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Abstract

Automatic verification of hardware and software implementations is crucial for

building reliable computer systems. Most verification tools rely on decision pro-

cedures to check the satisfiability of various formulas that are generated during the

verification process. This thesis develops new techniques for building efficient de-

cision procedures and adds new capabilities to the existing decision procedures for

certain logics.

Boolean satisfiability (SAT) solvers are used heavily in verification tools as

decision procedures for propositional logic. Most state-of-the-art SAT solvers are

based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm and require

the input formula to be in Conjunctive Normal Form (CNF). However, typical

formulas that arise in practice are non-clausal, that is, not in CNF. Converting a

general formula to CNF introduces overhead in the form of new variables and may

destroy the structure of the initial formula, which can be useful to check satisfia-

bility efficiently. We present two non-clausal SAT algorithms that operate on the

Negation Normal Form (NNF) of the given formula. The NNF of a formula is usu-

ally more succinct than the CNF of the formula. The first algorithm is based on the
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idea of General Matings developed by Andrews in 1981. We develop techniques

for performing search space pruning, learning, non-chronological backtracking in

the context of a General Matings based SAT solver. The second algorithm applies

the DPLL algorithm to NNF formulas. We devise new algorithms for performing

Boolean Constraint Propagation (BCP), a key task in the DPLL algorithm.

Most hardware verification tools convert a high level design into a low level

representation called a netlist for verification. However, algorithms that operate at

the netlist level are unable to exploit the structure of the higher abstraction levels

such as register transfer level, and thus, are less scalable. This thesis proposes

the use of predicate abstraction for verifying register transfer level (RTL) Verilog.

Predicate abstraction is a technique introduced for software verification. There

are two challenges when applying predicate abstraction to circuits: (i) The com-

putation of the abstract model in the presence of a large number of predicates, and

(ii) discovery of suitable word-level predicates for abstraction refinement. We ad-

dress the first problem using a technique called predicate clustering. We address

the second problem by computing weakest pre-conditions of Verilog statements

in order to obtain new word-level predicates during abstraction refinement.

An alternative technique for finding new predicates for refinement is based on

the computation of Craig interpolants. Efficient algorithms are known for com-

puting interpolants in rational and real linear arithmetic. We focus on subsets

of integer linear arithmetic. Our main results are polynomial time algorithms

for obtaining proofs of unsatisfiability and interpolants for conjunctions of linear

diophantine equations, linear modular equations (linear congruences), and linear
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diophantine disequations. We show the utility of our interpolation algorithms for

discovering modular/divisibility predicates in a counterexample guided abstrac-

tion refinement (CEGAR) framework. This has enabled verification of simple

programs that cannot be checked using existing CEGAR based model checkers.
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Chapter 1

Introduction

Computer systems form an integral part of our day to day life. They are increas-

ingly being used in safety critical applications such as automobiles, medical de-

vices, aircrafts, and nuclear power plants. Automatic verification of the under-

lying hardware and software is crucial for building reliable computer systems.

The goal of this thesis is to develop techniques and tools for obtaining scalable

verification tools.

A decision procedure for a logic is an algorithm that reports whether a for-

mula given in that logic is satisfiable or unsatisfiable. Decision procedures act as

the reasoning engines in modern verification tools. In the first part of this thesis

we focus on an important logic, namely the Boolean (propositional) logic. Our

contributions and related work are described in Section 1.1. Most hardware ver-

ification tools convert a high-level design into a gate-level representation called

netlist for verification. However, algorithms that operate at the netlist level are
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unable to exploit the structure of the higher abstraction levels, and can be less

scalable. We develop techniques for verifying hardware designs at a higher level

of abstraction than the netlist level. We describe our contributions and related

work in Section 1.2. Recent hardware and software verification techniques ex-

pect the decision procedures to also provide proofs of unsatisfiability and Craig

interpolants. We present our results on computing proofs of unsatisfiability and

interpolants in Section 1.3.

1.1 Non-clausal Boolean Satisfiability Algorithms

The Boolean satisfiability (SAT) problem decides whether a given Boolean for-

mula is satisfiable or unsatisfiable. The SAT problem is of central importance in

various areas of computer science, including theoretical computer science, hard-

ware and software verification, and artificial intelligence. The SAT problem is

NP-complete [66] and no provably efficient algorithms are known for it. However,

there have been significant (empirical) improvements [108, 117, 77] in the capac-

ity of SAT solvers over the past decade. SAT solvers are now used routinely in

many hardware verification techniques such as bounded model checking [42], k-

induction [130], interpolation [112], abstraction-refinement [53, 86, 115, 103, 87].

Many software verification and static analysis tools such as CBMC [64], F-Soft

[90], SATABS [62], SATURN [143], Calysto [31] rely on fast Boolean satisfiabil-

ity solvers as well.

Many SAT solvers have been developed, most employing some combination
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of two main strategies: the Davis-Putnam-Logemann-Loveland (DPLL) search

[70, 71] and heuristic local search [110]. Heuristic local search techniques are not

guaranteed to be complete, that is, they are not guaranteed to find a satisfying as-

signment if one exists or prove unsatisfiability. As a result, complete SAT solvers

are based almost exclusively on the DPLL search. Some well-known complete

SAT solvers are GRASP [108], SATO [145], zChaff [117], BerkMin [84], Siege

[18], MiniSat [77, 8], RSat [14], PicoSAT [13, 41]. From now on we will focus

only on complete SAT solvers.

Most state-of-the-art SAT procedures require the input formula to be in con-

junctive normal form (CNF). The design and implementation of SAT solvers be-

comes much easier if the input formulas are restricted to CNF. Given a truth as-

signment σ to a subset of variables occurring in a formula, a Boolean constraint

propagation (BCP) algorithm determines if σ falsifies the given formula, else it

provides the set of implied assignments (unit literals). Modern SAT solvers spend

about 80%-90% of the total time during the BCP steps. For formulas in CNF, BCP

can be carried out very efficiently using the two-watched literal scheme [117].

While most DPLL based SAT solvers operate on CNF, there has been work on

applying DPLL directly to circuit [79, 106, 137] representations. In [79] a hybrid

SAT solver is described where the original formula is processed in circuit form,

and learned clauses are processed separately in CNF. The circuit-based BCP is

implemented by means of a lookup table. The lookup table determines the next

state of a gate (or its inputs) based upon the current value of its inputs and output.

The BCP on learned clauses uses the two-watched literal scheme [117]. In [137]
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a watched literal scheme is proposed for efficient BCP on a given circuit.

Typical formulas generated by the industrial applications are not necessarily

in CNF. We refer to these formulas as non-clausal formulas. In order to check the

satisfiability of a non-clausal formula φ using a CNF based SAT solver, φ needs

to be converted to CNF. This is done by introducing new variables [138, 124].

The result is a CNF formula φ′ which is equi-satisfiable to φ and is polynomial in

the size of φ. This is the most common way of converting φ to a CNF formula.

Conversion of a non-clausal formula to a CNF formula destroys the initial struc-

ture of the formula, which can be crucial for efficient satisfiability checking. The

advantage of introducing new variables to convert φ to φ′ is that it can allow for an

exponentially shorter proof than is possible by completely avoiding the introduc-

tion of new variables [98]. However, the translation from φ to φ′ also introduces

a large number of new variables and clauses, which can potentially increase the

overhead during the BCP steps and make the decision heuristics less effective. In

order to reduce this overhead modern CNF SAT solvers use pre-processing tech-

niques that try to eliminate certain variables and clauses [75]. The disadvantage

with pre-processing is that it does not always lead to improvement in the SAT

solver performance. It can also fail on large examples due to significant memory

overhead 1.

1 In SAT competitions the solvers disable pre-processing when the problem has more than a
few million clauses to avoid running out of memory.
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1.1.1 Outline of Our Results

A Boolean formula is in negation normal form (NNF) iff it contains only the

Boolean connectives ∧ (AND), ∨ (OR) and ¬ (NOT) and the scope of each oc-

currence of ¬ is a Boolean variable.

We propose a new SAT solving framework based on a representation known

as vertical-horizontal path form (vhpform) due to Peter Andrews [29, 30]. The

vhpform is a two-dimensional representation of formulas in NNF. We represent

the vhpform of a given NNF formula in the form of two graphs called vpgraph

and hpgraph. The vpgraph encodes the disjunctive normal form and the hpgraph

encodes the conjunctive normal form of a given NNF formula. The size of these

graphs is linear in the size of the given formula. We develop two non-clausal SAT

algorithms that use the vpgraph and the hpgraph of a given formula.

The first algorithm is based on the idea of General Matings [29]. A path in

a vpgraph starting from a root node and ending at a leaf node is called a vertical

path. Each vertical path corresponds to a term (conjunction of literals) in a DNF

representation of a given formula. At a high level our search algorithm enumerates

all possible vertical paths in the vpgraph of a given formula until a vertical path is

found that does not contain two opposite literals. If such a path is found the given

formula is satisfiable. If every vertical path contains two opposite literals, then the

given formula is unsatisfiable. The number of vertical paths can be exponential

in the size of a given formula. Thus, the key challenge in obtaining an efficient

SAT solver based on this method is to prevent the explicit enumeration of vertical

paths as much as possible. We develop new techniques for preventing the explicit
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enumeration of vertical paths.

A path in an hpgraph starting from a root node and ending at a leaf node is

called a horizontal path. Each horizontal path corresponds to a clause (disjunction

of literals) in a CNF representation of a given formula. The hpgraph provides a

compact encoding of all clauses present in a given NNF formula. The second

algorithm applies the DPLL algorithm to the hpgraph representation of a given

formula. The main challenge in this algorithm is to efficiently perform Boolean

constraint propagation (BCP) on the hpgraph representation. We generalize the

idea of the two-watched literal scheme used in CNF SAT solvers, in order to

efficiently carry out BCP on hpgraphs. We evaluated the new solver on a large

collection of non-clausal benchmarks drawn from bounded model checking, k-

induction, equivalence checking, and software verification. The new solver is

competitive with current state-of-the-art solvers in terms of run time and number

of problems solved.

We refer to our algorithms as non-clausal SAT algorithms as they do not re-

quire the conversion of a given formula to CNF.

1.1.2 Comparison with Related Work

The key differences between existing work and our work are as follows:

1. Unlike heuristic local search based techniques, we propose complete SAT

solvers.

2. Our algorithms do not operate on the circuit or CNF representation of a
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given formula/circuit. In our approach a given formula/circuit is converted

to an equi-satisfiable negation normal form (NNF) formula. The NNF for-

mula is then represented in the form of two graphs called the vpgraph and

hpgraph. These graphs are used in our SAT algorithms.

3. Our solvers handle formulas containing ∧,∨,¬ operators and no structure

sharing directly, without introduction of new variables. Observe that these

formulas can easily be converted to NNF by pushing the negations to the

variables using DeMorgan’s laws. The existing CNF and circuit based SAT

solvers require introduction of new variables for each intermediate gate or

sub-formula.

4. We are also able to handle formulas with structure sharing or formulas con-

taining other operators such as if-then-else (ITE), iff (⇔), xor (⊕) operators.

This is done by converting these formulas to NNF formulas as described in

chapter 2. The conversion to NNF may require addition of new variables.

Let VNNF and VCNF denote the number of new variables introduced when

converting a given formula/circuit to NNF and CNF , respectively. We pro-

vide empirical justification that VNNF is usually much smaller than VCNF ,

sometimes by an order of magnitude.

5. There is also a crucial difference between the General Matings based algo-

rithm and the DPLL algorithm. In DPLL the search space is the set of all

possible assignments to the Boolean variables, whereas in General Matings

the search space is the set of all possible vertical paths in the vpgraph of a
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given formula. To the best of our knowledge there is no direct relationship

between these search spaces.

1.2 Techniques for Word-Level Verification

Most hardware design is done at a high level of abstraction, e.g., using the regis-

ter transfer level (RT-level or RTL), or even at the system level. An RTL design

describes a digital circuit in terms of data flow between registers, which store in-

formation between clock cycles in a digital circuit. The RT-level of a hardware

description language such as Verilog is very similar to a software program with

features for hardware design such as bit-vectors. Most formal verification tools

used in the hardware industry convert a high level RTL design to a low level

design, usually a netlist, for verification. A netlist is a description of a hardware

design using gates (combinational elements) and latches (state-holding elements).

Verification at the netlist level can be more difficult, as the high level structure of

an RTL program is lost during the conversion to a netlist. For example, a multi-

plication operator in an RTL program gets replaced by a multiplier circuit in the

netlist. This can make the verification at the netlist level less scalable.

Fig. 1.1 (a) shows the various levels of abstraction for hardware design. The

ease of design increases as we move up from the netlist level to the system level.

Fig. 1.1 (b) shows that hardware verification tools convert (synthesize) a high-level

design to a netlist for verification. As argued earlier, verification at the netlist level

can be more difficult, and thus, there is a need for verification techniques that
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Figure 1.1: (a) Various levels of abstraction for hardware design. (b) Existing
formal verification tools convert a design to a netlist.

operate directly at the RT-level or system-level. Such techniques are also referred

to as word-level verification techniques.

1.2.1 Model Checking and Abstraction

Model checking [58, 60] is an automatic technique for the verification of finite-

state concurrent systems. It has been used successfully in practice to verify com-

plex circuit designs and communication protocols. Model checking systemati-

cally explores the state space of a given design and checks that each reachable

state satisfies the property of interest. If the design fails to satisfy a desired prop-

erty, the process of model checking produces a counterexample that demonstrates

a behavior that falsifies the property. By making use of symbolic algorithms

[52, 111, 42, 26] based on Binary Decision Diagrams (BDDs) [51] or fast sat-

isfiability solvers (SAT solvers) [108, 117, 8], current model checkers can scale to

systems with a large number of states.

In industrial hardware designs the number of states is extremely large. This
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results in a state explosion problem during model checking even when symbolic

model checking algorithms are used. One principal method in state space reduc-

tion is abstraction. Abstraction techniques reduce the state space by mapping the

set of states of the actual, concrete system to an abstract, and smaller, set of states

in a way that preserves the relevant behaviors of the system.

Many formal verification tools use abstraction techniques that produce a con-

servative over-approximation of the concrete system. This implies that if the ab-

straction satisfies a given property, the property also holds on the original concrete

system. The drawback of the conservative abstraction is that when model check-

ing of the abstraction fails, it may produce an abstract counterexample that does

not correspond to any concrete counterexample. This is usually called a spurious

counterexample [55].

In order to check if an abstract counterexample is spurious, the abstract coun-

terexample is simulated on the concrete program. This is called the simulation

step. As in bounded model checking (BMC) [42], the concrete transition relation

for the design and the given property are jointly unwound to obtain a Boolean

formula. The number of unwinding steps is given by the length of the abstract

counterexample. The Boolean formula is then checked for satisfiability using a

SAT procedure. If the instance is satisfiable, the counterexample is real and the

procedure terminates. If the instance is unsatisfiable, the abstract counterexample

is spurious, and abstraction refinement has to be performed.

The basic idea of abstraction refinement techniques [102, 55, 61, 33] is to

create a new abstract model that contains more detail in order to prevent the spu-
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Figure 1.2: Counterexample Guided Abstraction and Refinement (CEGAR) Loop.

rious counterexample. This process is iterated until the property is either proved

or disproved. It is known as the Counterexample Guided Abstraction Refinement

framework, or CEGAR for short [55]. The CEGAR loop is shown in Fig. 1.2.

1.2.2 Abstraction Techniques for Circuits

Most model checkers used in hardware verification operate on a low level design,

usually a netlist. At the netlist level, a commonly used abstraction technique is

localization reduction [102, 142, 87]. The abstract model is created from the given

circuit by removing a large number of latches together with the logic required to

compute their next state. The latches that are removed are called the invisible

latches. The latches remaining in the abstract model are called visible latches. For

example, the initial abstract model can be created by making the latches present

in the property visible, and the rest invisible. The refinement is done by moving

more latches from the set of invisible latches to the set of visible latches. The
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refinement step is usually based on the analysis of a spurious counterexample.

A proof-based approach is followed in [115, 86] where a proof of unsatisfia-

bility produced by a SAT solver is used to refine the abstraction. The advantage

of the proof-based approaches is that all counterexamples upto a given depth are

eliminated from the abstract model at each refinement step.

McMillan [112] describes a SAT-based method for finite-state model checking

based on the use of interpolants. In [112] the idea of interpolation is combined

with bounded model checking to obtain an over-approximate image operator. This

allows obtaining over-approximations of the reachable set of states without using

the costly image computation (existential quantification) operations. The use of

interpolation helps the verification procedure focus only on the parts of design

that are relevant to proving the property.

1.2.3 Outline of Our Results

As described above there are numerous abstraction techniques available for veri-

fication at the netlist level. However, very few abstraction techniques are known

for verification at the word-level. Since word-level hardware designs are similar

to software, we propose the use of abstraction algorithms that have been devised

for software verification.

In the software domain, one successful abstraction technique for large systems

is predicate abstraction [85]. It abstracts data by only keeping track of certain

predicates on the data. Each predicate is represented by a Boolean variable in the

abstract program, while the original data variables are eliminated. Predicate ab-
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straction of ANSI-C programs in combination with CEGAR loop was introduced

by Ball and Rajamani [33] and promoted by the success of the SLAM project.

The goal of the SLAM project is to verify that Windows device drivers obey API

conventions.

We apply predicate abstraction in combination with CEGAR loop for verify-

ing RTL Verilog programs. There are two challenges when applying predicate

abstraction to circuits: 1) The computation of the abstract model in presence of a

large number of predicates, and 2) the discovery of suitable word-level predicates

for abstraction refinement. We address these problems as part of this thesis.

1.2.4 Comparison with Related Work

While localization reduction is a special case of predicate abstraction, predicate

abstraction can result in a much smaller abstract model. As an example, assume

a circuit contains two registers, each encoding a number. Predicate abstraction

can keep track of a numerical relation between the two numbers using a single

predicate, and thus, using a single state bit in the abstract model. In contrast, lo-

calization reduction typically turns all bits of the two registers into visible latches,

and thus, the abstraction is identical to the original model.

Clarke et al. [63] introduce a SAT-based technique for predicate abstraction

of netlist level circuits. The use of a SAT solver like zChaff [117] in order to

perform the abstraction allows precise modeling of bit-vector semantics. How-

ever, their approach suffers from two drawbacks. 1) Each transition in the abstract

model is computed by a separate run of the SAT solver. Thus, the learning done
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by a SAT solver in the form of conflict clauses is lost when computing other tran-

sitions in the abstract model. 2) If refinement becomes necessary, only bit-level

predicates are introduced. This method of refinement closely resembles refine-

ment techniques for localization reduction.

Andraus et al. [28] present a scheme for automatic abstraction of behavioral

RTL Verilog to the CLU language [50]. The CLU language allows modeling us-

ing terms, uninterpreted functions, equality, lambda expressions, and counters. In

order to remove spurious behaviors from the abstract model a refinement proce-

dure is described in [27]. The techniques in [28, 27] were shown to be useful in

context of microprocessor correspondence checking. The techniques we propose

are different from those in [28, 27] and are geared towards property (assertion)

checking of hardware designs.

A Pre-image computation generates a set of states from which it is possible

to reach a given set of states with one transition. It is a basic operation in model

checking [58] and target enlargement approaches [39]. The idea of computing a

pre-image is the same as computing the weakest precondition of a given set of

states, although the latter term is more commonly used in software verification.

Most existing hardware model checkers compute the pre-image at the netlist level

and represent it symbolically using BDDs. As in software verification our use of

weakest preconditions or pre-images is at the word (expression) level.

We use weakest pre-conditions for discovering new predicates for refinement.

This technique can lead to too many refinement iterations or may not even ter-

minate in some cases, for example, when we need to track the value of an n bit
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counter c in an abstract model precisely. In this case refinement using weakest pre-

conditions can lead to 2n iterations, where each iteration discovers a predicate of

the form c = v, 0≤ v≤ 2n−1. In localization reduction the value c can be tracked

precisely by making each bit in c a visible latch. It is possible to get the benefits

of localization reduction in our technique as well by adding c[0], . . . ,c[n− 1] as

predicates. The combination of predicate abstraction and localization reduction is

studied in detail by Wang et al. [140].

Lahiri and Bryant [104] propose an extension to predicate abstraction that uses

predicates with free (index) variables. This allows verification of safety proper-

ties of unbounded systems. In our context, indexed predicates can be useful when

dealing with memories or input variables. The predicate discovery heuristics de-

scribed in [104] can be used in our context.

An alternative technique for discovering new predicates is based on Craig in-

terpolation [113, 89]. This technique is used in a state-of-the-art software model

checker BLAST [2]. In order to apply this idea to circuits, an interpolating theo-

rem prover for bit-vector logic [49, 38, 32, 107, 82, 48] is required. At present, it

is not known how to build a practical interpolating theorem prover for bit-vector

logic. We have developed an efficient interpolation algorithm for conjunctions of

linear modular equations (linear congruences). Our algorithm handles the inter-

polation problem for a subset of bit-vector logic.
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1.3 Craig Interpolation for Subsets of Integer Lin-

ear Arithmetic

F G

I

Figure 1.3: Formulas F,G, I represented as sets. F ∧G is unsatisfiable and I rep-
resents an interpolant for (F,G).

The use of Craig interpolation [67] has led to powerful hardware [112] and

software [89, 114] model checking techniques. Given two formulas F,G such

that F ∧G is unsatisfiable, a Craig interpolant for the pair (F,G) is a formula I

with the following properties: 1) F ⇒ I, 2) I ∧G is unsatisfiable, and 3) I refers

only to the common variables of F and G. One can view a formula as the set

of states that make the formula true. Figure 1.3 shows that the sets representing

formulas F,G are disjoint. The set representing the interpolant I for (F,G) is an

over-approximation (superset) of F and is disjoint from G.

In [112] the idea of interpolation is used for obtaining over-approximations

of the reachable set of states without using the costly image computation (exis-

tential quantification) operations. In [89, 99] interpolants are used for finding the
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void main ( )
{

i n t x =1 , y =2;
whi le ( 1 )
{

x = x +3∗ n o nd e t ( ) ;
y = y +6∗ n o nd e t ( ) ;
i f ( x+y ==2)

ERROR: ;
}

}

Figure 1.4: A C program with an unreachable ERROR label.

right set of predicates in order to rule out spurious counterexamples in a CEGAR

framework. An interpolating theorem prover performs the task of finding the in-

terpolants. Such provers are available for various theories such as propositional

logic, rational and real linear arithmetic and equality with uninterpreted functions

[113, 144, 100, 99, 128, 101, 54].

1.3.1 Motivating Example

Consider the C code in Fig.1.4. The function call nondet() returns a random

integer. We are interested in checking the reachability of the ERROR label. Intu-

itively, the ERROR label is unreachable because x + y is a multiple of 3 when the

condition of the if statement is checked. Existing weakest precondition based

or interpolation based model checkers are not able to find the right predicates in

order to show that the ERROR label is unreachable. In this example the right

predicate is x+y≡ 0 (mod 3), that is, x+y is a multiple of 3. We have developed
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new interpolation algorithms that are effective at discovering modular/divisibility

predicates, such as x+ y≡ 0 (mod 3), from spurious counterexamples.

1.3.2 Outline of Our Results

Efficient algorithms are known for computing interpolants in rational and real lin-

ear arithmetic [113, 128, 54]. Linear arithmetic formulas where all variables are

constrained to be integers are said to be formulas in (pure) integer linear arith-

metic or LA(Z), where Z is the set of integers. There are no known efficient

algorithms for computing interpolants for formulas in LA(Z). This is expected

because checking the satisfiability of conjunctions of atomic formulas in LA(Z) is

itself NP-hard. We show that for various subsets of LA(Z) one can compute proofs

of unsatisfiability and interpolants in polynomial time. We demonstrate the util-

ity of the proposed interpolation algorithms for discovering modular/divisibility

predicates in a counterexample guided abstraction refinement (CEGAR) frame-

work. This has enabled verification of simple programs that cannot be checked

using existing CEGAR based model checkers.

1.4 Thesis Outline

• In chapter 2 we discuss the conversion of Boolean circuits to NNF formulas

and the vertical-horizontal path form (vhpform) representation of NNF for-

mulas. We describe how to represent vhpform in form of two graphs called

vpgraph and hpgraph. This chapter forms the basis of our non-clausal SAT
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algorithms described in chapters 3 and 4.

• We describe our General Matings based SAT algorithm [91] in chapter 3.

The techniques for search space pruning, learning, and non-chronological

backtracking are presented. Experimental evaluation of the solver is pre-

sented.

• In chapter 4 we describe our DPLL based SAT algorithm. We present an

algorithm for carrying out Boolean constraint propagation on hpgraphs by

using a generalization of the two-watched literal scheme and the vpgraph.

We present an experimental evaluation of the solver.

• We present techniques for verifying register transfer level (RTL) Verilog us-

ing predicate abstraction and counterexample guided abstraction refinement

(CEGAR) loop [95, 96, 97, 23] in chapter 5.

• In chapter 6 we present our results on Craig interpolation for subsets of

integer linear arithmetic [92].

• We conclude in chapter 7 with directions for future research.
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Chapter 2

Graph Based Representations for

Non-Clausal SAT Solving

The problem of Boolean (propositional) satisfiability (SAT) is of central impor-

tance in various areas of computer science, including theoretical computer sci-

ence, artificial intelligence, and hardware/software design and verification. Most

state-of-the-art SAT procedures are variations of the Davis-Putnam-Logemann-

Loveland (DPLL) [70, 71] algorithm and require the input formula to be in con-

junctive normal form (CNF). Typical formulas arising in practice are non-clausal,

that is, not in CNF. Converting a non-clausal formula to CNF introduces over-

head in form of new variables and may destroy the initial structure of the formula,

which can be crucial in efficient satisfiability checking.

We propose a new Boolean SAT solving framework based on a representation

known as vertical-horizontal path form (vhpform) due to Peter Andrews [29, 30].
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We develop two non-clausal SAT algorithms that use the vhpform of a given for-

mula. We describe the vhpform representation in this chapter. In chapters 3, 4 we

describe our SAT algorithms that use the vhpform of a given formula.

A Boolean formula is in negation normal form (NNF) iff it contains only the

Boolean connectives ∧ (and), ∨ (or) and ¬ (not), the scope of each occurrence of

¬ is a Boolean variable. We also require that there is no structure sharing in a

NNF formula, that is, output from a gate acts as input to atmost one gate. That is,

a NNF formula is tree-like as opposed to a circuit which can be DAG-like.

The vhpform is defined for formulas in NNF form. Most Boolean circuits

obtained in practice are not in NNF form. The conversion of Boolean circuits to

NNF formulas is described in the next section.

2.1 Conversion of Boolean Formulas/Circuits to Nega-

tion Normal Form Formulas

In our work Boolean circuits are converted to NNF formulas in two stages. The

first stage re-writes other operators (xor, iff, implies, if-then-else) in terms of ∧, ∨,

¬ operators. For example, φ1⇔ φ2 (φ1 iff φ2) is written as (¬φ1∨φ2)∧(φ1∨¬φ2).

In order to avoid a blowup in the size of the resulting formula we allow sharing of

sub-formulas. Thus, the first stage produces a formula containing ∧,∨,¬ gates,

possibly with structure sharing. The second stage gets rid of the structure sharing

in order to obtain a NNF formula. This is done by introduction of new variables.

We introduce a new variable for each gate that is different from a ¬ (not) gate and
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Figure 2.1: Comparing number of variables in NNF formulas on y-axis and num-
ber of variables in CNF formulas on x-axis.

has a fanout greater than one. Observe that the conversion of a Boolean circuit to

a NNF formula can be done in linear time in the size of the Boolean circuit.

In Figure 2.1 we compare the number of variables in the NNF and CNF rep-

resentations of a collection of 2541 industrial non-clausal benchmarks (Boolean

circuits). The CNF form was obtained by means of the standard Tseitin transla-

tion [138, 124]. We can see that the NNF forms have 5−10 times fewer variables.

Modern CNF SAT solvers use pre-processing techniques in order to eliminate cer-

tain variables and clauses from the input CNF formula [75]. We compare the vari-

ables in the pre-processed CNF formulas and the corresponding NNF formulas in

23



 10

 100

 1000

 10000

 100000

 1e+06

 10  100  1000  10000  100000  1e+06

#V
ar

ia
bl

es
 in

 N
eg

at
io

n 
N

or
m

al
 F

or
m

 

#Variables in CNF after Pre-processing 

y > x on 440 pts

y < x on 1677 pts

Figure 2.2: Comparing number of variables in NNF formulas on y-axis and num-
ber of variables in pre-processed CNF formulas on x-axis.

Figure 2.2. The CNF formulas were pre-processed using SatELite [75]. Observe

that pre-processing is able to reduce the number of variables in the CNF formulas

significantly. However, on majority (> 70%) of benchmarks the CNF form still

has more variables than NNF form. The fewer variables in the NNF form (without

any pre-processing) motivates the need for exploring SAT solving techniques that

operate on NNF directly.

In the subsequent sections and the next two chapters we assume that the input

Boolean formula/circuit has been converted to a NNF formula. Given an NNF

formula φ our SAT algorithms check the satisfiability of φ without introducing
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Figure 2.3: The vhpform for the formula (((p∨q)∧¬r∧¬q)∨ (¬p∧ (r∨¬s)∧
q)). We show the negation of a variable by a − sign.

any more new variables.

2.2 Vertical-Horizontal Path Form

The internal representation in our satisfiability solver is NNF. More specifically,

we use a two-dimensional representation of a NNF formula, called vertical-horizontal

path form (vhpform) as described in [30]1. In this form disjunctions are written

horizontally and conjunctions are written vertically. For example Fig. 2.3 shows

the formula φ = (((p∨q)∧¬r∧¬q)∨ (¬p∧ (r∨¬s)∧q)) in vhpform. We define

two types of paths in the vhpform of a given formula.

Vertical path: A vertical path through a vhpform is a sequence of literals in the

vhpform that results by choosing either the left or the right scope for each occur-

rence of ∨. For the vhpform in Fig. 2.3 the set of vertical paths is {〈p,¬r,¬q〉,
1In [30] the term vertical path form (vpform) is used in place of vertical-horizontal path form

(vhpform). We use vertical-horizontal path form (vhpform) to emphasize the use of both vertical
and horizontal paths.
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〈q,¬r,¬q〉,〈¬p,r,q〉,〈¬p,¬s,q〉}.

