
Type safety for substructural specifications:
preliminary results

Robert J. Simmons

July 15, 2010
CMU-CS-10-134

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Substructural logics, such as linear logic and ordered logic, have an inherent notion of state and state change.
This makes them a natural choice for developing logical frameworks that specify evolving stateful systems.
Our previous work has shown that the so-called forward reasoning fragment of ordered linear logic can be
used to give clear, concise, and modular specifications of stateful and concurrent features of programming
languages in a style called Substructural Operational Semantics (SSOS).

This report is discusses two new ideas. First, I discuss a re-orientation of existing logics and logical frame-
works based on a presentation of logic as a state transition system. Second, utilizing this transition-based in-
terpretation of logic, I present a safety proof for the SSOS specification of a simple sequential programming
language, and discuss how that proof can be updated as the language is extended with parallel evaluation
and exception handling.
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1 Introduction

Robust and flexible frameworks for specifying and reasoning about programming languages form the bedrock
of programming languages research. In part, this is because they provide a common convention: histori-
cally, the most successful specification framework, Structural Operational Semantics (i.e. SOS), is the lingua
franca of PL research. Even more critical is the ability of a framework to permit reasoning about properties
of programming languages; in the case of SOS, the traditionally interrelated notion of “Safety = Progress +
Preservation” has essentially come to define what it means for a programming language to make sense.

One problem with SOS specifications of programming languages is that they are non-modular: espe-
cially when dealing with imperative and concurrent programming language features, the natural specification
of language parts cannot, in general, be combined to give a natural specification of the language whole. This
makes it difficult to straightforwardly extend a pure “toy” programming language with a feature like imper-
ative references without a complete overhaul of the language’s definition and type safety proof; a similar
overhaul is necessary to extend the definition of a large sequential language to handle concurrency. This has
troubling practical consequences: it means that it is more difficult to scale from a small language formaliza-
tion to a large one, and it means that existing language specifications are difficult to augment with features
that were not anticipated in advance.

In this preliminary report, which is based on the content of my thesis proposal, I discuss a solution that
involves two interconnected ideas. The first idea is a specification style, Substructural Operational Semantics
(i.e. SSOS). SSOS specifications generalize abstract machine specifications and permit clear and modular
specification of programming language features that involve state and concurrency — the specification style
that I consider is a generalization of the ordered SSOS specifications as presented in existing work [28].

The second idea is a logical framework based on forward-chaining in ordered linear logic. The specifics
of this framework are broadly similar to the ordered logical framework discussed in the aforementioned
paper on SSOS specifications, and the framework also shares broad similarities with an existing family of
logical frameworks such as LF [11], LLF [1], HLF [30], OLF [29], and (in particular) CLF [40]. The interest-
ing difference between existing work and this framework is that this framework is based on an interpretation
of logic that has a first-class notion of state transitions; as a result, a “step” of an SSOS specification can be
represented by a state transition in the logical framework.

The ability to talk about individual transitions and potentially non-terminating computations is essen-
tial for giving a full account of type safety, since type safety must also account for the behavior of non-
terminating programs. The primary novel contribution in this report is a proof of type safety, by way of
progress and preservation lemmas, for the SSOS specification of a simple programming language. I then
discuss how that proof can be straightforwardly extended to handle program extensions which introduce
concurrency, non-local transfer of control, and state.

In Section 2 I motivate substructural operational semantics specifications by discussing modular and
non-modular extensions to programming language specifications, and in Section 3 I motivate the treatment
of logic as a state transition system. Section 4 presents a logical framework based on the ideas in Section 3;
this section is rather technical and can probably be skipped on a first reading. In Section 5 I present a variety
of substructural operational semantics specifications and proofs of their type safety. Both the dynamic and
static semantics of the programming languages are presented as ordered logical specifications.
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2 Modular and non-modular specification

In the introduction, the phrase modular specification was used but not defined. Modularity means different
things in different settings; in this section, we will motivate the problem by considering modular and non-
modular extensions to a very simple programming language. We start by assuming that we have natural
numbers n and some operations (such as addition) on those natural numbers; expressions e can then be
defined by giving a BNF specification:

e ::= num(n) | e1 + e2

Call this language of numbers and additionL0; we next give a small-step structural operational semantics
for L0 that specifies a left-to-right evaluation order. We also adopt the standard convention of writing
expressions that are known to be values as v, not e:

num(n1) value

e1 7→ e′1
e1 + e2 7→ e′1 + e2

v1 value e2 7→ e′2
v1 + e2 7→ v1 + e′2

n1 + n2 = n3

num(n1) + num(n2) 7→ num(n3)

The extension of L0 with eager pairs (e ::= . . . | π1e | π2e | 〈e1, e2〉) is an example of a modular
extension. We can take the following natural small-step SOS specification of eager pairs and concatenate it
together with the L0 specification to form a coherent (and, with a suitable type system, provably type-safe)
specification of a language that has both features.

v1 value v2 value

〈v1, v2〉 value

e1 7→ e′1
〈e1, e2〉 7→ 〈e′1, e2〉

v1 value e2 7→ e′2
〈v1, e2〉 7→ 〈v1, e

′
2〉

e 7→ e′

π1e 7→ π1e
′
〈v1, v2〉 value

π1〈v1, v2〉 7→ v1

e 7→ e′

π2e 7→ π2e
′
〈v1, v2〉 value

π2〈v1, v2〉 7→ v2

In contrast, the extension of L0 with ML-style imperative references is an obvious example of a non-
modular extension. The extended syntax is (e ::= . . . | ref e | loc[l] | !e | e1 gets e2) — the expression ref e
creates a reference, !e dereferences a reference, e1 gets e2 assigns the value of e2 to the location represented
by e1, and loc[l] is a value, which only exists at runtime, referencing the abstract heap location l where some
value is stored. In order to give a small-step SOS specification for the extended language, we must mention
a store σ in every rule:

loc[l] value

(σ, e) 7→ (σ′, e′)

(σ, ref e) 7→ (σ′, ref e′)

v value l 6∈ dom(σ)

(σ, ref v) 7→ (σ[l := v], loc[l])

(σ, e) 7→ (σ′, e′)

(σ, !e) 7→ (σ′, !e′)

σ(l) = v

(σ, ! loc[l]) 7→ (σ, v)

(σ, e1) 7→ (σ′, e′1)

(σ, e1 gets e2) 7→ (σ′, e′1 gets e2)

v1 value (σ, e2) 7→ (σ′, e′2)

(σ, v1 gets e2) 7→ (σ′, v1 gets e′2)

v2 value

(σ, loc[l] gets v2) 7→ (σ[l := v2], v2)

The non-modularity of this extension comes from the fact that it forces us to rewrite the rules describing
addition as well:

(σ, e1) 7→ (σ′, e′1)

(σ, e1 + e2) 7→ (σ′, e′1 + e2)

v1 value (σ, e2) 7→ (σ, e′2)

(σ, v1 + e2) 7→ (σ′, v1 + e′2)

n1 + n2 = n3

(σ, num(n1) + num(n2)) 7→ (σ, num(n3))
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2.1 Modularity and specification styles

Another interesting loss of modularity in SOS specifications appears when we introduce exceptions and
exception handling (e ::= . . . | error | try e1 ow e2).

e1 7→ e2

try e1 ow e2 7→ try e′1 ow e2

v1 value

try v1 ow e2 7→ v1 try error ow e2 7→ e2

Our rules for addition do not need to be revised to be compatible with this extension, but in order to preserve
type safety, we must provide a way for errors to “bubble up” through additions.

error + e2 7→ error

v1 value

v1 + error 7→ error

We can avoid this particular form of non-modularity while technically staying within the SOS frame-
work. This is possible if we use an abstract machine style of specification. Abstract machine-style specifi-
cations have an explicit control stack (or continuation), usually denoted k, that represents unfinished parts
of the computation; a control stack is a list of continuation frames; we introduce two continuation frames f
in order to specify L0:

• (2 + e2) is a frame waiting on the first argument to be evaluated to a value so that the evaluation of
e2 can begin, and

• (v1 + 2) is a frame holding the already-evaluated value v1 waiting on the second argument to be
evaluated to a value.

Basic abstract machine specifications have two kinds of states: an expression being evaluated on a stack
(k� e) and a value being returned to the stack (k� v). The abstract machine specification of the operational
semantics of L0 has four rules:

k � num(n) 7→ k � num(n)

k � (e1 + e2) 7→ (k,2+ e2)� e1

(k,2+ e2)� v1 7→ (k, v1 +2)� e2

(k, num(n1) +2)� num(n2) 7→ k � num(n3) (if n1 + n2 = n3)

Given this specification, we can define the behavior of exceptions by adding a new frame (try 2 ow e2)
and a new kind of state — (k�), a stack dealing with an error.

k � try e1 ow e2 7→ (k, try 2 ow e2)� e1

(k, try 2 ow e2)� v1 7→ k � v1

k � error 7→ k�

(k, try 2 ow e2)� 7→ k � e2

(k, f)� 7→ k � (if f 6= try 2 ow e2)

When it comes to control features like exceptions, abstract machine specifications are more modular. We
did not have to specifically consider or modify the stack frames for addition (or for multiplication, or func-
tion application. . . ) in order to introduce exceptions and exception handling; one rule (the last one above)
interacts modularly with essentially any “pure” language features. Both the SOS specification and the ab-
stract machine specification were reasonable ways of specifying pure features like addition, but the abstract
machine specification better anticipates the addition of control features.
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Observation 1. Different styles of specification can allow different varieties of programming language
features to be specified in a modular style.

Another way of stating this observation is that we must precisely anticipate the language features dealing
with state and control if SOS-style specifications are our only option. When we pull back and look at a choice
between these two specification styles, we only need to generally anticipate whether we might need control
features like exceptions or first-class continuations; if so, we should use an abstract machine specification.

2.2 Modularity and ambient state

Of course, an abstract-machine-style presentation does not solve the problem with mutable references that
we discussed at first! Various attempts have been made to address this problem. The Definition of Standard
ML used an ad-hoc convention that, applied to our example, would allow us to write the original L0 rules
while actually meaning that we were writing the state-annotated version of the rules [21, p. 40]. In this case,
the convention is less about modular specification and more about not writing hundreds and hundreds of
basically-obvious symbols in the language definition.

Mosses’s Modular Structural Operational Semantics (MSOS) attempts to formalize and standardize this
sort of convention [22]. A transition in MSOS is written as (e1

X−→ e2), whereX is an open-ended description
of the ambient state. By annotating congruence rules with X = {...}, the MSOS specification of L0 specifies
that the congruence rules simply pass on whatever effects happen in subexpressions. The reduction rule is
annotated with X = {—} to indicate that it has no effect on the ambient state.

v1 value e2
{...}−−→ e′2

v1 + e2
{...}−−→ v1 + e′2

n1 + n2 = n3

num(n1) + num(n2)
{—}−−→ num(n3)

Reduction rules that actually access some part of the ambient state, such as reduction rules for referencing
the store, can mention and manipulate the store as necessary:

σ(l) = v

! loc(l)
{σ, —}−−−−→ v

v2 value

loc(l) gets v2
{σ, σ’=σ[l := v2], —}
−−−−−−−−−−−−−→ v2

There is a good bit of related work along the lines of MSOS; for example, Implicitly-Modular Structural
Operational Semantics (I-MSOS) is an extension of MSOS that partially removes the need for the explicit
annotations X [23]. In all cases, however, the goal is to provide a regular notion of ambient state that allows
each part of a language specification to leave irrelevant parts of the state implicit and open-ended.

Observation 2. A framework that provides an open-ended notion of ambient state assists in writing modular
programming language specifications.

