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Abstract

We define the class of SMART scheduling policies. These are policies that bias towards jobs with short remaining service times, jobs
with small original sizes, or both, with the motivation of minimizing mean response time and/or mean slowdown. Examples of SMART
policies include PSJF, SRPT, and hybrid policies such as RS (which biases according to the product of the response time and size of a
job).

For many policies in the SMART class, the mean response time and mean slowdown are not known or have complex representations
involving multiple nested integrals, making evaluation difficult. In this work, we prove three main results. First, for all policies in the
SMART class, we prove simple upper and lower bounds on mean response time. In particular, we focus on the SRPT and PSJF policies
and prove even tighter bounds in these cases. Second, we show that all policies in the SMART class, surprisingly, have very similar
mean response times. Third, we show that the response times of SMART policies are largely invariant to the variability of the job size
distribution.
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1 Introduction

It is well-known that policies that bias towards small job sizes1 or
jobs with small remaining service times perform well with respect
to mean response time and mean slowdown. This idea has been
fundamental in many system implementations including, for ex-
ample, the case of Web servers, where it has been shown that by
giving priority to requests for small files, a Web server can signifi-
cantly reduce mean response time and mean slowdown [4, 9]. The
heuristic has also been applied to other application areas; for exam-
ple, scheduling in supercomputing centers. Here too it is desirable
to get small jobs out quickly to improve the overall mean response
time.

Two specific examples of policies that employ this powerful
heuristic are the Shortest-Remaining-Processing-Time (SRPT) pol-
icy, which preemptively runs the job with shortest remaining pro-
cessing requirement and has been proven to be optimal with respect
to mean response time [18]; and the Preemptive-Shortest-Job-First
(PSJF) policy, which is easier to implement and preemptively runs
the job with shortest original size.

While formulas are known for the mean response time under
both SRPT and PSJF, these formulas are complex, involving mul-
tiple nested integrals. The formulas can be evaluated numerically,
but the numerical calculations are quite time-consuming – in many
situations simulating the policy is faster than evaluating the formu-
las numerically in Mathematica – and are numerically imprecise at
high loads. No simple closed form formula is known for either of
these policies. The complexity of these formulas also make under-
standing how far the mean response time of a novel policy is from
optimal quite difficult. Furthermore, one can imagine many other
scheduling policies that are hybrids of the SRPT and PSJF policies
for which response time has never been analyzed.

In the current work, we define the SMART policies: a classifica-
tion of all scheduling policies that “do the smart thing,” i.e. follow
the heuristic of biasing towards jobs that are originally short or have
small remaining service requirements (see Definition 3.1). We then
validate the heuristic of ”biasing towards small job sizes” by deriv-
ing simple bounds on the mean response time of any policy in the
SMART class, as well as tighter bounds on two important policies in
the class: PSJF and SRPT. Our bounds illustrate that all the poli-
cies in the SMART class have surprisingly similar mean response
times; and since our bounds are close, they allow us to predict this
mean response time quite accurately. Our bounds also show the ef-
fect of the variability of the service distribution on the overall mean
response time. Surprisingly, the mean response time is largely in-
variant to the variability of the service distribution, provided that
the service distribution has at least the variability of an exponential
distribution. This is contrary to intuition in the literature that sug-
gests that the mean response time of SRPT significantly improves
under highly variable service distributions. Most importantly how-
ever, these bounds are simple functions of the system load (see
Theorem 5.1) and thus provide accurate, back-of-the-envelope cal-
culations that can be used to understand the mean response times of

1The “size” of a job is its service requirement. A small job is one with small
(original) service requirement.

these policies. In particular, we prove a simple lower bound on the
optimal mean response time that is tight for highly variable service
distributions. This lower bound provides a benchmark for describ-
ing the mean response times of other scheduling policies. Prior to
this result, it has been difficult to assess the optimality of the mean
response times of scheduling policies in a queueing setting. But,
the simplicity of the lower bound in Theorem 5.1 facilitates such
comparisons.

Throughout the paper we will consider only an M/GI/1 system
with a differentiable service distribution having finite mean and fi-
nite variance. We let T (x) be the steady-state response time for
a job of size x, where the response time is the time from when
a job enters the system until it completes service. Let ρ < 1 be

the system load. That is ρ
def
= λE[X], where λ is the arrival rate

of the system and X is a random variable distributed according
to the service (job size) distribution F (x) having density func-
tion f(x) defined for all x ≥ 0. The expected response time
for a job of size x under scheduling policy P is E[T (x)]P , and
the expected overall response time under scheduling policy P is
E[T ]P =

∫∞
0
E[T (x)]P f(x)dx.

2 Background

There have been countless papers written on the analysis and im-
plementation of individual scheduling policies. The “smarter” poli-
cies, such as SRPT dominate this literature [5, 13, 14, 19, 20].
Many individual “smart” policies have been analyzed for mean re-
sponse time; two particularly important examples are SRPT and
PSJF .

Before introducing the known results about PSJF and SRPT , it
is important to point out that although formulas have been derived
for the mean performance of both SRPT and PSJF, these formulas
are not closed form. For many service distributions, because of the
1/(1− ρ(x)) terms, these formulas must be evaluated numerically.
Further, the complicated nature of these formulas hide any infor-
mation about how properties of the service distribution effect the
mean response time.

Under the SRPT policy, at every moment of time, the server
is processing the job with the shortest remaining processing time.
The SRPT policy is well-known to minimize overall mean response
time [18]. The mean response time for a job of size x is as follows
[19]:

E[T (x)]SRPT = E[R(x)]SRPT + E[W (x)]SRPT

whereE[R(x)]P (a.k.a the expected residence time for a job of size
x under policy P ) is the time for a job of size x to complete once it
begins execution, and E[W (x)]P (a.k.a the expected waiting time
for a job of size x under policy P ) is the time between when a job
of size x arrives and when it begins to receive service.

E[R(x)]SRPT =

∫ x

0

dt

1− ρ(t)

E[W (x)]SRPT =
λm2(x) + λx2F (x)

2(1− ρ(x))2
=
λ
∫ x

0
tF (t)dt

(1− ρ(x))2
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where ρ(x)
def
= λ

∫ x
0
tf(t)dt and mi(x)

def
=
∫ x

0
tif(t)dt. We will

further use the notation

E[R]P
def
=

∫ ∞

0

E[R(x)]P f(x)dx

E[W ]P
def
=

∫ ∞

0

E[W (x)]P f(x)dx

Under the PSJF policy, at every moment of time, the server is
processing the job with the shortest initial size (service require-
ment). The mean response time for a job of size x is [11]:

E[T (x)]PSJF = E[R(x)]PSJF + E[W (x)]PSJF

E[R(x)]PSJF =
x

1− ρ(x)

E[W (x)]PSJF =
λm2(x)

2(1− ρ(x))2

Not only have countless papers been written analyzing individ-
ual scheduling policies; many others have been written comparing
the response times of pairs of policies. Mean response time com-
parisons for SRPT and PS are made in [1, 8]; the mean response
times for FB and PS are compared in [7, 21], and all three policies
are compared in [17].

