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Abstract

Edge Coloring is the following optimization problem:

Given a graph, how many colors are required to color its edges

in such a way that no two edges which share an endpoint receive

the same color?

The required number of colors is called the chromatic index of G and is

denoted by �0(G). We consider the edge coloring problem in the framework

of the relationship between an integer program and its linear programming

relaxation. To do this we �rst formulate edge coloring as an integer program

and let ��(G) be the optimum of the linear programming relaxation (called

the fractional chromatic index). For any graph G one can compute ��(G) in
polynomial time but deciding whether �0(G) = � or �0(G) = � + 1 is NP-

Complete. So it would be of interest to determine for which simple graphs

�0(G) = d��(G)e as we can compute �0(G) for graphs in these classes.

In this thesis we show that large classes of graphs satisfy this equality. More

precisely, we show that if a graph G is large enough, has large maximum

degree and satis�es two technical conditions, then the equality holds. The

constructive proof provides a randomized polynomial time algorithm for

optimally coloring the edges of such graphs. We use a deterministic version

of this algorithm to design the �rst algorithm that computes an optimal

edge coloring of any graph in polynomial time, on average.
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Chapter 1

Introduction

1.1 The bird's eye view

Edge Coloring is the following optimization problem:

Given a graph, how many colors are required to color its edges

in such a way that no two edges which share an endpoint receive

the same color?

This question is one of the oldest in graph theory. As pointed out by Tait

[Tai80] in 1880, the celebrated four color conjecture is equivalent to the state-

ment that the edges of every bridge-less, cubic planar graph can be colored

using three colors (for an overview of the terminology, see section 1.3). Sev-

eral years later, in 1891, Petersen [Pet91], while studying the factorization

of certain polynomials, pointed out that there are bridge-less cubic graphs

which are not three edge colorable (for example the infamous Petersen graph,

in �gure 1.1).

In 1916 K�onig [K�16], while studying the factorization of the determinants of

matrices, proved that for every bipartite graph G, the minimum number of

colors needed to color the edges of G is equal to the maximum vertex degree

inG. This theorem can be seen as a consequence of K�onig's Bipartite Match-

ing Min-Max theorem; K�onig's theorem is in turn equivalent to Menger's

Theorem [Men27] proved in 1927, Hall's Theorem [Hal35] proved in 1935,

the Birkho�-Von Neumann Theorem [Bir46] proved in 1946, Dilworth's The-

orem [Dil50] proved in 1950, and Ford and Fulkerson's Max-Flow Min-Cut

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Petersen graph

Theorem [FF56] proved in 1956. (For a study of these equivalences see

[FF62] and [LP86]). Thus, we see that edge coloring problem is also linked

to important developments in combinatorial optimization.

Let the chromatic index of G, denoted by �0(G) or simply �0, be the mini-

mum number of colors required to color the edges of G. Let �(G) or simply

� be the maximum vertex degree in G. It is easy to see that �0(G) � �.

Note that K�onig's edge-coloring theorem states that �0(G) = � if G is bi-

partite. We remark however that not every graph is � edge colorable. For

example, if G is an odd cycle, �(G) = 2 colors are not enough to color the

edges of G; a third color is required. In 1964, Vizing [Viz64] proved that

�(G)+1 colors are su�cient in general: in other words, every simple (with-

out loops or multiple edges) graph G of maximum degree � has chromatic

index �0 = � or �0 = �+ 1.

The algorithmic aspects of computing the chromatic index and an optimal

edge-coloring also have a long history. A polynomial time edge-coloring al-

gorithm for simple bipartite graphs easily follows from the original construc-

tive proof by K�onig. In the general case, Fournier [Fou73] applied ideas from

Vizing's original proof to develop a polynomial time algorithm that colors

the edges of a simple graph with �+1 colors. Fournier's algorithm actually

uses � colors if the vertices of maximum degree in the input graph induce

an acyclic subgraph (i.e. a forest).

Given these positive algorithmic results, it is somewhat surprising that opti-

mally coloring the edges of an arbitrary simple graph is hard. In 1981, Holyer

showed that the question of deciding whether �0(G) = � or �0(G) = �+ 1



1.1. THE BIRD'S EYE VIEW 3

is NP-complete.

In order to further motivate our interest in the edge coloring problem and

provide insight into the heart of its di�culties, we introduce, as Lovasz and

Plummer did in [LP86], a useful framework, originally introduced by Stahl

[Sta79] and Seymour [Sey79]. We �rst formulate the edge-coloring problem

as an integer program. To this end, letM(G) (or simplyM) be the set of all

matchings of G and let Me(G) (or simply Me) be the set of all matchings

of G that contain the edge e 2 E. Then

�0(G) = min
X
M2M

yM (1.1)

subject to:

(i)
X

M2Me

yM = 1, for all e 2 E,

(ii) yM 2 f0; 1g, for all M 2M,

By removing the integrality condition from (ii), we obtain the linear pro-

gram

min
X
M2M

yM (1.2)

subject to:

(i)
X

M2Me

yM = 1, for all e 2 E,

(ii) yM � 0, for all M 2M,

We call the solution to this linear program the fractional chromatic in-

dex of G and denote it by ��(G), or simply ��. Obviously, �0 � �� and

it is easy to check that �� � �. The important observation is that ��

can be computed in polynomial time, with the ellipsoid algorithm (see the

discussion in section 1.3).
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There is another, more combinatorial approach to understanding the frac-

tional chromatic index. Edmond's characterization of the matching polytope

([Edm65a]) yields a formula for ��(G) (see [Sey79, Sta79]):

��(G) = maxf�(G);max
H2H

2jE(H)j
jHj � 1

g (1.3)

where H is the set of all subgraphs of G with an odd number of 3 or more

vertices (in order to avoid cumbersome notation, we slightly abuse notation

by denoting by H the set of vertices of the subgraph H). A graph H 2 H
is called overfull if jE(H)j > �(H)

jHj�1
2

; we note that jHj must be odd

and at least 3. Since jHj is odd, in any edge coloring of H, at most
jHj�1

2

edges in E(H) may have the same color, so at most �(H)
jHj�1

2
edges of

H can be colored with �(H) colors. Consequently, �0(H) = �(H) + 1.

If a simple graph G contains an overfull subgraph H of maximum degree

�(H) = �(G) = �, it follows that �0(G) = � + 1. Equivalently, by (1.3)

�0(G) � ��(G) > � so �0(G) = �+1. An important paper by Padberg and

Rao [PR82] on computing minimum odd-cuts gives a tool for determining

an overfull subgraph of G of maximum degree � in time O(n4). Using

their algorithm, one can compute ��(G) in polynomial time in a purely

combinatorial way.

A study of the relationship between �0 and �� thus proves to be a valuable

one. It is of interest to determine for what classes of simple graphs �0(G) =
d��(G)e as we can compute �0(G) for graphs in these classes. More generally,

the relationship between �0 and �� is an instance of a fundamental question

in combinatorial optimization: what is the relationship between an Integer

Program and its Linear Programming relaxation?

Many of the seminal results mentioned above describe classes of graphs for

which �0(G) = d��(G)e. K�onig's theorem basically says that for bipartite

graphs �0 = �� = �. An equivalent statement of the four color theorem,

proved by Appel and Haken [AH76] in 1976, is that for planar cubic graphs

�0 = d��e. In a recent development, Robertson, Seymour and Thomas

[RST97] have generalized this result to cubic graphs with no Petersen graph

minor by proving Tutte's longstanding edge-coloring conjecture:

Theorem 1 (Tutte's conjecture) If a 2-edge connected cubic graph G

contains no Petersen graph as a minor then G is 3 edge-colorable.
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In the same vein, Reed [Ree95] has shown that a similar relationship holds

for a generalization of bipartite graphs. We call a graph G near-bipartite if

for some vertex x of V , the graphG�x is bipartite. Reed [Ree95] proved that
ifG is near-bipartite then �0(G) = d��(G)e. He also presented a polynomial-

time algorithm for optimally edge-coloring near-bipartite graphs. As we will

require this result, we present the algorithm in detail in Appendix A.

A number of conjectures have been proposed regarding the relationship be-

tween �0 and ��. Goldberg [Gol73, Gol84], Andersen [And77] and Seymour

[Sey79] independently proposed to generalize Vizing's theorem to multi-

graphs (graphs with multiple edges). Speci�cally, we have the following

conjecture:

Conjecture 1 (Goldberg-Seymour conjecture)

�0 � maxf�+ 1; d��eg

Seymour also suggested a weaker conjecture equivalent to the statement

�0 � maxf�; ��g+1. The Goldberg-Seymour conjecture has been shown to

hold for graphs with maximum degree up to 11 (see [And77, Gol77, Gol84,

NK85, NK90]). Marcotte [Mar90] proved that the conjecture is true for any

graph that does not contain K�
5

as a minor (K�
5

is obtained from K5 by

deleting an edge). Planholt and Tipnis [PT91] have veri�ed the conjecture

when � is very large, relative to jV j (� must be on the order of �(G)jV (G)j
where �(G) is the multiplicity of G). Finally, Kahn [Kah96] has shown that

the conjecture is true asymptotically.

We will not have much to say about the Goldberg-Seymour conjecture in

this thesis. Of more importance to us is the following conjecture proposed

by Hilton [CH86], which does imply the Goldberg-Seymour conjecture for

all graphs for which jV (G)j < 3�(G):

Conjecture 2 (Hilton's overfull subgraph conjecture) If G = (V;E)

is simple and �(G) > 1

3
jV j then �0(G) = d��(G)e.

The graph G obtained from Petersen's graph by removing a vertex has

chromatic index �0 > 3 but contains no overfull subgraph H such that

�(H) = �(G). So, we clearly cannot decrease 1

3
in the above conjecture

(except, perhaps, if we are are willing to forbid certain subgraphs). The
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conjecture is true for all G such that �(G) � jV (G)j�3, as proven by Plan-

tholt [Pla81, Pla83] and by Chetwynd and Hilton [CH84b, CH84a, CH89b].

Our interest in Hilton's conjecture is further motivated by the observation

that the proportion of graphs on n vertices not satisfying the conditions

of Hilton's conjecture is very, very small (at most e�cn
2

for some c > 1

40
).

This minuscule probability motivates us to to constructively prove Hilton's

conjecture, or at least a theorem with similar conditions as Hilton's conjec-

ture, and use the construction to design an algorithm that e�ciently and

optimally colors the edges of a huge proportion of all graphs.

The following special case of Hilton's conjecture has been \going around"

since the early 1950s, according to G. A. Dirac (see [Hil89]):

Conjecture 3 If G = (V;E) is a �-regular simple graph with 2k vertices

for some k � � then G is 1-factorizable (� edge colorable).

An interesting consequence of this conjecture is that for any regular graph

G either G or its complement has a 1-factorization. Chetwynd and Hilton

[CH89a] have proved the conjecture if � � (

p
7�1)
2

jV j. Furthermore Chetwynd

and Hilton [CH85] note that R. H�aggkvist has announced that for any � > 0

there exists N > 0 so that every �-regular graph G is 1-factorizable if G has

an even number of vertices greater than N and � � (1
2
+ �)jV j. We stress,

however, that Conjecture 3 still remains unresolved.

A number of additional conjectures regarding the edge-coloring properties

of graphs with high maximum degree have been proposed and can be found

in [JT95]. Many of them, however, would follow from an a�rmative answer

to Hilton's conjecture.

1.2 The central results

The following theorem is a central result of this thesis:

Theorem 2 (main theorem) There exists �0 such that for all simple

graphs G = (V;E) with maximum degree � � �0 and n = jV j � 6�,

one of the following is true:

(i) G contains a subgraph H of minimum degree �(H) � � � �79=80 and

either:
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H is bipartite, or

jV �Hj > �� 8�159=160

(ii) G contains an overfull subgraph H of maximum degree �,

(iii) G is � edge colorable.

Furthermore, there is a O(n4) randomized procedure and a O(2n) determin-

istic procedure, both of which will output either a � edge coloring of G or a

subgraph H of G that satis�es one of (i) or (ii).

The lower bound on the maximum vertex degree �0 satis�es a number of

inequalities that appear throughout this paper. A corollary of this theorem

is an asymptotic version of Hilton's conjecture with 1

3
replaced by 1

2�� (for
any � > 0):

Corollary 3 For every � > 0, there is some �1 such that for all simple

graphs G = (V;E) with maximum degree � � �1, if � � 1

2�� jV j then

�0(G) = d��(G)e

We note that when restricted to regular graphs, this corollary is equivalent

to the result announced by R. H�aggkvist: for any � > 0 there exists N > 0

so that every �-regular graph G is 1-factorizable if G has an even number

of vertices greater than N and � � (1
2
+ �)jV j.

The main application of our theorem (more precisely, of our deterministic

edge-coloring algorithm) is the other central result in this thesis. We present

a deterministic algorithm FAST COLOUR that computes an optimal edge

coloring of any simple graph in polynomial time on average, assuming a

uniform distribution of the input graphs.

1.3 Preliminaries

In this section, we give a sampling of relevant results from graph theory, al-

gorithms and complexity theory, polyhedral combinatorics and probabilistic

methods. We choose to prove in detail the results we use extensively in this

thesis.
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1.3.1 Graph theory

A graph G = (V;E) is de�ned by a set of vertices V = V (G) and a multi-

set of edges E = E(G) between pairs of di�erent vertices. Note that we

allow multiple (or parallel) edges but do not allow loops (e.g. (v; v) for

some v 2 V ). The multiplicity of an edge (u; v) 2 E is the number of

occurrences of (u; v) in E and is denoted by �(u; v). The multiplicity of G

is de�ned as � = maxf�(u; v) : (u; v) 2 Eg. If � � 1, we call G simple.

We denote by E(H) the set of edges induced by a subsetH of V , i.e. all edges

in E with both endpoints in H. We often will abuse notation and denote by

H the subgraph of G de�ned by (H;E(H)). We de�ne E(X;Y ) = f(x; y) 2
E(G) : x 2 X and y 2 Y g for disjoint subsets X and Y of V (G), and we call

(X;Y ) the bipartite subgraph with vertex set X [ Y and edge set E(X;Y ).

(We recall that G is bipartite if its vertices can be partitioned into sets A

and B such that A and B induce empty subgraphs.)

Two vertices are adjacent if they are endpoints of some edge in E, and an

edge is incident to a vertex v if v is an endpoint of the edge. The degree

of a vertex v in the graph G is the number of edges of G incident to v and

is denoted dG(v), or simply d(v). We also use dGS (v) = jE(fvg; S � fvg)j,
or simply dS(v). The maximum vertex degree in G is denoted by �(G)

or simply � and the minimum vertex degree in G is denoted by �(G) or

simply �. We emphasize that if H � V , then �(H) = �(H;E(H)) and

�(H) = �(H;E(H)). G is r-regular if � = � = r.

A matching in a graph G = (V;E) is a set of edges no two of which share

an endpoint. A k edge coloring of a graph is a partition of its edges into

k matchings. The chromatic index of G, denoted �0(G) or simply �0, is
the least k for which a k edge coloring of G exists. It is easy to see that

�0(G) � �. For a deeper, although somewhat outdated, treatment of edge

coloring, see [FW77]. Given a matching M of G, a path P is M -alternating

if its edges are alternately in and out of M . If, in addition, the �rst edge

and the last edge of P do not belong to M , the path is M -augmenting (see

�gure 1.2); we note that a matching of cardinality jM j + 1 is obtained by

removing all edges of M \ P from M and adding the remaining edges of P

to M . Given matchings M and N , a path P is MN -alternating if its edges

are alternating between edges in M and edges in N .

G0 is a reduction of G if �(G0) = �(G) � l and there exists a set of

matchings fM1;M2; :::;Mlg such that G0 = G �M1 �M2 � ::: �Ml. We
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b c

d

fe
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Figure 1.2: Matching M (bold edges) and an M -augmenting path

remark that given disjoint matchings M1; :::;Ml in a graph G = G0 and

setting Gi = Gi�1 �Mi we have that each Gi is a reduction of G if and

only if for each i, every vertex of maximum degree in Gi�1 is the endpoint
of some edge of Mi. The observation critical to our problem is that if G0 is
k edge colorable then G is k + l colorable; in particular, if G0 is �(G0) edge
colorable, then G is � edge colorable.

For the additional graph theoretic concepts that we use, look in [BM76]. In

the remainder of this discussion, we give the details of Fournier's [Fou73]

edge coloring algorithm and in the process we prove Vizing's adjacency

lemma [Viz64]. We will repeatedly make use of these throughout the thesis.

Fournier's algorithm and Vizing's adjacency lemma

In order to color the edges of a simple graph G = (V;E) of maximum degree

� with k > � colors, we iteratively color an additional edge of G until all

edges of G are colored. If k = �, since not all graphs are � edge colorable,

we will give a su�cient condition which, if satis�ed, allows us to extend a �

edge coloring of G�(u; v) to a coloring of G. We extend a k edge coloring of

G� (v; w), where (v; w) is an edge of G, to a k edge coloring of G as follows:

1. Let � and � be some colors among the k colors missing at v and w,

respectively. Those colors must exist since both v and w are incident

to at most � � 1 colored edges. If � = � we easily color (v; w) with

color �. If v and w belong to separate components of the subgraph

��, de�ned by all �- and �-colored edges of G� (v; w), we interchange

the colors � and � on the connected (path) component starting at v
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in �� (so that v misses �) and we color (v; w) with color �.

2. If we are not successful in step 1., then v and w are the endpoints of a

connected (path) component of ��. Furthermore, we can assume that

for any color 
 missing at w, v and w are the endpoints of a connected

(path) component of �
 (otherwise, we can color (v; w) in step 1. by

replacing � with 
). We now construct a recoloring sequence of distinct

vertices w1 = w;w2; :::; wl adjacent to v de�ned so that:

(i) there are distinct color classes �1 = �; :::; �l�1 with �i missing at

wi and (v; wi+1) is colored �i,

(ii) for every i = 1; :::; l � 1 and for every color 
 missed at wi, v

and wi are the endpoints of a connected (path) component of �


(note that (v; wi+1) belongs to the connected (path) component

of ��i),

(iii) there is some color �� missing at wl, where either:

a. �� misses v, or

b. wl and v belong to separate connected components of ���, or
c. �� = �i for some i < l � 1.

Given such a recoloring sequence, we construct a k-edge coloring as

follows. We �rst move each color �i (for i = 1; :::; l� 1) from (v; wi+1)

to (v; wi). This leaves (v; wl) uncolored. In case a., we color (v; wl)

with color ��. In case b., we interchange the colors � and �� on the

connected (path) component starting with v (so that v misses B�)
and we color (v; wl) with color ��. In case c., we note v and wl are in

separate components of ��i: the connected component starting from

v with the edge (v; wi) ends in wi+1. We interchange the colors � and

�i on the connected (path) component starting at wl (so that v misses

�) and we color (v; wl) with color �.

We construct a recoloring sequence iteratively and we start each iteration

i by picking some �i missed at vertex wi. Since the colors �1; :::; �l are all

distinct and di�erent from �, l must be smaller than the total number of

available colors k. The important observation, then, is that a recoloring

sequence can be constructed if and only if at every iteration i there is some

�i missing at wi. Clearly, if k � �+ 1, there always is such a color so that

G is always k edge colorable (Vizing's theorem).

If k = � however, some vertex wl of degree � may have no missing colors,

and a recoloring sequence starting with vertex w1 missing color �1 may
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be impossible to construct. In this case, we call the sequence of edges

(v; w2); :::; (v; wl) a fan sequence induced by �1. While there may be dif-

ferent fan sequences induced by �1, we observe that no two fan sequences

induced by di�erent colors missed at w1 can share an edge. This is because

if one traverses the fan sequence backwards from (v; wi) colored with color

�i�1, then the sequence of edges (v; wi�1); (v; wi�2); :::; (v; w1), and conse-

quently �i�2; :::; �1, is uniquely determined. So for every color missing at

w1 for which we cannot construct a recoloring sequence, there exists at least

one edge (v; wl) such that wl has maximum degree and such that (v; wl)

does not belong to any fan sequence induced by another color missed at w1

.

This argument implies that we are able to � edge color G if G� (v; w) has

a � edge coloring such that the number of colors missing at w is greater

than the number of neighbors of v with maximum degree. This observation

is exactly Vizing's adjacency lemma:

Lemma 4 (Vizing's Adjacency Lemma) Let G = (V;E) be a simple

graph of maximum degree � such that G � (v; w) is � edge colorable, for

some edge (v; w) 2 E. If

d(w) + jfx 2 V : (x; v) 2 E and d(x) = �gj < �+ 1

then G is also � edge colorable.

The algorithm we described extends a k edge coloring of G � (v; w) to a k

edge coloring of G in O(n3) time. We actually do a bit of extra work: O(n2)

time su�ces. Thus, a graph can be k edge colored using Fournier's algorithm

in time O(n4). We will also use the multigraph version of Vizing's adjacency

lemma, along with the corresponding O(n4) edge coloring algorithm:

Lemma 5 (Vizing's Adjacency Lemma, for multigraphs) Let G =

(V;E) be a multigraph of maximum degree � and multiplicity � such that

G� (v; w) is � edge colorable, for some edge (v; w) 2 E. If

d(w) +
X
x2X

�(v; x) < �+ 1

where X = fx 2 N(v) : d(x) > ���(v; x)g, then G is also � edge colorable.
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1.3.2 Algorithms and complexity

We give some standard terminology for classifying problems by their under-

lying complexity (much more detail can be found in [GJ79, Pap94, Sip96]).

We consider only decision problems, i.e. problems that can be phrased

as a question with a positive or negative answer. For example, the perfect

matching problem can be phrased as: "Does G contain a perfect match-

ing?", while the the edge coloring problem for simple graphs can be stated

as: "Does G permit a � edge coloring?". An optimization problem can be

reduced to a decision problem using binary search. For example, �nding a

maximum matching in a graph G can be reduced to the problem: \Does G

contain a matching of size k?".

The class of problems solvable in time that is bounded by a polynomial with

respect to the input size is denoted by P. A problem is in the set NP if for

every input that has a positive answer there is a certi�cate from which the

correctness of the answer can be derived in polynomial time (more concisely,

a em good certi�cate). The perfect matching problem is in NP since a per-

fect matching is a good certi�cate. The edge coloring problem also belongs

to NP, since a � edge coloring of an input graph G is good certi�cate. Most

other combinatorial optimization problems are also in NP , which trivially

contains P. While it is an open question whether the containment is proper,

it is widely believed that it is.

NP-complete problems are the hardest problems inNP: if oneNP-complete

can be solved in polynomial time, then then everyNP-complete problem can

be solved in polynomial time. The edge coloring problem is NP-complete

as shown by Holyer [Hol81] while the maximum matching problem (and

consequently the perfect matching problem) is not (assuming P 6= NP) by
Edmonds' polynomial time maximum matching algorithm [Edm65b].

A problem is in co-NP if, for every input that has a negative answer, there

is a good certi�cate (i.e. a certi�cate from which the correctness of the

negative answer can be deduced in polynomial time). A problem in P is

trivially in co-NP because we can check a negative answer by simply solving

the problem using a polynomial time algorithm. More generally, a problem

inNP\ co-NP has good certi�cates for both positive and negative answers.

The perfect matching problem is in co-NP because of the following seminal

result:

Theorem 6 (Tutte's theorem) [Tut47] A graph G = (V;E) does not
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contain a perfect matching if and only if there exists S � V such that

o(G� S) > jSj

where o(G� S) is the number of odd connected components of G� S. Be-

cause Tutte's theorem gives good certi�cates for both positive and negative

answers, it is called a good characterization.

It is unknown whether NP = co-NP . If the answer is negative (as it is

believed to be), no NP-complete problem can have a good characterization.

For example, an overfull subgraph of maximum degree �(G) is a certi�cate

for a graph not being � edge colorable, but there exist graphs that are not

� edge colorable which have no such overfull subgraph. So, this does not

put edge coloring into co- NP. However, an overfull subgraph of maximum

degree �(G) is a good certi�cate for many important classes of graphs.

This thesis explores, among other things, the classes of graphs that accept

an overfull subgraph as a good certi�cate for a negative answer to an edge

coloring problem.

We remark that in the above discussion, strict guarantees on performance,

such as worst-case running time and determinism, are assumed. Other com-

puting performance paradigms, with more tolerant requirements, have been

proposed and used. In 1.3.4 we will discuss the uses of randomization in the

design and analysis of algorithms.

1.3.3 Polyhedral combinatorics

We discuss here some of the polyhedral combinatorics issues that this thesis

addresses. For an in-depth overview of polyhedral combinatorics, see [Sch86,

CCPS98].

We recall from the introductory section 1.1, the de�nition of the fractional

chromatic index using the following linear program:

��(G) = min
X
M2M

yM (1.4)

subject to:

(i)
X

M2Me

yM = 1, for all e 2 E,
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(ii) yM � 0, for all M 2M,

where M(G) (or simplyM) is the set of all matchings of G andMe(G) (or

simplyMe) is the set of all matchings of G that contain the edge e 2 E(G).

The dual of this LP is given by:

��(G) = max
X
e2E

xe (1.5)

subject to:

(i)
X
e2M

xe � 1, for all M 2M,

(ii) xe � 0, for all e 2 E

Note that the dual LP may have exponentially many constraints (one for

each matching). However, a candidate solution to the dual can be seen as

an assignment of weights to the edges and a violated constraint (if any) can

be found by solving a maximum weighted matching problem. It follows that

��(G) can be computed in polynomial time using the ellipsoid method (see

[Kha79]).

For our purposes, the heavy handed ellipsoid method is not really necessary.

We describe a strictly combinatorial approach for simple graphs that allows

us to compute ��(G) in polynomial time.

In order to obtain a formula for the fractional chromatic index, we use Ed-

monds' characterization of the matching polytope [Edm65a]: given a graph

G, the matching polytope M(G) is the set of convex combinations of char-

acteristic vectors (in f0; 1gjEj) of the matchings of G. Edmonds has shown

that M(G) is de�ned by:

(i) x(�(v)) � 1, for all v 2 V ,

(ii) x(E(H)) � 1

2
(jHj � 1), for all H � V , jHj � 3 and odd,

(iii) xe � 0, for all e 2 E.

where x is a vector in RjEj, �(v) is the set of edges incident to v and E(H)

is the set of edges induced by vertices in H. Edmonds' characterization of

the matching polytope yields a formula for �� (see [Sey79], [LP86]):
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��(G) = maxf�(G);max
H2H

2jE(H)j
jHj � 1

g

where H is the set of all subgraphs of G with an odd number of 3 or more

vertices.

Proof: Let iM 2 f0; 1gjEj be the characteristic vector of matching M ,

for every M 2 M, and let iE be the vector of all ones. We observe thatP
M2MwM = � if and only

P
M2M

wM
�
iM is a convex combination of match-

ings. Further
P

M2Me
wM = 1 is equivalent to

P
M2Me

wM
� = 1

� . Thus we

obtain the following fact: there exists fwMgM2M satisfying the linear pro-

gram 1.4 if and only if 1

� iE is in the matching polytope.

Using Edmonds' characterization of the matching polytope, we see that G

has a fractional coloring fwMgM2M with
P

M2MwM = � i�

X
u2N(v)

1

�
� 1 (1.6)

for all v 2 V and

X
v2H

1

�
� 1 (1.7)

for all H � V such that jHj = 2k + 1 for some integer k � 1. In other

words, � � � and � � maxH2H
2jE(H)j
jHj�1 . So the fractional chromatic in-

dex of G is the minimum � satisfying these two inequalities, i.e. it is

maxf�;maxH2H
2jE(H)j
jHj�1 g. 2

In the case of a simple graph G, we can reduce the problem of comput-

ing ��(G) to the problem of determining whether G contains an overfull

subgraph H of maximum degree � using binary search. (We recall that

a graph H is overfull if jE(H)j > �(H)
jHj�1

2
.) If G is �-regular, this is

equivalent to determining if V (G) has a partition (V1; V2) so that jV1j and
jV2j are both odd (an odd cutset) and jE(V1; V2)j < �. More generally, to

determine if G has an overfull subraph of maximum degree �, we need to

check whether an auxiliary graph contains an odd cutset with fewer than �

edges. We obtain this auxiliary graph G� by adding an extra vertex v� to
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V and additional edges to E that are incident to v� so that each vertex in

V has degree � in G�. If jV (G�)j is even, we label all vertices of G� odd,
otherwise we label v� even and the remaining vertices odd; note that the

number of odd-labeled vertices in G� is even. We call a partition (V1; V2)

of V (G�) and odd cutset if V1 and V2 contain odd numbers of odd-labeled

vertices. We observe that if H is a subset of V (G�)� v� of odd cardinality

greater than 1, then H induces an overfull subgraph in G of maximum de-

gree � if and only if jE(H;V (G�)�H)j is less than �. So, we will be done

if we can �nd the minimum odd cutset in G�, i.e. the odd cutset (V1; V2)

minimizing jE(V1; V2)j. Padberg and Rao provide an algorithm to compute,

in O(n4) time, the minimum odd cutset, by modifying Gomory and Hu's

[GH61] algorithm for �nding the minimum cutset between a set of terminal

nodes (odd-labeled vertices in our terminology).

For completeness, we summarize Padberg and Rao's recursive procedure to

determine the minimum odd cutset of G�. We �rst compute the minimum

cutset (V1; V2) of G
� using a standard maximum 
ow - minimum cut network


ow algorithm. If (V1; V2) is an odd cutset, we are done. Otherwise, it can

be shown that there is a minimum odd cutset (V 0
1
; V 0

2
) of G� such that either

V 0
1
� V1 or V

0
2
� V2. So, we only need to recursively determine the minimum

odd cutset of the subgraphs ofG� induced by V1+v2 and V2+v1, where v1 and
v2 are vertices obtained by identifying all vertices in V1 and V2, respectively

(we let v1 and v2 be even-labeled). Since the recursion tree contains at most

n� 1 vertices, and at each node of the tree, we only need to solve a network


ow problem (in time O(n3), see [LP86]), the total running time is O(n4).

We note that the maximum 
ow - minimum cut problem is equivalent to the

problem of �nding a maximum matching in a bipartite graph. This problem

in turn is the core of the algorithm for edge coloring bipartite graphs (see e.g.

[LP86]). Thus, in a certain sense, Padberg and Rao's algorithm computes

��(G) by repeatedly computing �0 for some bipartite graph.

1.3.4 Probability

A �nite probability space consists of a �nite set 
 (the domain) and a func-

tion Pr : 
 ! [0; 1] (the probability distribution), such that
P

x2
 Pr(x) =
1. A probability space represents a random experiment where we choose a

member of 
 at random and Pr(x) is the probability that x is chosen. For

any X � 
, we de�ne Pr(X) =
P

x2X Pr(X), the probability that a member

of X is chosen.
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The most common probability distribution, and the only one we will be

using in this thesis, is the uniform probability distribution which is de�ned

as Pr(x) = 1=j
j: a uniformly chosen member of 
 is a random choice where

each member is equally likely.

A random variable X is a variable de�ned as a function of the domain of

a probability space. A random event is a random variable whose value can

be true or false. The subadditivity of probabilities property states that for

events E1; :::; En,

Pr(E1 _ ::: _En) �
nX
i=1

Pr(Ei)

Two random events X and Y are independent if Pr(A^B) = Pr(A)�Pr(B).

The random events X1; :::;Xn are mutually independent if Pr(Xi1 ^ ::: ^
Xik) = Pr(Xi1)� :::� Pr(Xik) for every subset fi1; i2; :::; ikg of f1; 2; :::; ng.
The expected value (or simply the mean) of a random variable X is de�ned

as Exp(X) =
P

s2
X(s) Pr(s). In order to show concentration of a random

variable around its mean we will use:

Theorem 7 (The Cherno� Bound) Let X1; :::;Xi; :::;Xn be mutually in-

dependent random variables with Pr(Xi = +1) = Pr(Xi = �1) = 1

2
and let

Sn = X1 + :::+Xn. For any a > 0,

Pr(jSnj > a) < 2e
�a2

2n

Finally, we will use the standard notation Gn;p to denote the random graph

with vertex set Vn = f1; 2; :::; ng in which each one of the

�
n

2

�
possible

edges occurs independently with probability p.

We �nish now the discussion on algorithms and complexity started earlier.

Once we introduce probability in computation, we have at our disposal not

only powerful probabilistic tools, but also the 
exibility in setting more

tolerant performance guarantees. By accepting that an algorithm may fail

with small probability (failure can mean returning an incorrect answer or

not stopping within a set time), we hope that we can show that larger classes

of problems can be computed e�ciently.
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One approach to using probability in computation is to allow a coin to

be 
ipped at each step of an algorithm and choose one of two possible

steps depending on the outcome of the 
ip. The class RP includes all

problems that, with a small probability of failure (returning NO if the correct

answer is YES), can be solved in polynomial time with such a procedure.

(Precise de�nitions ofRP and other complexity classes based on randomized

algorithms can be found in [MR95].) It is easy to see that RP � NP and it

is not known whether the containment is strict. It is believed however that

RP 6= NP so it is unlikely that there exists a randomized polynomial time

algorithm for the edge coloring problem, and, for that matter, for any other

NP-complete problem.

A di�erent approach to relaxing the performance guarantees of a determin-

istic algorithm is to allow the running times to be super-polynomial for only

a small number of inputs. More precisely, we require the running time to

be polynomial on an average input only, assuming a speci�ed probabilistic

distribution of the inputs. Expected time algorithms typically involve the

application of di�erent procedures in succession: we apply a procedure to

an input if the previous procedures fail on that input. We note that an

algorithm has polynomial expected time if the running time of a procedure

multiplied by the probability that previous procedures failed on that input

is a polynomial in the size of the input. Examples of graph problems for

which expected polynomial time algorithms are known include vertex col-

oring [DF89] and the Hamilton cycle problem [BFF87]. A recent survey by

Frieze and McDiarmid [FM97] describes the state of the art in the area of

average case analysis of algorithms.

We lastly discuss two results directly relevant to our objectives. Erd�os and

Wilson [EW77] showed that the proportion of labelled graphs on n vertices

with more than one vertex of maximum degree is at most O(n logn)�
1

2 . It

follows from Fournier's algorithm that a random graph Gn; 1
2

can be colored

with � colors with probability of failure at most O(n log n)�
1

2 . In 1986,

Frieze, Jackson, McDiarmid and Reed [FJMR88] presented a O(n4) time

algorithm that optimally colors the edges of Gn; 1
2

with probability of failure

e�cn logn for any c < 1

8
. They observed that if there is a procedure that

optimally edge-colors all graphs of order n in worst-case time e�n log n for

some � < 1

8
, it could be the second step of a polynomial expected time al-

gorithm, with their algorithm being the �rst step. Their algorithm is in fact

the �rst in the sequence of procedures that are part of our algorithm FAST

COLOUR that optimally colors the edges of a simple graph in polynomial
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time on average.
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Chapter 2

The results

2.1 Graphs of high degree

Our main result is a proof of a weakening of Hilton's Conjecture for graphs

with su�ciently large degree. This result allows us to develop an algorithm

for edge coloring which runs in polynomial time on average. The precise

result we prove is:

Theorem 8 (main theorem) There exists �0 such that for all simple

graphs G = (V;E) with maximum degree � � �0 and n = jV j � 6�,

one of the following is true:

(i) G contains a subgraph H such that �(H) � ���79=80 and either:

H is bipartite, or

jV �Hj > �� 8�159=160

(ii) G contains an overfull subgraph H of maximum degree �,

(iii) G is � edge colorable.

Furthermore, there is a O(n4) randomized procedure and a O(2n) determin-

istic procedure, both of which will output either a � edge coloring of G or a

subgraph H of G that satis�es (i).

