The results derived in this chapter motivate the
use of the greedy algorithm for selecting sensor locations, which starts with the empty set A = ∅, and
iteratively adds the sensor location s∗ which increases the information gain the most, i.e., adds

s∗ = argmax
s

F (A ∪ {s})

to the set A.

In order to use this algorithm for sensor placement, we need to specify a joint distribution P (F ,XV). In
our approach, we use the multivariate normal distribution; this distribution is fully parameterized by a

2We also considered the information gain I(Y;XA). However, using the greedy algorithm on this objective led to worse
performance than for I(F ;XA), as shown in our experiments. We hypothesize that this is due to the fact thatXV is approximately
independent given F and hence I(F ;XA) is approximately submodular, whereas XV is not conditionally independent given Y
alone, hence possibly violating submodularity of I(Y;XA)
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mean vector µ and a covariance matrix Σ, i.e.,

P (z) =
1√

(2π)N |Σ|
exp

(
−1

2
(z− µ)T Σ−1(z− µ)

)
,

where z = (f ,xV), andN = |V|+ |F| is the total number of variables. These parameters can be estimated
from the training data using maximum likelihood estimation.

Using this model, similarly as in Chapter 6, we can compute the conditional entropies

H(F) =
1
2

log2(2πe)
N |ΣF |, (7.5)

H(F | XA) =
1
2

log2(2πe)
N |ΣF|A|. (7.6)

Hence, these conditional entropies can be efficiently computed in closed form. Using Proposition 7.5, the
greedy algorithm, given a set of sensors A already selected, should pick the sensor s which maximizes
H(Xs | XA)−H(Xs | F ,XA), i.e., the algorithm prefers to add sensors which are as different as possible
from the sensors already selected (H(Xs | XA) is large), but which are also relevant for predicting F (i.e.,
H(Xs | F ,XA) is small, e.g., if Xs is strongly correlated with F).

Multi-resolution Sensor Placement

An alternative approach to selecting all pressure sensors from the same granularity is employing different
types of sensors. We might, for instance, want small point sensors for detecting the boundary of the sitting
region, but wider, flat sensors reporting the average pressure in a certain region. In order to allow this
extension, we augment the set of variables XV . Now, V is the union of two (or more) parts, V1, . . . ,Vr,
where each subset corresponds to sensors of a different resolution. Given the sensor values at the finest
resolution (using, e.g., the Tekscan sensor), we can downsample the training data (i.e. Figure 7.9) to get
coarser resolutions, i.e., by combining regions of 2 × 2, 4 × 4, etc. sensors, and averaging their values.
Using this procedure, we can augment the training data set to simulate the values of coarser sensors. We
then learn a joint distribution P (F ,XV) on this new augmented set of variables, and the sensor placement
algorithm as described in the previous section will automatically determine which resolution to use.

Furthermore, as discussed before, we can also allow to have different costs ci for the different sensor
types Vi. Using the CELF algorithm described in Chapter 5, we can select near-optimal placements A
which maximize the information gain U(F ;XA) subject to a budget, a constraint on the total cost of the
placement A.

7.7.2 Experiments

Evaluation Using Tekscan Sensor Data

We performed our first set of experiments on the data set made available to us by Zhu et al. [2003] and
Tan et al. [2001], thereby making our results comparable to these existing approaches. The data set con-
tains pressure data for ten postures, collected from 26 male and 26 female participants. The postures
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Figure 7.9: An example posture instance in multiple resolutions. The leftmost image is the raw pressure
readings. In the center is data points aggregated into 2 × 2 regions. The image in the right shows data
points combined into 4× 4 regions.

included are (1) Left leg crossed, (2) Right leg crossed, leaning left, (3) Leaning back, (4) Leaning for-
ward, (5) Leaning left, (6) Leaning right, (7) Left leg crossed, leaning right, (8) Seated upright, (9) Right
leg crossed, (10) Slouching. From each participant and posture, five examples were selected. Data was
collected using two sheets of the Tekscan sensor, each providing 42 × 48 sensing elements, at a 10mm
distance. The elements provide a 8-bit resolution for sensing pressure.

We used ten-fold cross-validation in our experiments that repeatedly selected a gender-balanced random
subset of 23 male and 23 female participants for training, and evaluated our classifier on the remaining six
participants (three male, three female). The reported results are average scores with respect to ten such
random splits. This split enables us to assess the generalization capabilities between participants, which
we refer to as the multi-user setting, using the terminology of Tan et al. [2001]. The best performance
reported by previous work in this setting was 79% [Tan et al., 2001].

We implemented the algorithms for computing the feature values in MATLAB, and used the SimpleLogis-
tic classifier implementation from the Weka library [Witten and Frank, 2005]. We also implemented the
greedy algorithm for sensor placement in MATLAB. To use this algorithm, we trained a multivariate nor-
mal model on the sensor values and the computed features on the training data using maximum likelihood
estimation.

Feature Selection. Our first experiment aimed at prioritizing the features on our feature set using rank-
ings created by an SVM-based feature selection algorithm [Guyon et al., 2002] and identifying a subset
of these features that sufficiently produce our target classification performance. To identify this subset,
we conducted a ten-fold cross-validation experiment, which provided us with information on how the
classification accuracy produced by our algorithm changed as features were incrementally included in the
learning model, without overfitting to a particular test set. Figure 7.10 presents results on this feature
selection experiment. We can see that the classification accuracy quickly increases. As the number of
features reaches ten, the classification performance levels off and a maximum is reached at 30 features.
Based on this analysis, we decided to use the first 30 features to train our classifier. Using this number,
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Figure 7.10: Ten-fold cross-validation results for change in classification accuracy as more features are
added. The sequence of adding these features followed a ranking created by an SVM-based feature selec-
tion algorithm [Guyon et al., 2002]. Vertical line indicates the cut-off point we chose.

our classifier achieved an average (cross-validated) classification accuracy of 86%, compared to the trivial
baseline of 10% if we guess the posture at random.

The top ten selected features, achieving an accuracy of 82%, included pressure readings from five ag-
gregated pressure areas from the bottom of the seat, three of the variables that define the location of the
pressure area at the back of the seat, and the angle and distance between the centers of the top and bottom
pressure areas.

Figure 7.11: Confusion matrix. Rows indicate true classes, columns refer to assigned labels. Class labels
represent (1) Left leg crossed, (2) Right leg crossed, leaning left, (3) Leaning back, (4) Leaning forward,
(5) Leaning left, (6) Leaning right, (7) Left leg crossed, leaning right, (8) Seated upright, (9) Right leg
crossed, (10) Slouching
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Figure 7.12: Ten-fold cross-validation results for the change in accuracy as the number of sensors increase.
Best results were obtained with 31 sensors (87% accuracy), while we deployed 19 sensors, which produce
the same accuracy (82%) as 4032 sensors do.

Sensor Placement. After feature selection, we conducted experiments on selecting the sufficient number
of sensors and the near-optimal placement of these sensors to achieve the targeted classification perfor-
mance. We conducted a second Ten-fold cross-validation experiment that looked at how classification
accuracy changed as data from each sensor in our dataset were incrementally included in the learner. Our
algorithm selected sensors at multiple resolutions of discretization, as described in the previous section.
Figure 7.12 presents how the (ten-fold cross-validated) classification accuracy increases as more and more
sensors are selected. However, the performance levels off quickly – even when placing 19 sensors, our
classifier achieves an accuracy of 82% (equal to the accuracy obtained using all 4032 sensors). The best
classification accuracy we obtained was 87% using 31 sensors, which we believe is higher than existing
work, while using only less than 1% of the sensors used in these work.

We limited our final system to use 19 sensors, to be near-optimally placed on the bottom and back of the
chair. Interestingly, all of the 19 sensors were chosen at the same level of discretization (4x4), aggregating
pressure values from 16 sensors. Based on this result, we limited our hardware design to only sensors
of this granularity. Figure 7.13 shows the near-optimal placement of these 19 sensors overlaid on sample
aggregated data as well as on our final deployed system.

We also compared the effectiveness of our near-optimal placement with other possible placements. There-
fore, another ten-fold cross-validation experiment compared classification performance of a near-optimally
placed subset of sensors against random and uniform placements of the same number of sensors. Addi-
tionally, we compared the performance of our algorithm with a potentially more direct sensor placement
approach which directly optimizes the information gain with respect to the class variable (instead of the
feature values, as our approach does). Figure 7.14 displays the results of this experiment. Our near-optimal
placement significantly outperforms the uniform and random placements in classification accuracy3. As

3As the reader might have noticed, the cross-validation accuracies reported in different experiments are slightly different.
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Figure 7.13: Final near-optimal placement of the sensors overlaid on an illustration of the downsampled
data. The printed numbers on the sensor locations indicate ordering of sensors from the best predictor to
the least. On the right shows our deployment of this near-optimal placement.

seen in Figure 7.14, it also performs better than the alternative, more direct placement strategy, again
underlining the expressiveness of our chosen features.

Posture-Specific Performance. Most misclassified labels were (3), Leaning back, with true positive
and negative rates of 75% and 72% respectively, and (8), Seated upright, with rates 76% and 75%. This
result might not be surprising, since these postures are similar to several other postures in the data set, and
there is high variance across subjects. Figure 7.11 shows the confusion matrix of the postures. We can see
that postures (3), Leaning back, and (10), Slouching, were the ones which were most frequently confused,
which is also very intuitive due to the similarity of these postures.

We also looked at which features were selected (i.e., given non-zero coefficients in the posture specific
weight vectors wl) for the individual postures by the SimpleLogistic classifier. These weight vectors are
very sparse – on average, every posture depends only on approximately three out of the 30 features. Inspec-
tion of these weights also gives valuable insight: For example, the two postures, (2) and (5), that included
Leaning left are positively correlated with the horizontal bounding box location at the back, whereas the
postures (6) and (7) that involved Leaning right are negatively correlated with this feature.

Reconstruction of XV . We can also use the joint distribution P (F ,XV) to reconstruct the unobserved
sensor locations by estimating P (XV\A | XA = xA). Hereby, XV\A are the values of all the locations
V \ A where no sensors were placed, and xA are the measurements made by our sensors at locations A.

This is due to different random splits done for cross-validation in different experiments.
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Figure 7.14: Cross-validation results that compare uniform, random, and near-optimal (with respect to
class and features) placements of sensors on the chair surface. Images on the top row illustrate actual
placements computed by these methods.

Figure 7.15 presents examples of these reconstructed pressure maps. Images in the top row display the
original, high resolution pressure maps acquired from the Tekscan sensor, while the ones in the bottom row
show the reconstructed data using only the measurements of 19 near-optimally chosen sensors. We can
tell through visual inspection that the reconstructed pressure maps are rather accurate, which indicates that
the selected sensor locations capture the most important characteristics of the different postures.

We also performed an experiment, where we reconstructed the pressure maps as described above, then
deterministically computed the features on the full resolution maps, and used the computed features for
classification. This approach however led to far worse classification accuracy of 54%, as opposed to 84%
when probabilistically reconstructing the features directly.

Learning Algorithm Comparison. A final evaluation of our method aimed at comparing different
learning algorithms. Therefore, we trained SimpleLogistic, Naive Bayes, Artificial Neural Network (Multi-
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Figure 7.15: Reconstructed posture data examples on 6 postures. Top of each pair: original sensor values
(4032 sensors); right image: reconstruction using only selected 19 sensors.

Layer Perceptron), and Support Vector Machine classifiers using our final feature set calculated by data
from our near-optimally placed 19 sensors. Figure 7.16 presents the results of this experiment. SimpleL-
ogistic outperformed all other algorithms in this experiment.

Evaluation of Our Prototype Sensor System

Based on the results described in the previous section, we deployed a proof-of-concept prototype sensor
system, as illustrated in Figure 7.4, and installed it on an office chair. We chose the same chair (the Aeron
chair produced by Herman Miller) as used in the original data collection by Zhu et al. [2003] and Tan
et al. [2001]. The final system included 19 one-and-a-half-inch-square sensors near-optimally placed on
the seat and back of the chair. We used FSR (Force Sensing Resistors) sensors produced by Interlink
Electronics. Sensors were connected to a data acquisition board that read sensor values with the desired
frequency and sent to a desktop computer via a USB connection. We implemented a Java application for
real-time data acquisition, processing, and classification.

We used our deployed sensor system to evaluate the performance of our classifier in a real-time evaluation
setting. We hired 20 naive subjects (ten male, ten female, college students aged between 19 and 34) to sit
in the ten postures we used for training our classifier in ten trials (that produced 100 postures per partici-
pant). The order that the postured appeared in each trial was randomized to avoid learning or discomfort
effects.
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Figure 7.16: Ten-fold cross-validation results for classification accuracy with 4 classifiers (SimpleLogistic,
Naive Bayes, Support Vector Machine, and Multi-Layer Perceptron) as well as Information Gain with
respect to the target class variable.

Classification Accuracy. We analyzed the data collected from this deployment in several ways. In order
to use the classifier trained on the high resolution data set, we need to calibrate the deployed sensors. We
calibrated the sensors by performing linear regression, finding slope and bias for each deployed sensor to
minimize the error in predicting the corresponding values from the high resolution sensor. Since we did
not have data from the same subjects on both the deployed sensors and the Tekscan sensor, we performed
this regression analysis on the posture specific means, as presented in Figure 7.17. Due to the low-fidelity
nature of the deployed sensors, their different signal response compared to the Tekscan sensor, and the
variance in the subjects’ postures, this calibration was very difficult. In fact, when we used the calibrated
data from the sensors, and classified it using the classifier trained on the high resolution data, our accuracy
was only 63%.

Not satisfied with this result, we re-trained the classifier on the data from the deployed sensor only. We
conducted a ten-fold, gender-balanced, cross-validation experiment. In each cross-validation split, we
trained a SimpleLogistic classifier on randomly selected nine male and nine female participants and tested
on the remaining two participants. We used the 19 measured values directly as features. Our classifier
achieved a (ten-fold cross-validated) classification accuracy of 78%. Considering the fact that the chosen
sensors have quite different and lower-fidelity responses than the high-cost Tekscan sensor, as well as
the fact that we trained the classifier on only 18 (instead of 46) subjects, this classification accuracy is
very promising, and shows that the proposed sensor placement technique can lead to high quality sensor
placements at a small fraction of the cost of existing approaches.

Realtime Performance. The second experiment was an explorative evaluation of the real-time perfor-
mance of our deployed system. We identified that our deployed posture recognition system can predict
postures with a 100 ms delay (an aggregation of delays in sensor reading, processing, and classifica-

104



Figure 7.17: Regression analysis, comparing the of mean pressure values for each posture between the
deployed sensors and the corresponding values of the Tekscan sensor.

tion), which we believe is a promising performance considering that no near-real-time systems on posture
recognition is reported in the literature. We are also convinced, that if the classifier is implemented on a
dedicated embedded device, far lower response times can be achieved.

Cost Analysis. Through deploying our sensor system, we were also able to get an estimate of the cost
of the system. The total cost of our prototype deployment was approximately 300 USD in components,
compared to the above 16,000 USD when using the high-resolution sensor. The cost of only the sensors
in our system is 100 USD compared to the Tekscan sensors commercially available for 3,000 USD. We
argue that having developed our low-cost sensor system will allow us to deploy the technology in different
settings. Collecting data from a larger number of people and in a variety of seating contexts would provide
us with a deeper and more precise understanding of posture data and seated activities. In the next section,
we discuss possible applications of such understanding.

7.7.3 Discussion

We argue that our low-cost posture detection technology has a number of application domains. In the fol-
lowing few paragraphs, we provide related work on these application domains, which provide context for
our work. We then identify four domains where posture recognition could play a vital role and describe
rough usage scenarios for our technology. These domains include Home, Office, Automotive, and Mobile
Assistive Technology. We provide four simple scenarios that illustrate how our system could be used to
provide users with assistance and support in their daily activities.

Related Work

Seat Comfort. Seat comfort has gained particular attention for military, workplace, and assistive tech-
nology applications. Research has shown that uncomfortable aircrew seating can significantly affect atten-
tion, information processing, and task performance while improved comfort with more evenly distributed
pressure patterns can improve aircrew task performance [Cohen, 1998]. Office ergonomics is another
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context where seat comfort is extensively studied [Zhang, 1996]. Symptoms of seating discomfort in the
office were found to be sore muscles, heavy legs, uneven pressure, stiffness, restlessness, fatigue, and pain
[Halender and Zhang, 1997]. In assistive technology, seat discomfort is identified as a major problem
among most individuals with disabilities [Bardsley, 1984, Monette et al., 1999, Shaw, 1992]. In a 1995
national survey in the United States, comfort is identified as one of the leading unmet needs of assistive
technology users [Scherer, 1996].

A significant body of work, such as those provided above, acknowledges the importance of studying
seating comfort or avoiding or treating seating-related injuries. However, technology development in pro-
viding seating comfort is still limited to a few context-specific examples. Recently, pressure sensing has
been used as an important tool for studying seating comfort [Brienza et al., 1996]. Researchers have also
proposed interventions to avoid negative effects of uncomfortable and long-term seating such as decubitus
ulcers [Cooper et al., 1997] or the inability to use standard wheelchair seats by certain populations such
as children with neuro-motor impairments [Hobson, 1972].

The literature on seating comfort indicate that technology development to understand and support seating
is fairly nascent. We hope that our work will contribute to a systematic understanding of seating and the
kinds of technologies that that could support seated activities. Low-cost sensing and recognition systems
could be deployed in different seating contexts. Literature on ubiquitous computing and multi-modal user
interfaces provide examples of these contexts.

Technology Development. The ubiquity of seated activities in the home, workplace, and on the go
makes seating also interesting as a human-computer interface. An example is the Sensing Chair, a chair
that uses high-fidelity pressure readings from the surface of the chair to detect sitter’s postures, devel-
oped by Tan et al. [2001], Z. et al. [1997], Zhu et al. [2003]. Seat pressure data is also used in affective
computing applications. Kapoor and others used readings of pressure applied on a seat along with other
multi-modal inputs to recognize affective states of a student in order to facilitate learning [Kapoor et al.,
2001].

This work cannot exist without at least rudimentary analysis of sitting activity and its long-term effects on
people along with technologies for automatic processing and recognition of seated activities were also de-
veloped. Real-time processing and recognition systems, such as those described by Tan et al. [2001], can
support other processes such as the automatic control of airbag deployment based on the size, weight, and
sitting posture of a driver or passenger, which is also part of the main inspiration of our work. However,
technologies such as those used by Tan et al. [2001], Z. et al. [1997], Zhu et al. [2003] are far from be-
ing inexpensive and robust enough to be deployed in real-world application. We argue that our proposed
system overcomes this problem and provides a robust, inexpensive system that provides near-real-time
processing and prediction of seated postures.

Application Areas

The work cited above provides examples of the kinds of contexts where seating-related technology could
support people’s daily activities. However, we would like to provide several possible contexts for the use
of such technology that originally motivated our work.
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Home. In the home, an intelligent chair could identify postures over a pattern and adjust itself to support
the user’s postural needs. For instance, if the user is falling asleep on the chair, the chair could identify
the change in user’s postures over a window of time, infer that the user wants to sleep, and automatically
adjust the backrest and footrest to support user’s actions. DiSalvo et al. [2005] discuss the design of an
intelligent lounge chair for the home for a more detailed scenario.

Office. Fatigue due to sitting in unhealthy postures for extended periods of time is a significant and very
common problem in the workplace. Identifying a sitter’s postural patterns could help avoid this problem.
Users could be made aware of how healthy their postural patterns are and be provided with recommenda-
tions as well as corrections to attain and maintain healthy posture.

Educational settings could also use posture recognition technology for similar purposes. Through identi-
fying a pattern in a student’s posture, an intelligent tutor could infer whether the student is interested in
the topic.

Automotive. A car could use posture information over a window of time to infer its driver’s level of
drowsiness as well as attention. Such application might be more robust than existing vision-based tech-
nologies as, unlike camera data that is sensitive to lighting conditions and changes in driver’s appearances,
seating surface is predictable and consistent.

Assistive Technology. One of the application areas in the Assistive Technology domain is wheelchairs.
Posture information could be used by an intelligent wheelchair to help avoiding seating ulcers that are
caused by sitting in the same posture for extended periods of time. The chair could make minor adjust-
ments on its surface or gently warn the user to change postures to avoid such problems.

7.8 Summary

We presented efficient randomized approximation algorithms for the long standing problem of nonmy-
opically selecting most informative subsets of variables in graphical models. Our algorithms provide a
constant factor (1− 1/e− ε) performance guarantee with high confidence, both in the unit-cost and in the
budgeted case. Our methods can also be used to derive online performance guarantees for other heuristics.
The analysis of the algorithms leveraged the concept of submodular functions, and polynomial bounds on
sample complexity. We also showed that (1 − 1/e) is the best performance guarantee possible unless
P = NP.

Our empirical results demonstrate the practical applicability of our method to real-world problems: re-
lating the maximization of our submodular objective functions to improving prediction accuracy, and
showing the superiority of the information gain criterion to entropy maximization.

In our detailed seating activity recognition case study, our approach achieves a classification accuracy of
87% in classifying ten postures on untrained subjects, a higher performance than that of previous work.
Our system uses less than 1% of the deployed sensors compared to previous work, therefore drastically
reducing hardware and computational cost. We used our methodology to build a prototype real-time
sensing and recognition system using only 19 sensors. In a user study with 20 subjects, our low-cost
prototype achieved 78% accuracy in the same classification task.
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Chapter 8

Sensing for Outbreak Detection in
Networks

In this chapter, we consider another important class of observation selection problems: In this class of
problems, we are given a network and a dynamic process spreading over this network, and we want to
select a set of nodes to detect the process as effectively as possible.

Many real-world problems can be modeled under this setting. Consider a city water distribution network,
delivering water to households via pipes and junctions. Accidental or malicious intrusions can cause
contaminants to spread over the network, and we want to select a few locations (pipe junctions) to install
sensors, in order to detect these contaminations as quickly as possible. In August 2006, the Battle of Water
Sensor Networks (BWSN) [Ostfeld et al., 2006] was organized by researchers from the civil engineering
community as an international challenge to find the best sensor placements for a real (but anonymized)
metropolitan area water distribution network. In this chapter, we discuss the approach we used in this
competition. Typical epidemics scenarios also fit into this outbreak detection setting: We have a social
network of interactions between people, and we want to select a small set of people to monitor, so that
any disease outbreak can be detected early, when very few people are infected.

In the domain of weblogs (blogs), bloggers publish posts and use hyper-links to refer to other bloggers’
posts and content on the web. Each post is time stamped, so we can observe the spread of information on
the “blogosphere”. In this setting, we want to select a set of blogs to read (or retrieve) which are most up
to date, i.e., catch (link to) most of the stories that propagate over the blogosphere. Figure 8.1 illustrates
this setting. Each layer plots the propagation graph (also called information cascade [Bikhchandani et al.,
1992]) of the information. Circles correspond to blog posts, and all posts at the same vertical column
belong to the same blog. Edges indicate the temporal flow of information: the cascade starts at some post
(e.g., top-left circle of the top layer of Figure 8.1) and then the information propagates recursively by other
posts linking to it. Our goal is to select a small set of blogs (two in case of Figure 8.1) which “catch” as
many cascades (stories) as possible1.A naive, intuitive solution would be to select the big, well-known
blogs. However, these usually have a large number of posts, and are time-consuming to read. We show,
that, perhaps counterintuitively, a more cost-effective solution can be obtained, by reading smaller, but
higher quality, blogs, which our algorithm can find.

There are several possible criteria one may want to optimize in outbreak detection. For example, one

1In real-life multiple cascades can be on the same or similar story, but we still aim to detect as many as possible.
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Figure 8.1: Spread of information between blogs. Each layer shows an information cascade, and all posts
at the same vertical column belong to the same blog. Edges represent the flow of information. We want to
pick a few blogs quickly capture most cascades.

criterion seeks to minimize detection time (i.e., to know about a cascade as soon as possible, or avoid
spreading of contaminated water). Similarly, another criterion seeks to minimize the population affected
by an undetected outbreak (i.e., the number of blogs referring to the story we just missed, or the population
consuming the contamination we cannot detect). Optimizing these objective functions is NP-hard, so in
general, for large, real-world problems, we cannot expect to efficiently find the optimal solution.

In this chapter, we show, that these and many other realistic outbreak detection objectives are submodular
(c.f., Chapter 5). By exploiting this submodularity property, we can in principle use the machinery dis-
cussed in Chapter 5 to efficiently obtain solutions which are provably close to the optimal solution. These
guarantees are important in practice, since selecting nodes is expensive (reading blogs is time-consuming,
sensors have high cost), and we desire solutions which are not too far from the optimal solution.

However, the problems considered in this chapter are too large so that we cannot apply the algorithms
discussed in Section 5 directly. Furthermore, in these outbreak detection problems, observations often
have non-constant cost. For example, the time required to read a blog depends on the number of posts in
the blog, etc. We provide an efficient algorithm, CELF, which scales to the problem sizes involved in the
BWSN challenge, and the blog monitoring application.

The main contributions of this chapter are:

• We show that many objective functions for detecting outbreaks in networks are submodular, includ-
ing detection time and population affected in the blogosphere and water distribution monitoring
problems. We show that our approach also generalizes work by Kempe et al. [2003] on selecting
nodes maximizing influence in a social network.

• We show that this submodularity observation helps to speed up the greedy algorithm by up to 700
times. We also derive novel online bounds on the quality of the placements obtained by any algo-
rithm.

• We extensively evaluate our methodology on the applications introduced above – water quality
and blogosphere monitoring. These are large real-world problems, involving a model of a water
distribution network from the EPA with millions of contamination scenarios, and real blog data
with millions of posts.
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Figure 8.2: Blogs have posts, and there are time stamped links between the posts. The links point to the
sources of information and the cascades grow (information spreads) in the reverse direction of the edges.
Reading only blog B6 captures all cascades, but late. B6 also has many posts, so by reading B1 and B2

we detect cascades sooner.

• We show how the proposed methodology leads to deeper insights in both applications, including
multicriterion, cost-sensitivity analyses and generalization questions.

8.1 The outbreak detection problem

8.1.1 Problem statement

The water distribution and blogosphere monitoring problems, even though in very different domains, share
essential structure. In both problems, we want to select a subset A of nodes (sensor locations, blogs) in a
graph G = (V, E), which detect outbreaks (spreading of a virus/information) quickly.

Figure 8.2 presents an example of such a graph for blog network. Each of the six blogs consists of a set of
posts. Connections between posts represent hyper-links, and labels show the time difference between the
source and destination post, e.g., post p41 linked p12 one day after p12 was published).

These outbreaks (e.g., information cascades) initiate from a single node of the network (e.g., p11, p12 and
p31), and spread over the graph, such that the traversal of every edge (s, t) ∈ E takes a certain amount
of time (indicated by the edge labels). As soon as the event reaches selected node, alarm is triggered.
E.g., selecting blog B6, would detect the cascades originating from post p11, p12 and p31, after 6, 6 and 2
timesteps after the start of the respective cascades.

We can formally model these outbreaks as a random process. With each node s ∈ V in the network and
timestep t ∈ T , we associate a nonnegative random variable Xs,t, which is 0 if node s is not infected at
time t, and positive otherwise. Hereby, T ⊆ R is a discrete or continuous ordered set of time points. If
Xs,t > 0, then Xs,t denotes the degree of infection (e.g., the concentration of contaminated water). Hence,
the joint realization xV,T describes the state of the network over the entire course of an outbreak. For each
possible realization, we evaluate a penalty function π(xV ,A) which depends on the state of the network
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xV,T at all nodes and all times, as well as the placement A, as follows. For each possible observation
(sensor location) s ∈ V , we use

T (xV,T , s) = min{t ∈ T : xs,t > 0}

to denote the time of detection. Hereby, T (xV,T , s) =∞ if s never detects the outbreak, i.e., xs,t = 0 for
all t ∈ T . For a set of observations A ⊆ V , we define

T (xV,T ,A) = min
s∈A

T (xV,T , s),

i.e., the earliest time any sensor in A detects the outbreak. Furthermore, we define a penalty function
π(xV,T , t)2, describing the penalty incurred if outbreak xV,T is detected at time t. As we describe below,
this penalty models, e.g., the population affected by consuming contaminated water up to time t.

Based on this notation, we can define outbreak detection formally as an observation selection problem as
discussed in Section 2.3. To this end, we can define a sensing quality function

u(xV,T ,A) = π(xV,T ,∞)− π(xV,T , T (xV,T ,A)).

If we assume a probability distribution P (xV,T ) over outbreaks, the corresponding expected sensing qual-
ity

F (A) =
∫
P (xV,T )u(xV,T ,A)dxV,T

then models the expected penalty reduction obtained if observing subset A ⊆ V of the nodes3.

Depending on which nodesAwe select, we achieve a certain placement score F (A). Figure 8.2 illustrates
several criteria one may want to optimize. If we only want to detect as many stories as possible, then
reading just blog B6 is best. However, reading B1 would only miss one cascade (p31), but would detect
the other cascades immediately.

Since sensors are expensive, we also associate a cost C(A) with every placement A, and require, that this
cost does not exceed a specified budget B which we can spend. For example, the cost of selecting a blog
could be the number of posts in it (i.e.,B1 has cost 2, whileB6 has cost 6). In the water distribution setting,
accessing certain locations in the network might be more difficult (expensive) than other locations. Also,
we could have several types of sensors to choose from, which vary in their quality (detection accuracy) and
cost. In this chapter, we consider the case of additive cost functions (c.f., Section 2.4), i.e., we associate a
nonnegative cost c(s) with every sensor s, and define the cost of placementA: C(A) =

∑
s∈A c(s).

Using this notion of sensing quality and cost, our goal is to solve the maximization problem (2.4):

max
A⊆V

F (A) subject to C(A) ≤ B, (8.1)

where B is a budget we can spend for selecting the nodes.

2We require that π be nondecreasing in T , i.e., we never prefer late over early detection. We also require π to be defined for
t = ∞, describing the penalty incurred if the outbreak is never detected.

3Note, that we could equivalently allow to reason over the times of observing as well as over the observed nodes, i.e., select
A ⊆ V × T
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8.1.2 Placement objectives

Even though the water distribution and blogosphere monitoring problems are very different, similar place-
ment objective scores make sense for both applications. The detection time T (i, s) in the blog setting is
the time difference in days, until blog s participates in the cascade i, which we extract from the data. In the
water network, T (i, s) is the time it takes for contaminated water to reach node s in scenario i (depend-
ing on outbreak location and time). In both applications we consider the following objective functions
(penalty reductions):

(a) Detection likelihood (DL): fraction of information cascades and contamination events detected by the
selected nodes. Here, the penalty is π(xV,T , t) = 0 for all t < ∞, and πi(∞) = 1, i.e., we do not incur
any penalty if we detect the outbreak in finite time, otherwise we incur penalty 1.

(b) Detection time (DT) measures the time passed from outbreak till detection by one of the selected nodes.
Hence, π(xV,T , t) = min{t, Tmax}, where Tmax is the time horizon we consider (end of simulation / data
set).

(c) Population affected (PA) by scenario (cascade, outbreak). This criterion has different interpretations
for both applications. In the blog setting, the affected population measures the number of blogs involved
in a cascade before the detection. Here, π(xV,T , t) is the size of (number of blogs participating in) cascade
xV,T at time t < ∞, and π(xV,T ,∞) is the size of the cascade at the end of the data set. In the water
distribution application, the affected population is the expected number of people affected by not (or late)
detecting a contamination event.

Note, that optimizing each of the objectives can lead to very different solutions, hence we may want to
simultaneously optimize all objectives at once. We deal with this multicriterion optimization problem
in Section 8.1.4.

8.1.3 Submodularity of the placement objectives

The penalty reduction function4 F (A) has several important and intuitive properties: Firstly, F (∅) = 0,
i.e., we do not reduce the penalty if we do not place any sensors. Secondly, F is nondecreasing, i.e.,
F (A) ≤ F (B) for all A ⊆ B ⊆ V . Hence, adding sensors can only decrease the incurred penalty.
Thirdly, and most importantly, it is submodular (c.f., Chapter 5):
Theorem 8.1. For all placements A ⊆ B ⊆ V and sensors s ∈ V \ B, it holds that

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B).

Hence, if we add a sensor to a small placement A, we improve our score at least as much, as if we add it
to a larger placement B ⊇ A.

Hence, both the blogosphere and water distribution monitoring problems can be reduced to the problem
of maximizing a nondecreasing submodular function, subject to a constraint on the budget we can spend
for selecting nodes. More generally, any objective function that can be viewed as an expected penalty
reduction is submodular. Thus, in principle, we can exploit the machinery for maximizing nondecreasing

4The objective F is similar to one of the examples of submodular functions described by [Nemhauser et al., 1978]. Our
objective, however, preserves additional problem structure (sparsity) which we exploit in our implementation, and which we
crucially depend on to solve large problem instances.
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submodular functions as introduced in Chapter 5. For example, it follows from Theorem 5.2 that the
greedy algorithm applied to the penalty reduction objective F (A) is guaranteed to obtain a solution to the
maximization problem (2.4) which achieves at least a constant fraction of (1− 1/e) of the value obtained
by the optimal solution. We use the CELF algorithm for finding cost-effective solutions.

8.1.4 Multicriterion optimization

In practical applications, such as the blogosphere and water distribution monitoring, we may want to
simultaneously optimize multiple objectives. Then, each placement has a vector of scores, F (A) =
(F1(A), . . . , Fm(A)). Here, the situation can arise that two placementsA1 andA2 are incomparable, e.g.,
F1(A1) > F1(A2), but F2(A1) < F2(A2). So all we can hope for are Pareto-optimal solutions [Boyd and
Vandenberghe, 2004]. A placement A is called Pareto-optimal, if there does not exist another placement
A′ such that Fi(A′) ≥ Fi(A) for all i, and Fj(A′) > Fj(A) for some j (i.e., there is no placement A′
which is at least as good as A in all objectives Fi, and strictly better in at least one objective Fj).

One common approach for finding such Pareto-optimal solutions is scalarization (c.f., [Boyd and Van-
denberghe, 2004]). Here, one picks positive weights λ1 > 0, . . . , λm > 0, and optimizes the objective
F (A) =

∑
i λiFi(A). Any solution maximizing F (A) is guaranteed to be Pareto-optimal [Boyd and

Vandenberghe, 2004], and by varying the weights λi, different Pareto-optimal solutions can be obtained.
One might be concerned that, even if optimizing the individual objectives Fi is easy (i.e., can be approx-
imated well), optimizing the sum F =

∑
i λiFi might be hard. However, submodularity is closed under

nonnegative linear combinations and thus the new scalarized objective is submodular as well.

8.1.5 Speeding up function evaluations

Evaluating the penalty reductions F can be very expensive. For example, in the water distribution appli-
cation, we need to run physical simulations, in order to estimate the effect of a contamination at a certain
node. In the blog networks, we need to consider several millions of posts, which make up the cascades.
However, in both applications, most outbreaks are sparse, i.e., affect only a small area of the network [c.f.,
Krause et al., 2008a, Leskovec et al., 2007a], and hence are only detected by a small number of nodes.
Hence, most nodes s do not reduce the penalty incurred by an outbreak (i.e., Fi({s}) = 0). Note, that this
sparsity is only present if we consider penalty reductions. If for each sensor s ∈ V and scenario i ∈ I
we store the actual penalty πi(s), the resulting representation is not sparse. Our implementation exploits
this sparsity by representing the penalty function F as an inverted index5, which allows fast lookup of the
penalty reductions by sensor index s. By looking up all scenarios detected by all sensors in our placement
A, we can quickly compute the penalty reduction

F (A) =
∑

i:i detected by A
P (i) max

s∈A
Fi({s}),

without having to scan the entire data set.

The inverted index is the main data structure we use in our optimization algorithms. After the problem
(water distribution network simulations, blog cascades) has been compressed into this structure, we use
the same implementation for optimizing sensor placements and computing bounds.

5The index is inverted, since the data set facilitates the lookup by scenario index i (since we need to consider cascades, or
contamination simulations for each scenario).
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In the water distribution network application for example, exploiting this sparsity allows us to fit the set of
all possible intrusions considered in the BWSN challenge – a footprint of 47 Terabytes – in main memory
(16 GB), which leads to several orders of magnitude improvements in the running time, since we can
avoid hard-drive accesses.

8.2 Case study: Water networks

8.2.1 Experimental setup

In the water distribution system application, we used the data and rules introduced by the Battle of Water
Sensor Networks (BWSN) challenge [Ostfeld et al., 2006]. We considered both the small network on
129 nodes (BWSN1), and a large, realistic, 12,527 node distribution network (BWSN2) provided as part
of the BWSN challenge. In addition we also consider a third water distribution network (NW3) of a
large metropolitan area in the United States. The network (not including the household level) contains
21,000 nodes and 25,000 pipes (edges). To our knowledge, this is the largest water distribution network
considered for sensor placement optimization so far. The networks consist of a static description (junctions
and pipes) and dynamic parameters (time-varying water consumption demand patterns at different nodes,
opening and closing of valves, pumps, tanks, etc.)

8.2.2 Objective functions

In the BWSN challenge, we want to select a set of 20 sensors, simultaneously optimizing the objective
functions DT, PA and DL, as introduced in Section 8.1.2. To obtain cascades we use a realistic disease
model defined by [Ostfeld et al., 2006], which depends on the demands and the contaminant concentration
at each node. In order to evaluate these objectives, we use the EPANET simulator [Rossman, 1999], which
is based on a physical model to provide realistic predictions on the detection time and concentration of
contaminant for any possible contamination event. We consider simulations of 48 hours length, with 5
minute simulation timesteps. Contaminations can happen at any node and any time within the first 24
hours, and spread through the network according to the EPANET simulation. The time of the outbreak is
important, since water consumption varies over the day and the contamination spreads at different rates
depending on the time of the day. Altogether, we consider a set of 3.6 million possible contamination sce-
narios and each of these is associated with a “cascade” of contaminant spreading over the network.

8.2.3 Solution quality

We first used CELF to optimize placements of increasing size, according to the three criteria DL, DT, PA.
We again normalized the scores to be between 0 and 1, where 1 is the best achievable score when placing
sensors at every node.

Figure 8.3 (a) presents the CELF score, the off-line and on-line bounds for PA objective on the BWSN2
network. Consistently with the blog experiments, the on-line bound is much tighter than the off-line
bound, and the solutions obtained by our CELF algorithm are very close to the optimum.

Figure 8.3 (b) shows CELF’s performance on all 3 objective functions. Similarly to the blog data, the
population affected (PA) score increases very quickly. The reason is that most contamination events only
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Figure 8.3: (a) CELF with offline and online bounds for PA objective. (b) Different objective functions.

impact a small fraction of the network. Using few sensors, it is relatively easy to detect most of the high
impact outbreaks. However, if we want to detect all scenarios, we need to place a large number of sensors
(2,263 in our experiment). Hence, the DL (and correspondingly DT) increase more slowly than PA.

Figure 8.4 shows two 20 sensor placements after optimizing DL and PA respectively on BWSN2. When
optimizing the population affected (PA), the placed sensors are concentrated in the dense high-population
areas, since the goal is to detect outbreaks which affect the population the most. When optimizing the
detection likelihood, the sensors are uniformly spread out over the network. Intuitively this makes sense,
since according to BWSN challenge [Ostfeld et al., 2006], outbreaks happen with same probability at
every node. So, for DL, the placed sensors should be as close to all nodes as possible.

We also compared the scores achieved by CELF with several heuristic sensor placement techniques, where
we order nodes by some “goodness” criteria, and then pick top nodes. We consider the following criteria:
population at the node, water flow through the node, and the diameter and the number of pipes at the node.
Figure 8.7(a) shows the results for PA objective function. CELF outperforms best heuristic for 45%. Best
heuristics are placing nodes at random, by degree or their population. We see heuristics perform poorly,
since nodes which are close in the graph tend to have similar flow, diameter and population, and hence
the sensors will be spread out too little. Even the maximum over one hundred random trials performs far
worse than CELF. Figure 8.5(a) shows the statistics of choosing 100 random random placements on the
water distribution network for the PA objective function. Notice that even best out of 100 random trials
performs far worse than CELF. Figure 8.5(b) shows how many outbreaks one needs so that the score
approaches the true score that one obtains if data on all outbreaks is available. Notice that estimates soon
converge to true score and data on less than 100,000 outbreaks is needed.
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(a) PA (b) DL

Figure 8.4: Water network sensor placements: (a) when optimizing PA, sensors are concentrated in high
population areas. (b) when optimizing DL, sensors are uniformly spread out.
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Figure 8.6: (a) Trading off PA and DL. (b) Trading off PA and consumed contaminated water.

8.2.4 Multicriterion optimization and results from BWSN

Using the theory developed in Section 8.1.4, we traded-off different objectives for the water distribu-
tion application. We selected pairs of objectives, e.g., DL and PA, and varied the weights λ to produce
(approximately) Pareto-optimal solutions. In Figure 8.6 (a) we plot the tradeoff curves for different place-
ment sizes k. By adding more sensors, both objectives DL and PA increase. The crves also show, that if
we, e.g., optimize for DL, the PA score can be very low. However, there are points which achieve near-
optimal scores in both criteria (the knee in the curve). This sweet spot is what we aim for in multi-criteria
optimization.

We also traded off the affected population PA and a fourth criterion defined by BWSN, the expected
consumption of contaminated water. Figure 8.6 (b) shows the trade-off curve for this experiment. Notice
that the curves (almost) collapse to points, indicating that these criteria are highly correlated, which we
expect for this pair of objective functions. Again, the efficiency of our implementation allows to quickly
generate and explore these trade-off curves, while maintaining strong guarantees about near-optimality of
the results.

We submitted our placements with equally weighted objective functions to BWSN, where Ostfeld et al.
[2008] independently evaluated the contributed solutions of 15 participants. Since many solutions were
non-dominated (and hence incomparable), the organizers of BWSN did not select a winner. However,
in the conclusion of their analysis, for a collection of comparisons, they counted the number of non-
dominated solutions. Our approach achieved the highest number with 26 out of 30 non-dominated solu-
tions. The next best set of placements according to their evaluation using this metric was the one by Berry
et al. [2006a] with 21 out of 30 non-dominated solutions.

8.2.5 Scalability

In the water distribution setting, we need to simulate 3.6 million contamination scenarios, each of which
takes approximately 7 seconds and produces 14KB of data. Since most of the computer cluster scheduling
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Figure 8.7: (a) Solutions of CELF outperform heuristic selections. (b) Running time of exhaustive search,
greedy and CELF.

systems break if one would submit 3.6 million jobs into the queue, we developed a distributed architec-
ture, where the clients obtain simulation parameters and then confirm the successful completion of the
simulation. We run the simulation for a month on a cluster of around 40 machines. This produced 152GB
of outbreak simulation data. By exploiting the properties of the problem described in Section 8.1.5, the
size of the inverted index (which represents the relevant information for evaluating placement scores) is
reduced to 16 GB which we were able to fit into main memory of a server. The fact that we could fit the
data into main memory alone sped up the algorithms by at least a factor of 1000.

Figure 8.7 (b) presents the running times of CELF, the naive greedy algorithm and exhaustive search
(extrapolated). When placing 20 sensors, the CELF algorithm returns a solution within 1 hour, as opposed
to 30 hours for the naive greedy algorithm.

8.3 Case study: Blog Network

8.3.1 Experimental setup

In this chapter, we are not explicitly modeling the spread of information over the network, but rather
consider cascades as input to our algorithms.

Here we are interested in blogs that actively participate in discussions, we biased the dataset towards the
active part of the blogosphere, and selected a subset from the larger set of 2.5 million blogs of [Glance
et al., 2005]. We considered all blogs that received at least 3 in-links in the first 6 months of 2006, and
then took all their posts for the full year 2006. So, the dataset that we use has 45,000 blogs, 10.5 million
posts, and 16.2 million links (30 GB of data). However, only 1 million links point inside the set of 45,000
blogs.

Posts have rich metadata, including time stamps, which allows us to extract information cascades, i.e.,
subgraphs induced by directed edges representing the temporal flow of information. We adopt the follow-
ing definition of a cascade [Leskovec et al., 2007a]: every cascade has a single starting post, and other
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posts recursively join by linking to posts within the cascade, whereby the links obey time order. We detect
cascades by first identifying starting post and then following in-links. We discover 346,209 non-trivial
cascades having at least 2 nodes. Since the cascade size distribution is heavy-tailed, we further limit our
analysis to only cascades that had at least 10 nodes. The final dataset has 17,589 cascades, where each
blog participates in 9.4 different cascades on average.

8.3.2 Objective functions

We use the penalty reduction objectives DL, DT and PA as introduced in Section 8.1.2. We normalize the
scores of the solution to be between 0 and 1. For the DL (detection likelihood) criterion, the quality of
the solution is the fraction of all detected cascades (regardless of when we detect it). The PA (population
affected) criterion measures what fraction of the population included in the cascade after we detect it, i.e.,
if we would be reading all the blogs initiating the cascades, then the quality of the solution is 1. In PA
our reward depends on which fraction of the cascades we detect, and big cascades count more than small
cascades.

8.3.3 Solution quality

First, we evaluate the performance of CELF, and estimate how far from optimal the solution could be.
Note, that obtaining the optimal solution would require enumeration of 245,000 subsets. Since this is
impractical, we compare our algorithm to the bounds we developed in Section 5.3. Figure 8.8(a) shows
scores for increasing budgets when optimized the PA (population affected) criterion. As we select more
blogs to read, the proportion of cascades we catch increases (bottom line). We also plot the two bounds.
The off-line bound (c.f., Theorem 5.5) shows that the unknown optimal solution lies between our solution
(bottom line) and the bound (top line). Notice the discrepancy between the lines is big, which means the
bound is very loose. On the other hand, the middle line shows the online bound (c.f., Theorem 5.10), which
again tells us that the optimal solution is somewhere between our current solution and the bound. Notice,
the gap is much smaller. This means (a) that the our on-line bound is much tighter than the traditional
off-line bound. And, (b) that our CELF algorithm performs very close to the optimum.

In contrast to off-line bound, the on-line bound is algorithm independent, and thus can be computed
regardless of the algorithm used to obtain the solution. Since it is tighter, it gives a much better worst case
estimate of the solution quality. For this particular experiment, we see that CELF works very well: after
selecting 100 blogs, we are at most 13.8% away from the optimal solution.

Figure 8.8(b) shows the performance using various objective functions (from top to bottom: DL, DT,
PA). DL increases the fastest, which means that one only needs to read a few blogs to detect most of the
cascades, or equivalently that most cascades hit one of the big blogs. However, the population affected
(PA) increases much slower, which means that one needs many more blogs to know about stories before
the rest of population does. By using the on-line bound we also calculated that all objective functions are
at most 5% to 15% from optimal.
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Figure 8.8: (a) Performance of CELF algorithm and off-line and on-line bounds for PA objective function.
(b) Compares objective functions.

8.3.4 Cost of a blog

The results presented so far assume that every blog has the same cost. Under this unit cost model, the
algorithm tends to pick large, influential blogs, that have many posts. For example, instapundit.
com is the best blog when optimizing PA, but it has 4,593 posts. Interestingly, most of the blogs
among the top 10 are politics blogs: instapundit.com, michellemalkin.com, blogometer.
nationaljournal.com, and sciencepolitics.blogspot.com. Some popular aggregators
of interesting things and trends on the blogosphere are also selected: boingboing.net, themodulator.
org and bloggersblog.com. The top 10 PA blogs had more than 21,000 thousand posts in 2006.
They account for 0.2% of all posts, 3.5% of all in-links, 1.7% of out-links inside the dataset, and 0.37%
of all out-links.

Under unit cost model large blogs are important, but reading a blog with many posts is time consuming.
This motivates the number of posts (NP) cost model, where we set the cost of a blog to the number of
posts it had in 2006.

First, we compare the NP cost model with the unit cost in Figure 8.9(a). The top curve shows the value of
the PA criterion for budgets of B posts, i.e., we optimize PA such that the selected blogs can have at most
B posts total. Note, that under the unit cost model, CELF chooses expensive blogs with many posts. For
example, to obtain the same PA objective value, one needs to read 10,710 posts under unit cost model.
The NP cost model achieves the same score while reading just 1,500 posts. Thus, optimizing the benefit
cost ratio (PA/cost) leads to drastically improved performance.

Interestingly, the solutions obtained under the NP cost model are very different from the unit cost model.
Under NP, political blogs are not chosen anymore, but rather summarizers (e.g., themodulator.org,
watcherofweasels.com, anglican.tk) are important. Blogs selected under NP cost appear
about 3 days later in the cascade as those selected under unit cost, which further suggests that that sum-
marizer blogs tend to be chosen under NP model.

In practice, the cost of reading a blog is not simply proportional to the number of posts, since we also
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Figure 8.9: (a) Comparison of the unit and the number of posts cost models. (b) For fixed value of PA F ,
we get multiple solutions varying in costs.

need to navigate to the blog (which takes constant effort per blog). Hence, a combination of unit and
NP cost is more realistic. Figure 8.9(b) interpolates between these two cost models. Each curve shows the
solutions with the same value F of the PA objective, but using a different number of posts (x-axis) and
blogs (y-axis) each. For a given F , the ideal spot is the one closest to origin, which means that we want
to read the least number of posts from least blogs to obtain desired score F . Only at the end points does
CELF tend to pick extreme solutions: few blogs with many posts, or many blogs with few posts. Note,
there is a clear knee on plots of Figure 8.9(b), which means that by only slightly increasing the number of
blogs we allow ourselves to read, the number of posts needed decreases drastically, while still maintaining
the same value F of the objective function.

8.3.5 Comparison to heuristic blog selection

Next, we compare our method with several intuitive heuristic selection techniques. For example, instead
of optimizing the DT, DL or PA objective function using CELF, we may just want to select the most
popular blogs and hope to detect many cascades. We considered several such heuristics, where we order
blogs by some “goodness” criteria, and then pick top blogs (until the budget is exhausted). We consider
the following criteria: the cumulative number of out-links of blog’s posts, the number of in-links the blog
received from other blogs in the dataset, and the number of out-links to other blogs in the dataset.

As Figure 8.10(a) shows, the CELF algorithm greatly outperforms all the heuristic selection techniques.
More interestingly, the best heuristics (doing 45% worse than CELF) pick blogs by the number of in- or
out-links from/to other blogs in the dataset. The total number of out-links and random blog selection do
not perform well.

Number of in-links is the indicator of a blog’s tendency to create cascades, while number of out-links (to
other blogs) indicates blog’s tendency to summarize the blogosphere. We also note, that the surprisingly
good performance of the number of out-links to blogs in the dataset is an artefact of our “closed-world”
dataset, and in real-life we can not estimate this. The results also agree well with our intuition that the
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Figure 8.10: Heuristic blog selection methods. (a) unit cost model, (b) number of posts cost model.

number of in-links is a good heuristic, since it directly indicates the of propagation of information.

Figure 8.10(b) explores the same setting under the NP cost model. Here, given a budget of B posts, we
select a set of blogs to optimize PA objective. For the heuristics, we select a set of blogs to optimize
chosen heuristic, e.g., the total number of in-links of selected blogs while still fitting inside the budget
of B posts. Again, CELF outperforms the next best heuristics by 41%, and again the number of in- and
out-links are the best heuristics.

These results show that simple heuristics that one could use to identify blogs to read do not really work
well. There are good summarizer blogs that may not be very popular, but which, by using few posts, catch
most of the important stories propagating over the blogosphere.

8.3.6 Scalability

Figure 8.9(b) plots the running time of selecting k blogs. We see that exhaustively enumerating all pos-
sible subsets of k elements is infeasible (the line jumps out of the plot for k = 3). The simple greedy
algorithm scales as Ω(k|V|), since for every increment of k we need to consider selecting all remaining
|V| − k blogs. The bottom line overlapping the x-axis of Figure 8.9(b) shows the performance of our
CELF algorithm. For example, for selecting 100 blogs, greedy algorithm runs 4.5h, while CELF takes
23 seconds (700 times faster). Calculation of the on-line bounds while running CELF takes 54s.

Exploiting the sparsity of the problem (c.f., Section 8.1.5) allowed us to reduce the size of the inverted
index from originally 3.5 GB to 50 MB, easily fitting it in main memory.
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8.4 Discussion and related work

8.4.1 Relationship to Influence Maximization

In Kempe et al. [2003] introduced a Triggering Model for modeling the spread of influence in a social
network. As the authors show, this model generalizes the Independent Cascade, Linear Threshold and
Listen-once models commonly used for modeling the spread of influence. Essentially, this model describes
a probability distribution over directed graphs, and the influence is defined as the expected number of
nodes reachable from a set of nodes, with respect to this distribution. Kempe et al. [2003] showed that the
problem of selecting a set of nodes with maximum influence is submodular, satisfying the conditions of
Theorem 5.2, and hence the greedy algorithm provides a (1−1/e) approximation. The problem addressed
in this chapter generalizes this Triggering model:
Theorem 8.2. The Triggering Model of Kempe et al. [2003] is a special case of our network outbreak
detection problem.

In order to prove Theorem 8.2, we consider fixed directed graphs sampled from the Triggering distribution.
If we revert the arcs in any such graph, then our PA objective corresponds exactly to the influence function
of Kempe et al. [2003] applied to the original graph.

Theorem 8.2 shows that spreading influence under the general Triggering Model can be considered a
special case of our outbreak detection formalism. The problems are fundamentally related since, when
spreading influence, one tries to affect as many nodes as possible, while when detecting outbreak, one
wants to minimize the effect of an outbreak in the network. Secondly, note that in the example of reading
blogs, it is not necessarily a good strategy to affect nodes which are very influential, as these tend to
have many posts, and hence are expensive to read. In contrast to influence maximization, the notion of
cost-benefit analysis is crucial to our applications.

8.4.2 Related work

Virus propagation and outbreak detection

Work on spread of diseases in networks and immunization mostly focuses on determining the value of the
epidemic threshold [Bailey, 1975], a critical value of the virus transmission probability above which the
virus creates an epidemic. Several strategies for immunization have also been proposed: uniform node
immunization, targeted immunization of high degree nodes [Pastor-Satorras and Vespignani, 2002], ac-
quaintance immunization, which focuses on highly connected nodes [Cohen et al., 2003], and immuniza-
tion on based on spectral properties of the network [Giakkoupis et al., 2005]. In the context of our work,
uniform immunization strategy corresponds to randomly placing sensors in a water network. Similarly,
targeted immunization corresponds to selecting blogs based on their in- or out-degree. As we have seen
in Figures 8.10 and 8.7, both strategies perform much worse than direct optimization of the population
affected criterion.

Information cascades and blog networks

Cascades have been studied for many years by sociologists concerned with the diffusion of innova-
tion [Rogers, 1995]; more recently, cascades we used for studying viral marketing [Goldenberg et al.,
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2001, Kempe et al., 2003, Leskovec et al., 2006], selecting trendsetters in social networks [Richardson
and Domingos, 2002], and explaining trends in blogspace [Gruhl et al., 2004, Kumar et al., 2003]. Studies
of blogspace either spend effort mining topics from posts [Gruhl et al., 2004] or consider only the proper-
ties of blogspace as a graph of unlabeled URLs [Kumar et al., 2003]. Recently, [Leskovec et al., 2007a]
studied the properties and models of information cascades in blogs. While previous work either focused
on empirical analyses of information propagation and/or provided models for it, we develop a general
methodology for node selection in networks while optimizing a given criterion.

Water distribution network monitoring

A large number of approaches have been proposed for optimizing water sensor networks (c.f., [Berry et al.,
2006b] for a concise overview of the prior literature). Most of these approaches are only applicable to
small networks up to approximately 500 nodes. Many approaches are based on heuristics (such as genetic
algorithms [Ostfeld and Salomons, 2004], cross-entropy selection [Dorini et al., 2006], predator-prey
heuristics [Gueli, 2006], etc.) that cannot provide provable performance guarantees about the solutions.
Closest to ours is an approach by [Berry et al., 2006b], who equate the placement problem with a p-median
problem, and make use of a large toolset of existing algorithms for this problem. The problem instances
solved by [Berry et al., 2006b] are a factor 72 smaller than the instances considered in this chapter. In order
to obtain bounds for the quality of the generated placements, the approach in [Berry et al., 2006b] needs
to solve a complex (NP-hard) mixed-integer program. Our approach is the first algorithm for the water
network placement problem, which is guaranteed to provide solutions which achieve at least a constant
fraction of the optimal solution within polynomial time. Additionally, it handles orders of magnitude
larger problem instances than previously considered.

Facility location

Closely related to the adversarial outbreak detection problem is the k-median problem, which is a widely
studied clustering problem. In this problem, one is given a graph G = (V, E) along with a distance
function defined over pairs of nodes in V . The goal is to select a subsetA ⊆ V of size at most k, such that
the average distance between any unselected node s ∈ V \ A and its nearest center s′ ∈ A is minimized.
For the case where the distance function is symmetric and satisfies the triangle inequality, a constant-factor
1.728 approximation can be obtained [Charikar and Guha, 2005].

If we attempt to minimize the penalty, instead of maximizing the penalty reduction (as considered in this
chapter), and if we ignoring the temporal aspect of the outbreak detection problem (i.e., the time of it
takes a contaminant to travel an edge in the network varies with time, as it does in our setting), outbreak
detection could be modeled as a k-median problem. However, in the water network setting, there is a
strong directionality in the water flow, making the problem asymmetric. Archer [2000] showed that for
asymmetric distance metrics, k-median is Ω(log |V|)-hard to approximate under reasonable complexity
theoretic assumptions.

For the setting considered in this chapter, we can in fact show that it is not possible to obtain any approxi-
mation:
Proposition 8.3. Unless P = NP, no polynomial time algorithm can give any approximation guarantee
on the penalty minimization problem.
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8.5 Summary

In this chapter, we presented a novel methodology for selecting nodes to detect outbreaks of dynamic
processes spreading over a graph. We showed that many important objective functions, such as detection
time, likelihood and affected population are submodular. Our CELF algorithm (c.f., Chapter 5) exploits
this submodularity to find near-optimal node selections – the obtained solutions are guaranteed to achieve
at least a fraction of 1

2(1 − 1/e) of the optimal solution, even in the more complex case where every
node can have an arbitrary additive cost. Our CELF algorithm is up to 700 times faster than standard
greedy algorithm. We also developed novel online bounds on the quality of the solution obtained by any
algorithm. We used these bounds to prove that the solutions we obtained in our experiments achieve 90%
of the optimal score (which is intractable to compute).

