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Foreword

Over the past three years | have been working on probabihstidels of multivariate attributes
and relations. My work suggests a probabilistic framewaré a general modeling approach to
complex and evolving networks, which is based on the foucepts of mixed membership, motifs,
dynamics and integration. In this thesis, | present suchmadmwork and discuss its properties. In
particular, the main goal of the research is to establistesisential elements of formal models of
complexity that reconcile the global properties of a systéth local phenomena of interest, in a

generative fashion.

A solution to the global/local trade-off is to express coexply through hierarchical mixtures
of simple patterns, i.e., motifs, that evolve over time. @ter global behavior emerges from the
combination of local interaction patterns and their dyre@snil discuss the extent to which this
novel framework incorporates, generalizes, and exterfier @robabilistic approaches present in

the literature, and argue that it provides the foundatidresstatistical theory of random graphs.

A major part of the effort is devoted to the analysis of maaglissues related to the four
essential aspects listed above, in the context of appicatio social and biological networks. |
also investigate theoretical and computational issues asithe geometrical intuition of the latent
allocation task—an important inference objective sharngthle various models encompassed by

this framework.
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Chapter 1

Introduction

This thesis provides a methodological framework for théstieal analysis of complex graphs and
dynamic networks. In it, | develop probabilistic algorithms that generateglge and integrate

a heterogeneous collection of graphs, | study the stalstimodels these algorithms implicitly
specify, and | develop strategies for estimating the setuahtjties on which they depend in the

context of applications to social and biological networks.

1.1 Complex Data

My investigations concern a population of objects of studfjects can be divided into few dif-

ferent categories, or types, e.g., gene, proteins, antegiadtein complexes; or documents, words
and references; or agents, tasks, and resources. Obsasvatinsist of measurements taken on
individual objects, i.e., attributes, and on pairs of otgece., relations. Both attributes and rela-

tions are typically multivariate, e.g., the expression géae under many experimental conditions,

1The termsgraph and network without qualifications, are synonyms for the purposes &f thesis because
throughout | represent networks in terms of graphs.
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1.1. COMPLEX DATA E.M. AIROLDI

or the set of words contained in a document. Measurementslaga over time, and distributed

across heterogeneous databases.

At any given epoch, each object is represented as a node apa.gRelations are represented
as edges in the graph, among nodes (i.e., objects) of the tyg@®ewhereas attributes are rep-
resented as edges in the graphs, among nodes of differeag. tffrom a statistical perspective,
it is sometimes convenient to consider tia@dom matricegorresponding to the various graphs
at hand; that is, the adjacency matrices whose elementsala sandom variables that encode

edge-weights. This is the perspective | favor throughastttiesis.

Example 1. Figure 1.1shows a collection of heterogeneous observations that weus&to gain
insight into the biology, say, of yeast. The collection lnge four different object types: proteins,
genes, experimental conditions, and functional annotatioRelations are defined as measure-
ments on pairs of objects of the same type: i.e., the matRéeGG, CC, and AA. Attributes
are defined as measurements on pairs of objects of diffeypest e.g., entries of the matrix GC

measure the expression of genes under the various expeahsenditions.

Such an integrated view of the data available for a givemsifie problems invites us to think
about the semantics and the substance of the relations aofpect types in the context of the
application at hand, independently of whether or not oleg@rus about them are available. This

process is beneficial as it is often suggestive of new relehrections.

Example 2. Proteins are composed of one or more subunits. In turn, eabhrst is composed
of one or more linear polypeptide molecules, which are pelgof twenty different amino acids,
i.e., residues. Amino acids can be modified once they haveibeerperated into a polypeptide
and the presence of these modifications may have a strongnc#uon the functionality of the
final protein molecule. Such modifications are called postdlational Alberts et al, 2002. The
matrix PG in Figurel.1l encodes the mapping between proteins and gene tags aftestdteon—

the matrix GG encodes correlations between microarraysesgion profiles of gene pairs. Should

14
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E.M. AIROLDI

Proteins Genes Exp. Conditions Functional Annotations
oo -+O0 OO0 OO O 00O o
pp PG PC PA
GG GC GA
CC CA
AA

Figure 1.1: An example of complex data. The figure shows agmated (but partial) view of

the observations about a biological system. The types @otbjpre proteins, genes, experimental
conditions, and functional annotations. The various regies are suggestive of the matrices that
encode the edge weights of the networks (unipartite andtitgeamong pairs of nodes of the

corresponding types.

post-translational modifications be negligible, we shaade a one-to-one mapping between genes

and proteins. Figurel.1 suggests a way to get at such a mapping, which provides amattee

to what has been proposed in the literatufiesqr et al, 2005. That is, we could estimate the

15



1.1. COMPLEX DATA E.M. AIROLDI

mapping between proteins and gene tags by looking at thastensy of the interactions between
stable protein complexes underlying the protein-to-grotetwork encoded in the matrix PP and

the interactions underlying the gene-to-gene network coded in the matrix GG.

Other instances of complex data arise in diverse applicatguch as artificial intelligence
(Carley, 2002, biology (Troyanskaya et gl2003 Airoldi and Xing, 2006h, information retrieval
(Barnard et al.2003, natural language processir@r(ffiths et al, 2005 Kontorovich et al.2008),

and statistical network analysi&ifoldi et al., 20073.

Example 3. The analysis of large collections of scientific publicasanvolves a different set
of object types: authors, documents, words and referenteatéd as documents’ attributes).
Nonetheless, the the data can be represented with a singtanfsmatrices, e.g., documents-to-
words, documents-to-references, and authors-to-authDespending on the availability of data
and on the scientific questions of interest, researchernsajlg focus on one, or at most a few, of

such matricesErosheva et a).2004 Airoldi et al., 2006¢.

Example 4. The analysis of a dynamic communication network involvgscobypes such as em-
ployees, emails and words. The data can be represented wéhat matrices very similar to those
in Example3. If the analysis takes place within a corporate environmerd may involve more
object types such as tasks, resources. The matrices ingalvese new types, e.g., employees-to-
tasks, employees-to-resources, tasks-to-tasks, ansttasksources, would enrich our represen-
tation of the inner workings of the company, and allow to adiffe@rent, possibly more interesting,

set of questionarley, 2002.

1.1.1 Abstract Representations

From a modeling perspective, it is useful to complement ikeugsion above with an overview

of the data, and how they are represented. Consider a ¢ofiagftrelationsmeasured on pairs of

16



CHAPTER 1. INTRODUCTION E.M. AIROLDI

nodes, and a collection afttributesmeasured on the same set of nodes. Such collections can be
represented by a unipartite graph and by a bipartite gragspectively. | choose notation that is
suggestive of the elements of trendom matriceshat encode the edge weights in these graphs,
rather than the more standard notation based on verticgesednd a map from edges to edge
weights. A matrix representation of a such pair of uniparéind bipartite graphs is given, for
example, by the matrices PP and PG in Figute Relations correspond to edges in the unipartite
graph PP, and connect paris of objects of the same type peageins—the only type of objects

in PP. Attributes correspond to edges in the bipartite ga@h and connect pairs of objects of
different types, e.g., proteins and gene-tags. The setaihable values of relation and attribute

measurements is application specific.

For example, a collection of relations is denoted by
Gl:R:{ GT:rzl,...,R},

where the index runs overR replicates. Each unipartite graph = (Y,., V), is defined by a set
of edge weightsY,, over a fixed set of nodes/, e.g., the proteins in PP. The random quantities
that encode the edge weights between pairs of ngdes) in N’ ® A are denoted by, (n, m),
and take values in a separable, metric sgaceefer toY, as a random matrix whenevey(n, m)

takes values ifR for all edges irf. A collection of attributes is denoted by
Hl:R:{ HTZ’I“:]_,...,R},

where the index runs overR replicates. Each bipartite graph. = (X, V1.»), is defined by a set

of edge weightsX,, over two fixed sets of nodes of different typas, and\>, e.g., the proteins

2Always a separable (i.e., contains a countable, densetjuhstic space.
3tis possible to introduce the set of edges, and défjrees a mapping from edges to edge weights—an unnecessary
complication at this stage.

17



1.2. GOALS OF THE ANALYSIS E.M. AIROLDI

and the gene-tags in PA. The random quantities that ence&dedfe weights between pairs of
heterogeneous nodés, m) in A} ® N, are denoted by, (n, m), and take values in a separable,
metric space. When dealing with both unipartite and bimdraphs for which\V' = N, e.qg.,
that is the case for PP and PA, it is sometimes convenientriotdéhe set of attributes iN; by a
collection of node-specific random quantiti€s, (m), whereN is the number of nodes i, and
m is one of thel/ distinct attributes in\,—the replicate index has been moved to the exponent

for clarity.

1.2 Goals of the Analysis

| distinguish two main types of analysetescriptiveversugpredictive In a descriptive analysis the
goal is to find a model that captures the variability of theastations with high probability—in
terms of the estimates for the underlying constants, anerind of the inferred distributions over
the latent quantities involved. In a predictive analysis ¢foal is to find a model that is good at
predicting a specific set of attributes or relations fromthaoset of attributes or relations. The
ability of such a model in replicating the variability of tiservations may be sacrificed in this
case, since estimates and distributions assign high pitdpab the data do not necessarily lead
to good predictions. The divergence of objectives betwesstiptive and predictive analyses
is analogous to that between the probabilistic versiongiotipal component analysiddlliffe,
1986 Tipping and Bishop1999 and Fisher’s linear discriminant analysisigher 1936 1938
Ripley, 1996.

The models | consider in this thesis are slightly more compléey posit a hierarchy of prob-
abilisticassumptionsn the way observablegy, X), and non-observables, related to objects of
different types are generated, and depend upon and inteitaaine another. Given these assump-

tions, the models summarize the complexity of the obsermatin terms of a set datent patterns

18



CHAPTER 1. INTRODUCTION E.M. AIROLDI

Patterns are defined in terms of a set of parame&rsyhich are also non-observable but which
are semantically distinct frorB. Small sets of underlying constants, e.4.and 5, sit at the top
of the hierarchy, constrain the space of non-observabletiigs, (=, ©), and ultimately constrain

the likelihood of the observations,
(Y, X| A, B) :/f(Y,X, =,0|A, B) P(dZ,dO). (1.1)

Likely patterns,©, and likely values of other non-observable quantiti&sare searched for, and
found, in the data. They may be used for organizing and sfympdj complex information, deter-
mining object similarity, detecting outliers, and makinggictions about attributes of, and rela-

tions among, the objects involved.

The analyses supported by these models boil down to a subfeirdundamental tasks: (1)
allocation, that is, the search for a likely mapping of olgeio patterns; (2) estimation, that is,
the search for likely values of the underlying constantsjr{erence, that is, the search for likely
values of patterns and other non-observables; (4) predidthat is, the search for likely values of
attributes and relations that need be predicted. For exgrgdting hypothesis about the existence
of a specific patterrf), € ©, can be carried out by building, e.g., a plug-in confidengdmaﬁ, =
R(C:)) for ©, and checking whethef, belongs to it. The tasks relevant to a specific analysis can
be carried out simultaneously, since the relevant quastitie., observables, non-observables, and

underlying constants, are tied together in a hierarchyababilistic assumptions by the generative

algorithm.

Example 5. Consider the output of a battery of microarray experimemtsle same set of genes,
N, under different?, experimental conditions, in yeagrpgan et al, 2006. Proteins are uniquely
identified by genes in the microarray experiments. Withategreng into biological details, | wish

to analyze probabilities of interactions between pairs mitgins, which are induced from cor-

relations found in the gene expression experimeBtsa(dwaj and Ly20095. Information about

19



1.2. GOALS OF THE ANALYSIS E.M. AIROLDI

this unique, symmetric relation can be stored in a collettid R square tables, one for each
experimental condition, whose entries are random varisbléh support0, 1] that encode the
probability of an interaction between corresponding paifgroteins. The analysis of the set of
protein-protein interactions aims primarily at identifig stable protein complexes, i.e., clusters of
proteins, since they have been shown to be important foyoagrout cellular processes. Further,
the number of protein complexes that are needed to explaicalection of protein interactions
needs be identified. Lastly, the probabilities accordingvtoch pairs of such protein complexes

interact with one another need be estimated.

An aspect of the methodology that is relevant to the disoandsere is the presence in the pro-
posed models of non-observablgswhich encodesemantic elements of interest in a specific ap-
plication, e.g., the stable protein complexes of Exanpl&his implies that such non-observables
are potentially measurable, and, typically, few measurgsn@bout them are available—or can be
made available at a cost. A special attention is given in tladyaes to such latent quantities, and to
other attributes or relations that are measured with egrgr, experimental evidence or human an-
notators disagree on their values, on a small portion of bjeats of study, e.g., they are expensive
to obtain. | will often refer to partially available measorents about such attributes, relations and
non-observables dsbels The portion oflabeled dataavailable is of interest for the estimation of
the prediction error, and an explicit error model for theellab often desirable. Further, depending
on the amount of labeled data available, different stratefgir initializing the inferencéfor fitting
the underlying constants, and for inferring the distribos on the latent quantities given the data

may be adopted.

Example 6. Consider the set of hand-curated protein interactions piat! by the Munich Institute
for Protein SequencingMewes et al.2004. A single set of interactions between proteins has

been experimentally verified. Information about this ueigsymmetric relation can be stored in

4Differences that have important consequences on the netalglity of the estimates and of the inferred distribu-
tions on the latent quantities.

20



CHAPTER 1. INTRODUCTION E.M. AIROLDI

one square table, whose entries are random variables wippati {0, 1} that encode presence or

absence of an interaction between corresponding pairs atiprs.

1.3 Basic Modeling Elements

There are few central modeling ideas that inform the prdisdilcialgorithms presented in the fol-
lowing chapters. These ideas generalize model specifiatitat were used to gain insight into
fundamental problems of computational biology, i.e.,aemalysis of gene expressiokioldi et al.,
20061 and protein interaction networkaigoldi et al., 20069, and into the analyses of large col-
lections of scientific publication®froldi et al., 2006¢ and of dynamic communication networks
(Airoldi and Faloutsos2004 Airoldi et al., 20059. They relate to the following four aspects of
complex data: (1) the presence of a hierarchical structutesi likelihood, which includes both ob-
servable and non-observable random quantities, (2) thedmembership assumption, according
to which objects may participate in multiple latent patteto different degrees, (3) the temporal
dimension, and (4) the existence of multiple data types canditional dependencies among their

distributions, in an integrated system.

These aspects are best illustrated below by discussinghteygeneralize popular data analysis
models such as probabilistic principal component analy&CA), factor analysis (FA), and state-

space models (SSM).

1.3.1 Hierarchy and Latent Patterns

Let us consider a collection of attribute, = (X, N.»), and let us adopt the point of view of

multivariate attribute measurements,y, on theNV objects inV; about theM objects in\;.

Example 7. The data generating process faf underlying factor analysis is instantiated by a

21



1.3. BASIC MODELING ELEMENTS E.M. AIROLDI

probabilistic algorithm,A1 : (N, K, A, ¥) — RM,

1. For each object ¢ \;

1.1. Sample the latent factors, ~ Normal x (0,1)
1.2. Sample the erraf,, ~ Normal p; (0, V)

1.3. Define the multivariate attributé, = A<5n + €,

where K is typically referred to as the number of (scalar) factassis a deterministic matrix of
factor loadings, andl is an unconstrained variance-covariance matfriXhe algorithm suggests
a hierarchical decomposition of the joint probability disution of the attributesX = 7.5, and
the latent factors® = (51;]\;, €1.n), given a set of underlying constantd, = (A, V); that is,
the integrand in Equatiori.2 By integrating the latent variables out of the joint we abtthe

likelihood of the observations,
(X14) = [ 7(O14) £(X18,4) de, L.2)
where f; and f, are K- and M-dimensional Gaussian densities, respectively.

In FA the latent factors are an example fdtterns the way | intend them; they are non-
observable random quantities, defined in terms of a set ddrsparameters. Depending on the
model, patterns may specify other mathematical objectis aagrobability distributions, smooth

curves, and surfaces.

Confusion may arise about the notation for pattefisand underlying constantsi, in those
cases where latent patterns are defined to be deterministach case the patterns would occupy

a spot at the top of the hierarchy, similarly to the undedyéonstants, thus leaving us the choice to

SNote that PPCA differs from FA only in that the variance-adaace matrix of the errors;. v, is homoschedastic,
that is, ¥ = 2] with ¢ scalar.
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CHAPTER 1. INTRODUCTION E.M. AIROLDI

include® in A or not8 | shall clarify the use of notation whenever the occasiomires it. Further,

| note that the latent patterns), and other non-observable random quantities with a semanti
interpretation,=, that appear in the general formulation of SectioB are to be interpreted as
part of ahierarchical likelihoodsince they typically model substantive elements of intarethe

application at hand.

Example 8. A simple mixture of spherical Gaussians féry can be specified by the following

probabilistic algorithm,A2 : (M., K, ji1.x, Y1.x) — RM

1. For each object € NV}

1.1. Sample the latent component indicatpr Uniform (1,..., K)

1.2. Sample the multivariate attribuig ~ Normal s (fi;,, %),

where K is the number of mixture componen(ts;.x, 1. ) are the corresponding mean vectors
and variance-covariance matrices, ahljy = 077 with o scalar. The likelihood can be written as
in Equationl.2 where the attributes,.y are denoted by, the latent component indicatois v

by ©, and the underlying constantg;.x, >1.x) by A. In this case wherg; and f, are discrete

uniform andM -dimensional normal densities, respectively.

In the example above, the underlying constamtsy, 1. ) qualify as patterns. It is conceiv-
able to put probabilistic constraints on such quantities., ®y assuming that they are generated
from some distributions. By doing so, | would introduce a newre parsimonious set of under-
lying constantsA, and promoté = (/i1.x, X1.x ) t0o be the non-observable, probabilistic patterns

of the general formulation of Sectidn2

81t could be argued, for instance, that the matrix of factadings,A, should be considered a part of the patterns
underlying a set of attribute measuremeri{s,as much as the factor®, themselves. However, in the hierarchical
formulation | consider here, it is not difficult to imaginesthise of a probabilistic model for to endow the loadings
with some desirable propertjifoldi and Lin, 20086.
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1.3. BASIC MODELING ELEMENTS E.M. AIROLDI

Thus a generative algorithm and the corresponding hieicaiclikelinood specify exactly how
the various quantities of interest interact, in a probabdifashion, and encode structural hypoth-

esis of the scientist.

1.3.2 Mixed Membership

The idea ofmixed membershipxtends that of a mixture. Stated briefly, this assumptiasitpo

that the collection of measurements involving an objeet, both relations and attributes, may
be ultimately explained in terms of multiple patterns tdefiént degrees. A recurring element of
my models is that such representations of latent patteeassociated with the components of
a mixture, as in the example above. In this sense, both neixtwdels and mixed-membership
models aim at describing the aggregate variability of a eteasurements in terms of a small set
of latent patterns. There are two major salient differenbewever, between a mixture model and

a mixed membership model.

(i) In a mixture model the membership of objects to pattemsgecified in terms of global
weights. In a mixed-membership model the membership ofotdje patterns is specified in
terms of object-specific weights; these give a low-dimemaioepresentation of the objects

that can be used for, e.g., making predictions about olsjgetific quantities.

(i) Measurements in a mixed membership model can be agsdaordth more than one latent
patterns. The role of sparsity in this context is to impodecmstraints in the estimation of

the mapping between objects and latent patterns—I terne#iamtion thellocation task

For instance, relations or attribute of an employee in ExaMpmay be explained in terms of
the latent patterns associated with more than one sociapgend the interactions between two

individual proteins can be explained by their taking pai imore than one stable protein complex.
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Example8 provides us with another element of the general formulatio®ectionl.2, that is,
the set of non-observables that encodes semantic elenfenterest. For instance, in the appli-
cation to dynamic networks described in Examgler in the application to gene co-expression
networks inAiroldi and Xing (20061, the Gaussian mixture components are suggestive of latent
social groups and latent stable protein complexes, respgct In these specific applications,
the non-observablées, ., encode thesinglemembership to a social group, or to a stable protein
complex—whereas the latent pattefgprovide parametric representations of social groups and

complexes.

Example 9. Going back to the previous example, thescalar components of each multivariate
attribute 7,, are no longer constrained to be sampled from the same latitenm, i.e., from the
same mixture componerifi,, ;). The new algorithmA3, which instantiates the mixed member-

ship of K spherical Gaussians is as follows,

1. For each object € NV}

1.1. For each attributen € N,

1.1.1. Sample the latent component indicatpr Uniform (1,..., K)

1.1.2. Sample the scalar attributg (m) ~ Normal (u;, (m), o;, (m)).

Alternatively, it is possible to illustrate this richer maipg between observables measured on an
object and mixture components entailed by the mixed meimperssumption in terms of a general
form for the likelihood. That is, we can rewrite the likeldtbas an admixture for each univariate

measurement. The mixture likelihood in EquatioBcan be specified as,

(x14) =] [ fielanle. 4 e, (13)
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whereas the admixture likelihood corresponding to Aldormtd3 can be rewritten as,
(x14) =] [ f@1)pw(me.4) de. (L.4)

where f; and f, are Gaussian densities of appropriate dimensionality. eNbat this is also the
case for PPCA, but not for FA—because of possible structude iln PPCA, however, the space
of multivariate attributes is not to the convex cone spanmgthe X' non-observable quantities,
because the factor loadings do not lie in thedimensional simplex—this is the case wjth

which is a probability distribution on th&” latent patterns@;.x.

A final note concerns the mapping between observations axtdmaicomponents. Application-
specific features of the mapping itself are typically of res#, since they impact the latent patterns
found, and the results of the analysis more in general. Ortbeeofeatures often supported by
the data is that such a mapping is sparse; that is, each iaezaneasurement can be ultimately
explained in terms of a few latent patterns (i.e., mixtun@ponents). Further, in many applications
the mapping is skewed; that is, that many univariate measemes can be ultimately explained in
terms of a few patterns, whereas a few univariate measutsroan be explained in terms of many

of them.

Lastly, it is important to recognize that the choice betwakernative specifications (e.g., para-
metric, semi-parametric, or ad-hoc) about the number ofatmservable quantitiedy, in these
models is not a matter of mathematical elegance. Such aelgically has a non-negligible
impact on the substantive findings and their interpretatibarefore it should be motivated and
discussed in terms of the specific scientific problem of ederby the amount of information
available about such non-observable quantities, as wdllyake goals of the analysis (e.g., ex-
ploratory versus conclusive). For examg{@pgan et al(2006 find that the average size of stable

protein complexes is about five proteins. That suggestsxiséeace of a larger number of such
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non-observable complexes, prior to any analysis of a newfsgtoteins,P, than popular semi-

parametric model specifications would entail; thati$|P|) rather tharO(log | P]).

1.3.3 Dynamics and Evolution

Several models of dynamic behavior exist in the literatat@ch can be used to model the evolu-

tion of latent patterns for a finite number of epocBs; ™).

Example 10. A linear, Gaussian state-space model extends the factdysisanodel of Example
7, by linearly evolving the latent factors from one epoch @ tiext. The data generating process

for XT) is as follows,

1. Atepoch =0

1.1. For each object € \;

1.1.1. Sample the latent factaps ~ Normal x (0,1)
1.1.2. Sample the errat” ~ Normal y; (0, V)

1.1.3. Define the multivariate attributé?) = A<5n + é?),
2. Atepochh <t <T

2.1. For each object € \;

2.2.1. Evolve the latent factoﬁgf) = Fgg,(f_l),
2.2.2. Sample the errat ~ Normal y (0, W)

2.2.3. Define the multivariate attribu = Aggﬁf) T+,

whereF'is a(K x K) matrix that encodes the dynamics of the latent factors. Asr&ehe algo-

rithm suggests a hierarchical decomposition of the joirdlqability distribution of the attributes,
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Figure 1.2: Graphical representations of a factor analysidel (left) and of a state-space model
for observations at two consecutive epochs (right). Whitges denote non-observables, whereas
shadowed nodes denote observables.

X1 = #1) and the latent factor®)™7) = (3110 &) given a set of underlying constants,

A = (F, A, ¥) that does not change over tim&he likelihood is then,

(X 4) / 1(6©014) (X010, A) x (1.5)

<Hfo(@(t)|@(t—1),,4) fQ(X(t)‘@(t)’A)) 4007,
t=1

where f; and f, are K- and M-dimensional Gaussian densities, respectively, &g the deter-
ministic transformation in Step 2.2.1. of the data gena@rocess. A graphical representation
of FA and SSM is given in Figurg.1, which highlights the simple connection between the two

models.
In my models, | consider three flavors of dynamics:

(1) a generalized state-space proc&®ckwell and Davis1991; Xing, 20053, possibly non-

linear and non-Gaussian, which provides my models with lg-fpdrametric, tractable dy-

"The dynamic matrixF’ may be easily modeled as time dependent and/or stochastitieaproblem requires
(Airoldi and Faloutsos2004 Airoldi et al., 2005d.
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namics;

(2) a latent birth-death procegsdrr, 1991 Xing, 2005h Airoldi and Xing, 200634 that allows
for a possibly infinite number of patterns (semi-paramgtind generates complex pattern

dynamics; and

(3) a co-evolutionary proces€érley, 199Q 1991 that induces highly non-linear dynamics by

tying together the temporal behaviors of observables anegahservables.

Technical issues arise with the increasing complexity efdiinamical behaviors above.

As an alternative, it is possible to specify temporal pagatirectly, as a part ai=, ©). Such
a modeling strategy allows us to consider a sequences ofwabems about objects as being
expressed as an admixture of complicated patterns, spkoifi@ parametric or non-parametric
fashion, while avoids technical issues that arise when stienation of an explicit dynamics is

considered.

1.3.4 Integration

Integration of the measurements on relations and attsbuelving objects of different types
may, and will, take many forms in the models considered thinout this thesis, and it seems
unnecessary to list them all at this stage. It will sufficeigtidguish two types of integration, one

relates to descriptive versus predictive analyses, andttiex relates to the integration of labels.

Example 11. Consider the following generative process for a set of iret&tG = (Y, \') among
objects inV/, a set of multivariate attributed, = (X, NV, 7) on the same set of objects, and a set

of labelsH, = (Z,N,C).

1. Sample the mixed-membership scores for object§ atcording to
(T1v) ~ f1(7]A)
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2. Sample the latent pattern indicators for object-spec#iations and attributes, indepen-

dently and given their mixed-memberships, according to

(Iy, Ix) ~ fo(I|71N)

3. Sample the observations given object-specific pattezosrding to

(Y, X) ~ f3(Y, X|Ix, Iy,0, A)

4. Sample predictive indicators for the objects’ labelgrirthe corresponding sets of object-

specific pattern indicators that were sampled according to

(Iz) ~ falI|ly, Ix)

5. Sample the labels given the predictive indicators adogyrtb

Z ~ Generalized Linear Model (Z|Iz,A)

where= = (7., Iy, Ix, I7), and the latent pattern® are deterministic. Relevant to the dis-
cussion here is the composition of the relations and atteb(}’, X') as independent sources of
information in Steps 2—3, versus the composition of thel$abh@s conditional source of informa-

tion in Steps 4-5.

In a descriptive analysis, sets of non-observables carreipg to different data sources always
contribute equally to the data generation, and, in turnenlables always inform equally the in-
ference process about the corresponding sets of non-aiidesv This is what happens with the
relations and attributed”, X') in Examplell and with the corresponding latent pattern indicators
for relations and attributedy, Ix). In a predictive analysis, one set of non observables always
contributes to the data generation conditionally on theeslassumed by a second set of observ-
ables, and, in turn, the two sets of observables inform tle@ence process about non-observables
unequally—namely, the information the latter set contelsuo the inference process is used to

describeresidual variability which cannot be explained by information contributed kg fitrmer
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set of observables. This what happens to the laBetsExamplell with the corresponding latent

pattern indicators .

1.4 Overview of the Research

Complexity of the observations is resolved into hierarahimsixtures of simple patterns that evolve
over time, i.e., complex global behavior emerges from thealmoation of local (i.e., object-
specific) interaction patterns and dynamics. This solupi@vides a principled approach to rec-
oncile global properties the system with local phenomeniatefest. Structured models similar
to those shown in FigurB.1 are often referred to as hierarchical models in the stesidtiera-
ture (Kass and Steffeyi 989 Gelman et a].1995. Estimation techniques include empirical Bayes
(Morris, 1983 Carlin and Louis2005 and full Bayesian method#Apsteller and Wallacel964
1984 Airoldi et al., 2006g. The general model formulation | explore in this thesissubes many
probabilistic models present in the literature, provideso# and probabilistic version of many
non-probabilistic algorithms, and most importantly pa®s the essential statistical elements for

the analysis of complex data, random graphs and matricdgjyaramic networks.

In Chapter2, | survey existing algorithms to generate poputgologiesn unipartite graphs. |
then present proper statistical models to generate sudhogips, complete with likelihoods and
estimators for the parameters involved. | conclude by expythe lognormal and cellular graphs.
In Chapter, | describe different ways to search for patterns and mesheaunderlying networks.
In Chapter4, | consider attributes, | describe an extension of the neoemultivariate attributes
and relations, and | describe strategies to integrate aqghta into a large statistical model.
In Chapterb, | describe models of evolution for attributes and relagioRinally, in Chaptes, |
explore a selection of theoretical and computational sassociated with the general formulation

of my models and describe aspects of future research.
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1.4.1 Contributions of this Thesis

This thesis develops statistical methodology for the Bayeanalysis of data that arise in studies
about complex networks and their evolution. The connediietween modeling choices and sub-
stantive issues is kept at the forefront of the discussianthErmore, complexity in the various
models is pursued only to the extent that it responds to némadsare rooted in the data and the
goals of the analysis. Such a focus on the data and their giregoes compatible with the develop-
ment of a general modeling framework for the analysis of dempnd evolving networks thanks
to the central role played by few essential modeling elesieftescribed in Sectioh.3—that can

be used to describe complex dynamic systems in general.

1. In many applications there is an large amount of inforarativailable with a temporal or
sequential dimension. Methods that explicitly accountdgnamics and evolution of the
phenomena under scrutiny are much needed. Modeling agmesavailable to date, for
which solid inference mechanisms are available, includddm Markov models and gener-
alized state-space models. New methodology and modeliategtes are needed that can
account for richer evolutionary patterns of complex setmefsurements, i.e., relational and
non-relational. Furthermore, there is a need for produpneglictions that are based on sev-
eral sources of information, which need be integrated; ia obbabilistic approach to this

end is missing. This thesis develops a modeling framewakrésponds to these needs.

2. The models that can be specified working within the fram&wooposed in this thesis are
extremely diverse and widely applicable. Many scientifiedgts lead to data sets that are
represented as graphs, at some level, e.g., two-mode dattoléipartite graphs, uni-modal
data to graphs where we record relations between pairs ettsbpf the same type, multi-
mode data where we record relations among objects of meiltyples, multi-graphs where

edges encode multivariate variables, and combinationesfethAssumptions and intuitions
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of interest may need be incorporated in application-spenifbdels, but the modularity of
my approach makes thespecialmodeling issues a piece of the puzzle that can be addressed
separately—»by instantiated on of the integration strategf Sectiort.3—on top of a set of

data source-specific models.

3. The proposed framework subsumes several models reqggnfipsed in the machine learn-
ing and applied statistics literature and ties them togethiin a general formulation that
is amenable to theoretical analysis. Therefore the prapivasmework opens new analytical
possibilities by allowing us to address theoretical aspetinterest in terms of the specifica-
tions of the general formulation. This high-level thearatianalysis disregards the nuances
present in application-specific models and focuses on fmedéal technical issues, such as
identifiability, model selection, distribution free te$ts assessing the goodness of fit, the
geometrical understanding of allocation tasks, or the @sgtits of the family of hierarchi-
cal mixed-membership models. Even a limited exploratidrth@se issues would advance
the scientific understanding of the methodology. This agerwill ultimately benefit appli-

cations by providing theoretical insights to support agadion-specific modeling choices.

The grand vision is to establish a mature statistical thedrgraphs and networks that can
bridge theoretical computer science, a largely deterridnilsscipline, and statistical theory. This
can be achieved, for example, by explicitly characterizimgrelation between deterministic and
probabilistic solutions to problems shared by both discgd that involve graphs and networks.
The ultimate goal is that of promoting the role of statidtiBayesian theory in the computing

sciences and its modern applications.

1. This thesis provides solid foundations of a statistibhabtry of mixed-membership and ex-
changeable-edge models of graphs and networks and théutiewo Such foundations are

missing, to the best of my knowledge. This is a goal worth it in its own right.
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2. This thesis promotes the role of Bayesian statisticsartlieoretical computer science and
data mining communities by providing new models and petspescin applications of pri-
mary importance, for example, to biological sequences &aogks, dynamic social net-
works, collections of scholarly publications, knowledgel @orporate networks, and home-
land security. The proposed general framework aims atriogtscientific progress by serv-

ing as a glue for several branches of the literature that@elypaware of one another.