21
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The lower bound on the maximum vertex degree �0 satis�es a number of

inequalities that appear throughout this paper. We also remark that, in this

thesis, we sacri�ce sharper bounds for clarity of presentation.

Note that if we could drop condition (i) then the main theorem would

imply Hilton's conjecture asymptotically. We do obtain, as a corollary to

the main theorem, the following asymptotic version of Hilton's conjecture

with 1

3
replaced by 1

2�� (where � > 0):

Corollary 9 For every � > 0, there is some �1 such that for all simple

graphs G = (V;E) with maximum degree � � �1 and � > 1

2�� jV j:

�0(G) = d��(G)e

Proof: Given �, let G = (V;E) be a graph of maximum degree � � �1 =

maxf�0; 9�
�1=160g such that jV j � (2 � �)�. If G contains a subgraph

H which satis�es (i) in the main theorem, then either H is bipartite and

jV j � jHj � 2� � 2�159=160 or jV j � jHj + jV � Hj � 2� � 9�159=160.

Since jV j � 2� � ��, it follows that � � 9��1=160, a contradiction. So

either G contains an overfull subgraph of maximum degree � or G is �

edge colorable. 2

Because �-regular graphs with jV j = 2k and k � � can not contain an

overfull subgraph of maximum degree �, our corollary is equivalent to the

result announced by R. H�aggkvist: for any � > 0 there exists N > 0 so

that every �-regular graph G is 1-factorizable if G has an even number of

vertices greater than N and � � (1
2
+ �)jV j.

The proof of our main theorem is long and complicated; its details comprise

chapters 3 { 6 of this thesis. In this chapter, we content ourselves with

sketching the proof and explaining why we need condition (i). We do this

in section 2.4. To ease our exposition, we �rst present, in sections 2.3 and

2.5, the complete proof of the following special case of the main theorem:

Theorem 10 (regular theorem) There exists �0 such that for all simple

regular graphs G = (V;E) of degree � � �0 with jV j = 2k where k � �,

one of the following is true:

(i) G contains a subgraph H such that �(H) � ���79=80 and either:
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H is bipartite, or

jV �Hj > �� 2�79=80

(ii) G is � edge colorable.

Furthermore, there is a O(n4) randomized procedure and a O(2n) determin-

istic procedure, both of which will output either a � edge coloring of G or a

subgraph H of G that satis�es (i).

Remark: a �-regular graph G = (V;E) with jV j = 2k and k � � cannot

possibly contain an overfull subgraph of maximum degree �.

Thus, our description of the proof of the main theorem starts in section 2.3

and occupies the remainder of the thesis. Before beginning this discussion,

we digress brie
y to present a deterministic edge coloring algorithm which

runs in polynomial time on average.

2.2 Edge coloring quickly, on average

We present FAST COLOUR, a deterministic algorithm for optimally color-

ing the edges of any simple graph. We will prove that the expected running

time of FAST COLOUR on an input graph with n vertices is a polynomial

in n, assuming a uniform distribution of graphs with n vertices.

Our algorithm applies a number of procedures in succession. Most of the pro-

cedures we use we have already mentioned. As a last resort we use dynamic

programming. We begin our discussion by presenting the dynamic program-

ming procedures we need. We assume that the input graph G = (V;E) is

the random graph Gn; 1
2

where n = jV j. In other words, every labeled graph

with n vertices is equally likely. (While the uniform distribution of labeled

graphs does not correspond exactly to the uniform distribution of unlabeled

graphs, the result easily extends to the second distribution.)

In describing the three dynamic programming procedures we use, we will

use the fact that a graph with r vertices contains fewer than r! r
2
matchings,

for we can specify a matching by �rst specifying an order on the vertices

which breaks them into pairs and then letting the matching consist of the

�rst j of these pairs for some j � r
2
.

We will use the following dynamic programming algorithm:
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Standard dynamic programming We compute �0(H) for each subgraph

H of G, considering subgraphs with fewer edges earlier. Observe that

for each H � G (with E(H) 6= ;), �0(H) = 1 +minf�0(H �M)jM 2
M and M is non-emptyg. So, we �nd an optimal edge coloring of H

by choosing some M attaining this minimum and adding M to an

optimal colouring of H �M .

Since G has 2jE(G)j subgraphsH and we spend at most O(n!n
2
) time comput-

ing �0(H), we can compute an optimal edge coloring of G in 2jE(G)j+O(n log n)

time.

In addition to this standard dynamic programming procedure, we will also

use another, more restricted, version. Given a list of forbidden colors for

each vertex of G, we will need to determine if G has a � edge coloring such

that no edge incident to a vertex v is colored with a color forbidden on v,

and furthermore, we need to �nd such a colouring if one exists. In order

to describe the restricted dynamic programming procedure we de�ne some

terminology. An i-proper matching is a matching no edge of which is

incident to a vertex on which i is forbidden. A proper edge colouring is

one in which for each i, the edges of colour i form an i-proper matching.

Restricted dynamic programming For each subgraph H of G and each

subset S of f1; :::;�g (considering subgraphs H with fewer edges and

subsets S of smaller cardinality earlier), we determine ifH has a proper

edge coloring using the colors of S. This will be true if and only if for

some j in S and some j-proper matchingM , H�M has a proper edge

coloring using the colors in S � j. If such j and M exist, we �nd the

proper edge coloring of H using the colors from S by addingM to the

proper edge coloring of H �M using the colors in S � j.

SinceG has 2jE(G)j subgraphs, since there are at most 2n subsets of f1; :::;�g
and since there are at most O(n!n

2
) matchings in G, we compute an optimal

edge coloring of G in 2jE(G)j+O(n log n) time.

We will use the restricted dynamic programming procedure if G permits a

partition of its vertex set into A and B such that jE(A;B)j is \small" (which

we specify below) as follows:

Extended dynamic programming For each coloring of E(A;B), we de-

termine, separately for A and B, whether the coloring extends to
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E(A) +E(A;B) (resp. E(B) +E(A;B)) using the restricted dynamic

programming procedure.

Note that there are at most �jE(A;B)j < 2jE(A;B)j log n edge colorings of

E(A;B). The deterministic running time of this last procedure is then

2jE(A)j+O(jE(A;B)j log n) + 2jE(B)j+O(jE(A;B)j log n).

The FAST COLOUR algorithm

We �rst attempt the following:

1. We apply the edge-coloring procedure by Frieze, Jackson, McDiarmid

and Reed [FJMR88] to optimally color the edges of G with � colors.

As noted in the preliminaries (section 1.3), the running time of this proce-

dure is O(n4) and the probability of failure on an input graph G is e�cn log n

for some c < 1

8
. If we fail in step 1, we move to the following step:

2. We apply the algorithm by Padberg and Rao [PR82] to determine whether

G contains an overfull subgraph of maximum degree �. If G does con-

tain such a subgraph, we apply the edge coloring algorithm by Fournier

[Fou73] to optimally color the edges of G with �+ 1 colors.

The deterministic running time of step 2 is O(n4). If G fails in step 1 and

does not contain an overfull subgraph of maximum degree �, we apply the

algorithm implied by our main theorem as follows:

3. If jV j � 6�, we apply our edge-coloring procedure to optimally color the

edges of G with � colors or to �nd a subgraph H of G of minimum

degree �(H) � ���79=80 such that either H is bipartite or jV �Hj >
�� 8�159=160.

By the main theorem, the deterministic running time of the third step is

O(2n). However, the expected running time of the third step on the random

graph G is O(2ne�cn log n)
= o(1).

If we fail to optimally color the edges of G in steps 1, 2 and 3, then one of

the following must be true:

(a) n = jV j > 6�,
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(b) G contains a subgraph H of G of minimum degree �(H) � ���79=80

such that jV �Hj > �� 8�159=160.

(c) G contains a subgraph H of minimum degree �(H) � ���79=80 such

that H is bipartite.

In each one of these cases we need to apply brute force dynamic programming

as follows:

4. If jV j > 6� (case (a)), we just use the standard dynamic programming

procedure. In cases (b) and (c), we set A = H and B = V �H and

we observe that jE(A;B)j < jAj�79=80 < 6�159=80. We simply apply

the extended dynamic programming procedure in those cases.

Lemma 11 The expected running time of step 4 is o(1).

Proof: In case (a), jEj < 1

12
n2. Thus the deterministic running time is

2
n2

12
+O(n log(n)) by our analysis of the standard procedure. Using the Cherno�

bound (theorem 7), we show that Pr(jEj < 1

12
n2) < 2

�n2

9 . So, the expected

time on the random graph G in this case is o(1).

In case (b), we show that for any �xed partition (A;B) = (H;V � H)

of V , the expected running time on a random graph G is o(2�n). The

lemma then follows by summing the probabilities over all 2n partitions and

subadditivity. So, by our analysis of the extended procedure, and since

jE(A;B)j log n < o(n2), it su�ces to show :

Pr( (b) holds for (A;B))(2jE(A)j+o(n
2
) + 2jE(B)j+o(n

2
)) = o(2�n)

We actually show:

Pr((b) holds for (A;B))2jE(A)j+o(n
2
) = o(2�n) (2.1)

The result follows by symmetry.

Now, there are at most (jAjjBj)6�159=80
= 2o(n

2
) possible sets of edges

between A and B with less than 6�159=80 edges. The probability that

a particular set of edges is exactly E(A;B) is 2�jAjjBj. It follows that
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Pr(jE(A;B)j < 6�159=80) < 2�jAjjBj+o(n
2
). Since jBj > �� 8�159=160 (part

of condition (b)) and since jE(A)j < 1

2
jAj�, equation 2.1 follows.

In case (c), it su�ces to show that for any �xed partition (X;Y;B) of

V the expected running time on a random graph G is o(3�n) (where X

and Y are the two sides of the bipartite graph A = H and B = V � H).

If (c) holds for this partition (but not (b)), then dY (x) > � � �79=80

for every x 2 X and dX(y) > � � �79=80 for every y 2 Y . It follows

that jE(A)j � jXjjY j + jE(X)j + jE(Y )j < jXjjY j + 6�159=80 and also

jE(A)j < jXj�+6�159=80. In addition, jY j� > jE(X;Y )j > jXj(���79=80)

and, using a symmetric argument, we obtain jjY j � jXjj < 3�79=80. So,

jXj; jY j < 3� + 2�79=80. Finally, since jBj < �� 8�159=160 then jE(B)j <
jE(A)j. Thus, by our analysis of the extended procedure it su�ces to show:

Pr((c) holds for (X;Y;B))2jE(A)j+o(n
2
) = o(3�n) (2.2)

Given X, there are less than (jXjjXj)4�159=80
< 28n

159=80
log n possible sets

of edges in X with less than (3� + 2�79=80)�79=80 < 4�159=80 edges. The

probability that a particular set of edges inX is exactly E(X) is 2�(
X
2
). By a

symmetric argument on Y and because X and Y are disjoint, it follows that

Pr(jE(X)j < 4�159=80 and jE(Y )j < 4�159=80) < 2�(
X
2
)�(Y

2
)+8n159=80 log n <

2�jXj
2
+9n159=80 log n. Since jE(A)j < jXj� + 6�159=80, equation 2.2 follows,

unless jXj < �+�159=160 (and jY j < �+�159=160).

If jXj < � + �159=160 and jY j < � + �159=160, then (� � �79=80)2 <

jE(X;Y )j < �(�+�159=160 which implies that there are less than 2o(n
2
) pos-

sible sets of edges betweenX and Y of cardinality greater than (���79=80)2.

The probability that a particular set of edges between X and Y is exactly

E(X;Y ) is 2�jXjjY j. So, Pr(jE(X;Y )j > (� � �79=80)2 < 2�jXjjY j+o(n
2
)

and Pr(jE(X)j < 4�159=80 and jE(Y )j < 4�159=80 and jE(X;Y )j > (� �
�79=80)2) < 2�jXj

2�jXjjY j+o(n2), and once again equation 2.2 follows. 2

2.3 The regular case

We give a short and complete proof of the main theorem in the special case

of �-regular simple graphs with 2k vertices for some k � �. More precisely,

we prove the following:
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Theorem 12 (regular theorem) There exists �0 such that for all simple

regular graphs G = (V;E) of degree � � �0 and jV j = 2k for some k � �,

one of the following is true:

(i) G contains a subgraph H such that �(H) � ���79=80 and either:

H is bipartite, or

jV �Hj > �� 2�79=80

(ii) G is � edge colorable.

Furthermore, there is a O(n4) randomized procedure and a O(2n) determin-

istic procedure, both of which will output either a � edge coloring of G or a

subgraph H of G that satis�es (i).

In order to prove this theorem, we present an O(n4) algorithm that attempts

to color with � colors the edges of a simple regular graph G = (V;E) of

degree � � �0 and jV j = 2k for some k � �. Along with the graph, our

edge coloring algorithm requires that a special partition (B1; B2) of V be

given as part of the input. This partition has the property that certain sets

of vertices split about evenly between B1 and B2. Let us de�ne a split

formally:

De�nition 1 Let B1 and B2 be a partition of V . A set H � V splits within

d if jjH \B1j � jH \B2jj < d.

A partition (B1; B2) of V is called a split partition if the following are

satis�ed:

(a) jB1j = jB2j,

(b) For every v in V and for all subsets X and Y of V of size less than

20 log � the following sets split within 1

4
�11=20:

N(v); N(X); N(v) \N(X); fw 2 N(X) : dN(Y )(w) > �� 7�39=40g

In particular, the degrees \split". Also note that condition (a) implies

jE(B1)j = jE(B2)j. We will show in section 2.5 that for a suitably de�ned
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random split, the desired properties hold with positive probability. We will

also give a straightforward linear time randomized procedure that constructs

such a split. We assume from here on that a split partition (B1; B2) of V is

given.

The goal of our edge coloring algorithm is to construct disjoint perfect

matchings M1; :::;Mk such that H = G � [ki=1Mi is a bipartite reduction

of G contained in (B1; B2) (we de�ne k below). Given such matchings, one

can color the edges of G with � colors as follows: we use � � k colors

to color the edges of the bipartite graph H (using the algorithm derived

from K�onig's theorem) and then we assign the remaining k colors to the

disjoint matchings M1; :::;Mk. We will attempt to construct these match-

ings in two coloring passes. If we fail to construct the desired matchings,

we will show the existence of, and construct, sets X and Y such that either

X � B1, Y � B2 and jB1j � jXj > 1

2
� � �19=20, or X � B2, Y � B1,

jB2j � jXj > 1

2
���19=20, and, in either case, jY j < jXj+�19=20 and

8v 2 X : dY (v) >
1

2
���19=20

We call such a pair (X;Y ) a fail pair in the split partition (B1; B2). In sec-

tion 2.5 we will present a procedure that, given a fail pair (X;Y ), constructs

a subgraph H of G that satis�es condition (i) of the regular theorem.

2.3.1 The �rst coloring pass

In the �rst coloring pass, we attempt to construct �1 = d1
2
�+�3=4 log(�)e =

1

2
�+ � disjoint perfect matchings M1; :::;M�1

such that if F = G�M1 �
::: �M�1

then the reject subgraphs R1 = F \ B1 and R2 = F \ B2 have

maximum degree at most �9=10 and jE(R1)j = jE(R2)j < 1

8
�19=10. We split

the construction of the matchings into the initial coloring and the patching

step:

The initial coloring

We start by constructing an initial coloring of E(B1) [ E(B2), or, in other

words, initial matchings M 0
1
; :::;M 0

�1
. In order to do this we �rst describe a

property that we require from these initial disjoint matchings.

We will say that disjoint matchings M1; :::;Mk covering the edges of some

subgraph H of G (i.e. [ki=1Mi = E(H)) are balanced in H if for any
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1 � i < j � k:

0 � jMj \E(H)j � jMi \E(H)j � 1 (2.3)

Let M and M 0 be disjoint matchings in a graph H such that jM j > jM 0j.
We will use the following procedure to modifyM andM 0 so jM j is decreased
by one and jM 0j is increased by one, without modifyingM [M 0, as follows:

Balancing step: We consider the connected components of M [M 0 con-
sisting of cycles and paths whose edges alternate between edges in M

and edges in M 0. We observe that in all alternating cycles and in all

even length alternating paths, half the edges belong to M while the

other half belongs to M 0. In an odd length alternating path P , how-

ever, jjM \ P j � jM 0 \ P jj = 1. We pick a path connected component

P with one more edge in M than in M 0; such a path must exist since

jM j > jM 0j (see �gure 2.1). We switch the color of each edge in P .

P

Figure 2.1: Connected components (cycles, even length and odd length

paths) of subgraph de�ned by matchings M (full edges) and M 0 (dashed
edges) with jM j � jM 0j = 2

The balancing procedure

We modify any disjoint matchings M1; :::;Mk covering E(H) so that

inequalities 2.3 are satis�ed for all 1 � i < j � k as follows:

1. We recursively apply the balancing procedure to matchings M =

Mi andM
0 =Mj with largest and smallest number of edges, until

all matchings have l or l + 1 edges for some integer l.
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Note that, in each iteration, we either decrease by one the di�erence

between the largest and smallest matchings or we decrease by at least

one the number of largest and smallest matchings. Thus, no more than

O(n2) iterations are required.

2. We reorder the matchings so that all matchings of size l+ 1 follow

the matchings of size l.

We are ready now to describe the initial coloring. We construct disjoint

matchings M 0
1
; :::;M 0

�1
balanced in B1 and in B2 such that [�1

i=1M
0
i =

E(B1) [E(B2) as follows:

1.1 We color E(B1) using �1 (greater than �(B1);�(B2)) colors by apply-

ing Fournier's algorithm to obtain initial disjoint matchingsM1

1
;M1

2
; :::;M1

�1

covering E(B1); similarly we obtain disjoint matchingsM2

1
;M2

2
; :::;M2

�1

covering E(B2).

1.2 We modify the matchings obtained in 1.1 so M1

1
;M1

2
; :::;M1

�1
are bal-

anced in B1 and M2

1
;M2

2
; :::;M2

�1
are balanced in B2.

1.3 We set M 0
i =M1

i [M2

i for every i = 1; :::;�1.

Note that jM 0
i\E(B1)j = jM 0

i\E(B2)j for every i = 1; :::;�1 since jE(B1)j =
jE(B2)j. Let n(B1; i) and n(B2; i) be the number of vertices in B1 and B2,

respectively, missed by M 0
i , for i = 1; :::;�1. Then,

Claim 1 n(B1; i) = n(B2; i) < 3� for i = 1; :::;�1.

Proof: Clearly, it is enough to show n(B1; i) < 3� for every i = 1; :::;�1.

By the de�nition of a split partition no vertex will be missed by more than
9

8
� matchings M 0

1
; :::;M 0

�1
. Since the matchings are balanced in B1, the

di�erence between the number of vertices in B1 missed by any two matchings

M 0
i and M 0

j is at most 2. Since jB1j is at most �, it follows that

n(B1; i) = (�1)
�1(�

9

8
�) + 2 � 3�

for every i = 1; :::;�1. 2
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The patching

Once we obtain an initial coloring M 0
1
; :::;M 0

�1
, we recursively construct the

perfect matchings Mi by augmenting M 0
i along vertex disjoint patches in

F = G �M1 � ::: �Mi�1; a patch is a M 0
i-augmenting path whose edges

alternate between edges in the bipartition and edges in the matching Mi.

We will actually insist that every patch has an endpoint in B1 and the other

in B2. The edges ofM
0
i on the patch that get uncolored by the augmentation

are added to reject graphsR1 andR2. If we are not successful in constructing

a patch between two vertices missed by M 0
i , we will show that there exists

a fail pair (X;Y ) in (B1; B2).

Let x1; :::; xs and y1; :::; ys be the vertices in B1 and B2, respectively, that

are missed by M 0
i . Note that s = n(B1; i) � 3�. For r = 1; :::; s, we attempt

to construct a patch Pr in F from xr to yr, vertex disjoint from P1; :::; Pr�1,
as follows:

2.1 If there is an edge in F between xr and yr, we set Pr to consist of

(xr; yr) only. Otherwise, we de�ne a vertex v 2 B to be unavailable

if it belongs to a patch constructed in the previous d�1=10e matchings

(Mi�1; :::;Mi�d�1=10e) or if it belongs to one of P1; :::; Pr�1. We call a

vertex v available if v is not unavailable and is not matched in M 0
i

with an unavailable vertex.

2.2 Let Y 1 be the set of all available vertices in B2 \NF (xr) and let Y 2 =

fv 2 B2 : (v; u) 2 M 0
i and u 2 Y 1g. Similarly, let X1 be the set of

all available vertices in B1 \ NF (yr) and let X2 = fv 2 B1 : (v; u) 2
M 0

i and u 2 X1g. If there is an edge in F between a vertex vx in X2

and a vertex vy in Y 2 we let the patch Pr be de�ned by the sequence

of vertices xr; ux; vx; vy; uy; yr where (ux; vx) and (uy; vy) are edges of

M 0
i .

If for every i = 1; :::;�1, we successfully construct and augment the dis-

joint patches between pairs of vertices missed by M 0
i , we do obtain perfect

matchings M1; :::;M�1
. Note that no vertex will be incident to more than

�1

�1=10 < �9=10 rejected edges. Every patch contains the same number of

edges in B1 and in B2 so that jE(R1)j = jE(R2)j < 3��1 <
1

8
�19=10, for �

large enough.

2.3 If there is no edge betweenX2 and Y 2, we setX = X2 and Y = B2�Y 2.
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BB1 2

x

x

y

y

1

2

1

2

Figure 2.2: Patches of length 1 and 5

Claim 2 (X;Y ) is a fail pair in the split partition (B1; B2).

Before we prove this claim, we remark that dFB2
(v) > 1

2
�� 2�9=10 for every

v 2 B1 and dFB1
(v) > 1

2
� � 2�9=10 for every v 2 B2 since dF (v) = � � i

after iteration i, and �(R1), �(R2) are less than �9=10.

Proof: We �rst count the number of vertices in B1 (B2) that are not

available. At most 3 vertices in B1 (B2) belong to a speci�c patch. Since we

construct no more than 3� patches in any one matching, the total number

of vertices that are not available in iteration i is at most 2(d�1=10e3� <
1

4
�19=20.

To prove the claim, we must show:

(i) jY j < jXj+�19=20

We note that jXj = jX1j � dFB1
(yr) > 1

2
� � 2�9=10 � 1

4
�19=20 >

1

2
�� 1

2
�19=20. Similarly jY 2j > 1

2
�� 1

2
�19=20. Then, jY j = jB2�Y 2j �

�� 1

2
�+ 1

2
�9=10 < jXj +�19=20.

(ii) dY (v) >
1

2
���19=20 for every v 2 X:
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Since dF
Y 2(v) = 0 for every v 2 X, it follows that dY (v) � dF

B2�Y 2(v) =

dFB2
(v) > 1

2
�� 2�9=10 > 1

2
���9=10.

(iii) jB1j � jXj > 1

2
���19=20

Since dFX(v) = 0 for any v 2 Y 2, it follows that jB1�Xj � dFB1�X(v) =
dFB1

(v) � 1

2
�� 2�9=10 > 1

2
���19=20.

2

2.3.2 The second coloring pass

After the �rst coloring pass, we obtain the �-regular reduction F of G that

contains the reject graphs R1 = B1 \ F and R2 = B2 \ F of maximum

degree �9=10 such that jE(R1)j = jE(R2)j < 1

8
�19=10. Recall that dFB2

(v) >
1

2
�� 2�9=10 for every v 2 B1 and dFB1

(v) > 1

2
�� 2�9=10 for every v 2 B2.

We now attempt to construct the remaining �2 = d1
2
�19=20e disjoint perfect

matchingsM�1+1
; :::;M�1+�2

in F such that E(R1)[E(R2) � [�2

i=1M�1+i.

If successful, H = F � [�2

i=1M�1+i is clearly bipartite reduction of G. If

we fail in constructing these matchings, we will show that there exists a fail

pair (X;Y ) in the split partition (B1; B2).

The initial coloring

We construct the initial matchings M 0
�1+1

; :::;M 0
�1+�2

, balanced in B1 and

in B2, such that [�2

i=1M
0
�1+i

= E(R1) [ E(R2). We construct these initial

matchings as we did in the �rst coloring pass. We note that jM 0
�1+i

\
E(R1)j = jM 0

�1+i
\E(R2)j � 1

4
�19=20 for every i = 1; :::;�2 since jE(R1)j =

jE(R2)j < 1

8
�19=10.

The patching

We recursively constructM�1+i by augmentingM 0
�1+i

in H = F�M�1+1
�

:::�M�1+(i�1) as follows:

2.1 Let U1 and U2 be the sets of vertices missed by M 0
�1+i

in B1 and B2,

respectively. Note that jU1j = jU2j. We attempt to �nd a perfect

matching M� in the bipartite graph (U1; U2) \ H. If successful, we

simply add M� to M 0
�1+i

to obtain M�1+i.
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2.2 If there is no perfect matching in (U1; U2)\H, there must exist X � U1

such that jXj > jNH
U2
(X)j. We set Y = NF

U2
(X) [ F2, where F2 is the

set of endpoints of matching edges of M 0
�1+i

in B2.

Claim 3 (X;Y ) is a fail pair in the split partition (B1; B2).

Proof: Since jM 0
�1+i

\E(R2)j � 1

4
�19=20, it follows that jY j < jXj+jF2j <

jXj + �19=20. In addition, dY (v) = dHB2
(v) � dFB2

(v) ��2 >
1

2
� ��19=20.

Finally since jXj > jNH
U2
(X)j there exist v 2 U2 such that dHX(v) = 0. Since

dHB1
(v) > 1

2
���19=20, the claim follows. 2

2.4 Proof of the main theorem: an overview

While far more complicated, our proof of the main theorem uses a similar

approach as the proof of the regular theorem we just presented. We give

the details in chapters 3, 4, 5 and 6. We describe here the di�culties we

will encounter and the methods we will develop while extending the regular

case proof to the main theorem; we hope the reader will thus appreciate the

complexity of the task, understand the necessicity for this long and technical

proof and, perhaps, become interested and motivated to read through the

technical details!

The main theorem generalizes the regular theorem in two ways. First, it

applies to any simple graph G = (V;E) of maximum degree � � �0, not

just �-regular graphs. Second, it applies to all graphs with � � 1

6
jV j, a far

larger proportion than the proportion of graphs satisfying � � 1

2
jV j. We

discuss the second generalization �rst, as it poses no true di�culty.

In fact, when extending the proof of the regular theorem so it holds for

� � 1

6
jV j, the only substantial change is that we allow longer patches in

the �rst coloring pass. Given two vertices x 2 B1 and y 2 B2 missed by an

initial matching M 0
i , we will attempt to construct a patch between x and y,

i.e. an M 0
i -augmenting path alternating between edges in M 0

i and edges in

(B1; B2), of length up to 4�1=20+1 (see �gure 2.3). If such a patch does not

exist, we will show the existence of and construct a fail pair (X;Y ) in the

bipartition (B1; B2); in a way, a fail pair is a bottleneck that prevents two

vertices to be connected by a patch. We then use this fail pair to construct

the subgraph H of G that satis�es (i) of the regular theorem.
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x y

BB1 2

Figure 2.3: A patch of length 9 connecting vertices x and y missed by an

initial matching n E(B1) [E(B2)

It may at �rst seem surprising that in extending the regular theorem to

graphs with � � 1

6
jV j, we did not need to add a condition forbidding G to

contain an overfull subgraph of maximum degree �. After all, if � < 1

2
jV j

then G could contain an overfull subgraph H of maximum degree � and

thus G would not be � edge colorable. In this case, however, the overfull

subgraph H must contain a subgraph satisfying (i) of the regular theorem.

To see this, note �rst that H must contain a subgraphH 0 of minimum degree

��2
p
�. Furthermore, since G is �-regular, V �H must also be an overfull

subgraph of maximum degree �, implying jV � H 0j � jV � Hj > �. H 0

would thus satisfy condition (i) of the regular theorem. Thus, in the regular

case we do not need to worry about overfull subgraphs because none exist

unless condition (i) holds.

In a similar vein, when extending the regular theorem to non-regular graphs,

we take advantage of the fact that if G has an overfull subgraph F , but has

no subgraph H satisfying (i) of the main theorem, then F has a very special

structure. To understand this, we divide the vertices of G into big and small

vertices, i.e. into B = fv 2 V : d(v) > 1

2
�g and S = fv 2 V : d(v) � 1

2
�g.

Clearly, F has at most one small vertex. In fact, we can impose conditions
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on the graph G so that F contains all but one big vertex. To do so, we note

that by Vizing's adjacency lemma, it is enough to prove the main theorem

for graphs G such that the following property holds for every u; v 2 V :

d(u) + jfx 2 V : (x; v) 2 E and d(x) = �gj � �+ 1

We will call a graphGVizing if this property is satis�ed for all u; v 2 V . We

observe that, if G is Vizing, then (A) S is a stable set and (B) dB(v) >
1

2
�

for every v 2 B. Now suppose F is an overfull subgraph of G of maximum

degree � and that B�F contains between 3 and 1

2
��3 elements. By (B),

each vertex in B � F sees 1

2
� � jB � F j vertices in B \ F . Hence there

exists (1
2
��jSj)jSj � � edges between F and B�F , contradicting the fact

that F is overfull. Similar arguments show that jB � F j 6= 2, and also that

jB � F j 6� 1

2
�� 3 unless condition (i) holds.

Now, just as the big vertices play the major role in any possible overfull

subgraph, they also present the only real di�culty in proving the theo-

rem. Thus, for the moment, we assume there are no small vertices. In our

constructive proof of the main theorem, we will attempt to obtain disjoint

matchingsM1; :::;Mk such that H = G�[�1+�2

i=1 Mi is a reduction of G that

is easily �(H) edge colorable (H will usually be a bipartite graph). The

procedure is quite similar to that used in the regular case: we obtain each

Mi by augmenting along patches constructed bewteen some of the vertices

missed by an initial matching M 0
i . A major di�erence from the regular case

is that the matchings M1; :::;Mk will NOT necessarily be perfect. For one

thing, jV j may be odd. More to the point, our patching technique for aug-

menting initial matchings in both coloring passes relies on keeping the degree

of each vertex across the bipartition high throughout the algorithm. So, we

must develop a methodology for choosing which vertices are missed by which

matching. We note that the number of times a vertex can be missed by a

matching depends on the di�erence between its degree and �. Thus, it is

not surprising that in making our choices, we consider the following notion:

De�nition 2 The de�ciency of a vertex v 2 B is def(v) = �� dB(v).

We also �nd it useful to extend the notion of de�ciency to subsets of vertices:

if H � B then def(H) =
P

v2H def(v).

If the de�ciency of G is large, which we will de�ne as having more than

2�9=10 vertices of de�ciency greater than �9=10, it is not too hard to choose
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the vertices to be missed in both coloring passes: all vertices that are missed

by the initial matchings except the \large degree" big vertices. The patch

construction itself, however, is more complex than in the regular case be-

cause of the possible large number of low degree big vertices; we omit the

details in this sketch.

If no more than 2�9=10 vertices have de�ciency greater than �9=10, i.e. the

set of vertices B� = fv 2 B : def(v) > �9=10g is no larger than 2�9=10, then

the minimum degree of B�B� is ��2�9=10. As B�B� is \almost" regular

and \almost" equal to the whole graph (recall that we assume there are no

small vertices), we will construct all patches through the vertices of B�B�

only, using patching techniques similar to the ones we used in the regular

case. So, patching is \essentially" done. The problem now is to choose what

vertices, missed by an initial matching, to patch. The constraints dictating

our choices are:

(i) No vertex should be missed by more than def(v) matchings (to obtain a

reduction), and

(ii) No vertex should belong to too many patches, so that the degree ac-

cross the bipartition remains high (necessary for patching) and so that

the degree of the rejects graph remains low (necessary for the reject

coloring pass),

(iii) The total number of rejected edges should be split evenly (or just

about) between B1 and B2 (to facilitate the reject coloring pass).

We can satisfy the �rst two constraints by initialy choosing, for each v 2 B�,
about 1

2
def(v) initial matchings that miss v and deciding that the corre-

spondingMi miss v. To satisfy the third constraint, we will develop several

methods to modify our initial \choices" so that, in each initial matching,

the number of vertices we will need to patch is split evenly between B1 and

B2.

If the input graph G has medium de�ciency, by which we mean that

def(B) � �12=10 but no more than 2�9=10 vertices have de�ciency greater

than �9=10, we can easily modify the initial choices, essentially because there

are many of them.

The smaller the de�ciency, the harder it is to insure the third constraint.

This is especially true if small vertices are present. For this reason, if
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def(B) < �12=10, we �nd it useful to identify small vertices, while keep-

ing multiple edges, and \create" new big vertices of degree greater than
1

2
� but at most �, of course. This identi�cation process leaves at most 3

small vertices and thus very little fake de�ciency, but it \creates" new real

de�ciency at the new big vertices. We now resume our assumption that no

small vertices are present.

In G has small de�ciency, i.e. when 2� < def(B) < �12=10, very few

vertices will be missed by each matching. We will develop more sophisticated

techniques to �nalize our choices. These techniques fail, however, on the

lowest de�ciency graphs, as they rely on a certain number of vertices being

missed by each matching.

In the smallest de�ciency case, when def(G) � 2�, we must very carefully

choose what vertices are going to be missed by a speci�c matching. However,

even with special care, we will not always be able to construct a bipartite

reduction. We illustrate this with the following example. Suppose jBj is
even, jSj = 0, def(B) = �, def(b1) =

1

2
� � 2, def(b2) = def(b3) =

1

4
� + 1

where b1; b3 2 B2 and b2 2 B1. Then cB = jE(B1)j� jE(B2)j = 1

2
(def(B2)�

def(B1)) = 1

4
� � 1. If M1; :::;Mk , for k = 1

2
� + o(�), were matchings

whose removal leaves a bipartite reduction H = G �M1 � ::: �M�1+�2

in (B1; B2), then both b and b00 must be missed simultaneously by exactly

cB of these matchings. On the other hand, all dB2
(b00) = 3

8
�+ o(�) edges

incident to b00 must also be covered by the union of the matchings. We

would thus require k � cB + dB2
(b00) > 5

8
� + o(�), a contradiction. We

thus cannot obtain a bipartite reduction with so few matchings. Instead, we

must satisfy ourselves with H being a near-bipartite reduction N with no

overfull subgraph of maximum degree �(N). We recall that a polynomial

time algorithm by Reed [Ree95] gives us a tool to color such a near- bipartite

graph N with �(N) colors. For completenes, we include this algorithm in

the appendix (A).

2.5 The split partition and the forbidden subgraph

We present the two technical procedures omitted from the proof of the reg-

ular theorem: the construction of a split partition and the construction of a

forbidden subgraph from a fail pair. We choose to describe these procedures

in the general setting of a non-regular Vizing graph G = (V;E) = (B[S;E)
of maximum degree � � 1

6
jB [ Sj.
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2.5.1 The split partition

Our edge-coloring algorithms require that a special vertex partition (B1 [
S1; B2 [ S2) of B [ S be provided along with the input graph G = (B [
S;E). In particular, we insist that the degree of each vertex is split about

evenly between the two sides of the bipartition and that B and S are split

about evenly as well. Furthermore, just in case our algorithms fail, we

need additional sets of vertices to split about evenly between B1 [ S1 and

B2[S2: this enables us to construct, in the forbidden subgraph construction
procedure, a forbidden subgraph of G if we �nd two sets X and Y such that

either

X � B1 and jB1j � jXj >
1

4
���19=20 (2.4)

or

X � B2 and jB2j � jXj >
1

4
���19=20 (2.5)

and, in both cases,

jY j < jXj +�19=20 (2.6)

dY (v) >
1

2
���19=20 for all v 2 X (2.7)

We call (X;Y ) a fail pair in (B1[S1; B2[S2). Our edge-coloring algorithms

fail to � edge-color G only if a fail pair (X;Y ) is found. We now recall the

de�nition of splitting and of a split partition.