We extensively evaluated our methodology on two large real-world problems: (a) detection of contami-
nations in the largest city water distribution network considered so far in the literature, and (b) selection
of informative blogs in a network of more than 10 million posts. We showed how our CELF algorithm
greatly outperforms intuitive heuristics. We also demonstrated that our methodology can be used to study
complex application-specific questions such as multicriteria tradeoff, cost-sensitivity analyses and gen-
eralization behavior. In addition to demonstrating the effectiveness of our method, we obtained some
counterintuitive results about the problem domains, such as the fact that the popular blogs might not be
the most effective way to catch relevant information cascades.
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Part III

Non-greedy Algorithms for Complex
Sensing Problems
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Chapter 9

Overview of Part III

In Part II of the Thesis, we studied several classes of sensing problems, like spatial monitoring and out-
break detection. We realized that the natural objective functions in these problems satisfy submodularity.
We saw that for the budgeted maximization of these objective functions, the myopic greedy algorithm,
which plans ahead only on the next best observation to make, actually obtains near-optimal nonmyopic
results.

Robust sensor placements. However, in many practical problems, additional constraints or require-
ments are present. For example, often, we want to select observations which are robust against a number
of possible objective functions. Examples include minimizing the maximum posterior variance in Gaus-
sian Process regression, robust experimental design, and sensor placement for outbreak detection. In
Chapter 10, we will show that in the case of adversarial noise, the myopic greedy algorithm performs
arbitrarily poorly. We then present the Submodular Saturation algorithm, a simple and efficient algorithm
with strong theoretical approximation guarantees for cases where all objective functions exhibit submod-
ularity. Moreover, we prove that better approximation algorithms do not exist unless NP-complete prob-
lems admit efficient algorithms. We also show how the algorithm can be used to near-optimally trade
off expected-case (e.g., the Mean Square Prediction Error in Gaussian Process regression) and worst-case
(e.g., maximum predictive variance) performance. We show that many important machine learning prob-
lems fit our robust submodular observation selection formalism, and provide extensive empirical evalua-
tion on several real-world problems. For Gaussian Process regression, our algorithm compares favorably
with state-of-the-art heuristics described in the geostatistics literature, while being simpler, faster and pro-
viding theoretical guarantees. For robust experimental design, our algorithm performs favorably compared
to existing algorithms based on Semidefinite Programming.

Sensor placement under complex cost functions. When using wireless sensors to monitor spatial phe-
nomena, we face two competing requirements: Not only should the sensors be informative, but they
should also be able to communicate efficiently. In previous chapters, we have seen how one can measure
the predictive quality of a set of sensor locations. In Chapter 11, we show how we can also predicting the
communication cost involved with arbitrary sensor placements. Based on our models for sensing quality
and communication cost, we then develop an algorithm, PSPIEL, which selects Sensor Placements at
Informative and cost-Effective Locations. Our algorithm has strong approximation guarantees for opti-
mizing the NP-hard tradeoff. In addition, we show how PSPIEL can be combined with SATURATE, to
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obtain placements which are robust against changes in the environment. We also show how PSPIEL can
be used to solve other combinatorial problems, such as planning informative paths for multiple robots. We
also provide extensive experimental validation of our practical approach on several real-world placement
problems.

Simultaneous placement and scheduling of sensors. So far, we have mainly considered the problem of
locating a small set of sensors such that they provide as much information as possible. However, in many
applications, given power constraints due to limited batteries, we also need to determine when to selec-
tively activate these sensors in order to maximize the performance while satisfying lifetime requirements.
Traditionally, these two problems of sensor placement and scheduling have been considered separately
from each other; one first decides where to place the sensors, and then when to activate them. In Chap-
ter 12, we present an efficient algorithm, ESPASS, that simultaneously optimizes the placement and the
schedule. We prove that ESPASS provides a constant-factor approximation to the optimal solution of this
NP-hard optimization problem. A salient feature of our approach is that it obtains “balanced” schedules
that perform uniformly well over time, rather than only on average. We present extensive empirical studies
on several sensing tasks, and our results show that simultaneously placing and scheduling gives drastically
improved performance compared to separate placement and scheduling.

Summary of contributions. The key contributions of this part of the Thesis are:

1. We consider complex optimization tasks arising in sensing problems. In all these problems, existing
greedy approaches perform arbitrarily badly. We develop novel, efficient approximation algorithms:

• SATURATE for solving robust sensing problems,
• PSPIEL for optimizing sensor placements under complex cost functions and
• ESPASS for simultaneously optimizing sensor placements and schedules.

2. We prove hardness of sensing problems. Under reasonable complexity theoretic assumptions, op-
timizing robust sensing cannot be approximated by any factor unless P = NP. Our algorithm,
SATURATE, provides the best possible bicriterion guarantees (allowing relaxation of certain con-
straints) for this problem.

3. We demonstrate our algorithms on several real-world case studies, including

• sensor placement for spatial prediction in Gaussian Processes, demonstrated on real-world
sensing data sets and a proof-of-concept case study of a deployed sensor network,

• sensor placement for outbreak detection in a metropolitan-area drinking water distribution
network, where our algorithms obtained a top score in an international competition and

• sensor scheduling for improving the lifetime of wireless traffic sensors, and for light sensors
in a building management prototype testbed.
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Chapter 10

Robust Sensing Problems

In many of the observation selection problems considered in this Thesis, observations are made with phys-
ical devices, which can fail. Similarly, in practice, the probabilistic model (which we assumed to exist
so far) is often not fully known and has to be estimated from limited data. In such settings, there are im-
portant robustness requirements associated with the observation selection methodology: For example, the
chosen observations should still be informative in case a sensor fails, or in case the model is inaccurately
estimated from data.

Previously, we have seen that many observation selection problems can be seen as the problem of max-
imizing a nondecreasing submodular sensing quality function F (c.f., Chapter 5). As we show in this
chapter, we can model robust observation selection problems by requiring that a set of submodular func-
tions F1, . . . , Fm simultaneously be maximized. Each of the functions could, for example, correspond
to the case where a particular sensor is failing, or correspond to one particular probabilistic model which
could describe the world.

While NP-hard, the problem of selecting an optimal set of k observations maximizing a single submod-
ular objective can be approximately solved using a simple greedy forward-selection algorithm, which is
guaranteed to perform near-optimally (Nemhauser et al. [1978], see also Chapter 5). However, as we
show, this simple myopic algorithm performs arbitrarily badly in the case of a worst-case objective func-
tion. In this chapter, we address the fundamental problem of nonmyopically selecting observations which
are robust against such an adversarially chosen submodular objective function. In particular:

• We present SATURATE, an efficient algorithm for the robust submodular observation selection prob-
lem. Our algorithm guarantees solutions which are at least as informative as the optimal solution,
at only a slightly higher cost.

• We prove that our approximation guarantee is the best possible, i.e., the guarantee cannot be im-
proved unless NP-complete problems admit efficient algorithms.

• We discuss several extensions of our approach, handling complex cost functions and trading off
worst-case and average-case performance.

• We extensively evaluate our algorithm on several real-world tasks, including minimizing the maxi-
mum posterior variance in Gaussian Process regression, finding experiment designs which are robust
with respect to parameter uncertainty, and sensor placement for outbreak detection.
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This chapter is organized as follows. In Section 10.1, we formulate the robust submodular observation
selection problem, and in Section 10.2, we analyze its hardness. We subsequently present SATURATE,
an efficient approximation algorithm for this problem (Section 10.3), and show that our approximation
guarantees are best possible, unless NP-complete problems admit efficient algorithms (Section 10.4).
In Section 10.5, we discuss how many important machine learning problems are instances of our robust
submodular observation selection formalism. We then discuss extensions (Section 10.6) and evaluate the
performance of SATURATE on several real-world observation selection problems (Section 10.7). Sec-
tion 10.9 presents heuristics to improve the computational performance of our algorithm, Section 10.10
reviews related work, and Section 10.12 presents our conclusions.

(a) NIMS deployed at UC Merced (b) Water distribution network

Figure 10.1: (a) Deployment of the Networked Infomechanical System (NIMS, Harmon et al. 2006) to
monitor a lake near UC Merced. (b) Illustration of the municipal water distribution network considered in
the Battle of the Water Sensor Networks challenge [c.f. Ostfeld et al., 2008].

10.1 Robust submodular observation selection

In this section, we first review the concept of submodularity (Section 10.1.1), and then introduce the robust
submodular observation selection (RSOS) problem (Section 10.1.2).

10.1.1 Submodular observation selection

Let us consider a spatial prediction problem, where we want to estimate the pH values across a horizontal
transect of a river, e.g., using the NIMS robot shown in Figure 10.1(a). As discussed in Chapter 6, we
can discretize the space into a finite number of locations V , where we can obtain measurements, and
model a joint distribution P (XV) over variables XV associated with these locations, for example, by
using a Gaussian Process. While in Chapter 14 we have considered the mutual information criterion, an
alternative goal in spatial monitoring is to select a subset of locations A ⊆ V to observe, such that the
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average predictive variance,

V (A) =
1
n

∑
i

σ2
i|A,

is minimized (c.f.Section 10.5.1 for more details). Hereby, σ2
i|A denotes the predictive variance at location

i after observing locations A, i.e.,

σ2
i|A =

∫
P (xA)E

[
(Xi − E [Xi | xA])2 | xA

]
dxA.

Unfortunately, the problem
A∗ = argmin

|A|≤k
V (A)

is NP-hard in general [Das and Kempe, 2008], and the number of candidate solutions is very large, so
generally we cannot expect to efficiently find the optimal solution. Fortunately, as Das and Kempe [2008]
show, in many cases, the variance reduction

Fs(A) = σ2
s − σ2

s|A

at any particular location s is submodular. In the terminology of Chapter 2, this criterion corresponds to
choosing the sensing quality function:

u(xV ,A) = σ2
s − σ2

s|A.

Since each of the variance reduction functions Fs is submodular, the average variance reduction

F (A) = V (∅)− V (A) =
1
n

∑
s

Fs(A)

is also submodular. The average variance reduction is also nondecreasing, i.e., for allA ⊆ B ⊆ V it holds
that F (A) ≤ F (B), and normalized (F (∅) = 0).

Hence, the problem of picking the best k locations to minimize the average variance is an instance of
Problem (2.4) with C(A) = |A| and B = k, i.e.,

max
A⊆V

F (A), subject to |A| ≤ k, (10.1)

where F is normalized, nondecreasing and submodular, and k is a bound on the number of observations
we can make. Hence, Theorem 5.2 can be applied, guaranteeing that the greedy algorithm obtains a
solution that achieves at least a constant fraction (1− 1/e) of the objective value obtained by the optimal
solution, i.e.,

F (AG) ≥ (1− 1/e) max
|A|≤k

F (A).

10.1.2 The robust submodular observation selection (RSOS) problem

For phenomena, such as the one indicated in Figure 10.2(a), which are spatially homogeneous (isotropic),
maximizing this average variance reduction leads to effective variance reduction everywhere in the space.
However, many spatial phenomena are nonstationary, being smooth in certain areas and highly variable in
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Figure 10.2: Spatial predictions using Gaussian Processes with a small number of observations. The blue
solid line indicates the unobserved latent function, and blue squares indicate observations. The plots also
show confidence bands (green). Dashed line indicates the prediction. (b) shows an example with high
maximum predictive variance, but low average variance, whereas (a) shows an example with high average
variance, but lower maximum variance. Note, that in (b) we are most uncertain about the most variable
(and interesting, since it is hard to predict) part of the curve, suggesting that the maximum variance should
be optimized.

others, such as the example indicated in Figure 10.2(b). In such a case, maximizing the average variance
reduction will typically put only few examples in the areas highly variable areas. However, those regions
are typically the most interesting, since they are most difficult to predict. In such cases, we might want to
simultaneously minimize the variance everywhere in the space.

More generally, in many applications (such as the spatial monitoring problem discussed above, and sev-
eral other examples which we present in Section 10.5), we want to perform equally well with respect
to multiple objectives. We will hence consider settings where we are given a collection of normalized
nondecreasing submodular functions F1, . . . , Fm, and we want to solve

max
A⊆V

min
i
Fi(A), subject to |A| ≤ k. (10.2)

The goal of Problem (10.2) is to find a set A of observations, which is robust against the worst possible
objective, mini Fi, from our set of possible objectives. Consider the spatial monitoring setting for exam-
ple, and assume that the prior variance σ2

i is constant (we will relax this assumption in Section 10.6.2)
over all locations i. Then, the problem of minimizing the maximum variance, as motivated by the example
in Figure 10.2, is equivalent to maximizing the minimum variance reduction, i.e., solving Problem (10.2)
where Fi is the variance reduction at location i.

We call Problem (10.2) the Robust Submodular Observation Selection (RSOS) problem. Note, that even
if the Fi are all submodular, Fwc(A) = mini Fi(A) is generally not submodular. In fact, we show below
that, in this setting, the simple greedy algorithm (which performs near-optimally in the single-criterion
setting) can perform arbitrarily badly. While the example in Table 10.1 might seem artificial, as we show
in Section 10.7 (especially Section 10.7.3), the greedy algorithm exhibits very poor performance when
applied to practical problems.
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A F1(A) F2(A) mini Fi(A)
∅ 0 0 0
{s1} n 0 0
{s2} 0 n 0
{t1} 1 1 1
{t2} 1 1 1
{s1, s2} n n n

{s1, t1} n+ 1 1 1
{s1, t2} n+ 1 1 1
{s2, t1} 1 n+ 1 1
{s2, t2} 1 n+ 1 1
{t1, t2} 2 2 2

Table 10.1: Functions F1 and F2 used in the counterexample.

10.2 Hardness of the robust submodular observation selection problem

Given the near-optimal performance of the greedy algorithm for the single-objective problem, a natural
question is if the performance guarantee generalizes to the more complex robust optimization setting. Un-
fortunately, this hope is far from true, even in the simpler case of modular (additive) functionsFi. Consider
a case with two submodular functions, F1 and F2, where the set of observations is V = {s1, s2, t1, t2}. The
functions take values as indicated in Table 10.1. Optimizing for a set of 2 elements, the greedy algorithm
maximizing Fwc(A) = min{F1(A), F2(A)} would first choose t1 (or t2), as this choice increases the
objective min{F1, F2} by 1, as opposed to 0 for s1 and s2. The greedy solution for k = 2 would then be
the set {t1, t2}, obtaining a score of 2. However, the optimal solution with k = 2 is {s1, s2}, with a score
of n. Hence, as n→∞, the greedy algorithm performs arbitrarily worse than the optimal solution.

Given that the greedy algorithm performs arbitrarily badly, our next hope would be to obtain a different
good approximation algorithm. However, we can show that most likely this is not possible:
Theorem 10.1. Unless P = NP, there cannot exist any polynomial time approximation algorithm for
Problem (10.2). More precisely: If there exists a positive function γ(·) > 0 and an algorithm that, for all
n and k, in time polynomial in the size of the problem instance n, is guaranteed to find a set A′ of size k
such that mini Fi(A′) ≥ γ(n) max|A|≤k mini Fi(A), then P = NP.

Thus, unless P = NP, there cannot exist any algorithm which is guaranteed to provide, e.g., even an
exponentially small fraction (γ(n) = 2−n) of the optimal solution. All proofs can be found in the Ap-
pendix.

10.3 SATURATE: The submodular saturation algorithm

We now present an algorithm that finds a set of observations which perform at least as well as the opti-
mal set, but at slightly increased cost; moreover, we show that no efficient algorithm can provide better
guarantees (under reasonable complexity-theoretic assumptions).
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10.3.1 Algorithm overview

For now we assume that all Fi take only integral values; this assumption is relaxed in Section 10.6.1. The
key idea is to consider the following alternative problem formulation:

max
c,A

c, subject to Fi(A) ≥ c for 1 ≤ i ≤ m and |A| ≤ k. (10.3)

We want a set A of size at most k, such that Fi(A) ≥ c for all i, and c is as large as possible. Note that
Problem (10.3) is equivalent to the original Problem (10.2): Maximizing c subject to the existence of a set
A, |A| ≤ k such that Fi(A) ≥ c for all i is equivalent to maximizing mini Fi(A).

Now suppose we had an algorithm that, for any given value c, solves the following optimization prob-
lem:

Ac = argmin
A

|A| subject to Fi(A) ≥ c for 1 ≤ i ≤ m (10.4)

i.e., finds the smallest set A with Fi(A) ≥ c for all i. If this set has at most k elements, then c (and the
set A) is feasible for the RSOS Problem (10.3). If we cannot find a set A satisfying Fi(A) ≥ c for all i
and containing at most k elements, then c is infeasible. A binary search on c would then allow us to find
the optimal solution with the maximum feasible c. We call Problem (10.4) the MINCOVERc problem, as
it requires to find the smallest set guaranteeing an equal amount of coverage, c, for all objective functions
Fi.

Since Theorem 10.1 rules out any approximation algorithm which respects the constraint k on the size of
the set A, our only hope for non-trivial guarantees requires us to relax this constraint. Our algorithm is
based on the following approach:

• We define a relaxed version of the RSOS problem with a superset of feasible solutions that we call
RELRSOS.

• We will maintain a lower bound (a feasible solution) for RELRSOS, and an upper bound for RSOS.

• We will then successively improve the upper and lower bounds using a binary search procedure.
Upon convergence, we are thus guaranteed a feasible solution to RELRSOS, that performs at least
as well as the optimal solution to the RSOS problem.

We now define the RELRSOS problem, the relaxed version of the RSOS Problem (10.3).

max
c,A

c, subject to Fi(A) ≥ c for 1 ≤ i ≤ m and |A| ≤ αk. (10.5)

Hereby, α ≥ 1 is a parameter relaxing the constraint on |A|. If α = 1, we recover the RSOS Prob-
lem (10.3).

As described above, our goal will be to approximately solve the RELRSOS Problem (10.5) for a fixed
constant α. More formally, we will develop an efficient algorithm, SATURATE, which returns a solution
(c′,A′) that is feasible for the RELRSOS Problem (10.5), and achieves a score that is at least as good as
an optimal solution (c∗,A∗) to the RSOS Problem (10.3), i.e., c′ ≥ c∗ and |A′| ≤ α|A∗| ≤ αk.

The basic idea of SATURATE is to use the binary search procedure (maintaining a search interval [cmin, cmax])
as described above, but using an approximate algorithm, GPC (for Greedy Partial Coverage) that we will
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develop below, for the MINCOVERc Problem (10.4). When invoked with a fixed value c, the GPC al-
gorithm will return a feasible solution |A′c| to the MINCOVERc Problem (10.4). We will furthermore
guarantee that

• |A′c| > αk implies that c > c∗, i.e., c is an upper bound to the RSOS Problem (10.3), and hence it
is safe to set cmax = c, and

• |A′c| ≤ αk implies that A′c is a feasible solution (lower bound) to the RELRSOS Problem (10.5).
A′c is then kept as best current solution and we can set cmin = c.

The binary search procedure will hence always maintain an upper bound cmax to the RSOS Problem (10.3),
and a lower bound cmin to the RELRSOS Problem (10.5). Upon termination, it is thus guaranteed to find
a solution AS for which it holds that mini Fi(AS) ≥ c∗ (since AS is an upper bound to the RSOS
Problem (10.3)) and |AS | ≤ αk (since AS is feasible for the RELRSOS Problem (10.5)). Hence, the
approximate solution AS obtains minimum value at least as high as the best possible score obtainable
using k elements, but using slightly more (at most αk) elements than k elements. Figure 10.3 illustrates
the feasible regions of the RSOS and RELRSOS problems, as well as the binary search procedure.

0 mini Fi(V)

c

cmaxcmin

feasible c for RSOS

feasible c for RelRSOS search interval

c* c’

Figure 10.3: Illustration of feasible regions for the RSOS and RELRSOS problems. [cmin, cmax] is the
search interval during some iteration of SATURATE. c∗ is the optimal solution to the RSOS problem, and
c′ is the solution that will eventually be returned by SATURATE.

10.3.2 Algorithm details

We will now provide formal details for the algorithm sketched in Section 10.3.1. As trivial lower and upper
bounds for the RSOS problem we can initially set cmin = 0 ≤ mini Fi(∅), and cmax = mini Fi(V), due
to nondecreasingness of the Fi.

First, we will develop the efficient algorithm GPC which approximately solves the MINCOVERc Prob-
lem (10.4). For any value c that could possibly be feasible (i.e., 0 ≤ c ≤ mini Fi(V)), define F̂i,c(A) =
min{Fi(A), c}, the original function Fi truncated at score level c. The key insight is that these truncated
functions F̂i,c remain nondecreasing and submodular [Fujito, 2000]. Figure 10.4 illustrates this truncation
concept. Let F c(A) = 1

m

∑
i F̂i,c(A) be their average value. Since nondecreasing submodular func-

tions are closed under convex combinations, F c is also submodular and nondecreasing. Furthermore,
Fi(A) ≥ c for all 1 ≤ i ≤ m if and only if F c(A) = c. Hence, in order to determine whether some c is
feasible for Problem (10.5), we need to determine whether there exists a set of size at most αk such that
F c(A) = c. Note, that due to nondecreasingness of F c and the choice of c it holds that that c = F c(V).
We hence need to solve the following optimization problem:

A∗c = argmin
A⊆V

|A|, such that F c(A) = F c(V). (10.6)
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Algorithm 10.1: The greedy submodular partial cover (GPC) algorithm.

GPC (F c, c)
A ← ∅;
while F c(A) < c do

foreach s ∈ V \ A do δs ← F c(A ∪ {s})− F c(A);
A ← A∪ {argmaxs δs};

end

Problems of the form minA |A| such that F (A) = F (V), where F is a nondecreasing submodular func-
tion, are called submodular covering problems. Since F c satisfies these requirements, the MINCOVERc

Problem (10.6) is an instance of such a submodular covering problem. While such problems are NP-hard
in general [Feige, 1998], Wolsey [1982a] shows that the greedy algorithm, that starts with the empty set
(A = ∅) and iteratively adds the element s increasing the score the most until F (A) = F (V), achieves
near-optimal performance on this problem. We can hence use the greedy algorithm applied to the truncated
functions F c as our approximate algorithmGPC, which is formalized in Algorithm 10.1. Using Wolsey’s
result and the observation that α can be chosen independently of the truncation threshold c, we find:
Lemma 10.2. Given integral valued1 nondecreasing submodular functions F1, . . . , Fm and a (feasi-
ble) constant c, Algorithm 10.1 (with input F c) finds a set AG such that Fi(AG) ≥ c for all i, and
|AG| ≤ α|A∗c |, where A∗c is an optimal solution to Problem (10.6), and

α = 1 + log

(
max
s∈V

∑
i

Fi({s})

)
.
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Figure 10.4: Truncating an objective function F preserves submodularity and nondecreasingness.

We can compute this approximation guarantee α for any given instance of the RSOS problem. Hence, if
for a given value of c the greedy algorithm returns a set of size greater than αk, there cannot exist a solu-

1This bound is only meaningful for integral Fi, otherwise it could be arbitrarily improved by scaling the Fi. We relax the
constraint on integrality of the Fi in Section 10.6.1.
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Algorithm 10.2: The Submodular Saturation algorithm.
SATURATE (F1, . . . , Fm, k, α)
cmin ← 0; cmax ← mini Fi(V); Abest ← ∅;
while (cmax − cmin) ≥ 1

m do
c← (cmin + cmax)/2;
Define F c(A)← 1

m

∑
i min{Fi(A), c};

Â ← GPC(F c, c);
if |Â| > αk then

cmax ← c;
else

cmin ← c; Abest = Â
end

end

tion A′ with |A′| ≤ k with Fi(A′) ≥ c for all i. Thus, c is an upper bound to the RSOS Problem (10.3).
We can use this argument to conduct the binary search discussed in Section 10.3.1 to find the optimal
value of c. The binary search procedure maintains an interval [cmin, cmax], initialized [0,mini Fi(V)]. At
every iteration, we test the current center of the interval, c = (cmin + cmax)/2, and check feasibility of c
using the greedy algorithm. If c is feasible, we retain the current best feasible solution and set cmin = c.
If c is infeasible (which we detect by comparing the number of elements picked by the greedy algorithm
with αk), we set cmax = c.

We call Algorithm 10.2, which formalizes this procedure, the submodular saturation algorithm (SATU-
RATE), as the algorithm considers the truncated objectives F̂i,c, and chooses sets which saturate all these
objectives. In the pseudo-code of Algorithm 10.2 we pass α as a parameter. Theorem 10.3 (given be-
low) states that SATURATE, when applied with α chosen as in Lemma 10.2, is guaranteed to find a set
which achieves worst-case score mini Fi at least as high as the optimal solution, if we allow the set to be
logarithmically (a factor α) larger than the optimal solution.
Theorem 10.3. For any integer k, SATURATE finds a solution AS such that

min
i
Fi(AS) ≥ max

|A|≤k
min

i
Fi(A) and |AS | ≤ αk,

for α = 1 + log (maxs∈V
∑

i Fi({s})). The total number of submodular function evaluations is

O
(
|V|2m log

(
mmin

i
Fi(V)

))
.

Note, that the algorithm still makes sense for any value ofα. However, ifα < 1+log (maxs∈V
∑

i Fi({s})),
the guarantee of Theorem 10.3 does not hold. As argued in Section 10.3.1, if we had an exact algorithm
for submodular coverage, then we would set α = 1, and SATURATE would return the optimal solution to
the RSOS problem. Since, in our experience, the greedy algorithm for optimizing submodular functions
works very effectively (c.f., Chapter 6), in our experiments, we call SATURATE with α = 1. This choice
empirically performs very well, as demonstrated in Section 10.7.

If we apply SATURATE to the example problem described in Section 10.2, we would start with cmax =
n. Running the coverage algorithm (GPC) with c = n/2 would first pick element s1 (or s2), since
F c({s1}) = n/2, and, next, pick s2 (or s1 resp.), hence finding the optimal solution.
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The worst-case running time guarantee is quite pessimistic, and in practice the algorithm is much faster:
Using a priority queue and lazy evaluations, Algorithm 10.1 can be sped up drastically. Lazy evaluations
exploit the fact that, due to submodularity, the differences δs(A) = F c(XA∪s)−F c(XA) that are computed
by GPC are monotonically decreasing inA, which allows to avoid a large number of function evaluations
(c.f.Robertazzi and Schwartz 1989 for details). In addition, for many submodular functions Fi, such as
the variance reduction, it is often cheaper to compute F c(XA∪s) − F c(XA) instead of F c(XA∪s). This
observation can be exploited to drastically speed up GPC. Furthermore, in practical implementations, one
would stop GPC once αk+1 elements have been selected, which already proves that the optimal solution
with k elements cannot achieve score c. Also, Algorithm 10.2 can be terminated once cmax − cmin is
sufficiently small; in our experiments, 10-15 iterations usually sufficed.

10.4 Hardness of bicriterion approximation

Guarantees of the form presented in Theorem 10.3 are often called bicriterion guarantees. Instead of re-
quiring that the obtained objective score is close to the optimal score and all constraints are exactly met,
a bicriterion guarantee requires a bound on the suboptimality of the objective, as well as bounds on how
much the constraints are violated. Theorem 10.1 showed that – unless P = NP – no approximation
guarantees can be obtained which do not violate the constraint on the cost k, thereby necessitating the
bricriterion analysis.

One might ask, whether the guarantee on the size of the set, α, can be improved. Unfortunately, this is not
likely, as the following result shows:
Theorem 10.4. If there were a polynomial time algorithm which, for any integer k, is guaranteed to find
a solution AS such that mini Fi(AS) ≥ max|A|≤k mini Fi(A) and |AS | ≤ βk, where β ≤ (1 − ε)(1 +
log maxs∈V

∑
i Fi({s})) for some fixed ε > 0, then NP ⊆ DTIME(nlog log n).

Hereby, DTIME(nlog log n) is a class of deterministic, slightly superpolynomial (but sub-exponential)
algorithms [Feige, 1998]; the inclusion NP ⊆ DTIME(nlog log n) is considered unlikely [Feige, 1998].
Taken together, Theorem 10.1 and Theorem 10.4, provide strong theoretical evidence that SATURATE

achieves best possible theoretical guarantees for the problem of maximizing the minimum over a set of
submodular functions.

10.5 Examples of robust submodular observation selection problems

We now demonstrate that many important machine learning problems can be phrased as RSOS problems.
Section 10.7 provides more details and experimental results for these domains.

10.5.1 Minimizing the maximum Kriging variance

Consider a Gaussian Process (GP) [c.f. Rasmussen and Williams, 2006] XV defined over a finite set
of locations (indices) V . Hereby, XV is a set of random variables, one variable Xs for each location
s ∈ V . Given a set of locations A ⊆ V which we observe, we can compute the predictive distribution
P (XV\A | XA = xA), i.e., the distribution of the variables XV\A at the unobserved locations V \ A,
conditioned on the measurements at the selected locations, XA = xA. Let σ2

s|A be the residual variance

140



after making observations at A. Let ΣAA be the covariance matrix of the measurements at the chosen
locations A, and ΣsA be the vector of cross-covariances between the measurements at s and A. Then, the
predictive variance (often called Kriging variance in the geostatistics literature), given by

σ2
s|A = σ2

s − ΣsAΣ−1
AAΣAs,

depends only on the setA, and not on the observed values xA2. As argued in Section 10.1, an often (espe-
cially in the case of nonstationary phenomena) appropriate criterion is to select locations A such that the
maximum marginal variance is as small as possible, i.e., we want to select a subset A∗ ⊆ V of locations
to observe such that

A∗ = argmin
|A|≤k

max
s∈V

σ2
s|A. (10.7)

Let us assume for now that the a priori variance σ2
s is constant for all locations s (in Section 10.6, we

show how our approach generalizes to non-constant marginal variances). Furthermore, let us define the
variance reduction Fs(A) = σ2

s − σ2
s|A. Solving Problem (10.7) is then equivalent to maximizing the

minimum variance reduction over all locations s. For a particular location s, Das and Kempe [2008] show
that the variance reduction Fs (often) is a nondecreasing submodular function. Hence the problem

A∗ = argmax
|A|≤k

min
s∈V

Fs(A) = argmax
|A|≤k

min
s∈V

σ2
s − σ2

s|A

is an instance of the RSOS problem.

10.5.2 Variable selection under parameter uncertainty

Consider an application, where we want to diagnose a failure of a complex system, by performing a num-
ber of tests. We can model this problem by using a set of discrete random variables XV = {X1, . . . ,Xn}
indexed by V = {1, . . . , n}, which model both the hidden state of the system and the outcomes of the
diagnostic tests. The interaction between these variables is modeled by a joint distribution P (XV | θ) with
parameters θ. In Chapters 6 and 7, we have seen that many variable selection problems can be formulated
as the problem of optimizing a submodular sensing quality function (measuring, e.g., the information gain
I(XU ,XA) with respect to some variables of interest U , or the mutual information I(XA;XV\A) between
the observed and unobserved variables, etc.). However, the informativeness of a chosen set A typically
depends on the particular parameters θ, and these parameters might be uncertain. In some applications, it
might not be reasonable to impose a prior distribution over θ, and we may want to perform well even un-
der the worst-case parameters. In these cases, we can associate, with each parameter setting θ, a different
submodular objective function Fθ, for example,

Fθ(A) = I(XA;XU | θ),

and we might want to select a setA which simultaneously performs well for all possible parameter values.
In practice, we can discretize the set of possible parameter values θ (for example around a 95% confidence
interval estimated from initial data) and optimize the worst case Fθ over the resulting discrete set of
parameters.

2This independence is a particular property of the Gaussian distribution. It implies that there is no benefit of sequentially
selecting observations. For more details see Chapter 14.
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10.5.3 Robust experimental designs

Another application is experimental design under nonlinear dynamics [Flaherty et al., 2006]. The goal is
to estimate a set of parameters θ of a nonlinear function y = f(x, θ)+w, by providing a set of experimen-
tal stimuli x, and measuring the (noisy) response y. In many cases, experimental design for linear models
(where y = A(x)T θ + w with Gaussian noise w) can be efficiently solved by semidefinite programming
[Boyd and Vandenberghe, 2004]. In the nonlinear case, a common approach [c.f. Chaloner and Verdinelli,
1995] is to linearize f around an initial parameter estimate θ0, i.e.,

y = f(x, θ0) + V (x)(θ − θ0) + w, (10.8)

where V (x) is the Jacobian of f with respect to the parameters θ, evaluated at θ0. Subsequently, a
locally-optimal design is sought, which is optimal for the linear design Problem (10.8) for initial parame-
ter estimates θ0. Flaherty et al. [2006] show that the efficiency of such a locally optimal design can be very
sensitive with respect to the initial parameter estimates θ0. Consequently, they develop an efficient semi-
definite program (SDP) for E-optimal design (i.e., the goal is to minimize the maximum eigenvalue of
the error covariance) which is robust against perturbations of the Jacobian V . However, it might be more
natural to directly consider robustness with respect to perturbation of the initial parameter estimates θ0,
around which the linearization is performed. We show how to find (Bayesian A-optimal) designs which
are robust against uncertainty in these parameter estimates. In this setting, the objectives Fθ0(A) are the
reductions of the trace of the parameter covariance,

Fθ0(A) = tr
(
Σ(θ0)

θ

)
− tr

(
Σ(θ0)

θ|A

)
,

where Σ(θ0) is the joint covariance of observations and parameters after linearization around θ0; thus, Fθ0

is the sum of marginal parameter variance reductions, which are (often) individually nondecreasing and
submodular [Das and Kempe, 2008], and so Fθ0 is nondecreasing and submodular as well. Hence, in
order to find a robust design, we maximize the minimum variance reduction, where the minimum is taken
over (a discretization into a finite subset of) all initial parameter values θ0.

10.5.4 Sensor placement for outbreak detection

Another class of examples are outbreak detection problems on graphs, such as the ones studied in Chap-
ter 8. Here, we are given a graph G = (V, E), and a phenomenon spreading dynamically over the graph.
We define a set of intrusion scenarios I; each scenario i ∈ I models an outbreak (e.g., spreading of
contamination) starting from a given node s ∈ V in the network. By placing sensors at a set of locations
A ⊆ V , we can detect such an outbreak, and thereby minimize the adverse effects on the network.

More formally, for each possible outbreak scenario i ∈ I and for each node v ∈ V we define the detection
time Ti(v) as the time when the outbreak affects node v (and Ti(v) = ∞ if node v is never affected).
We furthermore define a penalty function πi(t) which models the penalty incurred for detecting outbreak
i at time t. We require πi(t) to be monotonically nondecreasing in t (i.e., we never prefer late over early
detection), and bounded above by πi(∞) ∈ R. Our goal is to minimize the worst-case penalty: We extend
πi to observation sets A as πi(A) = πi (mins∈A Ti(s)). Then, our goal is to solve

A∗ = argmin
|A|≤k

max
i∈I

πi(A).
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Figure 10.5: Securing a municipal water distribution network against contaminations performed under
knowledge of the sensor placement is another instance of the RSOS problem.

Equivalently, we can define the penalty reduction Fi(A) = πi(∞) − πi(A). Clearly, Fi(∅) = 0, Fi is
nondecreasing. In Chapter 8, we showed that Fi is also guaranteed to be submodular. For now, let us
assume that πi(∞) is constant for all i (we will relax this assumption in Section 10.6.2). Our goal in
sensor placement is then to select a set of sensors A such that the minimum penalty reduction is as large
as possible, i.e., we want to select

A∗ = argmax
|A|≤k

min
i∈I

Fi(A).

In other words, an adversary observes our sensor placement A, and then decides on an intrusion i for
which our sensing quality Fi(A) is as small as possible. Hence, our goal is to find a placement A which
performs well against such an adversarial opponent.

10.5.5 Robustness against sensor failures and feature deletion

Another interesting instance of the RSOS problem arises in the context of robust sensor placements. For
example, in the outbreak detection problem, sensors might fail, due to hardware problems or manipulation
by an adversary. We can model this problem in the following way: Consider the case where all sensors
at a subset B ⊆ V of locations fail. Given a submodular function F (e.g., the utility for placing a set
of sensors), and the set B ⊆ V of failing sensors, we can define a new function FB(A) = F (A \ B),
corresponding to the (reduced) sensing quality of placement A after the sensor failures. It is easy to show
that if F is nondecreasing and submodular, so is FB. Hence, the problem of optimizing sensor placements
which are robust to sensor failures results in a problem of simultaneously maximizing a collection of
submodular functions, e.g., for the worst-case failure of k′ < k sensors we solve

A∗ = argmax
|A|≤k

min
|B|≤k′

FB(A).

We can also combine the optimization against adversarial contamination scenarios as discussed in Sec-
tion 10.5.3 with adversarial sensor failures, and optimize

A∗ = argmax
|A|≤k

min
i∈I

min
|B|≤k′

Fi(A \ B).
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Another important problem in machine learning is feature selection. In feature selection, the goal is to
select a subset of features which are informative with respect to, e.g., a given classification task. One ob-
jective frequently considered is the problem of selecting a set of features which maximize the information
gained about the class variable XY after observing the features XA, F (A) = H(XY ) − H(XY | XA),
whereH denotes the Shannon entropy. As shown in Chapter 7, in a large class of graphical models, the in-
formation gain F (A) is in fact a submodular function. Now we can consider a setting, where an adversary
can delete features which we selected (as considered, e.g., by Globerson and Roweis 2006). The problem
of selecting features robustly against such arbitrary deletion of, e.g., m features, is hence equivalent to the
problem of maximizing min|B|≤m FB(A), where B are the deleted features.

Improved guarantees for sensor failures

As discussed above, in principle, we could find a placement robust to single sensor failures by using
SATURATE to (approximately) solve

A∗ = argmax
|A|≤k

min
s
Fs(A).

However, since |V| can be very large, and the approximation guarantee α depends logarithmically on
|V|, such a direct approach might not be desirable. We can improve the guarantee from O(log |V|) to
O(log(k log |V|)), which typically is much tighter, if k � |V|/ log |V| (i.e., we place far fewer sensors
than we have possible sensor locations). We can improve the approximation guarantee drastically by
noticing that Fs(A) = F (A) if s /∈ A. Hence,

F c(A) =
|V| − |A|
|V|

min{F (A), c}+
1
|V|
∑
s∈A

F̂s,c(A).

We can replace this objective by a new objective function,

F
′
c(A) =

k′ − |A|
k′

min{F (A), c}+
1
k′

∑
s∈A

F̂s,c(A)

for some constant k̂ to be specified below. This modified objective is still nondecreasing and submodular
when restricted to sets of size at most k̂. It still holds that, for all subsets |A| ≤ k̂, that

F
′
c(A) ≥ c⇔ Fs(A) ≥ c for all s ∈ V.

How large should we choose k̂? We have to choose k̂ large enough such that SATURATE will never choose
sets larger than k̂. A sufficient choice for k̂ is hence dαke, where α = 1 + log (|V|maxs∈V F ({s})). For
this choice of k̂, our new approximation guarantee will be

α′ = 1 + log
(
αkmax

s∈V
F ({s})

)
= 1 + log

((
1 + log

(
|V|max

s∈V
F ({s})

))
kmax

s∈V
F ({s})

)
≤ 1 + 2 log

(
k log(|V|) max

s∈V
F ({s})

)
Hence, for the new objective F ′c, we get a tighter approximation guarantee,

α′ = 1 + 2 log
(
k log(|V|) max

s∈V
F ({s})

)
,
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which now depends logarithmically on k log |V|, instead of the number of available locations |V|. Note
that this same approach can also provide tighter approximation guarantees in the case of multiple sensor
failures.

10.6 Extensions

We now show how some of the assumptions made in our presentation above can be relaxed. We also
discuss several extensions, allowing more complex cost functions, and the tradeoff between worst-case
and average-case scores.

10.6.1 Non-integral objectives

In our analysis of SATURATE (Section 10.3), we have assumed, that each of the objective functions Fi

only take values in the positive integers. However, most objective functions of interest in observation
selection (such as those discussed in Section 10.5) typically do not meet this assumption. If the Fi take
on rational numbers, we can scale the objectives by multiplying by their common denominator.

If we allow small additive approximation error (i.e., are indifferent if the approximate solution differs from
the optimal solution in low order bits), we can also approximate the values assumed by the functions Fi

by their highest order bits. In this case, we replace the functions Fi(A) by the approximations

F ′i (A) =
d2jFi(A)e

2j
.

By construction, F ′i (A) ≤ Fi(A) ≤ F ′i (A)(1 + 2−j), i.e., F ′i is within a factor of (1 + 2−j) of Fi.
Also, 2jF ′i (A) is integral. However, F ′i (A) is not guaranteed to be submodular. Nevertheless, an analysis
similar to the one presented in Chapter 6 can be used to bound the effect of this approximation on the
theoretical guarantees α obtained by the algorithm, which will now scale linearly with the number j of
high order bits considered. In practice, as we show in Section 10.7, SATURATE provides state-of-the-art
performance, even without rounding the objectives to the highest order bits.

10.6.2 Non-constant thresholds

Consider the example of minimizing the maximum variance in Gaussian Process regression. Here, the
Fi(A) = σ2

i − σ2
i|A denote the variance reductions at location i. However, rather than guaranteeing that

Fi(A) ≥ c for all i (which, in this example, means that the minimum variance reduction is c), we want
to guarantee that σ2

i|A ≤ c for all i. We can easily adapt our approach to handle this case: Instead of

defining F̂i,c(A) = min{Fi(A), c}, we define F̂i,c(A) = min{Fi(A), σ2
i − c}, and then again perform

binary search over c, but searching for the smallest c instead. The algorithm, using objectives modified in
this way, will bear the same approximation guarantees.

10.6.3 Non-uniform observation costs

We can extend SATURATE to the setting where different observations have different costs. In the spatial
monitoring setting for example, certain locations might be more expensive to acquire a measurement from.

145



Suppose a cost function C : V → R+ assigns each element s ∈ V a positive cost C(s); the cost of a set of
observations is then C(A) =

∑
s∈A C(s). The problem is to find A∗ = argmaxA⊂V mini Fi(A) subject

to C(A) ≤ B, where B > 0 is a budget we can spend on making observations. In this case, we use the
rule

δs ←
F c(A ∪ {s})− F c(A)

C(s)

in Algorithm 10.1. For this modified algorithm, Theorem 10.3 still holds, with |A| replaced by C(A) and
k replaced byB. This more general result holds, since the analysis of the greedy algorithm for submodular
covering of Wolsey [1982a], which we used to prove Lemma 10.2, applies to the more general setting of
non-uniform cost functions.

10.6.4 Handling more complex cost functions

So far, we considered problems where we are given an additive cost function C(A) over the possible
sets A of observations. In some applications, more complex cost functions arise. For example, when
placing wireless sensor networks, the placements A should not only be informative (i.e., Fi(A) should
be high for all sensing quality functions Fi), but the placement should also have low communication cost.
In Chapter 11 we describe such an approach, where the cost C(A) measures the expected number of
retransmissions required for sending messages across an optimal routing tree connecting the sensors A.
Formally, the observations s are considered to be nodes in a graph G = (V, E), with edge weights w(e) for
each edge e ∈ E . The cost C(A) is the cost of a minimum Steiner Tree [c.f., Vazirani, 2003] connecting
the observations A in the graph G.

More generally, we want to solve problems of the form

argmax
A

min
i
Fi(A) subject to C(A) ≤ B, (10.9)

where C(A) is a complex cost function. The key insight of the SATURATE algorithm is that the non-
submodular robust optimization problem can be approximately solved by solving a submodular covering
problem. In the case where C(A) = |A| this problem requires solving (10.6). More generally, we can
apply SATURATE to any problem where we can (approximately) solve

Ac = argmin
A⊆V

g(A), such that F c(A) = c. (10.10)

Problem (10.10) can be (approximately) solved for a variety of cost functions, such as those arising from
communication and path constraints (c.f., Chapter 11, Meliou et al. [2007], Singh et al. [2007]).

Let us summarize our analysis as follows:
Proposition 10.5. Assume we have an algorithm which, given a nondecreasing submodular function F
and a cost function C, returns a solution A′ such that F (A′) = F (V) and

C(A′) ≤ αF min
A:F (A)=F (V)

C(A),

where αF depends on the function F . SATURATE, using this covering algorithm, can obtain a solution
AS to the RSOS problem such that

min
i
Fi(AS) ≥ max

C(A)≤B
min

i
Fi(A),
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and
C(AS) ≤ αFB,

where αF is the approximation factor of the covering algorithm, when applied to F = 1
m

∑
i Fi.

Note that the formalism developed in this section also allows to handle robust versions of combinatorial
optimization problems such as the Knapsack [c.f. Martello and Toth, 1990], Orienteering [c.f. Blum et al.,
2003, Laporte and Martello, 1990] and Budgeted Steiner Tree [c.f. Johnson et al., 2000] problems. In these
problems, instead of a general submodular objective function, the special case of a modular (additive)
function F is optimized:

A∗ = argmax
C(A)≤B

F (A).

The problems differ only in the choice of the complex cost function. In Knapsack for example, C is
additive, in the Budgeted Steiner Tree problem, C(A) is the cost of a minimum Steiner tree connecting
the nodes A in a graph, and in Orienteering, C(A) is the cost of a shortest path connecting the nodes
A in a graph. In practice, often the sensing quality function F (A) is not exactly known, and a solu-
tion is desired which is robust against worst-case choice of the sensing quality function. Since modular
functions are a special case of submodular functions, such problems can be approximately solved using
Proposition 10.5.

10.6.5 Trading off average-case and worst-case scores

In some applications, optimizing the worst-case score Fwc(A) = mini Fi(A) might be a too pessimistic
approach. On the other hand, ignoring the worst-case and only optimizing the average-case (the expected
score under a distribution over the objectives) Fac(A) = 1

m

∑
i Fi(A) might be too optimistic. In fact, in

Section 10.7 we show that optimizing the average-case score Fac can often lead to drastically poor worst-
case scores. In general, we might be interested in solutions, which perform well both in the average- and
worst-case scores.
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Figure 10.6: Tradeoff curve for simultaneously optimizing the average- and worst-case score in the
water distribution network monitoring application. Notice the knee in the tradeoff curve, indicating that
by performing multi-criterion optimization, solutions performing well for both average- and worst-case
scores can be obtained.
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Formally, we can define a multicriterion optimization problem, where we intend to optimize the vector
[Fac(A), Fwc(A)]. In this setting, we can only hope for Pareto-optimal solutions [c.f. Boyd and Van-
denberghe, 2004, in the context of convex functions]. A set A∗, |A∗| ≤ k is called Pareto-optimal,
if it is not dominated, i.e., there does not exist another set B, |B| ≤ k with Fac(B) > Fac(A∗) and
Fwc(B) ≥ Fwc(A∗) (or Fac(B) ≥ Fac(A∗) and Fwc(B) > Fwc(A∗)).

One possible approach to find such Pareto-optimal solutions is constrained optimization3: for a specified
value of cac, we desire a solution to

A∗ = argmax
|A|≤k

Fwc(A) such that Fac(A) ≥ cac. (10.11)

By specifying different values of cac in (10.11), we would obtain different Pareto-optimal solutions4.
Figure 10.6 presents an example of several Pareto-optimal solutions, based on data from the outbreak de-
tection problem (Details will be discussed in Section 10.7.3). This curve shows that, using the techniques
described below, multicriterion solutions can be found which combine the advantages of worst-case and
average-case solutions.

We can modify SATURATE to solve Problem (10.11) in the following way. Let us again assume we
know the optimal value cwc achievable for Problem (10.11). Then, Problem (10.11) is equivalent to
solving

A∗ = argmin
A

|A| subject to Fwc(A) ≥ cwc and Fac(A) ≥ cac. (10.12)

Now, using our notation from Section 10.3, this problem is again equivalent to

A∗ = argmin
A

|A| subject to F cwc,cac = cwc + cac, (10.13)

where

F cwc,cac(A) = F cwc(A) + min{Fac(A), cac}.

Note that F cwc,cac is a submodular function, and hence (10.13) is a submodular covering problem, which
can be approximately solved using the greedy algorithm.

For any choice of cac, we can find the optimal value of cwc by performing binary search on cwc. We
summarize our analysis in the following Theorem:
Theorem 10.6. For any integer k and constraint cac, SATURATE finds a solutionAS (if it exists) such that

Fwc(AS) ≥ max
|A|≤k,Fac(A)≥cac

Fwc(A),

Fac(AS) ≥ cac, and |AS | ≤ αk, for α = 1 + log (2 maxs∈V
∑

i Fi({s})). Each such solution AS is
approximately Pareto-optimal, i.e., there does not exist a set B, |B| ≤ k such that B dominates AS . The
total number of submodular function evaluations is O

(
|V|2m log(

∑
i Fi(V))

)
.

3Another approach is scalarization, where we optimize Fλ(A) = λFwc(A) + (1 − λ)Fac(A) for some λ, 0 < λ < 1.
SATURATE can be modified to handle such scalarized objectives as well (c.f.Section 10.6.5).

4In fact, all Pareto-optimal solutions can be found in this way [Papadimitriou and Yannakakis, 2000].
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Scalarization

In the scalarized objective version of the problem we optimize the objective

Fλ(A) = λFwc(A) + (1− λ)Fac(A)

for a fixed parameter λ ∈ [0, 1]. The scalarization parameter λ can be though of as a prior: with λ
probability we expect to face an adversarial objective, while with probability 1−λ we expect an objective
drawn from the uniform distribution5 Fac.

It turns out that this formulation is equivalent to facing an adversary who, rather than being able to pick
any Fi arbitrarily, instead chooses a probability distribution on the Fi from some convex set of probability
distributions Pwc. If Pwc = ∆(m), the set of all possible probability distributions on the m functions Fi,
then we recover the fully adversarial problem as the adversary can choose a probability distribution that
puts probability 1 on the best response to our chosen sensor placements:

Fwc(A) = min
p∈∆(m)

∑
i

piFi(A) (10.14)

The scalarized multi-criterion objective Fλ corresponds to a more interesting convex set,

Pλ
wc =

{
q | qi = λpi +

1− λ
m

for some p ∈ ∆(m)
}
,

which can be derived as follows:

Fλ(A) = λFwc(A) + (1− λ)Fac(A)

= λ min
p∈∆(m)

∑
i

piFi(A) + (1− λ)
∑

i

1
m
Fi(A) by (10.14)

= min
p∈∆(m)

∑
i

(
λpi +

1− λ
m

1
)
Fi(A)

= min
q∈Pλ

wc

∑
i

qiFi(A).

It is straightforward to show Pλ
wc = {q | qi ≥ (1 − λ)/m,

∑
i qi = 1}, and so the scalarized multi-

criterion objective is equivalent to solving the adversarial problem where the adversary must put at least
probability (1− λ)/m on every scenario.

In order to solve this problem, we recast Fλ again as

Fλ(A) =
∑

i

(λFi(A) + (1− λ)Fac(A)) .

The functions F λ
i = λFi(A)+ (1−λ)Fac(A) are submodular, and so we can solve the scalarized version

of the multi-criterion optimization by running an unmodified SATURATE algorithm on the set of objective
functions F λ

i .

In fact, this algorithmic technique can be extended to an arbitrary convex set of probability distributions
Pwc with a finite number of extreme points. An extreme point of Pwc is a distribution that cannot be

5In fact, this argument easily generalizes to an arbitrary fixed distribution on the Fi
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expressed as a convex combination of other distributions in Pwc. Since the adversary knows our choiceA,
the optimization over Pwc to find the best-response is the optimization of a linear objective over a bounded
convex set, and so there always exists an extreme point that is optimal.

An extreme point q is a distribution over the original Fi, and in fact corresponds exactly to the submodular
expected cost function ∑

i

qiFi(A).

Hence, if we have a finite number of extreme points we can solve the set-selection problem against an ad-
versary constrained to play from Pwc by running SATURATE on the set of derived expected-cost functions
corresponding to the extreme points.

10.7 Experimental results

10.7.1 Minimizing the maximum Kriging variance

First, we use SATURATE to select observations in a GP to minimize the maximum posterior variance
(c.f.Section 10.5.1). We consider three data sets: [T] temperature data from a deployment of 52 sensors
at Intel Research Berkeley, [P] Precipitation data from the Pacific Northwest of the United States [Wid-
mann and Bretherton, 1999] and [L] temperature data from the NIMS sensor node [Harmon et al., 2006]
deployed at a lake near the University of California, Merced. For the three monitoring problems, [T], [P],
and [L], we discretize the space into 46, 167 and 86 locations each, respectively. For [T], we consider
the empirical covariance matrix of temperature sensor measurements obtained over a period of 5 days.
For [P], we consider the empirical covariance of 50 years of data, which we preprocessed as described in
Chapter 6. For [L], we train a nonstationary Gaussian Process using data from a single scan of the lake by
the NIMS sensor node, using a method described in more detail in Chapter 14.

In the geostatistics literature, the predominant choice of optimization algorithms for selecting locations
in a GP to minimize the (maximum and average) predictive variance are carefully tuned local search pro-
cedures, prominently simulated annealing (c.f.Sacks and Schiller 1988, van Groenigen and Stein 1998,
Wiens 2005). We compare our SATURATE algorithm against a state-of-the-art implementation of such a
simulated annealing (SA) algorithm, first proposed by Sacks and Schiller [1988]. We use an optimized im-
plementation described recently by Wiens [2005]. This algorithm has 7 parameters which need to be tuned,
describing the annealing schedule, distribution of iterations among several inner loops, etc. We use the
parameter settings as reported by Wiens [2005], and present the best result of the algorithm among 10 ran-
dom trials. In order to compare observation sets of the same size, we called SATURATE with α = 1.
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Figure 10.7: (a,c,e) SATURATE, greedy and SA on the (a) precipitation, (b) building temperature and (c)
lake temperature data. SATURATE performs comparably with the fine-tuned SA algorithm, and outper-
forms it for larger placements. (b,d,f) Optimizing for the maximum variance (using SATURATE) leads to
low average variance, but optimizing for average variance (using greedy) does not lead to low maximum
variance.
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Figures 10.7(a), 10.7(c) and 10.7(e) compare simulated annealing, SATURATE, and the greedy algorithm
which greedily selects elements which decrease the maximum variance the most on the three data sets. We
also used SATURATE to initialize the simulated annealing algorithm (using only a single run of simulated
annealing, as opposed to 10 random trials). In all three data sets, SATURATE obtains placements which are
drastically better than the placements obtained by the greedy algorithm. Furthermore, the performance is
very close to the performance of the simulated annealing algorithm. In our largest monitoring dataset [P],
SATURATE even strictly outperforms the simulated annealing algorithm when selecting 30 and more sen-
sors. Furthermore, as Figure 10.8 shows, SATURATE is significantly faster than simulated annealing, by
factors of 5-10 for larger problems. When using SATURATE in order to initialize the simulated annealing
algorithm, the resulting performance almost always resulted in the best solutions we were able to find with
any method, while still executing faster than simulated annealing with 10 random restarts as proposed by
Wiens [2005]. These results indicate that SATURATE compares favorably to state-of-the-art local search
heuristics, while being faster, requiring no parameters to tune, and providing theoretical approximation
guarantees.

Optimizing for the maximum variance could potentially be considered too pessimistic. Hence we com-
pared placements obtained by SATURATE, minimizing the maximum marginal posterior variance, with
placements obtained by the greedy algorithm, where we minimize the average marginal variance. Note,
that, whereas the maximum variance reduction is non-submodular, the average variance reduction is (of-
ten) submodular [Das and Kempe, 2008], and hence the greedy algorithm can be expected to provide
near-optimal placements. Figures 10.7(b), 10.7(d) and 10.7(f) present the maximum and average marginal
variances for both algorithms. On all three data sets, our results show that if we optimize for the maximum
variance we still achieve comparable average variance. If we optimize for average variance however, the
maximum posterior variance remains much higher.

10.7.2 Robust experimental design

We consider the robust design of experiments (c.f.Section 10.5.3) for the Michaelis-Menten mass-action
kinetics model, as discussed by Flaherty et al. [2006]. The goal is least-square parameter estimation for
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a function y = f(x, θ), where x is the chosen experimental stimulus (the initial substrate concentration
S0), and θ = (θ1, θ2) are two parameters as described by Flaherty et al. [2006]. The stimulus x is chosen
from a menu of six options, x ∈ {1/8, 1, 2, 4, 8, 16}, each of which can be repeatedly chosen. The goal
is to produce a fractional design w = (w1, . . . , w6), where each component wi measures the relative
frequency according to which the stimulus xi is chosen. Since f is nonlinear, f is linearized around an
initial parameter estimate θ0 = (θ01, θ02), and approximated by its Jacobian Vθ0 . Classical experimental
design considers the error covariance of the least squares estimate θ̂, Cov(θ̂ | θ0,w) = σ2(V T

θ0
WVθ0)

−1,
where W = diag(w), and aims to find designs w which minimize this error covariance. E-optimality, the
criterion adopted by Flaherty et al. [2006], measures smallness in terms of the maximum eigenvalue of
the error covariance matrix. The optimal w can be found using Semidefinite Programming (SDP) [Boyd
and Vandenberghe, 2004].

The estimate Cov(θ̂ | θ0,w) depends on the initial parameter estimate θ0, where linearization is per-
formed. However, since the goal is parameter estimation, a “certain circularity is involved” [Flaherty
et al., 2006]. To avoid this problem, Flaherty et al. [2006] find a design wρ(θ0) by solving a robust SDP
which minimizes the error size, subject to a worst-case perturbation ∆ on the Jacobian Vθ0 ; the robustness
parameter ρ bounds the spectral norm of ∆. As evaluation criterion, Flaherty et al. [2006] define a notion
of efficiency, which is the error size of the optimal design with correct initial parameter estimate, divided
by the error when using a robust design obtained at the wrong initial parameter estimates, i.e.,

efficiency ≡ λmax[Cov(θ̂ | θtrue,wopt(θtrue)))]

λmax[Cov(θ̂ | θtrue,wρ(θ0))]
,

where wopt(θ) is the E-optimal design for parameter θ. They show that for appropriately chosen values
of ρ, the robust design is more efficient than the optimal design, if the initial parameter θ0 does not equal
the true parameter.

While their results are very promising, an arguably more natural approach than perturbing the Jacobian
would be to perturb the initial parameter estimate, around which linearization is performed. For example,
if the function f describes a process which behaves characteristically differently in different “phases”,
and the parameter θ controls which of the phases the process is in, then a robust design should intuitively
“hedge” the design against the behavior in each possible phase. In such a case, the uniform distribution
(which the robust SDP chooses for large ρ) would not be the most robust design.

If we discretize the space of possible parameter perturbations (within a reasonably chosen interval), we can
use SATURATE to find robust experimental designs. While the classical E-optimality is not submodular
[Krause et al., 2008b], Bayesian A-optimality is (usually) submodular [Das and Kempe, 2008, Krause
et al., 2008b]. Here, the goal is to minimize the trace instead of maximum eigenvalue size of the covariance
matrix. Furthermore, we equip the parameters θ with an uninformative normal prior (which we chose as
diag([202, 202])) as typically done in Bayesian experimental design. We then minimize the expected trace
of the posterior error covariance, tr(Σθ|A). Hereby, A is a discrete design of 20 experiments, where each
option xi can be chosen repeatedly. In order to apply SATURATE, for each θ0, we define Fθ0(A) as the
normalized variance reduction

Fθ0(A) =
1
Zθ0

(
tr
(
Σ(θ0)

θ

)
− tr

(
Σ(θ0)

θ|A

))
.

