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Abstract

We begin with a review of intuitionistic non-commutative linear logic (INCLL), a re�nement of

linear logic with an inherent notion of order proposed by the authors in prior work. We then

develop a logic programming interpretation for INCLL in two steps: (1) we give a system of ordered

uniform derivations which is sound and complete with respect to INCLL, and (2) we present a model

of resource consumption which removes non-determinism from ordered resource allocation during

search for uniform derivations. We also illustrate the expressive power of the resulting ordered linear

logic programming language through some examples, including programs for merge sort, insertion

sort, and natural language parsing.
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1 Introduction

Linear logic [Gir87] can be considered a logic of state, since we can express many problems involving

state in a much more natural and concise manner in linear logic than in traditional logics. It

supplements the familiar notion of logical assumption with linear hypotheses which must be used

exactly once in a derivation. Linear logic has found applications in functional programming, logic

programming, logical frameworks, concurrency, and related areas. One of the critical properties

of linear logic is that it extends traditional logic conservatively, that is, we strictly gain expressive

power.

Given the many insights resulting from linear logic, we can ask if other computational phe-

nomena besides state can be captured in a similarly logical manner. The one we consider here is

the notion of order. There are many situations where computation is naturally subject to ordering

constraints. Words in a sentence, for example, are ordered, which has given rise to the Lambek

calculus [Lam58], a weak logic with an inherent notion of order for the analysis of natural language.

To fully explore uses of an order-aware logic in computer science, we would like it to conserva-

tively extend both traditional and linear logic. Recently, following early explorations [Abr90, BG91],

two such proposals have been made: one by Abrusci and Ruet rooted in a non-commutative con-

junction [Rue97, AR98], and one by the authors based on ordered hypotheses [PP99]. Our system

of natural deduction provides a foundation for applications in functional programming, which we

investigated via the Curry-Howard isomorphism and properties of an ordered �-calculus. Subse-

quently, we exhibited a related sequent calculus [PP98] which can serve as the basis for proof search

procedures. We call our calculus intuitionistic non-commutative linear logic or INCLL.

In this paper we investigate logic programming with ordered hypotheses. We follow the paradigm

that logic programming should be understood via an abstract notion of uniform derivation [MNPS91]

which, in a slight abuse of terminology, we take to encompass goal-directed search and focussed use

of hypotheses [And92]. Somewhat unexpectedly, the extension of these notions from the case of

linear logic [HM94] is far from straightforward. The principal contributions of this paper are

1. a system of ordered uniform derivations which is sound and complete with respect to INCLL;

2. a model of resource consumption which removes non-determinism from resource allocation

during the search for ordered uniform derivations while remaining sound and complete; and

3. example programs which illustrate the expressive power of the resulting ordered logic pro-

gramming language.

We have successfully experimented with our design and the example programs through a prototype

implementation in the Twelf system [PS98]. In future work we plan to investigate techniques

for lower-level e�cient implementation of ordered logic programming, which raises a number of

new pragmatic and theoretical issues. We also have to gain more experience with the ordered

programming techniques|we feel at present we have barely scratched the surface.

The remainder of this extended abstract is organized as follows. We �rst review the sequent

formulation of INCLL in Section 2 and then introduce uniform derivations and show their soundness

and completeness in Section 3. We eliminate non-determinism from resource allocation in Section 4

and show some example logic programs in Section 5.



2 Sequent Calculus

We review the sequent calculus for intuitionistic non-commutative linear logic (INCLL) �rst in-

troduced in [PP98]. It is shown there that cut is admissible in this system, and that there is a

strong connection between cut-free sequent derivations and normal natural deduction in INCLL as

presented in [PP99].

For the sake of brevity we restrict ourselves to the purely implicational fragment. Extension by

additive conjunction A&B, additive truth > and universal quanti�cation 8x: A preserve the prop-

erties we are interested in; occurrences of other connectives must be restricted as in Lolli [HM94].

Formulas A ::= P atomic propositions

j A1!A2 intuitionistic implication

j A1 ��A2 linear implication

j A1�A2 ordered right implication

j A1�A2 ordered left implication

We note that in the Lambek calculus, A1�A2 is written as A1nA2 and A1�A2 as A2=A1.

Our sequents have the form �;�;
 =) A where �, �, and 
 are lists of hypothesis interpreted

as follows:

� � are unrestricted hypotheses (they may be used arbitrarily often in any order),

� � are linear hypotheses (each must be used exactly once, but in no particular order),

� 
 are ordered hypotheses (each must be used exactly once, subject to their order).

We use \�" to stand for the empty list and juxtaposition for both list concatenation and adjoining

an element to a list. Manipulating linear hypotheses requires a non-deterministic merge operation

which may interleave the hypotheses in arbitrary order. We denote this operation by ./ which is

de�ned inductively as follows:

� ./ � = �

�AA ./�B = (�A ./�B)A

�A ./�BB = (�A ./�B)B

Lemma 1 �A ./�B = � i� �B ./�A = �.

(�A ./�B) ./�C = � i� �A ./ (�B ./�C) = �.

We construct our sequent calculus such that the expected structural rules within each context

will be admissible without being explicitly part of the system. So � admits exchange, weaken-

ing, and contraction, � admits exchange, and 
 does not admit any structural rules (except for

associativity which is built in the formulation of the context as a list).

One may logically think of the three antecedent contexts as one big context where the ordered

hypotheses are in a �xed relative order while the other linear hypotheses formulas may 
oat, and

the unrestricted hypotheses may 
oat as well as copy or delete themselves. Generally the right

rules are straightforward, while the left rules (which apply only to formulas in the ordered context


) require some care.

We start with initial sequents, which encode that all linear and ordered hypotheses must be

used, while those in � need not be used.
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init
�; �;A =) A

We have two explicit structural rules: place which commits a linear hypothesis to a particular

place among the ordered hypotheses, and copy which duplicates and places an unrestricted hy-

pothesis. The non-determinism implicit in these rules when viewed from the bottom up (Where do

we place A? ) presents a major di�culty in designing a deterministic resource allocation mechanism

(discussed in Section 4).

�LA�R; �;
LA
R �! B
copy

�LA�R; �;
L
R �! B

�;�L�R; 
LA
R �! B
place

�;�LA�R; 
L
R �! B

The following four rules describing the intuitionistic and linear implications translate the stan-

dard sequent rules for intuitionistic linear logic into our setting. Note the restrictions on the linear

and ordered contexts in the two left rules which are necessary to preserve linearity and order,

respectively.

�A; �;
 =) B
!R

�;�;
 =) A! B

�;�;
LB
R =) C �; �; � =) A
!L

�;�;
L(A!B)
R =) C

�;�A; 
 =) B
��R

�;�;
 =) A��B

�;�B ; 
LB
R =) C �;�A; � =) A
��L

�;�B ./�A; 
L(A��B)
R =) C

The right rule for ordered right implication A� B adds A at the right end of the ordered

context. For cut-elimination to hold, the left rule must then take hypotheses immediately to the

right of the right implication for deriving the antecedent A. The remaining hypotheses are joined

with B (in order!) to derive C. We must also be careful that each linear hypothesis comes from

exactly one premise, although their order does not matter (hence the merge operation �B ./�A).

�;�;
A =) B
�R

�;�;
 =) A� B

�;�B ; 
LB
R =) C �;�A; 
A =) A
�L

�;�B ./�A; 
L(A�B)
A
R =) C

The rules for left implication are symmetric.

�;�;A
 =) B
�R

�;�;
 =) A�B

�;�B ; 
LB
R =) C �;�A; 
A =) A
�L

�;�B ./�A; 
L
A(A�B)
R =) C

To give a feel for how the two ordered implications and the ordered context work, we note the

following: A� (A�B)�B is not provable while A� (A�B)�B is provable. Symmetrically,

A� (A�B)�B is provable while A� (A�B)�B is not provable. Furthermore, A� (B�C)

is provable i� B� (A� C).