Horizontal path: A horizontal path through a vhpform is a sequence of literals

in the vhpform that results by choosing either the upper or the lower scope for

each occurrence of ∧. For the vhpform in Fig. 2.3 the set of horizontal paths is

{〈p,q,¬p〉,〈p,q,r,¬s〉,〈p,q,q〉,〈¬r,¬p〉,〈¬r,r,¬s〉,〈¬r,q〉,〈¬q,¬p〉,〈¬q,r,¬s〉,

〈¬q,q〉}.

Two important results regarding satisfiability of negation normal formulas

from [30] are given below. Let F be a formula in negation normal form and

let σ be an assignment (σ can be a partial assignment).

Theorem 1 σ satisfies F iff there exists a vertical path P in the vhpform of F such

that σ satisfies every literal in P.

Theorem 2 σ falsifies F iff there exists a horizontal path P in the vhpform of F

such that σ falsifies every literal in P.

Example 1 The vhpform in Fig. 2.3 has a vertical path 〈p,¬r,¬q〉 whose every

literal can be satisfied by an assignment σ that sets p to true and r,q to false. It

follows from Theorem 1 that σ satisfies φ. Thus, φ is satisfiable. All literals in

the vertical path 〈q,¬r,¬q〉 cannot be satisfied simultaneously by any assignment

(due to opposite literals q and ¬q).

An assignment σ′ that sets p,r to true, falsifies every literal in the horizontal

path 〈¬r,¬p〉 in the vhpform of φ. Thus, from Theorem 2 it follows that σ′ falsifies

φ.
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Let V P (φ) and H P (φ) denote the set of vertical paths and the set of horizontal

paths in the vhpform of a given formula φ, respectively. We use l ∈ π to denote

the occurrence of a literal l in a vertical/horizontal path π. The following result

from [30] states that the set of vertical paths encodes the DNF and the set of

horizontal paths encodes the CNF of a given formula.

Theorem 3 Let φ be a NNF formula.

(a) φ is equivalent to the DNF formula
W

π∈V P (φ)
V

l∈π l.

(b) φ is equivalent to the CNF formula
V

π∈H P (φ)
W

l∈π l.

Our SAT algorithms operate on graph based representations of the vhpform of

a given formula. We describe these graph based representations below.

2.3 Graph Based Representations

2.3.1 Graphical Encoding of Vertical Paths (Vpgraph)

A graph containing all vertical paths present in the vhpform of a NNF formula is

called a vpgraph. Given a NNF formula φ, we define the vpgraph Gv(φ) as a tuple

(V,R,L,E,Lit), where V is the set of nodes corresponding to all occurrences of

literals in φ, R⊆V is a set of root nodes, L⊆V is a set of leaf nodes, E ⊆V ×V

is the set of edges, and Lit(n) denotes the literal associated with node n ∈ V . A

node n ∈ R has no incoming edges and a node n ∈ L has no outgoing edges.

The vpgraph containing all vertical paths in the vhpform of Fig. 2.4(a) is

shown in Fig. 2.4(b). For the vpgraph in Fig. 2.4(b), we have V = {1,2,3,4,5,6,7,8},
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Figure 2.4: (a) The vhpform for the formula (((p∨ q)∧¬r ∧¬q)∨ (¬p∧ (r ∨
¬s)∧q)) (b) the corresponding vpgraph.

R = {1,2,5}, L = {4,8}, E = {(1,3),(2,3),(3,4),(5,6),(5,7),(6,8),(7,8)} and

for each n ∈ V , Lit(n) is shown inside the node labeled n in Fig. 2.4(b). Each

path in the vpgraph Gv(φ), starting from a root node and ending at a leaf node,

corresponds to a vertical path in the vhpform of φ. For example, path 〈1,3,4〉 in

Fig. 2.4(b) corresponds to the vertical path 〈p,¬r,¬q〉 in Fig. 2.4(a) (obtained by

replacing node n on path by Lit(n)). Using this correspondence one can see that

the vpgraph contains all vertical paths present in the vhpform shown in Fig. 2.4(a).

Given φ, we can construct the vpgraph Gv(φ) = (V,R,L,E,Lit) directly without

constructing the vhpform of φ. This is done inductively as follows:

• If φ is a literal l, then we create a graph containing just one node f v, where f v

is a fresh identifier (node number). The literal stored inside f v is set to l.

Gv(φ) = ({ f v},{ f v},{ f v}, /0,Lit) and Lit( f v) = l, f v is a fresh identifier.

• If φ = φ1∨φ2, then the vpgraph for φ is obtained by taking the union of the vp-
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graphs of φ1 and φ2. Let Gv(φ1) = (V1,R1,L1,E1,Lit1) and Gv(φ2) = (V2,R2,

L2,E2,Lit2). Then Gv(φ) is the union of Gv(φ1) and Gv(φ2).

Gv(φ) = (V1∪V2,R1∪R2,L1∪L2,E1∪E2,Lit1∪Lit2)

• If φ = φ1∧φ2, then the vpgraph for φ is obtained by concatenating the vpgraph

of φ1 with the vpgraph of φ2. Let Gv(φ1) = (V1,R1,L1,E1,Lit1) and Gv(φ2) =

(V2,R2,L2,E2,Lit2). Then Gv(φ) contains all the nodes and edges in Gv(φ1)

and Gv(φ2). But Gv(φ) has additional edges connecting leaves of Gv(φ1) with

the roots of Gv(φ2). The set of additional edges is denoted as L1×R2 below.

The set of roots of Gv(φ) is R1, while the set of leaves is L2.

Gv(φ) = (V1∪V2,R1,L2,E1∪E2∪ (L1×R2),Lit1∪Lit2)

2.3.2 Graphical Encoding of Horizontal Paths (Hpgraph)

A graph containing all horizontal paths present in the vhpform of a NNF for-

mula is called a hpgraph. We use Gh(φ) to denote the hpgraph of a formula φ.

The procedure for constructing a hpgraph is similar to the above procedure for

constructing the vpgraph. The difference is that the hpgraph for φ = φ1 ∧ φ2 is

obtained by taking the union of the hpgraphs for φ1 and φ2 and the hpgraph for

φ = φ1∨φ2 is obtained by concatenating the hpgraphs of φ1 and φ2.

The hpgraph containing all horizontal paths in the vhpform in Fig. 2.5(a) is

shown in Fig. 2.5(b). For the hpgraph in Fig. 2.5(b), we have V = {1,2,3,4,5,6,7,8},

R = {1,3,4}, L = {5,7,8}, E = {(1,2),(2,5),(2,6),(2,8),(3,5),(3,6),(3,8),(4,5),

(4,6),(4,8),(6,7)} and for each n ∈V , Lit(n) is shown inside the node labeled n.
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Figure 2.5: (a) The vhpform for the formula (((p∨ q)∧¬r ∧¬q)∨ (¬p∧ (r ∨
¬s)∧q)) (b) the corresponding hpgraph.

It can be shown by induction that the vpgraph and hpgraph of a NNF formula

are directed acyclic graphs (DAGs). One can also represent vpgraph and hpgraph

as directed series-parallel graphs. Series-parallel graphs have been widely studied

and many problems that are NP-complete for general graphs can be solved in

linear time for series-parallel graphs [135].

The construction of vpgraph/hpgraph can be done in O(k) time/space where k

is the size of the given NNF formula. We refer the reader to appendix A for more

details.

When constructing an hpgraph/vpgraph from a NNF formula φ each literal in

φ gets represented as a new node in the hpgraph and vpgraph of φ. We assume that

the node number corresponding to each literal l in φ is the same in the hpgraph and

the vpgraph of φ. Thus, the set of nodes in the hpgraph and vpgraph are identical.

In the following we define some terms that will be used in the next two chap-
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ters. When the distinction between Gh(φ) and Gv(φ) is not required we drop the

subscripts and use G(φ).

2.3.3 Terminology

Let G(φ) = (V,R,L,E,Lit) denote a vpgraph or a hpgraph.

Definition 1 A path π = 〈n0, . . . ,nk〉 in G(φ) is said to be a r-path (rooted path)

iff it starts with a root node (n0 ∈ R). Formally, π = 〈n0, . . . ,nk〉 is a r-path iff

n0 ∈ R and (ni,ni+1) ∈ E for all 0≤ i < k.

In Fig. 2.4(b), 〈2,3〉 is a r-path while 〈3,4〉 is not a r-path.

Definition 2 A path π = 〈n0, . . . ,nk〉 in G(φ) is said to be a rl-path iff it starts

at a root node and ends at a leaf node. Formally, π = 〈n0, . . . ,nk〉 is a rl-path iff

n0 ∈ R, nk ∈ L and (ni,ni+1) ∈ E for all 0≤ i < k.

In Fig. 2.4(b), both 〈2,3,4〉, 〈5,6,8〉 are rl-paths, but 〈3,4〉 is not a rl-path.

There is a one-to-one correspondence between the rl-paths in Gv(φ) and the

vertical paths in the vhpform of φ. There is a similar one-to-one correspondence

between the rl-paths in Gh(φ) and the horizontal paths in the vhpform of φ. For ex-

ample, path 〈1,2,6,7〉 in Fig. 2.5(b) corresponds to the horizontal path 〈p,q,r,¬s〉

in Fig. 2.5(a). The following corollary adapts Theorem 3 to the graphical repre-

sentations.

Corollary 1 Let π denote an rl-path and n denote a node on π.

(a) φ is equivalent to the DNF formula
W

π∈Gv(φ)
V

n∈π Lit(n).

(b) φ is equivalent to the CNF formula
V

π∈Gh(φ)
W

n∈π Lit(n).

31



We will find it convenient to think of an rl-path π in Gh(φ) as a clause
W

n∈π Lit(n)

in the CNF representation of φ. This is justified by the above corollary. Similarly,

one can think of an rl-path π in Gv(φ) as a term (cube)
V

n∈π Lit(n) in the DNF

representation of φ.

2.4 Chapter Summary

We presented a two-dimensional representation of NNF formulas called vertical-

horizontal path form (vhpform). The vhpform of an NNF formula contains verti-

cal and horizontal paths. A vertical path is like a cube (term) in the DNF repre-

sentation of a given formula, while a horizontal path is like a clause in the CNF

representation of a given formula. The vpgraph encodes all vertical paths and the

hpgraph encodes all horizontal paths. Both vpgraph and hpgraph can be obtained

in linear time in the size of the given NNF formula.

Typical Boolean circuits arising in practice are not in NNF form. Such circuits

can be converted to NNF form efficiently by introducing new variables. The NNF

of a circuit is usually more succinct than the (pre-processed) CNF of the circuit in

terms of number of variables.
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Chapter 3

General Matings based SAT Solver

General Matings is a theorem proving technique due to Andrews [29]. It is closely

related to the Connection method discovered independently by Bibel [40]. Theo-

rem provers based on these techniques have been used successfully in higher order

theorem proving [21]. We use the General Matings idea to build a SAT solver for

satisfiability problems arising in practice.

Theorem 1 (Section 2.2) forms the basis of our General Matings based SAT

solver called SatMate. The idea is to check the satisfiability of a given NNF for-

mula by examining the vertical paths in its vpgraph. At a high level our search

algorithm enumerates all possible vertical paths in the vpgraph of a given formula

until a vertical path is found that does not contain two opposite literals. If such a

path is found the given formula is satisfiable. If every vertical path contains two

opposite literals, then the given formula is unsatisfiable. The number of vertical

paths can be exponential in the size of a given formula. Thus, the key challenge in
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obtaining an efficient SAT solver based on this method is to prevent the enumer-

ation of vertical paths as much as possible. We develop several new techniques

for preventing the enumeration of vertical paths. Our contributions can be sum-

marized as follows.

3.1 Contributions

• Our solver employs a combination of both vertical and horizontal path explo-

ration for efficient SAT solving. The choice of which variable to assign next

(decision making) is made using the vertical paths, which are similar to the

terms (conjunction of literals) in the DNF of a given formula. Conflict detec-

tion is aided by the use of horizontal paths, which are similar to the clauses

(disjunction of literals) in the CNF of a given formula.

• We show how to adapt the techniques found in the current state-of-the-art SAT

solvers to our algorithm. We describe how to perform search space pruning,

conflict driven learning, and non-chronological backtracking by using the ver-

tical paths and horizontal paths in the vhpform of a given formula.

3.2 Preliminaries

Let G(φ) = (V,R,L,E,Lit) denote a vpgraph or hpgraph.

Definition 3 Two nodes n1,n2 ∈V are said to be conflicting iff Lit(n1)=¬Lit(n2).

In the vpgraph shown in Fig. 3.1(a), nodes 2,4 are conflicting.
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Figure 3.1: (a) The vpgraph for (((p∨q)∧¬r∧¬q)∨ (¬p∧ (r∨¬s)∧q)) (b) the
corresponding hpgraph.

Definition 4 We say an assignment σ satisfies (falsifies) a node n ∈V iff σ satis-

fies (falsifies) Lit(n).

An assignment that sets q to true satisfies nodes 2, 8 and falsifies node 4 in

Fig. 3.1(a).

Definition 5 We say an assignment σ satisfies (falsifies) a path π ∈ G(φ) iff σ

satisfies (falsifies) every node on π.

For example, in Fig. 3.1(a) path 〈5,6,8〉 is satisfied by an assignment which sets

p to false and r,q to true. The same path is falsified by an assignment which sets

p to true and r,q to false.

Definition 6 We say that a path π ∈ G is satisfiable iff there exists an assignment

which satisfies π.
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In Fig. 3.1(a), path 〈5,6,8〉 is satisfiable, while the path 〈2,3,4〉 is not satisfiable

due to conflicting nodes 2,4.

Recall, that an rl-path in a vpgraph Gv(φ) corresponds to a vertical path in the

vhpform of φ. Similarly, an rl-path in a hpgraph Gh(φ) corresponds to a horizontal

path in the vhpform of φ. The following corollaries adapt Theorem 1 and Theorem

2 (Section 2.2) to the graph representations of the vhpform of a given formula φ.

Corollary 2 An assignment σ satisfies φ iff there exists a rl-path π in Gv(φ) such

that σ satisfies π.

Corollary 3 An assignment σ falsifies φ iff there exists a rl-path π in Gh(φ) such

that σ falsifies π.

The following corollary is a re-statement of corollary 2.

Corollary 4 φ is satisfiable iff there exists a rl-path π in Gv(φ) which is satisfiable.

The following corollary connects the notion of conflicting nodes with the satisfia-

bility of a path.

Corollary 5 A path π in G(φ) is satisfiable iff no two nodes on π are conflicting.

Discovery of unit literals from hpgraph: Modern SAT solvers operating on

a CNF representation employ a unit literal rule for efficient Boolean constraint

propagation. The unit literal rule states that if all but one literal of a clause are

set to false, then the un-assigned literal in the clause must be set to true under the

current assignment. In our context the input formula is not necessarily represented
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in CNF, however, it is still possible to obtain the unit literal rule via the use of the

hpgraph of a given formula. The following claim states the unit literal rule for the

non-clausal formulas.

Corollary 6 If an assignment σ falsifies all but one node (say n) on an rl-path π

in Gh(φ) and Lit(n) is not already assigned by σ, then Lit(n) must be set to true

under the current assignment σ in order to obtain a satisfying assignment.

Intuitively, each rl-path in the hpgraph corresponds to a clause in the CNF of a

given formula (Corollary 1 (b)). Thus, at least one literal from each rl-path in

Gh(φ) must be satisfied in order to obtain a satisfying assignment.

Example 2 Consider the hpgraph shown in Fig. 3.1(b) and an assignment σ which

sets p,q to false and s to true. σ falsifies all but node 6 on the rl-path 〈1,2,6,7〉 in

the hpgraph. It follows from Corollary 6 that Lit(6) which is r must be set to true

under σ.

We give a high level description of our General Matings based solver called

SatMate below.

3.3 Top Level Algorithm Used in SatMate

In order to check the satisfiability of a NNF formula φ, we obtain a vpgraph Gv(φ).

From Corollary 4 it follows that φ is satisfiable iff Gv(φ) has a satisfiable rl-path.

At a high level our search algorithm enumerates all possible rl-paths until a satis-

fiable rl-path is found. If no satisfiable rl-path is found, then φ is unsatisfiable. For
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DNF (or DNF-like) formulas the number of rl-paths in vpgraph is small, linear

in the size of the formula, and therefore the basic search algorithm is efficient.

However, for formulas that are not in DNF form, the algorithm of just enumerat-

ing all rl-paths in Gv(φ) does not scale. We have adapted several techniques found

in modern SAT solvers such as search space pruning, conflict driven learning,

non-chronological backtracking to make the search efficient.

Algorithm 3.1 Searching a vpgraph for a satisfiable rl-path.
Input: vpgraph Gv(φ) = (V,R,L,E,Lit) and hpgraph Gh(φ) = (V ′,R′,L′,E ′,Lit ′)
Output: If Gv(φ) has a satisfiable rl-path return SAT, else return UNSAT

1: st← R {push all roots in Gv(φ) on stack st}
2: σ← /0 {initial truth assignment is empty}
3: ∀n ∈V : mrk(n)← f alse {all nodes are un-marked to start with}
4: while (st 6= /0) {stack st is not empty} do
5: m← st.top() {top element of stack st}
6: if (mrk(m) == f alse) {can we extend current r-path CRP with m} then
7: if (prune() == conflict) {check if taking m causes conflict} then
8: learn() {compute reason for conflict and learn}
9: backtrack() {non-chronological backtracking}

10: continue {goto while loop (line 4)}
11: end if
12: mrk(m)← true {extend current satisfiable r-path with m}
13: σ← σ∪{Lit(m)} {add Lit(m) to current assignment}
14: if (m ∈ L) {node m is a leaf} then
15: return SAT {we found a satisfiable rl-path in Gv(φ)}
16: else
17: push all children of m on st {extend CRP〈m〉 to reach a leaf}
18: end if
19: else
20: backtrack () {non-chronological backtracking}
21: end if
22: end while
23: return UNSAT {no satisfiable rl-path exists in Gv(φ)}
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The high level description of the solver is given in Algorithm 3.1. The in-

put to the algorithm is a vpgraph Gv(φ) = (V,R,L,E,Lit) and a hpgraph Gh(φ) =

(V ′,R′,L′,E ′,Lit ′) corresponding to a formula φ. If Gv(φ) contains a satisfiable

rl-path, then the algorithm returns SAT as the answer. Otherwise, φ is unsatisfi-

able and the algorithm returns UNSAT. The algorithm uses the hpgraph Gh(φ) in

various sub-routines such as prune and learn. The following data structures

are used:

• st is a stack. It stores a subset of nodes from V that need to be explored when

searching for a satisfiable rl-path in Gv(φ). Initially, the roots in Gv(φ) are

pushed on the stack st (line 1). Let st.top() return the top element of st. We

write st as [n0, . . . ,nk] where the top element is nk and the bottom element is

n0.

• σ stores the current truth assignment as a set. Each element of σ is a literal

which is true under the current assignment. For example, an assignment with

sets variables a,b to true and c to false will be denoted as {a,b,¬c}. The

algorithm ensures that σ is consistent, that is, it does not contain contradictory

literals of the form l and ¬l. Initially, σ is the empty set (line 2).

• mrk maps a node in V to a Boolean value. It identifies an r-path in Gv(φ)

which is currently being considered by the algorithm to obtain a satisfiable

rl-path (see Fig. 3.3(a)). We refer to this r-path as the current r-path (CRP

for short). Intuitively, mrk(n) is true for nodes that lie on the CRP (n ∈ CRP)

and false for all other nodes in Gv(φ). More precisely, the CRP is obtained
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Figure 3.2: The vpgraph for formula (a∨ c)∧ (b∨¬a)∧ (¬a∨¬c).

by removing every node n from the stack st for which mrk(n) is false. The

remaining nodes constitute the CRP. Initially, mrk(n) is set to false for every

node n (line 3), thus, CRP is empty.

Example 3 The vpgraph for the formula φ = (a∨ c)∧ (b∨¬a)∧ (¬a∨¬c) is

shown in Fig. 3.2. Initially, we have st as [2,1] where the top element of the

stack is 1, σ = /0, mrk(n) = f alse for all n ∈ {1,2,3,4,5,6}. Suppose during the

execution of the algorithm we have st as [2,1,4,3,6,5], and mrk(1),mrk(3) are

true and mrk(n) = f alse for n ∈ {2,4,5,6}. Thus, CRP is 〈1,3〉. Observe that

CRP is an r-path. Intuitively, the algorithm tries to extend CRP by one node at

a time, to obtain a satisfiable rl-path. In this case CRP can be extended to obtain

two rl-paths π1 = 〈1,3,5〉 or π2 = 〈1,3,6〉. However, only π2 is satisfiable (by

σ = {a,b,¬c}) and is enough to show that φ is satisfiable.

The main part of the algorithm is the while loop (lines 4-22) which executes

as long as st is not empty and the algorithm has not returned SAT on line 15. The

algorithm maintains the following loop invariant.

Loop invariant: At the beginning of iteration number i of the while loop:
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Figure 3.3: (a) Current r-path or CRP in a vpgraph (b) Can CRP be extended by
node m? (c) Backtracking from node m.

let the current r-path (CRP) be 〈n0, . . . ,nk〉. Then the assignment σ is equal to

{Lit(n j)|n j ∈ CRP}. That is, σ satisfies each node on CRP and thus, σ satisfies

CRP. For example, suppose CRP is 〈1,3〉 in the vpgraph shown in Fig. 3.2, then σ

will be {a,b}.

If st is not empty, then the top element of the stack (denoted by m) is consid-

ered in line 5. There are two possibilities for node m according to the if statement

in line 6.

• mrk(m) is f alse : In this case the algorithm checks if the current r-path CRP

can be extended by node m as shown in Fig. 3.3(b). This check is carried out by

a call to prune (line 7). If prune returns conflict, then the current r-path

extended by node m cannot lead to a satisfiable rl-path. Thus, the solver needs to

backtrack from node m, and if possible extend CRP by some other node. This is

done by calling backtrack on line 9 and going back to while loop (line 4)

by using continue (line 10). Before backtracking a call to learn (line 8)
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is made which summarizes the reason for the conflict when CRP is extended by

m. This reason is learned in form of a clause and is used later to avoid similar

conflicts. We denote CRP concatenated with m as CRP〈m〉. Depending upon the

reason why there is no satisfiable rl-path with CRP〈m〉 as prefix, the backtrack

routine can pop several nodes from st (non-chronological backtracking) instead of

just popping m from st.

If a call to prune results in no-conflict (line 7), then m can extend CRP.

In this case execution reaches line 12. At line 12 mrk(m) is set to true, which

means that the new current r-path is CRP concatenated with m, that is, CRP〈m〉.

The algorithm maintains the loop invariant that the assignment σ satisfies the cur-

rent r-path. In order to maintain this invariant σ now needs to satisfy node m

which is on the current r-path CRP〈m〉. This is done by adding Lit(m) to σ (line

13). If m is a leaf in the vpgraph, then CRP〈m〉 is a satisfiable rl-path. In this case

SAT is returned (lines 14-15). If m is not a leaf, then the children of m are pushed

on the stack (line 17). The algorithm will next attempt to extend the current r-path

CRP〈m〉.

•mrk(m) is true : This happens when the current r-path is of the form 〈n0, . . . ,nk,m〉.

Intuitively, the algorithm has explored all possible rl-paths with 〈n0, . . . ,nk,m〉 as

prefix, but none of them leads to a satisfiable rl-path as shown in Fig. 3.3(c). The

algorithm now backtracks from node m by calling backtrack on line 20 . De-

pending upon the reason why there is no satisfiable rl-path with 〈n0, . . . ,nk,m〉 as

prefix, the algorithm can pop several nodes from st instead of just popping m.

For each node n removed from the stack during backtracking (lines 9, 20)
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mrk(n) is set to false again. This enables the removed nodes to be examined again

on rl-paths which have not yet been explored.

We discuss the routines prune, learn, and backtrack in the following

sections.

3.4 Search Space Pruning

This section describes the procedure prune called in the non-clausal SAT algo-

rithm shown in Algorithm 3.1 (line 7). A call to prune checks if the current

r-path CRP can be extended by node m or not, as shown in Fig. 3.3(b). Intu-

itively, prune returns conflict if there cannot be a satisfiable rl-path in vp-

graph Gv(φ) with CRP〈m〉 as prefix. When prune is called, the current r-path

CRP is satisfied by assignment σ, which is equal to {Lit(n)|n ∈ CRP} (maintained

as a while loop invariant in the top level algorithm shown in Algorithm 3.1).

The three cases when conflict is returned are as follows:

Case 1: When CRP〈m〉 is not satisfiable. This happens when there is a node n

on CRP such that Lit(n) = ¬Lit(m). In this case no assignment can satisfy the

r-path CRP〈m〉 (Corollary 5). For example, in the vpgraph shown in Fig. 3.4(a)

this conflict arises when the CRP is 〈1,3〉 and m is node 5.

Otherwise, CRP〈m〉 is satisfiable and σ′ = σ ∪ {Lit(m)} satisfies CRP〈m〉.

However, it is still possible that there is no satisfiable rl-path in Gv(φ) with CRP〈m〉

as prefix. These cases are described below.
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Figure 3.4: (a) Vpgraph for formula (a∨c)∧(b∨¬a)∧(¬a∨¬c). (b,c) Vpgraph
and Hpgraph for formula (a∨c)∧ ((b∧u)∨ (d∧v))∧ (¬a∨¬b), respectively (d)
Vpgraph for formula (a∨ c)∧ ((b∧u∧ (¬a∨¬b))∨ (d∧ v)).

Case 2 (Global conflict): When σ′ falsifies φ. In this case we claim that there

is no satisfiable rl-path in Gv(φ) with CRP〈m〉 as a prefix. We prove this claim

by contradiction. Assume that there is an rl-path π in Gv(φ) which has CRP〈m〉

as prefix and is satisfiable. By definition there exists an assignment σ′′ which

satisfies π. From Corollary 2 we know that σ′′ satisfies φ. In order to satisfy π, σ′′

must satisfy CRP〈m〉. That is, σ′′ must contain Lit(n) for every n∈ CRP〈m〉. Since

σ′ = {Lit(n)|n ∈ CRP〈m〉}, it follows that σ′ ⊆ σ′′. But σ′ falsifies φ and hence σ′′

must falsify φ. This leads to a contradiction.

Example 4 In Fig. 3.4(b) vpgraph for formula φ := (a∨ c)∧ ((b∧u)∨ (d∧ v))∧

(¬a∨¬b) is given. Consider the case when CRP is 〈1〉 and σ = {a}. The al-

gorithm checks if CRP can be extended by node 3 (m = 3). Using our notation

σ′ = {a,b}. Observe that σ′ falsifies φ by substituting a = true,b = true in φ.

There are two rl-paths π1 := 〈1,3,5,7〉,π2 := 〈1,3,5,8〉 in the vpgraph shown in

Fig. 3.4(b) which have 〈1,3〉 as prefix. Neither of these rl-paths is satisfiable:
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π1 is not satisfiable due to conflicting nodes 1, 7 and π2 is not satisfiable due to

conflicting nodes 3, 8.

Detection of a global conflict: We use Corollary 3 to check if σ′ falsifies φ. We

check if there is an rl-path π in Gh(φ) such that σ′ falsifies π. Continuing the

above example, the hpgraph corresponding to φ is shown in Fig. 3.4(c). Observe

that σ′ = {a,b} falsifies the rl-path 〈7,8〉 in Fig. 3.4(c). Thus, using Corollary 3,

it follows that σ′ falsifies φ.

If there is no global conflict, then the set of implied assignments can be found

by the application of unit literal rule on Gh(φ) as described in Corollary 6.

Case 3 (Local conflict): This conflict arises when every rl-path in Gv(φ) with

CRP〈m〉 as prefix contains two nodes which are conflicting and one of the conflict-

ing nodes lies on CRP〈m〉. Formally, this conflict arises when for every rl-path π

in Gv(φ) with CRP〈m〉 as prefix there exist two nodes k, l ∈ π and k ∈ CRP〈m〉 such

that Lit(k) = ¬Lit(l). From Corollary 5, it follows that any rl-path π containing

conflicting nodes is not satisfiable. Thus, when a local conflict occurs no rl-path

in Gv(φ) with CRP〈m〉 as prefix is satisfiable. Whenever there is a global conflict

(case 2 above) there is also a local conflict, however, the reverse need not hold as

shown by the example below.

Example 5 In Fig. 3.4(d) the vpgraph for formula φ := (a∨ c)∧ ((b∧ u∧ (¬a∨

¬b))∨(d∧v)) is shown. Consider the case when CRP is 〈1〉 and m is node 3 (m =

3). Using our earlier notation σ′ = {a,b}. Note that σ′ does not falsify φ, which
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means there is no global conflict. There are two rl-paths 〈1,3,5,7〉,〈1,3,5,8〉 in

the vpgraph shown in Fig. 3.4(d) which have 〈1,3〉 as prefix. Both of these rl-

paths contain two conflicting nodes, nodes 1,7 are conflicting on 〈1,3,5,7〉 and

nodes 3,8 are conflicting on 〈1,3,5,8〉. Thus, there is a local conflict and the

solver needs to backtrack from node m = 3.

Detection of global and local conflicts can be done in linear time in the size

of vpgraph/hpgraph as described in the appendix B. Depending upon the type of

conflict (global or local) we perform global or local learning as described below.

3.5 Learning

Learning records the cause of a conflict. This enables the preemption of similar

conflicts later on in the search. In the following, a clause will refer to a disjunction

of literals. A clause C is conflicting under an assignment σ iff all literals in C are

falsified by σ. If a clause C is not conflicting under an assignment σ, we say C is

consistent under σ. We distinguish between two types of learning:

Global learning: A globally learned clause is a clause whose consistency must

be maintained irrespective of the current search state, which is given by the current

r-path CRP (and assignment σ = {Lit(n)|n ∈ CRP}). That is, whenever a globally

learned clause becomes conflicting under σ the solver abandons the current search

state and backtracks. A globally learned clause is generated from a conflicting

clause. A conflicting clause C arises in two cases as described below.
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Figure 3.5: Hpgraph for formula (a∨ c)∧ ((b∧u)∨ (d∧ v))∧ (¬a∨¬b).