De�nition 3 Let (B1[S1; B2[S2) be a partition of B[S. A set H � B[S
splits within d if jjH \ (B1 [ S1)j � jH \ (B2 [ S2)jj < d.

Let b1; b2; b3; b4; :::; bk be the vertices in B such that def(b1) � def(b2) �
def(b3) � def(b4) � ::: � def(bk) and let s1; s2; :::; sk be the vertices in S

such that d(s1) � d(s2) � ::: � d(sl). A partition (B1[S1; B2[S2) of B[S
is called a split partition if the following properties are satis�ed:

(a) B = B1 [B2, S = S1 [ S2, 0 � jB1j � jB2j � 1 and 0 � jS2j � jS1j � 1.

(b) For all v in B [ S and for all X;Y � B of size less than 20 log�

the following sets split within 1

4
�11=20: NB(v); NS(v); NB(X); NB(v)\

NB(X); fw 2 NB(X) : dNB(Y )(w) > �� 7�39=40g
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(c) If jBj is odd, either b2i 2 B1 and s2i+1 2 B2 or b2i 2 B2 and b2i+1 2 B1

for i = 1; :::; b jBj
2
c; in addition, b1; b3 2 B1, b2 2 B2 and def(B1 � b1 �

b3) � def(B2 � b2). If jBj is even, either b2i�1 2 B1 and b2i 2 B2 or

b2i�1 2 B2 and b2i 2 B1 for i = 1; :::;
jBj
2
; in addition, b1; b3 2 B2,

b2; b4 2 B1 and def(B1 � b2 � b4) � def(B2 � b1 � b3).

(d) If jSj is odd, either s2i 2 S1 and s2i+1 2 S2 or s2i 2 S2 and s2i+1 2 S1 for

i = 1; :::; b jSj
2
c; in addition, s1 2 S2. If jSj is even and non-empty, either

s2i�1 2 S1 and s2i 2 S2 or s2i�1 2 S2 and s2i 2 S1 for i = 1; :::;
jSj
2
; in

addition, s1 2 S2 and s2 2 S1.

Let cB = jE(B1)j � jE(B2)j. Note that property (a) implies that if jBj
is odd then cB = 1

2
(� � (def(B1) � def(B2))), and if jBj is even then

cB = 1

2
(def(B2)� def(B1)). By property (c), it follows that 0 � def(B1) �

def(B2) � def(b1) and
1

4
� < 1

2
(� � def(b1)) � cB � 1

2
� if jBj is odd and

0 � def(B2)� def(B1) � def(b1) and 0 � cB � 1

2
def(b1) <

1

4
� if jBj is even.

We also observe that 0 � cS = 1

2
(d(S2) � d(S1)) � 1

2
d(s1) � 1

4
�. Finally,

we note that �(B1 [ S1) and of �(B2 [ S2) are both less than 1

2
�+ 1

4
�.

The following procedure constructs with positive probability a split partition

(B1 [ S1; B2 [ S2) of the set of vertices B [ S of G:

Partition Step: We order the vertices in B by non-decreasing de�ciency

(i.e non-increasing degree within B). For each successive ordered pair

of vertices we switch the order of the pair with probability 1

2
and put

the �rst vertex in the set B1 and the second in the set B2. If jBj is
even, after all the vertices but b1, b2, b3 and b4 have been assigned to

B1 or B2, we rename B1 and B2 so that def(B1) � def(B2) and we

add b1 and b3 to B2 and b2 and b4 to B1. If jBj is odd, after all the
vertices but b1, b2 and b3 have been assigned to B1 or B2, we rename

B1 and B2 so that def(B1) � def(B2) and we add b1, b3 to B1 and b2
to B2.

We similarly split S into sets S1 and S2. The ordering of the vertices

is by non-decreasing degree. If jSj is even, after all the vertices but

the last pair have been assigned to S1 or S2, we rename S1 and S2 so

that d(S1) � d(S2) and we add s1 to S2 and s2 to S1. If jSj is odd,
after all the vertices but s1 have been assigned to S1 or S2, we rename

S1 and S2 so that d(S1) � d(S2) and we add s1 to S2.
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It is easy to see that the resulting partition (B1[S1; B2[S2) of B[S satis�es

properties (a), (c) and (d) of a split partition. In addition, property (b)

is satis�ed with probability at least 1

2
, as we show below. We note that

the running time of this procedure is linear in the size of the vertex set,

and that we can obtain a split partition deterministically in O(2n) time by

exhaustively testing every possible partition of B [ S.

Claim 4 The probability that there is some v in B [S and some subsets X

and Y of B such that jXj; jY j < 20 log n for which one of the following sets

fails to split is less than 1

2
:

NB(v); NS(v); N(X); N(v) \N(X); fw 2 N(X) : dN(Y )(w) > �� 7�39=40g

Proof: Let jB [ Sj = n and let m = 20 log n. There are fewer than

2n+m

�
n

m

�
+ nm

�
n

m

�
+m2

�
n

m

��
n

m

�
< n41 log n

sets that we want to split. Let H = fv1; :::; vkg be one of them. We assume

that no two vertices in H are paired in the partition step (if such pairs

exist, they split evenly and we only need to worry about the remaining

vertices). Let H1 = H \ (B1 [ S1) and H2 = H \ (B1 [ S2). We de�ne for

all vi 2 H � fb1; b2; b3; b4; s1; s2g the random variable Xi:

Xi =

� �1 if vi 2 H2

1 if vi 2 H1

Then jjH2j � jH1jj � jPk
i=1Xij+ 3, and

Pr(j
kX
i=1

Xij >
1

4

p
k�1=20 � 3) < 2e

�k�1=10

32k < (2n41 log n)�1

since � � n
6
and � is large enough. 2
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2.5.2 The forbidden subgraph construction

If we �nd a fail pair (X;Y ) in the split partition (B1 [S1; B2 [S2), then we

can construct from it a subgraph satisfying condition (i) of the main (and

regular) theorem. To show this, we �rst simplify our notation by calling a

subgraph of B forbidden if the minimum degree of H is at least ���79=80

and either:

(i) H is bipartite, or

(ii) jB �Hj > 1

2
���79=80

If H satis�es (ii.) we call it type 2, otherwise we call it type type 1. Note

that if H is type 1 then jB �Hj � 1

2
���79=80.

We observe that, in the case of a regular graph G = (B;E) with jBj < 2�, if

B contains a forbidden subgraphH then condition (i) of the regular theorem

follows, for if H is of type 2 then jB � Hj > � � 2�79=80. A slightly less

trivial argument, which we omit until the proof of the main theorem, shows

that condition (i) of the main theorem also follows if a general Vizing graph

G = (B [ S;E) with jB [ Sj contains a forbidden subgraph.

Lemma 13 (The patching lemma) Let G = (B[S;E) be a Vizing graph
of maximum degree � � 1

6
jB[Sj and let (B1[S1; B2[S2) be a split partition

of B [ S. If (X;Y ) is a fail pair in (B1 [ S1; B2 [ S2) then B contains a

forbidden subgraph.

We prove the patching lemma by showing, in claims 5, 6 and 7, that the

forbidden subgraph construction procedure, described below, returns a for-

bidden subgraph G if G contains a fail pair (X;Y ). By symmetry, we can

and will assume that X � B1 and jB1j � jXj > 1

4
���19=20, and we recall

that the following hold:

jY j < jXj+�19=20 (2.8)

dY (v) >
1

2
���19=20 for all v 2 X (2.9)

The forbidden subgraph construction procedure



44 CHAPTER 2. THE RESULTS

1. We construct the set Z = fv 2 Y : dX(v) � 1

2
�� 3�39=40g.

Since jY � Zj < 5

2
�39=40 (by claim 5 below), it follows that dZ(v) �

1

2
��3�39=40 for all v 2 X and that dX(v) � 1

2
�3�39=40 for all v 2 Z.

Note that X � B1 and Z � B2 and that

jB2 � Zj � jB2 � Y j � 1

4
�� 3�19=20 (2.10)

In the last two steps of this procedure, we will useX and Z to construct

a forbidden subgraph in B. As the construction is entirely within the

subgraph B, and to simplify the notation, we will use N(v) to denote

NB(v) in these last two steps and the remainder of this section.

2. We construct a set X0 � X such that Z � N(X0) by recursively

picking x 2 X � X0 so that jNZ(x) � NZ(X
0)j is largest. We

similarly construct Z0 � Z such that X � N(Z0).

We show in claim 6 that jX0j and jZ0j are less than 20 log�. Since

every x 2 X0 (respectively, x 2 Z0) is adjacent to at most 3�39=40 +

�11=20 vertices in B2 � Z (respectively, B1 �X), it follows that

j(N(X0) \B2)� Zj < 80�39=40 log� (2.11)

j(N(Z0) \B1)�Xj < 80�39=40 log� (2.12)

3. We construct sets KX = fv 2 N(X0) : dN(Z0)(v) > � � 7�39=40g
and KZ = fv 2 N(Z0) : dN(X0)(v) > �� 7�39=40g.

In claim 7, we prove that if KX \KZ = ; then KX [KZ is a forbidden

subgraph of G of type 1, and if KX \KZ 6= ;, KX \KZ is a forbidden

subgraph of G of type 2.

The patching lemma then follows.

Claim 5 After step 1, jY � Zj < 5

2
�39=40.

Proof: The number of edges between vertices in X and Y is
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jE(X;Y )j � jXj(�
2
��19=20)

> (jY j ��19=20)(
1

2
���19=20)

> jY j(1
2
���19=20)��19=20jY j

> jY j(1
2
�� 2�19=20)

If jY �Zj were greater than 5

2
�39=40, we would obtain the following contra-

diction:

jE(X;Y )j � jZj(1
2
� +�11=20) + jY � Zj(1

2
�� 3�39=40)

< jY j1
2
�� 7�78=40

< jY j(1
2
�� 2�19=20)

since jY j � jB2 [ S2j � 1

2
jB [ Sj � 3�.

2

Claim 6 After step 2, jX0j � 20 log�.

Proof: Each vertex in Z is adjacent to at least 1

2
� � 3�39=40 vertices in

X and jXj < 3�. It follows that each vertex in Z �NZ(X
0) is adjacent to

at least 1

2
�� 3�39=40 > 1

3
� vertices in X �X0 and jX �X0j < 3�. Thus

we know that Z �NZ(X
0) is reduced by at least a ninth at each iteration.

So there will be at most log 9

8

� < 20 log � iterations. 2

Claim 7 After step 3, if KX\KZ = ; then KX[KZ is a forbidden subgraph

of G of type 1, and if KX \KZ 6= ;, KX \KZ is a forbidden subgraph of G

of type 2.

Proof: We �rst show that X � KZ \B1 and, by symmetry, Z � KX \B2.

If v 2 X then v 2 N(Z0) and dZ(v) >
1

2
� � 3�39=40. Since Z is a subset
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of N(X0) \ B2, it follows that jN(v) \ N(X0) \ B2j > 1

2
� � 3�39=40 and,

because N(v) \N(X0) splits (by claim 4), jN(v) \N(X0)j > �� 7�39=40.

Thus v 2 KZ \B1.

By inequalities 2.11 and refeq:construct3, it follows that jN(X0) � KX) \
B2j < 80�39=40 log� and jN(Z0) � KZ) \ B1j < 80�39=40 log�. Because

N(X0), N(Z0), KX and KZ split (by claim 4) and since KX � N(X0) and

KZ � N(Z0) we obtain

j(N(X0)�KX) \B1j < 81�39=40 log�

j(N(Z0)�KZ) \B2j < 81�39=40 log�

which implies

jN(X0)�KX j < 162�39=40 log�

jN(Z0)�KZ j < 162�39=40 log�

so jN(X0) \N(Z0)�KX \KZ j < 324�39=40 log�.

If KX \KZ 6= ; we obtain, from the above analysis and using inequalities

2.10, 2.11 and 2.12,

jKX \KZ j < jN(X0) \N(Z0)j
� jN(Z0) \B1j+ jN(X0) \B2j
� jXj+ jZj+ 160�39=40

< jBj � 1

2
� +�79=80

Furthermore, for every v 2 Kx \Kz,

dKX\KZ
(v) > dN(X0)\N(Z0)(v)� 324�39=40 log�

> dN(X0)(v)� 7�39=40 � 324�39=40 log�

> ���79=80

So, KX \KZ is a forbidden subgraph of G of type 2.
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If KX \KZ = ;, we obtain that dKZ
(v) > �� 7�39=40 � 162�39=40 log� >

���79=80 for every v 2 KX and, by symmetry, dKX
(v) > ���79=80 for

every v 2 KZ . Thus, (KX ;KZ) is a forbidden subgraph of G of type 1. 2
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Chapter 3

The main theorem

3.1 Restating the theorem

We now prove the main theorem:

Theorem 14 (main theorem) There exists �0 such that for all simple

graphs G = (V;E) with maximum degree � � �0 and n = jV j � 6�, one of

the following is true:

(i) G contains a subgraph H such that �(H) � ���79=80 and either:

H is bipartite, or

jV �Hj > �� 8�159=160

(ii) G contains an overfull subgraph H of maximum degree �,

(iii) G is � edge colorable.

Furthermore, there is a procedure which runs in O(2n) time that will output

either a � edge coloring of G or a subgraph H of G that satis�es one of (i)

or (ii).

The lower bound on the maximum vertex degree �0 satis�es a number of

inequalities that appear throughout this paper. In order to prove the main

theorem, we make its statement more precise. We need the following result

by Vizing [Viz64]:

49
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Lemma 15 (Vizing's Adjacency Lemma) Let G = (V;E) be a simple

graph of maximum degree � such that G � (u; v) is � edge colorable, for

some edge (u; v) 2 E. If

d(u) + jfx 2 V : (x; v) 2 E and d(x) = �gj < �+ 1

then G is also � edge colorable. Furthermore, a � edge coloring of G�(u; v)
is extendable to a � edge coloring of G in O(n2) time.

This lemma motivates the following de�nition:

De�nition 4 A simple graph G = (V;E) of maximum degree � is called

Vizing if for all (u; v) in E:

d(u) + jfx 2 V : (x; v) 2 E and d(x) = �gj � �+ 1

Given an arbitrary simple graph G we de�ne the Vizing reduction of G

to be the subgraph obtained by recursively removing edges (u; v) such that

d(u) + jfx : (x; v) 2 E and d(x) = �gj < �+ 1

Obviously, the Vizing reduction of G is unique and Vizing. The adjacency

lemma shows that we can extend a �-edge coloring of the Vizing reduction

of G to a �-edge coloring of G in O(n4) time. Furthermore if the Vizing

reduction of G contains a subgraph H that is overfull with maximum degree

� or satis�es one of (i) or (ii) of the main theorem, G does too. Thus it

su�ces to prove the theorem for Vizing graphs.

Note that in a Vizing graph, the set S = fv : d(v) � 1

2
�g is a stable set.

Furthermore, if a vertex in B = V � S is adjacent to a vertex in S then

it has more than 1

2
� neighbors of maximum degree. Thus, every vertex in

B has more than 1

2
� neighbors in B. We shall often speak of the Vizing

graph G = (B [ S;E) rather than G = (V;E) and call the vertices in B

big and vertices in S small. We also call edges in E(B) big and edges in

E(B;S) small. Finally we will often abuse notation and denote by B the

graph induced by the set of big vertices of G; in general, we will denote by

H the subgraph induced by vertices in the subset H � B [ S or we denote

by H the vertices of a subgraph of G.
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We now give the �rst re�nement of the theorem. To do this we need the

following de�nition:

De�nition 5 Let G = (B [ S;E) be a Vizing graph. We call a subgraph H

of B forbidden if its minimum degree �(H) � ���79=80 and either:

(i) H is bipartite, or

(ii) jB �Hj > 1

2
���79=80

If H satis�es (ii.) we call it of type 2, otherwise we call it of type 1. Note

that if H is type 1 then jB �Hj � 1

2
���79=80.

Theorem 16 (�rst re�nement) There exists �0 such that for all Vizing

graphs G = (B [ S;E) with maximum degree � � �0 and jB [ Sj � 6�,

one of the following is true:

(i) B contains a forbidden subgraph.

(ii) G contains an overfull subgraph of maximum degree �,

(iii) G is � edge colorable.

Furthermore, there exists a procedure which runs in O(2jV j) time that will

output either a � edge coloring of G or a subgraph H of G that is forbidden

or overfull with maximum degree �.

Claim 8 Let G = (B [ S;E) be a Vizing graph of maximum degree � such

that jB [ Sj � 6�. If B contains a forbidden subgraph H of type 2, then

jB [ S �Hj > �� 8�159=160.

Proof: We consider the set C = fv 2 B �H : dH(v) >
p
3�159=160g. We

observe that since jHj < 6�, then jE(H;B[S�H)j < 6��79=80 < 6�159=80,

and it follows that jCj < 2
p
3�159=160. If there is a vertex v of degree � in

B �H � C then dB[S�H(v) > ��p3�159=160 and so jB [ S �Hj > ��p
3�159=160. If no vertex of B�H�C has degree �, then, for any v 2 B�H�

C, jfx 2 B [ S : (x; v) 2 E and d(x) = �gj � dH(v) + jCj < 3
p
3�159=160.

Because G is a Vizing graph, d(u) > �� 3
p
3�159=160 for every neighbor of

v. Furthermore, dB�H�C(v) > 1

2
�� 3

p
3�159=160. So, we can choose some
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neighbor u of v in B �H � C such that dV �H(u) > d(u) �p
3�159=160 >

��4
p
3�159=160 > ��8�159=160. This implies jB[S�Hj > ��8�159=160.

2

We now move to further re�ne the statement of the main theorem. We

introduce another de�nition that we will �nd useful:

De�nition 6 A partition (B;S) of the vertices of a graph G = (B [ S;E)
of maximum degree � is called weakly Vizing if:

1. dB(v) + dB�v(u) � � for all u; v 2 B,

2. dB(u) � 1

2
� for all u 2 S,

3. dB(v) � 1

2
� for all v 2 B.

We will call a graph weakly Vizing if there is a weakly Vizing partition

of the vertices in G. For example, a Vizing graph G = (B [ S;E) is always
weakly Vizing with the obvious partition (B;S), since dB(v) >

1

2
� for all

v 2 B and dB(u) � 1

2
� for all u 2 S. Note that, in a weakly Vizing graph

G = (B [ S;E), the graph induced by B is itself a weakly Vizing graph,

with the weakly Vizing partition (B; ;).
An overfull subgraph F of maximum degree � in a weakly Vizing graph

G = (B [ S;E) is called trivial if F has maximum degree �, and F = B,

F = B � v for some v 2 B or F = B + u for some u 2 S. We will use

di�erent versions of the following technical lemma several times throughout

this proof:

Lemma 17 (trivial lemma) Let G = (B[S;E) be a weakly Vizing graph

of maximum degree �. If G contains an overfull subgraph F of maximum

degree � then one of the following is true:

(i) G contains a forbidden subgraph of type 2.

(ii) G contains a trivial overfull subgraph.

Proof: We �rst remark that the set R = fv 2 F : dF (v) < � �
p
�g

is smaller than
p
�. Thus the subgraph H induced by F � R in B has

minimum degree greater than �� 2
p
�.
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Consider the set C = fv 2 B � F : dF >
p
�g. Clearly, jCj �

p
�.

If B � F � C contains two vertices u and v, then at least one of them,

say v, has at least 1

2
� neighbors in B since dB(v) + dB�v(u) � �. Then,

dB�F (v) � 1

2
��

p
� and, furthermore, H is a forbidden subgraph of type

2. On the other hand, if jB�F j � jCj+1, it follows that jB�F j � 2, since

jE(F;B � F )j � � and because dB(v) + dB�v(u) � � for all u; v 2 B (G is

weakly Vizing).

If B � F = fu; vg, then jE(F + u + v)j = jE(F )j + dB(v) + dB�v(u) >
1

2
(jV (F )j � 1)� + � = 1

2
(jF + u + vj � 1)� and B = F + u + v is an

overfull subgraph of G as well. So, in any case, there exists an overfull

subgraph F 0 of maximum degree � such that jB � F 0j � 1. Suppose now

that jF 0 \Sj � 2, and let u and v be two vertices of F 0 \S. Then jE(F 0)j =
jE(F 0 � u� v)j+ dF (u) + dF (v) � 1

2
�(jF 0j � 2), which contradicts the fact

that F 0 is overfull. So, jF 0 \ Sj � 1. Finally, we show that if jB � F 0j = 1

and jS \F 0j = 1, then B itself is overfull, implying that G contains a trivial

overfull subgraph. Suppose that F 0 = B � v + u for some v 2 B and u 2 S.

Then jE(F 0)j = jE(F 0 � u)j + dF (u) = jE(B)j � dB(v) + dF (u) � jE(B)j
and B is overfull. 2

Using the above results we can now give a more precise formulation of the

main theorem.

Theorem 18 (�nal re�nement) There exists �0 such that for all Vizing

graphs G = (B [ S;E) of maximum degree � � �0 and jB [ Sj � 6�, one

of the following holds:

(i) B contains a forbidden subgraph,

(ii) G contains a trivial overfull subgraph,

(iii) G is � edge colorable.

Furthermore, there is a procedure which runs in O(2jV j) time that will output

either a � edge coloring of an input graph G, a trivial overfull subgraph of

G or a forbidden subgraph of B.

The remarks in this section suggest that we are really interested in coloring

E(B) and that the edges to S are somewhat super
uous. This motivates

the following de�nitions, and our focussing on B in the proof of theorem 18:
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De�nition 7 Let G = (B [ S;E) be a weakly Vizing graph of maximum

degree �.

The de�ciency of a vertex v 2 B is def(v) = �� dB(v).

The real de�ciency of a vertex v 2 B is defr(v) = �� dG(v).

The fake de�ciency of a vertex v 2 B is defS(v) = dS(v) = def(v)�defr(v).
More speci�cally, the fake de�ciency of v with respect to u 2 S is defu(v) =

�(u; v).

We �nd it convenient to use the following notation. If H � B then def(H) =P
v2H def(v), defr(H) =

P
v2H defr(v) and defS(H) =

P
v2H defS(v). If

H � B andH 0 � S then defH0(H) =
P

u2H0 defu(H) =
P

u2H0

P
v2H defu(v).

Note that d(S) =
P

u2S d(S) = defS(B).

We �nish this section with a useful lemma in which we give the necessary and

su�cient conditions, in terms of de�ciency, for a Vizing graphG = (B[S;E)
to contain a trivial overfull subgraph:

Lemma 19 If G = (B [ S;E) is a Vizing graph then:

(i) B is a trivial overfull subgraph if and only if jBj is odd and def(B) < �.

(ii) B � v is a trivial overfull subgraph for some v in B if and only if jBj
is even and def(B) < 2def(v).

(iii) B + u is a trivial overfull subgraph for some u in S if and only if jBj
is even and def(B) < 2defu(B).

Proof: B is a trivial overfull subgraph if and only if jBj is odd and

2jE(B)j > �(jBj � 1). The inequality 2E(B) > �(jBj � 1) is equiva-

lent to def(B) < �, since 2jE(B)j = Pv2B dB(v) =
P

v2B(� � def(v)) =

�jBj � def(B).

B�v is a trivial overfull subgraph, for some v in B, if and only if jBj is even
and 2jE(B � v)j > �(jBj � 2). This inequality is equivalent to def(B) <

2def(v), since 2jE(B � v)j = 2jE(B)j � 2dB(v) = �jBj � def(B)� 2dB(v).

B+u is a trivial overfull subgraph, for some u in S, if and only if jBj is even
and 2jE(B+u)j > �jBj. This inequality is equivalent to def(B) < 2defu(B),

since 2jE(B + u)j = 2jE(B)j + 2dB(u) = �jBj � def(B) + 2defu(B). 2
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3.2 The edge coloring algorithms

In chapters 4, 5 and 6, we will present several algorithms that attempt to

color with � colors the edges of Vizing graph G = (B [ S;E). We assume

that the maximum degree of G, �, is large, jB [ Sj � 6�, that no trivial

subgraph of G is overfull and that a split partition (B1 [ S1; B2 [ S2) of

B [ S is provided. In case our algorithms fail, we will show the existence

of and construct a fail pair (X;Y ) in (B1 [ S1; B2 [ S2). We will use this

fail pair to construct a forbidden subgraph in B, by applying the forbidden

subgraph construction procedure. The main theorem then follows from the

proofs of correctness of the edge coloring algorithms.

The main idea of our edge-coloring algorithms is an attempt to construct

disjoint matchingsM1; :::;Mk such that H = G�[ki=1Mi is a reduction of G

that is easily �(H) edge colorable. In most cases, H will be a subgraph of

(B1 [ S1; B2 [ S2), i.e. a bipartite subgraph whose edges we can color with

�(H) colors using a polynomial time algorithm derived from the proof of

Konig's theorem. In a few special cases, H will be a near-bipartite subgraph

with no overfull subgraph of maximum degree � such that H � v is a sub-

graph of (B1 [ S1; B2 [ S2) for some v 2 B. In that case, we can use Reed's

polynomial time algorithm, described in appendix A to color the edges of

H with �(H) colors. Once we have colored H, we assign the remaining k

colors to the matchings M1; :::;Mk.

Our main goal, then, is to construct the matchings M1; :::;Mk . We will do

that through two coloring passes, as we did in the regular case.

3.2.1 The two coloring passes and the marking

In the �rst coloring pass, we construct the �rst �1 matchingsM1; :::;M�1

such that F = G� [�1

i=1Mi is a reduction of G, where �1 =
1

2
�+ o(�).

We will start with an initial coloring, i.e. disjoint matchings M 0
1
; :::;M 0

�1

such that [�1

i=1M
0
i = E(B1 [ S1) [ E(B2 [ S2), as in the regular case. We

will end by recursively augmenting each M 0
i along vertex disjoint patches

constructed in F = G�M1 � :::�Mi�1 between vertices of \large" degree

(patching), thereby obtainingMi that hits every \large" degree vertex and

�nally insuring that F = G �M1 �M2 � ::: �M�1
is a reduction of G.

The edges in B1 [ S1 and in B2 [ S2 that we uncolor while augmenting

the patches are added to reject graphs R1 and R2 that we will color in
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the reject coloring pass, using disjoint matchingsM�1+1
; :::;M�1+�2

, where

�2 = o(�). If we are unable to construct a patch then we will �nd a fail

pair (X;Y ).

In order to describe what vertices, missed by an initial matching M 0
i , have

\large" degree and must be patched, we de�ne a marking that indicates,

for every i = 1; :::;�1 +�2, which big vertices will be missed by Mi. More

precisely a marking of the vertices in B in the matchings M1; :::;M�1+�2
is

an assignment m : B � f1; 2; :::;�1 +�2g ! f0; 1g such that m(v; i) = 1 if

and only if v is missed by the big edges of Mi (recall that an edge (x; y) is

big if x; y 2 B). If m(v; i) = 1 we will say that v is marked in Mi or that

Mi contains a mark on v. Intuitively each mark on a vertex v represents a

\unit" of de�ciency. Since we use two types of de�ciency, we additionally

specify whether a mark is real and Mi misses v, (denoted by mr(v; i) =

1), or whether a mark is fake and Mi hits v with an edge (v; u) 2 (B;S)

(denoted bymu(v; i) = 1). We call a marking proper over an initial coloring

M 0
1
; :::;M 0

�1
if mr(v; i) = 1 implies that M 0

i misses v and mu(v; i) = 1 if and

only if (u; v) 2M 0
i .

We de�ne some notation we will �nd useful. Let m�1(v) =
P

�1

i=1m(v; i)

and m(v) =
P

�1+�2

i=1 m(v; i). We similarly de�ne m�1
u (v) and mu(v), where

u 2 S or u = r. Ifm�1(v) = k then we will say that v has k marks in the �rst

�1 matchings. For any A � B we de�ne m(A) =
P

v2Am(v) and we say

that A has m(A) marks; we similarly de�ne m�1(A), mu(A) and m�1
u (A),

where u 2 S or u = r. For any A � S, we de�ne mA(v) =
P

u2Amu(v)

and we similarly de�ne m�1

A (v) and mA(A
0) and m�1

A0
(A0) where A0 � B.

We make the important observations that H = G �M1 � ::: �M�1+�2
is

a reduction of G if and only if 0 � mr(v) � defr(v) for every v 2 B and H

is bipartite with edges in E(B1 [ S1; B2 [ S2) only if mu(v) = defu(v) for

every (v; u) 2 E(B1; S1) [E(B2 [ S2).
The marking de�nition turns out to be the heart of the di�culties of our

edge coloring algorithms. After de�ning an initial marking that is proper

over the initial matchings M 0
1
; :::;M�1

, we will modify the marking and

the matchings to \prepare" them for patching. Because of the di�culties

involved, we will develop di�erent methods to modify the marking depending

on the total de�ciency of the input graph (def(B)). This is why we choose

to present separate edge-coloring algorithms for graphs of large, medium,

small and smallest de�ciency (to be precisely de�ned later).

In the reject coloring pass, we color the remaining, uncolored edges in
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B1 [ S1 and B2 [ S2, i.e. the graphs R1 and R2, respectively. We start by

coloring the edges in E(R1) and E(R2) with �2 = o(�) colors to obtain the

initial coloring de�ned by the initial matchings M 0
�1+1

; :::;M 0
�1+�2

. We

then de�ne a marking, that is proper over the initial matchings, and then

we patch the unmarked vertices missed by each M 0
�1+i

to obtain M�1+i.

We insist however that all patches consist of one edge only, as in the regular

case. If we fail in augmenting a matching M 0
�1+i

we will prove the existence

of (and construct) a fail pair (X;Y ).

In the following 2 sections, we describe procedures that equalize the number

of big edges in the initial matchings M 0
1
; :::;M 0

�1
and M 0

�1+1
; :::;M 0

�1+�2

and that equalize the number of marks in each matching M1; :::;M�1+�2
.

We will �nd these procedures extremly useful.

3.2.2 Balancing the matchings

Let H be a graph whose vertices are partitioned into sets B and S such

that S induces an independent set in H (i.e. E(H) = E(B) [ E(B;S)).

We call disjoint matchings M1; :::;Mk covering E(H) (i.e. [ki=1Mi = E(H))

balanced in B if for any 1 � i < j � k:

0 � jMj \E(B)j � jMi \E(B)j � 1 (3.1)

We can modify any disjoint matchings M1; :::;Mk covering E(H) so that

inequalities 3.1 are satis�ed for all 1 � i < j � k by recursively repeating

the following procedure:

The balancing procedure

We pick matchings Mi and Mj with i < j such that either (a) jMj \
E(B)j � jMi \E(B)j > 1 (see �gure 2.1) or (b) jMj \E(B)j � jMi \
E(B)j < 0. We consider the connected components of Mi [Mj con-

sisting of cycles and paths whose edges alternate between edges in Mi

and edges inMj . We observe that in all alternating cycle components,

the number of big edges (whose endpoints are in B) is even and half

of the big edges belong to Mi while the other half belongs to Mj . An

alternating path, however, may contain an odd number of big edges.

So, in case (a), there must exist a connected component of Mi [Mj

that is an alternating path P with one more big edge inMj than inMi

(see �gure 2.1). In case (b), there must exist a connected component
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of Mi [Mj that is an alternating path P with one more big edge in

Mi than in Mj . In both cases, we switch the color of each edge of P .

P

Figure 3.1: Mj (full edges) andMi (dashed edges) with jMj \E(B)j� jMi\
E(B)j = 2, with big and small vertices represented with dots and circles,

respectively

It is easy to check that M1; :::;Mk are balanced after at most O(n2) itera-

tions.

3.2.3 Equalizing the marking

Let H be a graph whose vertices are partitioned into sets B and S such

that the vertices in S induce an independent set in H (i.e. E(H) = E(B)[
E(B;S)). LetM1; :::;Mk be disjoint matchings covering E(H) and balanced

in B. We call a proper marking m of the big vertices of B in the matchings

M1; :::;Mk equalized if for any 1 � i < j � k:

0 � m(B; i)�m(B; j) � 2 (3.2)

where m(B; i) =
P

v2Bm(v; i) = 1 for every i = 1; :::; k. We can modify

a marking m and the matchings M1; :::;Mk so that inequalities 3.2 are sat-

is�ed, while maintaining the properties that M1; :::;Mk are disjoint, cover

E(H) and are balanced in B, by recursively repeating the following:

Equalizing the marking We pick two matchings Mi and Mj with i < j

such that either (a) m(B; i) � m(B; j) � 3 (see �gure 3.2) or (b)

m(B; j) � m(B; i) � 1. We consider the connected components of

Mi [ Mj , which consist of alternating cycles and alternating paths
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(which may consist of a single vertex). We remark that in any alter-

nating cycle component, the number of big vertices marked in Mi is

equal to the number of vertices marked in Mj . On the other hand,

an alternating path component may contain up to two more vertices

marked in Mi or in Mj. Depending on the case, we do as follows

(a) there must exist either an alternating path P with an even (may

be zero) number of edges in E(B) and with k = 1 more marks

in Mi than in Mj (see �gure 3.2), or a pair of alternating paths

P1 and P2, each with an odd number of edges in E(B) such that

P1 has one more edge in Mi \E(B) and P2 has one more edge in

Mj \ E(B) and so that P1 [ P2 has k = 1 or k = 2 more marks

in Mi than in Mj .

P

Figure 3.2: Mj (full edges) and Mi (dashed edges) with a marking on the

vertices (full for marks in Mj and dashed for marks in Mi) that satis�es

m(B; i)�m(B; j) � 3

(b) there must exist either an alternating path P with an even (may

be zero) number of edges in E(B) and with k = 1 more marks

in Mj than in Mi or a pair of alternating paths P1 and P2, each

with an odd number of edges in E(B) such that P1 has one more

edge in Mi \E(B) and P2 has one more edge in Mj \E(B) and
so that P1[P2 has k = 1 or k = 2 more marks inMj than inMi.

In both cases we pick the path P or the pair of paths P1; P2, whichever

exists and we switch the color of the edges on the path(s) and the marks

on the vertices of the path(s) (i.e. a vertex marked in Mi becomes

marked inMj and vice versa). Thus we decrease the di�erence between

the number of marks in Mi and Mj by k.
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Chapter 4

The large and medium

de�ciency cases

In this chapter, we present two algorithms that attempt to construct disjoint

matchings M1; :::;Mk such that H = G = M1 � ::: � Mk is a bipartite

reduction of a Vizing graph G = (B[S;E) of de�ciency at least �12=10. We

will assume that G contains no trivial overfull subgraphs, that the maximum

degree � of G is large enough, that jB [ Sj � 6� and that a split partition

(B1[S1; B2[S2) of B[S edge is provided. In case our algorithms fail, we will

show the existence of and construct a fail pair (X;Y ) in (B1[S1; B2 [S2).

4.1 The large de�ciency case

We consider �rst the large de�ciency graphs, which we de�ne as graphs with

more than 2�9=10 vertices of de�ciency greater than �9=10. In other words,

if we de�ne B� = fv 2 B : def(v) > �9=10g then jB�j > 2�9=10. Note that

if G = (B [ S;E) has large de�ciency then def(B) > 2�18=10.