We now show a sample derivation which sketches how INCLL can be used for natural lan-

guage parsing. Suppose � = [np� vp� snt; tv� np� vp; loves� tv; mary� np; bob� np]

where all the words and grammatical abbreviations are atomic formulas. We may think of the

formulas in � as a grammar for simple English sentences. The phrase to be parsed with the gram-

mar is in the ordered context. The succedent contains the grammatical pattern with which we

are trying to classify the input. Thus to parse the sentence: mary loves bob, we would prove:

3



�; �; mary loves bob =) snt.

�
init

�; �; bob =) bob
�L

�; �; np tv (bob� np) bob =) snt
init

�; �; loves =) loves
�L

�; �; np (loves� tv) loves (bob� np) bob =) snt
init

�; �; mary =) mary
�L

�; �; (mary� np) mary (loves� tv) loves (bob� np) bob =) snt
copy � 3

�; �; mary loves bob =) snt

where � =

init
�; �; snt =) snt

init
�; �; vp =) vp

�L

�; �; (vp� snt) vp =) snt
init

�; �; np =) np
�L

�; �; (np� vp� snt) np vp =) snt
init

�; �; np =) np
�L

�; �; (np� vp� snt) np (np� vp) np =) snt
init

�; �; tv =) tv
�L

�; �; (np� vp� snt) np (tv� np� vp) tv np =) snt
copy � 2

�; �; np tv np =) snt

Note that this is not the only way to derive the end-sequent. For instance, we could have moved

all instances of copy and place to the beginning of the derivation; or we could have applied �L

to the formulas in a di�erent order. We leave a more in-depth and interesting example of natural

language parsing for section 5.

We shall now validate our version of the sequent calculus by showing the admissibility of cut in

the system. Towards this end, we have the following lemma.

Lemma 2 (Weakening, Contraction, and Exchange) The following all hold:

1. �;�;
 =) C implies �A;�;
 =) C.

2. �AA;�;
 =) C implies �A;�;
 =) C.

3. �LAB�R;�;
 =) C implies �LBA�R;�;
 =) C.

4. �;�LAB�R; 
 =) C implies �;�LBA�R; 
 =) C.

Proof: By structural induction on the sequent derivation of the given judgement. Note that the

structure of the derivation remains the same. 2

Theorem 3 (Admissibility of Cut) The following three statements hold:

Cut
: �;�C ; 
C =) C and �;�;
LC
R =) A implies �;�C ./�;
L
C
R =) A.

Cut�: �;�C ; � =) C and �;�LC�R; 
 =) A implies �;�L ./�C ./�R; 
 =) A.

Cut�: �; �; � =) C and �LC�R;�;
 =) A implies �L��R;�;
 =) A.
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The following proof is adapted from [Pfe94].

Proof: By induction on the structure of the cut formula, the type of cut where Cut� > Cut� >

Cut
, and the derivations of the given judgements. Therefore we may apply the induction hypoth-

esis in the following cases: 1) the cut formula gets smaller; 2) the same cut formula but we move

from Cut� to Cut
 (or to Cut�); 2) the same cut formula but we move from Cut� to Cut
; 4)

the cut formula and type of cut stay the same but one of the given judgements of the induction

hypothesis gets smaller.

There are 4 basic cases to consider: init cases where one of the derivations ends in with the

init rule, essential cases where the principal formula of the end-sequent of both derivations is cut,

commutative cases where the cut formula is a side formula on the end-sequent of either given

derivation. Note that these cases are not mutually exclusive.

case 1: init cases.

case:
init

�; �;C =) C and �;�;
LC
R =) A is trivial.

case: �;�;
 =) C and
init

�; �;C =) C is trivial.

case: �; �; � =) C and
init

�LC�R; �;A =) A then
init

�L��R; �;A =) A

case 2: Essential cases.

case: �; �; � =) C and

�LC�R;�;
LC
R =) A
copy

�LC�R;�;
L
R =) A

Then by ind. hyp. we know (using Cut�) �L��R;�;
LC
R =) A.

By weakening (part 1 of lemma 2) we know �L��R; �; � =) C.

Then again by ind. hyp. (since Cut� > Cut
) we know �L��R;�;
L
R =) A.

case: �;�C ; � =) C and

�;�L�R; 
LC
R =) A
place

�;�LC�R; 
L
R =) A

Then by ind. hyp. we know �;�L ./�C ./�R; 
L
R =) A.

case:

�A;�;
 =) B
!R

�;�;
 =) A! B and

�;�C ; 
LB
R =) C �; �; � =) A
!L

�;�C ; 
L(A!B)
R =) C

Then by ind. hyp. (using Cut�) we know ��;�;
 =) B

Then by contraction (part 2 of lemma 2) we know �;�;
 =) B

Then by ind. hyp. (using Cut
) we know �;� ./�C ; 
L

R =) C

case: �� is similar to !.
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case:

�;�;A
 =) B
�R

�;�;
 =) A� B and

�;�B; 
LB
R =) C �;�A; 
A =) A
�L

�;�B ./�A; 
L
A(A�B)
R =) C

Then by ind. hyp. we know �;�A ./�;
A
 =) B.

Then by ind. hyp. we know �;�A ./� ./�B ; 
L
A

R =) C.

case: � is similar to �.

case 3: Commutative cases where cut formula is not principal in �rst hypothesis (i.e. end-sequent

of �rst given derivation can't end in a right rule).

case:

�;�B; 
LB
R =) C �;�A; 
A =) A
�L

�;�B ./�A; 
L
A(A�B)
R =) C and �;�;
LCC
RC =) D

Then by ind. hyp. �;�B ./�;
LC
LB
R
RC =) D.

Then by�L we know �;�B ./� ./�A; 
LC
L
A(A� B)
R
RC =) D.

The cases for �L, ��L, !L are similar.

case:

�LA�R;�C ; 
LCA
RC =) C
copy

�LA�R;�C ; 
LC
RC =) C and �LA�R;�;
LC
R =) D

Then by ind. hyp. (using Cut
) we know �LA�R;�C ./�;
L
LCA
RC
R =) D.

Then by copy we know �LA�R;�C ./�;
L
LC
RC
R =) D.

The case for place is similar.

case 4: commutative cases where cut formula is not principal in end-sequent of second given deriva-

tion.

case: �;�C ; 
C =) C and

�;�;A
LC
R =) B
�R

�;�;
LC
R =) A�B

Then by ind. hyp. we know �;�C ./�;A
L
C
R =) B.

Then by�R we know �;�C ./�;
L
C
R =) A� B.

Cases for �R,��R,!R are similar.

case: �;�C ; 
C =) C and

�;�B ; 
LLC
LRB
R =) D �;�A; 
A =) A
�L

�;�B ./�A; 
LLC
LR
A(A�B)
R =) D

Then by ind. hyp. we know �;�C ./�B ; 
LL
C
LRB
R =) D
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Then by�L we know �;�C ./�B ./�A; 
LL
C
LR
A(A�B)
R =) D.

Cases when second given derivation is

�;�B ; 
LB
R =) D �;�A; 
ALC
AR =) A
�L

�;�B ./�A; 
L
ALC
AR(A� B)
R =) D or

�;�B ; 
LB
RLC
RR =) D �;�A; 
A =) A
�L

�;�B ./�A; 
L
A(A�B)
RLC
RR =) D

are similar.

Cases for �L, ��L, !L, copy, place are similar.

case: �;�C ; � =) C and

�;�LC�R;A
 =) B
�R

�;�LC�R; 
 =) A�B

Then by ind. hyp. we know �;�L ./�C ./�R;A
 =) B.

Then by�R we know �;�L ./�C ./�R; 
 =) A�B.

Cases for �R,��R,!R are similar.

case: �;�C ; � =) C and

�;�BLC�BR; 
LB
R =) D �;�A; 
A =) A
�L

�; (�BLC�BR) ./�A; 
L
A(A�B)
R =) D

Then by ind. hyp. we know �;�C ./ (�BL�BR); 
LB
R =) D

Then by�L we know �;�C ./ (�BL�BR) ./�A; 
L
A(A� B)
R =) D.

Case when second given derivation is

�;�B ; 
LB
R =) D �;�ALC�AR; 
A =) A
�L

�;�B ./ (�ALC�AR); 
L
A(A�B)
R =) D is similar.