1. When analyzing global conflicts as described in the previous section. When

a global conflict occurs there is an rl-path π in hpgraph Gh(φ) which is fal-

sified by the assignment σ currently under consideration. The set of literals

corresponding to the nodes on π gives us a clause C :=
W

n∈π(Lit(n)). Ob-

serve that C is a conflicting clause, that is, all literals occurring in C are set

to false under the current assignment.

Example 6 The hpgraph corresponding to φ := (a∨c)∧((b∧u)∨(d∧v))∧

(¬a∨¬b) is shown in Fig. 3.5. A global conflict occurs when the current

assignment is σ = {a,b}, that is, σ falsifies φ. In this case the rl-path in

the hpgraph which is falsified by σ is 〈7,8〉. Thus the required conflicting

clause is ¬a∨¬b.

2. When all literals of an existing globally learned clause C become false.

Once a conflicting clause C is obtained, we perform a 1-UIP (first unique impli-

cation point) analysis [148] to obtain a learned clause C′. Clause C′ is added to

the database of globally learned clauses. In order to perform 1-UIP analysis we

47



a c1 2

3 4

5 6

87 −b−a

u v

b d

Figure 3.6: Vpgraph for formula (a∨ c)∧ ((b∧u∧ (¬a∨¬b))∨ (d∧ v)).

maintain a notion of a decision level. We associate a decision level dec(n) with

each node n in the current r-path CRP. We also maintain a set of implied literals at

each node (or decision level) along with the reason (set of variable assignments)

which led to the implication. We follow the same algorithm as in [148] to perform

the 1-UIP learning.

Local learning: A locally learned clause is associated to a node n in the vpgraph

when a local conflict occurs at n. Suppose C is a locally learned clause at node n.

Then the consistency of C needs to be maintained only when n is part of the current

search state, that is, n ∈ CRP. If n does not lie on CRP, then the consistency of C is

irrelevant. This is in contrast to a globally learned clause whose consistency must

always be maintained.

Example 7 Consider the local conflict which occurs in the vpgraph in Fig. 3.6

when CRP is 〈1〉 and it is checked if CRP can be extended by m = 3. In this case

every rl-path in vpgraph with 〈1,3〉 as prefix contains two conflicting nodes one

of which lies on 〈1,3〉. The rl-path 〈1,3,5,7〉 has conflicting nodes 1,7 and the rl-
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path 〈1,3,5,8〉 has conflicting nodes 3,8. In this case a clause Lit(7)∨Lit(8) =

¬a∨¬b can be learned at node 3. Intuitively, when we consider extending the

CRP with node m the (locally) learned clauses at node m must be consistent with

the assignment σ = {Lit(n)|n ∈ CRP〈m〉}. Otherwise, a local conflict will occur

at m causing the solver to backtrack. Having learned clauses at node m avoids

repeating the work done in detecting the same local conflict. For the vpgraph in

Fig. 3.6, when CRP is 〈2〉 and m = 3, σ = {c,b} is consistent with the learned

clause ¬a∨¬b at node 3, thus, the solver cannot get the same local conflict at

node 3 as before (when CRP was 〈1〉 and m = 3).

If a local conflict occurs when extending CRP by node m, then a clause is learned

at node m as follows: For each rl-path π having CRP〈m〉 as prefix let ω1(π),ω2(π)

denote the pair of conflicting nodes on π. Without loss of generality assume

that ω1(π) lies on CRP〈m〉. Then the learned clause C at node m is given byW
π Lit(ω2(π)). Consistency of C must be maintained only when considering rl-

paths passing through m.

3.6 Non-chronological Backtracking

Analyzing conflicts to determine their causes enables modern SAT solvers to

backtrack non-chronologically to earlier levels in the search tree, potentially prun-

ing large portions of the search space. This technique is also applicable in our SAT

procedure. The backtracking routine called in our SAT procedure depends on the

type of conflict that invoked the backtracking procedure:
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Figure 3.7: Non-chronological backtracking example.

Non-chronological backtracking on a global conflict: When a global conflict

occurs the solver calls a backtracking procedure similar to that in CNF SAT

solvers. Suppose a global conflict occurs when the solver attempts to extend

the CRP with node m. In this case the learning procedure produces an assert-

ing clause [148] C. That is, only one literal in C called the asserting literal al(C)

is assigned at the current decision level (corresponding to node m), and remain-

ing literals were assigned at earlier decision levels (corresponding to nodes on

CRP). The solver identifies the highest decision level maxd(C) among the literals

of C\{al(C)}. The solver backtracks to the node m′ corresponding to the decision

level maxd(C). At m′ the clause C becomes a unit clause and al(C) is set to true.

The search proceeds from m′ onwards.

Non-chronological backtracking on a local conflict: When a local conflict

occurs the solver backtracks non-chronologically by analyzing the structure of

the vpgraph and the conflict clause produced due to local conflict.
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Example 8 Consider the vpgraph shown in Fig. 3.7(a). Let CRP be 〈1,2,3,5〉

and the solver examines if CRP can be extended by node 7. Suppose a local

conflict occurs at node 7 and a clause ¬a∨¬b∨¬c is learned at node 7. Assume

that all the paths starting from nodes 2, 3, 4, 5, 6 pass through node 7. This

conflict can be resolved only if we backtrack to the nodes containing literal a or

literal b (assuming c was assigned at node 7). Since node 2 comes later on CRP,

our algorithm backtracks to node 2. Note that backtracking prevents us from

examining rl-paths such as 〈1,2,3,6,7, . . .〉,〈1,2,4,5,7, . . .〉,〈1,2,4,6,7, . . .〉 all

of which would lead to the same conflict at node 7. The suffix of CRP starting

from node 2 onwards is removed. The search procedure attempts to extend CRP

〈1〉 with other unexamined successors of node 1. In this case there is no other

unexamined successor of node 1, so the solver backtracks from node 1 to return

unsatisfiable answer.

Now consider a variation of Fig. 3.7(a) in Fig. 3.7(b). Node 6 has an outgoing

path that does not pass through node 7. As before, a local conflict occurs at node 7.

However, now instead of backtracking to node 2 our algorithm backtracks to node

6. This is because there are alternative rl-paths such as 〈1,2,3,6, . . .〉,〈1,2,4,6, . . .〉

through node 6 which could be satisfiable.

3.7 Decision Heuristics

In modern DPLL-based SAT solvers decision heuristics play an important role in

pruning the search space by identifying the variables to be assigned next. In our
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algorithm decision heuristics are used to decide the order in which the children

of the last node on the CRP will be examined. More precisely, we use decision

heuristics when pushing the children of m on the stack (Algorithm 3.1, line 17).

The children near the end of stack get examined before the other children on the

stack.

Some of our decision heuristics make use of literal activity. The activity of a

literal indicates its usefulness (participation) in conflicts so far. It is updated in a

similar manner as in zChaff [117]. The activity n of a node in vpgraph is simply

the activity of literal Lit(n). We describe a few decision heuristics used when

pushing children of m (line 17) below.

1. Push the children in the order they occur in the adjacency list of m.

2. Push the children of m in a random order.

3. Push the children of m in the ascending order of activity. The higher activity

children will be examined before other children.

4. Divide the children of m in two sets S1 and S2. Each node n ∈ S1 has Lit(n)

already set to true. S2 contains the remaining children of m. Push nodes

in S2 in the stack followed by nodes in S1. Intuitively, the nodes in S1 are

satisfied and prune will not return a conflict for a node in S1. Thus,

a satisfying assignment or a conflict will be reached quickly by examining

the nodes in S1 before the nodes in S2.

5. Form the sets S1 and S2 as above. Push the nodes in S2 in ascending order
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Bench #Probs SatMate MiniSat BerkMin Siege zChaff
-mark Time Sol Time Sol Time Sol Time Sol Time Sol
QG6 256 23266 235 49386 179 46625 184 46525 184 47321 180
QG6* 256 23266 235 37562 211 15975 239 30254 225 45557 186
Mboard 19 4316 12 4331 12 4947 11 4505 12 5029 11
Pigeon 19 5110 11 6114 9 5459 10 6174 9 5483 11

Table 3.1: Comparison between SatMate, MiniSat, BerkMin, Siege, zChaff.
”Time” gives total time in seconds and ”Sol” gives #problems solved within time-
out of 600 seconds/problem.

of their activity. Then push nodes in S1 in ascending order of activity.

In our experiments heuristic five outperforms the other decision heuristics.

3.8 Experimental Results

The experiments were performed on a 1.5 GHZ AMD machine with 3 GB of

memory running Linux. The techniques described in the chapter have been im-

plemented in a SAT solver called SatMate [17]. The non-clausal input formula

is given in EDIMACS [6] or ISCAS format. SatMate also accepts CNF inputs in

DIMACS format. We compare SatMate against four CNF SAT solvers MiniSat

version 1.14 [8], BerkMin version 561 [84], Siege version 4 [18], and zChaff

version 2004.5.13 [117]1.

QG6 benchmarks The authors of [116] provided us with a benchmark set

called QG6 which consists of 256 non-clausal formulas of varying difficulty.

1These experiments were carried out in early 2006.
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These benchmarks were generated during the construction of classification the-

orems for quasigroups [116]. The CNF version of these problems was also made

available to us by the authors of [116]. The CNF version was obtained by directly

expressing the problem of classifying quasigroups into CNF as opposed to the

translation of non-clausal formulas into CNF. The non-clausal versions of these

benchmarks have 300 variables and 7500 gates (AND, OR gates) on average,

while the CNF versions have 1700 variables and 7500 clauses on average. We ran

SatMate on the non-clausal formulas and CNF SAT solvers on the corresponding

CNF formulas from QG6 suite.

QG6* benchmarks We translated the non-clausal formulas from the QG6 suite

into CNF by introducing new variables [124]. The CNF formulas obtained after

translation have 7500 variables and 30000 clauses on average. We ran CNF SAT

solvers on the CNF formulas obtained after translation. Note that we still ran

SatMate on the non-clausal formulas.

Mboard benchmarks encode the mutilated-checkerboard problem.

Pigeon benchmarks encode the pigeon hole principle with n holes and n + 1

pigeons.

Both QG6 and QG6* benchmarks contain a mixture of satisfiable and un-

satisfiable problems. All problems in the Mboard and Pigeon benchmarks are

unsatisfiable.

The experimental results are summarized in Table 3.1. The column ”#Probs”
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gives the number of problems in each benchmark set. There was a timeout of

10 minutes per problem per solver. For each solver we report two quantities: 1)

”Time” is the total time spent in seconds when solving problems in a given bench-

mark, including the time spent (= timeout) for each instance not solved within

timeout. 2) ”Sol” gives the total number of problems that were solved within

timeout.

Summary of results in Table 3.1: On QG6 benchmarks SatMate solves around

50 more problems and it is approximately 2 times faster than the CNF SAT solvers

MiniSat, BerkMin, Siege, and zChaff. On QG6* benchmarks SatMate performs

better than MiniSat, zChaff, Siege. However, BerkMin outperforms SatMate on

QG6* benchmarks. The difference in the performance of CNF SAT solvers on

QG6 and QG6* benchmarks shows how the differences in the encoding of a given

problem to CNF can significantly impact the performance of CNF SAT solvers.

The performance of SatMate on Mboard and Pigeon benchmarks is slightly better

than the CNF SAT solvers.

Table 3.2 summarizes the performance of SatMate and four CNF SAT solvers

on various individual problems. Problems dnd02, brn13, icl39, icl45

are from QG6 benchmark suite. Problems q2.14,cache.inv12 are generated

by UCLID verification tool [22]. The sub-column ”Time” gives the time required

for SAT solving (in seconds). For SatMate we report the number of local conflicts

and the number of global conflicts (Section 3.4) in the ”Local confs” and ”Global

confs” sub-columns, respectively. A timeout of 1 hour was set per problem. We
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Problem SatMate MiniSat BerkMin Siege zChaff
Time Local confs Global confs Time Time Time Time

dnd02 174 23500 15588 1308 1085 1238 TO
brn13 181 20699 20062 1441 1673 1508 TO
icl39 200 22683 14069 TO TO 2629 TO
icl45 TO 4850 72106 TO 2320 1641 TO
q2.14 237 113 15863 23 24 34 88
cache.inv12 58 659 7131 1 1 1 2

Table 3.2: Comparison on individual benchmarks. Timeout is 1 hour per problem
per solver. ”Time” sub-column gives time taken in seconds.

denote timeout by ”TO”. In case of timeout we report the number of conflicts just

before the timeout for SatMate.

Performance of SatMate is correlated with the number of local conflicts and

global conflicts. A local conflict is a conflict that occurs in a part of a formula

and it depends on the structure of the vpgraph. There is no equivalent of local

conflict in CNF SAT solvers. In CNF SAT solvers a conflict arises when the

current assignment falsifies an original/learned clause which is equivalent to a

global conflict. As shown in Table 3.2 the number of local conflicts is usually

comparable to the number of global conflicts on the benchmarks where SatMate

outperforms CNF SAT solvers. Indeed the performance of SatMate degrades if no

local conflict detection and local learning is done.

On SAT problems arising from verification applications such as bounded model

checking the performance of SatMate is usually worse than the SAT solvers based

on DPLL. Intuitively, this happens because there is a lot of “irrelevant” informa-

tion in the verification benchmarks, that is, only a small fraction of the variables
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are important for (un)satisfiability of the given formula. The decision heuristics

in the DPLL SAT solvers are able to quickly identify and branch on the impor-

tant variables. The General Matings solver is constrained to follow the vpgraph

structure and does not have much flexibility in terms of the variables to branch on.

This drawback can be addressed by dividing the vpgraph into a number of smaller

vpgraph components and searching for satisfiable rl-paths in each component in

some order. Decision heuristics can be used to select the vpgraph component to

examine before other vpgraph components.

3.9 Chapter Summary

We presented a new non-clausal SAT solver based on the General Matings ap-

proach. This approach involves the search for a vertical path which does not

contain opposite literals in the vertical-horizontal path form (vhpform) of a given

negation normal form formula. The main challenge in obtaining an efficient SAT

solver based on the General Matings approach is to prevent the enumeration of

vertical paths. We presented new techniques for preventing the enumeration of

vertical paths. Experimental results show that on certain classes of non-clausal

benchmarks our SAT solver has a performance comparable or better than the cur-

rent CNF SAT solvers. Overall, our results show the promise of the General Mat-

ings approach in building SAT solvers.
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Chapter 4

DPLL based SAT Solver

In this chapter we present a SAT solver that checks the satisfiability of a NNF

formula φ by applying the DPLL algorithm [70, 71] to the hpgraph of φ. Our

solver also utilizes the vpgraph of φ in certain steps of SAT solving. If the input

formula is not in NNF it can be converted to an equi-satisfiable NNF formula by

using the techniques discussed in chapter 2.

4.1 Top Level DPLL Algorithm

The high level organization of our DPLL based SAT solver is shown in Algo-

rithm 4.1. The input to the algorithm is the hpgraph and vpgraph of a formula φ.

The output is SAT if φ is satisfiable and UNSAT if φ is unsatisfiable. The top level

algorithm is similar to other state-of-the-art DPLL based SAT solvers.

The main body of the algorithm consists of a while loop which executes as
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Algorithm 4.1 Top Level Routine in DPLL Based SAT Solver
Input: Hpgraph Gh(φ) and vpgraph Gv(φ)
Output: Return SAT if the formula is satisfiable, else return UNSAT

1: while (true) do
2: if (decide next branch()) then
3: while (bcp() == conflict) do
4: blevel = analyze conflict()
5: if (blevel == 0) then
6: return UNSAT
7: else
8: backtrack(blevel)
9: end if

10: end while
11: else
12: return SAT
13: end if
14: end while

long as SAT or UNSAT is not returned. In each iteration of the outer while loop

we first call decide next branch() in order to identify an unassigned vari-

able. If an unassigned variable is found it is assigned a truth value. After assigning

a new variable Boolean constraint propagation is performed by calling the bcp()

routine. If the current truth assignment falsifies the formula the bcp() routine

returns a conflict. In case of a conflict the analyze conflict() routine

is called in order to perform learning. The analyze conflict() routine also

identifies a backtracking level blevel where the solver needs to backtrack to in

order to avoid a similar conflict. If the backtracking level is zero, then it means that

the formula is unsatisfiable and UNSAT is returned. The backtrack(blevel)

call performs the task of non-chronological backtracking by erasing all the assign-

ments between the current decision level and the blevel. After backtracking to
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blevel the bcp() routine is called again. This is because at least one new

variable gets assigned after backtracking and this can lead to more variable as-

signments or a conflict.

If decide next branch() returns false, it means that all variables have

been assigned. In this case the algorithm returns SAT.

A main difference between the existing DPLL SAT solvers and our solver is

in the bcp() routine. In our solver the BCP algorithm uses the hpgraph and the

vpgraph of a given formula. The focus of this chapter is to explain the bcp()

routine in detail.

4.2 Contributions

Our contributions can be summarized as follows:

• The most crucial component of our DPLL SAT solver is an efficient Boolean

Constraint Propagation (BCP) algorithm on the hpgraph. Let V denote the set

of variables in φ. Given an assignment σ of truth values to a set of variables

W ⊆V , the BCP algorithm determines if σ falsifies φ, else it provides the set of

implied assignments (unit literals). We describe an algorithm for performing

BCP on hpgraph that generalizes the two-watched literal scheme [117] found

in CNF SAT solvers.

In particular, a “watch” in an hpgraph corresponds to a node cut in the hp-

graph. By maintaining two node cuts for each connected component in the

hpgraph we achieve the same effect as the two watched-literal scheme found
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Figure 4.1: Let φ be (a∧¬b)∨ (c∧ (d ∨¬ f )). (a) The hpgraph of φ. Two node
cuts C1,C2 are shown. (b) The vpgraph of φ.

in the CNF SAT solvers. Fig. 4.1(a) shows two node cuts C1,C2 (possible

watches) for a hpgraph. Two node cuts allow watching two nodes (literals) on

each path (clause) in a hpgraph component. The two-watched literal scheme

used in CNF SAT solvers is a special case of our algorithm (when hpgraph

represents a CNF formula). As in CNF SAT solvers non-chronological back-

tracking is cheap as the node cuts are not updated when backtracking.

• We show how to update the node cuts (watches) in the hpgraph efficiently

by using the vpgraph of the given formula. We show that a minimal cut in a

hpgraph corresponds to a path in the corresponding vpgraph. Thus, finding a

small node cut in a hpgraph corresponds to finding a path in the corresponding

vpgraph. For example, notice that paths 〈1,3〉,〈2,5〉 in the vpgraph shown in

Fig 4.1(b) correspond to cuts C1,C2, respectively, in the hpgraph shown in

Fig 4.1(a).

• We have carefully implemented these ideas in a non-clausal SAT solver called

NFLSAT (Non-clausal FormuLas SATisfiability checker). We evaluate the

solver on a collection of 2541 non-clausal industrial benchmarks obtained
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from publicly available sources. Our solver outperforms the top three CNF

SAT solvers of SAT 2007 competition (industrial category) in terms of num-

ber of problems solved and runtime. NFLSAT is also competitive with the

winners of SAT-Race 2008.

4.3 Preliminaries

Definition 7 Given an assignment σ to a subset of variables in φ, we say that

there is conflict iff σ falsifies φ.

Definition 8 Given an assignment σ to a subset of variables in φ, we say that a

literal l is an implied (unit) iff l must be set to true in order to obtain a satisfying

assignment.

We use the hpgraph of φ in order to detect conflicts. We say an assignment fal-

sifies a node n in G(φ) iff the assignment falsifies Lit(n). The following corollary

adapts the Theorem 2 (Section 2.2) to the hpgraph.

Corollary 7 Given an assignment σ to variables in φ the following are equiva-

lent:

1. σ falsifies φ

2. there exists a rl-path π in Gh(φ) such that σ falsifies every node on π

3. there is a conflict due to σ

Example 9 Consider the hpgraph for a formula φ in Fig. 4.2. The assignment

σ := {p,q} falsifies every node on rl-path 〈4,5〉. Thus, σ falsifies φ.
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Figure 4.2: Hpgraph for a formula.

We use the hpgraph of φ in order to detect implied literals due to σ.

Definition 9 Let σ be an assignment to variables in φ. If there is a rl-path π in

Gh(φ) and a node m ∈ π such that σ falsifies every node n ∈ π,n 6= m and Lit(m)

is not assigned in σ, then we say that Lit(m) an h-implied literal and m is an

h-implied node.

The following corollary states that an h-implied literal is also an implied literal.

Corollary 8 Given an assignment σ to variables in φ. If a literal l is an h-implied

literal in Gh(φ), then l is an implied literal.

Proof. We show that σ∪{¬l} will falsify φ. Since l is h-implied there is a rl-

path π in Gh(φ) and a node m∈ π such that σ falsifies every node n∈ π,n 6= m and

Lit(m) = l. Observe that σ∪{¬l} falsifies every node on π. Thus, by Corollary 7

σ∪{¬l} falsifies φ. Therefore, in order to obtain a satisfying assignment l must

be set to true given σ as the current assignment. �
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Example 10 Consider the hpgraph shown in Fig. 4.2 and an assignment σ =

{¬p,¬q,s}. σ falsifies all but node 6 on the rl-path 〈1,2,6,7〉 in the hpgraph.

It follows from Corollary 8 that Lit(6) = r is an implied literal.

The use of Corollary 8 to detect implied literals is not complete, that is, certain

implied literals may not be h-implied literals. Consider σ = {¬p} and the rl-path

π := 〈1,2,8〉 in Fig. 4.2. π corresponds to a clause Lit(1)∨ Lit(2)∨ Lit(8) =

p∨ q∨ q = p∨ q. Since p is false under σ, q must be set to true in order to

satisfy the clause p∨q. However, according to definition 9, q is not an h-implied

literal because of the multiple occurrences of q in nodes 2,8. Thus, q will not

be detected as an implied literal in our SAT algorithm. In practice, the number

of implied literals that are not h-implied are quite less and failure to detect such

implied literals does not lead to worse performance. We experimented with a more

complicated algorithm that detects an implied literal l even if l occurs multiple

times on a rl-path. However, there was no performance improvement as compared

to an algorithm using Corollary 8 to detect implied literals.

4.4 Boolean Constraint Propagation on the Hpgraph

Let V denote the set of variables in a given formula φ. Given an assignment σ

of truth values to a set of variables W ⊆ V , the Boolean constraint propagation

(BCP) algorithm detects two cases. (1) It reports if σ falsifies φ (conflict). (b) If

there is no conflict, the BCP algorithm provides a set of implied (unit) literals.

Before we describe the BCP algorithm on a hpgraph, we briefly review the
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BCP algorithm used in modern CNF SAT solvers.

4.4.1 Review of BCP in CNF SAT solvers

Most modern CNF SAT solvers use the two-watched literal scheme [117] in order

to obtain an efficient BCP algorithm. Suppose we are given a CNF formula φ. Let

C be a clause in φ. We assume C has at least two distinct literals 1. In the two-

watched literal scheme two watches are associated with C. A watch is simply a

literal l occurring in C. Before the search (DPLL algorithm) starts any two literals

in C can be designated as its watches.

Let l1, l2 be the watches corresponding to C. Four cases arise depending upon

the status of l1, l2 given the current assignment σ.

Case A: Both l1, l2 are not false. In this case there cannot be any conflict or an

implied literal due to C. The clause C is not even examined during BCP. This case

occurs most often in practice and the use of watches enable efficient handling of

this case.

The clause C is examined only when one of its watches becomes false. With-

out loss of generality assume that l2 becomes false in the remaining three cases.

Case B: If l1 is already true, then C is already satisfied. In this case nothing needs

to be done even though l2 is false.

Otherwise, the solver tries to replace the falsified watch (l2) by another watch

that is not false. If there is a literal l3 in C that is not false, then l2 is replaced by

1Clauses of length one are treated specially, the literal in such a clause is assigned at the earliest
decision level itself.
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l3. However, such a literal (l3) may not exist in the remaining two cases:

Case C (conflict): All the literals in C are false. In this case C is false under the

current assignment.

Case D (implied literal): l1 is unassigned but all other literals in C are false. In

this case, l1 is reported as an implied literal.

The main benefit of the two-watched literal scheme is that it reduces the num-

ber of times the solver examines the clauses in a given CNF formula. This is

crucial for obtaining efficient solvers that can handle CNF formulas with mil-

lions of clauses. Another advantage is that the non-chronological backtracking

is cheap. This is because the watched literals do not need to be updated during

backtracking.

We now describe how the two-watched literal scheme found in CNF SAT

solvers can be generalized to obtain an efficient algorithm for BCP on a hpgraph.

It will be seen that the two-watched literal scheme used in the CNF solvers is a

particular instance of our algorithm.

4.4.2 Generalizing Two-watched Literal Scheme to Two-watched

Cut Scheme for Hpgraph

Let φ be a NNF formula. We are given an assignment σ to a subset of variables

occurring in φ. The BCP algorithm uses the hpgraph Gh(φ) of φ.

Definition 10 Given G = (V,E,R,L,Lit) we say that C ⊆ V is a rl-cut in G iff

removal of all nodes in C from G disconnects all rl-paths in G.
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Figure 4.3: An hpgraph. Two rl-cuts C1 := {2,3,4},C2 := {5,7,8} are shown.

For example, {1,3,4},{2,3,4},{5,6,8},{5,7,8} are some of the rl-cuts in the

hpgraph shown in Fig. 4.3. The node set {2,7,8} is not an rl-cut as it does not

disconnect the rl-paths 〈3,5〉,〈4,5〉.

The following corollary states that an rl-cut contains at least one node from

each rl-path.

Corollary 9 Let C be a rl-cut in Gh(φ). For every rl-path π in Gh(φ) there exists

a node n such that n ∈ π and n ∈C.

Definition 11 Two rl-cuts C1,C2 are said to be node-disjoint if C1∩C2 = /0.

For example the rl-cuts {2,3,4},{5,7,8} in Fig. 4.3 are node-disjoint.

Watches in a Hpgraph Each rl-path in a hpgraph corresponds to a clause. Let

the clause corresponding to an rl-path π be C. In order to apply the two-watched

literal scheme found in CNF SAT solvers we want to watch two nodes n1,n2 on π.

This in turn amounts to watching two literals Lit(n1),Lit(n2) in C. However, there
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are usually exponentially many paths (clauses) in a hpgraph. So it is expensive to

maintain watches for each rl-path (clause) explicitly.

This intuition leads us to define a watch in a hpgraph as a rl-cut in the hpgraph.

By taking a rl-cut as a watch we make sure that at least one node on every rl-path

is present in our watch (Corollary 9). This in turn corresponds to watching a literal

on each clause in the hpgraph.

Example 11 The rl-cut C := {2,3,4} is a possible watch for the hpgraph in Fig. 4.3.

Note that C contains at least one node from each rl-path in Fig. 4.3. Watching

node 3 on rl-paths 〈3,5〉,〈3,6,7〉,〈3,8〉, amounts to watching literal Lit(3) = ¬r

on clauses ¬r∨¬p,¬r∨ r∨¬s,¬r∨q, respectively.

In order to get the effect of the two-watched literal scheme we watch two rl-

cuts in the hpgraph. By maintaining two rl-cuts for a hpgraph we are able to watch

two nodes (literals) on each rl-path (clause) in the hpgraph.

Example 12 The rl-cuts C1 := {2,3,4} and C2 := {5,7,8} are two possible watched

cuts for the hpgraph in Fig. 4.3. For the rl-path 〈1,2,6,7〉, the rl-cuts C1,C2 allow

us to watch nodes 2,7.

Definition 12 Given G = (V,E,R,L,Lit), a partial assignment σ, and a rl-cut

W ⊆V . We say that W is acceptable iff there is no node m ∈W such that Lit(m)

is false in σ. We say that W is satisfied iff for all m ∈W Lit(m) is true in σ.

For example, given the hpgraph in Fig. 4.3 and σ = {q} the rl-cuts {5,6,8},{5,7,8}

are acceptable. The rl-cuts {2,3,4},{1,3,4} are not acceptable given σ.
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4.4.3 High Level Description of BCP on Hpgraph Using the

Two-watched Cuts

For a given hpgraph Gh(φ)= (V,E,R,L,Lit) we maintain two rl-cuts C1,C2 (watches).

Before the DPLL algorithm starts C1,C2 can be initialized to any two rl-cuts in

Gh(φ) which are node-disjoint2. As the search progress the algorithm tries to

maintain the invariant that at least one of C1,C2 is acceptable. The algorithm also

tries to maintain C1,C2 as node-disjoint as possible. This is useful for detecting

implied literals.

We intuitively describe the various cases that may arise during the BCP on a

hpgraph below. In the next section we formalize these cases. Each of the cases be-

low generalize the cases that occur in the two-watched literal scheme for CNF SAT

solvers.

Case A: Both rl-cuts (watches) C1,C2 are node-disjoint and acceptable. Then

there can be no conflict or h-implied literals due to the current assignment. This is

because each clause in the hpgraph contains two literals that are not false. In this

case there is no need to look at any other part of the hpgraph.

Example 13 In Fig. 4.3 let C1 := {2,3,4},C2 := {5,7,8} and σ = {¬p}. Observe

that both C1,C2 are acceptable rl-cuts and are node-disjoint. It can be seen that

there is no conflict or h-implied literals in the hpgraph.

Suppose one of the rl-cuts say C2 is no longer acceptable. Then we have the

following cases.
2This can always be ensured as explained in the next section.
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Figure 4.4: An hpgraph. Two rl-cuts C1 := {1,3,4},C2 := {5,7,8} are shown.

Case B: For each node n ∈ C1, Lit(n) is already true, that is, C1 is satisfied. In

this case there cannot be any conflict or an h-implied literal in the hpgraph. Intu-

itively, every clause present in the hpgraph is satisfied. The algorithm leaves C2

unchanged in this case.

Example 14 In Fig. 4.4 let C1 := {1,3,4},C2 := {5,7,8} and σ = {p,¬r,¬q}.

Observe that C2 is not acceptable as Lit(5),Lit(8) are false under σ. However, C1

is satisfied. In this case we do not update C2.