2.3 Modularity and the LF context

Logical frameworks in the LF family (such as LF [11], LLF [1], OLF [29], CLF [40], and HLF [30]) have
an inherent notion of ambient information provided by the framework’s context. As an example, consider
the following LF specification of the static semantics of L0 (we use the usual convention in which capital
letters are understood to be universally quantified):

of : exp→ tp→ type.
of/num : of (num N) int.
of/plus : of E1 int→ of E2 int→ of (plus E1 E2) int.
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The contents of the LF context are specified independently from the specification of the inference rules.
If we declare the LF context to be empty, our specification corresponds to an “on-paper” specification of the
language’s static semantics that looks like this:

num(n) : int
e1 : int e2 : int
e1 + e2 : int

This assumption that there is nothing interesting in the context, frequently called a closed world assumption,
is not the only option. Another option is to declare that the LF context may include free expression variables
x in tandem with an assumption that x:τ for some type τ . In this case, the LF specification written above
corresponds to the following on-paper specification:

Γ, x:τ ` x : τ Γ ` num(n) : int
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Language features that incorporate binding require a variable context in the specification of their static
semantics; as a result, our original on-paper static semantics could not be composed with an on-paper static
semantics of language features like let-expressions and first-class functions. But because the contents of the
LF context are open-ended, we can combine the LF specifications of the static semantics. The specification
we wrote down in LF is open-ended in precisely the way we need it to be, even though the on-paper version
is not.

Observation 3. The LF context provides an open-ended notion of ambient information that enhances the
modularity of certain specifications.

Unfortunately, the open-endedness we describe here is useful for capturing ambient information in a
static semantics; it is not useful for capturing ambient state in a dynamic semantics. The LF context only
supports the addition of new assumptions that are persistent and unchanging, but capturing the dynamic
semantics of stateful features like mutable references requires adding, modifying, and removing information
about the state of the specified system. The solution is, in principle, well understood: logical frameworks
based on substructural logics (especially linear logic) can capture stateful change — it is possible to remove
facts from a linear logic context. Therefore, assumptions in a linear logic context can be thought of as
representing ephemeral facts about the state of a system, facts which might change, as opposed to persistent
assumptions which can never be removed or modified. Examples of logical frameworks that provide an
open-ended notion of ambient state through the use of a linear context include Forum [18], Lolli [14], LLF
[1], and CLF [40]. Furthermore, all of these frameworks have been given an operational interpretation as
logic programming languages, so specifications are, at least in theory, executable.

2.4 Modularity in substructural operational semantics

These observations motivate the design of substructural operational semantics and, in turn, the design of the
logical framework. We can give a initial picture of SSOS specifications at this point by thinking of them as
collections of string rewriting rules where, for instance, the rewrite rule a ·b� c allows the string a · a · b · b
to transition to the string a · c · b.

SSOS specifications resemble the abstract machine-style specifications above, but instead of capturing
the entire control stack k as a single piece of syntax, each continuation frame f is captured by a token
cont(f) in the string. The token eval(e) represents an evaluating expression e, and is analogous to the state
(k � e) in the abstract machine specification, whereas the token retn(v) represents a returned value and is
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analogous to the state (k � v) in the abstract machine specification. The resulting rules are quite similar to
the abstract machine rules:

eval(num(n))� retn(num(n))

eval(e1 + e2)� cont(2+ e2) · eval(e1)

cont(2+ e2) · retn(v1)� cont(v1 +2) · eval(e2)

cont(num(n1) +2) · retn(num(n2))� retn(num(n3)) (if n1 + n2 = n3)

We can then give modular specifications of exceptions and exception handling much as we did in the abstract
machine for control, and the non-local nature of the specifications means that we can add state. To give a
very simple example that does not generalize well, we can modularly extend the language with a single
counter; evaluating the expression get gets the current value of the counter, and evaluating the expression
inc gets the current value of the counter and then increments it by one. The value of the counter is stored in
a token counter(n) that appears to the right of the eval(e) or retn(v) tokens (whereas the stack grows off to
the left).

eval(get) · counter(n)� retn(num(n)) · counter(n)

eval(inc) · counter(n)� retn(num(n)) · counter(n+ 1)

Just as the rules need only reference the parts of the control stack that they modify, the rules only need to
mention the counter if they access or modify that counter in some way. Again, this is a terrifically non-
generalizable way of extending the system with state, because the use of ambient state is not “open-ended”
— where would we put the second counter? Nevertheless, it is a specification of a stateful feature that can
be composed modularly with the specification of addition.

After we motivate and present the logical framework we plan to use in the next two sections, we will
return to this style of specification and see how it can be used to give modular specifications of exceptions
and parallel evaluation.

3 Logics of deduction and transition

The aforementioned logical frameworks that provide an open-ended notion of ambient state through the
use of substructural logics — Forum, CLF, etc. — can be difficult to use for certain types of reasoning
about properties of systems specified in the framework. One source of difficulty is that many properties of
specified systems are naturally described as properties of the partial proofs that arise during proof search,
but in all of these frameworks it is more natural to reason about properties of complete proofs — put another
way, SSOS-like specifications are properly understood small-step specifications, but the logical frameworks
only make it easy to reason about big-step properties of those specifications. In this section, we discuss a
solution to this mismatch: we define linear logic as a state transition system, at which point it is natural to
talk about sequences of transitions (which do, in fact, correspond to partial proofs in a sequent calculus) as
first-class entities. The only other solutions that I am aware of are based on Ludics, a presentation of logic
that treats proofs with missing “leaves” as objects of consideration [10].

Underlying logical frameworks like LF and LLF is a particular justification of logic, dating back to
Martin-Löf’s 1983 Siena Lectures [15], which holds that the meaning of a proposition is captured by
what counts as a verification of that proposition. In Section 3.1 I briefly revisit Martin-Löf’s verificationist
meaning-theory and how it relates to the use of canonical forms to adequately capture deductive systems.
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There is another presentation of logic — first outlined by Pfenning [25] and developed further in Sec-
tion 3.2 — which underlies a line of work on using forward-chaining in substructural logics for logic pro-
gramming and logical specification [36, 37, 28]. Substructural contexts are treated as descriptions of the
ephemeral state of a system, and the meaning of a proposition is captured by the state transitions it gener-
ates.

The integration of these two ways of understanding logic requires care, as a naïve approach for combin-
ing the two paradigms will destroy desirable properties of both the canonical-forms-based framework and
the state-transition-based framework. In Section 3.3, I explain my proposed approach, which is based on the
observations of adjoint logic [31].

3.1 A canonical-forms-based view of logic

Existing work on the proof theory of logical frameworks, including the LF family of logical frameworks
[11], is based in part on a verificationist philosophy described in Martin-Löf’s Siena Lectures [15]. A verifi-
cationist meaning-theory provides that the meaning of a proposition is precisely captured by its introduction
rules — that is, by the ways in which it may be verified. A proposition A ∧ B is true, then, precisely if
A is true and B is true, and a proposition A ⊃ B is true precisely if we can verify B given an additional
assumption that A is true.

The elimination rules, on the other hand, must be justified with respect to the introduction rules. We
justify the elimination rules for a connective in part by checking their local soundness and local complete-
ness [26]. Local soundness ensures that the elimination rules are not too strong: if an introduction rule
is immediately followed by an elimination rule, the premise gives us all the necessary evidence for the
conclusion.

D1

A true
D2

B true

A ∧B true
∧I

A true
∧E1

⇒R
D1

A true

Local completeness, on the other hand, ensures that the elimination rules are not too weak: given a derivation
of the compound connective, we can use elimination rules to get all the evidence necessary to reapply the
introduction rule:

D
A ∧B true

⇒R

D
A ∧B true

A true
∧E1

D
A ∧B true

B true
∧E2

A ∧B true
∧I

3.1.1 Verifications and canonical forms

An examination of the requirement that introduction rules precisely define the connectives leads to a re-
stricted set of proofs called verifications. If there is a proof of the truth ofA∧B, then we don’t know a great
deal about its proof. Maybe it looks like this!

...
D ∧ (A ∧B) true

A ∧B true
∧E2

...
C true

(A ∧B) ∧ C true
∧I

A ∧B true
∧E1
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On the other hand, if we have a verification of A ∧ B then we know that the last step in its proof combines
two (smaller) verifications, one of which is a verification of A and the other of which is a verification of B.
We consider the verifications to be the canonical proofs of a proposition — when we introduce proof terms,
verifications correspond to a restricted set of proofs called the canonical forms.

3.1.2 Definitions, atomic propositions, and adequacy

The canonical forms are interesting from the point of view of logical frameworks because they allow us to
capture a representative of a derivation as a proof term within the logic. To use a standard example, we
can introduce a new atomic proposition (add N M P) that is defined by the two constants add/z and add/s.
We continue to use the convention that identifiers beginning with capital letters represent variables that are
implicitly universally quantified.

z : nat.
s : nat→ nat.

add : nat→ nat→ nat→ type.
add/z : add z N N.
add/s : add N M P→ add (s N) M (s P).

Given this signature, we would like to say that we also know what counts as a verification of the propo-
sition add (s z) (s z) (s(s z)) — in particular, that only one thing will do: a use of add/s and a verification of
add z (s z) (s z). But this is not the case! We can also verify a proposition add (s z) (s z) (s(s z)) by using an
assumption of the same proposition, or by using an assumption of the form add N M P → add N M P and a
verification of add (s z) (s z) (s(s z)), or by using an assumption of the form add N (s M) P→ add N M P and
a verification of add (s z) (s(s z)) (s(s z)). . . The point is that the very open-endedness of the LF context that
we pointed out in Observation 3 is preventing us from making the claim that we know something specific
about what counts as a verification of the proposition add (s z) (s z) (s(s z)).

However, it is intuitively reasonable enough to require that our current assumptions include neither
assumptions of the form add N M P nor assumptions that can be immediately used to prove add N M P
(which is effectively a closed world assumption). Under this requirement, our intuition for what counts as a
verification of the proposition add (s z) (s z) (s(s z)) is correct. Considerations such as these lead to a formal
notion of adequate encodings, which in this case means that there is a bijection between terms of the type
add N M P and derivations of N + M = P as defined by the following deductive system:

N + M = P

s N + M = s P
add/s

z + N = N
add/z

There is, as the example of a static semantics from Section 2 illustrates, tension between considerations
of modularity (which dictate that the form of the context should be as open-ended as possible) and adequacy
(which dictate that the form of the context should be as fully specified as possible). However, experience
shows that, by incorporating concepts such as subordination [39], this tension is unproblematic in practice.

The above discussion is informal, and adequacy is given a much more careful treatment elsewhere
[11, 12]. The point of the preceding discussion is to introduce the use of canonical forms for specifying
inductively defined systems and to underscore the necessity of imposing some sort of regularity constraint
on the context.
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3.2 A state-transition-based view of logic

The presentation of logic as verifications and canonical forms treats atomic propositions and their proofs
as the primary objects of consideration. We are interested in treating the state of a system and transitions
between states as the primary objects of consideration. The result has strong similarities to sequent calculus
presentations of linear logic, which is unsurprising: previous work has universally started with a sequent
presentation of logic and then “read off” a state transition system. Cervesato and Scedrov’s multiset rewrit-
ing language ω is a prime example of this process; an introduction to ω and a review of related work in the
area can be found in their article [3].

We will treat the state of a specified system as being defined by a set of ephemeral facts about that state;
we think of these ephemeral facts as resources. Therefore, states are multisets of ephemeral facts (A res);
the empty multiset is written as (·) and multiset union is written as (∆1,∆2). We define the meaning of
propositions by the effect they have on resources. The proposition A&B represents a resource that can
provide either a resource A or a resource B, and > is an unusable resource, so the resource (> res) will
always stick around uselessly. The proposition ∀x:τ.A(x) represents a resource that can provide the resource
A(t) for any term t with type τ (we assume there is some signature Σ defining base types and constants).