Cases for �L,��L,!L, copy,place are similar.

case: �; �; � =) C and

�LC�R;�;A
 =) B
�R

�LC�R;�;
 =) A�B
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Then by ind. hyp. we know �L��R;�;A
 =) B.

Then by�R we know �L��R;�;
 =) A� B.

Cases for �R,��R,!R are similar.

case: �; �; � =) C and

�LC�R;�B ; 
LB
R =) D �LC�R;�A; 
A =) A
�L

�LC�R;�B ./�A; 
L
A(A� B)
R =) D

Then by ind. hyp. we know �L��R;�B ; 
LB
R =) D and �L��R;�A; 
A =) A

Then by�L we know �L��R;�B ./�A; 
L
A(A�B)
R =) D.

Cases for �L,��L,!L, copy,place are similar.

2

3 Uniform Derivations

Now that we have a suitable sequent system for INCLL we begin analyzing proof structure with an

eye towards achieving a logic programming language, where we view computation as the bottom-up

construction of a derivation. We refer to the succedent of a given sequent as the goal. The di�culty

with the sequent system is that in any situation, many left or right rules could be applied, leading

to unacceptable non-determinism. To solve this problem, we design an alternative, more restricted

system with the following properties (which are enforced syntactically):

� Derivations are goal-directed in that a sequent with a non-atomic goal always ends in a right

rule. This allows us to view logical connectives in goals as search instructions.

� Derivations are focussed in that when deriving a sequent with an atomic goal we single out a

particular hypothesis and apply a sequence of left rules until it is also atomic and immediately

implies the goal. This allows us to view atomic goals as procedure calls.

In a minor departure from [MNPS91] we call derivations which are both goal-directed and focussed

uniform and write

�;�;
 �! A goal A is uniformly derivable, and

�;�; (
L; 
R) �! A >> P hypothesis A immediately entails atomic goal P ,

where �, � and 
 are unrestricted, linear, and ordered hypotheses, respectively. In the latter

judgment the ordered hypotheses are syntactically divided into a left part 
L and a right part 
R.

It corresponds to the sequent

�;�; (
LA
R) =) P

so that the split in the ordered context tracks the location of the hypothesis we have focused on.

This correspondence is stated formally in the soundness and completeness theorems for uniform

derivations below.

All of the right rules are exactly the same as in the sequent calculus. Since no left rules apply

when the goal is non-atomic, the derivation is completely determined by the structure of the goal,

as desired.
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�A; �;
 �! B
!R

�;�;
 �! A! B

�;�A; 
 �! B
��R

�;�;
 �! A��B

�;�;A
 �! B
�R

�;�;
 �! A� B

�;�;
A �! B
�R

�;�;
 �! A� B

When the goal has become atomic, we need to single out a hypothesis and determine if it

immediately entails the goal. This is achieved by the three choice rules which apply to unrestricted,

linear, or ordered hypotheses.

�LA�R; �; (
L; 
R) �! A >> P
choice�

�LA�R; �;
L
R �! P

�;�L�R; (
L; 
R) �! A >> P

choice�
�;�LA�R; 
L
R �! P

�;�; (
L; 
R) �! A >> P

choice

�;�;
LA
R �! P

choice� is justi�ed by copy in the sequent calculus, and choice� by place. The premise

and conclusion of choice
 correspond to identical sequents. An initial sequent corresponds to an

immediate entailment between identical atomic formulas.

init
�; �; (�; �) �! P >> P

The remaining left rules for immediate entailment directly correspond to the left sequent rules,

keeping in mind that we have to consider the focussing formula as being between the left and right

parts of the ordered context.

�;�; (
L; 
R) �! B >> P �; �; � �! A
!L

�;�; (
L; 
R) �! A!B >> P

�;�B ; (
L; 
R) �! B >> P �;�A; � �! A
��L

�;�A ./�B ; (
L; 
R) �! A��B >> P

�;�B ; (
L; 
R) �! B >> P �;�A; 
A �! A
�L

�;�A ./�B ; (
L
A; 
R) �! A� B >> P

�;�B ; (
L; 
R) �! B >> P �;�A; 
A �! A
�L

�;�A ./�B ; (
L; 
A
R) �! A� B >> P

Note that in the last two rules, 
A is some initial or �nal segment of the right or left part of

the ordered context, respectively.

In the uniform system, we rewrite our sample parsing proof from the previous section as follows:
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init
�; �; (�; �) �! snt >> snt

init
�; �; (�; �) �! vp >> vp �bob

�L

�; �; (�; bob) �! np� vp >> vp �loves
�L

�; �; (�; loves bob) �! tv� np� vp >> vp
choice�

�; �; loves bob �! vp
�L

�; �; (�; loves bob) �! (vp� snt) >> snt �mary
�L

�; �; (�; mary loves bob) �! np� vp� snt >> snt
choice�

�; �; mary loves bob �! snt

where �bob =

init
�; �; (�; �) �! np >> np

init
�; �; (�; �) �! bob >> bob

choice

�; �; bob �! bob

�L

�; �; (�; bob) �! bob� np >> np
choice�

�; �; bob �! np

and �mary;�loves are similar.

Unlike the example given in the previous section, this is the only proof of the end-sequent. The

�rst choice is forced since np� vp� snt is the only formula in � whose head, snt, matches the

goal. The same is true for all the other choices made.

We now show that uniform derivations are sound and complete with respect to the sequent

calculus. We begin with a lemma which shows that the sequent calculus presented in section 2 can

be restricted to a goal-directed system without a�ecting the provability of any formula.

The soundness result is easy to show.

Theorem 4 (Soundness of Uniform Derivations)

1. If �;�;
 �! A then �;�;
 =) A.

2. If �;�; (
L; 
R) �! A >> P then �;�;
LA
R =) P .

Proof: By mutual structural induction on the sequent derivations of the given judgements. 2

The completeness results is harder, but largely follows techniques of [And92] and [MNPS91],

adapted to the ordered case.

We begin with the following lemmas.

Lemma 5 (Goal Directedness) The following all hold:

1. �;�;
 =) A�B implies �;�;
A �! B

2. �;�;
 =) A�B implies �;�;A
 �! B

3. �;�;
 =) A��B implies �;�A; 
 �! B

4. �;�;
 =) A!B implies �A;�;
 �! B

Proof: By induction on the formula in the succedent in the case of init; for the other rules by

induction on the sequent derivation of the given judgement making use of the left sequent rules. 2
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The next lemmas concern inversion principles for uniform derivations. Lemma 6 states the

inversion principle for left implication (�)| given �;�A; 
A �! A and �;�;
LB
R �! P we

can conclude �;� ./�A; 
L
A(A�B)
R �! P . Lemma 7 states all the inversion principles we

need for the proof of completeness.

Lemma 6 �;�A; 
A �! A implies all of the following hold:

1. �;�;
LB
R �! P implies �;� ./�A; 
L
A(A�B)
R �! P .

2. �;�; (
LLB
LR; 
R) �! C >> P implies

�;� ./�A; (
LL
A(A�B)
LR; 
R) �! C >> P .

3. C;P , �;�; (
L; 
RLB
RR) �! C >> P implies

�;� ./�A; (
L; 
RL
A(A�B)
RR) �! C >> P .

Proof: By mutual induction on the structure of the given derivations. Assume �;�A; 
A �! A.

part 1: Assume
�

�;�;
LB
R �! C. Then there are 7 possibilities for �:

case 1: � ends with choice
 and �;�; (
L; 
R) �! B >> P

Then by�L we know �;� ./�A; (
L
A; 
R) �! A�B >> P .

Then �;� ./�A; 
L
A(A�B)
R �! P .

case 2: � ends with choice
 and �;�; (
LL; 
LRB
R) �! C >> P where 
L = 
LLC
LR.

By ind. hyp. (using part 3) we know �;�./�A; (
LL; 
LR
A(A�B)
R) �! C >> P .

Then �;� ./�A; 
LLC
LR
A(A�B)
R �! P .

case 3: � ends with �;�; (
LB
RL; 
RR) �! C >> P where 
R = 
RLC
RR.