If the previous cases do not apply the algorithm tries to find a replacement

rl-cut for C2. When searching for a replacement to C2 the algorithm tries to find

a rl-cut that is as different from C1 as possible. Intuitively, this is similar to why

we keep the two-watched literals in a clause as distinct in the CNF two-watched

literal scheme. If a replacement cut C3 is found such that C3 is acceptable and

C3 ∩C1 = /0, then C2 is replaced by C3. Otherwise, we have the following two

cases.
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Figure 4.5: An hpgraph. Three rl-cuts C1 := {1,3,4},C2 := {5,7,8},C3 :=
{2,3,4} are shown.

Case C (conflict): If there is no acceptable rl-cut in the hpgraph. In this case the

current assignment σ falsifies the given formula.

Example 15 In Fig. 4.4 let C1 := {1,3,4},C2 := {5,7,8} and σ = {p,r}. In this

case both C1,C2 are not acceptable and there is no possible replacement for them.

This is expected as the clause (¬r∨¬p) corresponding to the rl-path 〈3,5〉 is false.

Case D (implications): If there an acceptable cut C3 such that C3 is acceptable

but C3∩C1 6= /0. In this case, for every n ∈C1∩C3 the corresponding literal Lit(n)

is an h-implied literal (assuming Lit(n) is not already true). If C3 6= C1, then C2 is

replaced by rl-cut C3.

Example 16 In Fig. 4.5 let C1 := {1,3,4},C2 := {5,7,8} and σ = {p}. Observe

that C2 is not acceptable as Lit(5) is false under σ. Also note that case B does not

hold as C1 is not satisfied. Thus, we seek a replacement for C2. Note that any new

acceptable cut must include nodes 3,4 since as they are the only possible nodes
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that can be watched on the paths 〈3,5〉,〈4,5〉, respectively. Thus, a possible rl-cut

C3 is {2,3,4}. Both C1,C3 contain nodes 3,4. It can be seen that Lit(3),Lit(4) are

precisely the h-implied literals. Lit(3) = ¬r is h-implied due to the rl-path 〈3,5〉,

which corresponds to the clause ¬r∨¬p. Similarly, Lit(4) = ¬q is h-implied due

to the rl-path 〈4,5〉, which corresponds to the clause ¬q∨¬p. Since h-implied

literals are also implied literals it follows that ¬r,¬q are implied literals given the

current assignment.

4.5 Formalizing the Two-watched Cut Scheme for

BCP on Hpgraph

We define the length of a rl-path as the number of nodes on the rl-path. Let

π = 〈n0〉 be a rl-path in Gh(φ) of length one. The rl-path π corresponds to a

unit clause Lit(n0). Our algorithm removes π from Gh(φ) and sets Lit(n0) to true

during the pre-processing phase itself. This is done for all rl-paths that have length

one. In the following we assume that each rl-path in Gh(φ) has a length greater

than one. This ensures that there are always two node-disjoint rl-cuts in the given

hpgraph.

Recall that there is conflict in Gh(φ) due to an assignment σ iff σ falsifies φ iff

there is a rl-path π in Gh(φ) such that Lit(m) is false for every m ∈ π.

Definition 13 Given a hpgraph Gh(φ) = (V,E,R,L,Lit) and an assignment σ. We

say that a node n ∈ V is p-assigned (possibly assigned) if the following condi-
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tions hold:

(a) there is a rl-path π in Gh(φ) and n lies on π, and

(b) for every node m 6= n and m ∈ π, Lit(m) is false under σ

If n is a p-assigned node, then Lit(n) is said to be a p-assigned literal.

Let n be a p-assigned node. Depending upon the status of Lit(n) under the

current assignment σ we have three cases:

1. Lit(n) is unassigned under σ. In this case observe that Lit(n) is an h-implied

literal and n is an h-implied node. Also note that Lit(n) is an implied literal.

2. Lit(n) is false. In this case there exists a rl-path π such that n ∈ π and every

node on π is falsified. This corresponds to a case when we have a conflict.

3. Lit(n) is true. In this case there exists a rl-path π such that n ∈ π and every

node m ∈ π,m 6= n is falsified. Since Lit(n) is true the clause corresponding

to π is satisfied.

Corollary 10 Let n be a node in hpgraph. If n is h-implied, then n is also p-

assigned. Thus, if there is no p-assigned node in the hpgraph, then there cannot

be any h-implied node.

Corollary 11 If every node on a rl-path π in Gh(φ) is falsified by an assignment σ

(conflict case), then every node on π is p-assigned. Thus, if there is no p-assigned

node in the hpgraph given an assignment σ, then there cannot be a conflict due to

σ, that is, σ does not falsify φ.
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The following theorem formalizes the case C in Section 4.4.3. It states that

there is no conflict due to the current assignment if and only if we can find an

acceptable rl-cut in the hpgraph.

Theorem 4 Given hpgraph Gh(φ), an assignment σ. The following are equiva-

lent:

(a) There is no conflict in Gh(φ) due to σ.

(b) There exists a rl-cut C in Gh(φ) such that C is acceptable.

Proof. (a)⇒ (b): Define C to be the collection of all nodes n in Gh(φ) such that

Lit(n) is not set to false by σ. By definition C is acceptable. We need to show that

C is a rl-cut in Gh(φ). Consider any rl-path π in Gh(φ). As there is no conflict in

Gh(φ) due to σ at least one node m on π must not be set to false. By definition of

C, m ∈C. So removal of nodes in C from Gh(φ) disconnects the rl-path π. Since

π is arbitrary, removal of nodes in C disconnects all rl-paths in the Gh(φ). This

shows that C is a rl-cut.

(b) ⇒ (a): Consider any rl-path π in Gh(φ). We will show that at least one

node on π is not false. Since C is a rl-cut there must be at least one node m ∈C

whose removal disconnects π. That is, m ∈ π. As C is acceptable Lit(m) is not

false. As π is arbitrary there is at least one node on each rl-path whose literal is

not false. Thus, there can be no conflict. �

The following theorem formalizes the case A in Section 4.4.3. Intuitively,

if there are two node-disjoint acceptable cuts in a hpgraph, then there cannot be
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any p-assigned node in the hpgraph. This in turn means that there cannot be any

conflict or h-implied literals in the hpgraph (Corollaries 10, 11).

Theorem 5 Given hpgraph Gh(φ), an assignment σ. The following are equiva-

lent:

(a) Let C1,C2 be two rl-cuts in Gh(φ) that are acceptable and node-disjoint (C1∩

C2 = /0).

(b) There is no node in Gh(φ) that is p-assigned due to σ.

Proof. (a) ⇒ (b): Consider any rl-path π in Gh(φ). We will show that at least

two nodes on π are not set to false by σ. Since C1 is a rl-cut there must be a node

n1 that belongs to both C1 and π. Similarly, there must be another node n2 that

belongs to both C2 and π. Since C1 and C2 do not have any common nodes we

know that n1 6= n2. Also since both rl-cuts are acceptable Lit(n1),Lit(n2) are not

false. Thus, each rl-path in Gh(φ) has at least two distinct nodes whose literals are

not set to false.

We now show (b) by contradiction. Assume there is a node n that is p-assigned

due to σ. Then by definition there exists a rl-path π ∈Gh(φ) such that all nodes m

on π, m 6= n have Lit(m) as false. But this contradicts the fact that each rl-path has

at least two distinct nodes whose literals are not set to false. Thus, there cannot be

a p-assigned node n.

(b) ⇒ (a): Observe that each rl-path π has at least two nodes that are not

set to false by σ (otherwise, there will be a p-assigned node on π). Let le f t(π)

denote the leftmost node on π that is not set to false by σ and right(π) denote the

76



Roots
Leafs

m

π3π1

π2
π1

π2

Figure 4.6: The rl-path π3 is formed by combining rl-paths π1 and π2 at node m.

rightmost node on π that is not set to false by σ. Observe that both le f t(π) and

right(π) exist and le f t(π) 6= right(π).

We now define two set of nodes C1 and C2 as follows:

C1 :=
[

π∈Gh(φ)

{le f t(π)}

C2 :=
[

π∈Gh(φ)

{right(π)}

Observe that both C1 and C2 are rl-cuts and acceptable. We still need to show

that C1 and C2 are node-disjoint. We use proof by contradiction. Assume there is

a node m such that m ∈ C1 and m ∈ C2. Since m ∈ C1 there exists an rl-path π1

such that le f t(π1) = m. Similarly, using the definition of C2 it follows that there

exists an rl-path π2 such that right(π2) = m.

Now consider a path π3 obtained by concatenation of all nodes on π1 until m,

m, all the nodes on π2 from m onwards (Figure 4.6). Observe that π3 is an rl-path.

Also observe that m is p-assigned due to π3. This contradicts (b). Thus, it follows

that C1,C2 are node-disjoint. �

77



The following corollary formalizes Case B in Section 4.4.3. It states that if

one of the watched rl-cuts, say C1, is satisfied, then there cannot be any conflict or

h-implied literal in the hpgraph. Thus, even if C2 is no longer acceptable there is

no need to update it.

Corollary 12 Given hpgraph Gh(φ), an assignment σ. Let C be a rl-cut in Gh(φ)

that is satisfied. Then the following holds:

(a) There is no conflict in Gh(φ) due to σ.

(b) If n is a p-assigned node, then n ∈C.

(c) There is no h-implied node in Gh(φ) due to σ.

Proof. (a) Observe that C is an acceptable rl-cut. Using theorem 4 the first claim

follows easily.

(b) We will prove this claim using proof by contradiction. Suppose there exist

a p-assigned node n and n /∈C. By definition, there exists an rl-path π such that

for all m ∈ π and n 6= m, Lit(m) is false. Since C is a rl-cut there exists a common

node n′ such that n′ ∈ π and n′ ∈ C. We assumed that n /∈ C so n 6= n′. Literal

corresponding to every node on π (except n) is false, it follows that Lit(n′) must

be false. This contradicts the fact that C is satisfied. Thus, n ∈C.

(c) We use proof by contradiction. Suppose n is an h-implied node. By def-

inition every h-implied node is also a p-assigned node. From (b) it follows that

every p-assigned node is present in C. As C is satisfied Lit(m) must be true for any
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m ∈C. Thus, Lit(n) is true. This is a contradiction as Lit(n) must be un-assigned

according to the definition of an h-implied node. �

We partially formalize the case D in Section 4.4.3. This case arises when there

is an acceptable cut in the hpgraph say C1, but there is no other acceptable cut that

is node-disjoint from C1. The corollary below states that every p-assigned node

must be contained in C1. Thus, any h-implied literal will also be present in C1.

Corollary 13 Given hpgraph Gh(φ), an assignment σ. Let C1 be a rl-cut in Gh(φ)

that is acceptable. Suppose there is no other rl-cut in Gh(φ) that is both acceptable

and node-disjoint from C1. The following results can be derived from theorems

4,5.

(a) There is no conflict in Gh(φ) due to σ.

(b) There is at least one p-assigned node in Gh(φ).

(c) Each p-assigned node n belongs to C1 (n ∈C1).

(d) For each p-assigned node n, either Lit(n) is already set to true or Lit(n) is

unassigned under σ . If Lit(n) is unassigned it is a implied literal.

Proof. (a) C1 is an acceptable rl-cut in Gh(φ). From theorem 4 it follows that

there is no conflict in Gh(φ) due to σ.

(b) There are no two rl-cuts in Gh(φ) that are acceptable and node-disjoint.

Thus from theorem 4 it follows that there is at least one p-assigned node in Gh(φ).

(c) Let n be a p-assigned node. By definition there exists an rl-path π such that

for every node on m∈ π,m 6= n, Lit(m) is false. We will use proof by contradiction.
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Suppose that n /∈ C1. Then there must be another node n′ 6= n such that n′ ∈ C1

and n′ ∈ π (as C1 is a rl-cut). We know that literal corresponding to every node on

π that is different from n is false. So Lit(n′) = f alse. But this contradicts the fact

that C1 is acceptable (as n′ ∈C1). Thus, n ∈C1.

(d) Let n be a p-assigned node. We know from (c) that n ∈ C1. Since C is

acceptable it follows that Lit(n) cannot be false. �

4.6 Minimal rl-cuts in Hpgraph

In the previous sections we generalized the CNF two-watched literal scheme to

hpgraph by using two rl-cuts in the hpgraph Gh(φ). We now describe how rl-

cuts are obtained and updated efficiently during BCP. The key idea is to make

use of the vpgraph Gv(φ). For example, consider the hpgraph in Figure 4.7 (a)

and the corresponding vpgraph in Figure 4.7 (b). Observe that any rl-path in

the vpgraph corresponds to a rl-cut in the hpgraph. The rl-paths 〈1,3,4〉, 〈2,3,4〉,

〈5,6,8〉, 〈5,7,8〉 in the vpgraph corresponds to rl-cuts {1,3,4},{2,3,4}, {5,6,8},

{5,7,8}, respectively, in the hpgraph.

Definition 14 Given G = (V,E,R,L,Lit) we say that C ⊆ V is a minimal rl-cut

in G iff C is a rl-cut in G and no proper subset of C is a rl-cut in G. Let nodes(π)

denote the set of nodes occurring on a rl-path π.

A surprising fact is that the rl-paths in the vpgraph correspond to minimal

rl-cuts in the hpgraph. One can also prove that every minimal rl-cut in the hp-
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Figure 4.7: (a) Hpgraph for formula (((p∨q)∧¬r∧¬q)∨ (¬p∧ (r∨¬s)∧q)).
(b) The corresponding vpgraph.

graph corresponds to a rl-path in the vpgraph. This duality between rl-cuts in the

hpgraph and rl-paths in the vpgraph is formalized below.

Theorem 6 Given hpgraph Gh(φ) and vpgraph Gv(φ) for a formula φ. Let π be a

rl-path in Gv(φ). Then nodes(π) form a minimal rl-cut in Gh(φ).

Theorem 7 Given hpgraph Gh(φ) and vpgraph Gv(φ) for a formula φ. Let C

be a minimal rl-cut in Gh(φ). Then there exists a rl-path π in Gv(φ) such that

C = nodes(π).

We give the proofs for theorems 6,7 in the appendix C. One can prove similar

duality between rl-paths in the hpgraph and rl-cuts in the vpgraph.

Theorem 8 Given vpgraph Gv(φ) and hpgraph Gh(φ) for a formula φ. Let π be a

rl-path in Gh(φ). Then nodes(π) form a minimal rl-cut in Gv(φ).
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Theorem 9 Given vpgraph Gv(φ) and hpgraph Gh(φ) for a formula φ. Let C

be a minimal rl-cut in Gv(φ). Then there exists a rl-path π in Gh(φ) such that

C = nodes(π).

4.6.1 Finding and Updating Minimal rl-cuts in Hpgraph

Our algorithm always maintains two minimal rl-cuts in the hpgraph as the watched

cuts. These cuts are obtained and updated by finding rl-paths in the corresponding

vpgraph by using a depth-first search like routine. The BCP algorithm relies on

the ability to find acceptable rl-cuts in the hpgraph. This is done by searching for

acceptable rl-paths in the vpgraph3. We always search the vpgraph for acceptable

rl-paths. We omit the qualifier “acceptable” in the following.

The BCP routine also requires that we find disjoint rl-cuts in the hpgraph (if

possible). This is done by searching for disjoint rl-paths in the vpgraph. More

precisely, suppose we are trying to replace rl-cut C2 in the hpgraph. Let the other

rl-cut in the hpgraph be C1 and let π1 denote the rl-path corresponding to C1 in the

vpgraph. Then we search for a rl-path in the vpgraph that is completely disjoint

from π1. If we succeed in finding a path π2 in the vpgraph that is completely

disjoint from π1, then we obtain a replacement C3 for C2 in the hpgraph such that

C1∩C3 = /0. If there is no rl-path in the vpgraph that is completely disjoint from

π1, we find the set of all nodes N on π1 that must be shared by any acceptable rl-

path in the vpgraph. Intuitively, the nodes in N are precisely the p-assigned nodes

and give us the exact set of h-implied literals.

3A rl-path π is acceptable if no node on π is falsified under the current assignment.
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Theorem 10 Given vpgraph Gv(φ) and hpgraph Gh(φ) for a formula φ. Let π1

be an acceptable rl-path in Gv(φ). Suppose there is no other acceptable rl-path in

Gv(φ) that is completely node disjoint from π1. Let N denote the set of nodes that

must be shared in any acceptable rl-path in Gv(φ). We have the following results:

(a) Every p-assigned node in Gh(φ) belongs to N.

(b) N 6= /0.

(c) Every node in N is p-assigned in Gh(φ).

Proof. (a) Every acceptable rl-path πi in Gv(φ) corresponds to a minimal rl-cut

Ci in Gh(φ). Since we do not have acceptable and node-disjoint rl-paths in Gv(φ),

we cannot have acceptable and node-disjoint rl-cuts in Gh(φ). From corollary 13

it follows that each p-assigned node belongs to each Ci. Thus, each p-assigned

node belongs to ∩iCi = ∩iπi = N.

(b) From (a) we know that every p-assigned node belongs to N. From corollary

13 there exists at least one p-assigned node in Gh(φ). Thus, N 6= /0.

(c) Consider a node n∈N. We want to show that n is p-assigned in Gh(φ). Let

M denote the set of all nodes in Gv(φ) which are false under the current assign-

ment. Let M′ = M∪{n}. We claim that M′ is a rl-cut in Gv(φ). In order to show

this we will show that every rl-path in Gv(φ) gets disconnected if the nodes in M′

are removed from Gv(φ). There are two possibilities for a rl-path π in Gv(φ). 1) π

is an acceptable rl-path in Gv(φ). By definition of N we have n ∈ π. So removal

of n ∈M′ will disconnect π. 2) π is not an acceptable rl-path in Gv(φ). Then there

must exist a node m ∈ π such that Lit(m) is false. By definition of M we have

m ∈M so m ∈M′. Thus, M′ is a rl-cut in Gv(φ).

83



Observe that M′ is not necessarily a minimal rl-cut. Let M′′ ⊆ M represent

a minimal rl-cut obtained by removing nodes from M′ (M′′ is not necessarily

unique). We claim that n ∈ M′′. This is because n is the only node in M′ that

disconnects all acceptable rl-paths in Gv(φ). Thus, n must be present in any mini-

mal rl-cut obtained from M′.

Now we use the duality between the minimal rl-cuts in Gv(φ) and rl-paths in

Gh(φ). The minimal rl-cut M′′ in Gv(φ) corresponds to an rl-path πh in Gh(φ) such

that M′′ = nodes(πh). By definition of M′′ it follows that for every m ∈ πh, m 6= n,

Lit(m) is false. Thus, node n is p-assigned due to πh. �

4.6.2 Implementation of the Cut Replacement Algorithm

Our solver always maintains minimal rl-cuts in the hpgraph and we omit the qual-

ifier “minimal” in the following. Suppose we are trying to replace rl-cut C2 in the

hpgraph. Let the other rl-cut in the hpgraph be C1 and let π1 denote the rl-path

corresponding to C1 in the vpgraph.

The first step is to search for an acceptable rl-path in the vpgraph that is com-

pletely disjoint from π1. This is done by performing depth first search (DFS) in

the vpgraph and ignoring any nodes that are falsified or lie on π1. If the DFS

routine encounters a leaf node, then we can immediately produce an acceptable

rl-path π2 in the vpgraph that is completely disjoint from π1. This can be done by

following the parent nodes starting from the leaf node.

If the DFS algorithm fails to reach a leaf node, then it means that there is
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no acceptable rl-path in the vpgraph that is completely disjoint from π1. In this

case we try to find an acceptable rl-path in the vpgraph that is as disjoint from

π1 as possible. In other words, we try to find an acceptable rl-path π2 such that

the intersection of π1 and π2 is exactly the set of p-assigned nodes (the set N

in theorem 10). This is the second step of the cut replacement algorithm. Our

implementation of the second step is described below.

• We identify a subgraph G′v(φ) of vpgraph Gv(φ) such that each rl-path in

G′v(φ) is acceptable. This can be done by performing DFS on Gv(φ) and

removing nodes with false literals and removing non-leaf nodes with no

children. In the actual implementation we do not modify Gv(φ), instead we

keep a flag with each node indicating whether the node is in G′v(φ). If

G′v(φ) is empty then it means that there is no acceptable rl-path in Gv(φ). In

this case we report a conflict. If G′v(φ) is not empty, then we perform the

following steps.

• We identify a subset of nodes in G′v(φ) whose removal disconnects all rl-

paths in G′v(φ). These nodes are exactly the intersection of all rl-paths in

G′v(φ) or the set N in theorem 10. This is done by a modification of breadth

first search on G′v(φ). We maintain a frontier of nodes in G′v(φ). Initially,

the frontier contains the roots in G′v(φ). In each iteration we remove a node

from the frontier that occurs earliest in the topologically sorted order of

nodes in G′v(φ) and insert its children in the frontier. If at any iteration the

frontier contains a single node n, it means that all rl-paths in G′v(φ) must
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go through n. Thus, n is a p-asssigned node and it is added to the set of

p-assigned nodes. The set of p-assigned nodes at the end of the algorithm is

the set N in theorem 10.

• We find an acceptable rl-path in the vpgraph that is as disjoint from π1 as

possible. This is done by perfoming DFS on G′v(φ) and ignoring any node

that occurs on π1 but not in N (we need to take nodes from N). The result is

a rl-path π2 in Gv(φ) such that π1∩π2 = N.

4.7 Two-watched rl-cuts for each Hpgraph Compo-

nent

In the previous sections we described how the two-watched rl-cuts in the hpgraph

can be used to carry out Boolean constraint propagation. BCP based on only two-

watched rl-cuts can be very inefficient when the hpgraph has millions of nodes.

This is because even the minimal rl-cuts for the entire hpgraph can be large and

will be updated frequently during BCP (see Figure 4.8(a)).

If the input NNF formula φ is a conjunction of a number of smaller sub-

formulas φ1, . . . ,φk, then Gh(φ) is a disjoint union of Gh(φ1), . . . ,Gh(φk). We

refer to Gh(φi) as an hpgraph component. In practice, there are usually many

hpgraph components and each hpgraph component is small as compared to the

entire hpgraph in terms of number of nodes 4. In our implementation we maintain

4We can also control the number and the size of hpgraph components by introducing new
variables in φ.
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Figure 4.8: (a) Two monolithic rl-cuts for the entire hpgraph. (b) Two rl-cuts for
each hpgraph component.

two-watched rl-cuts for each hpgraph component (see Figure 4.8(b). This allows

more locality during BCP as the rl-cuts for an hpgraph component can be updated

locally by looking only at the nodes in the hpgraph component. Note that the BCP

algorithm and the results discussed earlier for the hpgraph apply to each individual

hpgraph component and the corresponding vpgraph component.
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4.8 Relationship with the CNF Two-watched Literal

Scheme

The hpgraph for a CNF formula is a disjoint union of various line graphs (hpgraph

components) where each line graph represents a clause. A minimal rl-cut in a line

graph is simply a cut of size one. Thus, the two-watched rl-cuts for each hpgraph

component reduces to two-watched literal scheme when the input is a CNF for-

mula (see Figure 4.9). We can show that various steps in our BCP algorithm for

updating watched rl-cuts reduce to updating the watched literals when the hpgraph

represents a CNF formula. Thus, we consider the two-watched rl-cuts scheme for

hpgraph as a generalization of the CNF two-watched literal scheme.
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(b)(a)

Figure 4.9: (a) General form of a hpgraph with two-watched rl-cuts for each
hpgraph component. (b) The hpgraph for a CNF formula. The two-watched cut
scheme reduces to two-watched literal scheme.
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4.9 Other Aspects of our SAT Solver

The other important components of our DPLL based SAT solver such as decision

heuristics, conflict driven learning, non-chronological backtracking, and restarts

are implemented in a similar manner as other state-of-the-art DPLL based SAT

solvers.

Various optimizations are used for improving the performance of our solver.

These optimizations are described below.

• The conflict driven learning generates new clauses, which are added to a

CNF clause database. The BCP routine takes into account both the hpgraph

and the clause database in order to detect conflicts and implied literals.

• When converting a Boolean circuit to NNF we introduce new variables for

gates with fanout greater than one. This usually produces a large number of

small hpgraph components (less than hundred nodes) and a few very large

hpgraph components. We try to avoid large hpgraph components by adding

extra new variables when converting a Boolean circuit to a NNF formula.

The intuition is that we can introduce a new variable to cut a particular

(large) sub-tree from a Boolean circuit.

• The hpgraph components containing a few clauses are removed and the

clauses contained in such components are added to the clause database be-

fore the main DPLL algorithm begins.

• Let n be an h-implied node (Lit(n) is an implied literal). We do not explicitly
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store the clause due to which Lit(n) is implied. Instead we simply record

that Lit(n) was implied at node n in the hpgraph. The actual reason due to

which Lit(n) is implied is useful only during conflict analysis. This reason

is computed on demand during the conflict analysis.

4.10 Experimental Results

The experiments are performed on a 1.86 GHz Intel Xeon (R) machine with 4 GB

of memory running Linux. The techniques described in the chapter have been im-

plemented in a SAT solver called NFLSAT (Non-clausal FormuLas SATisfiability

checker). The input formula is given in AIG (And Inverter Graph) [1], or ISCAS

format.

4.10.1 Benchmarks

We evaluate the solver on a collection of 2541 Boolean circuits obtained from

publicly available sources. We describe the sources of these benchmarks below.

• K-induction benchmarks (AIG format): We generated 857 k-induction [130]

problems from sequential circuits used in the 2007 hardware model check-

ing competition [7]. We used the publicly available utilities aigtosmv

[1] and smv2qbf [19] in order to generate the k-induction benchmarks.

smv2qbf was run with the options -i -aig.

• Bounded model checking (BMC) benchmarks (AIG format): We generated
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839 bounded model checking problems using the sequential circuits from

[7]. We used the publicly available utility aigbmc [1] in order to generate

BMC problems.

• SAT competition 2007 benchmarks (AIG format): We use all 341 bench-

marks that were used in the AIG track in SAT competition 2007 [15]. Around

220 of these benchmarks were generated by extracting the circuit structure

from CNF instances using cnf2aig. The CNF instances themselves were

obtained from multiple domains such as software and hardware verification,

cryptography, and planning. The remaining benchmarks consist of 105 k-

induction benchmarks and 16 benchmarks generated using c32sat [47].

• UCLID benchmarks (ISCAS format): We used 56 benchmarks generated

by the UCLID tool [22]. These were provided to us by Sanjit Seshia.

• Equivalence checking benchmarks (ISCAS format): We use 71 benchmarks

from equivalence checking domain.

• Microprocessor verification benchmarks (ISCAS format): We use 222 bench-

marks (fvp-unsat.2.0-iscas, sss-sat-1.0-iscas, vliw-sat-1.1-iscas) made avail-

able by M.N. Velev [10].

• Other benchmarks: Around 48 benchmarks were obtained by extracting

circuit structure from CNF instances using cnf2aig. Another 105 bench-

marks are k-induction benchmarks generated using different levels of AIG

optimizations [127, 1].
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Solver Solved Failed Solved Time Total Time
NFLSAT 2364 177 29753 135953
RSAT 2310 231 45794 184394
PicoSAT 2281 260 43297 199297
MiniSAT 2270 271 39489 202089

Table 4.1: Comparison between SAT solvers.

4.10.2 Comparison with SAT 2007 Competition Winners

We compare NFLSAT against three state-of-the-art CNF solvers RSAT [14], Pi-

coSAT [13], and MiniSat [8]. In SAT 2007 competition the solvers RSAT, Pi-

coSAT, and MiniSAT were ranked first, second, third, respectively in the industrial

category. We use the SAT 2007 competition version of RSAT and PicoSAT. We

use an updated version of MiniSAT (minisat2-070721) available from [8]. (This

version of MiniSAT is approximately 20% faster than the SAT 2007 competition

version of MiniSAT on our benchmarks.)

The (equi-satisfiable) CNF versions of the above circuits were obtained by

means of basic Tseitin transformation [138, 124]. We use aigtocnf to convert

the benchmarks in AIG format to CNF. The benchmarks in ISCAS format were

converted to CNF by introducing a new variable for each gate in the circuit. We

do not include the time required to convert a Boolean circuit to CNF in the run

times reported below.

The experimental results are summarized in Table 4.1. There was a timeout of

10 minutes per problem per solver. For each solver we report the following quan-

tities: 1) The total number of problems out of 2541 problems that were solved
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within timeout in the ”Solved” column. 2) The total number of problems that

the solver could not solve due to a timeout or a memory out in the ”Failed” col-

umn. 3) The total time spent in seconds on the problems that were solved in the

”Solved Time” column. 4) The sum of ”Solved Time” and the time spent on failed

problems in the ”Total Time” column.

NFLSAT solves more problems than each of the CNF SAT solvers and it is

also faster in terms of run time. Intuitively, the better performance of NFLSAT is

because of the following: 1) The NNF form of Boolean circuits has fewer vari-

ables than (pre-processed) CNF in the majority of the cases (see Chapter 2). Fewer

variables in turn reduce the overhead during the BCP and can make the decision

heuristics more effective. 2) The two watched-cut scheme carries more overhead

than the two-watched literal scheme. However, the two-watched cut scheme can

potentially update the watches for a large number of clauses without having to

look at each clause individually. 3) Optimizations for efficient BCP on the clause

database [4, 9].

Due to implementation differences between various solvers it is extremely

hard to pin point the reason for the better performance of NFLSAT. Even minor

implementation differences can make the solvers explore different search spaces

leading to significant differences in run time. Figures 4.10, 4.11, 4.12 give scatter

plots comparing NFLSAT with RSAT, PicoSAT, MiniSAT, respectively. For each

CNF solver we compare it with NFLSAT on all instances, satisfiable instances,

and unsatisfiable instances.

The main conclusion is that NFLSAT is competitive to existing state-of-the-art
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Solver Solved Failed Solved Time Total Time
NFLSAT 2060 132 26585 105785
MiniSAT++ 2074 118 32457 103257
PicoaigerSAT 2033 159 35892 131292

Table 4.2: Comparison of NFLSAT with SAT-Race 2008 AIG track winners.

CNF SAT solvers. The two-watched cut scheme and the use of vpgraph enables

efficient BCP on hpgraph. While we have have carefully implemented and opti-

mized NFLSAT, the implementation is still not as mature as CNF solvers which

have been optimized over the past seven years. There is still scope for implemen-

tation and heuristics improvement in our solver.