4.1.1 The �rst coloring pass

In the �rst pass, we construct disjoint matchings M1; :::;M�1
, where �1 =

1

2
�+ � = d1

2
�+�11=20e, such that F = G�M1� :::�M�1

is a reduction of

G and [�1

i=1Mi contains all edges in E(B1[S1)�E(R1) and in E(B2[S2)�

61



62 CHAPTER 4. THE LARGE AND MEDIUM DEFICIENCY CASES

E(R2) where R1 and R2 are reject subgraphs in B1 [ S1 and in B2 [ S2,

respectively, of maximum degree less than 1

4
�9=10 such that jE(R1)j and

jE(R2)j contain less than �17=10 edges. In addition, we insist that the

marking sats�es

jm�1(v)� 1

2
def(v)j < 1

4
�9=10 for all v 2 B (4.1)

To help us with the marking, we �nd it useful to partition the vertices of B

as follows:

Bl = fx 2 B : defr(x) � 4�11=20g
Bs = fx 2 B : defr(x) � 2�9=10g

Thus, B�Bl�Bs is the set of vertices with real de�ciency between 4�11=20

and 2�9=10. We remark that Bs may be empty and, furthermore, we could

have defr(v) = 0) for all v 2 B!

The initial coloring

We initially construct matchings M 0
1
; :::;M 0

�1
, balanced in B1 and in B2,

such that [�1

i=1M
0
i = E(B1 [ S1) [E(B2 [ S2) as follows:

1. We apply Fournier's algorithm to color the edges of E(B1 [ S1) with �1

colors to obtain the disjoint matchingsM1

1
; :::;M1

�1
. We balance these

matchings in B1 using the balancing procedure from section 3.2.2.

We similarly construct M2

1
; :::;M2

�1
, balanced in B2. For every i =

1; :::;�1, we set M
0
i =M1

i [M2

i .

Since 0 � cB = jE(B1)j � jE(B2)j < 1

2
�, it follows that 0 � jM1

i �M2

i j � 1

for all i = 1; :::;�1; actually, jM1

i �M2

i j = 1 for exactly cB indices i. Note

that �1 � dB1[S1(v) of the matchings miss v 2 B1. Using the equivalent

fact about v 2 B2 and the properties of a split partition, it follows that the

number of matchings missing v 2 B is at least 1

2
defr(v) +

3

4
� and at most

1

2
defr(v) +

5

4
�.

The initial marking

We now de�ne an initial marking of the vertices in B that is proper over the

matchings M 0
1
; :::;M 0

�1
and balanced in B1 and B2:

2.1 We set mu(v; i) = 1 for every v 2 B, every u 2 S and every i = 1; :::;�1

such that (v; u) 2M 0
i . Then, for every v 2 B�Bl, we set mr(v; i) = 1
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for every M 0
i missing v. Finally, for every v 2 Bl, we pick a set

R of d1
2
defr(v)e matchings (among M 0

1
; :::;M 0

�1
) missing v. We set

mr(v; i) = 1 for every M 0
i 2 R.

2.2 We equalize the marking de�ned in 2.1, separately in B1 and B2, over

the initial matchings M 0
1
; :::;M 0

�1
using the equalizing procedure from

3.2.3.

We observe that, even though we modify M 0
1
; :::;M 0

�1
in 2.2, the matchings

remain balanced over B1 and B2 and still contain all edges in E(B1 [ S1)

and in E(B2 [ S2). The marking is valid since 0 � mr(v) � defr(v) for all

v 2 B. Furthermore,

jm�1(v)� 1

2
def(v)j < 2� for all v 2 B (4.2)

from which it follows that jm�1(B1)� 1

2
def(B1)j < 2jB1j�. Equivalent results

hold for B2. Let n(B1; i) and n(B2; i) be the numbers of unmarked vertices

in B1 and in B2, respectively, missed by M 0
i .

Claim 9 For all i = 1; ::;�1:

m(B1; i);m(B2; i) >
1

2
�4=5, and

n(B1; i); n(B2; i) < 8�.

Proof: We prove both statements only for B1, as the corresponding re-

sults for B2 follows by a symmetric argument. We note that m�1(B1) >
1

2
def(B1) � 2jB1j� > 1

2
�18=10 � �16=10. Since the marking is equalized in

B1, it follows that m(B1; i) >
1

�1
m�1(B1)� 2 > 1

2
�4=5.

Only vertices in Bl can be unmarked in an missed by a matching M 0
i . Since

v 2 Bl is marked in d1
2
defr(v)e matchings, v is unmarked in and missed by at

most 5

4
� matchings. Since the marking is equalized in B1 and the markings

are balanced in B1, any M 0
i misses at most 1

�1

5

4
�jB1j + 2 < 8� vertices in

B1. 2

The patching

For i = 1; :::;�1, we recursively constructMi by augmentingM 0
i along vertex

disjoint patches we construct in F = G�R1 �R2 �M1 �M2 � :::�Mi�1.
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We construct the patches in F so that every unmarked big vertex v (i.e.

m(v; i) = 0) missed by M 0
i is included in some patch; by augmenting the

patches we will insure that these vertices are hit by Mi. Note that only

vertices in Bl can be unmarked in and missed by an initial matching M 0
i .

Each augmentation leaves uncolored edges that we add to the reject graphs

R1 and R2. If we fail to construct a patch then we return a fail pair (X;Y )

in (B1 [ S1; B2 [ S2).
In order to describe the construction of the disjoint patches in F = G �
R1 � R2 �M1 � ::: �Mi�1, we �rst de�ne some terminology. In this large

de�ciency case, a patch is either a sequence of vertices x0; y0; x1; y1; :::; xj ; yj

or x0; y0; x1; y1; :::; xj ; yj; xj+1 such that x0 is an unmarked vertex in B1 or

in B2 missed byM 0
i , (x

l; yl) 2 E(F )\E(B1[S1; B2[S2) and (yl; xl+1) 2M 0
i

for l = 0; :::; j. We call yj and xj+1 the external vertices of the patch.

We construct the patch P starting at some unmarked vertex x 2 Bl missed

by M 0
i and not included in any of the already constructed patches in F as

follows:

3.1 We �rst de�ne unavailable and usable vertices. We call v 2 B [ S

internally unavailable if v is belongs to any of the patches already

constructed in F or to any of the patches constructed for one of the

previous 8d�1=10ematchings (Mi�1; :::;Mi�8d�1=10e). We call v 2 B[S
externally unavailable if v is an external vertex of any of the patches

already constructed in F or any of the patches constructed for one

of the previous 8d�1=10e matchings. We call v 2 B [ S usable if

v is unmarked in and missed by M 0
i , if v is missed by M 0

i and v is

not externally unavailable, or if (v; u) 2 M 0
i and neither u nor v is

externally unavailable. Finally, we call v 2 B [ S internally usable

if (v; u) 2M 0
i and neither u nor v is internally unavailable.

We observe that all internally usable vertices are usable.

3.2 We recursively build the sets X0; :::;Xk+1 and Y 0; :::; Y k where k =

6d�1=20e as follows:
X0 = fxg, and for l = 0; :::; k,

Y l = fv 2 B : v is usable and 9u 2 X l such that (u; v) 2 E(F ) \
E(B1 [ S1; B2 [ S2)g.

X l+1 = fv 2 B�Bs : 9u 2 Y l s.t. (u; v) 2M 0
i and u; v are internally

usableg
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Y l � X l+1 for every l = 0; :::; k, and Y j > Xj+1 if and only if there is

a usable vertex y 2 Y j that is either missed by M 0
i or hit with an edge

(y; z) 2M 0
i such that z 2 Bs [ S and z is usable.

3.3 If for some j, there is a vertex y 2 Y j that is missed byM 0
i , we construct

the patch P de�ned by the sequence of vertices x = x0; y0; x1; y1; :::;

yj�1xj; yj = y where xl 2 X l, yl 2 Y l and (xl; yl) 2 E(F ) \ E(B1 [
S2; B2 [ S2), for l = 0; :::; j, and (yl; xl+1) 2M 0

i for l = 0; :::; j � 1. In

addition we adjust the marking as follows:

i. If y 2 B and mr(y; i) = 1, we reset it to mr(y; i) = 0;

ii. If y 2 S, we set my(x
j ; i) = 1;

Finally, for every small vertex yl that appears on P such that 0 � l �
j � 1, we reset myl(x

l+1; i) = 0 and we set myl(x
l; i) = 1.

3.4 If for some j, there is a vertex y 2 Y j that is hit with an edge (y; z) 2M 0
i

such that z 2 Bs [ S (so that y and z are usable), we construct the

patch P de�ned by the sequence of vertices x = x0; y0; x1; y1; :::; yj�1;
xj ; yj; z as above. In addition, we adjust the marking as follows:

iii. If y 2 B and z 2 S, we reset mz(y; i) = 0;

iv. If y 2 B and z 2 Bs, we set mr(z; i) = 1;

v. If y 2 S and z 2 Bs, we reset my(z; i) = 0 and we set mr(z; i) = 1

and my(x
j ; i) = 1.

Finally, for every small vertex yl that appears on p such that 0 � l �
j � 1, we reset myl(x

l+1; i) = 0 and we set myl(x
l; i) = 1.

If we are successful in constructing all the patches in every initial matching

M 0
i , we obtain disjoint matchings M1; :::;M�1

such that [�1

i=1Mi = (E(B1 [
S1) � E(R1)) [ E(B2 [ S2) � E(R2). We now show that the marking and

the reject graphs R1 and R2 satisfy the desired properties.

A vertex v 2 B [ S is an external vertex in at most �1

8d�1=10e patches

and an internal vertex in at most �1

8d�1=10e additional patches. So at most

�1

4d�1=10e <
1

4
�9=10 edges incident to v are rejected. Furthermore, since there

are at most 16� unmarked vertices missed in each M 0
i , jE(R1)j+ jE(R2)j <

�116�6�
1=20 < �17=10.
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Note that we add or delete less than �1

4d�1=10e < 1

4
�9=10 � 2� real or fake

marks to any vertex v, in addition to the marks already assigned to v in the

marking step. It follows that jm�1(v)� 1

2
def(v)j < 1

4
�9=10 for every v 2 B,

satisfying 4.1. Because we never add a real mark to any v 2 B �Bs during

the patching, it follows that 0 � mr(v) � defr(v). Now, v 2 Bs was initially

marked in at least 1

2
defr(v)+

3

4
� and at most 1

2
defr(v)+

5

4
� initial matchings.

Thus, jm�1
r (v) � 1

2
defr(v)j < 1

2
�9=10, and since defr(v) > 2�9=10, it follows

that 0 � mr(v) � defr(v). The marking is then a valid one.

If we fail to construct a patch:

3.5 If X l+1 = Y l for every l = 0; :::; 6d�1=20e, we pick the smallest j � 1

such that jY j j � jXj j+ 1

2
�19=20 (we prove in claim 10 below that this

inequality must hold for some j). Let F1 and F2 be vertices in B1 and

B2, respectively, that are not usable and let X = Xj and Y = Y j[F1,
if Y j � B1 [ S1, or Y = Y j [ F2, if Y j � B2 [ S2.

Claim 10 (X;Y ) forms a fail pair in (B1 [ S1; B2 [ S2).

Before we prove the claim, we give lower bounds on the degrees of vertices

in F . Since dF (v) = d(v)� (�1�m�1
r (v)), it follows that jdF (v)� 1

2
d(v)j <

1

2
�9=10. Furthermore, since dFB1[S1(v1) � �(R1) <

1

4
�9=10 for every v1 2

B1, it follows that d
F
B2[S2(v1) >

1

2
d(v1)��9=10. Equivalently, dFB1[S1(v2) >

1

2
d(v1)��9=10.

Proof: We assume that x 2 B1 \ Bl; a symmetric argument does the job

for x 2 B2 \ Bl. Since there are at most 2 external vertices in every patch

and there are at most 16� patches per matching (by claim 9), it follows that

the number of externally unavailable vertices in B1 is at most 8�1=1016� so

that jF1j < �7=10. A symmetrical argument gives jF2j < �7=10.

We note that jX1j = jY 0j � dFB2[S2(x) � jF2j � 1

4
� � 2�9=10. If we as-

sume that jY lj > jX lj + 1

2
�19=20 for all 1 � l � 6d�1=20e, it follows

that jX6d�1=20ej > 3� > jB1j, a contradiction. So we must have jY j j �
jXj j+ 1

2
�19=20 for some j between 1 and 6d�1=20e.

In order to show that the pair (X;Y ), as constructed in the procedure forms

a fail pair in (B1 [ S1; B2 [ S2), we must show that the following three

conditions hold. We prove them only for the case when X � B1 � Bs and

Y � B2 [ S2 (the case X � B2 �Bs and Y � B1 [ S1 is symmetric):
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jY j < jXj+�19=20

Proof: jY j = jY j j+ jF2j < jXj j+ 1

2
�19=20 +�7=10 < jXj+�19=20.

For all v 2 X: dY (v) >
1

2
���19=20.

Proof: For every v 2 X, dY (v) � dFY (v) = dFB2[S2(v) >
1

2
d(v)��9=10.

Since every v 2 X belongs to B�Bs, it follows that d(v) > ��2�9=10

implying dY (v) >
1

2
���19=20.

jB1 �Xj > 1

4
���19=20.

Proof: Sincem(B2; i) >
1

2
�4=5 and jF2j < �7=10, there exists a marked

big vertex v 2 B2 � F2, such that v is usable, but dFX(v) = 0. Thus,

jB1 �Xj � dFB1
(v) > 1

4
���19=20.

2

4.1.2 The reject coloring pass

We now attempt to construct the remaining disjoint matchings M�1+1
; :::;

M�1+�2
, where �2 = d1

4
�19=20e, such that H = F �[�2

i=1M�1+i is a bipar-

tite reduction of F (and thus G).

The initial coloring

1. We color the edges in E(R1) and E(R2) with �2 colors to obtain match-

ings M 0
�1+1

; :::;M 0
�1+�2

, balanced in B1 and in B2, such that

[�1

i=1M
0
�1+i

= E(R1) [E(R2)

using Fournier's edge-coloring algorithm and the balancing procedure.

We can apply Fournier's algorithm because �(R1);�(R2) � �2 � 1. Since

jE(R1)j + jE(R2)j < �17=10 and the initial matchings are balanced in B1

and in B2, it follows that jM 0
�1+i

\E(B)j � 4�4=5 for all i = 1; :::;�2.

The marking

We de�ne an initial marking of the big vertices that is proper over the initial

matchings M 0
�1+1

; :::;M 0
�1+�2

as follows:
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2. For every v 2 B, u 2 S and i = 1; :::;�2, we set mu(v;�1 + i) = 1 if

(u; v) 2M 0
�1+i

. We then equalize this marking in B1 and in B2 using

the equalizing procedure.

Since M 0
�1+1

; :::;M 0
�1+�2

are balanced in B1 and in B2 and the marking is

equalized in B1 and B2, it follows that the number of big vertices hit by

M 0
�1+i

is 2jM 0
�1+i

\E(B)j +mS(B;�1 + i) < 10�4=5, for all i = 1; :::;�2.

We remark that we only put fake marks in this step: we will put additional

real marks in each iteration of the patching step.

The patching

For i = 1; 2; :::;�2 we recursively attempt to constructM�1+i by augmenting

M 0
i with a matchingM� that we construct inH = F�M�1+1

�:::�M�1+i�1.

Let m�1+i
r (v) =

P
�1+i
j=1 m(v; j). We attempt to construct M� as follows:

3.1 Let E1 and E2 be the subsets of vertices in B1 and B2, respectively,

that are hit byM 0
�1+i

, and let U1 and U2 be the sets of vertices v in B1

and B2 that are missed by M 0
i such that m�1+i�1

r (v) = def�1+i�1
r (v)

(i.e. vertices with no remaining real de�ciency in iteration i). Note

that all vertices in F1 = B1 � E1 � U1 and F = B2 � E2 � U2 are

missed by M 0
�1+i

and have some remaining real de�ciency. We set

mr(v;�1 + i) = 1 for every v 2 F1 [ F2.

Remark: jE1j; jE2j < 10�4=5.

3.2 We attempt to construct a matching M� in the bipartite graph H \
(U1 [ F1 [ S1; U2 [ F2 [ S2), such that each vertex in U1 [ U2 is an

endpoint of a matching edge. If successful, we obtainM�1+i by adding

M� to M 0
�1+i

. We adjust the marking so that mu(v;�1 + i) = 1 for

every v 2 U1 [ U2 such that there is u 2 S and (v; u) 2 M�; we also
reset mr(v;�1 + i) = 0 for every v 2 F1 [ F2 for which there exists

u 2 U1 [ U2 and (v; u) 2M�.

If we successfully construct matchingsM�1+1
; :::;M�1+�2

thenH�M�1+1
�

:::�M�1+�2
is obviously a bipartite reduction of F .

3.3 If not successful, we either �nd the setsX � U1 and Y
0 = NH

U2[F2[S2(X)

such that jXj > jY 0j and we set Y = Y 0 [E2, or the sets X � U2 and

Y 0 = NH
U1[F1[S1(X) such that jXj > jY 0j and we set Y = Y 0 [E1.
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Claim 11 (X;Y ) forms a fail pair in (B1 [ S1; B2 [ S2).

Proof: We assume X � U1; the proof for X � U2 follows by a symmetric

argument. We must show that the following three properties hold:

jY j < jXj+�19=20.

Proof: jY j � jY 0j+ jE2j < jXj+�19=20.

dY (v) >
1

2
���19=20 for all v 2 X:

Proof: Every v 2 X satis�es dH(v) = � � �1 � (i � 1), so that

dY (v) � dHY (v) = dHB2[S2(v) = dH(v)� dHB1[S1(v) >
1

2
�� �� (i� 1)�

1

4
�9=10 > 1

2
���19=20.

jB1 �Xj > 1

4
���19=20.

Proof: If there exist v 2 B2 � Y , then dHX(v) = 0 and dHB1
(v) >

dFB1
(v) ��2 >

1

2
d(v) � 2�9=10 > 1

4
���19=20.

Suppose now that B2 � Y . Then, 0 � jB1 � Xj < jB1j � jXj <
jB2j � jY j+ 10�4=5 � 10�4=5. It also follows that jY \ S2j < 10�4=5.

Since jB�j > 2�9=10 and because (B1[S1; B2[S2) is a split partition
of (B [S), it follows that jB�\B1j � �9=10. Clearly there must exist

some vertex v 2 X\B�. Then dFB2
(v) < 1

2
dB(v)+

1

8
� < 1

2
���9=10+�.

Since v 2 X, however, dHB2[S2(v) = dH(v) � dHB1[S1(v) � � � �1 �
(i� 1)� 1

4
�9=10 > 1

2
�� 1

2
�9=10 � �. So, dHS2(v) >

1

2
�9=10 � 2�, which

implies jY \ S2j > 1

2
�9=10, contradicting jY \ S2j < 10�4=5.

2

4.2 The medium de�ciency case

We now consider the case of a medium de�ciency graph G = (B [ S;E),

which we de�ne as graphs with de�ciency def(B) � �12=10 but with fewer

than 2�9=10 big vertices of de�ciency greater than �9=10. In other words

the set B� = fv 2 B : def(v) > �9=10g is of size at most 2�9=10. Note that

this implies that def(B) < 2�9=10 1
2
�+ 6��9=10 = 7�19=10.

As B � B� is \almost" regular and \almost" equal to the whole graph,

we will apply essentially the same patching technique we developed in the
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regular case by insisting that all patches go through B�B�. The di�culty

now is what vertices missed by an initial matching to patch. So, we take

more care in de�ning the marking in both coloring passes.

4.2.1 The �rst coloring pass

We construct, in the �rst coloring pass, disjoint matchingsM1; :::;M�1
such

that F = G � M1 � ::: � M�1
is a reduction of G and [�1

i=1Mi contains

E(B1 [ S1) � E(R1) and E(B2 [ S2) � E(R2) where R1 and R2 are reject

subgraphs of B1 [ S1 and B2 [ S2, respectively, of maximum degree less

than �9=10 such that jE(R1) \ E(B1)j = jE(R2) \ E(B2)j < 1

12
�19=10 and

jjE(R1) \ E(B1; S1)j + jE(R2) \ E(B2; S2)jj � 4�1. For technical reasons,

we insist that dFB(v) >
1

2
dB(v) ��9=10 which will be true if we require our

marking to satisfy

jm�1(v)� 1

2
def(v)j < 1

2
�9=10 (4.3)

Furthermore, as we need substantial amounts of de�ciency remaining for

the reject coloring pass, but we also need substantial number of marks, we

require that the marking in the �rst coloring pass satis�es, for k = 1; 2,

4

10
def(Bk) < m�1(Bk) <

6

10
def(Bk) (4.4)

The initial matchings

We �rst construct the matchings M 0
1
; :::;M 0

�1
, balanced in B1 and in B2, so

that [�1

i=1M
0
i = E(B1 [ S1) [ E(B2 [ S2). To do this we apply Fournier's

algorithm and the balancing procedure from section 3.2.2, exactly as we did

in the large de�ciency case of section 4.1. We observe that the number of

matchings missing v 2 B1 is exactly �1 � dB1[S1(v), implying that more

than 1

2
defr(v) +

3

4
� matchings miss v, but no more than 1

2
defr(v) +

5

4
�. The

same is true for v 2 B�
2
.

The initial marking

We de�ne an initial marking that is proper over modi�ed initial match-

ings M 0
1
; :::;M 0

�1
, still balanced in B1 and B2 and still satisfying [�1

i=1M
0
i =

E(B1 [ S1) [E(B2 [ S2):
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2.1 We initially set mu(v; i) = 1 for every u 2 S, v 2 B and i such that

(u; v) 2M 0
i .

2.2 Then, for every v 2 B, we de�ne a target t(v) equal to d1
2
defr(v)e or

b1
2
defr(v)c so that t(B1) =

P
v2B1

t(v) = d1
2
defr(B1)e and t(B2) =P

v2B2
t(v) = d1

2
defr(B2)e.

2.3 For every v 2 B, we pick a set R of t(v) matchings (amongM 0
1
; :::;M 0

�1
)

missing v and we set mr(v; i) = 1 for every M 0
i 2 R.

2.4 We equalize the marking in B1 and B2 using the equalizing procedure

from 3.2.3.

Note that, while M 0
1
; :::;M 0

�1
may be modi�ed in step 2.4, they are still

balanced in B1 and in B2 and [�1

i=1M
0
i = E(B1 [ S1) [E(B2 [ S2).

Claim 12

4

10
def(Bk) + 4�1 < m�1(Bk) <

6

10
def(Bk) (4.5)

1

3
�1=5 + 4 < m(Bk; i) <

3

2
�9=10 (4.6)

for all i = 1; :::;�1 and k = 1; 2.

Proof: We only prove the claim for k = 1, since a symmetric proof will

work for k = 2. Let B�
1
= fv 2 B1 : defS(v) > 400�1=10g. We note

that defS(B1 � B�
1
) < jB1j400�1=10 < 1200�11=10. We also note that

9

20
defS(v) <

1

2
defS(v)� 1

8

p
defS(v)�

1=20 � m�1

S (v) = defS1(v) � 1

2
defS(v)+

1

8

p
defS(v)�

1=20 < 11

20
defS(v) for every v 2 B�

1
. So, m�1

S (B1) � m�1

S (B�
1
) +

defS(B1 �B�
1
) < 11

20
defS(B

�
1
) + 1200�11=10, and similarly m�1

S (B1) >
9

20
defS(B

�
1
).

It follows that m�1(B1) = m�1
r (B1)+m

�1

S (B1) <
11

20
def(B1)+1200�11=10 <

6

10
def(B1) and m�1(B1) >

9

20
def(B1)� 1200�11=10 > 4

10
def(B1) + 4�1.

Since 1

2
�12=10 � 1

4
� � def(B1) � �19=10 + 1

4
� in this case, and because the

marking is equalized in B1, it follows that m(B1; i) <
1

�1
m�1(B1) + 2 <

3

2
�9=10 and m(B1; i) >

1

3
�1=5 + 4. 2

If jBj is even, thenm�1(B2)�m�1(B1) =
1

2
(defS(B2)�defS(B1))+

1

2
(d(S2)�

d(S1)) + d1
2
defr(B2)e � d1

2
defr(B2)e = cB + k where k = dcSe or k =
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bcSc. (Recall that cS = 1

2
(d(S2) � d(S1)).) If jBj is odd, then m�1(B2) �

m�1(B1) = cB + k � 1

2
� where k = dcSe or k = bcSc. In both cases,

0 � m�1(B2) � m�1(B1) � 1

2
�. Since the marking is equalized in B1

and in B2, it follows that jm(B2; i) �m(B1; i)j � 2 for every i = 1; :::;�1.

Furthermore, since 0 � jM 0
i \ E(B1)j � jM 0

i \ E(B2)j � 1, it follows that

jn(B1; i)�n(B2; i)j � 4, where n(B1; i) and n(B2; i) are the numbers of ver-

tices in B1 and in B2, respectively, that are missed by and are not marked

in M 0
i (i.e. m(v; i) = 0).

Preparing the matchings and the marking for patching

In order to be able to apply our patching techniques, we require that n(B1; i)

= n(B2; i) for all i = 1; :::;�1. We take care of this by deleting up to 4 marks

in every matching, while being careful not to delete too many marks from

any one vertex:

3. For every i = 1; :::;�1, we delete jzj marks from matching M 0
i , where

z = n(B1; i) � n(B2; i), as follows:

We repeat the following jzj times: if z > 0 (resp. z < 0)

we pick a vertex v 2 B2 (resp. B1) such that mr(v; i) = 1

and v has not been picked in the previous 2�1=10 iterations,

or mu(v; i) = 1 and neither u nor v have been chosen in

the previous 2�1=10 iterations. In the �rst case, we just set

mr(v; i) = 0, while in the latter we set mu(v; i) = 0 and we

reject (u; v).

In every iteration i, no more than 16�1=10 < 1

3
�6=5 � m(Bk; i)�4 marks are

not available. We reject at most 4�1 small edges and no vertex is adjacent

to more than �1

2�1=10 < 1

2
�9=10 rejected edges. Similarly, no vertex v lost

more than �1

2�1=10 marks so jm�1(v)� 1

2
def(v)j < 1

2
�9=10.

Claim 13 The following properties are satis�ed by the �nal marking (de-

�ned after step 3.) for k = 1; 2 and all i = 1; :::;�1:

(i) 4

10
def(Bk) < m�1(Bk) <

6

10
def(Bk),

(ii) 1

3
�1=5 � m(Bk; i) <

3

2
�9=10,

(iii) 1

2
� � n(B�

1
; i) = n(B�

2
; i) < 8�.
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Proof: The �rst two conditions easily follow from our above discussion, so

we only prove (iii). Every v 2 B is unmarked in and missed by �1�m�1(v)

initial matchings, i.e. by at least 3

4
� and at most 5

4
� of the matchings

M 0
1
; :::;M 0

�1
. Since these matchings are balanced in B1 and in B2, because

the marking m is equalized in B1 and in B2, and because no more than

4�1 small edges have been rejected, it follows that the number of unmarked

vertices in Bk missed by M 0
i is at least (�1)

�1(3
4
� 1
2
�� 4�1) � 4 � 2 > 1

2
�

and at most (�1)
�1(5

4
�3�) + 2 < 8�. 2

The patching

For i = 1; :::;�1, we recursively construct Mi by augmenting the vertex dis-

joint patches we construct in F = B\(G�R1�R2�M1�:::�Mi�1) between
pairs of unmarked big vertices missed by M 0

i . Note that only big edges may

be rejected in the augmentations. If we fail to construct a patch between

two unmarked vertices missed by some M 0
i , we will show the existence of

and construct a fail pair (X;Y ) in (B1; B2).

Let x1; :::; xs be the unmarked big vertices in B1 missed by M 0
i and let

y1; :::; ys be the unmarked big vertices missed by M 0
i (where

1

2
� < s < 9�.)

For r = 1; :::; s, we construct the patch Pr in between xr and yr as follows:

4.1 We �rst de�ne unavailable and usable vertices. We call v 2 B un-

available if it belongs to any one of P1; :::; Pr�1 or to any one of

the patches constructed for one of the previous 2d�1=10e matchings

(M 0
i�1; :::;M

0
i�2d�1=10e). We call v 2 B usable if v = yr or (v; u) 2M 0

i

and neither v nor u is unavailable.

4.2 We recursively build the sets X l and Y l for 0 � l � 6d�1=20e as follows:
X0 = fxrg,
Y l = fv 2 B : v is usable and 9u 2 X l such that (u; v) 2 E(F ) \

E(B1; B2)g.
X l = fv 2 B : 9u 2 Y l�1 such that (u; v) 2M 0

ig

We observe that Y l � X l+1 for every l = 0; :::; 6d�1=20e and Y j > Xj+1 for

some j if and only if yr 2 Y j .

4.3 If yr 2 Y j for some 0 � j � 6d�1=20e, we construct the patch de�ned by

the sequence of vertices xr = x0; y0; x1; y1; :::; yj�1; xj ; yj = yr where

xl 2 X l, yl 2 Y l, (xl; yl) 2 E(F ) \E(B1; B2) and (yl; xl+1) 2M 0
i .
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We observe that each patch contains the same number of edges from E(B1)

and from E(B2) and that in every augmentation an equal number of edges

in E(B1) and in E(B2) are rejected. It follows that jE(R1) \ E(B1)j =
jE(R2) \ E(B2j. Furthermore, we reject at most �1

2�1=10 < 1

2
�9=10 edges

incident to any particular vertex. Finally the total number of edges in B1

or in B2 we reject is less than �110�6d�1=20e < 1

12
�19=10.

4.4 If there is no Y j containing yr, then we pick the smallest j � 1 such

that jY j j � jXj j + 1

2
�19=20. We will show in claim 14 below that

j < 6d�1=20e � 2. Let F1 and F2 be the vertices in B1 and B2,

respectively, that are not usable, and let E1 and E2 be subsets of B1

and B2, respectively, missed by the big edges of M 0
i . We set Y =

Y j [ F2 [ E2 if Y j � B2 or Y = Y j [ F1 [ E2 if Y j � B1 and

X = fv 2 Xj : dFY (v) >
1

2
���19=20g.

Claim 14 (X;Y ) is a fail pair in (B1; B2).

We note that dFB(v) >
1

2
def(v) � �9=10 for all v 2 B since 4.3 is satis�ed,

implying dFB2
(v) > 1

2
def(v)� 2�9=10 for all v 2 B1 and dFB1

(v) > 1

2
def(v)�

2�9=10 for all v 2 B2.

Proof: To simplify notation, let x = xr 2 B1 and y = yr 2 B2.

Since a patch contains at most 6d�1=20e vertices in B1, and since there are

at most 8� patches per matching, it follows that

jF1j < 2b�1=10c8�6d�1=20e < 1

8
�19=20

A symmetrical argument gives jF2j < 1

8
�19=20.

It follows that jX1j = jY 0j � dFB2
(v) � jF2j > 1

4
�� 1

4
�19=20. If we assume

that jY lj > jX lj+ 1

2
�19=20 for all 1 � l � d6�1=20e�2, then jX6d�1=20e�2j >

3� � jB1j, a contradiction.

So we must have jY jj � jXj j+ 1

2
�19=20 for some j between 1 and d6�1=20e�2,

and we pick the minimum j satisfying this property. Then the pair (X;Y ),

as constructed in step 4.4 forms a fail pair in (B1; B2) if the following 3

conditions are satis�ed:
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jY j � jXj+�19=20.

Proof: We assume X � B1 and Y � B2; a symmetric argument

follows when X � B2 and Y � B1. We note that jY j = jY j j+ jE2j+
jF2j � jXj j + 1

2
�19=20 + 8� + 3

2
�9=10 + 1

8
�19=20 < jXj j + 3

4
�19=20. If

v 2 Xj � X then dFB2
(v) < 1

2
� � �19=20 and dB(v) < � � �19=20,

implying v 2 B� \B1. Since jB� \B1j � 1

4
�19=20, i follows.

For all v 2 X: dY (v) >
1

2
���19=20.

Proof: This follows by the de�nition of X.

If X � B1 then jB1j � jXj > 1

2
���19=20, or if X � B2 then jB2j � jXj >

1

2
���19=20.

Proof: If X � B1 then y must belong to B2�Y and dFX(y) = 0. Since

dFB1
(y) > 1

4
�� 2�9=10, it follows that jB1j � jXj > 1

4
���19=20.

If X � B2, then dF
Xj+1(y) = 0 and dFB1

(y) > 1

4
� � 2�9=10, so that

jB1 � Y jj = jB1 �Xj+1j > 1

4
���9=10. So, there must exist a vertex

v 2 B1 �Xj+1 with (v; u) 2 M 0
i such that v and u are usable. Since

v 2 B1�Xj+1 however, dFX(v) = 0. But dFB1
(v) > 1

4
�� 2�9=10 and it

follows that jB1 �Xj > 1

4
���19=20.

2

4.2.2 The reject coloring pass

After the �rst pass has been completed and the matchingsM1; :::;M�1
have

been deleted, we obtain the reduction F = G� [�1

i=1Mi of G. In the reject

coloring pass, we construct the disjoint matchings M�1+1
; :::;M�1+�2

such

that [�2

i=1M�1+i contains E(R1)[E(R2) andH = F�[�2

i=1M�1+i has degree

���1 ��2, so that H is a bipartite reduction of G.

The initial matchings

Let k be the largest integer less than or equal to 1

6
�19=20 such that �2 � k

is even (recall that �2 = d1
2
�19=20e, so that �2 � k � 1

3
�19=20). We �rst

color the small edges of R1 and R2 with k colors:

1.1 We color E(R1)\E(B1; S1) and E(R2)\E(B2; S2) with k colors using

Fournier's algorithm and we obtain disjoint matchingsM 0
�1+1

; :::;M 0
�1+k

such that
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[ki=1M 0
�1+i

= (E(R1) \E(B1; S1)) [ (E(R2) \E(B2; S2))

We color the big reject edges with the remaining �2 � k colors:

1.2 If jBj is even, we color E(R1)\E(B1) and E(R2)\E(B2) with �2� k

colors and we use the procedure from 3.2.2 to obtain disjoint matchings

M 0
�1+k+1

; :::;M 0
�1+�2

, balanced in B1 and in B2, such that

[�2

i=k+1M
0
�1+i

= (E(R1) \E(B1)) [ (E(R2) \E(B2))

Since jE(R1)\E(B1)j = jE(R2)\E(B2)j < 1

12
�19=20 it follows that jM 0

�1+i
\

E(B1)j = jM 0
�1+i

\E(B2)j < 1

4
�19=20 for every i = k + 1; :::;�2.

1.3 If jBj is odd, we color E(R1)\E(B1) andE(R2)\E(B2) with l =
1

2
(�2�

k) colors and we use the procedure from 3.2.2 to obtain temporary

disjoint matchings M 00
1
; :::;M 00

l balanced in B1 and in B2 such that

[li=1M 00
i = (E(R1) \E(B1)) [ (E(R2) \E(B2))

Note that jM 00
i \E(B1)j = jM 00

i \E(B2)j < 1

2
�19=20 for every i = 1; :::; l.

The marking

We de�ne a marking and, in the process, modify the matchings M 0
�1+1

;

:::;M 0
�1+�2

so that n(B1;�1 + i) = n(B2;�1 + i) for all i = 1; :::;�2. We

de�ne the marking in the �rst k matchings, for i = 1; :::; k, as follows:

2.1.1 For every i = 1; :::; k and for every edge (u; v) 2M 0
�1+i

(where u 2 S

and v 2 B) we set mu(v;�1 + i) = 1.

2.1.2 We balance the marking in B1 and B2 over the matchingsM 0
�1+1

; :::;

M 0
�1+k

using the balancing procedure from 3.2.3.