By ind. hyp. (using part 2) we know �;�./�A; (
L
A(A�B)
RL; 
RR) �! C >> P .

Then 
L
A(A�B)
RLC
RR �! P .

cases 4,5,6,7 : � ends with choice� (2 cases) or choice� (2 cases).

Similar to previous two cases.

part 2: Assume �;�; (
LLB
LR; 
R) �! C >> P . Note that C cannot be atomic. Then there

are 5 possibilities:

case 1: C = C1� C2 and � = �2 ./�1 and 
LR = 
LRL
LRR and

�;�2; (
LLB
LRL; 
R) �! C2 >> P and �;�1; 
LRR �! C1.

By ind. hyp. we know: �;�1 ./�A; (
LL
A(A�B)
LRL; 
R) �! C2 >> P .

Then �;� ./�A; (
LL
A(A�B)
LRL
LRR; 
R) �! C1� C2 >> P .

case 2: C = C1� C2 and � = �2 ./�1 and 
LL = 
LLL
LLR and

�;�2; (
LLL; 
R) �! C2 >> P and �;�1; 
LLRB
LR �! C1.

By ind. hyp. (using part 1) we know �;�1 ./�A; 
LLR
A(A�B)
LR �! C1.

Then �;� ./�A; (
LLL
LLR
A(A�B)
LR; 
R) �! C1� C2 >> P .
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case 3: C = C1� C2 and � = �2 ./�1 and 
R = 
RL
RR and

�;�2; (
LLB
LR; 
RR) �! C2 >> P and �;�1; 
RL �! C1.

By ind. hyp. we know �;�2 ./�A; (
LL
A(A� B)
LR; 
RR) �! C2 >> P

Then �;� ./�A; (
LL
A(A�B)
LR; 
RL
RR) �! C1� C2 >> P .

cases 4,5: C = C1 �� C2, C = C1! C2.

Similar to previous case.

part 3: Assume 
L; 
RLB
RR �! C >> P .

Then can be proven with symmetric reasoning to part 2.

2

Lemma 7 (Inversion) The following all hold:

1. �;�;
LB
R �! P and �;�A; 
A �! A imply �;� ./�A; 
L
A(A�B)
R �! P .

2. �;�;
LB
R �! P and �;�A; 
A �! A imply �;� ./�A; 
L
A(A�B)
R �! P .

3. �;�;
LB
R �! P and �;�A; � �! A imply �;� ./�A; 
L(A��B)
R �! P .

4. �;�;
LB
R �! P and �; �; � �! A imply �;�;
L(A!B)
R �! P .

5. �;�L�R; 
LA
R �! P implies �;�LA�R; 
L
R �! P .

6. �LA�R;�LA�R; 
 �! P implies �LA�R;�L�R; 
 �! P .

Proof: Part 1 is immediate from the previous lemma. The other parts are similarly proved. 2

We may now easily prove the completeness result.

Theorem 8 (Completeness of Uniform Derivations) :

If �;�;
 =) A then �;�;
 �! A.

Proof: By induction on the structure of the given judgement:

case:
init

�; �;P =) P then

init
�; �; (�; �) �! P >> P

choice

�; �;P �! P

case:

�;�;A
 =) B
�R

�;�;
 =) A�B

By ind. hyp. we know �;�;A
 �! B. Then �;�;
 �! A�B

Note we need only consider this derivation of the judgement by lemma 5.
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cases: �R,��R,!R all similar to previous case.

case:

�;�B ; 
LB
R =) P �;�A; 
A =) A
�L

�;�B ./�A; 
L
A(A�B)
R =) P

by ind. hyp. we know �;�B; 
LB
R �! P and �;�A; 
A �! A.

Then by lemma 7, we know �;�B ./�A; 
L
A(A�B)
R �! P .

cases: �L,��L,!L,copy,place all similar to previous case.

2

We have now shown that INCLL quali�es as an abstract logic programming language in the

sense of [MNPS91]. However, uniform derivations as given above are not yet suitable for a logic

programming interpreter, since there is an enormous amount of non-determinism in the system

arising from the need to split the linear and ordered contexts in various left rules.

4 Ordered Resource Management

There are several sources of non-determinism in uniform derivations which must be resolved in

order to obtain a predictable operational behavior. Fortunately, standard solutions su�ce for most

of them. The selection of hypothesis implicit in the choice rules is resolved by scanning the context

in a �xed order and backtracking. The selection of subgoals in the rules with two premises proceeds

from left to right. When universal quanti�ers are added, their instantiation is postponed and the

init rule performs uni�cation.

What remains are issues of resource management. Unrestricted hypotheses are propagated to

all subgoals without di�culty. Linear hypotheses can be treated as in the so-called IO system of

Hodas and Miller [HM94]. The rules ��L, �L, and�L propagate all linear hypotheses to the �rst

premise which returns the list of unused hypotheses when it has been solved successfully. These are

then passed on to the second premise. The hypotheses used in neither premise are then returned

as unused in the conclusion.

This model of deterministic resource consumption is intuitively attractive and easy to reason

about for the programmer. However, its extension to the ordered context requires some care in

order to maintain the ordering constraints on the ordered context splits in the choice and left rules.

Our system requires three di�erent judgements. We shall motivate the development of the three

types of judgements in subsection 4.1. We then give the complete resource management system in

subsection 4.2.

4.1 Development of Ordered Resource Management System

For the main judgment of uniform derivability, adding input and output contexts is straightforward.

�;�In�O; 
In
O �! A

During the search, the input contexts �, �I , and 
I and the goal A are given, while the output

contexts �O and 
O are returned. In the interest of economy (both for the presentation of the rules
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and the implementation) we do not actually delete formulas from �I and 
I but replace them with

a placeholder 2. For the remainder of this paper, contexts may contain formulas and placeholders.

In order to state the invariants relating input and output contexts we de�ne the context di�erence


I � 
O:
� � � = �


IA� 
OA = 
I � 
O

I2� 
O2 = 
I � 
O

IA� 
O2 = (
I � 
O)A


I2� 
OA = unde�ned


I�
O is also unde�ned when k
Ik 6= k
Ok where k
k denotes the length of list 
. The resource

management judgements are constructed so that the context di�erence 
I � 
O and �I ��O is

always de�ned in valid derivations.

The right rules for the ordered resource management judgment are easy to construct.

�A ; �In�O ; 
In
O �! B
!R

� ; �In�O ; 
In
O �! A! B

� ; �IAn�O2 ; 
In
O �! B
��R

� ; �In�O ; 
In
O �! A��B

� ; �In�O ; A
In2
O �! B
�R

� ; �In�O ; 
In
O �! A� B

� ; �In�O ; 
IAn
O2 �! B
�R

� ; �In�O ; 
In
O �! A� B

We require the 2 in the output contexts for linear and ordered implications to make sure the

hypothesis has actually been used.

Next we come to the choice
 rule, that is, we chose to focus on an ordered assumption. This

determines the division of the remaining ordered hypotheses unambiguously. We therefore divide

the input contexts and join the output contexts at the chosen assumption. The new judgment reads

�;�In�O; (
LIn
LO ; 
RIn
RO) �! A >> P

where 
LI and 
RI are the parts to the left and right of the focussed formula A, and 
LO and 
RO
are the corresponding output contexts. The choice
 rule for this system then looks as follows:

� ; �In�O ; (
LIn
LO ; 
RIn
RO) �! A >> P
choice


� ; �In�O ; 
LIA
RIn
LO2
RO �! P

ReplacingA from the input context with2 in the output context indicates that A was consumed.

We postpone dealing with the other choice rules.

The init1 rule does not consume any resources except for the focus formula. Therefore all input

resources are passed on.

init1
�;�n�; (
Ln
L; 
Rn
R) �! P >> P

This e�ectively states that the linear and ordered contexts of the initial sequent should be

empty. The unrestricted and linear left rules for this judgment, !L1 and ��L1 introduce no new

ideas.