In conclusion, recent trends and events suggest an imnshéhof focus of the research com-
munity at large towards complex interacting dynamic systestong with a rediscovered mindset
that through integration we can finally deliver satisfagteolutions to long-standing real-world
problems, as well as create new applications. This thessepts methodology derived from ap-
plications for applications, and provides insights andarathnding on when we can expect the
methods we employ will work, and why. Specifically, | discussdels and methods that enable
applications to biological databases, collections ofrdie publications, and dynamic social and
corporate networks. Success stories where my methods wgr lanswer real-world problems
provide the background for the discussion. | argue that rfortsfestablish the foundations of a

statistical/computational theory of complex networks #relr evolution.

1.4.2 Limitations

This thesis develops a modeling framework to tackle speafdications. As a consequence topics
and modeling approaches are omitted that | believe are itaupioior the analysis of complex and
evolving networks. | am currently working on an extensionh& modeling framework developed
here that addresses such topics and modeling approachdsoridist of what is missing in this

thesis follows.

e Connections to statistical theory and methodology for tiedyssis of networks that does not
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involve latent variableswWasserman and Fay4994 Wasserman et al2007).

e A fully developed example of how the statistical methodglogveloped in this thesis of-
fers a principled approach to tackle calibration and vdiliateissues that arise in large-scale
agent-based models and simulations of complex syst€artgy, 1990 1991, Banks and Carley
1996 Carley et al. 2006 Shreiber 2006. However, | outline the main points of the argu-

ment in Sectiorb.2

e Connections to random matrix theoriliéthg 2004. However, | devote SectioB.2 to
situate in the context of this thesis some of the recent dpweénts in the field that bear
relevance to statistical network analysis; namely, theherattical analysis of diffusion

(Coifman et al.2005ab; Nadler et al.2005 Lafon and Leg2006.

e Generative models of edge patterns (a.k.a. network matifde identity does not matter,
e.g., sedlilo et al. 2003, as opposed to the generative models of node patterns {deite
tity matters, e.g., see Chap@®rdeveloped in this thesis. At the model level, such an exten-
sion to Bayesian mixed membership models of edge pattetrigied. However, non-trivial
computational issues arise immediately, for example, eneivaluation of the likelihood—
where a (combinatorial) search of all instances of the ezleedge motifs needs be per-

formed, i.e., sub-graph matching.

¢ Models of complex dynamic behavior such as latent birthtfdpeocessedAiroldi and Xing,

200639, in preparation, and duplication-attachment procesa&sf(et al., 2009.

e A complete analysis of the mathematical properties of exghable-edge models of Sec-
tion 2.2 These models represent an important extension of the aopaihdom graph
model of Erdds and Rény{1959 and Gilbert (1959, technically, by involving a layer of
latent variables. Such an analysis is part of my currentarebe@iroldi and Carley 2006
Airoldi and Shalizj 2006.
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Chapter 2

Random Graphs Revisited

Here | survey existing algorithms to generate poptdaologiesn unipartite graphs. Proper statis-
tical models to generate such topologies are then presartegblete with likelihoods. | conclude
with a presentation of novel probabilistic algorithms tangeate lognormal and cellular graph

topologies, along with their analysis.

Introduction and Motivation  In order to shed some light on how the interactions amongaf set
objects of study, e.g., people or proteins, lead to the eemerof observed patterns and properties
of interest, both local and global, e.g., groups and the lswald, several generative algorithms
have been proposed. These algorithms abstract a small ess@ftial features of the objects and
interactions, and try to replicate local or global patteand properties of interest—either exactly
or approximately, either in a deterministic fashion or witigh probability. We consider such
algorithms to be insightful whenever they can replicatedbgervable phenomena of interest, and
the small set of essential features which they are basedsyggests us a possible explanation for

them.
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Example 12. Milgram (1967) provided empirical evidence in support of the so calledlsmarld
hyposthesis. Briefly, Milgram instructed a set of peopke,(sources) in Nebraska, Kansas and
Massachussets to send packets to any one of two specifidimaw (i.e., targets) in Massachus-
sets. The targets were described approximately in termssofi@l set of characteristics such as
location, profession, and other demographics. The sounaae supposed to send the packets to-
wards the target by sending it to a person they knew on a finstenbasis, i.e., to an acquaintance
the source believed to be closer to the target. The game stedsin delivering the packet to the
target with as few of these first-name links as possible. dfsimall world hypothesis held, the
average lenght of the first-name chains of acquantancestiratected a source to a target should
be independent of the location of the sources. This is gxadiht Migram found, the median
length being somewhere around six—an independent stafisthalysis of Milgram’s data that
includes incomplete chains suggests six to be a seriougestdaate of the actual median length
(Fienberg and Legl975. In an abstract setting, we can represent people by meanedds in a
graph, and acquaintances by directed links from a node tdlaro The scientific phenomenon of
interest is the small world; we would like to be able to explaiwith a simple model that gener-
ates small world graphs with high probability. What kind eingrative process should we posit?
Watts and Strogati1 998 propose a rewiring model to answer this question. In theadel nodes
are embedded in a metric spa¢d;, d), and each node is connected to its neighbors according to
by means of undirected edges. Then, with probabilggach of the edges that connect a node with
its d-neighbors is rewired at random, that is, is disconnecteunfra d-neighbor and connected
to another node in the graph with equal probability. When téwiring process is carried out
for each node, the process ends. Although very simple, thieimg model ofWatts and Strogatz
(1998 encodes a key intuition about how acquaintances may béledtad, that is, the fact that
people form local circles of friends, and retain a few of thefmren they move across the coun-
try. This social process is suggestive of the rewiring motielirns out that the rewiring of local

neighbors alone is enough to generate small world graphis tiggh probability.
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Our ability to spot patterns and properties of interest ialycdepends on thgraph metrics
available to us. Many metrics have been proposed over ths y@aneasure various properties of
graphs that could explain phenomena of interest, e.g.rm&wuconnectivity patterns, average path
length, or degree distribution. Crucially, each of thesérite pre-encodes some intuition about
the phenomena we conjecture may exist. In fact, such medrigsneant to capture numerical
properties of those graphs where the phenomena of intezest,dhat are absent in other graphs.
In other words, we can onlgttempt to measurthose patterns thate believe are distindrom
background noise. The set of metrics available to us is th®ypeoduct of substantive intuitions
about what we cannot see or measure. In a technical sende residc encodes a structural

hypothesis, i.e., structural bias.

Example 13. Milgram’s (1967 empirical analysis and Watts and StrogatzZl998 theoretical
analysis use different metrics. Milgram considers the agerlength of first-name chains, and
finds that they are consistently short. In particular, sugdhart average length (alternatively, such
a small diameter) is less than what we whould expect to obseeve the acquaintance network a
purely random graphErdods and Rnyi 1959 Gilbert, 1959. However, there is possibly an infinite
number of ways to generate graphs with a diameter smaller that of a random graph. Which
properties of small works graphs unequivocably distingdireem from others? In order to identify
small world graphs, Watts and Strogatz consider the charéstic path length (closely related to
Milgram’s metric) and the clustering coefficiehStated formally, they find that the dimater of a
graph drops fromO(n) to O(log n) even when a small fractiomof the edges is rewiretiwhereas
the clustering coefficient remains close36l. The rewiring process has little effect on several

other metrics as well.

In Section2.1we showto what extenthese two metrics can distingush graphs with a small wopd gy from
graphs with other topological properties.

2Although, as noted bBollobas and Riorda(2003, this fact is a particular instance of a classic result atiem
graph theory about the diameter of the giant comportemnliis and RényiLl960), there is much merit in the suggestive
power of the simple generative model introducedwigtts and StrogatZ1999, who place such result in a context
relevant to the scientific community at large.
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Brief Overview of Results During the past few years the attention of the scientific camity
has increasingly focused on complex graphs and dynamiconkesw As a consequence, many
scientific investigations that involve graphs to some degtéempt an assessment of how sensitive
the main findings are to topological properties of the grapftse general trend, however, is for
such investigations to leveragepular model®f graphs, rather than focusing on thigpological

properties

Example 14. High throughput techniques have made way to the collectiaata on many com-
plementary aspects of the biology of the major speciesdiwn our planet, and integral ap-
proaches to the biological sciences are now possible. Asaemuence of this, dependence among
observations, data and model integration, and ultimatedywork science, have become funda-
mental to our ability to carry on the process of scientificodigery in this domain. Relevant to the
discussion here is the fact that more and more researchlastion complex biological networks,
e.g., protein interaction networks, gene regulatory nekspand metabolic networks, make use
of popular models of graphs such as the scale-free mdgkelapasi and Albert1999, which is
consistent with different graph topologiédqllobas and Riordan2003, rather than investigating

the topological properties of such networks directly.

A crucial issue is then the mapping between popular modetyragphs and the topological
properties they possess. In particular, under scrutinyhistiaer the variougraph topologiesare
different; if so, by how much; and whether the different gatige algorithms for a specific graph
topology lead to the same topological properties. This soime sense a chicken and egg problem,
since our ability to probe the space of topologies is limigsidiscussed above, by the set of met-
rics we use. A brief exploration of these issues is preseint&egction2.1 | find that the popular
models, e.g., scale-free and core-periphery, genergphgmith similar topological properties for
non-pathological values of the relevant underlying camstaFurthermore, | find that alternative

models that supposedly generate graphs with non-disshgbie topological properties, e.g., mod-
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els of scale-free graphs by different authors, can be edstinguished. These findings prompt
us to make recommendations about how to provide success$abaments of the sensitivity of
an analysis to topological properties of graphs. They algmsst that real-world graphs may be

better modeled as mixtures of these popular mode&l®idi and Carley 2005.

Another major issue is that the popular algorithms that Heeen proposed in the literature to
generate topologies of interest can replicate local anidagiohenomena, but have no place for the
data. Thatis, given a few underlying constants such alyostgenerate observations that display a
certain class of behavior, but it is never specified hoedtimatevalues for those constants so that
the generated behavibts a collection of datdéhe best. Being able to make a good use of the data
is crucial whenever models and algorithms have to suppatiyaes of real data. In Sectiéh2
alternative mathematical representations of a graph aceissed. Within such context, | show how
itis possible to posit a general class of probabilistic medehich | refer to agxchangeable-edge
models, that generate graphs with pre-specified topolbgroperties of interest, and at the same
time allow forformal inference and estimatiqgrocedures. These models inform novel analyses

of lognormal and cellular graphs.

| consider lognormal graphs in Secti@r.2 | find that scale-free, or power-law, graphs provide
us with a first-order approximation to graphs in this clagkeh introduce a novel generative model
for lognormal graphs that serves to show how models in tlaissc{and hence scale-free or power-
law graphs) may arise, and find that they do in two interestetg of circumstances. First, | find
that lognormal graphs may arise as an artifact of the netwonistruction process. Namely, they
arise in situations where edges are set between pairs datslijg thresholding correlation among
their attributes even when such attributes are completelgpendent. In that sense, lognormal
graphs are an artifact due to the way we measure the presealgsemce of relations among objects
in a population of interest. Second, | find that lognormalpgsamay arise as a consequence of

a limiting phenomenon when certain conditions hold on thg edges are established between a

41



2.1. STABILITY AND SEPARABILITY OF METRIC EMBEDDINGS E.M. AIROLDI

new object and existing objects in the graph; namely, by me&a multiplicative process.

| consider cellular graphs in Secti@2.3 | find that communities form because of the joint
effect of two simple factors: (i) exclusivity, that is, theed for allocating resources to compet-
ing interests; and (i) homophily, that is, the fact thatiabmteractions are more likely to occur
between individuals who share interests than between thhsedo not. Furthermore, | find that

communities emerge quickly as exclusivity exceeds a cettaieshold.

2.1 Stability and Separability of Metric Embeddings

The context behind the exploration | present here is givembybservations. First, the popularity
gained by generative models of graphs have helped estaklehal flavors ofraph topologiesin

the scientific community at large. For example, few sci¢ntsday are unaware of notions such as
scale-freeandsmall-worldnetworks. Because of their popularity, such notions arendftveraged

in published research literature—for better or worse. 8dcany scientific approach to modeling
graphs faces the technical issuewdiich minimal set of features can be used to characterize a
graph The popular answer is to focus on a set of real-valmetrics(i.e., functions of edges and
vertices of a graph, which are defined to capture specifidogjal properties) thus characterizing

the graph as a vectér.

A crucial issue is then to study the mapping between poputalats of graphs and the topolog-
ical properties of the set of graphs they support. In padicunder scrutiny is whether the various
graph topologies are different; if so, by how much; and whethe different generative algorithms

for a specific graph topology lead to the same topologicgb@ries.

3In this thesis, | am interested in characterizations thtiea one-to-one map with the space of graphs; this issue
is explored in detail in Sectio®.2
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Table 2.1: Summary of published generative algorithms.
Type  Algorithm Parameters

1.1. Ring Lattice © = (N, Ky)

2.1 Small World Watts and Strogat4998 O =

2.2. Small World Kleinberg 19993 O =

2.3. Small World Airoldi, 2009 O =

3.1. RandomErdos and Rényil959 O =

3.2. Random@Gilbert, 1959 ©=(N,P)
©=(
©=(
©=(
O =(
O =

N7 KOvKlaR)

4.1. Core—PeriphenyBprgatti and Evereft1 999
4.2. Core—Peripheny(roldi and Carley 2005
5.1. Scale FreeBarabasi and Albert.999

5.2. Scale FreeA(roldi and Carley 2005

6.1. Cellular Airoldi and Carley 2005

2.1.1 Experimental Evidence

Airoldi and Carley(2005 survey various flavors of graph topologies, or topolog\esmlong with
popular published algorithms that have been introducecetete them; introduce novel algo-
rithms that support a more diverse set of graphs, in termsdhability of their topological prop-
erties; and address the caseellular graph topology See Figure.1for examples of the various
topologies considered. Here, | briefly report on two staigstudies: (i) on the stability of topo-
logical properties of graphs to alternative algorithmg tteve been proposed to generate the same
topology type; and (ii) on the separability of graphs witktalict topology types—characterized by

a set of 18 metrics for the analysis of graphs, widely adojtéle social and physical sciences.

Stability of Topological Properties to Variations in the Algorithms The stability study is tar-

geted towards the three most popular notions of random,| svodd, and scale free (also known
as power-law) topologies. The overall plan is simple. Fiigt each of these three topologies, |
will use the proposed algorithms to generate a collectiographs, and | will label them accord-
ingly to the specific algorithm variant that was used. Thewilllassess how well it is possible

to distinguish graphs that were generated by algorithmamgsiwith a batch of cross-validation
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1. Ring Lattice (RL) 2. Small World (SW) 3. Erdés Random (ER)

4. Core Periphery (CP) 5. Scale Free (SF) 6. Cellular (CEL)

Figure 2.1: A glance at the relevant topologies on a ring.eNbat in a ring there is a natural
notion of distance that is distinct from the one entailed fbiyrtest paths, i.e., the distance between
nodesA and B is proportional to the arc-length that joins them, alongdhele outlined by the
ring.

experiments. | use a factorial experimental design; teplggavere generated for each parameter
configuration, and parameter configurations were set by idgfia grid on the support of each
parameter and then picking all combinatiodgr¢ldi and Carley 2005 Table 2). Graphs were
generated among 250 nodes, and the choice of parameterwmaitifiqs was further informed by
controlling the density of edges. The rationale behindelamices is to make it hard for the clas-
sification algorithms to distinguish graphs based upon tladesand the density of the generated
graphs. As a consequence, it is conceivable that any ewved#frdiscriminatory power may be due

to differential topological properties of the graphs geed by alternative algorithm variants.
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| find that

(i) Extremal statistics (i.e., minimum and maximum) are g@dscriminators between the two
algorithm variants that generatendom graphsThe cross-validated accuracy is in the high
90% and this comes as no surprise given that Algorithm 3./abfeR.1leads to graphs with

an exact density, whereas Algorithm 3.2 does not.

(i) Properties of the degree distribution are good disanators between algorithm variants that
generatescale free graphghe cross-validated accuracy is in the mid nineties; thrslze ex-
plained by the non-negligible effect of the initial graplatis needed to initialize Algorithm
5.1, and it is consistent with the analysisBijllobas and Riordaf2003.

(iif) Centrality of nodes and clustering coefficient arerfiaigood discriminators between algo-
rithm variants that generatamall world graphsthe cross-validated accuracy is in the mid
eighties when we try to distinguish between sample graphslgdrithms 2.1 and 2.2 or
between Algorithms 2.2 and 2.3, and it drops to the high ses®emwhen we try to distin-
guish between Algorithms 2.1 and 2.3. This is expected siigerithms 2.1 and 2.3 lead

to graphs with more variable neighborhood structures thgohm 2.2.

The published generative algorithms described in Tal@lay a role in this small experiment
for which they were not designed. They were originally pregubto illustrate mechanisms of ag-
gregation suggestive of social and artificial regularitiaderlying observed phenomena. Because
of their popularity, however, the scientific community iopting these mechanisms for analyses
that are very different in scope from those they were intdrfde | find this practice dangerous,
both in terms of the reproducibility of the analyses, andeimis of the support such simplistic
algorithms can offer to substantive conclusions. This & ressage | mean to offer with the

experiments presented here.
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Table 2.2: Pairwise comparisons; entries quote the eraotiged in discriminating graphs gener-
ated according to pairs of algorithms. Errors are estimasaéuy cross-validation. The size is fixed
at 250 nodes; the density is controlled by design.

Latticer Random Small World Scale Free Cellular Core-Per.

Lattice N/A 0.2700 0.0745 0.00 0.00 0.00
Random 0.00 0.4122 0.2794 0.3255 0.25
Small World 0.2478 0.0866 0.1312 0.0531
Scale Free 0.0007 0.2645 0.3333
Cellular 0.1746 0.3715
Core-Per. 0.50

Popular Notions of Graphs Topologies and their TopologicalProperties The separability
study is motivated by another question related to data arsalyOften times, funding agencies
and scholarsfind it interesting to investigate the followingiven a collections of measurements
on pairs of objects in a population of interest, what is theular notion of topology that best
represents such observation§he question seems to imply, or assume, that topology tyrees a
uniquely defined in terms of few topological properties—savhich the corresponding models
are based upon. The goal of the separability study is to afisegxtent to which this is an ill-posed

guestion.

| performed two batches of experiments, whose results garted in Table2.2and2.3. The
first batch of experiments considered about 6000 graphsrgesd according to the factorial exper-
imental design used in the stability study, but extended tb@algorithms in Tabl2.1 The size of
all graphs was set at 250 nodes, and the density was codtlglldesign. The results are presented
in Table2.2, in the form of a pair-wise comparisons. Each entry givesetiers achieved in dis-
criminating graphs generated according the corresporgiingf published algorithms—diagonal
entries report the errors corresponding to the stabilitgytliscussed above. Errors were obtained
with a naive Bayes classifier; similar results were obthingh decision trees, support vector ma-

chines, and logistic-regression. The second batch of arpats considered about 40000 graphs,

4] omit citations here, although it is easy to identify notabkamples.
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Table 2.3: Pairwise comparisons and best three discrimisiagéntries quote the errors achieved
in discriminating graphs generated according to publisiigdrithms. Errors are estimated using

cross-validation, with the quoted topological measurdbasinique features. The size and density
are variable, not controlled by design.

1st Property 2nd Property 3rd Property
Random vs. Net. Constr. (max) Connectedness Net. Conet) (d
Small World 0.2740 0.2960 0.3800
Random vs. Eig. Cnt. (min) Close. Cnt. (min) Inv-Close. Gntin)
Scale Free 0.3690 0.4040 0.4100
Random vs. Eig. Cnt. (avg) Inv-Close. Cnt. (min) Close. @min)
Cellular 0.3110 0.3140 0.3170
Random vs. Centrality (dev) Centrality (max) Close. Cnevid
Core-Per. 0.3470 0.3500 0.3530
Small World Net. Constr. (max) Eig. Cnt. (min) Eig. Cnt. (avg
vs. Scale Free  0.2590 0.2720 0.3410
Small World Net. Constr. (max) Connectedness Eig. Cnt.)(avg
vs. Cellular 0.1380 0.1750 0.2200
Small World Net. Constr. (max) Connectedness Centraligp(m
vs. Core-Per. 0.2400 0.2620 0.2870
Scale Free Centrality (max) Close. Cnt. (max) Inv-Closet. @nax)
vs. Cellular 0.2860 0.2860 0.3060
Scale Free Centrality (dev) Close. Cnt. (dev) Connectednes
vs. Core-Per. 0.3480 0.3530 0.4170
Cellular Centrality (max) Inv-Close. Cnt. (max) Close. Cimhax)
vs. Core-Per. 0.2250 0.2520 0.2580
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sampled from a pool of one million graphs generated accgridithe full factorial block-design of
Frantz and Carley20058, which makes use of all the algorithms in TaBld. In the sample, the
size of the graphs is controlled for, and so is the densite fEsults are presented in Tab23.
Each entry provides the discrimination errors achieveth witdecision tree; similar results were

obtained using a naive Bayes classifier, support vectohimes, and logistic regression.

The analysis of the results of both separability studiegyesythat (i) the generative algo-
rithms presented in Tabl& 1 often lead taunrealistic variability profiledor specific metrics over
a fairly large range of parameter values—either by desigoyaronstruction; (ii) as we consider
the collections of graphs generated according to popul@mmetopology types in a large space of
topological propertiegthe boundary between pairs of topology types is not sheamd most of the

graphs display mixed characteristics.

2.1.2 Discussion

The experimental evidence suggests that scientific quessiibout the data that rely on popular
notions of graph topologies have to be treated carefullypolagy types are operationally de-
fined by specific data generating processes that were ddwid@dtrate the effects of compelling
aggregation mechanisms on a small set of topological ptiegesf a graph. The proposed sta-
tistical analysis of such algorithms shows that (i) altéuaoptions available for generating the
same topology type are distinguishable in terms of the smiltgical properties they entail, and
(ii) processes that supposedly lead to distinct topolotyiess, actually generate graphs that share
many topological propertieS.herefore, while these algorithms deliver insights abdwémmena

of interest, it is dangerous to employ them for other purppas it is often done in practicén the
context of statistical testing, for example, those aldons may be used to produgpevalues for

metrics of interest. Topological properties of a graph urtle null hypothesis can be evaluated

5] wish to thank lan C. Fette for facilitating this study by sha useful code.
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by sampling graphs according to one of the popular algosthsted in Table2.1 Concluding, the
experimental evidence suggests that (i) we need a largef sgtological properties to be able to
characterize a graph exactly, e.g., along the lines of &sgmtation theorem, and (ii) we need a

richer set of statistical models for the purpose of datayesisl

An alternative approach to the scientific analysis of compled dynamic graphs keeps the
topological propertieof the data—an observed collection of paired measurements—at the fore
front of the analysis. Along these lines, statistical med#l graphs with desirable topological

properties, and their relation to the popular notions obtogy, are explored in Sectigh2

2.2 Exchangeable—Edge Models

A major issue with many of the popular algorithms that havernbproposed in the literature to
generate topologies of interest is that while they are mieaneplicate local and global phenomena
a procedure to estimate values for the constants that pomedgo those phenomena, as well as a
procedure to fit corresponding models to available data asdss their fit, are seldom specified.
Being able to make a good use of the data is crucial whenevdelm@nd algorithms have to

support substantive analyses and conclusions.

Example 15. The US Army believes that the efficiency of communicatioriaglaombat is di-
rectly correlated with the outcome of a battle. The efficjeimcthis context is defined in terms of
a set of relevant network metrics, and being able to monkiesé metric is the task of interest. In
particular, it is crucial to be able to detect whenever conmmoation patterns start displaying a
level of variability that is considered abnormal, non-opéil, and ultimately dangerous. This prob-
lem can be stated formally as a statistical change-poinbfam, where detection has to occur in
real-time, on a stream of data about communications in thevakk. In this context, a probabilis-

tic model of a communication network(G,|©), corresponds to a statistical model for a random
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variable, P(X;|©), in the classical formulation. Statistical proceduresttlead to estimates of the
underlying constants), with desirable properties, e.g., consistency and unlgiasss, are critical

for detecting deviations from normality, in both formuéats.

Here, | discuss mathematical characterizations of a gréithin this context, | show how it
is possible to posit a general class of probabilistic mqdesch | refer to asexchangeable-edge
models, that generate graphs with pre-specified topolbgroperties of interest, and at the same
time allow forformal inference and estimatigogrocedures. | demonstrate the utility and flexibility

of these models by introducing a novel analytical perspedf lognormal and cellular graphs.

Challenges to the Mathematical Characterization of Graphs The minimal representation of

a graphG is given in terms of a set of verticed/], and a set of edge§, encoded by an adjacency
matrix, Y, where the entry (n, m) € {0, 1} encodes the presence or absence of the corresponding
directed edgep — m. | make no distinction betweestdgesandedge weighte the presentation

below.

The matrixY” characterizes the topological properties of the graphpitagents. For example,
the degree of a binary graph (this simplifies things by reggino distinction between in- and

out-degree) is defined as a vectiprwith generic element
da(n) = Y(n,m) forneN.

In general, the collection of eigenvalués,y, and eigenvectorsi;.,, of Y give us an exact char-

acterization of the graph as follows,
Y =) Ay,
neN
whereN is the number of nodes ilv. In this sense, exact characterizations of a matrix provgle

50



CHAPTER 2. RANDOM GRAPHS REVISITED E.M. AIROLDI

with exact characterizations of a graph.

The following question is of interestyhat set of topological properties is necessary and suf-
ficient to characterize the matriX, exactly? Here is the challenge; from a statistical modeling
perspective we would like to characterize a graph in termgsassential topological properties.
This would allow us to inform models of complex and dynamiagirs by analyzing such essential
properties measured on observed graphs. On the other Hendgdults of the previous section
suggest that there is a disconnect between the populaeslasgraphs for which generative mod-
els have been published and characteristics of their tgpeabproperties—as captured by existing
metrics. It is not known whether a set of topological projgsrexist that exactly characterizes a
graph, or, alternatively, what classes of graphs can beatkfimterms of sets of constraints on a
set of topological properties. These questions providedm¢ext for the investigations that follow.
| seek either exact or approximate characterizationseeftir graphs with a finite set of nodes or

in the infinite limit of large graphs.

2.2.1 Specifications and Likelihood

A first step is to extend the random graph model&afos and Rény(1959 andGilbert (1959

to include a set of latent variables. This will make the edgeshangeable, i.e., conditionally
independent given values of these latent variables, raftlaer independent. The latent variables
are themselves an IID sample from a common distributions €ktension allows me to reproduce
the behavior of the original random graph models, and toégedunew array of interesting global
behaviors such as those encodetbgnormal graphgSection2.2.2 andcellular graphs(Section
2.2.3. Furthermore, it is possible to write down and evaluatdit@ihood corresponding to such

models.

Itis possible to generate a diverse set of graphs by meansbfrgeable-edge models; a fairly
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general class of statistical models of random graphs. Ahangeable-edge model of a graph is

specified as follows,

Y(n,m)|© ~ Pg (2.1)

O|A ~ P, (22)

for each elementn, m) of the matrixY’; wheren, m are nodes inV; © is a collection of latent
variables;.A is a collection of hyper-parameters; aid, P, are probability distributions. The

likelihood can be written as follow,

((Y]A) = /PA(@|A) [[Po(¥(n,m)[©) de. (2.3)

n,m

In a more general formulatiol” may be multivariate, e.g., may encode multivariate socteme
ric relations Sampson1968, longitudinal, e.g., may encode a temporal sequence gqfhgra

(Priebe et al.2005, or even more complex.

Example 16.In many applications, it is convenient to distinguish betwkatent variables that are
partially, or potentially measurable and correspond to stamtive concepts, e.g., tight groups of
agents in the analysis of social networks. Following thewsion in Sectiof.2, we may denote
by = the partially observable variables with a substantive iptetation, e.g., club membership,
and by© other latent variables, e.g., propensity to participatetxial activities. Latent variables
in both these collections are agent-specific; namely= 0,.v is a collection of agent-specific
vectors whose components specify the grade of membersigenfs to clubs, whereas = &;.y

is a collection of agent-specific scalars that specify agigobpensities to socialize with members
of other clubs. The corresponding exchangeable edge modal $equence of graphS,.r =

(Y1.r,NV), that encodes social interactions recorded o¥eweeks among the same set of agents,
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N, takes the form of a hierarchical mixed-membership modein#et, it posits that

Yi(”v m) } (gnmv enm) ~ P(g,@) (24)
O | B~ Pg, (2.6)

for each observed social interactiofys, m) recorded in the matrix; during thet-th week; where
n,m are agents inV; &,,, denoteg¢,, &,,); 6y, denoteg6,, 6,,); and P ¢y, P, P3 are proba-
bility distributions. Figure2.2illustrates the graphical representation of this modeingsplates.
Note that, in this model, both the degree of membership afitage clubs, and the propensity
to socialize with other agents do not change from one weekameéxt. Furthermore, the grade
of membership and the propensity to socialize are non-eadde, competing explanations of the

observed interactions.

The main advantage of these models is that edges are excldaghat is, weakly dependént
rather than independent. Working within the skeletal dpmtions of Equation2.1and2.2, we
can introduce layers in the hierarchy and posit stochaktitkimodels Airoldi et al., 2006d and
Section3.1), latent space modelbi6ff et al, 2002, and diffusion modelgGoifman et al.2005ab,
and Sectior8.2). In Chapters, | discuss how to introduce flavors of dynamics and evoluitioa
few cases—temporal models will break the exchangeabiligdges within a graph and introduce

different dependence structures.

5De Finetti’s theorem implies exchangeable edges can bactesized as being independent conditionally on a
collection of latent variablesSchervish1995.
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Figure 2.2: Graphical representation of the exchangealgle model in Exampl&®6.

2.2.2 Lognormal Graphs

Researchers in a diverse set of disciplines have offeraterue and arguments that ultimately
purport the power-law distribution as an inevitable regtijyaof natural and artificial phenomena

alike. In this section, | investigate the basis for suchrokai

Main Argument—Part |: Building Association Graphs  Consider the following exchangeable-
edge generating process for a (binary, undirected) géaph(Y, \):

Algorithm Al

1. forne N

2. fork=1,... K

54



CHAPTER 2. RANDOM GRAPHS REVISITED E.M. AIROLDI

3. by (k) ~ Bernoulli (p)

4. forn,m e N

- =

5. Y(n,m) ~ Dirac ( f(bn,bpn) > T )

The constants underlying Algorithm Al aée = (K, p, f,7), whereK is the number of node-
specific attributesh,(k); p is the probability that any one of the attributes is pres¢ift;-) is

a measure of similarity; and is the f-similarity threshold beyond which two nodes are set as
connected. Algorithm A1 replicates a common network cartsion process.In such a scenario,
the node-specific collections bf represent noisy measurements about those aspects of dadde t

matter when decisions about the presence of a tie with otiegshave to be made.

Below | explore the degree distribution of an associati@pgrthat arises in a case where there
IS no association structure among nodes, in terms of theltivadate attribute representations,
by.n. In order to derive the degree distribution | completelycsfoed Algorithm Al by setting the
size of the graph to 100 nodes; | set the number of latent &sgécto ten, and the probability that
any one of the attributes is presentto 0.5; in different experiments | explored various measures
of association based on Pearson’s correlation coeffidentof many possible choices fgt, last,
in order to find (purportedly) significant associations, 1 & f-threshold,r, to be the 954
percentile of the observed associations—about 5000 fdr gaph. | then sampled many graphs.
As an example, the limiting average degree distributionrad of the graphs is shown in Figure
2.3 on a log—log scale; the corresponding mattix,is shown in Figure&.4. The results of the
simulations consistently suggest a quadratic relatiow®en nodes’ degree and their frequency, on
the log—log scale. That is, the simulated association graplie a lognormal degree distribution,

whenever no association exist among their attribute reptas'ons(i:N.

“An alternative formulation of Algorithm A1l posits distinattribute-specific probabilities for each node =
pn(k), which are sampled independently from a standard Gausssanbdtion and then projected into tHe, 1]
interval. The attributes, (k), are then independent samples from a Bernoulli, condilfipoa such probabilities.
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Figure 2.3: Observed degrees versus frequency of nodesswitn a degree, over a set of 100
graphs sampled according to Algorithm Al. Squares corrmespmaverages.

Alternative measurement schemes exist, which are basedalfynative measures of associ-
ation that may be adopted to decide when to establish an ddgeever, the empirical results
are robust to such alternatives. This empirical obserman@y be formalized by looking at the

distribution of the association measyras follows.

Conjecture 1. Any strategy that builds a graph by thresholding a measuso@sation, X, will
induce a degree distribution proportional to the tail of gn@bability density ofPy, where the tail

is defined by the threshotd

The general mechanism through which probability statesmabbut pairs of nodes, e.g., in

terms of the correlation8r (r(n,m) > 1), translate into probability statements about the individ-
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Figure 2.4: The matriX{i0x100) Of a lognormal graph sampled via Algorithm Al.

ual nodes, e.g., in terms of the dege (d(n) < k), is fairly simple. Consider the degree of a

node,n, in a graph generated via Algorithm A1,

d(n) = {# nodesm such that-(n, m) > 7}

At a first degree of approximatior(n) follows a Binomial distribution with parametené = |/,
i.e., the number of nodes in the graph, ame; Pr (r(n,m) > 1), i.e., the probability of imputing
an edge. The heavy-tail of the degree distribution follovesif the fact that the probabilities of

imputing edgesy;.y, are different for the various nodes.