4.10.3 Comparison with SAT-Race 2008 AIG Track Winners

We compare NFLSAT with MiniSAT++ 1.0 which was ranked first in the AIG

track of SAT-Race 2008. MiniSat++ simplifies the AIG circuit using DAG-aware

rewriting and then converts the simplified circuit to CNF by using an improved

Tseitin translation [9, 76]. The resulting CNF is then passed to MiniSAT 2.1,

which was ranked first in the CNF track in SAT-Race 2008. We also compare

NFLSAT with PicoaigerSAT which was ranked second in the AIG track of SAT-

Race 2008. We evaluate the three solvers on a collection of 2192 AIG bench-

marks5.

The experimental results are summarized in Table 4.2. There was a timeout of

5Unlike SAT competitions the participants of SAT-Race are not required to make their solvers
(source code or binary) publicly available. We obtained MiniSAT++ binary and PicoaigerSAT
source code from their authors.
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10 minutes per problem per solver. For each solver we report the following quan-

tities: 1) The total number of problems out of 2192 problems that were solved

within timeout in the ”Solved” column. 2) The total number of problems that the

solver could not solve due to a timeout or a memory out in the ”Failed” column.

3) The total time spent in seconds on the problems that were solved in the ”Solved

Time” column. 4) The sum of ”Solved Time” and the time spent on failed prob-

lems in the ”Total Time” column. Figures 4.13, 4.14 give scatter plots comparing

NFLSAT with MiniSAT++, PicoaigerSAT respectively.

NFLSAT solves more problems than PicoaigerSAT and is also faster in terms

of run time. MiniSAT++ solves 14 more problems than NFLSAT. However, on

majority of the benchmarks NFLSAT is faster than MiniSAT++ as shown by the

scatter plot in Figure 4.13.

Detailed comparison with MiniSAT++

We divide our collection of AIG benchmarks in three sets: 1) K-IND set consists

of K-induction benchmarks. 2) BMC set consists of BMC benchmarks. 3) SAT-

2007 benchmarks consists of AIG benchmarks used in AIG track of SAT 2007

competition. Around 220 SAT-2007 benchmarks were obtained by extracting cir-

cuit structure from CNF using cnf2aig.

The experimental results are shown in Table 4.3. The column ”#Probs” gives

the number of problems in each benchmark set. There was a timeout of 10 minutes

per problem per solver. For each solver we report the following quantities: 1)

”Solved” gives the total number of problems that were solved within timeout. 2)
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Benchmarks #Probs NFLSAT MiniSat++ 1.0
Solved Solved time Total time Solved Solved Time Total time

K-IND 857 842 3719 12719 840 12496 22696
BMC 838 822 4786 14386 823 5623 14623
SAT-2007 343 245 14555 67955 259 12204 57204

Table 4.3: Comparison between NFLSAT and MiniSAT++ 1.0.

”Solved time” gives the total time spent on solved problems. 3) ”Total time” is the

sum of ”Solved time” and the time spent on problems where a timeout occurred.

On K-IND benchmarks NFLSAT solves two more problems and is 3.36 times

faster than MiniSAT++ in terms of time spent on solved problems. On BMC

benchmarks MiniSAT++ solves one more problem than NFLSAT. The runtimes

are similar. On SAT-2007 benchmarks MiniSAT++ solves 14 more problems than

NFLSAT. The poor performance of NFLSAT on SAT-2007 benchmarks is on the

circuits that were obtained from CNF formulas. The extraction of circuit structure

from CNF is not perfect and many of the extracted circuits are simply a conjunc-

tion of clauses. Figures 4.15, 4.16, 4.17 give scatter plots comparing NFLSAT

with MiniSAT++ on K-IND, BMC, SAT-2007 benchmark sets, respectively.

Note that NFLSAT currently does not employ the idea of DAG-aware min-

imization that MiniSAT++ employs. Adding this idea to NFLSAT is likely to

improve the performance of NFLSAT.
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4.10.4 Breakdown of the Total Time

The frontend for NFLSAT performs the following tasks: 1) Read the input for-

mula/circuit. 2) Obtain the NNF form from the given circuit by introducing new

variables. 3) Obtain the hpgraph and vpgraph from the NNF form. 4) Set up all

data structures that are to be used in the main DPLL algorithm. 5) Perform top

level Boolean constraint propagation (without making any decisions). Figure 4.18

compares the time taken by the frontend (y-axis) with the total number of AND

gates in the input AIG circuit (x-axis). It can be seen that the frontend scales

polynomially with the input size. In particular, there is no blowup involved in

constructing hpgraph and vpgraph.

The DPLL time denotes the time taken by the actual DPLL algorithm. It is ob-

tained by subtracting the frontend time from the total time. Figure 4.19 compares

the time taken by the frontend (x-axis) to the DPLL time (y-axis). The frontend

time exceeds the time taken by DPLL algorithm on many benchmarks. However,

the frontend time is less than ten seconds for the majority of cases.

4.11 Chapter Summary

We presented a DPLL based SAT solver that operates on the graph based repre-

sentations of NNF formulas. The hpgraph encodes the CNF form of a given NNF

formula, while the vpgraph encodes the DNF form of the given NNF formula.

The key step in the DPLL algorithm is Boolean constraint propagation (BCP). We

generalize the idea of two-watched literal scheme from CNF SAT solvers in order
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to efficiently carry out BCP on hpgraph. In our algorithm two cuts are watched

for each hpgraph component. The watched cuts are used to detect conflicts and

implied literals. We use the duality between the cuts in a hpgraph and the paths in

a vpgraph for efficiently updating the cuts. Experimental results show that the new

SAT solver is faster than the state-of-the-art solvers on majority of the benchmarks

and is competitive in terms of the number of problems solved.
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Figure 4.10: Scatter plot comparing the run times of NFLSAT and RSAT.
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Figure 4.11: Scatter plot comparing the run times of NFLSAT and PicoSAT.
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Figure 4.12: Scatter plot comparing the run times of NFLSAT and MiniSAT.
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Figure 4.13: Scatter plot comparing the run times of NFLSAT and MiniSAT++.
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Figure 4.14: Scatter plot comparing the run times of NFLSAT and PicoaigerSAT.
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Figure 4.15: Scatter plot comparing the run times of NFLSAT and MiniSAT++ on
K-induction benchmarks.
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Figure 4.16: Scatter plot comparing the run times of NFLSAT and MiniSAT++ on
BMC benchmarks.
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Figure 4.17: Scatter plot comparing the run times of NFLSAT and MiniSAT++ on
SAT-2007 AIG benchmarks.
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Figure 4.18: The frontend time as a function of circuit size (measured in number
of AND gates).
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Figure 4.19: Frontend time and the time spent in the DPLL algorithm.
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Chapter 5

Techniques for Word-Level

Verification

In the software domain, one of the successful abstraction technique for large sys-

tems is predicate abstraction [85]. It abstracts data by only keeping track of cer-

tain predicates on the data. Each predicate is represented by a Boolean variable in

the abstract program, while the original data variables are eliminated. Predicate

abstraction of ANSI-C programs in combination with counterexample guided ab-

straction refinement was introduced by Ball and Rajamani [34, 33] and promoted

by the success of the SLAM project. The goal of this project is to verify that

Windows device drivers obey API conventions. The abstraction of the program

[37, 35] is computed using a theorem prover such as Simplify [73] or Zapato [36].

In this work we use predicate abstraction for verifying hardware designs. Pred-

icate abstraction is only effective if the predicates can cover the relationship be-
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tween registers (multiple latches). This typically requires a word-level model

given at the RT-level of a hardware description language. RT-level models are

similar to programs written in a programming language, such as ANSI-C. We

apply predicate abstraction to word-level models given in RTL Verilog.

Many software verification tools use theorem provers for computing the predi-

cate abstraction. Theorem provers typically model the variables using unbounded

integer numbers. Overflow and bit-wise operators are not modeled. However,

hardware description languages like Verilog provide an extensive set of bit-wise

operators. For hardware designs, the use of these bit-level constructs is ubiqui-

tous. As in [103, 59, 90, 62], we use a bit-level SAT solver to compute the abstract

transition relation. This allows us to precisely model the bit-vector semantics of

hardware designs during abstraction computation.

We view our technique as a word-level verification technique because of the

following: 1) the predicates that are used for computing the predicate abstraction

are at the word-level 1, and 2) the use of a bit-level SAT solver as a decision

procedure can be replaced by a word-level solver. However, existing word-level

solvers for hardware description languages are not always competitive with bit-

level SAT solvers.

1If needed bit-level predicates can be used as well. For example, a predicate of the form rg[2]
is allowed where rg is a register and rg[2] refers to the second bit in rg.

112



Spurious
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Spurious prefix

Figure 5.1: A spurious counterexample.

5.1 Contributions

This thesis applies predicate abstraction and refinement for verifying circuits given

in Verilog RTL. Two problems arise when applying predicate abstraction to cir-

cuits: 1) The computation of the abstract model in presence of a large number

of predicates, and 2) discovery of suitable word-level predicates for abstraction

refinement.

In order to address the first problem, we divide the set of predicates into clus-

ters of related predicates. The abstraction is computed separately with respect to

the predicates in each cluster. Since each cluster contains only a small number of

predicates, the computation of the abstraction becomes more efficient. We refer

to this technique as predicate clustering. It allows us to tune the abstraction step

between the two extremes of eager abstraction [59] and lazy abstraction [88] . The

eager technique refers to the case where all predicates are within a single cluster,

while lazy abstraction corresponds to the case in which many clusters of small

cardinality (size) are used for computing the abstraction.

When refining the abstract model using a spurious counterexample, we dis-

tinguish between two cases of spurious behavior [63]: Spurious transitions are
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abstract transitions that do not have any corresponding concrete transitions. By

definition, spurious transitions cannot appear in the most precise predicate ab-

straction, which is computed by the eager approach. However, predicate clustering

usually produces coarse abstractions, which can give rise to spurious transitions.

Spurious prefixes are prefixes of the spurious counterexample that do not have

a corresponding concrete path. This happens when the set of predicates is not

rich enough to capture the relevant behaviors of the concrete system, even for the

most precise abstraction. Fig. 5.1 shows a spurious counterexample containing a

spurious transition and a spurious prefix.

When a spurious counterexample is encountered, we first check whether each

transition in the counterexample can be simulated on the original program. This

is done by creating a SAT instance for the simulation of each abstract transition.

If the SAT instance for an abstract transition is unsatisfiable, then the abstract

transition is spurious. In this case, we refine the abstraction by adding constraints

on the abstract transition relation that eliminate the spurious transition. We make

use of the proof of unsatisfiability of the SAT instance to identify a small subset

of the existing predicates that are causing the transition to be spurious. The fewer

predicates that are found, the more spurious transitions that are eliminated in one

step. The abstract transitions in a spurious counterexample can be examined in

any order.

When all SAT instances for the simulation of abstract transitions are satisfi-

able, it means that none of the abstract transitions is spurious due to the cluster-

ing. The immediate conclusion then is that the spurious counterexample is caused
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Figure 5.2: Abstraction-refinement loop in this work.

because the predicates used for computing the abstraction were insufficient. For

this case, we use the idea of weakest precondition from software model check-

ing [119, 33]. We compute the weakest precondition of the property (or existing

predicates) with respect to the transition function given by the circuit to obtain

new word-level predicates. We present a technique to avoid the blowup in the

size of weakest preconditions when computing the predicates. The use of weakest

preconditions provides a good heuristic for finding the predicates for refinement.

However, there is no theoretical guarantee that the abstraction refinement loop

will make progress with the addition of new predicates2. The overall flow of the

various techniques described above is shown in Fig. 5.2.

We describe our modeling of a circuit in Section 5.2. Section 5.3 describes

SAT-based predicate abstraction with the help of an example. Techniques for

clustering the given set of predicates are presented in Section 5.4. We describe

techniques for abstraction-refinement in Section 5.5.

2In principle this problem can be solved by allowing predicates with universally quantified
input variables or indexed predicates [104].
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module main ( c l k ) ;
input c l k ;
reg [ 7 : 0 ] x , y ;

i n i t i a l x = 1 ;
i n i t i a l y = 0 ;

always @ ( posedge c l k ) begin
y <=x ;
i f ( x<100) x<=y+x ;

end
endmodule

Figure 5.3: A Verilog program used as running example.

5.2 Word-Level Transition Functions

Let R = {r1, . . . ,rn} denote the set of registers in a given Verilog program. For

example, the state of the Verilog program in Fig. 5.3 is defined by the value of the

registers x and y, and each of them has a storage capacity of 8 bits. Let S denote

the set of states for a given Verilog program.

We treat external inputs like registers without a next-state function. Let Q ⊆

R denote the set of registers that are not external inputs, i.e., have a next-state

function. We denote the next-state function of a word-level register ri ∈ Q by

fi(r1, . . . ,rn), or fi(r̄) using vector notation, where r̄ = 〈r1, . . . ,rn〉. We use the

word-level next-state functions fi, to define the transition relation R(r̄, r̄′). The

transition relation relates the current state r̄ ∈ S to the next state r̄′ ∈ S and is
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defined as follows:

R(r̄, r̄′) :=
^

ri∈Q
(r′i = fi(r̄))

Example 17 Consider the Verilog program in Fig. 5.3. The next-state function

for the register x is given as follows: if the value of x in the current state is less

than 100, then the value of x in the next state is equal to the sum of current values

of x and y, that is x + y. If the value of x is greater than or equal to 100, then

the value of x in the next state remains unchanged. The value of y in the next

state is equal to the value of x in the current state. We use the ternary choice

operator c?g : h to denote a function that evaluates to g when the condition c is

true, otherwise it evaluates to h. We denote the next-state functions of x and y as

fx(x,y) and fy(x,y), respectively, and the transition relation as R(x,y,x′,y′).

fx(x,y) := ((x < 100) ? (x+ y) : x)

fy(x,y) := x

R(x,y,x′,y′) := (x′ = ((x < 100) ? (x+ y) : x))∧ (y′ = x)

In a netlist level representation there is a next-state function for each bit in the

registers x,y. In contrast, we have a next-state function for the whole registers

x,y and not for the individual bits of x,y. We represent the circuit using register-

level or word-level next-state functions.

Example 18 Consider the Verilog program in Fig. 5.3. We wish to show that
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x=144
y=144

x=144
y=89

x=1
y=0

x=1
y=1

Figure 5.4: The value of x and y in different states

the value of x is always less than 200. Intuitively, the property holds because

the value of x follows a sequence starting from 1 to 144. Upon reaching the value

144, the guard in the next-state function for x becomes false, and its value remains

unchanged. The values of x and y in each state are shown in Fig. 5.4.

We follow the counterexample guided abstraction refinement (CEGAR) frame-

work in order to prove or disprove a given property. The first step of the CEGAR

loop is to obtain an abstraction of the given program.

5.3 Predicate Abstraction

In predicate abstraction [85], the variables of the concrete program are replaced

by Boolean variables that correspond to predicates on the variables in the concrete

program. These predicates are functions that map a concrete state r̄ ∈ S into a

Boolean value. Let B = {π1, . . . ,πk} be the set of predicates. When applying all

predicates to a specific concrete state, one obtains a vector of Boolean values,

which represents an abstract state b̄. We denote this function by α(r̄). It maps a

concrete state into an abstract state and is therefore called an abstraction function.

We perform an existential abstraction [57], i.e., the abstract model can make

a transition from an abstract state b̄ to b̄′ iff there is a transition from r̄ to r̄′ in
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the concrete model and r̄ is abstracted to b̄ and r̄′ is abstracted to b̄′. We call the

abstract machine T̂ , and we denote the transition relation of T̂ by R̂. Formally:

R̂ := {(b̄, b̄′) |∃r̄, r̄′ ∈ S : α(r̄) = b̄ ∧ R(r̄, r̄′) ∧ α(r̄′) = b̄′} (5.1)

We refer to a set and its Boolean representation interchangeably. For example, in

the above equation R̂ denotes a set of abstract transitions. A Boolean (character-

istic) function representing this set is denoted as R̂(b̄, b̄′).

The initial set of states I(r̄) is abstracted as follows:

Î(b̄) := ∃r̄ ∈ S : (α(r̄) = b̄ )∧ I(r̄)

The abstraction of a safety property P(r̄) is defined as follows: for the property to

hold on an abstract state b̄, the property must hold on all states r̄ that are abstracted

to b̄.

P̂(b̄) := ∀r̄ ∈ S : (α(r̄) = b̄) =⇒ P(r̄)

Thus, if P̂ holds on all reachable states of the abstract model, P also holds on all

reachable states of the concrete model.

The techniques described in this chapter can be used to check any LTL [58]

safety property. This is because the spurious counterexamples for LTL safety

properties are always finite acyclic paths [65]. Such spurious counterexamples can

be removed during the refinement phase (Section 5.5). Predicate abstraction can
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also be used to verify an arbitrary LTL property, including liveness properties, if

the transition relation is total. However, this requires removal of counterexamples

containing loops and is left for future research.

SAT-based Predicate Abstraction

In [59], the authors propose to use a SAT solver to compute the abstraction of a

sequential ANSI-C program. This approach supports all ANSI-C integer opera-

tors, including the bit-vector operators. We use a similar technique for computing

the abstraction of Verilog programs.

A symbolic variable bi is associated with each predicate πi. Each concrete

state r̄ = 〈r1, . . . ,rn〉maps to an abstract state b̄ = 〈b1, . . . ,bk〉, where bi = πi(r̄). If

the concrete machine makes a transition from state r̄ to state r̄′ = 〈r′1, . . . ,r′n〉, then

the abstract machine makes a transition from state b̄ to b̄′ = 〈b′1, . . . ,b′k〉, where

b′i = πi(r̄′). We refer to πi(r̄) as a current-state predicate and πi(r̄′) as a next-

state predicate. For example, if x = y denotes a current-state predicate, then its

next-state version is x′ = y′.

The formula that is passed to the SAT solver directly follows from the defini-

tion of the abstract transition relation R̂ as given in equation 5.1:

R̂ := {(b̄, b̄′) | ∃r̄, r̄′ : Γ(r̄, r̄′, b̄, b̄′)} , where (5.2)
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Γ(r̄, r̄′, b̄, b̄′) :=
k̂

i=1

bi = πi(r̄)∧R(r̄, r̄′)∧
k̂

i=1

b′i = πi(r̄′)

The set of abstract transitions R̂ is computed by transforming Γ(r̄, r̄′, b̄, b̄′) into

conjunctive normal form (CNF) and passing the resulting formula to a SAT solver.

Suppose the SAT solver returns r̄, r̄′, b̄, b̄′ as the satisfying assignment. We project

out all variables but b̄ and b̄′ from this satisfying assignment to obtain one abstract

transition (b̄, b̄′). Since we want all the abstract transitions, we add a blocking

clause to the SAT equation that eliminates all satisfying assignments that assign

the same values to b̄ and b̄′, and re-start the solver. This process is continued until

the SAT formula becomes unsatisfiable. The disjunction of abstract transitions

obtained gives us the abstract transition relation R̂.

Example 19 Let the transition relation R(x,y,x′,y′) be x′ = y∧ y′ = x. Let the set

of predicates be {x = 1,y = 1}. The equation for computing R̂ is given as follows:

∃x,y,x′,y′ : (b1⇔ (x = 1))∧ (b2⇔ (y = 1))∧

R(x,y,x′,y′) ∧ (b′1⇔ (x′ = 1)) ∧ (b′2⇔ (y′ = 1))

The set of satisfying assignments to the above equation results in R̂(b1,b2,b′1,b
′
2)

as ((b′1⇔ b2) ∧ (b′2⇔ b1)).

The predicates used for abstraction can be arbitrary Boolean expressions al-

lowed by the Verilog syntax. Thus, the predicates can involve operators for con-

catenation, extraction, etc. For example, a[3:0]>7, ram[{addr,1’b0}]==d[9:2]
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are allowed as predicates. Predicates can refer to individual bits in a register. For

example, rg[i] is a valid predicate, where rg is a register and i is an index.

The set of abstract initial states can be enumerated using a SAT solver in a

similar manner.

5.4 Predicate Clustering

We call the computation of the exact existential abstraction as described in the

previous section the Eager Approach. A single abstract transition relation is com-

puted using all the available predicates. In the worst case, the number of satisfying

assignments generated from Eqn. 5.2 is exponential in the number of predicates.

In practice, computing abstractions using the eager approach can be very slow

even for a small number of predicates.

The speed of the abstraction step can be increased if we do not aim at the

most precise abstract transition relation. That is, we allow our abstraction to be

an over-approximation of the abstract transition relation generated by the eager

approach. Software predicate abstraction tools abstract the individual statements

or basic blocks separately. As only a small number of predicates are typically

affected at each statement or basic block, simple heuristics can be used to compute

the abstraction quickly. The SLAM toolkit, for example, limits the number of

predicates in each theorem prover query. In contrast, each transition in a RT-

level circuit consists of simultaneous assignments to all registers. All predicates

might change their value in each transition of the circuit. Thus, more sophisticated
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techniques are needed to compute the predicate abstraction of circuits efficiently.

Our solution to the above problem is as follows: the set of predicates and their

next-state versions is clustered into smaller sets of related predicates. We call

these sets clusters, and denote them by C1, . . . ,Cl , with C j⊆{π1, . . . ,πk,π
′
1, . . . ,π

′
k}.

Note that we do not require the clusters to be disjoint, that is, they can have com-

mon predicates. We abstract the transition system with respect to each cluster

C1, . . . ,Cl . This results in a total of l abstract transition relations R̂1, . . . , R̂l , which

are conjoined to form R̂:

R̂ :=
l̂

i=1

R̂i (5.3)

The equation for abstracting the transition system with respect to C j is given

as follows:

R̂ j := ∃r̄, r̄′ :
^

πi∈C j

bi = πi(r̄) ∧ R(r̄, r̄′) ∧
^

π′i∈C j

b′i = πi(r̄′)

The satisfying assignments to the above equation correspond to the abstract

transition relation R̂ j. The number of satisfying assignments to the above equation

is limited by the size of cluster C j, that is, 2|C j|. Clearly, by limiting the size of C j,

we can compute the abstract transition relations much faster as compared to the

eager approach.

We refer to the above technique of generating smaller clusters from a given set

of predicates, and using these clusters for computing the abstraction R̂, as predi-
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cate clustering.

Proposition 1 If Q̂ denotes the abstract transition relation obtained by using the

eager approach (Eqn. 5.2), and R̂ denotes the abstract transition relation obtained

by predicate clustering (Eqn. 5.3), then Q̂⇒ R̂ or Q̂⊆ R̂ using set notation.

Proof. Let the set of predicates be Pr. Q̂ denotes the abstraction with respect to

Pr. From Eqn. 5.3, R̂ =
Vl

j=1 R̂ j, where R̂ j denotes the abstraction with respect

to a cluster C j and C j ⊆ Pr. The above claim is proved by showing that for all

1≤ j ≤ l, Q̂⇒ R̂ j or Q̂⊆ R̂ j using set notation. We will treat Q̂ and R̂ j as sets of

abstract transitions and show that Q̂⊆ R̂ j. We rewrite the definitions of Q̂ and R̂ j

as follows:

Q̂ := {(b̄, b̄′) | ∃r̄, r̄′ : δ(r̄, r̄′, b̄, b̄′,Pr)}

R̂ j := {(b̄, b̄′) | ∃r̄, r̄′ : δ(r̄, r̄′, b̄, b̄′,C j)}

where δ(r̄, r̄′, b̄, b̄′,Z) relates concrete states r̄, r̄′, and abstract states b̄, b̄′ with re-

spect to a set of predicates Z.

δ(r̄, r̄′, b̄, b̄′,Z) :=
^

πi∈Z

bi = πi(r̄)∧R(r̄, r̄′)∧
^

π′i∈Z

b′i = πi(r̄′)

If Z2⊆Z1 holds, then δ(r̄, r̄′, b̄, b̄′,Z1) is equivalent to δ(r̄, r̄′, b̄, b̄′,Z2)∧δ(r̄, r̄′, b̄, b̄′,Z1\Z2).

Thus, if δ(r̄, r̄′, b̄, b̄′,Z1), then δ(r̄, r̄′, b̄, b̄′,Z2) holds. If an abstract transition (ā, ā′)∈
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Q̂, then there exist two concrete states x̄, x̄′ such that δ(x̄, x̄′, ā, ā′,Pr) holds. Since

C j⊆Pr, it follows from the above that δ(x̄, x̄′, ā, ā′,C j) holds. Thus, ∃r̄, r̄′ : δ(r̄, r̄′, ā, ā′,C j)

holds and (ā, ā′) ∈ R̂ j. This shows Q̂ ⊆ R̂ j. As Q̂ ⊆ R̂ j for all 1 ≤ j ≤ l and

R̂ =
T

j R̂ j, it follows that Q̂⊆ R̂. �

We discuss techniques for creating predicate clusters next. Let var(e) denote

the set of variables (state elements and inputs) appearing in an expression e. For

example, var(x′+ y′ < 200) is {x′,y′}. If e contains combinational elements, we

replace them by their definition in terms of state elements and inputs before com-

puting var(e).

Clarke et al. [55] call two formulas g1 and g2 interfering iff var(g1)∩var(g2) 6=

/0. The authors use the notion of interference to partition a set of formulas into var-

ious formula clusters. This technique can be used for clustering the set of predi-

cates as well. However, our early unreported experiments indicate that this results

in clusters that are too large. Thus, we make the conditions for keeping the two

predicates together stronger, which leads to a smaller number of predicates per

cluster. We evaluate two different techniques for creating predicate clusters used

in predicate clustering, cone clustering and clustering for lazy abstraction.

5.4.1 Syntactic Cone Clustering

This technique clusters next state predicates with current state predicates that are

related to each other. In order to identify when a next-state predicate is related to

a current-state predicate we use cone of influence computation [58].
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Given a formula g′ in terms of next-state variables r̄′, the current state vari-

ables r̄ that affect the value of the variables in var(g′) are denoted by cone(g′).

It is defined as follows: The variables in the next-state functions for the registers

mentioned in g′ form the cone of g′. Recall that the set of registers is denoted by

Q . The next-state function of a particular register ri ∈ Q is given by fi(r̄).

cone(g′) :=
[

r′i∈var(g′) ∧ ri∈Q
var( fi(r̄))

The value of g′ in a given state depends only on the values of variables in cone(g′)

in the previous state.

Example 20 Let g′ be a′ < b′. Let the next-state functions for a′,b′ be x + b, c,

respectively. Here, var(g′) = {a′,b′} and cone(g′) = {x,b,c}. Given the values of

x,b,c in a state the value of the predicate a < b in the next state, that is, the value of

a′ < b′ is x+b < c. Thus, we would like to keep the current state predicates over

variables {x,b,c} and the next state predicate a′ < b′ in the same cluster. This

allows the value of the predicate a′ < b′ to be tracked precisely in the abstract

model.

Let the set of predicates and their next-state versions {π1, . . . ,πk,π
′
1, . . . ,π

′
k}

be C. The clusters of C are created by the following two steps:

1. The next-state predicates that have identical cone sets are kept in a single

cluster. Intuitively, these predicates depend on exactly the same set of vari-
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ables from the previous state and hence, are related to each other. That is,

if cone(πi
′) = cone(π j

′), then πi
′ and π j

′ are kept in the same cluster. Let

C′1, . . . ,C
′
l be the clusters of {π′1, . . . ,π′k} obtained after this step. Since all

the predicates in a given cluster C′i have the same cone, we define cone(C′i)

as the cone of any element in C′i .

2. The final set of clusters is given by {C1, . . . ,Cl}. Each Ci contains all the

next-state predicates from C′i and the current-state predicates that mention

variables in the cone of C′i . Formally, Ci is defined as follows:

Ci := C′i ∪ {π j | var(π j)⊆ cone(C′i)}

Example 21 Let the transition relation R(x,y,z,x′,y′,z′) be x′= y∧y′= x∧z′= x.

Let the set of predicates be {x = 2,y = 1,z > 3,x′= 2,y′= 1,z′> 3}. The cone sets

for the next-state predicates x′ = 2,y′ = 1,z′ > 3 are {y},{x},{x}, respectively.

After the first step of the clustering, the clusters are C′1 := {x′ = 2} and C′2 :=

{y′ = 1,z′ > 3}. Even though y′ = 1 and z′ > 3 do not share a common set of

variables they are kept in the same cluster, as they have the identical cone set {x}.

Since cone(C′1) := {y} and cone(C′2) := {x}, the clusters obtained after the

second step of the clustering are C1 := {y = 1,x′ = 2} and C2 := {x = 2,y′ =

1,z′ > 3}. Observe how the predicates in a given cluster affect each other. For

example, in C2, if x = 2 is true, then we know that y′ = 1 and z′ > 3 will be false

(as y′ and z′ equal x). If x = 2 is false, then y′ = 1 can be either true or false and

z′ > 3 can be either true or false. However, both y′ = 1 and z′ > 3 cannot be true
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together.

Since cone clustering attempts to keep all related predicates together, the ab-

stractions produced are not much coarser than those produced by the eager ap-

proach. However, in general there is no bound on the number of predicates in a

given cluster. In the worst case there might be a cluster containing most of the

current-state and next-state predicates.

5.4.2 Syntactic Clustering for Lazy Abstraction

The idea of lazy abstraction [88] is to start with a coarse initial abstract model

which is refined on-demand as required by spurious counterexamples. Since a

coarse abstract model is computed the abstraction step is usually very fast. This

prevents the abstraction step from becoming a bottleneck when computing the

abstraction of large circuits or when a large number of predicates are available for

abstraction.

A completely lazy abstraction corresponds to using no predicate clusters. Thus,

the initial abstraction is simply true. We follow a variant of this technique: all

current-state predicates that contain the same set of variables are kept in the same

cluster. That is, if var(πi) = var(π j), then πi and π j are kept in the same cluster.

This is useful if the given set of predicates contains many mutually exclusive (or

related) predicates such as x = 1,x = 2,x > 2. Keeping these predicates in separate

clusters results in an abstract model that does not keep track of the relationships

between the predicates x = 1,x = 2,x > 2. Such an abstract model can contain a
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large number of spurious abstract states, such as an abstract state in which both

x = 1 and x = 2 are true.

The next-state predicates are not used in the clusters. Thus, the abstraction

produced only contains predicate relationships that hold in each abstract state (not

between states). If needed the relationships between current-state and next-state

predicates is discovered lazily using refinement (Section 5.5).

Example 22 Let the set of current-state predicates be {x < 2,x = 1,y = 1,z > 1}.