We now focus on the left rule for right implication, which means we are trying to derive a

judgment of the form

(
LIn? ; 
RIn?) �! A�B >> P
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where we have omitted the distracting, but trivial unrestricted and linear hypotheses, and the

output contexts denoted by ? have yet to be computed. Because A� B is a right implication

situated between 
LI and 
RI , the derivation of A must consume some initial segment of 
RI .

Before that, we need to see if B immediately entails P (the left premise of the �L rule)1 which we

obtain from

(
LIn
LO ; 
RIn
) �! B >> P

Then we need to take the unconsumed parts at the left end of 
, denoted by 
AI (we shall denote

the remainder as 
RO so 
 = 
AI
RO), and allow them as the input context for the solution to A.


AIn
AO �! A

Now we can �ll the holes in the conclusion with 
LO and 
AO
RO, respectively. In summary, the

rule reads

(
LIn
LO ; 
RIn
) �! B >> P 
AIn
AO �! A
�L1

(
LIn
LO ; 
RIn
AO
RO) �! A� B >> P

where 
AI is the longest pre�x of 
 not containing 2, and 
RO the remainder (so 
 = 
AI
RO).

The left rule for left ordered implication is symmetric.

A di�culty remains, however, in that when a formula is directly chosen from the unrestricted

or linear context, its exact position in the ordered context is undetermined. As before, we would

like the choice rule applications in the derivation of the premise to implicitly determine where the

formula might have been placed. This is captured in the judgment

� ; �In�O ; 
In(
Lj
M j
R) �! A >> P

where 
I�
L
M
R is de�ned and 
M does not contain any 2. Since no formula in 
M is actually

consumed in the derivation of A >> P , the whole subcontext marks the place where A occurs in

the ordered context in the sequent calculus.

The unrestricted choice rule

�LA�R ; �In�O ; 
In(
Lj
M j
R) �! A >> P
choice�

�LA�R ; �In�O ; 
In
L
M
R �! P

then just passes the whole input context 
I . The choice� rule is similar.

We need corresponding initial and left rules for this second type of immediate entailment. The

initial rule, init2, is easy to construct. Since it consumes no resources, it must place all the ordered

resources in the middle slot of the output context.

init2
�;�n�;
n(�j
j�) �! P >> P

Then we apply similar reasoning as above to deduce the correct form of the left rules. We need

to derive a judgement of the form (again ignoring the unrestricted and linear contexts)


In(?j?j?) �! A�B >> P

Again we �rst need to see if B immediately entails P


In(
Lj
M j
R) �! B >> P

1In Prolog terminology: we need to unify the clause head with P before solving any subgoals.
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Then we need to take the unconsumed parts of the output, 
M , and allow them as the input

context for the solution to A.


Mn
MO �! A

Now we know that A�B must be placed to the left of any resources consumed by the derivation

of A. This observation is all we need to complete the output context. The complete rule reads


In(
Lj
M j
R) �! B >> P 
Mn
MO �! A
�L2


In(
Lj
MLj
MR
R) �! A�B >> P

where 
ML is the longest pre�x of 
MO not containing 2, and 
MR the remainder (so 
MO =


ML
MR).

Again, the left rule for left ordered implication is symmetric.

To summarize, our context management system is based on three judgments.

� ; �In�O ; 
In
O �! A

� ; �In�O ; (
LIn
LO ; 
RIn
RO) �! A >> P

� ; �In�O ; 
In(
Lj
M j
R) �! A >> P

where contexts � and 
 may contain 2 as placeholder for a consumed formula. The �rst two

judgments mirror the behavior of the uniform sequents where the ordered context split is always

known. The third sequent is used when a focus formula is chosen from the intuitionistic or linear

contexts and the splitting of the ordered context is to be determined lazily.

4.2 Ordered Resource Management Judgements

Here is the complete resource management system:

�A ; �In�O ; 
In
O �! B
!R

� ; �In�O ; 
In
O �! A! B

� ; �IAn�O2 ; 
In
O �! B
��R

� ; �In�O ; 
In
O �! A��B

� ; �In�O ; A
In2
O �! B
�R

� ; �In�O ; 
In
O �! A� B

� ; �In�O ; 
IAn
O2 �! B
�R

� ; �In�O ; 
In
O �! A� B

� ; �In�O ; (
LIn
LO ; 
RIn
RO) �! A >> P
choice


� ; �In�O ; 
LIA
RIn
LO2
RO �! P

init1
� ; �n� ; (
Ln
L ; 
Rn
R) �! P >> P

� ; �In�O ; (
LIn
LO ; 
RIn
RO) �! B >> P � ; �n� ; �n� �! A
!L1

� ; �In�O ; (
LIn
LO ; 
RIn
RO) �! A! B >> P

� ; �In�M ; (
LIn
LO ; 
RIn
RO) �! B >> P � ; �Mn�O ; �n� �! A
��L1

� ; �In�O ; (
LIn
LO ; 
RIn
RO) �! A��B >> P
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� ; �In�M ; (
LIn
LO ; 
RIn
AI
RO) �! B >> P � ; �Mn�O ; 
AIn
AO �! A
�L1

� ; �In�O ; (
LIn
LO ; 
RIn
AO
RO) �! A� B >> P

where 
AI contains no occurrence of 2 and 
RO = � or 
RO = 2
RO1 (i.e. if 
 = 
AI
RO then 
AI is the

leftmost portion of 
 not containing 2.)

� ; �In�M ; (
LIn
LO
AI ; 
RIn
RO) �! B >> P � ; �Mn�O ; 
AIn
AO �! A
�L1

� ; �In�O ; (
LIn
LO
AO ; 
RIn
RO) �! A� B >> P

where 
AI contains no occurrence of 2 and 
LO = � or 
LO = 
LO12 (i.e. if 
 = 
LO
AI then 
AI is the

rightmost portion of 
 not containing 2.)

�LA�R ; �In�O ; 
In(
Lj
M j
R) �! A >> P

choice�
�LA�R ; �In�O ; 
In
L
M
R �! P

� ; �LI�RIn�LO�RO ; 
In(
Lj
M j
R) �! A >> P
choice� (k�LIk = k�LOk)

� ; �LIA�RIn�LO2�RO ; 
In
L
M
R �! P

init2
� ; �n� ; 
n(�j
j�) �! P >> P

� ; �In�O ; 
In(
Lj
M j
R) �! B >> P � ; �n� ; �n� �! A
!L2

� ; �In�O ; 
In(
Lj
M j
R) �! A! B >> P

� ; �In�M ; 
In(
Lj
M j
R) �! B >> P � ; �Mn�O ; �n� �! A
��L2

� ; �In�O ; 
In(
Lj
M j
R) �! A��B >> P

� ; �In�M ; 
In(
Lj
M j
R) �! B >> P � ; �Mn�O ; 
Mn
ML
MR �! A
�L2

� ; �In�O ; 
In(
Lj
MLj
MR
R) �! A�B >> P

where 
ML contains no occurrence of 2 and 
MR = � or 
MR = 2
MR1 (i.e. if 
 = 
ML
MR then 
ML
is the leftmost portion of 
 not containing 2.)

� ; �In�M ; 
In(
Lj
M j
R) �! B >> P � ; �Mn�O ; 
Mn
ML
MR �! A
�L2

� ; �In�O ; 
In(
L
MLj
MRj
R) �! A�B >> P

where 
MR contains no occurrence of 2 and 
ML = � or 
ML = 
ML12 (i.e. if 
 = 
ML
MR then 
MR
is the rightmost portion of 
 not containing 2.)

Appendix A contains the example parsing derivation written out using the resource managment

system.