Since jjE(R1) \ E(B1; S1)j + jE(R2) \ E(B2; S2)jj � 4�1, it follows that

jM 0
�1+i

j < 25�1=20 < �
1

10 for all i = 1; :::; k.

After 2.1.2, the di�erence between the number of marks in B1 and in B2 can

be as high as �1=10. To obtain n(B1;�1+i) = n(B2;�1+i) for all i = 1; :::; k,
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we must put additional marks to every matching M 0
�1+1

; :::;M 0
�1+k

. To

describe this additional marking, we �nd it useful to denote
Pi

j=1m(v; i)

by mi
u(v).

2.1.3 We iteratively add additional marks to every M 0
�1+i

for i = 1; :::; k as

follows:

If there are z more unmarked vertices in B1 than in B2 we pick z di�er-

ent vertices v1; :::; vz in B1 with defu1(v1) > mi�1
u1

(v1); :::;defuz(vz) >

mi�1
uz (vz) where uj = r or uj 2 S2 for every j. We insist that ul = uk

if and only if ul = uk = r. We then set mu1(v1;�1 + i) = 1, ...,

muz(vz;�1 + i) = 1. If B2 has more unmarked vertices than B1, we

use the obvious symmetric procedure.

The remaining de�ciency after the �rst coloring pass is greater than 1

6
�12=10.

The total that could be used in 2.1.1 - 2.1.3 is less than 2k�1=10 < 1

2
�21=20.

So, at any iteration of 2.1.3, there is at least 1

12
�12=10 available de�ciency,

implying that we can choose v1; :::; vz ; u1; :::; uz greedily.

We now look at the remaining �2� k matchings. If jBj is even, we actually
put no marks in these matchings. If jBj is odd, however, we must put a

mark in B1 in each matching.

2.2 If jBj is odd, for i = 1; :::; l, we pick two di�erent vertices v and v0 in
B1 with defu1(v1) > mi�1

u1
(v1) and defu2(v2) > mi�1

u2
(v2) such that

(v1; v2) 62 M 00
i . (We easily can do this by the same argument as

above.) We then split M 00
i into M 0

�1+k+2i�1 and M 0
�1+k+2i

such that

M 0
�1+k+2i�1 misses v1, M

0
�1+k+2i

misses v2, jM 0
�1+k+2i�1 \E(B1)j =

jM 0
�1+k+2i�1\E(B2)j � 1

4
�9=10 and jM 0

�1+k+2i
\E(B1)j = jM 0

�1+k+2i
\

E(B2)j � 1

4
�9=10. Finally, we set mu1(v1;�1 + k + 2i � 1) = 1 and

mu2(v2;�1 + k + 2i) = 1.

When done m(B1;�1 + i);m(B2;�1 + i) < �1=10 and n(B1;�1 + i) =

n(B2;�1 + i) for i = 1; :::;�2.

The patching

For i = 1; :::;�1, we recursively construct M�1+i by augmenting M 0
�1+i

in

H = F �M�1+1
� ::: �M�1+i�1 so that all unmarked big vertices missed

by M 0
�1+i

are hit by a big edge of M�1+i:
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3. Let U1 and U2 be the sets of unmarked big vertices missed by M 0
�1+i

.

We attempt to construct a perfect matching M� in the graph induced

by the vertex partition (U1; U2) in H. If successful, we obtain M�1+i

by adding M� to M 0
�1+i

.

If not successful, we �nd the sets X 0 � U1 and Y 0 = NH
U2
(X 0) such

that jX 0j > jY 0j. Let F1 and F2 be the marked vertices in B1 and in

B2, respectively, and let E1 and E2 be the vertices in B1 and in B2,

respectively, that are hit by a big edge ofM 0
i . We set Y = Y 0[F2[E2

and X = fv 2 X 0 : dY (v) > 1

2
���19=20g.

Claim 15 (X;Y ) forms a fail pair in (B1; B2).

Proof: The following three properties must hold:

jY j < jXj+�19=20.

Proof: jY j = jY 0j+ jF2j+ jE2j � jX 0j+�1=10+ 1

2
�19=20 < jXj+�19=20.

dY (v) >
1

2
���19=20 for all v 2 X.

Proof: By de�nition of X.

jB1 �Xj > 1

4
���9=10.

Proof: Since X 00 is non-empty, there exists v 2 X 00. Since X 00 � U2 �
B2, v is a big vertex and dHX(v) = 0. Then jB1 � Xj � dHB1

(v) >

dFB1
(v)��2 >

1

4
���19=20.

2



Chapter 5

The small de�ciency case

If the Vizing graph G = (B [ S;E) has de�ciency less than �12=10, we �nd

it convenient to identify most of the small vertices, while keeping multiple

edges, so that the degree of all but at most 3 small vertices is more than 1

2
�

(and of course at most �). Then, with some care, we treat these new \high

degree small vertices" as if they were big.

We start this chapter with a description of the identi�cation procedure and

the statement of the modi�ed main theorem, a theorem about � edge color-

ing large degree graphs with identi�ed small vertices that is equivalent to the

main theorem. In section 5.2, we discuss the modi�cations we must make to

the de�nition of a split partition in order to accomodate the multiple edges

created by the identi�cations. We also describe a randomized procedure

that with positive probability returns a \modi�ed" split partition. Finally,

we present the �rst of our two edge-coloring algorithms for graphs of small

de�ciency in section 5.3. We leave the last, more technical algorithm for

graphs of smallest de�ciency to chapter 6.

5.1 The identi�cation procedure

We now identify the vertices in S of a Vizing graph G = (B [ S;E) to

obtain the graph G� = (B� [ S�; E�) where B� is the set of vertices of

degree greater than 1

2
� including all vertices in B and all identi�cations

of degree greater than 1

2
� and S� is the set of vertices of degree at most

1

2
�. We use a recursive procedure to construct G�. In order to describe

79
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this recursive identi�cation procedure we extend the notion of de�ciency to

every vertex v in B�: let def(v) = � � dB�(v), defr(v) = � � d(v) and

defS�(v) = def(v)� defr(v) = dS�(v).

We describe now the identi�cation procedure. We set, initially, B� = B and

S� = S. We identify the vertices in S� recursively a follows:

If jS�j � 2 and def(B�) � 2(defs0(B
�) + defs00(B

�)), where s0

and s00 are the two smallest degree vertices in S�, we identify s0

and s00 to obtain s� while keeping any multiple edges; otherwise

we stop. We put s� into S� if its degree is at most 1

2
� or into

B� if its degree is more than 1

2
�.

We call the resulting multigraph G� = (B� [ S�; E�) a multi-Vizing re-

duction of the Vizing graph G = (B[S;E). We call vertices in B� big and

vertices in S� small. Note that B� includes all (non-identi�ed) vertices of
B. We will also call big all edges in E(B�) and small all edges in E(B�; S�).

Before discussing how the multi-Vizing reduction G� can help us prove the

main theorem, we need to understand the properties that G� satis�es:

Claim 16 A multi-Vizing reduction G� = (B� [ S�; E�) of a Vizing graph

G = (B [ S;E) of de�ciency less than �12=10 satis�es:

a. def(B�) < �12=10, jB� � Bj < 2�1=5 and dB��B(v) < �3=5 for every

v 2 B,

b. The graph induced by vertices of B in G� is equal to the same graph in G.

(B�[S�)�B is an independent set with jS�j � 3 and if def(B�) � 2�

then jS�j � 1,

c. The multiplicity of an edge in E((B� [ S�) � B;B) is less than
p
�;

if �(u; v) � 2 for some vertices u 2 B� � B and v 2 B such that

def(u); def(v) > 1

4
���9=10 then �(u; v) � 3 and def(v) < 3

8
�+�9=10,

d. G� = (B�[S�; E�) is weakly Vizing, i.e. dB�(v) > 1

2
� for every v 2 B�,

dB�(v) � 1

2
� for every v 2 S�, and dB�(v) + dB��v(u) � � for all

u; v 2 B�.

Note that we extend the de�nition of a weakly Vizing graph from simple

graphs to multigraphs.
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Proof: At any step of the identi�cation procedure, two vertices s0 and
s00 in S� are identi�ed to obtain s�. If d(s�) > 1

2
� then s� is put into B�

which decreases the fake de�ciency of B� by d(s�) > 1

2
�, but which also

increases the real de�ciency of B� by � � d(s�) < 1

2
�. If d(s�) � 1

2
�

then s� is put into S� and the de�ciency of B� stays the same. So, the

de�ciency of B� that we obtain through the identi�cation procedure cannot

be greater than def(B), and it follows that def(B�) � �12=10. We note

that the number of edges between B� [ S� � B and B is also at most

defS�(B) < �12=10. Since every vertex in B��B has degree greater than 1

2
�

we obtain jB� �Bj < 2�1=5. The last point we need to prove property a is

that dG
�

B��B(v) < �3=5 for every v 2 B. We �rst note that dGB(u) > dGS (v) for

every u 2 S adjacent to any v 2 B (since G = (B[S;E) is Vizing). It follows
that no vertex in B can have �3=5 edges to small vertices of G (otherwise,

def(B) > (dGS (v))
2 � �12=10). This implies that dG

�

B��B(v) < �3=5.

Property b. holds for G� by construction.

If an edge (u; v) 2 E(B� [ S� � B;B) has multiplicity m �
p
� then u

has been obtained partly by identifying m small neighbors of v in G; by

the earlier remark, however, each small neighbor of v has degree more than

dS(v) � m in G, which would imply that u has degree more than m2 � �

in G�. If �(u; v) � 2 for some vertices u 2 B� � B and v 2 B such

that def(u);def(v) > 1

4
� � �9=10 then the de�ciency of v in G is at least

1

4
� � �9=10 � �3=5 > 1

4
� � 2�9=10. Then, every small neighbor (i.e in S)

of v in G has degree greater than 1

4
�� 2�9=10. Since the degree of u in G�

is less than 3

4
�+�9=10, no more than three small neighbors of v in G are

identi�ed to form u, implying �(u; v) � 3. Furthermore, if the de�ciency of

v in G� is greater than 3

8
�+�9=10 then the de�cency of v in G is greater

than 3

8
� + 1

2
�9=10 and every small neighbor of v in G has degree greater

than 3

8
� + 1

2
�9=10, implying that the degree of u in G� is at greater than

3

4
+�9=10 contradicting our assumption.

Finally, we show that property d holds, i.e we show that dB�(v)+dB��v(u) �
� for any two vertices u and v in B�. This is true if vertices u and v are

both in B (since the graph induced by B is weakly Vizing itself) or both in

B� �B (since B� �B forms an independent set). If v 2 B and u 2 B� �B

then dB�(v) + dB��v(u) � � holds if they are not adjacent. If they are

adjacent, let u0 2 S be a neighbor of v in G that was identi�ed with some

other small vertices to obtain u; then dG
�

B��v(u)+dG
�

B� (v) � dGB�v(u
0)+ jfx 2

B : (x; v) 2 E and dG(x) = �gj � � follows since G is Vizing. 2
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We will often just speak of a multi-Vizing reduction G� = (B�[S�; E�) and
assume that it is obtained from a Vizing graph G = (B [S;E) of de�ciency
less than �12=10.

We can discuss now how G� can help us prove the main theorem. We �rst

note the obvious fact that a � edge coloring of G� is easily extendable to

G. Furthermore, if a subgraph H of B is forbidden in G�, then H is also

forbidden in G; recall that a subgraph H of B is forbidden if its minimum

degree �(H) � ���79=80 and either:

(i) H is bipartite, or

(ii) jB �Hj > 1

2
���79=80

Let F be an overfull subgraph of G� of maximum degree � (recall that F

is overfull if E(F ) > 1

2
�(jV (F )j � 1)). We extend the notion of a trivial

overfull subgraph, originally de�ned in the case of Vizing graphs, to multi-

Vizing reductions as follows: F is trivial if it has degree � and F = B� � v

for some v 2 B�, F = B� or F = B� + u for some u 2 S�. We also extend

the trivial lemma (lemma 17) as follows:

Lemma 20 (multi-trivial) Let G� = (B� [ S�; E�) be a multi-Vizing re-

duction of the Vizing graph G = (B[S;E) of maximum degree � containing

an overfull subgraph of degree �. Then one of the following must hold:

(i) G� contains a trivial overfull subgraph, or

(ii) G� contains a forbidden subgraph H in B.

In addition we will show below that:

Lemma 21 Let G� = (B�[S�; E�) be a multi-Vizing reduction of the Vizing

graph G = (B[S;E) of maximum degree �. If G� contains a trivial overfull

subgraph F then F is a trivial overfull subgraph of G too.

The above discussion and the two lemmas 20 and 21 show that in order to

prove the main theorem for Vizing graphs of de�ciency less than �12=10, it

is su�cient to prove:
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Theorem 22 There exists �0 such that for all Vizing graphs G = (B[S;E)
of maximum degree � > �0 satisfying jB [ Sj � 6� and def(B) � �12=10,

one of the following holds for the multi-Vizing reduction G� = (B�[S�; E�)
of G:

(i) G� contains a trivial overfull subgraph,

(ii) B contains a forbidden subgraph H,

(iii) G� is � edge colorable.

Furthermore, there is a procedure which runs in O(2jV j) time that will out-

put either a � edge coloring of G�, a trivial overfull subgraph of G� or a

forbidden subgraph of B.

We prove this theorem by designing, and proving the correctness of, two

algorithms that attempt to color with � colors the edges of a graph of

small de�ciency. We apply the �rst algorithm (described in section 5.3 of

this chapter) to graphs with 2� < def(B�) < �12=10. The second, more

technical algorithm deals with graphs with def(B�) < 5

2
� and is dicussed

in chapter 6. We will show that both algorithms fail only if G� contains a
trivial overfull subgraph or B contains a forbidden subgraph. We now prove

lemma 20:

Proof: Let F be an overfull subgraph of G� of maximum degree �, and

let us slightly abuse the notation by denoting by F the set of vertices of the

graph F .

We �rst remark that the set R = fv 2 F : dF (v) < ��
p
�g is smaller thanp

�. Thus the graph H induced by (F �R)\B has minimum degree greater

than � � 2
p
� � �3=5 (since dB��B(v) < �3=5 for every v 2 B� by claim

16). If H is not a forbidden subgraph of B then jB �Hj � 1

2
���79=80.

Consider the set C = fv 2 B � F : dF (v) >
p
�g. Clearly, jCj <

p
�. Note

that dB(v) >
1

2
� for any v in B and dF (v) �

p
� for any v 2 B � F � C.

So, if B�F �C is not empty then jB�F j > 1

2
��

p
� which in turn gives

jB�Hj > 1

2
���79=80 contradicting our assumption that H is not forbidden

(note that jF �Hj � jRj+ jB� �Bj < 2
p
�. Clearly then, B � F = C and

jB�F j �
p
�. Note that if jB�F j > 2 then jE(F;B�F )j > 3

2
j��3

p
� > �

which contradicts the fact that F is overfull. We thus obtain jB � F j � 2.
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If B � F = fu; vg, then jE(F + u + v)j = jE(F )j + dB(u) + dB�u(v) >
1

2
�(jV (F )j � 1) + � = 1

2
�(jF + u + vj � 1) and F + u + v is an overfull

subgraph of G as well. So, in any case, there exists an overfull subgraph

F 0 of maximum degree � such that jB � F 0j � 1. A similar argument also

show that jB� � F j � 1.

Suppose now that jF 0 \ S�j � 2, and let u and v be two vertices of F 0 \ S�.
Then jE(F 0)j = jE(F 0 � u� v)j+ dF (u) + dF (v) � 1

2
�(jF 0j � 2)� (dF (u) +

dF (v)) + (dF (u) + dF (v)) =
1

2
�(jF 0j � 2) contradicting the fact that F 0 is

overfull. So, jF 0 \ S�j � 1.

Finally, we show that if jB�F 0j = 1 and jS \F 0j = 1, then B itself must be

overfull. This would prove our claim that G� must contain a trivial overfull

subgraph. Suppose that F 0 = B��v+u for some v 2 B� and u 2 S�. Then
jE(F 0)j = jE(F 0�u)j+ dF (u) � jE(B�)j � dB�(v) + dB�(u) � jE(B�)j since
dB�(v) � dB�(u). Since jE(F 0)j > 1

2
�(jF 0j� 1) = 1

2
�(jB�j� 1), B� must be

overfull.

2

Finally we prove lemma 21:

Proof: It is su�cient to prove that each identi�cation satis�es this prop-

erty. Let G� be obtained from G by identifying s0 and s00 in S into s� in

S�. Let F be the overfull graph induced by B�, B� � v for some v 2 B� or
B�+s for some u 2 S�. If s� =2 V (F ), it is easy to see that F is also a trivial

overfull subgraph of G. We now show that s� cannot belong to V (F ). This
will prove our lemma.

Assume s� 2 V (F ). If V (F ) = B� then since F is overfull in G� we have

that def(B�) < �. If V (F ) = B� � b then since F is overfull in G� we have
def(B�) < 2def(v) < �. Finally if V (F ) = B�+u then since F is overfull in

G� we have def(B�) < 2defu(B
�) � �. However, def(B�) < � implies that

in G

def(B�)� defs0(B
�)� defs00(B

�) + (�� defs0(B
�)� defs00(B

�)) < �

(where the de�ciencies are taken in G!) which contradicts our identi�cation

assumption that def(B�) � 2(defs0(B
�)� ds00(B

�)). 2
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5.2 A modi�ed split partition

In 2.5.1 we de�ned and constructed a split partition (B1 [ S1; B2 [ S2) of

a simple Vizing graph G = (B [ S;E). We de�ne, similarly, a modi�ed

split partition (B�
1
[S�

1
; B�

2
[S�

2
) of the vertices of a multi-Vizing reduction

G� = (B�[S�; E�). In a partition of the vertices of G�, we require the degree
of any vertex, and not just its neighborhood, to split about evenly between

the two sides of the bipartition. While this is a non-issue in simple Vizing

graphs, it is something we must worry about in multi-Vizing reductions with

multiple edges.

Recall that S� may have up to 3 vertices: let us add additional vertices

so S� = fs1; s2; s3g where d(s1) � d(s2) � d(s3) � 0. Let b1; b2; :::; b10
be the ten largest de�ciency vertices in B� such that def(b1) � def(b2) �
::: � def(b10). We set �1 to be the smallest even (odd) integer greater

than 1

2
� + �3=4 lnn if jB�j is even (odd), and � = �1 � 1

2
�. A partition

(B�
1
[ S�

1
; B�

2
[ S�

2
) of B� [ S� is called a modi�ed split partition if the

following are satis�ed:

(a) B�
1
[B�

2
= B� and 0 � jB�

1
j � jB�

2
j � 1, S�

2
= fs1; s3g and S�

1
= fs2g.

(b) For all v in B and for all X;Y � B of size less than 20 log� the

following sets split within 1

4
�11=20:

NB(v); NB(X); NB(v)\NB(X); fw 2 NB(X) : dNB(Y )(w) > ��7�39=40g

(c) Let B1 = B\B�
1
andB2 = B\B�

2
. Then jdB1

(v)�dB2
(v)j � 1

4
�3=4 log�

for all v in (B� �B) [ S�.
(d) If jB�j is even, bi 2 B�

2
if i is odd, bi 2 B�

1
if i is even and def(B�

1
� b2�

b4� b6� b8� b10) � def(B�
2
� b1� b3� b5� b7� b9); if jB�j is odd then

bi 2 B�
2
if i is even, bi 2 B�

1
if i is odd and def(B�

1
�b1�b3�b5�b7�b9) �

def(B�
2
� b2 � b4 � b6 � b8 � b10);

Let cB = jE(B1)j � jE(B2)j. If jB�j even, property (a) implies that cB =
1

2
(def(B�

2
) � def(B�

1
)). Property (d) then gives 0 � cB � 1

2
def(b) < 1

4
�.

If jB�j is odd, property (a) implies that cB = 1

2
(�� (def(B�

1
)� def(B�

2
))).

Again, it follows from property (d) that 1

4
� < 1

2
(� � def(b)) � cB � 1

2
�.

In order to prove that a modi�ed split partition exists, we show that the

following procedure constructs with positive probability a modi�ed split

partition (B�
1
[ S�

1
; B�

2
[ S�

2
) of B� [ S�:
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We order the vertices in B� by non-decreasing de�ciency. For
each successive ordered pair of vertices we switch the order of the

pair with probability 1=2 and put the �rst vertex in the set B�
1

and the second in the set B�
2
. If jB�j is even, after all the vertices

but the last 5 pairs have been assigned to B�
1
or B�

2
, we rename

B�
1
and B�

2
so that def(B�

1
) � def(B�

2
) and we add b1, b3, b5, b7

and b9 to B�
2
and b2, b4, b6, b8 and b10 to B�

1
. If jB�j is odd,

after all the vertices but b1 through b9 have been assigned to B�
1

or B�
2
, we rename B�

1
and B�

2
so that def(B�

1
) � def(B�

2
) and we

add b1, b3, b5, b7 and b9 to B
�
1
and b2, b4, b6 and b8 to B

�
1
. When

done, we assign the vertices in S�, if any, as follows: we put s1
and s3 into S

�
2
and s2 into S

�
1
.

It is easy to see that the resulting partition satis�es conditions (a) and

(d) of a modi�ed split partition. Furhermore, our argument in claim 4 of

section 2.5.1 shows that condition (b) holds with probability at least 1

2
. In

the claim below, we prove that property (c) doesn't hold with probability

at most 1

4
. So, the partitioning procedure returns a modi�ed split partition

with probability at least 1

4
.

Claim 17 jdB1
(v)� dB2

(v)j � 1

4
�3=4 ln� for all v in (B� �B) [ S�.

Proof: It is enough to show that the probability is less then 1

4n for any

particular v 2 (B��B)[S�. Let N = fv1; :::; vkg be the neighbors of some

v 2 (B� � B) [ S�, and let H = fx1; :::; xkg be the set of corresponding

multiplicities (i.e. �(v; vi) = xi for all i = 1; :::; k.) We assume that no two

vertices in N are paired in the partition step (if such pairs exist, then we

can replace the pair, for this analysis, with one vertex whose corresponding

multiplicity is equal to the di�erence between the multiplicities correspond-

ing to the two original vertices). We also assume that N does not contain

b1; :::; b10 as their placement in the partitioning procedure is not random.

We observe that 1 � xi <
p
� for all i � 1; :::; k and that x1+x2+ :::+xk �

�. Let D =
Pk

i=1(2xi)
2. We de�ne a sequence of independent random

variables fXigki=1 as follows:

Xi =

� �xi , with p = 1

2

xi , with p = 1

2
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Then jdB1\N (v)� dB2\N (v)j = jPk
i=1Xij, and

Pr(j
kX
i=1

Xij > 1

10

p
D ln�) <

1

4n

since � � n
6
is large enough. Our �nal observations are that

p
D � 2�3=4

and that dB�N (v) � 10
p
�, which together with the above imply our claim.

2

5.3 Case 3: 2� < def(B�) < �12=10

We present an algorithm to color with � colors the edges of a multi-Vizing

reduction G� = (B� + s1; E
�) of de�ciency 2� < def(B�) < �12=10 where

0 � dB�(s1) = defs1(B
�) � 1

2
�. As usual, we assume that G� has large

maximum degree �, that jB�+ s1j < 6� and that a modi�ed split partition

(B�
1
; B�

2
+ s1) of B

� + s1 is provided. Since there is just one small vertex,

we simplify the notation by denoting s1 by s. We will actually consider

only graphs of de�ciency greater than 5

2
� if jB�j is odd. We will leave the

discussion on how to color graphs with odd jB�j and de�ciency at most 5

2
�

to the remaining case 4, which we discuss in chapter 6.

The approach we take in our edge coloring algorithm is similar to the one

we took in the medium de�ciency case: after de�ning an initial marking

that is proper over initial matchings M 0
1
; :::;M 0

�1
, we modify the marking

to prepare it for patching through which we obtain the �nal matchings

M1; :::;M�1
. We must overcome two new obstacles however. First, we must

use more careful techniques when modifying the marking to prepare the

iitial matchings for patching because little de�ciency is available. Second,

we must worry about the multiple edges of a multi-Vizing reduction during

patching in both coloring passes. In this case, we set �1 to be the smallest

even (odd) integer greater than or equal to 1

2
�+�3=4 ln� if � is even (odd)

and �2 is the smallest even integer greater than or equal to 1

2
�19=20. Let

� = �1 � 1

2
�.

5.3.1 The �rst coloring pass

In the �rst coloring pass, we will attempt to construct disjoint matchings

M1; :::;M�1
such that F = G� � [�1

i=1M
0
i is a reduction of G� and [�1

i=1Mi
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contains all edges in (E(B�
1
)�E(R1))[ (E(B�

2
+ s)�E(R2)) where R1 and

R2 are reject subgraphs of B
�
1
and B�

2
, respectively, of maximum degree less

than �9=10 such that jE(R1)j = jE(R2)j < 1

8
�19=10. We will insist that

dFB�(v) � 1

16
�� � for all v 2 B� (5.1)

as it is necessary for patching in either coloring pass. In addition, if jB�j is
odd, enough de�ciency must remain in B�

1
for the reject coloring pass

def(B�
1
)�m�1(B�

1
) � 3

4
�� 1

8
� (5.2)

where m�1(B�
1
) =
P

�1

i=1

P
v2B�

1
m(v; i). If we don't succeed in constructing

M1; :::;M�1
as desired, we will construct a fail pair (X;Y ) in (B1; B2). We

begin the construction of M1; :::;M�1
with an initial coloring and an initial

marking.

An initial coloring

We observe that �(B�
1
);�(B�

2
+s1) <

1

2
�+ 1

4
� < �1�

p
�, implying that we

can apply Fournier's multigraph algorithm to �1 edge color B
�
1
and B�

2
+ s.

So, we initially construct matchings M 0
1
; :::;M 0

�1
, balanced in B�

1
and in B�

2
,

so that [�1

i=1M
0
i = E(B�

1
) [E(B�

2
+ s), as follows:

1. We color the edges of E(B�
1
) with �1 colors and, using the procedure

from 3.2.2, we obtain the matchingsM1

1
; :::;M1

�1
, balanced in B�

1
, such

that [�1

i=1M
1

i = E(B�
1
). We similarly construct M2

1
; :::;M2

�1
, balanced

in B�
2
and covering E(B�

2
+ s). Then, for every i = 1; :::;�1, we set

M 0
i =M1

i [M2

i .

Note that 0 � jM1

i j � jM2

i \ E(B�
2
)j � 1 for every i = 1; :::;�1, since

0 � cB = jE(B�
1
)j�jE(B�

2
)j < 1

2
� < �1. Actually, jM1

i j�jM2

i \E(B�
2
)j = 1

for exactly cB indices i.

An initial marking

We de�ne an initial marking of the vertices that is proper over the initial

matchings M 0
1
; :::;M 0

�1
. (A marking is proper if m(v; i) = 1 implies that M 0

i

misses v, for all i and v.) Since [�1

i=1Mi is supposed to contain cB more big

edges in B�
1
than in B�

2
, we must de�ne a marking that satis�es
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m�1(B�
2
)�m�1(B�

1
) = 2cB if jB�j is even (5.3)

m�1(B�
2
)�m�1(B�

1
) = 2cB ��1 if jB�j is odd (5.4)

We require that all edges in E(B�
2
; s) belong to [�1

i=1M
0
i , so the marking is

also required to satisfy

ms(v; i) = 1 for every i = 1; :::;�1 and v 2 B� such that (s; v) 2M 0
i (5.5)

Finally, in order for our patching techniques to work, we must mark large

de�ciency vertices in su�ciently many matchings, and, in order to limit

the maximum degree of the reject graphs R1 and R2, we must insure that

no vertex v is not marked in much more than 1

2
def(v) matchings. More

precisely, we insist that

maxf0; 9
16

�� dB�(v)g � m�1

r (v) � minf1
2
defr(v) +

1

2
�;defr(v)g (5.6)

for every v 2 B�, and, if jB�j is even, we additionally require the technical

condition

m�1(b1) � cB (5.7)

In order to de�ne a marking that satis�es conditions 5.2 - 5.7, we �nd it

useful to �rst assign targets t(v) to every v 2 B�, where t(v) is the number
of matchings M1; :::;M�1

which are going to miss v:

2.1 If cB � cS , we de�ne t(v) to be b1
2
defr(v)c or d1

2
defr(v)e for every

v 2 B�
2
, so that t(B�

2
) =
P

v2B�

2
t(v) = d1

2
defr(B

�
2
)e. For every v 2 B�

1
,

we de�ne t(v) so that maxf0; 9

16
��dB�(v)g � t(v) � minf1

2
(defr(v)+

�);defr(v)g and t(B�
1
) = d1

2
defr(B

�
1
) � (cB � cS)e if jB�j is even, or

t(B�
1
) = d1

2
defr(B

�
1
) + � � (cB � cS)e if jB�j is odd.

If cB < cS (in which case jB�j must be even), for every v 2 B�
2
,

we de�ne t(v) so that maxf0; 9

16
�� dB�(v)g � t(v) � d1

2
defr(v)e and

t(B�
2
) = d1

2
defr(B

�
2
)�(cS�cB)e; we additionally insist that t(b1) � cB .

For every v 2 B�
1
, we de�ne t(v) to be b1

2
defr(v)c or d1

2
def(v)e and

t(B�
1
) = d1

2
defr(B

�
1
)e.
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Before we show that the described target assignment is feasible, we note

that if we de�ned a marking such that m�1
r (v) = t(v) and m�1

s (v) = defs(v)

for all v 2 B�, then conditions 5.2, 5.3, 5.4, 5.6 and 5.7 would follow.

To prove that the target assignments are feasible, we de�ne W1 and W2 to

be the sets of vertices v in B�
1
and B�

2
, respectively, such that def(v) � 7

16
�,

and we show:

Claim 18 Suppose jB�j is even and def(B�) > 2� or jB�j is odd and

def(B�) > 5

2
�. If cB � cS,

X
v2W1

(
9

16
�� dB�(v)) � 1

2
defr(B

�
1
)� (cB � cS) (5.8)

and, if cS > cB and cB � 9

16
�� dB�(b1),

X
v2W2

(
9

16
�� dB�(v)) � 1

2
defr(B

�
2
)� (cS � cB) (5.9)

and, if cS > cB and cB > 9

16
�� dB�(b1),

X
v2W2�b1

(
9

16
�� dB�(v)) � 1

2
defr(B

�
2
)� cS (5.10)

Proof: We �rst prove 5.8. Since 1

2
defr(B

�
1
) � (cB � cS) � 1

2
def(B�

1
)� cB ,

it is enough to show
P

v2W1
( 9

16
�� d�B(v)) � 1

2
def(B�

1
)� cB .

If jB�j is even then def(B�
1
) > 3

4
� and cB < 1

4
�. It follows that 1

2
def(B�

1
)�

cB � 3

8
� � 1

4
� � 1

8
� � Pv2W1

( 9

16
� � dB�(v)) if jW1j � 2. If jW1j � 2,

then the following holds: 1

2
def(B�

1
) � cB � 7

32
�jW1j � 1

4
� > 1

16
�jW1j >P

v2W1
( 9

16
�� dB�(v)).

If jB�j is odd then def(B�
1
) > 5

4
� and cB < 1

2
�. It follows that 1

2
def(B�

1
)�

cB > 5

8
� � 1

2
� � 1

8
� >

P
v2W1

( 9

16
� � dB�(v)) if jW1j � 2. If jW1j � 4,

then the following holds: 1

2
def(B�

1
) � cB � 7

32
�jW1j � 1

2
� > 1

16
�jW1j >P

v2W1
( 9

16
��dB�(v)). Finally, if W1 = fb1; b2; b3g, inequality 5.8 is equiva-

lent to 3

16
�+cB � 1

2
(dB�(b1)+dB�(b2)+dB�(b3), which in turn is equivalent

to 11

16
� � 12

16
�.
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If cS > cB and cB � 9

16
� � dB�(b1), implying that jB�j is even, then

def(B�
2
) > � and defr(B

�
2
) > 3

4
�� x, where x = 1

2
(defs(B

�
2
)� defs(B

�
1
)) <

1

8
�. It follows that 1

2
defr(B

�
2
) � (cS � cB) � 3

8
� � 1

2
x � 1

4
� > 1

8
� � 1

8
� >

9

16
�� dB�(b) and 5.9 is true if W2 � 1. If jW2j � 2 then 1

2
defr(B

�
2
)� (cS �

cB) � 7

32
�jW2j � 1

4
� > 1

16
�jW2j �

P
v2W2

( 9

16
�� dB�(v)).

Finally, if cS > cB and cB > 9

16
�� dB�(b1), a similar argument shows 5.10.

2

Once the targets are assigned, we de�ne in the following step the actual

marking so that m�1
r (v) = t(v) for every v 2 B� and 5.5 is satis�ed:

2.2 We set ms(v; i) = 1 for every i = 1; :::;�1 and v 2 B� such that

(s; v) 2M 0
i .

2.3 For every v 2 B�, we pick a setMv of t(v) matchings amongM 0
1
; :::;M 0

�1

missing v and we setm(v; i) = 1 for everyM 0
i 2Mv . We then equalize

the marking using the equalizing procedure from 3.2.3.

Note that, while the equalizing procedure may modify the matchingsM 0
1
; :::;

M 0
�1
, they are still balanced in B�

1
and in B�

2
and [�1

i=1M
0
i = E(B�

1
)[E(B�

2
+

s). Let n(B�
1
; i) and n(B�

2
; i) be the numbers of vertices in B�

1
and B�

2
,

respectively, that are not marked in and are missed by M 0
i .

Claim 19 After step 2.3, the following hold for every 1 � i; j � �1 and

k = 1; 2:

(a) jn(B�
k; i) � n(B�

k; j)j � 2

(b) jn(B�
1
; i)� n(B�

2
; j)j � 3

(c) 3

2
� < n(B�

k; i) <
27

4
�

(d) m(B�
k; i) � 2�1=5

Proof: (a) follows from n(B�
k; i) = jB�

kj � (2jMk
i j+m(B�

k; i)) and because

the matchings Mk
1
; :::;Mk

�1
are balanced in B�

k and the marking is equal-

ized over the matchings. (b) follows from (a) and because
P

�1

i=1 n(B
�
1
; i) =P

�1

i=1 n(B
�
2
; i). We now prove that (c) holds for k = 1; a symmetric argu-

ment does the job for k = 2. We observe that
P

�1

i=1 n(B
�
1
; i) =

P
v2B�

1
(�1�
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dB�

1
(v)�m�1(v)) and also jdB�

1
(v)�1

2
dB�(v)j < 1

8
� and jm�1(B�

1
)�1

2
def(B�

1
)j <

1

4
�. It follows that 7

8
�jB�

1
j � 1

4
� <

P
�1

i=1 n(B
�
1
; i) < 9

8
�jB�

1
j+ 1

4
�. (c) then

follows from (a) and 1

2
� � jB�

1
j � 3�. 2

Preparing the marking and the matchings for patching

We now move some marks between matchings M 0
1
; :::;M 0

�1
, and, in the pro-

cess, we modify the initial matchings until every matching M 0
i misses the

same number of unmarked big vertices in B�
1
and B�

2
. More precisely, we will

obtain a marking that is proper over the modi�ed matchingsM 0
1
; :::;M 0

�1
so

that [�1

i=1M
0
i = (E(B�

1
)�E(R1)) [ (E(B�

2
+ s)�E(R2)) where:

(i) m�1
r (v) = t(v) and m�1

s (v) = defs(v) for all v 2 B�.