Recently however, there has been a trend in scheduling research
towards grouping policies and proving results about policies with
certain characteristics or structure. For example, the recent work
of Borst, Boxma and Nunez groups policies with respect to their
tail behavior [3, 16]. These authors have discovered that the tail of
response time under SRPT, FB, and PS is the same as the tail of
the service time distribution; however all non-preemptive policies,
such as FCFS, have response time distributions with tails equiv-
alent to the integrated service distribution. Another example of a
classification of scheduling policies is with respect to their “fair-
ness” properties [10, 22]. All this work has had a large impact
on the implementation of scheduling policies. Across domains,
scheduling policies that bias towards small job sizes are beginning
to be adopted [4, 7, 9, 17]. This paper continues the trend to-
wards classifying scheduling policies by defining a particular class
of scheduling policies that all have similar, near optimal mean re-
sponse time; thus placing important, additional structure on the vast
domain of scheduling policies.

3 Defining the SMART class

We define the SMART class of scheduling policies as follows:

Definition 3.1 A work conserving policy P ∈ SMART if (i) a job of
remaining size greater than x can never have priority over a job of
original size x, and (ii) a job being run at the server can only be
preempted by new arrivals.

This definition has been crafted to mimic the heuristic of biasing
towards jobs that are (originally) short or have small remaining ser-
vice requirements. Thus, we are able to analytically evaluate the
validity of this heuristic by bounding the performance of all poli-
cies that obey it. The heart of the SMART definition is in the first part

which says that the job being run must have remaining size smaller
than the original size of all jobs in the system. In particular, this im-
plies that if P ∈ SMART, P will never work on a new arrival of size
greater than x while a previous arrival of original size x remains in
the system. The second part of the definition intuitively says that
the relative priority of two jobs does not change over time; thus if
job a that is running currently has priority over job b, then job b
will never preempt job a.

The class of SMART policies is very broad. Consider the follow-
ing example of two jobs a and b with original size 10 and 8 respec-
tively, where a arrives at time 0 and b arrives at time 3. At time 3,
the remaining sizes of a and b are 7 and 8 respectively. A policy
which at time 3 chooses to prioritize in favor of job a (e.g. SRPT )
satisfies the definition for being in SMART. Likewise, a policy which
at time 3 chooses to prioritize in favor of job b (e.g. PSJF ) also
satisfies the SMART definition. Furthermore, a policy which at time
3 probabilistically chooses between jobs a and b is likewise SMART.
Although this example only includes two jobs, it illustrates the va-
riety of choices possible under SMART policies — choices may be
made probabilistically, based on only original size, based on only
remaining size, or based on some combination of the original and
remaining size.

We complete this section by giving more specific examples of
policies included and not included in SMART. Observe that the
class of SMART policies does not include non-preemptive policies,
not even Shortest-Job-First (SJF). However, as noted above, the
SMART class does include the SRPT and PSJF policies. Further, it
is easy to prove that the SMART class includes the RS policy, which
assigns to each job the product of its remaining size and its original
size and then gives highest priority to the job with lowest product.
The motivation for the RS policy is improving mean slowdown,
where a job’s slowdown is defined as its response time divided by
its original size. By incorporating size into the priority scheme,
the RS policy is able to improve mean slowdown over SRPT in
many cases. In simulations, we have found that under distribu-
tions having variability greater than that of the exponential, RS can
achieve up to a 10% relative improvement in mean slowdown. Fur-
thermore, the SMART class includes many generalizations of the RS
policy that can (under some distributions) lead to further improve-
ments in mean slowdown. Specifically, SMART includes all policies
of the form RiSj , where i, j > 0 and a job is assigned the product
of its remaining size raised to the ith power and its original size
raised to the jth power (where again the job with highest priority
is the one with lowest product). The SMART class also includes a
range of policies having more complicated priority schemes; see
Definition 3.2.

Definition 3.2 A policy P ∈ SMART∗ if P at any given time sched-
ules the job with the highest priority and gives each job of size s
and remaining size r a priority p(s, r) such that for s1 < s2 and
r1 < r2, p(s1, r1) > p(s2, r2) and p(s1, r1) > p(s1, r2).

We will next prove that SMART∗ ( SMART.

Theorem 3.1 SMART∗ ( SMART
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Proof : Suppose policy P ∈ SMART∗. We will first show that Def-
inition 3.1 is satisfied by P . Notice that part (ii) of the definition
is trivially satisfied. To see that part (i) is satisfied, let s1 and r1

be the initial size and current remaining size of a tagged job in
the queue. Suppose s2 and r2 correspond to the the initial size
and current remaining size of another job in the queue such that
r2 > s1. It follows that s2 > s1, and further that r2 > r1. Thus,
p(s2, r2) < p(s1, r1), so job 2 will not be served.

Finally, notice that SMART is strictly larger than SMART∗. We can
see this by giving an example of a policy in SMART that is not in
SMART∗. Define P to be the policy that for each busy period uses
priority function p1(s, r) with probability q and priority function
p2(s, r) with probability 1−q where both p1 and p2 are in SMART∗.
Then, P ∈ SMART but P 6∈ SMART∗.

4 Bounding the per-size response time un-
der SMART policies

In this section, we present an upper bound on the mean response
time for a job of size x under policies in SMART. The purpose of this
bound is solely in its use towards deriving an upper bound on the
overall mean response time, E[T ], under SMART policies in Section
5, although the proof technique is elegant in its own right.

Theorem 4.1 The mean response time for a job of size x under any
policy P ∈ SMART satisfies:

E[T (x)]P ≤ x

1− ρ(x)
+
λm2(x) + λx2F (x)

2(1− ρ(x))2

Proof : We will break up the mean response time for a job of size
x into the sum of the waiting time W (x)P and the residence time
R(x)P , defined in Section 2.

We first notice that the residence time under any SMART policy is
upper bounded by:

E[R(x)]P ≤ x

1− ρ(x)

This bound follows from the fact that no arrival of size greater than
x will be worked on while a job of original size x is in the system.
Thus, the response time for such a job of size x is bounded by the
length of a busy period made up of only jobs with sizes smaller
than x.

