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Foreword

Over the past three years I have been working on probabilistic models of multivariate attributes

and relations. My work suggests a probabilistic framework and a general modeling approach to

complex and evolving networks, which is based on the four concepts of mixed membership, motifs,

dynamics and integration. In this thesis, I present such a framework and discuss its properties. In

particular, the main goal of the research is to establish theessential elements of formal models of

complexity that reconcile the global properties of a systemwith local phenomena of interest, in a

generative fashion.

A solution to the global/local trade-off is to express complexity through hierarchical mixtures

of simple patterns, i.e., motifs, that evolve over time. Complex global behavior emerges from the

combination of local interaction patterns and their dynamics. I discuss the extent to which this

novel framework incorporates, generalizes, and extends other probabilistic approaches present in

the literature, and argue that it provides the foundations of a statistical theory of random graphs.

A major part of the effort is devoted to the analysis of modeling issues related to the four

essential aspects listed above, in the context of applications to social and biological networks. I

also investigate theoretical and computational issues such as the geometrical intuition of the latent

allocation task—an important inference objective shared by the various models encompassed by

this framework.
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Chapter 1

Introduction

This thesis provides a methodological framework for the statistical analysis of complex graphs and

dynamic networks.1 In it, I develop probabilistic algorithms that generate, evolve and integrate

a heterogeneous collection of graphs, I study the statistical models these algorithms implicitly

specify, and I develop strategies for estimating the set of quantities on which they depend in the

context of applications to social and biological networks.

1.1 Complex Data

My investigations concern a population of objects of study.Objects can be divided into few dif-

ferent categories, or types, e.g., gene, proteins, and stable protein complexes; or documents, words

and references; or agents, tasks, and resources. Observations consist of measurements taken on

individual objects, i.e., attributes, and on pairs of objects i.e., relations. Both attributes and rela-

tions are typically multivariate, e.g., the expression of agene under many experimental conditions,

1The termsgraph and network, without qualifications, are synonyms for the purposes of this thesis because
throughout I represent networks in terms of graphs.
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1.1. COMPLEX DATA E.M. AIROLDI

or the set of words contained in a document. Measurements aretaken over time, and distributed

across heterogeneous databases.

At any given epoch, each object is represented as a node in a graph. Relations are represented

as edges in the graph, among nodes (i.e., objects) of the sametype, whereas attributes are rep-

resented as edges in the graphs, among nodes of different types. From a statistical perspective,

it is sometimes convenient to consider therandom matricescorresponding to the various graphs

at hand; that is, the adjacency matrices whose elements are scalar random variables that encode

edge-weights. This is the perspective I favor throughout this thesis.

Example 1. Figure1.1shows a collection of heterogeneous observations that we may use to gain

insight into the biology, say, of yeast. The collection involves four different object types: proteins,

genes, experimental conditions, and functional annotations. Relations are defined as measure-

ments on pairs of objects of the same type: i.e., the matricesPP, GG, CC, and AA. Attributes

are defined as measurements on pairs of objects of different types, e.g., entries of the matrix GC

measure the expression of genes under the various experimental conditions.

Such an integrated view of the data available for a given scientific problems invites us to think

about the semantics and the substance of the relations amongobject types in the context of the

application at hand, independently of whether or not observations about them are available. This

process is beneficial as it is often suggestive of new research directions.

Example 2. Proteins are composed of one or more subunits. In turn, each subunit is composed

of one or more linear polypeptide molecules, which are polymers of twenty different amino acids,

i.e., residues. Amino acids can be modified once they have been incorperated into a polypeptide

and the presence of these modifications may have a strong influence on the functionality of the

final protein molecule. Such modifications are called post-translational (Alberts et al., 2002). The

matrix PG in Figure1.1 encodes the mapping between proteins and gene tags after translation—

the matrix GG encodes correlations between microarrays expression profiles of gene pairs. Should

14



CHAPTER 1. INTRODUCTION E.M. AIROLDI

P P P G P C P A
G G G C G A

C C C A
A A

. . . . . . . . . . . .

Figure 1.1: An example of complex data. The figure shows an integrated (but partial) view of
the observations about a biological system. The types of objects are proteins, genes, experimental
conditions, and functional annotations. The various rectangles are suggestive of the matrices that
encode the edge weights of the networks (unipartite and bipartite) among pairs of nodes of the
corresponding types.

post-translational modifications be negligible, we shouldsee a one-to-one mapping between genes

and proteins. Figure1.1 suggests a way to get at such a mapping, which provides an alternative

to what has been proposed in the literature (Tsur et al., 2005). That is, we could estimate the

15



1.1. COMPLEX DATA E.M. AIROLDI

mapping between proteins and gene tags by looking at the consistency of the interactions between

stable protein complexes underlying the protein-to-protein network encoded in the matrix PP and

the interactions underlying the gene-to-gene network in encoded in the matrix GG.

Other instances of complex data arise in diverse applications such as artificial intelligence

(Carley, 2002), biology (Troyanskaya et al., 2003; Airoldi and Xing, 2006b), information retrieval

(Barnard et al., 2003), natural language processing (Griffiths et al., 2005; Kontorovich et al., 2006),

and statistical network analysis (Airoldi et al., 2007a).

Example 3. The analysis of large collections of scientific publications involves a different set

of object types: authors, documents, words and references (treated as documents’ attributes).

Nonetheless, the the data can be represented with a similar set of matrices, e.g., documents-to-

words, documents-to-references, and authors-to-authors. Depending on the availability of data

and on the scientific questions of interest, researchers typically focus on one, or at most a few, of

such matrices (Erosheva et al., 2004; Airoldi et al., 2006e).

Example 4. The analysis of a dynamic communication network involves object types such as em-

ployees, emails and words. The data can be represented with aset of matrices very similar to those

in Example3. If the analysis takes place within a corporate environment, we may involve more

object types such as tasks, resources. The matrices involving these new types, e.g., employees-to-

tasks, employees-to-resources, tasks-to-tasks, and tasks-to-resources, would enrich our represen-

tation of the inner workings of the company, and allow to ask adifferent, possibly more interesting,

set of questions (Carley, 2002).

1.1.1 Abstract Representations

From a modeling perspective, it is useful to complement the discussion above with an overview

of the data, and how they are represented. Consider a collection of relationsmeasured on pairs of

16



CHAPTER 1. INTRODUCTION E.M. AIROLDI

nodes, and a collection ofattributesmeasured on the same set of nodes. Such collections can be

represented by a unipartite graph and by a bipartite graph, respectively. I choose notation that is

suggestive of the elements of therandom matricesthat encode the edge weights in these graphs,

rather than the more standard notation based on vertices, edges, and a map from edges to edge

weights. A matrix representation of a such pair of unipartite and bipartite graphs is given, for

example, by the matrices PP and PG in Figure1.1. Relations correspond to edges in the unipartite

graph PP, and connect paris of objects of the same type, e.g.,proteins—the only type of objects

in PP. Attributes correspond to edges in the bipartite graphPG, and connect pairs of objects of

different types, e.g., proteins and gene-tags. The set of attainable values of relation and attribute

measurements is application specific.2

For example, a collection of relations is denoted by

G1:R =
{
Gr : r = 1, . . . , R

}
,

where the indexr runs overR replicates. Each unipartite graphGr = (Yr,N ), is defined by a set

of edge weights,Yr, over a fixed set of nodes,N , e.g., the proteins in PP. The random quantities

that encode the edge weights between pairs of nodes(n,m) in N ⊗ N are denoted byyr(n,m),

and take values in a separable, metric space.3 I refer toYr as a random matrix wheneverYr(n,m)

takes values inR for all edges inE . A collection of attributes is denoted by

H1:R =
{
Hr : r = 1, . . . , R

}
,

where the indexr runs overR replicates. Each bipartite graphHr = (Xr,N1:2), is defined by a set

of edge weights,Xr, over two fixed sets of nodes of different types,N1 andN2, e.g., the proteins

2Always a separable (i.e., contains a countable, dense subset) metric space.
3It is possible to introduce the set of edges, and defineYr as a mapping from edges to edge weights—an unnecessary

complication at this stage.

17



1.2. GOALS OF THE ANALYSIS E.M. AIROLDI

and the gene-tags in PA. The random quantities that encode the edge weights between pairs of

heterogeneous nodes(n,m) in N1 ⊗N2 are denoted byxr(n,m), and take values in a separable,

metric space. When dealing with both unipartite and bipartite graphs for whichN ≡ N1, e.g.,

that is the case for PP and PA, it is sometimes convenient to denote the set of attributes inN2 by a

collection of node-specific random quantitiesxr
1:N (m), whereN is the number of nodes inN , and

m is one of theM distinct attributes inN2—the replicate indexr has been moved to the exponent

for clarity.

1.2 Goals of the Analysis

I distinguish two main types of analyses:descriptiveversuspredictive. In a descriptive analysis the

goal is to find a model that captures the variability of the observations with high probability—in

terms of the estimates for the underlying constants, and in terms of the inferred distributions over

the latent quantities involved. In a predictive analysis the goal is to find a model that is good at

predicting a specific set of attributes or relations from another set of attributes or relations. The

ability of such a model in replicating the variability of theobservations may be sacrificed in this

case, since estimates and distributions assign high probability to the data do not necessarily lead

to good predictions. The divergence of objectives between descriptive and predictive analyses

is analogous to that between the probabilistic versions of principal component analysis (Jolliffe,

1986; Tipping and Bishop, 1999) and Fisher’s linear discriminant analysis (Fisher, 1936, 1938;

Ripley, 1996).

The models I consider in this thesis are slightly more complex. They posit a hierarchy of prob-

abilisticassumptionson the way observables,(Y,X), and non-observables,Ξ, related to objects of

different types are generated, and depend upon and interactwith one another. Given these assump-

tions, the models summarize the complexity of the observations in terms of a set oflatent patterns.

18
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Patterns are defined in terms of a set of parameters,Θ, which are also non-observable but which

are semantically distinct fromΞ. Small sets of underlying constants, e.g.,A andB, sit at the top

of the hierarchy, constrain the space of non-observable quantities,(Ξ,Θ), and ultimately constrain

the likelihood of the observations,

ℓ(Y,X|A,B) =

∫
f(Y,X,Ξ,Θ|A,B) P (dΞ, dΘ). (1.1)

Likely patterns,Θ, and likely values of other non-observable quantities,Ξ, are searched for, and

found, in the data. They may be used for organizing and simplifying complex information, deter-

mining object similarity, detecting outliers, and making predictions about attributes of, and rela-

tions among, the objects involved.

The analyses supported by these models boil down to a subset of four fundamental tasks: (1)

allocation, that is, the search for a likely mapping of objects to patterns; (2) estimation, that is,

the search for likely values of the underlying constants; (3) inference, that is, the search for likely

values of patterns and other non-observables; (4) prediction, that is, the search for likely values of

attributes and relations that need be predicted. For example, testing hypothesis about the existence

of a specific pattern,θ0 ∈ Θ, can be carried out by building, e.g., a plug-in confidence region R̂ =

R(Θ̂) for Θ, and checking whetherθ0 belongs to it. The tasks relevant to a specific analysis can

be carried out simultaneously, since the relevant quantities, i.e., observables, non-observables, and

underlying constants, are tied together in a hierarchy of probabilistic assumptions by the generative

algorithm.

Example 5. Consider the output of a battery of microarray experiments on the same set of genes,

N , under different,R, experimental conditions, in yeast (Krogan et al., 2006). Proteins are uniquely

identified by genes in the microarray experiments. Without entering into biological details, I wish

to analyze probabilities of interactions between pairs of proteins, which are induced from cor-

relations found in the gene expression experiments (Bhardwaj and Lu, 2005). Information about
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this unique, symmetric relation can be stored in a collection of R square tables, one for each

experimental condition, whose entries are random variables with support[0, 1] that encode the

probability of an interaction between corresponding pairsof proteins. The analysis of the set of

protein-protein interactions aims primarily at identifying stable protein complexes, i.e., clusters of

proteins, since they have been shown to be important for carrying out cellular processes. Further,

the number of protein complexes that are needed to explain the collection of protein interactions

needs be identified. Lastly, the probabilities according towhich pairs of such protein complexes

interact with one another need be estimated.

An aspect of the methodology that is relevant to the discussion here is the presence in the pro-

posed models of non-observables,Ξ, which encodesemantic elements of interest in a specific ap-

plication, e.g., the stable protein complexes of Example5. This implies that such non-observables

are potentially measurable, and, typically, few measurements about them are available—or can be

made available at a cost. A special attention is given in the analyses to such latent quantities, and to

other attributes or relations that are measured with error,e.g., experimental evidence or human an-

notators disagree on their values, on a small portion of the objects of study, e.g., they are expensive

to obtain. I will often refer to partially available measurements about such attributes, relations and

non-observables aslabels. The portion oflabeled dataavailable is of interest for the estimation of

the prediction error, and an explicit error model for the label is often desirable. Further, depending

on the amount of labeled data available, different strategies for initializing the inference,4 for fitting

the underlying constants, and for inferring the distributions on the latent quantities given the data

may be adopted.

Example 6.Consider the set of hand-curated protein interactions produced by the Munich Institute

for Protein Sequencing (Mewes et al., 2004). A single set of interactions between proteins has

been experimentally verified. Information about this unique, symmetric relation can be stored in

4Differences that have important consequences on the interpretability of the estimates and of the inferred distribu-
tions on the latent quantities.
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one square table, whose entries are random variables with support{0, 1} that encode presence or

absence of an interaction between corresponding pairs of proteins.

1.3 Basic Modeling Elements

There are few central modeling ideas that inform the probabilistic algorithms presented in the fol-

lowing chapters. These ideas generalize model specifications that were used to gain insight into

fundamental problems of computational biology, i.e., serial analysis of gene expression (Airoldi et al.,

2006f) and protein interaction networks (Airoldi et al., 2006c), and into the analyses of large col-

lections of scientific publications (Airoldi et al., 2006e) and of dynamic communication networks

(Airoldi and Faloutsos, 2004; Airoldi et al., 2005d). They relate to the following four aspects of

complex data: (1) the presence of a hierarchical structure in the likelihood, which includes both ob-

servable and non-observable random quantities, (2) the mixed membership assumption, according

to which objects may participate in multiple latent patterns to different degrees, (3) the temporal

dimension, and (4) the existence of multiple data types, andconditional dependencies among their

distributions, in an integrated system.

These aspects are best illustrated below by discussing how they generalize popular data analysis

models such as probabilistic principal component analysis(PPCA), factor analysis (FA), and state-

space models (SSM).

1.3.1 Hierarchy and Latent Patterns

Let us consider a collection of attributes,H = (X,N1:2), and let us adopt the point of view of

multivariate attribute measurements,~x1:N , on theN objects inN1 about theM objects inN2.

Example 7. The data generating process forX underlying factor analysis is instantiated by a
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1.3. BASIC MODELING ELEMENTS E.M. AIROLDI

probabilistic algorithm,A1 : (N1:2, K,Λ,Ψ) → R
M ,

1. For each objectn ∈ N1

1.1. Sample the latent factors~φn ∼ Normal K (0, I)

1.2. Sample the error~ǫn ∼ Normal M (0,Ψ)

1.3. Define the multivariate attribute~xn = Λ~φn + ~ǫn,

whereK is typically referred to as the number of (scalar) factors,Λ is a deterministic matrix of

factor loadings, andΨ is an unconstrained variance-covariance matrix.5 The algorithm suggests

a hierarchical decomposition of the joint probability distribution of the attributes,X = ~x1:N , and

the latent factors,Θ = (~φ1:N ,~ǫ1:N), given a set of underlying constants,A = (Λ,Ψ); that is,

the integrand in Equation1.2. By integrating the latent variables out of the joint we obtain the

likelihood of the observations,

ℓ(X|A) =

∫
f1(Θ|A) f2(X|Θ,A) dΘ, (1.2)

wheref1 andf2 areK- andM-dimensional Gaussian densities, respectively.

In FA the latent factors are an example ofpatterns, the way I intend them; they are non-

observable random quantities, defined in terms of a set of scalar parameters. Depending on the

model, patterns may specify other mathematical objects such as probability distributions, smooth

curves, and surfaces.

Confusion may arise about the notation for patterns,Θ, and underlying constants,A, in those

cases where latent patterns are defined to be deterministic.In such case the patterns would occupy

a spot at the top of the hierarchy, similarly to the underlying constants, thus leaving us the choice to

5Note that PPCA differs from FA only in that the variance-covariance matrix of the errors,~ǫ1:N , is homoschedastic,
that is,Ψ = σ2I with σ scalar.
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includeΘ in A or not.6 I shall clarify the use of notation whenever the occasion requires it. Further,

I note that the latent patterns,Θ, and other non-observable random quantities with a semantic

interpretation,Ξ, that appear in the general formulation of Section1.2, are to be interpreted as

part of ahierarchical likelihoodsince they typically model substantive elements of interest in the

application at hand.

Example 8. A simple mixture of spherical Gaussians for~x1:N can be specified by the following

probabilistic algorithm,A2 : (N1:2, K, ~µ1:K,Σ1:K) → R
M

1. For each objectn ∈ N1

1.1. Sample the latent component indicatorin ∼ Uniform (1, . . . , K)

1.2. Sample the multivariate attribute~xn ∼ Normal M (~µin,Σin),

whereK is the number of mixture components,(~µ1:K ,Σ1:K) are the corresponding mean vectors

and variance-covariance matrices, andΣk = σ2
kI with σ scalar. The likelihood can be written as

in Equation1.2, where the attributes~x1:N are denoted byX, the latent component indicatorsi1:N

by Θ, and the underlying constants(~µ1:K ,Σ1:K) byA. In this case wheref1 andf2 are discrete

uniform andM-dimensional normal densities, respectively.

In the example above, the underlying constants(~µ1:K,Σ1:K) qualify as patterns. It is conceiv-

able to put probabilistic constraints on such quantities, e.g., by assuming that they are generated

from some distributions. By doing so, I would introduce a new, more parsimonious set of under-

lying constants,A, and promoteΘ = (~µ1:K ,Σ1:K) to be the non-observable, probabilistic patterns

of the general formulation of Section1.2.

6It could be argued, for instance, that the matrix of factor loadings,Λ, should be considered a part of the patterns
underlying a set of attribute measurements,X , as much as the factors,Θ, themselves. However, in the hierarchical
formulation I consider here, it is not difficult to imagine the use of a probabilistic model forΛ to endow the loadings
with some desirable property (Airoldi and Lin, 2006).
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Thus a generative algorithm and the corresponding hierarchical likelihood specify exactly how

the various quantities of interest interact, in a probabilistic fashion, and encode structural hypoth-

esis of the scientist.

1.3.2 Mixed Membership

The idea ofmixed membershipextends that of a mixture. Stated briefly, this assumption posits

that the collection of measurements involving an object, i.e., both relations and attributes, may

be ultimately explained in terms of multiple patterns to different degrees. A recurring element of

my models is that such representations of latent patterns are associated with the components of

a mixture, as in the example above. In this sense, both mixture models and mixed-membership

models aim at describing the aggregate variability of a set of measurements in terms of a small set

of latent patterns. There are two major salient differences, however, between a mixture model and

a mixed membership model.

(i) In a mixture model the membership of objects to patterns is specified in terms of global

weights. In a mixed-membership model the membership of objects to patterns is specified in

terms of object-specific weights; these give a low-dimensional representation of the objects

that can be used for, e.g., making predictions about object-specific quantities.

(ii) Measurements in a mixed membership model can be associated with more than one latent

patterns. The role of sparsity in this context is to impose soft constraints in the estimation of

the mapping between objects and latent patterns—I term thisestiamtion theallocation task.

For instance, relations or attribute of an employee in Example 4 may be explained in terms of

the latent patterns associated with more than one social group, and the interactions between two

individual proteins can be explained by their taking part into more than one stable protein complex.

24



CHAPTER 1. INTRODUCTION E.M. AIROLDI

Example8 provides us with another element of the general formulationof Section1.2, that is,

the set of non-observables that encodes semantic elements of interest. For instance, in the appli-

cation to dynamic networks described in Example4, or in the application to gene co-expression

networks inAiroldi and Xing (2006b), the Gaussian mixture components are suggestive of latent

social groups and latent stable protein complexes, respectively. In these specific applications,

the non-observablesΞ1:N encode thesinglemembership to a social group, or to a stable protein

complex—whereas the latent patternsΘ provide parametric representations of social groups and

complexes.

Example 9. Going back to the previous example, theM scalar components of each multivariate

attribute~xn are no longer constrained to be sampled from the same latent pattern, i.e., from the

same mixture component,(~µk,Σk). The new algorithm,A3, which instantiates the mixed member-

ship ofK spherical Gaussians is as follows,

1. For each objectn ∈ N1

1.1. For each attributem ∈ N2

1.1.1. Sample the latent component indicatorin ∼ Uniform (1, . . . , K)

1.1.2. Sample the scalar attributexn(m) ∼ Normal (µin(m), σin(m)).

Alternatively, it is possible to illustrate this richer mapping between observables measured on an

object and mixture components entailed by the mixed membership assumption in terms of a general

form for the likelihood. That is, we can rewrite the likelihood as an admixture for each univariate

measurement. The mixture likelihood in Equation1.2can be specified as,

ℓ(X|A) =
∏

n

∫
f1(Θ|A)f2(~xn|Θ,A) dΘ, (1.3)
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whereas the admixture likelihood corresponding to AlgorithmA3 can be rewritten as,

ℓ(X|A) =
∏

n,m

∫
f1(Θ|A)f2(xn(m)|Θ,A) dΘ, (1.4)

wheref1 andf2 are Gaussian densities of appropriate dimensionality. Note that this is also the

case for PPCA, but not for FA—because of possible structure in Ψ. In PPCA, however, the space

of multivariate attributes is not to the convex cone spannedby theK non-observable quantities,

because the factor loadings do not lie in theK-dimensional simplex—this is the case withf1,

which is a probability distribution on theK latent patterns,Θ1:K .

A final note concerns the mapping between observations and mixture components. Application-

specific features of the mapping itself are typically of interest, since they impact the latent patterns

found, and the results of the analysis more in general. One ofthe features often supported by

the data is that such a mapping is sparse; that is, each univariate measurement can be ultimately

explained in terms of a few latent patterns (i.e., mixture components). Further, in many applications

the mapping is skewed; that is, that many univariate measurements can be ultimately explained in

terms of a few patterns, whereas a few univariate measurements can be explained in terms of many

of them.

Lastly, it is important to recognize that the choice betweenalternative specifications (e.g., para-

metric, semi-parametric, or ad-hoc) about the number of non-observable quantities,K, in these

models is not a matter of mathematical elegance. Such a choice typically has a non-negligible

impact on the substantive findings and their interpretation, therefore it should be motivated and

discussed in terms of the specific scientific problem of interest, by the amount of information

available about such non-observable quantities, as well asby the goals of the analysis (e.g., ex-

ploratory versus conclusive). For example,Krogan et al.(2006) find that the average size of stable

protein complexes is about five proteins. That suggests the existence of a larger number of such

26



CHAPTER 1. INTRODUCTION E.M. AIROLDI

non-observable complexes, prior to any analysis of a new setof proteins,P, than popular semi-

parametric model specifications would entail; that is,O(|P|) rather thanO(log |P|).

1.3.3 Dynamics and Evolution

Several models of dynamic behavior exist in the literature,which can be used to model the evolu-

tion of latent patterns for a finite number of epochs,Θ(1:T ).

Example 10. A linear, Gaussian state-space model extends the factor analysis model of Example

7, by linearly evolving the latent factors from one epoch to the next. The data generating process

for X(1:T ) is as follows,

1. At epocht = 0

1.1. For each objectn ∈ N1

1.1.1. Sample the latent factors~φn ∼ Normal K (0, I)

1.1.2. Sample the error~ǫ(0)n ∼ Normal M (0,Ψ)

1.1.3. Define the multivariate attribute~x(0)
n = Λ~φn + ~ǫ

(0)
n ,

2. At epoch0 < t < T

2.1. For each objectn ∈ N1

2.2.1. Evolve the latent factors~φ(t)
n = F ~φ

(t−1)
n ,

2.2.2. Sample the error~ǫ(t)n ∼ Normal M (0,Ψ)

2.2.3. Define the multivariate attribute~x(t)
n = Λ~φ

(t)
n + ~ǫ

(t)
n ,

whereF is a (K ×K) matrix that encodes the dynamics of the latent factors. As before, the algo-

rithm suggests a hierarchical decomposition of the joint probability distribution of the attributes,
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Figure 1.2: Graphical representations of a factor analysismodel (left) and of a state-space model
for observations at two consecutive epochs (right). White nodes denote non-observables, whereas
shadowed nodes denote observables.

X(1:T ) = ~x
(1:T )
1:N , and the latent factors,Θ(1:T ) = (~φ

(1:T )
1:N ,~ǫ

(1:T )
1:N ), given a set of underlying constants,

A = (F,Λ,Ψ) that does not change over time.7 The likelihood is then,

ℓ(X(1:T )|A) =

∫
f1(Θ

(0)|A) f2(X
(0)|Θ(0),A) × (1.5)

×
( T∏

t=1

f0(Θ
(t)|Θ(t−1),A) f2(X

(t)|Θ(t),A)

)
dΘ(1:T ),

wheref1 andf2 areK- andM-dimensional Gaussian densities, respectively, andf0 is the deter-

ministic transformation in Step 2.2.1. of the data generating process. A graphical representation

of FA and SSM is given in Figure5.1, which highlights the simple connection between the two

models.

In my models, I consider three flavors of dynamics:

(1) a generalized state-space process (Brockwell and Davis, 1991; Xing, 2005a), possibly non-

linear and non-Gaussian, which provides my models with a fully-parametric, tractable dy-

7The dynamic matrixF may be easily modeled as time dependent and/or stochastic, as the problem requires
(Airoldi and Faloutsos, 2004; Airoldi et al., 2005d).
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namics;

(2) a latent birth-death process (Karr, 1991; Xing, 2005b; Airoldi and Xing, 2006a) that allows

for a possibly infinite number of patterns (semi-parametric) and generates complex pattern

dynamics; and

(3) a co-evolutionary process (Carley, 1990, 1991) that induces highly non-linear dynamics by

tying together the temporal behaviors of observables and non-observables.

Technical issues arise with the increasing complexity of the dynamical behaviors above.

As an alternative, it is possible to specify temporal patterns directly, as a part of(Ξ,Θ). Such

a modeling strategy allows us to consider a sequences of observations about objects as being

expressed as an admixture of complicated patterns, specified in a parametric or non-parametric

fashion, while avoids technical issues that arise when the estimation of an explicit dynamics is

considered.

1.3.4 Integration

Integration of the measurements on relations and attributes involving objects of different types

may, and will, take many forms in the models considered throughout this thesis, and it seems

unnecessary to list them all at this stage. It will suffice to distinguish two types of integration, one

relates to descriptive versus predictive analyses, and theother relates to the integration of labels.

Example 11. Consider the following generative process for a set of relationsG = (Y,N ) among

objects inN , a set of multivariate attributesHx = (X,N , T ) on the same set of objects, and a set

of labelsHz = (Z,N , C).

1. Sample the mixed-membership scores for objects inN according to

(~π1:N) ∼ f1(~π|A)
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2. Sample the latent pattern indicators for object-specificrelations and attributes, indepen-

dently and given their mixed-memberships, according to

(IY , IX) ∼ f2(I|~π1:N)

3. Sample the observations given object-specific patterns according to

(Y,X) ∼ f3(Y,X|IX, IY ,Θ,A)

4. Sample predictive indicators for the objects’ labels from the corresponding sets of object-

specific pattern indicators that were sampled according to

(IZ) ∼ f4(I|IY , IX)

5. Sample the labels given the predictive indicators according to

Z ∼ Generalized Linear Model (Z|IZ ,A)

whereΞ = (~π1:N , IY , IX , IZ), and the latent patternsΘ are deterministic. Relevant to the dis-

cussion here is the composition of the relations and attributes(Y,X) as independent sources of

information in Steps 2–3, versus the composition of the labelsZ as conditional source of informa-

tion in Steps 4–5.

In a descriptive analysis, sets of non-observables corresponding to different data sources always

contribute equally to the data generation, and, in turn, observables always inform equally the in-

ference process about the corresponding sets of non-observables. This is what happens with the

relations and attributes(Y,X) in Example11 and with the corresponding latent pattern indicators

for relations and attributes(IY , IX). In a predictive analysis, one set of non observables always

contributes to the data generation conditionally on the values assumed by a second set of observ-

ables, and, in turn, the two sets of observables inform the inference process about non-observables

unequally—namely, the information the latter set contributes to the inference process is used to

describeresidual variability, which cannot be explained by information contributed by the former

30



CHAPTER 1. INTRODUCTION E.M. AIROLDI

set of observables. This what happens to the labelsZ in Example11with the corresponding latent

pattern indicatorsIZ .

1.4 Overview of the Research

Complexity of the observations is resolved into hierarchical mixtures of simple patterns that evolve

over time, i.e., complex global behavior emerges from the combination of local (i.e., object-

specific) interaction patterns and dynamics. This solutionprovides a principled approach to rec-

oncile global properties the system with local phenomena ofinterest. Structured models similar

to those shown in Figure5.1 are often referred to as hierarchical models in the statistics litera-

ture (Kass and Steffey, 1989; Gelman et al., 1995). Estimation techniques include empirical Bayes

(Morris, 1983; Carlin and Louis, 2005) and full Bayesian methods (Mosteller and Wallace, 1964,

1984; Airoldi et al., 2006a). The general model formulation I explore in this thesis subsumes many

probabilistic models present in the literature, provides asoft and probabilistic version of many

non-probabilistic algorithms, and most importantly provides the essential statistical elements for

the analysis of complex data, random graphs and matrices, and dynamic networks.

In Chapter2, I survey existing algorithms to generate populartopologiesin unipartite graphs. I

then present proper statistical models to generate such topologies, complete with likelihoods and

estimators for the parameters involved. I conclude by exploring the lognormal and cellular graphs.

In Chapter3, I describe different ways to search for patterns and mechanisms underlying networks.

In Chapter4, I consider attributes, I describe an extension of the models to multivariate attributes

and relations, and I describe strategies to integrate complex data into a large statistical model.

In Chapter5, I describe models of evolution for attributes and relations. Finally, in Chapter6, I

explore a selection of theoretical and computational issues associated with the general formulation

of my models and describe aspects of future research.
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1.4.1 Contributions of this Thesis

This thesis develops statistical methodology for the Bayesian analysis of data that arise in studies

about complex networks and their evolution. The connectionbetween modeling choices and sub-

stantive issues is kept at the forefront of the discussion. Furthermore, complexity in the various

models is pursued only to the extent that it responds to needsthat are rooted in the data and the

goals of the analysis. Such a focus on the data and their properties is compatible with the develop-

ment of a general modeling framework for the analysis of complex and evolving networks thanks

to the central role played by few essential modeling elements—described in Section1.3—that can

be used to describe complex dynamic systems in general.

1. In many applications there is an large amount of information available with a temporal or

sequential dimension. Methods that explicitly account fordynamics and evolution of the

phenomena under scrutiny are much needed. Modeling approaches available to date, for

which solid inference mechanisms are available, include hidden Markov models and gener-

alized state-space models. New methodology and modeling strategies are needed that can

account for richer evolutionary patterns of complex sets ofmeasurements, i.e., relational and

non-relational. Furthermore, there is a need for producingpredictions that are based on sev-

eral sources of information, which need be integrated; a solid probabilistic approach to this

end is missing. This thesis develops a modeling framework that responds to these needs.

2. The models that can be specified working within the framework proposed in this thesis are

extremely diverse and widely applicable. Many scientific studies lead to data sets that are

represented as graphs, at some level, e.g., two-mode data lead to bipartite graphs, uni-modal

data to graphs where we record relations between pairs of objects of the same type, multi-

mode data where we record relations among objects of multiple types, multi-graphs where

edges encode multivariate variables, and combination of these. Assumptions and intuitions
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of interest may need be incorporated in application-specific models, but the modularity of

my approach makes thesespecialmodeling issues a piece of the puzzle that can be addressed

separately—by instantiated on of the integration strategies of Section4.3—on top of a set of

data source-specific models.

3. The proposed framework subsumes several models recentlyproposed in the machine learn-

ing and applied statistics literature and ties them together within a general formulation that

is amenable to theoretical analysis. Therefore the proposed framework opens new analytical

possibilities by allowing us to address theoretical aspects of interest in terms of the specifica-

tions of the general formulation. This high-level theoretical analysis disregards the nuances

present in application-specific models and focuses on fundamental technical issues, such as

identifiability, model selection, distribution free testsfor assessing the goodness of fit, the

geometrical understanding of allocation tasks, or the asymptotics of the family of hierarchi-

cal mixed-membership models. Even a limited explorations of these issues would advance

the scientific understanding of the methodology. This exercise will ultimately benefit appli-

cations by providing theoretical insights to support application-specific modeling choices.

The grand vision is to establish a mature statistical theoryof graphs and networks that can

bridge theoretical computer science, a largely deterministic discipline, and statistical theory. This

can be achieved, for example, by explicitly characterizingthe relation between deterministic and

probabilistic solutions to problems shared by both disciplines that involve graphs and networks.

The ultimate goal is that of promoting the role of statistical Bayesian theory in the computing

sciences and its modern applications.

1. This thesis provides solid foundations of a statistical theory of mixed-membership and ex-

changeable-edge models of graphs and networks and their evolution. Such foundations are

missing, to the best of my knowledge. This is a goal worth pursuing in its own right.
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2. This thesis promotes the role of Bayesian statistics in the theoretical computer science and

data mining communities by providing new models and perspectives in applications of pri-

mary importance, for example, to biological sequences & networks, dynamic social net-

works, collections of scholarly publications, knowledge and corporate networks, and home-

land security. The proposed general framework aims at fostering scientific progress by serv-

ing as a glue for several branches of the literature that are poorly aware of one another.

In conclusion, recent trends and events suggest an imminentshift of focus of the research com-

munity at large towards complex interacting dynamic systems, along with a rediscovered mindset

that through integration we can finally deliver satisfactory solutions to long-standing real-world

problems, as well as create new applications. This thesis presents methodology derived from ap-

plications for applications, and provides insights and understanding on when we can expect the

methods we employ will work, and why. Specifically, I discussmodels and methods that enable

applications to biological databases, collections of scientific publications, and dynamic social and

corporate networks. Success stories where my methods were key to answer real-world problems

provide the background for the discussion. I argue that my efforts establish the foundations of a

statistical/computational theory of complex networks andtheir evolution.

1.4.2 Limitations

This thesis develops a modeling framework to tackle specificapplications. As a consequence topics

and modeling approaches are omitted that I believe are important for the analysis of complex and

evolving networks. I am currently working on an extension ofthe modeling framework developed

here that addresses such topics and modeling approaches. A short list of what is missing in this

thesis follows.