(ii) m(B�
1
; i);m(B�

2
; i) < 2�1=5 and � < n(B�

1
; i) = n(B�

2
; i) < 8� for every

i = 1; :::;�1.

(iii) R1 andR2 are reject subgraphs ofB
�
1
andB�

2
, respectively, of maximum

degree less than �9=10 and jE(R1)j = jE(R2)j < 2�.

We de�ne two partitions, (I1e ; I
1

o ) and (I2e ; I
2

o ), of I = f1; :::;�1g as follows:
i 2 Ike if and only if m(B�

k; i) is even. For example, i 2 I2o if and only if

M2

i contains an odd number of marks on vertices in B�
2
. In order to insure

n(B�
1
; i) = n(B�

2
; i) for all i = 1; :::;�1, we must reorder the matchings

M1

1
; :::;M1

�1
and M2

1
; :::;M2

�1
so that m(B�

1
; i) and m(B�

2
; i) have the same

parity if jB�j is even, and opposite parities if jB�j is odd. We can do the

reordering only if jI1e j = jI2e j when jB�j is even or jI1e j = jI2o j when jB�j is
odd: we call this the parity condition. If the parity condition holds, we

move directly to reordering the matchings in step 3.4.

If, however, the parity condition does not hold, and either jB�j is even and

jjI1e j � jI2e jj = 2d > 0 or jB�j is odd and jjI1e j � jI2o jj = 2d > 0, we must move

a few marks between some matchings: by switching, in 2d appropriately

chosen matchings, the parity of the number of marks, we will insure the

parity condition. We use one of the following procedures to move a mark on

some vertex v from matching M 0 (that misses v) to another matching M :

Simple mark move If M misses v, we just move the mark on v from M 0

to M .

First edge rejecting mark move If there is an edge (v; u) 2 M , we re-

ject (v; u), we move the mark on v from M 0 to M (�gure 5.1).
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before after

v u v u

Figure 5.1: A simple mark move on v from M 0 (dashed) to M (full)

before after

v u v u

x

y

Figure 5.2: A �rst edge recoloring mark move on v from M 0 (dashed) to M
(full)

First edge recoloring mark move If there is an edge (v; u) 2 M , u is

missed by and not marked in M 0, we move the mark on v from M 0 to
M , and we pick some edge (x; y) 2M 0 and we reject it (�gure 5.2).

Second edge rejecting mark move If there is an edge (v; u) 2 M and

there is an edge (u;w) 2 M 0, we reject (u;w), we switch (v; u) from

M to M 0, and we move the mark on v from M to M 0.

We observe that in any of the mark moves, the matching M 0 (the mark

\giver") remains of the same size, while M (the mark receiver) may lose

an edge to the reject graphs. In order to limit the maximum degree of the

reject graph, we must carefully choose our sequence of marks moves, which

we do using:

The careful procedure

Let I+ and I� be disjoint sets of indices of matchings fMk
1
; :::;Mk

�1
g

such that either
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before after

v u v uw w

Figure 5.3: A second edge rejecting mark move on v from M 0 (dashed) to
M (full)

(i) jI�j � 1

2
�1 + jI+j, or

(ii) jI�j � jI+j and m(v; j) = 0 for every j 2 I� if m(v; i) = 1 for

some i 2 I+ and v 2 B�
k

Recursively, for every i 2 I+, we pick some v 2 B�
k such that m(v; i) =

1, and we move the mark on v to some matching indexed by I� chosen

in one of the following four ways:

1. If there exist j 2 I� such that m(v; j) = 0 and Mj misses v, we use

a simple mark move on v from Mi to Mj .

If we are not successful in 1, we set I� to be the subset of indices in

I� such that m(v; i) = 0. We observe that Mi hits v for every i 2 I�
and jI�j > jI+j, which follows from our de�nitions of I+ and I� and

because m�1(v) < 1

2
�1 for every v 2 B� (see 5.6). Then, we do one

of the following:

2. If jI�j � 2�3=4, we pick any j 2 I� and we use the �rst edge

rejecting mark move on v from Mi to Mj .

3. If jI�j > 2�3=4 and there exists j 2 I� such that (v; u) 2 Mj, u is

missed by Mi and m(v; i) = 0, we use the �rst edge recoloring

mark move on v from Mi to Mj, picking the edge (x; y) so no

edge incident to either x or y has been rejected in the previousp
� mark moves.

4. If jI�j > 2�3=4 and we fail to �nd j as desired in step 3, we pick

j 2 I� such that there is (v; u) 2 Mj and (u;w) 2 Mi and no

edges incident to u or w have been rejected in the last 1

2
�1=4

edges mark moves, and we apply the second edge rejecting mark

move.
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We show that we can choose j in step 4 as desired. At least 2�3=4

matchings indexed by I� hit v and because the multiplicity of any edge

is at most
p
�, there are at least 2�

1

4 di�erent vertices u such that

(v; u) 2 Mj for some j 2 I�. At most 2�1=5 such vertices are marked

in Mi so there are more than 2�1=4 � 2�1=5 > �1=4 vertices u such

that (v; u) 2 Mj for some j 2 I� and (u;w) 2 Mi for some vertex w.

Finally, since no more than �1=4 edges inMi have an endpoint incident

to an edge rejected in the previous 1

2
�1=4 iterations, there exists j 2 I�

as desired in step 4. We observe that the procedure insures that no

vertex is incident to more than 2�3=4 + �1
1

2
�1=4 < 4�3=4.

We now describe how we use the careful procedure to insure the parity

conditions. If jB�j is odd, note that either jI1o j+jI2o j = �1+2d or jI1e j+jI2e j =
�1 + 2d. In the �rst case we set I1

+
= I1o and I2

+
= I2o , while in the second

case we set I1
+
= I1e and I2

+
= I2e . If jB�j is even, either jI1o j+ jI2e j = �1+2d

or jI1e j+ jI2o j = �1 +2d. In the �rst case we set I1
+
= I1o and I2

+
= I2e , while

in the second case we set I1
+
= I1e and I2

+
= I2o . Whether jB�j is odd or

even, we de�ne D1 = jI1
+
j � 1

2
�1 and D2 = jI2

+
j � 1

2
�1. Note that while

one of D1 or D2 may be negative, their sum is always equal to 2d. We �rst

attempt to move the marks as follows:

3.1 Let Ik
+
to be the larger one of I1

+
and I2

+
, and I l

+
to be the smaller one

of the two. We set Ik� to be a subset of Ik
+
of size d0 = minfd; d1

2
D1eg

such that mr(B
�
k; i) > 0 (note subscript) for every i 2 Ik� and we move

d0 real marks from Ik� to Ik
+
� Ik� using the careful procedure. (Note

that jIk
+
� Ik� j > 1

2
�1 + jIk� j.) We then set I l� to be a subset of I l

+
of

size d�d0 (either 0 or equal to b1
2
D2c � 1) such that mr(B

�
l ; i) > 0 for

every i 2 I l�, and we move d � d0 real marks from I l� to I
l
+
� I l� using

the careful procedure. (Note that jI l
+
� I l�j > 1

2
�1 + jI l�j).

This sequence of mark moves fails if there are less than d0 indices i in Ik
+
such

that m(B�
k; i) > 0, or if there are less than d � d0 indices i in I l� such that

m(B�
l ; i) > 0. In the �rst case, Ik

+
= Ike , m(B�

k; i) = 1 for every i 2 Iko so that

m�1(B�
k) <

1

2
�1. Since m

�1(B�) > 3

4
�� 1

8
� and m�1(B�

1
)� � < m�1(B�

2
)

(follow from our terget assignments), it follows that k = 1. In the second

case, a symmetric argument also gives l = 1. So, if we fail in step 3.1, we

do one of 3.2 or 3.3 instead, as described below.

3.2 If jB�j is odd, we �rst set I1� to be the subset of I1e of all indices such that
m(B�

1
; i) = 2, and we move jI1� j (real) marks from I1� to I1e � I1� (note
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that jI1e � I1� j > 1

2
�1 + jI1� j). After this sequence of mark moves, we

obtain the modi�ed partition (I1e ; I
1

o ) that satis�es jI1o j = m�1(B�
1
) <

1

2
�1 so that m(B�

1
; i) = 1 for every i 2 I1o and m(B�

1
; i) = 0 for every

i 2 I1e . We remark also that m(B�
2
; i) = 1 for every i 2 I2o , because the

marking is equalized overM2

1
; :::;M2

�1
andm�1(B�

2
) � m�1(B�

1
)+ 1

2
�.

It also follows that there are at least d� jI1� j indices i in I2e such that

m(B�
2
; i) = 0. Since we de�ned a marking that satis�esm�1(B�) > �1

(easy exercise), there must be at least 1

2
(�1 � jI1o j � jI2o j) = d � jI1� j

indices i in I2e such that m(B�
2
; i) = 2. So, we set I2� to be a subset of

I2e of size d� jI1� j such that m(B�
2
; i) = 2 for every i 2 I2� , we set I

2

� to

be the subset of I2e of d� jI1� j indices i such that m(B�
2
; i) = 0 and we

move d� jI1� j real marks from I2� to I2�.

3.3 If jB�j is even, we �rst set I1� to be the subset of I1e of indices i such that

m(B�
1
; i) = 2 and we move d1 = jI1� j (real) marks from I1� to I1e � I1� .

After this sequence of mark moves, we obtain a modi�ed partition

(I1e ; I
1

o ) that satis�es jI1o j = m�1(B�
1
) < 1

2
�1, so that m(B�

1
; i) = 1 for

every i 2 I1o and m(B�
1
; i) = 0 for every i 2 I1e . Note that m(B�

2
; i) =

1 for every i 2 I2o , because the marking is equalized over B�
2
and

m�1(B�
2
) = m�1(B�

1
) + 2cB < m�1(B�

1
) + 1

2
�. It also follows that

m�1(B�
2
) = jI1o j + 2cB = jI2o j + 2(cB � (d � d1)), so that at most

cB � (d � d1) indices i in I2e satisfy m(B�
2
; i) > 0 (= 2, actually).

Since m�1(b) � cB (from 5.7), it follows that there are at least d� d1
indices i in I2o such that m(b; i) = 1. (Recall that b is the largest

de�ciency vertex in B�
2
.) Let d2 be the number of indices in I2o such

that mr(B
�
2
� b; i) = 1. Depending on the value of d2, we do one of

the following:

3.3.1 If d2 � d�d1, we set I2� to be the subset of I2o of size d�d1 such
that mr(B

�
2
� b; i) = 1 for every i 2 I2� , we set I

2

� to be a subset

of I2o of size d� d1 such that m(b; j) = 1 for every j 2 I2� and we

move d � d1 real marks from I2� to I2� (note that jI1� j = jI1�j and
that m(B�

2
� b; j) = 0 for every j 2 I2o ).

3.3.2 If d2 < d � d1, we set I
2

� to be the subset of I2o of size d2 such

that mr(B
�
2
�b; i) = 1 for every i 2 I2� , and we move d2 real marks

from I2� to I
o
2
�I2� (note that jI2o �I2� j > jI2� j and m(B�

2
�b; j) = 0

for every j 2 I2o � I2� ). When done, we reset I2� to be the subset

of I2e of size d � d1 � d2 such that m(B�
2
� b; i) = 2 for every

i 2 I2� . Note that there must be that many such indices because

otherwise d1
4
�e +

p
� � m�1(b) > m�1(B� � b) > b1

2
�c �

p
�,
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a contradiction. We move d� d1 � d2 marks from I2� to I2o (note

that jI2o j > jI2� j and that m(B�
2
� b; j) = 0 for every j 2 I2o ).

When done, there will be exactly d� d1 � d2 indices i in I
2

o with

mr(B
�
2
� b; i) = 1. Finally, we set I2� to be the subset of these

indices and we move d � d1 � d2 real marks from I2� to I2o � I2�
(note that jI2o � I2� j > jI2� j and that m(B�

2
� b; j) = 0 for every

j 2 I2o � I2� .)

When done, the parity conditions are satis�ed. In steps 3.1, 3.2 or 3.3, we

move at most 2d < �1 marks and we use the careful procedure at most three

times. So the total number of rejected edges on each side of the bipartition is

at most �1 but no more than 12�3=4 < 1

2
�4=5 (for large �) is incident to any

particular vertex. A closer analysis reveals that no matching has increased

in size, no matching has decreased by more than 1 (due to edge rejection),

and no matching has lost or gained more than one mark. So, using claim

(b) of 19, we have that jn(B�
k; i) � n(B�

k; j)j � 6. It now remains to satisfy

n(B�
1
; i) = n(B�

2
; i) for all i = 1; :::;�1:

3.4 We reorder the indices of matchings M1

1
; :::;M1

�1
so that m(B�

1
; i) and

m(B�
2
; i) have the same parity if jB�j is even or di�erent parities if

jB�j is odd. We then set M 0
i =M1

i [M2

i for every i = 1; :::;�1. Note

that after reordering the matchings, jn(B�
1
; i) � n(B�

2
; i)j is even and

at most 6 for every i = 1; :::;�1.

For every i = 1; :::;�1, we delete d =
1

2
jn(B�

1
; i) � n(B�

2
; i)j � 3 edges

in E(B�
1
) if n(B�

1
; i) < n(B�

2
; i) or in E(B�

2
) if n(B�

1
; i) > n(B�

2
; i).

In each iteration, we pick d edges whose endpoints have not had an

incident edge rejected in the previous
p
� iterations.

Since there can be at most �1 iterations in step 3.4, no vertex is incident

to more than
p
� rejected edges. Since m�1(B�

1
)�m�1(B�

2
) = 2cB if jB�j

is even or 2cB ��1 if jB�j is odd, it follows that jE(R1)j = jE(R2)j < 2�

and that the maximum degree of R1 and R2 is at most �4=5. Finally,

� < n(B�
1
; i) = n(B�

2
; i) < 8� follows from claim 19.

The patching

For i = 1; :::;�1, we recursively obtainMi by augmenting the vertex disjoint

patches we construct between pairs of unmarked big vertices missed by M 0
i

in F = G� �R1 � R2 �M1 � :::�Mi�1. After each augmentation, we add

the edges of M 0
i left uncolored by this augmentation to the reject graphs R1
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or R2. If we fail to construct a patch between two unmarked vertices missed

by some M 0
i , we will show the existence of and construct a fail pair (X;Y )

in (B1; B2). On the other hand, if we are successfull, the big edges of every

matching Mi will miss only the vertices v marked in it (i.e. all v such that

m(v; i) = 1), and F = G� �[�1

i=1Mi is a reduction as desired.

We now describe the construction of the vertex disjoint patches of M 0
i in

F = G� � R1 � R2 �M1 � ::: �Mi�1. We recall that a patch P between

unmarked vertices x 2 B�
1
and y 2 B�

2
missed by M 0

i is a path from x to

y with edges alternating between E(F ) \ E(B�
1
; B�

2
) and M 0

i \ E(B). For

r = 1; :::; n(B�
1
; i), we recursively construct the patch Pr as follows:

4.1 We pick a pair of unmarked vertices xr and yr on opposite sides of the

bipartition so that xr and yr are missed by M 0
i and have not yet been

patched. We pick yr so it belongs to B. In choosing xr we always give

priority to unmarked, missed vertices in B� �B.

Since jB� � Bj < 2�1=5 < n(B�
1
; i), there are more than jB� � Bj vertices

in B that are not marked and are missed by M 0
i - our choice of the patch

endpoints xr and yr is thus feasible.

4.2 We de�ne unavailable and usable vertices. We call v 2 B un-

available if it is an internal vertex of any patch P1; :::; Pr�1 or of

any patch constructed for one of the previous 8d�1=10e matchings

(Mi�1; :::;Mi�8d�1=10e). We note that if a vertex is not unavailable,

then no edge incident to it has been rejected while obtaining one of

the previous 8d�1=10e matchings. We call v 2 B usable if v = yr or

(v; u) 2 M 0
i and neither v nor u is unavailable. If xr 2 B� � B, we

also de�ne Y 0-unavailable and Y 0-usable vertices. We call v 2 B

Y 0-unavailable if it is an internal vertex of any patch P1; :::Pr�1, or
if it is an endpoint of the second edge of a patch out of a vertex in

B� � B constructed for one of the previous 8d�1=10e matchings. We

call v 2 B is Y 0-usable if v = yr or (v; u) 2 M 0
i and neither u nor v

are Y 0-unavailable.

4.3 We recursively build the sets X l and Y l for 0 � l � 6d�1=20e as follows:

X0 = fxrg,
if xr 2 B� � B, Y 0 = fv 2 B : v is Y 0-usable and (xr; v) 2 E(F ) \

E(B�
1
; B�

2
)g,
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if xr 2 B, Y 0 = fv 2 B : v is usable and (xr; v) 2 E(F )\E(B�
1
; B�

2
)g,

X l = fv 2 B : 9u 2 Y l�1 such that (u; v) 2M 0
ig

Y l = fv 2 B : v is usable and 9u 2 X l such that (u; v) 2 E(F ) \
E(B1; B2)g.

If xr 2 B� � B, then at most 6d�1=20e8�1=10 vertices in B belong to

P1; :::; Pr�1 and, as such, are Y 0-unavailable. Furthermore, at most 8d�1=10e
jB� � Bj < 8d�1=10e2�1=5 vertices are endpoints of the second edge of a

patch out of a vertex in B��B constructed for one of the previous 8d�1=10e
matchings, and as such, are Y 0-unavailable. So, at most �2=5 vertices are

not Y 0-usable.

4.4 If yr 2 Y j for some 0 � j � 6d�1=20e, we construct the patch de�ned

by the sequence of vertices xr; y
0; x1; y1; :::; yj�1; xj ; yr where xl 2 X l,

yl 2 Y l, (xr; y
0), (xj ; yr) and (xl; yl) belong to E(F ) \E(B�

1
; B�

2
) and

(yl; xl+1) 2M 0
i .

Note that each patch contains the same number of edges from E(B1) and

from E(B2); so when done, jE(R1)j = jE(R2)j < 24�1��
1=20 < 1

10
�19=10.

Furthermore, no vertex is incident to more than �1

8�1=10 < 1

8
�9=10 edges

rejected in this step.

4.5 If there is no Y j containing yr, then we pick the smallest j � 1 such

that jY jj � jXj j+ 1

2
�19=20. If Xj � B1 then the pair (X;Y ), de�ned

by X = fv 2 Xj \ B : dFB2
(v) > 1

2
� ��9=10g and Y = NF (X) \ B,

form a fail pair.

If F = G� �M1 � :::�Mi�1, then dFB�(v) = ���1 � (def(v)�m�1(v)) >
1

16
� � �9=10. Since �(R1) and �(R2) are less than �9=10, it follows that

dFB2
(v) > 1

16
� � 1

8
�19=20 for every v 2 B�

1
, and similarly, dFB1

(v) > 1

16
� �

1

8
�19=20 for every v 2 B�

2
.

Claim 20 (X;Y ) forms a fail pair in (B1; B2).

Proof: To simplify notation, let x = xr 2 B�
1
, so that y = yr 2 B2. Let us

�rst set an upper bound on the sizes of F1 and F2, the unavailable vertices

in B1 and B2, respectively. Since a patch contains at most 6d�1=20e vertices
in B1, and since there are at most 8� patches per matching, it follows that
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jF1j < 8b�1=10c8�6d�1=20e < 1

8
�19=20

for large enough �. A symmetrical argument gives jF2j < 1

8
�19=20.

If x 2 B��B, there are at most �2=5 Y 0-unavailable vertices. Since dFB2
(x) �

1

16
�� 1

8
�19=20 and because the edge multiplicity is at most

p
�, NF

B2
(x) �

1

20

p
� and jX1j = jY 0j � NF

B2
(x)��2=5 > 0. So, there must exist a vertex

v 2 X1, which implies that jX2j = jY 1j � dFB1
(v) � jF1j > 1

16
�� 1

8
�19=20.

If x 2 B then jX2j = jY 1j � 1

16
�� 1

8
�19=20 easily holds.

Suppose that jY lj > jX lj + 1

2
�19=20 for all 2 � l � d6�1=20e � 2. Then,

jX6d�1=20e�2j > 3� � jB1j, a contradiction.

So we must have jY jj � jXj j+ 1

2
�19=20 for some j between 1 and d6�1=20e�2,

and we pick the minimum j satisfying this property. Let E1 and E2 be

subsets of B1 and B2, respectively, missed byM 0
i . Clearly, jEkj � n(B�

k; i)+

m(B�
k; i) < 8� + 2 < 10�. If j is even (and Xj � B1 and Y j � B2), we

de�ne Y = Y j [E2 [F2; if j is odd (and Xj � B2 and Y
j � B1), we de�ne

Y = Y j [E1 [F1. Let X = fv 2 Xj : dFY (v) >
1

2
���19=20g. (X;Y ) forms

a fail pair by the following three properties:

i. jY j � jXj +�19=20.

Proof: We assume X � B1 and Y � B2; a symmetric argument proves

the statement when X � B2 and Y � B1. We note that jY j � jY j j+
jE2j+ jF2j � jXj j+ 1

2
�19=20+10�+ 1

8
�19=20 < jXj j+ 3

4
�19=20. Finally,

we argue that jXj j < jXj+ 1

4
�19=12 by showing that Xj�X � L where

L = v1 + fv 2 B : def(v) > 2
p
�g and jLj <

p
�): if v 2 B1 � L then

dFB2
(v) � dFB�(v) � �3=5 � �(F ) � 2

p
� � �3=5 > 1

2
� � 1

8
�19=20,

implying v 62 Xj �X.

ii. For all v 2 X: dY (v) >
1

2
���19=20.

Proof: Assuming X � B1, dY (v) > dFY (v) = dFB2
(v) > 1

2
� � 1

8
�19=20

by the de�nition of X. A symmetric argument applies if X � B2.

iii. If X � Bk then jBkj � jXj > 1

4
���19=20.

Proof: If X � B1 then y must belong to B2 �NF (Xj) which implies

that dFX(y) = 0. Since y 2 B2 then dFB1
(y) > 1

4
� � 1

8
�19=20. It

follows that jB1 �Xj > 1

4
�� 1

8
�19=20. If X � B2, we �rst note that
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jNF
B1
(y)j > 1

4
� � 1

8
�19=20 (since y 2 B2). Let Z be the subset of

NF
B2
(y) of vertices incident to some edge of M 0

i \E(B1). It is easy to

check that NF
B2
(y) � Z contains only vertices that are missed by M 0

i ,

that belong to B��B or that are forbidden. Since there is fewer than

m(B�
1
; i)+n(B�

1
; i)+ jF1j+ jB��Bj < �19=20 such vertices, Z must be

non-empty. Let (u; v) be an edge of M 0
i in E(B�

1
) with v 2 Z. Since

dFB2
(u) > 1

4
�� 1

8
�19=20 and dFX(u) = 0 (because otherwise a patch t y

through a vertex in X and vertices u and v would have been possible),

jB2 �Xj > 1

4
�� 1

8
�19=20.

2

5.3.2 The reject coloring pass

Once we complete the �rst pass and delete the matchings M1; :::;M�1
from

G�, we obtain the reduction F = G� � [�1

i=1Mi = R1 + H1 + R2 where

H1 � E(B�
1
[ S�

1
; B�

2
[ S�

2
) and R1 and R2 are reject graphs in B�

1
and

B�
2
, respectively, of maximum deggree less than �9=10 such that E(R�

1
)j =

jE(R�
2
)j < 1

8
�19=10. In addition, we know that

dFB�(v) � 1

16
�� � for all v 2 B� (5.11)

from 5.1 and there is \plenty" of de�ciency remaining in B�
1
(5.2)

def(B�
1
)�m�1(B�

1
) � 3

4
�� 1

8
� (5.12)

In the reject coloring pass, we will attempt to construct the disjoint match-

ings M�1+1
; :::;M�1+�2

in F such that K = F �[�2

i=1M�1+i is a reduction

of F , and thus of G�.

The initial coloring

We �rst construct an initial coloring:

1. We construct initial matchings M 0
1
; :::;M 0

1

2
�2

balanced in B�
1
and in B�

2

and covering R1[R2 using Fournier's edge coloring algorithm and our

balancing procedure (see 3.2.2).
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Since �2 � 1

2
�19=20 and jE(R1)j = jE(R2)j < 1

8
�19=20, it follows that

jM 0
i \E(B�

1
)j = jM 0

i \E(B�
2
)j < d1

4
�19=20e.

The marking

We split each M 0
i into M

00
�1+2i�1 and M

00
�1+2i

and obtain disjoint matchings

M 00
�1+1

; :::;M 00
�1+�2

covering E(R1)[E(R2) and to de�ne a proper marking

over those matchings such that, for every i = 1; :::;�2:

(i) jM 00
�1+i

\E(B�
1
)j = jM 00

�1+i
\E(B�

1
)j < d1

4
�19=20e,

(ii) m(B�
1
;�1 + i) = 1 and m(B�;�1 + i = 0 for all i = 1; :::;�2,

(iii) n(B1;�1 + i) = n(B�
1
;�1 + i) = n(B�

2
;�1 + i) = n(B2;�1 + i).

The last condition implies that in no matching M 00
�1+i

a vertex v in B��B

is missed and not marked. So, we will only need to patch vertices in B in

the patching step.

Let us denote
Pi

j=1mu(v;�1+ j) by m�1+i
u (v) for i = 1; :::;�2, v 2 B� and

u = r or u = s. We de�ne the marking and we construct the matchings by

repeating the following for i = 1; 2; :::; 1
2
�2:

2.1 We setmu(v;�1+2i�1) = 1 for some v 2 B�
1
such that defu(v) > mu(v)

where u = r or u = s. Then, we set mu0(v
0;�1 + 2i) = 1 for some

v0 2 B�
1
such that defu0(v

0) > m�1+2i�1
u0 (v0) where u0 = r or u = s and

(v; v0) 62M 0
i .

We can choose v and v0 as desired because 5.2 implies that at least 3 vertices

have some remaining de�ciency.

2.2.1 We remove from M 0
i the edge incident to v, if any, and we add it to

M 00
�1+2i

. Note that this edge is not incident to v0. If v0 is hit by M 0
i ,

let v00 be the vertex v0 is matched with.

2.2.2 We now constructM 00
2i�1 fromM 0

i so that no vertex inB
��B is missed

and unmarked. Let U be the set of unmarked vertices in B��B missed

by M 0
i . We construct a matching M in (F � v � v0 � v00)\ (B�

1
; B�

2
)�

M 00
�1+1

� :::�M 00
�1+2i�2 such that every v 2 U is an endpoint of some

edge in M . (We esily obtain this matching because the neighborhood

of every v 2 B� � B is at least 1

10

p
� > jB� � Bj.) We remove from
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M 0
i edges incident to M and we add them to M 00

�1+2i
. We remove

additional edges not incident to vertices inW2 fromM 0
i\B�

1
orM 0

i\B�
2

and we add them toM 00
�1+2i

so jM 00
�1+2i

\B�
1
j = jM 00

�1+2i
\B�

2
j < �1=5.

We then set M 00
�1+2i�1 =M 0

i [M .

2.2.3 We now �nish the construction of M 00
�1+2i

, again so that no vertex

in B� � B is missed and unmarked. Let U be the set of unmarked

vertices in B��B missed by M 00
�1+2i

. Let X be the set of big vertices

that are endpoints of edges in M 00
�1+2i

. We construct a matching M

in (F � v0 � v00 �X) \ (B�
1
; B�

2
) �M 00

�1+1
� ::: �M 00

�1+2i�1 such that

every v 2 U is an endpoint of some edge inM . We addM to the �nal

M 00
�1+2i

.

The patching

We now attempt to construct the matchings M�1+1
; :::;M�1+�2

. For i =

1; :::;�2, we obtainM�1+i by augmenting M 00
�1+i

in H = F �M�1+1
� :::�

M�1+i�1 with a disjoint matching hitting all unmarked vertices in B missed

by M 00
�1+i

as follows:

3. Let U1 and U2 be the sets of unmarked vertices missed by M 00
�1+i

in B1

and B2, respectively. We attempt to �nd a perfect matching M in the

bipartite subgraph de�ned by the bipartition (U1; U2) and with edge

set E(H) \E(U1; U2).

If we successfully obtain such a matchingM , we add its edges toM 00
�1+i

to obtain M�1+i.

If we fail to obtain M , we �nd the sets X 0 � U1 and Y 0 = NH
U2
(X 0)

such that jX 0j > jY 0j and we set X 00 = U2 � Y 0 and Y 00 = U1 �X 0 =
NH
U1
(X 00). Let Y = B2�X 00 andX = fv 2 X 0 : dHB2

(v) > 1

2
���19=20g.

Claim 21 (X;Y ) forms a fail pair in (B1; B2).

Proof: The claim is true if the following three properties hold:

jY j < jXj+�19=20.

Proof: jY j � jY 0j+ 2jM 00
�1+i

j+m(B2;�1 + i) � jX 0j + 1

2
�9=10 + 2 <

jXj + �9=10. The last inequality follows from X 0 � X � L where

L = fv 2 B : def(v) > 2
p
�g is of cardinality 2

p
�: since if v 2 B1�L

then dHB2
(v) > dFB2

(v) � i > 1

2
� � 3�9=10 � 1

2
�19=20 < 1

2
� � �19=20,

and if v 2 B2 � L, dHB1
(v) > 1

2
���19=20.
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For all v in X: dY (v) >
1

2
���19=20.

Proof: dY (v) � dHY (v) = dHB2
(v) > 1

2
���19=20 by de�nition of X.

jB1 �Xj > 1

4
���19=20.

Proof: Since jX 00j > jY 00j, X 00 is not empty. If v 2 X 00 then dHX(v)

= 0. It follows that jB1 �Xj > dHB1
(v) > dHB�

1

(v)��3=5 > 1

4
��

�19=20.

2



Chapter 6

The smallest de�ciency case

In this chapter we present an algorithm that attempts to color with � colors

the edges of a multi-Vizing reduction G� = (B� [ S�; E�) of a Vizing graph
G = (B [ S;E) such that def(B�) � 5

2
�. We assume that � is large,

jB�[S�j � 6�, that no trivial subgraph of G� is overfull and that a modi�ed

split partition (B�
1
[ S�

1
; B�

2
[ S�

2
) of B� [ S� is given. In case our algorithm

fails we will show the existence of and construct a fail pair (X;Y ) in (B1; B2)

(where B1 = B \B�
1
and B2 = B \B�

2
).

6.1 Bipartite vs. near-bipartite reductions

In the smallest de�ciency case, we once again want to construct about 1

2
�

reducing matchings whose removal leaves a reduction H that is �(H) col-

orable. One complication is that we can no longer insist that H is bipar-

tite. We illustrate this with the following example. Suppose jBj is even,
jB� � Bj = jS�j = 0, def(B) = �, def(b1) =

1

2
� � 2, def(b2) = def(b3) =

1

4
� + 1 where b1; b3 2 B2 and b2 2 B1. Then cB = jE(B1)j � jE(B2)j =

1

2
(def(B2)�def(B1)) =

1

4
��1. IfM1; :::;Mk , for k =

1

2
�+o(�), were match-

ings whose removal leaves a bipartite reduction H = G�M1� :::�M�1+�2

in (B1; B2), then both b and b00 must be missed simultaneously by exactly

cB of these matchings. On the other hand, all dB2
(b00) = 3

8
�+ o(�) edges

incident to b00 must also be covered by the union of the matchings. We would

thus require k � cB+dB2
(b00) > 5

8
�+o(�), a contradiction. We thus cannot

obtain a bipartite reduction with so few matchings.

105
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Our new approach to coloringG� is to construct disjoint matchingsM1; :::;Mk

whose removal leaves either a bipartite reduction or a near-bipartite re-

duction N of G� with no overfull subgraph of degree �(N). We then

color the edges of N with �(N) = � � k colors by applying the edge-

coloring algorithm for near-bipartite graphs of Reed[??], and we assign the

remaining k colors to the disjoint matchings M1; :::;Mk . In this case, we

set k = �1 +�2 where �1 is the smallest even (odd) integer greater than

or equal to 1

2
�+�3=4 ln� if � is even (odd) and �2 is the smallest even

integer greater than or equal to 1

2
�19=20.

Let v1 be the smallest de�ciency vertex in B1 and v2 be the smallest de-

�ciency vertex in B2. The near-bipartite reduction N should satisfy the

following properties:

A. E(N) = H + K where H is a bipartite graph with edges in E(B�
1
[

S�
1
; B�

2
[S�

2
) and either K is a set of edges in E(B1) incident to v1 or

K is a set of edges in E(B2) incident to v2,

B. N does not contain a trivial overfull subgraph, i.e. B�, B� � v for any

v 2 B� or B� + u for any u 2 S� do not induce an overfull subgraph

in N ,

C. N = (B� [ S�; E(N)) is weakly Vizing, i.e. dNB�(v) � 1

2
�(N) for all

v 2 B�, dNB�(v) � 1

2
�(N) for all v 2 S� and dNB�(v)+dNB��v(u) � �(N)

for all u; v 2 B�, .

Lemma 23 (near-trivial) Let G� = (B� [ S�; E�) be a multi-Vizing re-

duction with a modi�ed split partition (B�
1
[ S�

1
; B�

2
[ S�

2
), and let N be a

subgraph of G� that satis�es the properties A, B and C. If N contains an

overfull subgraph of maximum degree �(N) then (B1; B2) contains a fail

pair (X;Y ).

Recall that a fail pair (X;Y ) in (B1; B2) is a pair of sets such that either:

X � B1, jB1 �Xj > 1

4
���19=20 and Y � B2

or

X � B2, jB2 �Xj > 1

4
���19=20 and Y � B1
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and, in either case, jY j < jXj +�19=20 and dY (v) >
1

2
���19=20 for every

v 2 X. If (B1; B2) contains a fail pair, we can construct a forbidden subgraph

in G� (see 2.5.2). So, by the near-trivial lemma, our task of � edge coloring

G� is reduced to the construction of disjoint matchings whose removal from

G� leaves a reduction N with the properties A, B and C.We accomplish this

in two coloring passes which we describe in the remaining of this chapter.

Proof: (of near-trivial lemma 23) Let N = H + K such that E(H) �
E(B�

1
[S�

1
; B�

2
[S�

2
) and let us assume that K is a subset of edges in E(B1)

incident to v1 { the proof when K is a subset of edges in E(B2) incident

to v2 is symmetric. Let F be the non-trivial subgraph of N of maximum

degre �(N) (we will slightly abuse our notation by using F to denote the

set of vertices of F too). Note that v1 must belong to F , since otherwise F

is bipartite.

We �rst remark that the set R = fv 2 F : dF (v) < �(N) �
p
�(N)g

is smaller than
p
�(N). Thus any vertex v in the graph H� induced by

(F � R) \ (B � b1) has minimum degree greater than �(N) � 2
p
�(N) �

dB��B(v)�mult(b1; v) > �(N)� 2�3=5 > 1

2
���19=20. We also note that

H� is bipartite.

LetX = H�\B1 and Y = H�\B2 and let us assume that jY j > jXj+�19=20.

Then:

jE(X;Y )j > jY j(�(N)� 2�3=5)

> (jXj+�19=20)(�(N)� 2�3=5)

> jXj�(N) > jE(X;Y )j
for � = �(N)+�1+�2 large enough. This contradiction and one obtained

with a similar argument by assuming that jXj > jY j +�19=20 implies that

jjXj � jY jj < �19=20. So, if one of jB1 � Xj or jB2 � Y j is greater than
1

4
���19=20, then (X;Y ) is a fail pair in (B1; B2). In the remainder of this

proof, we show that N must contain a trivial overfull subgraph of maximum

degree �(N), given the assumption that both jB1 �Xj or jB2 � Y j are no
greater than 1

4
���19=20.