The clusters produced for lazy abstraction are C1 := {x < 2,x = 1}, C2 := {y = 1},

and C3 := {z > 1}.

In this example let the next state function of y be equal to x (that is y′ := x).

The predicates involving x and y′ are not present together in any cluster. Thus, the

abstract model generated using lazy abstraction allows an abstract transition from

a state where x = 1 to a state where y 6= 1. This is a spurious abstract transition

because the value of y = 1 in the next-state must be equal the value of x = 1 in

the previous state. This fact would be tracked in the most precise abstraction and

abstraction computed using cone clustering as the predicates x = 1,y′ = 1 are kept

together in a same cluster.

Once the abstraction of the concrete system is obtained, we model-check it

using a model-checker for finite state systems like SMV [3, 11]. If the abstract

model satisfies the property, the property also holds on the original, concrete cir-

cuit. If the model checking of the abstraction fails, we obtain a counterexample

from the model-checker. In order to check if an abstract counterexample corre-
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sponds to a concrete counterexample, a simulation step is performed. This is done

using bounded model checking [42]. If the counterexample cannot be simulated

on the concrete model, it is called a spurious counterexample. Many spurious

counterexamples arise due to predicate clustering. The elimination of spurious

counterexamples from the abstract model is described in the next section.

5.5 Abstraction Refinement

When refining the abstract model, we distinguish between two cases of spurious

behavior, as done in [63]:

1. Spurious transitions are abstract transitions that do not have any corre-

sponding concrete transitions. By definition, spurious transitions cannot

appear in the most precise abstraction, which is computed by the eager ap-

proach. However, as we noted earlier, computing the most precise abstract

model is expensive and thus, we make use of the various predicate cluster-

ing techniques which can result in a coarse abstraction. This can result in

many spurious transitions.

2. Spurious prefixes are prefixes of the abstract counterexample that do not

have a corresponding concrete path. This happens when the set of predicates

is not rich enough to capture the relevant behaviors of the concrete system,

even for the most precise abstraction.
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Given a spurious counterexample we first check if any transition in the coun-

terexample is spurious. If a spurious transition is found, it is eliminated from

the abstract model by adding a constraint to the abstract model. If no transition

in the counterexample is spurious, then new predicates are generated in order to

eliminate a spurious prefix in the counterexample. We treat the entire spurious

counterexample as a spurious prefix and do not find the shortest spurious prefix.

An abstract counterexample is a sequence of abstract states s̄(1), . . . , s̄(l), where

each abstract state s̄( j) corresponds to a valuation of the k predicates π1, . . . ,πk.

The value of πi in a state s̄ is denoted by s̄i. Given an abstract state s̄, let β(s̄) de-

note the conjunction of predicates (or their negation) depending upon their values

in s̄. For example, let s̄ be an abstract state in which the predicate x < 2 is true and

the predicate x = y is false. Then β(s̄) = x < 2 ∧ ¬(x = y).

β(s̄) :=
k̂

i=1

πi⇔ s̄i

We write β(s̄, r̄) to denote that the variables in β(s̄) refer to the concrete variables

r̄.

5.5.1 Detecting and Removing Spurious Transitions

An abstract transition from s̄ to t̄ is a spurious transition iff there are no concrete

states r̄, r̄′ such that r̄ is abstracted to s̄, r̄′ is abstracted to t̄, and there is a tran-

sition from r̄ to r̄′. Formally, the abstract transition from s̄ to t̄ is spurious iff the
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following formula is unsatisfiable:

β(s̄, r̄) ∧ R(r̄, r̄′) ∧ β(t̄, r̄′)

The equation above is transformed into CNF and passed to a SAT solver. If

the SAT solver detects the equation to be satisfiable, the abstract transition can be

simulated on the concrete model. Otherwise, the abstract transition is spurious.

In this case, the spurious transition can be removed from the abstract model by

adding a constraint to the abstract model.

When generating the CNF instance for the simulation of the abstract transition

s̄ to t̄, we store the mapping of each predicate πi, π′i to the corresponding literal

li, l′i in the CNF instance. If the abstract transition is spurious, the CNF instance

is unsatisfiable. In this case, we extract an unsatisfiable core [146] from the given

CNF instance. An unsatisfiable core of a CNF instance is a subset of the original

set of clauses that is also unsatisfiable. Current state-of-the-art SAT-solvers are

quite effective at producing small unsatisfiable cores, if they exist.

Let us denote the set of current-state predicates whose corresponding CNF

literal li appears in the unsatisfiable core by X . We have a similar set for the next-

state predicates, which we call Y . Intuitively, the predicates in X and Y taken

together are sufficient to prove that the abstract transition from s̄ to t̄ is spurious.

All abstract transitions where the predicates in X and Y have the same truth value

as given by the states s̄ and t̄, respectively, are spurious. These spurious transitions

are eliminated by adding a constraint to the abstract model. Let bi and b′i be the
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variables used for the predicates πi and π′i in the abstract model. The constraint

added to the abstract model is as follows:

¬

 ^
πi∈X

bi⇔ s̄i ∧
^

π′i∈Y

b′i⇔ t̄i



Proposition 2 Every abstract transition from ū to v̄ such the predicates in X have

the same value in ū and s̄, and the predicates in Y have the same value in v̄ and

t̄, is spurious. The constraint above removes all of these spurious transitions from

the abstract model.

Example 23 Let the set of current-state predicates be {x < 2,x = 1,y = 1,z >

1}. Consider the abstract transition from s̄ = {b1 = 1,b2 = 1,b3 = 1,b4 = 1} to

t̄ = {b′1 = 0,b′2 = 0,b′3 = 0,b′4 = 0}, where b1, b2, b3, and b4 correspond to the

predicates x < 2, x = 1, y = 1, z > 1, respectively. Let the next-state function of

y be x, i.e., y′ = x. Observe that in the state s̄, x = 1. This implies that y = 1 in

t̄ (as y′ = x). However, b′3 is false in t̄ and thus, the abstract transition from s̄ to t̄

is spurious. As described in section 5.4.2, the abstract transition from s̄ to t̄ can

arise when using lazy abstraction. This spurious transition can be eliminated by

adding the following constraint to the abstract model [69]: ¬(b1∧ b2∧ b3∧ b4∧

¬b′1∧¬b′2∧¬b′3∧¬b′4).

However, the constraint above removes just one spurious transition. By ex-

amining an unsatisfiable core, we can make the constraint more general, thereby

eliminating many spurious transitions at the same time. In this example, the cause
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of the spurious behavior is b2 = 1, and b′3 = 0. The unsatisfiable core technique

described above is capable of discovering this fact. This allows us to eliminate

the abstract transition from s̄ to t̄ and 63 more spurious transitions by adding the

following constraint to the abstract model: ¬(b2∧¬b′3). It is very important to re-

move as many spurious transitions as possible in order to make the CEGAR loop

terminate quickly.

Semantic Predicate Clustering

The predicates responsible for making an abstract transition spurious can be treated

as a predicate cluster C, which can be used during the abstraction step. Suppose

an abstract transition from s̄ to t̄ is spurious. Let C denote the set of current-state

and next-state predicates responsible for this spurious transition as identified by

an unsatisfiable core. As described above, the predicates appearing in C are used

to remove the spurious transition from s̄ to t̄. In semantic predicate clustering,

C is also added to the existing set of predicate clusters and is used to compute

the abstraction (Eqn. 5.3) in the subsequent iterations. Intuitively, the predicates

occurring in C are semantically related because a particular assignment of truth

values to the predicates in C (as given by s̄, t̄) can make an abstract transition

spurious. Thus, by computing all possible relationships between the predicates in

C (during abstraction), we remove all abstract transitions that are spurious due to

the predicates in C.
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Example 24 For the spurious transition in the example above, we obtain C :=

{x = 1,y′ = 1}. The predicates in C are used to eliminate multiple spurious tran-

sitions by adding the constraint ¬(b2 ∧¬b′3). However, even after adding this

constraint the abstract model allows another spurious transition from a state ū

where ¬(x = 1) to a state v̄ where y = 1 (that is, y′ = 1). In semantic predicate

clustering C is added as a predicate cluster. The abstraction step will discover that

b2⇔ b′3 using C. Thus, the spurious transition from ū to v̄ cannot arise.

5.5.2 Detecting and Removing Spurious Prefixes

An abstract counterexample s̄(0), . . . , s̄(l) of length l is a spurious prefix iff there

is no concrete execution of l transitions such that at each step the concrete state

is consistent with the corresponding abstract state. More formally, let r̄0, . . . , r̄l

denote the concrete state variables at each of the l + 1 states. The initial state of

the concrete system is denoted as I(r̄0).

The abstract counterexample s̄(0), . . . , s̄(l) is a spurious prefix iff the following

formula is unsatisfiable:

I(r̄0) ∧
l−1̂

i=0

R(r̄i, r̄i+1) ∧
l̂

i=0

β(s̄(i), r̄i)

The above formula is unsatisfiable iff there is no sequence of concrete states

r̄0, . . . , r̄l such that r̄0 is an initial state, there is a transition from r̄i to r̄i+1 for

0 ≤ i < l, and the predicate values in each concrete state r̄ j exactly match the

predicate values given by the abstract state s̄( j) for 0≤ j ≤ l.
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In [63], the elimination of spurious prefixes is done by adding a bit-level pred-

icate. This predicate is called a separating predicate and is computed by using

a SAT based conflict dependency analysis. In contrast, we make use of weakest

preconditions as done in software verification. We generate new word-level pred-

icates from the weakest pre-condition of the given property with respect to the

transition function given by the RT-level circuit.

Weakest pre-conditions: In software verification, the weakest pre-condition wp(st,γ)

of a predicate γ is usually defined with respect to a statement st (e.g., an assign-

ment). It is the weakest formula whose truth before the execution of st entails

the truth of γ after st terminates. In case of hardware, each state transition can be

viewed as a statement where the registers are assigned values according to their

next-state functions.

Recall that the set of registers that have a next-state function is denoted by

Q . External inputs do not appear in this set. The next-state function for register

ri ∈ Q is given by fi(r̄). We use f̄ to denote the vector of the next-state functions

for the registers in Q . For any expression e, the expression e[x̄/ḡ] denotes the

simultaneous substitution of each variable xi in e by an expression gi from ḡ.

The weakest precondition of the property γ(r̄) with respect to one concrete

transition is defined as follows:

wp1( f̄ ,γ(r̄)) := γ(r̄) [r̄/ f̄ ]

The weakest precondition with respect to i consecutive concrete transitions is
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defined inductively as follows:

wpi( f̄ , γ(r̄)) := wp1( f̄ , wpi−1( f̄ , γ(r̄))) (i > 1)

In order to refine a spurious prefix of length l > 0, we compute wpi( f̄ ,τ) for

each 1 ≤ i ≤ l, where τ is the safety property we are interested in checking. In-

tuitively, τ holds after i transitions iff wpi( f̄ ,τ) holds before i transitions. Refine-

ment corresponds to adding the Boolean expressions occurring in each wpi( f̄ ,τ)

to the existing set of predicates. The refinement procedure is not guaranteed to

make progress.

In case of circuits, the weakest pre-condition is always computed with respect

to the same transition function f̄ and thus, we may omit it as an argument in

wpi( f̄ ,γ).

Example 25 Let the property be x < 200. Let the next state functions for the

registers x and y be ((x < 100)?(x+y) : x) and x, respectively. Suppose we obtain

a spurious prefix of length 1. The weakest pre-condition is computed as follows:

wp1(x < 200) := (((x < 100) ? (x+ y) : x ) < 200)

We add the Boolean conditions occurring in wp1 to our set of predicates. Thus,

we add x < 100 and (((x < 100) ? (x+ y) : x ) < 200) as the new predicates.
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Simplifying the Weakest Pre-conditions

When the spurious prefix is long, the weakest precondition computation becomes

expensive and the predicates generated can become very complex (see wp1 above).

This adversely affects the abstraction refinement loop. In software verification,

this problem is solved by computing the weakest precondition with respect to the

statements appearing in the spurious trace only. This is not directly applicable to

a synchronous circuit because the statements occurring in the spurious trace cor-

respond to the next state functions. The next-state functions usually contain many

conditional statements. Thus, simply substituting the next-state functions as done

above leads to a blowup in the size of weakest pre-conditions.

Instead, we apply a syntactic simplification to the weakest preconditions at

each step. The simplification uses data from the abstract error trace. We exploit

the fact that many of the control flow guards in the Verilog code are also present

in the current set of predicates. The abstract trace assigns truth values to these

predicates in each abstract state. In order to simplify the weakest pre-conditions,

we substitute the guards in the weakest pre-conditions with their truth values. Fur-

thermore, we only add the atomic Boolean expressions occurring in the weakest

pre-condition as the new predicates.

In order to formalize the simplification of weakest pre-conditions we define

a helper function simplify in Algorithm 5.1. Let the current set of predicates be

{π1, . . . ,πk}. simplify takes as input a Boolean formula g(r̄) (written as g for short)

and an abstract state t̄. It replaces all the occurrences of {π1, . . . ,πk} in g by their

truth values in the state t̄.
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Algorithm 5.1 Simplification of a Boolean formula using the predicate valuations
in an abstract state.
Input: Boolean expression g
Input: An abstract state t̄ assigning values to predicates {π1, . . . ,πk}
Output: g is simplified (modified in-place)

1: for all operands h in g do
2: simplify(h, t̄) {recursive simplification}
3: end for
4: Remove constant conditionals from g {E.g., replace (0?x : y) by y}
5: if ∃π j.(π j = g){syntactic equality of expressions} then
6: g⇐ t̄ j {replace g by value of π j in t̄}
7: end if

Example 26 Suppose our current set of predicates is {x < 2,x < 1}. Let t̄ be an

abstract state in which x < 2 is true and x < 1 is true. Let g(x,y) be the formula

(((x < 1) ? (x + y) : x ) < 2). After calling simplify with g and t as arguments

g becomes:

((true? (x+ y) : x ) < 2) = x+ y < 2

Let h(x,y) be the formula x < 3. After calling simplify with h and t as arguments

h remains equal to x < 3.

Simplified weakest pre-conditions Let the spurious prefix be t̄(0), . . . , t̄(l) with

l ≥ 1 and the property be γ. The weakest precondition wpi is a formula that should

hold before i concrete transitions for γ to hold after i transitions. That is, γ holds

after l transitions starting from the initial state iff wpl holds in the initial state.
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Backward weakest precondition computation 

Spurious prefix of length l

t(1)t(0) t(l−i) t(l−1)

γ

t(l)

swpl(γ) swpl−1(γ) swpi(γ) swp1(γ)

Figure 5.5: Simplified weakest precondition computation for a spurious prefix.

As motivated earlier we want to simplify wpi using the predicate values from

the spurious prefix. We denote the simplified weakest precondition (swp) for i

steps by swpi. The abstract state t̄(l− i) provides the truth values of the predicates

just before the i transitions leading to the end of spurious prefix. Thus, swpi(γ)

is simplified using the predicate values from the abstract state t̄(l− i). Fig. 5.5

shows the correspondence between abstract states and swpi. Formally, swpi is

defined as follows (wp1 was defined earlier and l is the length of spurious prefix):

swp1(γ) := simplify(wp1(γ), t̄(l−1))

swpi(γ) := simplify(wp1(swpi−1(γ)), t̄(l− i)) (1 < i≤ l)

The new set of predicates for refinement is obtained from swp1, . . . ,swpl . This

is done by taking only the atomic predicates occurring in the simplified weakest

pre-condition.

The predicates in the simplified weakest precondition of the given property are

not always sufficient to ensure that the spurious prefix is eliminated from the ab-

stract model. We identify a subset of the existing predicates such that computing
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the weakest pre-condition of these predicates is likely to remove the spurious pre-

fix. As in [94], this is done by examining the unsatisfiable core of the SAT instance

used for simulating the prefix. This approach identifies a subset of the existing

predicates that is responsible for the spurious behavior. If a copy of predicate p in

cycle k appears in the unsatisfiable core, we compute the weakest precondition of

p for k steps (k ≤ l). In addition we compute the weakest precondition for each

predicate used during the simplification (Algorithm 5.1, Line 5).

5.6 Experimental Results

The experiments are performed on a 1.86 GHz Intel Xeon (R) machine with 4 GB

of memory running Linux. The techniques described in this chapter have been

implemented in a tool called VCEGAR [23]. Our implementation is available for

experimentation by other researchers. We use the MiniSat (version 1.14) SAT

solver [8] as our decision procedure. The abstractions are model checked using a

publicly available version of the Cadence SMV model checker [3]. We perform

two sets of experiments:

1. We compare the performance of VCEGARwith the performance of k-induction

[130] and interpolation [112] verification techniques implemented in EBMC

[5]. The implementation of interpolation in EBMC uses the ideas from

[112, 131] but does not incorporate the optimizations described in [112]3.

The results are reported in Section 5.6.1.

3The publically available version of Cadence SMV does not include the interpolation options.
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2. We compare three different predicate clustering algorithms: syntactic cone

clustering, clustering for lazy abstraction described in Section 5.4, and se-

mantic predicate clustering (Section 5.5.1). These results are reported in

Section 5.6.2.

In all our experiments we compute the initial abstraction using the atomic pred-

icates appearing in the property. The remaining predicates are discovered auto-

matically using refinement.

5.6.1 Comparison with Other Verification Techniques

The results are summarized in Table 5.6.1. The column “Latches” contains the

total number of latches in the design. The columns marked with “Predicate Ab-

straction” contain the results of applying the techniques discussed in this chapter.

The “Time”, “Abs”, “MC”, and “Ref” columns contain the total time, followed

by the time taken by abstraction, model checking, and refinement including sim-

ulation. The time spent before the start of the CEGAR loop is given by Time-

(Abs+MC+Ref). We use lazy abstraction and rely on refinement to do most of the

work in these benchmarks. The “P” column contains the final number of pred-

icates. The “I” column gives two numbers separated by a slash: 1) Number of

refinement steps in which spurious transitions are removed, and 2) number of re-

finement steps in which new predicates are added. The sum of these two numbers

is the total number of refinement iterations.

The results of running EBMC with k-induction options are given in the “EBMC-

142



Bench- Predicate Abstraction EBMC-K EBMC-I
mark Latches Time Abs MC Ref P I Time Time
USB1 545 42 1 2 29 17 62/0 0.60 (1) 2 (1/5)
USB2 545 599 47 147 386 116 146/22 43 (14) 30 (14/20)
USB3 545 446 46 73 317 114 123/20 - (80) 14 (4/18)
ETH0 359 44 2 3 30 21 55/0 - (74) 1213 (19/55)
ETH1 359 127 8 8 102 93 49/2 - (87) 3905 (36/87)
ETH2 359 161 8 16 127 94 109/2 - (83) -
ETH3 359 204 8 20 166 96 123/2 - (76) -
ETH4 359 15 0 0 5 4 9/0 - (146) 6 (4/11)
ETH5 359 104 8 6 79 94 54/2 - (82) -
ETH6 359 161 4 7 140 63 71/5 - (83) -
ETH7 359 497 6 206 275 77 86/5 - (86) 939 (32/67)
ETH8 359 230 6 33 181 78 47/4 - (86) 733 (29/68)
ETH9 359 222 7 15 190 84 71/5 - (85) 1305 (30/78)
ETH10 359 123 8 6 99 94 46/1 - (82) -
ETH11 359 11 0 0 1 2 2/0 1 (1 ) 1 (4/3)
M2KB 16427 5 0 0 5 3 2/0 4.2 (1) 18 (1/2)
M8KB 65694 28 0 0 28 3 2/0 38.4 (1) 293 (1/2)
M16KB 131117 34 0 0 34 3 2/0 44 (1) 308 (1/2)
N2KB 16427 93 0 0 93 11 9/0 39 (1) 452 (1/2)
N8KB 65694 490 0 0 490 11 9/0 550 (1) -
N16KB 131117 790 0 0 789 11 9/0 679 (1) -
AR200 400 1 0 0 1 3 3/2 0.1 (2) 0.6 (2/8)
AR3000 6000 12 0 0 12 3 3/2 1.1 (2) 20 (2/10)
AR4000 8000 17 0 0 16 3 3/2 1.5 (2) 28 (2/10)

Table 5.1: Experimental results: All runtimes are in seconds (rounded to nearest
integer). A dash “-” indicates a timeout of 2 hours.

K” column. We report the total runtime followed by the k-induction bound at

which the property is (dis)proved or a timeout is reached. The “EBMC-I” col-

umn gives the runtimes of EBMC with the interpolation options followed by

(a) the BMC bound at which the property is (dis)proved and (b) the total num-

ber of number of iterations (see FiniteRun procedure in [112]). The interpola-

tion options given to EBMC are --interpolation --stop-minimize

--stop-induction and optionally --no-netlist is provided if it im-
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MEM_WR2

MEM_RD3

MEM_RD2

MEM_WR1
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WAIT_MRD
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MEM_RD1

Figure 5.6: State machine for the DMA in the USB 2 .0 Function core.

proves the runtime.

Benchmarks: The USB benchmark was used for experimental evaluation of the

EverLost tool [72]. It is derived from a USB 2.0 Function core [12] and contains

approximately 4000 lines of RTL Verilog. We checked three properties. The

first property USB1 checks that the implementation of the internal DMA module

simulates the state transition diagram shown in Fig. 5.6. The property holds and

all the predicates required for the proof are present in the property itself. The

second property USB2 encodes the following: if the abort signal is true in any

state of Fig. 5.6, then the next state will be IDLE. This property does not hold

because the transition from the MEM WR2 state to the IDLE state is not guaranteed

by the abort signal. The third property USB3 excludes the state MEM WR2 from

the USB2 property. This property holds on the design. The properties USB2

and USB3 contain three and four atomic predicates, respectively. The remaining
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Figure 5.7: State machine for the Transmit module in the Ethernet MAC.

predicates are discovered through refinement.

The ETH benchmark was also used in [72]. It is the design of a 10/100

Mbps Ethernet MAC [12] and contains approximately 5000 lines of RTL Ver-

ilog. The transmit module of the design contains a state machine with ten states

(see Fig. 5.7). The property ETH0 checks that the implementation obeys the state

machine description given in Fig. 5.7. All the predicates required for proving the

property are present in the property itself. The property ETH1 checks the outgo-

ing transitions from the state BackOff. The property ETH2 checks the outgoing

transitions from the state Jam. The properties ETH3 to ETH11 are similar and

check the outgoing transitions from the remaining states. All properties ETH1 to

ETH11 hold on the design. When checking the properties ETH1 to ETH11 most

of the predicates are discovered through refinement.

The ICRAM benchmark is taken from the Instruction Cache RAM unit of the

145



Sun PicoJava II microprocessor [20]. It maintains a RAM of size 16KB (orga-

nized as 2048 entries of 64 bits each). If the writing signal wen0 is enabled the

value of data input (din) is written to the lower 32 bits of the location addressed

by the input address (addr). Otherwise, if the writing signal wen1 is enabled, the

value din is written to the higher 32 bits of the location addressed by addr. This

functionality of the ICRAM is encoded in form of eight safety properties using

the current-state and next-state of the variables. We use P.x to denote the value

of a register or input x in the previous state. Each property compares eight bits in

P.din and corresponding bits in ICRAM. A sample property is given below:

P.wen0→(ram[{P.addr,3’b001}]=P.din[23:16])

The above property depends on the contents of the RAM. We verified the

above property by varying the size of RAM from 2KB to 16KB. These bench-

marks start with a prefix “M” in Table 5.6.1. We also combined all the eight

properties for the ICRAM benchmark into a single property. These benchmarks

start with a prefix “N” in Table 5.6.1. For both “M” and “N” benchmarks the

property is proved using only the predicates occurring in the property. No new

predicates are discovered.

The benchmarks with names starting with “AR” perform arithmetic operations

on two registers x and y as shown in Fig. 5.3. We verify the invariant x < 200. In

the ARi benchmark the size of both x,y is i and total number of latches is 2× i.

As described in the previous section, this property is proved using the predicates
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x < 200, x < 100, x+y < 200. The predicate x < 200 is obtained from the property

and the predicates x < 100, x+ y < 200 are discovered using refinement.

VCEGAR is able to solve all benchmarks reported in Table 5.6.1, while EBMC-

K and EBMC-I timeout on 12, 7 problems, respectively. Due to the use of lazy

abstraction in VCEGAR the refinement step (simulation of abstract transitions/-

counterexamples) takes more than 50% of the runtime.

When using predicate abstraction, the size of the abstract model can remain

constant even when the number of latches is increased. This is because for certain

properties, the number of word-level predicates needed for the proof does not

grow as the width of the registers is increased. This trend is visible in the M*,

N*, and AR* benchmarks. Thus, the model checking (MC) time is similar across

these benchmarks.

5.6.2 Comparing Predicate Clustering Techniques

We report the performance of the CEGAR loop using three different predicate

clustering techniques described in Section 5.4 and Section 5.5.1. The benchmark

characteristics are given in Table 5.2. We report the number of lines of code,

the total number of latches, the total number of Verilog combinational elements

and inputs (“CE+I” column), and the total number of properties checked for each

benchmark. The benchmarks USB 2.0 and Ethernet MAC were described in the

previous section. Other benchmarks are taken from the Texas97 and VIS [139]

benchmark suites.

The results are summarized in Table 5.3. The columns labeled with “Cone”
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Benchmark Lines Latches CE+I Properties
mpeg 1215 599 234 2
SDLX 898 41 40 1
Miim 841 83 173 1
ethernet (enet) 610 91 156 2
itc99-b12 (b12) 558 151 723 1
usb-phy (uphy) 1054 44 25 1
USB 2.0 (USB) 4000 545 1686 3
Ethernet MAC (ETH) 5000 359 2363 3

Table 5.2: Benchmark characteristics

contain the results of using syntactic cone clustering in the CEGAR loop. The per-

formance of the CEGAR loop when using clustering for lazy abstraction is sum-

marized in the columns labeled with “Lazy”. The “Semantic” column presents

the results of using semantic predicate clustering (Section 5.5.1).

For each predicate clustering technique, the “Total”, “Abs”, “MC”, and “Ref”

columns contain the total verification time, followed by the time taken by abstrac-

tion, model checking, and refinement including simulation. The “Preds” column

contains two numbers separated by a slash: 1) The total number of predicates in

the last iteration of the CEGAR loop. This includes only the current-state pred-

icates. 2) The maximum number of predicates present in any predicate cluster

generated by the predicate clustering technique. The number of refinement iter-

ations is reported in the “I” column. The “Res” column contains T (true) if the

property holds, else it contains F (false), followed by the length of the counterex-

ample. In these benchmarks (expect USB1, ETH0) most of the predicates are

discovered automatically during refinement phase. Below, we compare the three

instantiations of the CEGAR loop, which are “Cone”, “Lazy”, and “Semantic”.
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“Cone” versus “Lazy”: The “Lazy” technique is able to handle all bench-

marks within the timeout, and thus, it is more robust than the “Cone” technique

(which timeouts on five problems). When using the “Cone” technique, the SAT-

based abstraction becomes the bottleneck. Model checking of abstract models

also becomes expensive (see Miim row). This happens because the abstract mod-

els created in the “Cone” technique are more detailed and thus harder. However,

the properties can usually be checked using coarse (less precise) abstractions cre-

ated by the “Lazy” technique.

“Semantic” versus “Lazy”: In the “Semantic” technique (Section 5.5.1), new

predicate clusters are generated as follows: When a spurious transition is found,

we identify a set of predicates responsible for spurious behavior. These predicates

are treated as a new predicate cluster. In our experiments this cluster is used during

abstraction computation only if it has≤ 6 predicates. In addition, we use the same

predicate clusters as for the “Lazy” technique.

The “Semantic” technique consistently requires fewer refinement iterations

than the “Lazy” technique. This shows that computing all possible abstract tran-

sitions for the predicates responsible for a spurious transition also rules out other

spurious transitions. The runtime of both techniques is comparable.

The abstraction computation or abstraction model checking can become a bot-

tleneck when using the “Cone” technique, while a large number of refinement

iterations can hurt the performance when using the “Lazy” technique. The “Se-

mantic” technique tries to balance the bottlenecks of both “Cone” and “Lazy”

techniques, and thus, seems to be the most scalable.
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5.7 Chapter Summary

We apply the idea of predicate abstraction from software verification to verify

hardware designs at a higher level of abstraction. We show how to reduce the

abstraction computation overhead in presence of a large number of predicates.

This is done by dividing the set of predicates into clusters of related predicates

and the abstraction is computed separately for each cluster. In lazy abstraction the

expensive task of program abstraction is deferred until a spurious counterexample

is found. We show the benefit of lazy abstraction in the context of hardware

verification.

We use unsatisfiable cores in order to eliminate multiple spurious transitions.

The spurious trace may also be caused by insufficient predicates. We use weakest

preconditions to compute new predicates. Our experimental results show that this

technique is effective in discovering new word-level predicates for refinement.
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Bench- Cone Lazy
mark Time Abs MC Ref Preds I Time Abs MC Ref Preds I Res

mpeg1 44 25 1 18 31/33 7 41 3 1 37 31/22 24 T
mpeg2 51 26 1 23 31/32 9 47 4 1 43 30/22 26 T
SDLX 8 4 1 2 32/13 23 14 1 5 8 32/6 83 T
Miim 170 49 119 2 23/19 19 8 1 2 6 23/4 55 T
enet1 - - - - - - 45 2 20 22 48/4 129 F(6)
enet2 38 6 5 27 37/11 36 69 2 20 47 37/3 117 T
b12 310 181 69 57 50/24 29 132 3 24 103 38/8 148 F(14)
uphy 13 1 3 8 42/18 29 24 0 10 13 42/7 100 F(36)
USB1 12 1 0 0 17/17 0 42 1 2 29 17/8 62 T
USB2 - - - - - - 599 47 147 386 116/15 168 F(14)
USB3 - - - - - - 446 46 73 317 114/15 143 T
ETH0 49 15 4 19 21/11 31 44 2 3 30 21/0 55 T
ETH1 - - - - - - 127 8 8 102 93/0 51 T
ETH2 - - - - - - 161 8 16 127 94/0 111 T

Bench- Semantic
mark Time Abs MC Ref Preds I
mpeg1 46 10 1 35 30/22 22
mpeg2 54 11 1 43 31/22 24
SDLX 13 3 3 6 32/6 64
Miim 8 2 1 4 23/6 40
enet1 45 6 17 21 48/6 121
enet2 66 6 19 41 37/6 99
b12 131 17 13 98 48/8 94
uphy 23 1 10 11 42/7 87
USB1 51 19 1 20 17/8 40
USB2 547 109 87 333 116/15 139
USB3 459 97 70 282 114/15 120
ETH0 57 14 3 30 21/6 53
ETH1 177 48 13 107 93/6 54
ETH2 172 48 14 100 94/6 95

Table 5.3: Comparing three CEGAR loops each employing a different predicate
clustering method. All times are reported in seconds (rounded to nearest integer).
A dash “-” indicates a timeout of 2 hours
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Chapter 6

Interpolation for Subsets of Integer

Linear Arithmetic

The use of Craig interpolants has enabled the development of powerful hardware

and software model checking techniques [112, 89, 99]. Efficient algorithms are

known for computing interpolants in rational and real linear arithmetic. In this

chapter we present efficient interpolation algorithms for subsets of integer linear

arithmetic or LA(Z).