• Connections to statistical theory and methodology for the analysis of networks that does not
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involve latent variables (Wasserman and Faust, 1994; Wasserman et al., 2007).

• A fully developed example of how the statistical methodology developed in this thesis of-

fers a principled approach to tackle calibration and validation issues that arise in large-scale

agent-based models and simulations of complex systems (Carley, 1990, 1991; Banks and Carley,

1996; Carley et al., 2006; Shreiber, 2006). However, I outline the main points of the argu-

ment in Section5.2.

• Connections to random matrix theory (Metha, 2004). However, I devote Section3.2 to

situate in the context of this thesis some of the recent developments in the field that bear

relevance to statistical network analysis; namely, the mathematical analysis of diffusion

(Coifman et al., 2005a,b; Nadler et al., 2005; Lafon and Lee, 2006).

• Generative models of edge patterns (a.k.a. network motifs,node identity does not matter,

e.g., seeMilo et al. 2002), as opposed to the generative models of node patterns (nodeiden-

tity matters, e.g., see Chapter3) developed in this thesis. At the model level, such an exten-

sion to Bayesian mixed membership models of edge patterns istrivial. However, non-trivial

computational issues arise immediately, for example, in the evaluation of the likelihood—

where a (combinatorial) search of all instances of the relevant edge motifs needs be per-

formed, i.e., sub-graph matching.

• Models of complex dynamic behavior such as latent birth-death processes (Airoldi and Xing,

2006a), in preparation, and duplication-attachment processes (Wiuf et al., 2006).

• A complete analysis of the mathematical properties of exchangeable-edge models of Sec-

tion 2.2. These models represent an important extension of the popular random graph

model ofErdös and Rényi(1959) andGilbert (1959), technically, by involving a layer of

latent variables. Such an analysis is part of my current research (Airoldi and Carley, 2006;

Airoldi and Shalizi, 2006).
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Chapter 2

Random Graphs Revisited

Here I survey existing algorithms to generate populartopologiesin unipartite graphs. Proper statis-

tical models to generate such topologies are then presented, complete with likelihoods. I conclude

with a presentation of novel probabilistic algorithms to generate lognormal and cellular graph

topologies, along with their analysis.

Introduction and Motivation In order to shed some light on how the interactions among a setof

objects of study, e.g., people or proteins, lead to the emergence of observed patterns and properties

of interest, both local and global, e.g., groups and the small-world, several generative algorithms

have been proposed. These algorithms abstract a small set ofessential features of the objects and

interactions, and try to replicate local or global patternsand properties of interest—either exactly

or approximately, either in a deterministic fashion or withhigh probability. We consider such

algorithms to be insightful whenever they can replicate theobservable phenomena of interest, and

the small set of essential features which they are based uponsuggests us a possible explanation for

them.
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Example 12. Milgram (1967) provided empirical evidence in support of the so called small world

hyposthesis. Briefly, Milgram instructed a set of people (i.e., sources) in Nebraska, Kansas and

Massachussets to send packets to any one of two specific individuals (i.e., targets) in Massachus-

sets. The targets were described approximately in terms of asmall set of characteristics such as

location, profession, and other demographics. The sourceswere supposed to send the packets to-

wards the target by sending it to a person they knew on a first name basis, i.e., to an acquaintance

the source believed to be closer to the target. The game consisted in delivering the packet to the

target with as few of these first-name links as possible. If the small world hypothesis held, the

average lenght of the first-name chains of acquantances thatconnected a source to a target should

be independent of the location of the sources. This is exactly what Migram found, the median

length being somewhere around six—an independent statistical analysis of Milgram’s data that

includes incomplete chains suggests six to be a serious underestimate of the actual median length

(Fienberg and Lee, 1975). In an abstract setting, we can represent people by means ofnodes in a

graph, and acquaintances by directed links from a node to another. The scientific phenomenon of

interest is the small world; we would like to be able to explain it with a simple model that gener-

ates small world graphs with high probability. What kind of generative process should we posit?

Watts and Strogatz(1998) propose a rewiring model to answer this question. In their model nodes

are embedded in a metric space,(X , d), and each node is connected to its neighbors according tod

by means of undirected edges. Then, with probabilityp each of the edges that connect a node with

its d-neighbors is rewired at random, that is, is disconnected from ad-neighbor and connected

to another node in the graph with equal probability. When therewiring process is carried out

for each node, the process ends. Although very simple, the rewiring model ofWatts and Strogatz

(1998) encodes a key intuition about how acquaintances may be established, that is, the fact that

people form local circles of friends, and retain a few of themwhen they move across the coun-

try. This social process is suggestive of the rewiring model. It turns out that the rewiring of local

neighbors alone is enough to generate small world graphs with high probability.
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Our ability to spot patterns and properties of interest crucially depends on thegraph metrics

available to us. Many metrics have been proposed over the years to measure various properties of

graphs that could explain phenomena of interest, e.g., recurrent connectivity patterns, average path

length, or degree distribution. Crucially, each of these metrics pre-encodes some intuition about

the phenomena we conjecture may exist. In fact, such metricsare meant to capture numerical

properties of those graphs where the phenomena of interest occur, that are absent in other graphs.

In other words, we can onlyattempt to measurethose patterns thatwe believe are distinctfrom

background noise. The set of metrics available to us is then abyproduct of substantive intuitions

about what we cannot see or measure. In a technical sense, each metric encodes a structural

hypothesis, i.e., structural bias.

Example 13. Milgram’s (1967) empirical analysis and Watts and Strogatz’s (1998) theoretical

analysis use different metrics. Milgram considers the average length of first-name chains, and

finds that they are consistently short. In particular, such ashort average length (alternatively, such

a small diameter) is less than what we whould expect to observe were the acquaintance network a

purely random graph (Erdös and Ŕenyi, 1959; Gilbert, 1959). However, there is possibly an infinite

number of ways to generate graphs with a diameter smaller than that of a random graph. Which

properties of small works graphs unequivocably distinguish them from others? In order to identify

small world graphs, Watts and Strogatz consider the characteristic path length (closely related to

Milgram’s metric) and the clustering coefficient.1 Stated formally, they find that the dimater of a

graph drops fromO(n) toO(logn) even when a small fractionp of the edges is rewired,2 whereas

the clustering coefficient remains close to3/4. The rewiring process has little effect on several

other metrics as well.

1In Section2.1we showto what extentthese two metrics can distingush graphs with a small world topology from
graphs with other topological properties.

2Although, as noted byBollobás and Riordan(2003), this fact is a particular instance of a classic result of random
graph theory about the diameter of the giant component (Erdös and Rényi, 1960), there is much merit in the suggestive
power of the simple generative model introduced byWatts and Strogatz(1998), who place such result in a context
relevant to the scientific community at large.
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Brief Overview of Results During the past few years the attention of the scientific community

has increasingly focused on complex graphs and dynamic networks. As a consequence, many

scientific investigations that involve graphs to some degree attempt an assessment of how sensitive

the main findings are to topological properties of the graphs. The general trend, however, is for

such investigations to leveragepopular modelsof graphs, rather than focusing on theirtopological

properties.

Example 14. High throughput techniques have made way to the collection of data on many com-

plementary aspects of the biology of the major species living on our planet, and integral ap-

proaches to the biological sciences are now possible. As a consequence of this, dependence among

observations, data and model integration, and ultimately network science, have become funda-

mental to our ability to carry on the process of scientific discovery in this domain. Relevant to the

discussion here is the fact that more and more research articles on complex biological networks,

e.g., protein interaction networks, gene regulatory networks, and metabolic networks, make use

of popular models of graphs such as the scale-free model (Barabasi and Albert, 1999), which is

consistent with different graph topologies (Bollobás and Riordan, 2003), rather than investigating

the topological properties of such networks directly.

A crucial issue is then the mapping between popular models ofgraphs and the topological

properties they possess. In particular, under scrutiny is whether the variousgraph topologiesare

different; if so, by how much; and whether the different generative algorithms for a specific graph

topology lead to the same topological properties. This is insome sense a chicken and egg problem,

since our ability to probe the space of topologies is limited, as discussed above, by the set of met-

rics we use. A brief exploration of these issues is presentedin Section2.1. I find that the popular

models, e.g., scale-free and core-periphery, generate graphs with similar topological properties for

non-pathological values of the relevant underlying constants. Furthermore, I find that alternative

models that supposedly generate graphs with non-distinguishable topological properties, e.g., mod-
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els of scale-free graphs by different authors, can be easilydistinguished. These findings prompt

us to make recommendations about how to provide successful assessments of the sensitivity of

an analysis to topological properties of graphs. They also suggest that real-world graphs may be

better modeled as mixtures of these popular models (Airoldi and Carley, 2005).

Another major issue is that the popular algorithms that havebeen proposed in the literature to

generate topologies of interest can replicate local and global phenomena, but have no place for the

data. That is, given a few underlying constants such algorithms generate observations that display a

certain class of behavior, but it is never specified how toestimatevalues for those constants so that

the generated behaviorfits a collection of datathe best. Being able to make a good use of the data

is crucial whenever models and algorithms have to support analyses of real data. In Section2.2

alternative mathematical representations of a graph are discussed. Within such context, I show how

it is possible to posit a general class of probabilistic models, which I refer to asexchangeable-edge

models, that generate graphs with pre-specified topological properties of interest, and at the same

time allow for formal inference and estimationprocedures. These models inform novel analyses

of lognormal and cellular graphs.

I consider lognormal graphs in Section2.2.2. I find that scale-free, or power-law, graphs provide

us with a first-order approximation to graphs in this class. Ithen introduce a novel generative model

for lognormal graphs that serves to show how models in this class (and hence scale-free or power-

law graphs) may arise, and find that they do in two interestingsets of circumstances. First, I find

that lognormal graphs may arise as an artifact of the networkconstruction process. Namely, they

arise in situations where edges are set between pairs of objects by thresholding correlation among

their attributes even when such attributes are completely independent. In that sense, lognormal

graphs are an artifact due to the way we measure the presence or absence of relations among objects

in a population of interest. Second, I find that lognormal graphs may arise as a consequence of

a limiting phenomenon when certain conditions hold on the way edges are established between a
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new object and existing objects in the graph; namely, by means of a multiplicative process.

I consider cellular graphs in Section2.2.3. I find that communities form because of the joint

effect of two simple factors: (i) exclusivity, that is, the need for allocating resources to compet-

ing interests; and (ii) homophily, that is, the fact that social interactions are more likely to occur

between individuals who share interests than between thosewho do not. Furthermore, I find that

communities emerge quickly as exclusivity exceeds a certain threshold.

2.1 Stability and Separability of Metric Embeddings

The context behind the exploration I present here is given bytwo observations. First, the popularity

gained by generative models of graphs have helped establishseveral flavors ofgraph topologies, in

the scientific community at large. For example, few scientists today are unaware of notions such as

scale-freeandsmall-worldnetworks. Because of their popularity, such notions are often leveraged

in published research literature—for better or worse. Second, any scientific approach to modeling

graphs faces the technical issue ofwhich minimal set of features can be used to characterize a

graph. The popular answer is to focus on a set of real-valuedmetrics(i.e., functions of edges and

vertices of a graph, which are defined to capture specific topological properties) thus characterizing

the graph as a vector.3

A crucial issue is then to study the mapping between popular models of graphs and the topolog-

ical properties of the set of graphs they support. In particular, under scrutiny is whether the various

graph topologies are different; if so, by how much; and whether the different generative algorithms

for a specific graph topology lead to the same topological properties.

3In this thesis, I am interested in characterizations that entail a one-to-one map with the space of graphs; this issue
is explored in detail in Section2.2.
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Table 2.1: Summary of published generative algorithms.

Type Algorithm Parameters

1.1. Ring Lattice Θ = (N,K0)
2.1. Small World (Watts and Strogatz, 1998) Θ = (N,K0, Q0)
2.2. Small World (Kleinberg, 1999a) Θ = (N,K0, K1, R)
2.3. Small World (Airoldi , 2005) Θ = (N,K0, Q0, Q1, R)
3.1. Random (Erdös and Rényi, 1959) Θ = (N,M)
3.2. Random (Gilbert, 1959) Θ = (N,P )
4.1. Core–Periphery (Borgatti and Everett, 1999) Θ = (N,P, P0)
4.2. Core–Periphery (Airoldi and Carley, 2005) Θ = (N,P, P0)
5.1. Scale Free (Barabasi and Albert, 1999) Θ = (N,P,N0, P0)
5.2. Scale Free (Airoldi and Carley, 2005) Θ = (N,M,R)
6.1. Cellular (Airoldi and Carley, 2005) Θ = (N,P,B, PB, R)

2.1.1 Experimental Evidence

Airoldi and Carley(2005) survey various flavors of graph topologies, or topology types, along with

popular published algorithms that have been introduced to generate them; introduce novel algo-

rithms that support a more diverse set of graphs, in terms thevariability of their topological prop-

erties; and address the case ofcellular graph topology. See Figure2.1for examples of the various

topologies considered. Here, I briefly report on two statistical studies: (i) on the stability of topo-

logical properties of graphs to alternative algorithms that have been proposed to generate the same

topology type; and (ii) on the separability of graphs with distinct topology types—characterized by

a set of 18 metrics for the analysis of graphs, widely adoptedin the social and physical sciences.

Stability of Topological Properties to Variations in the Algorithms The stability study is tar-

geted towards the three most popular notions of random, small world, and scale free (also known

as power-law) topologies. The overall plan is simple. First, for each of these three topologies, I

will use the proposed algorithms to generate a collection ofgraphs, and I will label them accord-

ingly to the specific algorithm variant that was used. Then, Iwill assess how well it is possible

to distinguish graphs that were generated by algorithm variants with a batch of cross-validation
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Figure 2.1: A glance at the relevant topologies on a ring. Note that in a ring there is a natural
notion of distance that is distinct from the one entailed by shortest paths, i.e., the distance between
nodesA andB is proportional to the arc-length that joins them, along thecircle outlined by the
ring.

experiments. I use a factorial experimental design; ten graphs were generated for each parameter

configuration, and parameter configurations were set by defining a grid on the support of each

parameter and then picking all combinations (Airoldi and Carley, 2005, Table 2). Graphs were

generated among 250 nodes, and the choice of parameter configurations was further informed by

controlling the density of edges. The rationale behind these choices is to make it hard for the clas-

sification algorithms to distinguish graphs based upon the scale and the density of the generated

graphs. As a consequence, it is conceivable that any evidence of discriminatory power may be due

to differential topological properties of the graphs generated by alternative algorithm variants.
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I find that

(i) Extremal statistics (i.e., minimum and maximum) are good discriminators between the two

algorithm variants that generaterandom graphs. The cross-validated accuracy is in the high

90% and this comes as no surprise given that Algorithm 3.1 of Table2.1leads to graphs with

an exact density, whereas Algorithm 3.2 does not.

(ii) Properties of the degree distribution are good discriminators between algorithm variants that

generatescale free graphs; the cross-validated accuracy is in the mid nineties; this can be ex-

plained by the non-negligible effect of the initial graph that is needed to initialize Algorithm

5.1, and it is consistent with the analysis ofBollobás and Riordan(2003).

(iii) Centrality of nodes and clustering coefficient are fairly good discriminators between algo-

rithm variants that generatesmall world graphs; the cross-validated accuracy is in the mid

eighties when we try to distinguish between sample graphs ofAlgorithms 2.1 and 2.2 or

between Algorithms 2.2 and 2.3, and it drops to the high seventies when we try to distin-

guish between Algorithms 2.1 and 2.3. This is expected sinceAlgorithms 2.1 and 2.3 lead

to graphs with more variable neighborhood structures than Algorithm 2.2.

The published generative algorithms described in Table2.1play a role in this small experiment

for which they were not designed. They were originally proposed to illustrate mechanisms of ag-

gregation suggestive of social and artificial regularitiesunderlying observed phenomena. Because

of their popularity, however, the scientific community is adopting these mechanisms for analyses

that are very different in scope from those they were intended for. I find this practice dangerous,

both in terms of the reproducibility of the analyses, and in terms of the support such simplistic

algorithms can offer to substantive conclusions. This is the message I mean to offer with the

experiments presented here.
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Table 2.2: Pairwise comparisons; entries quote the errors achieved in discriminating graphs gener-
ated according to pairs of algorithms. Errors are estimatedusing cross-validation. The size is fixed
at 250 nodes; the density is controlled by design.

Lattice Random Small World Scale Free Cellular Core-Per.

Lattice N/A 0.2700 0.0745 0.00 0.00 0.00
Random 0.00 0.4122 0.2794 0.3255 0.25
Small World 0.2478 0.0866 0.1312 0.0531
Scale Free 0.0007 0.2645 0.3333
Cellular 0.1746 0.3715
Core-Per. 0.50

Popular Notions of Graphs Topologies and their TopologicalProperties The separability

study is motivated by another question related to data analysis. Often times, funding agencies

and scholars4 find it interesting to investigate the following:given a collections of measurements

on pairs of objects in a population of interest, what is the popular notion of topology that best

represents such observations?The question seems to imply, or assume, that topology types are

uniquely defined in terms of few topological properties—those which the corresponding models

are based upon. The goal of the separability study is to assess the extent to which this is an ill-posed

question.

I performed two batches of experiments, whose results are reported in Tables2.2and2.3. The

first batch of experiments considered about 6000 graphs, generated according to the factorial exper-

imental design used in the stability study, but extended to all the algorithms in Table2.1. The size of

all graphs was set at 250 nodes, and the density was controlled by design. The results are presented

in Table2.2, in the form of a pair-wise comparisons. Each entry gives theerrors achieved in dis-

criminating graphs generated according the correspondingpair of published algorithms—diagonal

entries report the errors corresponding to the stability study discussed above. Errors were obtained

with a naı̈ve Bayes classifier; similar results were obtained with decision trees, support vector ma-

chines, and logistic-regression. The second batch of experiments considered about 40000 graphs,

4I omit citations here, although it is easy to identify notable examples.
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Table 2.3: Pairwise comparisons and best three discriminators; entries quote the errors achieved
in discriminating graphs generated according to publishedalgorithms. Errors are estimated using
cross-validation, with the quoted topological measures asthe unique features. The size and density
are variable, not controlled by design.

1st Property 2nd Property 3rd Property

Random vs. Net. Constr. (max) Connectedness Net. Constr. (dev)
Small World 0.2740 0.2960 0.3800

Random vs. Eig. Cnt. (min) Close. Cnt. (min) Inv-Close. Cnt.(min)
Scale Free 0.3690 0.4040 0.4100

Random vs. Eig. Cnt. (avg) Inv-Close. Cnt. (min) Close. Cnt.(min)
Cellular 0.3110 0.3140 0.3170

Random vs. Centrality (dev) Centrality (max) Close. Cnt. (dev)
Core-Per. 0.3470 0.3500 0.3530

Small World Net. Constr. (max) Eig. Cnt. (min) Eig. Cnt. (avg)
vs. Scale Free 0.2590 0.2720 0.3410

Small World Net. Constr. (max) Connectedness Eig. Cnt. (avg)
vs. Cellular 0.1380 0.1750 0.2200

Small World Net. Constr. (max) Connectedness Centrality (max)
vs. Core-Per. 0.2400 0.2620 0.2870

Scale Free Centrality (max) Close. Cnt. (max) Inv-Close. Cnt. (max)
vs. Cellular 0.2860 0.2860 0.3060

Scale Free Centrality (dev) Close. Cnt. (dev) Connectedness
vs. Core-Per. 0.3480 0.3530 0.4170

Cellular Centrality (max) Inv-Close. Cnt. (max) Close. Cnt. (max)
vs. Core-Per. 0.2250 0.2520 0.2580
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sampled from a pool of one million graphs generated according to the full factorial block-design of

Frantz and Carley(2005b), which makes use of all the algorithms in Table2.1. In the sample, the

size of the graphs is controlled for, and so is the density. The results5 are presented in Table2.3.

Each entry provides the discrimination errors achieved with a decision tree; similar results were

obtained using a naı̈ve Bayes classifier, support vector machines, and logistic regression.

The analysis of the results of both separability studies suggest that (i) the generative algo-

rithms presented in Table2.1often lead tounrealistic variability profilesfor specific metrics over

a fairly large range of parameter values—either by design orby construction; (ii) as we consider

the collections of graphs generated according to popular notions topology types in a large space of

topological properties,the boundary between pairs of topology types is not sharp, and most of the

graphs display mixed characteristics.

2.1.2 Discussion

The experimental evidence suggests that scientific questions about the data that rely on popular

notions of graph topologies have to be treated carefully. Topology types are operationally de-

fined by specific data generating processes that were devisedto illustrate the effects of compelling

aggregation mechanisms on a small set of topological properties of a graph. The proposed sta-

tistical analysis of such algorithms shows that (i) alternative options available for generating the

same topology type are distinguishable in terms of the set topological properties they entail, and

(ii) processes that supposedly lead to distinct topologiestypes, actually generate graphs that share

many topological properties.Therefore, while these algorithms deliver insights about phenomena

of interest, it is dangerous to employ them for other purposes, as it is often done in practice.In the

context of statistical testing, for example, those algorithms may be used to producep-values for

metrics of interest. Topological properties of a graph under the null hypothesis can be evaluated

5I wish to thank Ian C. Fette for facilitating this study by sharing useful code.
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by sampling graphs according to one of the popular algorithms listed in Table2.1. Concluding, the

experimental evidence suggests that (i) we need a larger setof topological properties to be able to

characterize a graph exactly, e.g., along the lines of a representation theorem, and (ii) we need a

richer set of statistical models for the purpose of data analysis.

An alternative approach to the scientific analysis of complex and dynamic graphs keeps the

topological propertiesof the data—an observed collection of paired measurements—at the fore-

front of the analysis. Along these lines, statistical models of graphs with desirable topological

properties, and their relation to the popular notions of topology, are explored in Section2.2.

2.2 Exchangeable–Edge Models

A major issue with many of the popular algorithms that have been proposed in the literature to

generate topologies of interest is that while they are meantto replicate local and global phenomena

a procedure to estimate values for the constants that correspond to those phenomena, as well as a

procedure to fit corresponding models to available data and assess their fit, are seldom specified.

Being able to make a good use of the data is crucial whenever models and algorithms have to

support substantive analyses and conclusions.

Example 15. The US Army believes that the efficiency of communications during combat is di-

rectly correlated with the outcome of a battle. The efficiency in this context is defined in terms of

a set of relevant network metrics, and being able to monitor these metric is the task of interest. In

particular, it is crucial to be able to detect whenever communication patterns start displaying a

level of variability that is considered abnormal, non-optimal, and ultimately dangerous. This prob-

lem can be stated formally as a statistical change-point problem, where detection has to occur in

real-time, on a stream of data about communications in the network. In this context, a probabilis-

tic model of a communication network,P (Gt|Θ), corresponds to a statistical model for a random
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variable,P (Xt|Θ), in the classical formulation. Statistical procedures that lead to estimates of the

underlying constants,Θ, with desirable properties, e.g., consistency and unbiasedness, are critical

for detecting deviations from normality, in both formulations.

Here, I discuss mathematical characterizations of a graph.Within this context, I show how it

is possible to posit a general class of probabilistic models, which I refer to asexchangeable-edge

models, that generate graphs with pre-specified topological properties of interest, and at the same

time allow forformal inference and estimationprocedures. I demonstrate the utility and flexibility

of these models by introducing a novel analytical perspective of lognormal and cellular graphs.

Challenges to the Mathematical Characterization of Graphs The minimal representation of

a graphG is given in terms of a set of vertices,N , and a set of edges,E , encoded by an adjacency

matrix,Y , where the entryY (n,m) ∈ {0, 1} encodes the presence or absence of the corresponding

directed edge,n → m. I make no distinction betweenedgesandedge weightsin the presentation

below.

The matrixY characterizes the topological properties of the graph it represents. For example,

the degree of a binary graph (this simplifies things by requiring no distinction between in- and

out-degree) is defined as a vector~dG with generic element

dG(n) =
∑

m

Y (n,m) for n ∈ N .

In general, the collection of eigenvalues,λ1:N , and eigenvectors,~u1:N , of Y give us an exact char-

acterization of the graph as follows,

Y =
∑

n∈N

λn~un~u
⊤
n ,

whereN is the number of nodes inN . In this sense, exact characterizations of a matrix provideus
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with exact characterizations of a graph.

The following question is of interest;what set of topological properties is necessary and suf-

ficient to characterize the matrixY , exactly? Here is the challenge; from a statistical modeling

perspective we would like to characterize a graph in terms ofits essential topological properties.

This would allow us to inform models of complex and dynamic graphs by analyzing such essential

properties measured on observed graphs. On the other hand, the results of the previous section

suggest that there is a disconnect between the popular classes of graphs for which generative mod-

els have been published and characteristics of their topological properties—as captured by existing

metrics. It is not known whether a set of topological properties exist that exactly characterizes a

graph, or, alternatively, what classes of graphs can be defined in terms of sets of constraints on a

set of topological properties. These questions provide thecontext for the investigations that follow.

I seek either exact or approximate characterizations, either for graphs with a finite set of nodes or

in the infinite limit of large graphs.

2.2.1 Specifications and Likelihood

A first step is to extend the random graph models ofErdös and Rényi(1959) andGilbert (1959)

to include a set of latent variables. This will make the edgesexchangeable, i.e., conditionally

independent given values of these latent variables, ratherthan independent. The latent variables

are themselves an IID sample from a common distribution. This extension allows me to reproduce

the behavior of the original random graph models, and to induce a new array of interesting global

behaviors such as those encoded inlognormal graphs(Section2.2.2) andcellular graphs(Section

2.2.3). Furthermore, it is possible to write down and evaluate thelikelihood corresponding to such

models.

It is possible to generate a diverse set of graphs by means of exchangeable-edge models; a fairly
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general class of statistical models of random graphs. An exchangeable-edge model of a graph is

specified as follows,

Y (n,m)
∣∣ Θ ∼ PΘ (2.1)

Θ
∣∣ A ∼ PA, (2.2)

for each element(n,m) of the matrixY ; wheren,m are nodes inN ; Θ is a collection of latent

variables;A is a collection of hyper-parameters; andPΘ, PA are probability distributions. The

likelihood can be written as follow,

ℓ(Y |A) =

∫
PA(Θ|A)

∏

n,m

PΘ(Y (n,m)|Θ) dΘ. (2.3)

In a more general formulationY may be multivariate, e.g., may encode multivariate sociomet-

ric relations (Sampson, 1968), longitudinal, e.g., may encode a temporal sequence of graphs

(Priebe et al., 2005), or even more complex.

Example 16. In many applications, it is convenient to distinguish between latent variables that are

partially, or potentially measurable and correspond to substantive concepts, e.g., tight groups of

agents in the analysis of social networks. Following the discussion in Section1.2, we may denote

by Ξ the partially observable variables with a substantive interpretation, e.g., club membership,

and byΘ other latent variables, e.g., propensity to participate tosocial activities. Latent variables

in both these collections are agent-specific; namely,Θ = ~θ1:N is a collection of agent-specific

vectors whose components specify the grade of membership ofagents to clubs, whereasΞ = ξ1:N

is a collection of agent-specific scalars that specify agents’ propensities to socialize with members

of other clubs. The corresponding exchangeable edge model for a sequence of graphsG1:T =

(Y1:T ,N ), that encodes social interactions recorded overT weeks among the same set of agents,
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N , takes the form of a hierarchical mixed-membership model. At timet, it posits that

Yt(n,m)
∣∣ (ξnm, θnm) ∼ P(ξ,θ) (2.4)

ξnm

∣∣ A ∼ PA (2.5)

θnm

∣∣ B ∼ PB, (2.6)

for each observed social interactions(n,m) recorded in the matrixYt during thet-th week; where

n,m are agents inN ; ξnm denotes(ξn, ξm); θnm denotes(θn, θm); andP(ξ,θ), PA, PB are proba-

bility distributions. Figure2.2 illustrates the graphical representation of this model, using plates.

Note that, in this model, both the degree of membership of agents to clubs, and the propensity

to socialize with other agents do not change from one week to the next. Furthermore, the grade

of membership and the propensity to socialize are non-observable, competing explanations of the

observed interactions.

The main advantage of these models is that edges are exchangeable, that is, weakly dependent6

rather than independent. Working within the skeletal specifications of Equations2.1 and2.2, we

can introduce layers in the hierarchy and posit stochastic block models (Airoldi et al., 2006d, and

Section3.1), latent space models (Hoff et al., 2002), and diffusion models (Coifman et al., 2005a,b,

and Section3.2). In Chapter5, I discuss how to introduce flavors of dynamics and evolutionin a

few cases—temporal models will break the exchangeability of edges within a graph and introduce

different dependence structures.

6De Finetti’s theorem implies exchangeable edges can be characterized as being independent conditionally on a
collection of latent variables (Schervish, 1995).
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Figure 2.2: Graphical representation of the exchangeable edge model in Example16.

2.2.2 Lognormal Graphs

Researchers in a diverse set of disciplines have offered evidence and arguments that ultimately

purport the power-law distribution as an inevitable regularity of natural and artificial phenomena

alike. In this section, I investigate the basis for such claims.

Main Argument—Part I: Building Association Graphs Consider the following exchangeable-

edge generating process for a (binary, undirected) graphG = (Y,N ):

Algorithm A1

1. forn ∈ N

2. for k = 1, . . . , K
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3. bn(k) ∼ Bernoulli
(
p
)

4. forn,m ∈ N

5. Y (n,m) ∼ Dirac
(
f(~bn,~bm) > τ

)

The constants underlying Algorithm A1 areΘ = (K, p, f, τ), whereK is the number of node-

specific attributes,bn(k); p is the probability that any one of the attributes is present;f(·, ·) is

a measure of similarity; andτ is thef -similarity threshold beyond which two nodes are set as

connected. Algorithm A1 replicates a common network construction process.7 In such a scenario,

the node-specific collections of~bn represent noisy measurements about those aspects of a node that

matter when decisions about the presence of a tie with other nodes have to be made.

Below I explore the degree distribution of an association graph that arises in a case where there

is no association structure among nodes, in terms of their multivariate attribute representations,

~b1:N . In order to derive the degree distribution I completely specified Algorithm A1 by setting the

size of the graph to 100 nodes; I set the number of latent aspects,K, to ten, and the probability that

any one of the attributes is present,p, to 0.5; in different experiments I explored various measures

of association based on Pearson’s correlation coefficient,few of many possible choices forf ; last,

in order to find (purportedly) significant associations, I set the f -threshold,τ , to be the 95-th

percentile of the observed associations—about 5000 for each graph. I then sampled many graphs.

As an example, the limiting average degree distribution of one of the graphs is shown in Figure

2.3, on a log–log scale; the corresponding matrix,Y , is shown in Figure2.4. The results of the

simulations consistently suggest a quadratic relation between nodes’ degree and their frequency, on

the log–log scale. That is, the simulated association graphs have a lognormal degree distribution,

whenever no association exist among their attribute representations,~b1:N .

7An alternative formulation of Algorithm A1 posits distinctattribute-specific probabilities for each node,p =
pn(k), which are sampled independently from a standard Gaussian distribution and then projected into the[0, 1]
interval. The attributes,bn(k), are then independent samples from a Bernoulli, conditionally on such probabilities.
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Figure 2.3: Observed degrees versus frequency of nodes withsuch a degree, over a set of 100
graphs sampled according to Algorithm A1. Squares correspond to averages.

Alternative measurement schemes exist, which are based upon alternative measures of associ-

ation that may be adopted to decide when to establish an edge.However, the empirical results

are robust to such alternatives. This empirical observation may be formalized by looking at the

distribution of the association measuref as follows.

Conjecture 1. Any strategy that builds a graph by thresholding a measure association,X, will

induce a degree distribution proportional to the tail of theprobability density ofPX , where the tail

is defined by the thresholdτ .

The general mechanism through which probability statements about pairs of nodes, e.g., in

terms of the correlationsPr (r(n,m) > τ), translate into probability statements about the individ-
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Figure 2.4: The matrixY(100×100) of a lognormal graph sampled via Algorithm A1.

ual nodes, e.g., in terms of the degreePr (d(n) ≤ k), is fairly simple. Consider the degree of a

node,n, in a graph generated via Algorithm A1,

d(n) = {# nodesm such thatr(n,m) > τ}

At a first degree of approximation,d(n) follows a Binomial distribution with parametersN = |N |,

i.e., the number of nodes in the graph, and,p = Pr (r(n,m) > τ), i.e., the probability of imputing

an edge. The heavy-tail of the degree distribution follows from the fact that the probabilities of

imputing edges,p1:N , are different for the various nodes.

As we restrict the focus to those thresholding schemes that are based upon Pearson’s correlation

coefficient,r, we can derive more precise results. Table2.4describes four measurement schemes,

based on different functions ofr, in terms of the probability density function they induce onthe

measure of association,f(r), and of the range of possible values forf , i.e. the support. Figure2.5
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shows the estimated probability density functions corresponding to these four association measures

based upon Pearson’s correlation coefficient describes in Table2.4. DefinerN to be Pearson’s

correlation coefficient, computed on a sample of sizeN of paired measurements(X1
n, X

2
n). The

asymptotic distribution(N → ∞) of rN is bell-shaped, left-skewed.Fisher(1915) derived the

distribution of Pearson’s correlation coefficient when thedata are bivariate Gaussian. In subsequent

work he showed that the transformation,

ζ = log

√
1 + r

1 − r
, r ∈ [−1,+1] (2.7)

is useful in stabilizing the skewness ofr∞, and induces a Gaussian distribution on the support of

ζ , unbiased forσ(X1,X2), with variance(N − 3)−1/2 (Fisher, 1921).

Concluding, experimental evidence suggests that graphs with a heavy-tailed degree distribution

may be generated as artifacts of the way we measure association, e.g., by thresholding, even in

those situations where no real association exist. Observing a heavy-tailed degree distribution in a

graph should not be regarded as interesting substantive finding in the absence of a deeper analysis.

Main Argument—Part II: Limiting Graph Structures Consider the behavior of graphs as new

nodes and edges appear. In the limit of large graphs (i.e., many nodes), and for a wide range of

aggregation regimes (i.e., different edge addition rules), lognormal graphs are an attractor. Their

basin of attraction is large. Below, the limiting behavior of scale-free graphs (Barabasi et al., 1999;

Table 2.4: Characteristics of four measurement schemes to establish associations, by thresholding,
based upon Pearson’s correlation coefficient.

Measure Support PDF Notes

r [−1,+1] bell-shaped, left-skewed SeeFisher(1915)
ζ (−∞,+∞) Gaussian SeeAnderson(1996)
r2 [0,+1] bell-shaped, right-skewed
eζ [0,+∞) lognormal
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Figure 2.5: Estimated probability density functions corresponding to the four association measures
based upon Pearson’s correlation coefficient describes in Table2.4. The vertical (red) bar indicates
the 95-th percentile; e.g.,r0 s.t.P (R ≤ r0) ≥ 0.95.