Consider the set C = fv 2 B � F : dNF (v) >
p
�(N)g. Since F is overfull,

jCj �
p
�(N). Suppose there exists a vertex v in B � F �C: v must have

at least 1

2
�(N)��3=5 > 1

4
�� 1

3
�19=20 neighbors in B, and consequently at

least 1

4
�� 1

2
�19=20 neighbors in B�F . Since v 6= v1 and mult(v1; v) � 1, all

the neigbors of v in B but at most one (v1) must be accross the bipartition

from v. It follows then that jB1�Xj � jB1�F j � 1

4
�� 1

2
�19=20 if X � B1
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or jB2 �Xj � 1

4
�� 1

2
�19=20 if X � B2, contradicting our assumption. So,

B � F � C must be empty and jB � F j � b
p
�(N)c. Suppose now that

jB � F j > 2 and that u; v; w 2 B � F . Then, �(N) > jE(F;B � F )j �
dNF (v)+dNF (u)+dNF (w) � 3

4
�� 3�19=20 > �(N), a contradiction. So, there

cannot be three vertices in B � F and jB � F j � 2. We similarly prove

jB� � F j � 2.

If B� � F = fu; vg, then jE(F + u + v)j = jE(F )j + dNB�(u) + dNB��u(v) >
1

2
�(N)(jF j � 1) + �(N) = 1

2
�(N)(jF + u + vj � 1). So, F + u + v is an

overfull subgraph of G� as well. So, in any case, there exists an overfull

subgraph F 0 of maximum degree �(N) such that jB� � F 0j � 1.

Suppose now that jF 0 \ S�j � 2, and let u and v be two vertices of F 0 \ S�.
Then jE(F 0)j = jE(F 0 � u � v)j + dNF (u) + dNF (v) � 1

2
�(N)(jF 0j � 2) �

(dNF (u)+dNF (v))+(dNF (u)+dNF (v)) =
1

2
�(N)(jF 0j�2) contradicting the fact

that F 0 is overfull. So, jF 0 \ S�j � 1.

Finally, we show that if jB� � F 0j = 1 and jS� \ F 0j = 1, then B� itself

must be overfull. This would prove our claim that G� must contain a trivial

overfull subgraph. Suppose that F 0 = B��v+u for some v 2 B� and u 2 S�.
Then jE(F 0)j = jE(F 0�u)j+dNF (u) � jE(B�)j�dNB�(v)+dNB�(u) � jE(B�)j
since dNB�(v) � dNB�(u). Since jE(F 0)j > 1

2
�(N)(jF 0j�1) = 1

2
�(N)(jB�j�1),

B� must be overfull.

2

6.2 The �rst coloring pass

In the �rst pass, we attempt to construct the matchings M1; :::;M�1
con-

taining most edges in E(B�
1
[S�

1
) and E(B�

2
[S�

2
) such that F = G��[�1

i=1Mi

is a reduction of G�. As in the previous, higher de�ciency, cases, we obtain

these matchings by patching the unmarked big vertices missed by a set of

initial matchings. Our patching technique is essentially the same as in the

small de�ciency case; so, we focus our attention to the marking. The issues

that drive our marking choices include the same ones as in the previous

cases. If jB�j is odd (even), an odd (even) number of big vertices must be

missed by the big edges of every matching. Also, the patching step requires

that we keep the degree of every vertex high, so we must insist that every

vertex with large de�ciency is missed by many matchings. In the smallest

de�ciency case, the marking must satisfy a few additional conditions if the
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�nal near-bipartite reduction is to satisfy the properties A, B and C. To

make matters more complicated, we must be very precise how we de�ne the

marking, because very little de�ciency is available. For this purpose, we

�nd it useful to �rst assign targets to every v 2 B�, i.e. the number of

matchings among M1; :::;M�1
whose big edges miss v. Because of the dif-

ferent \types" of de�ciency we specify di�erent types of targets. We denote

by tr(v) the number of matchings missing v and by ts1(v), ts2(v) and ts3(v),

the number of matchings containing the edge (s1; v), (s2; v) and (s2; v). We

also use t(v) to denote tr(v) +
P

u2S� tu(v).

We �nd it convenient to describe the target assignments separately for the

cases when jB�j is odd or even. Once we have a satisfactory target asssign-

ment, we de�ne a marking that is proper over an intial set of �1 matchings

such that m�1
u (v) =

P
�1

i=1m(v; i) = tu(v) for every v 2 B�, u = r and

u 2 S�.

6.2.1 The targets for odd jB�j

The target conditions

If jB�j is odd, the big edges of every matchingM1; :::;M�1
must miss an odd

number of big vertices. In addition, we insist that every edge in E(B�
1
; S�

1
)

and in E(B�
2
; S�

2
) must belong to some matching. The target assignments

must then satisfy

t(B�) =
X
v2B�

t(v) � �1 (6.1)

and

ts1(B
�
2
) = defs1(B

�
2
), ts2(B

�
1
) = defs2(B

�
1
) and ts3(B

�
2
) = defs3(B

�
2
) (6.2)

We make sure that B� does not induce an overfull subgraph in F with

def(B�)� t(B�) � ���1 (6.3)

In G�, by the properties of a modi�ed split partition, there are cB more

edges in B�
1
than in B�

2
(where 1

4
� < cB � 1

2
�). Suppose k1 is the integer
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de�ned by t(B�
1
) � t(B�

2
) = �1 � 2(cB � k1). Then, k1 more big edges in

B�
1
than in B�

2
will not be covered by [�1

i=1Mi. Since a subset of these edges

eventually forms K, the edges of the �nal near-bipartite reduction N whose

removal from N leaves a bipartite graph, we must choose these k1 edges to

be incident to v1 and we insist that

t(B�
1
)� t(B�

2
) = �1�2(cB �k1) for maxf0; 1

8
�� 1

2
cS�2�g � k1 �

1

4
�+ �

(6.4)

Recall that cS = 1

2
(d(S2) � d(S1)) � 1

2
d(s1). The curious lower bound on

k1 is a technical condition that we will use in the reject coloring pass. If

our target assignments are such that k1 = 0 in 6.4, we will construct a

bipartite reduction H of G� in the two coloring passes. If, however, our

target assignments are such that k1 > 0 then we may construct a near-

bipartite reduction instead. In that case, for technical reasons that help

simplify our analysis and to ultimately satisfy property C, we require that

big vertices stay big and small vertices stay small. More precisely, we require

that dFB�(v) � 1

2
(� � �1) for every v 2 B� and dFB�(u) � 1

2
(� � �1) for

every u 2 S�. We will obtain this if the target assignments satisfy

def(v)� t(v) � 1

2
(���1) for v 2 B� (6.5)

defu(B
�)� tu(B

�) � 1

2
(���1) for u 2 S� (6.6)

and def(v) � t(v) + def(u) � t(u) + �F (u; v) � � � �1 for all u; v 2 B�,
where �F (u; v) is the multiplicity of edge (u; v) in F . In almost all cases,

our target assignments will satisfy the stronger condition

def(v)� t(v) + def(u)� t(u) + �(u; v) � ���1 for u; v 2 B� (6.7)

where �(u; v) is the multiplicity of edge (u; v) in G�. In some cases, when

all the de�ciency is concentrated in only two vertices v = b1 and u = b2,

we are not be able to insure 6.7 for the pair b1; b2. In this special case,

t(B�� b1� b2) = def(B�� b1� b2) and �(b1; b2) = 1, and we will insist that

one of M1; :::;M�1
contains (b1; b2) (which we take care of in the marking

step).
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Finally, we require a number of technical conditions to be satis�ed by the tar-

gets to help us de�ne the marking and construct the matchingsM1; :::;M�1
.

First, we �nd it useful to limit the number of marks to 3 per matching, and

we thus require

t(B�) < 3�1 (6.8)

and also

2(t(u) + t(v)) � �1 + t(B�) for u; v 2 B� (6.9)

2(tu(B
�) + tv(B

�)) � �1 + t(B�) for u; v 2 S� (6.10)

2(t(v) + tu(B
� � v)) � �1 + t(B�) for v 2 B�; u 2 S� (6.11)

We also insist that most vertices v are not marked much more than 1

2
def(v)+

1

2
� times.

X
v2B�

(t(v)� (
1

2
def(v) +

1

2
�)) < � (6.12)

The target assignments

Initially, let tr(v) = 0 and tu(v) = 0 for every v 2 B� and u 2 S�. In the

following three steps, we de�ne an initial target assignment that satis�es

most of the target conditions:

1.1 For every (u; v) 2 (B�
1
; S�

1
) [ (B�

2
; S�

2
), we set tu(v) = defu(v) = �(u; v).

We call a vertex u 2 S� bad if defu(B
�)� tu(B

�) > 1

2
(���1).

1.2 For every bad u 2 S�, we repeat the following until defu(B�)�tu(B�) =
1

2
(���1):

we choose v 2 B� with positive defu(v) � tu(v) (note that u and v

must be on opposite sides of the bipartition) and we add 1 to tu(v); if

we have a choice, we always choose v with largest def(v)� t(v).

It is easy to check that jt(B�
2
)� t(B�

1
)� cS j < 10

8
� after step 1.2. We call a

vertex v 2 B� bad if def(v) � t(v) > 1

2
(���1).
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1.3 For every bad v in B�, we set tr(v) = def(v)� 1

2
(���1)� t(v) if v is

bad and tr(v) = 0 otherwise.

We explicitely made sure that target conditions 6.2, 6.5 and 6.6 are satis�ed

by these initial assignments. Since t(v) < 1

2
def(v) + 1

2
� for all v 2 B� and

tu(B
�) � 1

2
defu(B

�)+ 1

2
� for all u 2 S�, conditions 6.9, 6.10, 6.11 and 6.12 are

trivially satis�ed as well. We note, furthermore, that tu(B
�) � 1

2
defu(B

�) +
1

8
� for all non-bad u 2 S�, and t(v) � 1

2
def(v) for all v 2 B� with de�ciency

greater than � � �1. So, t(B�) < 1

2
defS�(B

�) + 3

2
� + 1

2
defr(B

�) + 5

2
� �

1

2
def(B�) + 4� � 5

4
�+4� which is much less than 3�1. Thus, condition 6.8

is satis�ed.

We show next that 6.3 holds. If there are more than two bad (big or small)

vertices then def(B�)� t(B�) > 3

2
(���1 ��9=10) > ���1. If there are

less than two bad vertices then t(B�) < 1

2
def(B�) + 7

8
�, implying def(B�)�

t(B�) � 1

2
def(B�)� 7

8
� > ���1. Finally, if exactly two vertices u and v are

bad, then def(B�)�t(B�) � def(u)�t(u)+def(v)�t(v) � ���1 if u; v 2 B�,
and def(B�)� t(B�) � defu(B

�)� tu(B
�) + defv(B

�)� tv(B
�) � ���1 if

u; v 2 S�. A similar argument shows that 6.3 holds for u 2 S� and v 2 B�,
except if some of v's remaining de�ciency is induced by u. In that case,

however, by our choices of vertices in step 1.2, tu(B
�) � 1

2
defu(B

�) + 1

8
� +p

�. Since t(v) � 1

2
def(v)+ 1

2
�, it follows that t(B�) � 1

2
def(B�)+ 7

8
�+

p
�,

implying def(B�)� t(B�) > ���1.

It is clear that 6.7 holds if u; v 2 B� � B. If u 2 B� � B, v 2 B and

�(u; v) � 2 then both def(u)� t(u) and def(v)� t(v) are greater than 1

2
(��

�1) � �(u; v) > 1

4
� � �9=10. By claim 16, it follows that �(u; v) � 3 and

def(v) < 3

8
� + �9=10. Thus, we see that t(v) < 1

8
� + 2�9=10, implying

t(v) < 1

2
def(v) � 1

16
�+ 2�9=10 and also t(B�) < 1

2
def(B�)� 1

16
�+ 3�9=10.

So, we can insure 6.7, while maintaining the validity of the conditions we

just checked, as follows:

1.4 We add �(u; v) to tr(v) for every v 2 B for which there exists some

u 2 B� such that 6.7 does not hold.

Note that the total we add to t(B�) is less than 30 since there can be no

more than 10 vertices of de�ciency greater than 1

4
���9=10. If �(u; v) = 1,

we do step 1.4 as well, unless 6.3 fails to hold as a result (all previously

checked target conditions remain satis�ed). If 6.3 would fail, we do nothing

as this is our special case.
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It remains for us to modify, if necessary, our target assignments to satisfy

conditions 6.1 and 6.4. Before starting that, we compute the di�erence

t(B�
1
) � t(B�

2
). Let Bb

1
and Bb

2
be the sets of bad big vertices in B�

1
and

B�
2
, respectively, and let us assume that jBb

1
j = jBb

2
j. Then t(B�

2
)� t(B�

1
) is

within 30 of
P

v2Bb
1
(def(v) � 1

2
(� � �1)) �

P
v2Bb

2
(def(v) � 1

2
(� � �1)) +

t(B�
1
�Bb

1
)�t(B�

2
�Bb

2
) = def(B�

1
)�def(B�

2
)�(def(B�

1
�Bb

1
)�def(B�

2
�Bb

2
))+

t(B�
1
�Bb

1
)� t(B�

2
�Bb

2
), and since def(B�

1
)�def(B�

2
) = �1�2cB+(���1)

and t(B�
1
�Bb

1
)� t(B�

2
�Bb

2
) is within 30

p
� of tS�(B

�
1
)� tS�(B

�
2
), it follows

that t(B�
1
)� t(B�

2
) = �1� 2(cB �k1) where k1 is within

3

2
� of 1

2
((���1)�

(def(B�
1
�Bb

1
)�def(B�

2
�Bb

2
))�cS) and thus 1

8
�� 1

2
cS�2� < k1 <

1

4
��cS+�.

Using a similar argument, we obtain the same result if Bb
1
j = jBb

2
j+ 1.

If t(B�) and �1 have the same parity, then k1 is integer, as desired; other-

wise,

1.5 We add 1 to tu(v) for some v 2 B� with positive defu(v)� tu(v).

Using simple parity arguments, we can see that all previously checked target

conditions are satis�ed. If t(B�) � �1 but t(B�
1
) � t(B�

2
) < �1 � 2cB , we

add more to t(B�
1
) until we obtain t(B�

1
)� t(B�

2
) = �1 � 2cB by repeating

the following 1

2
(�1 � 2cB � (t(B�

1
)� t(B�

2
))) times:

1.6 We add 1 to tu1(v1) and tu2(v2) for some v1; v2 2 B�
1
with positive

defu1(v1) > tu1(v1) and defu2(v2) > tu2(v2) where u1 = r or u1 = s1
and u2 = r or u2 = s3.

Note that we maintain the validity of target conditions 6.9 - 6.11 thanks

to our choices of vertices in every iteration and because t(B�
1
) � t(B�

2
) �

�1 � 2cB . Since we repeat 1.5 at most � times, it follows that 6.12 is

satis�ed.

If t(B�) < �1, we also must add more to t(B�) until we obtain t(B�) = �1.

Note that if t(B�) = �1, all target conditions, except possibly 6.4 and 6.12,

are trivially satis�ed. We repeat the following until t(B�) = �1:

1.7 We add 1 to tu(v) for some v in B� with defu(v) > tu(v) for u = r or

u 2 S� and with 1

2
def(v)+ 1

2
��t(v); we choose v 2 B�

1
if t(B�

1
)�t(B�

2
) <

1

2
��cB(= 1

2
def(B�

1
)+ 1

2
�� 1

2
def(B�

2
)� 1

2
�, otherwise we choose v 2 B�

2
.

If t(B�
1
) � t(B�

2
) < �1 � 2cB after step 1.7, we continue exactlt as in 1.6.

Otherwise, all target conditions hold.
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6.2.2 The targets for even jB�j

The target conditions

If jB�j is even, the number of big vertices missed by the big edges of every

matching must be even. It follows that t(B�) must be even too. In other

words, if k1 satis�es t(B�
1
) � t(B�

2
) = 2(cB � k1) then k1 must be integer.

In addition, if k1 > 0 then k1 more big edges in B�
1
than in B�

2
will not be

covered by [�1

i=1Mi, and if k1 < 0 then jk1j more big edges in B�
2
will not be

covered by [�1

i=1Mi. Since a subset of these edges eventually forms K, the

edges of the �nal near-bipartite reduction N whose removal from N leaves

a bipartite graph, we must choose these jk1j edges to be incident to v1 or

v2, depending on whether k1 > 0 or k1 < 0. For this purpose we insist that

t(B�
1
)� t(B�

2
) = 2(cB � k1) for �

1

8
�� � � k1 �

1

8
� + � (6.13)

The following target conditions are necessary and su�cient to insure that

B� � v, for every v 2 B�, and B� + u, for every u 2 S�, do not induce an

overfull subgraph in F

2(def(v)� t(v)) � def(B�)� t(B�) (6.14)

2(defu(B
�)� tu(B

�)) � def(B�)� t(B�) (6.15)

To help our analysis and to ultimately satisfy property C, we require that

big vertices stay big and small vertices stay small, and so properties 6.5,

6.6 and 6.7 should be satis�ed by the targets. We also insist on 6.8 to

limit the number of marks per matching, 6.2 to include all small edges in

E(B�
1
; S�

1
) [ E(B�

2
; S�

2
) in the �rst �1 matchings and on property 6.12 so

most vertices v are not marked much more than 1

2
def(v)+ 1

2
� times. Finally,

in order to put an even number of marks per matching in the marking step,

we need that the targets satisfy:

2t(v) � t(B�) for all v 2 B� (6.16)

2tu(B
�) � t(B�) for all u; v 2 S� (6.17)

The target assignments
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We initially assign targets as we did in steps 1.1, 1.2, 1.3 and 1.4 of the

odd case. This assignment satis�es condition 6.2 requiring that all small

edges in E(B�
1
; S�

1
) [ E(B�

2
; S�

2
) belong to the �rst �1 matchings, and also

conditions 6.5, 6.6 and 6.7 insuring that smalls stay small and bigs stay big.

The total number of targets, t(B�), is much less than 3�1 (required in the

marking step) so 6.8 holds as well. Finally, we observe that our assignments

satisfy t(v) � 1

2
def(v) + 1

2
� + 3 for all v 2 B�, and, as in the odd jB�j case,

tS�(B
�
2
)� tS�(B

�
1
) is within 10

8
� of c.

Let Bb
1
and Bb

2
be the number of bad vertices in B�

1
and B�

2
, respectively. If

jBb
1
j = jBb

2
j, the di�erence t(B�

2
)� t(B�

1
) is within 30 of def(B�

2
)�def(B�

1
)�

(def(B�
2
� Bb

2
)� def(B�

1
� Bb

1
)) + (t(B�

2
� Bb

2
) � t(B�

1
� Bb

1
)). Since t(B�

2
�

Bb
2
)� t(B�

1
�Bb

1
) is within 10

8
� + 30

p
� of cS , it follows that t(B

�
2
)� t(B�

1
)

= 2(cb � k1) where jk1j < 1

8
�+ � � 1. The same is true if jBb

1
j+ 1 = jBb

2
j.

Thus, 6.13 is satis�ed, unless k1 is not integer, in which case we just do

1.5 If t(B�) is odd (i.e. k1 is not integer) but all other properties hold, we

just add 1 to tu(v) for some v 2 B� with defu(v) > tu(v) for u = r or

u = s; s0; s00.

Since def(B�) is even, there must exist such a vertex v, and by parity argu-

ments, all checked conditions are still valid.

We now modify the targets, if necessary, so the conditions 6.14, 6.15, 6.16

and 6.17 hold:

1.6 We recursively add 1 to tu(v) for some v 2 B� and u = r or u 2 S�

such that defu(v) > tu(v) while one of the following holds:

(i) there is some v1 2 B� with q1 = 2t(v1) � t(B�) > 0 (more than

half of the used targets (de�ned as t(B�)) is on v1),

(ii) there is v2 2 B� with q2 = 2(def(v2)�t(v2))�(def(B�)�t(B�)) >
0, i.e more than half of the available de�ciency (de�ned as def(B�)�
t(B�)) is on v2),

(iii) there is some u1 2 S� with q3 = 2tu1(B
�)� t(B�) > 0 (more than

half of the used targets is induced by u1),

(iv) there is u2 2 S� with q4 = 2(defu2(B
�) � tu2(B

�)) � (def(B�) �
t(B�)) > 0 (more than half of the available de�ciency is induced

by u2).
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We �rst note that more than one of the above inequalities may hold.

Actually, all of them may hold. There can be, however, only one

vertex satisfying one particular condition. We pick u and v so that

defu(v) > tu(v) and all of the following are satis�ed:

if (i) holds, v 2 B� � v1,

if (ii) holds, v = v2,

if (iii) holds, u = r or u 2 S� � u1,

if (iv) holds, u = u2.

Finally, if we have a choice of vertex v to mark (i.e. if (ii) does

not hold), we choose v 2 B�
1
if t(B�

2
) � t(B�

1
) > cB or v 2 B�

2
if

t(B�
2
)� t(B�

1
) � cB .

The number of iterations of 1.6, i.e. the total we add to t(B�), is q =

maxfq1; q2; q3; q4g. If q = q1, then the total t(B�) after 1.6 is at most 2t(v1)

and since t(v1) <
1

2
def(v1)+

1

2
�+4, it follows that t(v) � 1

2
def(v)+ 1

2
�+4, for

all v 2 B� implying target condition 6.12; a similar argument works when

q = q3. If q = q2, then either there is a bad vertex in (B
��v2)[S� and q2 � 4,

or t(B��v2) < 1

2
def(B��v2)+ 1

2
� and q2 = def(v2)� t(v2)� 1

2
def(B��v2)+

1

2
� � 1

2
def(v2) � t(v2) +

1

2
�. In either case t(v2) � 1

2
def(v2) +

1

2
�, implying

6.12. A similar argument works when q = q4.

6.2.3 The initial coloring

We construct disjoint matchings M 0
1
; :::;M 0

�1
such that [�1

i=1M
0
i = E(B�

1
) [

E(B�
2
)�K1, where K1 is a set big edges chosen as follows:

2.1 If k1 > 0 (where k1 is as de�ned in 6.4 for the odd jB�j case or in 6.15

for the even jB�j case) then we choose some k1 edges in E(B1) incident

to v1, the smallest de�ciency vertex in B1; if k1 < 0, we choose some

jk1j edges in E(B2) incident to v2, the smallest de�ciency vertex in

B2.

Because dB�(v1) > 3, it follows that dB(v1) > ���3=5 � 3. If k1 > 0, then

k1 <
1

4
� + 2� < 1

2
dB1

(v1) + �9=10 < dB1
(v1). Similarly, jk1j < dB2

(v2) if

k1 < 0.

Because �(B�
1
);�(B�

2
) < 1

2
� + 1

8
� < �1 �

p
�, and because the edge

multiplicity in B�
1
and B�

2
is at most

p
�, we can apply Fournier's edge
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coloring algorithm for multigraphs to �1 color B�
1
and B�

2
. We can thus

construct an initial coloring as follows:

2.2 We color the edges ofE(B�
1
)[E(B�

2
)�K1 with �1 colors using Fournier's

algorithm to obtain matchingsM1

1
; :::;M1

�1
such that [�1

i=1M
1

i = E(B�
1
)�

K1 and matchings M2

1
; :::;M2

�1
such that [�1

i=1M
2

i = E(B�
2
)�K1. By

applying the balancing procedure from 3.2.2, we insure thatM1

1
; :::;M1

�1

are balanced in B�
1
and M2

1
; :::;M2

�1
are balanced in B�

2
.

2.3 We set M 0
i =M1

i [M2

i for i = 1; :::;�1.

Note that 0 � jM1

j j�jM1

i j � 1 and 0 � jM2

j j�jM2

i j � 1 for 1 � i < j � �1,

and 0 � jM1

i j � jM2

i j � 1 for 1 � i � �1. Actually, jM1

i j � jM2

i j = 1 for

exactly cB � k1 indices i.

6.2.4 The marking

Using the targets, and by reordering and modifying the initial matchings,

we de�ne a proper marking over modi�ed disjoint matchings M 0
1
; :::;M 0

�1

such that [�1

i=1M
0
i = (E(B�

1
)�E(R1)) [ (E(B�

2
)�E(R2))�K1 where:

(i) m�1
r (v) = tr(v) and m�1

u (v) = tu(v) for every v 2 B� and u 2 S�.

(ii) � < n(B�
1
; i) = n(B�

2
; i) < 7� for every i = 1; :::;�1,

(iii) R1 and R2 are reject subgraphs of maximum degree less than �4=5 and

jE(R1)j = jE(R2)j < 2�.

We recall that n(B�
1
; i) and n(B�

2
; i) are the numbers of vertices v in B�

1
and

B�
2
, respectively, missed by M 0

i such that m(v; i) = 0. These are exactly the

vertices we must patch later. We also recall that a marking is proper over

initial matchings M 0
1
; :::;M 0

�1
if the big edges of every M 0

i miss every big

vertex v such that m(v; i) = 1.

We start the marking procedure with mu(v; i) = 0 for all v 2 B�, u = r and

u 2 S�, and all i = 1; :::;�1. We also call all M 0
i unused. Then we repeat

the following for i = 1; :::;�1:

3.1 We mark a few of the big vertices, by settingmr(v; i) = 1 ormu(v; i) = 1

for a few v 2 B� and u 2 S�.
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3.2 We choose some unusedM 0
j and switch it withM

0
i . We then modify (the

new) M 0
i so it misses all vertices v such that m(v; i) = 1. Finally, we

add the small edges induced by the marking to M 0
i and call M 0

i used.

Note that M 0
1
; :::;M 0

i are used after this step, while M 0
i+1; :::;M

0
�1

are

unused.

3.3 We delete up to four big edges of M 0
i on one side of the bipartition to

insure that n(B�
1
; i) = n(B�

2
; i).

We now give the details of each step.

Step 3.1: choosing the marks

We describe �rst how we choose what vertices to mark in iteration i. For that

purpose, we introduce some notation. We usemi
u(v) to denote

Pi
j=1mu(v; j)

and mi(v) to denote mi
r(v)+

P
u2S� m

i
u(v), and we say that v 2 B�[S� has,

in iteration i, y available targets if either v 2 B� and y = t(v)�mi�1(v) or
v 2 S� and y = tv(B

�)�mi�1
v (B�), respectively.

If jB�j is odd, we set x = 1

2
(t(B�)��1) which is less than �1 since t(B

�) <
3�1 by target condition 6.1. Then, in iteration i, we mark the vertices as

follows:

3.1.1 If i � x, we set mu1(v1; i) = mu2(v2; i) = mu3(v3; i) = 1 for some

di�erent vertices v1; v2; v3 2 B� and uj = r or uj 2 S� such that

tuj (vj) > mi�1
uj

(vj) for j = 1; :::; 3 and no two uk and ul (1 � l < k � 3)

are the same small vertex. We insist that the two vertices with largest

numbers of available targets are among v1; v2; u1; u2.

3.1.2 If i > x, we set mr(v; i) = 1 for some v 2 B� with tr(v) > mi�1
r (v) or

we set mu(v; i) = 1 for some v 2 B� and u 2 S� with tu(v) > mi�1
u (v).

In the special case when target condition 6.8 holds, we choose, in

iteration i = x + 1, v 2 B� � b1 � b2, and we also temporarily mark

b1 and b2 (because we will add the edge (b1; b2) to Mi in teh marking

step).

Before every iteration i � x, every vertex v 2 B� [ S� has at most �1 �
(i � 1) available targets, and at most 2 have exactly �1 � (i � 1) available

targets (since t(B�) < 3�1, by 6.9). If only two vertices v1 and v2 with

positive available targets remain just before iteration i � x, then our choice

of vertices to mark would contradict conditions 6.9, 6.10 or 6.11. When
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i > x, t(B�)�mi�1(B�) = �1� (i�1), implying that we always can choose

the vertices to mark as required.

If jB�j is even, we set x = maxf0; 1
2
(t(B�)�2�1)g and y = minf�1;

1

2
t(B�)g.

Note that either x = 0 or y = 0 but not bth. Since t(B�) is much less tahn

3�1 (by target condition 6.1), it follows that x <
1

4
�+ 1

2
�. Then, in iteration

i, we mark the vertices as follows:

3.1.3 If i � x, we set mu1(v1; i) = mu2(v2; i) = mu3(v3; i) = mu4(v4; i) = 1

for some di�erent vertices v1; v2; v3; v4 2 B� and uj = r or uj =2 S�

such that tuj (vj) > mi�1
uj

(vj) for j = 1; :::; 4 and no two uk and ul (1 �
l < k � 4) are the same small vertex. We insist that the two vertices

with largest numbers of available targets are among v1; v2; u1; u2.

3.1.4 If x < i � y, we set mu1(v1; i) = mu2(v2; i) = 1 for some di�erent

vertices v1; v2 2 B� and uj = r or uj 2 S� such that tuj (vj) > mi�1
uj

(vj)

for j = 1; 2 and u1 and u2 are not the same small vertex. We insist that

the two vertices with largest numbers of available targets are among

v1; v2; u1; u2.

3.1.5 If i > y, we mark no vertex.

It is easy to check that our target conditions insure the feasibility of this

marking.

Step 3.2: constructing the matching

We start by calling all matchings M 0
1
; :::;M 0

�1
unused. Then, in every iter-

ation i, we associate with every v such that m(v; i) = 1) a matching M 0
iv

missing v such that m(v; iv) = 0, if there is such a matching. From target

condition 6.10, and since v is missed by at least 1

2
def(v) + 7

8
� initial match-

ings, we see that such a matching M 0
iv
must exist for every marked v in all

but, at most, 2� iterations i. We then choose some unused matching M 0
j,

switch it with M 0
i and, then, we modify (the new) M 0

i so it misses every

marked vertex v. We then add the small edges induced by the marking and

the edge (b1; b2), in the special case, to M 0
i and call it used: so, the used

matchings are M 0
1
; :::;M 0

i after iteration i.

For every vertex v that is hit by M 0
i (with an edge (u; v)), we use one of the

following procedures:

�rst edge reject: We simply reject (v; u), as shown in �gure 6.1.
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before after

v u v u

Figure 6.1: M 0
i (full) and M 0

iv
(dashed) before and after, with v marked in

M 0
i , the �rst edge reject procedure

any edge reject IfM 0
iv
misses u and if eitherM 0

iv
is unused orM 0

iv
is used

and m(u; iv) = 0, we switch the color of (v; u) from M 0
i to M

0
iv
and we

reject an edge (x; y) inM 0
iv
on the side of the bipartition to which v and

u belong (so that jM 0
iv
\E(B�

1
)j and jM 0

iv
\E(B�

2
)j remain unchanged).

See �gure 6.2.

before after

v u v u

x

y

Figure 6.2: M 0
i (full) and M 0

iv
(dashed) before and after, with v marked in

M 0
i , the any edge reject procedure

second edge reject If there is w 2 B� such that (u;w) 2 M 0
iv
, we reject

(u;w) and we switch the color of (v; u) fromM 0
i toM

0
iv
. See �gure 6.3.

We will make sure that no vertex is adjacent to more than �4=5 rejected

edges by carefully choosing, in every iteration i, the unused matching M 0
j

we switch with M 0
i and the reject procedure. We do this as follows:

3.2.1 If i > �1�8�3=4, or if, for some marked vertex v, there is no matching

Miv missing v such that m(v; iv) = 0, we pick any unused M 0
j and we

use the �rst edge reject procedure.
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before after

v u v uw w

Figure 6.3: M 0
i (full) and M 0

iv
(dashed) before and after, with v marked in

M 0
i , the second edge reject procedure

3.2.2 If i < �1�8�3=4, we choose an unusedM 0
j such that for every marked

vertex v hit by an edge (u; v) of M 0
j, either

(i) u is missed by Miv and, if Miv is used, m(u; iv) = 0, or

(ii) there is an edge (u;w) 2Miv and no edge incident to u or w has

been rejected in the previous 1

4
�1=4 iterations.

In case (i) we use the any edge reject procedure, in which case we

choose the \any" edge (x; y) to be rejected so that no edge incident to

x or y has been rejected in iterations i � d
p
�e; :::; i � 1. In case (ii)

we use the second edge reject procedure.

Since no more than than four edges are rejected in each iteration, less than

2�1=4 edges of Miv have endpoints incident to an edge rejected in one of

the previous 1

4
�1=4 iterations. In addition, if Miv is used, no more than 4

vertices can be marked in Miv . So, because the multiplicity of an edge is at

most
p
�, it follows that at most 2�3=4 + 3

p
� unused matchings have an

edge (v; u) where u is either an endpoint of an edge rejected in the previous
1

4
�1=4 iterations or u is marked in Miv . Because no more than four vertices

are marked in M 0
i , less than 8�3=4 unused matchings are not available, so

at least one unused matching is available.

No vertex in B� is incident to more than 8�3=4+2�+ �1
1

4
�1=4 <

1

2
�4=5 rejected

edges. The total number of edges rejected is at most 3�1. We also note

that no more than 2l unmarked vertices are missed byM 0
i on one side of the

bipartition than on the other, for 0 � l � 4.

Step 3.3: equalizing the unmarked vertices



122 CHAPTER 6. THE SMALLEST DEFICIENCY CASE

We now reject additional edges to insure n(B�
1
; i) = n(B�

2
; i) and, ultimately,

jE(R1)j = jE(R2)j < 4�:

3.3 We reject (up to 4) edges inM 0
i to insure that the unmarked big vertices

missed by M 0
i are split evenly between B�

1
and B�

2
. When picking the

edges to reject, we insist that their endpoints have not had an incident

edge rejected in the previous
p
� iterations.

Since there can be at most �1 iterations, no vertex is adjacent to more thanp
� edges rejected in 3.3. Furthermore, jE(R1)j = jE(R2)j < 3�1 +4�1 <

4� and �(R1);�(R2) <
1

2
�4=5.

Finally, we show:

Claim 22 � < n(B�
1
; i) = n(B�

2
; i) < 7� for every i = 1; :::;�1.

Proof: We explicitely made sure that n(B�
1
; i) = n(B�

2
; i) in step 3.3

of iteration i. So we only need to show that � < n(B�
1
; i) < 7� for any

i = 1; :::;�1. We �rst note that

�1X
i=1

n(B�
1
; i) =

X
v2B�

1

(�1 � dB�

1
(v)�m�1(v)) + 2jR1j+ 2jK1j

Since
P

v2B�

1
(�1� dB�

1
(v)) �Pv2B�

1
(1
2
�+ �� 1

2
dB�(v) + 1

8
�) � 1

2
def(B�

1
)+

9

8
�jB�

1
j � 3

4
�+ 9

8
�jB�

1
j, it follows that n(B�

1
; i) � 1

�1
(9
8
�jB�

1
j+5�)+8 < 7�.

Similarly, from
P

v2B�

1
(�1�dB�

1
(v)) � 7

8
�jB�

1
j andm�1(B�) < 5

2
�, it follows

that n(B�
1
; i) � 1

�1
(7
8
�jB�

1
j � 5

2
�)� 8 > � 2

6.2.5 The patching

For i = 1; :::;�1, we recursively obtainMi by augmenting the vertex disjoint

patches we construct between pairs of unmarked big vertices missed by M 0
i

in F = G� �K1 � R1 � R2 �M1 � ::: �Mi�1. After each augmentation,

we add the edges of M 0
i left uncolored by this augmentation to the reject

graphs R1 or R2. If we fail to construct a patch between two unmarked
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vertices missed by some M 0
i , we will show the existence of and construct a

fail pair (X;Y ). On the other hand, if we are successfull, the big edges of

every matching Mi will miss only the vertices v marked in it (i.e. all v such

that m(v; i) = 1).