Informally, a linear equation where all variables are integer variables is said

to be a linear diophantine equation (LDE). A linear modular equation (LME) or

a linear congruence over integer variables is a type of linear equation that ex-

presses divisibility relationships. A system of LDEs (LMEs) denotes a conjunc-

tion of LDEs (LMEs). Both LDEs and LMEs arise naturally in program verifica-

tion when modeling assignments and conditional statements as logical formulas.
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These subsets of LA(Z) are also known to be tractable, that is, polynomial time

algorithms are known for deciding systems of LDEs and LMEs. We study the

interpolation problem for LDEs and LMEs. Our contributions are summarized

below.

6.1 Contributions

Given formulas F,G such that F ∧G is unsatisfiable. An interpolant for the pair

(F,G) is a formula I(F,G) with the following properties: (i) F implies I(F,G), (ii)

I(F,G)∧G is unsatisfiable, and (iii) I(F,G) refers only to the common variables

of F and G. This thesis presents the following new results.

• Let F,G denote systems of LDEs. We show that I(F,G) can be obtained

in polynomial time by using a proof of unsatisfiability of F ∧G. The inter-

polant can be either a LDE or a LME. This is because in some cases there is

no I(F,G) that is a LDE. In these cases, however, there is always an I(F,G)

in the form of a LME. (Section 6.4)

• Let F,G denote systems of LMEs. We obtain I(F,G) in polynomial time by

using a proof of unsatisfiability of F ∧G. We can ensure that I(F,G) is a

LME. (Section 6.5)

• Let S denote an unsatisfiable system of LDEs. The proof of unsatisfiability

of S can be obtained in polynomial time by using the Hermite Normal Form

of S (represented in matrix form). A system of LMEs R can be reduced to
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an equi-satisfiable system of LDEs R′. The proof of unsatisfiability for R is

easily obtained from the proof of unsatisfiability of R′. (Section 6.6)

• Let S denote a system of LDEs. We show that if S has an integral solution,

then every LDE that is implied by S, can be obtained by a linear combination

of equations in S. We show that S is convex [120], that is, if S implies a

disjunction of LDEs, then it implies one of the equations in the disjunction.

In contrast, conjunctions of atomic formulas in LA(Z) are not convex due

to inequalities [120]. These results help in efficiently dealing with linear

diophantine disequations (LDDs). (Section 6.7)

• Let S = S1 ∧ S2, where S1 is a system of LDEs, while S2 is a system of

LDDs. We say that S is a system of LDEs+LDDs. We show that S has

no integral solution if and only if S1∧S2 has no rational solution or S1 has

no integral solution. This gives a polynomial time decision procedure for

checking if S has an integral solution. If S has no integral solution, then the

proof of unsatisfiability of S can be obtained in polynomial time. (Section

6.7)

• Let F,G denote systems of LDEs+LDDs. We show I(F,G) can be obtained

in polynomial time. The interpolant can be an LDE, an LDD, or an LME.

(Section 6.7)

• We show the utility of our interpolation algorithms in counterexample guided

abstraction refinement (CEGAR) based verification [56]. Our interpolation
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algorithm is effective at discovering modular/divisibility predicates, such

as 3x + y + 2z ≡ 1 (mod 4), from spurious counterexamples. This has al-

lowed us to verify programs that cannot be verified by existing hardware

and software model checkers. (Section 6.8)

Polynomial time algorithms are known for solving (deciding) a system of

LDEs [129, 44] and LMEs (by reduction to LDEs) over integers. We do not

give any new algorithms for solving a system of LDEs or LMEs. Instead we fo-

cus on obtaining proofs of unsatisfiability and interpolants for systems of LDEs,

LMEs, and LDEs+LDDs. We only consider conjunctions of LDEs, LMEs, and

LDEs+LDDs. Interpolants for any (unsatisfiable) Boolean combination of LDEs

can also be obtained by calling the interpolation algorithm for conjunctions of

LDEs+LDDs multiple times in a satisfiability modulo theory (SMT) framework

[54]. However, computing interpolants for Boolean combinations of LMEs is dif-

ficult. This is due to linear modular disequations (LMDs). We can show that even

the decision problem for conjunctions of LMDs is NP-hard.

All proofs are present in the appendix D.

6.2 Related Work

It is known that Presburger arithmetic (PA) augmented with divisibility predicates

allows quantifier elimination [125]. Kapur et al. [100] show that a recursively

enumerable theory allows quantifier-free interpolants if and only if it allows quan-

tifier elimination. The systems of LDEs, LMEs, LDEs+LDDs are subsets of PA.
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Thus, the existence of quantifier-free interpolants for these systems follows from

[100]. However, quantifier elimination for PA has an exponential complexity and

does not immediately yield efficient algorithms for computing interpolants. We

give polynomial time algorithms for computing proofs of unsatisfiability and in-

terpolants for systems (conjunctions) of LDEs, LMEs, LDEs+LDDs.

Let S1,S2 denote conjunctions of atomic formulas in LA(Z). Suppose S1∧S2

is unsatisfiable. Pudlak [126] shows how to compute an interpolant for (S1,S2)

by using a cutting-plane (CP) proof of unsatisfiability. The CP proof system is

a sound and complete way of proving unsatisfiability of conjunctions of atomic

formulas in LA(Z). However, a CP proof for a formula can be exponential in the

size of the formula. Pudlak does not provide any guarantee on the size of CP

proofs for a system of LDEs or LMEs. Our results show that polynomially sized

proofs of unsatisfiability and interpolants can be obtained for systems of LDEs,

LMEs and LDEs+LDDs.

McMillan [113] shows how to compute interpolants in the combined theory of

rational linear arithmetic LA(Q) and equality with uninterpreted functions EUF

by using proofs of unsatisfiability. Rybalchenko and Sofronie-Stokkermans [128]

show how to compute interpolants in combined LA(Q), EUF and real linear

arithmetic LA(R) by using linear programming solvers in a black-box fashion.

The key idea in [128] is to use an extension of Farkas lemma [129] to reduce the

interpolation problem to constraint solving in LA(Q) and LA(R). Cimatti et al.

[54] show how to compute interpolants in a satisfiability modulo theory (SMT)

framework for LA(Q), rational difference logic fragment and EUF . By making
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use of state-of-the-art SMT algorithms [74] they obtain significant improvements

over existing interpolation tools for LA(Q) and EUF . Yorsh and Musuvathi

[144] give a Nelson-Oppen [120] style method for generating interpolants in a

combined theory by using the interpolation procedures for individual theories.

Kroening and Weissenbacher [101] show how a bit-level proof can be lifted to a

word-level proof of unsatisfiability (and interpolants) for equality logic.

To the best of our knowledge the work in [113, 144, 128, 101, 54] is not com-

plete for computing interpolants in LA(Z) or its subsets such as LDEs, LMEs,

LDEs+LDDs. That is, the work in [113, 144, 128, 101, 54] cannot compute inter-

polants for formulas that are satisfiable over rationals but unsatisfiable over inte-

gers. Such formulas can arise in both hardware and software verification. We give

sound and complete polynomial time algorithms for computing interpolants for

conjunctions of LDEs, LMEs, LDEs+LDDs. Efficient interpolation algorithms

for LDEs, LMEs, LDEs+LDDs are also crucial in order to develop practical inter-

polating theorem provers for LA(Z) and bit-vector arithmetic [68, 38, 32, 81, 107,

49, 82, 48].

6.3 Notation and Preliminaries

We use capital letters A,B,C,X ,Y,Z, . . . to denote matrices and formulas. A matrix

M is integral (rational) iff all elements of M are integers (rationals). For a matrix

M with m rows and n columns we say that the size of M is m× n. A row vector

is a matrix with a single row. A column vector is a matrix with a single column.
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We sometimes identify a matrix M of size 1× 1 by its only element. If A,B

are matrices, then AB denotes matrix multiplication. We assume that all matrix

operations are well defined. For example, when we write AB without specifying

the sizes of matrices A,B, it is assumed that the number of columns in A equals

the number of rows in B.

For any rational numbers α and β, α|β if and only if, α divides β, that is, if

and only if β = λα for some integer λ. We say that α is equivalent to β modulo

γ written as α ≡ β (mod γ) if and only if γ|(α−β). We say γ is the modulus of

the equation α≡ β (mod γ). We allow α,β,γ to be rational numbers. If α1, . . . ,αn

are rational numbers, not all equal to 0, then the largest rational number γ dividing

each of α1, . . . ,αn exists [129], and is called the greatest common divisor, or gcd

of α1, . . . ,αn denoted by gcd(α1, . . . ,αn). We assume that gcd is always positive.

Basic Properties of Modular Arithmetic: Let a,b,c,d,m be rational numbers.

P1. a≡ a (mod m) (reflexivity).

P2. a≡ b (mod m) implies b≡ a (mod m) (symmetry).

P3. a≡ b (mod m) and b≡ c (mod m) imply a≡ c (mod m) (transitivity).

P4. If a ≡ b (mod m), c ≡ d (mod m), and x,y are integers, then ax + cy ≡

bx+dy (mod m) (integer linear combination).

P5. If c > 0 then a≡ b (mod m) if, and only if, ac≡ bc (mod mc).

P6. If a = b, then a≡ b (mod m) for any m.

Example 27 Observe that x≡ 0 (mod 1) for any integer x. Also observe from P5

(with c = 2) that 1
2x≡ 0 (mod 1) if and only if x≡ 0 (mod 2).
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A linear diophantine equation (LDE) is a linear equation c1x1 + . . .+ cnxn = c0,

where x1, . . . ,xn are integer variables and c0, . . . ,cn are rational numbers. A vari-

able xi is said to occur in the LDE if ci 6= 0. We denote a system of m LDEs in a

matrix form as CX = D, where C denotes an m×n matrix of rationals, X denotes

a column vector of n integer variables and D denotes a column vector of m ratio-

nals. When we write a (single) LDE in the form CX = D, it is implicitly assumed

that the sizes of C,X ,D are of the form 1×n,n×1,1×1, respectively. A variable

is said to occur in a system of LDEs if it occurs in at least one of the LDEs in the

given system of LDEs.

A linear modular equation (LME) has the form c1x1 + . . .+cnxn ≡ c0 (mod l),

where x1, . . . ,xn are integer variables, c0, . . . ,cn are rational numbers, and l is a

rational number. We call l the modulus of the LME. Allowing l to be a rational

number allows for simpler proofs and covers the case when l is an integer. For

brevity, we write a LME t ≡ c (mod l) by t ≡l c. A variable xi is said to occur in

an LME if l does not divide ci.

A system of LDEs (LMEs) denotes conjunctions of LDEs(LMEs). If F,G are

a system of LDEs (LMEs), then F ∧G is also a system of LDEs (LMEs).

6.3.1 Craig Interpolants

Given two logical formulas F and G in a theory T such that F ∧G is unsatisfiable

in T , an interpolant I for the ordered pair (F,G) is a formula such that

(1) F ⇒ I in T

(2) I∧G is unsatisfiable in T
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(3) I refers to only the common variables of A and B.

The interpolant I can contain symbols that are interpreted by T . In this chapter

such symbols will be one of the following: addition (+), equality (=), modular

equality for some rational number m (≡m), disequality (6=), and multiplication by

a rational number (×). The exact set of interpreted symbols in the interpolant

depends on T .

6.4 System of Linear Diophantine Equations (LDEs)

In this section we discuss proofs of unsatisfiability and interpolation algorithm

for LDEs. The following theorem from [129] gives a necessary and sufficient

condition for a system of LDEs to have an integral solution.

Theorem 11 (Corollary 4.1(a) in Schrijver [129]) A system of LDEs CX = D

has no integral solution for X, if and only if there exists a rational row vector R

such that RC is integral and RD is not an integer.

Definition 15 We say a system of LDEs CX = D is unsatisfiable if it has no inte-

gral solution for X. For a system of LDEs CX = D a proof of unsatisfiability is

a rational row vector R such that RC is integral and RD is not an integer.

In section 6.6 we describe how a proof of unsatisfiability R can be obtained in

polynomial time for an unsatisfiable system of LDEs. (We show in the appendix

D.9 that R can be converted to a polynomially sized proof in a cutting-plane proof

system [129, 44].)
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Example 28 Consider the system of LDEs CX = D and a proof of unsatisfiability

R:

CX = D :=


1 1 0

1 −1 0

0 2 2




x

y

z

 =


1

1

3


R = [1

2 ,−1
2 , 1

2 ]

RC = [0,2,1]

RD = 3
2

Example 29 Consider the system of LDEs CX = D and a proof of unsatisfiability

R:

CX = D :=

 1 −2 0

1 0 −2




x

y

z

 =

 0

1


R = [1

2 , 1
2 ]

RC = [1,−1,−1]

RD = 1
2

The above examples will be used as running examples in the chapter.

Definition 16 (Implication) A system of LDEs CX = D implies a (single) LDE

AX = B, if every integral vector X satisfying CX = D also satisfies AX = B.

Similarly, CX = D implies a (single) LME AX ≡m B, if every integral vector

X satisfying CX = D also satisfies AX ≡m B.

Lemma 1 (Linear combination) For every rational row vector U the system of

LDEs CX = D implies the LDE UCX = UD. Note that UCX = UD is simply a

linear combination of the equations in CX = D. The system CX = D also implies

the LME UCX ≡m UD for any rational number m.
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Example 30 The system of LDEs CX = D in Example 29 implies the LDE

[1
2 , 1

2 ]CX = [1
2 , 1

2 ]D, which simplifies to x− y− z = 1
2 . The system CX = D also

implies the LME x− y− z≡m
1
2 for any rational number m.

6.4.1 Computing Interpolants for Systems of LDEs

Let F ∧G denote an unsatisfiable system of LDEs. The following example shows

that an unsatisfiable system of LDEs does not always have an LDE as an inter-

polant.

Example 31 Let F := x− 2y = 0 and G := x− 2z = 1. Intuitively, F expresses

the constraint that x is even and G expresses the constraint that x is odd, thus,

F ∧G is unsatisfiable. We gave a proof of unsatisfiability of F ∧G in Example

29. Observe that the pair (F,G) does not have any quantifier-free interpolant that

is also a LDE. The problem is that the interpolant can only refer to the variable

x. We can prove (using Lemma 6 or see Appendix D.1) that there is no formula I

of the form c1x + c2 = 0, where c1,c2 are rational numbers, such that F ⇒ I and

I∧G is unsatisfiable.

As shown by the above example it is possible that there exists no LDE that is an

interpolant for (F,G). We show that in this case the system (F,G) always has

an LME as an interpolant. In the above example an interpolant will be x ≡2 0.

Intuitively, the interpolant means that x is an even integer.

We now describe the algorithm for obtaining interpolants. Let AX = A′,BX =

B′ be systems of LDEs, where X = [x1, . . . ,xn] is a column vector of n integer vari-
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ables. Suppose the combined system of LDEs AX = A′∧BX = B′ is unsatisfiable.

We want to compute an interpolant for (AX = A′,BX = B′). Let R = [R1,R2] be a

proof of unsatisfiability of AX = A′∧BX = B′ according to definition 15. Then

R1A+R2B is integral and R1A′+R2B′ is not an integer.

Recall that a variable is said to occur in a system of LDEs if it occurs with a

non-zero coefficient in one of the equations in the system of LDEs. Let VAB ⊆ X

denote the set of variables that occur in both AX = A′ and BX = B′, let VA\B ⊆ X

denote the set of variables occurring only in AX = A′ (and not in BX = B′), and

let VB\A ⊆ X denote the set of variables occurring only in BX = B′ (and not in

AX = A′).

We call the LDE R1AX = R1A′ a partial interpolant for (AX = A′,BX = B′).

It is a linear combination of equations in AX = A′. The partial interpolant R1AX =

R1A′ can be written in the following form

∑
xi∈VA\B

aixi + ∑
xi∈VAB

bixi = c (6.1)

where all coefficients ai,bi and c = R1A′ are rational numbers. Observe that

the partial interpolant does not contain any variable that occurs only in BX = B′

(VB\A).

Lemma 2 The coefficient ai of each xi ∈ VA\B in the partial interpolant R1AX =

R1A′ (Equation 6.1) is an integer.
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Lemma 3 The partial interpolant R1AX = R1A′ satisfies the first two conditions

in the definition of an interpolant. That is,

1. AX = A′ implies R1AX = R1A′

2. (R1AX = R1A′)∧BX = B′ is unsatisfiable

If ai = 0 for all xi ∈VA\B (equation 6.1), then the partial interpolant only contains

the variables from VAB. In this case the partial interpolant is an interpolant for

(AX = A′,BX = B′).

The proofs of above lemmas are given in the appendix D.1.

Example 32 Consider the system of LDEs CX = D in Example 28. A proof

of unsatisfiability for this system is R = [1
2 ,−1

2 , 1
2 ]. Let AX = A′ be the first two

equations in CX = D, that is, x+y = 1∧x−y = 1 (in matrix form). Let BX = B′ be

the third equation in CX = D, that is, 2y+2z = 3. Observe that VA\B := {x},VAB :=

{y},VB\A := {z}. In this case R1 = [1
2 ,−1

2 ]. The partial interpolant for the pair

(AX = A′,BX = B′) is y = 0, which is also an interpolant because y ∈VAB.

The following example shows that a partial interpolant need not be an interpolant.

Example 33 Consider the system CX = D in Example 29. A proof of unsatisfia-

bility for this system is R = [1
2 , 1

2 ]. Let AX = A′ be the first equation in CX = D, that

is, x−2y = 0. Let BX = B′ be the second equation in CX = D, that is, x−2z = 1.

Observe that VA\B := {y},VAB := {x},VB\A := {z}. In this case R1 = [1
2 ]. Thus,

the partial interpolant for the pair (AX = A′,BX = B′) is 1
2x− y = 0. Observe that

the partial interpolant is not an interpolant as it contains the variable y, which does
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not occur in VAB. This is not surprising since we have already seen in Example 31

that (x−2y = 0,x−2z = 1) cannot have an interpolant that is a LDE.

We now intuitively describe how to remove variables from the partial interpolant

that are not common to AX = A′ and BX = B′. In example 33 the partial inter-

polant is 1
2x−y = 0, where y /∈VAB. We show how to eliminate y from 1

2x−y = 0

in order to obtain an interpolant. We use modular arithmetic in order to eliminate

y. Informally, the equation 1
2x−y = 0 implies 1

2x−y≡ 0 (mod γ) for any rational

number γ. Let α denote the greatest common divisor of the coefficients of vari-

ables (in 1
2x− y = 0) that do not occur in VAB. In this example α = 1 (gcd of the

coefficient of y). We know 1
2x− y = 0 implies 1

2x− y ≡ 0 (mod 1). Since y is an

integer variable y≡ 0 (mod 1). We can add 1
2x−y≡ 0 (mod 1) and y≡ 0 (mod 1)

to obtain 1
2x≡ 0 (mod 1) (note that y is eliminated). Intuitively, the linear modular

equation 1
2x ≡ 0 (mod 1) is an interpolant for (x− 2y = 0,x− 2z = 1). By using

basic modular arithmetic this interpolant can be written as x≡ 0 (mod 2).

We now formalize the above intuition to address the case when the partial

interpolant contains variables that are not common to AX = A′ and BX = B′.

Theorem 12 Assume that the coefficient ai of at least one xi ∈VA\B in the partial

interpolant (Equation 6.1) is not zero. Let α denote the gcd of {ai|xi ∈VA\B}.

(a) α is an integer and α > 0.

(b) Let β be any integer that divides α. Then the following linear modular equation
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Iβ is an interpolant for (AX = A′,BX = B′).

Iβ := ∑
xi∈VAB

bixi ≡ c (mod β)

Observe that Iβ contains only variables that are common to both AX = A′ and

BX = B′. It is obtained from the partial interpolant by dropping all variables

occurring only in AX = A′ (VA\B) and replacing the linear equality by a modular

equality.

The proof can be found in the appendix D.1.2. In theorem 12, I1 is always

an interpolant for (AX = A′,BX = B′). For α > 1 theorem 12 allows us to obtain

multiple interpolants by choosing different β. For any β that divides α, Iα ⇒ Iβ

and Iβ⇒ I1. Depending upon the application one can use the strongest interpolant

Iα (least satisfying assignments) or the weakest interpolant I1 (most satisfying

assignments). The next example illustrates the use of Theorem 12 in obtaining

multiple interpolants.

Example 34 Consider the system of LDEs CX = D and a proof of unsatisfiability

R:

CX = D :=

 30 4

0 1


 x

y

 =

 2

2


R = [1

5 , 1
5 ]

RC = [6,1]

RD = 4
5

Let AX = A′ be the first equation in CX = D, that is, 30x+4y = 2 (in matrix form).

Let BX = B′ be the second equation in CX = D, that is, y = 2. Observe that VA\B :=

{x},VAB := {y},VB\A := /0. In this case R1 = [1
5 ]. The partial interpolant R1AX =
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R1A′ for the pair (AX = A′,BX = B′) is 6x+ 4
5y = 2

5 . The partial interpolant is not

an interpolant as it contains the variable x, which does not occur in VAB.

Using Theorem 12 we can obtain four interpolants for the pair (AX = A′,BX =

B′):

I1 :=
4
5

y≡1
2
5

I2 :=
4
5

y≡2
2
5

I3 :=
4
5

y≡3
2
5

I6 :=
4
5

y≡6
2
5

I6 implies all other interpolants. That is, I6⇒ I3, I6⇒ I2, I6⇒ I1. I1 is implied by

all other interpolants. That is, I2⇒ I1, I3⇒ I1, I6⇒ I1.

Lemma 3 and Theorem 12 give us a sound and complete algorithm for computing

an interpolant for unsatisfiable systems of LDEs. The pseudocode is given in

Algorithm 6.1.

The interpolant produced by Algorithm 6.1 depends on the proof of unsatisfi-

ability. There is no guarantee that the generated interpolant will be a LDE, even if

there exists an interpolant for (AX = A′,BX = B′) that is a LDE.

6.5 System of Linear Modular Equations (LMEs)

In this section we discuss proofs of unsatisfiability and interpolation algorithm for

LMEs. We first consider a system of LMEs where all equations have the same
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Algorithm 6.1 Interpolation for Linear Diophantine Equations
Input: Systems of LDEs AX = A′ and BX = B′, AX = A′∧BX = B′ is unsatisfi-

able.
Output: Return an interpolant for (AX = A′,BX = B′)

1: [R1,R2]⇐ proof of unsatisfiability of AX = A′∧BX = B′

{R1A+R2B is integral and R1A′+R2B′ is not an integer}
2: PI⇐ R1AX = R1A′ {PI represents partial interpolant}
3: PI can be written as

∑
xi∈VA\B

aixi + ∑
xi∈VAB

bixi = c

{VAB ⊆ X represents variables occurring in both AX = A′,BX = B′, while
VA\B ⊆ X represents variables occurring in only AX = A′}

4: if ai = 0 for all xi ∈VA\B then
5: return PI {Interpolant is a LDE}
6: else
7: α⇐ gcd{ai|xi ∈VA\B} {α is an integer}
8: Let β be any integer that divides α. Let linear modular equation

Iβ := ∑
i∈VAB

bixi ≡β c

9: return Iβ {Interpolant is a LME}
10: end if
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modulus l, where l is a rational number. We denote this system as CX ≡l D,

where C denotes an m×n rational matrix, X denotes a column vector of n integer

variables and D denotes a column vector of m rational numbers. The next theorem

gives a necessary and sufficient condition for CX ≡l D to have an integral solution.

Theorem 13 The system CX ≡l D has no integral solution X if and only if there

exists a rational row vector R such that RC is integral, lR is integral, and RD is

not an integer. Note that lR denotes the row vector obtained by multiplying each

element of R by rational number l. (The size of R is 1×m.)

The proof uses reduction to LDEs. See the appendix D.2.1 for the proof.

Definition 17 We say a system of LMEs CX ≡l D is unsatisfiable if it has no

integral solution X. A proof of unsatisfiability for a system of LMEs CX ≡l D is

a rational row vector R such that RC is integral, lR is integral, and RD is not an

integer.

Example 35 Consider the system of LMEs CX ≡8 D and a proof of unsatisfiabil-

ity R:

CX ≡8 D :=


2 2

2 1

4 0


 x

y

≡8


4

4

4


R = [1

4 ,−1
2 ,−1

8 ]

RC = [−1,0]

lR = [2,−4,−1]

RD = −3
2
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Intuitively, CX ≡8 D is unsatisfiable because we can take an integer linear combi-

nation of the given equations using lR to get a contradiction 0≡8 −12.

Definition 18 (Implication) A system of LMEs CX ≡l D implies a LME AX ≡l B,

if every integral vector X satisfying CX ≡l D also satisfies AX ≡l B.

Lemma 4 For every integral row vector U the system of LMEs CX ≡l D imply

UCX ≡l UD.

6.5.1 Computing Interpolants for Systems of LMEs

Let AX ≡l A′ and BX ≡l B′ be two systems of LMEs such that AX ≡l A′∧BX ≡l B′

is unsatisfiable. We show that (AX ≡l A′,BX ≡l B′) always has an LME as

an interpolant. Let R = [R1,R2] denote a proof of unsatisfiability for the system

AX ≡l A′ ∧BX ≡l B′ such that R1A + R2B is integral, lR = [lR1, lR2] is integral,

and R1A′+R2B′ is not an integer. The following theorem shows that we can take

integer linear combinations of equations in AX ≡l A′ to obtain interpolants.

Theorem 14 We assume l 6= 0. Let S1 denote the set of non-zero coefficients of

xi ∈ VA\B in R1AX. Let S2 denote the set of non-zero elements of row vector lR1.

If S2 = /0, then the interpolant for (AX ≡l A′,BX ≡l B′) is a trivial LME 0 ≡l 0.

Otherwise, let S2 6= /0. Let α denote the gcd of numbers in S1 ∪ S2. (a) α is an

integer and α > 0.

(b) Let β be any integer that divides α. Let U = l
β

R1. Then UAX ≡l UA′ is an

interpolant for (AX ≡l A′,BX ≡l B′).
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The proof is given in the appendix D.2.2.

Example 36 Consider the system of LMEs CX ≡l D in Example 35. Let AX ≡l A′

denote the first two equations in CX ≡l D and BX ≡l B′ denote the last equation

in CX ≡l D. Observe that VA\B := {y},VAB := {x},VB\A := /0. A proof of unsat-

isfiability for CX ≡l D is R = [1
4 ,−1

2 ,−1
8 ]. We have R1 = [1

4 ,−1
2 ], lR1 = [2,−4],

R1AX is −1
2x, S1 = /0, S2 = {2,−4}, α = 2. We can take β = 1 or β = 2 to obtain

two valid interpolants. For β = 1, U = [2,−4] and the interpolant UAX ≡l UA′

is −4x ≡8 −8 (equivalently x ≡2 0). For β = 2, U = [1,−2] and the interpolant

UAX ≡l UA′ is −2x≡8 −4 (equivalently x≡4 2).

6.5.2 Handling LMEs with Different Moduli

Consider a system F of LMEs, where equations in F can have different moduli.

In order to check the satisfiability of F , we obtain another equivalent system of

equations F ′ such that each equation in F ′ has the same modulus. This is done

using a standard trick described in Mathews [109]. Let m1, . . . ,mk represent the

different moduli occurring in equations in F . Let m denote the least common

multiple of m1, . . . ,mk. We multiply each equation t ≡mi c in F by m
mi

to obtain

another equation m
mi

t ≡m
m
mi

c. Let F ′ represent the set of new equations. All

equations in F ′ have same modulus m. Using basic modular arithmetic one can

show that F and F ′ are equivalent. Suppose F is unsatisfiable. Then the inter-

polants for any partition of F can be computed by working with F ′ and using the

techniques described in the previous section. For example, let F represent the
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following system of LMEs x≡2 1∧x+y≡4 2∧2x+y≡8 4. One can work with

F ′ := 4x≡8 4∧2x+2y≡8 4∧2x+ y≡8 4 instead of F .

6.6 Algorithms for Obtaining Proofs of Unsatisfia-

bility

Polynomial time algorithms are known for determining if a system of LDEs CX =

D has an integral solution or not [129]. We review one such algorithm that is based

on the computation of the Hermite normal form (HNF) of the matrix C.

Using standard Gaussian elimination it can be determined if CX = D has a

rational solution or not. If CX = D has no rational solution, then it cannot have

any integral solution. In the discussion below we assume that CX = D has a

rational solution. Without loss of generality we assume that matrix C has full row

rank, that is, all rows of C are linearly independent (linearly dependent equations

can be removed).

The HNF of a m× n matrix C with full row rank is of the form [E 0] where

0 represents an m× (n−m) matrix filled with zeros and E is a square m×m

matrix with the following properties: 1) E is lower triangular 2) E is non-singular

(invertible) 3) all entries in E are non-negative and the maximum entry in each row

lies on the diagonal. The HNF of a matrix can be obtained by three elementary

column operations. 1) Exchanging two columns. 2) Multiplying a column by -1.

3) Adding an integral multiple of one column to another column. Each column

operation can be represented by a unimodular matrix. A unimodular matrix is
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a square matrix with integer entries and determinant +1 or -1. The product of

unimodular matrices is a unimodular matrix. The inverse of a unimodular matrix

is a unimodular matrix. The conversion of C to HNF can be represented as follows

CU = [E 0], where U is a unimodular matrix, the sizes of C,U,E are m×n,n×

n,m×m, respectively and 0 represents an m× (n−m) matrix filled with zeros

(n≥ m because C has full row-rank). The following result shows the use of HNF

in determining the satisfiability of a system of LDEs. Let E−1 denotes the matrix

inverse of E.