A&B res ; A res(&T1)

A&B res ; B res(&T2)

(no rule for >)

∀x:τ.A(x) res ; A(t) res if Σ ` t : τ(∀T )

Linear implication represents a sort of test. It simplifies matters if, initially, we only consider linear impli-
cation (Q( A) where Q is an atomic proposition; it means that we can consume Q to produce A.

Q res, Q( A res ; A res((T1)

The transition relation is, in general, ∆1 ; ∆2, and there is a congruence or frame property that says a
transition can happen to any part of the state.

∆1 ; ∆′1
∆1,∆2 ; ∆′1,∆2

frame

We also may allow the signature Σ to mention certain resources as being valid or unrestrictedly available;
in this case we can spontaneously generate new copies of the resource:

·; A res if (A valid) ∈ Σ(copy)

This is a very brief version of this story, and in its current telling it can be understood as a subset
of Cervesato and Scedrov’s ω multiset rewriting language [3]. However, that language and other similar
languages take the notion of derivability in a linear logic sequent calculus as primary and derive a transition
semantics from open proofs. The story we have told here starts with transitions and generalizes to all of
first-order linear logic save for additive disjunction (A ⊕ B) and its unit 0.1 I believe there is an inherent
value in reducing the gap between the specification of linear logic and the specification of systems within
that logic, and having transitions as a first-class notion within the logical framework appears to clarify many
issues related to reasoning about specifications.

1Furthermore, I have made substantial, though unfinished, progress on incorporating these connectives into a transition-based
presentations as well.
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3.2.1 Canonical transitions

Our motivation for describing logic as a transition system is to make it more natural to use logic for the
specification of transition systems. An example of a very simple transition system that we would hope to
represent is the following bare-bones asynchronous pi-calculus represented by the usual structural congru-
ences and the following reduction rule:

c(x).p ‖ c〈v〉 7→ p[v/x]

To represent this system in logic, we can show that the above transition system corresponds exactly
to the following signature where there are two sorts of terms, channels chan and processes process. A
process can be either asynchronous send along a channel (send C V, i.e. c〈v〉) or a receive along a channel
(recv C (λx.P x), i.e. c(x).p). The resource (proc P) represents the active process P.

send : chan→ chan→ process.
recv : chan→ (chan→ process)→ process.

proc : process→ type.

synch : proc(recv C (λx.P x))( proc(send C V)( proc(P V).

What do we mean by corresponds exactly? Perhaps something like weak bisimulation or strong bisimu-
lation would do, but we really want something akin to the adequacy properties discussed earlier. Adequacy
in this setting means that there should be a bijective correspondence between states in linear logic and states
in the simple process calculus; furthermore, transitions in both systems must respect this correspondence —
any single transition that is made in the logic can be mapped onto a single transition in the process calculus,
and vice-versa.

This, certainly, is not the case in system we have described so far. Take the synchronization transition
(a(x).x〈x〉 ‖ a〈b〉) 7→ b〈b〉 in the simple process calculus. We can say that a(x).x〈x〉 is represented
as the atomic proposition proc(recv aλx. send x x) and that a〈b〉 is represented as the atomic proposition
proc(send a b). However, because the synch rule has two premises, fully applying it will take at least two
transitions in linear logic (five if we count the three transitions necessary due to the implicit quantification
of C, P, and V in the synch rule).

The analogue to canonical forms and verifications in this setting addresses this problem. A focused
presentation of our linear logic allows us to restrict attention to transitions that atomically copy a proposition
from the signature, instantiate all of its variables, and satisfy all of its premises. Then we can say that the
synch rule defined in the signature corresponds to the following synthetic transition:

proc(send C V) res, proc(recv Cλx.Px) res ; proc(P V) res(synch)

The synthetic transition associated with synch precisely captures the transition c(x).p ‖ c〈v〉 7→ p[v/x]
in the process calculus, so transitions in the encoded system are adequately represented by transitions in the
logical framework. In order to ensure that states are adequately represented in the framework, we again must
impose a constraint on the regular structure of the context, namely that it only consists of atomic resources
of the form (proc P).

3.3 Combining transitions and canonical forms

In Section 3.1, we saw that deductive systems, such as the addition of unary natural numbers, can be ade-
quately represented in a logical framework based on verifications and canonical forms. In Section 3.2 we
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saw that transition systems can be characterized by an interpretation of linear logic that treats the logic as a
transition system. However, a transition system frequently needs to refer to some notion of inductive defi-
nition as (essentially) a side condition. As a slightly contrived example, consider a transition system where
each resource contains a natural number and where two distinct numbers can be added together:

num N1 res, num N2 res ; num(N3) res (if add N1 N2 N3 can be derived)

Recall that, in Section 2 when we presented the psedo-SSOS specification of a language with addition, we
also used a side condition of this form, but now we have made it explicit that the content of the side condition
is an inductively defined judgment.

3.3.1 Introduction to adjoint logic

In the next section, we will take a fragment of LF — a canonical forms-based logic for representing syntax
and derivations (which are used to express side conditions) — with a transition-based presentation of ordered
linear logic that is used to represent evolving systems. The basis for this combination is adopted from Reed’s
adjoint logic [31], in which two syntactically distinct logics can be connected through unary connectives U
and F . In the logical framework presented in the next section, these two logics will be a fragment of LF and
a transition-based ordered linear logic, but in this section, we will consider a logic that combines persistent
and linear logic:

Persistent propositions P,Q,R ::= p | UA | P ⊃ Q
Linear/ephemeral propositions A,B,C ::= a | FP | A( B

Following Reed (and in order to match up with the naturally sequent-calculus-oriented state transition
presentation of logic) we will consider adjoint logic as a sequent calculus. Persistent contexts Γ hold per-
sistent facts and linear contexts ∆ hold ephemeral resources; the sequent Γ ` P characterizes proofs of
persistent propositions and the sequent Γ; ∆ ` A characterizes proofs of linear (ephemeral) propositions.
Reading the rules in a bottom-up fashion, the linear goal FP is only true if there are no linear hypotheses
and the persistent proposition P is provable; the linear hypothesis FP can be replaced by the persistent
hypothesis P .

Γ; a ` a
Γ ` P

Γ; · ` FP
Γ, P ; ∆ ` C

Γ; ∆, FP ` C
Γ; ∆, A ` B

Γ; ∆ ` A( B

Γ; ∆A ` A Γ; ∆, B ` C
Γ; ∆,∆A, A( B ` C

The description of persistent connectives below has one quirk: there are two left rules for (P ⊃ Q),
one where the ultimate goal is to prove a persistent proposition and one where the ultimate goal is to prove
a linear proposition. This is not a quirk that is unique to adjoint logic; it is the same issue that requires
Pfenning and Davies’ judgmental S4 to have two elimination rules for 2A [26], for instance.2

p ∈ Γ

Γ ` p
Γ; · ` A
Γ ` UA

(UA) ∈ Γ Γ; ∆, A ` C
Γ; ∆ ` C

Γ, P ` Q
Γ ` P ⊃ Q

(P ⊃ Q) ∈ Γ Γ ` P Γ, Q ` R
Γ ` R

(P ⊃ Q) ∈ Γ Γ ` P Γ, Q; ∆ ` C
Γ; ∆ ` C

As Reed notes, if we erase every persistent proposition save for UA, the resulting logic is equivalent to
linear logic with exponentials, where !A ≡ FUA. Similarly, if we erase every linear proposition save for
FP , the resulting logic is equivalent to the Pfenning-Davies reconstruction of lax logic where #P ≡ UFP .

2Another way to look at this “quirk” is that the real rule is parametric in the conclusion, able to prove either A res or P valid ,
and we just give the two instances of the real rule here.
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3.3.2 Combining transitions and canonical forms with adjoint logic

My approach in the following section is to use adjoint logic to present a framework that connects a persistent
logical framework of canonical forms and a substructural logical framework of transitions. The result, as we
have just seen, combines elements of substructural logic with elements of lax logic, so it is not surprising
that the end result turns out to be very similar to the CLF logical framework that (in a rather different way)
also segregates transitions and deductions using a combination of lax and substructural logic.3 It is even
closer to the semantic effects fragment of CLF, which requires the canonical forms-based fragment of the
language to forgo any reference to the state-transition-based fragment [5].

The framework I present in the next section has no way of incorporating transitions within canonical
forms; syntactically, this is achieved by removing the proposition UA from the framework. This exclusion
decreases the expressiveness of the framework relative to CLF, but brings it closer in line to the semantic
effects fragment. The connective F is then the only connection between the two systems, and since it retains
much of the character of the linear logic exponential, it is written as !P even though it actually acts only as
the “first half” of the exponential.

4 A logical framework for evolving systems

In the previous section, we considered the use of logic to describe both deductive systems and state-transition
systems, and our immediate goal is to use a logical framework based on these principles to specify the oper-
ational semantics of programming languages with state and concurrency. In this section we will present that
logical framework, which based on a substructural logic that includes both ordered and linear propositions.

In addition to CLF, the design synthesizes ideas from Polakow et al.’s ordered logic framework [29],
Reed’s adjoint logic [31], and Zeilberger’s polarized higher-order focusing [41]. There is no fundamental
reason why the canonical forms fragment of the framework described here cannot be the full dependently
typed logical framework LF [11, 12]; however, it is convenient for our current purposes to just consider a
restricted fragment of LF.

4.1 Representing terms

We have already been using LF-like representations of terms: both natural numbers and process-calculus
terms can be adequately represented as canonical forms in a simply-typed lambda calculus under the fol-
lowing signature.

nat : type. process : type.
z : nat. chan : type.
s : nat→ nat. send : chan→ chan→ process.

recv : chan→ (chan→ process)→ process.

A term type τ is either an atomic term type a defined by the signature (like nat, process, and chan) or an
implication τ → τ . The signature also defines term constants (like z, s, send, and recv) which are defined
to have some type τ . Canonical terms are the η-long, β-normal terms of the simply-typed lambda calculus

3I believe that adjoint logic provides a better explanation than lax logic for how CLF is actually used and thought about, but
I should re-emphasize that the critical difference between CLF and the framework presented in the next section — the reason I
cannot use CLF directly — is that CLF does not treat individual state transitions and sequences of state transitions as objects of
consideration.
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using constants drawn from the signature: the natural number 3 is represented as s(s(s z)) and the process
a(x).x〈x〉 is represented as the canonical term (recv aλx. send x x).

4.2 Judgments as types

An organizing principle of LF-like frameworks is the representation of judgments as types — in the case of
the aforementioned example of addition, the three-place judgment n1 + n2 = n3 is represented by the type
family add of kind nat → nat → nat → type, and for any specific n1, n2, and n3 we represent derivations
of n1 + n2 = n3 as canonical proof terms of type (add n1 n2 n3) in the following signature:

add : nat→ nat→ nat→ type.
add/z : ΠN:nat. addzNN.
add/s : ΠN:nat.ΠM:nat.ΠP:nat. add N M P→ add (s N) M (s P).

In this signature, the proof term (add/s z (s z) (s z) (add/z (s z))) acts as a representative of this derivation:

z + s z = s z
add/z

s z + s z = s(s z)
add/s

More generally, type families are declared as (a : τ1 → . . . → τn → type) in the signature; atomic
types in the type family a are written as a t1 . . . tn, where each of the arguments ti has type τi. Types A are
either atomic types, implications A→ B, or universal quantifications over terms Πx:τ.A. We usually leave
universal quantification implicit in the signature, which allows us to write rules as we did earlier:

add/z : add z N N.
add/s : add N M P→ add (s N) M (s P).

Furthermore, we leave the instantiation of implicit quantifiers implicit as well, which allows us to write the
proof term corresponding to the above derivation more concisely as (add/s add/z).

4.3 States as contexts

In the transition-based fragment of the logic, the states of the systems we intend to specify are represented
as collections of atomic propositions. In sequent calculus-based logical frameworks, these collections cor-
respond to contexts; we adopt this terminology.