We now describe the construction of the vertex disjoint patches of M 0
i in

F = G� � R1 � R2 �M1 � ::: �Mi�1. We recall that a patch P between

unmarked vertices x 2 B�
1
and y 2 B�

2
missed by M 0

i is a path from x to

y with edges alternating between E(F ) \ E(B�
1
; B�

2
) and M 0

i \ E(B). For

r = 1; :::; n(B�
1
; i), we recursively construct the patch Pr as follows:

4.1 We pick a pair of unmarked vertices xr and yr on opposite sides of the

bipartition so that xr and yr are missed by M 0
i and have not yet been

patched. We pick yr so it belongs to B. In choosing xr we always give

priority to unmarked, missed vertices in B� �B.

Since jB� � Bj < 2�1=5 < n(B�
1
; i), there are more than jB� � Bj vertices

in B that are not marked and are missed by M 0
i - our choice of the patch

endpoints xr and yr is thus feasible.

4.2 We de�ne unavailable and usable vertices. We call v 2 B unavail-

able if it is an internal vertex of any patch P1; :::; Pr�1 or of any patch

constructed for one of the previous 8d�1=e matchings (Mi�1; :::;MI �
8d�1=10e). We note that if a vertex is not unavailable, then no edge

incident to it has been rejected while obtaining one of the previous

8d�1=10e matchings. We call v 2 B usable if v = yr or (v; u) 2 M 0
i

and neither v nor u is unavailable. If xr 2 B��B, we also de�ne Y 0-

unavailable and Y 0-usable vertices. We call v 2 B Y 0-unavailable

if it is an internal vertex of any patch P1; :::Pr�1, or if it is an endpoint

of the second edge of a patch out of a vertex in B��B constructed for

one of the previous 8d�1=10e matchings. We call v 2 B is Y 0-usable if

v = yr or (v; u) 2M 0
i and neither u nor v are Y 0-unavailable.

4.3 We recursively build the sets X l and Y l for 0 � l � 6d�1=20e as follows:
X0 = fxrg,
if xr 2 B� � B, Y 0 = fv 2 B : v is Y 0-usable and (xr; v) 2 E(F ) \

E(B�
1
; B�

2
)g,

if xr 2 B, Y 0 = fv 2 B : v is usable and (xr; v) 2 E(F )\E(B�
1
; B�

2
)g,

X l = fv 2 B : 9u 2 Y l�1 such that (u; v) 2M 0
ig
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Y l = fv 2 B : v is usable and 9u 2 X l such that (u; v) 2 E(F ) \
E(B1; B2)g.

If xr 2 B� � B, then at most 6d�1=20e8�1=10 vertices in B belong to

P1; :::; Pr�1 and, as such, are Y 0-unavailable. Furthermore, at most 8d�1=10e
jB� � Bj < 8d�1=10e2�1=5 vertices are endpoints of the second edge of a

patch out of a vertex in B��B constructed for one of the previous 8d�1=10e
matchings, and as such, are Y 0-unavailable. So, at most �2=5 vertices are

not Y 0-usable.

4.4 If yr 2 Y j for some 0 � j � 6d�1=20e, we construct the patch de�ned

by the sequence of vertices xr; y
0; x1; y1; :::; yj�1; xj ; yr where xl 2 X l,

yl 2 Y l, (xr; y
0), (xj ; yr) and (xl; yl) belong to E(F ) \E(B�

1
; B�

2
) and

(yl; xl+1) 2M 0
i .

Note that each patch contains the same number of edges from E(B1) and

from E(B2); so when done, jE(R1)j = jE(R2)j < 24�1��
1=20 < 1

10
�19=10.

Furthermore, no vertex is incident to more than �1

8�1=10 < 1

8
�9=10 edges

rejected in this step.

4.5 If there is no Y j containing yr, then we pick the smallest j � 1 such

that jY jj � jXj j+ 1

2
�19=20. If Xj � B1 then the pair (X;Y ), de�ned

by X = fv 2 Xj \ B : dFB2
(v) > 1

2
� � �9=10g and Y = NF (X) \ B,

form a fail pair.

If F = G� �M1 � :::�Mi�1, then dFB�(v) = ���1 � (def(v)�m�1(v)) >
1

2
(� ��1) >

1

4
� ��9=10. Since �(R1) and �(R2) are less than �9=10, it

follows that dFB2
(v) > 1

4
� � 1

8
�19=20 for every v 2 B�

1
� v1, and similarly,

dFB1
(v) > 1

4
� � 1

8
�19=20 for every v 2 B�

2
. Since dFB�(v1) � �(F ) � 2 and

because jK1j < 1

4
�, it follows that dFB2

(v1) >
1

4
�� 1

8
�19=20.

Claim 23 (X;Y ) forms a fail pair in (B1; B2).

Proof: To simplify notation, let x = xr 2 B�
1
, so that y = yr 2 B2. Let us

�rst set an upper bound on the sizes of F1 and F2, the unavailable vertices

in B1 and B2, respectively. Since a patch contains at most 6d�1=20e vertices
in B1, and since there are at most 8� patches per matching, it follows that
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jF1j < 8b�1=10c8�6d�1=20e < 1

8
�19=20

for large enough �. A symmetrical argument gives jF2j < 1

8
�19=20.

If x 2 B��B, there are at most �2=5 Y 0-unavailable vertices. Since dFB2
(x) �

1

4
�� 1

8
�19=20 and because the edge multiplicity is at most

p
�, NF

B2
(x) �

1

5

p
� and jX1j = jY 0j � NF

B2
(x) ��2=5 > 0. So, there must exist a vertex

v 2 X1, which implies that jX2j = jY 1j � dFB1
(v)� jF1j > 1

4
�� 1

8
�19=20. If

x 2 B then jX2j = jY 1j � 1

4
�� 1

8
�19=20 easily holds.

Suppose that jY lj > jX lj + 1

2
�19=20 for all 2 � l � d6�1=20e � 2. Then,

jX6d�1=20e�2j > 3� � jB1j, a contradiction.

So we must have jY jj � jXj j+ 1

2
�19=20 for some j between 1 and d6�1=20e�2,

and we pick the minimum j satisfying this property. Let E1 and E2 be

subsets of B1 and B2, respectively, missed byM 0
i . Clearly, jEkj � n(B�

k; i)+

m(B�
k; i) < 8� + 2 < 10�. If j is even (and Xj � B1 and Y j � B2), we

de�ne Y = Y j [E2 [F2; if j is odd (and Xj � B2 and Y
j � B1), we de�ne

Y = Y j [E1 [F1. Let X = fv 2 Xj : dFY (v) >
1

2
���19=20g. (X;Y ) forms

a fail pair by the following three properties:

jY j � jXj+�19=20.

Proof: We assume X � B1 and Y � B2; a symmetric argument proves

the statement when X � B2 and Y � B1. We note that jY j � jY jj+
jE2j+ jF2j � jXj j+ 1

2
�19=20+10�+ 1

8
�19=20 < jXj j+ 3

4
�19=20. Finally,

we argue that jXj j < jXj+ 1

4
�19=12 by showing that Xj�X � L where

L = v1 + fv 2 B : def(v) > 2
p
�g and jLj <

p
�): if v 2 B1 � L then

dFB2
(v) � dFB�(v) � �3=5 � �(F ) � 2

p
� � �3=5 > 1

2
� � 1

8
�19=20,

implying v 62 Xj �X.

For all v 2 X: dY (v) >
1

2
���19=20.

Proof: Assuming X � B1, dY (v) > dFY (v) = dFB2
(v) > 1

2
� � 1

8
�19=20

by the de�nition of X. A symmetric argument applies if X � B2.

If X � Bk then jBkj � jXj > 1

4
���19=20.

Proof: If X � B1 then y must belong to B2 �NF (Xj) which implies

that dFX(y) = 0. Since y 2 B2 then dFB1
(y) > 1

4
� � 1

8
�19=20. It

follows that jB1 � Xj > 1

4
� � 1

8
�19=20. If X � B2, we �rst note
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that jNF
B1
(y)j > 1

4
�� 1

8
�19=20 (since y 2 B2). Let Z be the subset of

NF
B2
(y) of vertices incident to some edge of M 0

i \E(B1). It is easy to

check that NF
B2
(y) � Z contains only vertices that are missed by M 0

i ,

that belong to B��B or that are forbidden. Since there is fewer than

m(B�
1
; i)+n(B�

1
; i)+ jF1j+ jB��Bj < �19=20 such vertices, Z must be

non-empty. Let (u; v) be an edge of M 0
i in E(B�

1
) with v 2 Z. Since

dFB2
(u) > 1

4
�� 1

8
�19=20 and dFX(u) = 0 (because otherwise a patch t y

through a vertex in X and vertices u and v would have been possible),

jB2 �Xj > 1

4
�� 1

8
�19=20.

2

6.3 The reject coloring pass

Once we complete the �rst pass and delete the matchings M1; :::;M�1
from

G�, we obtain the reduction F = G� � [�1

i=1Mi = R1 + H1 + R2 + K1

where H1 � E(B�
1
[ S�

1
; B�

2
[ S�

2
), K1 is a set of jk1j edges incident to

v1 or v2 depeneding on whether k1 > 0 or k1 < 0 as de�ned in 6.4 or

in 6.13 and R1 and R2 are reject graphs in B�
1
and B�

2
, respectively, of

maximum deggree less than �9=10 such that E(R�
1
)j = jE(R�

2
)j < 1

8
�19=10.

The de�ciency remaining in the graph F at each vertex v is def(v)�m�1(v),

where m�1
u (v) = tu(v) for every v 2 B� and u = r or u 2 S�. We will use

the fact that the target conditions are satis�ed by the marking of the �rst

�1 matchings.

In the reject coloring pass, we will attempt to construct the disjoint match-

ings M�1+1
; :::;M�1+�2

in F such that N = F �[�2

i=1M�1+i is a reduction

of F (and thus of G�) such that either N is bipartite, or:

A. N = H +K where E(H) � E(B�
1
[ S�

2
; B�

2
[ S�

2
) and K is a subset of

edges in K1.

B. B�, B� � v for all v 2 B� and B� + u for all u 2 S� do not induce an

overfull subgraph of maximum degree �(N) in N .

C. dNB�(v) >
1

2
�(N) for every v 2 B�, dNB�(u) � 1

2
�(N) for every u 2 S�

and dNB�(v) + dNB��v(u) � �(N) for every u; v 2 B�.

By lemma 23, if N satis�es these three properties then N does not contain

an overfull subgraph of degree �, implying that N is �(N) edge colorable.
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We will denote
P

�1+�2

i=1 m(v; i) bym(v). To satisfy propertyC, the marking

must satisfy:

def(v)�m(v) � 1

2
�(N) for v 2 B� (6.18)

defu(B
�)�mu(B

�) � 1

2
�(N) for u 2 S� (6.19)

def(v) �m(v) + def(u)�m(u) + �N (u; v) � 1

2
�(N) for u; v 2 B� (6.20)

We call v 2 B� bad if def(v) � 1

2
�(N) = 1

2
(� � �1 � �2), and we call

u 2 S� bad if defu(B
�) > � � �1 � 1

4
�. Note that if u 2 S� is not bad,

then the remaining de�ciency in F induced by u, defu(B
�)�mu(B

�), is no
greater than 1

2
(� � �1). We observe that, since the marking of the �rst

�1 matchings satis�es target conditions 6.5 - 6.7, the properties 6.18 - 6.20

will hold if we mark every bad big vertex in at least 1

2
�2 of the last �2

matchings and we insure that every bad small vertex induces a mark in at

least 1

2
�2 of the last �2 matchings.

Property B will hold in the odd jB�j case if and only if

def(B�)�m(B�) � �(N) (6.21)

and in the even jB�j case if and only if

2(def(v)�m(v)) � def(B�)�m(B�) for all v 2 B� (6.22)

2(defu(B
�)�mu(B

�)) � def(B�)�m(B�) for all u 2 S� (6.23)

Let nb and ns be the numbers of bad big vertices and bad small vertices,

respectively. In this, smallest de�ciency, case, nb is at most 10 and the only

candidates for bad big vertices are the 10 smallest degree vertices b1; b3; :::; b9
in B�

1
and b2; b4; :::; b10 in B�

2
such that def(b1) � def(b2) � ::: � def(b10).

Let c be the smallest even integer greater than 3

4
�2. We obtain the set

K by removing m edges from K1, where m depends on the number of bad

vertices. If jB�j is odd, then m = 0 if k1 � 1

16
� or nb; ns are both odd; if

k1 >
1

16
�, then m = 1

2
(�2 � c) if nb + ns is odd and m = 1

2
�2 if nb; ns are

both even.
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We construct the matchings M�1+1
; :::;M�1+�2

covering E(R1) [E(R2) [
(K1 �K) in three steps.

6.3.1 The initial coloring

We �rst construct an initial coloring:

1. We construct initial matchings M 0
1
; :::;M 0

1

2
�2

balanced in B�
1
and in B�

2

and covering R1 [R2 [ (K1 �K) using Fournier's edge coloring algo-

rithm and our balancing procedure (see 3.2.2). We insist that the last

m matchings have one more edge in B�
1
than in B�

2
and that the �rst

1

2
c matchings miss all big bad vertices.

Since �2 � 1

2
�19=20 and jE(R1)j = jE(R2)j < 1

8
�19=20, it follows that

jM 0
i \E(B�

1
)j and jM 0

i \E(B�
2
)j are less than d1

4
�19=20e.

6.3.2 The marking

We use the initial coloring to construct disjoint matchingsM 00
�1+1

; :::;M 00
�1+�2

covering E(R1) [ E(R2) [ (K1 � K) and to de�ne a proper marking over

those matchings such that, for every i = 1; :::;�2:

(i) jM�1+i \E(B�
1
)j and jM�1+i \E(B�

1
)j are less than d1

4
�19=20e,

(iii) m(B�;�1 + i) � 10, and

(ii) n(B1;�1 + i) = n(B�
1
;�1 + i) = n(B�

2
;�1 + i) = n(B2;�1 + i).

The second condition implies that in no machingM 00
�1+i

a vertex v in B��B
is missed and not marked. So, we will only need to patch vertices in B in

the patching step. We de�ne the marking and we construct the matchings

by repeating the following for i = 1; 2; :::; 1
2
�2:

2.1 We de�ne mr(v;�1 + 2i � 1), mu(v;�1 + 2i � 1), mr(v;�1 + 2i), and

mu(v;�1 + 2i) for every v 2 B� and u 2 S�.

2.2 We construct disjoint matchings M 00
�1+2i�1 and M�1+2i in F 0 = F �

M 00
�1+1

�M 00
�1+2

� :::M 00
�1+2i�2 so their union contains M 0

i .
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We describe the details of each step in the case when jB�j is odd �rst.

Step 2.1: The marking in iteration i for odd jB�j
We �rst de�ne the marking in iteration i � 1

2
�2 in the case when there is

no bad vertex (i.e. nb + nS = 0):

2.1.1 If k1 <
1

16
� (in which case m = 0), we set ms1(v1;�1 + 2i � 1) = 1

for some v1 2 B�
1
with defs1(v1) > m�1+2i�2

s1
(v1); let W1 = fv1g.

Then, we set ms1(v2;�1 + 2i) = 1 for some v2 2 B�
1
� v1 with

defs1(v2) > m�1+2i�1
s1 (v2) and (v1; v2) 62M 0

i . Let W2 = fv2g.
2.1.2 If k1 � 1

16
� (in which case m = 1

2
�2), we set mu(v1;�1+2i� 1) = 1

for some v 2 B�
2
with defu(v1) > m�1+2i�2

u (v1) where u = r or u = s2.

Let W1 = fv1g.
Then, we set mu(v2;�1 + 2i) = 1 for some v2 2 B�

1
with defu(v2) >

m�1+2i�1
u (v2) where u = r, u = s1 or u = s3. Let W2 = fv2g. (We

illustrate the marking in �gure 6.4.)

s

s

s

1

1

1

(a)

(b)

(c)

v

v

2

1

Figure 6.4: 2.1.2: M 0
i (a) and the marking in M 00

2i�1 (b) and M
00
2i (c)

In step 2.1.2, the remaining de�ciency in B�
1
and B�

2
is at least �1 � k1 >

1

4
���9=10 and k1 � 1

2
�2, respectively.

If nb+nS > 0, we need to de�ne a marking in which all bad big vertices are

marked at least 1

2
�2 times and all bad small vertices induce marks at least
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1

2
�2 times. To do this we de�ne the marking in every iteration i � 1

2
c in

one of the following ways:

2.1.3 If nb+ns is odd, we set mr(v;�1 +2i� 1) = 1 for every bad v 2 B�.
We then set mu(v;�1+2i�1) = 1 for every bad u 2 S� where v 2 B�

is chosen so that defu(v) > m�1+2i�2
u > 0; let W1 be the set of big

vertices v such that m(v;�1 + 2i� 1) = 1.

Then, we set mr(v;�1 + 2i) = 1 for ever bad v 2 B� and mu(v;�1 +

2i) = 1 for every bad u 2 S� where v 2 B� is chosen so that defu(v) >

m�1+2i�1
u and there is no u 2W1 with (v; u) 2M 0

i . Let W2 be the set

of big vertices v such that m(v;�1 + 2i) = 1.

2.1.4 If nb and ns are both odd (in which case m = 0), we �rst pick the two

least recently chosen vertices v1; v2 among the bad vertices in B�
1
[S�

2
.

(For example, v1; v2 = b1; s1 if nb = nS = 1.) We set mr(v;�1 + 2i�
1) = 1 for every bad v 2 B�� v1 and mu(v;�1 +2i� 1) = 1 for every

bad u 2 S��v1 where v 2 B� is chosen so that defu(v) > m�1+2i�2
u (v).

Let W1 be the set of big vertices v such that m(v;�1 + 2i� 1) = 1.

Then, we set mr(v;�1 + 2i) = 1 for every bad v 2 B� � v2 and

mu(v;�1+2i) = 1 for every bad u 2 S��v2 where v 2 B� is chosen so

that defu(v) > m�1+2i�1
u (v) and there is no u 2 W1 with (v; u) 2M 0

i .

Let W2 be the set of big vertices v such that m(v;�1 + 2i) = 1. (We

illustrate the marking when nb = ns = 1 in �gure 6.5.)

2.1.5 If nb and ns are both even and k1 <
1

16
� (in which case m = 0), we

do as in 2.1.3, with the following addition: if s1 is not bad, we add it

to the bad vertices, otherwise we add s3.

2.1.6 If nb and ns are both even and k1 >
1

16
� (in which case m = 1

2
�2,

we �rst pick a least recently chosen bad vertices v1 2 B�
1
[ S�

2
and

v2 2 B�
2
[S�

1
. We set mr(v;�1+2i� 1) = 1 for every bad v 2 B�� v1

and we set mu(v;�1 + 2i � 1) = 1 for every bad u 2 S� � v1 where

v 2 B� is chosen so that defu(v) > m�1+2i�2
u (v). Let W1 be the set of

vertices such that m(v;�1 + 2i� 1) = 1.

Then, we set mr(v;�1 +2i) = 1 for every bad v 2 B�� v2 and we set

mu(v;�1+2i) = 1 for every bad u 2 S��v2 where v 2 B� is chosen so

that defu(v) > m�1+2i�1
u (v) and there is no u 2 W1 with (v; u) 2M 0

i .

Let W2 be the set of vertices such that m(v;�1 + 2i) = 1.
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sb

b

b s

s

1 1

1 1

1 1

(a)

(b)

(c)

Figure 6.5: 2.1.4: M 0
i (a) and the marking in M 00

2i�1 (b) and M
00
2i (c)

In all iterations i > 1

2
c, we de�ne the marking exactly as in 2.1.1 or 2.1.2,

except if nb = nS = 1 in which case we just keep doing 2.1.4.

Step 2.1: The marking when jB�j is even
We de�ne the marking in one of several ways, depending on the number

of bad vertices. If the total number of bad vertices, nb + ns, is even, then

m = 0, all initial matchings have an equal number of edges in B�
1
and B�

2

and we de�ne the marking in iteration i � 1

2
c as follows:

2.1.1 If nb + ns is even, we set mr(v;�1 + 2i � 1) = 1 for every bad big

v and, for every bad u 2 S�, we choose a di�erent, unmarked and

non-bad vertex w 2 B� such that defu(v) > m�1+2i�2
u (v) and we set

mu(w;�1 + 2i � 1) = 1. Let W1 = fv 2 B� : m(v;�1 + 2i � 1) = 1.

(Part 1)

Then, we setmr(v;�1+2i) = 1 for every bad v 2 B� and, for every bad
u 2 S�, we choose a di�erent, unmarked and non-bad w 2 B� such that
defu(w) > m�1+2i�1

u (w) and there is no w0 2 W1 with (w;w0) 2 M 0
i

and we setmu(w;�1+2i) = 1. LetW2 = fv 2 B� : m(v;�1+2i�1) =
1. (Part 2) (We illustrate the marking when nb = ns = 1 in �gure 6.5.)

We put no marks in iterations i = 1

2
c+ 1; :::; 1

2
�2.
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s

s

s

1

1

1

(a)

(b)

(c)

v2

2
s

s

s
2

2

1v
b

b

1

1

Figure 6.6: 2.1.1: M 0
i (a) and the marking in M 00

2i�1 (b) and M 00
2i (c)

If nb + ns is odd and at least 5, then m = 0 and we de�ne the marking in

iteration i � 1

2
c as follows:

2.1.2 We pick the two least recently chosen two bad vertices v1; v2 inB
�
2
[S�

1

if nS is even, or in B�
1
[ S�

2
if nS is odd. We then de�ne the marking

as in 2.1.1 except that we do not use v1 in the �rst part, and v2 in

the second part.

We put no marks in iterations i = 1

2
c+ 1; :::; 1

2
�2.

If nb + ns = 1 or nb + ns = 3, we need to be more careful in de�ning our

marking. We consider �rst the cases when ns is even and k1 <
1

16
�, or ns

is odd and k1 > � 1

16
�. In both cases we de�ned m = 0, and so all initial

matchings have the same number of edges in B�
1
and B�

2
. If ns is even and

k1 <
1

16
�, we de�ne the marking in iteration i � 1

2
c as follows:

2.2.3 We do as in 2.1.1 and, in addition, we set mu(v;�1 + 2i� 1) = 1 in

Part 1, for some non-bad vertex v 2 B�
1
and for u = r or for non-bad

u 2 S�
2
such that defu(v) > m�1+2i�2

u (v), and we setmu(v;�1+2i) = 1

in Part 2, for some non-bad v 2 B�
1
and for u = r or for non-bad u 2 S�

such that defu(v) > m�1+2i�2
u (v).
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We put no marks in iterations i = 1

2
c+1; :::; 1

2
�2. We can choose a vertex v

as desired, in parts 1 and 2, because there is at least 1

8
� available de�ciency

in B�
1
that is not on bad big vertices or induced by bad small vertices, which

follows from (def(B�
2
)�m�1(B�

2
))� (def(B�

1
)�m�1(B�

1
)) = 2k1 <

1

8
� and

the fact that there is more than 1

4
�� � more bad available de�ciency in B�

2

and B�
1
. We omit the case when ns is odd and k1 > � 1

16
� as the marking

is symmetric to 2.2.3.

If nb+ns = 3, ns is even and k1 >
1

16
�, then m = 1

3
c and the �rst 1

3
c initial

matchings have one more edge in B�
1
than in B�

2
. The two possible cases are

when b1; b2; b3 are bad and when s2; s1; b1 are bad. We omit the second case

as it is similar to the �rst, for which we de�ne the marking as follows:

2.2.4 If i � 1

3
c, we set mr(b1;�1 + 2i � 1) = mr(b3;�1 + 2i � 1) = 1 and

let W1 = fb1; b3g. Then we set mr(b1;�1 + 2i) = mr(b2;�1 + 2i) = 1

and let W2 = fb1; b2g.
If 1

3
c+1 � i � 1

2
c, we set mr(b2;�1+2i�1) = mr(b3;�1+2i�1) = 1

and letW1 = fb2; b3g. Then we setmr(b2;�1+2i) = mr(b3;�1+2i) =

1 and let W2 = fb2; b3g.

We put no marks in iterations i = 1

2
c+1; :::; 1

2
�2. Note that each bad vertex

is marked 2

3
c � 1

2
�2 times. If nb + ns = 3, ns is odd and k1 < � 1

16
�, then

m = �1

3
c and the �rst 1

3
c initial matchings have one more edge in B�

2
than

in B�
1
. The two possible cases are when b1; b2; b3 are bad and when s2; s1; b1

are bad. We omit the de�nition of the marking in this case as it symmetric

to 2.2.4.

If nb = 1 and k1 >
1

16
� then m = 1

2
�2, all initial matchings have one more

edge in B�
1
than in B�

2
and we de�ne the marking in iteration i � 1

2
�2 as

follows:

2.1.2 We setmr(b1;�1+2i�1) = mu(v;�1+2i�1) = 1 for some v 2 B�
2
�b1

with defu(v) > m�1+2i�2
u (v) where u = r or u = s1. Let W1 = fb1; vg.

Note that m(v;�1 + 2i) = 0 for all v 2 B�. We can choose v with available

de�ciency because def(B�
2
� b1)�m�1(B�

2
� b1) > k1 >

1

16
�, which follows

from target conditions 6.13 and 6.14. If s1 is bad and k1 < � 1

16
�, then

m = �1

2
�2 and all �2 initial matchings have one more edge in B�

2
than in

B�
1
and we de�ne the marking as follows:
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2.1.3 We setms1(v1;�1+2i�1) = mu(v2;�1+2i�1) = 1 for some di�erent

vertices v1; v2 2 B�
1
with defs1(v1) > m�1+2i�2

s1
(v1) and defu(v2) >

m�1+2i�2
u (v2) where u = r or u = s3.

Again, m(v;�1 + 2i) = 0 for all v 2 B�. We can choose v1 because

defs1(B
�
1
) � m�1(B�

1
) > 1

4
� � �. We can choose v2 because there is at

least k1 >
1

16
� available de�ciency in B�

1
that is not induced by s1, which

follows from target conditions 6.13 and 6.15.

Step 2.2: constructing M�1+2i�1 and M�1+2i

2.2.1 We remove fromM 0
i all edges incident to vertices v such thatm(v;�1+

2i�1) = 1, and we add them toM 00
�1+2i

. Since none of these edges be-

long to (W1;W2), they miss all vertices v such that m(v;�1+2i�1) =

1. Let W = W1 +W2 + fv 2 B� : (u; v) 2 M 0
i and v 2 W2g and note

that jW j � 21.

2.2.2 We now constructM 00
2i�1 fromM 0

i so that no vertex inB
��B is missed

and unmarked. Let U be the set of unmarked vertices in B��B missed

by M 0
i . We construct a matching M in (F �W )\ (B�

1
; B�

2
)�M 00

�1+1
�

::: �M 00
�1+2i�2 such that every v 2 U is an endpoint of some edge in

M . (We esily obtain this matching because the neighborhood of every

v 2 B� � B is at least 1

3

p
� > jB� � Bj.) We remove from M 0

i edges

incident to M and we add them to M 00
�1+2i

. We remove additional

edges not incident to vertices in W2 from M 0
i \B�

1
or M 0

i \B�
2
and we

add them to M 00
�1+2i

so jM 00
�1+2i

\ B�
1
j = jM 00

�1+2i
\ B�

2
j < �1=5. We

then set M 00
�1+2i�1 =M 0

i [M .

2.2.3 We now �nish the construction of M 00
�1+2i

, again so that no vertex

in B� � B is missed and unmarked. Let U be the set of unmarked

vertices in B��B missed by M 00
�1+2i

. Let X be the set of big vertices

that are endpoints of edges in M 00
�1+2i

. We construct a matching M

in (F �W2�X)\ (B�
1
; B�

2
)�M 00

�1+1
� :::�M 00

�1+2i�1 such that every

v 2 U is an endpoint of some edge in M . We add M to the �nal

M 00
�1+2i

.

6.3.3 The patching

We now attempt to construct the matchings M�1+1
; :::;M�1+�2

. For i =

1; :::;�2, we obtain M�1+i by augmenting M 00
�1+i

in H = F �M�1+1
� :::�
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M�1+i�1 with a disjoint matching hitting all unmarked vertices in B missed

by M 00
�1+i

as follows:

3. Let U1 and U2 be the sets of unmarked vertices missed by M 00
�1+i

in B1

and B2, respectively. We attempt to �nd a perfect matching M in the

bipartite subgraph de�ned by the bipartition (U1; U2) and with edge

set E(H) \E(U1; U2).

If we successfully obtain such a matchingM , we add its edges toM 00
�1+i

to obtain M�1+i.

If we fail to obtain M , we �nd the sets X 0 � U1 and Y 0 = NH
U2
(X 0)

such that jX 0j > jY 0j and we set X 00 = U2 � Y 0 and Y 00 = U1 �X 0 =
NH
U1
(X 00). Let Y = B2�X 00 andX = fv 2 X 0 : dHB2

(v) > 1

2
���19=20g.

Claim 24 (X;Y ) forms a fail pair in (B1; B2).

Proof: The claim is true if the following three properties hold:

i. jY j < jXj+�19=20.

Proof: jY j � jY 0j+ 2jM 00
�1+i

j+m(B2;�1 + i) � jX 0j + 1

2
�9=10 + 2 <

jXj + �9=10. The last inequality follows from X 0 � X � L where

L = fv 2 B : def(v) > 2
p
�g is of cardinality 2

p
�: since if v 2 B1�L

then dHB2
(v) > dFB2

(v) � i > 1

2
� � 3�9=10 � 1

2
�19=20 < 1

2
� � �19=20,

and if v 2 B2 � L, dHB1
(v) > 1

2
���19=20.

ii. For all v in X: dY (v) >
1

2
���19=20.

Proof: dY (v) � dHY (v) = dHB2
(v) > 1

2
���19=20 by de�nition of X.

iii. jB1 �Xj > 1

4
���19=20.

Proof: Since jX 00j > jY 00j, X 00 is not empty. If v 2 X 00 then dHX(v) = 0.

It follwos that jB1 �Xj > dHB1
(v) > dHB�

1

(v)��3=5 > 1

4
���19=20.

2



136 CHAPTER 6. THE SMALLEST DEFICIENCY CASE



Appendix A

Near-bipartite graphs

137



138 APPENDIX A. NEAR-BIPARTITE GRAPHS

For completeness, we include the proof by Reed [Ree95] that �0(G) =

d��(G)e for any near-bipartite graph G. Actually, he shows that we can

determine whether G has an overfull subgraph using just one application of

the max. 
ow - min.cut algorithm. With a bit more work, we can obtain

an edge coloring of G using d��(G)e colors.
Consider a graph G and a vertex v of G such that G � v is bipartite with

bipartition (A;B). Let k be any integer greater than or equal to �. We

present an algorithm for determining if G has an edge coloring using k

matchings. If the algorithm does not return a k edge coloring of G, it

returns a subgraph H of G such that jE(H)j > kd jHj�1
2

e. This shows that
��(G) > k.

The algorithm relies on the following

Key Observation: Let G be a near-bipartite graph. Let v be a vertex of

G such that G � v is bipartite with bipartition (A;B). Let k � �(G) be

an integer. Let l = dA(v). Then, there is an k edge coloring of G if and

only if there exist a partition of G into two subgraphs G1 and G2 such that

�(G1) = l;�(G2) � k � l, and G1 contains all the edges between v and A.

Proof: If G has a edge coloring using k matchings then de�ning G1 to

be the set of matchings containing an edge between v and A, and setting

G2 = G�G1 yields the desired partition.

Conversely, note that for any such partition into G1 and G2, both G1 and

G2 are bipartite. Thus, G1 has an edge coloring using l = �(G1) colors and

G2 has an edge coloring using �(H2) � k� l matchings. So, G has an edge

coloring using k matchings. 2

This key observation implies that rather than trying to �nd a k edge coloring

of G directly, we can simply test for the existence of an appropriate partition

of E(G) into two subgraphs G1 and G2. Actually, we will try to construct

G1 � v. So, we let l be the number of edges between x and A. We let m be

the number of edges between x and B. By symmetry, we can assume that

l � m. We attempt to �nd a subgraph F of G� v satisfying:

(1) 8w 2 A; dG�v(w) � (k � l) � dF (w) � l � �(v; w), and

(2) 8w 2 B; dG(w)� (k � l) � dF (w) � l.
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To determine if such a subgraph exists, we solve a maximum 
ow problem

on a network G� obtained from G� v as follows:

(i) directing all edges from A to B,

(ii) adding a new node dummy, an arc from dummy to each node of B,

and an arc to dummy from each node of A,

(iii) giving a capacity of one to each arc corresponding to an edge of G,

(iv) giving a capacity of k � dG(w) to the arc between w and dummy,

(v) setting the demand at each node of B to l, and

(vi) setting the demand at each node w of A to �(l � �(v; w)), and

(vii) setting the demand at dummy to l(jAj � jBj � 1).

Now, if the desired 
ow exists then an integer valued 
ow exists and can

be found in O(jE(G)jV (G)jlog(jV (G)j)) time using standard network 
ow

techniques (see [LP86]). The edges of G with 
ow one clearly yield the

desired F and hence the partition H1 and H2.

If the desired 
ow does not exist then there is a set S � V (G�) such thatP
v2S demand(v) �

P
uv2E(G�);v2S;u2V�S capacity(uv) > 0. We show now

how to convert this cut into the desired overfull subgraph.

Case 1: dummy 62 S

Let A0 = A \ S;B0 = B \ S. We have:

ljB0j�ljA0j+Pa2A0 �(v; a)�
P

b2B0(k�dG(b))�
P

a2A0

P
b 2 B0�(a; b) > 0.

or equivalently with H the subgraph induced by S + v:

jE(H)j � kjB0j+ l(jB0j � jA0j) > 0 (A.1)

Now, clearly jE(H)j � �jB0j + l � kjB0j + l so jB0j � jA0j. On the other

hand, jE(H)j � �jA0j+ (�� l) � kjA0j+ (k � l). So by A.1, we must have

jB0j � jA0j. So jB0j = jA0j, and we obtain: jE(H)j > kjB0j = k(jHj�1)
2

. Now,

H is the desired overfull subgraph.

Case 2: dummy 2 S
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Let A0 = A � S;B0 = B � S; S0 = A0 [ B0. We know that the sum of the

demands in S0 added to the capacity of the arcs from S0 to S is negative.

Thus,

ljB0j � ljA0j+
X
a2A0

�(v; a) +
X
a2A0

(k � dG(a)) +
X
a2A0

X
b2B�B0

�(a; b) < 0

or equivalently with H the subgraph induced by S0:

jE(H)j > kjA0j+ l(jB0j � jA0j)

But this is impossible as jE(H)j � kjA0j, jE(H)j � kjB0j, and l � k.

Thus, we see that the chromatic index of G is indeed the roundup of its

fractional chromatic index. We also know that the chromatic index of G

is at most 3�

2
because we can delete �

2
of the edges from v and obtain

a bipartite graph. Thus, applying the procedure described above �

2
times

allows us to determine the chromatic index of G. The algorithm also returns

two bipartite graphs H1 and H2 such that �0(G) = �(H1)+�(H2). We can

use a standard algorithm[LP86] which runs in O(�2jE(G)j) time to color

each of these graphs and thereby obtain a coloring of G. Actually, by using

binary search we can determine �0(G) using at most log(�) calls to the above

procedure. Thus, we obtain an O((�3+�2(log�)(logjV (G)j))jV (G)j2) time

algorithm for edge coloring nearly bipartite graphs of maximum degree �.
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