It now remains to bound the waiting time for a job of size x,
W (x), under any SMART policy P . Consider an M/GI/1 queue with
scheduling policy P . Let V be the work in the system as seen by
an arrival of size x, having higher priority than x under policy P .
Observe that

E[W (x)]P ≤ E[V ]P

1− ρ(x)

This follows from the fact that no arrival of size greater than x
will be worked on while our job of size x is in the system. Thus
W (x) is bounded by a busy period started by V work including
only arriving jobs of size x or smaller.

To analyze V , we consider a “transformed” system, which per-
fectly mimics the original system, running the same jobs at the
same times, however where jobs with remaining size greater than
x are simply non-existent in the transformed system. To be pre-
cise, there are two types of arrivals into the transformed system:
type 1 arrivals occur when jobs of original size greater than x in
the original system have been worked on to the point where their
remaining size is now exactly x (call this time t). We restrict the
type 1 arrivals further to include just those jobs whose priority at
time t would have exceeded that of our arrival of size x. Type 2
arrivals occur when jobs arrive into the original system with size
less than x.

We make three claims about type 1 jobs arriving into the trans-
formed system:

1. The type 1 arrivals enter the transformed system at the server.

2. The type 1 arrivals occur only when the transformed system
is idle of jobs of type 2.

3. There is only one job of type 1 in the transformed system at a
time.

The first point is obvious. The second point follows from the fact
that when the type 1 arrival enters the transformed system, it has
highest priority at that moment, and therefore there cannot be any
job of original size less than x in the system (by the definition of
SMART). To argue the third point, consider a job j which becomes
a type 1 arrival into the transformed system at time t. Clearly,
j has the highest priority of those jobs currently in the system at
time t, and thus it will, by part (ii) of the SMART definition, forever
continue to have priority over those jobs that were in the system at
time t. Furthermore, consider any new arrival, j ′ into the system
of size greater than x that arrives while job j is in the transformed
system. We claim that j′ has lower priority than j and thus will
never become a type 1 job while j is in the system. To see that j ′

has lower priority than j, observe that (a) at time t job j had higher
priority than our arrival of size x, by definition of a type 1 arrival,
and (b) an arrival of size x has priority over job j ′ by definition of
SMART, since the size of j′ exceeds x. Thus, by transitivity, j ′ has
lower priority than j, and, by part (ii) of the SMART definition, will
continue to.

Recall that our goal is the work in the transformed system. Since
the transformed system is work-conserving, the work is equal to
that in a further-transformed system, where we now change the ser-
vice policy in the transformed system so that it is non-preemptive,
specifically, a job in service is never interrupted (in particular a
type 1 job will never be sent to the queue), and all type 2 jobs
are served in FCFS order. Aside from the scheduling policy, the
further-transformed system is identical to the transformed system.

Now observe that the work in the further-transformed system is
identical to the waiting time (delay) experienced by a type 2 arrival
into the further-transformed system. Thus, we have equated the
work in the further-transformed system with the delay experienced
by a type 2 (Poisson) arrival into a single-server system consisting
of a queue made up of all Poisson arrivals of size less than x and a
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server which may be busy with jobs of type 1 or 2. That is, the dis-
tribution of jobs at the server in our further-transformed system is

Xx = min(x,X), and the load at the server is ρx
def
= λE[Xx].

Letting ÑQ be the number of jobs in the queue of the further-
transformed system, Ṽ be the work in the further-transformed sys-
tem, and noting that the mean excess of Xx is E[X2

x]/(2E[Xx]),
we have:

E[V ] ≤ E[work in transformed system]

= E[Ṽ ]

= ρx
E[X2

x]

2E[Xx]
+ E[ÑQ]

∫ x

0

t
f(t)

F (x)
dt

=
λE[X2

x]

2
+ λF (x)E[Ṽ ]

∫ x

0

t
f(t)

F (x)
dt

=
λE[X2

x]

2(1− ρ(x))

=
λ
∫ x

0
t2f(t)dt+ λx2F (x)

2(1− ρ(x))

which completes the proof.
Notice that the upper bound in Theorem 4.1 is tight, since one

can define a policy P where for an arrival of size x, all jobs with
remaining size less than x have priority over the arrival; and further
all arriving jobs of size less than x have priority over the arrival.

5 Bounding mean response time under
SMART policies

In this section we derive bounds on the overall mean response time
of policies in SMART. To do this, it will be helpful to start by de-
riving bounds on the PSJF policy, then use those bounds to derive
bounds on the SRPT policy, and finally use those bounds to bound
the entire SMART class. It is important to notice that all these bounds
are very simple. They do not involve nested integrals; yet we will
see in Section 6 that they are nevertheless accurate.

In order to better understand the results in this section, all of
our bounds will be stated in terms of the mean response time
of Processor-sharing (PS), a very common scheduling policy that
serves as a convenient benchmark for mean response time. Under
the PS policy, at any point in time, the service rate is shared evenly
among all jobs in the system. Recall that the overall mean response
time under PS is [11]:

E[T ]PS =
E[X]

1− ρ

The main results in this section are stated in the following theo-
rem. Recall that

C2[X]
def
=

E[X2]

E[X]2
− 1

Theorem 5.1 Let f(x) be decreasing. Then

E[T ]PSJF ≥ −
(

1− ρ
ρ

)
log(1− ρ)E[T ]PS

E[T ]PSJF ≤
(

1

3
− 2

3

(
1− ρ
ρ

)
log(1− ρ)

)
E[T ]PS

E[T ]SRPT ≥ −
(

1− ρ
ρ

)
log(1− ρ)E[T ]PS

E[T ]SRPT ≤
(

2

3
− ρ

3
− 1

3

(
1− ρ
ρ

)
log(1− ρ)

)
E[T ]PS

E[T ]SMART ≥ −
(

1− ρ
ρ

)
log(1− ρ)E[T ]PS

E[T ]SMART ≤
(
−1

6
+
ρ(1− ρ)

4

(
2 + C2[X]

)

−7

6

(
1− ρ
ρ

)
log(1− ρ)

)
E[T ]PS

The above bounds are tighter than those previously known relating
mean response time under SRPT and PS, [1, 8].