Faloutsos et al., 1999; Huberman and Adamic, 1999) is revisited in the light of this remark, in the

larger context of statistical convergence. Consider the following algorithm.

Algorithm A2

1. start withG = (Y = 0,N = ∅)

2. repeat

3. add noden toN

4. sample its degreed(n) ∼ P (Θ)
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5. connect noden to d(n) existing nodes inN with equal probability

To illustrate the main point, it is enough to note that Algorithm A2 entails anexpected rateof

change of the degree of a node,dt+1(n)/dt(n), constant over time. In this case,

kt+1(n) = kt(n) · dt(n) (2.8)

log kt+1(n) = log k0(n) + Σt
s=1 log ds(n) (2.9)

kt+1(n) − kt(n) = kt(n) · (dt(n) − 1) (2.10)

∆kt+1(n) − kt(n) = kt(n) · d̃t(n). (2.11)

In the algorithm proposed byBarabasi et al.(1999) the rate of change of the degree is the

quantity that remains constant over time, so that

EΘ[d̃t(n)] =
A

m0 t+ k0

It is possible to show the connection in a different way, by looking at the limiting degree distribu-

tion of graphs where theexpected rateof change of the degree is decreasing over time,

EΘ[d̃t(n)] = O(t−α), α > 0.

Remark 1. Power-law graphs (also referred to as scale-free) provide afirst-order approximation

to lognormal graphs, in terms of their degree distribution.

Consider the density of the degree distribution of a lognormal graph,

p
(
x
∣∣ µ, σ2

)
=

1

xσ
√

2π
e−

1
2σ2

(
log(x)−µ

)2

, µ,∈ R, andx, σ ∈ R
+. (2.12)
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This entails a quadratic relation between log density and log degree,

log p
(
x
∣∣ µ, σ

)
= − log(x) − log(σ

√
2π) − 1

2σ2

(
log(x) − µ

)2

= − log(σ
√

2π) − µ2

2σ2
−
(

1 − 2µ

2σ2

)
log(x) − 1

2σ2
log2(x).

Taylor-expandlog p, with respect tolog x, to the first order,

log p
(
x
∣∣ µ, σ

)
≈ log p

(
x0

∣∣ µ, σ
)

+
µ− x0

σ2

(
log(x) − x0

)
.

If we choosex0 = µ, the mean, the expression above simplify to

log p
(
x
∣∣ µ, σ

)
≈ − log(x) − log(σ

√
2π),

which implies a linear relation between log density and log degree, that is, the relation underlying

the degree distribution of a power-law graph.

Thus we see that exchangeable-edge models illustrate how lognormal graphs arise in two in-

teresting sets of circumstances: (i) as an artifact of the way we measure associations; and (ii) in

the limit, as a consequence of multiplicative aggregation processes. Inasmuch as they approximate

lognormal graphs, power-law graphs may arise in the same circumstances. This fact may help to

explain their ubiquity.

2.2.3 Cellular Graphs

Despite the fact they are so pervasive, no characterizationexists that explainswhy cellular net-

works arise as a structure of collective organization. Whatare the conditions that naturally conjure

cellular structures among individuals? Below, I introducea simple exchangeable-edge model that
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suggests a possible answer.

I posit a stylized model of a population of agents with limited resources. In particular, I assume

that one of the resources (e.g., time) is instrumental in acquiring other resources (e.g., knowledge).

Individual agents are endowed with a limited amount of the former (e.g., hours in a day). This

limitation imposes choices on the agents about how to allocate the instrumental resource. In a

model with time as the limited resource, for example, the choices to be made by the agents may

concern which interests to cultivate. Given the set of individual choices, the network among agents

emerges as a consequence of a simple social aggregation process that induces ties between pairs of

agents with similar interests.

Algorithm A3

1. forn ∈ N

2. ~pn ∼ logit MVN
(
~0,Σ(α)

)

3. for k = 1, . . . , K

4. bn(k) ∼ Bernoulli
(
pn(k)

)

5. forn,m ∈ N

6. Y (n,m) ∼ Dirac
(
f(~bn,~bm) > τ

)

The constants underlying Algorithm A2 areΘ = (K, f, α, τ), whereK is the number of node-

specific attributes,bn(k); f(·, ·) is a measure of similarity;τ is thef -similarity threshold beyond

which two nodes are set as connected; andα is theexclusivity parameterthat I shall now discuss.

Algorithm A2 is fairly similar to the algorithm I used to generate lognormal graphs. TheN

agents, i.e., the nodes, are associated with binary strings, ~b1:N , whose components indicate the

presence or absence of a specific interest, out ofK possible. There are two changes here; (i) the
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Figure 2.6: Example interest vectors for 25 nodes.

fact the elementsbn(k) are sampled with agent-specific probabilities; and (ii) theagent-specific

probability vectors,~pn, have weakly dependent components—this is crucial. Specifically, the

variance-covariance matrixΣ = Σ(α) has entries

σnn =
α2(K − 1)

(Kα)2(Kα + 1)
, and σnm =

−2α

(Kα)2(Kα + 1)
. (2.13)

specified in terms of the scalar parameterα. The moments of the multivariate normal distribution

in step 2 of Algorithm A3 are reminiscent of those of a Dirichlet distribution. The main difference

between the the multivariate normal and the Dirichlet is that the support of the former is the unit
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Figure 2.7: The matrixY(100×100) of a cellular graph sampled via Algorithm A3.

hyper-cube after a logistic transformation of its coordinates,

pn(k) =
exp{zk}

1 +
∑

k exp{zk}
, for i = 1...K,

whereas the support of the latter is theK-dimensional simplex. The variance-covariance structure

Σ(α) enforces what I termexclusivity of interestsin the following sense;by dedicating time to

acquire a specific interest, agents implicitly choose not topursue other interests. The parameterα

has support in(0,∞); the closerα is to zero, the stronger it promotes exclusivity. Furthermore,

α < 1 promotes exclusivity, whereasα > 1 implies that agents are likely to devote an equal

amount of time to each one of theK available interests.

Figure2.6 show an example of interest vectors,~bn, for 25 nodes, in a simulation where the

number of interests,K, is five. Figure2.7shows one of the cellular graphs generated by Algorithm

A3. The parameters were: 100 nodes,K = 5, f is Pearson’s correlation coefficient, andτ is the

75-th percentile of the observed associations. Figure2.8 shows an aspect of the emergence of
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Figure 2.8: The clustering coefficient as a function ofα obtained with Algorithm A3.

communities induced by Algorithms A3. In particular, a sharp drop in the clustering coefficient

occurs as the exclusivity parameterα increases from≈ 0 towards 1; whenα ≥ 1 the community

structure is no longer present.

By using Algorithm A3 I show how communities form because of the joint effect of two simple

factors: (i) exclusivity, that is, the need for allocating resources to competing interests—which

may be induced by the finiteness of such resources; and (ii) homophily, that is, the fact that social

interactions are more likely to occur between individuals who share interests than between those

who do not. Communities emerge, quickly, asα < 1 → 0.
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2.3 Convex Generation of Graphs with Degree Constraints

Here I express the problem offinding the most likely graph with a given, arbitrary degree distri-

butionas a convex optimization problem.

There are many situations where being able to sample graphs with a given arbitrary degree

distribution is crucial. One of the main issues with the existing algorithms is their failure rate,

that is, the number of times such algorithms have to be restarted in order to produce a graph

that satisfies the given constraint on the degree distribution (Milo et al., 2004c) . Expressing the

problem of finding likely graphs that satisfy the constrainton the degree distribution as a convex

optimization problem will resolve this issue. In fact, oncewe have a starting point in a high

probability region of the space of feasible graphs, sampling graphs at random that satisfy a given

constraint is easier—leads to a much lower failure rate.

Consider a undirected, unipartite graphs,G = (Y,N ) ∈ G. A basis forG is given by the

collection of graphsEnm = (Ynm,N ), indexed by pairs of nodes(u, v) in N . The element(i, j)

of the adjacency matrix ofEnm is defined as,

Ynm(i, j) =






1 if (i = n, j = m) or (i = m, j = n)

0 otherwise.

It is then possible to write the problem of finding a graph,Y , with a pre-specified degree sequence,

~d, as follows:

opt ~α Y =
∑

e∈EG

αe Ye (2.14)

s.t. Y ·~1 = ~d and αe ∈ {0; 1} for all e,

whereEG is the set of all possible edges among pairs of nodes ofG. Simulated annealing, for exam-
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ple, can be used to find the unique solution. Problem2.14is formulated as a convex optimization

(Boyd and Vandenberghe, 2004).

* * *

In this chapter, I introduced exchangeable-edge models of graphs. I argue that:

• they represent an important extension of the popular randomgraph model ofErdös and Rényi

(1959) andGilbert (1959), technically, by involving a layer of latent variables;

• they are proper statistical (Bayesian) models, in the sensethat we can write down and eval-

uate their likelihood, and can therefore be used for principled analyses of data.

To substantiate these claims, I presented a novel analysis of lognormal and cellular networks based

upon them. Methodology for statistical network analysis ispresented in Chapter3 as well. The

development of exchangeable-edge models has led me to the useful formulation of the problem of

sampling graphs with given degree constraints as a convex optimization problem.
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Chapter 3

Discovering Latent Patterns

In this Chapter, I work within the general formulation of exchangeable-edge models of Section2.2

to specify Bayesian mixed-membership models of random graphs that are used to discovery latent

patterns.

Introduction and Motivation Statistical models are used to inform scientific analyses ofgraphs

and networks that encode observations about phenomena of interest (Holland and Leinhardt, 1975;

Wasserman, 1980; Fienberg et al., 1985; Wasserman and Pattison, 1996; Watts and Strogatz, 1998;

Cooper and Frieze, 2003; Kemp et al., 2006). Often, we can specify models via probabilistic al-

gorithms that generate nodes and/or edges in a hierarchicalfashion, starting from a small set of

underlying constants. Specifications of hierarchical dependencies among such constants, other

non-observable quantities possibly generated in intermediate steps, and the data provide a channel

to inform the analysis with structural assumptions that arerelevant for a specific application. For

instance, in social networks analysis thesocial contextin which actors interact, or thegroupwhich

actors are members of, are examples of such non-observable (or partially observable) quantities

that may be useful to explain, e.g., email communications among a group of employees within a
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company, or interactions among a set of proteins in a certaintissue under specific experimental

conditions.

The three main approaches proposed in the social, mathematical and computing sciences lit-

eratures, that make use of non-observable quantities1 to express specific concepts relevant to an

application domain, as (i) latent space models, (ii) block models, and (iii) diffusion models. More

in detail, in (i) theN nodes in the graph are projected onto a latent space,Θ, in a way that edges

are preserved whenever the distance of their projections ishigh enough, e.g.,d(θn, θm) exceeds a

threshold. In (ii) the graph is summarized in terms of a noisyblock structure,B, along with the

memberships of nodes to blocks,π1:N , as detailed in Section3.1. In (iii) mathematical functional

defined on the graph are proposed to study the diffusion process of real or informational artifacts

among the nodes. I will focus on extending block models for a major portion of this chapter. I will

then revisit latent space models and diffusion models towards the end of the chapter.

3.1 Admixture of Latent Blocks Model

Relational information arise in a variety of settings, e.g., in scientific literature papers are con-

nected by citation, in the word wide web the webpages are connected by hyperlinks, and in cellular

systems the proteins are often related by physical protein-protein interactions revealed in yeast-

two-hybrid experiments. These types of relational data violate the assumptions of independence

or exchangeability of objects adopted in many conventionalanalyses. In fact, the relationships

themselves between objects are often of interest in addition to the object attributes. For example,

one may be interested in predicting the citations of newly written papers or the likely links of a

web-page, or in clustering cellular proteins based on patterns of interactions between them.

1A mainstream approach to statistical network analysis that(for the most part) does not make use of latent variables
is presented in the book byWasserman and Faust(1994).
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In many such applications, clustering the objects of study or projecting them in a low dimen-

sional space (e.g., a simplex) is only one of the goals of the analysis. Being able to estimate

the relational structures among the clusters themselves isoften as important as object clustering.

For example, from observations about email communicationsof a study population, one may be

not only interested in identifying groups of people of common characteristics or social states, but

also at the same time exploring how the overall communication volume or pattern among these

groups can reveal the organizational structures of the population. Furthermore, in modern net-

work analysis tasks described above, it is desirable to alsorelax the unary-aspect assumption on

each node imposed by extant models. To this extent, I introduce a new class of models based

the principle ofstochastic block models of mixed membership, which combines features of the

mixed-membership models (Erosheva and Fienberg, 2005) and the block models (Holland et al.,

1983; Anderson et al., 1992; Nowicki and Snijders, 2001; Doreian et al., 2004) via a hierarchical

Bayesian framework, and offers a flexible machinery to capture rich semantic aspects of various

network data—see Section4.2.2for a general formulation.

Below, I describe an instantiation of this class of models, referred to asadmixture of latent

blocks(ALB) to reasons to be explained shortly, for analyzing networks of objects with multiple

latent roles, e.g., social activities in case the objects refer to people (Airoldi et al., 2007b), or

biological functions in case the objects refer to proteins (Airoldi et al., 2006c). As mentioned

above, classical network models such as the stochastic block models only allow each nodes to

bear a single role. Our model alleviates this constraint, and furthermore posits that each nodes

can adopt different roles when interacting with different other nodes. In Section4.2 of Chapter

4, I will describe the general model formulation for multivariate relations along with the general

model formulation for multivariate attributes.

Historical Notes A popular class of probabilistic models for relational dataanalysis are based on

the stochastic block model (SBM) formalism for psychometric and sociological analysis pioneered
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by Holland and Leinhardt(1975), and later extended in various contexts (Fienberg et al., 1985;

Wasserman and Pattison, 1996; Snijders, 2002; Hoff et al., 2002; Doreian et al., 2004). In ma-

chine learning, Markov random networks have been used for link prediction (Taskar et al., 2003)

and the traditional block models have been extended to include nonparametric Bayesian priors

(Kemp et al., 2004, 2006) and to integrate relations and text (McCallum et al., 2007). Typically,

these models posit that every node in a study network is characterized by a unarylatent aspect

that accounts for its interaction patterns to peers in the networks; and conditioning on the observed

network topology one can reason about theselatent aspectsof nodes via posterior inference. These

formulations are closely related to the one introduced here.

Largely disjoint from the network analysis literature, methodologies for latent aspect model-

ing have also been widely investigated in the contexts of different informational retrieval problems

concerning modeling the high-dimensional non-relationalattributes such as text content or genetic-

allele profile. In many of these domains, variants of a mixed membership formalism have been pro-

posed to capture a more realistic assumption about the observed attributes, that the observations are

resulted from contributions from multiple latent aspects rather than a unary aspects as assumed in

most extant network models such as SBM. The mixed membershipmodels have emerged as a pow-

erful and popular analytical tool for analyzing large databases involving text (Blei et al., 2003), text

and references (Cohn and Hofmann, 2001; Erosheva et al., 2004), text and images (Barnard et al.,

2003), multiple disability measures (Erosheva and Fienberg, 2005; Manton et al., 1994), and ge-

netics information (Rosenberg et al., 2002; Pritchard et al., 2000; Xing et al., 2003c). These mod-

els often employ a simple generative model, such as a bag-of-words model or a naive Bayes,

embedded in a hierarchical Bayesian framework involving a latent variable structure that com-

bines multiples latents aspects. This scheme induces dependencies among the objects’ relational

behaviors in the form of probabilistic constraints over theestimation of what might otherwise be

an extremely large set of parameters.
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3.1.1 Goals of the Analysis

I am concerned with modeling data represented as a collection of directed unipartite graphs.

A unipartite graph is a graph whose nodes are of a single type,e.g., individual human beings

in case of a person-to-person communication network, as opposed to bipartite and multipartite

graphs, where the nodes are of two or multiple types, e.g., genes-to-experiments (Blei et al., 2003;

Airoldi et al., 2006f) or employees-to-tasks-to-resources (Carley, 2002). Consider a collection of

unipartite graphs whose edges encode measurements on pair of nodes about a response variable.

Multiple graphs encode replicates,M , of the same relation. Denote the collection of graphs by

G = {Gm : r = 1, . . . ,M}, where each graph,Gm, is defined over a common set of nodes,N .

The random variables that encode edge weights are denoted byRm(p, q), where(p, q) is a pair of

nodes inN .

Example 17. Sampson(1968) described a collection of relationships measured among a group of

monks in a monastery. He observed responses about typicallyasymmetric relations such as “Do

you like monk X?”, at a sequence of epochs. This information is representable as a collection of

M graphs, where the edges encode,the binary “like” responses.

Example 18. Mewes et al.(2004) describe the set of hand curated protein interactions produced

by the Munich Institute for Protein Sequencing. A single setof interactions between proteins

has been experimentally verified. This information is representable as a single graph where the

random variables associated with the edges are binary. See the reanalyses in (Airoldi et al., 2006c)

for further details.

The analysis of such data typically focuses on the followingobjectives: (1) identifying cluster-

ing of nodes; (2) determining the number of clusters; and (3)estimating the probability distribution

of interactions among actors within and between clusters. For instance, in the monestary social

network of Example17, objective 1 translates to identifying the solid factions among monks, In
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Figure 3.1: The scientific problem at a glance. The goal of theanalysis is to make inference on two
mappings; nodes-to-clusters (via~π1:N ) and clusters-to-clusters (viaB). The facts thatB does not
necessarily encode a tree, and that~π1:N is not necessarily one-to-one distinguish our formulation
from typical hierarchical and hard clustering.

addition one wants to determine how many factions are likelyto exist in the monastery, and how

the factions relate to one another. Typically, unsupervised learning experiments are performed, or

semi-supervised learning experiments with minimal information available in terms of membership

of, say, monks to factions. Working in the hierarchical Bayes framework, we can either specify the

constants underlying the distribution of random quantities at the top level of the hierarchy (i.e., the

hyper-parameters) or estimate them via empirical Bayes methods. This methodology accommo-

dates hypothesis testing about the existence of specific relational structure among clusters.

3.1.2 Model Specifications

The approach detailed below employs a hierarchical Bayesian formalism that encodes statistical

assumptions underlying a network generative process. Thisprocess generates the observed net-

works according to the latent distribution of the hypothetical group-involvement of each monk, as

specified by a mixed-memembership multinomial vectorπ := [π1, . . . , πK ]′ whereπi denotes the

probability of a monk belonging to groupi; and the probabilities of having interactions between

different groups, as defined by a matrix of Bernoulli ratesB(K×K) = {Bij} whereBij represents

the probability of having a link between a monk from groupi and a monk from groupj. Each

monk is associated with a uniqueπ, meaning that he can be simultaneously belonging to multi-

74



CHAPTER 3. DISCOVERING LATENT PATTERNS E.M. AIROLDI

ple groups, and the degree of involvements in different groups is unique for each monk; andπ of

different monks independently follow a Dirichlet distribution parameterized byα.

More generally, for graphm and each node, let indicator vector2 ~zm
p→q denote the group mem-

bership of nodep when it is to approach with nodeq; let ~zm
p←q denote the group membership of

nodeq when it is approached by nodep; letN := |N | denote the number of nodes in the graph;

and letK denote the number of distinct groups a node can belong to. An admixture of latent

blocks (ALB) model posit that a sequence ofM networks,G1:M = (R1:M ,N ), can be instantiated

according to the following procedure:

Algorithm A1 : (N ,M,K, ~α,B) → R1:M .

1. For each nodep ∈ N

1.1. Sample~πp ∼ Dirichlet (~α).

2. For each interaction networkm = 1, . . . ,M

2.1. For each pair of nodes(p, q) ∈ N ⊗N

2.1.1. Sample group~zm
p→q ∼Multinomial (~πp, 1)

2.1.2. Sample group~zm
p←q ∼Multinomial (~πq, 1)

2.1.3. SampleRm(p, q) ∼ Bernoulli (~zm ⊤
p→qB ~zm

p←q)

It is noteworthy that in the above model, the group membership of each node iscontext dependent,

that is, each nodes can assume different membership when interacting to or being interacted by

different peers. Therefore, each node is statistically an admixture of group-specific interactions,

and I denote the two sets of latent group indicators corresponding to them-th observed network

2An indicator vector of memberships in one of theK groups is defined as aK-dimensional vector of which only
one element whose index corresponds to the id of the group to be indicated equals to one, and all other elements equal
to zero.
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by {~zm
p→q : p, q ∈ N} =: Z→m and{~zm

p←q : p, q ∈ N} =: Z←m . Marginalizing out the latent group

indicators, it is easy to show that the probability of observing an interaction between nodep andq

across theM networks is̄σpq = ~π ⊤p B ~πq.

Under an ALB model outlined above, the joint probability distribution of the data,R1:M , and

the latent variables(~π1:N , Z
→
1:M , Z

←
1:M) can be written in the following factored form:

p(R1:M |~α,B) =

∫

Π⊗Z
p(R1:M , ~π1:N , Z

→
1:M , Z

←
1:M |~α,B) d~π dZ

=

∫

Π⊗Z

(∏

m

∏

p,q

p1(Rm(p, q)|~zm
p→q, ~z

m
p←q, B) p2(~z

m
p→q|~πp, 1)

× p2(~z
m
p←q|~πq, 1)

)∏

p

p3(~πp|~α) d~π dZ (3.1)

wherep1 is Bernoulli,p2 is multinomial, andp3 is Dirichlet.

To compute the likelihood of the observed networks, one needs to marginalize out the hidden

variables~π andZ for all notes, which is intractable for even for small graphs. In Section3.1.3, I

describe a variational scheme to approximate this likelihood for parameter estimation.

Dealing with Sparsity Most networks in real world are sparse, meaning that most pairs of nodes

do not have edges connecting them. But in many network analyses, observations about interactions

and non-interactions are equally important in terms of their contributions to model fitness. In

other words, they would compete for a statistical explanation in terms of estimates for parameters

(~α,B), and would both influence the distribution of latent variables such as~π1:N . A non desirable

consequence of this, in scenarios where interactions are rare, is that parameter estimation and

posterior inference would explain patterns of non-interaction rather than patterns of interaction.

In order to be able to calibrate the importance of rare interactions, we introduce the sparsity pa-

rameterρ ∈ [0, 1], which models how often a non-interaction is due to measurement noise (which
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is common in certain experimentally derived networks such as the protein-protein interaction net-

works) and how often it carries information about the group memberships of the nodes. This leads

to a small extension of the generative process outlined in the last subsection. Specifically, instead

of drawing an edge directly from a Bernoulli with rate~zm ⊤
p→qB ~zm

p←q, now we sample an interaction

with probabilityσm
pq = (1−ρ) ·~zm ⊤

p→qB ~zm
p←q; therefore the probability of having no interaction this

pair of nodes is1− σm
pq = (1− ρ) · ~zm ⊤

p→q (1−B) ~zm
p←q + ρ. This is equivalent to re-parameterizing

the interaction matrixB. During estimation and inference, a large value ofρ would cause the in-

teractions in the matrix to be weighted more than non-interactions in determining the estimates of

(~α,B, ~π1:N).

3.1.3 Estimation and Inference

I use an empirical Bayes framework for estimating the parameters(~α,B), and employ a mean-

field approximation scheme (Jordan et al., 1999) for posterior inference of the (latent) mixed-

membership vectors,~π1:N . Model selection can be performed to determine the plausible value

of K—the number of groups of nodes—based on a strategy describedin Airoldi et al. (2006e).

In order to estimate(~α,B) and infer the posterior distributions of~π1:N we need to be able to

evaluate the likelihood, which involves the non-tractableintegral overZ and~π1:N in Equation3.1.

Given the large amount of data available for most networks, we focus on approximate posterior

inference strategies in the context of variational methods, and we find a tractable lower bound for

the likelihood that can be used as a surrogate for inference purposes. This leads to approximate

MLEs for the hyper-parameters and approximate posterior distributions for the (latent) mixed-

membership vectors.

Variational Expectation-Maximization The approximate variant of EM I describe here is often

referred to asVariational EM (Beal and Ghahramani, 2003; Blei et al., 2003). Begin by rewriting

77



3.1. ADMIXTURE OF LATENT BLOCKS MODEL E.M. AIROLDI

Y = R1:M for the data,X = (~π1:N , Z
→
1:M , Z

←
1:M) for the latent variables, andΘ = (~α,B) for the

model’s parameters. Briefly, it is possible to lower bound the likelihood,p(Y |Θ), making use of

Jensen’s inequality and of any distribution on the latent variablesq(X),

p(Y |Θ) = log

∫

X
p(Y,X|Θ) dX

= log

∫

X
q(X)

p(Y,X|Θ)

q(X)
dX (for anyq)

≥
∫

X
q(X) log

p(Y,X|Θ)

q(X)
dX (Jensen’s)

= Eq

[
log p(Y,X|Θ) − log q(X)

]
=: L(q,Θ) (3.2)

In EM, the lower boundL(q,Θ) is then iteratively maximized with respect toΘ, in the M step, and

q in the E step (Dempster et al., 1977). In particular, at thet-th iteration of the E step we set

q(t) = p(X|Y,Θ(t−1)), (3.3)

that is, equal to the posterior distribution of the latent variables given the data and the estimates of

the parameters at the previous iteration.

Unfortunately, the posterior in Equation3.3 for the admixture of latent blocks model cannot

be computed. Rather, a direct parametric approximation to it needs be defined,̃q = q∆(X),

which involves an extra set ofvariational parameters, ∆, and entails an approximate lower bound

for the likelihoodL∆(q,Θ). At the t-th iteration of the E step, the Kullback-Leibler divergence

betweenq(t) andq(t)
∆ , is then minimized with respect to∆, using the data.3 The optimal parametric

approximation is, in fact, a proper posterior as it depends on the dataY , although indirectly,q(t) ≈

q
(t)
∆∗(Y )(X) = p(X|Y ).

3This is equivalent to maximizing the approximate lower bound for the likelihood,L∆(q, Θ), with respect to∆.
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Lower Bound for the Likelihood According to the mean-field theory (Jordan et al., 1999; Xing et al.,

2003b), one can approximate an intractable distribution such as the one defined by Equation3.1

by a fully factored distributionq(~π1:N , Z
→
1:M , Z

←
1:M) defined as follows:

q(~π1:N , Z
→
1:M , Z

←
1:M |~γ1:N ,Φ

→
1:M ,Φ

←
1:M)

=
∏

p

q1(~πp|~γp)
∏

m

∏

p,q

(
q2(~z

m
p→q|~φm

p→q, 1) q2(~z
m
p←q|~φm

p←q, 1)
)
, (3.4)

whereq1 is a Dirichlet,q2 is a multinomial, and∆ = (~γ1:N ,Φ
→
1:M ,Φ

←
1:M) represent the set of free

variational parametersneed to be estimated in the approximate distribution.

Minimizing the Kulback-Leibler divergence between thisq(~π1:N , Z
→
1:M , Z

←
1:M |∆) and the origi-

nal p(~π1:N , Z
→
1:M , Z

←
1:M) defined by Equation3.1 leads to the following approximate lower bound

for the likelihood.

L∆(q,Θ) = Eq

[
log
∏

m

∏

p,q

p1(Rm(p, q)|~zm
p→q, ~z

m
p←q, B)

]

+ Eq

[
log
∏

m

∏

p,q

p2(~z
m
p→q|~πp, 1)

]
+Eq

[
log
∏

m

∏

p,q

p2(~z
m
p←q|~πq, 1)

]

+ Eq

[
log
∏

p

p3(~πp|~α)
]
−Eq

[ ∏

p

q1(~πp|~γp)
]

− Eq

[
log
∏

m

∏

p,q

q2(~z
m
p→q|~φm

p→q, 1)
]
−Eq

[
log
∏

m

∏

p,q

q2(~z
m
p←q|~φm

p←q, 1)
]
.
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Working on the single expectations leads to the following expression,

L∆(q,Θ) =
∑

m

∑

p,q

∑

g,h

φm
p→q,gφ

m
p←q,h · f

(
Rm(p, q), B(g, h)

)

+
∑

m

∑

p,q

∑

g

φm
p→q,g

[
ψ(γp,g) − ψ(

∑

g

γp,g)
]

+
∑

m

∑

p,q

∑

h

φm
p←q,h

[
ψ(γp,h) − ψ(

∑

h

γp,h)
]

+
∑

p

log Γ(
∑

k

αk) −
∑

p,k

log Γ(αk) +
∑

p,k

(αk − 1)
[
ψ(γp,k) − ψ(

∑

k

γp,k)
]

−
∑

p

log Γ(
∑

k

γp,k) +
∑

p,k

log Γ(γp,k) −
∑

p,k

(γp,k − 1)
[
ψ(γp,k) − ψ(

∑

k

γp,k)
]

−
∑

m

∑

p,q

∑

g

φm
p→q,g log φm

p→q,g −
∑

m

∑

p,q

∑

h

φm
p←q,h log φm

p←q,h

where

f
(
Rm(p, q), B(g, h)

)
= Rm(p, q) logB(g, h)+

(
1 − Rm(p, q)

)
log
(

1 −B(g, h)
)
;

m runs over1, . . . ,M ; p, q run over1, . . . , N ; g, h, k run over1, . . . , K; andψ(x) is the derivative

of the log-gamma function,d log Γ(x)
dx

.

The Expected Value of the Log of a Dirichlet Random Vector The computation of the lower

bound for the likelihood requires us to evaluateEq

[
log ~πp

]
for p = 1, . . . , N . Recall that the

density of an the exponential family distributions with natural parameter~θ can be written as

p(x|α) = h(x) · c(α) · exp
{∑

k

θk(α) · tk(x)
}

= h(x) · exp
{∑

k

θk(α) · tk(x) − log c(α)
}
.
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Omitting the node indexp for convenience, the density of the Dirichlet distributionp3 can be

rewritten as an exponential family distribution,

p3(~π|~α) = exp

{∑

k

(αk − 1) log(πk) − log

∏
k Γ(αk)

Γ(
∑

k αk)

}
,

with natural parametersθk(~α) = (αk − 1) and natural sufficient statisticstk(~π) = log(πk). Let

c′(~θ) = c(α1(~θ), . . . , αK(~θ)); using a well known property of the exponential family distributions

(Schervish, 1995) it follows that

Eq

[
log πk

]
= E~θ

[
log tk(x)

]

= − ∂

∂θk
log c′

(
~θ + 1

)
(Schervish, 1995, Thm 2.64)

= ψ
(
θk + 1

)
−ψ

(∑

k

θk +K
)

= ψ
(
αk

)
−ψ

(∑

k

αk

)
,

whereψ(x) is the derivative of the log-gamma function,d log Γ(x)
dx

.

Variational E Step The approximate lower bound for the likelihoodL∆(q,Θ) can be maximized

using exponential family arguments and coordinate ascent (Wainwright and Jordan, 2003).

Isolating terms containingφm
p→q,g andφm

p←q,h we obtainLφm
p→q,g

(q,Θ) andLφm
p→q,g

(q,Θ). The

natural parameters~gm
p→q and~gm

p←q corresponding to the natural sufficient statisticslog(~zm
p→q) and

log(~zm
p←q) are functions of the other latent variables and the observations. We find that

gm
p→q,g = log πp,g +

∑

h

zm
p←q,h · f

(
Rm(p, q), B(g, h)

)
,

gm
p←q,h = log πq,h +

∑

g

zm
p→q,g · f

(
Rm(p, q), B(g, h)

)
,
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for all pairs of nodes(p, q) in them-th network; whereg, h = 1, . . . , K, and

f
(
Rm(p, q), B(g, h)

)
= Rm(p, q) logB(g, h)+

(
1 − Rm(p, q)

)
log
(

1 − B(g, h)
)
.

This leads to the following updates for the variational parameters(~φm
p→q,

~φm
p←q), for a pair of nodes

(p, q) in them-th network:

φ̂m
p→q,g ∝ e Eq

[
gm

p→q,g

]

= e Eq

[
log πp,g

]
· e

P

h φm
p←q,h

· Eq

[
f
(

Rm(p,q),B(g,h)
)]

= e Eq

[
log πp,g

]
·
∏

h

(
B(g, h)Rm(p,q)·

(
1 −B(g, h)

)1−Rm(p,q)
)φm

p←q,h

φ̂m
p←q,h ∝ e Eq

[
gm

p←q,h

]

= e Eq

[
log πq,h

]
· e

P

g φm
p→q,g· Eq

[
f
(

Rm(p,q),B(g,h)
)]

= e Eq

[
log πq,h

]
·
∏

g

(
B(g, h)Rm(p,q)·

(
1 −B(g, h)

)1−Rm(p,q)
)φm

p→q,g

for g, h = 1, . . . , K. These estimates of the parameters underlying the distribution of the nodes’

group indicators~φm
p→q and~φm

p←q need be normalized, to make sure
∑

k φ
m
p→q,k =

∑
k φ

m
p←q,k = 1.

Isolating terms containingγp,k we obtainLγp,k
(q,Θ). Setting

∂Lγp,k

∂γp,k
equal to zero and solving

for γp,k yields:

γ̂p,k = αk +
∑

m

∑

q

φm
p→q,k +

∑

m

∑

q

φm
p←q,k,

for all nodesp ∈ P andk = 1, . . . , K.

Thet-th iteration of the variational E step is carried out for fixed values ofΘ(t−1) = (~α(t−1), B(t−1)),

and finds the optimal approximate lower bound for the likelihoodL∆∗(q,Θ
(t−1)).
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Variational M Step The optimal lower boundL∆∗(q
(t−1),Θ) provides a tractable surrogate for

the likelihood at thet-th iteration of the variational M step. We derive empirical Bayes estimates

for the hyper-parametersΘ that are based upon it.4 That is, we maximizeL∆∗(q
(t−1),Θ) with

respect toΘ, given expected sufficient statistics computed usingL∆∗(q
(t−1),Θ(t−1)).

Isolating terms containing~α we obtainL~α(q,Θ). Unfortunately, a closed form solution for the

approximate maximum likelihood estimate of~α does not exist (Blei et al., 2003). We can produce

a Newton-Raphson method that is linear in time, where the gradient and Hessian for the boundL~α

are

∂L~α

∂αk

= N

(
ψ
(∑

k

αk

)
−ψ(αk)

)
+
∑

p

(
ψ(γp,k) − ψ

(∑

k

γp,k

))
,

∂L~α

∂αk1αk2

= N

(
I(k1=k2) · ψ′(αk1) − ψ′

(∑

k

αk

))
.

Isolating terms containingB we obtainLB, whose approximate maximum is

B̂(g, h) =
1

M

∑

m

( ∑
p,q Rm(p, q) · φm

p→qg φ
m
p←qh∑

p,q φ
m
p→qg φ

m
p←qh

)
,

for every index pair(g, h) ∈ [1, K] × [1, K].

In Section3.1.2we introduced an extra parameter,ρ, to control the relative importance of pres-

ence and absence of interactions in likelihood, i.e., the score that informs inference and estimation.