Ephemeral contexts Linear logic and other substructural logics are useful for describing systems that
change over time; part of the reason for this is that a linear resource is effectively an ephemeral fact about
the state of a system — it describes something that is true in the current state of the system but which may
not be true in a future state of the system. Our framework considers two kinds of ephemeral facts: linear
facts (insensitive to their position relative to other facts) and ordered facts (sensitive to their position relative
to other ordered facts).

We incorporate ephemeral facts into our framework by introducing two different kinds of type family:
linear type families (where we write typel — l for linear — instead of type in the type family declaration)
and ordered type families (where we write typeo — o for ordered — instead of type in the type family
declaration). This effectively enforces a syntactic separation between those persistent, linear, and ordered
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atomic propositions; the need for this syntactic separation has been noted in previous work [36, 37] but was
only given a logical interpretation in [28].

An ephemeral context (written ∆) is syntactically a list of linear and ordered types, but we consider
contexts to be equivalent if they can be made syntactically equal by reordering linear propositions. As an
example, if al and bl are linear atomic propositions and co and do are ordered atomic propositions, then the
contexts (al, bl, co, do), (co, do, bl, al), and (co, al, do, bl) are all equivalent, but they are not equivalent to (al,
bl, do, co) because the ordered propositions co and do appear in a different order. We write this equivalence
on contexts as ∆ ≈ ∆′.

We can use ordered resources to represent the concrete syntax of the language L0 from Section 2 by
defining an ordered atomic proposition for each syntactic token:

+ : typeo .
num : nat→ typeo .

The proposition + represents the addition token, and num N (where N is a term of type nat) represents a
token for the natural number N. While we cannot yet actually describe parsing, we can intuitively say that
the ephemeral context (num(s z)), +, (num z) corresponds to the L0 program 1 + 0, the ephemeral context
(num(s z)), +, (num z), +, (num(s(s z))) is ambiguous and corresponds to either the L0 program (1 + 0) + 2
or the L0 program 1 + (0 + 2), and the ephemeral context +, +, (num(s z)) is not syntactically well-formed
and does not correspond to any L0 program.

As in sequent calculus presentations of a logic, we annotate the propositions in a context with unique
variable names. Therefore, the context corresponding to the first L0 program above could also have been
been written as (x1 : num(s z), x2 : +, x3 : num z). We further follow the convention of sequent calculus
presentations of logic by often not mentioning these variable names when it is possible to reconstruct them.

Persistent contexts In addition to ephemeral state, is important to allow systems to have persistent state,
which includes both dynamically introduced parameters and facts that, once true, necessarily stay true.4

We write free term parameters as x : τ and persistent assumptions as x :A, where A is a persistent type. A
collection of these assumptions is a persistent context, written as Γ, and we treat all contexts containing the
same terms and assumptions as equivalent, writing this equivalence as Γ ≈ Γ′.

4.4 Substitutions

The connection point between contexts and terms is the definition of substitutions. A substitution σ is a
term which gives evidence that, given the persistent facts Γ and ephemeral resources ∆, we can model or
represent the state described by the persistent facts Γ′ and ephemeral facts ∆′. Alternatively, we can think of
Γ′ and ∆′ as “context-shaped holes,” in which case a substitution is evidence that Γ and ∆ “fit in the holes.”

The way a substitution gives this evidence is by providing a resource (designated by its label y) for every
for every resource in ∆′, providing a proof term D that is defined in the context Γ for every fact x :A in Γ′,
and providing a term t that is defined in the context Γ for every x : τ in Γ′.5 Syntactically, a substitution is
described by the following grammar:

σ ::= [] | σ, t/x | σ,D/x | σ, y/x
4Parameters can, for instance, be used to model the channels in the process calculus from the previous section, or to model

abstract heap locations in a specification of ML-style references. We need to be able to dynamically introduce new parameters in
order to represent producing a new channel or allocating a new location on the heap.

5In an appropriate dependently-typed setting, term types τ and types A are members of the same syntactic class, as are terms t
and proof terms D.
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The definition of substitution typing — Γ; ∆ `Σ σ : Γ′; ∆′ — captures the judgment that σ is a witness
to the fact that the state Γ; ∆ can model or represent the state Γ′,∆′ (under the signature Σ). The definition
relies on two other judgments, Γ `Σ t : τ and Γ `Σ D : A, which describe well-typed terms and well-typed
proof terms, respectively. It also relies on the operation A[σ], the application of a substitution to a type.
Because we are using only a restricted fragment of LF, only the term components (t/x) of substitutions
actually matter for this substitution.

Γ; · `Σ [] : ·; ·
Γ; · `Σ σ : Γ′; · Γ `Σ t : τ

Γ; · `Σ (σ, t/x) : (Γ′, x : τ); ·
Γ; · `Σ σ : Γ′; · Γ `Σ D : A[σ]

Γ; · `Σ (σ,D/x) : (Γ′, x :A); ·

∆ ≈ (∆′′, y :Q′) Q′ = Q[σ] Γ; ∆′′ `Σ σ : Γ′; ∆′

Γ; ∆ `Σ (σ, y/x) : Γ′; (∆′, x :Q)

4.5 Positive types as patterns

In the discussion of a transition-based view of logic in Section 3.2, the only connectives we discussed
were those that were defined in terms of their effect on the context; these are the connectives that make up
the so-called negative propositions. Another family of connectives, which make up the so-called positive
connectives, are more naturally defined by the contexts they describe. The pattern judgment — Γ; ∆  p ::
A+ — expresses that p is the evidence that A+ describes the context Γ; ∆. The most natural way to think
about Γ and ∆, which should appropriately be seen as an output of the judgment, is that it is describing a
context-shaped hole that will be filled by a substitution in order to prove A+.

Ordered conjunction (A+ ·B+) describes a context containing, to the left, the context described by A+

and then, to the right, the context described by B+.

Γ1; ∆1  p1 :: A+ Γ2; ∆2  p2 :: B+

Γ1,Γ2; ∆1,∆2  (p1 · p2) :: (A+ ·B+)

Existential quantification (∃x:τ.A+) describes a context described by A+, plus a variable x : τ . If we are
thinking of the output contexts as context-shaped holes, then x is a hole that must be filled by a term of
type τ . The rule below should make it clear that pattern judgments are fundamentally different from typing
judgments, where we would expect the x to appear in the premise, not in the conclusion.

Γ; ∆  p :: A+

x : τ,Γ; ∆  (x.p) :: (∃x:τ.A+)

Finally, 1 describes a context containing no ephemeral propositions, and we treat atomic propositions as
positive as well: Q (where Q is an ordered atomic proposition) describes a context with just one ordered
atomic proposition Q, ¡Q (where Q is a linear atomic proposition) describes a context with just one linear
atomic proposition Q, and !A (where A is a persistent proposition) describes a context with no ephemeral
propositions where A is true.

·; ·  () :: 1 x :A; ·  x :: !A ·;x :Q  x :: ¡Q ·;x :Q  x :: Q

Example. Because we may think of the pattern judgment Γ; ∆  p :: A+ as producing context-shape
holes Γ and ∆, looking at a pattern (which produces context-shape holes) together with a substitution (which
provides evidence that those holes can be filled) is illustrative. If we want to show that the ephemeral
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context (x1 : num(s z), x2 : +, x3 : num z) is described by the positive proposition ∃n. (numn · +) · (num z ·
!addnn (s(s z))), then we first find the pattern associated with that proposition (we write n instead of num
for brevity):

·; y1 : nn  y1 :: nn ·; y2 : +  y2 :: +
·; y1 : nn, y2 : +  y1 · y2 :: (nn · +)

·; y3 : n z  y3 :: n z y4 : addnn (s(s z)); ·  y4 :: !addnn (s(s z))

y4 : addnn (s(s z)); y3 : n z  (y3 · y4) :: (n z · !addnn (s(s z)))

y4 : addnn (s(s z)); y1 : nn, y2 : +, y3 : n z  (y1 · y2) · (y3 · y4) :: (nn · +) · (n z · !addnn (s(s z)))

n : nat, y4 : addnn (s(s z)); y1 : nn, y2 : +, y3 : n z  (n.(y1 · y2) · (y3 · y4)) :: ∃n. (nn · +) · (n z · !addnn (s(s z)))

Then, we find a substitution σ such that we can derive the following:

·; (x1 : num(s z), x2 : +, x3 : num z) ` σ : (n : nat, y4 : addnn (s(s z))); (y1 : numn, y2 : +, y3 : num z)

The substitution σ = [], (s z)/n, (add/s add/z)/y4, x1/y1, x2/y2, x3/y3 works in this case.
In future examples, we will use a derived notation of a filled pattern, a substitution applied to a pattern.

For example, rather than first deriving a pattern and then a substitution in the preceding example, we will
simply say that the filled pattern ((s z). (x1 · x2) · (x3 · (add/s add/z))) is a proof term showing that the
ephemeral context (x1 : num(s z), x2 : +, x3 : num z) is described by the positive proposition ∃n. (numn ·
+) · (num z · !addnn (s(s z))).

4.6 Negative types as transition rules

Negative types were introduced in Section 3.2 as describing ways in which contexts can change. The propo-
sition b·c� ↑e, for example, is essentially a rewriting rule that allows an ephemeral context such as (a b c d)
to be rewritten as an ephemeral context (a e d).

The judgment associated with negative propositions is (Γ; ∆  g :: A− � Γ′; ∆′  p′). This judgment
expresses that, if the premises of A− — the context-shaped holes Γ and ∆ — can be filled by consuming
some number of ephemeral resources, then the consumed ephemeral resources can be replaced with the
conclusion of A− — the resources described by ∆′ and the new facts described by Γ′. The goal g captures
the premises, and the pattern p describes the conclusion; together, a goal g and a pattern p are the proof term
associated with a negative proposition.

The simplest negative proposition is ↑A+, which consumes no resources and produces the resources
described by A+:

Γ′; ∆′  p′ :: A+

·; ·  () :: ↑A+ � Γ′; ∆′  p′

The proposition A−&B− can represent either the transition described by A− or the transition described by
B−:

Γ; ∆  p :: A− � Γ′; ∆′  p′

Γ; ∆  (π1p) :: (A−&B−)� Γ′; ∆′  p′
Γ; ∆  p :: B− � Γ′; ∆′  p′

Γ; ∆  (π2p) :: (A−&B−)� Γ′; ∆′  p′

Transitions have to be located at a particular point in the ephemeral context; ordered implication (A+ �
B−) is a transition that consumes a part of the context described by A+ to the right of its initial position and
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then proceeds with the transition described by B−.6

Γ1; ∆1  p :: A+ Γ2; ∆2  g :: B− � Γ′; ∆′  p′

Γ1,Γ2; ∆1,∆2  (p; g) :: (A+ � B−)� Γ′; ∆′  p′

Finally, universal quantification ∀x:τ.A− can behave like A−[t/x] for any t : τ ; therefore, its pattern intro-
duces a new

Γ; ∆  g :: A− � Γ′; ∆′  p′

x : τ,Γ; ∆  (x.g) :: (∀x:τ.A−)� Γ′; ∆′  p′

When the placement of the shift operator ↑ can be inferred from the context, we will leave it implicit,
writing A+ � B+ instead of A� ↑B+.

4.7 Transitions and expressions

We now can actually describe parsing the concrete syntax of L0 using transition rules. First, we describe
the abstract syntax of L0 as canonical terms of type exp; then we describe an ordered type family parsed
E and two rewriting rules describing how the concrete syntax can be parsed.

exp : type.
n : nat→ exp.
plus : exp→ exp→ exp.

parsed : exp→ typeo .
parse/num : num N� parsed(n N).
parse/plus : parsed E1 · + · parsed E2 � parsed(plus E1 E2).