In interpreting the above theorem, it is useful to consider that the
lower bound shown in all cases above is equal to the mean resi-
dence time under the PSJF policy. This will be proven in Lemma
5.1, which shows that:

E[R]PSJF = −
(

1− ρ
ρ

)
log(1− ρ)E[T ]PS

An important point to notice is that the bounds for SRPT and
PSJF are independent of the variability of the service distribu-
tion. Although, as discussed in Section 2, there are known for-
mulas for the mean response times of SRPT and PSJF, the com-
plicated nature of these formulas hid this fact from prior research.
The simplicity of the bounds in 5.1 illuminate this practical prop-
erty. We will see later that these bounds are in fact tight in the sense
that there are distributions with low variability for which the upper
bounds are exact and there are distributions with high variability
for which the lower bounds are exact.

A second important point about Theorem 5.1 is that it provides a
lower bound on the mean response time of the optimal scheduling
policy, SRPT. Despite the fact that there is a known formula for the
mean performance of SRPT, researchers have been forced to resort
to computational techniques when comparing the performance of
new scheduling policies to that of SRPT. The lower bound in 5.1
provides a simple benchmark that can be used to understand how
far the mean response times of other scheduling policies are from
optimal.

The results of Theorem 5.1 are presented in greater generality in
Theorems 5.3, 5.4, 5.6, 5.7, and 5.9 in this section, where they are
stated in terms of a parameter K. This K parameter is a constant
such that λm2(x) ≤ Kxρ(x), which serves to bound the λm2(x)
term that arises in Theorem 4.1. Theorem 5.2 shows that the con-
stantK may be set at 2

3 when the service distribution is decreasing,
as has been done in Theorem 5.1. But in more generality, it defines
K in a way that is highly tied to the tail properties of f(x). Note
that K ≤ 1 under all service distributions.
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Theorem 5.2 Let i be a positive integer. Define j such that xjf(x)
is decreasing and j < i+ 1. Then,

mi+1(x) ≤
(
i− j + 1

i− j + 2

)
xmi(x)

Corollary 5.1 Let X be such that f(x) is decreasing. Then,

λm2(x) ≤ 2

3
xρ(x)

We defer the proof of Theorem 5.2 to Section 5.4 and we will
first use this bound on λm2(x) to bound the performance of PSJF,
SRPT, and all SMART policies. In reading this section, note that
Appendix A contains a list of integrals that are useful in these cal-
culations and that Appendix B contains some crucial technical lem-
mata.

5.1 Bounding mean response time under PSJF

In this section, we derive bounds on the overall mean response
time under PSJF, E[T ]PSJF . To accomplish this, we will first
bound the residence time, E[R]PSJF , and then the waiting time,
E[W ]PSJF , under PSJF. Both of these preliminary bounds will
be useful in later sections as well. In all of the following proofs,
observe that d

dxρ(x) = λxf(x).

Lemma 5.1

E[R]PSJF = − 1

λ
log(1− ρ)

Proof : Follows immediately from the fact that E[R]PSJF =∫∞
0

xf(x)
1−ρ(x)dx and d

dxρ(x) = λxf(x).
We now move to bounding the waiting time under PSJF.

Lemma 5.2 Let K satisfy λm2(x) ≤ Kxρ(x). Then

E[W ]PSJF ≤ K

2λ

(
ρ

1− ρ + log(1− ρ)

)

Proof : Using Lemma A.3, we have:

E[W ]PSJF =

∫ ∞

0

λm2(x)

2(1− ρ(x))2
f(x)dx

≤ K

2λ

∫ ∞

0

λxf(x)ρ(x)

(1− ρ(x))2
dx

=
K

2λ

(
ρ

1− ρ + log(1− ρ)

)

Lemma 5.3

E[W ]PSJF ≥ λ

4
E[min(X1, X2)2]

where X1 and X2 are independent random variables from the ser-
vice distribution on an M/GI/1.

Proof : Recall that the p.d.f. of min(X1, X2) is fmin(x) =
2f(x)F (x). Thus

E[W ]PSJF =

∫ ∞

0

λ
∫ x

0
t2f(t)dt

2(1− ρ(x))2
f(x)dx

≥ λ

2

∫ ∞

0

f(x)

∫ x

0

t2f(t)dtdx

=
λ

4

∫ ∞

0

2t2f(t)F (t)dt

=
λ

4
E[min(X1, X2)2]

Using our bounds on the waiting time under PSJF, we can now
derive bounds on the overall mean response time under PSJF.

Theorem 5.3 Let K satisfy λm2(x) ≤ Kxρ(x). Then

E[T ]PSJF ≤
(
K

2
+

(
K

2
− 1

)(
1− ρ
ρ

)
log(1− ρ)

)
E[T ]PS

Proof : Using Lemma 5.1 and Lemma 5.2, we have:

E[T ]PSJF =

∫ ∞

0

(
x

1− ρ(x)
+

λm2(x)

2(1− ρ(x))2

)
f(x)dx

=
1

λ

∫ ∞

0

(
λxf(x)

1− ρ(x)
+
λxf(x)ρ(x)

2(1− ρ(x))2

)
dx

= − 1

λ
log(1− ρ) +

K

2λ

(
ρ

1− ρ + log(1− ρ)

)

=

(
K

2
+

(
K

2
− 1

)(
1− ρ
ρ

)
log(1− ρ)

)
E[T ]PS

Theorem 5.4

E[T ]PSJF ≥
(
λE[min(X1, X2)2]

4E[X]
(1− ρ)

−1− ρ
ρ

log(1− ρ)

)
E[T ]PS

Proof : Using Lemma 5.1 and Lemma 5.3, we have:

E[T ]PSJF =

∫ ∞

0

(
λ
∫ x

0
t2f(t)dt

2(1− ρ(x))2
+

x

1− ρ(x)

)
f(x)dx

≥ λ

4
E[min(X1, X2)2]− 1

λ
log(1− ρ)

=

(
λE[min(X1, X2)2]

4E[X]
(1− ρ)

−1− ρ
ρ

log(1− ρ)

)
E[T ]PS
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5.2 Bounding mean response time under SRPT

Using the results from the previous section and the technical lem-
mata in Appendix B, we can now derive bounds on the overall
mean response time under SRPT. Our goal in this section is to
bound E[T ]SRPT . To do this, we first bound the residence time,
E[R]SRPT .

Lemma 5.4

E[R]SRPT ≥ E[X] +
ρ2

2λ
− λ

2
E[min(X1, X2)2]

where X1 and X2 are independent random variables from the ser-
vice distribution on an M/GI/1.