Isolating terms containingρ we obtainLρ. We may then estimate the sparsity parameterρ by

ρ̂ =
1

M

∑

m

( ∑
p,q

(
1 − Rm(p, q)

)
·
( ∑

g,h φ
m
p→qg φ

m
p←qh

)
∑

p,q

∑
g,h φ

m
p→qg φ

m
p←qh

)
.

Alternatively, we can fixρ prior to the analysis; the density of the interaction matrixis estimated

4We could term these estimatespseudoempirical Bayes estimates, since they maximize an approximate lower
bound for the likelihood,L∆∗ .
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with d̂ =
∑

m,p,q Rm(p, q)/(N2M), and the sparsity parameter is set toρ̃ = (1 − d̂). This latter

estimator attributes all the information in the non-interactions to the point mass, i.e., to latent

sources other than the block modelB or the mixed membership vectors~π1:N . It does however

provide a quick recipe to reduce the computational burden during exploratory analyses.5

Smoothing In problems where the number of clusters is deemed to be likely large a-priori, we

can smooth the (consequently large number of) cluster-to-cluster relation probabilities encoded in

the block modelB by positing that all the elementsB(g, h) of the block model are non-observable

samples from a common (prior) distribution. In the admixture of latent blocks model we posit

that p(B|~λ) is a collection non-symmetric beta distributions, with a pair of hyper-parameters~λ

common to all elements ofB.

Example 17 (Continued) Sampson(1968) surveyed 18 novice monks in a monastery and asked

them to rank the other novices in terms of foursociometric relations: like/dislike, esteem, personal

influence, and alignment with the monastic credo. Sampson’soriginal analysis strongly suggests

the existence of tight factions among the novices, and the events that took place during his stay at

the monastery support his observations; briefly, novices ofone faction left the monastery or were

expelled over religious differences. The factions identified by Sampson provide a credible gold

standard, to which the results are compared.

I consider Breiger’s collation of Sampson’s data (Breiger et al., 1975). Briefly, for each of

the four sociometric relations above, only the top three choices of each novice were recorded

as positive relations—the edges in the graph. The union of all positive relations, disregarding

multiplicity as inHandcock et al.(2007), is the starting point of our analysis. To assess model fit,

5Note thatρ̃ = ρ̂ in the case of single membership. In fact, that impliesφm
p→qg = φm

p←qh = 1 for some(g, h) pair,
for any(p, q) pair.
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I use an approximation to BIC:

BIC = 2 · log p(R) ≈ 2 · log p(R|~̂π, Ẑ, ~̂α, B̂) − |~α,B| · log |R|,

where|~α,B| is the number of hyper-parameters in the model, and|R| is the number of positive

relations observed—following arguments inHandcock et al.(2007). The approximate BIC value

suggests that the relations among monks in the monastery studied by Sampson are best explained

by a model with three factions, independently of the number of hyper-parameters in the fitted ALB

models. In the left panel of Figure3.2I show the approximate BIC for a model with a single hyper-

parameter,α scalar. Hence I fixed̂K = 3 in subsequent analyses, which involved ALB models

with increasing degree of complexity. The right panel of Figure3.2 shows the estimated faction-

to-faction block model,̂B, corresponds to a full model (i.e., no constraints onB). This estimate

suggest that the Outcasts are an isolated faction, whereas Young Turkslike members of the Loyal

Opposition, although the sentiment is not reciprocated. Figure3.3 investigates the the posterior

means of the mixed membership scores,E[~π|R], for the 18 monks in the monastery (α = 0.058

scalar,B := I3). There is a panel for each monk, and the subscripts associated with the names of
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Figure 3.2: The approximate BIC (left panel) suggests the relations among monks are best ex-
plained by a model with three factions. The faction-to-faction estimated relational patterns (right
panel) suggest that the Outcasts are an isolated faction, whereas Young Turkslike members of the
Loyal Opposition, although the sentiment is not reciprocated.
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Figure 3.3: The posterior mixed membership scores,~π, for the 18 monks in the monastery. Each
panel correspond to a monk; theY axis measures the grade of membership, corresponding to the
Outcast (left bar), to the Young Turks (center bar), and to the Loyal Opposition (right bar), on the
X axis. The subscripts associated with the names of the monks specify the order according to
which they left the monastery.

Figure 3.4: Original matrix of sociometric relations (left), and estimated relations obtained by
thresholding the posterior expectations~πp

′B ~πq|R (center), and~φp
′B ~φq|R (right).
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Figure 3.5: Mixed membership vectors,~π1:18, plotted in the reference simplex. Marks correspond
to individual monks; the red circle marks correspond to an ALB model with(B = I3, α = 0.01),
whereas the blue triangle marks correspond to an ALB model with (B := I3, α̂ = 0.058); where
IK is theK-dimensional identity matrix.

the monks specify the order according to which they left the monastery, e.g., John left first. The

three factions on theX axis are the Outcast, the Young Turks , and the Loyal Opposition (from

left to right); and theY axis measures the degree of membership of monks to factions.From

these panels, the centrality of the role played by John and Greg, first to leave the monastery, as

well as the uncertain affiliations of Romul, and Victor to a minor extent, unequivocally emerge.

The mixed membership vectors,~π1:18, provide us with low-dimensional representations of monks.

Figure3.5plots them in their natural space, that is, the(3-dimensional) simplex. Dots correspond
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to monks; the red circles were obtained by fixingB = I3 andα = 0.01, whereas the blue triangles

correspond to fixingB := I3, but estimatinĝα = 0.058. To compare the latent representation of

the monks obtained with ALB with the one presented in (Handcock et al., 2007, Table 1), I mapped

the contour levels for their the estimated mixture of three Gaussians (Handcock et al., 2007, Table

1) in the reference simplex—using the following transformation,

T =




−0.5 0.5 0

−
√

3−1
2

√
3−1
2

0.5



 .

The contour levels of such density in Figure3.5suggest that our model and the latent space mixture

model lead to different structures and somewhat different interpretations.

Example 18 (Continued) The goal of the analysis here is to analyze proteins’ diversefunctional

roles by analyzing their local and global patterns of interaction. The biochemical composition of

individual proteins make them suitable for carrying out a specific set of cellular operations, orfunc-

tions. Proteins typically carry out these functions as part of stable protein complexes (Krogan et al.,

2006). There are many situations in which proteins are believed to interact (Alberts et al., 2002);

the main intuition behind our methodology is that pairs of protein interact because they are part of

the same stable protein complex, i.e., co-location, or because they are part of interacting protein

complexes as they carry out compatible cellular operations.

The Munich Institute for Protein Sequencing (MIPS) database was created in 1998 based on

evidence derived from a variety of experimental techniques, but does not include information from

high-throughput data sets (Mewes et al., 2004). It contains about 8000 protein complex associ-

ations in yeast. We analyze a subset of this collection containing 871 proteins, the interactions

amongst which were hand-curated. The institute also provides a set of functional annotations, al-

ternative to the gene ontology (GO). These annotations are organized in a tree, with 15 general
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Table 3.1: General functional categories in the MIPS tree, and their relative popularity. In the
table we report the number of proteins that have at least one functional annotation in the general
categories in the left column. Counts refer to the subset of 871 proteins in yeast, which are part of
the hand-curated MIPS interaction network.

# Category Size
1 Metabolism 125
2 Energy 56
3 Cell cycle & DNA processing 162
4 Transcription (tRNA) 258
5 Protein synthesis 220
6 Protein fate 170
7 Cellular transportation 122
8 Cell rescue, defence & virulence 6
9 Interaction w/ cell. environment 18

10 Cellular regulation 37
11 Cellular other 78
12 Control of cell organization 36
13 Sub-cellular activities 789
14 Protein regulators 1
15 Transport facilitation 41

functions at the first level, 72 more specific functions at an intermediate level, and 255 annotations

at the the leaf level. In Table3.1we map the 871 proteins in our collections to the main functions of

the MIPS annotation tree; proteins in our sub-collection have about2.4 functional annotations on

average.6 By mapping proteins to the 15 general functions, we obtain a 15-dimensional representa-

tion for each protein. In Figure3.6each panel corresponds to a protein; the 15 functional categories

are ordered as in Table3.1 on theX axis, whereas the presence or absence of the corresponding

functional annotation is displayed on theY axis.

Protein-protein interactions (PPI) form the physical basis for formation of complexes and path-

ways which carry out different biological processes. A number of high-throughput experimental

approaches have been applied to determine the set of interacting proteins on a proteome-wide scale

6We note that the relative importance of functional categories in our sub-collection, in terms of the number of
proteins involved, is different from the relative importance of functional categories over the entire MIPS collection.
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1 3 5 7 9 1 1 1 3 1 500 . 20 . 40 . 60 . 81
1 3 5 7 9 1 1 1 3 1 500 . 20 . 40 . 60 . 8 1

1 3 5 7 9 1 1 1 3 1 500 . 20 . 40 . 60 . 81Y A L 0 0 9 W Y A L 0 3 3 W Y A L 0 4 3 C
Figure 3.6: By cutting the MIPS annotation tree at the first level we find the 15 general func-
tional categories in Table3.1. By mapping proteins to the 15 general functions, we obtain a15-
dimensional representation for each protein. In the Figure, each panel corresponds to a protein;
the 15 functional categories are displayed on theX axis, whereas the presence or absence of the
corresponding functional annotation is displayed on theY axis. The plots at the bottom zoom into
the panels corresponding to three example proteins.
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in yeast. These include the two-hybrid (Y2H) screens and mass spectrometry methods. For exam-

ple, mass spectrometry is used to identify components of protein complexes (Gavin et al., 2002;

Ho et al., 2002). High-throughput methods, though, may miss complexes that are not present under

the given conditions. For example, tagging may disturb complex formation and weakly associated

components may dissociate and escape detection. Statistical models that encode information about

functional processes with high precision are then an essential tool for carry outprobabilistic de-

noisingof biological signals from high-throughput experiments.

In previous work, we established the usefulness of the admixture of latent blocks model for

analyzing protein-protein interaction data. For example,we used the ALB for testing functional in-

teraction hypotheses and semi-supervised and unsupervised estimation experiments (Airoldi et al.,

2005b). We then attempted to assess whether, and how much, functionally relevant biological sig-

nal can be captured in by the ALB model (Airoldi et al., 2005a). In summary, our findings show

that ALB identifies protein complexes whose member proteinsare tightly interacting with one an-

other. The identifiable protein complexes correlate with the following four categories of Table3.1:

cell cycle & DNA processing, transcription, protein synthesis, and sub-cellular activities. The high

correlation of inferred protein complexes can be leveragedfor predicting the presence of absence

of functional annotations, for example, by using a logisticregression. However, there is not enough

signal in the data to independently predict annotations in other functional categories. The empiri-

cal Bayes estimates of the hyper-parameters that support these conclusions in the various types of

analyses are consistent;α̂ < 1 and small; andB̂ nearly block diagonal with two positive blocks

comprising the four identifiable protein complexes. These previous analyses fixed the number of

latent protein complexes to 15. Figure3.7displays few examples of predicted mixed membership

probabilities against the true annotations, given anestimated mappingof latent protein complexes

to functional categories. The latent protein complexes arenot a-priori identifiable in our model.

To resolve this, we find mapping between latent complexes andfunctions by minimizing the diver-
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Figure 3.7: Predicted mixed-membership probabilities (dashed, red lines) versus binary manually
curated functional annotations (solid, black lines) for 6 example proteins. The identification of
latent groups to functions is estimated, and it is discussedin Figure3.8.
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gence between true7 and predicted marginal frequencies of membership. We used this mapping

to compare predicted versus known functional annotations,for all proteins. The best estimated

mapping is shown in Figure3.8.

Following-up on the hypothesis that the size of stable protein complex in Yeast is about 5

proteins on average, and skewed towards bigger complexes (Krogan et al., 2006), we explored

a richer space of models withK = 50, . . . , 225. However, using approximate BIC to assess

model fit (Handcock et al., 2007) we found that the more parsimonious models(K = 50) provide

a better description of the observed interactions. This fact is consistent with previous findings

(Airoldi et al., 2005b), and suggest that the interactions in the MIPS collection alone encode a bi-

ological signal at a higher aggregation level than that of a specific complexes. In order to explore

this hypothesis we considered an alternative annotation scheme to that of the Munich Institute for

Protein Sequencing; namely the Saccaromice Cervisiae genedatabase and gene ontology (GO)

(Ashburner et al., 2000). Based on the GO,Myers et al.(2006) recently proposed a solid frame-

work to assess the functional content of biological data. Making use of it, we measure the func-

tional content in the interactions encoded in an ALB model withK = 50, fitted using the nested

variational EM algorithm detailed in the Appendix. In Figure3.9, we measure the functional con-

tent in the posterior means,

E
[
R(p, q) = 1

]
= ~̂πp

′ B̂ ~̂πq and E
[
R(p, q) = 1

]
= ~̂φp→q

′ B̂ ~̂φp←q,

where positive interactions are obtained by thresholding the expectations. Figure3.9 shows the

original MIPS collection as one of the most precise (Y axis) and most extensive (X axis) source

of biologically relevant interactions available to date. The posterior means of(~π1:N ) and the esti-

mates of(α,B) provide a parsimonious representation for the MIPS collection, and lead to precise

interaction estimates, however, in moderate amount (the light blue,−× line). The posterior means

7Evaluated on a small fraction of the interactions.
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Figure 3.8: We estimate the mapping of latent groups to functions. The two plots show the marginal
frequencies of membership of proteins to true functions (bottom) and to identified functions (top),
in the cross-validation experiment. The mapping is selected to maximize the accuracy of the pre-
dictions on the training set, in the cross-validation experiment, and to minimize the divergence
between marginal true and predicted frequencies if no training data is available—see the text.
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Figure 3.9: In the top panel we measure the functional content of the the MIPS collection of protein
interactions (yellow diamond), and compare it against other published collections of interactions
and microarray data, and to the posterior estimates of ALB models—computed as described in
the text. A breakdown of three estimated interaction networks (the numbered points) into most
represented gene ontology categories is detailed in Table3.2.

of (Z→, Z←) do not provide a parsimonious representation for the data, and describe most of the

functional content of the MIPS collection with high precision (the dark blue,−+ line). A break-

down of three example interaction networks displayed in Figure 3.9 into most represented gene

ontology categories is detailed in Table3.2. We investigate the correlations between data collec-

tions (rows) and a sample of gene ontology categories (columns). The intensity of the square (red

is high) measures the area under the precision-recall curveFor more detail about these plots see

Figures 5–6 inMyers et al.(2006).

* * *

When applied to a sample of measurements on pairs of objects,Admixture of Latent Blockssimul-

taneously extracts information about (i) the mixed membership of objects to latent aspects, and (ii)

the connectivity patterns among latent aspects, using a nested variational EM algorithm. I found it

useful for revealing group membership in social networks, as well as for describing and summa-

rizing the functional content of a protein interaction network, and I envision its use for de-noising
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Table 3.2: Breakdown of three example interaction networksinto most represented gene ontology
categories. The digit in the first column refers to the numbered points in Figure3.9. The last two
columns quote the number of predicted, and possible pairs for each GO term.

# GO Term Description Pred. Tot.
1 GO:0043285 Biopolymer catabolism 561 17020
1 GO:0006366 Transcription from RNA polymerase II promoter 341 36046
1 GO:0006412 Protein biosynthesis 281 299925
1 GO:0006260 DNA replication 196 5253
1 GO:0006461 Protein complex assembly 191 11175
1 GO:0016568 Chromatin modification 172 15400
1 GO:0006473 Protein amino acid acetylation 91 666
1 GO:0006360 Transcription from RNA polymerase I promoter 78 378
1 GO:0042592 Homeostasis 78 5778
2 GO:0043285 Biopolymer catabolism 631 17020
2 GO:0006366 Transcription from RNA polymerase II promoter 414 36046
2 GO:0016568 Chromatin modification 229 15400
2 GO:0006260 DNA replication 226 5253
2 GO:0006412 Protein biosynthesis 225 299925
2 GO:0045045 Secretory pathway 151 18915
2 GO:0006793 Phosphorus metabolism 134 17391
2 GO:0048193 Golgi vesicle transport 128 9180
2 GO:0006352 Transcription initiation 121 1540
3 GO:0006412 Protein biosynthesis 277 299925
3 GO:0006461 Protein complex assembly 190 11175
3 GO:0009889 Regulation of biosynthesis 28 990
3 GO:0051246 Regulation of protein metabolism 28 903
3 GO:0007046 Ribosome biogenesis 10 21528
3 GO:0006512 Ubiquitin cycle 3 2211

new collection of interactions from high-throughput experiments.

A recurring question, which bears relevance to mixed membership models in general, is why

one does not necessarily want to integrate out the single membership indicators—(~zm
p→q, ~z

m
p←q) in

the specifications above. There are some computational aspects to this but a practical issue that

argues against such marginalization is that we would often lose interpretable quantities that are

useful for making predictions, for de-noising new measurements, or for performing other tasks.
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Figure 3.10: We investigate the correlations between data collections (rows) and a sample of gene
ontology categories (columns). The intensity of the square(red is high) measures the area under
the precision-recall curve.

In fact, the posterior distributions of such quantities typically carry substantive information about

elements of the application at hand. In the application to protein interaction networks, for example,

they encode the interaction-specific memberships of individual proteins to protein complexes.

There is a tight relationship between ALB and the latent space models inHoff et al. (2002);

Handcock et al.(2007). In the latent space models, the latent vectors are drawn from Gaussian

distributions and the interaction data is drawn from a Gaussian with mean~πp
′
I~πq. In ALB, the

marginal probability of an interaction takes a similar form, ~πp
′B~πq, whereB is the matrix of prob-

abilities of interactions for each pair of latent factions.In contrast to the latent space model, the re-

lations can be modeled by an arbitrary distribution, in our model. With binary relations a collection

of Bernoulli parameters can be used; with continuous relations, a collection of Gaussian parameters

can be used. While more flexible, ALB does not subsume latent space models; they make different

assumptions about the data. SeeHandcock et al.(2007) with discussion (Blei and Fienberg, 2007;
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Airoldi , 2007) for more details.

3.2 Local Diffusion Potentials

Here I briefly situate in the context of this thesis some recent developments in mathematics that

bear relevance to statistical network analysis. I wish to thank Ann B. Lee for carrying out the

calculations and for generous advice on the material presented here.

The main linkage between the mathematics of diffusion (Lafon and Lee, 2006) and statistical

network analysis is a notion of distance that measures the connectivity between nodes through

a multiple-step multiple-path diffusion process on the graph. This formulation depends on non-

observable, node-specific quantities, which I termlocal diffusion potential. Higher-order connec-

tivity patterns could be naturally incorporated into statistical models of graphs and networks in

diffusion space (Coifman et al., 2005a,b).

Example 19. Consider the diffusion of innovation among physicians studied byColeman et al.

(1957). Doctor A suggests doctor B to try a new drug, who later suggests its use to doctor C. In

a sense, the influence of doctor A indirectly extends to doctor C. Such mediated connections may

occur through multiple steps and multiple paths. Defining a distance metric that explicitly encodes

this enriched notion of connectivity, that is, the diffusion potential specific to a doctor (to a node

in a graph), is the focus of this section.

3.2.1 Goals of the Analysis

An abstract framework to study diffusion has been introduced by Coifman et al.(2005a,b) in the

context of high-dimensional data analysis and manifold learning. In such a framework nodes in a

graph are represented in terms of their multivariate attributes,~xn ∈ R
p for eachn ∈ N . A kernel
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functionf
(
||xn−y||

h

)
, with a certain bandwidthh, defines the local neighborhood of~xn, and it used

to compute weights of the edges to be imputed. This procedureresultsin a (fully connected) graph

among the nodes. Within this framework, a notion of distancehas been defined that controls the

influence of a each node on its neighbors, through a multiple-step multiple-path diffusion process

on the graph, at a global scale (Lafon et al., 2006).

Rather, for the purposes of this thesis, a graphis given. It is possible, however, to measure

distance between nodes through a multiple-step multiple-path diffusion process on the graph by

defining local diffusion potentialsin the form of local scales,tn, specific to nodesn ∈ N . Dis-

tances in the graph, based upon local diffusion potentials,correspond to Euclidean distances on

the lower dimensional manifold implicitly defined by the graph.8

3.2.2 Technical Preliminaries

Consider a connected graphG = (V,E), whereV is a set ofN vertices, andE is a set of undirected

edges. Edges are mapped to weightswij , for i, j ∈ V . The weightsW = {wij} satisfy the

following conditions: (i) symmetry,W = W T , (ii) pointwise positivity,wij ≥ 0 for i, j ∈ V and

wii > 0, and (iii) positive semi-definiteness. These conditions can be relaxed, and the methodology

extended, to cover the more general case of directed graphs.

Consider the spectral properties of the Markov chain onW . The transition matrixP has a set

of left and right eigenvectors according to:

φT
kP = λkφ

T
k andPψk = λkψk (3.5)

where the eigenvaluesλ0 = 1 ≥ λ1 ≥ ... ≥ λN−1 ≥ 0. Furthermore, the left and right eigen-

vectors satisfy the biorthogonality relationφT
kψl = δkl, whereδkl is Dirac’s delta function. For

8Explicitly defined by~x1:N ∈ R
p in the formulation ofCoifman et al.(2005a,b).
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convenience, the eigenvectors are normalized with respectto 1/φ0 andφ0, respectively, so that:

‖φk‖2
1/φ0

=
∑

i
φ2

k
(i)

φ0(i)
= 1

‖ψk‖2
φ0

=
∑

i ψ
2
k(i)φ0(i) = 1.

(3.6)

It can be verified thatλ0 = 1, ψ0 ≡ 1, and thatφ0 is defined as in Eq.3.11. Furthermore, it follows

that

ψk(i) =
φk(i)

φ0(i)
(3.7)

for k = 0, 1, . . . , N − 1 and i ∈ V . Rewrite the transition probabilitiespt(i, j) and the diffu-

sion metric in terms of these eigenvectors and eigenvalues.By inserting the biorthogonal spectral

decomposition

pt(i, j) =
∑

k≥0

λt
kψk(i)φk(j), (3.8)

into Eq.3.10, and using orthonormality
∑

j
φk(j)φl(j)

φ0(j)
= δkl, it follows

D2(n,m; tn, tm) =
∑

k>0

(
λtn

k ψk(n) − λtm
k ψk(m)

)2

≃
K∑

k=1

(
λtn

k ψk(n) − λtm
k ψk(m)

)2
. (3.9)

Note that thek = 0 term does not appear in the sum asλ0 = 1 andψ ≡ 1.
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3.2.3 The Main Result

The calculations above lead to a generalized diffusion distance between nodesn andm according

to

D2(n,m; tn, tm) = ‖ptn(n, ·) − ptm(m, ·)‖2
1/φ0

=
∑

j∈V

(ptn(n, j) − ptm(m, j))2

φ0(j)
, (3.10)

where the scale parameterstn and tm determine the local influence of nodesn andm on their

neighbors, and the function

φ0(j) =
dj∑

k∈V dk

(3.11)

is the stationary distribution of the Markov chain, i.e.limt→+∞ pt(i, j) = φ0(j). According to this

metric, nodesn andm will be close,if they interact with the same nodes in the graph9. For an

undirected graph, such a situation occurs when there are many paths connecting the two nodes.

The main points are the following:

• From Eq. 3.9, it is clear thatthe diffusion metric is a distance on the graph induced by a

one-parametric family of eigenmaps

Ψt : n 7−→





λt
1ψ1(n)

λt
2ψ2(n)

...

λt
KψK(n)





(3.12)

for n ∈ V .

9The weights1/φ0(j) penalize discrepancies on nodes of lower degree more than differences on neighboring nodes
of higher degree.
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• Effectively, we only need to keep the firstK terms, whereK ≪ N , in the identity forD.

The accuracy of the approximation depends on the value ofK, the speed of the decay of the

eigenvalues1 > λi ≥ 0 (for i = 1, 2, . . . , N − 1), and the exponentt. For a fixed accuracy,

a largert implies fewer terms in the sum.

In other words, Eq.3.10ca be expressed as a Euclidean distance

D2(n,m; tn, tm) ≃ ‖Ψtn(n) − Ψtm(m)‖2 (3.13)

in a low-dimensional “diffusion space”. The coordinates ofnodesn andm in this space are given

by a diffusion map at time scalestn andtm, respectively.

* * *

In this chapter, I introduced stochastic block models of mixed membership, which extend block

models (Holland and Leinhardt, 1975) to include mixed-membership in a hierarchical Bayesian

framework. I presented summaries of two successful applications of such models in the context

of social and protein interaction networks (Airoldi et al., 2006c,d, 2007b). I discussed similarities

and differences between stochastic block models of mixed membership and latent space models

(Hoff et al., 2002; Handcock et al., 2007; Airoldi , 2007; Blei and Fienberg, 2007). I concluded by

situating in the context of this thesis some recent developments in the mathematics of diffusion

that bear relevance to the proposed methodology for statistical network analysis.
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Chapter 4

Complexity and Integration

In the previous chapter, I developed generative models of networks where the identity of each node

was the only attribute that was observed. In this chapter, I develop Bayesian mixed-membership

models of objects’ attributes. I then develop models where such objects are the nodes of a graph.

The resultingintegrated modelscan accommodate measurements on relations and attributes involv-

ing objects of different types, along with the corresponding sets of latent variables, in a hierarchical

Bayesian framework. I describe a multivariate generalization of models of attributes and relations

that is amenable to theoretical analysis—to be pursued in future work. This modeling effort in-

forms a discussion of alternative strategies for integrating complex data. Two flavors of integration

strategies emerge that are best suited to supportdescriptiveandpredictiveanalyses.

4.1 Heavy-Tailed Attributes

In this section, I develop statistical models for estimating latent patterns from attribute data with

a heavy-tailed distribution. The notion ofcontagion, i.e., the dependence among multiple occur-

rences of the same attribute is introduced to express variability profiles induced by heavy tails.
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Furthermore, contagion is a convenient analytical formalism to characterize semantic themes such

asbiological context. Model variants tailored to different properties of the data are explored, and

a general scheme for approximate posterior inference is presented, which is based on variational

methods.

Example 20. A fundamental problem in the serial analysis of gene expression (SAGE) data is

that of identifying temporal patterns of gene expression (i.e., latent distributions over a predeter-

mined sequence of epochs) that can help explain a biologicalprocess from a large pool of observed

temporal gene expression profiles (Blackshaw et al., 2004; Cai et al., 2004). The set of latent ex-

pression patterns can then be used for suggesting hypotheses and further analyses, or for making

predictions.

Example 21.A recent problem in text and natural language processing is that of identifying topics,

i.e., latent distributions over words in the vocabulary, that best explain a collection of documents

(Minka and Lafferty, 2002; Blei et al., 2003; Erosheva et al., 2004; Blei and Lafferty, 2006). The

set of topics provides a low-dimensional representation ofeach document and can be used for

organizing and browsing the collection of documents efficiently.

The description of the methodology in this section exploitsthe intuition developed in the bio-

logical context of Example20.

From a methodological perspective, the task of identifyinglatent temporal patterns is essen-

tially an allocation problem; observed gene expression profiles need be allocated to latent tempo-

ral patterns. The goal is to make inference on: (i) the numberof latent patterns, (ii) a numerical

description of the patterns themselves, and (iii) the mixedmembership of the observed gene ex-

pression profiles to latent patterns. This is an instance of the more general problem of allocating

observed sequences, i.e., longitudinal representations of objects in terms of an attribute, to latent

sequential patterns, where each observation is allowed to be the measurable manifestation of more

than one pattern. In the context of serial analysis of gene expression (SAGE),Cai et al.(2004)
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introduce a variant ofK-means algorithm that minimizes a non-standard scoring function, which

combines the Chi-square statistic (to measure the strengthof co-expression) with the Poisson dis-

tribution (to measure the likelihood of the expression level of genes at each epoch). Approaches

based on clustering methods, however, constrain the expression level of a gene at each epoch to

follow the expression profile typical of a single pattern. Inother words, such approaches entail

uniquemembership of observations to patterns, rather thanmixedmembership.

Models of mixed membership have been successfully applied in the context of different prob-

lems (e.g.,Pritchard et al., 2000; Rosenberg et al., 2002; Xing et al., 2003a; Minka and Lafferty,

2002; Blei et al., 2003; Griffiths and Steyvers, 2004; Buntine and Jakulin, 2004; Blei and Lafferty,

2006). Such models, however, fall short of accommodating the marginal variability profiles of

observed attributes, jeopardizing the accuracy and the interpretability of the inferences. Existing

models appear to be unsuitable for the biological application to the SAGE data in part because

of the assumption ofindependence, as discussed in Section4.1.1. Below, I shall refer to popular

models based on such an assumption asindependence models.

4.1.1 The Data and Goals of the Analysis

Serial analysis of gene expression (SAGE) is a technology that quantitatively measure the copy

numbers of mRNA transcripts, simultaneously for a large number of genes in a biological sample,

such as a cell population or a tissue (Vesculescu et al., 1995). This technology is used to aid

the discovery of gene expression profiles that characterizefunctional processes of interest, and to

compare and catalog new genes.

A SAGE experiment begins by sampling a total ofB transcripts at random from a biological

sample under some specific condition (e.g., a cell cycle stage), and then useN gene-specific tags to

probe the existence of possible genes in each of theB transcripts. LetXb = (Xb1, Xb2, . . . , XbN)T ,
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such thatXbn ∈ {0, 1} and
∑

nXbn = 1, be aunit-baseindicator vector recording the probing

results for transcriptb (i.e.,Xbn = 1 indicates that genen is present on transcriptb). The number

of mRNA copies of a genen, denoted byYn, and the vector of copy counts for all genes (i.e., an

expression profile),Y = (Y1, Y2, . . . , YN)T , can then be simply expressed as:

Yn =

B∑

b=1

Xbn, Y =

B∑

b=1

Xb. (4.1)

Note thatYn’s are each binomial distributed, controlled by gene-specific parametersp1:N each

captures the probability of occurrence of gene on a random transcript, and a common sample size

parameterB. When multiple cellular conditions are of interest, e.g., stage sequences in a cell

cycle, an additional index will denote the specific conditions, e.g.,Y t, for measurements obtained

at timet.

The main random quantities of interest are: the observedgene expression levelsY t
n ’s, for then-

th gene at thet-th epoch; the observedgene expression profilesY 1:T
n ’s, for then-th gene; and the

latentgene expression patterns, e.g.,p1:T
k or λ1:T

k , for thek-th theme, as defined inPritchard et al.

(2000) and in the basic model of Sections4.1.2, respectively. Technically, the latent gene expres-

sion patterns are multivariate emission probabilities forthe gene expression levels, conditionally

on theactivemembership of that gene. The notation I adopt puts forward the set of parameters un-

derlying a specific distribution, e.g.,λ1:T
k is a vector of Poisson rates, which control the expression

levels of those genes that are expressed according to thek-th pattern. For example, whenever the

n-th gene is expressed according to thek-th pattern I shall write

Y 1:T
n ∼

[
Pois(λ1

k), . . . , P ois(λ
T
k )
]
.

Analytical Justifications of Contagion Occurrences of the same gene under single and multiple

conditions are not independent of one another, because theyare sampled from a cell population or
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a tissue that provides a specificbiological context. Contagion processes provide a useful analytical

mechanism to capture this notion. The two proposed generative models for analyzing temporal

gene expression profiles{Y 1:T
n }N

n=1, that instantiate the contagion process, are based on the Poisson

and the negative-binomial distributions of integer counts, at multiple levels. For a review of various

parameterizations of the negative-binomial and the corresponding estimators refer toAiroldi et al.

(2005c), Johnson et al.(1992) andKadane et al.(2006).

These choices were motivated by few main considerations. The Poisson distribution offers a

computational advantage over the binomial distribution. It can be safely assumed that the gene-

specific probabilities of occurrencep1:N are very small, given that there is a large amount of tran-

scripts present in a specific biological sample. Consequently, it is reasonable as well as computa-

tionally efficient to approximate the binomial probabilities with Poisson probabilities. The sam-

pling algorithms underlying both the Poisson and negative-binomial distributions lead to marginal

and conditional1 distributions for the gene expression levels with desirable properties. Assum-

ing Poisson or negative-binomial conditional emission probabilities relaxes the assumption that,

in the (sequential) sampling process described in Section4.1.1, subsequent observed instances

of the same gene tag are independent. In fact, such independence leads to binomial conditional

emission probabilities (Pritchard et al., 2000). The dependence among different observations of

the same gene tag at the conditional level is one aspect of thenotion of contagion. Another as-

pect of contagion is found at the marginal level. Recall thatideally patterns can be interpreted

asbiological or functional contexts. Following the intuition that each gene may be expressed un-

der multiple biological contexts to a different degree, theprobability of observed gene expression

levels,Y t
n, is modeled as a mixture of conditional emission probabilities, where the gene-specific

mixture weights given by the mixed membership vectors,θn, are constant over time (or across

experimental conditions). The mixing leads to marginal distributions that are more skewed than

the corresponding conditional distributions and this is the contagion effectone is most likely to

1Conditionally on theactivemembership.
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encounter in the literature (e.g., seeSimon, 1955). For example, in the case where the conditional

probabilities are Poisson, their mixing would increase thevariability of the expression levels. A

formal model of contagion that encodes this intuition is thenegative-binomial model, which arises

as an infinite Gamma mixture of Poisson distributions. Thesearguments support our distribu-

tional choices. Furthermore, the marginal distributions that encode contagion fit well the observed

expression levels.

To summarize, contagion processes are the result of latent regularities present in structured data,

such as the SAGE profiles under study. The fact that genes may be expressed in multiple biologi-

cal contexts implies a hierarchical mixture of emission probabilities, which ultimately leads to the

over-dispersion of gene expression levels. Although this second characteristic of contagion pro-

cesses is more common in the literature, there is an subtle point to notice in latent aspect models

that feature independence of subsequent observed instances of the same gene tag (Pritchard et al.,

2000; Minka and Lafferty, 2002; Blei et al., 2003). Specifically, if themes are modeled as multi-

nomial distributions, then Dirichlet distributed mixing weights will not alter the mean-to-variance

ratio of the marginal distribution, which is still multinomial. Rather, the main effect of mixing is

an increased variability.

Empirical Evidence The data set that motivates this modeling effort is the set ofmouse retinal

SAGE libraries analyzed inCai et al.(2004). The raw mouse retinal data consists of 10 SAGE

libraries (38,818 unique genes that appeared more than twice in the sample) from developing retina

taken at 2-day intervals, ranging from embryonic day to postnatal day, and adult, for total of 10

epochs (Blackshaw et al., 2004). Of the 38,818 genes, 1,467 that appeared more than 20 timesin

at least one of the 10 libraries were selected. These 1,467 genes were purported as the potentially

most biologically relevant because of their high frequencyof occurrence. The data analyzed in this

paper consists of the pool of observed expression profiles(Y 1
n , Y

2
n , . . . , Y

10
n ) for the 1,467 selected

genes, measured at ten epochs during the development period. Before fitting the models, I tested
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Table 4.1: Methods-of-Moments estimates of negative-binomial parameters for gene expression
levels in mouse retinal cells of at 10 different stages of developmentCai et al.(2004). A discussion
of the estimators is given inAiroldi et al. (2005c).