As we restrict the focus to those thresholding schemes thditzesed upon Pearson’s correlation
coefficient,r, we can derive more precise results. Tahkdescribes four measurement schemes,
based on different functions of in terms of the probability density function they inducetbe

measure of associatiofi(r), and of the range of possible values fori.e. the support. Figur2.5

57



2.2. EXCHANGEABLE-EDGE MODELS E.M. AIROLDI

shows the estimated probability density functions comwesing to these four association measures
based upon Pearson’s correlation coefficient describeslie®.4. Definery to be Pearson’s
correlation coefficient, computed on a sample of sizef paired measurements(!, X?2). The
asymptotic distributiof N — oo) of ry is bell-shaped, left-skewedrisher(1915 derived the
distribution of Pearson’s correlation coefficient whendlaéa are bivariate Gaussian. In subsequent

work he showed that the transformation,

1+r
1—7r’

¢ =log re -1, +1] (2.7)

is useful in stabilizing the skewnessf, and induces a Gaussian distribution on the support of

¢, unbiased fobr 1 x2), with variance(V — 3)~!/2 (Fisher 1921).

Concluding, experimental evidence suggests that graphsatieavy-tailed degree distribution
may be generated as artifacts of the way we measure aseaciatg., by thresholding, even in
those situations where no real association exist. Obsgevimeavy-tailed degree distribution in a

graph should not be regarded as interesting substantivagintthe absence of a deeper analysis.

Main Argument—Part Il: Limiting Graph Structures ~ Consider the behavior of graphs as new
nodes and edges appear. In the limit of large graphs (i.enymades), and for a wide range of
aggregation regimes (i.e., different edge addition rulleginormal graphs are an attractor. Their

basin of attraction is large. Below, the limiting behavibsoale-free graph$@rabasi et al1999

Table 2.4: Characteristics of four measurement schemesdblesh associations, by thresholding,
based upon Pearson’s correlation coefficient.

Measure  Support PDF Notes

r [—1,+1] bell-shaped, left-skewed Séesher(1915

¢ (=00, +00)  Gaussian SeAnderson(1996
r? [0, +1] bell-shaped, right-skewed

et [0, +00) lognormal
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Figure 2.5: Estimated probability density functions cep@nding to the four association measures
based upon Pearson’s correlation coefficient describeshleZ.4. The vertical (red) bar indicates
the 95¢h percentile; e.gx s.t. P(R < 1) > 0.95.

Faloutsos et 811999 Huberman and Adamjd 999 is revisited in the light of this remark, in the

larger context of statistical convergence. Consider tHeviing algorithm.

Algorithm A2

1. start withG = (Y = 0, N = ()
2. repeat

3. addnodeito

4. sample its degreé&n) ~ P(O)
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5. connect node to d(n) existing nodes io\” with equal probability

To illustrate the main point, it is enough to note that Algfam A2 entails arexpected ratef

change of the degree of a nodé&'! (n)/d!(n), constant over time. In this case,

K+ (n) = k'(n)-d'(n) (2.8)

log k'™ (n) = logk®(n)+ X', logd®(n) (2.9)

K (n) —k(n) = k'(n)- (d'(n) —1) (2.10)
AR Y n) —k'(n) = K(n)-d'(n). (2.11)

In the algorithm proposed bBarabasi et al(1999 the rate of change of the degree is the

guantity that remains constant over time, so that

A

Ee[d'(n)] = P

It is possible to show the connection in a different way, lpkiog at the limiting degree distribu-

tion of graphs where thexpected ratef change of the degree is decreasing over time,

Eold(n)] = O(t™), a > 0.

Remark 1. Power-law graphs (also referred to as scale-free) providesi-order approximation

to lognormal graphs, in terms of their degree distribution.

Consider the density of the degree distribution of a logradmnaph,

2
p(z|po®) = xal o e_?f(k’g(m)_“) , i, E€R, andz,0c € R, (2.12)
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This entails a quadratic relation between log density agdikgree,

logp (x| p,o0) = —log(z) — log(oV/2) — % (log(z) — p )2
= —log(oV2rm) — % — (1 — %) log(z) — % log?(z).

Taylor-expandog p, with respect tdog =z, to the first order,

log p (x ‘ u,a) ~ logp (xo ‘ u,a) +,u;2x0 (log(x)—xo) )

If we chooser, = 1, the mean, the expression above simplify to
logp (| p,0) ~ —log(x)—log(ov2r),

which implies a linear relation between log density and legrée, that is, the relation underlying

the degree distribution of a power-law graph.

Thus we see that exchangeable-edge models illustrate lgvordmal graphs arise in two in-
teresting sets of circumstances: (i) as an artifact of thg wi& measure associations; and (ii) in
the limit, as a consequence of multiplicative aggregatime@sses. Inasmuch as they approximate
lognormal graphs, power-law graphs may arise in the samarostances. This fact may help to

explain their ubiquity.

2.2.3 Cellular Graphs

Despite the fact they are so pervasive, no characterizati@ts that explainsvhy cellular net-
works arise as a structure of collective organization. Vnathe conditions that naturally conjure

cellular structures among individuals? Below, | introdacgmple exchangeable-edge model that
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suggests a possible answer.

| posit a stylized model of a population of agents with liditesources. In particular, | assume
that one of the resources (e.g., time) is instrumental inigicay other resources (e.g., knowledge).
Individual agents are endowed with a limited amount of threnter (e.g., hours in a day). This
limitation imposes choices on the agents about how to akottee instrumental resource. In a
model with time as the limited resource, for example, thead®to be made by the agents may
concern which interests to cultivate. Given the set of irtilial choices, the network among agents
emerges as a consequence of a simple social aggregati@sptbat induces ties between pairs of

agents with similar interests.
Algorithm A3
1. forn e N
2. pu~ logit MVN (0,%(a))
3. fork=1,... K
4, by (k) ~ Bernoulli ( pa(k) )
5. forn,m e N

-

6. Y(n,m)~ Dirac ( f(bn,bm) > T )

The constants underlying Algorithm A2 aée = (K, f,«, ), whereK is the number of node-
specific attributesy,, (k); f(-,-) is a measure of similarity; is the f-similarity threshold beyond

which two nodes are set as connected; ansltheexclusivity parametethat | shall now discuss.

Algorithm A2 is fairly similar to the algorithm | used to genag¢e lognormal graphs. Th¥
agents, i.e., the nodes, are associated with binary slrﬂﬂ;g]s whose components indicate the

presence or absence of a specific interest, ouf giossible. There are two changes here; (i) the
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Figure 2.6: Example interest vectors for 25 nodes.

fact the elements,, (k) are sampled with agent-specific probabilities; and (ii) algent-specific
probability vectors,p,,, have weakly dependent components—this is crucial. Spalifi the
variance-covariance matriX = («) has entries

aA(K —1) —2x

Ko (Katl) 29 o= GopkasD) (2.13)

Onn =

specified in terms of the scalar parameteiThe moments of the multivariate normal distribution
in step 2 of Algorithm A3 are reminiscent of those of a Dirigthdlistribution. The main difference

between the the multivariate normal and the Dirichlet ig tha support of the former is the unit
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Figure 2.7: The matri¥{100x100) Of a cellular graph sampled via Algorithm A3.

hyper-cube after a logistic transformation of its coortisa

(k) = exp{ze} fori=1..K,

EEES AT ENs

whereas the support of the latter is tiedimensional simplex. The variance-covariance structure
Y («) enforces what | ternexclusivity of interestm the following senseby dedicating time to
acquire a specific interest, agents implicitly choose ngiucsue other interests'he parametet

has support if{0, c); the closerx is to zero, the stronger it promotes exclusivity. Furthemmo

a < 1 promotes exclusivity, whereas > 1 implies that agents are likely to devote an equal

amount of time to each one of tli¢€ available interests.

Figure 2.6 show an example of interest vectots, for 25 nodes, in a simulation where the
number of interestdy, is five. Figure2.7shows one of the cellular graphs generated by Algorithm
A3. The parameters were: 100 nodéS= 5, f is Pearson’s correlation coefficient, ands the

75+4h percentile of the observed associations. Figi&shows an aspect of the emergence of
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Figure 2.8: The clustering coefficient as a functiomasbtained with Algorithm A3.

communities induced by Algorithms A3. In particular, a ghdrop in the clustering coefficient
occurs as the exclusivity parameteincreases fromv 0 towards 1; whemv > 1 the community

structure is no longer present.

By using Algorithm A3 | show how communities form becauselh# foint effect of two simple
factors: (i) exclusivity, that is, the need for allocatirgsources to competing interests—which
may be induced by the finiteness of such resources; and (ppaily, that is, the fact that social
interactions are more likely to occur between individualovghare interests than between those

who do not. Communities emerge, quickly,@asc 1 — 0.
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2.3 Convex Generation of Graphs with Degree Constraints

Here | express the problem dhding the most likely graph with a given, arbitrary degrastd-

butionas a convex optimization problem.

There are many situations where being able to sample grafthsavgiven arbitrary degree
distribution is crucial. One of the main issues with the gngs algorithms is their failure rate,
that is, the number of times such algorithms have to be testan order to produce a graph
that satisfies the given constraint on the degree distdbuiilo et al., 20049 . Expressing the
problem of finding likely graphs that satisfy the constraintthe degree distribution as a convex
optimization problem will resolve this issue. In fact, onee have a starting point in a high
probability region of the space of feasible graphs, samygiraphs at random that satisfy a given

constraint is easier—leads to a much lower failure rate.

Consider a undirected, unipartite graplis,= (Y,N) € G. A basis forG is given by the
collection of graphs2,,,,, = (Y., V), indexed by pairs of nodgs, v) in /. The elementsi, j)

of the adjacency matrix aF,,,, is defined as,

o 1 if(i=n,j=m)or(i=m,j=n)
Ym(i,7) =
0 otherwise

It is then possible to write the problem of finding a graphwith a pre-specified degree sequence,

—

d, as follows:

opt; V=) aV. (2.14)

eclq

st. Y -T=d and ., € {0;1} forall e,

where&; is the set of all possible edges among pairs of nodés &imulated annealing, for exam-
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ple, can be used to find the unique solution. Probkeidis formulated as a convex optimization

(Boyd and Vandenbergh2004).

In this chapter, | introduced exchangeable-edge modelsapihg. | argue that:

¢ they represent animportant extension of the popular rargtaph model oErdos and Rényi

(1959 andGilbert (1959, technically, by involving a layer of latent variables;

e they are proper statistical (Bayesian) models, in the s#regave can write down and eval-

uate their likelihood, and can therefore be used for priedianalyses of data.

To substantiate these claims, | presented a novel analylsigrmrmal and cellular networks based
upon them. Methodology for statistical network analysipriesented in Chapt& as well. The
development of exchangeable-edge models has led me toghe fegmulation of the problem of

sampling graphs with given degree constraints as a conwaxiaption problem.
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Chapter 3

Discovering Latent Patterns

In this Chapter, | work within the general formulation of Bangeable-edge models of Sectibg
to specify Bayesian mixed-membership models of randomigr#tpat are used to discovery latent

patterns.

Introduction and Motivation  Statistical models are used to inform scientific analysegaihs
and networks that encode observations about phenomenadshHolland and Leinhardtl975
Wassermal98Q Fienberg et a).1985 Wasserman and Pattisd®96 Watts and Strogaj4998
Cooper and Frieze2003 Kemp et al, 2009. Often, we can specify models via probabilistic al-
gorithms that generate nodes and/or edges in a hierardhgtasibn, starting from a small set of
underlying constants. Specifications of hierarchical dedpacies among such constants, other
non-observable quantities possibly generated in intelaedteps, and the data provide a channel
to inform the analysis with structural assumptions thatrakevant for a specific application. For
instance, in social networks analysis #oial contextn which actors interact, or thgroupwhich
actors are members of, are examples of such non-obsenabpartially observable) quantities

that may be useful to explain, e.g., email communicationsragra group of employees within a
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company, or interactions among a set of proteins in a ceftigsne under specific experimental

conditions.

The three main approaches proposed in the social, mathehatid computing sciences lit-
eratures, that make use of non-observable quaritiiieexpress specific concepts relevant to an
application domain, as (i) latent space models, (ii) bloddeis, and (iii) diffusion models. More
in detail, in (i) the/V nodes in the graph are projected onto a latent sgace a way that edges
are preserved whenever the distance of their projectiohigisenough, e.gd(0,,, 0,,) exceeds a
threshold. In (ii) the graph is summarized in terms of a ndieck structure B, along with the
memberships of nodes to blocks, v, as detailed in SectioB.1 In (iii) mathematical functional
defined on the graph are proposed to study the diffusion psogkreal or informational artifacts
among the nodes. | will focus on extending block models foragomportion of this chapter. | will

then revisit latent space models and diffusion models tds/dre end of the chapter.

3.1 Admixture of Latent Blocks Model

Relational information arise in a variety of settings, gig.scientific literature papers are con-
nected by citation, in the word wide web the webpages areaxiad by hyperlinks, and in cellular
systems the proteins are often related by physical prgetein interactions revealed in yeast-
two-hybrid experiments. These types of relational datdatothe assumptions of independence
or exchangeability of objects adopted in many conventiamalyses. In fact, the relationships
themselves between objects are often of interest in additidhe object attributes. For example,
one may be interested in predicting the citations of newligtem papers or the likely links of a

web-page, or in clustering cellular proteins based on petef interactions between them.

1A mainstream approach to statistical network analysis(foathe most part) does not make use of latent variables
is presented in the book Basserman and Faugt994.
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In many such applications, clustering the objects of studgrojecting them in a low dimen-
sional space (e.g., a simplex) is only one of the goals of tlayais. Being able to estimate
the relational structures among the clusters themselvaftes as important as object clustering.
For example, from observations about email communicatidrasstudy population, one may be
not only interested in identifying groups of people of commubaracteristics or social states, but
also at the same time exploring how the overall communinatmume or pattern among these
groups can reveal the organizational structures of the lptipn. Furthermore, in modern net-
work analysis tasks described above, it is desirable toralsa the unary-aspect assumption on
each node imposed by extant models. To this extent, | int®@@unew class of models based
the principle ofstochastic block models of mixed membershipich combines features of the
mixed-membership model&fosheva and Fienberg005 and the block modelsHolland et al,
1983 Anderson et al.1992 Nowicki and Snijders2001 Doreian et al.2004) via a hierarchical
Bayesian framework, and offers a flexible machinery to a&ptich semantic aspects of various

network data—see Secti@n2.2for a general formulation.

Below, | describe an instantiation of this class of modetéemred to asadmixture of latent
blocks(ALB) to reasons to be explained shortly, for analyzing rekg of objects with multiple
latent roles, e.g., social activities in case the objedisr o people Airoldi et al.,, 2007h, or
biological functions in case the objects refer to proteidsd]di et al., 20069. As mentioned
above, classical network models such as the stochasti& haclels only allow each nodes to
bear a single role. Our model alleviates this constraind, fanthermore posits that each nodes
can adopt different roles when interacting with differethier nodes. In SectioA.2 of Chapter
4, | will describe the general model formulation for multiiae relations along with the general

model formulation for multivariate attributes.

Historical Notes A popular class of probabilistic models for relational datalysis are based on

the stochastic block model (SBM) formalism for psychoneedind sociological analysis pioneered
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by Holland and Leinhard{1975, and later extended in various contexiefberg et aJ. 1985
Wasserman and Pattisoh996 Snijders 2002 Hoff et al, 2002 Doreian et al. 2004. In ma-
chine learning, Markov random networks have been usedr@rdrediction Taskar et al.2003
and the traditional block models have been extended todechonparametric Bayesian priors
(Kemp et al, 2004 2006 and to integrate relations and teMdcCallum et al, 2007). Typically,
these models posit that every node in a study network is ctearzed by a unaryatent aspect
that accounts for its interaction patterns to peers in thworis; and conditioning on the observed
network topology one can reason about tHasent aspectsf nodes via posterior inference. These

formulations are closely related to the one introduced.here

Largely disjoint from the network analysis literature, m@dologies for latent aspect model-
ing have also been widely investigated in the contexts ééiht informational retrieval problems
concerning modeling the high-dimensional non-relati@t@ibutes such as text content or genetic-
allele profile. In many of these domains, variants of a mixedntnership formalism have been pro-
posed to capture a more realistic assumption about thewaabattributes, that the observations are
resulted from contributions from multiple latent aspeetther than a unary aspects as assumed in
most extant network models such as SBM. The mixed membemstijels have emerged as a pow-
erful and popular analytical tool for analyzing large dasds involving textBlei et al, 2003, text
and referencesdohn and Hofman2001, Erosheva et al2004), text and imagesBarnard et al.
2003, multiple disability measure€fosheva and Fienberg005 Manton et al. 1994, and ge-
netics informationRosenberg et 812002 Pritchard et al.200Q Xing et al, 20039. These mod-
els often employ a simple generative model, such as a bagyafs model or a naive Bayes,
embedded in a hierarchical Bayesian framework involvingtarit variable structure that com-
bines multiples latents aspects. This scheme induces depeies among the objects’ relational
behaviors in the form of probabilistic constraints over éséimation of what might otherwise be

an extremely large set of parameters.
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3.1.1 Goals of the Analysis

| am concerned with modeling data represented as a coltedtfiadirected unipartite graphs.
A unipartite graph is a graph whose nodes are of a single tyme, individual human beings
in case of a person-to-person communication network, assgapto bipartite and multipartite
graphs, where the nodes are of two or multiple types, e.geg®-experiment8(ei et al, 2003
Airoldi et al., 20061 or employees-to-tasks-to-resourc€sfley, 2002. Consider a collection of
unipartite graphs whose edges encode measurements orf pables about a response variable.
Multiple graphs encode replicate&], of the same relation. Denote the collection of graphs by
G ={G,, :r=1,..., M}, where each grapltj,,, is defined over a common set of nodas,
The random variables that encode edge weights are denotBg, lpy ¢), where(p, q) is a pair of

nodes in\..

Example 17. Sampso1i1968 described a collection of relationships measured amongagof
monks in a monastery. He observed responses about typasaliymetric relations such as “Do
you like monk X?”, at a sequence of epochs. This informasaepresentable as a collection of

M graphs, where the edges encode,the binary “like” responses

Example 18. Mewes et al(2004) describe the set of hand curated protein interactions pozdl
by the Munich Institute for Protein Sequencing. A singledeinteractions between proteins
has been experimentally verified. This information is repreable as a single graph where the
random variables associated with the edges are binary. I8eetinalyses inAiroldi et al., 20069

for further details.

The analysis of such data typically focuses on the follovabgectives: (1) identifying cluster-
ing of nodes; (2) determining the number of clusters; an@ég8)nating the probability distribution
of interactions among actors within and between clustews. irfstance, in the monestary social

network of Examplel7, objective 1 translates to identifying the solid factiomsaag monks, In
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Figure 3.1: The scientific problem at a glance. The goal oatiaysis is to make inference on two
mappings; nodes-to-clusters (Via ) and clusters-to-clusters (vid). The facts tha3 does not
necessarily encode a tree, and thigf; is not necessarily one-to-one distinguish our formulation
from typical hierarchical and hard clustering.

addition one wants to determine how many factions are likelgxist in the monastery, and how
the factions relate to one another. Typically, unsupedvisarning experiments are performed, or
semi-supervised learning experiments with minimal infation available in terms of membership
of, say, monks to factions. Working in the hierarchical Baframework, we can either specify the
constants underlying the distribution of random quartiéiethe top level of the hierarchy (i.e., the

hyper-parameters) or estimate them via empirical Bayesioast This methodology accommo-

dates hypothesis testing about the existence of speciéitareal structure among clusters.

3.1.2 Model Specifications

The approach detailed below employs a hierarchical Bagdsianalism that encodes statistical
assumptions underlying a network generative process. grbisess generates the observed net-
works according to the latent distribution of the hypotba&tgroup-involvement of each monk, as
specified by a mixed-memembership multinomial veetot= [r4, ..., 7x] wherer; denotes the
probability of a monk belonging to group and the probabilities of having interactions between
different groups, as defined by a matrix of Bernoulli ralgg . ) = {5B;;} whereB;; represents
the probability of having a link between a monk from graugnd a monk from group. Each

monk is associated with a unique meaning that he can be simultaneously belonging to multi-
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ple groups, and the degree of involvements in different gsaa unique for each monk; andof

different monks independently follow a Dirichlet distriimn parameterized by.

More generally, for grapin and each node, let indicator vec?of;’,”qq denote the group mem-

bership of node when it is to approach with nodg let Z = denote the group membership of

nodeq when it is approached by nogelet N := || denote the number of nodes in the graph;
and let K denote the number of distinct groups a node can belong to. dimxaure of latent
blocks (ALB) model posit that a sequenceMfnetworks,G1.,r = (Ry.ar,NV), can be instantiated

according to the following procedure:

Algorithm Al : (N, M, K,d, B) — Ry.y.
1. For each nodg € \V
1.1. Sampler, ~ Dirichlet ().
2. For each interaction network = 1,..., M

2.1. For each pair of nodés, ¢) € N @ N

2.1.1. Sample groug"., ~ Multinomial (7, 1)
2.1.2. Sample groug , ~ Multinomial (74, 1)

: T
2.1.3. Sampler,,(p,q) ~ Bernoulli (Z,, B Z)! )
It is noteworthy that in the above model, the group membprsheach node isontext dependent
that is, each nodes can assume different membership whenadgting to or being interacted by
different peers. Therefore, each node is statisticallydmigture of group-specific interactions,

and | denote the two sets of latent group indicators cormedipg to them-th observed network

2An indicator vector of memberships in one of thegroups is defined as &-dimensional vector of which only
one element whose index corresponds to the id of the group itedicated equals to one, and all other elements equal
to zero.
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by {z"

pP—q

p,q e N} = Z and{Z!  :p,q € N} =: Z; . Marginalizing out the latent group
indicators, it is easy to show that the probability of obgsgan interaction between nogendg

across thel/ networks isz,, = 7, B 7.

Under an ALB model outlined above, the joint probabilitytdizution of the dataR;.,;, and

the latent variable&r,.v, 21, Z1.,,) can be written in the following factored form:

p(Rot|d B) — / D(Russ s Zicags Zioay |66, B) di d2Z
II®Z

-/ (HHM@WWM%%@EM@M%U
Iz

m pq

<l ) ) [T s @z az (3.1)
P

wherep; is Bernoulli, p; is multinomial, andps is Dirichlet.

To compute the likelihood of the observed networks, one si¢eanarginalize out the hidden
variablest and Z for all notes, which is intractable for even for small graphsSection3.1.3 |

describe a variational scheme to approximate this likelthimr parameter estimation.

Dealing with Sparsity Most networks in real world are sparse, meaning that moss padnodes
do not have edges connecting them. But in many network aeslgdservations about interactions
and non-interactions are equally important in terms ofrtieentributions to model fitness. In
other words, they would compete for a statistical explamaith terms of estimates for parameters
(&, B), and would both influence the distribution of latent vareabéuch as;.. A non desirable
consequence of this, in scenarios where interactions aee iathat parameter estimation and

posterior inference would explain patterns of non-intBoacrather than patterns of interaction.

In order to be able to calibrate the importance of rare icteyas, we introduce the sparsity pa-

rameterp € [0, 1], which models how often a non-interaction is due to measentmoise (which
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is common in certain experimentally derived networks suetha protein-protein interaction net-
works) and how often it carries information about the growgmberships of the nodes. This leads
to a small extension of the generative process outlineddanast subsection. Specifically, instead
of drawing an edge directly from a Bernoulli with raap_EB ZL ,» how we sample an interaction

with probabilityo?”! = (1—p)- 2"} B 2"

.. B z)L; therefore the probability of having no interaction this

pair of nodes id — o2 = (1 —p) - %’Q(l — B) v+ p. This is equivalent to re-parameterizing
the interaction matrix3. During estimation and inference, a large value @fould cause the in-
teractions in the matrix to be weighted more than non-ictévas in determining the estimates of

(627 Ba 7?1:N)-

3.1.3 Estimation and Inference

| use an empirical Bayes framework for estimating the patarséd, B), and employ a mean-
field approximation schemelg@rdan et aJ.1999 for posterior inference of the (latent) mixed-
membership vectorst,.y. Model selection can be performed to determine the plagisialue

of K—the number of groups of nodes—based on a strategy desaenilderbldi et al. (20069.

In order to estimatéd, B) and infer the posterior distributions @f. we need to be able to
evaluate the likelihood, which involves the non-tractabtegral overZ andr;.y in Equation3.1
Given the large amount of data available for most networles fazus on approximate posterior
inference strategies in the context of variational methadd we find a tractable lower bound for
the likelihood that can be used as a surrogate for inferengeoges. This leads to approximate
MLEs for the hyper-parameters and approximate posterigiridutions for the (latent) mixed-

membership vectors.

Variational Expectation-Maximization The approximate variant of EM | describe here is often

referred to a¥/ariational EM (Beal and Ghahramar2003 Blei et al, 2003. Begin by rewriting
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Y = Ry forthe data,X = (71.v, Z1, Z1.,) for the latent variables, angél = (a, B) for the
model’s parameters. Briefly, it is possible to lower boune likelihood,p(Y|©), making use of

Jensen’s inequality and of any distribution on the lateniadesq (X ),

p(Y|O) = log/Xp(Y,X\@) dX

B p(Y,X10)
- 1og/X q(X) WdX (for anyq)

p(Y,X|0) :
> /X q(X) logw dX (Jensen’s)

= E, [logp(Y, X|0) —logq(X)] =: L(g,0) (3.2)

In EM, the lower bound(q, ©) is then iteratively maximized with respect@ in the M step, and

q in the E stepDempster et al.1977). In particular, at the-th iteration of the E step we set
¢ = p(X[|y,0¢Y), (3.3)

that is, equal to the posterior distribution of the latentalsles given the data and the estimates of

the parameters at the previous iteration.

Unfortunately, the posterior in Equatiéh3 for the admixture of latent blocks model cannot
be computed. Rather, a direct parametric approximation teeéds be defined; = ga(X),
which involves an extra set ofriational parametersA, and entails an approximate lower bound
for the likelihoodLA (g, ©). At the t-th iteration of the E step, the Kullback-Leibler divergence
between;*) andqx), is then minimized with respect t, using the datd.The optimal parametric

approximation is, in fact, a proper posterior as it depemdthe data’, although indirectlyg® ~

08 oy (X) = p(X[Y).

3This is equivalent to maximizing the approximate lower babtor the likelihood,La (¢, ©), with respect taA.
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Lower Bound for the Likelihood According to the mean-field theorydgrdan et a) 1999 Xing et al,
2003h, one can approximate an intractable distribution suctha®he defined by Equatidhl

by a fully factored distribution (7., Z1,, Z1.,) defined as follows:

— — — — — —
C1(7T1:Na Zi s ZI:Mh/l:N? D s (I)I:M)

= T a5 T (eGdm. D eGi6, ), (3.4)

p m  pq

whereg, is a Dirichlet,q, is a multinomial, and\ = (¥.n, 17, ©1.,,) represent the set of free

variational parametersieed to be estimated in the approximate distribution.

Minimizing the Kulback-Leibler divergence between this.nv, 21, Z1./|2A) and the origi-
nal p(7i.n, Z1., Z1,) defined by Equatio.1leads to the following approximate lower bound

for the likelihood.

ﬁA(Q) @) - IEq [IOgHH pl(Rm(p7 q)|z_;n—>qu_;n<—an)}

m  pgq
+ E,; [IOgHH p2(2;;b—>q‘7?p> 1) } +E, [IOgHH p2('5;.7b<—q|ﬁqv 1) ]
m  p,q m  p,q

+ E,; [IOgH pS(ﬁpW)] -E, [H Q1(ﬁp|7’p)]

p

- Eq [logHH QQ(’%;LqM;n—W 1” _Eq [logHH QQ@;?—q‘ggf—q’l” :

m  p,q m  p.q
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Working on the single expectations leads to the followingression,

La(0,0) = D N or b gn- f (Rmlp,q), Blg.h))

m  p,q gh

T ZZZ ag | V(Tpg) Z%g
mpg

+ ZZZ@%M Y (Vp.h) Z'th
m pg

+ ZlogF Zak Zlog ['(a) + Z(Ozk —1) [ (ps) — ¢(Z Yook |
~ Zlogf Z%k +ZlogF Vo) Z(vpk— D [9(1w) = O ) |
- ZZ Z%—»qglog ¢p—>qg Zzngp‘—thog Opgn

m  p,q m  pq

where

f (Ru(p.q),B(g,h) )= Run(p,q)log B(g, h)+ (1 — Ryu(p.q) ) log (1 — B(g,h) );

mrunsoverl, ..., M; p,qrunoverl, ..., N; g, h,krunoverl,..., K;andy(z) isthe derivative

of the log-gamma functior-2s")

The Expected Value of the Log of a Dirichlet Random Vector The computation of the lower
bound for the likelihood requires us to evaludlg [ log#, | for p = 1,..., N. Recall that the

density of an the exponential family distributions with unail parameteﬁ can be written as

p(zla) = h(z)-c(a)- exp { Z Or(a) - tp(z
= exp{zek —logc(a) } .
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Omitting the node indey for convenience, the density of the Dirichlet distributipncan be

rewritten as an exponential family distribution,

L [T, (o)
ps3(7|d@) = exp { zk:(ak — 1) log(my) — logﬁ },

with natural parameter, (&) = (ax — 1) and natural sufficient statistieg(7) = log(my). Let
(6) = c(ay(6),. .., ax(F)); using a well known property of the exponential family distitions

(Schervish 1995 it follows that

E, [logm, | = Eg[logty(z)]

= 889 logd (§+1) (Schervish1995 Thm 2.64)
k

= ¢(9k+1 Z9k+K
= ¢(@k)—¢(204k),

k

wherei)(z) is the derivative of the log-gamma functioHsl

Variational E Step The approximate lower bound for the likelihogd (¢, ©) can be maximized

using exponential family arguments and coordinate as&®ainfvright and Jordar2003.

Isolating terms containingy’,, , and¢;. , we obtainLyn = (¢,0) andLym  (¢,0). The
natural parameterg" . andg,.  corresponding to the natural sufficient statisties(z)",, ) and

log(z,._,) are functions of the other latent variables and the obsenstWe find that

Ipaqg = IOgﬂpg“’Z p—q,h f Ry.(p, )B(gvh))v

Gpegh = logﬂthrZ 2o f (Ru(p,@),B(g.h) ),
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for all pairs of nodesp, ¢) in them-th network; wherg;, h =1, ..., K, and

f (Ru(p.q),B(g,h) )= Run(p,q)log B(g, h)+ (1 — Ru(p.q) ) log (1 —B(g.h) ) .

This leads to the following updates for the variational paeters(¢7". ., ¢ ), for a pair of nodes

(p, q) in them-th network:

A?—»q,g o e [0
= e Eq [IOng,g] e Z;L ;’Lq,h‘ Eq [f (Rm(p,q),B(g,h))}
— ¢la [logﬂpvg] ) H ( B(g, h)Rm(p7Q). ( 1— B(g, h) )1—Rm(p,tI)) Pk
h
Qggf—q,h x e [g;ngq’h}
= e Eq [lngqvh} -e 25 a9 B [f (RM(quLB(th))}
oy
— el [logﬁq,h} . H ( B(g, h)Rm(p,q). ( 1 — B(g, h) )1_Rm(177‘I)) P
g
forg,h = 1,..., K. These estimates of the parameters underlying the distibaof the nodes’

— —

group indicators))*  and¢):  need be normalized, to make sig ¢t = >, ¢t = 1.

oL~ .
a,y”:" equal to zero and solving
P,

Isolating terms containing,, , we obtainZ, , (¢,©). Setting

for v, yields:

Vpk = g + Z Z ¢;n_,q,k + Z Z ¢Zf_q,k,
m q m q

forallnodesp € Pandk =1,... K.

Thet-th iteration of the variational E step is carried out for fixetbes ofo‘~1) = (=Y B

and finds the optimal approximate lower bound for the liketiti £ »- (¢, ©¢1).
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Variational M Step  The optimal lower bound - (¢~ , ©) provides a tractable surrogate for
the likelihood at the-th iteration of the variational M step. We derive empirical Bayestimates
for the hyper-parametei® that are based upon‘t.That is, we maximizeCa- (¢~ ©) with

respect t@, given expected sufficient statistics computed uging(¢*—", 0¢=1).

Isolating terms containing we obtainL (¢, ©). Unfortunately, a closed form solution for the
approximate maximum likelihood estimate@floes not existBlei et al, 2003. We can produce
a Newton-Raphson method that is linear in time, where theignhand Hessian for the boumd;

are

0Ls

s - N(w(Zak)—w<ak>)+§p:< (e) Zm)

0L

- = N | [ .
day, o, ( (i) ¥/ () Zak )

Isolating terms containing we obtainl g, whose approximate maximum is

g Z qu R p’ ) ;n_’qg ;n;_qh
9 M m )

qu p—qg *'p—qh

for every index paifg, h) € [1, K] x [1, K].

In Section3.1.2we introduced an extra parametgrfo control the relative importance of pres-
ence and absence of interactions in likelihood, i.e., theesthat informs inference and estimation.