The normalization Zθ0 is chosen such that Fθ0(A) = 1 if

A = argmax
|A′|=20

Fθ0(A′),
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Figure 10.9: Efficiency of robust SDP of Flaherty et al. [2006] and SATURATE on a biological experi-
mental design problem. (a) Low assumed uncertainty in initial parameter estimates: SDP performs better
in region C, SATURATE performs better in region A. (b) High assumed uncertainty in initial parameter
estimates: SATURATE outperforms the SDP solutions.

i.e., ifA is chosen to maximize only Fθ0 . SATURATE is then used to maximize the worst-case normalized
variance reduction.

We reproduced the experiment of Flaherty et al. [2006], where the initial estimate of the second compo-
nent θ02 of θ0 was varied between 0 and 16, the “true” value being θ2 = 2. For each initial estimate of
θ02, we computed a robust design, using the SDP approach and using SATURATE, and compared them
using the efficiency metric of Flaherty et al. [2006]. Note that this efficiency metric is defined with respect
to E-optimality, even though we optimize Bayesian A-optimality, hence potentially putting SATURATE

at a disadvantage. We first optimized designs which are robust against a small perturbation of the initial
parameter estimate. For the SDP, we chose a robustness parameter ρ = 10−3, as reported in Flaherty et al.
[2006]. For SATURATE, we considered an interval around [θ 1

1+ε , θ(1 + ε)], discretized in a 5 × 5 grid,
with ε = .1.

Figure 10.9(a) shows three characteristically different regions, A, B, C, separated by vertical lines. In
region B which contains the true parameter setting, the E-optimal design (which is optimal if the true
parameter is known, i.e., θ02 = θ2) performs similar to both robust methods. Hence, in region B (i.e.,
small deviation from the true parameter), robustness is not really necessary. Outside of region B however,
where the standard E-optimal design performs badly, both robust designs do not perform well either. This
is an intuitive result, as they were optimized to be robust only to small parameter perturbations.

Consequently, we compared designs which are robust against a large parameter range. For SDP, we chose
ρ = 16.3, which is the maximum spectral variation of the Jacobian when we consider all initial estimates
from θ02 varying between 0 and 16. For SATURATE, we optimized a single design which achieves the
maximum normalized variance reduction over all values of θ02 between 0 and 16. Figure 10.9(b) shows,
that in this case, the design obtained by SATURATE achieves an efficiency of 69%, whereas the efficiency
of the SDP design is only 52%. In the regions A and C, the SATURATE design strictly outperforms
the other robust designs. This experiment indicates that designs which are robust against a large range
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of initial parameter estimates, as provided by SATURATE, can be more efficient than designs which are
robust against perturbations of the Jacobian (the SDP approach).

10.7.3 Outbreak detection

We also apply our approach to the problem of deploying sensors for contamination detection in munici-
pal water distribution networks, as described in Chapter 8. Recall from Chapter 8, that in August 2006,
the Battle of Water Sensor Networks (BWSN) [Ostfeld et al., 2006] was organized as an international
challenge to find the best sensor placements for a real (but anonymized) metropolitan water distribution
network, consisting of 12,527 nodes. In this challenge, a set of intrusion scenarios is specified, and for
each scenario a realistic simulator provided by the EPA [Rossman, 1999] is used to simulate the spread of
the contaminant for a 48 hour period. An intrusion is considered detected when one selected node shows
positive contaminant concentration. BWSN considered a variety of impact measures, including the time
to detection (called Z1), and the size of the affected population calculated using a realistic disease model
(Z2). The goal of BWSN was to minimize the expectation of the impact measures Z1 and Z2 given a
uniform distribution over intrusion scenarios.

In this chapter, we consider the adversarial setting, where an opponent chooses the contamination sce-
nario with knowledge of the sensor locations. The objective functions Z1 and Z2 are in fact submodular
for a fixed intrusion scenario [Leskovec et al., 2007b], and so the robust optimization problem of min-
imizing the impact of the worst possible intrusion fits into our formalism. For these experiments, we
consider scenarios which affect at least 10% of the network, resulting in a total of 3424 scenarios. Fig-
ures 10.10(a) and 10.10(b) compare the greedy algorithm, SATURATE and the simulated annealing (SA)
algorithm for the problem of maximizing the worst-case detection time (Z1) and worst-case affected pop-
ulation (Z2).

Interestingly, the behavior is very different for the two objectives. For the affected population (Z2), greedy
performs reasonably, and SA sometimes even outperforms SATURATE. For the detection time (Z1), how-
ever, the greedy algorithm did not improve the objective at all, and SA performs poorly. The reason is that
for Z2, the maximum achievable scores, Fi(V), vary drastically, since some scenarios have much higher
impact than others. Hence, there is a strong “gradient”, as the worst-case objective changes quickly when
the high impact scenarios are covered. This gradient allows greedy and SA to work well. On other hand,
for Z1, the maximum achievable scores, Fi(V), are constant, since all scenarios have the same simulation
duration. Unless all scenarios are detected, the worst-case detection time stays constant at the simulation
length. Hence, many node exchange proposals considered by SA, as well as the addition of a new sensor
location by greedy, do not change the worst-case objective, and the algorithms have no useful performance
metric.

Figures 10.10(c) and 10.10(d) compare the placements of SATURATE (when optimizing the worst-case
penalty), and greedy (when optimizing the average-case penalty, which is submodular). Similarly to the
results in the GP setting, optimizing the worst-case score leads to reasonable performance in the average
case score, but not necessarily vice versa (especially when considering the detection time).
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Figure 10.10: (a,b) compare SATURATE, greedy and SA in the water network setting, when optimizing
worst-case detection time (Z1, (a)) and affected population (Z2, (b)). SATURATE performs comparably to
SA for Z2 and strictly outperforms SA for Z1. (c,d) compare optimizing for the worst-case vs. average-
case objectives. Optimizing for the worst-case leads to good average case performs, but not vice versa.
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Figure 10.11: Experiments on trading off worst-case and average-case penalties on the water network
[W] data, minimizing detection time (a) and affected population (b).

We also performed experiments trading off the worst-case and average-case penalty reductions, using the
approach discussed in Section 10.6.5. We first ran the greedy algorithm to optimize the average-case
score, and then ran SATURATE to optimize the worst-case score. We considered the average-case scores
cgreedy
ac and cSaturate

ac obtained by both algorithms, and uniformly discretized the interval bounded by
these average-case scores. For each score level cac in the discretization, we use the modified SATURATE

algorithm as described in Section 10.6.5, maximizing the worst-case score, subject to a constraint on the
average-case score. Each possible value of the constraint on cac can lead to a different solution, trading
off average- and worst-case scores. Figure 10.11(a) presents the tradeoff curve obtained in this fashion
for the detection time (Z1) metric, for different numbers k of placed sensors. We generally observe that
there is more variability in the worst-case score than in the average-case score. We can also see that when
placing 5 sensors, there is a prominent knee in the tradeoff curve, effectively achieving the minimum
worst-case penalty but drastically reducing the average-case penalty incurred when compared to only
optimizing for the worst-case score. The other tradeoff curves do not exhibit quite such prominent knees,
but nevertheless allow flexibility in trading off worst- and average-case scores. Figure 10.11(b) presents
the same experiment for the population affected (Z2) metric. Here, we notice prominent knees when
placing k = 15 and 20 sensors. We can generally conclude that trading off average- and worst-case scores
allows to effectively achieve a compromise between too pessimistic (only optimizing for the worst case)
and optimistic (only optimizing for the average case) objectives.

10.7.4 Sensor failures

We also performed experiments on analyzing worst-case sensor failures (c.f.Section 10.5.5). We consider
the outbreak detection application, and optimize the average score, i.e., F (A) = 1

m

∑
i Fi(A) (modeling,

e.g., accidental contaminations). We use SATURATE in order to optimize the modified objective function
F
′
c described in Section 10.5.5, for increasing numbers of sensors k. We also use the greedy algorithm

to optimize sensor placements, ignoring possible sensor failures. For both algorithms, we compute the
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Figure 10.12: (a,b) compare Greedy (ignoring sensor failures) and SATURATE (optimizing for the worst-
case sensor failure) on water network data with detection time (a) and population affected (b) scores.

expected scores (penalty reductions Z1 and Z2) in the case of no sensor failure, and in the case of a single,
worst-case sensor failure. Figure 10.12(a) presents the results for the time to detection objective (Z1).
We can see, that initially, with small numbers of sensors, failures can strongly diminish the Z1 score.
However, as the number of sensors increases, the placement scores optimized using SATURATE for sensor
failures quickly approach those of Greedy in the case of no sensor failures. Hence, even if only a small
number of sensors are placed, SATURATE can quickly exploit redundancy and find sensor placements,
which perform well both with and without sensor failures. On the other hand, when not taking sensor
failures into account, such failures can drastically diminish the sensing quality of a placed set of sensors.
Figure 10.12(b) presents analogous results when minimizing the affected population (Z2).

10.7.5 Parameter uncertainty

We also conducted experiments on selecting variables under parameter uncertainty (c.f.Section 10.5.2).
More specifically, we consider a sensor placement problem for monitoring temperature in a building. In
such a problem, we would like to place sensors in order to get accurate predictions at various times of the
day. However, since phenomena such as temperature in buildings change over time, at different times of
the day, different placements would be most informative.

In our experiment, we consider the temperature data set [T], and learn four models, described by param-
eters θ1, . . . , θ4, during four six-hour time periods over the day: 12am-6am, 6am-12pm, 12pm-6pm and
6pm-12am. As models, we use the empirical covariances Σ(θi) from the corresponding time periods of
the 5 day historical training data. We also use the single model Σ for the entire day, as described in Sec-
tion 10.7.1. We then use the greedy algorithm to optimize sensor placement of increasing sizes for the
single model Σ, optimizing the average variance reduction objective function. Similarly, we use SATU-
RATE to optimize the minimum variance reduction over the four models Σ(i), normalized by the average
variance over the entire space.

Subsequently, we used both placements to compute the average Root Mean Squared (RMS) prediction
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Figure 10.13: [T] Average and Maximum variance when optimizing for four different covariance models
obtained during different parts of the day.

error over the entire day on 2 days of held out test data. We also computed the maximum RMS error over
the four six-hour time periods. Figure 10.13 presents the results of this experiment. While the average
RMS error is roughly equal for both placements, the maximum RMS error is larger for the greedy sensor
placement, as compared to the robust placement of SATURATE, especially for small numbers of sensors
(six and less sensors).

10.8 Robustness and regularization

There is an interesting connection between robustness and regularization in machine learning. For ex-
ample, recent results by Xu et al. [2008] show that `1-regularized regression is equivalent to finding a
solution to an ordinary regression problem which is worst-case robust against perturbation of the design
matrix. In this section, we show how robust optimization can lead to regularization (and thereby improved
generalization) for optimization problems under uncertain data.

Consider a setting where we are given a ground set V of elements, and “training data” in the form of a
collection of submodular functions F1, . . . , Ft. We call each of these functions a “scenario”. An example
of a scenario could be a contamination event in the water networks domain (Section 10.5.3), or a cascade
in the blog domain (Section 8.3). Hereby, Fi(A) measures the performance of a set of chosen elementsA
in scenario i (e.g., in the water networks domain, Fi(A) measures the reduction in population affected by
contamination of node i when placing sensors at locations A). Our goal is to select a subset A, |A| ≤ k,
which performs well on a separate set of “test” scenarios, which comprises functions F ′1, . . . , F

′
m defined

over the same ground set V . I.e., we would like to find a set A maximizing

max
|A|≤k

m∑
i=1

F ′i (A).
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A F1(A) F2(A) F ′1(A)
∅ 0 0 0
{s1} 1 0 0
{s2} .4 .4 .5

Table 10.2: Functions F1 and F2 used in the generalization counterexample.

Note that simply optimizing the training set performance

max
|A|≤k

t∑
i=1

Fi(A)

can lead to overfitting. As an example, suppose V = {s1, s2}, k = 1 and there are two training scenarios,
F1, F2, and one test scenario F ′1 as defined in Table 10.2. When optimizing for the training set, one
optimal solution would be to pick A = {s1}, with performance 1 on the training set, but 0 on the testing
set. Hence, optimizing purely on the training set leads to arbitrary poor generalization performance.
However, intuitively, the test scenario F ′1 is “similar” to F2, one of the training examples, and hence we
would hope for non-trivial generalization performance. In many applications, such as the water networks
and blog domains, it is unrealistic to assume that the functions Fi and F ′i are sampled i.i.d. from some
fixed distribution, and hence standard generalization bounds do not apply.

To have any chance of generalizing from the training to the test scenarios, we need to make some assump-
tions about how the test functions relate to the training data. We will assume that the test set is “similar”
to some part of the training set. More specifically, we will assume that there is a mapping ν that maps the
indices {1, . . . ,m} to a subset of the indices {1, . . . , t}, and it holds that

|F ′i (B)− Fν(i)(B)| ≤ ε

for all subsets B ⊆ V . Hence, each function F ′i is similar (with additive error ε) to some function Fν(i).
This assumption is sensible, for example, if we believe that the training data “approximately covers”
the space of all possible scenarios. The assumption applies, for example, in a setting where the utility
functions change over time (i.e., the indices 1, . . . , t correspond to a linear ordering), and the test functions
F ′i are most similar to the last functions in the training set with respect to the temporal ordering. In our
example from Table 10.2, ν(1) = 2, and ε = 0.1.

If we knew the mapping ν, we could optimize the test set performance directly by optimizing

max
|A|≤k

m∑
i=1

Fν(i)(A).

Since in practice the mapping ν is not known, we can consider the performance for any particular mapping
ν ′ as

Fν′(A) =
m∑

i=1

Fν(i)(A),

and optimize
A∗ = argmax

|A|≤k
min

ν′
Fν′(A).
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This formulation simultaneously optimizes the performance over all possible test sets that are similar
(according to a mapping ν ′) to the training set. In our example, the optimal solution to this optimization
problem would be to pick the set A′ = {s2} which obtains optimal testing performance 1/2.

Note that the worst case minν′ will always be achieved by mapping all elements 1, . . . ,m to a single train-
ing scenario. This assumption might be too pessimistic, and lead to solutions which “underfit” the training
data. Hence, in practice, we would choose a regularization parameter L, and only consider mappings ν
that map to at least L different training scenarios.

In this case, there will be a large number of possible mappings ν that map to at least L different training
scenarios, and evaluation of minν Fν(A), respectively the average truncated function

∑
ν min{Fν(A), c}

as needed in the SATURATE algorithm will be intractable. In practice, we have at least three different
options for dealing with this intractability:

• We restrict ourselves to particular classes of functions ν. One example of this approach will be
provided in Section 10.8.1.

• We use techniques for dealing with a large number of objective functions as discussed in Sec-
tion 10.9.

• We approximate the average truncated function
∑

ν min{Fν(A), c} by a sample average with a
small number of samples.

10.8.1 Results on blog data

As an example, consider the problem of selecting informative blogs, as discussed in Chapter 8. When
designing a web service to suggest blogs to read, it is important to select blogs that remain informative in
the future.

We perform the following experiment. We split our blog data set (as described in Section 8.3) into two
parts: a “historic” training set, containing the cascades starting January 2006 and concluding by May
2006, and a testing set of “future” data, containing the cascades starting June 2006-November 2006. For
each cascade i in the training set, we define a separate objective function Fi using the population affected
(PA) objective function from Chapter 8. Similarly, we define functions F ′i on the test set cascades.

We first use the CELF algorithm (Algorithm 5.4) to select blogs from the training set, using the “number
of posts” cost metric as specified in Chapter 8. In order to assess the generalization ability of the selected
blogs, we evaluate the performance of the obtained solutions on the test set. As a (utopic) baseline, we
also perform the same optimization on the test set. Figure 10.14 shows a big gap between the performance
of both approaches, indicating a poor generalization.

In order to understand this poor generalization behavior, we analyze how many cascades are detected over
time by the blogs selected using the CELF algorithm. Figure 10.15(a) shows that while many cascades
are detected during the first half of the training data set, this detection performance degrades in the second
half of the data set. Hence, the blog selection “overfits” to the initial part of the training data set.

In order to improve generalization, we would like to obtain a selection A of blogs that continues to
perform well over time. We can achieve this goal by considering mappings ν that map into different,
subsequent time intervals. In our experiments, we partition the training set into bins with one month of
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Figure 10.14: [B] Blog data. Optimizing on training data leads to overfitting. Robust optimization using
SATURATE acts as a regularizer and leads to improved generalization performance.

length each, and use an objective function Fνt to quantify the performance of the blog selection in time
interval t. To obtain a blog selection that performs uniformly well over time, we can then formulate the
robust observation selection problem

A∗ = argmax
|A|≤k

min
t
Fνt(A),

which we can approximately solve using the SATURATE algorithm.

Using such a robust solution, the detection performance is now uniformly high over time, as shown by
Figure 10.15(b). Robust optimization also leads to improved performance on future data as shown by Fig-
ure 10.14, which demonstrates significantly improved generalization especially in the “low cost” regime
of the performance curve. Hence, robust optimization acts as an effective regularizer for the blog selec-
tion problem. We consider it a promising area of future work to further explore to interpretation of robust
solution of optimization problems as regularization to improve performance on unseen test data.

F1(A) F2(A) F3(A) F4(A)
…

Jan Feb Mar Apr May
0

200

#
d

e
te

c
ti
o
n

s

F1(A) F2(A) F3(A) F4(A)
…

F1(A)F1(A) F2(A)F2(A) F3(A)F3(A) F4(A)F4(A)
…

Jan Feb Mar Apr May
0

200

#
d

e
te

c
ti
o
n

s

(a) Detections using CELF

F1(A) F2(A) F3(A) F4(A)
…

Jan Feb Mar Apr May
0

200

#
d

e
te

c
ti
o
n

s

F1(A) F2(A) F3(A) F4(A)
…

F1(A)F1(A) F2(A)F2(A) F3(A)F3(A) F4(A)F4(A)
…

Jan Feb Mar Apr May
0

200

#
d

e
te

c
ti
o
n

s

(b) Detections using SATURATE

Figure 10.15: (a) Cascades detected over time using the CELF algorithm for selecting blogs. (b) Detec-
tions over time using the SATURATE algorithm for selecting blogs.
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10.9 Reducing the number of objective functions

In many of the examples considered in Section 10.5, the number m of objective functions Fi can be quite
large (e.g., one Fi per parameter setting, or outbreak scenario), which impacts both the running time
(which depends linearly on m) and the approximation guarantees (which depend logarithmically on m)
of SATURATE. Hence, showing that we can work with a smaller set of objectives has both computational
and theoretical advantages.

10.9.1 Removal of dominated strategies

One direct approach to eliminate objective functions (and hence speed up computation and improve the
approximation guarantee) is to remove dominated objectives. An objective function Fi is dominated by
another objective Fj , if Fi(A) ≥ Fj(A) for all sets A ⊆ V . Hence, an Fi is dominated by Fj if an
adversary can always reduce our score by choosing Fj instead of Fi. For example, when considering
sensor failures or feature deletion (as discussed in Section 10.5.5), for two sets B ⊆ B′, the objective FB
is dominated by the objective FB′ , i.e., the score decreases more if more sensors fail. Similarly, in the case
of outbreak detection, some outbreak scenarios have much more impact on the network than others. Even
though objective functions measuring the impact reductions Fi for scenarios i ∈ I might not be exactly
dominated, they might be ε-dominated, i.e., Fi(A) ≥ Fj(A)− ε for some ε > 0 and all A ⊆ V . In such
cases, these approximately dominated scenarios can be removed, incurring at most an error of ε in the
quality of the approximate solution.

10.9.2 Constraint generation

Another possible approach to reduce the number m of objective functions is constraint generation [c.f.,
Benders, 1962]. In this approach, one starts with an arbitrary single objective function, F1. In iteration
j + 1, (j ≥ 1), after functions F1, . . . , Fj have been considered, one searches for set Aj maximizing
maxA min1≤i≤j Fj(A). Subsequently, one selects Fj+1 minimizing mini Fi(Aj). The iteration termi-
nates once Fj+1 is contained in the already selected objectives F1, . . . , Fj . Another option is to terminate
once the new objective Fj+1 is ε-dominated by some objective Fi, 1 ≤ i ≤ j. In this case, the approximate
solution is guaranteed to incur at most an absolute error of ε as compared to the optimal solution.

In order to implement this constraint generation scheme, one must be able to efficiently solve problem
mini Fi(Aj). In some settings, this problem might admit an efficient (perhaps approximate) solution. In
many problems, such as the experimental design setting, one actually wants to perform well against an
(uncountably) infinite set of possible objective functions, corresponding to parameters θ ∈ D in some
(typically compact and convex set D). In such a setting, minθ Fθ(Aj) could potentially be (at least
heuristically) solved using a numerical optimization approach such as a conjugate gradient method.
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10.10 Related work

10.10.1 Robust discrete optimization

Robust optimization of submodular functions is an instance of a robust discrete optimization problem. In
such problems, the goal generally is to perform well with respect to a worst-case choice of evaluation
scenario. Other instances of robust discrete problems have been studied by a number of authors. Kouvelis
and Yu [1997] introduce several notions of robust discrete problems, presents hardness results and a class
of robust problems that can be optimally solved. Averbakh [2001] shows that a class of robust optimization
problems (selecting a k-element subset of elements of minimum cost) is solvable in polynomial time if
the uncertain cost coefficients are contained in an interval, but NP-hard under an arbitrary (finite) set
of adversarially chosen scenarios. Bertsimas and Sim [2003] proposes a class of robust mixed integer
programs, accommodating uncertainty both in cost and data coefficients. They show that in certain cases
(robust matching, spanning tree, etc.), the robust formulations are solvable in polynomial time if the non-
robust problem instances are solvable in polynomial time. In the case of NP-hard but α-approximable
non-robust problems, they show that the corresponding robust formulations also remain α-approximable.
However, their results do not transfer to our setting of robust submodular optimization, since in this case,
even though non-robust solutions are (1− 1/e) approximable, the non-robust formulation does not admit
any approximation guarantees (c.f.Section 10.2).

10.10.2 Robust methods in statistics

Robust experimental design

Experimental design under parameter uncertainty has been studied in statistics; most of the earlier work
is reviewed in the excellent survey of Chaloner and Verdinelli [1995]. In the survey, the authors discuss
Bayesian approaches to handling parameter uncertainty, as well as robust Bayesian [c.f., Berger, 1984]
approaches, which perform worst-case analyses over prior and likelihood functions. In experimental de-
sign, most approaches have focused on locally optimal designs, i.e., those selecting an optimal design
based on a linearization around an initial parameter estimate, for reasons of computational tractability. In
order to cope with uncertainty in the initial parameter estimates around which linearization is performed,
heuristic techniques have been developed, such as the SDP based approach of Flaherty et al. [2006], or a
clustering heuristic described by Dror and Steinberg [2006]. We are not aware of approaches which allow
to find designs in the context of such parameter uncertainty that bear theoretical guarantees similar to the
approach described in this chapter.

Minimax Kriging

Minimizing the maximum predictive variance in Gaussian Process regression has been proposed as a
design criterion by Burgess et al. [1981] and since then extensively used. [c.f. Sacks and Schiller, 1988,
van Groenigen and Stein, 1998]. To our knowledge, prior to this work, no algorithms with approximation
guarantees are known for this criterion.

Several authors consider the problem of spatial prediction under unknown covariance parameters. Pilz
et al. [1996] describes an approach for selecting – for a fixed set of observed sites – the Kriging estimate
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minimizing the maximum prediction error, where the worst-case over a fixed class of covariance functions
is assumed. Wiens [2005] consider a similar setting but also addresses the design problem of choosing lo-
cations in order to minimize the mean squared prediction error against the worst-case covariance function.
Algorithmically, Wiens [2005] use the simulated annealing algorithm described in Section 10.7.1 with 7
tuned parameter settings. Note that the SATURATE algorithm can be used in this context as well.

10.10.3 Robust sensor placement and facility location

Carr et al. [2006] consider the problem of robust sensor placements in water distribution networks. They
formulate Mixed Integer Programs for selecting sensor placements robust against uncertainty in adversar-
ial strategies and in water demands. Due to computational complexity of Mixed Integer Programming,
in their experiments, they used only small networks of at most 470 nodes. SATURATE can potentially
be applied to handle uncertainty in demands as well, which is an interesting direction for future work.
Watson et al. [2006] consider different notions of robustness in the context of water distribution networks,
intended to remove some of the pessimistic assumptions of purely robust sensor placements. They develop
integer programs, as well as heuristics, and apply them to networks of similar size as the one considered
in this chapter. Their local search heuristic performs a sequence of local moves similar to those performed
by the simulated annealing algorithm considered in Section 10.7.3, and does not provide any theoretical
guarantees.

Closely related to the adversarial outbreak detection problem is the k-center problem. In this problem, one
is given a graph G = (V, E) along with a distance function defined over pairs of nodes in V . The goal is
to select a subset A ⊆ V of size at most k, such that the maximum distance between any unselected node
s ∈ V\A and its nearest center s′ ∈ A is minimized. For this problem, Minieka [1970] discuss a technique
reducing the solution of this problem to a sequence of set cover problems combined in a binary search,
similar in spirit to SATURATE. However, they do not discuss any implications regarding approximation
guarantees, and do not consider the case of arbitrary submodular functions. Berger-Wolf et al. [2005]
shows that certain contamination detection problem formulations can be modeled as asymmetric k-center
problems. Mladenovic et al. [2003] presents a Tabu search heuristic for k-center, also without theoretical
guarantees. Gonzalez [1985] and Hochbaum and Shmoys [1985] present a 2 approximation for the k-
center problem in the case of symmetric distance functions satisfying the triangle inequality. Panigrahy
and Vishwanathan [1998] present a log∗(n) approximation in the case of distance functions satisfying the
asymmetric triangle inequality, which is shown to be best possible by Chuzhoy et al. [2005]. Chuzhoy
et al. [2005] also show that even for bicriterion algorithms (such as SATURATE), k-center is log∗(n) hard
to approximate, even if O(k) additional centers can be selected. Note that SATURATE can be used to
solve k-center problems (without any requirements on symmetry or on the triangle inequality), hence
the bicriterion hardness result of Chuzhoy et al. [2005] gives further evidence on the tightness of the
guarantees described in Section 10.4.

Anthony et al. [2008] consider robust and stochastic notions of facility location problems (such as k-center
and k-median, where, instead of the maximum distance the average distance is optimized). In contrast to
the robust problems in this chapter which want to select k elements to maximize the minimum value
achieved by these k elements over the m scenarios, the problems in Anthony et al. [2008] try to select
k “centers” in a metric space to minimize the maximum cost incurred over the m scenarios—where the
cost is some function of the distances between non-selected vertices to the selected centers. For several
such robust cost-minimization problems in cases where distances satisfy the symmetric triangle inequality,
they present an algorithm that opens k “centers” and achieves an approximation ratio ofO(log n+logm)
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(where n is the number of nodes in the graph, and m is the number of scenarios): this should be com-
pared to the impossibility results for approximating robust value-maximization problems presented in this
chapter.

10.10.4 Relationship to game theory and allocation problems

The RSOS problem can be viewed as the problem of finding an optimal pure strategy for a zero-sum
matrix game with player ordering. In this matrix game, the rows would correspond to the possible sensor
placements, and the columns would correspond to the objective functions Fi. The entry for cell (A, Fi) is
our payoff Fi(A). In the RSOS problem, we want to select a row of the matrix, our adversary selects a
column Fi (knowing our choiceA, hence the player ordering) minimizing our score Fi(A). A very related
class of game theoretic problems are allocation problems. In these problems, one is typically given a set
V of objects, and the goal is to allocate the objects to m agents (bidders), each of whom has a (potentially
different) valuation function Fi(Ai) defined over subsets of received items Ai. The problem of finding
the best such allocation (partition) is NP-hard, but recently, several approximation algorithms have been
proposed. The allocation problem most similar to the RSOS problem is

π∗ = argmax
partition π=(A1,...,Am)

min
i
Fi(Ai).

The main difference is that in the allocation problem, the full set V is partitioned into subsetsA1, . . . ,Am,
and the functions Fi are evaluated on the respective subset Ai each. In the case of additive objective
functions Fi, Asadpour and Saberi [2007] provide an O(

√
k log3 k) approximation algorithm. In the

case of the function being subadditive (which is implied by, and is more general than, submodularity),
Ponnuswami and Khot [2007] present anO(2k−1) approximation algorithm. For settings where the sum
of the valuations is optimized, i.e.,

π∗ = argmax
partition π=(A1,...,Am)

∑
i

Fi(Ai),

Feige et al. [2007] develop a randomized 2-approximation for subadditive and 1− 1/e approximation for
submodular valuation functions.

The problem of trading off safety (i.e., improvements in worst-case scores) and average case performance
has been studied by several authors. Johanson et al. [2007] consider the problem of opponent modeling
in games, and develop an algorithm which can exploit opponents which it can accurately model, and falls
back to a safe (Nash) strategy in case the models do not capture the opponents behavior. Their algorithm
has a tradeoff parameter which controls the eagerness of exploiting, and they present Pareto-curves similar
to those presented in Section 10.6.5. However, their approach does not apply to our robust submodular
observation selection setting. Watson et al. [2006] consider different optimization problem formulations
allowing to control risk in the water distribution network monitoring application, but they only present
heuristic algorithms without guarantees for coping with large networks.

10.10.5 Relationship to Machine Learning

Submodular function optimization has found increasing use in machine learning. The algorithm of Queyranne
[1995] for minimizing symmetric submodular functions has been used for learning graphical models by
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Narasimhan and Bilmes [2004] and for clustering by Narasimhan et al. [2005]. We are not aware of any
work on optimizing the minimum over a collection of submodular functions.

Observation selection approaches have been used in the context of active learning [c.f. Axelrod et al.,
2001, Cohn, 1994, Freund et al., 1997, MacKay, 1992, Sollich, 1996]. Test point selection has been used
to minimize average predictive variance in Gaussian Processes regression by Seo et al. [2000], and to speed
up Gaussian Process inference in the Informative Vector Machine (IVM) by Lawrence et al. [2003], Seeger
et al. [2003]. In these approaches, the sequential setting is considered, where previous measurements are
taken into account when deciding on the next observation to make. A note by Seeger [2004b] proves
that the greedy algorithm in the IVM optimizes a submodular function. The extension of the robust
techniques discussed in this chapter, which address the a priori selection problem (i.e., observations are
selected before measurements are obtained), to the sequential setting is an important direction for future
research.

Balcan et al. [2006] consider the problem of active learning in the presence of adversarial noise. While
their method is very different, our results potentially generalize to active learning settings, since, as Hoi
et al. [2006] show, certain active learning objectives are (approximately) submodular.

Price and Messinger [2005] consider the problem of constructing recommendation sets, and show that this
problem is an instance of a k-median problem (c.f.Section 10.10.3). The analogue of the k-center problem
in the preference set construction would be to construct a preference set which maximizes the utility of
displayed items under worst-case instantiation of the parameters. This analogue seems natural, and an
interesting direction for future work would be to explore the use of SATURATE in the recommendation set
context.

10.11 Existing work on submodular function maximization

Lovasz [1983] discusses the relationship between submodular functions and convexity. He also shows that
under certain conditions, the minimum of two submodular functions remains submodular (and hence can
be efficiently optimized using the greedy algorithm). The objective functions resulting from observation
selection problems typically do not satisfy these properties, and, as we have shown, the greedy algorithm
can perform arbitrarily badly. Fujito [2000] uses submodularity of truncated functions to find sets with
partial submodular coverage; however, they do not consider the case of multiple objectives, which we
address in this chapter. Bar-Ilan et al. [2001] consider covering problems for a generalization of sub-
modular functions; they use a similar binary search technique combined with multiple applications of the
greedy algorithm. Their approach does not apply to maximizing the minimum over a set of submodular
functions. Golovin and Streeter [2008] present an algorithm for online maximization of a single submod-
ular set function. An interesting question for future work would be to investigate whether our approach
for maximizing the minimum over a collection of submodular functions can be generalized to an online
setting as well.

10.12 Summary

In this chapter, we considered the RSOS problem of robustly selecting observations which are informative
with respect to a worst-case submodular objective function. We demonstrated the generality of this prob-
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lem, and showed how it encompasses the problem of sensor placements which minimize the maximum
posterior variance in Gaussian Process regression, variable selection under parameter uncertainty, robust
experimental design, and detecting events spreading over graphs, even in the case of adversarial sensor
failures. In each of these settings, the individual objectives are submodular and can be approximated well
using, e.g., the greedy algorithm; the robust objective, however, is not submodular.

We proved that there cannot exist any approximation algorithm for the robust optimization problem if the
constraint on the observation set size must be exactly met, unless P = NP. Consequently, we presented
an efficient approximation algorithm, SATURATE, which finds observation sets which are guaranteed to be
least as informative as the optimal solution, and only logarithmically more expensive. In a strong sense,
this guarantee is the best possible under reasonable complexity theoretic assumptions.

We provided several extensions to our methodology, accommodating more complex cost functions (non-
uniform observation costs, communication and path costs). Additionally, we described how a compromise
between worst-case and average-case performance can be achieved. We also discussed several approaches
for reducing the number of objective functions, improving both running times and theoretical guaran-
tees.

We extensively evaluated our algorithm on several real-world problems. For Gaussian Process regression,
for example, we showed that SATURATE compares favorably to state-of-the-art heuristics, while being
simpler, faster, and providing theoretical guarantees. For robust experimental design, SATURATE performs
favorably compared to SDP based approaches. We believe that the ideas developed in this chapter will help
the development of robust monitoring systems and provide new insights for adapting machine learning
algorithms to cope with adversarial environments.
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Chapter 11

Sensing under Complex Cost Functions

Networks of small, wireless sensors are becoming increasingly popular for monitoring spatial phenomena,
such as the temperature distribution in a building [Deshpande et al., 2004]. In the previous chapters of
this Thesis, we have studied the problem of selecting the most informative locations to deploy the sensors
at. However, the use of wireless communication to collect data leads to additional challenges. Poor link
qualities, which can arise if sensors are too far apart, or due to obstacles such as walls or radiation from
appliances, can cause message loss and hence require a large number of retransmissions in order to collect
the data effectively. Such retransmissions can consume battery power drastically, and hence decrease
the overall deployment lifetime of the sensor network. This suggests that the communication cost is a
fundamental constraint which must be taken into account when placing wireless sensors.

Existing work on sensor placement under communication constraints [Funke et al., 04, Gupta et al., 2003b,
Kar and Banerjee, 2003] has considered the problem mainly from a geometric perspective: Sensors have
a fixed sensing region, such as a disc with a certain radius, and can only communicate with other sensors
which are at most a specified distance apart. In Chapter 6, we have argued that this sensing region as-
sumption is often violated in practice, due to nonstationarity in the environment, and the disregard of the
fact that multiple sensors can combine their measurements to improve their predictions.

The assumption that two sensors at fixed locations can either perfectly communicate (i.e., they are “con-
nected”) or not communicate at all (and are “disconnected”) is equally unreasonable, as it does not take
into account variabilities in the link quality due to moving obstacles (e.g., doors), interference with other
radio transmissions, and packet loss due to reflections [Cerpa et al., 2005].

In this chapter, we address the problem of selecting sensor placements that are simultaneously informa-
tive, and achieve low communication cost. Note that this problem cannot be solved merely by first finding
the most informative locations, and then connecting them up with the least cost—indeed, it is easy to
construct examples where such a two-phase strategy performs very poorly. We also avoid the connect-
edness assumption (sensors are “connected” iff they can perfectly communicate): in this chapter, we use
the expected number of retransmissions as a cost metric on the communication between two sensors. This
cost metric directly translates to the deployment lifetime of the wireless sensor network. We propose to
use the probabilistic framework of Gaussian Processes not only to model the monitored phenomena (as
done in Chapter 6), but also to predict communication costs.

Given such a model for predicting communication cost, we can associate all sensing locations V with a
graph, where the edge between node s and t encodes the expected communication cost between these
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locations. The goal then is to pick nodes A ⊆ V in the graph that simultaneously achieve high sensing
quality F (A), and low connection cost in the graph.

This problem formulation not just allows us to model sensor placement under communication constraints.
For example, when using mobile robots to make observations, the chosen locations need to lie on a path,
the length of which is bounded by fuel and time constraints. In this case, we can annotate the edges
in the graph by the traveling cost, and attempt to find a path with bounded length that is informative as
possible.

In this chapter, we present a novel algorithm for the problem of selecting locations that simultaneously
achieve high sensing quality and low connection cost in a specified graph. More specifically, in this
chapter, we present:

• A method for learning a probabilistic model of the expected communication cost between any two
locations, in addition to the probabilistic model of the environment (as in Chapter 6) from a small,
short-term initial deployment. These models, based on Gaussian Processes, allow to avoid strong
assumptions previously made in the literature.

• A novel and efficient algorithm for Sensor Placements at Informative and cost-Effective Locations
(PSPIEL), which is guaranteed to provide near-optimal placements for this hard problem.

• Extensive evaluations of our proposed approach on temperature and light prediction tasks, using
data from real-world sensor network deployments, as well as on a precipitation prediction task in
the Pacific Northwest.

11.1 Problem statement

In this section, we briefly introduce the two fundamental quantities involved in optimizing sensor place-
ments. A sensor placement is a finite subset of locations A from a ground set of possible sensor locations
V . Any possible placement is assigned a sensing quality F (A) ≥ 0, and a communication cost C(A) ≥ 0,
where the functions F and C will be defined presently. We will use a temperature prediction task as a
running example: In this example, our goal is to deploy a network of wireless sensors in a building in
order to monitor the temperature field, e.g., to actuate the air conditioning or heating system. Here, the
sensing quality refers to our temperature prediction accuracy, or any other function considered in Part II
of this Thesis. The communication cost depends on how efficiently the sensors communicate with each
other. More generally, we investigate the problem of solving optimization problems of the form

min
A⊆V

C(A) subject to F (A) ≥ Q, (11.1)

for some quota Q > 0, which denotes the required amount of certainty achieved by any sensor placement.
This optimization problem aims at finding the minimum cost placement that provides a specified amount
of certainty Q, and is called the covering problem. We also address the dual problem of solving

max
A⊆V

F (A) subject to C(A) ≤ B, (11.2)

for some budget B > 0. This optimization problem aims at finding the most informative placement
subject to a budget on the communication cost, and is called the maximization problem. In practice, one
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Figure 11.1: (a) Indoor deployment of 54 nodes and an example placement of six sensors (squares) and
three relay nodes (diamonds); (b) measured trasmission link qualities for node 41; (c) GP fit of link quality
for the same node and (d) shows variance of this GP estimate.

would often want to specify a particular location s ∈ V that must be contained in the solution A. This
requirement arises, for example, if the deployed network needs to be connected to a base station that is
positioned at a fixed location s. We call the optimization problem (11.1) (resp. (11.2)) that includes such
an additional constraint a rooted covering (resp. rooted maximization) problem. In this chapter, we present
efficient approximation algorithms for both the covering and maximization problems, in both the rooted
and unrooted formulations.

11.1.1 What is communication cost?

Since each transmission drains battery of the deployed sensors, we have to ensure that our sensor place-
ments have reliable communication links, and the number of unnecessary retransmissions is minimized.
If the probability for a successful transmission between two sensor locations s and t is θs,t, the expected
number of retransmissions is 1/θs,t. Since we have to predict the success probability between any two
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(b) GP temp. covariances – node 41
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Figure 11.2: (a) Measured temperature covariance between node 41 and other nodes in the deployment;
(b) predicted covariance using non-stationary GP; (c) predicted temperatures for sensor readings taken at
noon on February 28th 2004, and (d) shows the variance of this prediction.

locations s, t ∈ V , we will in general only have a distribution P (θs,t) with density p(θs,t) instead of a
fixed value for θs,t. Surprisingly, this uncertainty has a fundamental effect on the expected number of
retransmissions. For a simple example, assume that with probability 1

2 we predict that our transmission
success rate is 3

4 , and with probability 1
2 , it is 1

4 . Then, the mean transmission rate would be 1
2 , leading us

to assume that the expected number of retransmissions might be 2. In expectation over the success rate
however, our expected number of retransmissions becomes 1

2 · 4 + 1
2 ·

4
3 = 2 + 2

3 > 2. More generally,
the expected number is

C({s, t}) =
∫

θ

1
θs,t

p(θs,t)dθs,t. (11.3)

Using this formula, we can compute the expected number of retransmissions for any pair of locations. If
V is finite, we can model all locations in V as nodes in a graph G = (V, E), with the edges E labeled by
their communication costs. We call this graph the communication graph of V . For any sensor placement
A ⊆ V , we define its cost by the minimum cost tree T , A ⊆ T ⊆ V , connecting all sensors A in the
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communication graph for V . (In general, the locations A may include distant sensors, requiring us to
place relay nodes, which do not sense but only aid communication.) Finding this minimum cost tree T
to evaluate the cost function C(A) is called the Steiner tree problem; an NP-complete problem that has
very good approximation algorithms [Vazirani, 2003]. Our algorithm, PSPIEL, will however not just find
an informative placement and then simply add relay nodes, since the resulting cost may be exorbitant.
Instead, it simultaneously optimizes sensing quality and communication cost.

Note that it if we threshold all link qualities at some specified cut-off point, and define the edge costs
between two locations in the communication graph as 1 if the link quality is above the cut-off point, and
infinite if the link quality is below the cut-off point, then the communication cost of a sensor placement
is exactly (one less than) the number of placed sensors. Hence, in this special case, we can interpret the
maximization problem (11.2) as the problem of finding the most informative connected sensor placement
of at most B + 1 nodes.

11.1.2 Overview of our approach

Having established the notions of sensing quality and communication cost, we now present an outline of
our proposed approach.

1. We collect sensor and link quality data from an initial deployment of sensors. From this data, we
learn probabilistic models for the sensor data (such as Gaussian Process models as considered in
Chapter 6) and the communication cost (which we will discuss below). Alternatively, we can use
expert knowledge to design such models.

2. These models allow us to predict the sensing quality F (A) and communication cost C(A) for any
candidate placement A ⊆ V .

3. Using PSPIEL, our proposed algorithm, we then find highly informative placements which (ap-
proximately) minimize communication cost. We can approximately solve both the covering and
maximization problems.

4. After deploying the sensors, we then possibly add sensors or redeploy the existing sensors, by
restarting from Step 2), until we achieve a satisfactory placement. (This step is optional.)

Consider our temperature prediction example. Here, in step 1), we would place a set of motes throughout
the building, based on geometrical or other intuitive criteria. After collecting training data consisting of
temperature measurements and packet transmission logs, in step 2), we learn probabilistic models from
the data. This process is explained in the following sections. Figure 11.2(c) and Figure 11.2(d) present
examples of the mean and variance of our model learned during this step. As expected, the variance is high
in areas where no sensors are located. In step 3), we would then explore the sensing quality tradeoff for
different placements proposed by PSPIEL, and select an appropriate one. This placement automatically
suggests if relay nodes should be deployed. After deployment, we can collect more data, and, if the
placement is not satisfactory, iterate by repeating from step 2).
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11.2 Predicting communication cost

As discussed in Section 11.1.1, an appropriate measure for communication cost is the expected number of
retransmissions. If we have a probability distribution P (θs,t) over transmission success probabilities θs,t,
Equation (11.3) can be used in a Bayesian approach to compute the expected number of retransmissions.
The problem of determining such predictive distributions for transmission success probabilities is very
similar to the problem of estimating predictive distributions for the sensor values as discussed in Chapter 6,
suggesting the use of GPs for predicting link qualities. A closer look however shows several qualitative
differences: When learning a model for sensor values, samples from the actual values can be obtained.
In the link quality case however, we can only determine whether certain messages between nodes were
successfully transmitted or not. Additionally, transmission success probabilities are constrained to be
between 0 and 1. Fortunately, GPs can be extended to handle this case as well [Csato et al., 2000]. In this
classification setting, the predictions of the GP are transformed by the sigmoid, also called link function,
f(x) = 1

1+exp(−x) . For large positive values of x, f(x) is close to 1, for large negative values it is close to
0 and f(0) = 1

2 .

Since we want to predict link qualities for every pair of locations in V , we define a random process
Θ(s, t) = f(W (s, t)), where W (s, t) is a GP over (s, t) ∈ V2. We call Θ(s, t) the link quality process.
This process can be learned the following way. In our initial deployment, we let each sensor broadcast
a message once every epoch, containing its identification number. Each sensor also records, from which
other sensors it has received messages this epoch. This leads to a collection of samples of the form
(si,k, sj,k, θk(si, sj))i,j,k, where i, j range over the deployed sensors, k ranges over the epochs of data
collection, and θk(si, sj) is 1 if node i received the message from node j in epoch k, and 0 otherwise. We
will interpret θk(si, sj) as samples from the link quality process Θ(·, ·). Using these samples, we want
to compute predictive distributions similar to those described in Equations (6.1) and (6.2). Unfortunately,
in the classification setting, the predictive distributions cannot be computed in closed form anymore, but
one can resort to approximate techniques [c.f., Csato et al., 2000]. Using these techniques, we infer the
link qualities by modeling the underlying GP W (s, t). Intuitively, the binary observations will be con-
verted to “hallucinated” observations of W (s, t), such that Θ(s, t) = f(W (s, t)) will correspond to the
empirical transmission probabilities between locations s and t. We now can use Equations (6.1) and (6.2)
to compute the predictive distributions W (s, t) for any pair of locations (s, t) ∈ V2. Applying the sig-
moid transform will then result in a probability distribution over transmission success probabilities. In our
implementation, instead of parameterizing W (s, t) by pairs of coordinates, we use the parametrization
W (t − s, s). The first component of this parametrization is the displacement the successful or unsuc-
cessful message has traveled, and the second component is the actual set of physical coordinates of the
transmitting sensor. This parametrization tends to exhibit better generalization behavior, since the dis-
tance to the receiver (component 1) is the dominating feature, when compared to the spatial variation in
link quality. Figure 11.1(c) shows an example of the predicted link qualities using a GP for our indoors
deployment, Figure 11.1(d) shows the variance in this estimate.

What is left to do is to compute the expected number of retransmissions, as described in formula (11.3).
Assuming the predictive distribution for W (s, t) is normal with mean µ and variance σ2, we compute∫

1
f(x)N (x;µ, σ2)dx = 1 + exp(−µ + σ2), where N (·;µ, σ2) is the normal density with mean µ and

variance σ2. Hence we have a closed form solution for this integral. If σ2 = 0, we simply retain that the
expected number of retransmissions is the inverse of the transmission success probability. If σ2 is very
large however, the expected number of retransmission drastically increases. This implies that even if we
predict the transmission success probability to be reasonably high, e.g., 2/3, if we do not have enough
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Algorithm 11.1: Greedy algorithm for maximizing mutual information.
Input: Locations C ⊆ V
Output: Greedy sequence g1, g2, . . . , g|C|, Ci = {g1, . . . , gi}
begin
C0 ← ∅;
for j = 1 to |C| do
gj ← argmax

g∈C\Cj−1

F (Cj−1 ∪ {g})− F (Cj−1);

Cj ← Cj−1 ∪ gj ;
end

end

samples to back up this prediction and hence our predictive variance σ2 is very large, we necessarily have
to expect the worst for the number of retransmissions. So, using this GP model, we may determine that
it is better to select a link with success probability 1/3, about which we are very certain, to a link with a
higher success probability, but about which we are very uncertain. Enabling this tradeoff is a great strength
of using GPs for predicting communication costs.

11.3 Problem structure in sensor placement under complex cost functions

We now address the covering and maximization problems described in Section 11.1. In Part II of this
Thesis, we have seen that many interesting sensing quality functions, such as mutual information, sat-
isfy submodularity, an intuitive diminishing returns property. Sensing quality is also (approximately)
nondecreasing. We have also seen that for such functions, when attempting to select the best set of k
observations, the simple greedy algorithm (Algorithm 5.1) finds a solution that obtains at least a constant
fraction of (1− 1/e) of the optimal sensing quality.

Unfortunately, the near-optimality of the greedy algorithm only holds when we do not take communication
cost into account, and does not generalize to the covering and maximization problems (11.1) and (11.2)
we study in this chapter. Indeed, since the greedy algorithm does not take distances into account, it would
prefer to place two highly informative sensors very far apart (in order to achieve the quota Q), whereas a
cheaper solution may select three sensors which are slightly less informative (still satisfying the quota), but
which are closer together. In Section 11.5 we show that even a modified version of the greedy algorithm
naturally taking into account communication cost can provide very poor solutions.

In addition to submodularity, the mutual information criterion empirically (c.f.Figure 11.6(d)) exhibits
another important locality property: Sensors which are very far apart are approximately independent.
This implies that if we consider placing a subset of sensors A1 in one area of the building, and A2 in
another area, then F (A1 ∪ A2) ≈ F (A1) + F (A2). Here, we will abstract out this property to assume
that there are constants r > 0 and 0 < γ ≤ 1, such that for any subsets of nodes A1 and A2 which are at
least distance r apart, F (A1 ∪ A2) ≥ F (A1) + γF (A2). Such a submodular function F will be called
(r, γ)-local.
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11.3.1 Examples of (r, γ)-local submodular functions

There are several important examples of monotonic, submodular and (r, γ)-local objective functions:

Geometric coverage Suppose that with each location s ∈ V , we associate a sensing region Bs ⊆ V .
Then the function

F (A) =

∣∣∣∣∣⋃
s∈A

Bs

∣∣∣∣∣
measures the size of the region covered by placing sensors at locations A. In this case, F is monotonic,
submodular and (r, 1)-local, where

r = 2max
s

max
i,j∈Bs

d(i, j)

is twice the maximum diameter of the sensing regions. This objective function F captures the commonly
used disk model.

Probabilistic detections Suppose, we want to place sensors for event detection (e.g., detecting fires
in buildings), and that a sensor placed at a location s can detect events at distance d with probability
0 ≤ ϕs(d) ≤ 1, where ϕs is a monotonically decreasing function. Further suppose that we place sensors
at locations A. Then, if each sensor detects independently of the others, the probability of detecting an
event happening at location t ∈ V is

Ft(A) = 1−
∏
s∈A

(1− ϕs(d(s, t))).

Now let r = 2ϕ−1(1/2), i.e., the distance at which detection happens with probability 1/2. Then Ft is
a monotonic, submodular and (r, 1/2)-local. Now suppose we have a distribution Q(t) over the possible
outbreak locations. Then the expected detection performance

F (A) =
∑

t

Q(t)Ft(A)

is, as a convex combination of monotonic, submodular and (r, 1/2)-local objectives also monotonic, sub-
modular and (r, 1/2)-local.

Mutual information Suppose P (XV) is a GP with compact kernel, i.e., there is a constant r such that
K(s, t) = 0 whenever d(s, t) ≥ r/2. Then the mutual information F (A) = H(XV\A)−H(XV\A | XA)
is (r, 1)-local. Even if the kernel is not compact, mutual information empirically exhibits (r, γ)-locality
(c.f., Figure 11.6(d)).

The theory developed in this chapter applies to any objective function which satisfies nondecreasing sub-
modularity and (r, γ)-locality. In our experiments, we use the mutual information criterion

F (A) = FMI(A) = H(XV\A)−H(XV\A | XA).
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Figure 11.3: Example demonstrating the poor performance of the greedy algorithm.

11.3.2 The greedy algorithm

If we are interested in finding the set of k locations maximizing the sensing quality F (A), irrespective
of the cost C(A), we could use the greedy algorithm discussed in Chapter 5, which gives a near-optimal
solution to the problem of finding a set of k locations maximizing the sensing quality.

Unfortunately, the near-optimality of the greedy algorithm only holds when we do not take communication
cost into account, and does not generalize to the covering and maximization problems (11.1) and (11.2)
which we study in this chapter. For an illustration, consider Figure 11.3. In this illustration, we consider
an additive (a special case of a submodular) sensing quality function F defined on the ground set V =
{s, t, o1, . . . , on, g1, . . . , gm}, where the sensing quality of a selected set A of nodes is the sum of the
values in squared brackets associated with the selected nodes (e.g., F ({s, o1, g1}) = 3ε). Consider the
setting where we want to solve the maximization problem with root s and budget B. The optimal solution
would be to choose the set A∗ = {s, o1, . . . , oB/(2ε)}, with value F (A∗) = (B/ε − 1)(B/2) + ε. The
simple greedy algorithm that ignores cost would first pick t, and hence immediately run out of budget,
returning setAG = {s, t}with total sensing qualityB. A greedy algorithm that takes the cost into account
greedily selecting the element

s∗ = argmax
s∈V\A

F (A ∪ {s} − F (A)
C(A ∪ {s})− C(A)

and hence optimizing the benefit/cost ratio of the chosen element s∗ would select the set AGCB =
{s, g1, . . . , gB/ε} with total value 2B. Hence, as ε → 0, the greedy algorithm performs arbitrarily worse
than the optimal solution. In Section 11.5 we show that this poor performance of the greedy algorithm
actually occurs in practice.

11.4 Approximation algorithm

In this section, we propose an efficient, non-greedy, approximation algorithm for selecting Padded Sen-
sor Placements at Informative and cost-Effective Locations (PSPIEL). Our algorithm exploits problem
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Figure 11.4: Illustration of our algorithm: (a) presents a padded decomposition into four clusters; (b)
displays the chain in the modular approximation graph associated with cluster 1; (c) shows the modular
approximation graph with chains induced by greedy algorithm and the complete “core”; (d) the solution of
the Quota-MST problem on the modular approximation graph; and (e) is the final solution after expanding
the Quota-MST edges representing shortest paths.

structure via submodularity and locality, both properties described in Section 11.3. Before presenting our
results and performance guarantees, here is an overview of our algorithm.

1. We randomly select a decomposition of the possible locations V into small clusters using Algo-
rithm 11.2 (c.f.Figure 11.4(a), Section 11.4.1, Gupta et al. [2003a]). Nodes close to the “boundary”
of their clusters are stripped away and hence the remaining clusters are “well-separated”. (We prove
that not too many nodes are stripped away). The well-separatedness and the locality property of F
ensure the clusters are approximately independent, and hence very informative. Since the clusters
are small, we are not concerned about communication cost within the clusters.

2. We use the greedy algorithm (Algorithm 11.1) within each cluster i to get an order gi,1, gi,2, . . . gi,ni

on the ni nodes in cluster i. We call zi = gi,1 the center of cluster i. Create a chain for this cluster
by connecting the vertices in this order, with suitably chosen costs for each edge (gi,j , gi,j+1), as
in Figure 11.4(b). The submodularity of F ensures that the first k nodes in this chain are almost as
informative as the best subset of k nodes in the cluster (c.f., Chapter 6).

3. Create a “modular approximation graph” G′ from G by taking all these chains, and creating a fully
connected graph on the cluster centers z1, z2, . . . , zm, the first nodes of each chain. The edge costs
(zi, zi′) correspond to the shortest path distances between zi and zi′ , as in Figure 11.4(c).

4. We now need to decide how to distribute the desired quota to the clusters. Hence, we approxi-
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Algorithm 11.2: Algorithm for computing padded decompositions.
Input: Graph (V, E), shortest path distance d(·, ·), r > 0, α ≥ 64 dim(V, E)
Output: (α, r)-padded decomposition C = {Cu : u ∈ U}
begin

repeat
C ← ∅; r′ ← αr

4 ; U ← {a random element in V};
while ∃ v ∈ V : ∀u ∈ U d(u, v) > r′ do U ← U ∪ {v};
π ← random permutation on U ;
R← uniform at random in (r′, 2r′];
foreach u ∈ U according to π do
Cu ← {v ∈ V : d(u, v) < R, and ∀u′ ∈ U appearing earlier that u in π , d(u′, v) ≥
R};

end
until at least 1

2 nodes r-padded ;
end

mately solve the Quota-MST problem (for the covering version) or the Budget-MST problem (for
the maximization problem) on G′ [Garg, 2005, Johnson et al., 2000] (Figure 11.4(d)).

5. Expand the chosen edges of G′ in terms of the shortest paths they represent in G, as in Figure 11.4(e).

Suppose n = |V| is the number of nodes in V , and A∗ denotes the optimal set (for the covering or
maximization problem), with cost `∗. Finally, let dim(V, E) be the doubling dimension of the data,
which is constant for many graphs (and for costs that can be embedded in low-dimensional spaces), and
is O(log n) for arbitrary graphs [c.f., Gupta et al., 2003a]. We prove the following guarantee:

Theorem 11.1. Let G = (V, E) be a graph and a F be a (r, γ)-local monotone submodular function on
V . Suppose G contains a tree T ∗ with cost `∗, spanning a set A∗. Then PSPIEL can find a tree T with
cost O(r dim(V, E))× `∗, spanning a set A with expected sensing quality F (A) ≥ Ω(γ)× F (A∗). The
algorithm is randomized and runs in polynomial-time.

In other words, Theorem 11.1 shows that we can solve the covering and maximization problems (11.1)
and (11.2) to provide a sensor placement for which the communication cost is at most a small factor (at
worst logarithmic) larger, and for which the sensing quality is at most a constant factor worse than the
optimal solution. The proof can be found in the Appendix. While the actual guarantee of our algorithm
holds in expectation, running the algorithm a small (polynomial) number of times will lead to appropriate
solutions with arbitrarily high probability. Details on this procedure can be found in Section 11.6. In the
rest of this section, we flesh out the details of the algorithm, giving more technical insight and intuition
about the performance of our approach.

11.4.1 Padded decompositions

To exploit the locality property, we would like to decompose our space into “well-separated” clusters;
loosely, an r-padded decomposition is a way to do this so that most vertices of V lie in clusters Ci that are
at least r apart. Intuitively, padded decompositions allow us to split the original placement problem into
approximately independent placement problems, one for each cluster Ci. This padding and the locality
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property of the objective function F guarantee that, if we compute selections A1,. . . , Am for each of the
m clusters separately, then it holds that F (A1 ∪ · · · ∪ Am) ≥ γ

∑
i F (Ai), i.e., we only lose a constant

factor. An example is presented in Figure 11.4(a).

If we put all nodes into a single cluster, we obtain a padded decomposition that is not very useful. To
exploit our locality property, we want clusters of size about r that are at least r apart. It is difficult to
obtain separated clusters of size exactly r, but padded decompositions exist for arbitrary graphs for cluster
sizes a constant α larger, where α is Ω(dim(V, E)) [Gupta et al., 2003a]. We want small clusters, since
we can then ignore communication cost within each cluster.