Epoch mean var.
√

var.
mean σ ξ

1 30.1172 150.8648 2.2381 11.1733± 0.3655 4.3000± 0.2155
2 26.5542 163.8892 2.4843 9.8514± 0.4075 6.1021± 0.3304
3 28.1718 155.4820 2.3493 10.4516± 0.2936 2.9376± 0.1448
4 31.5446 204.2503 2.5446 11.7029± 0.3267 3.2591± 0.1588
5 26.0307 94.4013 1.9043 9.6572± 0.4154 6.4720± 0.3562
6 26.6489 82.0171 1.7543 9.8866± 0.2118 1.5748± 0.0795
7 27.3122 82.0405 1.7331 10.1327± 0.2491 2.1565± 0.1066
8 25.1990 53.6102 1.4586 9.3487± 0.2637 2.6407± 0.1319
9 27.1513 89.7169 1.8178 10.0730± 0.4472 7.2014± 0.4008
10 20.8160 81.2509 1.9757 7.7226± 0.5975 16.8959± 1.3156

the distributional assumptions discussed in Section4.1.1on the SAGE data at hand.

Table4.1 reports summary statistics and estimates for the negative-binomial parameters de-

scribed inAiroldi et al.(2005c). The exploratory data analysis confirms the expected over-dispersion

of the gene counts, entailed by themixture of Poisson distributionsassumption. Moreover, the esti-

mates of the extra-Poissonness parameterδ are all positive2 with very high probability, as indicated

by a quick inspection of the corresponding standard deviations. Lastly, I note that the log transfor-

mationζ = log(1 + δ) is effective in reducing the heavy tail of the distribution of δ. Thus, it is

preferable to work on theζ scale, where a simple prior is sensible.

In conclusion, the SAGE data analyzed here are over-dispersed, i.e., variance> mean. Thus

models that treat the random variables{X1:B
n } as Bernoulli processes (e.g.,Pritchard et al., 2000;

Rosenberg et al., 2002) are not appropriate for the SAGE data at hand. Such an assumption

leads to clustering models based on Multinomial latent patterns and binomial emission probabil-

ities for feature counts (Blei et al., 2003; Griffiths and Steyvers, 2004; Buntine and Jakulin, 2004;

Blei and Lafferty, 2006), which are not warranted in this context.

2Recall that asδ → 0 the negative-binomial density degenerates into a Poisson density.
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z→α→ θ→ y T λ→N TB a s i c m o d e lz→α→ θ→ y Æ→N Tωℓ N o r m a l i z e d m o d e l

z→α→ θ→ y T Æ→ ρ→σNωℓ TC o n d i t i o n a l m o d e lz→α→ θ→ y Æ→ ρ→ β→Nωℓ TS m o o t h e d m o d e lδ→
δ→
δ→ σ

η→ξ
η→ξ ϒ→T T

Figure 4.1: Graphical representation of the generative processes of contagion based on the Pois-
son (top left) and negative-binomial sampling schemes. Therepresentation for the processes of
contagion based on the Poisson sampling scheme for the non-basic models are easily obtained,
by removing the part of the graphical models depending onδ. In fact, recall thatδ is the extra-
Poissonness parameter, and asδ → 0 the negative-binomial density converges to the corresponding
Poisson limit. SeeJohnson et al.(1992) for more details.

4.1.2 Model Specifications

In this section, I fully specify the two hierarchical Bayesian generative processes for allocating

SAGE profiles to temporal expression patterns in an unsupervised fashion. These models cap-

ture biological contextthrough the notion of contagion. Recall that the observations consist of

sequences of counts(Y 1
n , Y

2
n , . . . , Y

T
n ) that measure the abundances of then-th gene in the target

cell or tissue across epochs 1 thoughT . The models introduced below need the following two

assumptions: (i) a fixed number,K, of latent expression profiles exists; (ii) genes are expressed

under different profiles to different degrees (mixed membership).

Poisson Generative ProcessThe first generative process is based on the Dirichlet and Poisson

distributions. There are four flavors of the Dirichlet-Poisson generative process: basic (bDiP),

normalized (nDiP), conditional (cDiP), and smoothed (sDiP).
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Thebasicmodel explicitly posits themixed-membershipof genes to latent patterns by associat-

ing each gene with a Dirichlet vector of probabilities,θn. The observed expression profileY 1:T
n of

then-th gene, assumingK latent expression profiles, is generated as follows.

1. Sampleθn ∼ DirichletK (α)

2. For each epocht = 1, . . . , T

2.1. Samplezt
n ∼Multinomial (θn, 1)

2.2. Sampleyt
n ∼ Poisson (λtk|zt

nk = 1).

The genes are the sampling units in SAGE experiments, and thetotal volume of their expres-

sions often vary over time. Recoveringcalibratedexpression profiles that do not depend on the

total expression volume is desirable. To this extent, I posit thenormalizedmodel, which rescales

the samples (i.e., the genes) according to their different sizes (the total expression volumes), and

ultimately improves the estimates. In the basic model, the matrix λ ≡ {λtk} contains the rates

that govern the expression level of genes atT different epochs for each of theK different latent

profiles. In the normalized model, the expected expression level of then-th gene at timet for

profilek is written as follows,

λtk = ωn · µtk, (4.2)

whereωn is scalar and observed, and denotes the total expression level of then-th gene as a

multiple of a fixed total expression levelβ used as a reference expression level. This new parameter

β may a fixed pre-determined value, estimated via, e.g., empirical Bayes (Carlin and Louis, 2005),

or given a distribution as part of a full Bayesian analysis (Airoldi et al., 2006a).

Note 1. In both the basic and the normalized models above, the rows ofthe parameter matricesλ

andµ control the rates at which genes are expressed. In particular, λtk andµtk encode the expected

expression level of genes at timet for profilek. Since profiles are by definition not observable, none

of these parameters can be estimated directly from the data.
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Rows of the normalized rate matrix~µ are reparameterized with the sum/ratio parameterization,

i.e., for every epocht the following transformation is applied

(µt1, µt2, . . . , µtK) −→ (σt, ρt1, ρt2, . . . , ρtK), (4.3)

where the sum parameterσt :=
∑K

k=1 µtk, the ratio parametersρtk := µtk

σt
, and the constraint that

∑K
k=1 ρtk = 1 makes the ratio parameterρtK redundant for eacht. This reparameterization leads

to theconditionalmodel, where the sum parameters(σ1, σ2, . . . , σT ) are directly estimable from

the data, and inference can be can carried out conditionallyon them. This is possible since the

parametersσ1:T encode the total normalized expression levels at timet (sum of the expression

levels over theK latent patterns), which is an observable quantity as it doesnot depend on the

latent profiles. Conditioning on the MLEs for the total expression parameters,σt, leads to a new

allocation problem where the differential expression levels of genes under theK profiles needs be

inferred. In other words, the total expression level at eachtime t needs be allocated among the

latent patterns, given a constraint on their sum and a directestimate ofσt.

Lastly, I introduce thesmoothedmodel, which posits a prior for the differential expression

rate parameters to smooth their estimates. In the smoothed model I assume that the differential

expression levels are sampled

ρt · ∼ DirichletK (β)

for each epocht = 1, 2, . . . , T . See Figure4.1. In principle, it is possible to posit a prior distri-

bution on the total expression rate parameters as well. A brief analysis of the observed total rates

suggests that it is appropriate to apply a logarithmic transformation on them to stabilize the vari-

ability, and one can introduce a Gaussian prior on the transformed rates; however, an inspection

of the total ratesσt over time (see Table4.1) suggests that some other phenomenon is possibly

going on, which leads to a decreasing occurrence of the genesin the SAGE libraries. Therefore
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the observed total rates are used to inform our inferences directly, as in the conditional model.

Smoothing the overall rates{σtk} would impose a model on data that cannot be justified, since it

is not clear why the overall rates are declining. This would cast some doubts on the interpretability

of the inferences such a model would lead to.

Summarizing, the Dirichlet-Poisson generative process possesses a few advantages: (i) the sam-

pling scheme encodes contagion in the sense that multiple occurrences of the same gene tag at the

same epoch depend on one another, given their active memberships to a specific latent expres-

sion pattern; (ii) the sampling scheme arises naturally in SAGE biological experiments discussed

in Section4.1.1; (iii) computing Poisson probabilities is more efficient than computing binomial

probabilities, since binomial coefficients need not be evaluated.

Negative-Binomial Generative Process The generative process of contagion based on the neg-

ative-binomial sampling scheme is similar in spirit to the previous one based on the Poisson sam-

pling scheme. A formal treatment of the models is given inAiroldi et al. (2005c). Intuitively, the

negative-binomial distribution has two parameters that control mean and variance; furthermore,

its variance is always greater than its mean—a useful property that replicates the observed over-

dispersion of gene expression levels. The negative-binomial density can be written as a Poisson

density with an extra parameterδ that controls the amount of extra-Poisson variability. Thus,

NB
(
yt

n

∣∣ ωnµt, ωnδt) =
Γ(yt

n + κt)

yt
n!Γ(κt)

(ωnδt)
yt

n

(1 + ωnδt)(yt
n+κt)

,

whereκt := µt

δt
for convenience of notation. In the normalized model,{µtk} are the profile-specific

Poisson rates and{δtk} are profile-specific extra-Poissonness parameters. The conditional model

then follows from the application of the sum/ratio parameterization (see Equation4.3) to both sets

113



4.1. HEAVY-TAILED ATTRIBUTES E.M. AIROLDI

of parameters

(µt1, µt2, . . . , µtK) −→ (σt, ρt1, ρt2, . . . , ρtK)

(δt1, δt2, . . . , δtK) −→ (ξt, ηt1, ηt2, . . . , ηtK).

Lastly, the smoothed model imposes probabilistic constraints on both the differential expression

levels and the differential extra-Poissonness parametersby assuming that they are independent

samples from two Dirichlet distributions with distinct sets of underlying constants,

ρt · ∼ DirichletK (β) and ηt · ∼ DirichletK (γ),

for each epocht = 1, 2, . . . , T . See Figure4.1.

4.1.3 Estimation and Inference

In order to obtain the posterior for the latent variables,

p
(
{θn, z

1:T
n }N

n=1

∣∣ {y1:T
n }N

n=1, α, {λ1:T
k }K

k=1

)
=

=
p
(
{θn, z

1:T
n }N

n=1, {y1:T
n }N

n=1

∣∣ α, {λ1:T
k }K

k=1

)

p
(
{y1:T

n }N
n=1

∣∣ α, {λ1:T
k }K

k=1

) , (4.4)

one needs to evaluate the likelihood in Expression4.4, which is given by an integral with no closed

form solution—the denominator. Thus I develop a mean-field approximation to the posterior,

which involves the substitution of an integrable lower bound for the likelihood. The mean-field

approximation involves positing a simple distribution,q, over the latent variables, which depends

upon an extra set of (variational) free parameters,{νn, φ
1:T
n }N

n=1 in this case. The free parame-

ters are then set to minimize the Kullback-Leibler divergence between the true and approximate

posteriors. This is equivalent to maximizing a lower bound for the likelihood within each E-step,
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over the free parameters, and then compute pseudo-expectations for the latent variables using the

maximized lower bound. The overall inference algorithm is avariational EM scheme. At each

iteration, the EM algorithm employs the mean-field approximation to carry out the E-step (just

discussed above) and then employs a regular M-step, where the maximum likelihood estimates

of the model parameters, e.g., (α, {λ1:T
k }K

k=1) for the basic model, are updated by maximizing the

lower bound for the likelihood, over such parameters. Thesetwo steps are iterated till convergence

of the lower-bound for the likelihood.

The variational EM scheme just described practically translates into a coordinate ascent algo-

rithm, where parameters are naturally organized into batches with similar semantics. The parame-

ter updates corresponding to the model variants consideredabove are summarized in Table4.2.

A General Bayesian Formalism for Latent Aspects Analysis The variational inference scheme

developed for the two models of counts is actually quite general. In fact, the free parameter updates

(that are used to maximize the lower bound for the likelihoodwithin each E-step) take a generic

form applicable to all different conditional emission probability functions considered above, e.g.,

Table4.2. Furthermore, for generic conditional emission probabilities p(yt
n|βt

k) for all (n, t, k),

with parameter set{β1:T
k }K

k=1, the following general free parameter updates can be used

φ∗ntk ∝ Υ · p
(
yt

n

∣∣ βt
k

)
,

whereΥ := eEq [log θnk] as in Table4.2. The updates forν∗nk = αk +
∑

t φntk remain unchanged.

The generality of the approximate E-step in latent aspects analysis that feature one latent group

indicator,zt
n, for each gene-epoch pair(n, t) is due the specific hierarchical formulation of our

models. Such a formulation posits exchangeable measurements on features, e.g., gene expression

levels at each epoch. Different conditional emission probabilities only lead to different estimators

for the corresponding parameters,{β1:T
k }K

k=1, in the M-step.
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Table 4.2: The table quotes the parsimonious mean-field approximation for the various mod-
els. The parsimonious mean-field approximation posits one latent expression profile indicator
z for each (gene,epoch) pair. Note thatΥ := eEq [log θnk], andPo, NB, are short forPoisson,
andNegative-Binomial, respectvely.∗∗ Alternatively use the Method of Moments described in
Airoldi et al. (2005c) pretending to observe pseudo counts{φt

nk · yt
n} as the expression levels of

then-th gene according to thek-th latent theme.

Poisson Negative-Binomial

Basic ν∗nk = αk +
∑

t φntk

φ∗ntk ∝ Υ · Po
(
yt

n

∣∣ λtk

)

λ∗tk =
P

n φntkyt
n

P

n φntk

α∗k with Newton-Raphson

Norm. ν∗nk = αk +
∑

t φntk ν∗nk = αk +
∑

t φntk

φ∗ntk ∝ Υ · Po
(
yt

n

∣∣ ωnµtk

)
φ∗ntk ∝ Υ ·NB

(
yt

n

∣∣ ωnµtk

)

µ∗tk =
P

n φntkyt
n

P

n φntkωn
µ∗tk =

P

n φntkyt
n

P

n φntkωn

δ∗tk = L-BFGS ∗∗

α∗k with Newton-Raphson α∗k with Newton-Raphson

Cond. ν∗nk = αk +
∑

t φntk ν∗nk = αk +
∑

t φntk

φ∗ntk ∝ Υ · Po
(
yt

n

∣∣ ωnσtρtk

)
φ∗ntk ∝ Υ ·NB

(
yt

n

∣∣ ωnσtρtk

)

ρ∗tk =
P

n φntkyt
n

P

n φntkωnσt
ρ∗tk =

P

n φntkyt
n

P

n φntkωnσt

η∗tk = L-BFGS ∗∗

α∗k with Newton-Raphson α∗k with Newton-Raphson

Related Work There is a simple connection between the algorithms developed here and the

PoissonC and PoissonL algorithms introduced byCai et al.(2004). In the problem at hand the

goal is to allocate the observed temporal expression profiles {Y 1:T
n }N

n=1 into, say,K patterns or

clusters. Recall that theK-means unsupervised clustering algorithm searches forK meansm1:K

that minimize

MSE =
1

N

K∑

k=1

N∑

n=1

I
(
y1:T

n ∈ k
) ∥∥y1:T

n −mk

∥∥2
.

That is, the meansm1:K are the centers ofK clusters in the sense of Euclidean norm. The Pois-

sonC and PoissonL algorithms introduced byCai et al.(2004) substitute the Euclidean norm in the
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equation with the chi-squared score,

χ2(n, k) =

T∑

t=1

(
yt

n − µ̂tk ω̂n

)2

µ̂tk ω̂n
,

and the negative log-likelihood,

ℓ(n, k) = −
T∑

t=1

log

(
e−(µ̂tk ω̂n) (µ̂tk ω̂n)

yt
n

yt
n!

)

,

respectively. The normalized model based on the Poisson distribution is an extension of the Pois-

sonL algorithm, where Dirichlet distributed mixed-membership vectors are introduced,θn, not

known in advance. In the PoissonL algorithm the mixed-membership vectorsθn are known, i.e.,

for then-th gene it follows that

θnk =






1 if k = jn

0 otherwise,

wherejn = arg min
{
L(n, k) : k ∈ [1, K]

}
. This extension is similar in spirit to that introduced

by Gaussian mixture to regularK-means (Blei and Fienberg, 2007). In fact,

θnk = Pr
(
cluster = k

∣∣ data, parameters
)
.

Note that introducing latent Dirichlet distributed mixed-membership vectors,θn, ties together all

the data in the inference task. This has the beneficial effectof reducing the variability of pattern-

specific parameters since all the gene counts are used (independently of which pattern they express

the most) in estimating each such parameters. Such an improvement in the estimates is expected

James and Stein(1961). Our basic Poisson model is similar to that ofCanny(2004). For a technical

survey of related latent aspects models in the context of text data analysis seeBuntine and Jakulin
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(2006).

Example 4.1 (Continued) Contagion induces a non-trivial difference in the generative pro-

cess with respect to theindependence model(Pritchard et al., 2000; Minka and Lafferty, 2002;

Blei et al., 2003) that has far reaching implications for the analysis of data. For example, models

of contagion provide a better fit for data in biological applications such as SAGE by providing a

realistic mean-to-variance marginal ratio. A better fit helps recovering more precise mixed mem-

berships of genes to patterns, as well as finding cleaner temporal expression patterns when com-

pared to those found by independence models. This general issue is explored further in Section

6.2.1.
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Figure 4.2: Gene expression themes learned from mouse retinal SAGE using conditional DiP.
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Recall that the mouse retinal SAGE libraries analyzed inCai et al.(2004) contain 38,818 unique

genes for total of 10 epochs. At first, I perform model selection by means of a five-fold cross val-

idation scheme, to estimate the plausible number of latent themes that best explain the data. The

held-out likelihood peaked at 15 themes for cDiP, and 10 for the independence model. Figure4.2

shows the 15 gene expression patterns inferred using the conditional Poisson model (cDIP). The

variance of each pattern is not shown—the variances are so small that the variance-bars are masked

by the dot symbol in our plots. Notably, the magnitude of the held-out likelihood for cDiP is about

ten times larger (on the log scale) than that for the independence model, suggesting a better over-

all fit of cDiP to the data. Furthermore, the corresponding mixed-membership estimates{θn} are

more sharply peaked; this result holds in general for over-dispersed data sets. See Figure6.2 for

an example. The result is indirectly supported by the estimates of Dirichlet hyper-parameter as

well, α̂Indep = 1.355 versusα̂DiP = 0.066. The patterns (or clusters) shown in Figure4.2 indeed

lead to reasonable predictions of mouse retinal gene functions. For example, a preliminary biolog-

ical validation of the patterns inferred using cDiP based onthe GO annotation shows correlation

between the latent patterns and gene functions such as photoreceptors and rhodospin, i.e., genes

with similar functional annotations tend to fall into the same pattern. An in-depth analysis of the

biological significance of the inferred patterns is given elsewhere (Airoldi et al., 2006f).

Modeling Choices and Inference In problems where attributes co-occur frequently (e.g., a pair

of genes can be present on many transcripts), the computational gains sought after by positing

models that rely on unrealistic assumptions are seldom achieved. Applications to problems that

arise in computational biology, e.g., SAGE and microarray data, are one such case. Probabilistic

models that replicate salient features of the data typically lead to better inferences on latent quan-

tities of interest, e.g., the latent temporal patterns of Example20. In the models introduced in this

section, the salient features of interest are themarginal variability and the notion ofcontagion.

The inference suggests that the inferred latent patterns can be interpreted as temporal expression
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patterns that are typical of fairly distinctfunctional biological contexts—the desired outcome. This

contrasts the poorly interpretable results obtained with the independence model, and makes a good

case for modeling choices that “let the data tell their story.” Following these thoughts, model

variants tailored to different properties of biological data have been introduced, and the general

inference scheme for posterior inference has been derived.

Concluding, the estimates the proposed models provide are sharper than those entailed by ex-

istent methods based on stronger independence assumptions, in the context of the SAGE analysis.

This demonstrates the feasibility of a promising hierarchical Bayesian formalism for soft clustering

and latent aspect analysis.

4.2 Multivariate Model Specifications

Here I present a multivariate generalization of the hierarchical models of mixed membership for

attributes and relations.

4.2.1 Attributes: Hierarchical Bayesian Models of Mixed Membership

There are a number of earlier instances of mixed-membershipmodels that have appeared in the

scientific literature (e.g., seeErosheva and Fienberg, 2005). A general formulation characterizes

the models of mixed-membership in terms of assumptions at four levels (Erosheva et al., 2004).

Assumption 1 (Population Level). There areK classes or sub-populations in the population of

interest andJ distinct characteristics. Denote byf(xnj|βjk) the probability distribution ofj-th

response variable in thek-th sub-population for then-th subject, whereβjk is a vector of relevant

parameters,n ∈ [1, N ], j ∈ [1, J ], andk ∈ [1, K]. Within a subpopulation, the observed responses

are assumed to be independent across subjects and characteristics.
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Figure 4.3: Left: A graphical representation of hierarchical Bayesian models of mixed-
membership. Right: Models of text and references used in this paper. Specifically, replicates
of variables{xr

1, x
r
2} are paired with latent variables{zr

1, z
r
2} that indicate which latent aspects

informs the parameters underlying each individual replicate. The parametric and non-parametric
version of the error models for the label discussed in the text refer to the specification ofDα—a
Dirichlet distribution versus a Dirichlet process, respectively.

Assumption 2(Subject Level). The components of the mixed-membership vectorθn = (θn[1], . . . , θn[K])
′

represent the membership of then-th subject to the various sub-populations.3 The distribution of

the observed responsexnj given the individual membership scoresθn, is then

Pr (xnj|θn) =
K∑

k=1

θn[k]f(xnj |βjk). (4.5)

Conditional on the mixed-membership scores, the response variablesxnj are independent of one

another, and independent across subjects.

Assumption 3(Latent Variable Level). The mixed-membership vectors,θ1:N , are independent re-

alizations of a latent random quantity with distributionDα, parameterized by vector of underlying

constantsα. The probability of observingxnj, given the parameters, is then

Pr (xnj |α, β) =

∫ ( K∑

k=1

θn[k]f(xnj|βjk)

)
Dα(dθ). (4.6)

3I denote components of a vectorvn with vn[i], and the entries of a matrixmn with mn[ij].
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Assumption 4 (Sampling Scheme Level). TheR independent replications of theJ distinct re-

sponse variables corresponding to then-th subject are independent of one another. The probability

of observing{xr
n1, . . . , x

r
nJ}R

r=1, given the parameters, is then

Pr ({xr
n1, . . . , x

r
nJ}R

r=1|α, β) =

∫ ( J∏

j=1

R∏

r=1

K∑

k=1

θn[k]f(xr
nj|βjk)

)
Dα(dθ). (4.7)

The number of observed response variables is not necessarily the same across subjects, i.e.,J =

Jn. Likewise, the number of replications is not necessarily the same across subjects and response

variables, i.e.,R = Rnj .

Example 22 (Latent Dirichlet Allocation). The general formulation encompasses popular data

mining models such as the latent Dirichlet allocation model(LDA) for use in the analysis of sci-

entific publications (Minka and Lafferty, 2002; Blei et al., 2003). Consider a collection of docu-

ments; sub-populations correspond to latent topics, indexed byk; subjects correspond to “docu-

ments,” indexed byn; J = 1, i.e., there is only one response variable that encodes which “word”

in the vocabulary is chosen to fill a position in a text of knownlength, so thatj is omitted; positions

in the text correspond to replicates, and we have a differentnumber of them for each document,

i.e. we observeRn positions filled with words in then-th document. The model assumes that

each position in a document is filled with a word that expresses a specific topic, so that distinct

instances of the same word may be expression of different topics. In order to do so, an explicit

indicator variableszr
n is introduced for each observed position in each document, which indicates

the topic that expresses the word in such position. The function f(xr
n|βk) is given by the probability

Pr (xr
n = 1|zr

n = k), which is specified asMultinomial (βk, 1), whereβk is a random vector the

size of the vocabulary, sayV , and
∑V

v=1 βk[v] = 1. A mixed-membership vectorθn is associated to

then-th document, which encode the topic proportions that ultimately inform the choice of words

in that document, and it is distributed according to a Dirichlet distribution, which specifiesDα.

Equation4.8 is obtained by integrating out the topic indicator variablezr
n at the word level—the
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latent indicatorszr
n are distributed according to aMultinomial (θn, 1).

Example 23(Grade of Membership). The Grade of Membership model (GoM) is another specific

model that can be cast in terms of mixed-membership. This model was first introduced by Wood-

bury in the 1970s in the context of medical diagnosisWoodbury et al.(1978) and was developed

further and elaborated upon in a series of papers and inManton et al.(1994). Erosheva(2002)

reformulated the GoM model according to the specifications of Section4.2.1. Consider disabil-

ity survey data collected for the National Long Term Care Survey; there are no replications, i.e.,

Rn = 1, but several attributes of each american senior are recorded, i.e.,J = 16 daily activi-

ties. Furthermore, the scalar parameterβjk is the probability of being disabled on the activityj

for a member of latent patternk, that is,βjk = P (xj = 1|θk = 1). Dealing with binary data

(individuals are either disabled or healthy), the probability distributionf(xj|βjk) is specified by

a Bernoulli distribution with parameterβjk. Therefore, a membern of latent profilek is disabled

on the activityj, i.e.,xnj = 1, with probabilityβjk. In other words, introducing a profile indicator

variableznj , we haveP (xnj = 1|znj = k) = βjk. Each individualn is characterized by a vector

of membership scoresθn = (θn1, . . . , θnK). In this model the membership scoresθn follow the

distributionDα (for example a Dirichlet distribution with parameterα = (α1, . . . , αk, . . . , αK).

Note that the ratioαk/
∑

k αk represents the proportion of the population that “belongs”to the

k-th latent pattern.

Note 2 (Related Work). It is possible to situate this formulation in a familiar landscape by dis-

cussing similarities with other unsupervised data mining methods. Recall that the problem is to

group observations aboutN subjects{x1:Rn
n }N

n=1 into, say,K groups. K-means clustering, for

example, searches forK centroidsm1:K that minimize

MSE =
1

N

K∑

k=1

N∑

n=1

I
(
x1:Rn

n ∈ k
) ∥∥x1:Rn

n −mk

∥∥2
,

where the centroidsm1:K are centers of respective clusters in the sense of Euclideannorm. Subjects
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have single group membership inK-means. In the mixture of Gaussians model, a popular model

that extendsK-means, theMSE scoring criterion is substituted by the likelihood
∑

n,k ℓ(n, k).

The unknown mixed-membership vectorsθn relax the single membership implicit inK-means. The

connection is given by the fact that the mixed-membership vectorsθn, i.e., the class abundances,

have a specific form inK-means, i.e., for then-th subject it follows that

θn[k] =






1 if k = jn

0 otherwise,

wherejn = arg min
{
ℓ(n, k) : k ∈ [1, K]

}
. In general, the unknown mixed-membership vectors

θn are independent samples fromDα. Furthermore, in the general formulation of Section4.2.1it

is possible to have more complicated likelihood structures.

4.2.2 Relations: Stochastic Block Models of Mixed Membership

The class of stochastic block models of mixed-membership isa rich class of models that is instru-

mental for thinking about the scientific problems outlined in Section3.1and amenable to theoret-

ical analysis. A general formulation characterizes stochastic block models of mixed-membership

in terms of assumptions at four levels, as follows (Airoldi et al., 2006d).

Assumption 5 (Population Level). There areK classes or sub-populations in the population of

interest. Denote byf(yjnm|ηgh) the probability distribution of thej-th response graph at the pair

of nodes(n,m), where then-th node is in theh-th sub-population, them-th node is in thek-th

sub-population, andηgh contains the relevant parameters. The indicesn,m run in N , and the

indicesg, h run in [1, K]. Within sub-population pairs, the observed paired responses are assumed

independent.

Assumption 6 (Node Level). The components of the membership vectorθn = (θn1, . . . , θnK)′
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encodes the mixed-membership of then-th node to the various sub-populations. The distribution

of the observed responseyjnm given the relevant, node-specific membership scores,(θn, θm), is

then

Pr (yjnm|θn, θm, η) =

K∑

g,h=1

θngf(yjnm|ηgh)θmh. (4.8)

Conditional on the mixed-membership scores, the response edgesyjnm are independent of one

another, both across distinct graphs and pairs of nodes.

Assumption 7 (Latent Variable Level). The mixed-membership vectors,θ1:N , are independent

realizations of a latent random quantity with distributionDα, parameterized by a vector of under-

lying constantsα. The probability of observingjnm, given the parameters, is then

Pr (yjnm|α, η) =

∫ ( K∑

g,h=1

θngf(yjnm|ηgh)θmh

)
Dα(dθ). (4.9)

Assumption 8 (Sampling Scheme Level). TheR independent replications of theJ distinct re-

sponse graphs are independent of one another. The probability of observing the whole collection

of graphs,{yjrnm}, given the parameters, is then given by the following equation.

Pr
(
{yjrnm}

∣∣ α, η
)
=

∫ ( J∏

j=1

R∏

r=1

N∏

n,m=1

K∑

g,h=1

θngf(yjrnm|ηgh)θmh

)

Dα(dθ). (4.10)

The number of replications is not necessarily the same across different response graphs, i.e.,R =

Rj . Likewise, the block model can be response specific, i.e.,η = ηj. More variations along these

lines are possible.

A graphical representation of models in this family is givenin Figure4.4. Full model specifica-

tions immediately adapt to the different kinds of data, e.g., multiple data types through the choice

of f , or parametric or semi-parametric specifications of the prior on the number of clusters through

the choice ofDα.
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Figure 4.4: The graphical representation of stochastic block models of mixed membership using
plates. For clarity, few arrows out of the block modelsη1:J are shown, however, all interactions
yjrnm depend on the corresponding block model.
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Example 24(Admixture of Latent Blocks). Airoldi et al. (2006c, 2007b) introduced the Admixture

of Latent Blocks model to analyze a collection of protein-protein interactions. This model is defined

by the simplest set of model specifications for a stochastic block model of mixed membership, and

it was used to analyze the most basic kind of relational data.Given a single undirected unipartite

graph with binary edges, the Admixture of Latent Blocks model recovers membership of nodes to

clusters (i.e., the mixed membership vectorsθ1:N ) and cluster-to-cluster interaction probabilities

(i.e., the block modelη), under the assumption thatK non-observable clusters exist. Using this

model on protein-protein interaction data: sub-populations correspond to non-observable “stable

protein complexes”, indexed byk; nodes correspond to “proteins”, indexed byn; there is only one

response variable that encodes whether a pair of proteins interacts or not, so thatj is omitted;

z 1 → 1 y 1 1z 1 ← 1 z 1 → 2 y 1 2z 1 ← 2 z 1 → 3 y 1 3z 1 ← 3 z 1 → N y 1 Nz 1 ← N. . .
z 2 → 1 y 2 1z 2 ← 1 z 2 → 2 y 2 2z 2 ← 2 z 2 → 3 y 2 3z 2 ← 3 z 2 → N y 2 Nz 2 ← N. . .
z 3 → 1 y 3 1z 3 ← 1 z 3 → 2 y 3 2z 3 ← 2 z 3 → 3 y 3 3z 3 ← 3 z 3 → N y 3 Nz 3 ← N. . .
z N → 1 y N 1z N ← 1 z N → 2 y N 2z N ← 2 z 1 → 1 y N 3z N ← 3 z N → N y N Nz N ← N. . .

...... ... ......
α

...

θ 1
2θ
3θ
nθ

η

Figure 4.5: The graphical representation of the admixture of latent blocks introduced by
Airoldi et al. (2006c) using plates. Note that only few arrows out of the block model η have been
drawn, for clarity, however all the interactionsynm depend on it.
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there is only one replicate, since the interactions have been measured with an experimental pro-

cedure such as “Yeast Two Hybrid” under a single experimental condition. The model assumes

that each interaction in the collection is either present orabsent given the memberships to specific

protein complexes of the pair of single proteins involved. That is, each protein participates in the

various interactions as a member of possibly different protein complexes. In order to simplify the

inference, an explicit pair of indicator variables(z→nm, z
←
nm) is introduced for each interaction in

the observed collection, which indicates the protein complexes that the two proteins are members of

as they interact. The functionf(ynm|ηgh) = Pr (ynm = 1|z→nm = g, z←nm = h) = Bernoulli (ηgh),

whereηgh is the probability that a protein in complexg interacts with a protein in complexh. A

mixed-membership vectorsθ1:N encode the expected protein complex proportions. They are dis-

tributed according toDα, i.e., a Dirichlet distribution. Equation4.8is obtained by integrating out

the protein complex indicator variables(z→nm, z
←
nm) at the interactions level—the latent indicators

z→nm are distributed according to aMultinomial (1, θn), whereas the latent indicatorsz←nm are

distributed according to aMultinomial (1, θm). A graphical representation of this specific model

is given in Figure4.5.

4.3 Strategies for Integrating Complex Data

Integration of the measurements on relations and attributes involving objects of different types can

take many forms. For the purposes of this thesis, it will suffice to distinguish two types of integra-

tion, one relates to descriptive versus predictive analyses, and the other relates to the integration of

labels.
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4.3.1 Descriptive Analyses

In a descriptive analysis, non-observables always contribute equally to the data generation, and,

in turn, observables always inform equally the inference process about non-observables. This is

what happens, for example, to the multivariate relations and multivariate attributes in the previous

Section; at the sampling scheme level relations and attributes of different types are assumed to be

independent.

A layer of complication may be introduced. Consider a data set with N objects and, for sim-

plicity, assume a fixed number of latent patterns,K. Consider measurements onJ attributes for

each on each object.4 The mixed membership vectors in the model are object-specifc ~π1:N ; should

they be attribute specific as well? In the general formulation in Section4.2.1the answer is no, but

it need not be so. Introducing mixed membership vectors thatare specific to object-attribute pairs

allows for more flexibility in thedescriptionof the data. However, the description inferred from

the data may not be optimal when the goal of the analysis is to predict one attribute given the rest

(Barnard et al., 2003).

4.3.2 Predictive Analyses

In a predictive analysis, one set of non observables always contributes to the data generation con-

ditionally on the values assumed by a second set of observables, and, in turn, the two sets of

observables inform the inference process about non-observables unequally—namely, the informa-

tion the latter set contributes to the inference process is used to describeresidual variability, which

cannot be explained by information contributed by the former set of observables. This is what

happens to the labelsZ in Example11.

4The discussion applies to a set ofJ relations, unchanged.
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A Lengthy Example Consider observations consisting ofT sets of edges,Y1:T , among a com-

mon set of nodes,N . The data generating process is as follows.