Isolating terms containing we obtainl,. We may then estimate the sparsity paramgetey

p= iz ( Ep,q ( 1 —Rm(p,q)) ' (Zg,h P—ag Z}—qh) ) ‘
Zp,q ngh pag gf—qh

m

Alternatively, we can fixp prior to the analysis; the density of the interaction maisiestimated

“We could term these estimatpseudoempirical Bayes estimates, since they maximize an appateinower
bound for the likelihood - .
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. ~ o 2 . . ~ ~ .
withd = > Ru(p,q)/(N°M), and the sparsity parameter is septe= (1 — d). This latter
estimator attributes all the information in the non-intdi@ns to the point mass, i.e., to latent
sources other than the block modelor the mixed membership vectofs.y. It does however

provide a quick recipe to reduce the computational burdeimgexploratory analyses.

Smoothing In problems where the number of clusters is deemed to beyllkeye a-priori, we
can smooth the (consequently large number of) clustetuster relation probabilities encoded in
the block modeB by positing that all the element3(g, i) of the block model are non-observable
samples from a common (prior) distribution. In the admigtof latent blocks model we posit
thatp(B|X) is a collection non-symmetric beta distributions, with ar jod hyper-parameter§

common to all elements ds.

Example 17 (Continued) Sampsor{1968 surveyed 18 novice monks in a monastery and asked
them to rank the other novices in terms of f@aciometric relationslike/dislike, esteem, personal
influence, and alignment with the monastic credo. Sampswigial analysis strongly suggests
the existence of tight factions among the novices, and teateuthat took place during his stay at
the monastery support his observations; briefly, novicemeffaction left the monastery or were
expelled over religious differences. The factions idesdifoy Sampson provide a credible gold

standard, to which the results are compared.

| consider Breiger’s collation of Sampson’s dairdiger et al. 1975. Briefly, for each of
the four sociometric relations above, only the top threeicd®of each novice were recorded
as positive relations—the edges in the graph. The unionlgiaaitive relations, disregarding

multiplicity as inHandcock et al(2007), is the starting point of our analysis. To assess model fit,

SNote thatp = 5 in the case of single membership. In fact, that impigs, ., = ¢
for any(p, ¢) pair.

g = 1 for some(g, h) pair,
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| use an approximation to BIC:
BIC =2 -logp(R) ~ 2 -logp(R|7, Z,d, B) — |, B| - log |R|,

where|d, B| is the number of hyper-parameters in the model, @ds the number of positive
relations observed—following argumentsHiandcock et al(2007). The approximate BIC value
suggests that the relations among monks in the monastelgdthy Sampson are best explained
by a model with three factions, independently of the numlblyper-parameters in the fitted ALB
models. In the left panel of FiguB21 show the approximate BIC for a model with a single hyper-
parameterq scalar. Hence | fixedd = 3 in subsequent analyses, which involved ALB models
with increasing degree of complexity. The right panel ofuf&3.2 shows the estimated faction-
to-faction block modelj, corresponds to a full model (i.e., no constraintsin This estimate
suggest that the Outcasts are an isolated faction, whemaggYTurksike members of the Loyal
Opposition, although the sentiment is not reciprocateguiéi3.3 investigates the the posterior
means of the mixed membership scotgz| k], for the 18 monks in the monastery & 0.058

scalar,B := I3). There is a panel for each monk, and the subscripts asedaiath the names of

-420F O

-430[
-440
-450
460

-4701 O

Approximate BIC

3
Number of Clusters Outcasts  Loyal Opposition ~ Young Turks

Figure 3.2: The approximate BIC (left panel) suggests tlhetioms among monks are best ex-
plained by a model with three factions. The faction-toifactestimated relational patterns (right
panel) suggest that the Outcasts are an isolated factiareat Young Turkkke members of the
Loyal Opposition, although the sentiment is not recipredat
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Figure 3.3: The posterior mixed membership scofie$or the 18 monks in the monastery. Each
panel correspond to a monk; tlieaxis measures the grade of membership, corresponding to the
Outcast (left bar), to the Young Turks (center bar), and &ltbyal Opposition (right bar), on the

X axis. The subscripts associated with the names of the magsgafg the order according to
which they left the monastery.

S

Figure 3.4: Original matrix of sociometric relations (Jefand estimated relations obtained by
thresholding the posterior expectatiof)s B 7, | R (center), and, 'B ¢,| R (right).
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Figure 3.5: Mixed membership vectors, s, plotted in the reference simplex. Marks correspond
to individual monks; the red circle marks correspond to aBAhodel with(B = I3, = 0.01),
whereas the blue triangle marks correspond to an ALB mod#l (@ := I3, & = 0.058); where

Ik is the K-dimensional identity matrix.

the monks specify the order according to which they left tlemastery, e.g., John left first. The
three factions on th& axis are the Outcast, the Young Turks , and the Loyal Oppwos(from
left to right); and theY axis measures the degree of membership of monks to factibram
these panels, the centrality of the role played by John armdg) Girst to leave the monastery, as
well as the uncertain affiliations of Romul, and Victor to ani extent, unequivocally emerge.
The mixed membership vectors,. s, provide us with low-dimensional representations of monks

Figure3.5 plots them in their natural space, that is, the(3-dimera)asimplex. Dots correspond
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to monks; the red circles were obtained by fixiBg= I anda = 0.01, whereas the blue triangles
correspond to fixing3 := I3, but estimatingy = 0.058. To compare the latent representation of
the monks obtained with ALB with the one presentedHaiidcock et a) 2007, Table 1), | mapped
the contour levels for their the estimated mixture of thregissiansflandcock et a).2007, Table

1) in the reference simplex—using the following transfotima,

The contour levels of such density in Figl®&suggest that our model and the latent space mixture

model lead to different structures and somewhat diffenaetrpretations.

Example 18 (Continued) The goal of the analysis here is to analyze proteins’ diviensetional
roles by analyzing their local and global patterns of intéca. The biochemical composition of
individual proteins make them suitable for carrying out eafic set of cellular operations, tunc-
tions Proteins typically carry out these functions as part dflstarotein complexe¥{ogan et al.
2006. There are many situations in which proteins are beliesadteract Alberts et al, 2002);
the main intuition behind our methodology is that pairs aftpin interact because they are part of
the same stable protein complex, i.e., co-location, or iseahey are part of interacting protein

complexes as they carry out compatible cellular operations

The Munich Institute for Protein Sequencing (MIPS) databass created in 1998 based on
evidence derived from a variety of experimental technighasdoes not include information from
high-throughput data set§leéwes et al. 2004). It contains about 8000 protein complex associ-
ations in yeast. We analyze a subset of this collection con@g 871 proteins, the interactions
amongst which were hand-curated. The institute also pesvédset of functional annotations, al-

ternative to the gene ontology (GO). These annotations i@@&ned in a tree, with 15 general
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Table 3.1: General functional categories in the MIPS treel, their relative popularity. In the
table we report the number of proteins that have at least wmgtibnal annotation in the general
categories in the left column. Counts refer to the subsetaff8oteins in yeast, which are part of
the hand-curated MIPS interaction network.

# Category Size
1 Metabolism 125
2 Energy 56
3 Cell cycle & DNA processing 162
4 Transcription (tRNA) 258
5 Protein synthesis 220
6 Protein fate 170
7 Cellular transportation 122
8 Cell rescue, defence & virulence 6
9 Interaction w/ cell. environment 18
10 Cellular regulation 37
11 Cellular other 78
12 Control of cell organization 36
13 Sub-cellular activities 789
14 Protein regulators 1
15 Transport facilitation 41

functions at the first level, 72 more specific functions atraarmediate level, and 255 annotations

at the the leaf level. In Tabl& 1we map the 871 proteins in our collections to the main fumastiof

the MIPS annotation tree; proteins in our sub-collectiovehabout2.4 functional annotations on
averagé. By mapping proteins to the 15 general functions, we obtai-difinensional representa-
tion for each protein. In Figurg.6each panel corresponds to a protein; the 15 functional cag=y

are ordered as in TabR1 on the X axis, whereas the presence or absence of the corresponding

functional annotation is displayed on tleaxis.

Protein-protein interactions (PPI) form the physical bdsi formation of complexes and path-
ways which carry out different biological processes. A neméf high-throughput experimental

approaches have been applied to determine the set of ititgy@coteins on a proteome-wide scale

5We note that the relative importance of functional categ®iin our sub-collection, in terms of the number of
proteins involved, is different from the relative importaof functional categories over the entire MIPS collection
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Figure 3.6: By cutting the MIPS annotation tree at the firgelave find the 15 general func-
tional categories in Tabld.1 By mapping proteins to the 15 general functions, we obtais-a

In the Figeaeh panel corresponds to a protein;
the 15 functional categories are displayed on haxis, whereas the presence or absence of the

corresponding functional annotation is displayed on¥thexis. The plots at the bottom zoom into

dimensional representation for each protein.
the panels corresponding to three example proteins.
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in yeast. These include the two-hybrid (Y2H) screens andsrspsctrometry methods. For exam-
ple, mass spectrometry is used to identify components dépraomplexes@avin et al, 2002

Ho et al, 2002. High-throughput methods, though, may miss complexdsatiganot present under
the given conditions. For example, tagging may disturb desmformation and weakly associated
components may dissociate and escape detection. Sttieticlels that encode information about
functional processes with high precision are then an eisé¢ool for carry outprobabilistic de-

noisingof biological signals from high-throughput experiments.

In previous work, we established the usefulness of the am&>of latent blocks model for
analyzing protein-protein interaction data. For examykeused the ALB for testing functional in-
teraction hypotheses and semi-supervised and unsupgestienation experimentairoldi et al.,
2005h. We then attempted to assess whether, and how much, foatifioelevant biological sig-
nal can be captured in by the ALB moddlifoldi et al., 20053. In summary, our findings show
that ALB identifies protein complexes whose member protaregightly interacting with one an-
other. The identifiable protein complexes correlate withftiilowing four categories of Tabl@ 1:
cell cycle & DNA processing, transcription, protein syrdlse and sub-cellular activities. The high
correlation of inferred protein complexes can be leverdgegredicting the presence of absence
of functional annotations, for example, by using a logistigression. However, there is not enough
signal in the data to independently predict annotationgherofunctional categories. The empiri-
cal Bayes estimates of the hyper-parameters that supese ttonclusions in the various types of
analyses are consisterdt;< 1 and small; and3 nearly block diagonal with two positive blocks
comprising the four identifiable protein complexes. Theswipus analyses fixed the number of
latent protein complexes to 15. Figuder displays few examples of predicted mixed membership
probabilities against the true annotations, giverestimated mappingf latent protein complexes
to functional categories. The latent protein complexesnatea-priori identifiable in our model.

To resolve this, we find mapping between latent complexedandions by minimizing the diver-
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Figure 3.7: Predicted mixed-membership probabilitieskeal, red lines) versus binary manually
curated functional annotations (solid, black lines) forxarmaple proteins. The identification of

latent groups to functions is estimated, and it is discugs€&tjure3.8.
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gence between trué and predicted marginal frequencies of membership. We ussdrtapping
to compare predicted versus known functional annotatifmrsall proteins. The best estimated

mapping is shown in Figurg.8.

Following-up on the hypothesis that the size of stable pmotemplex in Yeast is about 5
proteins on average, and skewed towards bigger complé&regdn et al. 2009, we explored
a richer space of models witk = 50,...,225. However, using approximate BIC to assess
model fit Handcock et a).2007) we found that the more parsimonious modgis = 50) provide
a better description of the observed interactions. This iEaconsistent with previous findings
(Airoldi et al., 2005h, and suggest that the interactions in the MIPS collectloneaencode a bi-
ological signal at a higher aggregation level than that gfecdic complexes. In order to explore
this hypothesis we considered an alternative annotatioanse to that of the Munich Institute for
Protein Sequencing; namely the Saccaromice Cervisiae dgiabase and gene ontology (GO)
(Ashburner et a).2000. Based on the GQWlyers et al.(2006 recently proposed a solid frame-
work to assess the functional content of biological datakiki@use of it, we measure the func-
tional content in the interactions encoded in an ALB modé¢hvii = 50, fitted using the nested
variational EM algorithm detailed in the Appendix. In Fig®.9, we measure the functional con-
tent in the posterior means,

E[R(p.q)=1]= %p'f? %q and E [ R(p,q)=1]= ggpqqlé _;m_q,
where positive interactions are obtained by thresholdmegexpectations. Figur@. 9 shows the
original MIPS collection as one of the most precisedxis) and most extensiveX( axis) source
of biologically relevant interactions available to daténelposterior means @ff;. ) and the esti-
mates of(«, B) provide a parsimonious representation for the MIPS catlectnd lead to precise

interaction estimates, however, in moderate amount (¢ lilue,— x line). The posterior means

“Evaluated on a small fraction of the interactions.
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Figure 3.8: We estimate the mapping of latent groups to fanst The two plots show the marginal
frequencies of membership of proteins to true functionst@mo) and to identified functions (top),
in the cross-validation experiment. The mapping is setetdanaximize the accuracy of the pre-
dictions on the training set, in the cross-validation expent, and to minimize the divergence
between marginal true and predicted frequencies if noitrgidata is available—see the text.
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Figure 3.9: In the top panel we measure the functional caofehe the MIPS collection of protein
interactions (yellow diamond), and compare it against opublished collections of interactions
and microarray data, and to the posterior estimates of ALBletss—computed as described in
the text. A breakdown of three estimated interaction netwdthe numbered points) into most
represented gene ontology categories is detailed in BaBle

of (Z—,Z) do not provide a parsimonious representation for the dathdascribe most of the
functional content of the MIPS collection with high preoisi(the dark blue;-+ line). A break-
down of three example interaction networks displayed irufg¢.9 into most represented gene
ontology categories is detailed in Tal3e€2 We investigate the correlations between data collec-
tions (rows) and a sample of gene ontology categories (am)inThe intensity of the square (red

is high) measures the area under the precision-recall dtowenore detail about these plots see

Figures 5-6 irMyers et al.(2009.

When applied to a sample of measurements on pairs of obfssixture of Latent Blocksimul-
taneously extracts information about (i) the mixed mentigrsf objects to latent aspects, and (ii)
the connectivity patterns among latent aspects, usingtachgariational EM algorithm. | found it
useful for revealing group membership in social networksyall as for describing and summa-

rizing the functional content of a protein interaction netky and | envision its use for de-noising
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Table 3.2: Breakdown of three example interaction networtGsmost represented gene ontology
categories. The digit in the first column refers to the nurabgroints in Figure&.9. The last two
columns quote the number of predicted, and possible paiesaich GO term.

# GO Term Description Pred. Tot.

1 GO0:0043285 Biopolymer catabolism 561 17020
1 GO0:0006366 Transcription from RNA polymerase Il promoter 341 36046

1 GO:0006412 Protein biosynthesis 281 299925
1 GO:0006260 DNA replication 196 5253

1 GO:0006461 Protein complex assembly 191 11175
1 GO0:0016568 Chromatin modification 172 15400
1 GO:0006473 Protein amino acid acetylation 91 666
1 GO:0006360 Transcription from RNA polymerase | promoter 8 7 378

1 GO:0042592 Homeostasis 78 5778

2 GO0:0043285 Biopolymer catabolism 631 17020
2 GO0:0006366 Transcription from RNA polymerase Il promoter 414 36046

2 G0:0016568 Chromatin modification 229 15400
2 GO0:0006260 DNA replication 226 5253

2 GO0:0006412 Protein biosynthesis 225 299925
2 G0:0045045 Secretory pathway 151 18915
2 GO0:0006793 Phosphorus metabolism 134 17391
2 GO0:0048193 Golgi vesicle transport 128 9180
2 GO0:0006352 Transcription initiation 121 1540
3 GO0:0006412 Protein biosynthesis 277 299925
3 GO0:0006461 Protein complex assembly 190 11175
3 G0:0009889 Regulation of biosynthesis 28 990
3 GO0:0051246 Regulation of protein metabolism 28 903
3 GO:0007046 Ribosome biogenesis 10 21528
3 GO0:0006512 Ubiquitin cycle 3 2211

new collection of interactions from high-throughput expents.

A recurring question, which bears relevance to mixed mesttemodels in general, is why

one does not necessarily want to integrate out the singleb®eship indicators+z)". , Z! ,

)in
the specifications above. There are some computationattasieethis but a practical issue that
argues against such marginalization is that we would oftee interpretable quantities that are

useful for making predictions, for de-noising new measwets, or for performing other tasks.
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&
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Figure 3.10: We investigate the correlations between dataations (rows) and a sample of gene
ontology categories (columns). The intensity of the sqaee is high) measures the area under
the precision-recall curve.

In fact, the posterior distributions of such quantitiesitgily carry substantive information about
elements of the application at hand. In the application ébgdn interaction networks, for example,

they encode the interaction-specific memberships of iddadi proteins to protein complexes.

There is a tight relationship between ALB and the latent spaocdels inHoff et al. (2002);
Handcock et al(2007). In the latent space models, the latent vectors are drasm fBaussian
distributions and the interaction data is drawn from a Ganswith meanr, 'I7,. In ALB, the
marginal probability of an interaction takes a similar forfp’ B7,, wherebB is the matrix of prob-
abilities of interactions for each pair of latent factiofrscontrast to the latent space model, the re-
lations can be modeled by an arbitrary distribution, in oodel. With binary relations a collection
of Bernoulli parameters can be used; with continuous alatia collection of Gaussian parameters

can be used. While more flexible, ALB does not subsume lapadesmodels; they make different

assumptions about the data. $tsndcock et al(2007) with discussionBlei and Fienberg2007,
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Airoldi, 2007) for more detalils.

3.2 Local Diffusion Potentials

Here | briefly situate in the context of this thesis some redewelopments in mathematics that
bear relevance to statistical network analysis. | wish smkhAnn B. Lee for carrying out the

calculations and for generous advice on the material pteddrere.

The main linkage between the mathematics of diffusicefdn and Lee2006 and statistical
network analysis is a notion of distance that measures theemivity between nodes through
a multiple-step multiple-path diffusion process on thepgraThis formulation depends on non-
observable, node-specific quantities, which | téogal diffusion potential Higher-order connec-
tivity patterns could be naturally incorporated into sttial models of graphs and networks in

diffusion spaceCoifman et al. 2005ab).

Example 19. Consider the diffusion of innovation among physicians isidby Coleman et al.
(1957. Doctor A suggests doctor B to try a new drug, who later sstgyis use to doctor C. In
a sense, the influence of doctor A indirectly extends to ddéet&uch mediated connections may
occur through multiple steps and multiple paths. Definingsséeshce metric that explicitly encodes
this enriched notion of connectivity, that is, the diffuspmtential specific to a doctor (to a node

in a graph), is the focus of this section.

3.2.1 Goals of the Analysis

An abstract framework to study diffusion has been introduzg Coifman et al.(2005ab) in the
context of high-dimensional data analysis and manifoldlieq. In such a framework nodes in a

graph are represented in terms of their multivariate attei,7,, € R? for eachn € N. A kernel
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function f (”"”—;””) , With a certain bandwidth, defines the local neighborhood®f, and it used
to compute weights of the edges to be imputed. This procedstdtsin a (fully connected) graph
among the nodes. Within this framework, a notion of distadmae been defined that controls the
influence of a each node on its neighbors, through a mulsf@p-multiple-path diffusion process

on the graph, at a global scaleafon et al, 2009.

Rather, for the purposes of this thesis, a grépbiven It is possible, however, to measure
distance between nodes through a multiple-step multipte-gdiffusion process on the graph by
defininglocal diffusion potentialsn the form of local scalesg,,, specific to nodes € N. Dis-
tances in the graph, based upon local diffusion potenttalsespond to Euclidean distances on

the lower dimensional manifold implicitly defined by the ghet

3.2.2 Technical Preliminaries

Consider a connected graph= (V. E), whereV is a set ofV vertices, and- is a set of undirected
edges. Edges are mapped to weights for i,5 € V. The weightsW = {w;;} satisfy the
following conditions: (i) symmetryiV’ = W7, (i) pointwise positivity,w;; > 0 for i, € V and
w;; > 0, and (iii) positive semi-definiteness. These conditiomslmarelaxed, and the methodology

extended, to cover the more general case of directed graphs.

Consider the spectral properties of the Markov chaiilonThe transition matrix” has a set

of left and right eigenvectors according to:
¢p P = \ppi and Py, = \pihy (3.5)

where the eigenvaluey = 1 > A\; > ... > Ay_; > 0. Furthermore, the left and right eigen-

vectors satisfy the biorthogonality relatieff v, = 45, wheredy, is Dirac’s delta function. For

8Explicitly defined byz;.; € R” in the formulation ofCoifman et al(2005ab).
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convenience, the eigenvectors are normalized with respéc¢ts, ando,, respectively, so that:

P2(i)
||¢k||%/¢o = ZZ ¢g(2 =1
lellz, = doii(Ddo(i) = L

(3.6)

It can be verified that, = 1, )y = 1, and thatp, is defined as in E¢8.11 Furthermore, it follows

that

N Oe(d)
Yr(i) = Sol0) (3.7)

fork = 0,1,...,N — 1 andi € V. Rewrite the transition probabilities(z, j) and the diffu-
sion metric in terms of these eigenvectors and eigenvaByefmserting the biorthogonal spectral

decomposition

i9) = MNb(i)or(5), (3.8)

k>0

into Eqg.3.10 and using orthonormalltE ¢3(” = 0y, it follows

D2 (n,mi tt) = 3 (Agoe(n) — Ay (m))?

k>0

K
~ N7 (A (n) — Ay (m)? (3.9)

k=1

Note that thek = 0 term does not appear in the sumdas= 1 andy = 1.
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3.2.3 The Main Result

The calculations above lead to a generalized diffusioradist between nodesandm according

to

D*(n,mstn, t) = (e () = pe, (1,13,

_ (ptn (nvj) — Ptm, (m’]))Z
B0 T E—

(3.10)
jev
where the scale parametersandt,, determine the local influence of nodesandm on their

neighbors, and the function
_ 4
Zkev di

is the stationary distribution of the Markov chain, ilen; ., p:(i, ) = ¢o(j). According to this

Po(4) (3.11)

metric, nodes: andm will be close,if they interact with the same nodes in the gr&ptFor an

undirected graph, such a situation occurs when there arg pahs connecting the two nodes.

The main points are the following:

e From Eq. 3.9, it is clear thatthe diffusion metric is a distance on the graph induced by a

one-parametric family of eigenmaps

A1 (n)

U, 0 Azw_z(m (3.12)

Ngi (n)

forn e V.

9The weightsl /¢, (j) penalize discrepancies on nodes of lower degree more tffaredices on neighboring nodes
of higher degree.
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o Effectively, we only need to keep the fir&t terms, where< < N, in the identity forD.
The accuracy of the approximation depends on the valu€,dhe speed of the decay of the
eigenvalued > \; > 0 (fori =1,2,..., N — 1), and the exponerit For a fixed accuracy,

a largert implies fewer terms in the sum.

In other words, Eq3.10ca be expressed as a Euclidean distance

D2(n,m;ty, ty) =~ | ¥y, (n) — Uy, (m)]? (3.13)

in a low-dimensional “diffusion space”. The coordinatesotlesn andm in this space are given

by a diffusion map at time scalés andt,,,, respectively.

In this chapter, | introduced stochastic block models ofedixnembership, which extend block
models Holland and Leinhardtl975 to include mixed-membership in a hierarchical Bayesian
framework. | presented summaries of two successful agmita of such models in the context
of social and protein interaction networlgiioldi et al., 2006¢d, 20078. | discussed similarities
and differences between stochastic block models of mixeahleeship and latent space models
(Hoff et al,, 2002 Handcock et a).2007 Airoldi, 2007 Blei and Fienberg2007. | concluded by
situating in the context of this thesis some recent devetgmin the mathematics of diffusion

that bear relevance to the proposed methodology for statistetwork analysis.
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Chapter 4

Complexity and Integration

In the previous chapter, | developed generative modelstaforks where the identity of each node
was the only attribute that was observed. In this chaptegyelbp Bayesian mixed-membership
models of objects’ attributes. | then develop models whaoh ©bjects are the nodes of a graph.
The resultingntegrated modelsan accommodate measurements on relations and attributdsi
ing objects of different types, along with the correspogdiats of latent variables, in a hierarchical
Bayesian framework. | describe a multivariate generabradf models of attributes and relations
that is amenable to theoretical analysis—to be pursuedturduvork. This modeling effort in-
forms a discussion of alternative strategies for integgatiomplex data. Two flavors of integration

strategies emerge that are best suited to suplesitriptiveandpredictiveanalyses.

4.1 Heavy-Tailed Attributes

In this section, | develop statistical models for estimgdtistent patterns from attribute data with
a heavy-tailed distribution. The notion obntagion i.e., the dependence among multiple occur-

rences of the same attribute is introduced to express \tygtrofiles induced by heavy tails.

103



4.1. HEAVY-TAILED ATTRIBUTES E.M. AIROLDI

Furthermore, contagion is a convenient analytical forsmalio characterize semantic themes such
asbiological context Model variants tailored to different properties of theadate explored, and
a general scheme for approximate posterior inference gepted, which is based on variational

methods.

Example 20. A fundamental problem in the serial analysis of gene expas$SAGE) data is
that of identifying temporal patterns of gene expressian,(latent distributions over a predeter-
mined sequence of epochs) that can help explain a biologroakss from a large pool of observed
temporal gene expression profildlgckshaw et a].2004 Cai et al, 2004). The set of latent ex-
pression patterns can then be used for suggesting hypatlaeskefurther analyses, or for making

predictions.

Example 21. A recent problem in text and natural language processinigas of identifying topics,
i.e., latent distributions over words in the vocabularyathest explain a collection of documents
(Minka and Lafferty2002 Blei et al, 2003 Erosheva et a).2004 Blei and Lafferty 2006§. The
set of topics provides a low-dimensional representatioeaxfh document and can be used for

organizing and browsing the collection of documents effitye

The description of the methodology in this section expltitsintuition developed in the bio-

logical context of Exampl&0.

From a methodological perspective, the task of identifyiatgnt temporal patterns is essen-
tially an allocation problem; observed gene expressiofilpsoneed be allocated to latent tempo-
ral patterns. The goal is to make inference on: (i) the nunobéatent patterns, (ii) a numerical
description of the patterns themselves, and (iii) the mixesbership of the observed gene ex-
pression profiles to latent patterns. This is an instanceefore general problem of allocating
observed sequences, i.e., longitudinal representatibolsjects in terms of an attribute, to latent
sequential patterns, where each observation is allowee tbeomeasurable manifestation of more

than one pattern. In the context of serial analysis of gempeession (SAGE)Cai et al.(2004)
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introduce a variant of{-means algorithm that minimizes a non-standard scoringtiom, which

combines the Chi-square statistic (to measure the strerigth-expression) with the Poisson dis-
tribution (to measure the likelihood of the expression lefegenes at each epoch). Approaches
based on clustering methods, however, constrain the esipreevel of a gene at each epoch to
follow the expression profile typical of a single pattern. oiier words, such approaches entail

uniquemembership of observations to patterns, rather thexedmembership.

Models of mixed membership have been successfully appili¢ide context of different prob-
lems (e.g.Pritchard et al.200Q Rosenberg et 812002 Xing et al, 2003a Minka and Lafferty
2002 Blei et al, 2003 Griffiths and Steyver2004 Buntine and Jakulir2004 Blei and Lafferty
2006. Such models, however, fall short of accommodating thegmat variability profiles of
observed attributes, jeopardizing the accuracy and tleepgrétability of the inferences. Existing
models appear to be unsuitable for the biological appboato the SAGE data in part because
of the assumption ahdependencgeas discussed in Secti@gnl.l Below, | shall refer to popular

models based on such an assumptiomedspendence models

4.1.1 The Data and Goals of the Analysis

Serial analysis of gene expression (SAGE) is a technologtyghantitatively measure the copy
numbers of MRNA transcripts, simultaneously for a large benof genes in a biological sample,
such as a cell population or a tissiéegculescu et g1.1995. This technology is used to aid

the discovery of gene expression profiles that charactéureetional processes of interest, and to

compare and catalog new genes.

A SAGE experiment begins by sampling a total®ftranscripts at random from a biological
sample under some specific condition (e.g., a cell cycleejtagd then usd” gene-specific tags to

probe the existence of possible genes in each oBttranscripts. LetX;, = (Xy1, Xio, ..., Xpn)?,
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such thatX,, € {0,1} and)_  X,, = 1, be aunit-baseindicator vector recording the probing
results for transcriph (i.e., X, = 1 indicates that gene is present on transcrip). The number
of MRNA copies of a gene, denoted byy,,, and the vector of copy counts for all genes (i.e., an

expression profile)y = (Y1, Y5, ..., Yy)T, can then be simply expressed as:

B

Vo= X, Y=
b=1

Xb. (4.1)

o
||Mm
I

Note thatY,’s are each binomial distributed, controlled by gene-dpeparameterg;.y each
captures the probability of occurrence of gene on a randanstript, and a common sample size
parameterB. When multiple cellular conditions are of interest, e.gage sequences in a cell
cycle, an additional index will denote the specific conditipe.g.Y?, for measurements obtained

at timet.

The main random quantities of interest are: the obseges@ expression levels’s, for then-
th gene at theé-th epoch; the observegkne expression profilési’s, for then-th gene; and the
latentgene expression patterns.g.,pi " or A7, for thek-th theme, as defined iRritchard et al.
(2000 and in the basic model of SectioAsl.2 respectively. Technically, the latent gene expres-
sion patterns are multivariate emission probabilitiestifier gene expression levels, conditionally
on theactivemembership of that gene. The notation | adopt puts forwagdét of parameters un-
derlying a specific distribution, e.g\}*7' is a vector of Poisson rates, which control the expression
levels of those genes that are expressed according tothgattern. For example, whenever the

n-th gene is expressed according to theh pattern | shall write

YT~ Pois(\y), ..., Pois(\L) | .

Analytical Justifications of Contagion Occurrences of the same gene under single and multiple

conditions are not independent of one another, becausatheyampled from a cell population or
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a tissue that provides a specifiological context Contagion processes provide a useful analytical
mechanism to capture this notion. The two proposed gemeratddels for analyzing temporal
gene expression profilgd 7}V | that instantiate the contagion process, are based on ts&oRo
and the negative-binomial distributions of integer couatsnultiple levels. For a review of various
parameterizations of the negative-binomial and the cpaeding estimators refer iroldi et al.

(20059, Johnson et all1992 andKadane et al(2008.

These choices were motivated by few main considerationg Pidisson distribution offers a
computational advantage over the binomial distributidncain be safely assumed that the gene-
specific probabilities of occurrengg.y are very small, given that there is a large amount of tran-
scripts present in a specific biological sample. Consedyyenis reasonable as well as computa-
tionally efficient to approximate the binomial probabésiwith Poisson probabilities. The sam-
pling algorithms underlying both the Poisson and negatim@mial distributions lead to marginal
and conditiondl distributions for the gene expression levels with dese@aibperties. Assum-
ing Poisson or negative-binomial conditional emissionbgatalities relaxes the assumption that,
in the (sequential) sampling process described in Sedtibrl, subsequent observed instances
of the same gene tag are independent. In fact, such indepesndeads to binomial conditional
emission probabilitiesRritchard et a].2000. The dependence among different observations of
the same gene tag at the conditional level is one aspect ofdtien of contagion. Another as-
pect of contagion is found at the marginal level. Recall idatlly patterns can be interpreted
asbiological or functional contextsFollowing the intuition that each gene may be expressed un-
der multiple biological contexts to a different degree, pnebability of observed gene expression
levels,Y!, is modeled as a mixture of conditional emission probaéslitwhere the gene-specific
mixture weights given by the mixed membership vectdys,are constant over time (or across
experimental conditions). The mixing leads to marginatritbations that are more skewed than

the corresponding conditional distributions and this s dbntagion effecbne is most likely to

1Conditionally on theactivemembership.
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encounter in the literature (e.g., s8enon 1955. For example, in the case where the conditional
probabilities are Poisson, their mixing would increasevigability of the expression levels. A
formal model of contagion that encodes this intuition isrikgative-binomial model, which arises
as an infinite Gamma mixture of Poisson distributions. Thageiments support our distribu-
tional choices. Furthermore, the marginal distributidred Encode contagion fit well the observed

expression levels.

To summarize, contagion processes are the result of la&gularities present in structured data,
such as the SAGE profiles under study. The fact that genes maygressed in multiple biologi-
cal contexts implies a hierarchical mixture of emissiongatalities, which ultimately leads to the
over-dispersion of gene expression levels. Although teeoed characteristic of contagion pro-
cesses is more common in the literature, there is an subith foonotice in latent aspect models
that feature independence of subsequent observed instahttee same gene tagiitchard et al.
200Q Minka and Lafferty 2002 Blei et al, 2003. Specifically, if themes are modeled as multi-
nomial distributions, then Dirichlet distributed mixingsvghts will not alter the mean-to-variance
ratio of the marginal distribution, which is still multinaal. Rather, the main effect of mixing is

an increased variability.

Empirical Evidence The data set that motivates this modeling effort is the setaidise retinal
SAGE libraries analyzed i€ai et al.(2004. The raw mouse retinal data consists of 10 SAGE
libraries (38,818 unique genes that appeared more thaa twtbe sample) from developing retina
taken at 2-day intervals, ranging from embryonic day to patstl day, and adult, for total of 10
epochs Blackshaw et a).2004). Of the 38,818 genes, 1,467 that appeared more than 20 itimes
at least one of the 10 libraries were selected. These 1,4t85geere purported as the potentially
most biologically relevant because of their high frequenfoyccurrence. The data analyzed in this
paper consists of the pool of observed expression prdfilésy?, ..., Y/19) for the 1,467 selected

genes, measured at ten epochs during the development pBeéate fitting the models, | tested
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Table 4.1: Methods-of-Moments estimates of negative+niabparameters for gene expression
levels in mouse retinal cells of at 10 different stages oktligymentCai et al.(2004). A discussion

of the estimators is given iAiroldi et al. (20059.

vvar.