Formally, an (α, r)-padded decomposition is a probability distribution over partitions of V into clusters
C1, . . . , Cm, such that:

(i) Every cluster Ci in the partition is guaranteed to have bounded diameter, i.e., diam(Ci) ≤ αr.

(ii) Each node s ∈ V is r-padded in the partition with probability at least ρ. (A node s is r-padded if
all nodes t at distance at most r from s are contained in the same cluster as s.)

The parameter ρ can be chosen as a constant (in our implementation, ρ = 1
2 ). In this chapter, we use

the term padded decomposition to refer both to the distribution, as well as samples from the distribution,
which can be obtained efficiently using Algorithm 11.2 [Gupta et al., 2003a]. In PSPIEL, for a fixed value
of the locality parameter r, we gradually increase α, stopping when we achieve a partition, in which at
least half the nodes are r-padded. This rejection sampling is the only randomized part of our algorithm,
and, in expectation, the number of required samples is polynomial.

Our algorithm strips away nodes that are not r-padded, suggesting a risk of missing informative locations.
The following Lemma proves that we will not lose significant information in expectation.
Lemma 11.2. Consider a submodular function F (·) on a ground set V , a set B ⊆ V , and a probability
distribution over subsets A of B with the property that, for some constant ρ, we have Pr [v ∈ A] ≥ ρ for
all v ∈ B. Then E[F (A)] ≥ ρF (B).

The proof of this Lemma appears in the Appendix. Let A∗ be the optimal solution for the covering
or maximization problem, and let A∗r denote a subset of nodes in A∗ that are r-padded. Lemma 11.2
proves that, in expectation, the information provided by A∗r is at most a constant factor ρ worse than A∗.
Since the cost of collecting data from A∗r is no larger than that of A∗, this lemma shows that our padded
decomposition preserves near-optimal solutions.

11.4.2 The greedy algorithm

After having sampled a padded decomposition, we run the greedy algorithm as presented in Algorithm 11.1
on the r-padded nodes in each cluster Ci, with k set to ni, the number of padded elements in cluster Ci.
Let us label the nodes as gi,1, gi,2, . . . , gini

in the order they are chosen by the greedy algorithm, and let
Ci,j = {gi,1, . . . , gi,j} denote the greedy set after iteration j. From Chapter 6 we know that each set Ci,j
is at most a factor (1− 1/e) worse than the optimal set of j padded elements in that cluster. Furthermore,
from (r, γ)-locality and using the fact that the nodes are r-padded, we can prove that

F (C1,j1 ∪ · · · ∪ Cm,jm) ≥ γ
∑m

k=1 F (Ck,jk
) ≥ γ

(
1− 1

e

)∑m
k=1 F (C∗k,jk

)

for any collection of indices j1, . . . , jm, where C∗k,jk
denotes the optimal selection of jk nodes within

cluster k.
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11.4.3 The modular approximation graph G ′

In step 3), PSPIEL creates the auxiliary modular approximation graph (MAG) G′ from G. Intuitively, this
MAG will approximate G, such that running the Quota-MST algorithm on it will decide how many nodes
should be picked from each cluster. The nodes of G′ are the greedy sets Ci,j . The greedy sets for cluster i
are arranged in a chain with edge ei,j connecting Ci,j and Ci,j+1 for every i and j. For a set of nodes B,
if CMST (B) is the cost of a minimum spanning tree (MST) connecting the nodes in B by their shortest
paths, the weight of ei,j in G′ is the difference in costs of the MSTs of Ci,j and Ci,j+1 (or 0 if this difference
becomes negative), i.e., C(ei,j) = max [CMST (Ci,j+1)− CMST (Ci,j), 0] . We also associate a “reward”

reward(Ci,j) = F (Ci,j) − F (Ci,j−1) with each node, where F (Ci,0)
4
= 0. Note that, by telescopic sum,

the total reward of the first k elements in chain i is F (Ci,k), and the total cost of the edges connecting
them is CMST (Ci,k), which is at most 2 times the the cost of a minimum Steiner tree connecting the nodes
in Ci,k in the original graph G. By property (i) of the padded decomposition, CMST (Ci,k) ≤ α r k. By
associating these rewards with each node, we define a modular set function F ′ on G′, such that for a set
B of nodes in G′, its value F ′(B) is the sum of the rewards of all elements in B. Figure 11.4(b) presents
an example of a chain associated with cluster 1 in Figure 11.4(a). Additionally, we connect every pair of
nodes Ci,1, Cj,1 with an edge with cost being the shortest path distance between gi,1 and gj,1 in G. This
fully connected subgraph is called the core of G′. Figure 11.4(c) presents the modular approximation
graph associated with the padded decomposition of Figure 11.4(a).

11.4.4 Solving the covering and maximization problems in G ′

The modular approximation graph G′ reduces the problem of optimizing a submodular set function in G
to one of optimizing a modular set function F ′ (where the value of a set is the sum of rewards of its
elements) in G′ to minimize communication costs. This is a well studied problem, and constant factor
approximation algorithms have been found for the covering and maximization problems. The (rooted)
Quota-MST problem asks for a minimum weight tree T (with a specified root), in which the sum of
rewards exceeds the specified quota. Conversely, the Budget-MST problem desires a tree of maximum
reward, subject to the constraint that the sum of edge costs is bounded by a budget. The best known
approximation factors for these problems is 2 for rooted Quota-MST [Garg, 2005], and 3 + ε (for any
ε > 0) for unrooted Budget-MST [Levin, 2004]. We can use these algorithms to get an approximate
solution for the covering and maximization problems in G′. From Section 11.4.3, we know that it suffices
to decide which chains to connect, and how deep to descend into each chain; any such choice will give
a subtree of G′. To find this tree, we consider all Ci,1 for each i as possible roots, and choose the best
tree as an approximate solution. (For the Budget-MST problem, we only have an unrooted algorithm, but
we can use the structure of our modular approximation graph to get an approximately optimal solution.)
Figure 11.4(d) illustrates such a Quota-MST solution.

11.4.5 Transferring the solution from G ′ back to G

The Quota- or Budget-MST algorithms select a tree T ′ in G′, which is at most a constant factor worse than
the optimal such tree. We use this solution T ′ obtained for G′ to select a tree T ⊆ G: For every cluster
i, if Ci,j ∈ T ′ we mark gi,1, . . . , gi,j in G. We then select T to be an approximately optimal Steiner tree
connecting all marked nodes in G, obtained, e.g., by computing an MST for the fully connected graph over
all marked vertices, where the cost of an edge between s and t is the shortest path distance between these
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nodes in G. This tree T is the approximate solution promised in Theorem 11.1. (Figure 11.4(e) presents
the expansion of the Quota-MST from Figure 11.4(d).)

11.4.6 Additional implementation details

PSPIEL relies heavily on the nondecreasing submodularity and locality assumptions. In practice, since we
may not know the constants r and γ, we run the algorithm multiple times with different choice for r. Since
the algorithm is randomized, we repeat it several times to achieve a good solution with high probability.
Finally, since we do not know γ, we cannot directly specify the desired quota when solving the covering
problem. To alleviate all these intricacies, we use the following strategy to select a good placement: For a
fixed number of iterations, randomly sample an r between 0 and the diameter of G. Also sample a quota
Q between 0 and Qmax, the maximum submodular function value achieved by the unconstrained greedy
algorithm. Run PSPIEL with these parameters r and Q, and record the actual placement, as well as the
communication cost and sensing quality achieved by the proposed placement. After N iterations, these
values result in a cost-benefit curve, which can be used to identify a good cost-benefit tradeoff as done in
Section 11.5.

Also, note that a key step of PSPIEL is to run the greedy algorithm in each cluster. Using the technique
of lazy evaluations as discussed in Section 5.4, this step can often be drastically sped up.

11.5 Experiments

In order to evaluate our method, we computed sensor placements for three real-world problems: Indoor
illumination measurement, the temperature prediction task as described in our running example, and the
prediction of precipitation in the United States’ Pacific Northwest.

11.5.1 System implementation

We developed a complete system implementation of our sensor placement approach, based on Tmote
Sky motes. The data collection from the pilot deployment is based on the TinyOS SurgeTelos application,
which we extended to collect link quality information. Once per epoch, every sensor sends out a broadcast
message containing its unique identifier. Upon receipt of these messages, every sensor will compile a bit-
string, indicating from which neighbor it has heard in the current epoch. This transmission log information
will then be transmitted, along with the current sensor readings, via multi-hop routing to the base station.
After enough data has been collected, we learn GP models for sensing quality and communication cost,
which are subsequently used by the PSPIEL algorithm. Our implementation of PSPIEL uses a heuristi-
cally improved approximate k-MST algorithm as described by Johnson et al. [2000]. Using PSPIEL, we
generate multiple placements and plot them in a trade-off curve as described in Section 11.4.6. We then
identify an appropriate trade-off by selecting good placements from this trade-off curve.
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(a) Placements

Metric M20 pS19 pS12
RMS 91.0 51.2 71.5
MAD 67.0 31.3 45.1

Pred. c. 24.4 19.9 15.3
Real c. 22.9 21.8 15.0
(b) Costs and prediction qualities
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(c) Cost-benefit for light data
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Figure 11.5: Experimental results. (a) shows the expert placement (M20) as well as two placements
proposed by PSPIEL, (pS19) and (pS12). (b) presents root-mean-squares (RMS) and mean-absolute-
deviation (MAD) prediction errors for the manual placement and two placements from PSPIEL. (c)
compares the cost-benefit tradeoff curves for the light data GP on a 187 points grid. (d) compares the
root-mean-squares error for the light data.

11.5.2 Proof-of-concept study

As a proof-of-concept experiment, we deployed a network of 46 Tmote Sky motes in the Intelligent
Workplace at CMU. As a baseline deployment, we selected 20 locations (M20) that seemed to capture
the overall variation in light intensity. After collecting the total solar radiation data for 20 hours, we
learned GP models, and used PSPIEL to propose a placement of 19 motes (pS19). Figure 11.5(a) shows
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the 20 and 19 motes deployments. After deploying the competing placements, we collected data for 6
hours starting at 12 PM and compared the prediction accuracy for all placements, on validation data from
41 evenly distributed motes. Figure 11.5(b) presents the results. Interestingly, the proposed placement
(pS19) drastically reduces the prediction error by about 50%. This reduction can be explained by the fact
that there are two components in lighting: natural and artificial. Our baseline deployment placed sensors
spread throughout the environment, and in many intuitive locations near the windows. On the other hand,
PSPIEL decided not to explore the large western area, a part of the lab that was not occupied during the
night, and thus had little fluctuation with artificial lighting. Focusing on the eastern part, PSPIEL was
able to make sufficiently good natural light predictions throughout the lab, and better focus of the sources
of variation in artificial light. We repeated the evaluation for a 12 motes subsample (pS12), also proposed
by PSPIEL, which still provides better prediction than the manual placement of 20 nodes (M20), and
significantly lower communication cost. We also compared the predicted communication cost using the
GPs with the measured communication cost. Figure 11.5(b) shows that the prediction matches well to the
measurement. Figs. 11.5(c) and 11.5(d) show that PSPIEL outperforms the Greedy heuristic explained
below, both in the sensing quality and communication cost tradeoff and in predictive RMS error.

11.5.3 Indoor temperature measurements

In our second set of experiments, we used data from the deployment of 52 wireless sensor motes at Intel
Research, Berkeley, as introduced in Chapter 6. In addition to learning a model for the temperature,
we also learned a model for predicting communication costs. After learning the GP models from five
days of data, we used PSPIEL to propose improved sensor placements. We compared PSPIEL to two
heuristics, and—for small problems—with the optimal algorithm which exhaustively searches through
all possible deployments. The first heuristic, Greedy-Connect, runs the unconstrained greedy algorithm
(Algorithm 11.1), and then connects the selected sensors using a Steiner tree approximation. The second
heuristic, Distance-weighted Greedy, is inspired by an algorithm that provides near-optimal solutions to
the Quota-MST problem [Awerbuch et al., 1999]. This heuristic initially starts with all nodes in separate
clusters, and iteratively merges – using the shortest path – clusters maximizing the following greedy
criterion:

gain(C1, C2) =
mini∈1,2(F (C1 ∪ C2)− F (Ci))

dist(C1, C2)
.

The intuition for this greedy rule is that it tries to maximize the benefit-cost ratio for merging two clusters.
Since it works near-optimally in the modular case, we would hope it performs well in the submodular
case also. The algorithm stops after sufficiently large components are generated [c.f., Awerbuch et al.,
1999].

Figure 11.6(a) compares the performance of PSPIEL with the other algorithms on a small problem with
only 16 candidate locations. We used the empirical covariance and link qualities measured from 16 se-
lected sensors. In this small problem, we could explicitly compute the optimal solution by exhaustive
search. Figure 11.6(a) indicates that the performance of PSPIEL is significantly closer to the optimal so-
lution than any of the two heuristics. Figure 11.6(b) presents a comparison of the algorithms for selecting
placements on a 10× 10 grid. We used our GP models to predict the covariance and communication cost
for this discretization. From Figure 11.6(b) we can see that for very low quotas (less than 25% of the max-
imum), the algorithms performed very similarly. Also, for very large quotas (greater than 80%), PSPIEL
does not significantly outperform not Greedy-Connect, since, when the environment is densely covered,
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(a) Small temperature data set
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(b) Cost-benefit for temperature
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(c) Cost-benefit for precipitation

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Locality parameter r

M
od

ul
ar

 a
pp

ro
xi

m
at

io
n 

fa
ct

or
 γ

Random 
placements

pSPIEL

(d) (r, γ) for temperature data

Figure 11.6: Experimental results. (a) compares trade-off curves for a small subset of the temperature
data. (b) shows tradeoff curves for the temperature GPs on a 10x10 grid. (c) compares tradeoffs for
precipitation data from 167 weather stations. (d) compares the locality parameter r and the loss γ incurred
by the modular approximation for the temperature GPs.

communication is not an issue. In fact, if the information quota requires a very dense deployments, the
padded decomposition tends to strip away many nodes, leading PSPIEL to increase the locality constant r,
until r is large enough to include all nodes are in a single cluster. In this case, PSPIEL essentially reverts
back to the Greedy-Connect algorithm. In the important region between 25% and 80% however, PSPIEL
clearly outperforms the heuristics. Our results also indicate that in this region the steepest drop in out-of-
sample root mean squares (RMS) prediction accuracy occurs. This region corresponds to placements of
approximately 10− 20 sensors, an appropriate number for the target deployment Figure 11.1(a).

In order to study the effect of the locality parameter r, we generated padded decompositions for increasing
values of r. For random subsets of the padded nodes, and for placements from PSPIEL, we then compared
the modular approximation, i.e., the sum of the local objective values per cluster, with the mutual infor-
mation for the entire set of selected nodes. As r increases to values close to 2, the approximation factor γ
drastically increases from .3 to .7 and then flattens as r encompasses the the entire graph G. This suggests
that the value r = 2 is an appropriate choice for the locality parameter, since it only incurs a small ap-
proximation loss, but guarantees small diameters of the padded clusters, thereby keeping communication
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cost small. For placements proposed by PSPIEL, the approximation factor is even better.

11.5.4 Precipitation data

In our third application, our goal was to place sensors for the precipitation prediction task as introduced in
Chapter 6. Since we did not have communication costs for this data set, we assumed that the link quality
decayed as the inverse square of the distance, based on physical considerations. Figure 11.6(c) compares
the sensing quality – communication cost tradeoff curves for selecting placements from all 167 locations.
PSPIEL outperforms the heuristics up to very large quotas.

11.6 Robust Sensor Placements

In Section 11.5, we have seen that optimized placements can lead to much higher prediction accuracy
and lower communication cost as compared to manual placements. However, such optimization can lead
to negative effects if the model that the optimization is based on changes. For example, in our proof-
of-concept study, it is conceivable that the building usage patterns change, and the western part of the
building becomes occupied. In this case, the optimized placement will fail to capture important variations
in light distribution. Intuitively, the manual placement (M20) should be able to capture such change of
the environment better, as the sensors are more uniformly spread out. This intuitive assessment comes
from our prior assumptions that, since lights spreads uniformly over space, a regularly-spaced distributed
placement should be quite informative.

How can we place sensors that perform well both according to the current state of the world, as well
as to possible future changes? One possibility is to require the sensor placement to perform well both
according to our prior assumptions (i.e., favoring uniform placements) and to the data we collected so
far. We can formalize this idea by defining two separate sensing quality functions, F1 and F2. F1(A)
measures the informativeness of placement A under the isotropic prior. F2 measures the informativeness
according to the collected data, as described before. Assuming a priori that the phenomenon will always
uniformly spread in the environment, we could choose F1 to be the mutual information of an isotropic
Gaussian process, as in Equation (6.4). Optimizing according to F1 only would lead to sensor placements
that are (asymptotically) distributed on a regular grid, and we would hence expect such placements to be
robust against changes in the environment. F2 is the mutual information according to the complex, data-
dependent, nonstationary Gaussian process as considered in the earlier parts of this chapter. Optimizing for
F2 would lead to placements that exploit the correlations in the data collected from the pilot deployment.
Based on these two objective functions, we would then like to find a placement A that jointly optimizes
F1 and F2, i.e., which is both robust, and exploits correlations estimated from data.

More generally, we would like to solve the robust optimization problem

min
A

C(A) such that for all i,Fi(A) ≥ Q, (11.4)

where F1, . . . , Fm is a collection of monotonic submodular functions. Note that, unlike problem (11.1), in
problem (11.4) there are now multiple submodular constraints F1(A) ≥ Q, . . . , Fm(A) ≥ Q. We can use
the same idea that we used to develop the SATURATE algorithm in Chapter 10, which allows us to reduce
problem (11.4) to problem (11.1): For each function Fi, define a new truncated objective function

F̂i,Q(A) = min{Fi(A), Q}.
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It holds that whenever Fi is monotonic and submodular, F̂i,Q is monotonic and submodular as well [Fujito,
2000]. As a nonnegative linear combination of monotonic submodular functions, the function

FQ(A) =
1
m

∑
i

F̂i,Q(A)

is monotonic submodular as well. Furthermore, it holds that FQ(A) = Q if and only if Fi(A) ≥ Q for
all i. Hence, instead of problem (11.4), we can equivalently solve

min
A

C(A) such that FQ(A) ≥ Q,

which is an instance of problem (11.1). However, we cannot readily apply PSPIEL to this problem, since
it is only guaranteed to return a solution such that, in expectation, FQ(A) ≥ βQ, for β = (1 − 1/e)γ/2
(from Theorem 11.1). Unfortunately, FQ(A) ≥ βQ does not guarantee that Fi(A) ≥ βQ for each
i.

However, we can nevertheless use PSPIEL to solve problem (11.4). We first present an overview of our
algorithm, and then discuss the details in Section 11.6.1.

1. We first convert PSPIEL into an algorithm, for which Theorem 11.1 holds not just in expectation,
but with high probability. For arbitrary δ > 0, this new algorithm will be guaranteed to provide,
with probability at least 1− δ, a solution A such that FQ(A) ≥ βQ/2.

2. Call Qtogo = Q − FQ(A) the remaining quota that still needs to be covered. When applying
PSPIEL once, Qtogo ≤ Q(1− β/2). We show how we can iteratively apply PSPIEL to a modified
objective function to obtain larger and larger setsA such that after k iterationsQtogo ≤ Q(1−β/2)k.
Hence, after logarithmically many iterations, Qtogo ≤ ε/m. This implies that Fi(A) ≥ Q(1 − ε)
for all i.

11.6.1 Algorithm details

We first need to turn PSPIEL into an algorithm that solves problem (11.1) with high probability 1 − δ.
Let M be an upper bound on the optimal value. Then each run of PSPIEL returns a solution Ai with
0 ≤ F (Ai) ≤M .
Lemma 11.3. We need

N =

⌈
1
2

(
2M
Qβ

)2

log
1
δ

⌉

samples to guarantee a sample Ai with FQ(Ai) ≥ βQ
2 with probability 1− δ.

In order to guarantee that mini Fi(Ai) ≥ (1−ε)Q, we follow the following strategy: Let F̃ (1) = FQ. We
invoke random sampling of PSPIEL applied to F̃ (1) until we obtain a solution A1 such that F̃ (1)(A1) ≥
βQ
2 . We then define a new monotonic submodular function, F̃ (2)(A) = FQ(A ∪A1)− FQ(A1). F̃ (2) is

called a residual submodular function. We then repeatedly run PSPIEL to obtain a solution A2 such that

F̃ (2)(A2) ≥ β(Q−F̃1(A1))
2 . After k steps, we define the function

F̃ (k+1)(A) = FQ(A ∪A1 ∪ · · · ∪ Ak)− FQ(A1 ∪ · · · ∪ Ak),
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and use PSPIEL to obtain a solution such that

F̃ (k+1)(Ak+1) ≥
β(Q− FQ(A1 ∪ · · · ∪ Ak))

2
.

Note that after k steps, it holds that (Q− FQ(A1 ∪ · · · ∪ Ak) ≤ Q(1− 1
2β)k, and hence after

k =

⌈
log m

ε

log 2
2−β

⌉

iterations it holds that
F q(A1 ∪ · · · ∪ Ak) ≥ Q(1− ε

m
),

and hence Fi(A1 ∪ · · · ∪ Ak) ≥ Q(1− ε). We choose δ small enough to apply the union bound over all
k trials. Algorithm 11.3 presents pseudo-code for our approach.

We summarize our analysis in the following Theorem:
Theorem 11.4. Given a graph G = (V, E), constants ε, δ,Q and (r, γ)-local monotone submodular
functions F1, . . . , Fm bounded above by M , we can find a tree T with cost

C(T ) = O(r dim(V,E))×

⌈
log m

ε

log 2
2−Ω(γ)

⌉
× `∗,

spanning a set A with Fi(A)≥Q(1− ε) for all i. The algorithm is randomized and runs in expected time
polynomial in the size of the problem instance and polynomial in M

Q .

Hence, for an arbitrary ε > 0 we can, in expected polynomial time, find a sensor placement with sensing
quality Fi(A) ≥ Q(1− ε). The cost of the solution C(T ) grows logarithmically in m

ε which depends on
the number m of objective functions.

11.6.2 Experiments on robust optimization

We use our robust version of PSPIEL to make the sensor placement in our proof-of-concept study more
robust. We choose F1(A) as the mutual information obtained in an isotropic Gaussian process with
kernel (6.4) and fixed bandwidth h. As F2, we choose the nonstationary GP learned from the pilot deploy-
ment, as in Section 11.5.

In order to model F1 using an isotropic GP (modeling the uniform spreading of light), we need to specify
the bandwidth parameter h in (6.4). This bandwidth parameter encodes our smoothness assumptions about
the world. The smaller h, the quicker the assumed correlation decays with distance, and hence the more
rough we assume the phenomenon to be. In addition, the smaller h, the more sensors we need in order to
obtain a high level of mutual information. This means, that for small values of h, the uninformed sensing
quality F1 dominates the optimization. For large values of h however, the fewer sensors we need to obtain
high sensing quality F1, and hence F2 dominates the objective value. Hence, by varying h, we can vary the
amount of robustness. Figure 11.7 shows different sensor placements obtained by choosing an increasing
bandwidth h. For small bandwidths, the placements are basically uniformly spread out over the space. For
high bandwidths, the robust places resemble the non-robust placement pS19 (from Section 11.5).
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Algorithm 11.3: Algorithm for robust sensor placements.
Input: Graph (V, E), F1, . . . , Fm, Q, M , β, ε, δ
Output: Placement A such that Fi(A) ≥ Q for all i with probability 1− δ.
begin

FQ(A)← 1
m

∑m
i=1 min{Fi(A), Q};

F̃ (1) ← FQ;
A ← ∅;
k ← 0;
while FQ(A) ≤ Q(1− ε/m) do

k ← k + 1;
F̃ (k)(A′)← FQ(A′ ∪ A)− FQ(A);
Qtogo ← Q− FQ(A);
repeat
A′ ← pSPIEL(F̃ (k), Qtogo)

until F̃ (k)(A′) ≥ Qtogoβ/2 ;
A ← A∪A′;

end
end

We also compare the manual placement (M20) and the non-robust PSPIEL placement (pS19) of Sec-
tion 11.5 with the robust solutions. For each robust placement A, we compute mini Fi(A), which mea-
sures how well the placement performs with respect to both the data-driven model F2 and the uniform
prior F1. The placement in Figure 11.7(b) maximizes this score over all the robust placements, indi-
cating that Figure 11.7(b) is a good compromise between the data-driven model and prior assumptions.
Figure 11.8 compares the manual placement (M20) with both optimized placements. Note that while
the robust placement obtains higher RMS error and communication cost than the non-robust placement
(pS19), it still performs drastically better than the manual placement (M20). Also note that the robust-
ness scores mini Fi(A) of both the robust and the manual placement are higher than for the non-robust
placement (pS19).

11.7 Modular approximation for other combinatorial problems: Informa-
tive path planning

The key idea behind PSPIEL was to reduce the problem of maximizing sensing quality, a submodular
function, to the problem of maximizing a modular function on the Modular Approximation Graph, which
we can solve using existing combinatorial algorithms for modular functions. This idea of reducing a local-
submodular optimization to a modular optimization is quite powerful. For example, we can use the same
algorithmic idea to solve other local-submodular combinatorial optimization problems. In the following,
we will discuss one such example: Applying PSPIEL for informative path planning.

Consider the setting where, instead of deploying a wireless sensor network, we use a robot to collect
observations. In this case, we also want to identify locationsA of high sensing quality, but the robot needs
to travel between successive sensing location. We can model this setting by specifying a graph G = (V, E)
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(a)

(b) (c)

(d) (e)

Figure 11.7: Experimental results. (a) shows the non-robust placement. (b-e) show placements optimized
using Algorithm 11.3 where F2 is the mutual information according to the pilot deployment, and F1 is the
mutual information w.r.t. an isotropic GP with different bandwidths: pS/S19-x refers to the result when
using a bandwidth proportional to x. Notice that with decreasing bandwidths, the placements become
more and more regularly-spaced.

over the sensing locations, and our goal will be to find an informative path P = (a1, . . . , ak) spanning
the locations A ⊆ P . In this setting, rather than modeling the communication cost, the cost C(P) is the
length of the path P , i.e.,

C(P) =
k−1∑
i=1

C({ai, ai+1}).

Similarly, C(A) is the cost of the shortest path spanning nodes A. Using this modified notion of cost, we
designate specific nodes s, t ∈ V as starting and ending locations, i.e., require that a1 = s and ak = t, and
solve

max
P

F (P) subject to C(P) ≤ B and P is an s− t path in G (11.5)

For modular functions F , this problem is known as the s − t orienteering problem [c.f., Chekuri et al.,
2008]. For the more general case where F is submodular, so far for this problem only an algorithm with
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Figure 11.8: Experimental results comparing the manual placement with 20 sensors (left) to the ro-
bust (center) and non-robust (right) placements obtained using PSPIEL. For each placement, three bars
are shown, measuring improvement in RMS error, communication cost and robustness compared to the
manual solution as baseline (which is normalized to 1). Higher values are better. Both the robust and
non-robust placements outperform the manual deployment in communication cost and prediction error.
The robust placement also obtains higher robustness score than the manual deployment. The robustness
score of the non-robust placement is even lower than that of the manual placement.

quasipolynomial running time was proposed by Chekuri and Pal [2005], which has been extended and
used for informative path planning by Singh et al. [2007].

Using an approximate algorithm for s− t orienteering on the modular approximation graph, we obtain the
first polynomial time approximation algorithm for (r, γ)-local submodular orienteering.
Theorem 11.5. Given a graph G = (V, E), s, t ∈ V and an (r, γ)-local monotone submodular function
F , PSPIEL will find an s − t path P with cost O(r dim(V, E)) × `∗, spanning a set A with expected
sensing quality F (A) ≥ Ω(γ)× F (A∗). The algorithm is randomized and runs in polynomial-time.

Singh et al. [2007] proved that any κ-approximate algorithm for submodular orienteering can be extended
to an efficient κ + 1-approximate algorithm for the more complex problem planning multiple paths (for
multiple robots). This result can immediately be used to extend PSPIEL to the setting of multiple robot
informative path planning.

11.8 Related work

In this section, we relate our approach to work in several areas.
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11.8.1 Sensor placement to monitor spatial phenomena

The problem of selecting observations for monitoring spatial phenomena has been investigated extensively
in geostatistics (c.f., Cressie [1991] for an overview), and more generally (Bayesian) experimental design
[c.f., Chaloner and Verdinelli, 1995]. Heuristics for actively selecting observations in GPs in order to
achieve high mutual information have been proposed by Caselton and Zidek [1984]. Sensor selection
considering both the value of information together with the cost of acquiring the information in the context
of sensor networks was first formalized by Zhao et al. [2002]. These approaches however do not consider
communication cost as done in this chapter.

11.8.2 Sensor placement under communication constraints

Existing work on sensor placement under communication constraints [Funke et al., 04, Gupta et al., 2003b,
Kar and Banerjee, 2003] has considered the problem mainly from a geometric perspective: Sensors have
a fixed sensing region, such as a disc with a certain radius, and can only communicate with other sensors
that are at most a specified distance apart. In addition, it is assumed that two sensors at fixed locations
can either perfectly communicate or not communicate at all. As argued in the introduction these assump-
tions are problematic. By using probabilistic models for both the phenomenon and the link qualities, our
PSPIEL approach avoids these strong assumptions.

11.8.3 Statistical models for modeling link quality

Often, it is assumed that a transmitting node has perfect connectivity with all nodes inside a given radius
and zero connectivity with nodes outside that disk [Bai et al., 2006, Cerpa et al., 2005]. However, depend-
ing on how the disk radius is chosen, such disk models may not capture actual communication patterns
in one particular network. In order to allow more flexibility, Cerpa et al. [2005] use a probabilistic disk
model. Like the regular disk model, it assumes connectivity is a function only of geometric distance be-
tween motes but unlike that model, it can predict a real-valued connectivity value, that is, a probability
of packet reception that is not zero or one. However, their isotropic approach does not adapt to a specific
environment (containing obstacles like walls, doors, furniture, etc.).

In order to account for more complex behavior, physical models like radio propagation or path loss equa-
tions were obtained from real-data and describes the signal quality fall off away from a transmitting sensor
[Friis, 1946, Rappaport, 2000]. These equations can model complex communication behaviors with pa-
rameters encoding for the number of walls, the construction materials of the clutter, multipath signal
effects, and microwave interference [Morrow, 2004, Rappaport, 2000]. Unfortunately, this deployment-
specific information can be as hard to model and obtain as the packet transmission data needed for data-
driven approaches.

Our link quality model described in Section 11.1.1 allows to both model complex, environment dependent
behavior, and is completely data driven (i.e., no deployment-specific information needs to be manually
supplied). Extending our link quality model, Ertin [2007] proposed an approach for learning Gaussian
Process models for link quality estimation, explicitly taking into account that fact that sensor measure-
ments are lost (censored). Note that our PSPIEL approach can use such alternative approaches for esti-
mating link quality as well.
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11.8.4 Related work on submodular optimization

Problem (11.1) for an arbitrary integer valued monotonic submodular function F is called the polyma-
troid Steiner tree problem [Calinescu and Zelikovsky, 2005]. Calinescu and Zelikovsky [2005] developed
a polylogarithmic approximation algorithm for this problem. However, their approach does not exploit lo-
cality, and hence leads to approximation guarantees that are worse than those obtained by PSPIEL (which
solves the problem for all (r, γ)-local submodular functions F ) if locality is present. The submodular
orienteering problem, i.e., the problem of finding a path of bounded length maximizing a submodular
sensing quality function, was first considered by Chekuri and Pal [2005], who developed an algorithm
with quasipolynomial running time. While providing important theoretical insights, their approach does
not scale to practical sensing problems. Singh et al. [2007] proposed a spatial decomposition approach as
well as branch and bound techniques to significantly speed up the approach of Chekuri and Pal [2005].
They also applied it to informative path planning in the context of environmental monitoring problems.
However, their approach still has worst-case quasipolynomial running time. The approach presented in
Section 11.7 is the first efficient (polynomial-time) algorithm for submodular orienteering, in the case
where the objective function F is (r, γ)-local.

11.9 Summary

In this chapter, we proposed a unified approach for robust placement of wireless sensor networks. As in
Chapter 6, our approach uses Gaussian Processes, which can be chosen from expert knowledge or learned
from an initial deployment. We propose to use GPs not only to model the monitored phenomena, but
also for predicting communication costs. We presented a polynomial time algorithm – PSPIEL– selecting
Sensor Placements at Informative and cost-Effective Locations. Our algorithm provides strong theoretical
performance guarantees. Our algorithm is based on a new technique, the modular approximation graph,
that is more general and can also be used, for example, to plan informative paths for robots. We extended
our PSPIEL approach to obtain sensor placements that are robust against changes in the environment.
We built a complete implementation on Tmote Sky motes and extensively evaluated our approach on
real-world placement problems. Our empirical evaluation shows that PSPIEL significantly outperforms
existing methods.
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Chapter 12

Simultaneous Placement and Scheduling of
Sensors

As argued in the previous chapters, when monitoring spatial phenomena, such as road speeds on a high-
way, deciding where to place a small number of sensors to obtain best prediction accuracy is an important
task. Figure 12.1 shows a Sensys Networks wireless traffic sensor [Haoui et al., 2008], that provides 30
second aggregate speed, flow and vehicle density measurements. Currently the system is being deployed
by Caltrans at different sites in California, including highways and arterial roads. When using such wire-
less sensor networks, power consumption is a key constraint, since every measurement drains the battery.
For applications such as road speed monitoring, a minimum battery lifetime is required to ensure feasibil-
ity of the sensor network deployment. One approach to meeting such lifetime requirements is to deploy
few nodes with large batteries. However, such an approach can be sensitive to node failures. Addition-
ally, packaging constraints can limit the size of the battery deployed with the nodes. For these and other
reasons, it can be more effective to deploy a larger number of nodes with smaller batteries, that are acti-
vated only a fraction of the time. Hence, to improve the lifetime of such a sensor network, the problem of
scheduling becomes of crucial importance: Given a fixed placement of sensors, when should we turn each
sensor on in order to obtain high monitoring performance over all time steps? One approach that has been
found effective in the past is to partition the sensors into k groups [Abrams et al., 2004, Deshpande et al.,
2008, Koushanfary et al., 2006]. By activating a different group of sensors at each time step and cyclicly
shifting through these groups, the network lifetime can effectively be increased by a factor of k. In the
traffic network application, current studies indicate that an increase by a factor of k = 4 would be required
to make sensor deployment an economically feasible option (c.f., Section 12.5 for more details).

Traditionally, sensor placement and sensor scheduling have been considered separately from each other –
one first decides where to place the sensors, and then when to activate them. In this chapter, we present
an efficient algorithm, ESPASS (for efficient Simultaneous Placement and Scheduling of Sensors), that
jointly optimizes the sensor placement and the sensor schedule. We prove that our algorithm provides a
constant factor approximation to the optimal solution of this NP-hard optimization problem.

Most existing approaches to sensor placement and scheduling associate a fixed sensing region with every
sensor, and then attempt to maximize the number of regions covered in every group of sensors [c.f.,
Abrams et al., 2004, Deshpande et al., 2008, Hochbaum and Maas, 1985]. In complex applications such
as traffic or environmental monitoring however, the goal of sensor placement is a prediction problem,
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Figure 12.1: Sensys Networks wireless traffic sensor. (left) encased unit, (middle) sensor deployed in
pavement, (right) GPRS/CDMA base station.

where one intends to predict the sensed phenomenon at the locations where no sensors are placed. Our
algorithm applies to such settings where the sensing quality of a set of sensors is measured, e.g., in the
improvement of prediction accuracy (more formally, our algorithm applies whenever the sensing quality
function satisfies submodularity, an intuitive diminishing returns property).

In contrast to most existing algorithms that optimize scheduling for average case performance, our ap-
proach furthermore provides a schedule that performs uniformly well over time, hence leading to a well-
balanced performance of the sensor network. For security-critical applications such as outbreak detection,
such balanced performance is a crucial requirement not met by existing algorithms. In fact, our experi-
mental results show that average-case optimal solutions can lead to arbitrarily unbalanced performance,
but optimizing for balanced performance (using ESPASS) typically leads to good average-case perfor-
mance.

Deploying a large number of scheduled sensors has the additional benefit that it allows trading off power
and accuracy. The deployed network might have several modes of operation: a scheduled mode of op-
eration, where only a small fraction of sensors is turned on, and a “high density” mode where all (or a
larger fraction of) sensors are activated. For example, in traffic monitoring, once a traffic congestion is
detected (during scheduled mode), the high density mode could be used to accurately identify the bound-
ary of the congestion. We show how our algorithm can be extended to support such a power-accuracy
tradeoff.

We present extensive empirical studies on several case studies, illustrating the versatility of our algorithm.
These case studies include sensing tasks such as traffic and environmental monitoring and placing sensors
for outbreak detection and selecting informative weblogs to read on the Internet. Our results show that si-
multaneously placing and scheduling results in drastically improved performance compared to the setting
where optimization over the placement and the scheduling are performed separately.

In summary, our main contributions are:

• We study the problem of simultaneously placing and scheduling sensors as a novel optimization
problem.

• We develop ESPASS, an efficient approximation algorithm for this problem, that applies to a variety
of realistic sensing quality functions (such as area coverage, variance reduction, outbreak detection,
etc.). Our algorithm is guaranteed to provide a near-optimal solution, that obtains at least a constant
fraction of the optimal sensing quality. ESPASS furthermore allows to trade off power consumption
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and accuracy.

• We perform several extensive case studies on real sensing problems in traffic and environmental
monitoring as well as outbreak detection, demonstrating the effectiveness of our approach.

12.1 Problem statement

We will first separately introduce the sensor placement and scheduling problems, and then formalize the
problem of simultaneously placing and scheduling sensors.

12.1.1 Sensor placement

As discussed in Chapter 6, in sensor placement, we are given a finite set V of possible locations where
sensors can be placed. Our goal is to select a small subset A ⊆ V of locations to place sensors at,
that maximizes a sensing quality function F (A). There are several different notions of sensing quality
that we might want to optimize, each depending on the particular sensing task. For example, we can
associate sensing regions with every sensor, and F (A) can measure the total area covered when placing
sensors at locations A. In complex applications such as the traffic monitoring problem, we are interested
in optimizing the prediction accuracy when obtaining measurements from locations A. In this setting,
we can model the state of the world (e.g., the traffic condition at different locations) using a collection of
random variables XV , one variable Xs for each location s ∈ V . We can then use a probabilistic model
(such as a Gaussian Process which is frequently used in geostatistics, c.f., Cressie [1991]) that models a
joint probability distribution P (XV) over the possible locations. Upon acquiring measurements XA = xA
at a subset of locations A, we can then predict the phenomenon at the unobserved locations using the
conditional distribution P (XV\A | XA = xA). We can then use the expected mean squared error,

Var(XV | XA = xA) =
1
|V|
∑
s∈V

E
[
(Xs − E[Xs | xA])2 | xA

]
to quantify the uncertainty in this prediction.

In this chapter, we will mainly focus on the expected reduction in variance at the unobserved loca-
tions,

F (A) = Var(XV)−
∫
P (xA) Var(XV | XA = xA)dxA,

as introduced in Section 2.3. This sensing quality function has been found useful for sensor selection
[c.f., Deshpande et al., 2004, Krause et al., 2008c] and experimental design [c.f., Chaloner and Verdinelli,
1995].

As we have seen in Part II of this Thesis, many practical notions of sensing quality, such as the area
covered are submodular (c.f., Chapter 5). As recently shown by Das and Kempe [2008], this property is
satisfied by the variance reduction objective for Gaussian distributions under certain assumptions about the
covariance. Recall that a set function F is called submodular, if for all A ⊆ B ⊆ V and s ∈ V \ B

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B),
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i.e., adding s to a small setA helps more than adding s to the superset B. In addition, these sensing quality
functions are nondecreasing: For all A ⊆ B it holds that F (A) ≤ F (B), i.e., adding more sensors can
only improve the sensing quality.

Based on this notion of a nondecreasing submodular sensing quality function, the sensor placement prob-
lem then is

max
A

F (A) such that |A| ≤ m,

i.e., we want to find a set A of at most m locations to place sensors maximizing the sensing quality
F .

12.1.2 Sensor scheduling

In sensor scheduling, we are given a sensor placement (i.e., locations A), and our goal is to assign each
sensor s ∈ A one of k time slots. This assignment partitions the set A into disjoint sets A1, . . . ,Ak,
where At ⊆ A is the subset of sensors that have been assigned slot t. A round-robin schedule can then be
applied that cycles through the time slots, and activates sensorsAt at time t. Since each sensor is active at
only one out of k time slots, this procedure effectively increases the lifetime of the network by a factor of
k. How can we quantify the value of a schedule A = (A1, . . . ,Ak)? For each group At, we can compute
the sensing quality F (At)1. One possibility would then be to optimize for the average performance over
time,

max
A1,...,Ak

1
k

k∑
t=1

F (At).

However, as we show in our experiments, if we optimize for the average case performance, it can happen
that a few of the time slots are very poorly covered, i.e., there is a time t such that F (At) is very low.
For security-critical applications, this can be problematic. Instead, we can also optimize for a balanced
schedule,

max
A1,...,Ak

min
t
F (At),

that performs uniformly well over time.

Note that the above formulation of the scheduling problem allows to handle settings where each sensor
can be active at r ≥ 1 timesteps. In this setting, we simply define a new ground set A′ = A× {1, . . . , r}
where the pair (s, i) ∈ A′ refers to the i-th activation of sensor s. The sensing quality function is modified
as F ′(A′j) = F ({s : ∃i(s, i) ∈ A′j}).

12.1.3 Simultaneous placement and scheduling

Both sensor placement and sensor scheduling have been studied separately from each other in the past.
One approach towards placement and scheduling would be to first use an algorithm (such as the CELF
algorithm proposed in Chapter 5) to find a sensor placement A, and then use a separate algorithm (such
as the mixed integer approach of Koushanfary et al. [2006]) to find a schedule A1, . . . ,Ak. We call this
approach a stage-wise approach, and illustrate it in Figures 12.2(a) and 12.2(b).

1Note that we assume the same sensing quality function F for each time step. This assumption has been made in the past
[c.f., Abrams et al., 2004, Koushanfary et al., 2006], and is reasonable for many monitoring tasks.
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Instead of separating placement and scheduling, we can simultaneously optimize for the placement and
the schedule. Suppose we have resources to purchase m sensors, and we would like to extend the network
lifetime by a factor of k. Our goal would then be to find k disjoint sets A1, . . . ,Ak ⊆ V , such that
together these sets contain at most m locations, i.e., |

⋃
tAt| ≤ m. We call this problem the SPASS

problem, for simultaneous placement and scheduling of sensors. Again, we can consider the average-case
performance,

max
A1...Ak

1
k

k∑
t=1

F (At) s.t. Ai ∩ Aj = ∅ if i 6= j and | ∪
t
At| ≤ m (12.1)

and the balanced objective:

max
A1...Ak

min
t
F (At) s.t. Ai ∩ Aj = ∅ if i 6= j and | ∪

t
At| ≤ m. (12.2)

By performing this simultaneous optimization, we can obtain very different solutions, as illustrated in
Figure 12.2(c). In Section 12.5, we will show that this simultaneous approach can lead to drastically
improved performance as compared to the traditional, stage-wise approach. In this chapter, we present
ESPASS, an efficient approximation algorithm with strong theoretical guarantees for this problem.

The placement and schedule in Figure 12.2(c) has the property that the sensors selected at each time step
share very similar locations, and hence perform roughly equally well. However, if activated all at the
same time, the “high-density” performance F (A1 ∪ · · · ∪ Ak) is much lower than that of the placement
in Figure 12.2(a). We also develop an algorithm, MCSPASS, that leads to placements which perform
well both in scheduled and in high-density mode. Figure 12.2(d) presents the solution obtained for the
MCSPASS algorithm.

Note that instead of fixing the number of time slots, we could also specify a desired accuracy constraint
Q and then ask for the maximum lifetime solution, i.e., the largest number k of time slots such that a
solution with minimum (or average) sensing quality Q is obtained. Clearly, an algorithm that solves
Problem (12.2) (or Problem (12.1)) could be used to solve this alternative problem, by simply binary
searching over possible values for k2.

Further note that it is possible to allow each sensor to be active at r ≥ 1 timesteps by using the modification
described in Section 12.1.2.

2However, in case an approximate algorithm is used such as the ESPASS algorithm developed in this chapter, its guarantees
are not necessarily preserved.
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(a) Optimized sensor placement (b) Optimized schedule for placement (a)

(c) Simultaneous placement and schedule (d) Multicriterion solution

Figure 12.2: In the stage-wise approach, sensors are first deployed (a), and the deployed sensors are then
scheduled (b, sensors assigned to the same time slot are drawn using the same color and marker). In the
simultaneous approach, we jointly optimize over placement and schedule (c). (d) Multicriterion solution
to Problem (12.4) (λ = .25) that performs well both in scheduled and high-density mode.
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12.2 A naive greedy algorithm

We will first study the problem of optimizing the average performance over time, i.e., Problem (12.1),
for a fixed nondecreasing submodular sensing quality function F . Considering the fact that simultane-
ously placing and scheduling is a strict generalization of sensor placement, which itself is NP-hard (c.f.,
Theorem 6.2), we cannot expect to efficiently find the optimal solution to Problem (12.1) in general.

Instead, we will use the following intuitive greedy algorithm that we call GPC for Greedy Average-case
Placement and Scheduling. At every round, GPC picks a time slot t and location s which increases
the total sensing quality the most, until m location/time-slot pairs have been picked. It is formalized as
Algorithm 12.1.

Algorithm 12.1: The greedy average-case placement and scheduling (GPC) algorithm.
Algorithm GPC (F , V , k, m)
At ← ∅ for all t;
for i = 1 to m do

foreach s ∈ V \ (A1 ∪ · · · ∪ Ak), 1 ≤ t ≤ k do
δt,s ← F (At ∪ {s})− F (At);1

end
(t∗, s∗)← argmaxt,s δt,s;
At∗ ← At∗ ∪ {s∗};

end

12.2.1 Theoretical guarantee

Perhaps surprisingly, we can show that this simple algorithm provides near-optimal solutions for Prob-
lem (12.1). In fact, it generalizes the distributed Set-k Cover algorithm proposed by Abrams et al. [2004]
to arbitrary submodular sensing quality functions F , and to the setting where at most m sensors can be
selected in total.
Theorem 12.1. For any nondecreasing, and submodular function F , GPC returns a solutionA1, . . . ,Ak

s.t.
1
k

∑
t

F (At) ≥
1
2

max
A′

1
k

∑
t

F (A′t).

GPC requires at most O (kmn) evaluations of F .

The proofs of Lemma 12.3 and all other results are given in the Appendix. The key observation is that
Problem (12.1) is an instance of maximizing a submodular function subject to a matroid constraint (c.f., the
Appendix for details). A fundamental result by Fisher et al. [1978] then proves that the greedy algorithm
returns a solution that obtains at least one half of the optimal average-case score. Matroids for sensor
scheduling have been considered before by Williams et al. [2007].
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12.2.2 The greedy algorithm can lead to unbalanced solutions

If a sensor placement and schedule is sought that performs well “on-average” over time, GPC performs
well. However, even though the average performance over time, 1

k

∑
t F (At), is high, the performance at

some individual timesteps t′ can be very poor, and hence the schedule can be unfair. In security-critical
applications, where high performance is required at all times, this behavior can be problematic. In such
settings, we might be interested in optimizing the balanced performance over time, mint F (At). This
optimization task was raised as an open problem by [Abrams et al., 2004].

A first idea would be to try to modify the GPC algorithm to directly optimize this balanced performance,
i.e., replace Line 14 in Algorithm 12.1 by

δt,s ← min
j
F (A+(t,s)

j )−min
j
F (Aj),

whereA+(t,s) is the solution obtained by adding location s to time slotAt in solutionA = A1∪ · · ·∪Ak.
We call this modified algorithm the GBPS algorithm (for Greedy Balanced Placement and Scheduling).
Unfortunately, both GPC and GBPS can perform arbitrarily badly. Consider a simple scenario with
three locations, V = {a, b, c}, and the nondecreasing submodular function F (A) = |A|. We want to
partition V into three timesteps, i.e., k = 3 and m = 3. Here, the optimal solution would be to pick
A∗1 = {a}, A∗2 = {b} and A∗3 = {c}. However, both GPC and GBPS would (ties broken unfavorably)
pick A1 = {a, b, c} and A2 = A3 = ∅, obtaining a minimum score of 0.

Unfortunately, this poor performance is not just a theoretical example – in Section 12.5 we demonstrate it
empirically on real sensing tasks.

12.3 The ESPASS algorithm

In the following, we will develop an efficient algorithm, ESPASS (for efficient Simultaneous Placement
and Scheduling of Sensors), that, as we will show in Section 12.3.2, is guaranteed to provide a near-
optimal solution to the Problem (12.2). To the best of our knowledge, our algorithm is the first algorithm
with theoretical guarantees for this general problem, hence partly resolving the open problem described
by Abrams et al. [2004].

12.3.1 Algorithm overview

We start with an outline of our algorithm, and then proceed to discuss each step more formally.

Our high-level goal will be to reduce the problem of optimizing the balanced objective into a sequence
of modified optimization problems involving an average-case objective, which we can approximately
solve using GPC. This idea is based on the following intuition: Consider a truncated objective function
Fc(A) = min{F (A), c}. The key observation is that, for any constant c, it holds that

min
t
F (At) ≥ c⇔

1
k

k∑
t=1

Fc(At) = c,
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Figure 12.3: Illustration of our ESPASS algorithm. The algorithm first “guesses” (binary searches for)
the optimal value c. (a) Then, big elements s where F ({s}) ≥ βc are allocated to separate buckets. (b)
Next, the remaining small elements are allocated to empty buckets using the GPC algorithm. (c,d) Finally,
elements are reallocated until all buckets are satisfied.

i.e., the minimum score is greater than or equal to c if and only if the average truncated score is c. In
Chapter 10, we have already successfully applied this observation in order to develop the SATURATE

algorithm.

Now suppose someone tells us the value c∗ attained by an optimal solution, i.e., maxA mint F (At) = c∗.
By the above observation this problem is equivalent to solving

max
A

1
k

k∑
t=1

Fc∗(At). (12.3)

It can be shown [c.f., Fujito, 2000] that for c ≥ 0, the truncated objective function Fc remains nondecreas-
ing and submodular. Hence, Problem (12.3) is an instance of the average-case Problem (12.1). Now we
face the challenge that we do not generally know the optimal value c∗. We could use a simple binary search
procedure to find this optimal value. Hence, if we could optimally solve the nondecreasing submodular
average-case Problem (12.1), we would obtain an optimal solution to the balanced Problem (12.2).
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Unfortunately, as shown in Section 12.2.1, solving the average-case problem is NP-hard, and, using GPC,
we can only solve it approximately, obtaining a solution that achieves at least half of the optimal value. In
the following, we will show how we can turn this approximate solution for the average-case problem into
a near-optimal solution for the balanced problem.

Our algorithm will maintain one “bucket” At ⊆ V for each time slot t. Since our goal is to develop an
approximation algorithm achieving at least a fraction β > 0 of the optimal sensing quality, we need to
allocate m elements s ∈ V to the k buckets such that F (At) ≥ βc∗ for all buckets At. Hereby, β is a
constant that we will specify later. We call a bucket “satisfied” if F (At) ≥ βc∗, “unsatisfied” otherwise.
Here is an outline of our ESPASS algorithm, Figure 12.3 presents an illustration.

1. “Guess” the optimal value c.

2. Call an element s ∈ V “big” if Fc({s}) ≥ βc and “small” otherwise. Put each big element into a
separate bucket (c.f., Figure 12.3(a)). From now on, we ignore those satisfied buckets, and focus on
the unsatisfied buckets.

3. Run GPC to optimize Fc and allocate the small elements to the unsatisfied buckets (c.f., Fig-
ure 12.3(b)).

4. Pick a “satisfied” bucket At that contains sufficiently many elements, and reallocate enough ele-
ments to an “unsatisfied” bucket to make it satisfied (c.f., Figures 12.3(c) and 12.3(d)). Repeat step
3 until no more buckets are unsatisfied or no more reallocation is possible. We will show that this
reallocation will always terminate.

5. If all buckets are satisfied, return to step 1 with a more optimistic (higher) “guess” for c. If at least
one bucket remains unsatisfied, return to step 1 with a more pessimistic (lower) guess for c.

ESPASS terminates with a value for c such that all buckets t have been assigned elements At such that
F (At) ≥ βc. It guarantees that upon termination, c is an upper bound on the value of the optimal solution,
hence providing a β approximation guarantee. In Section 12.3.2 we will show that β = 1

6 suffices. In
summary, we have the following guarantee about ESPASS:
Theorem 12.2. For any nondecreasing submodular function F and constant ε > 0, ESPASS, using GPC
as subroutine, returns a solution A1, . . . ,Ak such that

min
t
F (At) ≥

1
6

max
A′

min
t
F (A′t)− ε.

ESPASS requires at most O ((1 + log2 F (V)/ε)kmn) evaluations of F .

Hereby, ε is an tolerance parameter that can be made arbitrarily small. The number of iterations increases
only logarithmically in 1/ε.

12.3.2 Algorithm details

We will now analyze each of the steps of ESPASS in detail. The pseudocode is given in Algorithm 12.2.

Removing big elements. The main challenge when applying the GPC algorithm to the truncated Prob-
lem (12.3) is exemplified by the following pathological example. Suppose the optimal value is c. GPC,
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Algorithm 12.2: The ESPASS algorithm for simultaneously placing and scheduling sensors.
Algorithm ESPASS (F , V , k, m, ε)
cmin ← 0; cmax ← F (V); β ← 1/6;
while cmax − cmin ≥ ε do

c← (cmax + cmin)/2;
B ← {s ∈ V : Fc({s}) ≥ βc};1

k′ ← k;
foreach s ∈ B do2
Ak′ ← {s}; k′ ← k′ − 1;
if k′ = 0 then cmin ← c;
Abest ← (A1, . . . ,Ak);
continue with while loop;

end
V ′ ← V \ B; m′ ← m− |B|;
A1:k′ ← GPC(Fc,V ′, k′,m′);3

if
∑

t F (At) < k′c/2 then cmax ← c; continue;4

else
while ∃i, j ≤ k′: Fc(Aj) ≤ βc, Fc(Ai) ≥ 3βc do5

foreach s ∈ Ai do
Aj ← Aj ∪ {s}; Ai ← Ai \ {s};
if Fc(Aj) ≥ βc then break;

end
end
cmin ← c; Abest ← (A1, . . . ,Ak);

end
end
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when applied to the truncated function Fc, could pick k/2 elements s1, . . . , sk/2, with F ({si}) = c each.
While this solution obtains an average-case score of c/2 (one half of optimal as guaranteed by Theo-
rem 12.1), there is no possibility to reallocate these k/2 elements into k buckets, and hence some buckets
will remain empty, giving a balanced score of 0.

To avoid this pathological case, we would like to eliminate such elements s ∈ V with high individual
scores F ({s}), to make sure that we can rearrange the solution of GPC to obtain high balanced score.
Hence, we distinguish two kinds of elements: Big elements s with F ({s}) ≥ βc, and small elements s
with F ({s}) < βc. If we intend to obtain a β approximation to the optimal score c, we realize that big
elements have high enough value to each satisfy an individual bucket. Let B be the set of big elements
(this set is determined in Line 15). If |B| ≥ k, we already have a β-approximate solution: Just put one
big element in each bucket. If |B| < k, put each element in B in a separate bucket A1, . . . ,A|B| (c.f.,
Line 15). We can now set these satisfied buckets aside, and look at the reduced problem instance with
elements V ′ = V \B, m′ = m− |B| and k′ = k− |B|. Our first lemma shows that if the original problem
instance (F,V, k,m) has optimal value c, the reduced problem instance (F,V ′, k′,m′) still has optimal
value c.
Lemma 12.3. The optimal value on the new problem instance (F,V ′, k′,m′) is still c.

Hence, without loss of generality, we can now assume that for all s ∈ V , F ({s}) ≤ βc.

Solving the average-case problem. In the next step of the algorithm, we run an α-approximate algo-
rithm (such as GPC where α = 1

2 ), using the truncated objective Fc, on the reduced problem instance
containing only small elements (c.f., Line 15). This application results in an allocation A1, . . . ,Ak′ of
elements into buckets. If

∑
t Fc(At) < αck′, then we know that c is an upper bound to the optimal solu-

tion, and it is safe to set cmax to c (c.f., Line 15) and continue with the binary search. Otherwise, we have
a solution where

∑
t Fc(At) ≥ αck′. However, as argued in Section 12.2.2, this α-approximate solution

could still have balanced score 0, if all the elements are allocated to only the first αk′ buckets. Hence, we
need to reallocate elements from satisfied into unsatisfied buckets to obtain a balanced solution.

Reallocation. We will transfer elements from satisfied buckets to unsatisfied buckets, until all buck-
ets are satisfied. Let us define a “reallocation move” as follows (c.f., Line 15). Pick a bucket Ai =
{a1, . . . , al} for which Fc(Ai) ≥ 3βc (we will guarantee that such a bucket always exists), and a
bucket Aj that is not satisfied, i.e., Fc(Aj) < βc. Choose ` such that Fc({a1, . . . , a`−1}) < βc and
Fc({a1, . . . , a`}) ≥ βc. Let ∆ = {a1, . . . , a`}. Note that ∆ is not empty since each ai is small (i.e.,
Fc({ai}) < βc). We reallocate the elements ∆ by removing ∆ from Ai and adding ∆ to Aj .
Lemma 12.4. It holds that

Fc(Aj ∪∆) ≥ βc, and Fc(Ai \∆) ≥ Fc(Ai)− 2βc.

Hence, removing elements ∆ does not decrease the value of Ai by more than 2βc, and thus Ai remains
satisfied. On the other hand, the previously unsatisfied bucketAj becomes satisfied by adding the elements
∆. We want to make sure that we can always execute our reallocation move, until all buckets are satisfied.
The following result shows that if we choose β = α

3 , this will always be the case:
Lemma 12.5. If we set β = α

3 , then, after at most k reallocation moves, all buckets will be satisfied, i.e.,
Fc(Ai) ≥ βc for all i.
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Binary search. Since the optimal value c is generally not known, we have to search for it. This is done
using a simple binary search strategy, starting with the interval [0, F (V)] which is guaranteed the optimal
value due to nondecreasingness. At every step, we test the center c of the current interval. If all buckets
can be filled to βc, then the truncation threshold c can be increased. If the algorithm for maximizing the
average-case score (such as GPC) does not return a solution of value at least αc, then that implies that the
optimal value has to be less than c, and the truncation threshold is decreased (c.f., Line 15). If F takes
only integral values, then after at most dlog2 F (V)e+ 1 iterations, the binary search terminates.

