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Abstract

We compute the differential volume element of a family of metrics on the multinomial simplex.
The metric family is composed of pull-backs of the Fisher information metric through a continuous
group of transformations. This note complements the paper by Lebanon [3] that describes a metric
learning framework and applies the results below to text classification.
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1 Basic Concepts from Riemannian Geometry

We start with a brief discussion of some basic concepts from differential geometry and refer to
[1] for a more detailed description. A Riemannian metric g, on an nth dimensional differentiable
manifold M, is a function that assigns for each point of the manifold x € M an inner product on
the tangent space T, M. The metric is required to satisfy the usual inner product properties and
to be C*° in z.

The metric allows us to measure lengths of tangent vectors v € T, M as ||v||, = \/g=(v,v), leading

to the definition of a length of a curve on the manifold ¢ : [a,b] — M as [ f lé(t)||dt. The geodesic
distance function d(x,y) for x,y € M is defined as the length of the shortest curve connecting x
and y and turns the manifold into a metric space.

For a Riemannian manifold (M, g) the differential volume element of the metric at x € M is
given by the square root of the determinant dvolg(x) = y/det g(x). The volume element dvol(z)
summarizes the size of the metric at x in a scalar. Intuitively, paths crossing areas with high volume
will tend to be longer than the same paths over an area with low volume.

Let F': M — N be a diffeomorphism of the manifold M onto the manifold . Let T, M, T,N
be the tangent spaces to M and N at z and y respectively. Associated with F' is the push-forward
map F, that maps v € T, M to v’ € Tp)N. It is defined as

v(ho F) = (Fy)h, Yh € C*(N).
Intuitively, the push forward maps velocity vectors of curves to velocity vectors of the transformed

curves.

Assuming a Riemannian metric h on N, we can obtain a metric F'*h on M called the pullback
metric

F*hy(u,v) = hpg)(Feu, Fiv)

where F is the push-forward map defined above. The importance of this map is that it turns F
(as well as F~1) into an isometry; that is,

dp«p(z,y) = dp(F(x), F(y)).

2 A Family of Metrics on the Simplex

We start by defining the n-simplex by

n+1
P, = {a:e]R”“ Vi, x; >0, inzl}

i=1
and the n-positive sphere by
n+1
SF= {xéR”“ Vi, 2 >0, Z:p?zl}.
i=1

The interior of the above manifolds will be dennoted by intP,, or intS;'.



Figure 1: The action of Fy (left) and F) ' (right) on Py for A = (1—20, %, 1%)

Consider the following family of diffeomorphisms F : intP,, — intP,

A n+1An .
Fi(z) = (936:1.;7”.733 ;1.)\+1>, A € intP,

where x - A is the scalar product Z?:Jrll x;A;. The family F) is a Lie group of transformations under

composition that is isomorphic to int?,,. The identity element is (n%rl, ceey n%rl) and the inverse
/M

of Fy is (Fy)~! = F,, where 7, = S The above transformation group acts on = € intP, by

increasing the components of x with high A; values while remaining in the simplex. See Figure 1
for an illustration of the above action in Ps.

We study the volume properties of metrics on P, that are expressed as pull-backs through F}J
of the Fisher information metric J

n+1

1

= xy, O0x; Oz

We now describe a well-known way of characterizing the Fisher information on P,, as a pull-back
metric from the positive n-sphere S, (see for example [2]). The transformation R : P, — S
defined by

R(x) = (VL. ... . /Fars1)

pulls-back the Euclidean metric on the surface of the sphere to the Fisher information on the
multinomial simplex. As a result we have that {7 may also be characterized as the pull back of
the metric inherited from the Euclidean space on S, through

~ [x1\ n+1n )
F)\(ZL'):< zl.;,..., %), A € intP,.