Intuitively, parse/num is a rewriting rule that allows us to transition from the ephemeral context (num(s z)), +, (num z)
to the ephemeral context (parsed(n(s z))), +, (num z). To describe the proof term capturing this transition,
we first discover the goal and pattern associated with the type of parse/num (note that the implicit quantifi-
cation and the implicit shift operator ↑ are both made explicit):

(·; y : numn)  y :: numn

(·; y1 : parsed(nn))  y1 :: parsed(nn)

(·; ·)  () ::↑ parsed(nn)� (·; y1 : parsed(nn))  y1
(·; y : numn)  (y; ()) :: (numn�↑ parsed(nn))� (·; y1 : parsed(nn))  y1

(n : nat; y : numn)  (n.y; ()) :: (∀n. numn�↑ parsed(nn))� (·; y1 : parsed(nn))  y1

If x1 is the variable marking the ordered resource (parsed(n(s z))), we can fill this goal with the substitu-
tion ([], s z/n, x1/y); the resulting filled pattern is (s z. x1; ()). The proof term corresponding to the transition
can be written in a CLF-like notation as the let-expression (let (y1) = parse/num(s z. x1; ()) in). However,
I prefer a more “directional” notation for transitions that looks like this: (parse/num(s z. x1; ())� (y1)). In
addition, we will leave universal quantification implicit and omit the trailing () in a goal; the final result is a
proof term for the aforementioned transition that looks like this:

6In ordered logic there are actually two distinct implications, right ordered implication A+ � B− and left ordered implication
A+ � B−. Either one or the other is usually sufficient for the logical fragment we are considering, and I conjecture that as
long as the ephemeral context only contains atomic propositions, the addition of left ordered implication does not actually add any
expressiveness.
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parse/num(x1)� (y1)
: (x1 : num(s z), x2 : +, x3 : num z) ;Σparse (y1 : parsed(n(s z)), x2 : +, x3 : num z)

We’ll return to the Σparse annotation in the next section; in the meantime, the typing rule for a transition
T : (Γ; ∆ ;Σ Γ′; ∆′) is as follows:

c : A− ∈ Σ Γin ; ∆in  g :: A− � Γout ; ∆out  p ∆ ≈ ∆L,∆
′,∆R Γ; ∆′ `Σ σ : Γin ; ∆in

c(g[σ])� p : Γ; ∆ ;Σ Γ,Γout ; ∆L,∆out ,∆R

This transition can be read like this:

• Starting from the state Γ; ∆,

• Pick a rule A− from the signature Σ (this is the constant c),

• Determine the input context Γin ; ∆in (this is the goal g) and the output context Γout ; ∆out (this is the
pattern p) associated with A−,

• Split the ephemeral context ∆ into three parts, ∆L, ∆′, and ∆R,

• Show that, using the persistent facts Γ and the ephemeral resources ∆′ you can fulfill the demands
represented by the input pattern (this is the substitution σ), and

• Extend the persistent context with Γout and replace ∆′ in the context with ∆out to get the result of the
transition.

4.8 Expressions

A sequence of one or more transitions T is an expression E : (Γ; ∆ ;∗Σ Γ′; ∆′). An expression is either
a single transition T , the sequential composition of two expressions E1; E2, or the empty expression �. We
treat sequential composition as an associative operation with unit �.

The following expression represents a complete parse of an L0 program:

parse/num(x1)� (y1); parse/num(x3)� (y3); parse/plus(y1 · x2 · y3)� (y)
: (x1 : num(s z), x2 : +, x3 : num z) ;∗Σparse (y : parsed(plus (n(s z)) (n z)))

The annotation of a signature Σparse on the transition T : (Γ; ∆ ;Σ Γ′; ∆′) will be critical in practice.
We frequently want to define multiple families of transitions that can act on a single proposition. For
instance, consider the following rules which describe the direct calculation of a number from the concrete
syntax of L0 (note, in particular, the use of !add N1 N2 N3 to capture the “side condition” in calc/plus):

calc : nat→ typeo .
calc/num : num N� calc N.
calc/plus : calc N1 · + · calc N2 · !add N1 N2 N3 � calc N3.

Then we can talk about the transitions and expressions where we refer only to the transition rules beginning
with calc.

calc/num(x1)� (y1) : (x1 : num(s z), x2 : +, x3 : num z) ;Σcalc (y1 : calc(s z), x2 : +, x3 : num z)
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calc/num(x1)� (y1); calc/num(x3)� (y3); calc/plus(y1 · x2 · y3 · (add/s add/z))� (y)
: (x1 : num(s z), x2 : +, x3 : num z) ;∗Σcalc (y : calc(s z)))

We use these annotations to specify theorems about the relationship between two different transitions
or expressions. For instance, if Σe describes the (not-yet-specified) SSOS specification of L0, then we can
write the following conjecture about the relationship between the rules starting with calc/. . . and the rules
starting with parse/. . .

Conjecture 1. If (∆ ;∗Σcalc y : calc N) and such that (∆ ;∗Σparse y : parsed E), then (x : eval E ;∗Σe

y : retn(n N)).

4.9 Concurrent equivalence

The two expressions below both represent a complete parse of the L0 program that we have been using in
our example:

parse/num(x3)� (y3); parse/num(x1)� (y1); parse/plus(y1 · x2 · y3)� (y)

parse/num(x1)� (y1); parse/num(x3)� (y3); parse/plus(y1 · x2 · y3)� (y)

In fact, these two expressions represent the same parse if we look at the parse not as a list of transitions but
as a tree of string rewrites:

x1 : num(s z) x2 : + x3 : num z

y1 : parse(n(s z)) y3 : parse(n z)

y : parse(plus (n z) (n(s z)))

The notion of concurrent (or permutative) equivalence E1 ≈ E2 captures the notion that, while we rep-
resent expressions as sequences, they are perhaps more appropriately thought of as directed acyclic graphs.
Concurrent equivalence is the least equivalence relation such that

(E1; c(g[σ])� p; c′(g′[σ′])� p′; E2) ≈ (E1; c′(g′[σ′])� p′; c(g[σ])� p; E2)

whenever σ does not include any variables bound by p′ and σ′ likewise does not mention any variables
bound by p.

4.10 Notational conventions

We have discussed a number of notational conventions, such as omitting the shift operator ↑ and simplifying
the way that goals are written down. In discussions of SSOS in Section 5, we will use a more concise
shorthand notation for describing transitions and expressions; this section will introduce this shorthand
notation.

Consider the last transition in the parse of our example L0 program:

parse/plus(y1 · x2 · y3)� (y)
: (y1 : parsed(n(s z)), x2 : +, y3 : parsed(n z)) ;Σparse (y : parsed(plus (n(s z)) (n z)))
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The variables that describe what parts of the context changed are not strictly necessary here; we can convey
the exact same information in a more concise form by omitting the mention of any variables:

parse/plus : parsed(n(s z)),+, parsed(n z) ;Σparse parsed(plus (n(s z)) (n z))

This notation must be used carefully: for instance, if we say that the complete parse is represented by the
expression (parse/num; parse/num; parse/plus), it is unclear whether the first token or the last token was
rewritten first (although in this case, both of the traces are concurrently equivalent!)

It is not always the case that the name of a rule alone is sufficient. The exception is when one of the
premises to a rule is a canonical form, such as the last step in the calculation of our example L0 program:

calc/plus(y1 · x2 · y3 · (add/s add/z))� (y)
: (y1 : calc(s z), x2 : +, y3 : calc z) ;Σcalc (y : calc(s z))

The shorthand version of this rule only mentions the canonical form (add/s add/z : add (s z) z (s z)) —
unlike variable names, that part of the original transition conveys more information than just a position.

calc/plus(add/s add/z) : calc(s z),+, calc z ;Σcalc calc(s z)

Finally, in the following section I will refer to states Γ; ∆ generally as S, and will use the notation S[∆]
to describe a state that includes somewhere inside of it the ephemeral context ∆ — a “one-hole context”
over contexts, in other words. For instance, we can write the following:

parse/num : S[num(s(s z))] ;Σparse S[parsed(s(s z))]

calc/num : S[num(s(s z))] ;Σcalc S[calc(s(s z))]

calc/plus(plus/z) : S[calc z,+, calc(s(s z))] ;Σcalc S[calc(s(s z))]

5 Substructural operational semantics

Now that we have discussed the outlines of our logical framework, we can finally return to the discussion
of substructural operational semantics specifications that we motivated in the introduction and in Section 2.
In this section, we consider a series of relatively simple substructural operational semantics specifications,
mostly taken from [28]. Substructural operational semantics (or SSOS) is a style of specifying the oper-
ational semantics of programming languages as transitions in substructural logics. Its origin lies in a set
of examples illustrating the expressiveness of the logical framework CLF [2], though elements were antic-
ipated by Chirimar’s Ph.D. thesis [4] and by the continuation-based specification of ML with references in
LLF [1]. A methodology of SSOS specifications was refined and generalized to include other substructural
logics in subsequent work [24, 28].

In this section, we will develop a base language L1 that extends L0 with functions and function appli-
cation (Section 5.1) and then extend that language with parallel evaluation of pairs (Section 5.3) and with
exceptions and exception handling (Section 5.4). The novel content of this section is a presentation of the
static semantics of this language and proof of language safety via progress and preservation lemmas that it
enables. We give a proof of safety for L1 in Section 5.2, and then briefly discuss how that safety proof can
be extended when we consider the static semantics of parallel evaluation and exceptions.
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Fundamental components of SSOS specifications Many of the elements of substructural operational
semantics specifications are immediately familiar to anyone who has written or read traditional SOS-style
operational semantics formalized in Twelf. The syntax, for instance, consists of expressions E, types T, stack
frames F, and a judgment (value V) capturing the subsort of expressions that are also values (we continue to
write V for those expressions which are known to be values).

exp : type.
tp : type.
frame : type.
value : exp→ type.

Particular to SSOS specifications are three groups of propositions. The active propositions are those
that can always eagerly participate in a transition; the prototypical active proposition is (eval E), an ordered
atomic proposition containing an expression E that we are trying to evaluate to a value.

eval : exp→ typeo .

The latent propositions represent suspended computations. The primary latent proposition we will con-
sider is (cont F), which stores a part of a continuation (in the form of a stack frame) waiting for a value to
be returned.7

cont : frame→ typeo .

Finally, passive propositions are those that do not drive transitions on their own, but which may take
part in transitions when combined with latent propositions. The only passive proposition in the SSOS
specification of an effect-free languages is (retn V), which holds a value being returned from the evaluation
of an expression. On its own, it is passive, representing a completed computation. If there is a latent stack
frame to its left, a transition should occur by returning the value to the stack frame.

retn : exp→ typeo .

5.1 Specifying L1

We will introduce SSOS specifications by encoding the operational semantics of the very simple language
L0 that has been used as running example; we extend L0 with call-by-value functions to make the language
less boring, and call the result L1.

5.1.1 Syntax

The syntax of expressions can be given by the following BNF specification:

e ::= x | λx.e | e1(e2) | n | e1 + e2

The encoding of that BNF is standard, including the use of higher-order abstract syntax to represent binding.
The judgments v/n and v/lam indicate that functions and numbers are values.

7Latent propositions can also be seen as artifacts of kind of defunctionalization that is performed on “higher-order” SSOS
specifications to make them more amenable to extension and analysis. (See Section ?? for a further discussion.)
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lam : (exp→ exp)→ exp.
app : exp→ exp→ exp.
n : nat→ exp.
plus : exp→ exp→ exp.

v/lam : value(lamλx.E x).

v/n : value(n N).