12.3.3 Improving the bounds

The bound in Theorem 12.2 is “offline” – we can state it independently of the specified problem instance.
While guaranteeing that the obtained solutions cannot be arbitrarily bad, the constant factor 6 bound for
ESPASS is typically rather weak, and we can show that our obtained solutions are typically much closer
to the optimal value.

We can do this by computing the following data-dependent bounds on the optimal value. Let A′ =
(A′1, . . . ,A′k) be a candidate solution to Problem (12.2) (e.g., obtained using the ESPASS algorithm or
any other algorithm). For every 1 ≤ ` ≤ k and s ∈ V let δ`,s = F (A′` ∪ {s})− F (A′`) be the increment
in function value when adding sensor s to time slot `.
Theorem 12.6. The optimal value c∗ = maxA mint F (At) is bounded by the solution c to the following
linear program:

max
λi,s,c

c s.t.

c ≤ F (Ai) +
∑

s

λi,sδi,s for all i∑
i

λi,s ≤ 1 for all s and
∑
i,s

λi,s ≤ m

Theorem 12.6 states that for any given instance of the SPASS problem, and for a candidate solution A
obtained by using any algorithm (not necessarily using ESPASS), we can solve a linear program to effi-
ciently get an upper bound on the optimal solution. In Section 12.5 we will show that these bounds prove
that our solutions obtained using ESPASS are often much closer to the optimal solution than guaranteed
by the bound of Theorem 12.2.

12.4 Trading off power and accuracy

As argued in Section 12, deploying a larger number of sensors and scheduling them has the advantage
over deploying a small number of sensors with large batteries that a high density mode can be supported.
In contrast to scheduled mode, where the sensors are activated according to the schedule, in high-density
mode all sensors are active, to provide higher resolution sensor data (e.g., to localize the boundary of
a traffic congestion in our running example). For a fixed solution A1, . . . ,Ak to the SPASS problem,
the (balanced) scheduled-mode sensing quality is mini F (Ai), whereas the high-density sensing quality
is F (A1 ∪ · · · ∪ Ak). Note that optimizing for the scheduled sensing quality does not necessarily lead
to good high-density sensing quality. Hence, if both modes of operation should be supported, then we
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should simultaneously optimize for both performance measures. One such approach to this multicriterion
optimization problem is to define the scalarized objective

F̂λ(A1, . . . ,Ak) = λmin
i
F (Ai) + (1− λ)F (A1 ∪ · · · ∪ Ak),

and then solve the problem

max
A1...Ak

F̂λ(A1, . . . ,Ak) s.t. Ai ∩ Aj = ∅ if i 6= j, | ∪
t
At| ≤ m. (12.4)

Note that if λ = 1, we recover the SPASS problem. Furthermore, as λ → 0, the high-density sensing
quality F (A1 ∪ · · · ∪ Ak) dominates, and the chosen solution will converge to the stage-wise approach,
where first the set A of all sensors is optimized, and then this placement is partitioned into A = A1 ∪
· · · ∪ Ak. Hence, by varying λ between 1 and 0, we can interpolate between the simultaneous and the
stage-wise placement and scheduling.

We modify ESPASS to approximately solve Problem (12.4), and call the modified algorithm MCSPASS.
The basic strategy is still a binary search procedure. However, instead of simply picking all available big
elements (as done by ESPASS), MCSPASS will also guess (search for) the number ` of big elements used
in the optimal solution. It will pick these big elements in a greedy fashion, resulting in a setAbig ⊆ V . For
a fixed guess of c and `, MCSPASS will again use GPC as a subroutine. However, the objective function
used by GPC will be modified to account for the high-density performance:

G(A1, . . . ,Ak′) = λ
∑

i

Fc(Ai) + (1− λ)F (A ∪Abig),

where A = A1 ∪ . . .Ak′ , and k′ = k − `. This modified objective function combines a component
(weighted by λ) that measures the scheduled performance, as well as a component (weighted by 1 −
λ) that measures the improvement in high-density performance, taking into account the set Abig of big
elements that have already been selected. The reallocation procedure remains the same as in ESPASS.
The remaining details of our MCSPASS approach are presented in the proof to the following theorem,
which can be found in the Appendix.
Theorem 12.7. For any nondecreasing submodular function F and constants ε > 0 and 0 ≤ λ ≤ 1,
MCSPASS will efficiently find a solution A1, . . . ,Ak such that

F̂λ(A1, . . . ,Ak) ≥
1
8

max
A′

F̂λ(A′1, . . . ,A′k)− ε.

In Section 12.5 we will see that we can use this extension to obtain placements and schedules that perform
well both in scheduled and high-density mode.

12.5 Experiments

In our experiments, we analyze several case studies on different data sets. Each case study presents a
different justification of the SPASS optimization problem.

208



12.5.1 Case study I: Highway monitoring

The California highways are currently monitored by over 10,000 traffic sensors based on older technolo-
gies. As these loops fail, they are being replaced by novel wireless sensor networks technologies, and
it is an important problem to identify economic deployment strategies. PeMS [UC Berkeley, PATH and
Caltrans, 2005] is a website and project that integrates, cleanses and tracks real time traffic information
for the whole state, computing key performance indicators. The sensors typically report speed, flow and
vehicle counts every 30 seconds, and PeMS aggregates the data further into 5 minute blocks. For this case
study, we use data from highway I-880 South, which extends for 35 miles in northern California (Figure
12.4) and has between 3 and 5 lanes. This highway experiences heavy traffic, and accurate measurements
are essential for proper resource management. Measurement variation is mainly due to congestion and
events such as accidents and road closures. There are 88 measurement sites along the highway, on average
every 2 miles, which comprise 357 sensors covering all lanes. We use speed information from lanes, for all
days of the week in a single month, excluding weekends and holidays for the period from 6AM to 11AM,
which is the time when the highway is congested. This is the most difficult time for making predictions,
as when there is no congestion, even a free flow speed prediction of 60 mph is accurate.

The number and locations of sensors are limited by costs and physical deployment constraints. Typically
at each location, it is only possible to place one sensor at each lane. Furthermore, lane closures for
sensor installations are very costly. Given these constraints, California requires that sensor technologies
have a target lifetime of 10 years. This implies that most wireless sensor solutions require intelligent
scheduling in order to extend the lifetime by four times, since most sensor network solutions batteries are
expected to last 2 to 3 years. Including more batteries in a single sensor is not viable, as sensors have
physical constraints to avoid disrupting the existing pavement structure and keep installation costs at a
minimum.

As wireless sensors displace existing loop technologies, it is desirable to place as few sensors as possible,
without trading off too much sensing quality. To achieve these goals in a principled manner, historical
loop data from the current deployment should be used. ESPASS provides a solution which can balance
these conflicting requirements, by combining scheduling and placement: more sensors are placed initially,
still keeping road closures at a minimum, and scheduling is used to extend the lifetime of the network,
keeping sensing quality balanced. In this section we explore this solution and compare ESPASS to other
simultaneous placement and scheduling solutions.

Simultaneous vs. stage-wise optimization. In our first experiment, we study the benefit of simultane-
ously placing and scheduling sensors. For varying numbers m of sensors and k of time slots, we use
different strategies to find k disjoint sets A1, . . . ,Ak, where Ai is the sensors active at time slot i. We
compare the simultaneous placement and schedule (optimized using ESPASS and GPC) with solutions
obtained by first placing sensors at a fixed set of locations, and then scheduling them. We consider both
optimized and random sensor placements, followed by optimized and random scheduling, amounting to
four stage-wise strategies. For random placements and schedules, we report the mean and standard error
over 20 random trials.

Figure 12.5(a) presents the performance of the five strategies when optimizing the average-case perfor-
mance, for a fixed number of m = 50 sensors and a number of time slots k varying from 1 to 20. GPC
performs best, followed by the stage-wise optimized placement and schedule (OP/OS). Of the two strate-
gies where one component (either the placement or the schedule) is randomized (OP/RS and RP/OS),
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(a) [T] stage-wise (b) [T] Simultaneous

Figure 12.4: Placements and schedules for the traffic data. (a) Stage-wise approach, (b) SPASS solution.

for small numbers (≤ 3) of time slots OP/RS performs slightly better, and for large numbers of time
slots (≥ 10), RP/OS performs slightly better. The completely randomized solution performs significantly
worse.

Figure 12.5(b) presents the same results when optimizing the balanced criterion. ESPASS outperforms
the stage-wise strategies and the completely randomized strategy RP/RS performs worst as expected. In-
terestingly, for the balanced criterion, OP/RS performs drastically worse than RP/OS for k ≥ 4 time slots.
We hypothesize this to be due to the fact that a poor random placement can more easily be compensated
for by using a good schedule than vice versa: When partitioning a sensor placement of 50 sensors ran-
domly into a large number of time slots, it is fairly likely that at least one of the timeslots exhibits poor
performance, hence leading to a poor balanced score. This insight also suggests that the larger the in-
tended improvement in network lifetime (number of time slots), the more important it is to optimize for a
balanced schedule.

To summarize this analysis, we see that simultaneous placement and scheduling drastically outperforms
the stage-wise strategies. For example, if we place 50 sensors at random, and then use ESPASS to sched-
ule them into 4 time slots, we achieve an estimated minimum reduction in Mean Squared error by 58%.
If we first optimize the placement and then use ESPASS for scheduling, we can achieve the same amount
of variance reduction by scheduling 6 time slots (hence obtaining a 50% increase in network lifetime).
If instead of stage-wise optimization we simultaneously optimize the placement and the schedule using
ESPASS, we can obtain the same variance reduction by scheduling 8 time slots, hence an increase in
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network lifetime by 100%.

Average vs. balanced performance. We have seen that simultaneously placing and scheduling can
drastically outperform stage-wise strategies, for both the average-case and the balanced objective. But
which of the objectives should we use? In order to gain insight into this question, we performed the
following experiment. For varying k and m, we obtain solutions to the SPASS problem using both the
ESPASS and the GPC algorithm. We then evaluate the respective solutions both using the average-case
and the balanced criterion. Figure 12.5(c) presents the results of this experiment for k varying from 1 to
10, and fixed ratio of 5 sensors per time slot. As expected, ESPASS outperforms GPC with respect to
the balanced criterion, and GPC outperforms ESPASS according to the average-case criterion. However,
while ESPASS achieves average-case score very close to the solution obtained by GPC, the balanced
score of the GPC solutions are far worse than those obtained by ESPASS. Hence, optimizing for the
balanced criterion performs well for the average case, but not vice versa.

Online bounds. In order to see how close the solutions obtained by ESPASS are to the optimal solution,
we also compute the bounds from Theorem 12.6. Figure 12.5(d) presents the bounds on the maximum
variance reduction achievable when placing 50 sensors and partitioning them into an increasing number
of groups. We plot both the factor 6 bound due to Theorem 12.2, as well as the data-dependent bound
due to Theorem 12.6. We can see that the data dependent bounds are much tighter. For example, if we
partition the sensors into 2 groups, our solution is at least 78% of optimum, for 5 groups it is at least 70%
of optimum (rather than the 17% of Theorem 12.2).

12.5.2 Case study II: Community Sensing

While the static deployment of sensors has become an important means for monitoring traffic on highways
and arterial roads, due to high deployment and maintenance cost it is difficult to extend sensor coverage
to urban, side-streets. However, in order to optimize road-network utilization, accurate estimates of side-
street conditions is essential.

Instead of (or in addition to) statically deploying sensors, a promising approach, studied by Krause et al.
[2008c], would be to utilize cars as traffic sensors: An increasing number of vehicles nowadays are
equipped with GPS and Personal Navigation Devices, which can accurately localize a car on a road net-
work. Furthermore, these devices are becoming connected to wireless networks, using, e.g., GPRS or
Edge connectivity, through which they could report their location and speed. Hence, in principle, it is
possible to access accurate sensor data through the network of cars.

However, there are significant challenges when dealing with such a network of non-centrally owned sen-
sors. While users may generally consider sharing their sensor data, they have reasonable concerns about
their privacy. Krause et al. [2008c] provide methods for community sensing, describing strategies for
selectively querying a community sensor network while maintaining preferences about privacy. They
demonstrated how the selective querying of such a community sensor network can be modeled as the
problem of optimizing a nondecreasing submodular sensing quality function that considers demand based
on road usage. Preferences about privacy map to constraints in the optimization problem.

211



5 10 15 20

20

30

40

50

60

70

80

90

Lifetime improvement (#time slots k)

A
ve

ra
ge

 v
ar

ia
nc

e 
re

du
ct

io
n

GAPS

OP/OS

RP/OS

OP/RS

RP/RS

(a) [T] Sim. vs. seq. (avg)

5 10 15 20
0

20

40

60

80

Lifetime improvement (#time slots k)
M

in
im

um
 v

ar
ia

nc
e 

re
du

ct
io

n eSPASS

OP/OS

RP/OS

OP/RS

RP/RS

(b) [T] Sim. vs. seq. (min)

2 4 6 8 10
42

44

46

48

50

Lifetime improvement (5 sensors / time slot)

V
ar

ia
nc

e 
re

du
ct

io
n

Avg. score
GAPS

Avg. score
eSPASS

Balanced score
GAPS

Balanced score
eSPASS

(c) [T] Avg. vs. balanced

5 10 15 20
0

100

200

300

400

Lifetime improvement (#time slots k)

M
in

im
um

 v
ar

ia
nc

e 
re

du
ct

io
n

Bound from
Theorem 4.1

Data−dependent
bound

eSPASS

(d) [T] Bounds

Figure 12.5: Results for traffic monitoring [T]. (a,b) compare simultaneous placement and scheduling to
stage-wise strategies on (a) average-case and (b) balanced performance (m = 50, k varies). (c) compare
average-case and balanced performance, when optimizing for average-case (using GPC) and balanced
(using ESPASS) performance. (d) “Online” (data-dependent) bounds show that the ESPASS solutions
are closer to optimal than the factor 6 “offline” bound from Theorem 12.2 suggests.
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Figure 12.6: (a) Results for community sensing [C]. When querying each car only once each week
(using the ESPASS schedule), the sensing quality is only 23% lower than when querying every day. (b-d)
Example placements and schedules for water networks [W].
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Figure 12.7: (a,b) Contamination detection in water networks [W]. (a) compares simultaneous and stage-
wise solutions. (b) power/accuracy tradeoff curve with strong knee. (c,d) compares ESPASS with existing
solutions on synthetic data [S].
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One basic preference that needs to be supported is the preference that each user is queried at most once
in a specified time interval (e.g., queried at most once each week or month). Let V be the set of users
subscribing to the community sensing service. In order to query each user at most one in k time steps,
one strategy would be to partition the users into k sets A1, . . . ,Ak, such that at time step t, users At are
queried. In order to obtain continuously high performance of the monitoring service, we want to make
sure that the performance F (At) is maximized simultaneously over all time steps. This is exactly an
instance of the SPASS problem.

In order to evaluate the performance of the ESPASS algorithm, we used the experimental setup of Krause
et al. [2008c], using real traffic data from 534 detector loops deployed underneath highways, GPS traces
from 85 volunteer drivers and demand data based on directions generated in response to requests to a
traffic prediction and route planning prototype named ClearFlow, developed at Microsoft Research3. De-
tails about the data sets are described by Krause et al. [2008c]. Based on this experimental setup, we
compare the performance of the ESPASS and GPC algorithms (latter of which was described as a can-
didate scheduling approach by Krause et al. [2008c]). Using each algorithm, we partition the users into
7 respective 31 sets (i.e., querying each user at most once each week respective month, both of which
are possible options for privacy preferences). We then evaluate the performance based on the worst case
prediction error over all test time steps. Figure 12.6(a) presents the results of this experiment. We can
see that the ESPASS solutions outperform the GPC solutions. When partitioning into 31 sets, the worst
prediction performance of ESPASS is more than twice as good than the worst prediction performance of
GPC. Most importantly, this experiment shows that, using ESPASS for scheduling, one can obtain a very
high balanced performance, even when querying each individual car only very infrequently. For example,
when querying each car only once each week, the balanced sensing quality is only 23% lower than that
obtained by the privacy-intrusive continuous (daily) querying. Even if querying only once each month
(i.e., a factor 31 more infrequently), the balanced performance is only reduced by approximately a factor
of 2. These results indicate that, using ESPASS, even stringent preferences about privacy can be met
without losing much prediction accuracy.

12.5.3 Case study III: Contamination detection

We also apply our algorithm to the problem of placing sensors in municipal drinking water distribution
networks, in order to detect contaminations (as introduced in Chapter 8).

The goal of this application is to minimize impact measures, such as the expected population affected,
which is calculated using a realistic disease model. In Chapter 8, we showed that the function F (A)
which measures the expected population protected by placing sensors at location A is a nondecreasing
submodular function. Water quality sondes can operate for a fairly long amount of time on battery power.
For example, the YSI 6600 Sonde can sample 15 water quality parameters every 15 minutes for 75 days.
However, for the long-term feasibility it is desirable to considerably improve this battery lifetime by sen-
sor scheduling. On the other hand, high sampling rates are desirable to ensure rapid response to possible
contaminations. For a security-critical sensing task such as protecting drinking water from contamination,
it is important to obtain balanced, uniformly good detection performance over time. In addition, deploy-
ment and maintenance cost restrict the number of sensors that can be deployed. Hence, the problem of
deploying battery powered sensors for drinking water quality monitoring is another natural instance of the
SPASS problem.

3The ClearFlow research system, available only to users within Microsoft Corporation, was the prototype for the Clearflow
context-sensitive routing service now available publicly for North American cities at http://maps.live.com.
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We reproduce the experimental setup detailed in Section 8.2. However, instead of only optimizing for the
sensor placement, we simultaneously optimize for placement and schedule using the ESPASS algorithm.
Figure 12.7(a) compares ESPASS with the stage-wise approaches. For each algorithm, we report the
population protected by placing sensors, normalized by the maximum protection achievable when placing
sensors at every node in the network.

Simultaneous vs. stage-wise optimization. ESPASS obtains drastically improved performance when
compared to the stage-wise approaches. For example, when scheduling 3 time slots, in order to obtain
85% protection, ESPASS requires 18 sensors. The fully optimized stage-wise approach (OP/OS) requires
twice the number of sensors. When placing 36 sensors, the stage-wise approach leaves 3 times more pop-
ulation unprotected as compared to the simultaneous ESPASS solution with the same number of sensors.
ESPASS solved this large scale optimization task (n = 12, 527, k = 3, m = 30) in 26 minutes using our
MATLAB implementation.

Trading off power and accuracy. We also applied our modified ESPASS algorithm in order to trade
off scheduled mode and high density mode performance. For a fixed number of m = 30 sensors and
k = 3 time slots, we solve Problem (12.4) for values of λ varying from 0 to 1. For each value of λ, we
obtain a different solution, and plot the normalized expected population protected (higher is better) both
in scheduled- and in high-density mode in Figure 12.7(b). We can see that this trade-off curve exhibits a
prominent knee, where solutions are obtained that perform nearly optimally with respect to both criteria.
Figures 12.6(b), 12.6(c) and 12.6(d) show the placements and schedules obtained for λ = 1 (i.e., ignoring
the high-density sensing quality), λ = 0 (ignoring the schedule, effectively performing a stage-wise
approach) and a value λ = 0.25 (from the knee in the trade-off curve) respectively. Note how the solution
for λ = 1 clusters the sensors closely together, obtaining three very similar placements A1,A2,A3 for
each time slot (similar as in Figure 12.2). The solution for λ = 0 spreads out the sensors more, having
to leave, e.g., the Western part of the network uncovered in the time slot indicated by the green triangle.
The multicriterion solution (λ = 0.25) is a compromise between the former two solutions: The sensors
are still clustered together, but also spread out more – the Western part of the network can be covered in
this solution.

12.5.4 Case study IV: Multiple weblog coverage

We also apply ESPASS to the problem of selecting informative weblogs to read on the Internet, as intro-
duced in Chapter 8. Recall that our approach to quantifying informativeness in this domain is based on the
intuitive notion of an information cascade: A blogger writes a posting, and, after some time, other blogs
link to it. An information cascade is a directed acyclic graph of vertices (each vertex corresponds to a post-
ing at some blog), where edges are annotated by the time difference between the postings. Based on this
notion of an information cascade, we would like to select blogs, that detect big cascades (containing many
nodes) as early as possible (i.e., we want to learn about an important event before most other readers). In
Chapter 8, we showed how we can formalize this intuition using a nondecreasing submodular function F
that measures the informativeness of a subset A of all blogs V . Optimizing the submodular function F
leads to a small set A of blogs that “covers” most cascades. Since blogs from different topics (such as
politics, religion, tech news, etc.) participate in different cascades, the solution setAwill typically contain
very diverse blogs. Similar blogs that overlap significantly suffer from diminishing returns.
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Figure 12.8: Results on temperature data from Intel Research Berkeley [B]. (a,b) compares ESPASS with
existing solutions. (c) compares running time. (d) compares average-case and balanced performance.

While such a notion of coverage is intuitive, sometimes multiple coverage is desired: We might be inter-
ested in selecting “multiple representatives” from each topic, whereby we allow some (limited) amount
overlap among the covered cascades. For example, there might be political blogs that participate in the
same cascades (discussions), and hence have a lot of overlap, but it is nevertheless desirable to select
multiple blogs as each of them presents their own perspective.

We can formulate this requirement as an instance of the SPASS problem: We would like to select multiple,
disjoint sets of blogs, that each provide a large amount of information.

We reproduce the experimental setup of Leskovec et al. [2007b], that is based on 45,000 blogs, as well
as one million posts during 2006. This data set contains 16,000 cascades in which at least 10 blogs par-
ticipate. We use the population affected objective function described in detail in Leskovec et al. [2007b].
Based on this experimental setup, we apply ESPASS to partition an increasing number of blogs into three
groups (to allow up to three-fold coverage). We optimize the problem using the ESPASS algorithm. As
comparison, we first select the set of blogs (using the approach described in Leskovec et al. [2007b]), and
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Figure 12.9: Multiple coverage for blogs

then use the ESPASS algorithm to partition the selected set into three groups (k = 3). We also compare
against the other stage-wise approaches as done in Section 12.5.1.

Figure 12.9 presents the results of this experiment. It shows that blog selections using the ESPASS
algorithm obtain 10% better performance than the stage-wise approach. Further note that ESPASS is able
to solve the large problem instance with n = 45, 000 within 26 minutes.

12.5.5 Comparison with existing techniques

We also compare ESPASS with several existing algorithms. Since the existing algorithms apply to the
scheduling problem only, we call ESPASS with m = |V| (i.e., allow it to select all sensors).

Set covering. Most existing algorithms for sensor scheduling assume that sensors are associated with
a fixed sensing region that can be perfectly observed by the sensor [c.f., Abrams et al., 2004, Deshpande
et al., 2008]. In this setting, we associate with each location s ∈ A a set Rs ⊆ V of locations that can be
monitored by the sensor, and define the sensing quality F (A) = |

⋃
s∈ARs| to be the total area covered

by all sensors. Since set coverage is an example of a nondecreasing submodular function, we can use
ESPASS to optimize it.

We compare ESPASS to the greedy approach by Abrams et al. [2004], as well as the the approach by
Deshpande et al. [2008] that relies on solving a semidefinite program (SDP). We use the synthetic experi-
mental setup defined by Deshpande et al. [2008] to compare the approaches. A set of n sensors is used to
cover M regions. Each sensor s is associated with a setRs of regions it covers. The objective is to divide
the n sensors into k groups (buckets), such that the minimum or the average number regions covered by
each group is maximized.

For the SDP by Deshpande et al. [2008], we solve the SDP using SeDuMi to get a distribution over possi-
ble schedules, and then pick the best solution out of 100 random samples drawn from this distribution. For
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the random assignment approach (Rand100) of Abrams et al. [2004], we sample 100 random schedules
and pick the best one. In addition, we run the GPC and the ESPASS algorithms. We apply those four
algorithms to 50 random set cover instances as defined by Deshpande et al. [2008]: for each sensor, a
uniform random integer r between 3 and 5 is chosen, and then the first r regions from a random permuta-
tion of the set of M regions is assigned to that sensor. The sensor network size is n = 20, the number of
desired groups k = 5 and the number of regions is M = 50.

Figure 12.7(c) presents the average performance of the four approaches. In this setting, the SDP performs
best, closely followed by GPC and ESPASS. Figure 12.7(d) presents the balanced performance of the
four approaches. Here, ESPASS significantly outperforms both the SDP and the GPC solution.

Building monitoring. As argued in the introduction, for complex spatial monitoring problems, the sens-
ing region assumption is unrealistic, and we would rather like to optimize prediction accuracy directly. The
approach by Koushanfary et al. [2006] is designed to schedule sensors under constraints on the prediction
accuracy. Their approach, given a required prediction accuracy, constructs a prediction graph that encodes
which sensors can predict which other sensors. They then solve a domatic partitioning problem, selecting
a maximal number of disjoint subsets that can predict all other sensors with the desired accuracy. In order
to determine the domatic partitioning, their algorithm relies on the solution of a Mixed Integer Program
(MIP). However, solving MIPs is NP-hard in general, and unfortunately, we were not able to scale their
approach to the traffic data application. Instead, we use data from 46 temperature sensors deployed at
Intel Research, Berkeley [c.f., Deshpande et al., 2004].

On this smaller data set, we first apply the MIP for domatic partitioning, with a specified accuracy con-
straint. The MIP was very sensitive with respect to this accuracy constraint. For just slightly too small
values of ε, the MIP returned a trivial solution consisting of only a single set. For slightly too large values,
the MIP had to consider partitions into a large number of possible time slots, increasing the size of the
MIP such that the solver ran out of memory. Requiring that sensors can predict each other with a Root
Mean Squared (RMS) error of 1.25 Kelvin leads to a selection of m = 19 sensors, partitioned into k = 3
time slots. Using this setting for m and k, we run the GPC and ESPASS algorithms, which happen to
return the same solution for this example. In order to compare these solutions with the SDP and random
selection from the previous section, we apply them to the prediction graph induced by the required pre-
diction accuracy. We first randomly select 19 locations, and then partition them into 3 groups using the
SDP and Rand100 approach, respectively. As a baseline, we randomly select 3 groups totaling 19 sensors
(Rand). For these randomized techniques, we report the distribution over 20 trials. All approaches are
evaluated based on the variance reduction objective function.

Figure 12.8(a) presents the result for optimizing the average variance reduction, and Figure 12.8(b) for
the minimum variance reduction. In both settings, GPC and ESPASS perform best, obtaining 23% less
remaining maximum variance when compared to the MIP solution of Koushanfary et al. [2006]. Further-
more, using YalMIP in Matlab, solving the MIP requires 95 seconds, as compared to 4 seconds for the
SDP and 3.8 seconds for ESPASS (Figure 12.8(c)). Even though the MIP returns an optimum solution
for the domatic partition of the prediction graph, ESPASS performs better since it uses the fact that the
combination of multiple sensors can lead to better prediction accuracy than only using single sensors for
prediction. Even the best out of 20 random trials for the SDP performs worse than the MIP, due to the
approximate nature of the algorithm and the random selection of the initial 19 sensors. The Rand100
approach does performs only slightly (not significantly) worse than the SDP based approach.

219



12.6 Related work

In the context of wireless sensor networks, where sensor nodes have limited battery and can hence only
enable a small number of measurements, optimally placing and scheduling sensors is of key impor-
tance.

12.6.1 Sensor placement

Many approaches for optimizing sensor placements assume that sensors have a fixed region [Bai et al.,
2006, Gonzalez-Banos and Latombe, 2001, Hochbaum and Maas, 1985]. These regions are usually convex
or even circular. Furthermore, it is assumed that everything within this region can be perfectly observed,
and everything outside cannot be measured by the sensors. For complex applications such as traffic mon-
itoring however, such assumptions are unrealistic, and the direct optimization of prediction accuracy is
desired. The problem of selecting observations for monitoring spatial phenomena has been investigated
extensively in geostatistics (c.f., Cressie [1991] for an overview), and more generally (Bayesian) experi-
mental design [c.f., Chaloner and Verdinelli, 1995]. These approaches however only consider the sensor
placement problem, and not the scheduling aspect.

12.6.2 Sensor Scheduling

The problem of deciding when to selectively turn on sensors in order to conserve power was first discussed
by Slijepcevic and Potkonjak [2001] and Zhao et al. [2002]. Typically, it is assumed that sensors are as-
sociated with a fixed sensing region, and a spatial domain needs to be covered by the regions associated
with the selected sensors. Abrams et al. [2004] presents an efficient approximation algorithm with theo-
retical guarantees for this problem. Deshpande et al. [2008] presents an approach for this problem based
on semidefinite programming (SDP), handling more general constraints and providing tighter approxi-
mations. They also provide a randomized rounding based approach for scheduling under the balanced
objective (which they call min-coverage (time)). However, in contrast to ESPASS (when specialized to
scheduling) their algorithm requires to relax the constraint that each sensor location can only be selected
once. Also, their guarantee only holds with high probability, whereas ESPASS is deterministic. The
approaches described above do not apply to the problem of optimizing sensor schedules for more com-
plex sensing quality functions such as, e.g., the increase in prediction accuracy and other sensing quality
functions considered in this Thesis. To address these shortcomings, Koushanfary et al. [2006] developed
an approach for sensor scheduling that guarantees a specified prediction accuracy based on a regression
model. However, their approach relies on the solution of a Mixed Integer Program, which is intractable in
general. Zhao et al. [2002] proposed heuristics for selectively querying nodes in a sensor network in order
to reduce the entropy of the prediction. Unlike the algorithms presented in this chapter, their approaches
do not have any performance guarantees.

12.6.3 Submodular optimization

The problem of maximizing a submodular function subject to a matroid constraint, of which Problem (12.1)
is an instance, has been studied by Fisher et al. [1978], who proved that the greedy algorithm gives a fac-
tor 2 approximation. Recently, Vondrak [2008] showed that a more complex algorithm achieves a (1-1/e)
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approximation to this problem. Note that this algorithm could be applied to the Problem (12.1) instead
of GPC. Furthermore note that using this algorithm as a subroutine, the analysis of ESPASS can be im-
proved to give a e−1

3e ≥
1
5 guarantee. Comparing this algorithm is an interesting direction for future work.

A related version of optimization Problem (12.2), where for each time step t a different function Ft is
used has been studied in the context of combinatorial allocation problems. Ponnuswami and Khot [2007]
present an algorithm that guarantees a 1/(2k−1) approximation. For the special case where the objective
functions Ft are additive (modular), Asadpour and Saberi [2007] developed an algorithm that guarantees
an improved Ω( 1√

k log3 k
) approximation. Both algorithms however only apply for the scheduling setting

(i.e., they require that m = |V|). Furthermore, note that the approximation performance of these algo-
rithms very quickly decreases with k, in contrast to our ESPASS approach that provides an approximation
guarantee that is independent of the number of time steps.

12.7 Summary

When deploying sensor networks for monitoring tasks, both placing and scheduling the sensors are of key
importance, in order to ensure informative measurements and long deployment lifetime. Traditionally, the
problems of sensor placement and scheduling have been considered separately from each other. In this
chapter, we presented an efficient algorithm, ESPASS, that simultaneously optimizes the sensor place-
ment and the schedule. We considered both the setting where the average-case performance over time
is optimized, as well as the balanced setting, where uniformly good performance is required. Such bal-
anced performance is crucial for security-critical applications such as contamination detection. Our results
indicate that optimizing for balanced performance often yields good average-case performance, but not
necessarily vice versa. We proved that our ESPASS algorithm provides a constant factor 6 approximation
to the optimal balanced solution. To the best of our knowledge, ESPASS is the first algorithm that pro-
vides strong guarantees for this problem, partly resolving an open problem raised by Abrams et al. [2004].
Furthermore, our algorithm applies to any setting where the sensing quality function is submodular, which
allows to address complex sensing tasks where one intends to optimize prediction accuracy or optimizes
detection performance.

We also considered complex sensor placement scenarios, where the deployed sensor network must be
able to function well both in a scheduled, low power mode, but also in a high accuracy mode, where all
sensors are activated simultaneously. We developed an algorithm, MCSPASS, that directly optimizes this
power-accuracy tradeoff. Our results show that MCSPASS yields solutions which perform near-optimally
with respect to both the scheduled and the high-density performance.

We extensively evaluated our approach on several real-world sensing case studies, including traffic and
building monitoring as well as contamination detection in metropolitan area drinking water networks.
When applied to the simpler special case of sensor scheduling (i.e., ignoring the placement aspect), ES-
PASS outperforms existing sensor scheduling algorithms on standard data sets. For the more complex,
general case, our algorithm performs provably near-optimal (as demonstrated by tight, data-dependent
bounds). Our results show that, for fixed deployment budget, drastic improvements in sensor network
lifetime can be achieved by simultaneously optimizing the placement and the schedule, as compared to
the traditional, stage-wise approach. For example, for traffic prediction, ESPASS achieves a 33% im-
provement in network lifetime compared to the setting where placement and scheduled are optimized
separately, and a 100% improvement when compared to the traditional setting where sensors are first
randomly deployed and then optimally scheduled.
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Part IV

Sequential Sensing
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Chapter 13

Overview of Part IV

In Part II and Part III of the Thesis, we studied subset selection problems, where all observations are
decided upon before any measurements are obtained. In this part, we will consider sequential selection
problems, where the observations made can depend on the measured values.

Active learning in Gaussian processes. In Chapter 14, we will study the sequential selection prob-
lem in the context of Gaussian Processes for spatial prediction. In this setting, a fundamental question
is when an active learning, or sequential design, strategy, where locations are selected based on previous
measurements, will perform significantly better than sensing at an a priori specified set of locations. We
present an analysis and efficient algorithms that address this question. Central to our analysis is a theo-
retical bound which quantifies the performance difference between active and a priori design strategies.
We consider GPs with unknown kernel parameters and present a nonmyopic approach for trading off ex-
ploration, i.e., decreasing uncertainty about the model parameters, and exploitation, i.e., near-optimally
selecting observations when the parameters are (approximately) known. We call our approach EEGP
for Exploration–Exploitation sampling in Gaussian Processes. We discuss several exploration strategies,
and present logarithmic sample complexity bounds for the exploration phase of EEGP. We then extend
our EEGP algorithm to handle nonstationary GPs exploiting local structure in the model. A variational
approach allows us to perform efficient inference in this class of nonstationary models.

Optimizing decision-theoretic value of information. In the previous chapters we have focused on
settings where the sensing quality is submodular. However, this requirement is not met in all practical
applications. When using the decision theoretic value of information, for example, in order to decide
on optimal medical treatment plans, this requirement is violated. In Chapter 15, we present VOIDP,
the first efficient optimal algorithm for optimizing arbitrary decomposable sensing quality functions that
are not necessarily submodular, for a class of probabilistic graphical models containing Hidden Markov
Models (HMMs). VOIDP applies to both selecting the optimal subset of observations, and for obtaining
an optimal conditional observation plan. Furthermore we prove a surprising result: In most graphical
models tasks, if one designs an efficient algorithm for chain graphs, such as HMMs, this procedure can be
generalized to polytree graphical models. We prove that the optimizing value of information is NPPP-
hard even for polytrees. It also follows from our results that just computing decision theoretic value of
information objective functions, which are commonly used in practice, is a #P-complete problem even
on Naive Bayes models (a simple special case of polytrees). It is NP-hard to approximate value of

225



information to any factor. In addition, we consider several extensions, such as using our algorithms for
scheduling observation selection for multiple sensors. We demonstrate the effectiveness of our approach
on several real-world datasets, including a prototype sensor network deployment for energy conservation
in buildings.

Summary of contributions. The key contributions of this part of the Thesis are:

1. We develop novel nonmyopic algorithms for sequential sensing problems, for

• active learning for spatial prediction in Gaussian Processes and
• optimal conditional planning in chain graphical models.

2. We prove hardness of sensing problems. Under reasonable complexity theoretic assumptions, exact
optimization of value of information is #P-hard for Naive Bayes models and NPPP-hard for
discrete polytrees.

3. We demonstrate our algorithms on several real-world case studies, including

• sensor placement for spatial prediction in Gaussian Processes, demonstrated on real-world
sensing data sets and a proof-of-concept case study of a deployed sensor network and

• sensor scheduling for improving the lifetime of light sensors in a building management proto-
type testbed.
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Chapter 14

Nonmyopic Active Learning of GPs

When monitoring spatial phenomena, such as the ecological condition of a river as in Fig. 14.1, it is of fun-
damental importance to decide on the most informative locations to make observations. However, to find
locations which predict the phenomena best, one needs a model of the spatial phenomenon itself. Gaus-
sian processes (GPs) have been shown to be effective models for this purpose [Cressie, 1991, Rasmussen
and Williams, 2006].

In the previous parts of this Thesis, we have, as most previous work on observation selection in GPs [c.f.,
Seo et al., 2000, Zhu and Stein, 2006], considered the a priori design problem, in which the locations
are selected in advance prior to making observations. Indeed, as already observed in Chapter 6, if the
GP model parameters are completely known, the predictive variances do not depend on actual observed
values, and hence nothing is lost by committing to sampling locations in advance. In the case of unknown
parameters however, this independence is no longer true. Key questions we strive to understand in this
chapter are how much better a sequential algorithm, taking into account previous observations, can per-
form compared to a priori design when the parameters are unknown, and how can this understanding lead
to better observation selection methods.

The main theoretical result that we present in this chapter is a bound which quantifies the performance
difference between sequential and a priori strategies in terms of the parameter entropy of the prior over
kernels. The lower the uncertainty about the parameters, the less we can potentially gain by using an
active learning (sequential) strategy. This relationship bears a striking resemblance to the exploration–
exploitation tradeoff in Reinforcement Learning. If the model parameters are known, we can exploit the
model by finding a near-optimal policy for sampling using the mutual information criterion (c.f., Chap-
ter 6). If the parameters are unknown, we present several exploration strategies for efficiently decreasing
the uncertainty about the model. Most approaches for active sampling of GPs have been myopic in na-
ture, in each step selecting observations which, e.g., most decrease the predictive variance. Our approach
however is nonmyopic in nature: we prove logarithmic sample complexity bounds on the duration of
the exploration phase, and near optimal performance in the exploitation phase. Based on these insights,
we develop EEGP, an efficient algorithm for exploration–exploitation based active learning in Gaussian
Processes.

Often, e.g., in spatial interpolation [Rasmussen and Williams, 2006], GP models are assumed to be
isotropic, where the covariance of two locations depends only on their distance, and some (unknown)
parameters. As we have seen in Chapter 6, and has been found in previous work [Nott and Dunsmuir,
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Figure 14.1: Left:Active sampling using the Networked Infomechanical System (NIMS) sensor [Harmon
et al., 2006], deployed at the Merced River. The sensor is attached to a wire, which enables horizontal
traversal of the transect. On fixed horizontal position, it can vertically lower or raise the sensing unit.
Right: Samples of pH acquired along horizontal transect near the confluence of the San Joaquin and
Merced rivers.

2002, Paciorek, 2003], many phenomena of interest however are nonstationary. In our river example (c.f.,
Figure 14.1), the pH values are strongly correlated along the border, but weakly in the turbulent inner re-
gion. Our approach is applicable to both stationary and nonstationary processes. However, nonstationary
processes are often defined by a much larger number of parameters. To address this issue, we extend our
algorithm to handle nonstationary GPs with local structure, providing efficient exploration strategies and
computational techniques that handle high dimensional parameter vectors. In summary, our contributions
presented in this chapter are:

• A theoretical and empirical investigation of the performance difference between sequential and a
priori strategies for sampling in GPs;

• An exploration–exploitation analysis and sample complexity bounds for sequential design;

• EEGP, an efficient, nonmyopic, sequential algorithm for observation selection in isotropic GPs;

• Extension of our method to nonstationary GPs;

• Empirical evaluation on several real-world spatial monitoring problems.

14.1 Gaussian Processes

Consider, for example, the task of monitoring the ecological state of a river using a robotic sensor, such
as the one shown in Figure 14.1. We can model the pH values as a random process XV over the locations
V , e.g., V ⊂ R2. Hereby, the pH value at every location y ∈ V is a random variable Xy. Measurements
xA at sensor locations A ⊂ V then allow us to predict the pH value at uninstrumented locations y, by
conditioning on the observations, i.e., predicting E[Xy | XA = xA].

It has been shown, that pH values, temperatures and many other spatial phenomena, can be effectively
modeled using Gaussian processes (GPs) (c.f., Cressie 1991, Shewry and Wynn 1987). Recall from Chap-
ter 6, a GP (c.f., Rasmussen and Williams 2006) is a random process XV , such that every finite subset of
variables XA ⊆ XV has a (consistent) multivariate normal distribution:

P (XA = xA) =
1

(2π)n/2|ΣAA|
e−

1
2
(xA−µA)T Σ−1

AA(xA−µA),
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where µA is the mean vector and ΣAA is the covariance matrix. A GP is fully specified by a mean func-
tionM(·), and a symmetric positive-definite kernel function K(·, ·), often called the covariance function.
For each random variable Xu with index u ∈ V , its mean µu is given by M(u), and for each pair of
indices u, v ∈ V , their covariance σuv is given by K(u, v). For simplicity of notation, we denote the
mean vector of a set of variables XA by µA, where the entry for element u of µA isM(u). Similarly, we
denote their covariance matrix by ΣAA, where the entry for u, v is K(u, v). The GP representation allows
us to efficiently compute predictive distributions, P (Xy | xA), which, e.g., correspond to the predicted
temperature at location y after observing sensor measurements XA = xA. The distribution of Xy given
these observations is a Gaussian whose conditional mean µy|A and variance σ2

y|A are:

µy|A = µy + ΣyAΣ−1
AA(xA − µA), (14.1)

σ2
y|A = K(y, y)− ΣyAΣ−1

AAΣAy, (14.2)

where ΣyA is a covariance vector with one entry for each u ∈ A with value K(y, u), and ΣAy = ΣT
yA.

An important property of GPs is that the posterior variance (14.2) does not depend on the observed values
xA.

In order to compute predictive distributions using (14.1) and (14.2), the mean and kernel functions have
to be known. The mean function can usually be estimated using regression techniques. Estimating kernel
functions is difficult, and usually, strongly limiting assumptions are made. For example, it is commonly
assumed that the kernel K(u, v) is stationary, depending only on the difference between the locations,
i.e., K(u, v) = Kθ(u − v), where θ is a set of parameters. Very often, the kernel is even assumed
to be isotropic, which means that the covariance only depends on the distance between locations, i.e.,
K(u, v) = Kθ(||u− v||2). A common choice for an isotropic kernel is the exponential kernel,

Kθ(δ) = exp(−|δ|
θ

),

or the Gaussian (squared exponential) kernel,

Kθ(δ) = exp(−δ
2

θ2
).

Many other parametric forms are possible.

In Section 14.2.1, we address a general form (not necessarily isotropic), where the kernel function is spec-
ified by a set of parameters θ. We adopt a hierarchical Bayesian approach and assign a prior P (θ) to the
parameters θ, which we assume to be discretized in our analysis. Hence, P (Xy | XA) =

∑
θ P (Xy |

XA, θ)P (θ | XA). For clarity of presentation, we also assume that the prior mean functionM(·) is zero.
This assumption can be relaxed, for example by assigning a normal prior to the mean function.

14.2 Observation selection policies

In Chapter 6, we have studied the problem of selecting a setA of sensing locations in order to maximize a
sensing quality utility function F (A). In this chapter, instead of selecting sets, we will concern ourselves
with devising sequential policies π (as introduced in Chapter 2) for selecting observations. Similar as in the
non-adaptive setting considered in Chapter 6, we will study both the entropy and the mutual information
criteria.
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14.2.1 The sequential entropy criterion

In order to select informative observations, the entropy criterion has been frequently used (c.f., Gramacy
2005, Seo et al. 2000, Shewry and Wynn 1987). In the non-adaptive setting, as discussed in Chapter 6,
this criterion selects observations A∗ ⊆ V with highest entropy,

A∗ = argmax
A⊆V

H(XA), (14.3)

where
H(XA) = −

∫
p(xA) log p(xA)dxA

is the joint (differential) entropy of the random variables XA. We call (14.3) an a priori design criterion,
as it does not depend on the actual observed values, and can be optimized in advance. Maximizing (14.3)
is NP-hard [Ko et al., 1995], so usually, a myopic (greedy) algorithm is used, as introduced in Chapter 6.
Starting with the empty set,A(0), at each step t it adds the location yi = argmaxy∈V\Ai−1

H(Xyi | XAi−1)
to the set of already selected locations Ai−1.

This a priori greedy rule is readily turned into a sequential algorithm, selecting

yi = argmax
y∈V\Ai−1

H(Xyi | XAi−1 = xAi−1).

In this sequential setting, the selected location yi depends on the observations xAi−1 . This sequential
algorithm is an example of a policy π for selecting variables. In general, such policies do not need to be
greedy.

For each instantiation of the process XV = xV , such a sequential policy π can select a different set of
observations π(xV) ⊆ V . Hereby, the i-th element, πi, deterministically depends on the observations
made in the first i− 1 steps, i.e., on xπ1:i−1 . Hence, a policy can be considered a decision tree, where after
each observation, we decide on the next observation to make. If we apply the greedy policy πGH to our
river example, πGH,i would select the location which has highest entropy for predicting pH, conditioned
on the measurements we have made so far. We write |π| = k to indicate that π selects sets Xπ of k
elements. In analogy to the definition of H(XA), we can define the joint entropy of any sequential policy
π as

H(Xπ) ≡ −
∫
p(xV) log p(xπ)dxV ,

whereby π = π(xV) denotes the set of observations selected by the policy in the event XV = xV . H(XA)
is the entropy of a fixed set of variables A. Since π will typically select different observations in differ-
ent realizations XV = xV , H(Xπ) will measure the “entropy” of different variables in each realization
xV .

14.2.2 The sequential mutual information criterion

Caselton and Zidek [1984] proposed the mutual information criterion for observation selection,

FMI(XA) = H(XV\A)−H(XV\A | XA).

In Chapter 6, we showed that in the non-adaptive (a priori) setting, this criterion selects locations which
most effectively reduce the uncertainty at the unobserved locations, hence it often leads to better predic-
tions compared to the entropy criterion.
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A natural generalization of mutual information to the sequential setting is

FMI(Xπ) = H(XV\π)−H(XV\π | Xπ)

= −
∫
p(xV)[log p(xV\π)− log p(xV\π | xπ)]dxV .

Hereby, for each realization XV = xV , V \ π = V \ π(xV) is the set of locations not picked by the policy
π. The greedy policy πGMI for mutual information, after some algebraic manipulation, is given by:

πi = argmaxy H(Xy | Xπ1:algpi−1
= xπ1:i−1)−H(Xy | Xπ̄1:i−1), (14.4)

where πi ≡ πi(xπ1:i−1), and π̄ ≡ V \ {y, π(xV)} is the set of “unsensed” locations if XV = xV , exclud-
ing y.

In Chapter 6, we showed that mutual information is submodular and approximately nondecreasing, al-
lowing us to use algorithms for optimizing submodular functions in order to find near-optimal sets of
observations A∗. In the sequential setting however, these results cannot be readily applied, since, for
example, Theorem 5.2 only applies to set functions and not to general sequential policies.

14.3 Bounds on the advantage of active learning strategies

A key question in active learning is to determine the potential of improvement of sequential strategies over
a priori designs, e.g., how much greater max|π|=k H(Xπ) is than max|A|=k H(XA). If the GP parameters
θ are known, it holds that

H(Xy|XA = xA, θ) =
1
2

log 2πeσ2
Xy |XA = H(Xy|XA, θ), (14.5)

where σ2
Xy |XA , as given by Equation (14.2). Thus, the entropy of a set of variables does not depend on the

actual observed values xA. Hence, perhaps surprisingly, in this case,

max
|π|=k

H(Xπ) = max
|A|=k

H(XA).

More generally, any objective function depending only on the predictive variances, cannot benefit from
sequential strategies. Note that for non-Gaussian models, sequential strategies can strictly outperform
a priori designs, even with known parameters.

With unknown parameters,

H(XA) = −
∑

θ

∫
P (xA, θ) log

(∑
θ′

∫
P (xA, θ′)

)
dxA

is the entropy of a mixture of GPs. Since observed values affect the posterior over the parameters
P (Θ|XA = xA), the predictive distributions now depend on these values. Intuitively, if we have low
uncertainty about our parameters, the predictive distributions should be almost independent of the ob-
served values, and there should be almost no benefit from sequential strategies. We will now theoretically
formalize this intuition.

The following central result achieves this goal, by boundingH(Xπ) (and similarly for mutual information)
of the optimal policy π by a mixture of entropies of sets H(XAθ

| θ), whereby the sets are Aθ are chosen
optimally for each fixed parameter θ (and can thus be selected a priori, without a sequential policy):
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Theorem 14.1.
max
|π|=k

H(Xπ) ≤
∑

θ

P (θ) max
|A|=k

H(XA | θ) +H(Θ);

max
|π|=k

FMI(Xπ) ≤
∑

θ

P (θ) max
|A|=k

FMI(XA | θ) +H(Θ).

The proofs of all theorems can be found in the Appendix.

Theorem 14.1 bounds the advantage of sequential designs by two components: The expected advantage
by optimizing sets for known parameters, i.e.,∑

θ

P (θ) max
|A|=k

FMI(XA | θ),

and the parameter entropy, H(Θ). This result implies, that if we are able to (approximately) find the best
set of observationsAθ for a GP with known parameters θ, we can bound the advantage of using a sequen-
tial design. If this advantage is small, we select the set of observations ahead of time, without having to
wait for the measurements.

14.4 Exploration–exploitation approach towards learning GPs

Theorem 14.1 allows two conclusions: Firstly, if the parameter distribution P (Θ) is very peaked, we can-
not expect active learning strategies to drastically outperform a priori designs. More importantly however,
it motivates an exploration–exploitation approach towards active learning of GPs: If the bound provided
by Theorem 14.1 is close to our current mutual information, we can exploit our current model, and op-
timize the sampling without having to wait for further measurements. If the bound is very loose, we
explore, by making observations to improve the bound from Theorem 14.1. We can compute the bound
while running the algorithm to decide when to stop exploring.

14.4.1 Exploitation using submodularity

Theorem 14.1 shows that in order to bound the value of the optimal policy, it suffices to bound the value of
the optimal set. This insight allows us to apply the results we derived in Chapter 6 for mutual information,
using the concept of submodularity.

Recall from Chapter 5 that a fundamental result about nondecreasing submodular functions F is the guar-
antee that the greedy algorithm, which greedily adds the element x toA such that F (A∪{x})−F (A) is
largest, selects a set AG of k elements which is at most a constant factor (1 − 1/e) worse than the set of
k elements of maximal value, i.e., F (AG) ≥ (1 − 1/e) max|A|=k F (A) (c.f., Theorem 5.2). Also recall
from Chapter 6 that we have the following
Theorem 14.2. Let XV be a Gaussian process. Under sufficiently fine discretization V , the greedy algo-
rithm for mutual information is guaranteed to select a set AG of k sensors for which

FMI(XAG
) ≥ (1− 1/e)(OPT−kε),

where OPT is the mutual information achieved by the optimal placement, and ε depends polynomially on
the discretization.
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Hence, we have the following result about exploitation using the mutual information criterion:
Corollary 14.3. Choose the discretization of the GP such that Theorem 14.2 holds for all discrete values
of Θ. Then

FMI(XAG
| Θ) ≤ max

|π|=k
FMI(Xπ) ≤ (1− 1/e)−1

∑
θ

P (θ)FMI(X (θ)
AG
| θ) + kε+H(Θ),

where AG is the greedy set for

FMI(XA | Θ) =
∑

θ

P (θ)FMI(XA | θ),

and A(θ)
G is the greedy set for FMI(XA | θ).

This result allows us to efficiently compute online bounds on how much can be gained by following a
sequential active learning strategy. Intuitively, it states that if this bound is close to our current mutual
information, we can stop exploring, and exploit our current knowledge about the model by near-optimally
finding the best set of observations. We can also use Corollary 14.3 as a stopping criterion: We can use
exploration techniques (as described in the next section) until the bound on the advantage of the sequential
strategy drops below a specified threshold η, i.e., we stop if

(1− 1/e)−1
∑

θ P (θ)FMI(X (θ)
AG
| θ) + kε+H(Θ)− FMI(XAG

| Θ)
FMI(XAG

| Θ)
≤ η. (14.6)

In this case, we can use the greedy a priori design to achieve near-optimal mutual information, and obtain
performance comparable to the optimal sequential policy. This a priori design is logistically simpler and
easier to analyze. Hence, the stopping criterion interpretation of Corollary 14.3 has strong practical value,
and we are not aware of any other approach for actively learning GPs which allow to compute such a stop-
ping criterion. We use the acronym EEGP (for Exploration–Exploitation for Actively learning GPs, c.f.,
Algorithm 14.1) to refer to the general class of algorithms that uses one of the exploration strategies that
we will introduce in the next section, then stops exploring once the stopping criterion (14.6) signals the
fact that sequential selection cannot exceed the a priori sensing quality by more than η, and then switches
to the a priori greedy algorithm for selecting the remaining observations.

14.4.2 Implicit and explicit exploration

In order to practically use Corollary 14.3 as a stopping criterion for exploration, we have to, for each
parameter θ, solve the optimization problem maxAH(XA | θ). The following theorem shows, that if the
parameter entropy is small enough, the contribution of the term

∑
θ P (θ) max|A|=k FMI(XA | θ) to the

bound diminishes quickly, and hence, we should concentrate solely on minimizing the parameter entropy
H(Θ).
Theorem 14.4. Let

M = max
A

max
θ1,θ2

FMI(XA | θ1)
FMI(XA | θ2)

<∞, K = max
θ

max
A

FMI(XA | θ),

and H(Θ) < 1. Then

FMI(XA∗ | Θ)−H(Θ) ≤ FMI(Xπ∗) ≤ FMI(XA∗ | Θ) + CH(Θ),
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Algorithm 14.1: The EEGP algorithm for active learning in Gaussian Processes using
Exploration–Exploitation analysis.

Algorithm EEGP (Fθ, P (θ), V , k, exploration policy πexplore, η)
i← 0;
A = ∅;
while i < k do

i← i+ 1;
Use πexplore to choose next exploration location s;
Obtain measurement xs;
A ← A∪ {s};
Compute posterior P (Θ | XA = xA);
if inequality (14.6) holds for η then
B ← Greedy(F (· | Θ),V, k − i);
i← k;

end
end

where A∗ = argmaxA FMI(XA | Θ) and π∗ = argmaxπ FMI(Xπ), and C =
(

1 + MK
log2

1
H(Θ)

)
.

As a function of H(Θ), C converges to 1 very quickly as H(Θ) decreases. Theorem 14.4 hence provides
the computational advantage, that, once the parameter entropy is small enough, we do not need to re-
compute the term

∑
θ P (θ) max|A|=k FMI(XA | θ) when using Theorem 14.1 as a criterion for stopping

exploration. Hence, in the following, we concentrate on directly decreasing the parameter uncertainty.
We describe three natural strategies for this goal. As we show in Section 14.6, none of these strategies
dominates the other; whichever is more appropriate depends on the particular application.

Explicit Exploration via Independence Tests (ITE). In many cases, the unknown parameter of an
isotropic GP is the bandwidth of the kernel, effectively scaling the kernel over space. Let θ1 < · · · < θm

be the possible bandwidths. In the exponential kernel, Kθ(δ) = exp(− |δ|
θ ), or the Gaussian kernel,

Kθ(δ) = exp(− δ2

θ2 ), the correlation between two variables at distance δ decreases exponentially with their
distance δ. Hence, there is an exponentially large gap between the correlation for bandwidths θi and θi+1:
There will be a distance δ̂, for which two random variables within this distance will appear dependent if
the true bandwidth θ is at least θ ≥ θi+1, and (roughly) independent if θ ≤ θi. Our goal is to exploit this
gap to efficiently determine the correct parameter.

First note that if we can separate θi from θi+1, we effectively distinguish any θj , for j ≤ i, from θl, for
l ≥ i+1, since the bandwidths scale the kernels. Let Ii be a function of Θ, such that (Ii | Θ) = 0 if Θ ≤ θi,
and (Ii | Θ) = 1 if Θ ≥ θi+1. Assume we have tests Ti, using N̂ samples, such that P (Ti 6= Ii | θ) ≤ α
for all θ. We can now use a binary search procedure to identify the true bandwidth with high probability
using at most N̂dlog2me samples. Let πG◦ITE be the policy, where we first explore using ITE, and then
greedily select the set AG maximizing FMI(XAG

| Θ,xπITE ). Let xπITE be the observations made by
ITE, and let A(θ)

G be the solution of the greedy algorithm for optimizing FMI(XA | θ).
Theorem 14.5. Under the assumptions of Corollary 14.3 for sets of sizes up to k+ N̂dlogme, if we have
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tests Ti using at most N̂ samples, such that for all θ

P (Ti 6= Ii | θ) ≤ α/(dlogme2(max
θ
|FMI(XπG◦ITE | Θ)− FMI(XA(θ)

G

| θ)|)),

then it holds that

ET [FMI(XπG◦ITE | Θ)] ≥ (1− 1/e) max
|π|=k

FMI(Xπ)− kε− α.

In order to make use of Theorem 14.5, we need to find tests Ti such that P (Ti 6= Ii | θ) is sufficiently
small for all θ. If only the bandwidth is unknown, we can for example use a test based on Pearson’s corre-
lation coefficient. Since this test requires independent samples, let us first assume, that the kernel function
has bounded support (c.f., Storkey [1999]), and that the domain of the GP is sufficiently large, such that
we can get independent samples by sampling pairs of variables outside the support of the “widest” kernel.
The number of samples will depend on the error probability α, and the difference ρ̂ between the corre-
lations depending on whether Θ ≤ θi or Θ ≥ θi+1. This difference will in turn depend on the distance
between the two samples. Let

ρ̂i = max
δ

min
j≤i,l≥i+1

| Kθj
(δ)−Kθl

(δ)|, and

δ̂i = argmax
δ

min
j≤i,l≥i+1

| Kθj
(δ)−Kθl

(δ)|.

ρ̂i is the maximum “gap” achievable for separating bandwidths at most θi from those at least θi+1. δ̂i is
the distance at which two samples should be taken to achieve this gap in correlation. If several feasible
pairs of locations are avaible, we choose the one which maximizes mutual information.
Theorem 14.6. We need

N̂i = O
(

1
ρ̂i

2 log2 1
α

)
independent pairs of samples at distance δ̂i to decide between θ ≤ θi or θ ≥ θi+1 with P (Ti 6= Ii | θ) ≤ α
for all θ.