Proof : Recall that the p.d.f. of min(X1, X2) is fmin(x) =
2f(x)F (x). Thus

E[R]SRPT =

∫ ∞

0

f(x)

∫ x

0

dt

1− ρ(t)
dx

=

∫ ∞

0

f(x)

(
x+

∫ x

0

ρ(t)

1− ρ(t)
dt

)
dx

≥
∫ ∞

0

f(x)

(
x+

∫ x

0

ρ(t)dt

)
dx

= E[X] +

∫ ∞

0

f(x) (xρ(x)− λm2(x)) dx

= E[X] +
1

λ

∫ ∞

0

ρ′(x)ρ(x)dx

−λ
∫ ∞

0

t2f(t)F (t)dt

= E[X] +
ρ2

2λ
− λ

2
E[min(X1, X2)2]

Interestingly, we can exactly characterize the improvement
SRPT makes over PSJF. Define

E[W2]
def
=

∫ ∞

0

λx2f(x)F (x)

2(1− ρ(x))2
dx

Although we cannot evaluate E[W2] exactly, we can show that the
mean response time of PSJF is exactly E[W2] away from optimal.

Theorem 5.5

E[T ]SRPT = E[T ]PSJF − E[W2]

Proof : Using Lemma B.1, we have:

E[T ]SRPT = E[R]SRPT + E[W ]PSJF + E[W2]

=
1

2
E[R]PSJF +

1

2
E[R]SRPT + E[W ]PSJF

= E[T ]PSJF − 1

2
E[R]PSJF +

1

2
E[R]SRPT

= E[T ]PSJF − E[W2]

We are now ready to bound the overall mean response time of
SRPT.

Theorem 5.6 Let K satisfy λm2(x) ≤ Kxρ(x). Then

E[T ]SRPT ≤
(
K − Kρ

2
+ (K − 1)

(
1− ρ
ρ

)
log(1− ρ)

)
E[T ]PS

Proof : Using Lemma B.4, we have:

E[T ]SRPT = E[W ]SRPT + E[R]SRPT

= − 1

2λ
log(1− ρ)− 1

2
E[R]SRPT

+E[W ]PSJF + E[R]SRPT

≤ − 1

2λ
log(1− ρ)

+
1

2λ

(
Kρ2

(1− ρ)
+ 2Kρ+ (2K − 1) log(1− ρ)

)

=
K − 1

λ
log(1− ρ) +

Kρ

2
E[T ]PS +KE[X]

=

(
K − Kρ

2
+ (K − 1)

(
1− ρ
ρ

)
log(1− ρ)

)
E[T ]PS

Theorem 5.7

E[T ]SRPT ≥ −
(

1− ρ
ρ

)
log(1− ρ)E[T ]PS

Proof : Using Lemma B.5, we have:

E[T ]SRPT = E[W ]SRPT + E[R]SRPT

= − 1

2λ
log(1− ρ)− 1

2
E[R]SRPT

+E[W ]PSJF +E[R]SRPT

≥ − 1

2λ
log(1− ρ)− 1

2λ
log(1− ρ)

= −
(

1− ρ
ρ

log(1− ρ)

)
E[T ]PS

An interesting observation about Theorem 5.7 is that the lower
bound we have proven is exactly the mean residence time under
PSJF, that is, we have shown that E[T ]SRPT ≥ E[R]PSJF . Fur-
ther, Theorem 5.7 is perhaps the most important result of this sec-
tion because it provides a simple lower bound on the optimal mean
response time. Thus, it provides a simple benchmark that can be
used in evaluating the mean response times of other scheduling
policies.

5.3 Bounding the mean response time under all
SMART policies

In this section, we derive an upper bound on the overall mean re-
sponse time under any policy in the SMART class. Note that the
lower bound on SRPT serves as a lower bound on the mean re-
sponse time of any policy in the SMART class since SRPT is known
to be optimal with respect to overall mean response time.

To derive an upper bound on the response time of SMART poli-
cies, we start by integrating the expression for E[T (x)] from The-
orem 4.1. The result is shown in Theorem 5.9. Before we present
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this result, we make another interesting observation: the mean re-
sponse time of any SMART policy is at most 2E[W2] away from
optimal, where (by Theorem 5.5) we can think of E[W2] as be-
ing the difference in mean mean response time between SRPT and
PSJF. Another way to think about the E[W2] is stated in Lemma
B.1: 2E[W2] = E[R]PSJF − E[R]SRPT .

Theorem 5.8

E[T ]SMART ≤ E[T ]PSJF + E[W2]

= E[T ]SRPT + 2E[W2]

Proof : Proof follows immediately by comparing the result in The-
orem 4.1 with the the formulas on PSJF given in Section 2, and
using the result of Theorem 5.5.

We are now ready to upper bound the mean response time of
policies in SMART. In this proof we again make use of the technical
lemmata in Appendix B.

Theorem 5.9 Let K satisfy λm2(x) ≤ Kxρ(x). Then

E[T ]SMART ≤
(
ρ

4
+
K − 1

2
+
ρ2

4
+ (1− ρ)

λE[min(X1, X2)2]

4E[X]

+

(
K − 3

2

)(
1− ρ
ρ

)
log(1− ρ)

)
E[T ]PS

Proof : Using Theorem 5.3, Lemma B.1, and Lemma 5.4, we have:

E[T ]SMART ≤ E[T ]PSJF + E[W2]

=
K − 3

2λ
log(1− ρ) +

K

2
E[T ]PS

−1

2
E[R]SRPT

≤ K − 3

2λ
log(1− ρ) +

K

2
E[T ]PS

−1

2

(
E[X] +

ρ2

2λ
− λ

2
E[min(X1, X2)2]

)

= E[T ]PS
((

K − 3

2

)(
1− ρ
ρ

)
log(1− ρ) +

K

2

−1

2
(1− ρ)

(
1 +

ρ

2
− λE[min(X1, X2)2]

2E[X]

))

=

(
ρ

4
+
K − 1

2
+
ρ2

4
+ (1− ρ)

λE[min(X1, X2)2]

4E[X]

+

(
K − 3

2

)(
1− ρ
ρ

)
log(1− ρ)

)
E[T ]PS

Theorem 5.9 and Theorem 5.7 together provide upper and lower
bounds on the mean response time of any SMART policy. In the next
section we will see that these bounds are very close together; thus
any SMART policy is guaranteed near optimal mean response time.
One important consequence of these bounds is that there are now
simple benchmarks that provide upper and lower bounds on the
mean response times of “smart” scheduling policies, which facili-
tates the evaluations of policies that are not “smart” but still claim
to provide good mean response time.