Epoch mean var.  thean o £
1 30.1172 150.8648 2.2381 11.1783.3655 4.30006t 0.2155
2 26.5542 163.8892 2.4843 9.85140.4075 6.1024 0.3304
3 28.1718 155.4820 2.3493 10.4516.2936 2.9376+ 0.1448
4 31.5446 204.2503 2.5446 11.7029.3267 3.259H 0.1588
5 26.0307 94.4013 1.9043 9.65#20.4154 6.4720t 0.3562
6 26.6489 82.0171 1.7543 9.88660.2118 1.5748t 0.0795
7 27.3122 82.0405 1.7331 10.132/0.2491 2.1565 0.1066
8 25.1990 53.6102 1.4586 9.34870.2637 2.6407 0.1319
9 27.1513 89.7169 1.8178 10.07300.4472 7.2014+ 0.4008
10 20.8160 81.2509 1.9757 7.72280.5975 16.895% 1.3156

the distributional assumptions discussed in Sectidnlon the SAGE data at hand.

Table 4.1 reports summary statistics and estimates for the neghin@mial parameters de-
scribed inAiroldi et al. (20059. The exploratory data analysis confirms the expected diggrersion
of the gene counts, entailed by timéxture of Poisson distributioresssumption. Moreover, the esti-
mates of the extra-Poissonness parameéee all positivé with very high probability, as indicated
by a quick inspection of the corresponding standard denatiLastly, | note that the log transfor-
mation¢ = log(1 + 9) is effective in reducing the heavy tail of the distributiohndo Thus, it is

preferable to work on thé scale, where a simple prior is sensible.

In conclusion, the SAGE data analyzed here are over-disger®., variance- mean. Thus
models that treat the random variables:?} as Bernoulli processes (e.§ritchard et a].200Q
Rosenberg et 312002 are not appropriate for the SAGE data at hand. Such an assump
leads to clustering models based on Multinomial latentgpatt and binomial emission probabil-
ities for feature countsBlei et al, 2003 Griffiths and Steyver2004 Buntine and Jakulir2004

Blei and Lafferty 2006, which are not warranted in this context.

°Recall that ag — 0 the negative-binomial density degenerates into a Poissosity.
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Figure 4.1: Graphical representation of the generativegsses of contagion based on the Pois-
son (top left) and negative-binomial sampling schemes. répeesentation for the processes of
contagion based on the Poisson sampling scheme for the ama4models are easily obtained,
by removing the part of the graphical models depending.oim fact, recall thav is the extra-
Poissonness parameter, and as 0 the negative-binomial density converges to the corresipgnd
Poisson limit. Sedohnson et al1992 for more details.

4.1.2 Model Specifications

In this section, | fully specify the two hierarchical Bay&sigenerative processes for allocating
SAGE profiles to temporal expression patterns in an unsigeghfashion. These models cap-
ture biological contextthrough the notion of contagion. Recall that the obsermsticonsist of
sequences of count¥’!, Y2 ... YT) that measure the abundances ofith&h gene in the target
cell or tissue across epochs 1 thoufh The models introduced below need the following two
assumptions: (i) a fixed numbek], of latent expression profiles exists; (ii) genes are exyaes

under different profiles to different degrees (mixed mershig).

Poisson Generative Process The first generative process is based on the Dirichlet anssBoi
distributions. There are four flavors of the Dirichlet-Pmia generative process: basic (bDiP),

normalized (nDiP), conditional (cDiP), and smoothed (9DiP
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Thebasicmodel explicitly posits thenixed-membershipf genes to latent patterns by associat-
ing each gene with a Dirichlet vector of probabilitiés, The observed expression profitd? of

then-th gene, assuming latent expression profiles, is generated as follows.

1. Sampléd,, ~ Dirichlet k ()
2. Foreachepoch=1,...,T

2.1. Samplez, ~ Multinomial (6,,1)

2.2. Sample)’, ~ Poisson (Ay|zL, = 1).

The genes are the sampling units in SAGE experiments, antdlevolume of their expres-
sions often vary over time. Recoverieglibrated expression profiles that do not depend on the
total expression volume is desirable. To this extent, |fhginormalizedmodel, which rescales
the samples (i.e., the genes) according to their differeesqthe total expression volumes), and
ultimately improves the estimates. In the basic model, tagrimA = {\;} contains the rates
that govern the expression level of gene§ alifferent epochs for each of th€ different latent
profiles. In the normalized model, the expected expresswel lof then-th gene at time for

profile k is written as follows,

)\tk = Wn * Uik, (42)

wherew,, is scalar and observed, and denotes the total expressiehdethe n-th gene as a
multiple of a fixed total expression levélused as a reference expression level. This new parameter
(5 may a fixed pre-determined value, estimated via, e.g., étapBayes Carlin and Louis2005,

or given a distribution as part of a full Bayesian analysisdldi et al., 20063.

Note 1. In both the basic and the normalized models above, the roWveeqiarameter matrices
andu control the rates at which genes are expressed. In particdlaand;.,,, encode the expected
expression level of genes at timi@r profile k. Since profiles are by definition not observable, none

of these parameters can be estimated directly from the data.
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Rows of the normalized rate matrikare reparameterized with the sum/ratio parameterization,

i.e., for every epoch the following transformation is applied

(,Ut1, M2y - - - aMtK) — (Ut, Pi1s P2y - - - 7,0tK)> (4-3)

where the sum parameter := Zsz1 1y, the ratio parameters,, := ‘;—tf and the constraint that
Zle puw. = 1 makes the ratio parametey; redundant for each This reparameterization leads
to the conditionalmodel, where the sum parametéss, o, ..., o) are directly estimable from
the data, and inference can be can carried out conditiopallthem. This is possible since the
parameters.r encode the total normalized expression levels at tifl@um of the expression
levels over theK latent patterns), which is an observable quantity as it cm¢glepend on the
latent profiles. Conditioning on the MLEs for the total exgsi®n parameters,, leads to a new
allocation problem where the differential expression Ilewt genes under th& profiles needs be
inferred. In other words, the total expression level at daole ¢t needs be allocated among the

latent patterns, given a constraint on their sum and a dasthate ob,.

Lastly, I introduce thesmoothedmodel, which posits a prior for the differential expression
rate parameters to smooth their estimates. In the smootlogélnhassume that the differential
expression levels are sampled

p: . ~ Dirichlet i (3)

for each epochh = 1,2,...,T. See Figuret.1 In principle, it is possible to posit a prior distri-
bution on the total expression rate parameters as well. & brialysis of the observed total rates
suggests that it is appropriate to apply a logarithmic fiansation on them to stabilize the vari-
ability, and one can introduce a Gaussian prior on the toansdd rates; however, an inspection
of the total ratesr; over time (see Tabld.l) suggests that some other phenomenon is possibly

going on, which leads to a decreasing occurrence of the garthe SAGE libraries. Therefore
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the observed total rates are used to inform our inferenaestdyi, as in the conditional model.
Smoothing the overall ratgsr,;, } would impose a model on data that cannot be justified, since it
is not clear why the overall rates are declining. This wodstsome doubts on the interpretability

of the inferences such a model would lead to.

Summarizing, the Dirichlet-Poisson generative processgsses a few advantages: (i) the sam-
pling scheme encodes contagion in the sense that multiple@nces of the same gene tag at the
same epoch depend on one another, given their active memyets a specific latent expres-
sion pattern; (ii) the sampling scheme arises naturallyAGE biological experiments discussed
in Section4.1.%, (iif) computing Poisson probabilities is more efficienathcomputing binomial

probabilities, since binomial coefficients need not be @aisd.

Negative-Binomial Generative Process The generative process of contagion based on the neg-
ative-binomial sampling scheme is similar in spirit to threypous one based on the Poisson sam-
pling scheme. A formal treatment of the models is giveAiroldi et al. (20059. Intuitively, the
negative-binomial distribution has two parameters thatrad mean and variance; furthermore,
its variance is always greater than its mean—a useful prppleat replicates the observed over-
dispersion of gene expression levels. The negative-bialoteinsity can be written as a Poisson

density with an extra paramet&that controls the amount of extra-Poisson variability. §hu

Dyl + k) (wad)
yﬁl'F(/{t) (]. + wnét)(y3+“t) ’

NB (yfz ‘ wn,utawnét) =

wherek,; := g—: for convenience of notation. In the normalized model,. } are the profile-specific
Poisson rates anfh,, } are profile-specific extra-Poissonness parameters. Thitmoral model

then follows from the application of the sum/ratio parametgion (see Equatiof.3) to both sets
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of parameters

(Mt1,Mt2> e aMtK) — (Utaptlapt27 ce ,PtK)

(6t176t27"'76tK) — (gtvlrltlant27"'7lrlt[()'

Lastly, the smoothed model imposes probabilistic constsadon both the differential expression
levels and the differential extra-Poissonness paraméte@ssuming that they are independent

samples from two Dirichlet distributions with distinct setf underlying constants,
pi . ~ Dirichlet i (8) and 1y . ~ Dirichlet i (),

foreach epochh=1,2,...,7T. See Figurel.L

4.1.3 Estimation and Inference

In order to obtain the posterior for the latent variables,

p ({0 | o Y )=
({0 2T (T | e (TS )

p ({yhTH o (ATHE ) ’

(4.4)

one needs to evaluate the likelihood in Expresdighwhich is given by an integral with no closed
form solution—the denominator. Thus | develop a mean-figidraximation to the posterior,
which involves the substitution of an integrable lower badaor the likelihood. The mean-field
approximation involves positing a simple distributignover the latent variables, which depends
upon an extra set of (variational) free parametérs, o271} _ in this case. The free parame-
ters are then set to minimize the Kullback-Leibler diveiggebetween the true and approximate

posteriors. This is equivalent to maximizing a lower bouodthe likelihood within each E-step,
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over the free parameters, and then compute pseudo-expasthir the latent variables using the
maximized lower bound. The overall inference algorithm Maaational EM scheme. At each
iteration, the EM algorithm employs the mean-field appradion to carry out the E-step (just
discussed above) and then employs a regular M-step, whemndximum likelihood estimates
of the model parameters, e.gx, {A\:7})) for the basic model, are updated by maximizing the
lower bound for the likelihood, over such parameters. Tiwsesteps are iterated till convergence

of the lower-bound for the likelihood.

The variational EM scheme just described practically figtes into a coordinate ascent algo-
rithm, where parameters are naturally organized into leste¥ith similar semantics. The parame-

ter updates corresponding to the model variants considdredke are summarized in Table2

A General Bayesian Formalism for Latent Aspects Analysis The variational inference scheme
developed for the two models of counts is actually quite ganén fact, the free parameter updates
(that are used to maximize the lower bound for the likelihaatthin each E-step) take a generic
form applicable to all different conditional emission patliity functions considered above, e.g.,
Table4.2 Furthermore, for generic conditional emission probébaip(y.|s;) for all (n,t, k),

with parameter sef3.7}5_, the following general free parameter updates can be used

¢ZtkO<T'p(yHﬁ;i),

whereY := ¢falloefnil as in Tabled.2 The updates for;, = ay + Y, ¢ni remain unchanged.

The generality of the approximate E-step in latent aspetlysais that feature one latent group
indicator, 2!, for each gene-epoch pdin, t) is due the specific hierarchical formulation of our
models. Such a formulation posits exchangeable measutsmmeifieatures, e.g., gene expression
levels at each epoch. Different conditional emission pbdliges only lead to different estimators

for the corresponding parametef{g; }£_, in the M-step.
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Table 4.2: The table quotes the parsimonious mean-fieldoappation for the various mod-
els. The parsimonious mean-field approximation posits atent expression profile indicator
z for each (gene,epoch) pair. Note that:= efdlloefl and Po, NB, are short forPoisson,
and Negative- Binomial, respectvely* Alternatively use the Method of Moments described in
Airoldi et al. (20059 pretending to observe pseudo coufig, - v} as the expression levels of
then-th gene according to thie-th latent theme.

Poisson Negative-Binomial
Basic vl =i+ >, duk

ik o< 1 PO(?J;‘)\tkz)
)\* — Z ¢ntkyn
th

Zn d)ntk
a;, with Newton-Raphson
Norm. vy, = g + >, Ok Vi = Qi+ D, Gtk
tkOCT Po(yf@‘wn,utk) tkOCT NB(yn}wn,utk)
Z (z)ntkyn En d)ntkyn
Mtk o Z (Z)ntkwn Mtk o Z d)ntkwn
0 = L-BFGS **
a;, with Newton-Raphson a;, with Newton-Raphson
Cond. v, =ap+ D, Puik Vi = 0+ D, Ok
ik X T PO(yn‘wnUtPtk) ZtkOCT'NB(yHWnUtPtk)
> Pkl o >, Pntklh
ptk o E PrtkWnot ptk o Zn Pntkwnot
Ny, = L-BFGS **
a;, with Newton-Raphson a;, with Newton-Raphson

Related Work There is a simple connection between the algorithms deedldre and the
PoissonC and PoissonL algorithms introducedday et al.(2004. In the problem at hand the
goal is to allocate the observed temporal expression psdfiid?}¥_, into, say,K patterns or

clusters. Recall that th&-means unsupervised clustering algorithm searche& foreansm.x

that minimize

1 &S 2
MSE=5 > > T(w™ k) [lw™ —ml

k=1 n=1

That is, the meansu,. are the centers ok clusters in the sense of Euclidean norm. The Pois-

sonC and PoissonL algorithms introduced®si et al.(2004) substitute the Euclidean norm in the
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equation with the chi-squared score,

respectively. The normalized model based on the Poisstribdison is an extension of the Pois-
sonL algorithm, where Dirichlet distributed mixed-mendiep vectors are introduced,,, not
known in advance. In the PoissonL algorithm the mixed-mesibp vectors),, are known, i.e.,
for then-th gene it follows that

1 if k=j,

enk -

0 otherwise

wherej,, = arg min { L(n, k) kell,K] } This extension is similar in spirit to that introduced

by Gaussian mixture to regul&f-means Blei and Fienberg2007). In fact,
0, = Pr ( cluster = k ‘ data, parameters ) )

Note that introducing latent Dirichlet distributed mixetembership vectord,,, ties together all
the data in the inference task. This has the beneficial effiecducing the variability of pattern-
specific parameters since all the gene counts are used é@ndeptly of which pattern they express
the most) in estimating each such parameters. Such an ieqpev in the estimates is expected
James and Ste(19617). Our basic Poisson model is similar to thaG#nny(2004). For a technical

survey of related latent aspects models in the context ofli@a analysis se@untine and Jakulin
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Example 4.1 (Continued) Contagion induces a non-trivial difference in the geneeapro-
cess with respect to thedependence modéPritchard et al.200Q Minka and Lafferty 2002
Blei et al, 2003 that has far reaching implications for the analysis of d&ar example, models
of contagion provide a better fit for data in biological apptions such as SAGE by providing a
realistic mean-to-variance marginal ratio. A better fitfdselecovering more precise mixed mem-
berships of genes to patterns, as well as finding cleanerahexpression patterns when com-

pared to those found by independence models. This genstad is explored further in Section

6.2.1
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Figure 4.2: Gene expression themes learned from mousalr8#GE using conditional DiP.
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Recall that the mouse retinal SAGE libraries analyzedanet al.(2004) contain 38,818 unique
genes for total of 10 epochs. At first, | perform model setethy means of a five-fold cross val-
idation scheme, to estimate the plausible number of laterhées that best explain the data. The
held-out likelihood peaked at 15 themes for cDiP, and 10Herihdependence model. Figute
shows the 15 gene expression patterns inferred using thitiooral Poisson model (cDIP). The
variance of each pattern is not shown—the variances are albtbiat the variance-bars are masked
by the dot symbol in our plots. Notably, the magnitude of teklfout likelihood for cDiP is about
ten times larger (on the log scale) than that for the indepeoel model, suggesting a better over-
all fit of cDIP to the data. Furthermore, the correspondingadimembership estimat¢8,} are
more sharply peaked; this result holds in general for ovgpratsed data sets. See Fig6r2 for
an example. The result is indirectly supported by the esémaf Dirichlet hyper-parameter as
well, & rpaep = 1.355 versusap;p = 0.066. The patterns (or clusters) shown in Figdr@ indeed
lead to reasonable predictions of mouse retinal gene fumgtiFor example, a preliminary biolog-
ical validation of the patterns inferred using cDiP basedi@enGO annotation shows correlation
between the latent patterns and gene functions such asrpbeptors and rhodospin, i.e., genes
with similar functional annotations tend to fall into thexeapattern. An in-depth analysis of the

biological significance of the inferred patterns is givesegthere Airoldi et al., 20064).

Modeling Choices and Inference In problems where attributes co-occur frequently (e.gaia p
of genes can be present on many transcripts), the commahtjains sought after by positing
models that rely on unrealistic assumptions are seldoneaetii Applications to problems that
arise in computational biology, e.g., SAGE and microarratadare one such case. Probabilistic
models that replicate salient features of the data typidedid to better inferences on latent quan-
tities of interest, e.g., the latent temporal patterns airiggle20. In the models introduced in this
section, the salient features of interest arerntaginal variability and the notion otontagion

The inference suggests that the inferred latent patterm®eanterpreted as temporal expression
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patterns that are typical of fairly distinfttnctional biological contexts-the desired outcome. This
contrasts the poorly interpretable results obtained viighindependence model, and makes a good
case for modeling choices that “let the data tell their stofyollowing these thoughts, model
variants tailored to different properties of biologicakalhave been introduced, and the general

inference scheme for posterior inference has been derived.

Concluding, the estimates the proposed models providehampar than those entailed by ex-
istent methods based on stronger independence assumjtitims context of the SAGE analysis.
This demonstrates the feasibility of a promising hierazahBayesian formalism for soft clustering

and latent aspect analysis.

4.2 Multivariate Model Specifications

Here | present a multivariate generalization of the hidrigad models of mixed membership for

attributes and relations.

4.2.1 Attributes: Hierarchical Bayesian Models of Mixed Manbership

There are a number of earlier instances of mixed-membersbiels that have appeared in the
scientific literature (e.g., séerosheva and Fienberg005. A general formulation characterizes

the models of mixed-membership in terms of assumptionsuatiévels Erosheva et a12004).

Assumption 1 (Population Level) There areK classes or sub-populations in the population of
interest andJ/ distinct characteristics. Denote bf(x,,;|5;,) the probability distribution ofj-th
response variable in the-th sub-population for the-th subject, wheres;,, is a vector of relevant
parametersp € [1, N], j € [1, J], andk € [1, K]. Within a subpopulation, the observed responses

are assumed to be independent across subjects and chasticter
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N Models of text and references

Figure 4.3: Left: A graphical representation of hierarehi®ayesian models of mixed-
membership.  Right: Models of text and references used sgaper. Specifically, replicates
of variables{z], 2} are paired with latent variablegs], 27} that indicate which latent aspects
informs the parameters underlying each individual repéicd he parametric and non-parametric
version of the error models for the label discussed in therefer to the specification ab,—a
Dirichlet distribution versus a Dirichlet process, respety.

Assumption 2(Subject Level) The components of the mixed-membership végter (0,1, . . ., Onx])’
represent the membership of the/ subject to the various sub-populatioh3he distribution of

the observed responsg; given the individual membership scorgs is then

K
k=1

Conditional on the mixed-membership scores, the respoarsablesz,,; are independent of one

another, and independent across subjects.

Assumption 3 (Latent Variable Level) The mixed-membership vectofis,y, are independent re-
alizations of a latent random quantity with distributi@h,, parameterized by vector of underlying

constantsy. The probability of observing,,;, given the parameters, is then

K
Pr (xnj|a76> = / <Z en[k}f(xnj‘ﬁjk)> Da(d‘9> (46)
k=1

3] denote components of a vectay with vy[i]» and the entries of a matrix,, with m,, ;.
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Assumption 4 (Sampling Scheme Level)rhe R independent replications of thé distinct re-
sponse variables corresponding to thh subject are independent of one another. The probability

of observing{z7,,..., 2" ;}' | given the parameters, is then

nls - -

Pr <{x:zlv Tt nJ}r 1|Oé 6 / <HHZen[k n_]‘/gjk > (d&) (47)

j=1lr=1 k=1

The number of observed response variables is not necesiagilsame across subjects, i.é.=
J,. Likewise, the number of replications is not necessarigysame across subjects and response

variables, i.e.R = R,;.

Example 22 (Latent Dirichlet Allocation) The general formulation encompasses popular data
mining models such as the latent Dirichlet allocation mod&A) for use in the analysis of sci-
entific publications Minka and Lafferty 2002 Blei et al, 2003. Consider a collection of docu-
ments; sub-populations correspond to latent topics, irddyyk; subjects correspond to “docu-
ments,” indexed by; J = 1, i.e., there is only one response variable that encodeshwhword”

in the vocabulary is chosen to fill a position in a text of kndamgth, so thaj is omitted; positions

in the text correspond to replicates, and we have a diffenembber of them for each document,
i.e. we observer, positions filled with words in the-th document. The model assumes that
each position in a document is filled with a word that expressapecific topic, so that distinct
instances of the same word may be expression of differeitstofn order to do so, an explicit
indicator variables:? is introduced for each observed position in each documemtiwndicates
the topic that expresses the word in such position. Theium¢{x” |5;) is given by the probability
Pr (z], = 1|2 = k), which is specified a8/ultinomial (5, 1), wheregy is a random vector the
size of the vocabulary, say, andZX:1 Bk = 1. A mixed-membership vectéy is associated to
then-th document, which encode the topic proportions that ultilyatéorm the choice of words
in that document, and it is distributed according to a Didiehdistribution, which specifie®,,.

Equation4.8is obtained by integrating out the topic indicator variabig at the word level—the
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latent indicatorsz] are distributed according to &/ ultinomial (0,,1).

Example 23(Grade of Membership)The Grade of Membership model (GoM) is another specific
model that can be cast in terms of mixed-membership. Thiglmas first introduced by Wood-
bury in the 1970s in the context of medical diagndfsodbury et al(1978 and was developed
further and elaborated upon in a series of papers anilianton et al.(1994. Erosheva2002
reformulated the GoM model according to the specificationSextion4.2.1 Consider disabil-
ity survey data collected for the National Long Term Carev8yr there are no replications, i.e.,
R, = 1, but several attributes of each american senior are recdyde., / = 16 daily activi-
ties. Furthermore, the scalar parametgy; is the probability of being disabled on the activity
for a member of latent patterh, that is, 3;, = P(z; = 1|6, = 1). Dealing with binary data
(individuals are either disabled or healthy), the probatyidistribution f(z;|3;;) is specified by
a Bernoulli distribution with parametes;,. Therefore, a member of latent profilek is disabled
on the activity;, i.e.,z,; = 1, with probability 3;;. In other words, introducing a profile indicator
variable z,,;, we haveP(z,; = 1|z,; = k) = ;. Each individual: is characterized by a vector
of membership scores, = (0,.1,...,0,x). In this model the membership scorgsfollow the
distribution D,, (for example a Dirichlet distribution with parameter = (aq, ..., ax, ..., ak).
Note that the ratiay,/ >, oy, represents the proportion of the population that “belonge’the

k-th latent pattern.

Note 2 (Related Work) It is possible to situate this formulation in a familiar lagchpe by dis-
cussing similarities with other unsupervised data miningghnods. Recall that the problem is to
group observations abou¥ subjects{x'#}V_ into, say, K groups. K-means clustering, for

example, searches fdf centroidsm,.x that minimize
1 KX 2
- 1 Ry, L:Ry,
MSE =< > % T (a ek) |la —mi",
k=1 n=1
where the centroids:,.x are centers of respective clusters in the sense of Euclidean. Subjects
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have single group membership ii+rmeans. In the mixture of Gaussians model, a popular model
that extendsi(-means, thel/ SE scoring criterion is substituted by the likelihodd,, , ¢(n, k).
The unknown mixed-membership vectreelax the single membership implicit id-means. The
connection is given by the fact that the mixed-memberslursy,,, i.e., the class abundances,
have a specific form ik-means, i.e., for the-th subject it follows that

1 ifk=j,

Onir) =

0 otherwise
wherej, = argmin { {(n, k) : k € [1, K] }. In general, the unknown mixed-membership vectors
0,, are independent samples fralm,. Furthermore, in the general formulation of Sectibr2.1it

is possible to have more complicated likelihood structures

4.2.2 Relations: Stochastic Block Models of Mixed Membersp

The class of stochastic block models of mixed-membershagrich class of models that is instru-
mental for thinking about the scientific problems outlinedBiection3.1and amenable to theoret-
ical analysis. A general formulation characterizes stetibdlock models of mixed-membership

in terms of assumptions at four levels, as follov#¢ldi et al., 20069.

Assumption 5 (Population Level) There areK classes or sub-populations in the population of
interest. Denote by (y,...|n,,) the probability distribution of thg-th response graph at the pair
of nodes(n, m), where then-th node is in theh-th sub-population, then-th node is in thek-th
sub-population, and,, contains the relevant parameters. The indiees: run in V, and the
indicesg, h runin [1, K. Within sub-population pairs, the observed paired respsrase assumed

independent.

Assumption 6 (Node Level) The components of the membership veétpor= (0,1, ...,0,x)’
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encodes the mixed-membership of th& node to the various sub-populations. The distribution
of the observed responsge,,,, given the relevant, node-specific membership scdtgsf,,), is

then

K
Pr (yjnmwnv Oy 1) = Z engf(yjnmm;}h)emh' (4.8)
g,h=1

Conditional on the mixed-membership scores, the respotgesg;,,,, are independent of one

another, both across distinct graphs and pairs of nodes.

Assumption 7 (Latent Variable Level) The mixed-membership vectors,y, are independent
realizations of a latent random quantity with distributiéhn,, parameterized by a vector of under-

lying constantsy. The probability of observing,,,, given the parameters, is then

Pr (Yjnm|a,n) / ( Z Ong f (Yjnm|Mgn) mh) D, (d0). (4.9)

g,h=1

Assumption 8 (Sampling Scheme Level)rhe R independent replications of thé distinct re-
sponse graphs are independent of one another. The protyabiilobserving the whole collection

of graphs{y,... }, given the parameters, is then given by the following equati

J N K

e (o) [e0)= [ ( TITTL 3 0f it ) D). (620

j=1lr=1nm=1gh=1

The number of replications is not necessarily the same aaderent response graphs, i.&,=
R;. Likewise, the block model can be response specificyi-e.;;. More variations along these

lines are possible.

A graphical representation of models in this family is giwerigure4.4. Full model specifica-
tions immediately adapt to the different kinds of data,,exultiple data types through the choice
of f, or parametric or semi-parametric specifications of thergmn the number of clusters through

the choice ofD,,.
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Figure 4.4: The graphical representation of stochastickoinodels of mixed membership using
plates. For clarity, few arrows out of the block models; are shown, however, all interactions
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Example 24(Admixture of Latent Blocks)Airoldi et al. (2006¢ 20078 introduced the Admixture
of Latent Blocks model to analyze a collection of proteiotgin interactions. This model is defined
by the simplest set of model specifications for a stochakiakbnodel of mixed membership, and
it was used to analyze the most basic kind of relational d@igen a single undirected unipartite
graph with binary edges, the Admixture of Latent Blocks rhmmtmvers membership of nodes to
clusters (i.e., the mixed membership vectars) and cluster-to-cluster interaction probabilities
(i.e., the block mode}), under the assumption th& non-observable clusters exist. Using this
model on protein-protein interaction data: sub-populasaorrespond to non-observable “stable
protein complexes”, indexed lky nodes correspond to “proteins”, indexed lay there is only one

response variable that encodes whether a pair of proteitexacts or not, so thaj is omitted;

I T N

=R 1\)’11 12| Y2 13 Vi3 215N | YVIN
O
N\
Zo1| Y2
O -
N\
o 0-0
Z351 |V

5 \C%%\C%WC%%“\&Q

INoL N IN-2 N2 I N3 INoN VNN

Figure 4.5: The graphical representation of the admixturdatent blocks introduced by
Airoldi et al. (20069 using plates. Note that only few arrows out of the block mogdeave been
drawn, for clarity, however all the interactiops,, depend on it.
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there is only one replicate, since the interactions havenbeeasured with an experimental pro-
cedure such as “Yeast Two Hybrid” under a single experimeotadition. The model assumes
that each interaction in the collection is either presenabsent given the memberships to specific
protein complexes of the pair of single proteins involvekdatTis, each protein participates in the
various interactions as a member of possibly differentgirocomplexes. In order to simplify the
inference, an explicit pair of indicator variablds;; .z ) is introduced for each interaction in
the observed collection, which indicates the protein caxgd that the two proteins are members of
as they interact. The functiof(y,,.|1gn) = Pr (Ynm = 12, = 9, 25m = h) = Bernoulli (1),
wheren,,, is the probability that a protein in complexinteracts with a protein in complek. A
mixed-membership vectofis y encode the expected protein complex proportions. Theyiare d
tributed according taD,,, i.e., a Dirichlet distribution. Equatiod.8is obtained by integrating out
the protein complex indicator variablés;’ .z ) at the interactions level—the latent indicators
z~ are distributed according to &/ultinomial (1,6,,), whereas the latent indicators,, are

distributed according to &/ ultinomial (1,0,,). A graphical representation of this specific model

is given in Figure4.5.

4.3 Strategies for Integrating Complex Data

Integration of the measurements on relations and attsbhotelving objects of different types can
take many forms. For the purposes of this thesis, it will seffo distinguish two types of integra-
tion, one relates to descriptive versus predictive analyaed the other relates to the integration of

labels.
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4.3.1 Descriptive Analyses

In a descriptive analysis, non-observables always cari&gibqually to the data generation, and,
in turn, observables always inform equally the inferenaecpss about non-observables. This is
what happens, for example, to the multivariate relatiortsranltivariate attributes in the previous

Section; at the sampling scheme level relations and at&sbof different types are assumed to be

independent.

A layer of complication may be introduced. Consider a datansth N objects and, for sim-
plicity, assume a fixed number of latent patteris, Consider measurements dnattributes for
each on each objettThe mixed membership vectors in the model are object-sp&gif; should
they be attribute specific as well? In the general formuteitioSection4.2.1the answer is no, but
it need not be so. Introducing mixed membership vectorsatespecific to object-attribute pairs
allows for more flexibility in thedescriptionof the data. However, the description inferred from
the data may not be optimal when the goal of the analysis isadigt one attribute given the rest

(Barnard et al.2003.

4.3.2 Predictive Analyses

In a predictive analysis, one set of non observables alwagsibutes to the data generation con-
ditionally on the values assumed by a second set of obsesvabhd, in turn, the two sets of
observables inform the inference process about non-olisieryunequally—namely, the informa-
tion the latter set contributes to the inference processas to describeesidual variability, which

cannot be explained by information contributed by the farset of observables. This is what

happens to the labels in Examplell.

4The discussion applies to a set.bfelations, unchanged.
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A Lengthy Example Consider observations consisting’Bfsets of edgesy;.,, among a com-

mon set of nodes). The data generating process is as follows.

1. Foreachnode=1,..., N

1.1. Sample the mixed-membership vectpr~ Dirichlet ( a)
1.2. Sample the component indicatyr~ Multinomial g ( Tp,1 )

1.3. Sample the latent representatityn~ Hszl Gaussian o ( fig, Sy )Z”k
2. For each pair of nodds,, m) € [1, N] x [1, N]

2.1. Sample the value of interactions from a generalizezghlimodel

Ynm ~ Generalized Linear Model ( link = g‘l )

where the link functiory maps the support of the average response fungtipn= E [ Ynm ] onto
R, that is, the support of the linear modg),.. The linear modeh,,,,, = 7, ( B, Ty T ) involves
latent, node-specific covariateg, € X, and a global drift3, shared by all nodes. A graphical

representation of the DGP for the parametric case, usinggles shown in Figurd.6.

The data generating process posits that representatiomsdes in a low dimensional latent
space,zt ,, € X, are sampled independently for each gragh, from a finite mixture ofK
Gaussians with paramete(s. i, ¥1.x ), which encode the group centroids in the latent spader
al graphs. At the top of the hierarchy, the mixed membership vectfs;, are independent and
identically distributed samples from a Dirichlet distrilmn over the/K -dimensional simplex with
hyper-parameter vectat. They provide the mixture weights. The edge weights are ¢lemerated

through a “generalized linear model” that makes use of thedionensional, latent representations

SFor example, if we take the low dimensional spate beR?, then each one of th& components of the mixture
of Gaussians is a two-dimensional Gaussian.
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of nodes,z., as covariates, along with an extra paramegtein particular, each edge weight,
yt , may be generated starting from the relevant pair of nodeseptations(z,, z,,), through a

distance model.

Following the formalism inMcCullagh and Neldef1989 we specify the generalized linear
model that generates the observed edge weighiqsee step 2.1 of the data generating process)

in terms of three elements.