In the case of kernels with non-compact support, such as the Gaussian or Exponential kernel, we cannot
generate such independent samples, since distant points will have some (exponentially small) correlation.
However, these almost independent samples suffice:
Corollary 14.7. LetX have variance σ2, measurement noise σ2

n at each location, ρ̂ = mini ρ̂i, and ξ < ρ̂.
We can obtain a test Ti with P (Ti 6= Ii | θ) ≤ α using

N̂ = O
(

1
(ρ̂− ξ)2

log2 1
α

)
pairs of samples Xs = (Xs1 ,Xs2) at distance δ̂i, if, for every Xs and Xt in our sample set,

Cor(Xsi ,Xtj ) ≤

√
ξσ2

n

4σ2N̂dlog2me
,

for i, j ∈ {1, 2}.
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Hence, since most kernel functions decay exponentially fast, only a small spatial distance has to be guar-
anteed between the pairs of samples of the independence tests.

Note that for the Gaussian and the Exponential kernel for example, we can compute ρ̂i analytically: For
the Gaussian kernel we have

δ̂i =
θi+1θi

√
(θ2

i+1 − θ2
i ) log(θ2

i+1/θ
2
i )

θ2
i+1 − θ2

i

, ρ̂i =

(
exp(− δ̂2

θ2
i+1

)− exp(− δ̂
2

θ2
i

)

)
(1− σ2

n/σ
2),

and for the Exponential kernel,

δ̂i =
θi+1θi log(θi+1/θi)

θi+1 − θi
, ρ̂i =

(
exp(− δ̂

θi+1
)− exp(− δ̂

θi
)

)
(1− σ2

n/σ
2).

Further note that while this discussion focused on detecting bandwidths, the technique is general, and
can be used to distinguish other parameters, e.g., variance, as well, as long as appropriate tests are avail-
able.

This hypothesis testing exploration strategy gives us sample complexity bounds. It guarantees that with a
small number of samples we can decrease the parameter uncertainty enough such that, using Theorem 14.4
as stopping criterion, we can switch to exploitation.

Explicit Exploration based on Information Gain (IGE). As the bound in Theorem 14.4 directly de-
pends on H(Θ), another natural exploration strategy is to select samples which have highest information
gain about the parameters, H(Θ). More formally, this strategy, after observing samples Xπ1:algpi

=
xπ1:algpi

, selects the location πi+1 such that

πi+1 = argmax
y

H(Θ | xπ1:algpi
)−H(Θ | Xy,xπ1:algpi

).

Implicit Exploration (IE). The following generalization of the “information never hurts” principle
[Cover and Thomas, 1991] to policies shows that any exploration strategy will, in expectation, decrease
H(Θ).
Proposition 14.8. Let XV be a GP with kernel parameters Θ. Let π be a policy for selecting observations.
Then H(Θ | Xπ) ≤ H(Θ).

Considering the near-optimal performance of the greedy heuristic in the a priori case, a natural implicit
exploration strategy is the sequential greedy algorithm. Using Eq. (14.4), IE considers the previous
observations, when deciding on the next observation, and, using Proposition 14.8, implicitly decreases
H(Θ).

14.5 Actively learning nonstationary GPs

Many spatial phenomena are nonstationary, being strongly correlated in some areas of the space and very
weakly correlated in others. In our river example, we consider the pH values in the region just below the
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confluence of the San Joaquin and Merced rivers. The former was dominated by agricultural and wetland
drainage, whereas, in contrast, the latter was less saline. The data (c.f., Figure 14.2(a)) is very nonstation-
ary. There is very high correlation and low variance in the outer regions. The turbulent confluence region
however exhibits high variance and low correlation.

Modeling nonstationarity has to trade off richness of the model and computational and statistical tractabil-
ity. Even though the covariance function is a an infinite dimensional object, often a parametric form is
chosen. For example, Nott and Dunsmuir [2002] suggest to model nonstationarity by a spatially varying
linear combination of isotropic processes. In any such a parametric setting, Corollary 14.3 holds without
additional assumptions; the major difference is that H(Θ) can be much larger, increasing the potential for
improvement of the active strategy over the a priori design.

14.5.1 Nonstationary model

Motivated by the river monitoring problem, we partition the space into disjoint regions V(1), . . . ,V(m),
which are specified by the user. With each region V(i), we associate an isotropic process X (i)

V , with pa-
rameters Θ(i), which are assumed to have independent priors. We define our GP prior for the full space V
as a linear combination of the local GPs: Xs =

∑
i λi(s)X (i)

s . Note that such a linear combination is still
a valid GP. How should we choose the weights λi(s)? We want a model which behaves similar to process
X (i)
V within region i, and interpolates smoothly between regions. In order to achieve that, we associate a

weighting function νi(s) with each region. This function should achieve its maximum value in region i
and decrease with distance to region i. In our river example, we set the weighting functions as indicated
in Figure 14.2(a). We can then set

λi(s) =

√
νi(s)∑
i′ νi′(s)

,

which ensures that the variance at location s is a convex combination of the variances of the local GPs,
with contribution proportional to νi(s). If each X (i)

V has zero mean, and kernel Ki(s, t), then the new,
nonstationary GP XV has the kernel ∑

i

λi(s)λi(t)Ki(s, t).

By adding a deterministic functionM(s), one can also modify the prior mean of the GP. While the decom-
position into prespecified regions might appear restrictive, in many applications, as in the river monitoring
setting, a good decomposition can be provided by an expert. Furthermore, one can control the amount of
smoothing by a bandwidth parameter, which can be part of the model. By this approach, the data itself can
decide whether two adjacent regions should be joined (high smoothing bandwidth) or almost independent
(low smoothing bandwidth).

14.5.2 Efficient nonstationary active learning

Now, in principle we could apply Corollary 14.3 to this model to determine when to switch from explo-
ration (e.g., using information gain) to exploitation. However, even if each Θ(i) is discretized so that the
distribution over Θ(i) can be exactly maintained, the joint distribution over Θ = (Θ(1), . . . ,Θ(m)) is expo-
nentially large in m. In order to address this problem, let us first consider the special case where each ν(i)

is positive only within region i. In this case, an observation made in region i only affects the prediction
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and parameter estimation in region i. The joint distribution over Θ will always stay fully factorized, and
efficient inference is possible. We effectively monitor a collection of independent GPs, and our active
learning algorithm attempts to optimally allocate the samples to the independent GPs.

Now let us consider the general case, where the weights νi take positive values outside region i. In this
case, an observation s made with positive weights νi(s) > 0 and νj(s) > 0 for two regions i and j effec-
tively couples the parameters Θ(i) and Θ(j). Eventually, all parameters become dependent, and we need
to maintain the full, exponentially large joint distribution. In order to cope with this complexity, we apply
a variational approach: After making an observation, we find a fully factorized1 approximate posterior
distribution, which is closest in KL divergence. More formally, given a prior P (Θ) over the parameters
and a set of locations A ⊆ V and their values XA = xA, we seek the distribution

P̂ (Θ) = argmin
P ′ factorized

KL(P (Θ | XA = xA) || P ′(Θ)).

For the multinomial distribution, the solution P̂ minimizing the KL divergence can be obtained by match-
ing the marginals of the exact posterior [Koller and Friedman, 2008]. The following proposition shows
that this procedure does not invalidate our stopping criterion.
Proposition 14.9. It holds that

H(P̂ (Θ)) ≥ H(P (Θ | XA = xA)).

Hence, using Theorem 14.4, our variational approach never stops exploring too early.

In order to use this nonstationary model for active learning, we need to condition on observations and
compute mutual information efficiently.

Computing conditional distributions. We assume we have a fully factorized distribution P̂ (Θ), which
already incorporates previous observations XA = xA, and we want to incorporate a new observation
Xs = xs at location s. We first find the relevant regions V(i1), . . . ,V(im). A region is relevant2 to location
s if νj(s) > 0. For each joint instantiation of the relevant parameters θ̄ = (θi1 , . . . , θim), we compute the
likelihood of the observation P (Xs = xs | θ̄,xA′), where xA′ are the previous observations made within
the relevant regions. Using Bayes’ rule,

P (θ̄ | xs,xA) ∝ P̂ (θ̄)P (xs | xA, θ̄),

we can compute the exact parameter posterior. Remembering all observed data, we can always com-
pute P (θ̄ | xs,xA) using GP regression. Now that we have the exact parameter posterior, we find the
KL-minimizing fully factorized approximation to P (θ̄ | xs,xA) by marginalisation.

Computing entropy and mutual information. In order to implement the greedy policy for mutual in-
formation πGMI or entropy πGH , we need to be able to compute H(Xs | XA, θ) for the location s under
consideration, and a set of observations A (or V \ (A ∪ {s}) for mutual information). We can com-
pute this quantity very similarly to the procedure described above. We first find the regions relevant to
s, V(i1), . . . ,V(im), and set A′ = V ′ ∩ A, where V ′ = V(i1) ∪ · · · ∪ V(im). As above, for every joint

1More complex distributions, which still allow efficient inference, such as trees, can be used as well.
2We assume here that the νi are supported in a small number of regions. If this is not the case, we can use truncation

arguments similar to those used in Chapter 6.
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instantiation of the relevant parameters θ̄, we compute the conditional entropy on the GP X ′V , which we
can do efficiently in closed form given the parameters θ̄. We can then compute

H(Xs | XA = xA,Θ) =
∑

θ̄

P̂ (θ̄)H(Xs | XA = xA, θ̄).

In summary, our active learning strategy for nonstationary GPs is similar to the isotropic case: We explore
until Corollary 14.3 proves that the advantage of the sequential strategy is small enough, then switch to
exploitation. The difference is that we use a variational approach to leverage the structure of the nonsta-
tionary GP as a linear combination of locally supported isotropic GPs.

14.6 Experiments

14.6.1 River Monitoring

We first describe results on our river monitoring application. We consider one high-resolution spatial scan
of pH measurements from the NIMS sensor deployed just below the confluence of the San Joaquin and
the Merced rivers in California (denoted by [R]) [Harmon et al., 2006]. We partition the transect into four
regions, with smoothing weights indicated in Figure 14.2(a), and we use 2 bandwidth and 5 noise vari-
ance levels. Figure 14.2(a) illustrates the samples chosen by implicit exploration (IE) using the entropy
criterion. The bars indicate the sequence of observations, and larger bars correspond to later observa-
tions (i.e., based on more knowledge about the model). We can observe that while the initial samples are
roughly uniformly distributed, the later samples are mostly chosen in the weakly correlated, high vari-
ance turbulent confluence region. In parentheses, we display the estimated bandwidths and noise standard
deviations. Figure 14.2(b) presents the results from our algorithms. The sequential algorithm leads to a
quicker decrease in Root Mean Squared (RMS) error than the a priori design. Initially, the isotropic model
with two parameters provides a better fit than the nonstationary model with 8 parameters, but, after about
15 samples, the situation is inverted, and the nonstationary model drastically outperforms the isotropic
model after 28 samples, providing more than 50% lower error.

14.6.2 Temperature Data

We consider temperature data [T] from the sensor network deployment with 54 sensors at Intel Research
Berkeley, as introduced in Chapter 6. Our 145 samples consist of measurements taken every hour by
the sensors over 5 days. We modeled the data as an isotropic process with unknown variance and an
Exponential kernel with unknown bandwidth. We discretized the variance in σ2 ∈ {12, 22, 32, 42, 52},
and the bandwidth in
{3, 5, 7, 9, 11, 13, 15} meters based on expert knowledge. We compared the performance of the active
learning strategies, each using a different exploration strategy. Figure 14.2(c) shows the RMS prediction
error, and Figure 14.2(d) presents the potential relative advantage obtained by Theorem 14.3 (our stopping
criterion). While IE leads to the best prediction, followed by the independence test exploration (ITE), in-
formation gain exploration (IGE) tightens the bound on the sequential advantage the fastest. For example.,
if we decide to stop exploring once the sequential advantage drops below η = 35%, 5 samples suffice for
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Figure 14.2: Results on pH [R] and temperature [T] data. (a) Top: sampling locations chosen by active
learning algorithm. Higher bars indicate later (i.e., more informed) choice. Bottom: Smoothing functions
used for spatial partitioning. (b) Comparison of prediction error for pH data. Note that the sequential algo-
rithm on the nonstationary model eventually reduces the error incurred by the a priori design and isotropic
model by more than 50%. (c) Comparison of exploration strategies, isotropic model. (d) Bounds on the
potential advantage of the sequential algorithm using Theorem 14.3 (Stopping criterion). Information gain
leads to quickest drop of bound, but worse spatial prediction.

IGE, 8 for ITE and 12 for IE. This analysis (which is also supported by other data sets) indicates that
none of the exploration strategies dominates each other, their differences can be well-characterized, and
the choice of strategy depends on the needs of each application. Hence, if the goal is to switch to a priori
design as quickly as possible, IGE might be the right choice, whereas if we can afford to always perform
the logistically more complex sequential design, IE would decrease the predictive RMS error the fastest.
ITE performs well w.r.t. both criteria, and has theoretical sample complexity guarantees.

We also modeled the temperature using a nonstationary GP, with the space partitioned into four regions,
each modeled as an isotropic GP. We adopted a softmax function with smoothing bandwidth 8 meters to
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Figure 14.3: Results on temperature [T] and precipitation [P] data. (a) Comparison of isotropic, non-
stationary model, using random and sequential selection. Information gain achieves worst prediction,
but reduces error in bandwidth (b) and parameter entropy (c) fastest. (d) Sequential design outperforms
a priori design on rain data.

spatially average over the local isotropic GPs. The results in Figure 14.3(a) show that the nonstationary
model leads to reduced prediction error compared to the isotropic model. All active learning models drasti-
cally outperform random selection. Since the parameter uncertainty is still very high after 20 samples, IGE
leads to worse prediction accuracy than IE. However, IGE decreases the parameter error Figure 14.3(b)
(compared to the estimates when given all observations) and parameter entropy H(Θ) Figure 14.3(c) the
fastest. These results indicate (along with higher log-likelihood), that even though we are estimating its 8
parameters from only up to 20 data points, the nonstationary model provides a better fit to the data.

14.6.3 Precipitation Data

In another experiment, we considered precipitation data [P] from 167 detector stations in the Pacific North-
west. We followed the preprocessing as described in Chapter 6. Figure 14.3(d) shows the RMS error for
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110 samples, spaced roughly three months apart, using an isotropic GP with 5 bandwidth and 3 variance
parameter levels. Here, IE, ITE, IGE all outperform the a priori design.

14.6.4 Synthetic data

In order to study our method in more detail, we created a synthetic data set [S] out of 1000 samples from
an isotropic GP with unit variance, on a 8 × 8 grid. We uniformly selected bandwidths for the Expo-
nential kernel from {1, 2, 4, 8, 16}. For each sample, we ran our exploration-exploitation algorithm with
all three exploration strategies (ITE, IGE and IE), as well as the a priori design based on FMI(· | Θ).
Figure 14.4(a) shows the average Root Mean Squares (RMS) prediction error with increasing number of
observations. Hereby, the exploration stopped after, based on Corollary 14.3, the sequential design could
only perform at most 10% better than the a priori design. Information gain exploration (IGE) decreases the
RMS error slightly more slowly. In this experiment, the a priori design achieved prediction accuracy only
insignificantly worse than the sequential designs. When we never stop exploring (c.f., Figure 14.4(b)),
then IGE performs significantly worse. The independence testing (ITE) performs almost as well as the
implicit exploration (IE), since it prefers tests with high mutual information. Figure 14.4(c) shows the
error in estimating the bandwidth parameter with an increasing number of samples. All three strategies
decrease the parameter error exponentially, empirically demonstrating the logarithmic bound. Initially,
IGE decreases the parameter error significantly more quickly. Both explicit exploration strategies, IGE
and ITE, lead to a lower bandwidth error after all 30 samples are observed. Figure 14.4(d) compares
the mutual information achieved by the a priori and active strategies, along with the bound from Corol-
lary 14.3 on the best sequential strategy (without the factor (1 − 1/e)−1, since the greedy sets tend to be
very close to optimal in practice, c.f., Chapter 6). Experimentally we observed that the contribution by the
term

∑
θ P (θ) max|A|=k FMI(XA | θ) to the stopping criterion was negligible compared to the parameter

entropy H(Θ).

14.7 Summary

In this chapter, we presented a nonmyopic analysis for active learning of Gaussian Processes. We proved
bounds on how much better a sequential algorithm can perform than an a priori design when optimizing
observation locations under unknown parameters. Our bounds show that key potential for improvement
is in the parameter entropy, motivating an exploration–exploitation approach to active learning, and pro-
vide insight into when to switch between the two phases. Using submodularity of our objective function,
we provided bounds on the quality of our exploitation strategy. We proposed several natural exploration
strategies for decreasing parameter uncertainty, and proved logarithmic sample complexity results for
exploration phase using hypothesis testing. We extended our algorithm to handle nonstationary GP, ex-
ploiting local structure in the model. Here, we used a variational approach to address the combinatorial
growth of the parameter space. In addition to our theoretical analyses, we evaluated our algorithms on
several real-world problems, including data from a real deployment for monitoring the ecological condi-
tion of a river. We believe that our results provide significant new insights on the potential of sequential
active learning strategies for monitoring spatial phenomena using GPs.
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Figure 14.4: Results on synthetic data [S]. (a) If we stop exploring when the potential advantage goes
below 10%, all 3 exploration strategies achieve approximately the same prediction. (b) If we never stop
exploring, IGE leads to worse prediction than ITE. (c) Both IGE and ITE decrease parameter error more
quickly than IE. (d) bound on optimal sequential performance quickly becomes tight, indicating that one
can stop exploring early.
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Chapter 15

Optimal Value of Information

In probabilistic reasoning, where one can choose among several possible but expensive observations, it is
often a central issue to plan on which variables to observe in order to be able to make the most effective
decisions [Howard and Matheson, 1984, Mookerjee and Mannino, 1997]. In a medical expert system, for
example, multiple tests are available, and each test has a different cost [Heckerman et al., 1993, Turney,
1995]. In such systems, it is thus important to decide on a sequence in which tests are performed in
order to become most certain about the patient’s condition, at a minimum cost. Occasionally, the cost of
testing can even exceed the value of information for any possible outcome. In the medical example, the
information is acquired not in order to reduce uncertainty per se, but rather to facilitate decision making.
Observing the outcome of medical tests only provides value if it is conclusive enough to allow making an
informed decision.

In the previous chapters we have seen that many important sensing tasks require the optimization of a
submodular set function. Unfortunately, the decision theoretic value of information (as introduced in
Chapter 2) does not satisfy submodularity.
Proposition 15.1. Decision-theoretic value of information is not submodular, even in Naive Bayes models.

Intuitively, value of information can be non-submodular, if we need to make several observations (e.g.,
medical tests) in order to “convince” ourselves that we need to change our decision.

Even though decision-theoretic value of information is not submodular, one might hope that the greedy
algorithm still performs well. In fact, such greedy algorithms have been used by many researchers to
select observations in such sequential problems [Dittmer and Jensen, 1997, Kapoor et al., 2007, Scheffer
et al., 2001, van der Gaag and Wessels, 1993]. Unfortunately, in general, this heuristic does not provide
any performance guarantees. In fact, we can show that this greedy algorithm can perform arbitrarily
badly:
Proposition 15.2. The greedy algorithm for optimizing decision-theoretic value of information can per-
form arbitrarily badly.

In this chapter, we will consider the most general problem of optimally selecting a priori subsets or sequen-
tial policies for objective functions that are not required to be submodular, such as the decision-theoretic
value of information.

The following running example motivates our research and is empirically evaluated in Section 15.5. Con-
sider a sequential temperature monitoring task, where wireless temperature sensors are distributed across
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a building. The task is to become most certain about the temperature distribution at all times, whilst min-
imizing energy expenditure, a critically constrained resource [Deshpande et al., 2004]. Such fine-grained
building monitoring is required to obtain significant energy savings [Singhvi et al., 2005]. In this example,
our value of information goal would be to adaptively determine at which timesteps the sensor should be
activated to minimize the uncertainty, or to facilitate building management decisions.

We present efficient algorithms, which guarantee optimal nonmyopic value of information in chain graph-
ical models such as Hidden Markov Models (HMMs) [Baum and Petrie, 1966]. We address two settings:
subset selection, where the optimal subset of observations is obtained in an open-loop fashion, and con-
ditional plans, a sequential, closed-loop plan where the observation strategy depends on the actual value
of the observed variables (c.f., Figure 15.1). To our knowledge, these are the first optimal and efficient
algorithms for these tasks for this class of graphical models. For both settings, we address the filtering
and the smoothing versions: Filtering is important in online decision making, where our decisions can
only utilize observations made in the past. Smoothing arises for example in structured classification tasks,
where there is no temporal dimension in the data, and hence all observations can be taken into account. We
call our approach VOIDP as the algorithms use Dynamic Programming to optimize Value of Information.
We evaluate our VOIDP algorithms empirically on three real-world datasets, and also show that they are
well-suited for interactive classification of sequential data.

Most problems in graphical models, such as probabilistic inference and finding the most probable explana-
tion, that can be solved efficiently for chain-structured graphs, can also be solved efficiently for polytrees.
We prove that the problem of selecting the best k observations for maximizing decision theoretic value
of information is NPPP-complete even for discrete polytree graphical models, giving a complexity theo-
retic classification of a core artificial intelligence problem. NPPP-complete problems are believed to be
significantly harder than NP-complete or even #P-complete problems commonly arising in the context
of graphical models. We furthermore prove that just evaluating decision-theoretic value of information
objective functions is #P-complete even in the case of Naive Bayes models, a simple special case of
polytree graphical models that is frequently used in practice [c.f., Domingos and Pazzani, 1997].

Unfortunately, these hardness results show that, while the problem of optimally scheduling a single sensor
can be optimally solved using our algorithms, the problem of scheduling multiple, correlated sensors is
wildly intractable. Nevertheless, we show how our algorithms for single sensor scheduling can be used to
approximately optimize a multi-sensor schedule. We demonstrate the effectiveness of this approach on a
real sensor network testbed for building management.

In summary, we provide the following contributions:

• We present the first optimal algorithms for nonmyopically computing and optimizing value of in-
formation on chain graphical models.

• We show that optimizing decision theoretic value of information is NPPP-hard for discrete polytree
graphical models. Just computing decision theoretic value of information is #P-hard even for Naive
Bayes models.

• We present several extensions of our algorithms, e.g., to tree graphical models with few leaves, and
to multiple correlated chains (for multi-sensor scheduling).

• We extensively evaluate our algorithms on several real-world problems, including sensor scheduling
on a real sensor testbed and active labeling in bioinformatics and Natural Language Processing.
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Figure 15.1: Example of a conditional plan.

15.1 Problem statement

As in Chapter 2, we will assume that the state of the world is described by a collection of random variables
XV = (X1, . . . ,Xn), where V is an index set. For example, V could denote a set of locations, and Xi

models the temperature reading of a sensor placed at location i ∈ V . For a subset A = {i1, . . . , ik} ⊆ V ,
we use the notation XA to refer to the random vector XA = (Xi1 , . . . ,Xik). While some of our algorithms
extend to continuous distributions, we we generally assume that the variables XV are discrete.

As discussed in Chapter 2, we take a Bayesian model-based approach, and assume a prior probability
distribution P (XV) over the outcomes of the variables. Suppose we select a subset of the variables, XA
(for A ⊆ V), and observe XA = xA. For example, A is the set of locations where we place sensors, or
a set of medical tests we decide to perform. After observing the realization of these variables XA = xA,
we can compute the posterior distribution over all variables P (XV | XA = xA). Based on this posterior
probability we obtain a reward

u(xV ,A) = R(P (XV | XA = xA)).

For example, this reward function could depend on the uncertainty (measured by the entropy) of the
distribution P (XV | XA = xA). We will describe several examples in more detail below.

In general, when selecting observation, we will not know ahead of time what observations we will make.
Instead, we only have a distribution over the possible observations. Hence, we will be interested in the
expected reward, where we take the expectation over the possible observations.

When optimizing the selection of variables, we can consider different settings: In subset selection, our
goal is to pick a subset A∗ ⊆ V of the variables, maximizing

A∗ = argmax
A

∑
xA

P (XA = xA)R(P (XV | XA = xA)), (15.1)

where we possible impose some constraints on the set A we are allowed to pick. In the subset selection
setting, we commit to the selection of the variables before we get to see their realization.

Instead, we can also sequentially select one variable after the other, letting our choice depend on the obser-
vations made in the past. In this setting, we would like to find a conditional plan π∗ that maximizes

π∗ = argmax
π

∑
xV

P (xV)R(P (XV | Xπ(xV ) = xπ(xV ))). (15.2)

Hereby, π is a conditional plan (such as the ones considered in Chapter 14), that can select a different set
of variables for each possible state of the world xV . We use the notation π(xV) ⊆ V to refer to the subset
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of variables selected by the conditional plan π in state XV = xV . We will define the notion of conditional
planning more formally in Section 15.3.2.

This general setup of selecting observations goes back in the decision analysis literature to the notion
of value of information by Howard [1966] and in the statistical literature to the notion of Bayesian Ex-
perimental Design by Lindley [1956]. In this chapter, we refer to the problems (15.1) and (15.2) as the
problem of optimizing value of information.

In this chapter, we show how the complexity of solving these value of information problems depend on
the properties of the probability distribution P . We give the first algorithms for optimally solving value of
information for an interesting and challenging class of distributions including Hidden Markov Models. We
also present hardness results showing that optimizing value of information is wildly intractable (NPPP-
complete) even for probability distributions for which efficient inference is possible (even for Naive Bayes
models and discrete polytrees).

15.1.1 Optimization criteria

In this chapter, we will only make the assumption, that the reward functions Ri is local 1, i.e., they are
defined on the marginal probability distributions of the variables Xi. This class has the computational
advantage that local rewards can be evaluated using probabilistic inference techniques. The total reward
will then be the sum of all local rewards. We do not assume that Ri is submodular.

Let A be a subset of V . Then P (Xj | XA = xA) denotes the marginal distribution of variable Xj

conditioned on observations XA = xA. For example, in our temperature monitoring application, Xj

models the temperature at location j ∈ V . The conditional marginal distribution P (Xj = xj | XA = xA)
then models the conditional distribution of the temperature at location j after observing the temperature
at locations A ⊆ V .

For classification purposes, it can be more appropriate to consider the max-marginals

Pmax(Xj = xj | XA = xA) = max
xV

P (XV = xV ,Xj = xj | XA = xA),

that is, for Xj set to value xj , the probability of the most probable assignment XV = xV to all other
random variables conditioned on the observations XA = xA.

The local reward Rj is a functional on the probability distribution P or Pmax over Xj . I.e., Rj takes an
entire distribution over the variable Xj and maps it to a reward value. Typically, the reward functions will
be chosen such that “certain” or “peaked” distributions obtain higher reward.

To simplify notation, we write

Rj(Xj | xA) , Rj(P (Xj | XA = xA))

to denote the reward for variable Xj upon observing XA = xA, and

Rj(Xj | XA) ,
∑
xA

P (XA = xA)Rj(Xj | xA)

to refer to expected local rewards, where the expectation is taken over all assignments xA to the observa-
tions A. Important local reward functions include:

1Local reward functions are also sometimes called decomposable scoring functions, which are widely used, e.g., in structure
learning of graphical models [c.f., Koller and Friedman, 2008].

248



Residual entropy If we set

Rj(Xj | xA) = −H(Xj | xA) =
∑
xj

P (xj ,xA) log2 P (xj | xA),

the objective in the optimization problem becomes to minimize the sum of residual entropies. Optimiz-
ing this reward function attempts to reduce the uncertainty in predicting the marginals Xi. We choose
this reward function in our running example to measure the uncertainty about the temperature distribu-
tion.

Joint entropy. Instead of minimizing the sum of residual entropies
∑

iH(Xi), we can also attempt to
minimize the joint entropy of the entire distribution,

H(XV) = −
∑
xV

P (xV) log2 P (xV).

Note, that the joint entropy depends on the full probability distributionP (XV), rather than on the marginals
P (Xi), and hence it is not local. Nevertheless, we can exploit the chain rule for the joint entropy H(XB)
of a set of random variables B = {1, . . . ,m} [c.f., Cover and Thomas, 1991], i.e.,

H(XB) = H(X1) +H(X2 | X1) +H(X3 | X1,X2) + · · ·+H(Xm | X1, . . . ,Xm−1).

Hence, if we choose the local reward functions Rj(cXj | XA) = −H(Xj | X1, . . . ,Xj−1,XA), we can
optimize a non-local reward function (the joint entropy) using only local reward functions.

Decision-theoretic value of information. The concept of local reward functions also includes the con-
cept of decision theoretic value of information. The notion of value of information is widely used [c.f.,
Heckerman et al., 1993, Howard, 1966, Lindley, 1956], and is formalized, e.g., as utility nodes in in-
fluence diagrams [Howard and Matheson, 1984], or reward functions in Partially Observable Markov
Decision Processes (POMDPs, Smallwood and Sondik [1973]). For each variable Xj , let Dj be a finite
set of decisions. Also, let dj : Dj × domXj → R be a utility function mapping a decision d ∈ Dj and an
outcome x ∈ domXj to a real number. The maximum expected utility principle states that actions should
be selected as to maximize the expected utility, EUj(d | XA = xA) =

∑
xj
P (xj | xA)gj(d, xj). The

more certain we are about Xj , the more economically we can choose our action. This idea is captured by
the notion of value of information, where we choose our local reward function

Rj(Xj | xA) = max
d
EUj(d | xA).

Margin for structured prediction. We can also consider the margin of confidence:

Rj(Xj | xA) = Pmax(x∗j | xA)− Pmax(x̄j | xA),

where
x∗j = argmax

xj

Pmax(xj | xA) and x̄j = argmax
xj 6=x∗j

Pmax(xj | xA),

which describes the margin between the most likely outcome and the closest runner up. This reward
function is very useful for structured classification purposes, as shown in Section 15.5.
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Weighted mean-squared error If the variables are continuous, we might want to minimize the mean
squared error in our prediction. We can do this by choosing

Rj(Xj | xA) = −wj Var(Xj | xA),

where

Var(Xj | xA) =
∫
P (xj | xA)

[
xj −

∫
x′jP (x′j | xA)dx′j

]2

dxj

is the conditional variance of Xj given XA = xA, and wj is a weight indicating the importance of variable
Xj .

Monitoring for critical regions (Hotspot sampling) Suppose we want to use sensors for detecting fire.
More generally, we want to detect, for each i, whether Xi ∈ Ci, where Cj ⊆ domXj is a “critical region”
for variable Xj . Then the local reward function

Rj(Xj | xA) = P (Xj ∈ Cj | xA)

favors observations A that maximize the probability of detecting critical regions.

Function optimization (Correlated bandits) Consider a setting where we have a collection of random
variables XV taking numerical values in some interval [−m,m], and, after selecting some of the variables,
we get the reward

∑
i xi. This setting arises if we want to optimize an unknown (random) function, where

evaluating the function is expensive. In this setting, we are encouraged to only evaluate the function where
it is likely to obtain high values. We can maximize our expected total reward if we choose the local reward
function

Rj(Xj | xA) =
∫
xjP (xj | xA)dxj ,

i.e., the expectation of variable Xj given observations xA. This setting of optimizing a random function
can also be considered a version of the classical k-armed bandit problem with correlated arms. More
details about the relationship with bandit problems are given in Section 15.7.

These examples demonstrate the generality of our notion of local reward. Note that most examples apply
to continuous distributions just as well as for discrete distributions and vice versa.

15.1.2 Cost of selecting observations

We also want to capture the constraint that observations are expensive. This can mean that each observa-
tion Xj has an associated positive penalty Cj that effectively decreases the reward. In our example, we
might be interested in trading off accuracy with sensing energy expenditure. Alternatively, it is also possi-
ble to define a budget B for selecting observations, where each one is associated with an integer cost βj .
Here, we want to select observations whose sum cost is within the budget, but these costs do not decrease
the reward. In our running example, the sensors could be powered by solar power, and regain a certain
amount of energy per day, which allows a certain amount of sensing. Our formulation of the optimization
problems allows both for penalties and budgets. To simplify notation we also write C(A) =

∑
j∈ACj

and β(A) =
∑

j∈A βj to extend C and β to sets.
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Instead of fixed penalties and costs per observation, both can also depend on the state of the world. For
example, in the medical domain, applying a particular diagnostic test can bear different risks for the health
of the patient, depending on the patient’s illness. The algorithms we will develop below can be adapted
to accommodate such dependencies in a straight-forward manner. We will present details only for the
conditional planning algorithm in Section 15.3.2.

15.2 Decomposing rewards

In this section, we will present the key observation that allows us to develop efficient algorithms for
nonmyopically optimizing value of information in the class of chain graphical models. The algorithms
will be presented in Section 15.3.

The set of random variables XV = {X1, . . . ,Xn} forms a chain graphical model (a chain), if Xi is con-
ditionally independent of XV\{i−1,i,i+1} given Xi−1 and Xi+1. Without loss of generality we can assume
that the joint distribution is specified by the prior P (X1) of variable X1 and the conditional probability
distributions P (Xi+1 | Xi). The time series model for the temperature measured by one sensor in our
example can be formulated as a chain graphical model. Note that the transition probabilities P (Xi+1 | Xi)
are allowed to depend on the index i (i.e., the chain models are allowed to be nonstationary). Chain
graphical models have been extensively used in machine learning and signal processing.

Consider for example a Hidden Markov Model unrolled for n time steps, i.e., V can be partitioned into
the hidden variables {X1, . . . ,Xn} and the emission variables {Y1, . . . ,Yn}. In HMMs, the Yi are always
observed and the variables Xi form a chain. In many applications, some of which are discussed in Sec-
tion 15.5, we can observe some of the hidden variables Xi as well, e.g., by asking an expert, in addition to
observing the emission variables. In these cases, the problem of selecting expert labels also belongs to the
class of chain graphical models addressed in this chapter, since the variables Xi form a chain conditional
on the observed values of the emission variables Yi. This idea can be generalized to the class of Dynamic
Bayesian Networks where the separators between time slices have size one, and only these separators can
be selected for observation. This formulation also includes certain conditional random fields [Lafferty
et al., 2001] which form chains, conditional on the emission variables (the features).

Chain graphical models originating from time series have additional, specific properties: In a system for
online decision making, only observations from the past and present time steps can be taken into account,
not observations which will be made in the future. This is generally referred to as the filtering problem.
In this setting, the notation P (Xi | XA) will refer to the distribution of Xi conditional on observations
in XA prior to and including time i. For structured classification problems as discussed in Section 15.5,
in general observations made anywhere in the chain must be taken into account. This situation is usually
referred to as the smoothing problem. We will provide algorithms both for filtering and smoothing.

We will now describe the key insight, which allows for efficient optimization in chains. Consider a set of
observations A ⊆ V . If the j variable is observed, i.e., j ∈ A, then the local reward is simply R(Xj |
XA) = R(Xj | Xj). Now consider j /∈ A, and let Aj be the subset of A containing the closest ancestor
(and for the smoothing problem also the closest descendant) of Xj in XA. The conditional independence
property of the graphical model implies that, given XAj , Xj is independent of the rest of the observed
variables, i.e., P (Xj | XA) = P (Xj | XAj ). Thus, it follows that R(Xj | XA) = R(Xj | XAj ).

These observations imply that the expected reward of some set of observations decomposes along the
chain. For simplicity of notation, we add two independent dummy variables X0 and Xn+1, where R0 =
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Figure 15.2: Illustration of the decomposing rewards idea. The reward for chain 1:7 when observing
variables X1, X4 and X7 decomposes as the sum of chain 1:4 plus the reward for chain 4:7 plus the
immediate reward for observingX4 minus the cost of observingX4. Hereby for brevity we use the notation
Rew(a : b) =

∑b
j=aRj(Xj | X1,X4,X7).

C0 = β0 = Rn+1 = Cn+1 = βn+1 = 0. Let A = {i0, . . . , im+1} where il < il+1, i0 = 0 and
im+1 = n+ 1. Using this notation, the total reward R(A) =

∑
j Rj(Xj | XA) for the smoothing case is

given by:
m∑

v=0

Riv(Xiv | Xiv)− Civ +
iv+1−1∑
j=iv+1

Rj(Xj | Xiv ,Xiv+1)

 .

In filtering settings, we simply replace Rj(Xj | Xiv ,Xiv+1) by Rj(Xj | Xiv). Figure 15.2 illustrates this
decomposition.

15.3 Efficient algorithms for optimizing value of information

In this section, we present algorithms for efficiently and nonmyopically optimizing value of information
in chain graphical models.

15.3.1 Efficient algorithms for optimal subset selection in chain models

In the subset selection problem, we want to find a most informative subset of the variables to observe in
advance, i.e., before any observations are made. In our running example, we would, before deploying the
sensors, identify k time points that are expected to provide the most informative sensor readings according
to our model.

First, define the objective function L on subsets of V by

L(A) =
n∑

j=1

Rj(Xj | XA)− C(A). (15.3)

The subset selection problem is to find the optimal subset

A∗ = argmax
A⊆V,β(A)≤B

L(A)

maximizing the sum of expected local rewards minus the penalties, subject to the constraint that the total
cost must not exceed the budget B.
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We solve this optimization problem using a dynamic programming algorithm, where the chain is broken
into sub-chains using the insight from Section 15.2. Consider a sub-chain from variable Xa to Xb. We
defineLsm

a:b (k) to represent the expected total reward for the sub-chainXa, . . . ,Xb, in the smoothing setting
where Xa and Xb are observed, and with a budget level of k. Lflt

a:b(k) represents the expected reward in
the filtering setting where only Xa is observed. More formally:

Lflt
a:b(k) = max

A⊂{a+1...b−1}
β(A)≤k

b−1∑
j=a+1

Rj(Xj | XA,Xa)− C(A),

for the filtering version, and

Lsm
a:b (k) = max

A⊂{a+1...b−1}
β(A)≤k

b−1∑
j=a+1

Rj(Xj | XA,Xa,Xb)− C(A),

for the smoothing version. Note that in both cases, L0:n+1(B) = maxA:β(A)≤B L(A), as in Equa-
tion (15.3), i.e., by computing the values for La:b(k), we compute the maximum expected total reward
for the entire chain.

Algorithm 15.1: VOIDP algorithm for optimal subset selection (for both filtering and smoothing).
Input: Budget B, rewards Rj , costs βj and penalties Cj

Output: Optimal selection A of observation times
begin

for 0 ≤ a < b ≤ n+ 1 do compute La:b(0);
for k = 1 to B do

for 0 ≤ a < b ≤ n+ 1 do
sel(−1) := La:b(0);
for j = a+ 1 to b− 1 do sel(j) := Rj(Xj | Xj)− Cj + La:j(0) + Lj:b(k − βj);
La:b(k) = maxj∈{a+1,...,b−1,−1} sel(j);
Λa:b(k) = argmaxj∈{a+1,...,b−1,−1} sel(j);

end
end
a := 0; b := n+ 1; k := B; A := ∅;
repeat

j := Λa:b(k);
if j ≥ 0 then A := A ∪ {j}; k := k − βj ;

until j = −1 ;
end

We can compute Lsm
a:b (k) and Lflt

a:b(k) using dynamic programming. The base case is simply:

Lflt
a:b(0) =

b−1∑
j=a+1

Rj(Xj | Xa),

for filtering, and

Lsm
a:b (0) =

b−1∑
j=a+1

Rj(Xj | Xa,Xb),
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for smoothing. The recursion for La:b(k) has two cases: we can choose not to spend any more of the
budget, reaching the base case, or we can break the chain into two sub-chains, selecting the optimal
observation Xj , where a < j < b. In both filtering and smoothing we have

La:b(k) = max
{
La:b(0), max

j:a<j<b,βj≤k
{Rj(Xj | Xj)− Cj + La:j(0) + Lj:b(k − βj)}

}
.

At first, it may seem that this recursion should consider the optimal split of the budget between the two
sub-chains. However, since the subset problem is open-loop and the order of the observations is irrelevant,
we only need to consider split points where the first sub-chain receives zero budget.

A pseudo code implementation for this dynamic programming approach, which we call VOIDP for subset
selection is given in Algorithm 15.1. The algorithm fills the dynamic programming tables in two loops,
the inner loop ranging over all pairs (a, b), a < b, and the outer loop increasing k. Within the inner loop,
when computing the best reward for the sub-chain from a to b, it fills out a table sel, where sel(j) is the
reward that could be obtained by making an observation at j, and sel(−1) is the reward if no observation
is made.

In addition to computing the optimal rewards La:b(k) that could be achieved for sub-chain a : b and
budget k, the algorithm also stores the choices Λa:b(k) that realize this maximum score. Here, Λa:b(k) is
the index of the next variable that should be selected for sub-chain a : bwith budget k, or−1 if no variable
should be selected. In order to recover the optimal subset for budget k, Algorithm 15.1 uses the quantities
Λa:b to recover the optimal subset by tracing the maximal values occurring in the dynamic programming
equations.

Using an induction proof, we obtain:
Theorem 15.3 (Subset Selection). The dynamic programming algorithm described above computes the
optimal subset with budget B in (1

6n
3 +O(n2))B evaluations of expected local rewards.

Note that if we do not consider different costs β for each variable, we would simply choose βj = 1 for all
variables and compute La:b(N).

Further note that if the variables Xi are continuous, our algorithm is still applicable when the integrations
and inferences necessary for computing the expected rewards can be performed efficiently. This is the
case, for example, in a Gaussian linear model (i.e., the variables Xi are normally distributed) and the local
reward functions are the residual entropies or the residual variances for each variable.

15.3.2 Efficient algorithms for optimal conditional planning in chain models

In the conditional plan problem, we want to compute an optimal sequential querying policy π: We ob-
serve a variable, pay the penalty, and depending on all values observed in the past, select the next query,
proceeding as long as our budget suffices. The objective is to find the plan with the highest expected
reward, where, for each possible sequence of observations, the budget B is not exceeded. For filtering,
we can only select observations in the future, whereas in the smoothing case, the next observation can be
anywhere in the chain. In our running example, the filtering algorithm would be most appropriate: The
sensors would sequentially follow the conditional plan, deciding on the most informative times to sense
based on the previous observations. Figure 15.1 shows an example of such a conditional plan.
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From subset selection to conditional planning

Note that in contrast to the subset selection setting that we considered in Section 15.3.1, in conditional
planning, the set of variables depend on the state of the world XV = xV . Hence, for each such state,
the conditional plan π could select a different set of variables, π(xV) ⊆ V . As an example, consider Fig-
ure 15.1, where the set of possible observations is V = {morn, noon, eve}, andXV = {Tmorn, Tnoon, Teve}.
If the world is in state xV = (high, low, high), then the conditional plan π presented in Figure 15.1
would select π(xV) = {morn, eve}, whereas, if xV = (low, low, high), it would select π(xV) =
{morn, noon}. Since the conditional plan is a function of the (random) state of the world, it is a set-
valued random variable. In order to optimize Problem (15.2), we define the objective function2

J(π) =
∑
xV

P (xV)
n∑

j=1

[
Rj(Xj | xπ(xV ))− C(π(xV))

]
,

i.e., the expected sum of local rewards given the observations made by plan π(xV) in state XV = xV
minus the penalties of the selected variables, where the expectation is taken with respect to the distribution
P (XV). In addition to defining the value of a policy J(π), we also define the cost β(π) as

β(π) = max
xV

β(π(xV)),

i.e., as maximum cost β(A) (as defined in Section 15.3.1) of any setA = π(xV) that could be selected by
the policy π, in any state of the world XV = xV .

Based on this notation, our goal is to find a policy π∗ such that

π∗ = argmax
π∈Π

J(π) such that β(π) ≤ B,

i.e., a policy that has maximum value, and is guaranteed to never have cost exceeding our budget B.
Hereby Π is the class of sequential policies (i.e., those, where the observations are chosen sequentially,
only based on observations that have been previously made).

It will be useful to introduce the following notation:

J(xA; k) = max
π∈Π

J(π | XA = xA) such that β(π) ≤ k,

where

J(π | XA = xA) =
∑
xV

P (xV | XA = xA)
n∑

j=1

[
Rj(Xj | xπ(xV ))− C(π(xV))

]
.

Hence, J(xA; k) is the best possible reward that can be achieved by any sequential policy with cost at
most k, after observing XA = xA. Using this notation, our goal is to find the optimal plan with reward
J(∅;B). Note that the function J(xA; k) is analogous to the concept of a value function in Markov
Decision Processes [c.f., Bellman, 1957b]3: Such a value function quantifies the best possible long term

2Recall that, in the filtering setting, R(Xj | xπ(xV )) , R(Xj | xA′), where A′ = {t ∈ π(xV) s.t. t ≤ j}, i.e., only
observations from the past are taken into account.

3Note that the state space of the MDP corresponding to our setting is exponentially large, as it consists of all possible joint
assignments to the vectorXV = xV . Hence, existing algorithms for solving MDPs cannot be applied to large value of information
problems.
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reward achievable in any given state. In our setting, the state is uniquely determined by the observed
evidence XA = xA.

In analogy to finite-horizon Markov Decision Processes, the value function J satisfies the following re-
cursion. The base case considers the exhausted budget:

J(xA; 0) =
∑
j∈V

Rj(Xj | xA)− C(A).

For the recursion, it holds that

J(xA; k) = max

J(xA; 0),max
j /∈A

∑
xj

P (xj | xA)J(xA, xj ; k − βj)


 ,

i.e., the best one can do in state XA = xA with budget k is to either stop selecting variables, or chose the
best next variable and act optimally thereupon.

Note that we can easily allow the cost βj depend on the state xj of variable Xj . In this case, we would
simply replace βj by βj(xj), and define J(XA, r) = −∞ whenever r < 0. Equivalently, we can let the
cost C(A) depend on the state by replacing C(A) by C(xA).

Dynamic programming for optimal conditional planning in chains

We propose a dynamic programming algorithm for obtaining the optimal conditional plan that is similar to
the subset algorithm presented in Section 15.3.1. Again, we utilize the decomposition of rewards described
in Section 15.2. The difference here is that the observation selection and budget allocation now depend on
the actual values of the observations. In order to compute the value function J(xA; k) for the entire chain,
we will compute the value functions Ja:b(xA; k) for sub-chains Xa, . . . ,Xb.

The base case of our dynamic programming approach deals with the zero budget setting:

Jflt
a:b (xa; 0) =

b−1∑
j=a+1

Rj(Xj | Xa = xa),

for filtering, and

Jsm
a:b (xa, xb; 0) =

b−1∑
j=a+1

Rj(Xj | Xa = xa,Xb = xb),

for smoothing. The recursion defines Ja:b(xa; k) (Ja:b(xa, xb; k) for smoothing), the expected reward for
the problem restricted to the sub-chain Xa, . . . ,Xb conditioned on the values of Xa = xa (and Xb = xb

for smoothing), and with budget limited by k. To compute this quantity, we again iterate through possible
split points j, such that a < j < b. Here we observe a notable difference between the filtering and
the smoothing case. For smoothing, we now must consider all possible splits of the budget between the
two resulting sub-chains, since an observation at time j might require us to make an additional, earlier
observation:

Jsm
a:b (xa,xb; k) = max

{
Jsm

a:b (xa, xb; 0), max
a<j<b

{∑
xj

P (Xj = xj | Xa = xa,Xb = xb)
{

Rj(Xj | xj)− Cj(xj) + max
0≤l≤k−βj(xj)

[
Jsm

a:j (xa, xj ; l) + Jsm
j:b (xj , xb; k − l − βj(xj))

]}}}
.
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Looking back in time is not possible in the filtering case, hence the recursion simplifies to

Jflt
a:b (xa; k) = max

{
Jflt

a:b (xa; 0), max
a<j<b:βj(xj)≤k

{∑
xj

P (Xj = xj | Xa = xa)
{

Rj(Xj | xj)− Cj(xj) + Jflt
a:j (xa; 0) + Jflt

j:b (xj ; k − βj(xj))
}}}

.

For both Jflt and Jsm, the optimal reward is obtained by J0:n+1(∅;B) = J(∅;B) = J(π∗). Algo-
rithm 15.2 presents a pseudo code implementation for the smoothing version – the filtering case is a
straight-forward modification. We call Algorithm 15.2 the VOIDP algorithm for conditional planning.
The algorithm will fill the dynamic programming tables using three loops, the inner loop ranging over all
assignments xa, xb, the middle loop ranging over all pairs (a, b) where a < b, and the outer loop covers
increasing values of k ≤ B. Within the innermost loop, the algorithm again computes a table sel such that
sel(j) is the optimal reward achievable by selecting variable j next. This value is now an expectation over
any possible observation that variable Xj can make. Note that for every possible instantiation Xj = xj

a different allocation of the remaining budget k − βj(xj) to the left and right sub-chain (a : j and j : b
respectively) can be chosen. The quantity σ(j, xj) tracks this optimal budget allocation.

Algorithm 15.2: VOIDP algorithm for computating an optimal conditional plan (for the smoothing
setting).

Input: Budget B, rewards Rj , costs βj and penalties Cj

Output: Optimal conditional plan (πa:b, σa:b)
begin

for 0 ≤ a < b ≤ n+ 1, xa ∈ domXa, xb ∈ domXb do compute Jsm
a:b (xa, xb; 0);

for k = 1 to B do
for 0 ≤ a < b ≤ n+ 1, xa ∈ domXa, xb ∈ domXb do

sel(−1) := Jsm
a:b (0);

for a < j < b do
sel(j) := 0;
for xj ∈ domXj do

for 0 ≤ l ≤ k − βj(xj) do
bd(l) := Jsm

a:j (xa, xj ; l) + Jsm
j:b (xj , xb; k − l − βj(xj));

end
sel(j) := sel(j) + P (xj | xa, xb) · [Rj(Xj | xj)− Cj(xj) + maxl bd(j)];
σ(j, xj) = argmaxl bd(j);

end
end
Jsm

a:b (k) = maxj∈{a+1,...,b−1,−1} sel(j);
πa:b(xa, xb; k) = argmaxj∈{a+1,...,b−1,−1} sel(j);
for xj ∈ domXπa:b(k) do σa:b(xa, xb, xj ; k) = σ(πa:b(k), xj);

end
end

end
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Algorithm 15.3: Observation selection using conditional planning.
Input: Budget k, observations Xa = xa, Xb = xb, σ, π
begin

j := πa:b(xa, xb; k);
if j ≥ 0 then

Observe Xj = xj ;
l := σa:b(xa, xb, xj ; k);
Recurse with k := l, Xa = xa and Xj = xj instead of Xb = xb;
Recurse with k := k − l − βj , Xj = xj instead of Xa = xa, and Xb = xb;

end
end

The plan itself is compactly encoded in the quantities πa:b and σa:b. Hereby, πa:b(xa, xb; k) determines the
next variable to query after observingXa = xa andXb = xb, and with remaining budget k. σa:b(xa, xb, xj ; k)
determines the allocation of the budget after the new observation Xj = xj has been made. Considering
the exponential number of possible sequences of observations, it is remarkable that the optimal plan can
be represented using only polynomial space. Algorithm 15.3 indicates how the computed plan can be
executed. The procedure is recursive, requiring the parameters a := 0, xa := 1, b := n + 1, xb := 1 and
k := B for the initial call. In our temperature monitoring example, we could first collect some temperature
timeseries as training data, and then learn the chain model from this data. Offline, we would then compute
the conditional plan (for the filtering setting), and encode it in the quantities πa:b and σa:b. We would then
deploy the computed plan on the actual sensor node, together with an implementation of Algorithm 15.3.
While computation of the optimal plan (Algorithm 15.2) is fairly computationally expensive, the execu-
tion of the plan (Algorithm 15.3) is very efficient (selecting the next timestep for observation requires a
single lookup in the πa:b and σa:b tables) and hence well-suited for deployment on a small, embedded
device.

We summarize our analysis in the following Theorem:
Theorem 15.4 (Conditional Planning). The algorithm for smoothing presented above computes an op-
timal conditional plan in d3 · B2 · (1

6n
3 +O(n2)) evaluations of local rewards, where d is the maximum

domain size of the random variables X1, . . . , Xn. In the filtering case, the optimal plan can be computed
using d3 ·B · (1

6n
3 +O(n2)) evaluations, or, if no budget is used, in d3 · (1

6n
4 +O(n3)) evaluations.

The faster computation for the filtering / no-budget case is obtained by observing that we do not require
the third maximum computation, which distributes the budget into the sub-chains.

Also, note that contrary to the algorithm for computing optimal subsets in Section 15.3.1, Algorithm 15.2
only requires evaluations of the formR(Xj | XA = xA), which can in general be computed d2 times faster
than the expectations R(Xj | XA). Under this consideration, the subset selection algorithm is in general
only a factor d ·B faster, even though the conditional planning algorithm has more nested loops.

15.3.3 Efficient algorithms for trees with few leaves

In Sections 15.3.1 and 15.3.2 we have presented dynamic programming-based algorithms that can opti-
mize value of information on chain graphical models. In fact, the key observations of Section 15.2 that
local rewards decompose along chains holds not just in chain graphical models, but also in trees.
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More formally, a tree graphical model is a joint probability distribution P (XV) over a collection of random
variables XV if P (XV) factors as

P (XV) =
1
Z

∏
(i,j)∈E

ψi,j(Xi,Xj),

where ψi,j is a nonnegative potential function, mapping assignments to xi and xj to the nonnegative real
numbers, E ⊆ V × V is a set of edges that form an undirected tree over the index set V , and Z is a
normalization constant enforcing a valid probability distribution.

The dynamic programming algorithms presented in the previous sections can be extended to such tree
models in a straightforward manner. Instead of identifying optimal subsets and conditional plans for sub-
chains, the algorithms would then select optimal subsets and plans for sub-trees of increasing size. Note
however that the number of sub-trees can grow exponentially in the number of leaves of the tree: A star
on n leaves for example has a number of subtrees that is exponential in n. In fact, counting the number
of subtrees of an arbitrary tree with n vertices is believed to be intractable (#P-complete, Goldberg and
Jerrum [2000]). However, for trees that contain only a small (constant) number of leaves, the number
of subtrees is polynomial, and the optimal subset and conditional plans can be computed in polynomial
time.

15.4 Theoretical limits

Many problems that can be solved efficiently for discrete chain graphical models can also be efficiently
solved for discrete polytrees4. Examples include probabilistic inference and the most probable explanation
(MPE).

In Section 15.3.3 however we have seen that the complexity of the dynamic programming algorithms
for chains increases dramatically when extended to trees: The complexity increases exponentially in the
number of leafs of the tree.

Surprisingly, we prove that for the problem of optimizing value of information, this exponential increase
in complexity cannot be avoided, under reasonable complexity theoretic assumptions. Before making this
statement more formal, we briefly review the complexity classes used in our results.

15.4.1 Brief review of relevant computational complexity classes

We briefly review the complexity classes used in the following statements by presenting a complete prob-
lem for each of the class. For more details see, e.g., the reference by Papadimitriou [1995]. The popu-
lar class NP contains decision problems which have polynomial-time verifiable proofs. A well-known
complete problem is 3SAT for which the instances are Boolean formulas φ in conjunctive normal form
containing at most three literals per clause (3CNF form). The complexity class #P contains counting
problems. A complete problem for the class #P is #3SAT which counts the number of satisfying in-
stances to a 3CNF formula. PP is a decision version of the class #P: A complete problem isMAJSAT ,
which decides whether a given 3CNF formula φ is satisfied by the majority, i.e., by more than half of all

4Polytrees are Bayesian Networks that form trees if the edge directions are dropped.
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its possible assignments. If A and B are Turing machine based complexity classes, then AB is the com-
plexity class derived by allowing the Turing machines deciding instances of A oracle calls to Turing
machines in B. We can intuitively think of the problems in class AB as those that can be solved by a
Turing Machine for class A, that has a special command which solves any problem in B. PP is sim-
ilar to #P in that PPP = P#P, i.e., if we allow a deterministic polynomial time Turing machine to
have access to a counting oracle, we cannot solve more complex problems than if we give it access to
a majority oracle. Combining these ideas, the class NPPP is the class of problems that can be solved
by nondeterministic polynomial time Turing machines that have access to a majority (or a counting) or-
acle. A complete problem for NPPP is EMAJSAT which, given a 3CNF on variables X1, . . . , X2n,
it decides whether there exists an assignment to X1, . . . , Xn such that φ is satisfied for the majority of
assignments to Xn+1, . . . , X2n. NPPP has been found to be a natural class for modeling AI planning
problems [Littman et al., 1998]. As an example, the MAP assignment problem is NPPP-complete for
general graphical models, as shown by Park and Darwiche [2004].

The complexity classes satisfy the following set of inclusions (where the inclusions are assumed, but not
known to be strict):

P ⊆ NP ⊆ PP ⊆ PPP = P#P ⊆ NPPP.

15.4.2 Complexity of computing and optimizing value of information

In order to solve the optimization problems, we will most likely have to evaluate the objective function,
i.e., the expected local rewards. Our first result states that, even if we specialize to decision theoretic value
of information objective functions as defined in Section 15.1.1, this problem is intractable even for Naive
Bayes models, a special case of discrete polytrees. Naive Bayes models are often used in classification
tasks [c.f., Domingos and Pazzani, 1997], where the class variable is predicted from noisy observations
(features), that are assumed to be conditionally independent given the class variable. In a sense, Naive
Bayes models are the “next simplest” (from the perspective of inference) class of Bayesian networks after
chains. Note that Naive Bayes models correspond to the “stars” referred to in Section 15.3.3, that have a
number of subtrees that is exponential in the number of variables.
Theorem 15.5 (Hardness of computation for Naive Bayes models). The computation of decision the-
oretic value of information functions is #P-complete even for Naive Bayes models. It is also hard to
approximate to any factor unless P = NP.

All proofs in this section are stated in the Appendix. We have the immediate corollary that the subset
selection problem is PP-hard for Naive Bayes models:
Corollary 15.6 (Hardness of subset selection for Naive Bayes models). The problem of determining,
given a Naive Bayes model, constants c and B, cost function β and a set of decision-theoretic value of
information objective functions Ri, whether there is a subset of variables A ⊆ V such that L(A) ≥ c and
β(A) ≤ B is PP-hard.

In fact, we can show that subset selection for arbitrary discrete polytrees (that are more general than Naive
Bayes models, but inference is still tractable) is even NPPP-complete, a complexity class containing
problems that are believed to be significantly harder than NP or #P complete problems. This result
provides a complexity theoretic classification of value of information, a core AI problem.
Theorem 15.7 (Hardness of subset selection computation for polytrees). The problem of determining,
given a discrete polytree, constants c and B, cost function β and a set of decision-theoretic value of
information objective functions Ri, whether there is a subset of variables A ⊆ V such that L(A) ≥ c and
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Figure 15.3: Sensor scheduling on temperature data: Improvement over the uniform spacing heuristic.