5.4 A proof of Theorem 5.2

The upper bounds for all SMART policies are expressed in terms of
a constant K, which is the smallest constant satisfying: λm2(x) ≤
Kxρ(x), where mi(x) =

∫ x
0
tif(t)dt. In this section we derive

this constant K.
Proof : (of Theorem 5.2)

First, we observe the following equality:

∫ x

t=0

mi(t)dt =

∫ x

t=0

∫ t

s=0

sif(s)dsdt

=

∫ x

s=0

sif(s)

∫ x

t=s

dtds

=

∫ x

s=0

(x− s)sif(s)ds

= xmi(x)−mi+1(x) (1)

We will now use this relation to bound mi+1(x) in terms of
mi(x) by first bounding

∫ x
0
mi(t)dt. Remember, by assumption

we know that sjf(s) is decreasing for some j such that j < i+ 1.

∫ x

t=0

mi(t)dt =

∫ x

t=0

∫ t

s=0

sif(s)dsdt

≥
∫ x

t=0

tjf(t)

∫ t

s=0

si−jdsdt

=
1

i− j + 1

∫ x

t=0

tjf(t)ti−j+1dt

=
1

i− j + 1
mi+1(x) (2)

In this chain of equalities, the inequality follows directly from the
assumption that sjf(s) is decreasing.

Finally, combining Equation 1 and Equation 2, we can complete
the proof.

xmi(x)−mi+1(x) ≥ 1

i− j + 1
mi+1(x)

(
i− j + 1

i− j + 2

)
xmi(x) ≥ mi+1(x)

A few comments are in order about this theorem. First, notice
that in this work we only apply the lemma in the case where i = 1,
but the more general form is useful for investigating higher mo-
ments. Second, notice that because K is defined in terms of j,
where j is such that xjf(x) is decreasing in x, K is related to the
variability of the service distribution. Third, notice that for any
service distribution, K ≤ 1.

6 Evaluating the bounds

In order to better understand the bounds derived in the previous
section, we investigate how the bounds perform for specific service
distributions.
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Figure 1: These plots show our analytic upper and lower bounds on the mean response time of SMART policies (shown in solid lines).
The metric shown, E[T ](1 − ρ), depicts the improvement made by SMART policies over PS. Between the solid lines are dashed lines
showing our tighter bounds for PSJF and SRPT. The service distribution in these plots is Weibull with mean 1 and (a) C2[X] = 1, (b)
C2[X] = 10.865, respectively.
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Figure 2: These plots show a comparison of the bounds proven for (a) SRPT and (b) PSJF with simulation results. The service
distribution in these plots is an Weibull with mean 1, and varying coefficient of variation. System loads are 0.5, 0.7, and 0.9 in the first,
second, and third rows respectively. These plots illustrate that the lower bounds on both PSJF and SRPT are tight as the variability
of the service distribution increases. Surprisingly, they also show that the mean response times under both SRPT and PSJF are nearly
independent of the service distribution’s variability, once the service distribution has at least the variability of an exponential.
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Figure 3: These plots show a comparison of our analytic bounds proven for (a) SRPT and (b) PSJF with exact results. The service
distribution in these plots is an Erlang with mean 1, and varying coefficient of variation. The system loads are 0.5, 0.7, and 0.9 in the
first, second, and third rows respectively. These plots illustrate that the upper bounds on both PSJF and SRPT are tight as the variability
of the service distribution decreases.

The Weibull and Erlang distributions are convenient ways to
evaluate the effects of variability in the service distribution because
they allow a wide range of variability and tail behavior. Investigat-
ing the effect of the weight of the tail of the service distribution
is important in light of many recent measurements that have ob-
served job size distributions that are well-modeled by heavy tailed
distributions such as the Weibull distribution [2, 6, 12, 15].

The goal in investigating how the bounds perform under these
service distributions is twofold. Our first goal is to illustrate the
similar mean response time attained by all policies in SMART, and in
particular PSJF and SRPT. It is well known that SRPT is optimal,
but it is quite surprising to the authors of this paper how close to
optimal the mean response time of PSJF is — and further, how
close to optimal the mean response time of any SMART policy is.

Second, our bounds on the mean response time of PSJF and
SRPT are independent of the variability of the service distribution.
Thus, it is difficult to tell how tight they are without investigating
the mean response time of these two policies under a wide range

of service distributions. This section will illustrate that the bounds
are tight in the sense that there are low variability service distri-
butions under which the mean response time of these two policies
match our upper bounds, and high variability service distributions
under which the mean response times of these two policies match
our lower bounds. Thus, no bounds independent of the variability
of the service distribution can improve significantly on the bounds
presented in this work.

6.1 The Weibull distribution

We will first investigate the Weibull distribution. The Weibull dis-
tribution is defined by:

f(x; b, c) =
cxc−1

bc
e−( xb )

c

F (x; b, c) = e−( xb )
c

Notice that Wei(b, c = 1) ∼ Exp(1/b). We will be concerned
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with the case where c ≤ 1, which corresponds to the case where
the distribution is at least as variable as an exponential. Note also
that for c ≤ 1 the Weibull distribution has a decreasing failure rate.
To get a feeling for the variability of this distribution notice that for
c = 1/l where l is limited to positive integer values, we have that
C2[X] =

(
2l
l

)
− 1. Thus, as c decreases the distribution becomes

more variable very quickly. Typical observed values for the vari-
ability parameter, c, range between 1/3 and 2/3 which correspond
to C2[X] values in the range of 3 to 19.

First, in Figure 1, the bounds on SRPT, PSJF, and SMART are
pictured as a function of ρ both in the case of a service distribution
with low variability and high variability. These plots illustrate the
huge performance gains (a factor of 2 – 3 under high load) made
by SRPT and PSJF over PS. We also see that any policy in SMART

will have a huge performance gain over PS – also a factor of 2
– 3 under high load. Further, the mean response time of any of
the SMART policies cannot differ too much from the mean response
time of the optimal policy, SRPT. Thus, by simply following the
“smart” rule of not allowing a job with remaining time greater than
x to run when a job of original size x is in the system, a policy is
guaranteed to achieve near-optimal mean response time.

Second, in Figure 2, the bounds derived for SRPT and PSJF
are compared with the exact mean response time of these policies
under a Weibull service distribution. It is important to point out
that the “exact results” for the points in these plots are often ob-
tained via simulation, and then spot-checked via analysis. This is
because simulations, despite being slow, are still orders of magni-
tude faster than Mathematica on evaluating the expressions for the
exact mean response time. Thus, the methodology used in creating
all the plots in this paper was to pick a mesh of points on the plot
and calculate the exact mean response time of these points. Then,
using these points to judge the accuracy of simulations, determine
how many iterations of simulations are necessary to attain the de-
sired accuracy, and fill in the plot using simulated values. The fact
that simulations are used to generate these plots underscores the
importance of the results in this paper, which provide simple, back-
of-the-envelope calculations for the mean response time.