1. For each noden = 1, . . . , N

1.1. Sample the mixed-membership vector~πn ∼ Dirichlet
(
~α
)

1.2. Sample the component indicator~zn ∼Multinomial K

(
~πn, 1

)

1.3. Sample the latent representation~xn ∼∏K
k=1Gaussian 2

(
~µk,Σk

)znk

2. For each pair of nodes(n,m) ∈ [1, N ] × [1, N ]

2.1. Sample the value of interactions from a generalized linear model

ynm ∼ Generalized Linear Model
(
link = g−1

)

where the link functiong maps the support of the average response functionµnm = E
[
ynm

]
onto

R, that is, the support of the linear modelηnm. The linear modelηnm = ηnm

(
β, ~xn, ~xm

)
involves

latent, node-specific covariates,~xn ∈ X , and a global drift,β, shared by all nodes. A graphical

representation of the DGP for the parametric case, using plates, is shown in Figure4.6.

The data generating process posits that representations ofnodes in a low dimensional latent

space,xt
1:N ∈ X , are sampled independently for each graph,Gt, from a finite mixture ofK

Gaussians with parameters(~µ1:K ,Σ1:K), which encode the group centroids in the latent spaceX for

al graphs5. At the top of the hierarchy, the mixed membership vectors,~πt
1:N , are independent and

identically distributed samples from a Dirichlet distribution over theK-dimensional simplex with

hyper-parameter vector~α. They provide the mixture weights. The edge weights are thengenerated

through a “generalized linear model” that makes use of the low dimensional, latent representations

5For example, if we take the low dimensional spaceX to beR
2, then each one of theK components of the mixture

of Gaussians is a two-dimensional Gaussian.
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of nodes,x1:N , as covariates, along with an extra parameterβ. In particular, each edge weight,

yt
nm, may be generated starting from the relevant pair of node representations,(xn, xm), through a

distance model.

Following the formalism inMcCullagh and Nelder(1989) we specify the generalized linear

model that generates the observed edge weightsynm (see step 2.1 of the data generating process)

in terms of three elements.

1. The error model,p(ynm), i.e., the model for the observed edge weights with meanµnm =

E[ynm].

α
...

π 1π 2π 3
π n

...
x 123

n
xx
x

...
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n 1
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...
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y
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y 1 n2 n3 n
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y
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Figure 4.6: The graphical representation of the parametricmodel using plates, for a set ofT
matrices. Note that we did not draw all the arrows out ofγ, for clarity, since all the interactions
ynm depend on it.
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2. The linear model,ηnm = ηnm(β, ~xn, ~xm) = ηnm

(
β, d(~xn, ~xm)

)
, for any explicit distance

modeld.

3. The link function6, g(µnm) = ηnm, which maps the support ofµnm to that ofηnm—typically

R.

In particular, the linear modelηnm includes an explicit distance model,d, in the latent space,X .

Using the models proposed inHoff et al. (2002),

ηnm = ηnm

(
β, ~xn, ~xm

)

= ηnm

(
β, d(~xn, ~xm)

)

=






β − |~xn − ~xm| distance model

β + ~x ⊤n ~xm

|~xm| projection model.
(4.11)

Intuitively, edges are more likely to be generated between paris of nodes whose corresponding

representations in the latent space are close.

Note 3. In a binary graph we can positp(ynm) = Bernoulli (µnm), whereµnm ∈ [0, 1] for

all node pairs(n,m) ∈ N . The linear model isηnm = β + d(~xn, ~xm). The link function is

g(µnm) = log
(

µnm

1−µnm

)
, and its inverse isµnm = 1

1+exp(−ηnm)
. In a graph with non-negative,

integer edge weights we can positp(ynm) = Poisson (µnm), whereµnm ∈ R+ for all node pairs

(n,m) ∈ N . The linear model isηnm =
(
β, d(~xn, ~xm

)
, as in Equation4.11. The link function is

g(µnm) = log(µnm), and its inverse isµnm = eηnm .

This model follows closely the models inHoff et al. (2002) andHandcock et al.(2007), with

the novelty that it depends on the set of mixed membership vectors~π1:N . In a sense, it is predictive

because a model for the joint probability of latent variables and data is missing,p(Y, ~π1:N , ~x1:N).

However, in order to make it predictive in the sense intendedhere a little more work is needed.

6Here I considercanonicallink functions (McCullagh and Nelder, 1989).
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First, we need to introduce a second source of information, for example, multivariate attributes on

the nodes,U1:N , where the quantityun(m) encodes the value of them-th attribute measured on

then-th node. Then we posit a data generating process for the attributes, e.g., along the lines of

the models in Section4.1. Finally, and here is where thepredictiveis used in the sense I intend,

we need to make a decision about how to link the two models; forinteractions and attributes. If the

goal of the analysis is that of predicting, or de-noising, interactions from attributes (Airoldi et al.,

2006c) then we want to condition the interactions on the attributes in the generating process. There

are several ways of doing this; a possibility is that of generating node-specific mixture component

indicator~zn, in the model for the interactionsY , from the node-specific mixture component indica-

tors{~zm
n : m = 1, . . . ,M} already samples for the attribute—seeBarnard et al.(2003) for another

example.

Going back to the multivariate models of attributes and relations of Section4.2, I need to specify

a generative link between the attributes and/or relations at the sampling scheme level; univariate

measurements are no longer independent. Figure4.7 show the relevant portion of the graphical

model structure that is common to models of both multivariate attributes and relations. By positing

structural dependencies in the model predictive analyses can be supported; that is, latent patterns

associated with a set of measurements will be inferred that are useful in predicting a different set

of measurements.

Modeling Text and References I conclude this chapter with an application of data integration

in a larger context: models of data integration are instrumental to resolve a substantive issue about

model choice.

Example 25(Proceedings of the National Academy of Sciences, PNAS). Erosheva et al.(2004)

andGriffiths and Steyvers(2004) report on their estimates about the number of latent topics, and

find evidence that supports a small number of topics (e.g., asfew as 8 but perhaps a few dozen)
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Figure 4.7: The structural dependencies among the (latent)variables in the dashed box distinguish
the type of analysis. The absence of dependencies (top panel) leads to models that support descrip-
tive analyses, whereas the presence of dependencies (bottom panel) leads to models that support
predictive analyses.

or as many as 300 latent topics, respectively. There are a number of differences between the two

analyses: the collections of papers were only partially overlapping (both in time coverage and

in subject matter), the authors structured their dictionary of words differently, one model could

be thought of as a special case of the other but the fitting and inference approaches had some

distinct and non-overlapping features. The most remarkable and surprising difference come in

the estimates for the numbers of latent topics: Erosheva et al. focus on values like 8 and 10 but

admit that a careful study would likely produce somewhat higher values, while Griffiths & Steyvers

present analyses they claim support on the order of 300 topics! Should we want or believe that

there are only a dozen or so topics capturing the breadth of papers in PNAS or is the number

of topics so large that almost every paper can have its own topic? A touchstone comes from the
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journal itself. PNAS, in its information for authors (updated as recently as June 2002), states that it

classifies publications in biological sciences according to 19 topics. When submitting manuscripts

to PNAS, authors select a major and a minor category from a predefined list list of 19 biological

science topics (and possibly those from the physical and/orsocial sciences).

Below, I summarize an alternative set of analyses (Airoldi et al., 2006e) using the version of

the PNAS data on biological science papers analyzed in (Erosheva et al., 2004). Said analyses

employ both parametric and non-parametric strategies for model choice, and make use of both

text and references of the papers in the collection, in orderto resolve this issue. This case study

gives us a basis to discuss and assess the merit of the variousstrategies. In the process I explore

how to perform the model selection for Bayesian models of mixed-membership. After choosing an

optimalvalue for the number of topics,K∗, and its associated words and references usage patterns,

I also examine the extent to which they correlate with theactual topic categories specified by the

authors.

% & % ' % % ' & % ( % % ( & % ) % %*+,-. *+,.. *+/0. *+/1. *+/,.
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Figure 4.8: Left Panel: Log-likelihood (5 fold cv) forK = 5, . . . , 50, 75, 100, 200, 300 topics. We
plot: text only,α fitted (solid line); text only,α fixed (dashed line). Right Panel: Log-likelihood
(5 fold cv) for K = 5, . . . , 50, 100 topics. We plot: text and references,α fitted (solid line); text
and references,α fixed (dotted line).

Six Bayesian mixed membership models were fitted to infer thetopics underlying the PNAS
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Figure 4.9: Posterior distribution ofK for the PNAS scientific collection corresponding to the
infinite mixture models of text (left panel) and of text and references (right panel).

dataset: words alone or both words and references were modeled with parametric and semi-

parametric mixed model specifications, and for fully parametric specifications the Dirichlet hyper-

parameterα was either fitted using an empirical Bayes strategy or fixed with an ad-hoc strategy

inspired by the one used in the analysis of PNAS data byGriffiths and Steyvers(2004). Full de-

tails about model specifications and posterior inference algorithms, using both variational methods

and MCMC, are given inAiroldi et al. (2006e). See the right panel of Figure4.3 for a graphical

representation of the models of text and references.

The plots of the log likelihood in Figure4.8 suggest a number of topics between20 and40

whether words or words and references are used. The semi-parametric model generates a posterior

distribution for the number of topics,K, given the data. Figure4.9shows the posterior distribution

ranges from 23 to 33 profiles. We can expect that the semi-parametric model will require more

topics than the parametric model, since it leads to a hard clustering of documents—into topics. By

choosingK = 20 topics, a meaningfully interpretation all of the word and reference usage patterns

can be found. A parametric model with20 topics was fitted to the data, both words and references,
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Figure 4.10: The average membership in the 20 latent topics (columns) for articles in thirteen
of the PNAS editorial categories (rows). Darker shading indicates higher membership of articles
submitted to a specific PNAS editorial category in the given latent topic and white space indicates
average membership of less than 10%. Note that the rows sum to100% and therefore darker topics
show concentration of membership and imply sparser membership in the remaining topics. These
20 latent topics were created using the four finite mixture models with words only (1st, 2nd) or
words and references (3rd, 4th) andα estimated (1st, 3rd) or fixed (2nd, 4th).
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Table 4.3: Word usage patterns corresponding to the model oftext & references, withK = 20
topics.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
gene kinase cells cortex species
genes activation virus brain evolution

sequence receptor gene visual population
chromosome protein expression neurons populations

analysis signaling human memory genetic
genome alpha viral activity selection

sequences phosphorylation infection cortical data
expression beta cell learning different

human activated infected functional evolutionary
dna tyrosine vector retinal number

number activity protein response variation
identified signal vectors results phylogenetic
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

enzyeme plants protein protein cells
reaction plant rna model cell

ph acid proteins folding tumor
activity gene yeast state apoptosis

site expression mrna energy cancer
transfer arabidopsis activity time p53

mu activity trna structure growth
state levels translation single human
rate cox vitro molecules tumors

active mutant splicing fluorescence death
oxygen light complex force induced
electron biosynthesis gene cdata expression
Topic 11 Topic 12 Topic 13 Topic 14 Topic 15

transcription dna cells protein ca2+
gene rna cell membrane channel

expression repair expression proteins channels
promoter strand development atp receptor
binding base expressed complex alpha

beta polymerase gene binding cells
transcriptional recombination differentiation cell neurons

factor replication growth actin receptors
protein single embryonic beta synaptic

dna site genes transport calcium
genes stranded drosophila cells release

activation cdata embryos nuclear cell
Topic 16 Topic 17 Topic 18 Topic 19 Topic 20
peptide cells domain mice beta
binding cell protein type levels
peptides il binding wild increased
protein hiv terminal mutant insulin
amino antigen structure gene receptor
site immune proteins deficient expression
acid specific domains alpha induced

proteins gamma residues normal mice
affinity cd4 amino mutation rats
specific class beta mutations treatment
activity mice sequence mouse brain
active response region transgenic effects

to focus on the interpretation of the20 topics. Table4.3, lists12 high-probability words from the

estimated 20 topics after filtering out the stop words. Table4.4 shows the5 references with the

highest probability for6 of the topics.

Using both tables, here is a possible interpretation of the 20 topics:

• Topics 1 and 12 focus on nuclear activity (genetic) and (repair/replication).

• Topic 2 concerns protein regulation and signal transduction.
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Table 4.4: References usage patterns for 6 of the 20 topics corresponding to the model of text &
references, withK = 20 topics.

Author Journal
Topic 2
THOMPSON,CB SCIENCE, 1995
XIA,ZG SCIENCE, 1995
DARNELL,JE SCIENCE, 1994
ZOU,H CELL, 1997
MUZIO,M CELL, 1996
Topic 5
SAMBROOK,J MOL. CLONING. LAB. MANU., 1989
ALTSCHUL,SF J. MOL. BIOL., 1990
EISEN,MB P. NATL. ACAD. SCI. USA, 1998
ALTSCHUL,SF NUCLEIC. ACIDS. RES, 1997
THOMPSON,JD NUCLEIC. ACIDS. RES, 1994
Topic 7
SAMBROOK,J MOL. CLONING. LAB. MANU,1989
THOMPSON,JD NUCLEIC. ACIDS. RES,1994
ALTSCHUL,SF J. MOL. BIOL,1990
SAITOU,N MOL. BIOL. EVOL,1987
ALTSCHUL,SF NUCLEIC. ACIDS. RES,1997
Topic 8
SAMBROOK,J MOL. CLONING. LAB. MANU,1989
KIM,NW SCIENCE, 1994
BODNAR,AG SCIENCE, 1998
BRADFORD,MM ANAL. BIOCHEM., 1976
FISCHER,U CELL, 1995
Topic 17
SHERRINGTON,R NATURE,1995
HO,DD NATURE,1995
SCHEUNER,D NAT. MED.,1996
THINAKARAN,G NEURON,1996
WEI,X NATURE,1995
Topic 20
CHOMCZYNSKI,P ANAL. BIOCHEM., 1987
BRADFORD,MM ANAL. BIOCHEM., 1976
KUIPER,GGJM P. NATL. ACAD. SCI. USA, 1996
MONCADA,S PHARMACOLREV, 1991
KUIPER,GG ENDOCRINOLOGY, 1998

• Two topics are associated with the study of HIV and immune responses: topic 3 is related to

virus treatment and topic 17 concerns HIV progression.

• Two topics relate to the study of the brain and neurons: topic4 (behavioral) and topic 15
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(electrical excitability of neuronal membranes).

• Topic 5 is about population genetics and phylogenetics.

• Topic 7 is related to plant biology.

• Two topics deal with human medicine: topic 10 with cancer andtopic 20 with diabetes and

heart disease.

• Topic 13 relates to developmental biology.

• Topic 14 concerns cell biology.

• Topic 19 focus on experiments on transgenic or inbred mutantmice.

• Several topics are related to protein studies, e.g., topic 9(protein structure and folding), topic

11 (protein regulation by transcription binding factors),and topic 18 (protein conservation

comparisons).

• Topics 6, 8, and 16 relate to biochemistry.

These labels for the topics are primarily convenience, but they do highlight some of the overlap

between the PNAS sections (Plant Biology and DevelopmentalBiology) and the latent topics (7

and 13). However, many plant biologists may do molecular biology in their current work. By

examining the topics ones can see that small sections such asAnthropology do not emerge as topics

and broad sections such as Medical Science and Biochemistryhave distinct subtopics within them.

This also suggests special treatment for general sections such as Applied Biology and cutting-edge

interdisciplinary papers when evaluating the classification effectiveness of a model.

To summarize the distribution of latent aspects over distributions, a graphical representations of

the distribution of latent topics for each of the PNAS topicsis provided in Figure4.10. The third

figure represents the model used for Tables4.3 and4.4. The two figures on the right represent
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models where theα parameter of the Dirichlet prior over topics is fixed. These two models are

less sparse than the corresponding models withα fit to the data. For twenty latent topics, the

hyper-parameterα was fixed at50/20 = 2.5 > 1 and this means each latent topic is expected to be

present in each document and a priori we expect equal membership in each topic. By contrast the

fitted values ofα are less than one lead to models that expect articles to have high membership in a

small number of topics. The PNAS topics tend to have a few latent topics highly represented when

α is fit and low to moderate representation in all topics whenα is fixed (as seen by white/light

colored rows). For additional discussion of further consequences of these assumptions see the

simulation at the end of Section6.2.2.

Further examining Figure4.10, note that topic 1, identified with genetic activity in the nucleus,

was highly represented in articles from Genetics, Evolution, and Microbiology. Also note that

nearly all of the PNAS classifications are represented by several word and reference usage patterns

in all of the models. This highlights the distinction between the PNAS topics and the discovered

latent topics. The assigned topics used in PNAS follow the structure of the historical develop-

ment of Biological Sciences and the divisions/departmental structures of many medical schools

and universities. The latent topics, however, show the greater ideas of interest within the field.

Topic 9, which concerns the structure and topology of proteins, is highly represented in theoret-

ical papers in Evolution, Genetics, Cell and DevelopmentalBiology as well as in applied papers

in Ecology, Pharmacology, and Applied Biological Sciences. These latent topics, however, are

structured around the current interest of Biological Sciences. Figure4.10also shows that there is

a lot of hope for collaboration and interest between separate fields which are researching the same

ideas.

The held-out log likelihood plot corresponding to five-foldcross validation in Figure4.8 sug-

gests a number between 20 and 40 topics for the parametric model. Further analyses with para-

metric mixed membership models of words and references supports support values towards the
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lower end of this range, i.e.,K = 20, more than other choices. This is also true in the posterior

distribution ofK for the semi-parametric mixed membership model. To conclude, the hyper-

parameterα was fixed to50/K, following the choice inGriffiths and Steyvers(2004), as well as

estimated using empirical Bayes. Both sets of analyses produced a similar conclusion. While

Griffiths and Steyvers(2004) found posterior evidence for nearly 300 topics, a number onthe or-

der of 20 or 30 provides a far better fit to the data, assessed robustly by multiple criteria and model

specifications that integrate different types of data. Moreover, a lower number of latent topics

appears to be simpler and more interpretable in a meaningfulway; this is not possible with 300

topics.

* * *

The generative models for attributes presented here differmuch from published alternatives (e.g.,

Pritchard et al., 2000; Blei et al., 2003) in terms of the way the data inform the allocation of objects

to patterns. For example, they are models of counts that leadto variability in the totals, and such

variability has influence on the allocation—see Section6.2.1for a discussion. I derived a multi-

variate characterization of both models of attributes, in Section4.1, and relations, in Section3.1.

Fast posterior inference is available for the general formulations as well (Airoldi et al., 2006d,e). I

described alternative strategies for integrating multiple sources of data in such models, depending

on whether the goals of the analysis is descriptive or predictive.

Integrating heterogeneous data types under a unified model is a challenge to the analysis of

complex data, which are simultaneously described by intrinsically different types of characteris-

tics, such as features in attribute space and links in relational space. This chapter suggests that

Bayesian models of mixed membership provide us with a solution to modeling and algorithmic

issues that arise in (what I term)integrated-learningproblems that involvecomplex databy com-

bining modules specific to multivariate attribute and relations within a hierarchical framework.
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Research along this line is still very limited, especially work based on well-founded statistical

principles. My methodology supports robust inter-modal inference, latent mechanism discovery,

and information retrieval. The strategies for integratingcomplex data presented here enable mod-

ular and distributable engineering solutions for organization and prediction problems. Feasible

engineering approaches to such problems in essence requirerealistic statistical models, accompa-

nied by scalable computational methods.
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Chapter 5

Dynamics and Evolution

In this chapter I describe how the models introduced in previous chapters can be extended to take

temporal evolution into account. To this extent, several models of dynamic behavior are present in

the classical statistical literature, which can be used to model the evolution of latent patterns for a

finite number of epochs,T . The basic idea is to chose which sets of variables evolves over time,

e.g.,Θ1:T , and posit a model for the transition, e.g.,PA(Θt|Θt−1).

For instance, recall the state-space model of Example10, which extends the factor analysis

model of Example7 by evolving the latent factors from one epoch to the next. Thedata generating

process for the observationsX(1:T ) is as follows,

1. At epocht = 0

1.1. For each objectn ∈ N1

1.1.1. Sample the latent factors~φn ∼ Normal K (0, I)

1.1.2. Sample the error~ǫ(0)n ∼ Normal M (0,Ψ)

1.1.3. Define the multivariate attribute~x(0)
n = Λ~φn + ~ǫ

(0)
n ,

2. At epoch0 < t < T
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2.1. For each objectn ∈ N1

2.2.1. Evolve the latent factors~φ(t)
n = F ~φ

(t−1)
n ,

2.2.2. Sample the error~ǫ(t)n ∼ Normal M (0,Ψ)

2.2.3. Define the multivariate attribute~x(t)
n = Λ~φ

(t)
n + ~ǫ

(t)
n ,

whereF is a(K ×K) matrix that encodes the dynamics of the latent factors. As before, the algo-

rithm suggests a hierarchical decomposition of the joint probability distribution of the attributes,

X(1:T ) = ~x
(1:T )
1:N , and the latent factors,Θ(1:T ) = (~φ

(1:T )
1:N ,~ǫ

(1:T )
1:N ), given a set of underlying constants,

A = (F,Λ,Ψ) that does not change over time.1 The likelihood is then,

ℓ(X(1:T )|A) =

∫
P1(Θ

(0)|A) P2(X
(0)|Θ(0),A) × (5.1)

×
( T∏

t=1

P0(Θ
(t)|Θ(t−1),A) P2(X

(t)|Θ(t),A)

)
dΘ(1:T ),

whereP1 andP2 areK- andM-dimensional Gaussian densities, respectively, andP0 is the deter-

ministic transformation in Step 2.2.1. of the data generating process. A graphical representation

of FA and SSM is given in Figure5.1, which highlights the simple connection between the two

models.

Model specifications vary depending on the applications, e.g., ARIMA, possibly multivariate,

linear versus non-linear, deterministic versus stochastic transition, Gaussian versus non-Gaussian

errors, or Markovian versus complex (Wasserman, 1980; Rabiner, 1989; Brockwell and Davis,

1991; Karr, 1991; West and Harrison, 1997; Doucet et al., 2001).

Example 26. The admixture of latent blocks model of Section3.1 is a model for a networkY t.

Denote byP (Y t|~α,B) the model for the network at timet, given the hyper-parameter~α, which

governs the distribution of the mixed membership vectors~π1:N , and the stochastic block modelB.

1The dynamic matrixF may be easily modeled as time dependent and/or stochastic, as the problem requires
(Airoldi and Faloutsos, 2004; Airoldi et al., 2005d).
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Figure 5.1: Graphical representations of a factor analysismodel (left) and of a state-space model
for observations at two consecutive epochs (right). White nodes denote non-observables, whereas
shadowed nodes denote observables.

The model can be extended to account for time by evolving the hyper-parameterα as follows.

1. At epoch0 < t < T

1.1. Sample the error~ǫ(t) ∼ Normal K (0, σ2I)

1.2. Evolve the latent position~α(t) = I ~α(t−1) + exp{~ǫ(t)},

This extra step specifies a linear transition model,Pσ(~αt|~αt−1). In the same spirit it is possible to

evolve the stochastic block modelB.

Example 27. The latent space model of mixed membership introduced in Section 4.3.2is a model

for a set of networksY 1:T . Denote byP (Y t|~µ1:K ,Σ1:K) the model for the network at timet, given

a parametric description of the clusters in the latent space. This model can be extended to account

for time, at epoch0 < t < T , by evolving the latent cluster positions as follows.

1. For each clusterk = 1, . . . , K

1.1. Sample the error~ǫ(t)k ∼ Normal 2 (0,Ψ)
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1.2. Evolve the latent position~µ(t)
k = F ~µ

(t−1)
k + ~ǫ

(t)
k ,

This extra step in the process specifies a set ofK independent linear transition models,PAk
(~µt

k |

~µt−1
k ), where the parameter setsAk = Ψ, for all k.

Alternatively, it is possible to specify temporal patternsdirectly as a part of(Ξ,Θ). Such

a modeling strategy allows to consider longitudinal sequences of observations about objects as

admixtures of complicated patterns, specified in a parametric or non-parametric fashion, and avoids

technical issues that arise when considering the specification of an explicit model of evolution.

5.1 Dynamic Network Tomography

The models discussed above resolve the observed sequence ofgraphs into simple patterns, which

evolve over time with some regularity. Independently of howsuch patterns are specified, their

description isparsimonious. In some problems, however, we need to solve the opposite problem;

namely, that of resolving the observed sequence of graphs into patterns with an order of complexity

higher than that of the observations. In other words, for latent patternsΘ ∈ T and observations

Y ∈ Y , in the models considered so far the dimensionality ofT was lower than that ofY . This is

no longer true in the models presented in this section, wherethe dimensionality of the spaceT is

higher than that ofY . Problems of this sort, where the solution space is orders ofmagnitude larger

than the space spanned by the data and the constraints, are referred to asinverse problemsin the

literature (Hansen, 1998).

The distinction above is not evident from the graphical representation of the models. The issues

are deeper: (i) identifying the space of solutions is often not trivial; (ii) regularization conditions

are needed to induce a well-behaved optimization problem. The driving application here isnetwork

tomography, where the origin-destination (OD) traffic flows need be estimated, e.g., who is com-
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municating with whom in a local area network. The direct measurement of the OD traffic is usually

difficult and typically unfeasible; instead, the loads on every link can be easily measured, that is,

sums of desired OD flows. In a network withN nodes, the problem is then to recoverO(N2)

OD flows fromO(N) sums. Such problem has been studied by many in the statistical literature

(Vanderbei and Iannone, 1994; Vardi, 1996; Tebaldi and West, 1998; Cao et al., 2000; Zhang et al.,

2003; Airoldi and Faloutsos, 2004). The model proposed here starts from the Bayesian analysisof

Tebaldi and West(1998), and extends it to a dynamic context by: (i) introducing explicit time de-

pendence among the traffic flows; (ii) positing a stochastic multiplicative process for the dynamic;

and (iii) positing realistic, non-Gaussian marginals for the traffic flows. The findings echos those

of Tebaldi and West(1998) with regard to the need for informative priors in order to mitigate the

bias in the estimated traffic flows due to the presence of multiple peaks in the likelihood, and to the

presence of ridges in between those peaks, e.g., see Figure5.8. The solution presented here scales

linearly with new observations and is more accurate then alternative solutions, on real network

traffic measured at Carnegie Mellon and at AT&T.

Figure 5.2: Estimation error inℓ2 distance.
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Table 5.1: Summary of symbols.

Symbol Description

T Number of time points.
ℓ Number of observable link loads.
κ Number of non-observable OD flows.
A (ℓ × κ) fixed routing matrix.
Y (ℓ × T ) matrix of link loads.
X (κ × T ) matrix of OD traffic flows.
Λ (κ × T ) matrix of means ofX|Λ,φ.
φ (1 × T ) vector of scale factors forX|Λ,φ.
θ Generic vector of hyper-parameters.

π(θ) Generic prior distribution.

5.1.1 Goals of the Analysis

Knowledge about the origin-destination (OD) traffic matrixallows network engineers and man-

agers to solve problems in design, routing, configuration debugging, monitoring and pricing; in

fact the OD traffic matrix provides valuable information about who is communicating with whom

in a network, at any given time. Unfortunately the direct measurement of the OD traffic is usually

difficult, or even infeasible, in real networks. The direction of current research is to develop meth-

ods to infer the OD traffic flows from observed traffic loads on the links of the network, however

the methods that have been proposed so far seem not to fully take advantage of two of the main

empirically observed features of network traffic; namely its very skewed marginal distribution, and

its time dependent nature.

I introduce theinverse allocationmodel (IA henceforth) which improves the models present in

the literature by introducing two realistic assumptions: (i) the log-Normal distribution provides a

realistic model for the marginal OD traffic flows, (ii) time dependence between successive flows

on a same OD route narrows the variability of the estimates. Atwo-stage estimation procedure is

proposed to estimate parameters of the IA model.
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The Problem and its Facets In a formulation of the problem we want to solve there are several

time series which we would like to estimate, but which we cannot observe, say, a vector of traffic

flows x(t) over timest = 1, ..., T . However, we are able to observe linear combinations of these

traffic flows, the vector of link loadsy(t) over timest = 1, ..., T , and we know which components

of x(t) mix into each of the componentsy(i, t) at each timet trough the routing matrixA, that

does not change over time There are two modeling aspects to this problem.

Problem 1 (Inverse Problem). Given the matrix of link loadsY(ℓ×T ) and a routing matrixA(ℓ×κ),

we want to find the matrix of non-observable OD traffic flowsX(κ×T ) such thatY = A · X.

Alwaysκ > ℓ.

Example 28. The linear equations that correspond to the routing scheme of the star network in

Figure5.3below are:




y(1, t)

y(2, t)

y(3, t)




=





1 1 0 0

0 0 1 1

1 0 1 0









x(1, t)

x(2, t)

x(3, t)

x(4, t)





(5.2)

y(1, t) measures the traffic load on the link from node 1 to the router and captures both the OD flow

from node 1 to node 2,x(2, t), and the OD flow from node 1 to itself,x(1, t). y(3, t) measures the

y ( 2 , t )y ( 1 , t ) y ( 4 , t )y ( 3 , t ) R N o d en o . 2N o d en o . 1
x ( t ) = O D F L O W S x ( 4 , t )x ( 3 , t )x ( 2 , t )x ( 1 , t )

y ( t ) = L I N K L O A D S
Figure 5.3: Two subnetworks connect to a router. We observe the link loads (solid blue arrows),
and want to infer the hidden traffic flows (dashed red arrows).
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traffic load on the link from the router to node 1 and captures both the OD flow from node 2 to node

1,x(3, t), and the OD flow from node 1 to itself,x(1, t). We want to estimate four(κ) unobservable

quantities starting from three(ℓ) independent observations2. The system is under-specified,κ > ℓ,

hence some extra information is needed in order to identify one single solution.

Problem 2 (Regularization). Impose a set of additional constraints (or a penalty term) onX(κ×T )

in order to induce smoothness on the space of solutions of theinverse problem.

The likelihood of the data entailed by a statistical model provides us with a natural criterion to

discernlikely solutions from unreasonable ones. Following this idea we model the unobservable

quantitiesx(t) with a joint probability distribution; this induces a probabilistic mapping on the

space of the observationsy(t) via equation5.2, so that we can compute the likelihood of the ob-

servations, and look for traffic flows that maximize the probability of particular data observations.

Unfortunately in time-independent models the likelihood of y(t) is not necessarily unimodal, even

as we assume independent components inx(t), and even as we use well-behaved functional forms

for their distributions. More information is needed to identify a solution. At this point there are

two main ways to introduce the extra information we need. In apurely data-driven approach we

would augment the data in some way, whereas in a knowledge-driven approach we would make

use of informative priors in a Bayesian setting, with the complication in this latter case of defining

what we mean by “informative”. Data augmentation can be realized, for example, by raising the

likelihood of the data to a power, as in simulated annealing,or by borrowing observations from

epochs close in time to the current one to obtain a smoothed average solution. Alternatively, we

can build “informative” priors based on partial knowledge about the magnitude of the OD flows,

and update using Bayes rule and a “more accurate” data model.

The two-stage estimation procedure for the IA model is suggestive of a nonparametric empirical

Bayes learning strategy, where the observations are used tofirst calibrate informative priors, and

2We assume that routers neither generate nor absorb traffic.
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then to filter the posterior distributions of the OD flows given the data. The proposed solution:

(i) uses realistic models for the OD flows; (ii) takes advantage of the time dependence of the data

while using the whole history of observations{y(1), ...,y(t)} to estimatex(t) in a proper Bayesian

fashion.

5.1.2 Model Specifications

Previous models assume independent OD flows across different epochs. Here I introduce mod-

els based on dynamical systems, which naturally extend previous approaches by assuming time

dependenceexplicitly (Brockwell and Davis, 1991; West and Harrison, 1997; Doucet et al., 2001).

Definition 1. A linear Gaussian state-space model is defined by the following set of equations,






x(t) = F · x(t− 1) + e(t)

y(t) = A(ℓ×κ) · x(t) , t ≥ 1
(5.3)

where{e(t)} is an i.i.d. Gaussian process with variance-covariance matrix Q, andF is a known

matrix. Furtherx(0) ∼ Normal (m,V ) and independent ofe(t) for t ≥ 1.

Classical state-space modeling strategies a la Box and Jenkins would look for the additional

constraints needed to solve Problem2 in a known dynamical behavior suggested by some physical

law underlying the specific problem at hand and from known seasonal patterns in the traffic, for

example the laws of motion in tracking the trajectories of moving objects, or from the presence

of strong cross-correlations among the OD flows. This knowledge would translate into constraints

on F , andQ in the system5.3 above, and would serve the critical role of driving the inferences

towards one particular solution.
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Augmented Gaussian State-Space ModelThe following Gaussian state-space model with drift

is used to obtain the preliminary estimates for the OD flows.






x(t) = F · x(t− 1) + Q · 1 + e(t)

y(t) = A · x(t) + ǫ(t)

=









x(t)

1



 =




F Q

0 I



 ·




x(t− 1)

1



+




e(t)

1





y(t) = [A|0 ] ·




x(t)

1



+ ǫ(t)

=






x̃(t) = F̃ · x̃(t− 1) + ẽ(t)

y(t) = Ã · x̃(t) + ǫ(t)

(5.4)

for t ≥ 1, where1 = (1, ..., 1)′ is a constant vector of the lengthκ, the parameterφ(t) enters into

the variance-covariance matrix ofe(t) ∼ N(0, φ(t) · Qτ ), x(1) ∼ N(0,V (1)), ǫ(t) ∼ N(0,R),

x(1) ⊥ e(t) andx(1) ⊥ ǫ(t) for all t ≥ 1, and finallyQ is a diagonal matrix with elements

(q1, ..., qκ), andτ is a known constant. In the model above, if we setF = 0 there is a one-to-

one mapping between(q1, ..., qκ, φ(t))′ and the unique elements inE(y(t)), V (y(t)). Further it is

straightforward to verify that the following lemma holds.

Note 4. The linear Gaussian state-space model in equations5.4contains the model inCao et al.

(2000) as a special case. Such a model can be obtained by simply setting F = 0, hence imposing

independence among the origin-destination flowsx(t) at different epochs.

In the experiments on Carnegie Mellon origin-destination traffic, assuming a fixed relation-

ship betweenx(i, t) andx(i, t + 1) is an unrealistic constraint. One possible solution is to as-

sume a relationship between the means of the OD flowsλ(i, t) andλ(i, t + 1) instead, and to
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Figure 5.4: Graphical representations: models with no explicit time dependance (left); linear state-
space models introduces an explicit dynamical behavior (center); the inverse allocation (IA) model
moves the explicit time dependence one layer up in the graphical model, thus allowing for the OD
flows to be more diverse (right).

allow for some error. The SSM yields smooth estimates that capture information about this re-

lationship, which we pass to the next estimation stage. In fact, we introduce soft constraints

on the average process{λ(t) t ≥ 1} in the form of informative priors for the parameters un-

derlying its dynamical behavior. We reduce the number of parameters by merging dynamic and

error terms into a stochastic dynamical behavior. The marginal models for the OD traffic flows

are independent log-Normals3. The main objects of interest are then the posterior distributions

P ( x(t) |y(1), ...,y(t) ). In particular the point estimate for the OD traffic vector attime t is given

by the mean̂x(t) = E( x(t) |y(1), ...,y(t) ).