1. The error modelp(y,...), i-€., the model for the observed edge weights with mean =

E[ynm)-

Figure 4.6: The graphical representation of the parametodel using plates, for a set Gf
matrices. Note that we did not draw all the arrows outypfor clarity, since all the interactions
Ynm depend on it.
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2. The linear modely,., = M (3, Zn, Tm) = N ( B, d(Z,, T) ), for any explicit distance

modeld.

3. The link functiofs, ¢(ttnm) = 7nm, Which maps the support of,,,, to that ofr,,,,—typically
R.

In particular, the linear model,,,, includes an explicit distance model, in the latent spacey}’.

Using the models proposed kioff et al. (2002,

Tm = Tlam (ﬁafnafm)
= Thm (ﬁad(fN7fm) )

g —|%, — ¥, distance model
= (4.11)

3 4 Tu Im projection model

‘x'ml

Intuitively, edges are more likely to be generated betwesmsof nodes whose corresponding

representations in the latent space are close.

Note 3. In a binary graph we can posji(y,..) = Bernoulli (i), whereu,,,, € [0,1] for
all node pairs(n,m) € N. The linear model is,,, = 3 + d(Z,,Z,). The link function is
9(ttnm) = log ( - ), and its inverse igu,,, = W In a graph with non-negative,
integer edge weights we can pogft,,,,) = Poisson (i), whereu,,,, € R, for all node pairs
(n,m) € N. The linear model is},.,, =( 3, d(Z,, %, ), as in Equatiord.11 The link function is

9(finm) = 1og(tnm), and its inverse i, = ™.

This model follows closely the models Hoff et al. (2002 andHandcock et al(2007), with
the novelty that it depends on the set of mixed membershifpk&e,. y. In a sense, itis predictive
because a model for the joint probability of latent varigkded data is missing(Y, 71.n, T1.x)-

However, in order to make it predictive in the sense interfde@ a little more work is needed.

SHere | considecanonicallink functions (McCullagh and Nelder1989.
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First, we need to introduce a second source of informatmrexample, multivariate attributes on
the nodes[/;., where the quantity.,,(m) encodes the value of the-th attribute measured on
then-th node. Then we posit a data generating process for the désipe.g., along the lines of
the models in Sectiod.1 Finally, and here is where th@edictiveis used in the sense I intend,
we need to make a decision about how to link the two modelsnteractions and attributes. If the
goal of the analysis is that of predicting, or de-noisingeiiactions from attributeroldi et al.,
20069 then we want to condition the interactions on the attribuneéhe generating process. There
are several ways of doing this; a possibility is that of gatieg node-specific mixture component
indicatorz,,, in the model for the interactions, from the node-specific mixture component indica-
tors{z" :m =1,..., M} already samples for the attribute—dernard et al(2003 for another

example.

Going back to the multivariate models of attributes andi@hs of Sectiord.2, | need to specify
a generative link between the attributes and/or relatioriseesampling scheme leyalnivariate
measurements are no longer independent. Figufshow the relevant portion of the graphical
model structure that is common to models of both multivar&tributes and relations. By positing
structural dependencies in the model predictive analyaese supported; that is, latent patterns
associated with a set of measurements will be inferred tigatiseful in predicting a different set

of measurements.

Modeling Text and References | conclude this chapter with an application of data integrat
in a larger context: models of data integration are instmtaléo resolve a substantive issue about

model choice.

Example 25(Proceedings of the National Academy of Sciences, PNA®)sheva et al(20049
and Griffiths and Steyver€004) report on their estimates about the number of latent tqpacsl

find evidence that supports a small number of topics (e.glewsas 8 but perhaps a few dozen)
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Figure 4.7: The structural dependencies among the (latarigbles in the dashed box distinguish
the type of analysis. The absence of dependencies (top)peae$ to models that support descrip-
tive analyses, whereas the presence of dependenciesnfbp#icel) leads to models that support
predictive analyses.

or as many as 300 latent topics, respectively. There are aoeuwf differences between the two
analyses: the collections of papers were only partiallyramping (both in time coverage and
in subject matter), the authors structured their dictiopaf words differently, one model could
be thought of as a special case of the other but the fitting afefence approaches had some
distinct and non-overlapping features. The most remarkavid surprising difference come in
the estimates for the numbers of latent topics: Eroshevad dbaus on values like 8 and 10 but
admit that a careful study would likely produce somewhalérigalues, while Griffiths & Steyvers
present analyses they claim support on the order of 300 $bpgshould we want or believe that
there are only a dozen or so topics capturing the breadth @fepsin PNAS or is the number

of topics so large that almost every paper can have its owit®p touchstone comes from the
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journal itself. PNAS, in its information for authors (upddtas recently as June 2002), states that it
classifies publications in biological sciences accordiond ® topics. When submitting manuscripts
to PNAS, authors select a major and a minor category from agfiaed list list of 19 biological

science topics (and possibly those from the physical arst/oial sciences).

Below, | summarize an alternative set of analys&isaldi et al., 2006¢ using the version of
the PNAS data on biological science papers analyzed@ingsheva et al.2004). Said analyses
employ both parametric and non-parametric strategies fadlehchoice, and make use of both
text and references of the papers in the collection, in aimeesolve this issue. This case study
gives us a basis to discuss and assess the merit of the vatrategies. In the process | explore
how to perform the model selection for Bayesian models oeahimnembership. After choosing an
optimalvalue for the number of topicgs *, and its associated words and references usage patterns,
| also examine the extent to which they correlate withdbtialtopic categories specified by the

authors.

-1340

-1360
-1560 1550  -1540

-1380

-1500 1580  -1570

-1400

1420
-1610  -1600

Number of latent topics Number of Iatent topics

Figure 4.8: Left Panel: Log-likelihood (fold cv) for K = 5, ..., 50, 75, 100, 200, 300 topics. We
plot: text only,« fitted (solid line); text onlyy fixed (dashed line). Right Panel: Log-likelihood
(5 fold cv) for K = 5,...,50,100 topics. We plot: text and referencesfitted (solid line); text
and referencesy fixed (dotted line).

Six Bayesian mixed membership models were fitted to infertdpecs underlying the PNAS
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Figure 4.9: Posterior distribution df for the PNAS scientific collection corresponding to the
infinite mixture models of text (left panel) and of text anterences (right panel).

dataset: words alone or both words and references were etbaeéth parametric and semi-
parametric mixed model specifications, and for fully paraimepecifications the Dirichlet hyper-
parameterny was either fitted using an empirical Bayes strategy or fixetl wn ad-hoc strategy
inspired by the one used in the analysis of PNAS dat&hffiths and Steyver$2004. Full de-
tails about model specifications and posterior inferengerahms, using both variational methods
and MCMC, are given irAiroldi et al. (2006¢. See the right panel of Figude3for a graphical

representation of the models of text and references.

The plots of the log likelihood in Figurd.8 suggest a number of topics betwe#hand 40
whether words or words and references are used. The seampaic model generates a posterior
distribution for the number of topicgs, given the data. Figuré.9shows the posterior distribution
ranges from 23 to 33 profiles. We can expect that the semnpetrec model will require more
topics than the parametric model, since it leads to a hasterimg of documents—into topics. By
choosingK = 20 topics, a meaningfully interpretation all of the word anfirence usage patterns

can be found. A parametric model with topics was fitted to the data, both words and references,
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Pharmacolgy - Pharmacolgy -
Physiology — Physiology —
Developmental Biokgy — . Developmental Biokgy —
Plant Biokogy — I Plant Biokogy —
Microbiology — Microbiology —
Evolution I Evolution
Biophysics — . Biophysics —
Immunclogy — I Immunclogy —
Genetics — Genetics —
Cel Biolgy - Cel Biolgy -
Neurobiology — Neurobiology —
Medical Sciences Medical Sciences
Biochemistry — Biochemistry —
I I I | I I I |
5 10 15 20 5 10 15 20
Pharmacolgy — Pharmacolgy —
Physiology — Physiology —
Developmental Biokgy Developmental Biokogy
Plant Biokgy — Plant Biokgy —
Microbiology — Microbiology — oy —
o—65%
Evolution I Evolution B 45%-55%
@ 35%-45%
Biophysics — I Biophysics — g Egzjg;‘:
O 10%-15%
Immunology — Immunology — O 10% or less
Gienetics Gienetics
Cell Biokgy - Cell Biokgy -
Neurobiokbgy — Neurobiokbgy —
Medical Sciences Medical Sciences
Biochemistry — Biochemistry —
I T I I | I I I |
5 10 15 20 5 10 15 20

Figure 4.10: The average membership in the 20 latent topimsifins) for articles in thirteen
of the PNAS editorial categories (rows). Darker shadingcatts higher membership of articles
submitted to a specific PNAS editorial category in the giaant topic and white space indicates
average membership of less than 10%. Note that the rows si@®8 and therefore darker topics
show concentration of membership and imply sparser merhiparsthe remaining topics. These
20 latent topics were created using the four finite mixturelet® with words only (¥, 2%) or
words and references’3 4) anda estimated (¥, 3'9) or fixed (24, 4").
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Table 4.3: Word usage patterns corresponding to the modelxo®& references, withik’ = 20

topics.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
gene kinase cells cortex species
genes activation virus brain evolution

sequence receptor gene visual population

chromosome protein expression neurons populations
analysis signaling human memory genetic
genome alpha viral activity selection
sequences phosphorylation infection cortical data
expression beta cell learning different
human activated infected functional evolutionary
dna tyrosine vector retinal number
number activity protein response variation
identified signal vectors results phylogenetic
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
enzyeme plants protein protein cells
reaction plant rna model cell
ph acid proteins folding tumor
activity gene yeast state apoptosis
site expression mrna energy cancer
transfer arabidopsis activity time p53
mu activity trna structure growth
state levels translation single human
rate cox vitro molecules tumors
active mutant splicing fluorescence death
oxygen light complex force induced
electron biosynthesis gene cdata expression
Topic 11 Topic 12 Topic 13 Topic 14 Topic 15
transcription dna cells protein ca2+
gene ra cell membrane channel
expression repair expression proteins channels
promoter strand development atp receptor
binding base expressed complex alpha
beta polymerase gene binding cells
transcriptional recombination differentiation cell nens
factor replication growth actin receptors
protein single embryonic beta synaptic
dna site genes transport calcium
genes stranded drosophila cells release
activation cdata embryos nuclear cell

Topic 16 Topic 17 Topic 18 Topic 19 Topic 20
peptide cells domain mice beta
binding cell protein type levels

peptides il binding wild increased
protein hiv terminal mutant insulin
amino antigen structure gene receptor

site immune proteins deficient expression
acid specific domains alpha induced
proteins gamma residues normal mice
affinity cd4 amino mutation rats
specific class beta mutations treatment
activity mice sequence mouse brain
active response region transgenic effects

to focus on the interpretation of t12® topics. Table4.3, lists 12 high-probability words from the

estimated 20 topics after filtering out the stop words. Tabfeshows thes references with the

highest probability fo6 of the topics.

Using both tables, here is a possible interpretation of thiofics:

e Topics 1 and 12 focus on nuclear activity (genetic) and (répalication).

e Topic 2 concerns protein regulation and signal transdactio
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Table 4.4: References usage patterns for 6 of the 20 topresspmnding to the model of text &
references, witl’ = 20 topics.

Author Journal
Topic 2

THOMPSON,CB SCIENCE, 1995
XIA,ZG SCIENCE, 1995
DARNELL,JE SCIENCE, 1994
ZOUH CELL, 1997
MUZIO,M CELL, 1996
Topic 5

SAMBROOK,J MOL. CLONING. LAB. MANU., 1989
ALTSCHUL,SF J. MOL. BIOL., 1990
EISEN,MB P. NATL. ACAD. SCI. USA, 1998

ALTSCHUL,SF
THOMPSON,JD

NUCLEIC. ACIDS. RES, 1997
NUCLEIC. ACIDS. RES, 1994

Topic 7

SAMBROOK,J
THOMPSON,JD
ALTSCHUL,SF

MOL. CLONING. LAB. MANU,1989
NUCLEIC. ACIDS. RES,1994
J. MOL. BIOL,1990

SAITOU,N MOL. BIOL. EVOL,1987
ALTSCHUL,SF NUCLEIC. ACIDS. RES,1997
Topic 8

SAMBROOK,J MOL. CLONING. LAB. MANU,1989
KIM,NW SCIENCE, 1994
BODNAR,AG SCIENCE, 1998
BRADFORD,MM ANAL. BIOCHEM., 1976
FISCHER,U CELL, 1995
Topic 17

SHERRINGTON,R NATURE,1995
HO,DD NATURE,1995
SCHEUNER,D NAT. MED.,1996
THINAKARAN,G NEURON, 1996
WEI,X NATURE, 1995
Topic 20

CHOMCZYNSKI,P
BRADFORD,MM

ANAL. BIOCHEM., 1987
ANAL. BIOCHEM., 1976

KUIPER,GGJM P. NATL. ACAD. SCI. USA, 1996
MONCADA,S PHARMACOLREY, 1991
KUIPER,GG ENDOCRINOLOGY, 1998

e Two topics are associated with the study of HIV and immunpaases: topic 3 is related to

virus treatment and topic 17 concerns HIV progression.

e Two topics relate to the study of the brain and neurons: tdpjeehavioral) and topic 15
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(electrical excitability of neuronal membranes).

Topic 5 is about population genetics and phylogenetics.

Topic 7 is related to plant biology.

Two topics deal with human medicine: topic 10 with cancer tmic 20 with diabetes and

heart disease.

Topic 13 relates to developmental biology.

Topic 14 concerns cell biology.

Topic 19 focus on experiments on transgenic or inbred muméce.

Several topics are related to protein studies, e.g., tofpedein structure and folding), topic
11 (protein regulation by transcription binding factoid topic 18 (protein conservation

comparisons).

Topics 6, 8, and 16 relate to biochemistry.

These labels for the topics are primarily convenience, ey tlo highlight some of the overlap
between the PNAS sections (Plant Biology and Developm@&itabgy) and the latent topics (7
and 13). However, many plant biologists may do moleculalogip in their current work. By
examining the topics ones can see that small sections suattla®pology do not emerge as topics
and broad sections such as Medical Science and Biocherhasteydistinct subtopics within them.
This also suggests special treatment for general sectimhsas Applied Biology and cutting-edge

interdisciplinary papers when evaluating the classificatffectiveness of a model.

To summarize the distribution of latent aspects over digtions, a graphical representations of
the distribution of latent topics for each of the PNAS top&grovided in Figuret.1Q The third

figure represents the model used for TaBle€dand4.4. The two figures on the right represent
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models where thex parameter of the Dirichlet prior over topics is fixed. These models are
less sparse than the corresponding models wifft to the data. For twenty latent topics, the
hyper-parametet was fixed ab0/20 = 2.5 > 1 and this means each latent topic is expected to be
present in each document and a priori we expect equal mehmpénseach topic. By contrast the
fitted values oty are less than one lead to models that expect articles to hgivertembership in a
small number of topics. The PNAS topics tend to have a fewtdtgics highly represented when

« is fit and low to moderate representation in all topics wheis fixed (as seen by white/light
colored rows). For additional discussion of further consewes of these assumptions see the

simulation at the end of Sectid2.2

Further examining Figuré.10 note that topic 1, identified with genetic activity in thecteus,
was highly represented in articles from Genetics, Evolytend Microbiology. Also note that
nearly all of the PNAS classifications are represented bgraéword and reference usage patterns
in all of the models. This highlights the distinction betwdbe PNAS topics and the discovered
latent topics. The assigned topics used in PNAS follow thectiire of the historical develop-
ment of Biological Sciences and the divisions/departniesitactures of many medical schools
and universities. The latent topics, however, show thetgradeas of interest within the field.
Topic 9, which concerns the structure and topology of pnsteis highly represented in theoret-
ical papers in Evolution, Genetics, Cell and DevelopmeBtalogy as well as in applied papers
in Ecology, Pharmacology, and Applied Biological Sciencé&sese latent topics, however, are
structured around the current interest of Biological Soé=n Figuret.10also shows that there is
a lot of hope for collaboration and interest between sepdigtls which are researching the same

ideas.

The held-out log likelihood plot corresponding to five-fabss validation in Figurd.8 sug-
gests a number between 20 and 40 topics for the parametrielmBdrther analyses with para-

metric mixed membership models of words and referencesastgppupport values towards the
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lower end of this range, i.ef = 20, more than other choices. This is also true in the posterior
distribution of K for the semi-parametric mixed membership model. To corglike hyper-
parameterny was fixed to50/ K, following the choice inGriffiths and Steyver§2004), as well as
estimated using empirical Bayes. Both sets of analysesupsatia similar conclusion. While
Griffiths and Steyver§2004) found posterior evidence for nearly 300 topics, a numbetheror-

der of 20 or 30 provides a far better fit to the data, asses$etly by multiple criteria and model
specifications that integrate different types of data. Mwee, a lower humber of latent topics
appears to be simpler and more interpretable in a meanimgfy] this is not possible with 300

topics.

The generative models for attributes presented here difterth from published alternatives (e.g.,
Pritchard et al.200Q Blei et al, 2003 in terms of the way the data inform the allocation of objects
to patterns. For example, they are models of counts thattteadriability in the totals, and such
variability has influence on the allocation—see SecBdhl1for a discussion. | derived a multi-
variate characterization of both models of attributes,eot®n4.1, and relations, in SectioB.1
Fast posterior inference is available for the general féatans as well Airoldi et al., 2006de). |
described alternative strategies for integrating mudtgmurces of data in such models, depending

on whether the goals of the analysis is descriptive or ptizdic

Integrating heterogeneous data types under a unified medekthallenge to the analysis of
complex datawhich are simultaneously described by intrinsically eliéint types of characteris-
tics, such as features in attribute space and links in oglatispace. This chapter suggests that
Bayesian models of mixed membership provide us with a swiutd modeling and algorithmic
issues that arise in (what | ternmtegrated-learningproblems that involveomplex datdy com-

bining modules specific to multivariate attribute and rielag within a hierarchical framework.

142



CHAPTER 4. COMPLEXITY AND INTEGRATION E.M. AIROLDI

Research along this line is still very limited, especiallgrivbased on well-founded statistical
principles. My methodology supports robust inter-modé#&tiance, latent mechanism discovery,
and information retrieval. The strategies for integratwognplex data presented here enable mod-
ular and distributable engineering solutions for orgatraand prediction problems. Feasible
engineering approaches to such problems in essence regaliistic statistical models, accompa-

nied by scalable computational methods.
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Chapter 5

Dynamics and Evolution

In this chapter | describe how the models introduced in previchapters can be extended to take
temporal evolution into account. To this extent, severadlet® of dynamic behavior are presentin
the classical statistical literature, which can be usedadehthe evolution of latent patterns for a
finite number of epochg. The basic idea is to chose which sets of variables evolvestoue,

e.g.,0%7, and posit a model for the transition, e.g4 (00" !).

For instance, recall the state-space model of ExarhifJavhich extends the factor analysis
model of Examplé& by evolving the latent factors from one epoch to the next. ddta generating

process for the observationg ) is as follows,

1. Atepocht =0

1.1. For each objeet € \;
1.1.1. Sample the latent factaps ~ Normal x (0, 1)
1.1.2. Sample the erraf”) ~ Normal 5 (0, 0)
1.1.3. Define the multivariate attribut&” = A, + &,

2. Atepocho <t <T
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2.1. For each objeat € NV,

2.2.1. Evolve the latent factors’ = Fgil ",
2.2.2. Sample the erraf’) ~ Normal 5 (0, )

2.2.3. Define the multivariate attribuid’ = Aggﬁf) T+,

whereF' is a(K x K) matrix that encodes the dynamics of the latent factors. Aarbgethe algo-
rithm suggests a hierarchical decomposition of the joinbpbility distribution of the attributes,
XD — #D "and the latent factor§) ) = (¢{"1 &1, given a set of underlying constants,

A = (F, A, ¥) that does not change over tim&he likelihood is then,

YXOD|A) = /pl(@(o)M) Py(X@10© A) x (5.1)

T
X <HP0(@(t)|@(t_1),A) PQ(X(t)|@(t),A)) d@(LT)’

t=1

where P, and P, are K- and M -dimensional Gaussian densities, respectively, 8nis the deter-
ministic transformation in Step 2.2.1. of the data genegagirocess. A graphical representation
of FA and SSM is given in Figurg.1, which highlights the simple connection between the two

models.

Model specifications vary depending on the applicatiorgs, A&RIMA, possibly multivariate,
linear versus non-linear, deterministic versus stocbastnsition, Gaussian versus non-Gaussian
errors, or Markovian versus compleXasserman198Q Rabiner 1989 Brockwell and Davis

1991 Karr, 1991, West and Harrisarl997 Doucet et al.2007).

Example 26. The admixture of latent blocks model of Sect®bhis a model for a network’.
Denote byP(Y*|a, B) the model for the network at time given the hyper-parametet, which

governs the distribution of the mixed membership vectors, and the stochastic block modgl

1The dynamic matrixF may be easily modeled as time dependent and/or stochastitieaproblem requires
(Airoldi and Faloutsos2004 Airoldi et al., 2005d.
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Figure 5.1: Graphical representations of a factor analysidel (left) and of a state-space model
for observations at two consecutive epochs (right). Whitges denote non-observables, whereas
shadowed nodes denote observables.

The model can be extended to account for time by evolvingyiheriparametery as follows.

1. Atepoch) <t <T

1.1. Sample the errait) ~ Normal  (0,0°1)

1.2. Evolve the latent positiafi®) = I a*~Y + exp{e®},

This extra step specifies a linear transition model(a*|a*~'). In the same spirit it is possible to

evolve the stochastic block modgl

Example 27. The latent space model of mixed membership introduced tio8ekc3.2is a model
for a set of networkd 7. Denote byP (Y!|/i1.x, X1.x ) the model for the network at tintegiven
a parametric description of the clusters in the latent spadgs model can be extended to account

for time, at epoct) < ¢ < T, by evolving the latent cluster positions as follows.

1. Foreachclustek =1,..., K

1.1. Sample the errai” ~ Normal 5 (0, 0)
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1.2. Evolve the latent positiqrf” = F i\'™" 4 &,

This extra step in the process specifies a st afidependent linear transition modelB,y, (i, |

fii!), where the parameter set, = ¥, for all k.

Alternatively, it is possible to specify temporal pattewtisectly as a part of=, ©). Such
a modeling strategy allows to consider longitudinal segasrof observations about objects as
admixtures of complicated patterns, specified in a paraomtnon-parametric fashion, and avoids

technical issues that arise when considering the spedaificat an explicit model of evolution.

5.1 Dynamic Network Tomography

The models discussed above resolve the observed sequegiapbs into simple patterns, which
evolve over time with some regularity. Independently of heweh patterns are specified, their
description igparsimonious In some problems, however, we need to solve the oppositedgm
namely, that of resolving the observed sequence of graphpatterns with an order of complexity
higher than that of the observations. In other words, farapattern®© € 7 and observations
Y € Y, in the models considered so far the dimensionality afas lower than that ¥’. This is
no longer true in the models presented in this section, wiherelimensionality of the spacg is
higher than that o)). Problems of this sort, where the solution space is ordemsaginitude larger
than the space spanned by the data and the constraintsfareddo asnverse problems the

literature Hansen1999.

The distinction above is not evident from the graphical espntation of the models. The issues
are deeper: (i) identifying the space of solutions is oftentrivial; (ii) regularization conditions
are needed to induce a well-behaved optimization probldm.dFiving application here isetwork

tomographywhere the origin-destination (OD) traffic flows need bereated, e.g., who is com-
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municating with whom in a local area network. The direct nueasient of the OD traffic is usually
difficult and typically unfeasible; instead, the loads oemMink can be easily measured, that is,
sums of desired OD flows. In a network wiffi nodes, the problem is then to recove(N?)
OD flows fromO(N) sums. Such problem has been studied by many in the staltigcature
(Vanderbei and lannon&994 Vardi, 1996 Tebaldi and WestL998 Cao et al.200Q Zhang et al.
2003 Airoldi and Faloutsos2004. The model proposed here starts from the Bayesian analfysis
Tebaldi and West1998), and extends it to a dynamic context by: (i) introducinglexptime de-
pendence among the traffic flows; (ii) positing a stochastittipiicative process for the dynamic;
and (iii) positing realistic, non-Gaussian marginals fog traffic flows. The findings echos those
of Tebaldi and Wes{1998 with regard to the need for informative priors in order tdigate the
bias in the estimated traffic flows due to the presence of pieltieaks in the likelihood, and to the
presence of ridges in between those peaks, e.g., see BiguiEhe solution presented here scales
linearly with new observations and is more accurate thesrradtive solutions, on real network

traffic measured at Carnegie Mellon and at AT&T.

8.8
Estimation Errors for various Models
g 7.1
= L
a 6.6
(@]
g
b
E 4.4
(=
@ ..
g IA Model
[l
v 22+ (log-Normal)
i -]
"y 1 I
State-of- | d |
- ods
0.0 the-Art

mLocal Likelihoood (Gaussian) ELinear SSM (Gaussian)

2 |A Model Static (Gamma) 2 |A Model Dynamic {Gamma)

O IA Model Static (log-Normal) O IA Model Dynamic (log-Normal)

Figure 5.2: Estimation error ify distance.
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Table 5.1: Summary of symbols.
Symbol  Description

Number of time points.

Number of observable link loads.
Number of non-observable OD flows.
(¢ x k) fixed routing matrix.

(¢ x T) matrix of link loads.

(k x T') matrix of OD traffic flows.

(k x T') matrix of means ofX |A, ¢.

(1 x T') vector of scale factors faK |A, ¢.
Generic vector of hyper-parameters.
Generic prior distribution.

S R S B NI NS

A
=2

5.1.1 Goals of the Analysis

Knowledge about the origin-destination (OD) traffic matablows network engineers and man-
agers to solve problems in design, routing, configuratidsugging, monitoring and pricing; in
fact the OD traffic matrix provides valuable information abaho is communicating with whom
in a network, at any given time. Unfortunately the direct sw@ament of the OD traffic is usually
difficult, or even infeasible, in real networks. The directiof current research is to develop meth-
ods to infer the OD traffic flows from observed traffic loads ba links of the network, however
the methods that have been proposed so far seem not to fkéyatdvantage of two of the main
empirically observed features of network traffic; namedywiery skewed marginal distribution, and

its time dependent nature.

I introduce thanverse allocatiormodel (IA henceforth) which improves the models present in
the literature by introducing two realistic assumptioristhe log-Normal distribution provides a
realistic model for the marginal OD traffic flows, (ii) time gkendence between successive flows
on a same OD route narrows the variability of the estimatesv@stage estimation procedure is

proposed to estimate parameters of the IA model.
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The Problem and its Facets In a formulation of the problem we want to solve there are sdve
time series which we would like to estimate, but which we adrobserve, say, a vector of traffic
flows z(t) over timest = 1, ..., 7. However, we are able to observe linear combinations okthes
traffic flows, the vector of link loadg(t) over timest = 1, ..., 7", and we know which components
of (t) mix into each of the componentgi, ¢t) at each time trough the routing matrix4, that

does not change over time There are two modeling aspectstortiblem.

Problem 1 (Inverse Problem)Given the matrix of link load¥/,,.r-) and a routing matrixA ),
we want to find the matrix of non-observable OD traffic fla¥s. .1y such thaty = A - X.

Alwaysk > /.

Example 28. The linear equations that correspond to the routing schefrtestar network in

Figure5.3below are:

z(1,1)
y(1,1) 1100
x(2,t)
y(2,t) | =100 1 1 . (5.2)
x(3,1t
y(3,1) 1010
x(4,1)

y(1,t) measures the traffic load on the link from node 1 to the router@ptures both the OD flow

from node 1 to node 2;(2,t), and the OD flow from node 1 to itself(1, ¢). y(3,¢) measures the

x(t) = OD FLOWS y(t) = LINK LOADS

Figure 5.3: Two subnetworks connect to a router. We obséwdinnk loads (solid blue arrows),
and want to infer the hidden traffic flows (dashed red arrows).
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traffic load on the link from the router to node 1 and capturethithe OD flow from node 2 to node
1,z(3,t), and the OD flow from node 1 to itself;1, ). We want to estimate for) unobservable
quantities starting from thre€’) independent observatichsThe system is under-specified; ¢,

hence some extra information is needed in order to identif/single solution.

Problem 2 (Regularization) Impose a set of additional constraints (or a penalty term»on ..

in order to induce smoothness on the space of solutions anvieese problem.

The likelihood of the data entailed by a statistical modelMpes us with a natural criterion to
discernlikely solutions from unreasonable ones. Following this idea wdehthe unobservable
quantitiesz(t) with a joint probability distribution; this induces a prdilistic mapping on the
space of the observationgt) via equatiorb.2, so that we can compute the likelihood of the ob-
servations, and look for traffic flows that maximize the ptubty of particular data observations.
Unfortunately in time-independent models the likelihodds¢) is not necessarily unimodal, even
as we assume independent componenig i, and even as we use well-behaved functional forms
for their distributions. More information is needed to itlgna solution. At this point there are
two main ways to introduce the extra information we need. pueely data-driven approach we
would augment the data in some way, whereas in a knowledgerdapproach we would make
use of informative priors in a Bayesian setting, with the pboation in this latter case of defining
what we mean by “informative”. Data augmentation can beized| for example, by raising the
likelihood of the data to a power, as in simulated annealandyy borrowing observations from
epochs close in time to the current one to obtain a smoothexdge solution. Alternatively, we
can build “informative” priors based on partial knowleddmat the magnitude of the OD flows,

and update using Bayes rule and a “more accurate” data model.

The two-stage estimation procedure for the IA model is sstjgeof a nonparametric empirical

Bayes learning strategy, where the observations are udadttoalibrate informative priors, and

2We assume that routers neither generate nor absorb traffic.
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then to filter the posterior distributions of the OD flows givine data. The proposed solution:
(i) uses realistic models for the OD flows; (ii) takes advgetaf the time dependence of the data
while using the whole history of observatiofw(1), ..., y(¢) } to estimater(¢) in a proper Bayesian

fashion.

5.1.2 Model Specifications

Previous models assume independent OD flows across diffepechs. Here | introduce mod-
els based on dynamical systems, which naturally extendqus\approaches by assuming time

dependencexplicitly (Brockwell and Davis1991 West and Harrisorl997 Doucet et al.20017).

Definition 1. A linear Gaussian state-space model is defined by the failpaet of equations,

(5.3)

where{e(t)} is an i.i.d. Gaussian process with variance-covariancerma®, and F' is a known

matrix. Furtherz(0) ~ Normal (m, V') and independent af(¢) for ¢t > 1.

Classical state-space modeling strategies a la Box andn¥ewuld look for the additional
constraints needed to solve Probl2mm a known dynamical behavior suggested by some physical
law underlying the specific problem at hand and from knowrsseal patterns in the traffic, for
example the laws of motion in tracking the trajectories ofving objects, or from the presence
of strong cross-correlations among the OD flows. This kndg#ewould translate into constraints
on F', and@ in the systenb.3 above, and would serve the critical role of driving the ieferes

towards one particular solution.
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Augmented Gaussian State-Space ModelThe following Gaussian state-space model with drift

is used to obtain the preliminary estimates for the OD flows.

z(t) = F-z(t—1)+Q-1+e(t)
y(t) = A-x(t)+€t)

x(t) _ F Q x(t—1) N e(t)
1 0 I 1 1
= (5.4)
x(t)
y(t) = [A|0]- ) +€(t)

\

fort > 1, wherel = (1, ..., 1) is a constant vector of the length the parametes(¢) enters into
the variance-covariance matrix eft) ~ N(0,¢(t) - Q7), (1) ~ N(0,V (1)), €(t) ~ N(0, R),
x(1) L e(t) andx(1) L €(t) forallt > 1, and finally@ is a diagonal matrix with elements
(q1,-..,4qx), and is a known constant. In the model above, if we Bet= 0 there is a one-to-
one mapping betwee,, ..., ¢., ¢(t))" and the unique elements iy (t)), V(y(t)). Further it is

straightforward to verify that the following lemma holds.

Note 4. The linear Gaussian state-space model in equatmAgontains the model i€ao et al.
(2000 as a special case. Such a model can be obtained by simplygs£tt= 0, hence imposing

independence among the origin-destination flas at different epochs.

In the experiments on Carnegie Mellon origin-destinati@ific, assuming a fixed relation-
ship between:(i,t) andx(i,t + 1) is an unrealistic constraint. One possible solution is to as

sume a relationship between the means of the OD fldfwst) and (i, ¢ + 1) instead, and to
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ot é @t+1
Xt Xt+1 éXt éXtJr] Xt Xt+]

O

Yt Yt+1 Yt Yt+1 Yt Yt+1

Figure 5.4: Graphical representations: models with noiexpime dependance (left); linear state-
space models introduces an explicit dynamical behaviartécE the inverse allocation (IA) model

moves the explicit time dependence one layer up in the gcaphiodel, thus allowing for the OD

flows to be more diverse (right).

allow for some error. The SSM yields smooth estimates thatuca information about this re-
lationship, which we pass to the next estimation stage. ¢, fae introduce soft constraints
on the average procega\(¢)t > 1} in the form of informative priors for the parameters un-
derlying its dynamical behavior. We reduce the number oapeters by merging dynamic and
error terms into a stochastic dynamical behavior. The matgnodels for the OD traffic flows
are independent log-NormalsThe main objects of interest are then the posterior digiohs
P(x(t)|y(1),...,y(t)). In particular the point estimate for the OD traffic vectotiate ¢ is given
by the meanz(t) = E(x(t) |y(1),...,y(t)).