3 The Differential Volume Element of F{J

We start by computing the Gram matrix [G];; = FYJ(0;,0;) where {0;}1'_; is a basis for T,P,
given by the rows of the matrix

1 0 0 —1
01 0 -1

U=|. . . e R (1)
0 0 1 -1

and computing det G in Propositions 2-1 below.
Proposition 1. The matriz [G;; = FYJ(0;,0;) is given by
G=JJ"=UD-Xa")(D-Xxa")TU" (2)

where D € R"MX"+1 s o diagonal matriz whose entries are [D]; = %2\/1)\7 and o s a column
\V zi 2N

A

vector given by [a]; = I—ZW

Note that all vectors are treated as column vectors and for \,a € R**! AaT e RHIxn+l g
the outer product matrix [Aa'];; = A«

Proof. The jth component of the vector Fy,v is

~ d [(x;+tvj)\;
Pl = & j 3 )N
[Fhevl; dt\ (z+tv)- A o
1 ’Uj/\j _ lv')\\/(xj +t’l)j))\j
2/ +togh/@+ i) Al 2 ((@+t0)- N2 |

v]/\] IECARVEIY
T 2 (z-A)32 7

Taking the rows of U to be the basis {0;}"; for T,P, we have, for i = 1,...,n and j =
1,...,n+4+1,

l\’)l»i

[F.0;]; = A0 - i 0i - A
TR TPVl

YR jn+1 i_ n+1
xj 2(z - >\3/2

If we define J € R™*"! to be the matrix whose rows are {Ea,-}g;l we have

J=U(D - ).

Since the metric FJ is the pullback of the metric on S, that is inherited from the Euclidean
space through F)\ we have [G];; = F)\.0; - F\«0; hence

G=JJ"=UD-Xa")(D-xa")TU".



Proposition 2. The determinant of F{J is

n+1
o7 L2y (Ni/ai)
Proof. We will factor GG into a product of square matrices and compute det G as the product of the
determinants of each factor. Note that G = JJ T does not qualify as such a factorization since .J is
not a square matrix.

By factoring a diagonal matrix A, [A]; = 4/ iz DY from D — Aa' we have
Az
= I——— A 4
J=U ( X A) )

B Az 9 Azt T
G-U(I ﬂ)A <I_ﬁ> U . (5)

We proceed by studying the eigenvalues and eigenvectors of I — % in order to simplify (5T)
via an eigenvalue decomposition. First note that if (v, u) is an eigenvector-eigenvalue pair of %

then (v,1 — p) is an eigenvector-eigenvalue pair of I — % Next, note that vectors v such that

. T
v = 0 are eigenvectors of )g‘f with eigenvalue 0. Hence they are also eigenvectors of I — ﬁ
Y

with eigenvalue 1. There are n such independent vectors v1,...,v,. Since trace(I — =) = n, the

sum of the eigenvalues is also n and we may conclude that the last of the n + 1 eigenvalues is 0.

The eigenvectors of I — )\ may be written in several ways. One possibility is as the columns of
the following matrix

_i_f _i_:f _fg_fl A
1 o - 0 Ao
V = 0 1 0 A3 € RrHIxn+l

0 o - 1 Anti
where the first n columns are the eigenvectors that correspond to unit eigenvalues and the last
eigenvector corresponds to a 0 eigenvalue.

Using the above eigenvector decomposition we have I — = VIV~ and I is a diagonal matrix

containing all the eigenvalues. Since the diagonal of I is (1, 1,...,1,0) we may write I — ﬁ
VIny=ln where VI* € R*1X" is V with the last column removed and V—1ln g Rrxntl g -1
with the last row removed.

We have then,
det G — det(U( \nv—l\n)A2(V—1|nTv\nT)UT)
_ det((UV )( 1|nA2V—1|nT)(V|nTUT))
= (det(UVI™))? det(VHrA2y—1inT),



Noting that

_® @3 . _&n  _Tnil g
x z1 z1 z1
1 o - 0 -1

Uvin = 0 1 0 -1 € RXn
0 o - 1 -1
we factor 1/x; from the first row and add columns 2,...,n to column 1 thus obtaining
—Si e —as o —mn —@ngn — a1l

0 o -+ 0 -1

0 r - 0 -1

0 0o - 1 -1

Computing the determinant by minor expansion of the first column we obtain

AL 2 1
n\2 __ . _
det(UVI™)? = <_3:1 E x2> = _a:%

(6)

We now turn to computing det V=17 A2V "7 The inverse of V, as may be easily verified is,

—[El)\g T-A— 1‘2)\2 —[Eg)\g e —.an+1)\2
1 —1‘1/\3 —1‘2/\3 TN — 1'3/\3 s —l‘n+1/\3
Vil=—
x . )\ . .
—T1 A1 —T2An41 T A= Tpp1Ang
T1A1 TaAt e e Tn1A1