We also need to define the syntax of frames.

f ::= 2(e2) | v1(2) | 2+ e | v +2

app1 : exp→ frame. — this is 2(e2)
app2 : exp→ frame. — this is v1(2)
plus1 : exp→ frame. — this is 2+ e2

plus2 : exp→ frame. — this is v1 +2

5.1.2 Dynamic semantics

The dynamic semantics forL1 is straightforward by analogy with an abstract machine for control. A function
is a value, and therefore it is always returned immediately, and a function application first evaluates the
function part to a value, then evaluates the argument part to a value, and then finally substitutes the argument
into the function. In the usual style of higher-order abstract syntax, substitution is performed by application
in the rule e/app2.

e/lam : eval(lamλx.E x) � retn(lamλx.E x).

e/app : eval(app E1 E2) � cont(app1 E2) · eval E1.

e/app1 : cont(app1 E2) · retn V1 � cont(app2 V1) · eval E2.

e/app2 : cont(app2(lamλx.E0 x)) · retn V2 � eval(E0 V2).

With one exception, the dynamic semantics of numbers and addition are just as straightforward. As
mentioned before, when both subterms have been evaluated to numerical values, there must be a primitive
operation that actually adds the two numbers together. As discussed in the context of the calc/. . . rules in the
previous section, the solution is to rely on the persistent type family (add N M P) that adequately encodes the
inductive definition of addition for natural numbers. Given this definition, the dynamic semantics of addition
are also straightforward: a number is a value, and to evaluate plus E1 E2 we evaluate E1, then evaluate E2,
and then add the resulting numbers.

e/n : eval(nat N) � retn(nat N).

e/plus : eval(plus E1 E2) � cont(plus1 E2) · eval E1.

e/plus1 : cont(plus1 E2) · retn V1 � cont(plus2 V1) · eval E2.

e/plus2 : cont(plus2(n N1)) · retn(n N2) · !add N1 N2 N3 � retn(n N3).

5.1.3 Example trace

As an example, Figure 1 shows a complete evaluation of an L1 expression that we would write on paper as
((λx. 2 + x)(1 + 5)). The expression represented by the series of transitions on the right has the following
type:
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eval(app (lam(λx.plus (n(s(s z)))x)) (plus (n(s z)) (n(s(s(s(s(s z))))))))
;∗Σe retn(n(s(s(s(s(s(s(s(s z)))))))))

For brevity and clarity, the on-paper notation is used in the figure.

eval((λx. 2 + x)(1 + 5))

;Σe cont(2(1 + 5)), eval(λx. 2 + x) by e/app

;Σe cont(2(1 + 5)), retn(λx. 2 + x) by e/lam

;Σe cont((λx. 2 + x)(2)), eval(1 + 5) by e/app1

;Σe cont((λx. 2 + x)(2)), cont(2+ 5), eval(1) by e/plus

;Σe cont((λx. 2 + x)(2)), cont(2+ 5), retn(1) by e/n

;Σe cont((λx. 2 + x)(2)), cont(1 +2), eval(5) by e/plus1

;Σe cont((λx. 2 + x)(2)), cont(1 +2), retn(5) by e/n

;Σe cont((λx. 2 + x)(2)), retn(6) by e/plus2(add/s add/z)

;Σe eval(2 + 6) by e/app2

;Σe cont(2+ 6), eval(2) by e/plus

;Σe cont(2+ 6), retn(2) by e/n

;Σe cont(2 +2), eval(6) by e/plus1

;Σe cont(2 +2), retn(6) by e/n

;Σe retn(8) by e/plus2(add/s(add/s add/z))

Figure 1: Example trace in L1.

5.2 Static semantics, progress, and preservation

The description of the dynamic semantics of L1 is not enough on its own; there’s nothing we have said so far
that prevents us from attempting to evaluate 5+λx.x or 3(λx.x+2), both of which would get stuck. A state
is stuck if it has not evaluated all the way to the single atomic proposition (retn E) but which nevertheless
cannot take a step. A safe expression is one that cannot lead to a stuck state:

Definition 1 (Safety). The expression E is safe if (eval E ;∗Σe S) implies that either S ;Σe S ′ for some S ′
or else S = retn V for some V.

While this definition of safety is appropriate for our current purposes, it is not necessarily the only defi-
nition of safety we might want to consider. For instance, a system that might deadlock is usually considered
to be safe, but would not be safe according to this definition.

Integral to establishing safety will be the static semantics, a new set of rewriting rules annotated with t/. . .
(so we use Σt to refer to them collectively). The goal of these rewriting rules is to rewrite the entire state S
to a single atomic proposition abs T. The atomic proposition abs T is intended to represent an abstraction
of states that will produce a value of type T if they produce any value at all.8 These rewriting rules, which

8This characterization of absT is actually a corollary of the preservation lemma.
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we will refer to as the static semantics, rely on the not-yet-defined judgments of E T (the expression E has
type T) and off F T T′ (the frame F takes values of type T to states of type T′). The rules themselves are
straightforward:

abs : tp→ typeo .

t/eval : eval E · !of E T � abs T.

t/retn : retn E · !value E · !of E T � abs T.

t/cont : cont F · abs T · !off F T T′ � abs T′.

These static semantics (together with the not-yet-specified typing rules) allow us to prove progress and
preservation theorems, which in turn allow us to establish type safety for the language.

Progress If S ;∗Σt abs T and S contains no resources abs T, then either S ;Σe S ′ for some S ′ or else
S = retn V.

abs T

S
S ′
or=

retn VΣt

Σe

∗

Preservation If S ;Σe S ′ and S ;∗Σt abs T, then S ′ ;∗Σt abs T.

abs T abs T

S S ′
Σt Σt

Σe

∗ ∗

Given progress and preservation as stated above, we can prove the desired type safety theorem:

Theorem 1. If ` of E T, then E is safe.

Proof. The overall picture for safety is this one:

abs T abs T abs T abs T

eval E S1 Sn S
S ′
or=

retn V

Σe
ΣeΣe

Σt

∗
Σt

∗
Σt

∗
Σt

∗

· · ·

We are given an expression (eval E ;∗Σe S), and we must show that either S ;Σe S ′ for some S ′ or else
S = retn V for some V. By rule t/eval and the premise, (eval E ;∗Σt abs T), and by induction on the length
of the trace and progress lemma, (S ;∗Σt abs T). By a similar induction on the trace and the observation
that abs T appears nowhere in any of the rules of the form e/. . . , S contains no resources abs T. The result
then follows by the progress lemma.
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Note that both the proof of type safety and the statements of the progress and preservation theorems
talk about individual transition steps and about taking a series of transitions and extending them with an
additional transition. Both of these notions are naturally represented by the transitions and expressions of
our logical framework, but neither of these are easy to represent in the CLF framework. The CLF framework
has proof terms that express a completed derivations that has ended by proving something, but a series of
transitions in our framework translates to a partial derivation in CLF, not a complete derivation. It is for
this reason that I previously described the focus on a state-transition-based presentation of logic as the most
critical difference between CLF and the framework presented here.

In the remainder of this section, we will present the typing rules and static semantics for L1, and then
give proofs of the progress and preservation lemmas above.

5.2.1 Static semantics

Typing rules are completely conventional. The syntax of types can be written as a BNF specification as
τ ::= nat | τ → τ , and the signature for types is the following:

tnat : tp.
arrow : tp→ tp→ tp.

The typing rules are the familiar ones:

of : exp→ tp→ type.

of/lam : (Πx. of x T→ of (E x) T′)→ of (lamλx.E x)(arrow T T′).

of/app : of E1 (arrow T′ T)→ of E2 T′ → of (app E1 E2) T.

of/n : of (nat N) tnat.

of/plus : of E1 tnat→ of E2 tnat→ of (plus E1 E2) tnat.

Frame typing rules are also straightforward:

off/app1 : of E2 T′ → off (app1 E2) (arrow T′ T) T.

off/app2 : value E1 → of E1 (arrow T′ T)→ off (app2 E2) T′ T.

off/plus1 : of E2 tnat→ off (plus1 E2) tnat tnat.

off/plus2 : value E1 → of E1 tnat→ off (plus2 E1) tnat tnat.

5.2.2 Preservation

The preservation lemma establishes that our purported invariant is actually an invariant. The form of the
preservation lemma should be very familiar: if the invariant described by the static semantics holds of a
state, the invariant still holds of the state after any transition made under the dynamic semantics.

Lemma 1 (Preservation). If S ;Σe S ′ and S ;∗Σt abs Tf , then S ′ ;∗Σt abs Tf .

Preservation proofs tend to rely on typing inversion lemmas, and we use traditional typing inversion
lemmas as needed without proof. However, there is another lemma that is critical for preservation proofs for
SSOS specifications. It captures the intuition that if S ;∗Σt abs T, either S is already a substructural context
containing a single resource (abs T) or else everything in S must eventually be consumed in the service of
producing a single resource (abs T). We call this the consumption lemma because it represents the obligation

25



that the static semantics consume everything in the context. Recall that S[∆] is notation representing a state
S containing the ephemeral state ∆ inside of it.

Lemma 2 (Consumption).

• If E : S[eval E] ;∗Σt abs Tf ,
then E ≈ (t/eval(Dt); E ′), where Dt : of E T and E ′ : S[abs T] ;∗Σt abs Tf for some T.

• If E : S[retn V] ;∗Σt abs Tf ,
then E ≈ (t/retn(Dv · Dt); E ′), where Dv : value V, Dt : of V T, and E ′ : S[abs T] ;∗Σt abs Tf for
some T.

• If E : S[cont F, abs T] ;∗Σt abs Tf ,
then E ≈ (t/cont(Df ); E ′), where Df : off F T T′ and E ′ : S[abs T′] ;∗Σt abs Tf for some T′.

Proof. Each of the statements can be proved independently by induction on the structure of E . The eval
and retn cases are quite similar to each other and are both simpler versions of the cont case, which we give
below.

Case: E = �
This case cannot occur, as there is no way for S[cont F, abs T] to be equivalent to (abs Tf).

Case: E = t/eval(D′t); E ′
D′t : of E Te,
E ′ : (S ′[abs Te] ;∗Σt abs Tf), and
S[cont F, abs T] ≈ S ′[eval E]

Because S[cont F, abs T] ≈ S ′[eval E], it must be the case that both of these are also equivalent to
S ′′[cont F, abs T][eval E] for some S ′ and E ′ : (S ′′[cont F, abs T][abs Te] ;∗Σt abs Tf).

E ′ ≈ (t/cont(Df ); E ′′) By i.h.
Df : off E T T′ ”
E ′′ : (S ′′[abs T′][abs Te] ;∗Σt abs Tf) ”
E ≈ (t/eval(D′t); t/cont(Df ); E ′′) By construction
E ≈ (t/cont(Df ); t/eval(D′t); E ′′) By concurrent equivalence

Case: E = t/retn(D′v · D′t); E ′

Similar to previous case.

Case: E = t/cont(D′f ); E ′
D′f : off F1 T1 T′1,
E ′ : (S ′[abs T′1] ;

∗
Σt abs Tf), and

S[cont F, abs T] ≈ S ′[cont F1, abs T1]

Because S[cont F, abs T] ≈ S ′[cont F1, abs T1], there are two possibilities. The first possibility is that
S[abs T′] ≈ S ′[abs T′], F = F1, and T = T1, in which case we are done.

The other possibility is S[cont F, abs T] ≈ S ′[cont F1, abs T1] ≈ S ′′[cont F, abs T][cont F1, abs T1]
for some S ′′. In that case, E ′ : (S ′′[cont F, abs T][abs T′1]) and we proceed with the following reason-
ing:
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E ′ ≈ (t/cont(Df ); E ′′) By i.h.
Df : off E T T′ ”
E ′′ ≈ (S ′′[abs T′][abs T′1]) ”
E ≈ (t/cont(D′f ); t/cont(Df ); E ′′) By construction
E ≈ (t/cont(Df ); t/cont(D′f ); E ′′) By concurrent equivalence

This completes the proof.