Static Inverse Allocation Model The static version of the IA model considers independerti{pro

lems at each epoch. Briefly, we are interested in estimating= E(xz(t) |y(t)) = E(x|y).

3Airoldi (2003) also considers Gamma models.
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To specify the full models at each timmeve write:

z|Xo ~ p(Xo)

Yy = A'iB,

(5.5)

wherep is log-Normal, parameterized so that (i) |\, ¢ ) = A7), V(z(i) [N, ¢) = ¢ - A(i)",
Cov(z(1),z(j) [N\, ¢) =0fori =1, ...,k andi # j. Notice thatp is common across OD flows at
each epoch, and thatis a known scalar, which we obtain by inspectionYdf The priors for the
A(i) arelog-Normal (0,(i), 05(i))%, fori = 1, ..., x and independent far# j. The prior for¢ is

proportional to a constant, fig/¢ or to 1/¢.

Dynamic Inverse Allocation Model This dynamic version of the IA model, which yields the

best results, implements the following Bayesian dynansgatem:

Ait) = elit) Ait—1),i=1,..&

x(t) [ A1), 0(t) ~ p(A),0(t)) (5.6)
y(t) = A-z(t), t=>1,

wherep is log-Normal, parametrized so th&t = (i, t) |A(t), ¢(t) ) = A3, ), V(z(i, t) A (L), (t))
=¢- Ai,t)7, andCov(z(i,t), z(5,t) [N, ¢) = 0fori = 1,...,x andi # j. Notice thaty(t) is
common across OD flows at timeand thatr is a known scalar, which we obtain by inspection of
Y. The priors for\(i, 0) arelog-Normal (6(i,0),0)?, fori = 1, ..., k and independent far=# j,
and for a big numbes that accounts for the uncertainty of the means of OD flowsnag zero.
The prior forg(t) is proportional to a constant, /¢ (¢) or to 1/¢(t)?. The priors fore(i, t) are

log-Normal (01(i,t), 05(i,t))* fori = 1, ..., k, and independent far ;.

4Airoldi (2003) also considers Gamma, Uniform, and trunda@&aussian priors.
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Table 5.2: A summary of the models.

Time Online Skewed
Model Dependence Estimation  Marginals
Local likelihood No No No
Augmented Gaussian SSM  Yes Yes No
IA (static) No No Yes
IA (dynamic) Yes Yes Yes

Informative Priors for A(t) The crucial question at this point is: how do we calibratettyyeer-
parameters underlying the prior distributions\gt)? First we obtain a preliminary set of estimates
x(t) with the Gaussian linear SSM. Then, in the case of |A stéfic,0,) at each time are set so
that mean and variance of correspond to those a(¢). Variances can be made much larger
without significant loss of precision. The intuition is ththe preliminary estimates indicate us
where OD flows are on average. In the case of IA dynamic thetionus the same, however it
is not possible to set priors fox(¢) as the sequence\(1), ..., A\(T")} is going to be determined
by A(0) alone. The solution is then to extract from(1), ..., (7T") } information about their local
dynamical behavior and use it to calibrate informative gwifor {e(¢),t > 1}. Technically, we
sete(i, t) as independent log-Normals; we use the facts that produebbation of log-Normals

is log-Normal (equation 4), and thatg-Normal (0, (i, t), 05(i,t)) = exp{ N(01(i,t),0,(i,t)) } to
solve the convolution problem exactly fh (¢, t), 65(i, t)), for: = 1, ..., k. In other words, values
for (61(t), 0,(t)) are computed fronfz(t), (¢t — 1)) at each time, and these parameters need not

be learnedd(i, 0) is set to be the average of corresponding OD flaWi, t), t > 1}.

Notice that every two-stage method that finds preliminatymeges and refines them uses
{z(1),...,2(T)} in the second stage, in some way. It is preferable to tramsihas information
into information about the means of the OD flojws(1), ..., A(T") }, according to the intuition that
preliminary estimates can identify a smooth version of th flows we are looking for, which

make reasonable guesses for their underlying averagegsexe
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5.1.3 Estimation and Inference

The estimation strategy involves two stages. In the firgtestee find preliminary, smooth estimates
for the OD flows, which make a good guess for the averages @& affic. In the second stage
we refine these smooth estimates by looking for spikes anstypperiods with one single pass

over the data.

Educated ) ) Informative
Calibration — )
Guess Priors

Figure 5.5: A non-parametric empirical Bayes approach ¢dfittering problem is at the core of
the inverse allocation dynamic model.

The IA dynamic model is a Bayesian dynamical systems; EM antigte filter can be used
for estimation and inference. The implementation incluslesved models as Gamma and log-
Normal, a wide selection of priors as Uniform, Normal, Gamamal log-Normal, and several
resampling schemes to further validate the results on tdpeofnain particle filter. Ghahramani
and Hinton (1996) show how to learn all the parameters in itheal Gaussian syste3, in
our caseF', Q, m, andV, by means of the EM algorithm. Higuchi (2001) shows how a-self
organizing system can be built from non-linear non-Gaussistems, so that all the relevant
parameters are learned during the filtering process. GilkdlsBerzuini (2001) propose a particle
filter that keeps particles diverse. More specifically, we tee linear Gaussian SSM and related
EM steps proposed in Airoldi (2003), which includes the madeéCao et al. (2000) as a special
case, to obtain smooth estimates of the OD traffic, and we tiserthese estimates to calibrate
informative priors for the parameters underlying the dyitaof a non-Gaussian system, in non-
parametric empirical Bayes fashion. Eventually the pkertiter makes good use of these priors

and of the skewed models, and finds a sequence of betteriposlistributions for the traffic flow
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on each OD route; we pick their means as point estimates.

In order to filter the posterior distributions of the origllestination flows and estimate the pa-
rameters of the models, | used a variation of the sample¥geamove algorithm of Gilks and
Berzuini (2001), briefly outlined below. For simplicity dediv(t) to be the vector of all param-
eters in the model at time v(t) := (x(t), A(t), €(t), ¢(t)), andv(0) := (A(0)). Theenhanced
particle filter algorithm is as follows. At = 0 generateV particles{ S\(i)(o) N using6(0), 0.

Then iterate,

1. Sett = t + 1. Move each particle like so: (a) generadg(t) using (0, (1), 01, (1)),
ando; (t); (b) compute);(¢) using the equation 4, (c) generatg) () by sampling from

equation 5.

2. ResampleV new particles from{ v;(¢) } Y, according to the likelihood?( y(t) | v;)(t) ),

they entalil.

3. Move the new set of particles according to a MCMC for "saVesteps” to improve their

diversity. Goto 1.

For details about the MCMC see Airoldi (2003).

Scalability and Irreducibility A recent result in network tomograph€4o et al. 2001 states
that it is possible to reformulate filtering problems cop@sding to large networks as a sequence

of problems corresponding to small networks. As a consegpiehit, the following result is true.

Lemma 1. The complexity of the learning algorithm for the dynamic léd®l isO(x - T).

Proof. The result inCao et al(2001) implies that a tomography problem corresponding to a net-
work with  origin-destination flows is equivalent 1@(x) tomography problems, which corre-

spond to disjoint sub-sets of, say, one to four OD traffic flimvthe original problem. This fact
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along with the fact that our solution is linear in the numbitime points for which the OD traffic
need be filtered, yields a total complexity©f « - T') for the learning algorithm of the dynamic

IA model. O

Lemma 1 implies if we solve the inverse problem for small sigevorks, we immediately solve

it for arbitrary size networks with comparable estimatiomes. Further the following result holds.

Lemma 2. The inference strategy is based on an irreducible MCMC.

Proof. See Appendix A. O

Lemma 2 implies that the proposed inference strategy istateeplore the support of the whole
joint posterior distribution of the OD flows. Note that, asted in the introduction to the problem,
this fact cannot be taken for granted in inverse problemsigoable to identify and explore the
space of solutions is an issue that needs be addressesemrbll problem. Furthermore, the

MCMC uses a Gibbs sampler with Metropolis steps.

Discussion of Experimental Evidence The methods were tested on two data sets; both included

validation data.

e Carnegie Mellon traffic: the first data set, which we used twosle the appropriate model,
contained about 12100 origin-destination traffic flows niead every 5 minutes over slightly
less than two days at Carnegie-Mellon university (CMU). Weasured an average traffic of

14GB every 5 minutes.

e AT&T traffic: the second data set, which we used to test andpasmthe filtered traffic
obtained with different methodologies, contained 16 ordestination flows measured every

5 minutes over a one-day period at AT&T, courtesy of Dr. Jin @aBell Labs.
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The analysis of Carnegie Mellon origin-destination trafiitevs supports the hypothesis of a very
skewed distribution. In figure 6 we plotted the logarithmghaf observed flows versus the log-
arithms of the number of times measurements of such a sizeaagpka. log-log plot), after

discarding the measurements smaller than a standard ga&bytes = 424 bytes). The log-log
plot indicates a log-Normal distribution may be appropiah histogram of the logarithms of the
flows indicated that a logarithmic transformation is adgudo mild to remove all the skewness,
and a double logarithmic transformation would be more gppate. The AT&T data set is much

smaller, and contains traffic flows generated on a smallevorkt they are less skewed overall,
and a logarithmic transformation is enough to yield a synnimatstogram for the truncated flows.

The CMU data set was used to inform model development. TheTAdi&ta set was then used as

an independent model validation data set.

The full story about the data sets is presented elsewhéraldi, 2003 Airoldi and Faloutsos
20049; here | will focus on findings that bear relevance to the méttogical issues. In particular,
few discussion points emerge that are shared by dynamiarbiécal models in applications to

inverse problems.

AT&T Traffic

Carnegie Mellon Traffic 7

121

101

log Counts
(2]
#
-~
log Counts

Il Il Il Il Il Il Il L | L L L L L
4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14
log Traffic log Traffic

Figure 5.6: Log-log plots of the 12100 traffic flows measure@anegie-Mellon (left panel) and
of the 16 traffic flows measured at AT&T (right panel).
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1. Skewed Marginalswhat is the impact of skewed model on the accuracy of the estis?

And what is the best model for the OD traffic?

2. Time Dependencewhat is the impact of explicit time dependence on the acquofthe

estimates?

3. Informative Priors:what constraints should we impose to solve the reguladagiroblem?

How do they impact the accuracy of our estimates?

The inferences obtained with different methods were coegphy computing thé, distance be-
tween the true OD flows in the validation set and the estimaié® best results were obtained

with log-Normal distribution for the flows and Gaussian vaguiors.

To isolate the effect of realistic distributions for the ODwils, we compared the estimates
obtained with 1A where no time dependence was assumed, fom@@aand log-Normal models,
and a variety of non-conjugate priors (Uniform, Gaussiaam@a,| log-Normal) and different
pa-rametrizations, with the estimates obtained by lo¢alihood. Introducing realistic model
reduced the error between 25.4% and 40.8%. To isolate tketeadf explicit time dependence,
we compared the estimates we obtained with the augmentadigaumodel that uses independent
AR(1) processes for the OD flows, with the estimates obtamédlocal likelihood. Introducing
time dependence reduced the error by 15.5% on average;dbeti@n ranged between 8.5% and
31.0%. Using the static IA model in 60% of the time points dmimative priors yield flat or
multi-modal posteriors, whereas in the remaining 40% ofttime points flat priors yield wide
uni-modal posteriors. The main effect of the datay@f) on the posterio(x(t)|y(t)) is on its
range; impossible configurations receive zero posteriobadility. Informative priors with wide
variance all yield uni-modal distributions. The dynamic tdodel with informative priors has
the advantage of requiring fewer particles than the versased on flat priors; knowing where to

sample may introduce bias, but the thick tails of the logsNalrdistribution of bothe () |\ (), ¢(t)
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8.8 8.8
Estimation Errors for Gamma Models Estimation Errors for log-Normal Models
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Figure 5.7: The bars represent the average estimationirraoralidation set. Specifically we plot
the/, distance between the true OD flows and the correspondingasts obtained with the local
likelihood approach and IA models in its various flavors. lasbd on the Bayesian dynamical
system is a clear winner. In both panels we include the estgnabtained with the augmented
Gaussian state-space model. Error bars in the left panesgnd to 1A models based on Gamma,
whereas error bars on the right panel correspond to IA mdxeled on log-Normal.
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Figure 5.8: Example posterior distributions for the OD flawg, 244) andxz(4, 244). The traffic on
the X axes is measured in Kbytes, and the figures show the postiésiabutions we obtained with
non-informative priors (top panel) and with informativequs (bottom panel) calibrated using our
Gaussian linear SSM. The solid triangles represent thehtidaen OD Flows, whereas our point
estimates would be the means of the posterior distributiglaking the posteriorsore unimodal
improves the estimates by reducing the bias entailed by extdes.

and\(t)|0:(t), 8-(t) mitigate the problem, and 1A captures several of the hidgékes.
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Figure 5.9: Example posterior distributions for the OD floi, 255). The traffic on theX axes is
measured in Kbytes, and the figures show the posteriorlalision we obtained with IA static (left
panel) versus the one we obtained with 1A dynamic (right hafiéne solid triangles represent the
true hidden OD Flow, whereas the empty triangles are ourt@stimates, which correspond to
the means of the posterior distributions. Making use ofreldbservation§ y(1), ..., y(255) } in
computing the posterior distribution in the right panelueed its variability — notice the different

ranges — thus improving the inferences.
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Figure 5.10: The learning algorithm for IA models scalegéirly with the problem size (number
of time ticks).

Briefly, we recover a smooth version of the OD flows, we catdraformative priors for some

crucial parameters, and eventually we use a dynamical Baysgstem to refine the estimates and
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capture bursty traffic. This methodology allows us to comabithe three simple ideas above: are-
alistic model for the data, the use of a filtering scheme wtakks advantage of time, probabilistic
constraints to overcome the under-determinacy of the probln the first stage we use the Gaus-
sian linear SMM proposed in Airoldi (2003), and we calibratformative priors forA(t) using
these estimates. These priors incorporate informationtabhe magnitude and the dynamical be-
havior of the first stage smooth estimates, and softly caimstine location of the average processes
{A(t), t > 1}. Other methods proposed in the literature make use of predity estimates, but
they only retain the information about the magnitude of tlizfldws given by the such estimates

in the refining stage — see for example Zhang et al. (2003) vdeosinrinkage to improve the
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Figure 5.11: Example fits: actual latent flows (solid blacle8) versus reconstructed flows (dashed
red lines). IA manages to reconstructs several spikes.
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solutions given by a gravity model. In our method, the faeit thve retain also the information
about the local dynamical behavior yields a significant jumge final accuracy. Another channel
through which informative priors help achieve a better aacy is by reducing the bias entailed
by multiple modes in the posterior distributions. Making thosteriors morani-modalimproves
the precision of the point estimates of the OD flows (the pasteneans) as we show in figure
10 below. Informative priors do drive the inferences abbet®D flows towards the preliminary
guesses, however the two layers of our model and the use toprsxdifabilistic constraints entail
enough flexibility to capture several of the spikes in mangesa for an example see figure 12
below. Further our first-stage estimates are safely basealandel which entails a one-to-one
relationship between OD flows and measurements, as it iesltie model by Cao et al. (2000) as
a special case. In the second stage the primary object oésttieecome the sequence of posterior
distributionsP( (t) | y(1), ..., y(t) ). We use their meansﬁt) =FE(x(t)|y(1),...,y(t))as point
estimates for the OD flows at timie The Bayesian dynamical system brings further improvesjent
as we show in figure 7 above, due to the fact that we make usktbéalbservations up to timen
computing the posterior distributiod®d x(¢) | y(1), ..., y(t) ); conditioning on more observations

yields a narrower variability. Local methods use fewer obstons in a short window aroung

instead.

Concluding, experimental evidence shows that the imprevertA models achieve goes be-
yond the contribution of state-of-the-art methods evenmibembined with recent resampling
schemes which improve any given set of estimates. The nmggelioices behind IA models are
intuitive; first-stage estimates capture smooth averagegsses, second-stage estimates capture
the spikes. Last, the estimation strategy of the dynamic bdleh provides some insight in how
to calibrate informative priors in Bayesian systems, wingrelear guidance about the dynamic of

the latent variables is available.
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5.2 Co-Evolving Systems

The idea here is to revisit a classical model of social irttgwas and their evolution based on
constructional theoryGarley, 1990 1991), and to explore whether, and to what extent, its spec-
ifications fit within the statistical framework presentedfie previous sections. In doing so, few

points of discussion emerge that suggest a wide applitabilihis approach.

The basic constructional model explains the dynamics aBkoteractions using three basic
forces: (i) social interactions lead to shared knowledigesitilar individuals tend to interact, and
the more individuals interact the more similar they becofii¢ global social consensus emerges
from diverse local conditions. Elements of the model pgraaimplified society withV individ-
uals. Culture is described in terms of individuals’ knowgedaboutk’ facts, at any given period
t, and encoded by Bernoulli variablg&(n, k) specific to individual-fact pairs. Social structure is
defined in terms of individuals’ probabilities of interamtiwith one another at any given perigd
and encoded by scalap§n, m) specific to pairs of individuals. Social structure is assdieebe

a deterministic function of the culture,

o Zk; ft(n7 k) : ft(mv k)

p'(n,m) = 207]43 Pk fo k) (5.7)

Actual interactions occur at any given perigdand are denoted by(n, m). Whenever two indi-
viduals interact, each shares knowledge about a singlé fattosen uniformly among those that
are known; this information is encoded by a pair of Bernodliablesu!(n, k), u*(m, ). And so

culture evolves, an social structure changes.

The algorithm that specifies the evolution of social streetand culture in this model is as

follows.

1. Atepocht
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Figure 5.12: Graphical representation of the basic coastmal model Carley, 1990 1991 and
one of its extensionsShreibey 2006).

1.1. Compute social structus® given culturef™
1.2. Sample interaction given social structuré
1.3. Sample knowledge exchanggétigiven interactionsg® and culturer™

1.4. Update culturé™®*! given previous culturé™ and knowledge exchangéd

The left panel of Figur®.12shows how the basic constructional model can be representbd

formalism of the statistical framework presented here.

Remark 2 (On Inference) Recall that it is possible to characterize the models of sapased on
the exponential familyHrank and Straussl986 Wasserman and Pattispf996 with the formal-
ism of undirected graphical modelgifoldi, 2006 Hanneke and Xing2007. The inference for
the models of dynamics and evolution suggested by the catistial model of social interactions
is tractable, although possibly computationally expeasas long as we make use of probability
distributions within the exponential family we can compieeivatives and likelihood and devise
the corresponding EM algorithm—using approximation sgi¢s such as variational methods and

MCMC where necessary

The constructional model of social interactions is ess#ipta data generating process that
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involves probabilistic events and regularities; as sutshspecifications can be subsumed within
the statistical framework presented here. However, thésgifaanalyses that such a model (and
its extensions) allows are not restricted to inference amdrpeter estimation. Through simulative
experiments, for example, the constructional model allmrexplore the space of possibilities that

is consistent with a given set of structural hypothestsdiber 2006.

In this chapter, | described a strategy to introduce simgleachics and evolution in the models
of complex graphs developed so far. Edges within a netwagknarlonger exchangeable in this

temporal setting; exchangeability is substituted by ottegrendence structures.

| demonstrated how to fully specify model of network evadnti—the Inverse Allocation model
of Section5.1—to solve an open problem in the context of dynamic networkdgraphy. Net-
work tomography constitutes an interesting applicatioerghalocally smooth dynamic behavior
serves as the crucial constraint that allows the accuréiteatfon of origin-destination traffic from
few aggregate traffic measurements. A conditional markéak poocess accommodates the extra

variability due to bursts in the traffic.

| presented an overview of alternative (more complex) termpmodeling strategies and dis-
cussed the extent to which they provide a conceptual bridgeden statistical models and agent-
based models. | believe that this conceptual linkage suggeswew approach to calibration and val-
idation issues that arise in agent-based models and siongah general that is rooted in Bayesian

statistics.
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Chapter 6

Concluding Remarks

This thesis provides a methodological framework for théstieal analysis of complex graphs and
dynamic networks. In it, | developed probabilistic algbnits that generate, evolve and integrate
a heterogeneous collection of graphs, | studied the statishodels these algorithms implicitly

specify, and | developed strategies for estimating thefsghantities on which they depend.

6.1 Conclusions

| have described a statistical approach to the analysisroptax systems. As it has emerged from
the examples and case studies (either presented in detadfeored to in published work) most

of the models introduced here are tailored to the analysi®oiplex systems and their evolution,
with special emphasis on applications to social and bic&lgietworks. The goals of the analysis
in the various cases is different, but there is a binding #ethat of revealing non-observable
mechanisms underlying social and biological processestiegiating a heterogeneous collection
of measurements about diverse signals, i.e., networksesegs, and attributes. Applications of

the models presented here in the context of biological systill be the main focus of future
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research.

From a methodological perspective | introduced: (i) modeisthe analysis of complex net-
works; (ii) models for the analysis of multivariate attribsg; (iii) strategies for integrating het-
erogeneous measurements; and (iv) models for the evolofidhe system, within a coherent
statistical framework. There are few basic ideas that getldoed in various guises to derive full
model specifications in this framework: (i) mixed membepskii) latent patterns; (iii) hierarchi-
cal structure in the likelihood; (iv) dynamics; and (v) sgr. | found these ideas to be useful in

applications to social and biological systems.

In future research, | plan to explore fundamental techrigsles that are shared by Bayesian

mixed membership models, and to some degree by hierardayasian mixture models.

6.2 Technical Issues

In working with latent aspects models of the sort descrilpetthis thesis, | have encountered four
themes of a technical nature: (i) the mixed membership ofabjto patterns, and the related
allocation task; (ii) model selection and model choicei) (ine presence of many local peaks
in the likelihood, and strategies for finding one with a gootdstantive interpretation; and (iv)

scalability of the approach to very large data sets. | briellich upon each of these in the following
subsections. The context in each case is given by a specifielmuut the discussion and results

generalize to other models.

6.2.1 The Geometry of Allocation

The allocation task has a central role in the latent aspestieia described in this thesis; resolving

this task is equivalent to estimating the mixed memberslap between objects and latent patterns.
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Intuitively, we allocate objects to categories and we idtrce a new category when the fit is bad
on some scale using the current number of categories. ltSsilple to characterize the notion of

allocation in terms of variance components, both analjyieand with simulations.

Example 29.In the classical Factor Analysis and linear Gaussian stgfp@ce models it is possible
to derive in closed form the projections of data onto the lodimmensional spaces of factors and
states, respectively. The projection allocates data terifetomponents according to the entries of
the various variance-covariance matrices involved, asagraqual component weights. Consider,
for example, a factor analysis model: we measir&imensional quantitie3” = AX, compo-
nents of which are assumed to be sums, through the mafrof K-dimensional latent factors,
X. In a simple formulation of the problem we can assume uninefésA;; = 1, and X ~
Normal (0,%). It turns out that the allocation of observations to factarsthis model, is resolved
by estimating latent factors with weighted averages of thseovationsE | X, | {Y}), ] =
>4 wka Ya). The allocation is specified through the optimal (mixed-imership) weights, which

are functions of the elements of the variance-covarianc&imav;, = w;(X). Note that the

variance-covariance matriX is estimated as well (e.g., see Appendix A.Bimldi, 2003.

The seeming analytical intractability of these models @nés us with some obstacles, and
opens analytical opportunities at the same time. Below Videosome experimental evidence that
is suggestive of the how the quality of the allocation of abgeo patterns responds to the quality of
the assumptions encoded by a model. In the future | plan tlmexphe extent to which a tractable

lower bound for the log-likelihood and asymptotic derieais help characterize these ideas.

Experimental Evidence: Simulations The simulation takes place in the context of models of
multivariate attributes | developed in Sectidri, where we allocate genes to temporal expression
profiles using models that encode independence among eoces of the same gene versus mod-

els of contagion. Simulative experiments suggest thatcBiet-Poisson model of Sectighl is
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better at recovering membership than the independencelmbda realistic SAGE mean/variance

ratio holds.

We first validate our models by examining to what extend thay iecover the mixed-mem-
bership probabilitie6,, }, i.e., the soft cluster assignments of each gene, underussimulated
conditions. We generated the ground truth using our gerernatocesses, and we focused on sce-
narios where the “mean” expression level at the variouslepa@s lower than its corresponding
“variance’— a realistic biological experimental scenarMe compare our models, normalized
DiP and conditional DiP, with two other methods, the indejece modelFritchard et a].200Q
Minka and Lafferty 2002 Blei et al, 2003, and the PoissonL modeCéi et al, 2004. Our mod-
els yield higher likelihoods of expression profiles in thsttget (not shown), and more accurate
predictions of the latent theme id of each gene based ondbsgrved expression levels. Out of
1000 genes we simulated, for example, nDiP and cDiP achiége2b% and 70.32% accuracy,
respectively, whereas the independence model reache®8rd$%. Strikingly, the independence

model clustered all genes in one profile in several runs.

Experimental Evidence: A 20-gene Synthetic Data SetIn small samples bearing realistic
SAGE characteristics, although the recovered clustefserdinly slightly, the estimated mixed-

membership are sharper using DiP than with the independandel.

Here | report our analysis of a small dataset use@anet al.(2004), which contains the ex-
pression profiles of 20 genes over 5 temporal epochs. Eigluktne 20 genes belong to one of
4 clusters (temporal themes), and the 2 remaining two argife&l as outliers. The expression
profiles are generated from 6 different latent themes, astets, which the authors reduce to 4
by ignoring the abundance of the gene tags observed on tigctipts sampled at each epoch. In
particular, there are 3 profiles from theme 1, 4 from themef@i® theme 3, and 6 from theme 4.

The raw data is plotted in Figu&1on various scales. Among the profiles from theme 2, there is
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1 with 10 times as many gene tags as the others, and simitartiiédme 3—number 7 and number
13 in Figure6.2 Note that these 2 profiles are “more expressed” but thegviodn expression

theme similar to the other expression profiles in the reggectusters.

Figure6.2 displays the 4 themes learned by the normalized and conditDiP models (bottom-
left panel), versus those learned by Poisso@Ghi(et al, 2004 and the independence model (top-
left panel). A rough eyeballing shows that the gene expoedsiemes learned by DiPs and the two
competing methods are similar. However, a close examinatweals the following. Arguably,

we obtain a more compact themes 3, as revealed by the lowszadefidispersion among genes
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Figure 6.1: The raw example data@ai et al.(20049), on the original expression scale (left); on a
normalized expression scale, by gene, {ftd | (center); and on a normalized expression scale, by
epoch, usingr. (right).
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Figure 6.2: Left: Latent gene expression themes learnedffareht algorithms. Top: 4 themes
(numbered 1 to 4 from left to right) learned by PoissonL arel ittdependence model. Each
theme is represented by the expression profiles of all theggassigned to that theme base on
MAP prediction using the estimated mix-membership veétorIn this case, PoissonL and the
independence model give the same membership predictiatorBoThe 4 themes discovered by
normalized DiP and conditional DiP. Note that due to oveoghe profile curves, the "occupancy”
number of each theme is not apparent here. But in 6g.one can see it more clearly. Right:
The estimated membership probabiliti@&k}, for the independence model (top), nDiP (middle),
and cDiP (bottom). Each row correspond to a theme, and edgimoaorresponds to a gene. The
color shades of the cells correspond to values ranging fr@sratk) to O (white). The panel shows
that cDIP yields the sharpest estimates.

assigned to this theme; but for theme 2, the genes assignebytéhe independence model and
PoissonL are slightly more consistent. Overall, the saftwadustering assignment of each gene
are compatible across all 4 algorithms, and as shown in €i§@), but the mixed-membership
probabilities inferred by the DiPs for each gene are shalpare compare the MAP assignment
of each gene to a single most probable themes, the 19 of ther&#s@re consistent across all 4
algorithms, and their assignments agree with the true tedaie| given by the original dataset.
The remain one, gene no. 10, is intriguing. It has an expragsiofile,{Y};°} = (4, 10, 16, 14, 6),
and is originally labeled as from theme{2}°} = (10, 30, 30, 60, 10). Apparently profile{ Y5
exhibits great variability with respect to its supposediglerlying theme. Using DiP, we infer the

label of gene no. 10 to be theme 3, which has a prototype pkofife} = (10, 10, 10, 10, 10), and
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indeed we found much of the variability in gene 10 is relatethe overall abundance of all genes
in different epochs, rather then its intrinsic trend. So wel tthis assignment is arguable more
plausible the the purported theme 2. As shown in FiguBp the independence model inferred a

split assigned, about equally probable to pattern 2 and 3.

The example suggests the role of model properties in lattagion tasks. The intuition is
that if the model cannot express, on average, the saliepepies of the data, then it may lead to
artifactual effects. Specifically, the unexplained vaitigbwill need to find a “place-holder”, and

it seems to increase the variability of parameter estimates

6.2.2 Model Selection Strategies and Issues

Although there are pathological examples, where slighiffieilent model specifications lead to
quite different analyses and choices of key parametergahsituations we expect models with
similar probabilistic specifications to suggest roughlyitar choices for the number of patterns
(Airoldi et al., 2006¢. In the applications presented or referred to throughastthesis | explored

the issue of model choice by means of different criteria.

Paremetric: Choice Informed by the Ability to Predict Cross-validation is a popular method
to estimate the generalization error of a prediction rhlagtie et al.2007), and its advantages and
flaws have been addressed by many in that context (¢gg1,997. More recently, cross-validation
has been adopted to inform the choice about the number gemghassociated patterns in hierar-
chical Bayesian model8@arnard et al.2003 Wang et al.2005. Guidelines for the proper use of
cross-validation in choosing the optimal number of grolipsowever, has not been systematically
explored. One of the goals of our case studies is that of sigge® what extent cross-validation
can be “trusted” to estimate the underlying number of topicdisability profiles. In particular,

given the non-negligible influence of hyper-parametemesties in the evaluation of the held-out
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likelihood, i.e., the likelihood on the testing set, we diger that it is important not to bias the
analysis with “bad estimates” of such parameters, or willit@ry choices that are not justifiable
using preliminary evidence, i.e., either in the form of pikaowledge, or outcome of the analysis
of training documents. To this extent, estimates with “getatistical properties,” e.g., empirical
Bayes or maximum likelihood estimates, should be prefetoenthers Carlin and Louis 2005.
Alternative approaches based on the predictive abilitysetaof latent patterns have been recently

proposed, e.g. in the context of clusteridgbshirani and Walther2005.

Semiparametric: Stochastic Process Priors Positing a Dirichlet process prior on the number
of latent topics is equivalent to assuming that the numbéateht topics grows with the log of the
number of, say, documents or individualefguson1973 Antoniak 1974. This is an elegant
model selection strategy in that the selection problem imecpart of the model itself, although in
practical situations it is not always possible to justifynénparametric alternative to this strategy,
recently proposedMcAuliffe et al., 2006, uses the Dirichlet Process prior is an infinite dimen-
sional prior with a specific parametric form as a way to mixraeices of. This prior appears
reasonable, however, for static analyses of scientificipatobns that appear in a specific journal.
Kumar et al.(2000 specify toy models of evolution which justify the scaledrnature of the rela-
tion between documents and topics using the Dirichlet m®peior for exploratory data analysis
purposesKleinberg et al. 1999 Kumar et al, 2000. However, has to be noted that the prior on
the membership of the patterns induced by many such pracesset always desirable, and in
certain applications is wrong. For example, in biologigaplécations to protein interaction net-
works, the latent patterns correspond to stable proteimpt®xas (i.e., groups of proteins) that are

composed of 4 to 7 proteins on averageggan et al.2009.

Other Criteria for Model Choice  The statistical and data mining literatures contain mahgiot

criteria and approaches to deal with the issue of model ehaq., reversible jump MCMC
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techniques, Bayes factors and other marginal likelihoothods, and penalized likelihood cri-
teria such as the Bayesian Information Criterion (BISglwartz 1978 Pelleg and Moorg2000),
the Akaike information criterion (AlIC)Akaike, 1973, the deviance information criterion (DIC)
(Spiegelhalter et 812002, minimum description length (MDL)Ghakrabarti et al.2004. See
(Han and Kamber2000 for a review of solutions in the data mining community. Al@sha fre-
guentist motivation and tends to pick models that are tagelarhen then number of parameters its
large—it does not pay a high enough penalty. BIC and DIC hageBian motivations and thus
fit more naturally with the specifications in this paper. Reitis truly Bayesian; however DIC
involves elements that can be computed directly from MCMEdations, and the variational
approximation to the posterior (described in detail be|@llpws us to integrate out the nuisance

parameters in order to compute an approximation to BIC fifedint values of’.