We prove the correctness of the resource management system with respect to the uniform system

by separately proving a completeness and a soundness result.
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Lemma 9 (Resource Invariants) If 
In
O or 
In(
Lj
M j
R) occurs in a valid derivation

then:

1. 
I � 
O and 
I � 
L
M
R are de�ned.

2. 
M does not contain 2.

3. 
L is � or ends with 2.

4. 
R is � or begins with 2.

Theorem 10 (Soundness of Ordered Resource Management)

1. If �;�In�O; 
In
O �! A then �;�I ��O; 
I � 
O �! A,

2. if �;�In�O; (
LIn
LO; 
RIn
RO) �! B >> P

then �;�I ��O; (
LI � 
LO ; 
RI � 
RO) �! B >> P , and

3. if �;�In�O; 
In(
Lj
M j
R) �! A >> P

then �;�I ��O; (
IL � 
L; 
IR � 
R) �! A >> P ,

where 
I ;
LI ;
RI do not contain 2 and 
I = 
IL
M
IR and k
ILk = k
Lk and k
IRk = k
Rk.

Proof: By mutual induction on the structure of the given derivations. Appeals to lemma 9 and

elementary properties of context di�erence (�) are left implicit.

case:
init

�;�In�I ; (
Ln
L ; 
Rn
R) �! P >> P then
init

�; �; (� ; �) �! P >> P

case:
init

�;�In�I ; 
In(�j
I j�) �! P >> P then
init

�; �; (� ; �) �! P >> P

case:

�;�In�M ; (
LIn
LO
AI ; 
RIn
RO) �! B >> P �;�Mn�O; 
AIn
AO �! A
�L1

�;�In�O; (
LIn
LO
AO ; 
RIn
RO) �! A�B >> P

By assumption, 
AI does not contain 2.

We know by ind. hyp.:

1. �;�I ��M ; (
LI � 
LO
AI ; 
RI � 
RO) �! B >> P

2. �;�M ��O; 
AI � 
AO �! A

Then �;�I ��O; ((
LI � 
LO
AI)(
AI � 
AO) ; 
RI �
RO) �! A� B >> P .

We will now show 
LI � 
LO
AO = (
LI � 
LO
AI)(
AI � 
AO).

We know from the hypothesis that 
LI = 
LIL
AI .

Then 
LI � 
LO
AO = 
LIL
AI � 
LO
AO = (
LIL � 
LO)(
AI � 
AO).

Then (
LIL�
LO)(
AI�
AO) = (
LIL
AI�
LO
AI)(
AI�
AO) = (
LI�
LO
AI)(
AI�


AO):

Then �;�I ��O; (
LI � 
LO
AO ; 
RI � 
RO) �! A�B >> P

cases: �L1,��L1,!L1

Similar to previous case.
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case:

�;�In�M ; 
In(
Lj
M j
R) �! B >> P �;�Mn�O; 
Mn
ML
MR �! A
�L2

�;�In�O; 
In(
L
MLj
MRj
R) �! A�B >> P

By assumption, 
M ;
MR do not contain 2.

Let 
MML
MR = 
M (then k
MMLk = k
MLk).

We know by ind. hyp.:

1. �;�I ��M ; (
IL � 
L; 
IR � 
R) �! B >> P

2. �;�M ��O; 
M � 
ML
MR �! A

where 
IL
M
IR = 
I and k
ILk = k
Lk.

Then �;�I ��O; ((
IL � 
L)(
M � 
ML
MR); 
IR � 
R) �! A�B >> P .

And 
M � 
ML
MR = 
MML
MR � 
ML
MR = 
MML � 
ML.

Then �;�I ��O; (
IL
MML � 
L
ML; 
IR � 
R) �! A�B >> P .

And 
I = 
IL
MML
MR
IR.

cases: �L2,��L2,!L2

Similar to previous case.

case:

�;�In�O;A
In2
O �! B
�R

�;�In�O; 
In
O �! A�B

We know by ind. hyp. that �;�I ��O;A
I �2
O �! B.

Then �;�I ��O;A(
I � 
O) �! B.

Then �;�I ��O; 
I � 
O �! A�B.

cases: �R,��R,!R

Similar reasoning as previous case.

case:

�;�In�O; (
LIn
LO ; 
RIn
RO) �! A >> P
choice


�;�In�O; 
LIA
RIn
LO2
RO �! P

We know by ind. hyp. �;�I ��O; (
LI � 
LO; 
RI � 
RO) �! A >> P

Then �;�I ��O; (
LI � 
LO)A(
RI � 
RO) �! P .

Then �;�I ��O; 
LIA
RI � 
LO2
RO �! P .

case:

�;�LI�RIn�LO�RO; 
In(
Lj
M j
R) �! A >> P
choice�

�;�LIA�RIn�LO2�RO; 
In
L
M
R �! P

Let 
IL
M
IR = 
I where k
ILk = k
Lk.

We know by ind. hyp. �;�LI�RI ��LO�RO; (
IL � 
L; 
IR � 
R) �! A >> P

Then �;�LIA�RI ��LO2�RO; (
IL � 
L)(
IR � 
R) �! P .
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Then �;�LIA�RI ��LO2�RO; 
IL
M
IR � 
L
M
R �! P .

case:

�LA�R;�In�O; 
In(
Lj
M j
R) �! A >> P
choice�

�LA�R;�In�O; 
In
L
M
R �! P

Similar to previous case.

2

Theorem 11 (Completeness of Ordered Resource Management)

1. For all �I ;�O;
I ;
O such that �I ��O = � and 
I � 
O = 
 we have that

�;�;
 �! A implies �;�In�O; 
In
O �! A.

2. For all �I ;�O;
LI ;
LO;
RI ;
RO such that �I � �O = �, 
LI � 
LO = 
L and 
RI �


RO = 
R we have that

�;�; (
L; 
R) �! A >> P implies �;�In�O; (
LIn
LO; 
RIn
RO) �! A >> P

where 
I ;
LI ;
RI do not contain 2.

3. For all �I ;�O;
LI ;
LO;
RI ;
RO;
M such that �I � �O = �, 
LI � 
LO = 
L and


RI � 
RO = 
R we have that

�;�; (
L; 
R) �! A >> P implies �;�In�O; 
LI
M
RIn(
LOj
M j
RO) �! A >> P

where 
I ;
M ;
LI ;
RI do not contain 2, 
LO ends in 2 or is �, and 
RO begins with 2 or

is �.

Proof: By mutual induction on the structure of the given derivations. Appeals to lemma 9 and

elementary properties of context di�erence (�) are left implicit.

case:

�;�;A
 �! B
�R

�;�;
 �! A�B

Let �I ��O = � and 
I � 
O = 
 where 
I does not contain 2.

Then, by ind. hyp., �;�In�O;A
In2
O �! B

Then �;�In�O; 
In
O �! A�B.

cases: �R,��R,!R

Similar to previous case.

case:

�;�; (
L ; 
R) �! A >> P
choice


�;�;
LA
R �! P

Let �I ��O = � and 
I � 
O = 
LA
R where 
I does not contain 2.

Then 
I = 
ILA
IR and 
O = 
OL2
OR where 
IL � 
OL = 
L and 
IR � 
OR = 
R.

We know by ind. hyp. �;�In�O; (
ILn
OL; 
IRn
OR) �! A >> P .
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Then �;�In�O; 
ILA
IRn
OL2
OR �! P .

Then �;�In�O; 
In
O �! P .

case:

�;�L�R; (
L ; 
R) �! A >> P
choice�

�;�LA�R; 
L
R �! P

Let �I ��O = �LA�R and 
I � 
O = 
L
R where 
I does not contain 2.

Then �I = �ILA�IR and �O = �OL2�OR where �IL��OL = �L and �IR��OR = �R.

Then 
I = 
IL
M
IR and 
O = 
OL
M
OR where 
IL�
OL = 
L and 
IR�
OR = 
R.

We know by ind. hyp. �;�IL�IRn�OL�OR; 
In(
OLj
M j
OR) �! A >> P .

Then �;�ILA�IRn�OL2�OR; 
In
OL
M
OR �! P .

Then �;�In�O; 
In
O �! P .

case: choice� is similar to previous.

case:

�;�B ; (
L ; 
R) �! B >> P �;�A; 
A �! A
�L

�;�B ./�A; (
L
A ; 
R) �! A�B >> P

Let �I ��O = �B ./�A.

Let �M be a list of size k�Ik where (if (�M )i 2 �B then (�M )i = 2 else (�M )i = (�I)i)

and the number of 2 in �M is k�Bk.

Then �I ��M = �B and �M ��O = �A.