Throughout the plots in Figure 2, the mean of the service distri-
bution is fixed at 1, and C2[X] is allowed to vary. The values of
the variability parameter range between c = 1 and c = 2/9, which
corresponds to a range of C2[X] from 1 to more than 100. Thus,
the plots show the effect variability has on the mean response time
of SRPT and PSJF.

Note that the lower bound becomes extremely accurate when the
service distribution has high variability, but that the upper bound is
loose throughout these plots. The reason the upper bound appears
loose in this figure is that we keep the parameter c ≤ 1, so the
Weibull cannot have C2[X] < 1. Thus, since the upper bound
applies for all distributions, it is tight for distributions with much
lowerC2[X]. We will see this when we look at Erlang distributions
in the next section.

An important point that Figure 2 illustrates is the surprisingly
small effect of variability on the overall mean response time. The
fact that PS is insensitive to variability in the service distribution
is usually thought of as a very special property. However, these

plots illustrate that both SRPT and PSJF are almost insensitive
to the variability of the service distribution once the C2[X] > 1.
This is in contrast to the common intuition that as the variability of
the service distribution increases there will be a larger separation
between the large and small job sizes and thus SRPT will perform
significantly better.

6.2 The Erlang distribution

When looking at the Weibull distribution in the previous section,
we were able to illustrate that our lower bounds are tight as the
variability of the service distribution increases. Our goal in this
section is to show that our upper bounds are tight as the variability
decreases. Thus, we investigate how our bounds perform under the
Erlang service distribution. Recall that the Erl(n, µ) distribution
is the sum of n exponential distributions each having rate µ.

The key differences between the Erlang and Weibull distribu-
tions are (1) the Erlang distribution is limited to having C2[X] ≤ 1
and (2) under the Erlang distribution as n grows smaller and
smaller j are necessary in order guarantee that xjf(x) is decreas-
ing. This second point tells us that in order to bound all Erlang
distributions we must weaken the bounds by setting K = 1 5.4.

In Figure 3, the bounds derived for SRPT and PSJF are com-
pared with the exact values for these policies under an Erlang ser-
vice distribution. We follow the same methodology for generating
these plots as described in the previous section. Thus, these plots
represent a mixture of simulated and exact values, where the accu-
racy of the simulations is held in check using exact calculations.

Throughout these plots, the mean of the service distribution is
fixed at 1, and C2[X] is allowed to vary. The plots show the affect
of a wide range of variability on the mean response times of SRPT
and PSJF.

The important difference between these plots and the plots in
Figure 2 is that the Erlang distribution can have C2[X] far below 1.
This allows us to see that for distributions with low variability the
upper bound is quite accurate. Thus, our bounds give an excellent
characterization of the mean response times of SRPT and PSJF
over distributions with widely ranging C2[X], and are as tight as
possible without including the variability of the service distribu-
tion.

7 Conclusion

The heuristic of “biasing towards small job sizes” is commonly ac-
cepted as a way of providing good mean response times. However,
some practical roadblocks remain.

First, the mean response time for policies that bias towards small
jobs is often not known; and even in the cases where the policy has
been analyzed, the resulting formula is typically complex, involv-
ing multiple nested integrals. Consequently, evaluating the mean
response times of such policies via lengthy simulation is actually
faster than evaluating the known complex analytical expressions
using Mathematica. This evokes the question of whether there ex-
ists a simpler, quicker way to estimate mean response time for these
policies.
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Second, there is the question of how such policies that bias to-
wards small jobs compare to each other with respect to mean re-
sponse time. There are many possible variants of such policies,
each with their own benefits and weaknesses. Some, like PSJF,
are relatively easy to implement, because priority is never updated.
Others, like SRPT, are more complex to implement because they
require updating priorities as jobs run, but have superior fairness
properties. Yet others, like RSimprove mean slowdown. However,
when choosing among these policies, it is not clear how much one
sacrifices with respect to mean response time in order to attain these
other benefits. The little work that exists on comparing mean re-
sponse time among policies compares specific, individual policies
and leads to bounds that are not as tight as the ones provided in this
work.

This paper fills both gaps above. We begin by formalizing the
heuristic of biasing towards short jobs by defining the SMART class,
which is very broadly defined to include all policies that “do the
smart thing,” i.e. bias towards jobs that are originally short or have
small remaining service requirements (see Definition 3.1). We then
evaluate the validity of this heuristic by proving simple upper and
lower bounds on the mean response of any SMART policy. Surpris-
ingly, these upper and lower bounds are reasonably close, leading
us to conclude that, although the SMART class includes many dif-
ferent policies, all SMART policies are quite similar with respect to
mean response time. In fact, all are far superior to PS, and most
importantly, all have quite close to the optimal mean response time.
This result theoretically validates the heuristic of ”biasing towards
small job sizes” that many system designers apply. We then go
on to prove even tighter bounds on two particular SMART policies:
SRPT and PSJF . The bounds proven are far tighter than anything
previously known for these policies, and allow us to “quickly and
simply” predict mean response time for these policies as a function
of the workload.

An unanticipated discovery of this work is the invariance of
SMART policies to the variability of the job size distribution (par-
ticularly for C2 > 1). It is well-known that the mean response
time of PS is independent of the service distribution’s variability,
but the fact that mean response time for policies like SRPT and
PSJF is nearly independent of the service distribution’s variabil-
ity is counter the folklore of the community. This unanticipated
discovery illustrates the importance of providing simple bounds on
the known, but complex, formulas for mean response time under
SRPT and PSJF.

There are some long term impacts of our results on future
scheduling research. First, our results show that understanding the
mean response time of a SMART policy in the case of an M/M/1
queue may suffice to reasonably predict its mean response time
for an M/GI/1 queue. And finally, the simple bounds on mean re-
sponse time for SMART policies provide a benchmark for showing
that a policy P is “good” even if its particular definition precludes
it from belonging to the SMART class. More strongly, the very sim-
ple lower bound proven on SRPT’s mean response time, facilitates
comparison with any new policy P in order to assess P ’s optimal-
ity or lack thereof. Prior to this work, in order to assess the mean
response time of a new policy P it was necessary to compare the

the mean response time to a very complicated expression that is
even time consuming to evaluate numerically. Now it is possible
to do so by simply comparing the mean response time of P to the
lower bound − 1

λ log(1 − ρ), which is a much simpler calculation
and is tight for highly variable distributions.
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A Useful Integrals

This section contains integrals that are useful in the calculations of
Section 5.