A Simulation Study | conclude by presenting some anecdotal evidence we gdtfrem syn-
thetic data with the aim of highlighting the dangers of fixiihg hyper-parameters according to
some ad-hoc strategy thatnst supported by the data, e.g., fixiag= 50/K in the models of
the Chapter8 and4. | simulated a set of 3,000 documents according to the ldieichlet alloca-
tion model for generating textual documents described iangple22, with K* = 15 topics (the
patterns) and a vocabulary of size. | then fitted the correct Bayesian mixed-membership model
on a grid forK = 5,10, 45 that included the true underlying number of groups and astaut
patterns, using a five-fold cross-validation scheme. Inst fiatch of experiments | fitted alpha
using empirical Baye€arlin and Louis(2005, whereas in a second batch of experiments | set
a = 50/ K, following the analysis irGriffiths and Steyver$2004. The held-out log-likelihood

profiles are reported in Figu@3.

In this controlled experiment, the optimal number of nos@iable topics ig(* = 15. This
implies a value ofy = % = 3.33 > 1 for the ad-hoc strategy, whereas= 0.052 < 1 according

to the empirical Bayes strategy. Intuitively, the fact that 1 has a disrupting effect on the model

179



6.2. TECHNICAL ISSUES E.M. AIROLDI

-280

-285[

-290

=300

Probability

-305F

=310

Held-out log-likelihood (5-fold cv)

-315

0

0 O‘vl 0‘2 0.‘3 0‘.4 . 0‘5 0‘6 O.‘7 018 019 1 320 ‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5
Support is interval [0,1] Number of latent groups

Figure 6.3: Left: 2D symmetric Dirichlet densities undémnty mixed-membership vectors =
(01, 0,), with parameter = 4 > 1 (solid, black line) and with parameter= 0.25 < 1 (dashed,
red line). Right: held-out log-likelihood for the simulati experiments described in the text. The
solid, black line corresponds to the strategy of fixing= 50/ K, whereas the dashed, red line
corresponds to the strategy of fittingvia empirical BayesK™ is denoted with an asterisk.

fit: each topic is expected to be present in each documenty other words each document is
expected to belong equally to each group/topic, rather trdy to only a few of them, as it is
the case when < 1. As an immediate consequence, the estimates of the comigorfemixed-
membership vectorsf,.}, tend to be diffuse, rather than sharply peaked, as we wouyldat
in text mining applications. Furthermore, in this simplmsglation, setting the hyper-paramter
to a value greater than one when the data supports valuesramaatically different range, e.g.,
0.01 < a < 0.1, ultimately bias the estimation of the number of latentgrai$. Figures.3 shows
that, ultimately, the empirical Bayes strategy correcdgaverskK* = 15, whereas the ad-hoc

strategy finds recovers an erroneous number of latent paté&r = 20.

Concluding, experiments in a controlled setting suggestiths desirable not to fix the hyper-
parameters, e.g., the non-observable category abundanaesording to ad-hoc strategies, unless
such strategies are supported by previous analyses. Adtraiegies will affect inference about
the number of non-observable patterns in non-controllalalgs, and ultimately bias the analysis

of data and the substantive conclusions. This effect carbberged in a real problem setting in
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Figure 6.4: The non-parametric empirical Bayes approaehgince.

Example25 of Chapter4 by looking at the entries in Figur&.1Q0 The plots in the right column
display latent topics that were estimated using the styatédixing «; they are visibly more
diffusethan the topics estimated by fitting the hyper-parameigsing the empirical Bayes strategy

likelihood—plots in the left column.

6.2.3 Nonparametric Empirical Bayes

An issue with mixture models is that of multiple local peakgy(,Buot and Richards2006ab).
Depending on the signal-to-noise ratio in the data, thislead to problematic inferences. How-
ever, even in those cases where the signal is buried in tise fitas possible to adopt estimation

and inference strategies that minimize the issue.

Example 30. In the application of the admixture of latent blocks modgdiatein interaction net-
works Airoldi et al., 20069 a two-stage approach is used; a model with no interactiomsiag
protein in different complexes is fit first, i.€3,is constrained to be the identity, and then the full
model is fit, i.e. B is unconstrained. In the second stage, the mixed memberspps initialized
to that recovered in with the simpler model. In this moded, dtrategy aims at resolving the infer-
ence among the two competing explanations for the interastinamely, the mixed membership
map between protein and stable protein complexes, and ok bhodel that encodes interactions

among proteins in different complexes.

In order to perform inference in the models presented a pietstage approach to estimation
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and inference is adopted—see Fig@ré In general, the non-parametric empirical Bayes approach
is an engineering solution. The approach suggests fittimgjaence of models, from most simple
to most complex, which are not necessarily nested. Thetsestilestimation and inference in
simpler models is used to inform (or calibrate) priors fan fmrameters in the more complex
models. In future work | plan to quantify both (i) the effedtsignal-to-noise ratio that is needed
to cause problems, and its interaction with (ii) the effdd¢he distance between the true model the

starting model on the probability of successful estimatiod inference.

6.2.4 Scalability

The scalability of posterior inference algorithms in madet relational data, e.g., the stochastic
block models of mixed membership of Sectii2.2 is a crucial practical issue given the size of
social and biological networks of interest that arise in eradapplications. Below, | illustrate a
possible solution to perform fast posterior inference m tbntext of a specific model. Notably,
the proposediested variationainference strategy is applicable to other models of retatialata

and makes posterior inference feasible in applicationsitivalve large graphs and networks.

Consider the admixture of latent blocks model of SecBoh To achieve fast convergence
of the proposed posterior inference algorithm in that casmployed a highly effectiveested
variational inference scheme based on a non-trivial sdiveglaf variational parameters updating.

The resulting algorithm is also parallelizable on a compdaiigster.

In a naive iteration scheme for variational inference, woald initialize the variational Dirich-
let parametersy,.y and the variational multinomial parametéts, ., ¢,._,) to non-informative
values, and then iterate until convergence the following steps: (i) update?pﬁq and¢,., for
all edges(p, ¢), and (ii) updatey, for all nodesp € N. In such algorithm, at each variational

inference cycle we need to allocateX + 2N?K scalars. Experimental evidencairoldi et al.,
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Outer loop

1. initializey?, = 2¥ forall p, k

2. repeat

3 forp=1t0N

4, forg=1t0o N

5 getvariational gb;t}q and ;j_lq f (R(p.q). 75,7, B")
6 partially updateyt“, 7t+1 andB**!

7. until convergence

Figure 6.5: The nested (two-layered) variational infeeeatgorithm fory and (¢—,¢~). The
inner layer consists of Step 5. The functigis described in details in Figuie6.

20069 suggests that the naive variational algorithm oftersfail converge, or converges after a
large number of iterations. | attribute this behavior to petelence that the two main assumptions
(block model and mixed membership) induce betw&gg and B, which is not satisfied by the
naive algorithm. Some intuition about why this may happ#tows. From a purely algorithmic
perspective, the naive variational EM algorithm instziiets a large coordinate ascent algorithm,
where the parameters can be semantically divided into eoh&tocks. Blocks are processed in
a specific order, and the parameters within each block gelpalated each time.At every new
iteration the naive algorithm sets all the elementg.f equal to the same constant. This dampens
the likelihood by suddenly breaking the dependence betweepstimates of parameters%tp_N

and inB! that was being inferred from the data during the previoustiten.

Instead, the nested variational inference algorithm ra@stsome of this dependence that is
being inferred from the data across the various iteratidhss is achieved mainly through a differ-
ent scheduling of the parameter updates in the various bloika minor extent, the dependence
is maintained by always keeping the block of free parame(épgq, $p<_q), optimized given the
other variational parameters. Note that these paramateiswlved in the updates of parameters

in ..y and in B, thus providing us with a channel to maintain some of the ddpece among

Iwithin a block, the order according to which (scalar) parterseget updated is not expected to affect convergence.
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Inner loop

1. initialize¢®_, , =¢0_,, = ¢ forallg,h
2. repeat

3. forg=1t0 K

update?;-i—_»lq X fl ( (b;u—q? /7107 B )
normalizep; ™! to sumto 1

4
5

6. forh=1t0 K
7 updatesstt oc fo (65,7 B)
8
9.

—

normalizep; ™’ to sumto 1

until convergence

Figure 6.6: Details Step 5. in Figuf5; the inference algorithm for the variational parameters
(o0, din ) corresponding to the basic observatigg),. The functionsy; andg, are updates for

nm’

— and¢: . described in the text of Sectighl.3

nmg nmh

them, i.e., by keeping them at their optimal value given tatad Further, the nested algorithm
has the advantage that it trades time for space thus allowgrig deal with large graphs; at each
variational cycle we need to allocatéK” + 2K scalars only. The increased running time is par-
tially offset by the fact that the algorithm can be paratletl and leads to empirically observed
faster convergence rates. This algorithm is also better h@MC variations (i.e., blocked and

collapsed Gibbs samplers) in terms of memory requiremerd<anvergence rates.

Complexity Recall that attribute measurements taken on individuaaibjin a population of
interest can be represented as a bipartite graph, and tatnal measurements taken on pairs of
objects in a population of interest can be represented agartite graph. In both cases, denote
the number of edges in the graph hythe number of objects by, the number of attributes hy/,

the number of latent patterns By, and the number of iterations till convergence of the paster

inference algorithm employed L.

In summary, the complexity of fitting a model of multivariaributes that follows the general
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specifications of Sectiofh.2.1is
O (I+NMKT+KT),

whereas the complexity of fitting a model of multivariateatedns that follows the general specifi-

cations of Sectiod.2.2is
O (I+N°KT+KT).
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Appendix A

Proof of Lemma 2

The proof is based on the following result.

Fact 1. There exists a permutation of the columns ofd ..., such that[A]; ;) = [A1|As],

whereA; is (¢ x ¢) and has full rank, andi, is (¢ x (k — ¢)).

As a consequence we can permute the componemtstofget[X] ;) = [X; | X5, andY” =

AX = A; X1+ Ay X, and finally express(; in terms of X, andY’, like so:
X =A7" (Y - Ay Xo)

Proof. The Gibbs sampler scheme involves iterative sampling frieenftill conditional distribu-
tions P(Z;|Z_yy = zy), fori = 1,..., N and Z vector. A sufficient condition to ensure the
irreducibility of the chain, Besag (1974), requires that support of the full conditional distribu-

tions is positive where that of the joint distribution &fis positive, that is:

if P(Zi = Zi, Z(_i) = Z(_i)) >0 = P(ZZ-‘Z(_Z-) = Z(_i)) > 0. (A.l)
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2D case:we show that conditio&.1 holds. Specifically consider the situation displayed inriggu
6 above, where there are— ¢ = 2 components o, that we need to sample from. The chain is
at a pointX, > 0 where the joint support is positive ant{ ' (Y — A,X,) > 0, and it moves by
(+¢, +¢) to the pointX;, + (e, €)’ where the joint support is also positive adg! (Y — A, (X, +
(e,€))) > 0. We want to show that whenever baty and X, + (¢, ¢)" are feasible, it is possible
to pass from the former to the latter by means of componesé-wioves, as we would with Gibbs
moves; that is, the support of the full conditionals must bsitive either atd; (Y — A, (X, +

(0,€)))oratA; (Y — Ay (X3 + (6,0))). In other words we want to show that

{AI_I(Y - AgXQ) Z 0 VAN AI_I(Y - A2 <X2 -+ (6, 6)/> ) Z 0} (A2)

implies

{ATHY — Ay (X +(6,0))) >0 vV ATHY — Ay (X2 +(0,€))) >0}, (A.3)

Assume thaf\.2 holds. Notice thatl; ' (Y — Ay (Xa+ (6,€)') ) = A7 (Y — Ay Xy —e( ALY, A3Y) —
e(AS2, A2%)) > 0. Add A7 (Y — A, X,) > 0, non negative by assumption, and rearrange terms to
get A7 Y — Ay Xy — e(AL, A2Y)) + ATHY — Ay X, — €(AL2, A22)") > 0 which cannot be the

sum of two negative quantities. QED.

Similar derivations show that whenever the joint suppog pasitive probability atd;* (Y —
As (X — (e,€)') ) then it also possible for the chain to get there either thinotig (Y — A, (X5 —
(0,€)")) or throughA; ' (Y — Ay (X5 — (¢,0)) ); and that the same condition holds as we consider
the moves to the pointd; ' (Y — Ay (X5 + (e, —€)') ) and A; (Y — Ay (Xo + (—€,€)')).

General case:the proof is exactly the same as in the 2D case, but more tedidNow X,

and (e, ....e) are s — { = n-dimensional. Assume a;'(Y — A,X,) > 0 and A;*(Y —
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Ay (X2 + (6, ceey 6)/) ) > 0 hold true. Rewrlte41_1(Y — A2 (X2 + (E, c 6)/) ) aSAl_l(Y — A2 Xo—
(A A2 L ABYY — L — (AR AT AZMY)) > 0. Add (n—1) x ATH(Y — Ay X5) > 0, non
negative by assumption, and rearrange terms tolgéty — A, X, — e( AL, A2 ABY) + .+

ATHY — Ay Xy — e(Adr, A2 . AB™)) > 0, which cannot be the sum efnegative terms. QED.

Again similar derivations show that conditi@nl holds as we consider moves to other points

Xy + (&£e, ..., k). O
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Appendix B

Full Conditionals for the Gibbs Sampler

SayO = (A, .., A, 0) thenP(X,0) = [, P(X:|0) P(©) = I, P(X:|\i, ) P(\:) P(4).

We want)\; € (0,00) and¢ € (0,00). As an example, assume priors fgrand1/¢ proportional

to a constant, and = 1. Then, noticing thal’(0|X,Y) = P(0[X) I{41y1(X), the following

full conditional distributions can be derived.

P(o]X,Y)

[T P(XilAi, &) - P(A)

2
_ 1 [ log(X)—=A;
1 2¢ Ak

P(Xi|Ai, 0) - P(9)

pt+2

191



E.M. AIROLDI

In order to computeP( XY, ©) we use the fact in Appendix A to conclude thatX|Y, ©) =
P(X,5]Y,0) x xP(X1(X2)|Y,©); hence forX; € X, andX; € X it follows:

P(Xi|X(—i)7Y> 0) o« P(X;0)-P(X1]Y,0)

= log-Normalx, (A, pAi) - [[; log-Normalx; (A, ;) Iia-1yy(X;)
(B.1)

In the analysis, we explored the various posterior distitims using the Gibbs sampler with
Metropolis steps. In order to sample froR(X;|Y,©) and P(\|X,Y), we usedy? and Uni-
form proposals, improper priors on the lambdas (all prapoai to a constant), and several flavors

for the improper prior o (proportional to a constant, %1 and otoé).
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Appendix C

Compendium of Network Models

Models for graphs of various types are scattered acrosandsm the social, physical, mathemati-
cal, statistical, and computing sciences. In this reviethefiterature, | emphasize those statistical

models that attempt to express the dependencies betwesttinj the system, in some sense.

C.1 Static Graphs

The works in this section take as input measurements abgettstihat start from a network as

given.

Exponential Random Graph Models. Under the assumption that two possible social ties are
independent only if a common actor is involved in bHoBrank and Straus&1986 devised the

following characterization for the probability distrilbom of undirected Markov graphs.

By =y} =exp (3 0uSilu) + 7T(w) +0(6.7) ) we . ®.1)
k=1

1This is the intuitive definition of Markov property for spaltprocesses on a lattice Besag(1974.
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where the statisticS, and7’ count specific structures, such as edges, triangles;-atars,{ 6, } =

0 and T are the parameters, andd, 7) is the normalizing constantFrank and StrausgL986
worked mainly with the three parameter models, whgre .., 6,1 = 0. They proposed the
pseudo-likelihood estimation method to estimate the ceteplector of parameters by maximizing

the following pseudo-likelihood function.

00) =3 tog ( Po iy =g | Yoo = g forallu < v, (wo) £ i)} ) . (B2)
1<J
Wasserman and Pattis¢h996 proposed the current formulation of Exponential Randorap@r
Models (ERGM), also referred to @ models, as a generalization of the Markov graphs of Frank
and Strauss. For both directed and undirected graphs, theyam a similar characterization of
the probabilities where the statisti§s and7" are substituted for arbitrary statistics This leads

to the probability functions of the form

P{Y =y} =exp ((0Tuly) — 0(6) ) . (B.3)

More recentlySnijders et al(2004 have proposed a variant of these models where the major prob
lem of double-countingjis mitigated, but not overcoméfunter and Handcoci004 propose an
alternative estimation scheme that corrects parametenagss for double-counting. This estima-
tion procedure can be used for models based on distribuiiiotiee curved exponential family.

Park and Newma(R2004) formally characterize sensitivity issues.

Remark A. Itis possible to express the current formulation of expoiaérandom graphs using

the formalism of undirected graphical models, let us whieltkelihood of an arbitrary undirected

2The statisticsS;(y) count graph structures. Although they are not independentthey count overlapping sets
of edges, they are assumed independent in the pseuddwtikeli Ignoring the correlations is a bad idea, and causes
extreme sensitivity of the predicted number of edges tolsthainges in the value of certain parameters.
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graph.

p(x|0) = M) (B.4)

z

wherex. denotes the nodes in clique 6. denotes the corresponding set of parameterare
non-normalized potentials over the cliques, ane- > . []... ¥ (x.|6.) is the normalization

constant. If the likelihood is in the exponential family, wen write:
p(x|6) = exp { 0" u(x) —log 2 } :

Remark B. Models in this family are not “generative models” in that ss@mptions are present
to explain how the sufficient statistics are generated. Hewaét is possible to posit a generative
model that includes exponential random graph models, oo#mgr conditional model, as part of

the emission modeljroldi et al., 20068.

Latent Variable Models. The notions of equivalence, structural equivalence, aondKsl are
introduced byLorrain and Whitg1971) and further explored by many, notably Baust(1988. A
comprehensive treatment of models that use blocks to exginiescomplexity of the data is given
in Doreian et al(2004. A summary of models and notions relevant for social neksaoleveloped

in the social sciences can be foundifasserman and Faudi994).

Stochastic block models, the probabilistic treatment afck$, have appeared early in the
statistical sciencedHplland and Leinhardtl975 and widely studiedRienberg and Wasserman
1981 Fienberg et a).1981; Holland et al, 1983 Fienberg et a). 1985 Wang and Wong1987,
Wasserman and Andersd®87 Anderson et a] 1992 and recently rediscovere8ifijders and Nowicki
1997 Nowicki and Snijders2001), including non-parametric treatment of the number of kéoc
(Kemp et al, 2004, and integration with non-relational information to infee blocks Wang et al.

2005. A general stochastic block model of mixed-membershigieas recently proposeAifoldi et al.,
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2005h 20069, along with a framework to integrate external informatiddifferent typesAiroldi et al.,
20061, that relaxes the historical assumption of single-memstiprof objects to blocks, and esti-

mates block-to-block connectivity patterns in a Bayesashion.

Remark C. A general framework for integration of a different naturedescribed byCarley

(2002.

An alternative approach latent space models, where olserieractions are projected on a la-
tent space through a generalized linear moHelf{ et al., 2002 Hoff, 2003ha). Hoff et al. (2002
use MCMC to infer latent space positions, treated as hypeametersHoff (20030 specifies a
Gaussian prior over the latent space, thus giving to the ol generative flavor, with the goal

of modeling reciprocity.

Remark D. It is possible to posit a generative model that includes geized linear models
as part of the emission modeAifoldi et al., 2006h). The connection between stochastic block

models (SBM) and latent space models (LSM) is more subtbeigh.

Both SBM and LSM seek to define a conditional probability misttion for relations{y,,, }
among actors in a way that reflects some latent semanticg¢les, topics, functions, etc.) of the
actors. Let”Z,, denote a latent variable capturing the latent semantiesgmtation of the actor,
the SBM usually defines a generative modglg), ~ f(:|Z,, Z.»), of which the Z's typically act as
indicators of context-dependent edge generating prosesi®the other hand, an LSM maps the
observed relation,,,,, to some latent semantic differences between the two aci@is regression
function, of which the Z'’s typically represent the projects of the actors onto some latent metric
space where their differences can be measured via a Euchuk#ric. Specifically, in LSM the Zs
are multivariate/continuous, e.g., could be drawn from amakmal, and their realizations indicate
the position of actors in the latent space. In SBM the Zs arktivadate/discrete, e.g., could be
drawn from amultinomial(6), and their realizations indicate which group an actor bgtoto,

for each observed interaction. In other words, the dimeaity of the Zs in SBM reflects how
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many latent groups to be captured in a domain, whereas in [f@Mimensionality of the Zs does
not have an explicit interpretation in terms of groups. letfan LSM we need to run a clustering
procedure (e.g., k-means) in the latent space where thesaat® projected to, in order to decide
how many groups there are. Thus, the two types of network ta@de different: SBM focuses
on latent membership of each actor and underlines the impogtof modeling the "grouping” of
actors, whereas LSM focuses on latent distances and therstiess more on modeling proper
projections of actors into a latent manifold. Hoff’s formatibn of LSM is not a soft version of

SBM. As aresults, SBM and LSM have some orthogonal advastagaodeling network data.

Remark E. Connections have been highlighted to MDS and other linedinods Breiger et al.
1979, to unsupervised learning, e.g., PCA, F&hahramani2004), and to matrix factorization

(Ding, 2005 Xing and Jordan2003.

Spectral Methods. Research on by Gaussian unit ensembles provides a prababionnec-

tion to spectral decomposition$1étha 2004). In the computer science literature, there is a
stream of works in this area well summarized®gul (2005, who discusses comparison to PCA,
MDS and other linear methods. Briefly, isomafefenbaum et al2000, local linear embed-

ding (Roweis and SauR000, laplacian eigenmap8glkin and Niyogj 2002, Hessian eigenmaps
(Donoho and Grime2003, maximum variance unfolding{einberger and Sal2004 Weinberger et al.
2004 Sun et al. 2006, conformal eigenmap£pifman et al. 2005ab; Lafon and Lee2006 and

its asymptotics Nadler et al. 2005, and the recent reformulation of problems and solutions in

terms of tensorsHe et al, 2005.

Simple Models of Real-World Phenomena and their Mathematial Properties. Much of the
research across communities concerns the study of reédbgn@phs and their properties with the
aim of building toy models that capture such properties. éx@mple Newman and Park2003

study transitivity and assortative mixing (i.e., posita@relation of degrees of adjacent vertices)
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via group structureHoff (20033 studies transitivity, reciprocity and baland®@arabasi(20059
studies burst and heavy tails in human dynamiseng et al(2005 study the size of individu-
als’ social networks and means of estimating them from aatetype of survey questions; and

Ganesh et a[2005 study the effects on epidemics of the topological propsertif graphs.

Research originating in mathematics and physics positlsiaigorithms for generating graphs
that replicate observed properties, which are amenabl®bmpilistic analysisBollobas and Riordan
(2003 review few of such algorithms for popular graph typBairabasi and Alberfl999 Kumar et al,
200Q Cooper and Friez003, and present an extended analysis of the “LCD” mod@&watkley and Osthus
(2004. Other notable analytical investigations concern samgpind asymptotic resultBark and Newman
(2004 2005 give analytic solutions for the 2-star network and for tdned networksMilo et al.
(20049 analyze sampling algorithmgsleinberg and Kleinberd2005 describe asymptotics of
isomorphism and embeddin§tumpf et al.(2005 find that sub-samples of scale-free graphs are
not scale-free, and present a way to study properties of saniple based on moment gener-
ating functions;Flaxman et al(2005 describe the behavior of high degree vertices and eigen-
values in scale-free graph€hung and Lu2003 characterize average distances given expected
degrees; andCaldarelli et al.(2009 study the formation of cycles. A series of works is con-
cerned with models and methods to find “statistically sigatfit” motifs, i.e., recurring edge pat-
terns over sets of difference nod&e(g and Lassig®z004 Shen-Orr et a).2002 Milo et al., 2002
Artzy-Randrup et a).2004 Milo et al., 2004a Kashtan et a.2004 Milo et al., 20048). Newman
(20038 portrays networks as mixtures of patterns; sfadzquez et al2004 present the only in-
vestigation to date of how global patterns may arise fronttmposition of local ones. Few com-
prehensive reviews are available, which summarize manlyese findingsBarabasi et al.1999
Albert and BarabasP002 Dorogovtsev and Mende2002 Newman 20033 Amaral and Otting
20049).

A notion that recently captured the attention of fundingremes and high profile journals is
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that of “topology types”Airoldi and Carley(2005 present a review and a critique of such notion.
They survey generative algorithms for random grajihid@s and Rényil 960, Poisson graphs and
others that lead to heavy tails for the corresponding dedjsggbutions Simon 1955 Bollobas
1985 2003, Barabasi20053, scale-free graph$-@loutsos et al1999 Barabasi and Alberi999
Huberman and Adamjd999 Adamic and Hubermar200Q Barabasi et a)200Q Barabasi and Bonabeau
2003, small-world graphsNlilgram, 1967 Watts and Strogaf4998 Kleinberg 1999a Amaral et al,
200Q Liben-Nowell et al, 2005, core-periphery graph86rgatti and Evereftl999, and cellular
graphs and network$(antz and Carley2005a Airoldi and Carley 2006. Several of these topol-
ogy types are presented in heuristic terms, vaguely camiatross communitigsAiroldi and Carley
(2005 show that the slight differences in the sampling algorghmhich generate topologies that
adhere to the heuristic requirements of a specific type, arstable in terms of the topological
properties of the graphs they lead to. That is, slight dsffiees in the operational definitions for
the same topology type lead to separable graphs in termsafaghof common metrics used by
practitioners in the various communitfeA different set of concerns is explored in “robustness”
studies, which measure the stability of topological prtipsrof graphs and networks of specific
types to disruption and other stress situatioBer@atti et al, 2005 Frantz and Carley2005h).
These works are simulation studies that approach the sublsey issues discussed above from

another perspective.

Remark F. Alternatively, being able to embed the various topologyetyp a smooth para-
metric continuum (e.g., Erdos random, to small-world, itayrlattice; see Watts and Strogaiz
1998 would help understanding the boundaries. Unfortunatd$g this strategy is not practical.

There is a potpourri of necessary conditions that have t@bsfied by such a smooth parametric

3A notable survey is that ofitzenmacher(2004, who presents a brief history of power-laws and lognormal
distributions, and discusses some of their connectiom fi@enerative perspectivhlewman(2009 discusses the
connections among of power-laws, the Pareto distribution, Zipf’s law. Airoldi and Shalizi(2009 present a clear
analytical overview of these connections.

4Few works survey network metrics and visualization tootstables areCarley and Remingé2004 and Frank
2000.
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continuum, which appear in the heuristic definitions of theaus topology types, e.g., the same
degree distribution for all nodes or not, or shortest patthasnly notion of distance, or shortest
path and metric embedding. Although it is possible to pogjieaerative process that satisfies all
the necessary conditions, such a generative processaal@son-smooth parametric continuum.
Specifically, we would need to introduce in such a processerelie parameter that controls the
number of different “probabilistic treatments” for the resj e.g., the number of degree distri-
butions. The problem is that, on one hand, the value of sudsciete parameter is difficult to

estimate. On the other hand, its correct estimation is foregtaial in correctly assigning the topol-

ogy type. Ultimately, the diversity in the notions of topglotypes translates into the hardness of

the estimation task, upon the success of which depends oity &dbdiscriminate among types.

To summarize, we can organize the various works accordifigniaaspects: (a) the notion(s)
of distance between pairs of nodes that are needed; (b) ¢hewusot, of the descriptive statistics,
as well as their nature, i.e., local versus global; (c) theterce of dependence constraints among
neighborhoods; (d) the focus on node patterns (groupsiisedge patterns (motifs), where we do
no distinguish similar edge configurations among diffessis of nodes. These aspects have to be
crossed with the nature of the models: (i) “generative” nt®dad algorithms, both probabilistic
and deterministic; (i) models and algorithms that contgenerative” ideas, both probabilistic

and deterministic; (iii) other models and algorithms.

Problems. More works have introduced methodological innovationshi@ tontext of specific
problems. Notable research in this sense concerned hovdtedinmunities in networkg3irvan and Newman
2002 Newman 20044ab), and in bipartite graph#ishra et al,2004). To this extentDoreian et al.

(2009 summarize relevant works in the social sciences and dpwetbeory of generalized block

models. A cluster of research is about link-minifpmingos 2003 Jensen1999 Getoor 2003

Getoor and Diehl2005, graph mining Chakrabarti2009, link prediction Getoor et al. 2002
Liben-Nowell and Kleinbergr003 Goldenberg and Moor2004), and link ranking. Brin and Page
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1998 Kleinberg 1999k Cohen et al.1999 Ng et al, 2001). Other notable works are concerned

with the information flow within a network; the emergence eédlinesPapadimitriu and Servan-Schreiber
1999, the dynamics of informationK{einberg 2001, the dynamics of information exchange
(Dodds et al. 2003, how to maximize influence spreallgmpe et al. 2003, decentralized in-
formation processingvan Zandt 1997, and decentralized searcKl¢inberg 2000 2004. A

practical set of concerns inspired methods for entity disigomation (Malin et al, 2005, and clas-

sification of relational datdacskassy and ProvQ®&005. Solan et al(2005 propose a model to

learn grammar-like rules in natural languages.

Empirical Studies. Another portion of research concerns findings that infludribe develop-

ment of theoretical aspects. Notable empirical studiekidecthe web Faloutsos et al.1999

Albert et al, 1999 Kleinberg and Lawrenc&001), air traffic (Guimera et aJ.2005, the creative
enterpriseBarabasi2005h), scientific collaborationdNewman 2001), metabolic networksGuimera and Amar
2009, decentralized search in email netwoAdémic and Adar2005, transcriptional regulatory

network, Balazsi et al. 2005, words Steyvers and Tenenbau@005, the organization within

the cell Barabasi and Oltva2004), politics (Porter et al.2005, complex brain networksSporns et aJ.

2004, and more lewman et al.2002.

C.2 Dynamics and Evolution

Most existent works focus on static networks, however,dhame few that consider methodol-
ogy to deal with dynamics and evolution. Notables are theastrof works on cellular automata
(llachinski 200)), the early works on diffusionGoleman et a).1957), the treatment of dynamics

with Markov-chains Monte-Carld/fassermanl980, dynamic random fields on undirected graph

(Shalizi 2003, link-copying processes(einberg et al. 1999 Leskovec et a).2005ha), cascad-
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ing behaviors Watts 2002, network tomography and latent allocatiofiroldi and Faloutsos
2009, dynamics in the social spac8dnks et al. 2005, and models that attempt at replicat-
ing real-world phenomena such as opinion formatidiu@nd Huberman2005, and evolution

(Doreian and Stokmari997).

Empirical Studies. Very few studies exist to guide theoretical developmenis dynamic set-
ting. Few notables are communication networRédldi, 2003 Airoldi and Faloutsos2009),
email networksKossinets and Watt2006, nucleic acid chain dynamicSéles-Pardo et ak005,

and scientific collaboration®@rabasi et al2002).

C.3 Building Graphs from Data

The works in this section share the intuition that measurgsngbout objects are inherently noisy;
the various authors attempt to model the uncertainty agtastiwith the measurements in or-
der to make decisions whether two objects are related oramat, create a graph. A popu-
lar approach is that of associating a random variable witth éabject”, e.g., Bernoulli, define
the process through which “observations” relate to binaricomes, and estimate the parame-
ter of a Bayesian networkHeckerman 1999 that describes the observations best, through de-
pendencies among objects. The estimated Bayesian netwavides a probabilistic model for
the observed co-occurrences that can be used to predicingigsks, or to assess the likeli-
hood of existing ones,Getoor et al. 2002 Friedman and Koller2003 Heckerman et a/.2004
Goldenberg and Moor004 Teyssier and Koller2005. Important applications based on varia-
tions this approach have been used for building recommesydéems Breese et al.1998, social

networks Breiger, 2003, and complex cellular network&iedman 2004 Segal et al.2005.
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C.4 Inadequacies of the Current Research

There are several dimensions that are relevant to stalistialyses of graphs and networks. Un-

fortunately no single approach develops, or at least alfowsll of them

Dimensions of interest are: (a) a “proper” likelihood fuoat (b) the fully generative nature of
the model; (c) replicability of interesting properties atibglobal and local level; (d) the focus on
edges or nodes; (e) notions of distance and embedding diginajp metric space; (f) identifiability
issues that need be explicitly identified; (g) hierarchietdtions between dyads, trianglésstars,
k-triangles and other basic structural (connected) commusnthat are used to summarize and
characterize an observed graph; (h) dependencies aman@melquantities, i.e., the sufficient
statistics, corresponding to a decomposition of the oleskgvaph into cliques or other structures
of interest need be identified; (i) goodness of fit must bessesk—current models tend to over-fit
observed graphs and can not be easily extended as the absetvwerk grows; (j) the possibility

of integrating data on different object types; and otherafisions.

With respect to this last dimension, i.e., integration ofltiple object types and data about
them, most existent work tend to concern or assume specffestgf data representations, e.g.,
temporal and sequential data in attribute space, or retidata represented by graphs or net-
works. We view learning problems along this line as “typeafic-learning” problems. Typi-
cally, one can develop solutions to type-specific-learpiraplems by devising novel domain- and
data-specific models and algorithms that leverage domaiwlkauge and semantics of interest for
particular applications. Integrating heterogeneous tygies under a unified model remains a chal-
lenge, however, especially for complex graphs that are Isimeously described by intrinsically
different types of characteristics, such as features nibate space and links in relational space

(Airoldi et al., 2006h.

As we discussed in the previous section, there is a wide rahgesearch questions that an
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elegant solution to the issues above may help us answer.usieifall to keep those questions in

mind in order to guide our technical choices.
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