It’s worth emphasizing what may be obvious: the proof of the consumption lemma is a bit more general
than necessary. In the static semantics we have defined so far, S ;∗Σt abs T means that S contains precisely
one atomic proposition of the form (eval E), (retn E), or (abs T), which means that most of the cases we
consider are actually impossible. However, this impossibility is also a fact that must be proven by induction
on the structure of expressions. The proof we have given is both straightforward in its own right and allows
the proof of preservation to “scale” to specifications with parallel evaluation (see Section 5.3). Furthermore,
the theorem statement is not at all complicated as a result of handling the general case. If we wanted to
write a version of the consumption lemma for the special case of sequential SSOS specifications, the only
difference is that we would write “If E : (S, eval E ;∗Σt abs Tf), then. . . ” instead of “If E : (S[eval E] ;∗Σt

abs Tf), then. . . ” because we know that eval E appears only on the right-hand edge of the ephemeral context.
Now we can consider the actual proof of preservation:

Proof of the Preservation Lemma (Lemma 1). The proof proceeds by case analysis on the transition T :
(S ;Σe S ′), followed in each case by applying the consumption lemma to the expression E : (S ;∗Σt

abs Tf).

Case: T = e/lam : S[eval(lamλx.E x)] ;Σe S[retn(lamλx.E x)]

E ≈ (t/eval(Dt); E ′) By consumption lemma
Dt : of (lamλx.E x) T ”
E ′ : (S[abs T] ;∗Σt abs Tf) ”
(t/retn(v/lam · Dt); E ′) : (S[retn(lamλx.E x)] ;∗Σt abs Tf) By construction

Case: T = e/app : S[eval(app E1 E2)] ;Σe S[cont(app1 E2), eval E1]

E ≈ (t/eval(Dt); E ′) By consumption lemma
Dt : of (app E1 E2) T ”
E ′ : S[abs T] ;∗Σt abs Tf ”
Dt = of/appD1D2 By inversion on Dt

D1 : of E1 (arrow T′ T) ”
D2 : of E2 T′ ”
(t/cont(off/app1D2); E ′) : (S[cont(app1 E2), abs(arrow T′ T)] ;∗Σt abs Tf) By construction
(t/eval(D1); t/cont(off/app1D2); E ′) : (S[cont(app1 E2), eval E1] ;∗Σt abs Tf) By construction

Case: T = e/app1 : S[cont(app1 E2), retn V1] ;Σe S[cont(app2 V1), eval E2]
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E ≈ (t/retn(Dv · Dt); E ′) By consumption lemma
Dv : value V1 ”
Dt : of V1 T ”
E ′ : (S[cont(app1 E2), abs T] ;∗Σt abs Tf) ”
E ′ ≈ t/cont(Df ); E ′′ By consumption lemma
Df : off (app1 E2) T T′ ”
E ′′ : (S[abs T′] ;∗Σt abs Tf) ”
Df = off/app1(D′t) By inversion on Df

T = arrow T0 T′ ”
D′t : of E2 T0 ”
(t/cont(off/app2Dv Dt); E ′′) : (S[cont(app2 V1), abs T0] ;∗Σt abs Tf) By construction
(t/eval(D′t); t/cont(off/app2Dv Dt); E ′′) : (S[cont(app2 V1), eval E2] ;∗Σt abs Tf)

By construction

Case: T = e/app2 : S[cont(app2(lamλx.E x)), retn V2] ;Σe S[eval(E V2)]

E ≈ t/retn(Dv · Dt); E ′ By consumption lemma
Dt : of V2 T ”
E ′ : (S[cont(app2(lamλx.E x)), abs T] ;∗Σt abs Tf) ”
E ′ ≈ t/cont(Df ); E ′′ By consumption lemma
Df : off (app2(lamλx.E x)) T T′ ”
E ′′ : (S[abs T′] ;∗Σt abs Tf) ”
Df = off/app2D′v (λx. λd.D′t x d) By inversion on Df

(λx. λd.D′t x d) : Πx. of xT→ of (Ex) T′ ”
D′t V2Dt : of (E V2) T′ By substitution
(t/eval(D′t V2Dt); E ′′) : (S[eval(E V2)] ;∗Σt abs Tf) By construction

The remaining cases for e/nat, e/plus, e/plus1, and e/plus2 are similar.

5.2.3 Progress

Preservation theorems, and in particular big-step preservation theorems, have traditionally been the primary
correctness criteria for language specifications in substructural logics [1]. However, preservation alone is
insufficient to ensure language safety as specified by Definition 1. The preservation lemma ensures that the
invariant is maintained; the progress lemma ensures that the invariant actually establishes safety.

The critical lemma for progress, the analogue to the consumption lemma in the preservation lemma, is
actually quite a bit more general. It relies on a general property of the static semantics, namely that it is
contractive, because each rule has at most one conclusion.

Definition 2 (Contractive signature). If every rule in Σ has at most one atomic proposition in the conclusion,
and that conclusion is an ordered or linear atomic proposition, then Σ is contractive.

When a signature is contractive, then different pieces of the context at the end of an expression can be
traced backwards to different pieces at the beginning of the expression.

Lemma 3 (Splitting). If Σ is contractive and E : (S ;∗Σ S ′1,S ′2), then S ≈ S1,S2, and there exist
expressions E1 and E2 such that E1 : (S1 ;∗Σ S ′1) and E2 : (S2 ;∗Σ S ′2), where E has the same number of
transitions as E1 and E2 combined.
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Proof. By induction on the structure of E . If E = �, the result is immediate, and if E = (E ′; T ) then we
apply the induction hypothesis on E ′ and add T to the end of the appropriate smaller expression: E1 if the
conclusion of T was bound in S1, E2 otherwise.

A stronger version of the splitting lemma would also establish that E ≈ (E1; E2) ≈ (E2; E1), but this
lemma is sufficient to allow us to prove the progress lemma.

Lemma 4 (Progress). If S ;∗Σt abs T and S contains no resources abs T, then either S ;Σe S ′ for some
S ′ or else S = retn V for some value V with type T.

At a high level, this proof works by showing that any state S that satisfies the typing invariant must be
one of the following:

• S = retn V, a safe state that takes no step,

• S = eval E, in which case we can always take a step because eval E is an active proposition,

• S = (comp F,S ′) where S ′ ;Σe S ′′; in this case, the larger state takes a step as well, or

• S = (comp F, retn V), in which case we use canonical forms lemmas (which are standard, and which
we therefore use without proof) to ensure that we can perform a reduction.

Proof. By induction on the number of transitions in E . We note that E 6= �, because that would mean that
S = abs T, contradicting the premise that S does not contain any atomic propositions of the form abs T. So
we can assume E = (E ′; T ) and do case analysis on the form of the transition T .

Case: T = t/retn(Dv · Dt) and E ′ : S ;∗Σt retn V
where Dv : value V and Dt : of E T.

There are no transitions in Σt that can appear as the last transition in E ′, so E ′ = � and S = retn V;
therefore, we are done.

Case: T = t/eval(Dt) and E ′ : S ;∗Σt eval E.

There are no transitions in Σt that can appear as the last transition in E ′, so E ′ = � and S = eval E.
We proceed by case analysis on the structure of E.

Subcase: E = lamλx.E x — e/lam : eval(lamλx.E x) ;Σe retn(lamλx.E x)

Subcase: E = app E1 E2 — e/app : eval(app E1 E2) ;Σe (cont(app1 E2), eval E1)

Subcase: E = n N — e/n : eval(n N) ;Σe retn (n N)

Subcase: E = plus E1 E2 — e/plus : eval(plus E1 E2) ;Σe (cont(plus1 E2), y2 : eval E1)

Case: T = t/cont(Df ) and E ′ : (S ;∗Σt cont F, abs T′), where Df : off F T′ T.

By the splitting lemma, S ≈ S1,S2 and there exist two expressions E1 : (S1 ;∗Σt cont F) and
E2 : (S2 ;∗Σt abs T′). There are no transitions in Σt that can appear as the last transition in E1, so
E1 = � and S1 = cont F.

We then apply the induction hypothesis on E2 (which has one transition less than E , justifying the call
to the induction hypothesis). If T : S2 ;Σe S ′2, then T : (cont F, S2 ;Σe cont F, S ′2) by the rules
for typing transitions,9 and we are done.

9Generically we could call this a frame property of the framework.
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Otherwise, we have S2 = retn V, Dv : value V, and Dt : of V T′. We proceed by case analysis on the
proof term Df establishing that the frame F is well typed.

Subcase: Df = off/app1Dt2, so F = app1 E2.

e/app1 : (cont(app1 E2), retn V) ;Σe (cont(app2 V), eval E2).

Subcase: Df = off/app2Dv1Dt1, so F = app2 V1,
Dv1 : value V1, and Dt1 : of E1 (arrow T′ T).
By the canonical forms lemma on Dv1 and Dt1, V1 = lamλx.E0 x.
e/app2 : (cont(app2(lamλx.E0 x)), retn V) ;Σe eval(E0 V).

Subcase: Df = off/plus1Dt2, so F = plus1 E2.
e/plus1 : (cont(plus1 E2), retn V)) ;Σe (cont(plus2 V), eval E2).

Subcase: Df = off/plus2Dv1Dt1, so F = plus2 V1 and T = T′ = tnat
Dv1 : value E1, and Dt1 : of E1 tnat.
By the canonical forms lemma on Dv1 and Dt1, V1 = n N1.
By the canonical forms lemma on Dv and Dt, V = n N2.
By the effectiveness of addition on N1 and N2, there exists a natural number N3 and a proof term
Da : add N1 N2 N3.
e/plus2(Da) : (cont(app2(n N1)), retn(n N2)) ;Σe retn(n N3).

This completes the proof; we have assumed standard canonical forms lemmas and the effectiveness of
addition, provable by induction on the structure of N1.

5.3 Parallel evaluation

One way in which parallel evaluation has been incorporated into functional programming languages is by
allowing pairs (or, more generally, tuples) to evaluate in parallel [9]. In this section we will consider L2,
the first modular extension to the language L1 with parallel pairs. The syntax and typing rules pairs are a
straightforward and standard addition:

pair : exp→ exp→ exp.
fst : exp→ exp.
snd : exp→ exp.

v/pair : value E1 → value E2 → value(pair E1 E2).

pairtp : tp→ tp→ tp.

of/pair : of E1 T1 → of E2 T2 → of (pair E1E2) (pairtp T1 T2).

of/fst : of E (pairtp T1 T2)→ of (fst E) T1.

of/snd : of E (pairtp T1 T2)→ of (snd E) T2.

5.3.1 Dynamic semantics

Nothing in the previous signature indicates that pairs are any more interesting than the language features we
have already presented. It is in the specification of the dynamic semantics that we add a new capability to
the language: parallel evaluation. Our dynamic semantics will evaluate both parts of a pair in parallel. First,
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we add a new type of latent ordered proposition, (cont2 F), representing a frame waiting on two values to
be returned to it.

cont2 : frame→ typeo .

fst0 : frame.
snd0 : frame.
pair0 : frame.

e/fst : eval(fst E) � cont fst0 · eval E.

e/fst0 : cont fst0 · retn(pair V1 V2) � retn V1.

e/snd : eval(snd E) � cont snd0 · eval E.

e/snd0 : cont snd0 · retn(pair V1 V2) � retn V2.

e/pair : eval(pair E1 E2) � cont2 pair0 · eval E1 · eval E2.

e/pair0 : cont2 pair0 · retn V1 · retn V2 � retn(pair V1 V2).

Our specification no longer corresponds to an on-paper description of a stack machine with one expression
evaluating on top of the stack: with this change, we have made the substructural context a treelike structure
where multiple independent groups of propositions may be able to transition at any given time.

5.3.2 Static semantics

Beyond the typing rules for pairs given at the beginning of this section, we need a new typing judgment for
continuation frames waiting on two values:

off2 : frame→ tp→ tp→ tp→ type.