Removing the last row gives

—1‘1/\2 TeA— 1'2)\2 —1‘3/\2 e —l‘n+1/\2
V_1|" _ 1 —[El)\g —[Eg)\g T-A— 1‘3)\3 e —.CC,H_l)\g
R . :
—T1An41 —T2An41 E T A= T Ayl
—xr1T X- )\/)\2 — T2 —XI3 e —Tn+1
1 —I1 —XI9 X - )\/)\3 —r3 - —Tn+1
=—_P
T A
_xl _1'2 ... ... x‘-)\/AnJ’_l_l‘n_"_l
where
A2 O 0
0 As 0
P =

0 0 0 Aup



[V,71A2V, 1T, is the scalar product of the ith and jth rows of the following matrix

VA=< (m N)732p
—\/wl)\l x-)\/\/xg)\ —\/xg)\g — xg)\g —\/xn“)\n“

—\/1'1)\1 — $2)\2 xX - )\/\/1'3)\ — \/1‘3/\3 tee —\/l‘n+1/\n+1
T1A1 —VT2A2 v T AT A1 — V1 At

‘We therefore have

1
VoiAZy T Z(a:A)2PQP
where
A
Z2 -1 -1 -1
-1 A1 ~1
Q:
-1 -1 -1 zd

mn+lAn+l

As a consequence of Lemma 2 in the appendix we have

det @ = le)\l(nl'—l—f) -7 1( ) n+12:] =2 l‘%/\% ($n+1) :
[[=7 zid [Ty @ik [Ti=y @ik
The determinant then is
n+1 n+1 n+1
A" ORI
det VoIA2V 1T = (1/4)" A 22 iL——— A=A T A
¢ V V ( / H H?:ll TiN g 4" 1‘ )\ 4n(g - \)2n I'z

The determinant of G is

La@- A" A T /)
_ A2y -1T 2 TP T AL L= W/
det G = (det UV;,)* det V'A%V, a2 An(z - \)2n 1;[1% X @

O

Note that the determinant does not depend on the choice of the basis for T, P,, and is symmetric
in all n + 1 variables
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Appendix

A The Determinant of a Diagonal Matrix plus a Constant Matrix

We prove some basic results concerning the determainants of a diagonal matrix plus a constant
matrix. These results are useful in proving Proposition 1.

The determinant of a matrix det A € R"*™ may be seen as a function of the rows of A, {A;}",
f:R"x---xR" =R f(A1,..., Ay) = det A.

The multilinearity property of the determinant means that the function f above is linear in each
of its components
Vi=1,...,n f(Al, ,Aj_l,Aj +Bj,Aj+1,... ,An) = f(Al,...,Aj_l,Aj,Aj+1,... ,An)
+ f(A17 s 7Aj—17Bj7Aj+17 s 7An)

Lemma 1. Let D € R™" be a diagonal matriz with D11 = 0 and 1 a matriz of ones. Then

m

det(D — 1) = — HD“
1=2

Proof. Subtract the first row from all the other rows to obtain

-1 -1 .- -1
0 Doy --- 0
0 0 - Dpm

Now compute the determinant by the cofactor expansion along the first column to obtain

7j=2

Lemma 2. Let D € R™™" be a diagonal matriz and 1 a matriz of ones. Then

m m
det(D — 1) = HD“ — ZHDM
i=1 i=1 j£i
Proof. Using the multilinearity property of the determinant we separate the first row of D — 1 as
(D11,0,...,0) + (—1,...,—1). The determinant det D — 1 then becomes det A + det B where A is
D — 1 with the first row replaced by (D11,0,...,0) and B is the D — 1 with the first row replaced
by a vector or —1.

Using Lemma 1 we have det B = — H;LZQ Dj;. The determinant det A may be expanded along
the first row resulting in det A = D11 M7 where Mi; is the minor resulting from deleting the first
row and the first column. Note that Mj; is the determinant of a matrix similar to D — 1 but of
sizen—1xn-—1.



Repeating recursively the above multilinearity argument we have

det(D—l):—HDjj+Dll —HDjj+D22 —HDjj+D33 —HDjj+D44(”‘)

j=2 j=3 j=4 j=5
n n
=[10i-> I[P
i=1 i=1 ji
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