Let 
LI � 
LO = 
L
A and 
RI � 
RO = 
R where 
LI ;
RI do not contain 2.

Let 
LIL
LIA = 
LI and 
LOL
LOA = 
LO where 
LIL�
LOL = 
L and 
LIA�
LOA =


A and 
LOL = 
LOL12 (if 
L 6= � else 
LOL = �).

We know by ind. hyp.:

1. �;�In�M ; (
LIn
LOL
LIA; 
RIn
RO) �! B >> P .

2. �;�Mn�O; 
LIAn
LOA �! A

Then �;�In�O; (
LIn
LOL
LOA; 
RIn
RO) �! A�B >> P .

Let �I ;�O;�M be de�ned as above.

Let 
� also be de�ned as above except that 
LO ends in 2 or is �, and 
RO begins with 2 or

is �.

Let 
M be a list not containing 2.

Then we know by ind. hyp.:

1. �;�In�M ; 
LIL
LIA
M
RIn(
LOLj
LIA
M j
RO) �! B >> P .

2. �;�Mn�O; 
LIA
Mn
LOA
M �! A

Then �;�In�O; 
LIL
LIA
M
RIn(
LOL
LOAj
M j
RO) �! A�B >> P .

Then �;�In�O; 
LI
M
RIn(
LOj
M j
RO) �! A� B >> P .
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cases: �L,��L,!L

Similar to previous case.

case:
init

�; �; (� ; �) �! P >> P

Then
init1

�; �; (
Ln
L ; 
Rn
R) �! P >> P and
init2

�; �; 
In(�j
I j�) �! P >> P .

2

5 Sample Programs

Using the strategy described at the beginning of the preceding section, together with the system

of ordered resource management described above, we have arrived at a logic programming lan-

guage. It remains to clarify the order in which the clauses in a context are considered when the

goal has become atomic. We employ here the same strategy as the Lolli language [HM94] and

linear LF [CP98] by dividing the hypotheses into a static program and dynamic assumptions made

during search. We �rst scan all dynamic assumptions from right to left, where !R, ��R, �R add

assumptions on the right, and�R adds assumptions on the left. Then we attempt each formula in

the static program from �rst to last. Note that we have to be aware of the status of each hypothesis

(unrestricted, linear, or ordered) as we consider it so we can apply the correct choice rule.

In the examples below we assume implicit universal quanti�cation over free variables just as in

Prolog. We also write B� A for A�B and B�A for A�B in the manner of Prolog. We use

italics for meta-variables which stand for ground terms and typewriter font for program code,

including logic variables.

5.1 Lists

We begin by considering various programs concerned with lists. :: is the list constructor and nil

is the empty list.

The following program, which does not make use of the ordered fragment of the logic, can be

used to permute a list.
perm (X::L) K

�� (elem X�� perm L K):

perm nil (X::K)

�� elem X

�� perm nil K:

perm nil nil:

The program works on a query perm l K by �rst assuming elem x for every element x of l. This

is achieved by the �rst clause. Then the assumptions are consumed one by one through uses of the

second clause and added to the output list. The tail of the output list is instantiated to nil when

there are no further linear assumptions, and the last clause can therefore succeed. Because the

linear context is unordered, every possible order of linear resource consumption constitutes a valid

proof where the result variable, K, becomes instantiated to a di�erent permutation of the input list

l.
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Since linear assumptions are unordered, the program will enumerate all possible permutations

of a list. If we replace the linear implications by right order implication, only one order remains

possible: the one that reverses the list.

rev (X::L) K

� (elem X� rev L K):

rev nil (X::K)

� elem X

� rev nil K:

rev nil nil:

Now the �rst appeal to the second clause can pick up and consume only the most recently made

assumption, which is the last element of the input list l. Since this is added to the front of K, this

operation reverses the list.

In contrast, the following program represents the identity relation, since the elements are added

to the left end of the ordered assumptions.

id (X::L) K

� (elem X� id L K):

id nil (X::K)

� elem X

� id nil K:

id nil nil:

5.2 Sorting

Our next example is a direct coding of merge sort, where mergeSort k L expects an input list k

and computes an output list L by mergesort. The computation proceeds in two phases. In the �rst

phase, assuming an input list x1:: � � � ::xn::nil we want to reduce solving

� �! mergeSort (x1:: � � � ::xn::nil) L

to solving

srt(x1 :: nil); : : : ; srt(xn :: nil) �! msort L

where we have separated ordered hypotheses by commas and omitted the unrestricted context

(which contains only the static program and does not change) and the linear context (which is

always empty). We achieve this with the two clauses

mergeSort (H::T) L

� (srt (H::nil)� mergeSort T L):

mergeSort nil L� msort L:

In the second phase we assume a general situation of the form

srt ln; : : : ; srt l2; srt l1 �! msort L
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where the li are already sorted and L is still to be computed. Starting from the right, we merge l1
and l2 and add the result to the left end of the ordered context, in e�ect using it as a work queue.

The resulting situation will be

srt l12; : : : ; srt l4; srt l3 �! msort L

which is then treated the same way, merging l3 and l4. We �nish when there is only one element

srt k in the ordered context and unify L with k. This is expressed by the following two clauses.

msort L

� srt L1

� srt L2

 merge L1 L2 L12

� (srt L12� msort L):

msort L� srt L:

We elide the standard Prolog-like merge predicate which, given two sorted lists l1 and l2 returns a

sorted merge l12. It does not use the ordered context, which is enforced by using an unrestricted

implication  .

Since all ordered assumptions must be used, the �nal clause above can succeed only if the

complete list has indeed been sorted. The merge sort program is therefore completely deterministic

when called as indicated: L1 and L2 must be taken from the right, and L12 must be added to the

left.

If we change the �rst msort clause to assume L12 on the right, by writing (srt L12�msort L)

instead of (srt L12� msort L) then we obtain an insertion sort because after one step we arrive

at

srt ln; : : : ; srt l3; srt l12

which will next merge l3 into l12, etc.

5.3 Mini-ML Abstract Machine

Our next example shows how a continuation based abstract machine for evaluating Mini-Ml can be

directly encoded in INCLL. The basic idea is to use the ordered context as a stack of continuations

to be evaluated. We assume a standard version of Mini-Ml constructed using higher-order abstract

syntax [Pfe92]. Values are distinguished from terms by an asterisk; so z is a term while z� is a value.

We have the following signature for our abstract machine (where o is the type of propositions):
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z : exp.

s : exp -> exp.

case : exp -> exp -> (val -> exp) -> exp.

lam : (val -> exp) -> exp.

app : exp -> exp -> exp.

vl : exp -> val.

z� : val.

s� : val -> val.

lam� : (val -> exp) -> val.

eval : exp -> val -> o.

ev : exp -> o.

return : val -> o.

case1 : val -> exp -> ( val -> exp) -> o.

appm1 : val -> exp -> o.

appm2 : val -> val -> o.

Given the goal: return V�eve, our program will evaluate the expression e and instantiate V with

the resulting value. The intended reading of this query is: evaluate e with the identity continuation

(the continuation which just returns its value). A goal of ev e is intended to mean: evaluate e.

A goal of return V is intended to mean: pass V to the top continuation on the stack (i.e. the

rightmost element in the ordered context).

The following program clauses specify the abstract machine:

eval E V� (return V� ev E)

(* Natural Numbers *)

ev z� return z�:

ev (s E)

� ((8V: return V� return (s� V))� ev E):

ev (case E1 E2 E3)

� ((8V: return V� case1 V E2 E3)� ev E1):

case1 z� E2 E3� ev E2:

case1 (s� V) E2 E3� ev (E3 V):

(* Functions *)

ev (lam E)� return (lam� E):

ev (app E1 E2)

� ((8V1: return V1� app1 V1 E2)� ev E1):

app1 V1 E2

� (8V2: return V2� app2 V1 V2)� ev E2):

app2 (lam� E1') V2� ev (E1' V2):

(* Values *)

ev (vl V)� return V:
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The intended reading of the ev (s E) clause (the second program clause) is this: to evaluate

(s E) evaluate E under the continuation which takes its value, V, and passes the value s� V to the

next continuation on the stack. Note the use of � nested inside �. This forces the continuations

put into the ordered context to be evaluated in stack fashion. When the goal is return V the only

choice of formula to focus on will be the rightmost formula in the ordered context.