β(A) ≤ B is NPPP-complete.

For our running example, this implies that the generalized problem of optimally selecting k sensors from
a network of correlated sensors is most likely computationally intractable without resorting to heuristics.
A corollary extends the hardness of subset selection to the hardness of conditional plans.
Corollary 15.8 (Hardness of conditional planning computation for polytrees). Computing conditional
plans is PP-hard for Naive Bayes models and NPPP-hard for discrete polytrees.

15.5 Experiments

In this section, we evaluate our algorithms on several real world data sets. A special focus is on the
comparison of the optimal methods with the greedy heuristic and other heuristic methods for selecting
observations, and on how the algorithms can be used for interactive structured classification.

15.5.1 Temperature time series

The first data set consists of temperature time series collected from a sensor network deployed at Intel
Research Berkeley [Deshpande et al., 2004] as described in our running example. Data was continuously
collected for 19 days, linear interpolation was used in case of missing samples. The temperature was
measured once every 60 minutes, and it was discretized into 10 bins of 2 degrees Kelvin. To avoid
overfitting, we used pseudo counts α = 0.5 when learning the model. Using parameter sharing, we
learned four sets of transition probabilities: from 12 am - 7am, 7 am - 12 pm, 12 pm - 7 pm and 7 pm - 12
am. Combining the data from three adjacent sensors, we got 53 sample time series.

The goal of this task was to select k out of 24 time points during the day, during which sensor readings are
most informative. The experiment was designed to compare the performance of the optimal algorithms,
the greedy heuristic, and a uniform spacing heuristic, which distributed the k observations uniformly over
the day. Figure 15.3 shows the relative improvement of the optimal algorithms and the greedy heuristic
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Figure 15.4: CpG island detection data set: Effect of increasing the number of observations on margin and
classification accuracy.

over the uniform spacing heuristic. The performance is measured in decrease of expected entropy, with
zero observations as the baseline. It can be seen that if k is less than about the half of all possible
observations, the optimal algorithms decreased the expected uncertainty by several percent over both
heuristics. The improvement gained by the optimal plan over the subset selection algorithms appears to
become more drastic if a large number of observations (over half of all possible observations) is allowed.
Furthermore, for a large number of observations, the optimal subset and the subset selected by the greedy
heuristic were almost identical.

15.5.2 CpG-Island detection

We then studied the bioinformatics problem of finding CpG islands in DNA sequences. CpG islands are
regions in the genome with a high concentration of the cytosine-guanine sequence. These areas are be-
lieved to be mainly located around the promoters of genes, which are frequently expressed in the cell. In
our experiment, we considered the gene loci HS381K22, AF047825 and AL133174, for which the Gen-
Bank annotation listed three, two and one CpG islands each. We ran our algorithm on a 50 base window
at the beginning and end of each island, using the transition and emission probabilities from Durbin et al.
[1999] for our Hidden Markov Model, and we used the sum of margins as reward function.

The goal of this experiment was to locate the beginning and ending of the CpG islands more precisely
by asking experts, whether or not certain bases belong to the CpG region or not. Figure 15.4 shows
the mean classification accuracy and mean margin scores for an increasing number of observations. The
results indicate that, although the expected margin scores are similar for the optimal algorithm and the
greedy heuristic, the mean classification performance of the optimal algorithm was still better than the
performance of the greedy heuristic.
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15.5.3 Part-of-Speech Tagging

In our third experiment, we investigated the structured classification task of part-of-speech (POS) tag-
ging [CoNLL, 2003]. Problem instances are sequences of words (sentences), where each word is part of
an entity (e.g., “European Union”), and each entity belongs to one of five categories: Location, Miscella-
neous, Organization, Person or Other. Imagine an application, where automatic information extraction is
guided by an expert: Our algorithms compute an optimal conditional plan for asking the expert, trying to
optimize classification performance while requiring as little expert interaction as possible.

We used a conditional random field for the structured classification task, where each node corresponds to
a word, and the joint distribution is described by node potentials and edge potentials. The sum of margins
was used as reward function. Measure of classification performance was the F1 score, the geometric mean
of precision and recall. The goal of this experiment was to analyze how the addition of expert labels
increases the classification performance, and how the indirect, decomposing reward function used in our
algorithms corresponds to real world classification performance.

Figure 15.5 shows the increase of the mean expected margin and F1 score for an increasing number of
observations, summarized over ten 50 word sequences. It can be seen that the classification performance
can be effectively enhanced by optimally incorporating expert labels. Requesting only three out of 50
labels increased the mean F1 score from by more than five percent. The following example illustrates this
effect: In one scenario both words of an entity, the sportsman ‘P. Simmons’, were classified incorrectly
– ‘P.’ as Other and ‘Simmons’ as Miscellaneous. The first request of the optimal conditional plan was
to label ‘Simmons’. Upon labeling this word correctly, the word ‘P.’ was automatically labeled correctly
also, resulting in an F1 score of 100 percent.
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15.6 Applying chain algorithms to more general graphical models

In Section 15.3 we have seen algorithms that can be used to schedule a single sensor, assuming the time
series of sensor readings (e.g., temperature) form a Markov chain. This is a very natural assumption for
sensor networks [Deshpande et al., 2004]. When deploying sensor networks however, multiple sensors
need to be scheduled. If the time series for all the sensors were independent, we could use our algorithms
to schedule all the sensors independently of each other. However, in practice, the measurements will
be correlated across the different sensors – in fact, this dependence is essential to allow generalization
of measurements to locations where no sensor has been placed. In the following, we will describe an
approach for using our single-sensor scheduling algorithm to coordinate multiple sensors.

More formally, we are interested in monitoring a spatiotemporal phenomenon at a set of locations S =
{1, . . . ,m}, and time steps T = {1, . . . , T}. With each location–time pair s, t, we associate a random
variable Xs,t that describes the state of the phenomenon at that location and time. The random vector
XS,T fully describes the relevant state of the world and the vector XS,t describes the state at a particular
time step t. As before, we make the Markov assumption, assuming conditional independence of XS,t from
XS,t′ given XS,t−1 for all t′ < t− 1.

Similarly as in the single-chain case, we consider reward functions Rs,t that are associated with each
variable Xs,t. Our goal is then to select, for each timestep, a set At ⊆ S of sensors to activate, in order to
maximize the sum of expected rewards. Letting A1:t = A1 ∪ · · · ∪ At, the expected total reward is then
given as ∑

s,t

Rs,t(Xs,t | XA1:t)

for the filtering setting (i.e., only observations in the past are taken into account for evaluating the rewards),
and ∑

s,t

Rs,t(Xs,t | XA1:T
)

for the smoothing setting (where all observations are taken into account). The generalization to conditional
planning is done as described in Section 15.1.

For submodular objective functions, we could use the ESPASS algorithm from Chapter 12 to solve this
problem. However, as shown by Proposition 15.1, the decision theoretic value of information does not
satisfy submodularity. Furthermore, ESPASS can only be applied in the subset selection setting, not the
sequential, adaptive setting. Lastly, it requires the objective functions Fi at all time steps to be the same.
Note that in the case of a single sensor (` = 1), the problem of optimal sensor scheduling can be solved
using Algorithm 15.1. Unfortunately, the optimization problem is wildly intractable even for the case of
two sensors, ` = 2:
Corollary 15.9 (Hardness of sensor selection for two chains). Given a model with two dependent
chains, constants c and B, a cost function β and a set of decision theoretic value of information functions
Rs,t, it is NPPP-complete to determine whether there is a subsetA1:T of variables such thatL(A1:T ) ≥ c
and β(A1:T ) ≤ B.

In the following, we will develop an approximate algorithm that uses our optimal single-chain algorithms
and performs well in practice.
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Figure 15.6: Scheduling multiple correlated sensors in dynamic processes.

15.6.1 Approximate sensor scheduling by lower bound maximization

The reason for the sudden increase in complexity in the case of multiple chains is that the decomposition
of rewards along sub-chains (as described in Section 15.2) does not extend to the case of multiple sensors,
since influence can flow across chains. Figure 15.6 visualizes this problem – there, the distribution for
sensor (2) depends on all three observations S(1)

1 and S(1)
4 from sensor (1) and S(2)

2 from sensor (2).

We address this complexity issue using an (approximate) extension of the decomposition approach used
for single chains. We will focus on the decision-theoretic value of information objective (as described in
Section 15.1.1), but other local reward functions, such as residual entropy, can be used as well.

Considering only recent observations. As a first approximation, we only allow a sensor to take into
account the most recent observations. Intuitively, this appears to be a reasonable approximation, especially
if the potential scheduling times in T are reasonably far apart. Formally, when evaluating the local rewards
at time t, we replace the set of observations up to time t,A1:t ⊆ T by a subsetA′1:t ⊆ A1:t such that

A′1:t =
{
(s, t) ∈ A1:t : t ≥ t′ for all (s, t′) ∈ A1:t

}
,

i.e, for each sensor s, only the last observation (with largest time index t) is kept. We then approximate
Rs,t(Xs,t | A1:t) byRs,t(Xs,t | A′1:t). In Figure 15.6 for example, whereA1:5 = {(s1, 1), (s2, 2), (s1, 4)},
the total expected utility at time t5 would be computed using only observations A′1:5 = {(s2, 2), (s1, 4)},
i.e., using time t4 for sensor one, and time t2 for sensor two, ignoring influence originating from obser-
vation S(1)

1 and flowing through the chains as indicated by the dashed arrow. The following proposition
proves that this approximation is a lower bound to the true value of information:
Proposition 15.10 (Monotonicity of value of information). The decision-theoretic value of information
Rs,t(A) of a set A of sensors is monotonic in A,

Rs,t(A′) ≤ Rs,t(A)

for all A′ ⊆ A.

Proposition 15.10 proves that conditioning only on the most recent observations can only decrease our
objective function, hence maximizing this approximate objective implies maximizing a lower bound on
the true objective.

A coordinate ascent approach. We propose the following heuristic for maximizing the lower bound on
the expected utility. Instead of jointly optimizing over all schedules (timesteps selected for each sensor),
the algorithm will repeatedly iterate over all sensors. For all sensors s, it will optimize the selected
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observationsAs
1:T , holding the schedules for all other sensors fixed. This procedure resembles a coordinate

ascent approach, where each “coordinate” ranges over all possible schedules for a fixed sensor s.

When optimizing for sensor s, the algorithm finds a schedule As
1:T such that

As
1:T = argmax

A1:T

∑
s,t

Rs,t

(
Xs,t | XA′

1:t

⋃
s′ 6=s

XA′s′
1:t

)
such that β(As

1:T ) ≤ B, (15.4)

i.e., that maximizes, over all schedules A1:T , the sum of expected rewards for all time steps and sensors,
given the schedules As′

1:T for all non-selected sensors s′.

Solving the single-chain optimization problem. In order to solve the maximization problem (15.4) for
the individual sensors, we use the same dynamic programming approach as introduced in Section 15.3.
The recursive case Lflt

a:b(k) for k > 0 is exactly the same. However, the base case is computed as

Lflt
a:b(0) =

b−1∑
j=a+1

∑
s

Rs,j

(
Xs,j | Xa

⋃
s′ 6=s

XA′s′
1:j

)
,

i.e., it takes into account the most recent observation for all non-selected sensors s′.

Several remarks need to be made about the computation of the base case Lflt
a:b(0). First of all, in a naive

implementation, the computation of the expected utility

Rs,j

(
Xs,j | Xa

⋃
s′ 6=s

XA′s′
1:j

)
requires time exponential in the number of chains. This is the case since, in order to compute the reward
Rs,t, for each chain, all possible observations XA′s

1:t
= xA′s

1:t
that could be made need to be taken into

account. This computation requires computing the expectation over the joint distribution P (XA′
1:t

), which
is exponential in size. This increase in complexity can be avoided using a sampling approximation: Ho-
effding’s inequality can be used to derive polynomial bounds on sample complexity for approximating the
value of information up to arbitrarily small additive error ε, similarly as done in the approach in Chapter 7
5. In practice, a small number of samples appears to provide reasonable performance. Secondly, inference
itself becomes intractable with an increasing number of sensors. Approximate inference algorithms such
as the algorithm proposed by Boyen and Koller [1998] provide a viable way around this problem.

Analysis. Since all sensors maximize the same global objective L(A1:T ), the coordinated ascent ap-
proach is guaranteed to monotonically increase the global objective with every iteration (ignoring possible
errors due to sampling or approximate inference). Hence it must converge (to a local optimum) after a
finite number of steps. The procedure is formalized in Algorithm 15.4.

Although we cannot in general provide performance guarantees for the procedure, we are building on
an algorithm that provides an optimal schedule for each sensor in isolation, which should benefit from
observations provided by the remaining sensors. Also, note that if the sensors are all independent, Al-
gorithm 15.4 will obtain the optimal solution. Even if the sensors are correlated, the obtained solution

5An absolute error of at most ε when evaluating each reward Rs,t can accumulate to a total error of at most |T ||S|ε for all
variables and hence to the error of the optimal schedule.
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Algorithm 15.4: Multi-Sensor scheduling.
Input: Budget B
Output: Selection A1, . . . ,A` of observation times for each sensor
begin

Select Ai, 1 ≤ i ≤ ` at random;
repeat

for i = 1 to ` do
Use Algorithm 15.1 to select observations Ai for sensor i, but conditioning on current
sensor scheduling Aj , j 6= i, for remaining sensors;

end
Compute improvement δ in total expected utility;

until δ small enough ;
end

will be at least as good as the solution obtained when scheduling all sensors independently of each other.
Algorithm 15.4 will always converge, and always compute a lower bound on the expected total utility.
Considering the intractability of the general problem even for two chains (c.f., Corollary 15.9), these
properties are reassuring. In our experiments, the coordinated sensor scheduling performed very well, as
discussed in Section 15.6.2.

15.6.2 Proof of concept study on real deployment

In [Singhvi et al., 2005], we presented an approach for optimizing light control in buildings, with the
purpose of satisfying building occupants’ preferences about lighting conditions, and simultaneously min-
imizing energy consumption. In our approach, a wireless sensor network is deployed that monitors the
building for environmental conditions (such as the sunlight intensity etc.). The sensors feed their mea-
surements to a building controller that actuates the lighting system (lamps, blinds, etc.) accordingly. At
every timestep t ∈ T , the building controller can choose an action that affects the lighting conditions at
all locations S in the building. Utility functions Ut(a,xS,t) are specified that map the chosen actions and
the current lighting levels to a utility value. This utility is chosen to capture both users’ preferences about
light levels, as well as the energy consumption of the lighting system. Details on the utility functions are
described in detail in Singhvi et al. [2005].

We evaluated our multi-sensor scheduling approach in a real building controller testbed, as described in
detail by Singhvi et al. [2005]. In our experiments, we used Algorithm 15.4 to schedule three sensors,
allowing each sensor to choose a subset out of ten time steps (in one-hour intervals during daytime).
We varied the number of timesteps during which each sensor is activated, and computed the total energy
consumption and total user utility (as defined by Singhvi et al. [2005]). Figure 15.7 shows the mean
user utility and energy savings achieved, for a number of observations varying from no observations to
continuous sensing. These results imply that using the predictive model and our active sensing strategy,
even a very small number of observations achieves results approximately as good as the results achieved
by continuous sensing.

Figure 15.8(a) presents the mean total utility achieved using no observations, one observation or ten ob-
servations per sensor each day. It can be seen that even a single observation per sensor increases the total
utility close to the level achieved by continuous sensing. Figure 15.8(b) shows the mean energy consump-
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Figure 15.7: Active sensing results: Sensing scheduling evaluation.
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Figure 15.8: Active sensing results.

tion required for the same experiment. Here, the single sensor observation strategy comes even closer to
the power savings achieved for continuous sensing.

Since the sensor network battery lifetime is in general inversely proportional to the amount of power
expended for sensing and communication, we conclude that our sensor scheduling strategy promises to
lead to drastic increases in sensor network lifetime, deployment permanence and reduced maintenance
cost. In our testbed, the network lifetime could be increased by a factor of 3 without significant reduction
in user utility and increase in energy cost.

15.7 Related work

In this section, we review related work in a number of different areas.
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15.7.1 Experimental design

As discussed in Chapter 3, there is a large related work on Bayesian experimental design. The value of
observation problems considered in this chapter can be considered instances of Bayesian experimental
design problems, as defined by Lindley and Smith [1972]. Typically, Bayesian Experimental Design is
employed for continuous distributions, often the multivariate normal distribution.

Even for multivariate normal distributions, optimal Bayesian Experimental design is NP-hard [Ko et al.,
1995]. In some applications of experimental design, the number of experiments to be selected is often
large compared to the number of design choices. In these cases, one can find a fractional design (i.e., a
non-integral solution defining the proportions by which experiments should be performed), and round the
fractional solutions. In the fractional formulation, A-, D-, and E-optimality criteria can be solved exactly
using a semi-definite program [Boyd and Vandenberghe, 2004]. There are however no known bounds on
the integrality gap, i.e., the loss incurred by this rounding process.

The algorithms presented in Section 15.3.1 can be used to optimally solve non-fractional Bayesian Experi-
mental Design problems for chain graphical models, even for continuous distributions, as long as inference
in these distributions is tractable (such as normal distributions). This chapter hence provides a new class
of combinatorial algorithms for an interesting class of Bayesian experimental design problems.

15.7.2 Value of information in graphical models

Decision-theoretic value of information has been frequently used for principled information gathering
[c.f., Heckerman et al., 1993, Howard, 1966, Lindley, 1956], and popularized in decision analysis in the
context of influence diagrams [Howard and Matheson, 1984]. In a sense, value of information problems
are special cases of Bayesian experimental design problems, where the prior distribution has a particular
structure, typically given by a graphical model as considered in this chapter.

Several researchers [Dittmer and Jensen, 1997, Kapoor et al., 2007, Scheffer et al., 2001, van der Gaag and
Wessels, 1993] suggested myopic, i.e., greedy approaches for selectively gathering evidence in graphical
models, as considered in this chapter. Heckerman et al. [1993] propose a method to compute the maximum
expected utility for specific sets of observations. While their work considers more general graphical
models than this chapter, they provide only large sample guarantees for the evaluation of a given sequence
of observations, and use a heuristic without guarantees to select such sequences. Bilgic and Getoor [2007]
present a branch and bound approach towards exactly optimizing value of information in more complex
probabilistic models. In contrast to the algorithms described in this chapter however, their approach has
running time that is worst-case exponential. Munie and Shoham [2008] present algorithms and hardness
results for optimizing a special class of value of information objective functions that are motivated by
optimal educational testing problems. Radovilsky et al. [2006] recently extended some of our results to
obtain approximation algorithms with guarantees in the case of noisy observations (i.e., selecting a subset
of the emission variables to observe, rather than selecting among the hidden variables as considered in this
chapter).

15.7.3 Bandit problems and exploration / exploitation

As discussed in Chapter 3, an important class of sequential value of information problems is the class of
Bandit problems, containing, e.g., the classical k-armed bandit problem, as formalized by Robbins [1952].
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A celebrated result by Gittins and Jones [1979] shows that for a fixed number of draws, an optimal strategy
can be computed in polynomial time, using a dynamic programming based algorithm. While similar in the
sense that an optimal sequential strategy can be computed in polynomial time, Gittins algorithm however
has different structure from the dynamic programming algorithms presented in this chapter.

Note that using the “function optimization” objective function described in Section 15.1.1, our approach
can be used to solve a particular instance of bandit problems, where the arms are not required to be inde-
pendent, but, in contrary to the classical notion of bandit problems, can not be chosen repeatedly.

15.7.4 Relationship to machine learning

Decision Trees [Quinlan, 1986] popularized the value of information as a criterion for creating conditional
plans. Unfortunately, there are no guarantees on the performance of this greedy method.

The subset selection problem as an instance of feature selection is a central issue in machine learning, with
a vast amount of literature (see Molina et al. [2002] for a survey). However, we are not aware of any work
providing similarly strong performance guarantees than the algorithms considered in this chapter.

The problem of choosing observations also has a strong connection to the field of active learning [c.f.,
Cohn et al., 1996, Tong and Koller, 2001] in which the learning system designs experiments based on
its observations. While sample complexity bounds have been derived for some active learning problems
[c.f., Balcan et al., 2006, Dasgupta, 2005], we are not aware of any active learning algorithms that perform
provably optimal (even for restricted classes of problem instances).

15.8 Summary

We have described novel efficient algorithms for optimal subset selection and conditional plan computa-
tion in chain graphical models (and trees with few leaves), including HMMs. Our empirical evaluation
indicates that these algorithms can improve upon commonly used heuristics for decreasing expected un-
certainty. Our algorithms can also effectively enhance performance in interactive structured classification
tasks.

Unfortunately, the optimization problems become wildly intractable for even a slight generalization of
chains. We presented surprising theoretical limits, which indicate that even the class of decision theoretic
value of information functions (as widely used, e.g., in influence diagrams and POMDPs) cannot be
efficiently computed even in Naive Bayes models. We also identified optimization of value of information
as a new class of problems that are intractable (NPPP-complete) for polytrees.

Our hardness results, along with other recent results for polytree graphical models, the NP-completeness
of maximum a posteriori assignment [Park and Darwiche, 2004] and NP-hardness of inference in condi-
tional linear Gaussian models [Lerner and Parr, 2001], suggest the possibility of developing a generalized
complexity characterization of problems that are hard in polytree graphical models.

In light of these theoretical limits for computing optimal solutions, it is a natural question to ask whether
approximation algorithms with non-trivial performance guarantees can be found, even if the objective
functions are not submodular.
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Part V

Open Problems and Conclusions
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Chapter 16

Open Problems

In this chapter, we propose some open questions which we consider promising directions for future
work.

16.1 The simultaneous placement and tasking problem

In many sensor placement problems, we want to simultaneously solve multiple sensing tasks with the
deployed sensors. For example, we want to both decide, where to place sensors, and when to poll them,
in order to maximize battery lifetime. In such problems, we want to place m disjoint sets of sensors,
A1, . . . ,Am, which we each assign to some task Ti (e.g., prediction in timeslice i). We assume that we
can quantify the performance of placement Ai in task Ti by some nondecreasing submodular function
Fi(Ai). Our goal is then to maximize

max
A

min
i
Fi(Ai) subject to A =

⋃
i

Ai,Ai ∩ Aj = ∅, |A| ≤ k.

Hence, in order to solve this problem, we must both reason about the setA of at most k sensors to purchase
and the partitioning of this set A into subsets Ai.

The special case where k = |V| (i.e., we only need to find the optimal partitioning without consider-
ing the budget constraint) has been previously considered in the literature [c.f., Ponnuswami and Khot,
2007].

Further note that the special case where all the Fi are equal is exactly the SPASS problem considered
in Chapter 12. However, our ESPASS algorithm does not extend to this more general setting, as the
reallocation procedure cannot be applied any longer.

The SATURATE algorithm can be applied to the placement and tasking problem. However, its application
requires to relax the constraint that each sensor location s ∈ V can be selected only once.
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16.2 Supermodular cost functions

Previously, we have mainly considered optimization problems with additive (modular) cost functions.
In Chapter 11, we developed an algorithm which can optimize a submodular objective function with a
particular submodular cost function, namely one that corresponds to the cost of connecting a set of nodes
A as cheaply as possible in a graph, whose edges represent communication cost.

However, several practical cost functions are supermodular. For example, in the case of optimizing mutual
information in GP, the computational cost associated with inference is cubic in the number of chosen loca-
tions. Hence, if we regard computational cost as the cost function, then the cost of a setA of observations
is given by C(A) = |A|3, or more generally as C(A) = g(|A|) for some convex nondecreasing function
g. We propose to analyze observation selection problems with such a supermodular cost function.

In such problems, the scalarized objective F (A) = F (A) − λC(A) is submodular, but not necessarily
nondecreasing. We will investigate, to which extent recent developments in optimizing non-monotone
submodular functions [Feige et al., 2007] can be applied to observation selection problems with super-
modular cost.

16.3 Relationship to probabilistic planning

All the observation selection problems analyzed in this thesis can be modeled as a probabilistic plan-
ning problem using the concept of Partially Observable Markov Decision Processes (POMDP). While
solving general POMDP problems is extremely hard (some formulations even being undecidable), the al-
gorithms presented in this thesis effectively and near-optimally approximate the solution to an interesting
subclass of POMDPs. It would be a very interesting question to investigate, how far combinatorial algo-
rithms of the same spirit as those considered in this thesis can be used to solve more complex classes of
POMDPs. Equivalently: Is there any interesting combinatorial structure in certain POMDPs, which can
be exploited?

In [Singh et al., 2007], we considered the problem of planning informative paths for observation selection
with multiple robots in Gaussian Processes. So far, we did not consider settings where there is action noise,
i.e., where movement actions have uncertain outcome. Possible applications of such an approach would
be active exploration problems such as Active SLAM (Simultaneous Localization and Mapping).

In general, observation selection problems imply the fundamental restriction that the state of the world is
ever only (partially) observed, but never affected and changed. An extremely interesting question would
be to study whether some of the techniques for observation selection generalize to problems where the
state of the world is affected. For example, in the water distribution network monitoring application, one
might not just want to place sensors to measure the water quality accurately over the network, but also
place some treatment units.

16.4 Transfer learning and predicting informativeness

Another interesting question is, whether observations made in one observation selection problem can be
transferred to another problem. For example, if we use the PSPIEL approach described in Chapter 11 in
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order to place sensors in a building, we need a pilot deployment, in order to acquire data which can be
used to predict the link qualities between arbitrary pairs of locations, as well as the informativeness of a
sensor placed at an arbitrary location.

Such a pilot deployment can be quite costly. If multiple sensor networks have to be deployed (e.g., in dif-
ferent floors of a building, or multiple water distribution networks are deployed in different cities) it would
be more cost-effective to perform only a single pilot deployment, and reuse the obtained knowledge for
each subsequent deployment task. It would be very interesting to develop approaches which would allow
such a knowledge transfer. Such an approach could build on transfer learning techniques for Gaussian
Processes [Yu et al., 2006], but also try to explicitly predict the informativeness of sensors based, e.g., on
features of the environment (e.g., distance to walls, etc.).

This question also requires to consider an exploration–exploitation tradeoff — it might be more cost-
effective to perform a larger pilot deployment, the higher cost of which would amortize through the pos-
sible reuse of obtained information (estimated parameters etc.) in later deployments.

16.5 Other resource constraints for observation selection

In this thesis, we consider a variety of realistic constraints, modeled as cost functions C(A) on the set
of chosen observations. When deploying sensors networks for example, there are a variety of different
notions of cost, such as deployment, hardware, communication cost and power consumption.

However, in other applications, very different notions of cost can arise. For example, in an information
retrieval or activity recognition context, where observations correspond to labels obtained by a human
expert, very different notions of cost arise. For example, the cost of an observation can depend on the
state of the world. Consider an application where sensor data is used to recognize the current activity of
a person. In such an application, an observation selection strategy might occasionally query the user to
label their current activity. However, if the person is very busy, a query can be more expensive than when
the person is idle. Such a dependency of the cost on the state of the world can be modeled by extending
the definition of the cost function as

C(A) =
∫
P (xV)c(xV ,A)dxV ,

i.e., by introducing a notion of expected cost (similar to the expected sensing quality). However, when
specifying a budget on the expected cost, the actual cost incurred can possibly violate this budget. De-
pending on the application, such a violation can be not acceptable.

Another interesting class of constraints arises in the context of privacy. Consider an online service, which
can choose to acquire personal information about a user in order to improve its performance (e.g., by
personalization). In such applications, after sharing a single bit (e.g., the gender of a person), a user is
still indistinguishable from many other users. However, the more information is shared, the more privacy
is threatened. This loss in indiscriminability can potentially be quantified as another type of cost metric,
leading to new classes of optimization problems. In such cases, the cost also depends on the state of the
world (i.e., the particular personal attributes of a user) – particular combinations of private information
can be more threatening than others.
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16.6 Observation selection for symbolic reasoning

In this Thesis, we have mainly considered probabilistic prediction problems, where the unobserved vari-
ables are related by some (often smooth) process with the observed variables. In many practical applica-
tions, a decision depends on whether some particular logical statements about the world are true or false.
Observations can be made in order to establish the validity of some other facts, which are in a determin-
istic, logical relationship with each other. Prior work has considered probabilistic models for describing
such logical / symbolic relationships, such as Markov Logic Networks [Richardson and Domingos, 2006].
In such logical contexts, we expect other problem structure to be present than in the problems we consider
in this Thesis. The XOR example presented in Chapter 7 indicates that we generally cannot expect sub-
modularity in such contexts, as the validity of a statement can potentially require the knowledge about a
collection of facts which have to be established. Nevertheless, it would be very interesting to consider if
other problem structure can be exploited in such problems.

16.7 Online optimization, dynamic phenomena

In many observation selection problems, the monitored phenomenon evolves dynamically over time, and
at every point in time one has to decide which observations to acquire. In cases, where the changes are
predictable, and, e.g., a probabilistic spatiotemporal model is available, techniques such as those presented
by Meliou et al. [2007] can be used for optimizing observation selection.

In some cases however, no such model is available (or is only being estimated and hence changing over
time). In such problems, the objective functions quantifying informativeness change over time, and obser-
vations have to be selected which are robust against such changes. There are some recent advances indi-
cating that near-optimally optimizing submodular functions is possible in such an online context [Golovin
and Streeter, 2008]. Nevertheless, it is not clear how such problems can be solved, e.g., in case more
complex constraints (communication / path constraints) are present.

16.8 High dimensional and continuous spaces

In this Thesis, we mainly considered problems where the number of possible observations is large, but
still tractable (e.g., the greedy algorithm can iterate over all possible choices of observations to add). In
some practical problems, the dimensionality is so high that fine-granular discretization is not feasible. In
such problems, other techniques would have to be developed for selecting observations. As we have seen
in this Thesis, the analysis of algorithms such as greedy algorithm can be applied even if the algorithm
is not executed exactly (i.e., the greedy algorithm does not necessarily select the best next element, but
a good next element). One possible approach towards observation selection in high dimensional spaces
would be to consider techniques from continuous optimization (such as conjugate gradient etc.). However,
observation selection problems are typically non-convex (due to multimodality caused by symmetries in
the objective functions). An interesting open question is, in how far techniques for analyzing the discrete
optimization problems considered in this Thesis can be used to get guarantees for the corresponding
continuous optimization problems.
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Chapter 17

Conclusions

In this Thesis, we studied the fundamental question

Which observations should we make, in order to acquire the most useful information
as cost-effectively as possible?

Most previous approaches that addressed this question have relied upon myopic heuristics, i.e., approaches
which only consider the next best observation to add, without planning ahead for future observation pos-
sibilities. Those approaches typically have no performance guarantees. In security critical applications,
such as protecting drinking water from contamination (as considered in this Thesis), such myopic ap-
proaches perform very poorly. Existing nonmyopic approaches have involved computationally intensive
techniques which are very difficult to scale to larger problems.

In this Thesis, we presented a novel class of approaches for sensing and information gathering, using
techniques from combinatorial optimization. Our algorithms rely on structural properties, such as sub-
modularity, locality and conditional independence.

17.1 Summary

In this section, we will briefly summarize the key contributions presented in this Thesis.

17.1.1 Submodular sensing problems

We showed that many observation selection objectives satisfy submodularity, an intuitive diminishing
returns property – adding a sensor to a small deployment helps more than adding it to a large deployment.
The example we studied in detail included mutual information for spatial prediction, selecting informative
variables in graphical models, and placing sensors for outbreak detection. Our approaches systematically
exploit this submodularity property to efficiently achieve provably near-optimal solutions. For example,
for submodular functions, the greedy algorithm, which iteratively adds the observation that increases the
sensing quality the most, produces a solution that obtains at least a constant fraction of 63% of the optimal
value, which we showed to be optimal for the problem of optimizing information gain. We also exploited
lazy evaluation to drastically speed up our algorithms, allowing us, for example, to speed up our solution
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to the problem of placing sensors in metropolitan area sized water distribution networks from 30 hours
to 1 hour, and improving the efficiency of selecting informative weblogs by a factor of 700. We also
used submodularity to compute tight, data-dependent bounds proving that the solutions obtained by our
algorithms are typically within 90% of optimal.

17.1.2 Non-greedy algorithms for complex sensing problems

While the greedy algorithm of Nemhauser et al. [1978] applies to the problem of selecting a near-optimal
set of k elements, in Part II of this Thesis we saw that this result does not generalize for more complex
sensing problems. This insight necessitated the development of non-greedy algorithms to address these
problems.

We first studied the problem of robust sensing, where the chosen observations need to be robust against
sensor failure or uncertainty about model parameters. We showed, that many such problems require the
optimization of an adversarially chosen submodular objective function, and we developed an algorithm,
SATURATE, which provides best possible guarantees for this setting. We empirically demonstrated that
SATURATE performs well when compared to a highly fine-tuned, specialized simulated annealing algo-
rithm.

We also considered the problem of selecting observations subject to complex combinatorial cost functions.
For example, when placing wireless sensor networks, the chosen locations need to be not only very infor-
mative, but also allow efficient communication. When using robots for making observations, the chosen
locations need to lie on a collection of paths. We developed PSPIEL, an efficient algorithm which finds
solutions which near-optimally solve this trade-off. Our algorithm exploits locality, a structural property
present in many sensing problems.

We also considered the problem of deploying wireless sensor networks under battery lifetime constraints:
Since every measurement draws power, sensors can typically be activated only a fraction of the time.
Hence, the problem of scheduling the sensors becomes of crucial importance. In this Thesis, we presented
ESPASS, an efficient algorithm for simultaneously optimizing the placement and scheduling. We showed
that this simultaneous approach leads to drastic improvements in network lifetime when compared to the
traditional, stage-wise approach.

17.1.3 Sequential sensing problems

A key question in many observation selection problems is how much better a sequential algorithm, which
decides on the next observation based on previous observations, can perform when compared to the best
fixed set of observations chosen a priori. We present a partial answer to the question for spatial prediction
in Gaussian Processes. We develop a theoretical bound quantifying the gap between the best sequential
and a priori selections, and use it to develop an exploration–exploitation approach for active learning in
Gaussian Processes.

Lastly, we look beyond submodular observation selection problems, and consider the problem of selecting
optimal observations in graphical models. We show that in chain-graphical (Markovian) models, it is
possible to efficiently find the optimal sequential policy. However, even for slightly larger classes of
graphical models, we prove strong hardness results.
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17.1.4 Applications

In addition to providing algorithms and theoretical analyses, we present extensive empirical evaluation of
our approaches on several real-world problems.

A major focus of this Thesis were spatial monitoring problems. We studied the problem of deploying
wireless sensor networks for building and traffic monitoring, as well as environmental monitoring using
mobile robots.

We also used our algorithm to place sensors on a chair for posture recognition. In this study, we achieve a
30-fold reduction in hardware cost without major loss of prediction accuracy.

We participated in the international Battle of the Water Sensor Networks challenge where the goal was to
optimize sensor placements for securing drinking water distribution networks against contamination. In
this challenge, our algorithms obtained the top score.

We also considered problems of information gathering on the web. We used our algorithms to select
influential, informative weblogs, that detect the largest information cascades as early as possible. The
results of this research created excitement in the blogosphere, resulting in 30,000 visits to our project
website http://www.blogcascades.org, as well as coverage in popular media.

17.1.5 Summary of key contributions

In the technical Parts II, III and IV of this Thesis, we presented the following contributions.

1. We proved that several important sensing quality functions satisfy submodulariy. These include

• mutual information for spatial prediction in Gaussian Processes [Krause et al., 2008b],
• information gain with respect to a set of target variables in graphical models and [Krause and

Guestrin, 2005b]
• outbreak detection in networks [Krause et al., 2008a, Leskovec et al., 2007b].

2. We showed how this submodularity can be exploited [Krause et al., 2008b] to

• obtain provably near-optimal solutions for selecting the k most informative sensing locations,
by invoking powerful existing results about optimizing submodular functions,

• speed up algorithms using lazy evaluations and
• compute novel tight, data dependent-bounds.

3. We considered complex optimization tasks arising in sensing problems. In all these problems,
existing greedy approaches perform arbitrarily badly. We developed novel, efficient approximation
algorithms:

• SATURATE for solving robust sensing problems [Krause et al., 2009],
• PSPIEL for optimizing sensor placements under complex cost functions and [Krause et al.,

2006a]
• ESPASS for simultaneously optimizing sensor placements and schedules.

4. We developed novel nonmyopic algorithms for sequential sensing problems, the
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• EEGP algorithm for active learning for spatial prediction in Gaussian Processes [Krause and
Guestrin, 2007] and

• VOIDP algorithm for optimal conditional planning in chain graphical models [Krause and
Guestrin, 2005a].

5. We proved hardness of sensing problems. Under reasonable complexity theoretic assumptions,

• optimizing information gain is hard to approximate within a factor of (1−1/e) even for Naive
Bayes models. This bound matches the performance of the greedy algorithm for this problem
[Krause and Guestrin, 2005b],

• optimizing robust sensing cannot be approximated by any factor unless P = NP. Our al-
gorithm, SATURATE, provides the best possible bicriterion guarantees (allowing relaxation of
certain constraints) for this problem [Krause et al., 2009],

• exact optimization of value of information is #P-hard for Naive Bayes models and NPPP-
hard for discrete polytrees [Krause and Guestrin, 2005a].

6. We demonstrated the performance of our algorithms on several real-world case studies, including

• sensor placement for spatial prediction in Gaussian Processes, demonstrated on real-world
sensing data sets and a proof-of-concept case study of a deployed sensor network [Krause
et al., 2006a, 2008b],

• sensor placement for posture recognition on a sensing chair, where our algorithms obtain 30-
fold reduction in hardware cost without significant reduction in prediction accuracy [Mutlu
et al., 2007],

• sensor placement for outbreak detection in a metropolitan-area drinking water distribution
network, where our algorithms obtained a top score in an international competition [Krause
et al., 2008a],

• sensor scheduling for improving the lifetime of wireless traffic sensors, and for light sensors
in a building management prototype testbed [Singhvi et al., 2005],

• selecting informative weblogs to read on the Internet, showing that our algorithms scale to a
blog data set with 45,000 blogs and millions of postings [Leskovec et al., 2007b].

The references indicate the publications that this thesis and its contributions are based upon.

17.2 Further research plans

My long-term goal is to continue to push at the frontier of our knowledge about ideal sensing and action,
especially in situations where there is an opportunity to collect immense amounts of uncertain data. I plan
to use these insights in order to enable new classes of systems and services for science and society.

Massive volumes of media are now generated from corporate and public sources every second. In addition,
more and more low level sensor devices are becoming available and accessible. Examples include GPS
devices in cars, cameras, microphones and accelerometers in mobile phones, personal weather stations
(http://www.wunderground.com/), etc. Numerous applications could leverage the integration of
these different forms of data. We already performed an investigation highlighting the potential benefits of
such applications [Krause et al., 2008c].
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I will be pursuing a set of interrelated questions: How can we build systems and services which optimally
harness these massive amounts of highly uncertain, heterogenous, seemingly disparate data? How can we
determine, which data we need to access in order to solve a given task at hand? How can we make use of a
wealth of personal information, without violating users’ privacy? Can we obtain principled, theoretically
well-founded answers to these problems? Answering these questions requires solving difficult challenges,
bringing together robust probabilistic modeling and reasoning, decision theory, machine learning, sensor
networks, and other systems areas. In order to make progress on this long-term vision and these chal-
lenges, we need to identify intermediate steps and directions along the way, some of which I outline in the
following.

17.2.1 Identifying structure in sensing and information acquisition.

When combining and interpreting data from heterogenous sources, we have to integrate more complex
data types and dependencies than those arising from spatial monitoring problems: Information must be
combined from such disparate sources as noisy sensor data, semi-structured text documents and symbolic
knowledge bases. Submodular structure might not be present in such problems. Thus, we may need to seek
out and leverage other structure such as locality, logical relationships, and specific patterns of conditional
or context-specific independence. I believe there are rich opportunities in studying the presence and uses
of different forms of structure for solving important and complex information-acquisition tasks.

17.2.2 New sensing architectures and applications.

When reasoning about data from diverse, non-centrally owned sensors, we need to develop appropriate
abstractions for reasoning about low level sensor data, as well as providing facilities for negotiating access
to shared sensor data. We also need to develop and prototype applications which allow us to concretely
study our information acquisition questions and obtain results for quantitative evaluation. I am interested
in both sensing- and control-centric applications (such as applications of sensor-actuator networks in civil
and environmental engineering applications, supported by higher-order, symbolic reasoning about the task
to be solved) as well as in new classes of online services.

17.2.3 Privacy and attention as fundamental constraints.

Dealing with information acquisition and presentation involving personal (sensor and other) data requires
solving challenging optimization problems. For example, when presenting acquired information (such as
lists of informative weblogs as we considered in previous work) to users, only a short attention span is
available, and we need to maximize the amount of relevant information conveyed. Furthermore, as we con-
sider accessing personal data such as sensor data from body-worn sensors like cellphones, demographic
data or traces of interactions with online services, privacy concerns become increasingly imminent. Hence,
we would like to minimize the amount of personal information acquired about users while maximizing
the utility of the provided service. We have performed investigations using techniques from observation
selection to address the utility-privacy tradeoff in personalized online services, with very promising results
[Krause and Horvitz, 2008].

I believe that these directions pose great opportunities for scholarly study as well as for creating methods
and artifacts that will have tremendous real-world influence with multiple benefits to our society. Even
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though these goals are challenging, I am passionate about innovating as a leader on a long-term research
program focused on finding new ways of coping with ever-increasing amounts of data, and enabling
effective sensing, decision making, and decision support.

282



Appendix A

Review: Learning Gaussian Processes

In this section, we give a brief overview of learning parameters of a Gaussian Process prior.

A.1 Learning stationary GPs

Often, for sake of simplicity and model complexity, the kernel functionK(u, v) is chosen from a paramet-
ric family, selected in terms of parameters θ. A requirement for a valid kernel function is that it is always
positive-definite. For example, the square-exponential kernel

K(u, v) = σ2 exp
(
||u− v||2

h2

)

has two parameters, θ = {σ, h}. Other popular choices of parametric kernel functions are the exponential
kernel, and the Matérn [Abrahamsen, 1997] class of covariance functions, which allow to explicitly control
the differentiability of the sample functions.

Learning a Gaussian process refers to the estimation of θ from training samples, each consisting of the
value of the field at an index set. Given independent training samples, learning a Gaussian process in
either a maximum likelihood or Bayesian framework is possible [Rasmussen and Williams, 2006, ch. 5].
In the geostatistics literature, it is common to learn the parameters by least squares fit of the empirical
variogram 2γ(h) = E[(Xs+h − Xs)2]) [c.f., Cressie, 1991]. Another possibility, if multiple independent
samples of the process are available, is to use cross-validation.

Multiple training samples are often noisy replicates of the field over time. The training data are not
independent, and the log-likelihood does not decompose over the data. Sometimes, only a single sample
of a process is available, which can be observed at different locations. However, if the time between
training samples is sufficiently large, and one assumes temporal stationarity (i.e., covariance between
sensing locations does not vary with time), then treating the data as independent may suffice.
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A.2 Overview of nonstationarity

A Gaussian process is (weakly) stationary if it has constant mean, finite variance, and kernel function
K(u, v) that depends only on the difference vector u − v. If we further assume that the kernel function
only depends on the norm of the difference vector, then the process is isotropic.

In practice, stationarity is frequently violated, even once a mean trend has been subtracted from the data.
Experiments in Section 6.6.2 illustrate the need for nonstationary models. Unlike the stationary case, there
is no consensus on how to represent and learn nonstationary models.

Capturing complex nonstationary behavior as exhibited by the phenomena we are interested in (c.f., Fig-
ure 6.2(a) and Figure 6.2(b)) is a difficult problem. The simplest nonstationary model for finite GPs (i.e.,
multivariate normal distributions) is the empirical covariance

S =
1
n

n∑
i=1

(xi − x̄)(xi − x̄)T ∈ Rp×p

which requires that n > p for S to be non-singular. Furthermore the efficiency of this estimator is poor
in high dimensions. Shrinking the eigenvalues of S [Ledoit and Wolf, 2004, Stein, 1975] or shrinking the
estimator towards a simpler full-rank matrix [Daniels and Kass, 2001] addresses these problems. In low
dimensions, this problem can be treated as an instance of finding a positive semidefinite Toeplitz matrix
that is closest to the empirical covariance in Frobenius norm [Higham, 2002]. In the sensor placement
problem however, the covariance of at most a small set of initial locations is known, from observing a
pilot deployment. It is crucial to be able to predict covariances for pairs of locations, at which no sensor
has been placed. In this setting, several approaches have been proposed, mostly based on deformation,
convolution or partitioning.

An intuitively appealing approach for modeling nonstationarity is spatial deformation, which is similar
in spirit to the nonlinear feature maps used, e.g., in Support Vector Machines [Vapnik, 1995]. Spatial
deformation maps nonstationary data, through a nonlinear function onto another space which is stationary.
The main difficulty is determining an appropriate mapping. The pioneering approach by Sampson and
Guttorp [1992] involves mapping the data onto a two dimensional space using nonmetric multidimensional
scaling, and then warping the rest of the space using thin-plate splines. In a Bayesian approach, Snelson
et al. [2003] suggest to model the mapping itself as a Gaussian process and learn it simultaneously with
the process on the data. In our experiments with the data sets discussed in Section 6.6.1, we were not able
to find appropriate good transformations of the process.

Nonstationary GPs can be defined as the convolution of a positive-definite function f(s) at each point in
the space with a white noise process. If the bandwidth of a Gaussian basis f is allowed to vary with its
position, this yields the model of Gibbs [1997], and with fewer restrictions, [Higdon et al., 1998]. These
results were generalized to arbitrary isotropic f by Paciorek [2003] and subsequently by Stein [2005].
While this approach is theoretically very elegant, as it for example allows to vary the differentiability of
the process with space, the difficulties are to determine the spatially varying functions f(s). Paciorek
[2003] suggests to equip these functions with a GP prior.

In the partitioning approach, the space is partitioned into a disjoint collection of cells, each of which is
modeled by a stationary Gaussian process [Gramacy, 2005, Kim et al., 2005]. The method by Gramacy
[2005] recursively partitions the space, and ties the parameters of the local stationary processes in a hi-
erarchical model. The method of Kim et al. [2005] simultaneously infers a Voronoi partition and the
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models in each region. More generally, nonstationary behavior can be modeled using mixtures of Gaus-
sian processes, in which each component has a different kernel function [Tresp, 2000]. A related approach
by Rasmussen and Ghahramani [2002] does not require a fixed number of mixture components. These
models however are not GPs anymore, and the predictive distributions (6.1) and (6.2) can no longer be
computed in closed form.

A.3 Learning nonstationary kernels by extrapolating estimated covariances

In this section we review the method we used in Chapters 6 and 11 for learning nonstationary GPs [Nott
and Dunsmuir, 2002]. For clarity, we limit the presentation to zero mean processes. The approach of Nott
and Dunsmuir [2002] assumes that data from an initial deployment is available. More specifically, the
assumption is that an estimate of the empirical covariance ΣAA at a set of observed locations is available,
and that the process can be locally described by a collection of isotropic processes, associated with a set
of reference points.

More formally, define a set of reference points A = {z1, z2, . . . , zm}, m = |A|, and associate a zero
mean Gaussian Process Wi with each of these reference points, with isotropic covariance Ri(s, t) =
Ki(|s− t|2). Let Ci = E[Wi(zj)Wi(zk)]j,k be the covariance at the initial deploymentA, and let ci(s) =
(Ri(s, z1), . . . , Ri(s, zm)) the cross-covariances of the (arbitrary) location s and the initial deployment.
Then the posterior GPWi | [Wi(A) = a] has the form

Wi(s) | [Wi(A) = a] = ci(s)C−1
i w + δi(s),

where δi, the residual variation, is a nonstationary, zero mean GP with covariance

Rδi
(s, t) = Ki(|s− t|2)− ci(s)C−1

i ci(t).

If the kernel functions Ri have been estimated from the sensors of the initial deployment which are close
to zi, the hope is that the conditional process Wi | [Wi(A) = a] correctly describes the behavior of the
global GP, locally around the location zi. The idea now is to define the global GP as a weighted sum of the
local conditional GPs, “synchronized” by their measurements at A. More formally, define a zero-mean,
multivariate normal distribution W ∗ with covariance ΣAA, and let

Zi(s) = ci(s)C−1
i W ∗.

By construction, W ∗ is uncorrelated with each δi. We define the global GP as a weighted combination of
the Zi and the δi, namely

Z(s) =
∑

i

πi(s)Zi(s) + πi(s)
1
2 δi(s).

Hereby, πi(s) is a mixture weight of process Wi at location s, and for all s,
∑

i πi(s) = 1. Nott and
Dunsmuir [2002] show that the covariance of Z takes the following form:

RZ(s, t) =
∑
i,j

πi(s)πj(t)ci(s)C−1
i ΣAAC

−1
j cj(t) +

∑
i

πi(s)
1
2πi(t)

1
2Rδi

(s, t).

As explained by Nott and Dunsmuir [2002], the reason for the particular choice of Z is the following prop-
erty: Conditional on observing A = a, for the predictive distributions of the process it holds that

µs|A=a =
∑

i

πi(s)cTi C
−1
i a,
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and
σ2
s|A=a =

∑
i

πi(s)Rδi
(s, s) =

∑
i

πi(s)[Ki(0)− ci(s)TC−1
i ci(s)],

hence both the predictive mean and variance of the process Z are spatial averages over the means and
variances of the predictive distributions of the local processes Zi. The process Z observes the covariance
ΣAA at the initial deployment, and locally behaves similarly to the local processes Zi.

The weights πi are chosen similar fashion to interpolation weights in kernel regression, and the local pro-
cesses Zi are estimated using least squares fit of the empirical variogram, or by maximizing the marginal
likelihood of the data, only taking into account the sensors from the initial deployment which are closest
by. For more details on estimation please refer to Nott and Dunsmuir [2002].
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Appendix B

Proofs

B.1 Proofs from Chapter 5

Proof of Theorem 5.4. The following proof is an extension of the proof by Nemhauser et al. [1978], using
some simplifications by Jon Kleinberg.

Let s1, . . . , sk be the locations selected by the greedy algorithm. LetAi = {s1, . . . , si},A∗ be the optimal
solution, and δi = F (Ai)− F (Ai−1). By monotonicity, we have, for all 1 ≤ i ≤ k,

F (Ai ∪ A∗) ≥ F (A∗).

By (α, ε)-approximate evaluation of the greedy rule, We also have, for 0 ≤ i < k,

F (Ai ∪ A∗) ≤ F (Ai) + (αk)δi+1 + kε =
i∑

j=1

δj + (αk)δi+1 + kε.

Hence we have the following sequence of inequalities:

F (A∗)− kε ≤ (αk)δ1
F (A∗)− kε ≤ δ1 + (αk)δ2

...

F (A∗)− kε ≤
k−1∑
j=1

δj + (αk)δk

Now we multiply both sides of the i-th inequality by
(
1− 1

αk

)k−i, and add all inequalities up. After
cancelation, we get(

k−1∑
i=0

(1− 1/(αk))i

)
(F (A∗)− kε) ≤ (αk)

k∑
i=1

δi = (αk)F (Ak).

Hence, as claimed, with AG = Ak (i.e., AG is the k-element greedy solution)

F (AG) ≥
(
1− (1− 1/(αk))k

)
(F (A∗)− kε) ≥ (1− 1

e1/α
)(F (A∗)− kε).
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To prove Theorem 5.6, we need two lemmas:
Lemma B.1 (generalized from Khuller et al. [1999]). For i = 1, . . . , l + 1, it holds that

F (Gi)− F (Gi−1) ≥
c(Xi)
αL

(F (OPT )− F (Gi−1))− ε
(

1 +
wc(Xi)
αL

)

Proof. Using nondecreasingness of F , we have

F (OPT )− F (Gi−1) ≤ F (OPT ∪ Gi−1)− F (Gi−1) = F (OPT \ Gi−1 ∪ Gi−1)− F (Gi−1)

Assume OPT \ Gi−1 = {Y1, . . . , Ym}, and let for j = 1, . . . ,m

Zj = F (Gi−1 ∪ {Y1, . . . , Yj})− F (Gi−1 ∪ {Y1, . . . , Yj−1}).

Then F (OPT )− F (Gi−1) ≤
∑m

j=1 Zj .

Now notice that

Zj − ε
αc(Yj)

≤ F (Gi−1 ∪ Yj)− F (Gi−1)− ε
αc(Yj)

≤ F (Gi)− F (Gi−1) + ε

c(Xi)

using submodularity in the first and the greedy rule in the second inequality. Since
∑m

j=1 c(Yj) ≤ L it
holds that

F (OPT )− F (Gi−1) =
m∑

j=1

Zj ≤ αL
F (Gi)− F (Gi−1) + ε

c(Xi)
+mε

Lemma B.2 (adapted from Khuller et al. [1999]). For i = 1, . . . , l + 1 it holds that

F (Gi) ≥

[
1−

i∏
k=1

(
1− c(Xk)

αL

)]
F (OPT )−

(
αL

c(Xi)
+ w

)
ε.

Proof. Let i = 1 for sake of induction. We need to prove that F (G1) ≥ c(X1)
αL F (OPT )−

(
αL

c(Xi)
+ w

)
ε.

This follows from Lemma B.1 and since

αL

c(Xi)
+ w ≥ 1 +

wc(Xi)
αL

.
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Now let i > 1. We have

F (Gi) = F (Gi−1) + [F (Gi)− F (Gi−1)]

≥ F (Gi−1) +
c(Xi)
αL

[F (OPT )− F (Gi−1)]− ε
(

1 +
wc(Xi)
αL

)
=
(

1− c(Xi)
αL

)
F (Gi−1) +

c(Xi)
αL

F (OPT )− ε
(

1 +
wc(Xi)
αL

)
≥
(

1− c(Xi)
αL

)[(
1−

i−1∏
k=1

(
1− c(Xk)

αL

))
F (OPT )−

(
αL

c(Xi)
+ w

)
ε

]

+
c(Xi)
αL

F (OPT )− ε
(

1 +
wc(Xi)
αL

)
=

(
1−

i∏
k=1

(
1− c(Xk)

αL

))
F (OPT )− ε

(
1 +

wc(Xi)
αL

)
−
(

αL

c(Xi)
+ w

)
ε

(
1− c(Xi)

αL

)

=

(
1−

i∏
k=1

(
1− c(Xk)

αL

))
F (OPT )−

(
αL

c(Xi)
+ w

)
ε

using Lemma B.1 in the first and the induction hypothesis in the second inequality.

From now on let β = αL
cmin

+ w.

Proof of Theorem 5.6. Observe that for a1, . . . , an ∈ R+ such that
∑
ai = A, the function (1−

∏n
i=1(1−

ai
αA)) achieves its minimum at a1 = · · · = an = A

n . In order to show this, let G(a1, . . . , am−1) =

log
A−

∑m−1
j=1 aj

A +
∑

i log(α− ai
A ). It holds that

∂G

∂ai
=
−1/A

α− ai/A
+

1/A
α− (A−

∑m−1
j=1 aj)/A

.

This derivative is 0 iff A −
∑m−1

j=1 aj = ai for all 1 ≤ i < m. Hence, for 1 ≤ i ≤ m it must hold that
ai = A/m. We hence have

F (Gl+1) ≥

[
1−

l+1∏
k=1

(
1− c(Xk)

αL

)]
F (OPT )− βε

≥

[
1−

i∏
k=1

(
1− c(Xk)

αc(Gl+1)

)]
F (OPT )− βε

≥

[
1−

(
1− 1

α(l + 1)

)l+1
]
F (OPT )− βε

≥
(

1− 1
e1/α

)
F (OPT )− βε

where the first inequality follows from Lemma B.2 and the second inequality follows from the fact that
c(Gl+1) > L, since it violates the budget.
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Furthermore note, that the violating increase F (Gl+1) − F (Gl) is bounded by αF ({X∗}) for
X∗ = argmaxX∈W F ({X}), i.e. the second candidate solution considered by the modified greedy algo-
rithm. Hence

F (Gl) + F ({X∗}) ≥ F (Gl+1)/α ≥
1
α

(1− 1/e1/α)F (OPT )− βε

and at least one of the valuesF ({X∗}) orF (Gl) must be greater than or equal to 1
2α((1−1/e1/α)F (OPT )−

βε).

Proof of Theorem 5.10. For all nodes s ∈ V \ A, let δs = F (A ∪ {s}) − F (A). Let us assume the
costs c(s) and B are rational . Without loss of generality, we can multiply costs and budget by their least
common multiple, and hence we are left with integral costs and budget. Let us replicate all elements
according to their cost, and assign weights to them according to their benefit cost ratio, i.e., for all replica
s′ of element s, set weight δ′s′ = δs/c(s). Also, let A′ be the set of all replicas corresponding to the
nodes in A. Let B′ be the replicas of all elements in the optimal solution B. Since F is nondecreasing,
F (A′ ∪ B′) ≥ F (B′) = OPT . Due to submodularity,

F (A′ ∪ B′) ≤ F (A′) +
∑
s′∈B′

δ′s′ .

Furthermore, ∑
s′∈B′

δ′s′ ≤ max
C′:|C′|≤B

∑
s′∈C′

δ′s′ .

Now we have a unit-cost modular optimization problem: We want to pick the best set C′ of B elements,
maximizing the sum of their weights δ′s′ . The ordinary unit cost greedy algorithm solves this optimally.
More specifically, we can sort the new weights δ′s′ in decreasing order (in case of ties we keep the replicas
of the elements in contiguous blocks), and pick the B first elements. Hence, the greedy algorithm on
the replicated unit cost problem will have to integrally pick the first k − 1 original elements, and will
fractionally pick the last (k − th) element, selecting M = (B −

∑k−1
i=1 c(sj)) elements. Summing up the

weights of the unit cost elements will give us
∑

i = 1k−1δsi + λ ∗ δsk
, where λ = M/c(sk).