The fst0 and snd0 frames lead to new cases for the regular frame typing rule, and we give a parallel frame
typing rule for the pair0 frame:

off/fst0 : off fst0 (pairtp T1 T2)T1.

off/snd0 : off fst0 (pairtp T1 T2)T2.

off2/pair0 : off2 pair0 T1 T2 (pairtp T1 T2).

And a rule in the static semantics explaining how parallel frames interact with (abs T):

t/cont2 : cont2 F · abs T1 · abs T2 · !off2 F T1 T2 T′

� abs T′.

Those three declarations entirely describe the static semantics of parallel evaluation. The typing rule
off2/pair0 and the rewriting rule t/cont2 could easily be merged, but by separating them it is possible
to incorporate additional parallel features into the language in a modular way.

5.3.3 Safety

We have just seen that it is possible to modularly extend both the static and dynamic semantics of L1 to
obtain the language L2 with parallel evaluation of pairs. We are also able to straightforwardly extend the
safety proof of L1 to incorporate parallel evaluation. We have to do the following things to extend the
existing proof:
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• Add a new consumption lemma:
If E : S[cont2 F, abs T1, abs T2] ;∗Σt abs Tf ,
then E ≈ (t/cont(Dt); E ′), where Df : off2 F T1 T2 T′ and E ′ : S[abs T′] ;∗Σt abs Tf for some T′.

• Add a case for t/cont2 to the proof of each of the other consumption lemmas.

• Add cases for e/pair and e/pair0, e/fst, etc. to the proof of preservation lemma.

• Add new subcases for E = pair E1 E2, E = fst E, and E = snd E to the second case of the progress
lemma where it is the case that S = eval E.

• Add new subcases for Df = off/fst0 and Df = off/snd0 to the third case of the progress lemma,
both of which will appeal to a canonical forms lemma.

• Add a case for T = t/cont2(Df ) to the proof of the progress lemma.

The essential structure of the safety proof is preserved under the extension of the language with parallel
pairs. This is significant because, with the exception of the proof of the consumption lemma, the safety
proof for L1 did not need to explicitly prepare for the possibility of parallel evaluation.

5.4 Exceptions

Exceptions and exception handling are another example of a feature that we can add to L1 or L2 in a
modular fashion, though there is an important caveat. While we can add parallel evaluation or exceptions
to L1 without reconsidering any aspects of the original specification, we cannot extend the base language
with both exceptions and parallelism without considering their interaction. This should not be seen as a
troublesome lack of modularity, however — rather, the SSOS specification in this section illustrates that
exceptions and parallel evaluation are not truly orthogonal language features. Seen in this light, it is natural
that we must clearly describe how the features interact.

The syntax of exceptions includes error, which raises an exception, and trycatch E E′, which includes a
primary expression E and a secondary expression E′ that is evaluated only if the evaluation of E returns an
error. It would not be much more difficult to allow exceptions to carry a value, but we do not do so here.

error : exp.
trycatch : exp→ exp→ exp.

of/error : of error T.

of/trycatch : of E T→ of E′ T→ of (trycatch E E′) T.

5.4.1 Dynamic semantics

To give the dynamic semantics of exceptions and exception handling, we introduce two new ordered atomic
propositions. The first, handle E′, represents an exception-handling stack frame. The second, raise, repre-
sents an uncaught exception.

raise : typeo .
handle : exp→ typeo .

e/raise : eval error � raise.
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e/trycatch : eval(trycatch E E′) � handle E′ · eval E.

e/vhandle : handle E′ · retn V � retn V.

e/xhandle : handle E′ · raise � eval E′.

e/xcont : cont F · raise � raise.

As mentioned before, we must deal explicitly with the interaction of parallel evaluation and exception
handling by explaining how exceptions interact with cont2 frames. The following is one possibility in which
both sub-computations must terminate before an error is returned.

e/xvcont : cont2 F · raise · retnV � raise.

e/vxcont : cont2 F · retnV · raise � raise.

e/xxcont : cont2 F · raise · raise � raise.

Another obvious candidate for the interaction between parallel evaluation of pairs and exceptions would be
for a pair to immediately raise an exception if either of its components raises an exception. However, it is
not obvious how to gracefully implement this in the ordered SSOS style we have presented so far. This is a
symptom of a broader problem, namely that ordered SSOS specifications don’t, in general, handle non-local
transfer of control particularly well. This is a limitation of the specification style and not the framework;
a different style of specification known as linear destination passing could easily handle the more general
specification [24].

5.4.2 Static semantics

The static semantics of exception handling are extremely simple; there are just two rules. An uncaught
exception has any type, and an exception handler must have the same type as its sub-computation.

t/raise : raise � abs T.

t/handle : handle E · abs T · !of E T � abs T.

5.4.3 Safety

The existing structure of the safety proof also extends straightforwardly to handle the addition of exceptions
to the language; the most significant change is to the definition of safety itself, as a safe state either steps, is
a returned value retn V, or is an unhandled exception raise.

5.5 Another view: context generators

In the discussion of safety in Section 5.2, we needed a special “context invariant” lemma saying that the
dynamic semantics preserves the property that a substructural context contains no (abs T) propositions.
Another way of specifying this context invariant is in terms of a transition system that generates the context.
The degenerate “rewriting rules” that capture the context invariant for parallel evaluation are as follows:

gen/eval : ∀E. eval E.
gen/retn : ∀E. retn E.
gen/cont : ∀F. cont F.
gen/cont2 : ∀F. cont2 F.
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This changes the picture of safety presented in Section 5.2 to the following picture, which shows the two
invariants given by the context generating rules and the static semantics. The context generating rules
construct the context, and the static semantics then analyze it.

eval E S1 Sn S
S ′
or=

retn V

Σe
ΣeΣe · · ·

abs T abs T abs T abs T

Σt

∗
Σt

∗
Σt

∗
Σt

∗

· · · ·
Σgen

∗
Σgen

∗
Σgen

∗
Σgen

∗

This account of context generating rules bears a strong resemblance to the regular worlds specifications
mentioned in Section 3 and implemented in the LF/Twelf metalogical framework [27]; I am interested
in exploring the use of transition rules as a logical justification for regular worlds specifications. In this
setting, however, there is no reason why we need to limit ourselves to regular worlds-like context generators.
Another possibility is the use of context generators that capture the tree-like structure of the ordered context:

gen/eval : ∀E.gen � eval E.
gen/retn : ∀E.gen � retn E.
gen/cont : ∀F.gen � cont F · gen.
gen/cont2 : ∀F.gen � cont2 F · gen · gen.

But what if we don’t stop there? We could also have the gen atomic proposition carry a type, and then
only allow the generation of well-typed tree structures (we return to leaving quantification implicit):

gen/eval : gen T · !of E T � eval E.
gen/retn : gen T · !value E · !of E T � retn E.
gen/cont : gen T · !off F T′ T � cont F · gen T′.
gen/cont2 : gen T · !off2 F T1 T2 T � cont2 F · gen T1 · gen T2.

The static semantics of the language now have been captured entirely within the generation rules, seemingly
removing any need for a second invariant that analyzes the state. The statement of the safety theorem would
remain as it was in Theorem 1, but its proof would look like this:

eval E S1 Sn S
S ′
or=

retn V

Σe
ΣeΣe · · ·

gen T gen T gen T gen T
Σgen

∗
Σgen

∗
Σgen

∗
Σgen

∗

The perspective suggested by this picture is quite different from our usual intuitions about static semantics.
Usually, static semantics are seen as a way of analyzing or abstractly evaluating a state in order to generate
an approximation (the type) that is invariant under evaluation and sufficient to ensure safety; here, the static
semantics is more of a template for generating safe states. We have not explored this style of analysis in
depth, but it does seem to address certain significant complications that have been encountered in the process
of proving safety for the linear-destination-passing-style specifications [24].
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6 Conclusion

In this report, I have presented the outlines of a logical framework based on a state-transition-based view of
ordered linear logic and presented preliminary results indicating that the framework allows for both modular
specification of programming languages and formal reasoning about their safety properties. The presentation
of type safety for a SSOS specified language, the primary novel aspect of this report, is interesting for a
number of reasons. In particular, the proofs retain much of the character of existing safety proofs — the
general pattern of “Safety = Progress + Preservation” adapts well to the ordered SSOS specifications, and
existing typing rules can be used without revision. The notion of what it means for an expression to be well
typed, in other words, remains the same, and the notion of what it means for a state to be well typed is
expressible in terms of an ordered logical specification. There is much future work in this area, but as that
discussion is extensively explored in my thesis proposal [35], I will not discuss it further here. Instead, I will
conclude by briefly discussing two strands of related work: work in similar logical frameworks and work in
rewriting logic specifications of programming languages.

From the logical framework perspective, the most closely related work is the LF/LLF/OLF/CLF/HLF
family of logical frameworks, though the focus that the framework presented here gives to state transitions
exists elsewhere only in the CLF framework, and even there state transitions are second-class citizens. The
only published work on proving properties of SSOS specifications in CLF is Schack-Nielsen’s proof of the
equivalence of a big-step operational semantics and an original-style SSOS specification [33].

The notion that ideas at the intersection of abstract machine specifications and linear logic can capture
stateful and concurrent programming language features in a modular way is one with a fairly long history
[4, 1, 2, 24, 20, 28]. However, while the power of these frameworks for specification has long been rec-
ognized, formal reasoning about properties of these specifications has typically concentrated on properties
like approximation [19, 37] and equivalence [33] rather than on familiar properties like progress and preser-
vation that I demonstrate in the transition-based framework. I am aware of two exceptions to this pattern,
though in both cases only preservation lemmas were formalized, not progress lemmas. Cervesato’s LLF
specification of MLR can be seen as a transition-based specification that has been flipped around and turned
into a backward-chaining specification (or, equivalently, as a small-step specification that has been forced to
present itself as a big-step specification), and Reed’s HLF is able to mechanically verify Cervesato’s preser-
vation theorem [30]. Felty and Momigliano used a similar style of specification in their work on Hybrid to
encode abstract machines in ordered logic and reason about subject reduction in either Isabelle/HOL or Coq
[8].

While the theoretical basis of this proposal is found in the study of logical frameworks, the most sim-
ilar project in terms of goals and strategies is the rewriting logic semantics project [17], and in particular
the K framework for language specifications [34, 32]. Based on the Maude rewriting framework, these two
projects have proven successful in specifying, model-checking, and efficiently executing operational seman-
tics of stateful and concurrent programming languages, including a number of large formalizations of object
oriented [13] and functional [16] programming languages.

Many specifications in the K framework bear a strong resemblance to SSOS specifications, and the two
approaches to language formalization seem to share a great deal of fundamental structure, even if they differ
substantially in emphasis. I am only aware of one discussion of safety via progress and preservation for a K
specification [7]; this approach was discussed further in Ellison’s masters thesis [6]. The primary limitation
of K relative to our approach is a lack of LF-like canonical forms and higher-order abstract syntax, both of
which were critical to our specifications and to reasoning about their type safety; in the K specifications, the
existing “off the shelf” typing rules for expressions could not be used in the way we could.
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On the other hand, the primary limitation of our approach relative to K is the absence of any mechanism
for capturing arbitrary sets of propositions at the rule level — in K there is no distinction between terms and
propositions, so it is as if we could write this rule in a specification of first-class continuations:

CONT · eval(callcc(λx.E x))� CONT · eval(E(continue CONT))

where CONT captures all the propositions cont F to the left of eval(callcc(λx.E x)). This makes K’s ap-
proach to the modular specification of continuations infeasible in our framework. This does not mean
that SSOS specifications cannot express first-class continuations, however! Linear-destination-passing style
SSOS specifications can easily and naturally express first-class continuations [24]; previous work has fur-
thermore indicated that there may be a formal connection between ordered SSOS specifications and linear-
destination-passing SSOS specifications [38].
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