To better illustrate this point, consider the evaluation of (s (s z)). The initial goal will be

return V � ev (s (s z)) after which return V will be immediately added to the previously

empty ordered context. Next the ev (s E) clause will be chosen to focus on and will result

in 8V: return V� return (s� V) being added to the right end (because of �) of the ordered

context. The new goal will be ev (s z) and the previous step will be repeated. At this point,

the goal will be ev z which will cause the appropriate progam clause (the �rst in the preceding

program listing) to be focused on and a new goal of return z�.

The ordered context now consists of:

(return V) (8V: return V� return (s� V)) (8V: return V� return (s� V)):

Since there is no program clause whose head matches the goal, one of the clauses in the ordered

context must be focused on. Although all the ordered clauses match the goal, only the rightmost

one can be successfully chosen. The leftmost clause obviously cannot work since it is atomic and

the other clauses are also in the ordered context. The middle clause also does not work because

the� requires that the body of the clause be solved with resources to the left of the clause which

would prevent the rightmost clause from being consumed.

5.4 Natural Langauge Parsing

The following example is a fragment of a parser. This example shows how INCLL can be used to

directly parse grammatical constructions with unbounded dependencies such as relative clauses.

1 : snt� vp� np:

2 : vp� np� tv:

3 : rel� whom� (np�� snt):

4 : np� jill:

5 : tv� married:

We may intuitively read the formulas in the following manner: snt� vp� np states that a

sentence is a verb phrase to the right of a noun phrase. We can use these formulas to parse a

phrase by putting each word of the sentence into the ordered context and trying to derive the

atomic formula corresponding to the phrase type.

We may interpret clause 3 as: a relative clause is whom to the left of a sentence missing a noun

phrase. As explained in [Hod94] this is a standard interpretation of relative clauses. By putting a

np into the linear context, the sentence after whom will only be successfully parsed if it is indeed

missing a noun phrase. Note that by using the linear context, the location of the missing np is

unconstrained.

We now show a trace of the above formulas parsing a relative clause, showing at each step the

resource sequent (including the current goal), the pending goals, and the the rule applied. The

unrestricted context containing the above program is left implicit. Note that due to the ordering

constraints each step is essentially deterministic.
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Action Active hypotheses and goal Goals pending

� ; whom jill married �! rel none

reduce by 3 � ; whom jill married �! whom np�� snt

solved, restore pending goal � ; jill married �! np�� snt none

assume np ; jill married �! snt none

reduce by 1 np ; jill married �! vp np

reduce by 2 np ; jill married �! np tv ; np

solved, restore pending goal � ; jill married �! tv np

reduce by 5 � ; jill married �! married np

solved, restore pending goal � ; jill �! np none

reduce by 4 � ; jill �! jill none

solved

Using the linear context in manner described above has some limitations which should be pointed

out. The correct parsing of dependent clauses typically constrains where the relative pronoun may

�ll in for a missing noun phrase. Most relative clauses, rather than being sentences missing noun

phrases are really sentences whose verb phrase is missing a noun phrase.

If we changed the relative clause to be whommarried jill we would not have a grammatically

correct relative noun. However the parser given above will be able to parse the modi�ed phrase

since the location of the missing noun phrase is not constrained. There are a variety of simple

ways to �x this problem for the small parser given above. For instance, we could de�ne a new type

of sentence in which the verb phrase is missing a noun phrase. This basically amounts to using

gap-locator rules as described in [Par89] [Hod94].

The parsers given in [Hod94], which logically handle some constraints on the placement of

dependencies, are constructed quite di�erently from the INCLL parser we have presented. Rather

than placing the input to be parsed into the context, they pass it around as a list. They do however

use the linear context to store �llers| empty noun phrase predicates which can be used when an

actual noun phrase is missing in the sentence| in the same manner as the above parser does. We

point out that all of the (pure) Lolli parsers are also valid INCLL programs since pure-Lolli is a

subset of INCLL.

In fact with this threaded style of parser, INCLL is able to correctly handle at least one natural

language phenomenom which could not be done in pure Lolli. When a relative clause occurs inside

a relative clause, correct parses of the sentence should associate the inner relative pronoun with the

�rst missing noun phrase in the clause and the second with the second. In other words, dependencies

should not cross inside a nested relative clause. Consider the phrase: the book that the man

whom Jane likes GAP wrote GAP where GAP denotes a missing noun phrase. The �rst

GAP should correspond to the man and not to the book.

Since the Lolli parser (as well as the INCLL parser given above) introduces �llers into the linear

context, there is no way to force the parser to use one or the other of two suitable �llers. Thus the

Lolli parser would parse the preceding sentence in two ways, only one of which would be correct.

Hodas' solution was to rely on a non-logical control construct and the operational semantics of

Lolli to prevent the bad parse. One can easily see (as Hodas remarked) that such a situation can

be directly handled in INCLL by putting the �llers into the ordered context.
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6 Conclusion

The succession of systems developed in this paper form a promising basis for incorporating order into

linear logic programming in a logical and e�cient manner. In [PP98] we give the full complement of

connectives for INCLL. Of those, only universal quanti�cation, &, and > preserve the completeness

of uniform derivations (which is easy to show). At present we have not checked every detail, but

we strongly conjecture that the resource management system developed for Lolli in [CHP98] can

also be straightforwardly combined with the scheme for managing ordered resources detailed in this

paper, leading to a conservative extension of Lolli. That is, every legal Lolli program would remain

legal and have the same operational behavior.

There are many examples where order can be exploited, such as algorithms which employ various

forms of stacks or queues. Natural language parsing, the original motivation for the Lambek

calculus [Lam58] is a further rich source of examples. Using our prototype implementation we

have programmed the two styles of parsers sketched above. In many of our examples, the ordered

connectives allow a more concise, logical speci�cation of algorithms than possible in other languages.

However, there are also some di�culties. If an algorithm requires more than one work queue

or stack they can interfere, since we have only one ordered context. Another problem is that

we sometimes have to write \glue" code which initializes or erases the ordered context prior to a

subcomputation. Despite these current limitations, we feel that ordered logic programming is an

interesting paradigm which can shed light on the concept of order in computation and warrants

further investigation from all angles.

Besides further work on language design, implementation, and programming methodology, we

also plan to investigate the potential applications of our particular approach to order in concurrent

constraint programming as proposed by Ruet [Rue97]. Finally, the existence of canonical forms for

the natural deduction system of INCLL [PP99] means that it might be possible to add it to the

linear logical framework [CP98] in a conservative manner. However, we have not yet considered

such issues as type reconstruction or uni�cation.
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Appendix A

We present our example parsing derivation in the resource management system. As before, � =

1 : snt� vp� np:

2 : vp� np� tv:

3 : tv� loves:

4 : np� mary:

5 : np� bob:

Here is an operational trace of the derivation:

Action Active hypotheses and goal Goals pending

� ; mary loves bob �! snt none

reduce by 1 � ; mary loves bob �! vp np

reduce by 2 � ; mary loves bob �! np tv ; np

reduce by 5 � ; mary loves bob �! bob tv ; np

solved, restore pending goal � ; mary loves �! tv np

reduce by 3 � ; mary loves �! loves np

solved, restore pending goal � ; mary �! np none

reduce by 4 � ; mary �! mary none

solved

The following page contains the complete derivation. As with the uniform system, this is the

only proof of the given end-sequent. Notice how the structure of this proof exactly matches the

structure of the previous uniform version. Additionally, we note that the resources consumed

in a branch of this proof exactly match the resources passed into the same branch of the uniform

version. For instance �bob in this proof begins with a sequent whose input ordered context contains

mary loves bob and whose output ordered context contains mary loves2. Thus bob was the only

resource consumed in that proof branch. In the �bob of the uniform proof, bob is the only resource

passed to that proof branch.
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