B.2 Proofs from Chapter 6

Proof of Theorem 6.2. Our reduction builds on the proof by Ko et al. [1995], who show that for any
graph G, there exists a polynomially related, symmetric positive-definite matrix Σ such that Σ has a
subdeterminant (of a submatrix resulting from the selection of k rows and columns i1, . . . , ik) greater
than some M if G has a clique of size at least k, and Σ does not have a subdeterminant greater than
M − ε for some (polynomially-large) ε > 0 if G does not have such a clique. Let G be a graph, and
let Σ be the matrix constructed in Ko et al. [1995]. We will consider Σ as the covariance matrix of a
multivariate Gaussian distribution with variables XU = {X1, . . . ,Xn}. Introduce additional variables
XS = {y1, . . . , yn} such that yi | Xi = x ∼ N (x, σ2). Note that a subsetA ⊆ S, |A| = k, has maximum
entropy of all such subsets if and only if the parents ΓA ⊂ U ofA have maximum entropy among all such
subsets of U . Now note that I(XA;X(U∪S)\A) = H(XA)−H(XA | X(U∪S)\A) = H(XA)−H(XA | XU ),
because yi and yj are conditionally independent given XU . Furthermore, again because of independence,
H(XA | XU ) is a constant only depending on the cardinality of A. Assume we could decide efficiently
whether there is a subset A ⊂ S such that I(XA;XV\A) ≥ M ′. If we choose σ2 small enough, then this
would allow us to decide whether G has a clique of size k, utilizing the gap ε.
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Proof of Lemma 6.4. Define K̂(x, y) = K(x, y) for x 6= y and K̂(x, x) = K(x, x) + σ2 to include
the sensor noise σ2. Since C is compact and K continuous, K is uniformly continuous over C. Hence,
for any ε1, there exists a δ1 such that for all x, x′, y, y′, ‖x − x′‖2 ≤ δ1, ‖y − y′‖2 ≤ δ1 it holds that
| K(x, y) − K(x′, y′)| ≤ ε1. Assume C1 ⊂ C is a finite mesh grid with mesh width 2δ1. We allow sensor
placement only on grid C1. Let C2 ⊂ C be a mesh grid of mesh width 2δ1, which is derived by translating
C1 by δ1 in Euclidean norm, and let G1, G2 denote the restriction of the GP G to C1, C2. We assume
C1, C2 cover C in the sense of compactness. We use the notation ·̃ to refer to the translated version in
G2 of the random variable · in G1. K̂ is a symmetric strictly positive definite covariance function and
|K̂(X, y) − K̂(X̃, ỹ)| ≤ ε1 for all X, y ∈ G1. Moreover, since K is positive semidefinite, the smallest
eigenvalue of any covariance matrix derived from K̂ is at least σ2.

Let A be a subset of C1 and X ∈ C1 \ A. Using (6.7), we first consider the conditional variance σ2
X|A.

By definition, ‖y − ỹ‖2 ≤ δ1, and hence |K̂(X, y) − K̂(X, ỹ)| ≤ ε1 for all y ∈ A. Hence we know
that ‖ΣAA − ΣÃÃ‖2 ≤ ‖ΣAA − ΣÃÃ‖F ≤ k2ε1. We furthermore note that ‖Σ−1

AA‖2 = λmax(Σ−1
AA) =

λmin(ΣAA)−1 ≤ σ−2, and hence

‖Σ−1
AA − Σ−1

ÃÃ‖2 = ‖Σ−1
AA(ΣÃÃ − ΣAA)Σ−1

ÃÃ‖2
≤ ‖Σ−1

AA‖2‖ΣÃÃ − ΣAA‖2‖Σ−1
ÃÃ‖2 ≤ σ

−4k2ε1.

We derive ‖ΣXÃ − ΣXA‖2 ≤ ‖ε11T ‖2 = ε1
√
k, hence

|σ2
X|A − σ

2
X|Ã| = |ΣXAΣ−1

AAΣAX − ΣXÃΣ−1
ÃÃΣÃX |,

≤ 2‖ΣXA − ΣXÃ‖2‖Σ
−1
AA‖2‖ΣXA‖2 + ‖Σ−1

AA − Σ−1
ÃÃ‖2‖ΣXA‖22 +O(ε21),

≤ 2ε1
√
kσ−2M

√
k + σ−4k2ε1M

2k +O(ε21),

≤ ε1kσ−2M
(
2 + σ−2k2M

)
+O(ε21),

where M = maxx∈C K(x, x). We choose δ such that the above difference is bounded by σ2ε. We note
that (assuming w.l.o.g. H(Xs | XA) ≥ H(Xs | XÃ))

H(Xs|XA)−H(Xs|XÃ) =
1
2

log
σ2
Xs|XA
σ2
Xs|XÃ

≤ log(1 + ε)
2

≤ ε

2
.

which concludes the argument.

Proof of Corollary 6.5. The higher order terms O(ε21) can be worked out as kσ−2ε2(1 + Mk2σ−2 +
εk2σ−2). Assuming that ε < min(M, 1), this is bounded by 3k3Mσ−4ε. Using the Lipschitz as-
sumption, we can directly compute δ1 from ε1 in the above proof, by letting δ = ε1/L. Let R =
kσ−2M

(
2 + σ−2k2M

)
+ 3k3Mσ−4. We want to choose δ such that ε1R ≤ σ2ε. Hence if we choose

δ ≤ σ2ε
LR , then |H(X|A) − H(X|Ã)| ≤ ε uniformly as required. Note that in order to apply the result

from Nemhauser et al. [1978], the approximate nondecreasingness has to be guaranteed for subsets of size
2k, which results in the stated bound.

Proof of Theorem 6.6. The following proof is an extension of the proof by Nemhauser et al. [1978], using
some simplifications by Jon Kleinberg.
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Let s1, . . . , sk be the locations selected by the greedy algorithm. LetAi = {s1, . . . , si},A∗ be the optimal
solution, and δi = FMI(Ai)− FMI(Ai−1). By Lemma 6.4, we have, for all 1 ≤ i ≤ k,

FMI(Ai ∪ A∗) ≥ FMI(A∗)− kε.

We also have, for 0 ≤ i < k,

FMI(Ai ∪ A∗) ≤ FMI(Ai) + kδi+1 =
i∑

j=1

δj + kδi+1.

Hence we have the following sequence of inequalities:

FMI(A∗)− kε ≤ kδ1
FMI(A∗)− kε ≤ δ1 + kδ2

...

FMI(A∗)− kε ≤
k−1∑
j=1

δj + kδk

Now we multiply both sides of the i-th inequality by
(
1− 1

k

)k−i, and add all inequalities up. After
cancelation, we get (

k−1∑
i=0

(1− 1/k)i

)
(FMI(A∗)− kε) ≤ k

k∑
i=1

δi = kFMI(Ak).

Hence, as claimed, with AG = Ak (i.e., AG is the k-element greedy solution)

FMI(AG) ≥
(
1− (1− 1/k)k

)
(FMI(A∗)− kε) ≥ (1− 1/e)(FMI(A∗)− kε).

B.3 Proofs from Chapter 7

Proof of Proposition 7.2. Let C = A ∪ B such that A ⊆ S and B ⊆ U . Then

H(XU\C | XC) = H(XU\B | XA∪B) = H(XU∪A)−H(XA∪B)

= H(XA | XU ) +H(XU )−H(XC) = H(XU )−H(XC) +
∑

y∈C∩S
H(Xy | XU )

using the chain rule for the joint entropy. H(XU ) is constant, H(XC) is submodular and
∑

y∈C∩S H(Xy |
XU ) is linear in C on U ∪ S and hence onW .

To show that F is nondecreasing we consider ∆ = F (C ∪ {s}) − F (C) = H(XC∪{s}) − H(XC) +∑
y∈(C∪{s})∩S H(Xy | XU )−

∑
y∈C∩S H(Xy | XU ). If s ∈ U , then ∆ = H(XC∪{s})−H(XC) = H(Xs |

XC) ≥ 0. If s ∈ S, then ∆ = H(Xs | XC) −H(Xs | XU ) ≥ H(Xs | XC∪U ) −H(Xs | XU ) = 0 using
conditional independence and the fact that conditioning never increases the entropy.
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Proof of Proposition 7.5. We compute the marginal increase ∆ = F (C ∪ X) − F (C) as in the proof of
Proposition 7.2. If s ∈ U , then ∆ = H(Xs | XC) and if s ∈ S, then ∆ = H(Xs | XC)−H(Xs | XU ).

Proof of Theorem 7.7. We will reduce MAX-COVER to maximizing the information gain. MAX-COVER
is the problem of finding a collection ofL sets such their union contains the maximum number of elements.
In [Feige, 1998], it is shown that MAX-COVER cannot be approximated by a factor better than (1− 1/e)
unless P = NP. Our reduction generates a Turing machine, with a polynomial runtime guarantee, which
computes information gains for variable selections.

LetW = {s1, . . . , sn} be a set, V = {1, . . . ,m} and C1, . . . , Cm be a collection of subsets ofW , defining
an instance of MAX-COVER . Associate with each element s ofW an independent binary random variable
Xs with Pr(Xs = 1) = 0.5. For each i ∈ V let Yi be a random vector Yi = (Xi1 , . . . ,Xil) where Ci =
{si1 , . . . , sil}, and let S = {Y1, . . . ,Ym}. Considered stochastically, the Y1, . . . ,Ym are conditionally
independent given all Xi. Furthermore, for B ⊆ W,A ⊆ V it holds that H(XB | YA) =

∑
s∈BH(Xs |

YA), and H(Xs | YA) = 0 iff s ∈ A, 1 otherwise. Hence if I ⊆ {1, . . . ,m}, then H(XW) − H(XW |⋃
i∈I Yi) = |

⋃
i∈I Ci|. Thus if we can approximate the maximum of I(XU ;YA) over allL-element subsets

A ⊆ S by a constant factor of (1−1/e+ε) for some ε > 0, then we can approximate the solution to MAX-
COVER by the same factor. Note that the entropies computed in our reduction are all integer-valued, and
it is possible to efficiently construct a polynomial time Turing machine computing I(XU ;YA), with a
runtime guarantee.

Proof of Lemma 7.8. We will approximate the marginal increase ∆ = F (A ∪X) − F (A) by sampling.
Hence we need to compute the numberN of samples we need to guarantee that the sample mean ∆N does
not differ from ∆ by more than ε/L with a confidence of at least 1 − δ

Ln . First we note that 0 ≤ ∆ ≤
H(X) ≤ log |dom(X)|. Hoeffding’s inequality [Hoeffding, 1963] states that

Pr[|∆N −∆| ≥ ε/L] ≤ 2 exp(−2N(
ε

L log |dom(X)|
)2).

This quantity is bounded by δ/(Ln) if N ≥ 1
2(L log | dom(X)|

ε )2 log 2Ln
δ . �

Proof of Theorem 7.9. Let ε, δ > 0. We will approximate F by sampling. Let n = |S|. In each step of the
greedy algorithm, 2n sample approximations have to be made. If we run L steps, we have to guarantee
a confidence of 1 − δ

2Ln for each sample approximation to guarantee an overall confidence of 1 − δ by
the union bound. The result follows from Lemma 7.8 and the remark on approximate maximization of
submodular functions.

B.4 Proofs from Chapter 8

Proof of Theorem 8.1. Our proof is similar to the analysis of [Nemhauser et al., 1978]. Fix scenario i. We
first show that the function Fi(A) = πi(∞) − πi(T (A, i)) is submodular. Consider A ⊆ B ⊆ V . Let
s ∈ V \B. We have three cases. (i) T (s, i) ≥ T (A, i). Then T (A∪{s}) = T (A) and T (B∪{s}) = T (B)
and hence Fi(A ∪ {s}) − Fi(A) = 0 = Fi(B ∪ {s}) − Fi(B). (ii) T (B, i) ≤ T (s, i) < T (A, i). In this
case, Fi(A ∪ {s}) − Fi(A) ≥ 0 = Fi(B ∪ {s}) − Fi(B). Finally, (iii), T (s, i) < T (B, i). In this case,
Fi(A ∪ {s}) − Fi(A) = [πi(∞) − πi(T (s, i))] − Fi(A) ≥ [πi(∞) − πi(T (s, i))] − Fi(B) = Fi(B ∪
{s}) − Fi(B), where the inequality is due to the nondecreasingness of Fi(·). Hence, for each scenario
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i, the function Fi is submodular. Now, F (A) =
∑

i P (i)Fi(A) is a nonnegative linear combination of
submodular functions, and hence submodular too.

Proof of Theorem 8.2. Let P be a distribution over directed graphs G1 = (V, E1), . . . ,GN (V, EN ) on a
fixed set of vertices V , defined according to the Triggering Model. For each i, let G′i be the graph obtained
from G′i by reverting the arcs Ei. Then, the penalty reduction Fi(A) by the set of nodes A using the
population affected score (PA) corresponds exactly to the number of nodes influenced by set A under the
Triggering Model. Hence, also the expected penalty reduction F (A) =

∑
i P (i)Fi(A) is exactly equal to

the influence function σ(A) of Kempe et al. [2003].

Proof of Proposition 8.3. By reduction from set cover. Let a set S be given, along with a collection of
subsets B1, . . . ,Bm ⊆ S. It is NP-hard to decide whether, for a constant k, there exists a collection
of subsets Bi1 , . . . ,Bik such that their union covers S [Garey and Johnson, 2003]. We can turn such
an instance into a sensor placement problem, where we have a contamination scenario for each element
i ∈ S, and a sensor corresponding to each subset Bi. For a constant k, the penalty minimization problem
is the problem of selecting a set of sensors which minimize the number of undetected scenarios. Hence,
there exists a set cover of size k if and only if there exists a sensor placement with expected penalty of 0.
If we had a sensor placement algorithm which, for a constant k, would be guaranteed to obtain a solution
whose expected penalty is some multiple α(n) of the minimum penalty, where α(n) only depends on the
problem size n, then we could use this algorithm to decide the set cover problem, implying that P = NP.

B.5 Proofs from Chapter 10

Proof of Theorem 10.1. Consider a hitting set instance with m subsets Si ⊆ V on a ground set V . Our
task is to select a setA ⊆ V with which intersects all sets Si, and such that |A| = k is as small as possible.
For each set Si, define a function Fi such that Fi(A) = 1 if A intersects Si, and 0 otherwise. It can be
seen that Fi is clearly nondecreasing. Fi is also submodular, since for A ⊆ B ⊆ V and x ∈ V \ B,
if Fi(B) = 0 and Fi(B ∪ {x}) = 1, then it x ∈ Si, hence Fi(A ∪ {x}) = 1 and Fi(A) = 0. Now
assume the optimal hitting set A∗ is of size k. Hence mini Fi(A∗) = 1. If there were an algorithm for
solving Problem (10.2) with approximation guarantee γ(n) it would select a set A′ of size |A′| ≤ k with
mini Fi(A′) ≥ γ(n) mini Fi(A∗) = γ(n) > 0. But mini Fi(A′) > 0 implies mini Fi(A′) = 1, hence A′
would be a hitting set. Hence, this approximation algorithm would be able to decide, whether there exists
a hitting set of size k, contradicting the NP-hardness of the hitting set problem [Feige, 1998].

Proof of Lemma 10.2. Wolsey [1982a] proves that, given a nondecreasing submodular function F on a
ground set V , it holds that that greedy algorithm (GPC), applied to the optimization problem

min
A
|A| such that F (A) = F (V)

returns a solution A′ such that |A′| ≤ |A∗|(1 + log maxs∈V F ({s})), where A∗ is an optimal solution.
We apply Wolsey’s result to the nondecreasing submodular function F c. In order to use GPC in the inner
loop of the binary search over c, we need to make sure that the approximation guarantee for the greedy
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algorithm is independent of c. This can be achieved by choosing

α = 1 + log

(
max
s∈V

∑
i

Fi({s})

)
≥ 1 + log

(
mmax

s∈V
F c({s})

)
,

i.e., the choice of α stated in Lemma 10.2 is independent of the truncation threshold c.

Proof of Theorem 10.3. Lemma 10.2 proves that during each of the iterations of the saturation algo-
rithm it holds that mini Fi(A∗) ≤ cmax, where A∗ is an optimal solution. Furthermore, it holds that
mini Fi(Abest) ≥ cmin, and |Abest| ≤ αk. Since the Fi are integral, if cmax− cmin <

1
m then it must hold

that mini Fi(Abest) ≥ mini Fi(A∗) as claimed by Theorem 10.3.

For the running time, since at the first iteration, cmax − cmin ≤ mini Fi(V), and cmax − cmin is halved
during each iteration, it follows that after 1 + dlog2mmini Fi(V)e iterations, cmax − cmin <

1
m , at which

point the algorithm terminates. During each iteration, Algorithm 10.1 is invoked once, which requires
O(|V|2m) function evaluations.

Proof of Theorem 10.4. We use the same hitting set construction as in Theorem 10.1. If there were an
algorithm for selecting a set A′ of size |A′| ≤ βk with mini Fi(A′) = 1, and β ≤ (1 − ε)α, for some
fixed ε > 0, then we would have an approximation algorithm for hitting set with guarantee (1− ε) logm
which would imply NP ⊆ DTIME(nlog log n) [Feige, 1998].

Theorem 10.6. The proof is analogous to the proof of Theorem 10.3. The approximation guarantee α is
established by noticing that the greedy algorithm is applied to the modified (integral) objective

F cwc,cac(A) =
∑

i

min{Fi(A), cwc}+ min

{∑
i

Fi(A),mcac

}
.

The guarantee α is obtained from the analysis of the greedy submodular coverage algorithm of Wolsey
[1982a], similar to Lemma 10.2. Approximate Pareto-optimality follows directly from Pareto-optimality
of any solution to (10.11).

B.6 Proofs from Chapter 11

Proof of Lemma 11.2. Given a collection of weights P = {pS : S ⊆ B}, we write E(P) =
∑

S⊆B pS ·
F (S). Note that E[F (A)] = E(P0) for P0 = {Pr [A = S] : S ⊆ B}.

Starting with the set of weights P0, we iteratively apply the following “uncrossing” procedure. As long as
there is a pair of sets S, T ⊆ B such that neither of S or T is contained in the other, and pS , pT > 0, we
subtract x = min(pS , pT ) from both pS and pT , and we add x to both pS∩T and pS∪T . Note the following
properties of this procedure.

(i) The quantity
∑

S⊆B pS remains constant over all iterations.

(ii) For each element X ∈ B, the quantity
∑

S⊆B:X∈S pS remains constant over all iterations,

(iii) The quantity
∑

S⊆B pS |S|2 strictly increases every iteration.

(iv) By the submodularity of F , the quantity E(P) is non-increasing over the iterations.
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By (i) and (iii), this sequence of iterations, starting from P0, must terminate at a set of weights P∗. At
termination, the sets S on which pS > 0 must be totally ordered with respect to inclusion, and by (ii) it
follows that pB ≥ ρ. Finally, by (iv), we have

E[F (A)] = E(P0) ≥ E(P∗) ≥ ρF (B), (B.1)

as required.

In order to prove Theorems 11.1 and 11.5, let us consider the subset A∗ spanned by the optimal tree (or
path), and let A∗ ⊆ A∗ denote its r-padded nodes with respect to a random partition drawn from the
padded decomposition. (Recall that each node is r-padded with probability at least ρ.) Now Lemma 11.2
implies that F (A∗), the expected value of the nodes in A that are r-padded, is at least ρF (A∗). The
algorithm is based on the idea of trying to build a tree (a path) that recoups a reasonable fraction of this
“padded value”.

The following lemma will be useful in converting subtrees and paths of G′ back to solutions of our original
problem.

Proposition B.3. Given any subtree T ′ or path P ′ of G′ spanning nodes A′ with weight W containing
at least one cluster center, it is possible to find a subtree T ⊆ G resp. path P ⊆ G spanning the same
vertices A′, with a total length no more than `(T ′) resp. `(P ′), and with F (A′) ≥ γ W .

Proof. Each edge of G′ (and hence of T ′) corresponds to some shortest path in G, and we can add all
these paths together to form a connected subgraph. Let T be any spanning tree of this subgraph; clearly,
its length is no more than `(T ′). If Vi ⊆ Pi is the subpath of Pi contained in T ′, then the weight of
these vertices V (P ′i ) is exactly the total submodular value F (V (P ′i )), just by the definition the weights.
Furthermore, since each pair of distinct paths are at distance at least r from each other, the locality property
assures that the value of their union is at least γ W . For paths, just observe that expanding edges of P ′ in
G results in another path P .

Proposition B.4. If the graph G contains a subtree T ∗ spanning nodes A∗, of length C(T ∗) = `∗ and
value F (A∗), then there is a subtree T ′ of the graph G′ that has length at most

`∗ × (α(r + 2) + 2) (B.2)

and whose expected weight is at least

F (A∗)× (1− e−1)× ρ (B.3)

Proof. Let a cluster Ci be called occupied if A∗ ∩ Ci 6= ∅; w.l.o.g., let the s+ 1 clusters C0, C2, . . . , Cs be
occupied. Let z0, . . . , zs be the cluster centers (i.e., the first nodes picked by the greedy algorithm). We
start building T ′ by adding a spanning tree on the centers of the clusters that are occupied.

The Cost. Let us bound the length of this center-spanning tree. Since A∗ contains a point (say ai) from
each Ci, the padding condition ensures that the r-balls Br(ai) must be disjoint, and hence the length of
T ∗ is at least rs. Now, to attach ai to zi, we can add paths of length at most αr to T ∗; thus causing the
resulting tree to have length `∗ + αrs ≤ (α+ 1)`∗. Since this is a Steiner tree on the centers, we can get
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a spanning tree of at most twice the cost; hence the cost of the edges connecting the spanning centers is at
most

2(α+ 1) `∗. (B.4)

Now consider an occupied cluster Ci, and let |A∗ ∩ Ci| = ni be the number of padded nodes in Ci. We now
add to T ′ the subpath of Pi containing first ni nodes {Zi = Gi,1, Gi,2, . . . , Gi,ni}. Note that the length
of edges added for cluster Ci is at most αrni; summing over all occupied clusters gives a total length of
αr
∑

i ni ≤ αr|A∗| ≤ αr`∗, since each edge in T ∗ has at least unit length. Adding this to (B.4) proves
the claim on the length of T ′.

The Weight. Finally, let us calculate the weight of the tree T ′: by the properties of the greedy algorithm
used in the construction of G′, the weight of the set Sini added in cluster Ci is at least

(1− e−1)F (A∗ ∩ Ci) (B.5)

Summing this over occupied clusters, we get that the total weight is at least (1 − e−1)F (A∗), whose
expected value is at least (1− e−1)ρF (A∗).

Proposition B.5. If the graph G contains an s− t path P∗ spanning nodesA∗, of length C(P∗) = `∗ and
value F (A∗), then there is an s− t path P ′ of the graph G′ that has length at most

2× `∗ × (α(r + 2) + 6) (B.6)

and whose expected weight is at least

F (A∗)× (1− e−1)× ρ (B.7)

Proof. This result is an immediate corollary from Proposition B.4, noting that the vertices s and t need to
be connected to the center spanning tree by paths at most 2`∗, and that the path P∗ is a tree, and hence
there exists a subtree T ′ in G′ of length at most `∗×(α(r+2)+4). This tree is readily converted into a path
(e.g., by traversal) of length at most twice the cost of the tree, i.e., of at most 2× `∗× (α(r+ 2) + 6).

Combining these results, we now prove a slightly more detailed statement of Theorems 11.1 and 11.5:

Theorem B.6. Trees: For the covering problem (11.1), PSPIEL will find a solution T , with cost at most

κQuota `
∗ (α(r + 2) + 2) (B.8)

and whose expected weight is at least

(1− e−1) γρF (A∗), (B.9)

where `∗ is the weight of the optimum tree A∗. For the maximization problem (11.2), PSPIEL will find a
solution T with cost at most

`∗ (α(r + 2) + 2) (B.10)

and whose expected weight is at least

κ−1
Budget(1− e

−1) γρF (A∗), (B.11)
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where κQuota and κBudget denote the approximation guarantees for approximately solving Quota- and
Budget-MST problems (currently, κQuota = 2 and κBudget = 3 + ε, for ε > 0, are the best known such
guarantees [Garg, 2005, Johnson et al., 2000]).

Paths: For the path planning problem (11.5), PSPIEL will find a solution P , with cost at most

κOrient 2`∗ (α(r + 2) + 6) (B.12)

and whose expected weight is at least

(1− e−1) γρF (A∗), (B.13)

where `∗ is the weight of the optimum tree A∗. Hereby, κOrient is the approximation guarantee for
approximately solving the Orienteering problem (currently, κOrient = 3 + ε is the best known such
guarantee [Chekuri et al., 2008]).

Proof. Proposition B.4 proves the existence of a tree T ′ in the graph G′, for which both cost and weight
are close to the optimal tree T in G. The construction in the proof also guarantees that the tree T ′ contains
at least one cluster centerGi,1 for some i (or is empty, in which case T is empty). Proposition B.3 handles
the transfer of the solution to the original graph G. Hence, in order to solve the covering problem (11.1)
or optimization problem (11.2) in G, we need to solve the respective covering and maximization problem
in the modular approximation graph G′, rooted in one of the cluster centers. Any κQuota approximate
algorithm to the Quota-MST problem can be used for the covering problem, using a quota of Q = (1 −
e−1)ρF (A∗). While for the unrooted version of the Budget-MST problem, there is a constant factor
κBudget = 3+ ε approximation algorithm, the best known approximation for rooted Budget-MST is 4+ ε
by Chekuri et al. [2008]. We can however exploit the structure of the MAG to still get an approximation
guarantee and prove Theorem 11.1 for an improved guarantee of 3 + ε. We simply need to prune all
nodes in G′ which are further than B = `∗ (α(r + 2) + 2) away from the core of G′, and then run the
unrooted approximation algorithm by Johnson et al. [2000] on G′. If this algorithm, started with budget
B = `∗ (α(r+2)+2) selects nodes from sub-chain i, not including centerGi,1, we instead select the entire
i-th chain. By construction, this procedure is guaranteed not to violate the budget, and the submodular
function value can only increase.

The result for paths follows analogously, using Proposition B.5 instead of Proposition B.4, and applying
the approximation algorithm for s− t orienteering to the modular approximation graph.

B.7 Proofs from Chapter 12

Proof of Theorem 12.1. Define a new ground set V ′ = V × {1, . . . , k}, and a new function

F ′(A′) =
k∑

t=1

F ({s : (s, t) ∈ A′}).

F ′ is nondecreasing and submodular. Let

I = {A′ ⊆ V ′ : |A′| ≤ m ∧
(
@s, i 6= j : (s, i) ∈ A′ ∧ (s, j) ∈ A′

)
},
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i.e., I is the collection of subsets A′ ⊆ V ′ that do not contain two pairs (s, i) and (s, j) of elements for
which i 6= j. It can be shown that I form independent sets of a matroid [c.f., Fisher et al., 1978]. Note that
there is a one-to-one correspondence between sets A′ and feasible solutions A1, . . . ,Ak to the SPASS
Problem (12.1), and furthermore, the corresponding solutions have the same value. Hence, the SPASS
problem is equivalent to solving

A∗ = argmax
A′∈I

F ′(A′).

As Fisher et al. [1978] proved, the greedy algorithm GAPS is guaranteed to obtain a solution that has at
least 1/2 of the optimal value.

Proof of Lemma 12.3. Consider an optimal allocation T1, . . . , Tm. Let Bopt be the set Bopt = {i :
Ti contains a big element}. Throw away all buckets (and elements) Bopt. Now, in order to achieve score
c, the optimal solution has to fill m−|Bopt| buckets with small elements (even from a reduced set of small
elements, those not thrown away) and still achieve score c on each of those buckets. This solution is in
fact an optimal solution achieving score c on the new problem instance (since we will use at least as many
big elements and throw away at least as many buckets).

Proof of Lemma 12.4. Suppose Ai is a bucket for which Fc(Ai) ≥ 3βc. Now, Ai = {a1, . . . , al}, and
Fc({ai}) ≤ βc. Choose ` such that Fc({a1, . . . , a`−1}) < βc and Fc({a1, . . . , a`}) ≥ βc. Let ∆ =
{a1, . . . , a`}.

Due to nondecreasingness, Fc(Aj ∪∆) ≥ Fc(∆) ≥ βc. It remains to show that Fc(Ai \∆) ≥ Fc(Ai)−
2βc. Suppose that Fc(Ai \∆) < Fc(Ai)− 2βc. Let B = Ai \∆. Then

Fc(B ∪∆)− Fc(B) > 2βc.

But
Fc(∆) ≤ Fc({a1, . . . , a`−1}) + Fc({a`}) < 2βc,

due to submodularity of Fc, and the fact that a` is a small element. Hence

Fc(B ∪∆)− Fc(B) > Fc(∆)− Fc(∅),

i.e., adding ∆ to B helps more than adding ∆ to the empty set, contradicting submodularity of Fc.

Proof of Lemma 12.5. To simplify notation, w.l.o.g. let us assume that c = 1. Since the optimal balanced
performance for Fc = F1 is 1, the optimal average-case performance for F1 is 1 as well. The GAPS
algorithm obtains an allocation A that is a fraction α of optimal. Hence, it holds that

∑
i F1(Ai) ≥ αk.

We call
∑

i F1(Ai) the “mass” of the allocation A.

How many unsatisfied buckets can there maximally be? Let γ denote the fraction of unsatisfied buckets.
We know that

kγβ + k(1− γ) ≥ αk,

since the maximal γ is achieved if all the satisfied buckets are completely full (containing mass k(1− γ)),
and the unsatisfied buckets are as full as possible without being satisfied (hence containing mass less than
kγβ). Hence it follows that

γ ≤ 1− α
1− β

.
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Now consider the mass R distributed over the satisfied buckets. We know that

R ≥ αk − γkβ ≥ kα(1− β)− β(1− α)
1− β

,

and the worst case is assumed under equality.

The first reallocation move is possible if
R

k(1− γ)
≥ 3β,

since, if the average remaining mass over all (1 − γ)k satisfied buckets is 3β, then there must be at least
one bucket to which the move can be applied. Since each reallocation move reduces the mass R by at
most 2β (as proved by Lemma 12.4), and since we need γk moves to fill all unsatisfied buckets, it suffices
to require that

R− 2γkβ
k(1− γ)

≥ 3β

⇔R− 2γkβ ≥ 3βk − 3βγk
⇔R ≥ 3βk − βγk

Hence, a sufficient condition for β such that enough moves can be performed to fill all unsatisfied buckets
is

α(1− β)− β(1− α)
1− β

≥ 3β − β 1− α
1− β

⇐3β2 + (−3− α)β + α ≥ 0
⇐β ≤ α/3,

by solving the quadratic equation for β and ignoring the infeasible solutions β ≥ 1. Now, since β is going
to be our approximation factor, we want to maximize β subject to the above constraint, and hence choose
β = α/3.

Proof of Theorem 12.2. The proof immediately follows from the analysis in Section 12.3.2. For the run-
ning time, notice that, in each binary search iteration, the greedy algorithm requires at most kmn function
evaluations, and the reallocation step requires at most k2m ≤ kmn evaluations. The binary search termi-
nates after O(1 + log2 F (V)) iterations, assuming integrality of F .

Proof of Theorem 12.6. LetAi be the candidate solution for time slot i, and Bi = {b1, . . . , bni} an optimal
solution for time slot i. Due to nondecreasingness and submodularity, it holds that

F (Ai) ≤ F (Ai ∪ Bi) ≤ F (Ai) +
ni∑

j=1

δi,bj
.

Hence, the optimal value of Problem (12.2) is upper bounded by the optimal solution to the following
integer program:

max
λi,s,c

c s.t.

c ≤ F (Ai) +
∑

s

λi,sδi,s for all i∑
i

λi,s ≤ 1 for all s and
∑
i,s

λi,s ≤ m and λi,s ∈ {0, 1},
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since any integer solution λi,s corresponds to a possible feasible partition B′1, . . . ,B′k. The linear program
in Theorem 12.6 is the linear programming relaxation to the above integer program.

Algorithm B.1: The greedy average-case placement and scheduling (MCGAPS) algorithm.
Algorithm MCGAPS (F , B, V , k, m, c, λ)
At ← ∅ for all t; A ← ∅;
for i = 1 to m do

foreach s ∈ V \ A, 1 ≤ t ≤ k do
δt,s ← λFc(At ∪ {s}) + (1− λ)F (A ∪ B ∪ {s});

end
(t∗, s∗)← argmaxt,s δt,s;
At∗ ← At∗ ∪ {s∗}; A ← A∪ {s∗};

end

Proof Sketch of Theorem 12.7. We will modify ESPASS in the following way. The modified algorithm,
MCSPASS (see the pseudo code in Algorithm B.2), will “guess” (binary search for) the value c∗ attained
by the optimal solution A∗. It will then guess (search for) the number ` of large elements used in the
optimal solution, where we redefine “large” as F ({s}) ≥ c∗

8 . For such a guess, MCSPASS will first
greedily select the ` large elements (according to F ), giving a setAG. It will then set these large elements
aside, and continue on the small elements. Define the function

G(A1, . . . ,Ak) = (1− λ)(F (AG ∪ A)− F (AG)) +
λ

m− `
∑

i

min{F (Ai), c}

where A = A1 ∪ · · · ∪ Ak. MCSPASS will greedily maximize G on the partition matroid (similarly
to using GAPS). Suppose c∗ is the optimal value c∗ = F̂λ(A∗). Then the greedy procedure will find a
solution A′ such that G(A′) + (1− λ)F (AG) ≥ 1

2c
∗ (since greedy selection of big elements followed by

greedy selection of small elements amounts to the “local” greedy optimization over a partition matroid as
analyzed by Fisher et al. [1978]).

Now, at least one of (1− λ)F (AG ∪ A′) ≥ c∗/8, or λ
m−`

∑
i F (A′i) ≥ 3c∗

8 , since

G(A′) + (1− λ)F (AG) = (1− λ)F (AG ∪ A′) + λ
1

l −m
∑

i

F (A′i).

In former case we do not need to reallocate and setAR = A′. In latter case, we use the reallocation proce-
dure, and arrive at a solution AR where all buckets are satisfied (since A′ contains only small elements),
i.e., mini F (AR,i) ≥ 3c∗

3·8 = c∗/8.

Now, AR ∪ AG is a feasible solution to the multicriterion SPASS problem, with

F̂λ(AR ∪ AG) = (1− λ)F (AG) +G(AR)
= (1− λ)F (AG ∪ AR) + λmin

i
F (AR,i) ≥ c∗/8.
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Algorithm B.2: The MCSPASS algorithm for simultaneously optimizing scheduled and high-density
performance.

Algorithm MCSPASS (F , V , k, m, ε, λ)
cmin ← 0; cmax ← F (V); β ← 1/8;
while cmax − cmin ≥ ε do

for ` = 0 to k do
c← (cmax + cmin)/2;
B ← {s ∈ V : Fc({s}) ≥ βc};1

if |B| < ` then break;
Abig ← ∅;
for i = 1 to ` do
Abig ← argmaxs∈B\Abig

F (Abig ∪ {s});
Ak−i+1 ← {s};

end
k′ ← k − `;
if k′ = 0 then Abest,` ← (A1, . . . ,Ak);

continue;
V ′ ← V \ Abig; m′ ← m− `;
A1:k′ ←MCGAPS (F,Abig,V ′, k′,m′, c, λ);2

if
∑

t F (At) < k′c/2 then cmax ← c; continue;3

else
while ∃i, j ≤ k′: Fc(Aj) ≤ βc, Fc(Ai) ≥ 3βc do4

foreach s ∈ Ai do
Aj ← Aj ∪ {s}; Ai ← Ai \ {s};
if Fc(Aj) ≥ βc then break;

end
end
Abest,` ← (A1, . . . ,Ak);

end
end
`∗ ← argmax` F̂λ(Abest,`);
cmin ← c; Abest ← Abest,`∗ ;

end
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B.8 Proofs from Chapter 14

Lemma B.7. Let π be a policy. Then

H(Xπ) ≤ H(Xπ | Θ) +H(Θ),

FMI(Xπ) ≤ FMI(Xπ | Θ) +H(Θ).

Proof. From definition, FMI(Xπ) = H(XV\π)−H(XV\π | Xπ). Using the chain rule, we findFMI(Xπ) =
H(Xπ)−H(Xπ | XV\π). Consider

H(Xπ,Θ) = −
∑

θ

∫
p(xV , θ) log p(xπ, θ)dxV

= −
∑

θ

∫
p(xV , θ)[log p(xπ) + log p(θ | xπ)]dxV

= H(Xπ) +
∫
p(xV)H(Θ | xπ)dxV

≥ H(Xπ).

Also,

H(Xπ,Θ) = −
∑

θ

∫
p(xV , θ)[log p(xπ | θ) + log p(θ)]dxV

= H(Θ)−
∑

θ

∫
p(xV) log p(xπ | θ)dxV

= H(Θ) +H(Xπ | Θ).

Similarly, H(Xπ̄) ≤ H(Xπ̄ | Θ) +H(Θ) (just replace π by π̄ in the above proof).
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Now consider

H(Xπ̄ | Xπ) = −
∫
p(xV) log p(xπ̄ | xπ)dxV

= −
∫
p(xV)

∑
|A|=k

[π(xV) = A] log p(xĀ | xA)dxV

= −
∑
A

∫
p(xA)[π(xA) = A]

∫
p(xĀ | xA) log p(xĀ | xA)dxV

=
∑
A

∫
p(xA)[π(xA) = A]H(XĀ | xA)dxA

≥
∑
A

∫
p(xA)[π(xA) = A]H(XĀ | xA,Θ)dxA

=
∑
A

∫
p(xA)[π = A]

∑
θ

P (θ | xA)H(XĀ | xA, θ)dxA

= −
∑
A,θ

∫
p(xA, θ)[π = A]p(xĀ | xA, θ) log p(xĀ | xA, θ)dxV

= −
∑
A,θ

∫
p(xV , θ)[π = A] log p(xĀ | xA, θ)dxV

= −
∑

θ

p(θ)
∫
p(xV | θ) log p(xπ̄ | xπ, θ)dxV

=
∑

θ

P (θ)H(Xπ̄ | Xπ, θ)

= H(Xπ̄ | Xπ,Θ)

Hence,

FMI(Xπ) = H(Xπ̄)−H(Xπ̄ | Xπ)
≤ H(Θ) +H(Xπ̄ | Θ)−H(Xπ̄ | Xπ,Θ)
= FMI(Xπ | Θ) +H(Θ).

Proof of Theorem 14.1. Using Lemma B.7, it suffices to show that

max
|π|=k

H(Xπ | Θ) ≤
∑

θ

P (θ) max
|A|=k

H(XA | θ),

and
max
|π|=k

FMI(Xπ | Θ) =
∑

θ

P (θ) max
|A|=k

FMI(XA | θ).
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This follows from the fact that

H(Xπ | Θ) =
∑

θ

P (θ)H(Xπ | θ) ≤
∑

θ

P (θ) max
|A|=k

H(XA | θ).

Similarly,
FMI(Xπ | Θ) =

∑
θ

P (θ)FMI(Xπ | θ) ≤
∑

θ

P (θ) max
|A|=k

FMI(XA | θ).

Proof of Corollary 14.3. We first observe that submodularity is closed under taking expectations, and
FMI(XA∪{y} | Θ) − FMI(XA | Θ) ≥

∑
P (θ)[−ε] = −ε shows that FMI(· | Θ) is ε-nondecreasing.

The result follows from combining the statements of Theorem 14.2 and Theorem 14.1.

Proof of Proposition 14.8. Consider the sequence Hi = H(Θ | Xπ1:i). The information never hurts
principle [Cover and Thomas, 1991] shows that E[Hi+1 | Xπ1:i ] ≤ Hi with probability 1 over the obser-
vations Xπ1:i . Hence (Hi)i is a super-martingale, which proves that H(Θ | Xπ1:i) = E[Hi] ≤ E[H0] =
H(Θ).

Lemma B.8. Let Θ̂ be the parameter identified by binary search procedure. Let M = dlogme. If
P (Ti 6= Ii | θ) ≤ α, then for all θ, P (Θ̂ = θ | Θ = θ) ≥ 1−Mα.

Proof of Lemma B.8.

P (Θ̂ = θ | Θ = θ) = P (T (1) = I(1) ∧ · · · ∧ T (M) = I(M) | θ)
= 1− P (T (1) 6= I(1) ∨ · · · ∨ T (M) 6= I(M) | θ)

≥ 1−
M∑
i=1

P (T (i) 6= I(i) | θ) ≥ 1−Mα,

Proof of Theorem 14.5. Let C be a statistic of the Ti and Ii, such that C = 1 if Ti = Ii for all i. From
Lemma B.8, we have that P (C = 1 | θ) ≥ 1 − α/dlog2me. Hence also unconditionally P (C = 1) ≥
1 − α/dlog2me. From Corollary 14.3 we have that if we know the correct parameter, FMI(XAG∪πH

|
Θ)] ≥ (1 − 1/e) max|π|=k FMI(Xπ) − kε. This event happens with probability P (C = 1). If C =
0, we have identified the wrong parameter. In this event, we have that FMI(XAG∪πH

| Θ)] ≥ (1 −
1/e)

∑
θ P (θ)FMI(XAθ | θ)− kε+H(Θ | XπH ). But H(Θ | XπH ) ≤ dlog2me. Hence

ET [FMI(XAG∪πH
| Θ)] ≥ (1− 1/e) max

|π|=k
FMI(Xπ)− kε−

−
(

0 · P (C = 1) + dlog2meP (C = 0)(max
θ
|FMI(XAG∪πH

| Θ)− FMI(XAθ | θ)|)
)
.

Proof of Theorem 14.6. This asymptotic bound follows directly from confidence intervals obtained after
applying Fisher’s transform to the sample correlation coefficient.
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Lemma B.9. Let X be an isotropic GP with variance σ2, Xs,Xt and XA be such that Cor(Xs,Xz) ≤ ε
and Cor(Xt,Xz) ≤ ε for all z ∈ A, and assume every location has independent measurement noise
(nugget) σ2

n. Then |Cor(Xs,Xt)− Cor(Xs,Xt | XA)| ≤ 2|A|ε2 σ2

σ2
n

.

Proof. By induction on |A|. First divide by σ, such that the process has unit variance. This does not
change the correlation. Let Xz ∈ A. Then

Σxy,xy|Z = Σxy,xy − Σxy,zσ
−1
z,zΣz,xy.

Hence

||Σxy,xy|Z − Σxy,xy||∞ = ||Σxy,zσ
−1
z,zΣz,xy||∞ ≤ 2ε2

σ2

σ2
n

.

The induction step uses the independence of the measurement noise, such that σ2
z|A′ ≥ σ2

n.

Proof of Corollary 14.7. This is a direct consequence of Theorem 14.6 and Lemma B.9, by observing
that by ignoring n ε-correlated samples, the correlation does not change by more than 2nε2 σ2

σ2
n

. Since
the correlation for θi cannot increase by and the correlation for θi+1 cannot decrease by more than that
amount, the gap in correlation decreases by at most 4nε2 σ2

σ2
n

. Requiring this to be less than ξ and solving
for ε proves the claim.

Proof of Theorem 14.4. Let M = maxA maxθ1,θ2

FMI(A|θ1)
FMI(A|θ2) < ∞. Also let K = maxθ FMI(Aθ | θ),

whereAθ = argmaxA FMI(A | θ). LetA∗ = argmaxA FMI(A | Θ). Let θ′ be the most likely parameter,
and assume H(Θ) < 1, which implies δ < 1

2 .

Let us show the lower bound first. Clearly, FMI(Xπ∗) ≥ maxA FMI(XA). Now, FMI(A) = H(A) −
H(A | V \ A) ≥ H(A | Θ) − H(A,Θ | V \ A), since Θ is discrete. But H(A,Θ | V \ A) = H(A |
V \A,Θ) +H(Θ | V \A) ≤ H(A | V \A,Θ) +H(Θ), hence the lower bound follows. Note that if A
is “small” compared to V \ A, then we can expect H(Θ | V \A) ≈ 0.

FMI(A∗ | Θ) = (1− δ)FMI(A∗ | θ′) + δFMI(A∗ | ¬θ′)
≤ (1− δ)FMI(A∗ | θ′) +MδFMI(A∗ | θ′)
= (1 + (M − 1)δ)FMI(A∗ | θ′),

where
FMI(A∗ | ¬θ′) =

1
δ

∑
Θ 6=θ′

P (θ)FMI(A∗ | θ).

We have that FMI(A∗ | Θ) ≥ FMI(Aθ′ | Θ). Hence

FMI(A∗ | θ′) ≥
1

1 + (M − 1)δ
FMI(Aθ′ | Θ)

≥ 1− δ
1 + (M − 1)δ

FMI(Aθ′ | θ′),

where we use that FMI(Aθ′ | ¬θ′) ≥ 0.
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Now define the loss

L(A) =
∑

θ

P (θ)
[
max

A′
FMI(A′ | θ)− FMI(A | θ)

]
.

This loss is minimized by A∗ = argmaxA FMI(A | Θ). Now,

L(A∗) ≤(1− δ)
[
FMI(Aθ′ | θ′)− FMI(A∗ | θ′)

]
+ δ(K − FMI(A∗ | ¬θ′))

≤(1− δ)
[
FMI(Aθ′ | θ′)−

1− δ
1 + (M − 1)δ

FMI(Aθ′ | θ′)
]

+ δ(K − FMI(A∗ | ¬θ′))

=
(1− δ)(M − 1)δ
1 + (M − 1)δ

FMI(Aθ′ | θ′) + δ(K − FMI(A∗ | ¬θ′))

=δ
[
(1− δ)(M − 1)
1 + (M − 1)δ

FMI(Aθ′ | θ′) +K − FMI(A∗ | ¬θ′)
]

≤δ
[
(M − 1)FMI(Aθ′ | θ′) +K

]
≤δMK,

where we use that FMI(A∗ | ¬θ′) ≥ 0. Hence L(A∗) is O(δ). If δ < 1
2 , then δ ≤ H(Θ)

− log2 H(Θ) .

We know
FMI(A∗ | Θ)−H(Θ) ≤ FMI(Xπ) ≤ FMI(A∗ | Θ) +H(Θ) + L(A∗).

If we approximate FMI(Xπ∗) by FMI(XA∗ |Θ), the absolute error is hence bounded by

H(Θ)

(
1 +

MK

log2
1

H(Θ)

)
.

Proof of Proposition 14.9. This proposition follows from the fact that the fully factorized distribution is
the maximum entropy distribution with a specified set of marginal distributions.

B.9 Proofs from Chapter 15

Proof of Proposition 15.1. Take the setup from the proof of Proposition 15.1, and add another Bernoulli
random variable Z with P (Z = 1) = .5 that is independent of Y . Add two actions b1 and b−1 for
classifying the value of Z , and a utility function that gives value ε if the correct action is chosen. Now
let the set V of variables contain {X1,X2,Z}, and let us allow ourselves to pick k = 2 elements of
V , and let L(A) be the value of information for picking variables A. Now, as shown in the proof of
Proposition 15.1, L({X1}) = L({X2}) = 0, whereas L({Z}) = ε. Hence the greedy algorithm will
choose to observe Z first. However, it can then only add either X1 or X2. However, since Y and Z are
independent, L({Xi,Z}) = ε, but L({X1,X2}) = 6

16 . Hence, as ε → 0, the greedy algorithm performs
arbitrarily badly.
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U1

X2 Xn

U2 Un
…

Figure B.1: Graphical model used in the proof of Theorem 15.5.

Proof of Proposition 15.2. Consider the following binary classification problem with assymetric cost. We
have one Bernoulli random variable Y (the class label) with P (Y = 1) = 0.5 and P (Y = −1) = 0.5. We
also have two noisy observationsX1,X2, which are conditionally independent given Y . Let P (Xi = Y) =
3/4 (i.e., the observations agree with the class label with probability 3/4, and disagree with probability
1/4. We have three actions, a1 (classifying Y as 1), a−1 (classifying Y as -1) and a0 (not assigning
any label). We define our utility function F such that we gain utility 1 if we assign the label correctly
(F (a1, 1) = F (a−1,−1) = 1), −3 is we misassign the label (F (a1,−1) = F (a−1, 1) = −3), and 0 if
we choose a0, i.e., not assign any label. Now, we can verify that L(∅) = L({X1}) = L({X2}) = 0, but
L({X1,X2}) =

(
3
4

)2 − 3
(

1
4

)2 = 6
16 > 0. Hence, adding X2 to X1 increases the utility more than adding

X2 to the empty set, contradicting submodularity.

Proof of Theorem 15.5. Membership in #P for arbitrary discrete polytrees is straightforward since infer-
ence in such models is in P. Let φ be an instance of #3SAT , where we have to count the number of
assignments to X1, . . . , Xn satisfying φ. Let C = {C1, . . . , Cm} be the set of clauses. Now create a
Bayesian network with 2n + 1 variables, X1, . . . ,Xn, U1, . . . ,Un and Y , where the Xi are conditionally
independent given Y . Let Y be uniformly distributed over the values {−n,−(n− 1), . . . ,−1, 1, . . . ,m−
1,m}, and each Ui have Bernoulli prior with p = 0.5. Let the observed variables Xi have CPTs defined
the following way:

Xi | [Y = +j,Ui = u] ∼
{

1, if Xi = u satisfies clause Cj ;
0, otherwise.

Xi | [Y = −j,Ui = u] ∼
{

0, if i = j;
u, otherwise.

In this model, which is presented in Figure B.1, it holds that X1 = X2 = · · · = Xn = 1 iff U1, . . . ,Un

encode a satisfying assignment of φ, and Y > 0. Hence, if we observe X1 = X2 = · · · = Xn = 1,
we know that Y > 0 with certainty. Furthermore, if at least one Xi = 0, we know that P (Y > 0 |
X = x) < 1. Let all nodes have zero reward, except for Y , which is assigned a reward function with
the following properties (we will show below how we can model such a local reward function using the
decision-theoretic value of information):

R(Y | XA = xA) =
{

(n+m)2n

m , if P (Y > 0 | XA = xA) = 1;
0, otherwise.

308



By the above argument, the expected reward

R(Y | X1, . . . ,Xn) =
∑
u,y,x

P (Y = y)P (U = u)P (x|u)R(Y | X = x)

=
∑

u sat φ

P (Y > 0)P (u)
(n+m)2n

m
=
∑

u sat φ

1

is exactly the number of satisfying assignments to φ. Note that the model defined above is not yet a Naive
Bayes model. However, it can easily be turned into one by marginalizing out U .

We will now show how we can realize a reward function with the above properties in the maximum
expected utility sense. Let D = {d1, d2} be a set of two decisions. Define a utility function with the
property:

g(d, y) =


(n+m)2n

m , if d = d1 and y > 0;
(n+m)22n+1

n , if d = d1 and y < 0;
0, otherwise.

The reward R(Y | XA) is then given as the decision-theoretic value of information:

R(Y | XA) =
∑
xA

P (xA) max
d

∑
y

P (y | xA)g(d, y).

The utility function g is based on the following consideration. Upon observing a particular instantiation of
the variables X1, . . . ,Xn we make a decision d about variable Y . Our goal is to achieve that the number
of times action d1 is chosen exactly corresponds to the number of satisfying assignments to φ. This is
accomplished in the following way. If all Xi are 1, then we know that the Ui had encoded a satisfying
assignment, and Y > 0 with probability 1. In this case, action d1 is chosen. Now we need to make sure
that whenever at least one Xi = 0 (which indicates either that Y < 0 or U is not a satisfying assignment)
decision d2 is chosen. Now, if at least one Xi = 0, then either Y = j > 0 and clause j was not satisfied, or
Y < 0. The utilities are designed such that unless P (Y > 0 | XA = xA) ≥ 1− n2−n

2m , the action d2 gives
the higher expected reward of 0. Hereby, n2−n

2m is a lower bound on the probability of “misclassification”
P (Y < 0 | XA = xA).

Note that the above construction immediately proves the hardness of approximation: Suppose there were
a polynomial time algorithm which computes an approximation R̂ that is within any factor α > 1 (which
can depend on the problem instance) of R = R(Y | X1, . . . ,Xn). Then R̂ > 0 implies that R > 0, and
R̂ = 0 implies that R = 0. Hence, the approximation R̂ can be used to decide whether φ is satisfiable or
not, implying that P = NP.

Proof of Corollary 15.6. Let φ be a 3CNF formula. We convert it into a Naive Bayes model over variables
X1, . . . ,Xn and Y as in the construction of Theorem 15.5. The function L(V) where V = {1, . . . , n} is
the set of all variables Xi counts the number of satisfying assignments to φ. Note that the function L(A)
for A ⊆ V = {1, . . . , n} is monotonic, i.e., L(A) ≤ L(V) for all A ⊆ V , as shown in Proposition 15.10.
Hence the majority of assignments satisfies φ if and only if L(V) > 2n−1.
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Figure B.2: Graphical model used in proof of Theorem 15.7.

Proof of Theorem 15.7. Membership follows from the fact that inference in polytrees is in P for discrete
polytrees: A nondeterministic Turing machine with #P oracle can first “guess” the selection of variables,
then compute the value of information using Theorem 15.5 (since such computation is #P-complete for
arbitrary discrete polytrees), and compare against constant c.

To show hardness, let φ be an instance of EMAJSAT , where we have to find an instantiation of
X1, . . . , Xn such that φ(X1, . . . , X2n) is true for the majority of assignments to Xn+1, . . . , X2n. Let
C = {C1, . . . , Cm} be the set of 3CNF clauses. Create the Bayesian network shown in Figure B.2, with
nodes Ui, each having a uniform Bernoulli prior. Add bivariate variables Yi = (seli, pari), 0 ≤ i ≤ 2n,
where seli takes values in {0, . . . ,m} and pari is a parity bit. The CPTs for Yi are defined as: sel0
uniformly varies over {1, . . . ,m}, par0 = 0, and for Y1, . . . ,Y2n:

seli | [seli−1 = j,Ui = ui] ∼
{

0, if j = 0, or ui satisfies Cj ;
j, otherwise;

pari | [pari−1 = bi−1,Ui] ∼ bi−1 ⊕ Ui,

where ⊕ denotes the parity (XOR) operator.

We now add variables ZT
i and ZF

i for 1 ≤ i ≤ n and let

ZT
i | [Ui = ui] ∼

{
Uniform({0, 1}), if ui = 1;
0, otherwise;

where Uniform denotes the uniform distribution. Similarly, let

ZF
i | [Ui = ui] ∼

{
Uniform({0, 1}), if ui = 0;
0, otherwise.

Intuitively, ZT
i = 1 guarantees us that Ui = 1, whereas ZT

i = 0 leaves us uncertain about Ui. The case of
ZF

i is symmetric.

We use the subset selection algorithm to choose the Zis that encode the solution to EMAJSAT . If ZT
i

is chosen, it will indicate that Xi should set to true, similarly ZF
i indicates a false assignment to Xi. The

parity function is going to be used to ensure that exactly one of {ZT
i ,ZF

i } is observed for each i.

We first assign penalties∞ to all nodes except ZT
i ,ZF

i for 1 ≤ i ≤ n, and Uj for n+ 1 ≤ j ≤ 2n, which
are assigned zero penalty. Let all nodes have zero reward, except for Y2n, which is assigned the following
reward:

R(Y2n | XA = xA) =


4n, if P (sel2n = 0 | XA = xA) = 1 and

[P (par2n = 1 | XA = xA) = 1 or P (par2n = 0 | XA = xA) = 1];
0, otherwise.
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Note that sel2n = 0 with probability 1 iff U1, . . . ,U2n encode a satisfying assignment of φ. Furthermore,
we get positive reward only if we are both certain that sel2n = 0, i.e., the chosen observation set must
contain a proof that φ is satisfied, and we are certain about par2n. The parity certainty will only occur
if we are certain about the assignment U1, . . . ,U2n. It is only possible to infer the value of each Ui with
certainty by observing one of Ui,ZT

i or ZF
i . Since, for i = 1, . . . , n, the cost of observing Ui is ∞, to

receive any reward we must observe at least one of ZT
i or ZF

i . Assume that we compute the optimal
subset Ô for budget 2n, then we can only receive positive reward by observing exactly one of ZT

i or ZF
i .

We interpret the selection of ZT
i and ZF

i as an assignment to the first n variables of EMAJSAT . Let
R̂ = R(Y2n | Ô). We claim that φ ∈ EMAJSAT if and only if R̂ > 0.5. First let φ ∈ EMAJSAT ,
with assignment x1, . . . , xn to the first n variables. Now add Un+1, . . . ,U2n to O and add ZT

i to O iff
xi = 1 and ZF

i to O iff xi = 0. This selection guarantees R̂ > 0.5.

Now assume R̂ > 0.5. We call an assignment to U1, . . . ,U2n consistent if for any 1 ≤ i ≤ n, if ZT
i ∈ Ô,

then Ui = 1 and if ZF
i ∈ Ô then Ui = 0. For any consistent assignment, the chance that the observations

Zi prove the consistency is 2−n. Hence R̂ > 0.5 implies that the majority of all provably consistent
assignments satisfy φ and hence φ ∈ EMAJSAT . This proves that subset selection is NPPP complete.

Note that we can realize the local reward function R in the sense of maximum expected utility similarly
as described in the Proof of Theorem 15.5.

Proof of Corollary 15.8. The constructions in the proof of Theorem 15.6 and Theorem 15.7 also prove
that computing conditional plans is PP-hard and NPPP-hard respectively, since, in these instances, any
plan with positive reward must observe variables corresponding to valid instantiations (i.e., all X1, . . . ,Xn

in Corollary 15.6, and all Un+1, . . . ,U2n and one each of the Z1, . . . ,Zn to satisfy the parity condition
in Theorem 15.7). In these cases, the order of selection is irrelevant, and, hence, the conditional plan
effectively performs subset selection.

Proof of Corollary 15.9. The proof follows from the observation that polytree construction from the proof
of Theorem 15.7 can be arranged into two dependent chains. For this transformation, we revert the arc
between ZT

i and Ui by applying Bayes’ rule. To make sure there are the same number of nodes for
each sensor in each timeslice, we triple the variables Yi, calling the copies Y ′i and Y ′′i . The conditional
probability tables are given as equality constraints, Y ′i = Yi and Y ′′i = Y ′i. After this transformation, the
variables associated with timesteps 3i− 2 (for i ≥ 1) are given by the sets {Y ′′i−1,ZT

i }. timesteps 3i− 1
are associated with the sets {Ui,Yi}, and timesteps 3i are associated with {ZF

i ,Y ′i}.

Proof of Proposition 15.10. This bound follows from the fact that maximization over a is convex, and an
application of Jensen’s inequality. Using an induction argument, we simply need to show that L(A) ≥
L(∅).

L(A) =
∑
xA

P (XA = xA)

(∑
t∈V

max
a

EU(a, t,x | XA(1:t) = xA(1:t))

)

≥
∑
t∈V

max
a

(∑
xA

P (XA = xA)EU(a, t,x | XA(1:t) = xA(1:t))

)
=
∑
t∈V

max
a

EU(a, t,x) = L(∅)
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where
EU(a, t,x | XA(1:t) = xA(1:t)) =

∑
xt

P (xt | XA(1:t) = xA(1:t))Ft(a, xt)

is the expected utility of action a at time t after observing XA(1:t) = xA(1:t) .
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