Lemma A.1
∫ x

0

ρ(t)dt = λ

∫ x

0

(x− t)tf(t)dt = xρ(x)− λm2(x)

Lemma A.2

E[R]SRPT =

∫ ∞

0

f(x)

∫ x

0

dt

1− ρ(t)
=

∫ ∞

0

F (x)

1− ρ(x)
dx

Lemma A.3
∫ ∞

0

λxf(x)ρ(x)

(1− ρ(x))2
dx =

ρ

1− ρ + log(1− ρ)

Proof :
∫ ∞

0

ρ′(x)ρ(x)

(1− ρ(x))2
dx =

ρ(x)

1− ρ(x)

∣∣∣∣
∞

0

−
∫ ∞

0

ρ′(x)

1− ρ(x)
dx

=
ρ

1− ρ + log(1− ρ)

Lemma A.4
∫ ∞

0

λxf(x)ρ(x)

1− ρ(x)
dx = − log(1− ρ)− ρ

Proof :
∫ ∞

0

ρ′(x)ρ(x)

1− ρ(x)
dx = −ρ(x) log(1− ρ(x))|∞0

−
∫ ∞

0

−ρ′(x) log(1− ρ(x))dx

= −ρ log(1− ρ)− (1− ρ) log(1− ρ)− ρ
= − log(1− ρ)− ρ

Lemma A.5
∫ ∞

0

λxf(x)ρ(x)2

(1− ρ(x))2
dx =

ρ2

1− ρ + 2 log(1− ρ) + 2ρ

Proof :

∫ ∞

0

ρ′(x)ρ(x)2

(1− ρ(x))2
dx =

ρ(x)2

1− ρ(x)

∣∣∣∣
∞

0

−
∫ ∞

0

2ρ′(x)ρ(x)

1− ρ(x)
dx

=
ρ2

1− ρ + 2 log(1− ρ) + 2ρ

B Some technical lemmata

In performing the analyses of SRPT and SMART, we need a few
technical lemmata. These lemmata relate the waiting time and res-
idence times under PSJF, SRPT, and our upper bound on SMART

policies. Define

E[W2]
def
=

∫ ∞

0

λx2f(x)F (x)

2(1− ρ(x))2
dx

Lemma B.1

2E[W2] = E[R]PSJF − E[R]SRPT

Proof : Using Lemmas 5.1 and A.2, we have:

2E[W2] =

∫ ∞

0

λx2f(x)F (x)

(1− ρ(x))2
dx

=

∫ ∞

0

f(t)

∫ t

0

xρ′(x)

(1− ρ(x))2
dxdt

=

∫ ∞

0

f(t)

(
x

1− ρ(x)

∣∣∣∣
t

0

−
∫ t

0

1

1− ρ(x)
dx

)
dt

=
1

λ

∫ ∞

0

ρ′(t)
1− ρ(t)

−
∫ ∞

0

f(t)

∫ t

0

1

1− ρ(x)
dxdt

= − 1

λ
log(1− ρ)−

∫ ∞

0

F (x)

1− ρ(x)
dx

= E[R]PSJF − E[R]SRPT

12



Lemma B.2

E[R(x)]SRPT + 2E[W (x)]PSJF

≤ E[R(x)]PSJF +
λm2(x)ρ(x)

(1− ρ(x))2

Proof : Using Lemma A.1, we have:

E[R(x)]SRPT + 2E[W (x)]PSJF

=

∫ x

0

dt

1− ρ(t)
+

λm2(x)

(1− ρ(x))2

=
x

1− ρ(x)
−
∫ x

0

ρ(x)− ρ(t)

(1− ρ(x))(1− ρ(t))
dt+

λm2(x)

(1− ρ(x))2

≤ x

1− ρ(x)
−
∫ x

0

ρ(x)− ρ(t)

(1− ρ(x))
dt+

λm2(x)

(1− ρ(x))2

=
x

1− ρ(x)
− xρ(x)− xρ(x) + λm2(x)

(1− ρ(x))
+

λm2(x)

(1− ρ(x))2

= E[R(x)]PSJF +
λm2(x)ρ(x)

(1− ρ(x))2

Lemma B.3

E[R(x)]SRPT + 2E[W (x)]PSJF ≥ E[R(x)]PSJF

Proof : Using Lemma A.1, we have:

E[R(x)]SRPT + 2E[W (x)]PSJF

=

∫ x

0

dt

1− ρ(t)
+

λm2(x)

(1− ρ(x))2

=
x

1− ρ(x)
−
∫ x

0

ρ(x)− ρ(t)

(1− ρ(x))(1− ρ(t))
dt+

λm2(x)

(1− ρ(x))2

≥ x

1− ρ(x)
−
∫ x

0

ρ(x)− ρ(t)

(1− ρ(x))2
dt+

λm2(x)

(1− ρ(x))2

=
x

1− ρ(x)
− xρ(x)− xρ(x) + λm2(x)

(1− ρ(x))2
+

λm2(x)

(1− ρ(x))2

= E[R(x)]PSJF

Lemma B.4 Let K satisfy λm2(x) ≤ Kxρ(x).

E[R]SRPT + 2E[W ]PSJF

≤ 1

λ

(
Kρ2

1− ρ + 2Kρ+
2K − 1

λ
log(1− ρ)

)

Proof : Using Lemma B.2 and Lemma A.5, we have:

E[R]SRPT +

∫ ∞

0

λm2(x)

(1− ρ(x))2
f(x)dx

=

∫ ∞

0

(
x

1− ρ(x)
+
λm2(x)ρ(x)

(1− ρ(x))2

)
f(x)dx

≤ − 1

λ
log(1− ρ) +

K

λ

∫ ∞

0

λxf(x)ρ(x)2

(1− ρ(x))2
dx

= − 1

λ
log(1− ρ) +

K

λ

(
ρ2

1− ρ + 2 log(1− ρ) + 2ρ

)

=
1

λ

(
Kρ2

1− ρ + 2Kρ+
2K − 1

λ
log(1− ρ)

)

Lemma B.5

E[R]SRPT + 2E[W ]PSJF ≥ E[R]PSJF

Proof : Using Lemma B.3, we have:

E[R]SRPT + 2E[W ]PSJF ≥
∫ ∞

0

E[R(x)]PSJF f(x)dx

= E[R]PSJF
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