Static Inverse Allocation Model The static version of the IA model considers independent prob-

lems at each epoch. Briefly, we are interested in estimatingx̂(t) = E( x(t) |y(t) ) = E( x |y ).

3Airoldi (2003) also considers Gamma models.
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To specify the full models at each timet we write:






x
∣∣λ, φ ∼ p

(
λ, φ

)

y = A · x,
(5.5)

wherep is log-Normal, parameterized so thatE( x(i) |λ, φ ) = λ(i), V ( x(i) |λ, φ ) = φ · λ(i)τ ,

Cov( x(i), x(j) |λ, φ ) = 0 for i = 1, ..., κ andi 6= j. Notice thatφ is common across OD flows at

each epoch, and thatτ is a known scalar, which we obtain by inspection ofY . The priors for the

λ(i) arelog-Normal (θ1(i), θ2(i))4, for i = 1, ..., κ and independent fori 6= j. The prior forφ is

proportional to a constant, to1/φ or to1/φ2.

Dynamic Inverse Allocation Model This dynamic version of the IA model, which yields the

best results, implements the following Bayesian dynamicalsystem:






λ(i, t) = ǫ(i, t) · λ(i, t− 1), i = 1, ..., κ

x(t)
∣∣λ(t), φ(t) ∼ p

(
λ(t), φ(t)

)

y(t) = A · x(t), t ≥ 1,

(5.6)

wherep is log-Normal, parametrized so thatE( x(i, t) |λ(t), φ(t) ) = λ(i, t), V ( x(i, t) |λ(t), φ(t) )

= φ · λ(i, t)τ , andCov( x(i, t), x(j, t) |λ, φ ) = 0 for i = 1, ..., κ andi 6= j. Notice thatφ(t) is

common across OD flows at timet, and thatτ is a known scalar, which we obtain by inspection of

Y . The priors forλ(i, 0) arelog-Normal (θ(i, 0), σ)4, for i = 1, ..., κ and independent fori 6= j,

and for a big numberσ that accounts for the uncertainty of the means of OD flows at time zero.

The prior forφ(t) is proportional to a constant, to1/φ(t) or to 1/φ(t)2. The priors forǫ(i, t) are

log-Normal (θ1(i, t), θ2(i, t))4 for i = 1, ..., κ, and independent fori 6= j.

4Airoldi (2003) also considers Gamma, Uniform, and truncated Gaussian priors.
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Table 5.2: A summary of the models.

Time Online Skewed
Model Dependence Estimation Marginals

Local likelihood No No No
Augmented Gaussian SSM Yes Yes No
IA (static) No No Yes
IA (dynamic) Yes Yes Yes

Informative Priors for λ(t) The crucial question at this point is: how do we calibrate thehyper-

parameters underlying the prior distributions ofλ(t)? First we obtain a preliminary set of estimates

x̂(t) with the Gaussian linear SSM. Then, in the case of IA static,(θ1, θ2) at each time are set so

that mean and variance ofλ correspond to those of̂x(t). Variances can be made much larger

without significant loss of precision. The intuition is thatthe preliminary estimates indicate us

where OD flows are on average. In the case of IA dynamic the intuition is the same, however it

is not possible to set priors forλ(t) as the sequence{λ(1), ...,λ(T )} is going to be determined

by λ(0) alone. The solution is then to extract from{x̂(1), ..., x̂(T )} information about their local

dynamical behavior and use it to calibrate informative priors for {ǫ(t), t ≥ 1}. Technically, we

setǫ(i, t) as independent log-Normals; we use the facts that product convolution of log-Normals

is log-Normal (equation 4), and thatlog-Normal(θ1(i, t), θ2(i, t)) = exp{N(θ1(i, t), θ2(i, t)) } to

solve the convolution problem exactly for(θ1(i, t), θ2(i, t)), for i = 1, ..., κ. In other words, values

for (θ1(t), θ2(t)) are computed from(x̂(t), x̂(t− 1)) at each time, and these parameters need not

be learned.θ(i, 0) is set to be the average of corresponding OD flow{x(i, t), t ≥ 1}.

Notice that every two-stage method that finds preliminary estimates and refines them uses

{x̂(1), ..., x̂(T )} in the second stage, in some way. It is preferable to translate this information

into information about the means of the OD flows{λ(1), ...,λ(T )}, according to the intuition that

preliminary estimates can identify a smooth version of the OD flows we are looking for, which

make reasonable guesses for their underlying average processes.
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5.1.3 Estimation and Inference

The estimation strategy involves two stages. In the first stage we find preliminary, smooth estimates

for the OD flows, which make a good guess for the averages of theOD traffic. In the second stage

we refine these smooth estimates by looking for spikes and bursty periods with one single pass

over the data.

Figure 5.5: A non-parametric empirical Bayes approach to the filtering problem is at the core of
the inverse allocation dynamic model.

The IA dynamic model is a Bayesian dynamical systems; EM and particle filter can be used

for estimation and inference. The implementation includesskewed models as Gamma and log-

Normal, a wide selection of priors as Uniform, Normal, Gammaand log-Normal, and several

resampling schemes to further validate the results on top ofthe main particle filter. Ghahramani

and Hinton (1996) show how to learn all the parameters in the linear Gaussian system5.3, in

our caseF , Q, m, andV , by means of the EM algorithm. Higuchi (2001) shows how a self-

organizing system can be built from non-linear non-Gaussian systems, so that all the relevant

parameters are learned during the filtering process. Gilks and Berzuini (2001) propose a particle

filter that keeps particles diverse. More specifically, we use the linear Gaussian SSM and related

EM steps proposed in Airoldi (2003), which includes the model in Cao et al. (2000) as a special

case, to obtain smooth estimates of the OD traffic, and we thenuse these estimates to calibrate

informative priors for the parameters underlying the dynamic of a non-Gaussian system, in non-

parametric empirical Bayes fashion. Eventually the particle filter makes good use of these priors

and of the skewed models, and finds a sequence of better posterior distributions for the traffic flow
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on each OD route; we pick their means as point estimates.

In order to filter the posterior distributions of the origin-destination flows and estimate the pa-

rameters of the models, I used a variation of the sample-resample-move algorithm of Gilks and

Berzuini (2001), briefly outlined below. For simplicity definev(t) to be the vector of all param-

eters in the model at timet, v(t) :=
(
x(t),λ(t), ǫ(t), φ(t)

)
, andv(0) :=

(
λ(0)

)
. Theenhanced

particle filter algorithm is as follows. Att = 0 generateN particles{ λ̃(i)(0) }N
i=1 usingθ(0), σ.

Then iterate,

1. Sett = t + 1. Move each particle like so: (a) generateǫ(i)(t) using (θ1,(i)(t), θ1,(i)(t)),

andφ(i)(t); (b) computeλ(i)(t) using the equation 4; (c) generatex(i)(t) by sampling from

equation 5.

2. ResampleN new particles from{ ṽ(i)(t) }N
i=1 according to the likelihood,P ( y(t) | ṽ(i)(t) ),

they entail.

3. Move the new set of particles according to a MCMC for ”several steps” to improve their

diversity. Go to 1.

For details about the MCMC see Airoldi (2003).

Scalability and Irreducibility A recent result in network tomography (Cao et al., 2001) states

that it is possible to reformulate filtering problems corresponding to large networks as a sequence

of problems corresponding to small networks. As a consequence of it, the following result is true.

Lemma 1. The complexity of the learning algorithm for the dynamic IA model isO( κ · T ).

Proof. The result inCao et al.(2001) implies that a tomography problem corresponding to a net-

work with κ origin-destination flows is equivalent toO(κ) tomography problems, which corre-

spond to disjoint sub-sets of, say, one to four OD traffic flowsin the original problem. This fact
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along with the fact that our solution is linear in the number of time points for which the OD traffic

need be filtered, yields a total complexity ofO( κ · T ) for the learning algorithm of the dynamic

IA model.

Lemma 1 implies if we solve the inverse problem for small sizenetworks, we immediately solve

it for arbitrary size networks with comparable estimation errors. Further the following result holds.

Lemma 2. The inference strategy is based on an irreducible MCMC.

Proof. See Appendix A.

Lemma 2 implies that the proposed inference strategy is ableto explore the support of the whole

joint posterior distribution of the OD flows. Note that, as hinted in the introduction to the problem,

this fact cannot be taken for granted in inverse problems; being able to identify and explore the

space of solutions is an issue that needs be addresses, problem by problem. Furthermore, the

MCMC uses a Gibbs sampler with Metropolis steps.

Discussion of Experimental Evidence The methods were tested on two data sets; both included

validation data.

• Carnegie Mellon traffic: the first data set, which we used to choose the appropriate model,

contained about 12100 origin-destination traffic flows measured every 5 minutes over slightly

less than two days at Carnegie-Mellon university (CMU). We measured an average traffic of

14GB every 5 minutes.

• AT&T traffic: the second data set, which we used to test and compare the filtered traffic

obtained with different methodologies, contained 16 origin-destination flows measured every

5 minutes over a one-day period at AT&T, courtesy of Dr. Jin Cao at Bell Labs.
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The analysis of Carnegie Mellon origin-destination trafficflows supports the hypothesis of a very

skewed distribution. In figure 6 we plotted the logarithms ofthe observed flows versus the log-

arithms of the number of times measurements of such a size appear (aka. log-log plot), after

discarding the measurements smaller than a standard packet(53 bytes = 424 bytes). The log-log

plot indicates a log-Normal distribution may be appropriate. A histogram of the logarithms of the

flows indicated that a logarithmic transformation is actually too mild to remove all the skewness,

and a double logarithmic transformation would be more appropriate. The AT&T data set is much

smaller, and contains traffic flows generated on a smaller network; they are less skewed overall,

and a logarithmic transformation is enough to yield a symmetric histogram for the truncated flows.

The CMU data set was used to inform model development. The AT&T data set was then used as

an independent model validation data set.

The full story about the data sets is presented elsewhere (Airoldi , 2003; Airoldi and Faloutsos,

2004); here I will focus on findings that bear relevance to the methodological issues. In particular,

few discussion points emerge that are shared by dynamic hierarchical models in applications to

inverse problems.
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Figure 5.6: Log-log plots of the 12100 traffic flows measured at Carnegie-Mellon (left panel) and
of the 16 traffic flows measured at AT&T (right panel).
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1. Skewed Marginals:what is the impact of skewed model on the accuracy of the estimates?

And what is the best model for the OD traffic?

2. Time Dependence:what is the impact of explicit time dependence on the accuracy of the

estimates?

3. Informative Priors:what constraints should we impose to solve the regularization problem?

How do they impact the accuracy of our estimates?

The inferences obtained with different methods were compared by computing theℓ2 distance be-

tween the true OD flows in the validation set and the estimates. The best results were obtained

with log-Normal distribution for the flows and Gaussian vague priors.

To isolate the effect of realistic distributions for the OD flows, we compared the estimates

obtained with IA where no time dependence was assumed, for Gamma and log-Normal models,

and a variety of non-conjugate priors (Uniform, Gaussian, Gamma,l log-Normal) and different

pa-rametrizations, with the estimates obtained by local likelihood. Introducing realistic model

reduced the error between 25.4% and 40.8%. To isolate the effect of explicit time dependence,

we compared the estimates we obtained with the augmented gaussian model that uses independent

AR(1) processes for the OD flows, with the estimates obtainedwith local likelihood. Introducing

time dependence reduced the error by 15.5% on average; the reduction ranged between 8.5% and

31.0%. Using the static IA model in 60% of the time points uninformative priors yield flat or

multi-modal posteriors, whereas in the remaining 40% of thetime points flat priors yield wide

uni-modal posteriors. The main effect of the data aty(t) on the posteriorP (x(t)|y(t)) is on its

range; impossible configurations receive zero posterior probability. Informative priors with wide

variance all yield uni-modal distributions. The dynamic IAmodel with informative priors has

the advantage of requiring fewer particles than the versionbased on flat priors; knowing where to

sample may introduce bias, but the thick tails of the log-Normal distribution of bothx(t)|λ(t), φ(t)
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Figure 5.7: The bars represent the average estimation errorin a validation set. Specifically we plot
theℓ2 distance between the true OD flows and the corresponding estimates obtained with the local
likelihood approach and IA models in its various flavors. IA based on the Bayesian dynamical
system is a clear winner. In both panels we include the estimates obtained with the augmented
Gaussian state-space model. Error bars in the left panel correspond to IA models based on Gamma,
whereas error bars on the right panel correspond to IA modelsbased on log-Normal.

Figure 5.8: Example posterior distributions for the OD flowsx(3, 244) andx(4, 244). The traffic on
theX axes is measured in Kbytes, and the figures show the posteriordistributions we obtained with
non-informative priors (top panel) and with informative priors (bottom panel) calibrated using our
Gaussian linear SSM. The solid triangles represent the truehidden OD Flows, whereas our point
estimates would be the means of the posterior distributions. Making the posteriorsmore unimodal
improves the estimates by reducing the bias entailed by extra modes.

andλ(t)|θ1(t), θ2(t) mitigate the problem, and IA captures several of the hidden spikes.
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Figure 5.9: Example posterior distributions for the OD flowx(2, 255). The traffic on theX axes is
measured in Kbytes, and the figures show the posterior distribution we obtained with IA static (left
panel) versus the one we obtained with IA dynamic (right panel). The solid triangles represent the
true hidden OD Flow, whereas the empty triangles are our point estimates, which correspond to
the means of the posterior distributions. Making use of all the observations{y(1), ...,y(255) } in
computing the posterior distribution in the right panel reduced its variability — notice the different
ranges — thus improving the inferences.

+
+

+
+

+

+
+

+
+

+
+

+
+

0 50 100 150 200 250 300

0
10

20
30

40

Time Points

M
in

ut
es

Figure 5.10: The learning algorithm for IA models scales linearly with the problem size (number
of time ticks).

Briefly, we recover a smooth version of the OD flows, we calibrate informative priors for some

crucial parameters, and eventually we use a dynamical Bayesian system to refine the estimates and
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capture bursty traffic. This methodology allows us to combines the three simple ideas above: a re-

alistic model for the data, the use of a filtering scheme whichtakes advantage of time, probabilistic

constraints to overcome the under-determinacy of the problem. In the first stage we use the Gaus-

sian linear SMM proposed in Airoldi (2003), and we calibrateinformative priors forλ(t) using

these estimates. These priors incorporate information about the magnitude and the dynamical be-

havior of the first stage smooth estimates, and softly constrain the location of the average processes

{λ(t), t ≥ 1}. Other methods proposed in the literature make use of preliminary estimates, but

they only retain the information about the magnitude of the OD flows given by the such estimates

in the refining stage — see for example Zhang et al. (2003) who use shrinkage to improve the
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Figure 5.11: Example fits: actual latent flows (solid black lines) versus reconstructed flows (dashed
red lines). IA manages to reconstructs several spikes.
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solutions given by a gravity model. In our method, the fact that we retain also the information

about the local dynamical behavior yields a significant jumpin the final accuracy. Another channel

through which informative priors help achieve a better accuracy is by reducing the bias entailed

by multiple modes in the posterior distributions. Making the posteriors moreuni-modalimproves

the precision of the point estimates of the OD flows (the posterior means) as we show in figure

10 below. Informative priors do drive the inferences about the OD flows towards the preliminary

guesses, however the two layers of our model and the use of soft probabilistic constraints entail

enough flexibility to capture several of the spikes in many cases, for an example see figure 12

below. Further our first-stage estimates are safely based ona model which entails a one-to-one

relationship between OD flows and measurements, as it includes the model by Cao et al. (2000) as

a special case. In the second stage the primary object of interest become the sequence of posterior

distributionsP ( x(t) |y(1), ...,y(t) ). We use their meanŝx(t) = E( x(t) |y(1), ...,y(t) ) as point

estimates for the OD flows at timet. The Bayesian dynamical system brings further improvements,

as we show in figure 7 above, due to the fact that we make use of all the observations up to timet in

computing the posterior distributionsP ( x(t) |y(1), ...,y(t) ); conditioning on more observations

yields a narrower variability. Local methods use fewer observations in a short window aroundt,

instead.

Concluding, experimental evidence shows that the improvement IA models achieve goes be-

yond the contribution of state-of-the-art methods even when combined with recent resampling

schemes which improve any given set of estimates. The modeling choices behind IA models are

intuitive; first-stage estimates capture smooth average processes, second-stage estimates capture

the spikes. Last, the estimation strategy of the dynamic IA model provides some insight in how

to calibrate informative priors in Bayesian systems, whereno clear guidance about the dynamic of

the latent variables is available.
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5.2 Co-Evolving Systems

The idea here is to revisit a classical model of social interactions and their evolution based on

constructional theory (Carley, 1990, 1991), and to explore whether, and to what extent, its spec-

ifications fit within the statistical framework presented inthe previous sections. In doing so, few

points of discussion emerge that suggest a wide applicability of this approach.

The basic constructional model explains the dynamics of social interactions using three basic

forces: (i) social interactions lead to shared knowledge; (ii) similar individuals tend to interact, and

the more individuals interact the more similar they become;(iii) global social consensus emerges

from diverse local conditions. Elements of the model portray a simplified society withN individ-

uals. Culture is described in terms of individuals’ knowledge aboutK facts, at any given period

t, and encoded by Bernoulli variablesf t(n, k) specific to individual-fact pairs. Social structure is

defined in terms of individuals’ probabilities of interaction with one another at any given periodt,

and encoded by scalarspt(n,m) specific to pairs of individuals. Social structure is assumed to be

a deterministic function of the culture,

pt(n,m) =

∑
k f

t(n, k) · f t(m, k)∑
o,k f

t(n, k) · f t(o, k)
. (5.7)

Actual interactions occur at any given periodt, and are denoted byit(n,m). Whenever two indi-

viduals interact, each shares knowledge about a single factk, chosen uniformly among those that

are known; this information is encoded by a pair of Bernoullivariables,ut(n, k), ut(m, l). And so

culture evolves, an social structure changes.

The algorithm that specifies the evolution of social structure and culture in this model is as

follows.

1. At epocht
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t + 1t
t + 1t

t + 1t
t + 1t

Figure 5.12: Graphical representation of the basic constructional model (Carley, 1990, 1991) and
one of its extensions (Shreiber, 2006).

1.1. Compute social structureP t given cultureF t

1.2. Sample interactionsI t given social structureP t

1.3. Sample knowledge exchangedU t given interactionsI t and cultureF t

1.4. Update cultureF t+1 given previous cultureF t and knowledge exchangedU t

The left panel of Figure5.12shows how the basic constructional model can be representedin the

formalism of the statistical framework presented here.

Remark 2 (On Inference). Recall that it is possible to characterize the models of graphs based on

the exponential family (Frank and Strauss, 1986; Wasserman and Pattison, 1996) with the formal-

ism of undirected graphical models (Airoldi, 2006; Hanneke and Xing, 2007). The inference for

the models of dynamics and evolution suggested by the constructional model of social interactions

is tractable, although possibly computationally expensive: as long as we make use of probability

distributions within the exponential family we can computederivatives and likelihood and devise

the corresponding EM algorithm—using approximation strategies such as variational methods and

MCMC where necessary

The constructional model of social interactions is essentially a data generating process that
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involves probabilistic events and regularities; as such, its specifications can be subsumed within

the statistical framework presented here. However, the goals of analyses that such a model (and

its extensions) allows are not restricted to inference and parameter estimation. Through simulative

experiments, for example, the constructional model allowsto explore the space of possibilities that

is consistent with a given set of structural hypotheses (Shreiber, 2006).

* * *

In this chapter, I described a strategy to introduce simple dynamics and evolution in the models

of complex graphs developed so far. Edges within a network are no longer exchangeable in this

temporal setting; exchangeability is substituted by otherdependence structures.

I demonstrated how to fully specify model of network evolution—the Inverse Allocation model

of Section5.1—to solve an open problem in the context of dynamic network tomography. Net-

work tomography constitutes an interesting application where alocally smooth dynamic behavior

serves as the crucial constraint that allows the accurate estimation of origin-destination traffic from

few aggregate traffic measurements. A conditional marked point process accommodates the extra

variability due to bursts in the traffic.

I presented an overview of alternative (more complex) temporal modeling strategies and dis-

cussed the extent to which they provide a conceptual bridge between statistical models and agent-

based models. I believe that this conceptual linkage suggests a new approach to calibration and val-

idation issues that arise in agent-based models and simulations in general that is rooted in Bayesian

statistics.
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Chapter 6

Concluding Remarks

This thesis provides a methodological framework for the statistical analysis of complex graphs and

dynamic networks. In it, I developed probabilistic algorithms that generate, evolve and integrate

a heterogeneous collection of graphs, I studied the statistical models these algorithms implicitly

specify, and I developed strategies for estimating the set of quantities on which they depend.

6.1 Conclusions

I have described a statistical approach to the analysis of complex systems. As it has emerged from

the examples and case studies (either presented in details or referred to in published work) most

of the models introduced here are tailored to the analysis ofcomplex systems and their evolution,

with special emphasis on applications to social and biological networks. The goals of the analysis

in the various cases is different, but there is a binding theme: that of revealing non-observable

mechanisms underlying social and biological processes by integrating a heterogeneous collection

of measurements about diverse signals, i.e., networks, sequences, and attributes. Applications of

the models presented here in the context of biological systems will be the main focus of future
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research.

From a methodological perspective I introduced: (i) modelsfor the analysis of complex net-

works; (ii) models for the analysis of multivariate attributes; (iii) strategies for integrating het-

erogeneous measurements; and (iv) models for the evolutionof the system, within a coherent

statistical framework. There are few basic ideas that get combined in various guises to derive full

model specifications in this framework: (i) mixed membership; (ii) latent patterns; (iii) hierarchi-

cal structure in the likelihood; (iv) dynamics; and (v) sparsity. I found these ideas to be useful in

applications to social and biological systems.

In future research, I plan to explore fundamental technicalissues that are shared by Bayesian

mixed membership models, and to some degree by hierarchicalBayesian mixture models.

6.2 Technical Issues

In working with latent aspects models of the sort described in this thesis, I have encountered four

themes of a technical nature: (i) the mixed membership of objects to patterns, and the related

allocation task; (ii) model selection and model choice; (iii) the presence of many local peaks

in the likelihood, and strategies for finding one with a good substantive interpretation; and (iv)

scalability of the approach to very large data sets. I brieflytouch upon each of these in the following

subsections. The context in each case is given by a specific model, but the discussion and results

generalize to other models.

6.2.1 The Geometry of Allocation

The allocation task has a central role in the latent aspects models described in this thesis; resolving

this task is equivalent to estimating the mixed membership map between objects and latent patterns.
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Intuitively, we allocate objects to categories and we introduce a new category when the fit is bad

on some scale using the current number of categories. It is possible to characterize the notion of

allocation in terms of variance components, both analytically and with simulations.

Example 29. In the classical Factor Analysis and linear Gaussian state-space models it is possible

to derive in closed form the projections of data onto the lower dimensional spaces of factors and

states, respectively. The projection allocates data to latent components according to the entries of

the various variance-covariance matrices involved, assuming equal component weights. Consider,

for example, a factor analysis model: we measureD-dimensional quantitiesY = AX, compo-

nents of which are assumed to be sums, through the matrixA, of K-dimensional latent factors,

X. In a simple formulation of the problem we can assume unit elementsA(ij) = 1, andX ∼

Normal (0,Σ). It turns out that the allocation of observations to factors, in this model, is resolved

by estimating latent factors with weighted averages of the observations,E [ X(k) | {Y }N
n=1 ] =

∑
d ωkd Ȳ(d). The allocation is specified through the optimal (mixed-membership) weights, which

are functions of the elements of the variance-covariance matrix, ω∗kd = ω∗k(Σ̂). Note that the

variance-covariance matrixΣ is estimated as well (e.g., see Appendix A.3 inAiroldi, 2003).

The seeming analytical intractability of these models presents us with some obstacles, and

opens analytical opportunities at the same time. Below I provide some experimental evidence that

is suggestive of the how the quality of the allocation of objects to patterns responds to the quality of

the assumptions encoded by a model. In the future I plan to explore the extent to which a tractable

lower bound for the log-likelihood and asymptotic derivations help characterize these ideas.

Experimental Evidence: Simulations The simulation takes place in the context of models of

multivariate attributes I developed in Section4.1, where we allocate genes to temporal expression

profiles using models that encode independence among occurrences of the same gene versus mod-

els of contagion. Simulative experiments suggest that Dirichlet-Poisson model of Section4.1 is
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better at recovering membership than the independence model when realistic SAGE mean/variance

ratio holds.

We first validate our models by examining to what extend they can recover the mixed-mem-

bership probabilities{θn}, i.e., the soft cluster assignments of each gene, under various simulated

conditions. We generated the ground truth using our generative processes, and we focused on sce-

narios where the “mean” expression level at the various epochs was lower than its corresponding

“variance”— a realistic biological experimental scenario. We compare our models, normalized

DiP and conditional DiP, with two other methods, the independence model (Pritchard et al., 2000;

Minka and Lafferty, 2002; Blei et al., 2003), and the PoissonL model (Cai et al., 2004). Our mod-

els yield higher likelihoods of expression profiles in the test set (not shown), and more accurate

predictions of the latent theme id of each gene based on theirobserved expression levels. Out of

1000 genes we simulated, for example, nDiP and cDiP achieved75.95% and 70.32% accuracy,

respectively, whereas the independence model reached only63.25%. Strikingly, the independence

model clustered all genes in one profile in several runs.

Experimental Evidence: A 20-gene Synthetic Data Set In small samples bearing realistic

SAGE characteristics, although the recovered clusters differ only slightly, the estimated mixed-

membership are sharper using DiP than with the independencemodel.

Here I report our analysis of a small dataset used inCai et al.(2004), which contains the ex-

pression profiles of 20 genes over 5 temporal epochs. Eighteen of the 20 genes belong to one of

4 clusters (temporal themes), and the 2 remaining two are identified as outliers. The expression

profiles are generated from 6 different latent themes, or clusters, which the authors reduce to 4

by ignoring the abundance of the gene tags observed on the transcripts sampled at each epoch. In

particular, there are 3 profiles from theme 1, 4 from theme 2, 6from theme 3, and 6 from theme 4.

The raw data is plotted in Figure6.1on various scales. Among the profiles from theme 2, there is
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1 with 10 times as many gene tags as the others, and similarly for theme 3—number 7 and number

13 in Figure6.2. Note that these 2 profiles are “more expressed” but they follow an expression

theme similar to the other expression profiles in the respective clusters.

Figure6.2, displays the 4 themes learned by the normalized and conditional DiP models (bottom-

left panel), versus those learned by PoissonL (Cai et al., 2004) and the independence model (top-

left panel). A rough eyeballing shows that the gene expression themes learned by DiPs and the two

competing methods are similar. However, a close examination reveals the following. Arguably,

we obtain a more compact themes 3, as revealed by the lower degree of dispersion among genes
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Figure 6.1: The raw example data inCai et al.(2004), on the original expression scale (left); on a
normalized expression scale, by gene, into[0, 1] (center); and on a normalized expression scale, by
epoch, usinĝσ1:T (right).
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Figure 6.2: Left: Latent gene expression themes learned by different algorithms. Top: 4 themes
(numbered 1 to 4 from left to right) learned by PoissonL and the independence model. Each
theme is represented by the expression profiles of all the genes assigned to that theme base on
MAP prediction using the estimated mix-membership vectorθn. In this case, PoissonL and the
independence model give the same membership prediction. Bottom: The 4 themes discovered by
normalized DiP and conditional DiP. Note that due to overlapof the profile curves, the ”occupancy”
number of each theme is not apparent here. But in Fig.6.2, one can see it more clearly. Right:
The estimated membership probabilities,{θ̂nk}, for the independence model (top), nDiP (middle),
and cDiP (bottom). Each row correspond to a theme, and each column corresponds to a gene. The
color shades of the cells correspond to values ranging from 1(black) to 0 (white). The panel shows
that cDiP yields the sharpest estimates.

assigned to this theme; but for theme 2, the genes assigned toit by the independence model and

PoissonL are slightly more consistent. Overall, the software clustering assignment of each gene

are compatible across all 4 algorithms, and as shown in Figure 6.2), but the mixed-membership

probabilities inferred by the DiPs for each gene are sharper. If we compare the MAP assignment

of each gene to a single most probable themes, the 19 of the 20 genes are consistent across all 4

algorithms, and their assignments agree with the true themes label given by the original dataset.

The remain one, gene no. 10, is intriguing. It has an expression profile,{Y 1:5
10 } = (4, 10, 16, 14, 6),

and is originally labeled as from theme 2,{λ1:5
2 } = (10, 30, 30, 60, 10). Apparently profile{Y 1:5

10 }

exhibits great variability with respect to its supposedly underlying theme. Using DiP, we infer the

label of gene no. 10 to be theme 3, which has a prototype profile{λ1:5
3 } = (10, 10, 10, 10, 10), and
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indeed we found much of the variability in gene 10 is related to the overall abundance of all genes

in different epochs, rather then its intrinsic trend. So we feel this assignment is arguable more

plausible the the purported theme 2. As shown in Figure6.2), the independence model inferred a

split assigned, about equally probable to pattern 2 and 3.

The example suggests the role of model properties in latent allocation tasks. The intuition is

that if the model cannot express, on average, the salient properties of the data, then it may lead to

artifactual effects. Specifically, the unexplained variability will need to find a “place-holder”, and

it seems to increase the variability of parameter estimates.

6.2.2 Model Selection Strategies and Issues

Although there are pathological examples, where slightly different model specifications lead to

quite different analyses and choices of key parameters, in real situations we expect models with

similar probabilistic specifications to suggest roughly similar choices for the number of patterns

(Airoldi et al., 2006e). In the applications presented or referred to throughout this thesis I explored

the issue of model choice by means of different criteria.

Paremetric: Choice Informed by the Ability to Predict Cross-validation is a popular method

to estimate the generalization error of a prediction rule (Hastie et al., 2001), and its advantages and

flaws have been addressed by many in that context (e.g.,Ng, 1997). More recently, cross-validation

has been adopted to inform the choice about the number groupsand associated patterns in hierar-

chical Bayesian models (Barnard et al., 2003; Wang et al., 2005). Guidelines for the proper use of

cross-validation in choosing the optimal number of groupsK, however, has not been systematically

explored. One of the goals of our case studies is that of assessing to what extent cross-validation

can be “trusted” to estimate the underlying number of topicsor disability profiles. In particular,

given the non-negligible influence of hyper-parameter estimates in the evaluation of the held-out
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likelihood, i.e., the likelihood on the testing set, we discover that it is important not to bias the

analysis with “bad estimates” of such parameters, or with arbitrary choices that are not justifiable

using preliminary evidence, i.e., either in the form of prior knowledge, or outcome of the analysis

of training documents. To this extent, estimates with “goodstatistical properties,” e.g., empirical

Bayes or maximum likelihood estimates, should be preferredto others (Carlin and Louis, 2005).

Alternative approaches based on the predictive ability of aset of latent patterns have been recently

proposed, e.g. in the context of clustering (Tibshirani and Walther, 2005).

Semiparametric: Stochastic Process Priors Positing a Dirichlet process prior on the number

of latent topics is equivalent to assuming that the number oflatent topics grows with the log of the

number of, say, documents or individuals (Ferguson, 1973; Antoniak, 1974). This is an elegant

model selection strategy in that the selection problem become part of the model itself, although in

practical situations it is not always possible to justify. Anonparametric alternative to this strategy,

recently proposed (McAuliffe et al., 2006), uses the Dirichlet Process prior is an infinite dimen-

sional prior with a specific parametric form as a way to mix over choices ofK. This prior appears

reasonable, however, for static analyses of scientific publications that appear in a specific journal.

Kumar et al.(2000) specify toy models of evolution which justify the scale-free nature of the rela-

tion between documents and topics using the Dirichlet process prior for exploratory data analysis

purposes (Kleinberg et al., 1999; Kumar et al., 2000). However, has to be noted that the prior on

the membership of the patterns induced by many such processes is not always desirable, and in

certain applications is wrong. For example, in biological applications to protein interaction net-

works, the latent patterns correspond to stable protein complexes (i.e., groups of proteins) that are

composed of 4 to 7 proteins on average (Krogan et al., 2006).

Other Criteria for Model Choice The statistical and data mining literatures contain many other

criteria and approaches to deal with the issue of model choice, e.g., reversible jump MCMC
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techniques, Bayes factors and other marginal likelihood methods, and penalized likelihood cri-

teria such as the Bayesian Information Criterion (BIC) (Schwartz, 1978; Pelleg and Moore, 2000),

the Akaike information criterion (AIC) (Akaike, 1973), the deviance information criterion (DIC)

(Spiegelhalter et al., 2002), minimum description length (MDL) (Chakrabarti et al., 2004). See

(Han and Kamber, 2000) for a review of solutions in the data mining community. AIC has a fre-

quentist motivation and tends to pick models that are too large when then number of parameters its

large—it does not pay a high enough penalty. BIC and DIC have Bayesian motivations and thus

fit more naturally with the specifications in this paper. Neither is truly Bayesian; however DIC

involves elements that can be computed directly from MCMC calculations, and the variational

approximation to the posterior (described in detail below), allows us to integrate out the nuisance

parameters in order to compute an approximation to BIC for different values ofK.

A Simulation Study I conclude by presenting some anecdotal evidence we gathered from syn-

thetic data with the aim of highlighting the dangers of fixingthe hyper-parameters according to

some ad-hoc strategy that isnot supported by the data, e.g., fixingα = 50/K in the models of

the Chapters3 and4. I simulated a set of 3,000 documents according to the latentdirichlet alloca-

tion model for generating textual documents described in Example22, with K∗ = 15 topics (the

patterns) and a vocabulary of size50. I then fitted the correct Bayesian mixed-membership model

on a grid forK = 5, 10, 45 that included the true underlying number of groups and associated

patterns, using a five-fold cross-validation scheme. In a first batch of experiments I fitted alpha

using empirical BayesCarlin and Louis(2005), whereas in a second batch of experiments I set

α = 50/K, following the analysis inGriffiths and Steyvers(2004). The held-out log-likelihood

profiles are reported in Figure6.3.

In this controlled experiment, the optimal number of non-observable topics isK∗ = 15. This

implies a value ofα = 50
15

= 3.33 > 1 for the ad-hoc strategy, whereasα̂ = 0.052 < 1 according

to the empirical Bayes strategy. Intuitively, the fact thatα > 1 has a disrupting effect on the model
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Figure 6.3: Left: 2D symmetric Dirichlet densities underlying mixed-membership vectorsθ =
(θ1, θ2), with parameterα = 4 > 1 (solid, black line) and with parameterα = 0.25 < 1 (dashed,
red line). Right: held-out log-likelihood for the simulation experiments described in the text. The
solid, black line corresponds to the strategy of fixingα = 50/K, whereas the dashed, red line
corresponds to the strategy of fittingα via empirical Bayes.K∗ is denoted with an asterisk.

fit: each topic is expected to be present in each document, or in other words each document is

expected to belong equally to each group/topic, rather thanonly to only a few of them, as it is

the case whenα < 1. As an immediate consequence, the estimates of the components of mixed-

membership vectors,{θnk}, tend to be diffuse, rather than sharply peaked, as we would expect

in text mining applications. Furthermore, in this simple simulation, setting the hyper-paramterα

to a value greater than one when the data supports values in a dramatically different range, e.g.,

0.01 < α < 0.1, ultimately bias the estimation of the number of latent patterns. Figure6.3shows

that, ultimately, the empirical Bayes strategy correctly recoversK∗ = 15, whereas the ad-hoc

strategy finds recovers an erroneous number of latent patternsK∗ = 20.

Concluding, experiments in a controlled setting suggest that it is desirable not to fix the hyper-

parameters, e.g., the non-observable category abundancesα, according to ad-hoc strategies, unless

such strategies are supported by previous analyses. Ad-hocstrategies will affect inference about

the number of non-observable patterns in non-controllableways, and ultimately bias the analysis

of data and the substantive conclusions. This effect can be observed in a real problem setting in
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Figure 6.4: The non-parametric empirical Bayes approach ata glance.

Example25 of Chapter4 by looking at the entries in Figure4.10. The plots in the right column

display latent topics that were estimated using the strategy of fixing α; they are visibly more

diffusethan the topics estimated by fitting the hyper-parameterα using the empirical Bayes strategy

likelihood—plots in the left column.

6.2.3 Nonparametric Empirical Bayes

An issue with mixture models is that of multiple local peaks (e.g.,Buot and Richards, 2006a,b).

Depending on the signal-to-noise ratio in the data, this canlead to problematic inferences. How-

ever, even in those cases where the signal is buried in the noise it is possible to adopt estimation

and inference strategies that minimize the issue.

Example 30. In the application of the admixture of latent blocks model toprotein interaction net-

works (Airoldi et al., 2006c) a two-stage approach is used; a model with no interactions among

protein in different complexes is fit first, i.e.,B is constrained to be the identity, and then the full

model is fit, i.e.,B is unconstrained. In the second stage, the mixed membershipmap is initialized

to that recovered in with the simpler model. In this model, the strategy aims at resolving the infer-

ence among the two competing explanations for the interactions; namely, the mixed membership

map between protein and stable protein complexes, and the block model that encodes interactions

among proteins in different complexes.

In order to perform inference in the models presented a multiple-stage approach to estimation
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and inference is adopted—see Figure6.4. In general, the non-parametric empirical Bayes approach

is an engineering solution. The approach suggests fitting a sequence of models, from most simple

to most complex, which are not necessarily nested. The results of estimation and inference in

simpler models is used to inform (or calibrate) priors for teh parameters in the more complex

models. In future work I plan to quantify both (i) the effect of signal-to-noise ratio that is needed

to cause problems, and its interaction with (ii) the effect of the distance between the true model the

starting model on the probability of successful estimationand inference.

6.2.4 Scalability

The scalability of posterior inference algorithms in models of relational data, e.g., the stochastic

block models of mixed membership of Section4.2.2, is a crucial practical issue given the size of

social and biological networks of interest that arise in modern applications. Below, I illustrate a

possible solution to perform fast posterior inference in the context of a specific model. Notably,

the proposednested variationalinference strategy is applicable to other models of relational data

and makes posterior inference feasible in applications that involve large graphs and networks.

Consider the admixture of latent blocks model of Section3.1. To achieve fast convergence

of the proposed posterior inference algorithm in that case,I employed a highly effectivenested

variational inference scheme based on a non-trivial scheduling of variational parameters updating.

The resulting algorithm is also parallelizable on a computer cluster.

In a naı̈ve iteration scheme for variational inference, onewould initialize the variational Dirich-

let parameters~γ1:N and the variational multinomial parameters(~φp→q, ~φp←q) to non-informative

values, and then iterate until convergence the following two steps: (i) update~φp→q andφp←q for

all edges(p, q), and (ii) update~γp for all nodesp ∈ N . In such algorithm, at each variational

inference cycle we need to allocateNK + 2N2K scalars. Experimental evidence (Airoldi et al.,
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Outer loop
1. initialize~γ0

pk = 2N
K

for all p, k
2. repeat
3. for p = 1 toN
4. for q = 1 toN
5. getvariational ~φt+1

p→q and~φt+1
p←q = f

(
R(p, q), ~γt

p, ~γ
t
q, B

t
)

6. partially update ~γt+1
p , ~γt+1

q andBt+1

7. until convergence

Figure 6.5: The nested (two-layered) variational inference algorithm forγ and (φ→, φ←). The
inner layer consists of Step 5. The functiong is described in details in Figure6.6.

2006d) suggests that the naı̈ve variational algorithm often fails to converge, or converges after a

large number of iterations. I attribute this behavior to a dependence that the two main assumptions

(block model and mixed membership) induce between~γ1:N andB, which is not satisfied by the

naı̈ve algorithm. Some intuition about why this may happen follows. From a purely algorithmic

perspective, the naı̈ve variational EM algorithm instantiates a large coordinate ascent algorithm,

where the parameters can be semantically divided into coherent blocks. Blocks are processed in

a specific order, and the parameters within each block get allupdated each time.1 At every new

iteration the naı̈ve algorithm sets all the elements of~γt+1
1:N equal to the same constant. This dampens

the likelihood by suddenly breaking the dependence betweenthe estimates of parameters in~̂γ
t

1:N

and inB̂t that was being inferred from the data during the previous iteration.

Instead, the nested variational inference algorithm maintains some of this dependence that is

being inferred from the data across the various iterations.This is achieved mainly through a differ-

ent scheduling of the parameter updates in the various blocks. To a minor extent, the dependence

is maintained by always keeping the block of free parameters, (~φp→q, ~φp←q), optimized given the

other variational parameters. Note that these parameters are involved in the updates of parameters

in ~γ1:N and inB, thus providing us with a channel to maintain some of the dependence among

1Within a block, the order according to which (scalar) parameters get updated is not expected to affect convergence.
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Inner loop
1. initializeφ0

p→q,g = φ0
p←q,h = 1

K
for all g, h

2. repeat
3. for g = 1 toK
4. updateφs+1

p→q ∝ f1

(
~φs

p←q, ~γp, B
)

5. normalize~φs+1
p→q to sum to 1

6. for h = 1 toK
7. updateφs+1

p←q ∝ f2

(
~φs

p→q, ~γq, B
)

8. normalize~φs+1
p←q to sum to 1

9. until convergence

Figure 6.6: Details Step 5. in Figure6.5; the inference algorithm for the variational parameters
(φ→nm, φ

←
nm) corresponding to the basic observationynm. The functionsg1 andg2 are updates for

φ→nmg andφ←nmh described in the text of Section4.1.3.

them, i.e., by keeping them at their optimal value given the data. Further, the nested algorithm

has the advantage that it trades time for space thus allowingus to deal with large graphs; at each

variational cycle we need to allocateNK + 2K scalars only. The increased running time is par-

tially offset by the fact that the algorithm can be parallelized and leads to empirically observed

faster convergence rates. This algorithm is also better than MCMC variations (i.e., blocked and

collapsed Gibbs samplers) in terms of memory requirements and convergence rates.

Complexity Recall that attribute measurements taken on individual objects in a population of

interest can be represented as a bipartite graph, and that relational measurements taken on pairs of

objects in a population of interest can be represented as a unipartite graph. In both cases, denote

the number of edges in the graph byI, the number of objects byN , the number of attributes byM ,

the number of latent patterns byK, and the number of iterations till convergence of the posterior

inference algorithm employed byT .

In summary, the complexity of fitting a model of multivariateattributes that follows the general
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specifications of Section4.2.1is

O
(
I +NMKT +K2T

)
,

whereas the complexity of fitting a model of multivariate relations that follows the general specifi-

cations of Section4.2.2is

O
(
I +N2KT +K2T

)
.
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Appendix A

Proof of Lemma 2

The proof is based on the following result.

Fact 1. There exists a permutationρ of the columns ofA(ℓ×κ) such that[A](i,ρ(j)) = [A1 |A2],

whereA1 is (ℓ× ℓ) and has full rank, andA2 is (ℓ× (κ− ℓ)).

As a consequence we can permute the components ofX to get[X]′ρ(i) = [X1 |X2]
′, andY =

AX = A1X1 + A2 X2, and finally expressX1 in terms ofX2 andY , like so:

X1 = A−1
1 · (Y − A2X2)

Proof. The Gibbs sampler scheme involves iterative sampling from the full conditional distribu-

tionsP (Zi|Z(−i) = z(−i)), for i = 1, ..., N andZ vector. A sufficient condition to ensure the

irreducibility of the chain, Besag (1974), requires that the support of the full conditional distribu-

tions is positive where that of the joint distribution ofZ is positive, that is:

if P (Zi = zi, Z(−i) = z(−i)) > 0 ⇒ P (Zi|Z(−i) = z(−i)) > 0. (A.1)

187



E.M. AIROLDI

2D case:we show that conditionA.1 holds. Specifically consider the situation displayed in figure

6 above, where there areκ− ℓ = 2 components ofX2 that we need to sample from. The chain is

at a pointX2 > 0 where the joint support is positive andA−1
1 (Y − A2X2) > 0, and it moves by

(+ǫ,+ǫ)′ to the pointX2 + (ǫ, ǫ)′ where the joint support is also positive andA−1
1 (Y − A2 (X2 +

(ǫ, ǫ)′) ) > 0. We want to show that whenever bothX2 andX2 + (ǫ, ǫ)′ are feasible, it is possible

to pass from the former to the latter by means of component-wise moves, as we would with Gibbs

moves; that is, the support of the full conditionals must be positive either atA−1
1 (Y − A2 (X2 +

(0, ǫ)′) ) or atA−1
1 (Y − A2 (X2 + (ǫ, 0)′) ). In other words we want to show that

{A−1
1 (Y − A2X2) ≥ 0 ∧ A−1

1 (Y − A2 (X2 + (ǫ, ǫ)′) ) ≥ 0 } (A.2)

implies

{A−1
1 (Y −A2 (X2 + (ǫ, 0)′) ) ≥ 0 ∨ A−1

1 (Y −A2 (X2 + (0, ǫ)′) ) ≥ 0 }. (A.3)

Assume thatA.2 holds. Notice thatA−1
1 (Y −A2 (X2+(ǫ, ǫ)′) ) = A−1

1 (Y −A2X2−ǫ(A11
2 , A

21
2 )′−

ǫ(A12
2 , A

22
2 )′) ≥ 0. AddA−1

1 (Y −A2X2) ≥ 0, non negative by assumption, and rearrange terms to

getA−1
1 (Y − A2X2 − ǫ(A11

2 , A
21
2 )′) + A−1

1 (Y − A2X2 − ǫ(A12
2 , A

22
2 )′) ≥ 0 which cannot be the

sum of two negative quantities. QED.

Similar derivations show that whenever the joint support has positive probability atA−1
1 (Y −

A2 (X2 − (ǫ, ǫ)′) ) then it also possible for the chain to get there either throughA−1
1 (Y −A2 (X2 −

(0, ǫ)′) ) or throughA−1
1 (Y −A2 (X2 − (ǫ, 0)′) ); and that the same condition holds as we consider

the moves to the pointsA−1
1 (Y − A2 (X2 + (ǫ,−ǫ)′) ) andA−1

1 (Y − A2 (X2 + (−ǫ, ǫ)′) ).

General case: the proof is exactly the same as in the 2D case, but more tedious. NowX2

and (ǫ, ..., ǫ)′ are κ − ℓ = n-dimensional. Assume aA−1
1 (Y − A2X2) ≥ 0 andA−1

1 (Y −
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A2 (X2 + (ǫ, ..., ǫ)′) ) ≥ 0 hold true. RewriteA−1
1 (Y −A2 (X2 + (ǫ, ..., ǫ)′) ) asA−1

1 (Y −A2X2 −

ǫ(A11
2 , A

21
2 , ..., A

n1
2 )′− ...− ǫ(A1n

2 , A
2n
2 , ..., A

nn
2 )′) ) ≥ 0. Add (n− 1)×A−1

1 (Y −A2X2) ≥ 0, non

negative by assumption, and rearrange terms to getA−1
1 (Y −A2X2 − ǫ(A11

2 , A
21
2 , ..., A

n1
2 )′) + ...+

A−1
1 (Y −A2X2 − ǫ(A1n

2 , A
2n
2 , ..., A

nn
2 )′) ≥ 0, which cannot be the sum ofn negative terms. QED.

Again similar derivations show that conditionA.1 holds as we consider moves to other points

X2 + (±ǫ, ...,±ǫ)′.
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Appendix B

Full Conditionals for the Gibbs Sampler

SayΘ = (λ1, ..., λκ, φ)′ thenP (X,Θ) =
∏κ

i=1 P (Xi|Θ)P (Θ) =
∏κ

i=1 P (Xi|λi, φ)P (λi)P (φ).

We wantλi ∈ (0,∞) andφ ∈ (0,∞). As an example, assume priors forλi and1/φ proportional

to a constant, andτ = 1. Then, noticing thatP (Θ|X, Y ) = P (Θ|X) I{A−1Y }(X), the following

full conditional distributions can be derived.

P (λi|X, Y ) ∝ ∏
P (Xi|λi, φ) · P (λi)

∝ 1

λ
Ik
2

i

e
− 1

2φ

„

log(Xi)−λi

λk
i

«2

P (φ|X, Y ) ∝ P (Xi|λi, φ) · P (φ)

∝ 1

φ
I
2 +2

e
− 1

2φ

P

i

„

log(Xi)−λi

λk
i

«2

.
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In order to computeP (X|Y,Θ) we use the fact in Appendix A to conclude thatP (X|Y,Θ) =

P (X2|Y,Θ) ××P (X1(X2)|Y,Θ); hence forXi ∈ X2 andXj ∈ X1 it follows:

P (Xi|X(−i), Y,Θ) ∝ P (Xi|Θ) · P (X1|Y,Θ)

= log-NormalXi
(λi, φλi) ·

∏
j log-NormalXj

(λj, φλj) I{A−1Y }(Xj)

(B.1)

In the analysis, we explored the various posterior distributions using the Gibbs sampler with

Metropolis steps. In order to sample fromP (Xi|Y,Θ) andP (λi|X, Y ), we usedχ2 and Uni-

form proposals, improper priors on the lambdas (all proportional to a constant), and several flavors

for the improper prior onφ (proportional to a constant, to1
φ
, and oto 1

φ2 ).
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Appendix C

Compendium of Network Models

Models for graphs of various types are scattered across research in the social, physical, mathemati-

cal, statistical, and computing sciences. In this review ofthe literature, I emphasize those statistical

models that attempt to express the dependencies between objects in the system, in some sense.

C.1 Static Graphs

The works in this section take as input measurements about objects that start from a network as

given.

Exponential Random Graph Models. Under the assumption that two possible social ties are

independent only if a common actor is involved in both1 Frank and Strauss(1986) devised the

following characterization for the probability distribution of undirected Markov graphs.

Pθ {Y = y} = exp
( n−1∑

k=1

θkSk(y) + τT (y) + ψ(θ, τ)
)

y ∈ Y , (B.1)

1This is the intuitive definition of Markov property for spatial processes on a lattice inBesag(1974).
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where the statisticsSk andT count specific structures, such as edges, triangles, andk-stars,{θk} =

θ and τ are the parameters, andψ(θ, τ) is the normalizing constant.Frank and Strauss(1986)

worked mainly with the three parameter models, whereθ3, . . . , θn−1 = 0. They proposed the

pseudo-likelihood estimation method to estimate the complete vector of parameters by maximizing

the following pseudo-likelihood function.

ℓ(θ) =
∑

i<j

log
(
Pθ {Yij = yij | Yuv = yuv for all u < v, (u, v) 6= (i, j)}

)
. (B.2)

Wasserman and Pattison(1996) proposed the current formulation of Exponential Random Graph

Models (ERGM), also referred to asp∗ models, as a generalization of the Markov graphs of Frank

and Strauss. For both directed and undirected graphs, they maintain a similar characterization of

the probabilities where the statisticsSk andT are substituted for arbitrary statisticsU . This leads

to the probability functions of the form

Pθ {Y = y} = exp
(
θ⊤u(y) − ψ(θ)

)
. (B.3)

More recently,Snijders et al.(2004) have proposed a variant of these models where the major prob-

lem of double-counting2 is mitigated, but not overcome.Hunter and Handcock(2004) propose an

alternative estimation scheme that corrects parameter estimates for double-counting. This estima-

tion procedure can be used for models based on distributionsin the curved exponential family.

Park and Newman(2004) formally characterize sensitivity issues.

Remark A. It is possible to express the current formulation of exponential random graphs using

the formalism of undirected graphical models, let us write the likelihood of an arbitrary undirected

2The statisticsSi(y) count graph structures. Although they are not independent,i.e., they count overlapping sets
of edges, they are assumed independent in the pseudo-likelihood. Ignoring the correlations is a bad idea, and causes
extreme sensitivity of the predicted number of edges to small changes in the value of certain parameters.
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graph.

p(x|θ) =

∏
c∈C ψ(xc|θc)

z
, (B.4)

wherexc denotes the nodes in cliquec, θc denotes the corresponding set of parameters,ψ are

non-normalized potentials over the cliques, andz =
∑

c∈C
∏

c∈C ψ(xc|θc) is the normalization

constant. If the likelihood is in the exponential family, wecan write:

p(x|θ) = exp
{

θ⊤u(x) − log z
}
.

Remark B. Models in this family are not “generative models” in that no assumptions are present

to explain how the sufficient statistics are generated. However, it is possible to posit a generative

model that includes exponential random graph models, or anyother conditional model, as part of

the emission model (Airoldi et al., 2006b).

Latent Variable Models. The notions of equivalence, structural equivalence, and blocks are

introduced byLorrain and White(1971) and further explored by many, notably byFaust(1988). A

comprehensive treatment of models that use blocks to express the complexity of the data is given

in Doreian et al.(2004). A summary of models and notions relevant for social networks developed

in the social sciences can be found inWasserman and Faust(1994).

Stochastic block models, the probabilistic treatment of blocks, have appeared early in the

statistical sciences (Holland and Leinhardt, 1975) and widely studied (Fienberg and Wasserman,

1981; Fienberg et al., 1981; Holland et al., 1983; Fienberg et al., 1985; Wang and Wong, 1987;

Wasserman and Anderson, 1987; Anderson et al., 1992) and recently rediscovered (Snijders and Nowicki,

1997; Nowicki and Snijders, 2001), including non-parametric treatment of the number of blocks

(Kemp et al., 2004), and integration with non-relational information to infer the blocks (Wang et al.,

2005). A general stochastic block model of mixed-membership hasbeen recently proposed (Airoldi et al.,
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2005b, 2006c), along with a framework to integrate external informationof different types (Airoldi et al.,

2006b), that relaxes the historical assumption of single-membership of objects to blocks, and esti-

mates block-to-block connectivity patterns in a Bayesian fashion.

Remark C. A general framework for integration of a different nature isdescribed byCarley

(2002).

An alternative approach latent space models, where observed interactions are projected on a la-

tent space through a generalized linear model (Hoff et al., 2002; Hoff, 2003b,a). Hoff et al.(2002)

use MCMC to infer latent space positions, treated as hyper-parameters.Hoff (2003b) specifies a

Gaussian prior over the latent space, thus giving to the model fully generative flavor, with the goal

of modeling reciprocity.

Remark D. It is possible to posit a generative model that includes generalized linear models

as part of the emission model (Airoldi et al., 2006b). The connection between stochastic block

models (SBM) and latent space models (LSM) is more subtle, though.

Both SBM and LSM seek to define a conditional probability distribution for relations{ynm}

among actors in a way that reflects some latent semantics (i.e., roles, topics, functions, etc.) of the

actors. LetZn denote a latent variable capturing the latent semantic representation of the actorn,

the SBM usually defines a generative modelynm ∼ f(·|Zn, Zm), of which the Z’s typically act as

indicators of context-dependent edge generating processes. On the other hand, an LSM maps the

observed relationynm to some latent semantic differences between the two actors via a regression

function, of which the Z’s typically represent the projections of the actors onto some latent metric

space where their differences can be measured via a Euclidian metric. Specifically, in LSM the Zs

are multivariate/continuous, e.g., could be drawn from a mv-normal, and their realizations indicate

the position of actors in the latent space. In SBM the Zs are multivariate/discrete, e.g., could be

drawn from amultinomial(θ), and their realizations indicate which group an actor belongs to,

for each observed interaction. In other words, the dimensionality of the Zs in SBM reflects how
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many latent groups to be captured in a domain, whereas in LSM the dimensionality of the Zs does

not have an explicit interpretation in terms of groups. In fact, in LSM we need to run a clustering

procedure (e.g., k-means) in the latent space where the actors are projected to, in order to decide

how many groups there are. Thus, the two types of network models are different: SBM focuses

on latent membership of each actor and underlines the importance of modeling the ”grouping” of

actors, whereas LSM focuses on latent distances and therefore stress more on modeling proper

projections of actors into a latent manifold. Hoff’s formulation of LSM is not a soft version of

SBM. As a results, SBM and LSM have some orthogonal advantages in modeling network data.

Remark E. Connections have been highlighted to MDS and other linear methods (Breiger et al.,

1975), to unsupervised learning, e.g., PCA, FA, (Ghahramani, 2004), and to matrix factorization

(Ding, 2005; Xing and Jordan, 2003).

Spectral Methods. Research on by Gaussian unit ensembles provides a probabilistic connec-

tion to spectral decompositions (Metha, 2004). In the computer science literature, there is a

stream of works in this area well summarized bySaul(2005), who discusses comparison to PCA,

MDS and other linear methods. Briefly, isomap (Tenenbaum et al., 2000), local linear embed-

ding (Roweis and Saul, 2000), laplacian eigenmaps (Belkin and Niyogi, 2002), Hessian eigenmaps

(Donoho and Grimes, 2003), maximum variance unfolding (Weinberger and Saul, 2004; Weinberger et al.,

2004; Sun et al., 2006), conformal eigenmaps (Coifman et al., 2005a,b; Lafon and Lee, 2006) and

its asymptotics (Nadler et al., 2005), and the recent reformulation of problems and solutions in

terms of tensors (He et al., 2005).

Simple Models of Real-World Phenomena and their Mathematical Properties. Much of the

research across communities concerns the study of real-world graphs and their properties with the

aim of building toy models that capture such properties. Forexample,Newman and Park(2003)

study transitivity and assortative mixing (i.e., positivecorrelation of degrees of adjacent vertices)
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via group structure;Hoff (2003a) studies transitivity, reciprocity and balance;Barabasi(2005a)

studies burst and heavy tails in human dynamics;Zheng et al.(2005) study the size of individu-

als’ social networks and means of estimating them from a certain type of survey questions; and

Ganesh et al.(2005) study the effects on epidemics of the topological properties of graphs.

Research originating in mathematics and physics posit simple algorithms for generating graphs

that replicate observed properties, which are amenable to probabilistic analysis.Bollobás and Riordan

(2003) review few of such algorithms for popular graph types (Barabasi and Albert, 1999; Kumar et al.,

2000; Cooper and Frieze, 2003), and present an extended analysis of the “LCD” model ofBuckley and Osthus

(2004). Other notable analytical investigations concern sampling, and asymptotic results.Park and Newman

(2004, 2005) give analytic solutions for the 2-star network and for clustered networks;Milo et al.

(2004c) analyze sampling algorithms;Kleinberg and Kleinberg(2005) describe asymptotics of

isomorphism and embedding;Stumpf et al.(2005) find that sub-samples of scale-free graphs are

not scale-free, and present a way to study properties of a sub-sample based on moment gener-

ating functions;Flaxman et al.(2005) describe the behavior of high degree vertices and eigen-

values in scale-free graphs;Chung and Lu(2003) characterize average distances given expected

degrees; andCaldarelli et al.(2004) study the formation of cycles. A series of works is con-

cerned with models and methods to find “statistically significant” motifs, i.e., recurring edge pat-

terns over sets of difference nodes (Berg and Lassig, 2004; Shen-Orr et al., 2002; Milo et al., 2002;

Artzy-Randrup et al., 2004; Milo et al., 2004a; Kashtan et al., 2004; Milo et al., 2004b). Newman

(2003b) portrays networks as mixtures of patterns; andVászquez et al.(2004) present the only in-

vestigation to date of how global patterns may arise from thecomposition of local ones. Few com-

prehensive reviews are available, which summarize many of these findings (Barabasi et al., 1999;

Albert and Barabasi, 2002; Dorogovtsev and Mendes, 2002; Newman, 2003a; Amaral and Ottino,

2004).

A notion that recently captured the attention of funding agencies and high profile journals is
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that of “topology types”.Airoldi and Carley(2005) present a review and a critique of such notion.

They survey generative algorithms for random graphs (Erdös and Rényi, 1960), Poisson graphs and

others that lead to heavy tails for the corresponding degreedistributions (Simon, 1955; Bollobás,

1985, 2001; Barabasi, 2005a), scale-free graphs (Faloutsos et al., 1999; Barabasi and Albert, 1999;

Huberman and Adamic, 1999; Adamic and Huberman, 2000; Barabasi et al., 2000; Barabasi and Bonabeau,

2003), small-world graphs (Milgram, 1967; Watts and Strogatz, 1998; Kleinberg, 1999a; Amaral et al.,

2000; Liben-Nowell et al., 2005), core-periphery graphs (Borgatti and Everett, 1999), and cellular

graphs and networks (Frantz and Carley, 2005a; Airoldi and Carley, 2006). Several of these topol-

ogy types are presented in heuristic terms, vaguely consistent across communities3. Airoldi and Carley

(2005) show that the slight differences in the sampling algorithms, which generate topologies that

adhere to the heuristic requirements of a specific type, are not stable in terms of the topological

properties of the graphs they lead to. That is, slight differences in the operational definitions for

the same topology type lead to separable graphs in terms of the set of common metrics used by

practitioners in the various communities4. A different set of concerns is explored in “robustness”

studies, which measure the stability of topological properties of graphs and networks of specific

types to disruption and other stress situations (Borgatti et al., 2005; Frantz and Carley, 2005b).

These works are simulation studies that approach the sub-sampling issues discussed above from

another perspective.

Remark F. Alternatively, being able to embed the various topology type in a smooth para-

metric continuum (e.g., Erdös random, to small-world, to ring lattice; see Watts and Strogatz,

1998) would help understanding the boundaries. Unfortunately,also this strategy is not practical.

There is a potpourri of necessary conditions that have to be satisfied by such a smooth parametric

3A notable survey is that ofMitzenmacher(2004), who presents a brief history of power-laws and lognormal
distributions, and discusses some of their connections from a generative perspective.Newman(2005) discusses the
connections among of power-laws, the Pareto distribution,and Zipf’s law. Airoldi and Shalizi(2006) present a clear
analytical overview of these connections.

4Few works survey network metrics and visualization tools; notables areCarley and Reminga(2004) and (Frank,
2000).

199



C.1. STATIC GRAPHS E.M. AIROLDI

continuum, which appear in the heuristic definitions of the various topology types, e.g., the same

degree distribution for all nodes or not, or shortest path asthe only notion of distance, or shortest

path and metric embedding. Although it is possible to posit agenerative process that satisfies all

the necessary conditions, such a generative process relieson a non-smooth parametric continuum.

Specifically, we would need to introduce in such a process a discrete parameter that controls the

number of different “probabilistic treatments” for the nodes, e.g., the number of degree distri-

butions. The problem is that, on one hand, the value of such a discrete parameter is difficult to

estimate. On the other hand, its correct estimation is fundamental in correctly assigning the topol-

ogy type. Ultimately, the diversity in the notions of topology types translates into the hardness of

the estimation task, upon the success of which depends our ability to discriminate among types.

To summarize, we can organize the various works according tofew aspects: (a) the notion(s)

of distance between pairs of nodes that are needed; (b) the use, or not, of the descriptive statistics,

as well as their nature, i.e., local versus global; (c) the existence of dependence constraints among

neighborhoods; (d) the focus on node patterns (groups) versus edge patterns (motifs), where we do

no distinguish similar edge configurations among differentsets of nodes. These aspects have to be

crossed with the nature of the models: (i) “generative” models and algorithms, both probabilistic

and deterministic; (ii) models and algorithms that contain“generative” ideas, both probabilistic

and deterministic; (iii) other models and algorithms.

Problems. More works have introduced methodological innovations in the context of specific

problems. Notable research in this sense concerned how to find communities in networks (Girvan and Newman,

2002; Newman, 2004a,b), and in bipartite graphs (Mishra et al., 2004). To this extent,Doreian et al.

(2004) summarize relevant works in the social sciences and develop a theory of generalized block

models. A cluster of research is about link-mining (Domingos, 2003; Jensen, 1999; Getoor, 2003;

Getoor and Diehl, 2005), graph mining (Chakrabarti, 2005), link prediction (Getoor et al., 2002;

Liben-Nowell and Kleinberg, 2003; Goldenberg and Moore, 2004), and link ranking. (Brin and Page,
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1998; Kleinberg, 1999b; Cohen et al., 1999; Ng et al., 2001). Other notable works are concerned

with the information flow within a network; the emergence of deadlines (Papadimitriu and Servan-Schreiber,

1999), the dynamics of information (Kleinberg, 2001), the dynamics of information exchange

(Dodds et al., 2003), how to maximize influence spread (Kempe et al., 2003), decentralized in-

formation processing (Van Zandt, 1997), and decentralized search (Kleinberg, 2000, 2004). A

practical set of concerns inspired methods for entity disambiguation (Malin et al., 2005), and clas-

sification of relational data (Macskassy and Provost, 2005). Solan et al.(2005) propose a model to

learn grammar-like rules in natural languages.

Empirical Studies. Another portion of research concerns findings that influenced the develop-

ment of theoretical aspects. Notable empirical studies include the web (Faloutsos et al., 1999;

Albert et al., 1999; Kleinberg and Lawrence, 2001), air traffic (Guimera et al., 2005), the creative

enterprise (Barabasi, 2005b), scientific collaborations (Newman, 2001), metabolic networks (Guimera and Amaral,

2005), decentralized search in email network (Adamic and Adar, 2005), transcriptional regulatory

network, (Balazsi et al., 2005), words (Steyvers and Tenenbaum, 2005), the organization within

the cell (Barabasi and Oltvai, 2004), politics (Porter et al., 2005), complex brain networks (Sporns et al.,

2004), and more (Newman et al., 2002).

C.2 Dynamics and Evolution

Most existent works focus on static networks, however, there are few that consider methodol-

ogy to deal with dynamics and evolution. Notables are the stream of works on cellular automata

(Ilachinski, 2001), the early works on diffusion (Coleman et al., 1957), the treatment of dynamics

with Markov-chains Monte-Carlo (Wasserman, 1980), dynamic random fields on undirected graph

(Shalizi, 2003), link-copying processes (Kleinberg et al., 1999; Leskovec et al., 2005b,a), cascad-
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ing behaviors (Watts, 2002), network tomography and latent allocation (Airoldi and Faloutsos,

2004), dynamics in the social space (Banks et al., 2005), and models that attempt at replicat-

ing real-world phenomena such as opinion formation (Wu and Huberman, 2005), and evolution

(Doreian and Stokman, 1997).

Empirical Studies. Very few studies exist to guide theoretical developments ina dynamic set-

ting. Few notables are communication networks (Airoldi , 2003; Airoldi and Faloutsos, 2004),

email networks (Kossinets and Watts, 2006), nucleic acid chain dynamics (Sales-Pardo et al., 2005),

and scientific collaborations (Barabasi et al., 2002).

C.3 Building Graphs from Data

The works in this section share the intuition that measurements about objects are inherently noisy;

the various authors attempt to model the uncertainty associated with the measurements in or-

der to make decisions whether two objects are related or not,and create a graph. A popu-

lar approach is that of associating a random variable with each “object”, e.g., Bernoulli, define

the process through which “observations” relate to binary outcomes, and estimate the parame-

ter of a Bayesian network (Heckerman, 1999) that describes the observations best, through de-

pendencies among objects. The estimated Bayesian network provides a probabilistic model for

the observed co-occurrences that can be used to predict missing links, or to assess the likeli-

hood of existing ones, (Getoor et al., 2002; Friedman and Koller, 2003; Heckerman et al., 2004;

Goldenberg and Moore, 2004; Teyssier and Koller, 2005). Important applications based on varia-

tions this approach have been used for building recommendersystems (Breese et al., 1998), social

networks (Breiger, 2003), and complex cellular networks (Friedman, 2004; Segal et al., 2005).
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C.4 Inadequacies of the Current Research

There are several dimensions that are relevant to statistical analyses of graphs and networks. Un-

fortunately no single approach develops, or at least allowsfor, all of them

Dimensions of interest are: (a) a “proper” likelihood function; (b) the fully generative nature of

the model; (c) replicability of interesting properties at both global and local level; (d) the focus on

edges or nodes; (e) notions of distance and embedding of graphs in a metric space; (f) identifiability

issues that need be explicitly identified; (g) hierarchicalrelations between dyads, triangles,k-stars,

k-triangles and other basic structural (connected) components that are used to summarize and

characterize an observed graph; (h) dependencies among relevant quantities, i.e., the sufficient

statistics, corresponding to a decomposition of the observed graph into cliques or other structures

of interest need be identified; (i) goodness of fit must be assessed—current models tend to over-fit

observed graphs and can not be easily extended as the observed network grows; (j) the possibility

of integrating data on different object types; and other dimensions.

With respect to this last dimension, i.e., integration of multiple object types and data about

them, most existent work tend to concern or assume specific types of data representations, e.g.,

temporal and sequential data in attribute space, or relational data represented by graphs or net-

works. We view learning problems along this line as “type-specific-learning” problems. Typi-

cally, one can develop solutions to type-specific-learningproblems by devising novel domain- and

data-specific models and algorithms that leverage domain knowledge and semantics of interest for

particular applications. Integrating heterogeneous datatypes under a unified model remains a chal-

lenge, however, especially for complex graphs that are simultaneously described by intrinsically

different types of characteristics, such as features in attribute space and links in relational space

(Airoldi et al., 2006b).

As we discussed in the previous section, there is a wide rangeof research questions that an
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elegant solution to the issues above may help us answer. It isuseful to keep those questions in

mind in order to guide our technical choices.
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