Lemma 5 (Corollary 5.3(b) in Schrijver [129]) For C,X ,D,E defined as above,

CX = D has no integral solution if and only if E−1D is not integral.

Example 37 For the system of LDEs CX = D in example 28 we have the follow-

ing:


1 1 0

1 −1 0

0 2 2


︸ ︷︷ ︸

C


1 1 0

0 −1 0

0 1 1


︸ ︷︷ ︸

U

=


1 0 0

1 2 0

0 0 2


︸ ︷︷ ︸

E


1 0 0

−1
2

1
2 0

0 0 1
2


︸ ︷︷ ︸

E−1


1

1

3


︸ ︷︷ ︸

D

=


1

0

3
2


︸ ︷︷ ︸

not integral

Example 38 For the system of LDEs CX = D in example 29 we have the follow-
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ing:

 1 −2 0

1 0 −2


︸ ︷︷ ︸

C


1 2 −2

0 1 −1

0 0 −1


︸ ︷︷ ︸

U

=

 1 0 0

1 2 0


︸ ︷︷ ︸

[E 0]

 1 0

−1
2

1
2


︸ ︷︷ ︸

E−1

 0

1


︸ ︷︷ ︸

D

=

 0

1
2


︸ ︷︷ ︸

not integral

6.6.1 Obtaining a Proof of Unsatisfiability for a System of LDEs

If a system of LDEs CX = D is unsatisfiable, then we want to compute a row

vector R such that RC is integral and RD is not an integer. The following corollary

shows that the proof of unsatisfiability can be obtained by using the HNF of C.

Corollary 14 Given CX = D where C,D are rational matrices, and C has full

row rank. Let [E 0] denote the HNF of C. If CX = D has no integral solution,

then E−1D is not integral. Suppose the ith entry in E−1D is not an integer. Let R′

denote the ith row in E−1. Then (a) R′D is not an integer and (b) R′C is integral.

Thus, R′ serves as the required proof of unsatisfiability of CX = D.

The proof is given in the appendix D.3.

Example 39 In example 37 the third row in E−1D is not an integer. Thus, the

proof of unsatisfiability of CX = D is the third row in E−1 which is [0,0, 1
2 ].

In example 38 the second row in E−1D is not an integer. Thus, the proof of

unsatisfiability of CX = D is the second row in E−1 which is [−1
2 , 1

2 ].

175



Proofs of unsatisfiability for LMEs Let CX ≡l D be a system of LMEs. Each

equation ti≡l di in CX ≡l D can be written as an equi-satisfiable LDE, ti + lvi = di,

where vi is a new integer variable. In this way we can reduce CX ≡l D to an equi-

satisfiable system of LDEs C′Z = D. The proof of unsatisfiability of C′Z = D is

exactly a proof of unsatisfiability of CX ≡l D (see the proof of theorem 13).

Complexity If a system of LDEs or LMEs is unsatisfiable, then we can obtain

a proof of unsatisfiability in polynomial time. This is because HNF computation,

matrix inversion, and matrix multiplication can be done in polynomial time in

the size of input [129, 133]. The interpolation algorithms described in Sections

6.4 and 6.5 are polynomial in the size of the given formulas and the proof of

unsatisfiability.

6.7 Handling Linear Diophantine Equations and Dis-

equations

We show how to compute interpolants in presence of linear diophantine disequa-

tions. A linear diophantine disequation (LDD) is of the form c1x1 + . . .+ cnxn 6=

c0, where c0, . . . ,cn are rational numbers and x1, . . . ,xn are integer variables. A

system of LDEs+LDDs denotes conjunctions of LDEs and LDDs. For example,

x+2y = 1∧x+y 6= 1∧2y+ z 6= 1 with x,y,z as integer variables represents a sys-

tem of LDEs+LDDs. We represent a conjunction of m LDDs as
Vm

i=1CiX 6= Di,

where Ci is a rational row vector and Di is a rational number. The next theorem
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gives a necessary and sufficient condition for a system of LDEs+LDDs to have an

integral solution.

Theorem 15 Let F denote AX = B∧
Vm

i=1CiX 6= Di. The following are equiva-

lent:

1. F has no integral solution

2. F has no rational solution or AX = B has no integral solution.

The proof of (2)⇒ (1) in Theorem 15 is easy. The proof of (1)⇒ (2) is involved

and relies on the following lemmas (full proof is given in the appendix D.6). The

first lemma shows that if a system of LDEs AX = B has an integral solution, then

every LDE that is implied by AX = B, can be obtained by a linear combination of

equations in AX = B.

Lemma 6 A system of LDEs AX = B implies a LDE EX = F if and only if AX = B

is unsatisfiable or there exists a rational vector R such that E = RA and F = RB.

We use the properties of the cutting-plane proof system [129, 44] in order to prove

lemma 6. The proof is given in the appendix D.4. The next lemma shows that if

a system of LDEs implies a disjunction of LDEs, then it implies one of the LDEs

in the disjunction (also called convexity [120]).

Lemma 7 A system of LDEs AX = B implies
Wm

i=1CiX = Di if and only if there

exists 1≤ k ≤ m such that AX = B implies CkX = Dk.

We use a theorem from [129] that gives a parametric description of the integral

solutions to AX = B in order to prove lemma 7. See the appendix D.5 for the
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full proof. Let F denote AX = B∧
Vm

i=1CiX 6= Di. Using Theorem 15 we can

determine whether F has an integral solution in polynomial time. This is be-

cause checking if AX = B has an integral solution can be done in polynomial time

[129, 44]. Checking whether the system F has a rational solution can be done in

polynomial time as well [120].

6.7.1 Interpolants for LDEs+LDDs

We say a system of LDEs+LDDs is unsatisfiable if it has no integral solution.

Consider systems of LDEs+LDDs F := F1∧F2 and G := G1∧G2, where F1,G1

are systems of LDEs and F2,G2 are systems of LDDs. F ∧G represents another

system of LDEs+LDDs. Suppose F∧G is unsatisfiable. The interpolant for (F,G)

can be computed by considering two cases (due to theorem 15):

Case 1: F∧G is unsatisfiable because F1∧F2∧G1∧G2 has no rational solution.

We can compute an interpolant for (F,G) using the techniques described in [113,

128, 54]. The algorithms in [113, 128, 54] can result in interpolants containing

inequalities. We describe an alternative algorithm in the appendix D.7 that always

produces a LDE or a LDD as an interpolant.

Case 2: F ∧G is unsatisfiable because F1∧G1 has no integral solution. In this

case we can compute an interpolant for the pair (F1,G1) using the techniques from

Section 6.4. The interpolant for (F1,G1) will be an interpolant for (F,G). It can

be a LDE or a LME.
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Example Preds/Interpolants VINT2
ex1 y≡2 1 2.72s
ex2 x+ y≡2 0 0.83s
ex4 x+ y+ z≡4 0 0.95s
ex5 x≡4 0,y≡4 0 1.1s
ex6 4x+2y+ z≡8 0 0.93s
ex7 4x−2y+ z≡222 0 0.54s
forb1 x+ y≡3 0 -

Table 6.1: Table showing the predicates needed and time taken in seconds.

6.8 Experimental Results

We implemented the interpolation algorithms for conjunctions of LDEs, LMEs,

LDDs in a tool called INT2 (INTeger INTerpolate). The experiments

are performed on a 1.86 GHz Intel Xeon (R) machine with 4 GB of memory run-

ning Linux. INT2 is designed for computing interpolants for formulas (LDEs,

LMEs, LDEs+LDDs) that are satisfiable over rationals but unsatisfiable over inte-

gers. Currently, there are no other interpolation tools for such formulas.

6.8.1 Use of Interpolants in Verification

We wrote a collection of small C programs each containing a while loop and

an ERROR label. These programs are safe (ERROR is unreachable). The exist-

ing tools based on predicate abstraction and counterexample guided abstraction

refinement (CEGAR) such as BLAST [2, 89], SATABS [16] are not able to ver-

ify these programs. This is because the inductive invariant required for the proof

contains LMEs as predicates, shown in the “Preds/Interpolants” column of Table

179



6.1. These predicates cannot be discovered by the interpolation engine [113, 128]

used in BLAST or by the weakest precondition based procedure used in SATABS.

The interpolation algorithms described in this chapter are able to find the right

predicates by computing the interpolants for spurious program traces. Only one

unwinding of the while loop suffices to find the right predicates in 6 out of 7

cases. In program ex5 multiple unwindings of the while loop produces pred-

icates of the form x = 0,y = 4,x = 4,y = 8, . . .. After a few unwindings these

predicates are generalized to obtain x≡4 0,y≡4 01.

We wrote similar programs in Verilog and tried verifying them with VCEGAR

[23], a CEGAR based model checker for Verilog. VCEGAR fails on these ex-

amples due to its use of weakest preconditions. Next, we externally provided the

interpolants (predicates) found by INT2 to VCEGAR. With the help of these predi-

cates VCEGAR is able to show the unreachability of ERROR labels in all examples

except forb1 (ERROR is reachable in the Verilog version of forb1). The runtimes

are shown in “VINT2” column.

Müller-Olm and Seidl [118] propose an abstraction technique that can infer

linear invariants that are sound with respect to integer arithmetic modulo a power

of 2. Their work provides an alternative way of verifying the programs listed in

Table 6.1.

1The generalization was done manually but can be automated as follows: on seeing a sequence
of predicates t = c1, t = c2, . . . add a predicate t = 0 (mod gcd(c1,c2, . . .)) where t is a term and
c1,c2, . . . are constants.
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6.8.2 Proofs of Unsatisfiability (PoU) Algorithms

We obtained 459 unsatisfiable formulas (system of LDEs) by unwinding the while

loops for C programs mentioned above. The number of LDEs in these formulas

range from 3 to 1500 with 2 to 4 variables per equation. There are two options for

obtaining PoU in INT2.

(a) Using Hermite Normal Form (HNF) (Section 6.6.1). We use PARI/GP [136]

to compute HNF of matrices.

(b) By using a state-of-the-art SMT solver Yices 1.0.11 [24] in a black-box

fashion (along the lines of [128]). Given a system of LDEs AX = B we

encode the constraints that RA is integral and RB is not an integer by means

of mixed integer linear arithmetic constraints (see the appendix D.10). The

SMT solver returns concrete values to elements in R if AX = B is unsatisfi-

able.

The comparison between (a) and (b) is shown in Figure 6.1. There is a timeout of

1000 seconds per problem. The HNF based algorithm is able to solve all problems,

while the black-box usage of Yices cannot solve 102 problems within the timeout.

Thus, the HNF based method is superior over the black-box use of Yices.

We also ran Yices to decide whether AX = B has an integral solution or not.

The system AX = B (X integral) is given to Yices. In this case, Yices is very effi-

cient and reports the satisfiability or unsatisfiability of AX = B quickly. However,

no PoU is provided when AX = B is unsatisfiable. In principle it is possible for
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Figure 6.1: Comparing Hermite Normal Form based algorithm and black-box use
of Yices for getting proofs of unsatisfiability

Yices to provide a PoU when AX = B is unsatisfiable (although this will add some

overhead).

Note that the interpolation algorithms proposed in this chapter are indepen-

dent of the algorithm used to generate the PoU. Any decision procedure that can

produce PoU according to definitions 15, 17 can be used (we are not restricted to

using HNF or Yices).

6.9 Chapter Summary

We presented polynomial time algorithms for computing proofs of unsatisfiability

and interpolants for conjunctions of linear diophantine equations, linear modular

equations and linear diophantine disequations. These interpolation algorithms are
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useful for discovering modular/divisibility predicates from spurious counterexam-

ples in a counterexample guided abstraction refinement framework.
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Chapter 7

Epilogue: Future Work

The domain of hardware and software verification abounds with many challenging

problems. In this dissertation I focused on some of these problems and presented

possible solutions to them. It is now time to look at the possible directions for

future research.

• Proof Generation from Non-Clausal SAT Solvers: Modern SAT solvers

provide a proof of unsatisfiability for formulas that are unsatisfiable. The

proofs of unsatisfiability are very useful in various verification techniques

such as abstraction-refinement, proof-based abstraction, and interpolation.

A promising research direction is to add proof generation capabilities to the

non-clausal SAT solvers discussed in this thesis.

• Non-clausal Learning Schemes: Conflict driven learning is an important

part of modern SAT solvers. The learning schemes used in this thesis are

clausal, that is, the learned facts are clauses. This introduces an asymmetry
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in our SAT algorithms because the original formula is processed in the non-

clausal form, while the learned clauses are processed in the clausal form.

Despite this asymmetry the contribution of the original non-clausal formula

remains significant because most of the conflicts and implications during

BCP occur due to the original formula. This is partly due to the fact that

a significant portion of learned clauses is discarded periodically in order to

save memory and BCP time.

An interesting research direction is to come up with learning schemes that

can learn more complex formulas from conflicts. Such non-clausal learned

formulas can be added to the vpgraph/hpgraph directly. One way to perform

non-clausal learning is to combine learned clauses that share common liter-

als to produce new hpgraph/vpgraph components. An alternative idea is to

modify the DPLL algorithm so that the branching is allowed on φ and ¬φ,

where φ can be a complex formula. The idea of introducing lemmas of the

form φ∨¬φ, where φ can be a complex formula has been used in theorem

proving based on vertical path forms [123].

• Quantified Boolean Formulas (QBF) Solvers: Many practical problems in

verification and planning can be framed as QBF formulas. The Boolean

satisfiability (SAT) problem can be regarded as a restricted form of QBF,

where only existential quantifiers are allowed. Unlike SAT solvers, the

QBF solvers [149] can only handle small instances. Zhang et al. [147] re-

port that the use of both CNF and DNF representations of a given Boolean
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formula is crucial for obtaining efficient QBF solvers. The graphical rep-

resentations hpgraph/vpgraph encode the CNF/DNF representation of NNF

formulas compactly and can lead to efficient QBF solvers. Recent work by

Lonsing and Biere [105] also motivates the use of NNF for QBF solving.

• Word-Level/Satisfiability Modulo Theories (SMT) Solvers: The formulas

arising in various applications are usually a Boolean combination of con-

straints. These constraints can range over theories such as difference logic,

linear arithmetic over reals/integers, uninterpreted functions, and so on. It is

inefficient to encode such problems as bit-level (propositional) formulas. In

order to check the satisfiability of these formulas, SMT (Satisfiability Mod-

ulo Theory) solvers [83, 46, 121, 141, 122, 74] are emerging as a better op-

tion. Most of the existing SMT solvers use a CNF SAT solver for handling

the Boolean structure of a given formula. It will be interesting to explore the

use of non-clausal SAT solvers when reasoning about the Boolean structure

in a SMT solver. See [134] for recent work in this direction. More tighter

integration between various theory solvers and hpgraph/vpgraph represen-

tation is also possible.

• Bit-vector Arithmetic Solvers: Most hardware and software verification tech-

niques generate decision procedure queries in bit-vector arithmetic logic.

The formulas in this logic contain finite precision variables (bit-vectors),

arithmetic operations over bit-vectors, and bit-wise operations (such as con-

catenation, extraction, shifting) over bit-vectors. In bit-blasting a given
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bit-vector arithmetic formula is converted to an equi-satisfiable proposi-

tional logic formula. The propositional logic formula is then checked for

satisfiability using a Boolean satisfiability (SAT) solver. This is the most

commonly used technique for deciding bit-vector arithmetic formulas. This

technique is very successful due to the significant improvements in the ca-

pacity of SAT solvers over the past decade. The main disadvantage with

the bit-blasting approach is that the high-level structure present in a word-

level bit-vector formula gets lost at the propositional level. Reasoning about

the propositional encodings of operators such as multiplication/division is

difficult for propositional SAT solvers. As the datapath (register width)

increases the corresponding SAT problems become harder. Recent work

[49, 107, 82, 48] addresses these limitations by eliminating or reducing the

need for bit-blasting. More research needs to be done in order to handle

non-linear operations such as multiplication/division efficiently. Another

promising direction is to use the non-clausal SAT solvers in a bit-blasting

approach for deciding bit-vector arithmetic formulas.

• Interpolating Theorem Provers: Modern hardware and software verification

techniques expect the decision procedures to provide proofs of unsatisfia-

bility and interpolants. Generating interpolants for integer linear arithmetic

and bit-vector arithmetic is a challenging task. In this thesis we presented

efficient interpolation algorithms for subsets of integer linear arithmetic.

One direction for future research is to use branch-and-cut algorithms for

generating proofs of unsatisfiability and interpolants for full integer linear
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arithmetic. In principle one can also reduce many bit-vector arithmetic for-

mulas to integer linear arithmetic formulas [45]. Thus, an interpolating the-

orem prover for integer linear arithmetic can also be used to obtain inter-

polants for bit-vector arithmetic formulas.

• Combination of Abstraction Techniques: In most predicate abstraction and

CEGAR based tools, spurious behavior in the abstract model is removed by

adding new predicates or making the relationships between existing predi-

cates more precise. Thus, even the information that can be discovered ef-

ficiently using other abstract domains is learned only through multiple re-

finement iterations in form of new predicate relationships. Large number of

predicates pose problem as both the predicate abstraction computation and

the model checking of abstraction is exponential in the number of predi-

cates. This motivates the need for combining various abstraction techniques

[78, 93, 140].

It context of circuits it maybe beneficial to combine predicate abstraction

with memory abstraction techniques [80, 107] and symbolic trajectory eval-

uation [25] in order to handle large memories efficiently. The abstraction

techniques based on uninterpreted functions can help in dealing with large

datapaths [28, 27]. Finally, some combination of bit-level abstraction tech-

niques [102, 142, 53, 115, 86, 113, 87] and word-level abstraction tech-

niques [50, 28, 95, 140, 43] is needed in order to handle industrial circuits.

189



190



Bibliography

[1] AIGER, http://fmv.jku.at/aiger. 4.10, 4.10.1

[2] BLAST 2.4 website. http://mtc.epfl.ch/software-tools/

blast/. 1.2.4, 6.8.1

[3] Cadence smv. http://www.cadence.com/webforms/cbl

software/index.aspx. 5.4.2, 5.6

[4] CMUSAT sat solver description, http://www.cs.cmu.edu/

∼hjain/papers/cmusat-solvers.pdf. 4.10.2

[5] EBMC website, http://www.verify.ethz.ch/ebmc/. 1

[6] Edimacs format. www.satcompetition.org/2005/edimacs.

pdf. 3.8

[7] Hardware model checking competition, http://fmv.jku.at/

hwmcc07/. 4.10.1

[8] Minisat sat solver. http://www.cs.chalmers.se/Cs/

Research/FormalMethods/MiniSat/. 1.1, 1.2.1, 3.8, 4.10.2, 5.6

191

http://fmv.jku.at/aiger
http://mtc.epfl.ch/software-tools/blast/
http://mtc.epfl.ch/software-tools/blast/
http://www.cadence.com/webforms/cbl_software/index.aspx
http://www.cadence.com/webforms/cbl_software/index.aspx
http://www.cs.cmu.edu/~hjain/papers/cmusat-solvers.pdf
http://www.cs.cmu.edu/~hjain/papers/cmusat-solvers.pdf
http://www.verify.ethz.ch/ebmc/
www.satcompetition.org/2005/edimacs.pdf
www.satcompetition.org/2005/edimacs.pdf
http://fmv.jku.at/hwmcc07/
http://fmv.jku.at/hwmcc07/
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/


[9] MiniSAT++ sat solver description, http://www-sr.informatik.

uni-tuebingen.de/sat-race-2008/descriptions/

solver 26.pdf. 4.10.2, 4.10.3

[10] M.N. Velev, http://www.ece.cmu.edu/∼mvelev. 4.10.1

[11] Nusmv model checker. http://nusmv.irst.itc.it/. 5.4.2

[12] Opencores. http://www.opencores.org/. 5.6.1

[13] Picosat sat solver. http://fmv.jku.at/picosat/. 1.1, 4.10.2

[14] Rsat sat solver. http://reasoning.cs.ucla.edu/rsat/. 1.1,

4.10.2

[15] SAT competition 2007, http://www.satcompetition.org/

2007/. 4.10.1

[16] SATABS 1.9 website, http://www.verify.ethz.ch/satabs/.

6.8.1

[17] SatMate website. http://www.cs.cmu.edu/∼modelcheck/

satmate. 3.8

[18] Siege sat solver. http://www.cs.sfu.ca/∼loryan/personal.

1.1, 3.8

[19] SMV2QBF, http://fmv.jku.at/smv2qbf. 4.10.1

192

http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/descriptions/solver_26.pdf
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/descriptions/solver_26.pdf
http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/descriptions/solver_26.pdf
http://www.ece.cmu.edu/~mvelev
http://nusmv.irst.itc.it/
http://www.opencores.org/
http://fmv.jku.at/picosat/
http://reasoning.cs.ucla.edu/rsat/
http://www.satcompetition.org/2007/
http://www.satcompetition.org/2007/
http://www.verify.ethz.ch/satabs/
http://www.cs.cmu.edu/~modelcheck/satmate
http://www.cs.cmu.edu/~modelcheck/satmate
http://www.cs.sfu.ca/~loryan/personal
http://fmv.jku.at/smv2qbf


[20] Sun picojava. http://www.sun.com/processors/

technologies.html. 5.6.1

[21] TPS and ETPS. http://gtps.math.cmu.edu/tps-papers.

html. 3

[22] UCLID verification tool, http://www.cs.cmu.edu/∼uclid/. 3.8,

4.10.1

[23] VCEGAR 1.3 website. http://www.cs.cmu.edu/∼modelcheck/

vcegar/. 1.4, 5.6, 6.8.1

[24] Yices 1.0.11 website. http://yices.csl.sri.com/. 6.8.2, D.10

[25] Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Combining

theorem proving and trajectory evaluation in an industrial environment. In

Design automation conference, pages 538–541, 1998. 7

[26] Parosh Aziz Abdulla, Per Bjesse, and Niklas Eén. Symbolic Reachability

Analysis Based on SAT-Solvers. In TACAS ’00: Proceedings of the 6th

International Conference on Tools and Algorithms for Construction and

Analysis of Systems, pages 411–425, London, UK, 2000. Springer-Verlag.

1.2.1

[27] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Refinement strategies for

verification methods based on datapath abstraction. In Asia South Pacific

design automation conference, pages 19–24, 2006. 1.2.4, 7

193

http://www.sun.com/processors/technologies.html
http://www.sun.com/processors/technologies.html
http://gtps.math.cmu.edu/tps-papers.html
http://gtps.math.cmu.edu/tps-papers.html
http://www.cs.cmu.edu/~uclid/
http://www.cs.cmu.edu/~modelcheck/vcegar/
http://www.cs.cmu.edu/~modelcheck/vcegar/
http://yices.csl.sri.com/


[28] Z. S. Andraus and K. A. Sakallah. Automatic abstraction and verification of

Verilog models. In Proceedings of the 41st Annual Conference on Design

Automation (DAC), pages 218–223. ACM Press, 2004. 1.2.4, 7

[29] Peter B. Andrews. Theorem Proving via General Matings. J. ACM,

28(2):193–214, 1981. 1.1.1, 2, 3

[30] Peter B. Andrews. An Introduction to Mathematical Logic and Type The-

ory: to Truth through Proof. Kluwer Academic Publishers, Dordrecht,

second edition, 2002. 1.1.1, 2, 2.2, 1, 2.2, 2.2
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Appendix A

Improved Construction of

Graphical Representations

In the construction of vpgraph described in chapter 2 new edges are created when

we take conjunction of two formulas. In particular, when we compute vpgraph for

φ1∧ φ2, every leaf in vpgraph of φ1 is connected to every root in vpgraph of φ2.

This leads to |L1| × |R2| new edges, where L1 denotes the set of leafs in φ1 and

R2 denotes the set of roots in φ2. Thus, the construction of vpgraph described in

chapter 2 can take O(k2) time/space in the worst case where k is the size of the

given formula.

Example 40 Consider a CNF formula φ1 = (x1∨ . . .∨xl)∧(y1∨ . . .∨yl). Observe

that size of φ1 is linear in l. The vpgraph of φ1 contains l2 edges of the form (i, j)

where 1≤ i≤ l,1≤ i≤ 2× l. The vpgraph is shown in Fig. A.1(a).
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Figure A.1: Vpgraph for DNF formula (x1∧ . . .∧xl)∨(y1∧ . . .∧yl). (a) Explicitly
representing l2 edges. (b) Implicitly representing l2 edges using a hyperedge from
{1, . . . , l} to {l +1, . . . ,2× l}.

In the following we present a procedure for constructing vpgraph that takes

O(k) time/space in the worst case where k is the size of the given formula. The

basic idea is as follows: instead of explicitly adding |L1| × |R2| edges during a

conjunction, we create one hyperedge (L1,R2). A hyperedge (L,R) implicitly rep-

resents that there is an edge (n,m) from every node n∈ L to every node m∈R. The

representation of a hyperedge takes O(|L|+ |R|) space and it represents |L|× |R|

edges implicitly.

Example 41 Consider a CNF formula φ1 = (x1 ∨ . . .∨ xl)∧ (y1 ∨ . . .∨ yl). The

vpgraph φ1 can be represented in O(l) space by using one hyperedge for the form

(A,B), where A = {1, . . . , l},B = {l + 1, . . . ,2× l},Lit(i) = xi,Lit( j) = y j,1 ≤

i ≤ l, l + 1 ≤ j ≤ 2× l. Representing (A,B) requires O(l) space. It implicitly

represents l2 edges which were created explicitly by the construction in chapter

A. The new vpgraph is shown in Figure A.1(b).
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We formalize the improved vpgraph construction below. As in the chapter 2,

the vpgraph Gv(φ) of a NNF formula φ is defined as a tuple (V,R,L,E,Lit), where

V is the set of nodes, R ⊆ V is a set of root nodes, L ⊆ V is a set of leaf nodes,

Lit(n) denotes the literal associated with node n ∈V . The main change is that the

E ⊆ P (V )×P (V ) is the set of hyperedges.

Given φ, we can construct the improved vpgraph Gv(φ) = (V,R,L,E,Lit) in-

ductively as described in the chapter 2. The only difference is in the case when

we handle conjunction of two sub-formulas.

If φ = φ1∧φ2, then the vpgraph for φ is obtained by concatenating the vpgraph

of φ1 with the vpgraph of φ2. Let Gv(φ1) = (V1,R1,L1,E1,Lit1) and Gv(φ2) =

(V2,R2,L2,E2,Lit2). Then Gv(φ) contains all the nodes and edges in Gv(φ1) and

Gv(φ2). But Gv(φ) has an additional hyperedge from leaves of Gv(φ1) to the roots

of Gv(φ2). The new hyperedge is denoted as (L1,R2) below. The set of roots of

Gv(φ) is R1, while the set of leaves is L2.

Gv(φ) = (V1∪V2,R1,L2,E1∪E2∪{(L1,R2)},Lit1∪Lit2)

The same idea of using hyperedges applies during the construction of hpgraph.

With the use of hyperedges the complexity of obtaining vpgraph/hpgraph is linear

in the size of the given NNF formula.
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Appendix B

Algorithms from Chapter 3

B.1 Algorithm for Detection of Global conflict

We say that a global conflict occurs when an assignment σ falsifies a given formula

φ. In order to detect this conflict we use Corollary 3 (Chapter 3). This requires

checking if there is an rl-path π in hpgraph Gh(φ) = (V ′,R′,L′,E ′,Lit ′) such that σ

falsifies π. We present an O(V ′+E ′) algorithm below. We reduce the problem of

finding an rl-path π in Gh(φ) such that σ falsifies π to a shortest path computation

problem as follows: It is assumed that σ is consistent, that is, it does not contain

opposite literals. For each node n ∈ V ′ we assign a weight w(n) ∈ {0,1,2} to n.

The assignment of weights is done as follows:

217



a c1 2

3 4

5 6

87

(a) (b)

a c1 2

3 4

5 6

87 −a −b −b−a

u v

b d b d

u v

Figure B.1: (a) Vpgraph and (b) Hpgraph for formula (a∨c)∧((b∧u)∨(d∧v))∧
(¬a∨¬b).

w(n) :=


0 : ¬Lit(n) ∈ σ

2 : Lit(n) ∈ σ

1 : otherwise

We will use the hpgraph in Fig. B.1(b) as our running example. If σ = {a,b},

then the weight assigned to various nodes in the hpgraph is as follows: w(1) =

2,w(2) = 1,w(3) = 2,w(4) = 1,w(5) = 1,w(6) = 1,w(7) = 0,w(8) = 0.

Given a path π in hpgraph, we define the length of π to be the sum of weights

of the nodes that lie on π. For each node n in the hpgraph we compute a shortest

path estimate δ(n) which represents the length of shortest path from any root node

to n. We also track the parent par(n) of each node n in the shortest path to n.

For the hpgraph in Fig. B.1(b) and σ = {a,b}, we have δ(1) = 2,δ(2) = 3,δ(3) =

2,δ(4) = 2,δ(5) = 1,δ(6) = 2,δ(7) = 0,δ(8) = 0.
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If there is an rl-path π := 〈n1, . . . ,nk〉 in Gh(φ) such that σ falsifies π, then

δ(nk) = 0. This is because n1 is a root node (by definition of rl-path) and every

node on π has a weight of 0 because σ falsifies each node on π (as σ falsifies π).

Thus, there is a path of length 0 to nk which is the smallest possible length due

to non-negative weights. Observe that nk is a leaf node by definition of a rl-path.

The following claim formalizes the above idea of detecting global conflicts using

the shortest path estimates.

Claim 1 The following statements are equivalent:

1. σ falsifies φ.

2. There is an rl-path π in Gh(φ) such that σ falsifies π.

3. There is a node n ∈ L′ such that δ(n) = 0.

Given a hpgraph and an assignment we compute the shortest path estimates for

each node in the hpgraph. If there is a leaf node n in hpgraph such that δ(n) = 0,

then there is a global conflict. Otherwise, there is no global conflict. For the

hpgraph in Fig. B.1(b) and σ = {a,b}, we have δ(8) = 0 and node 8 is a leaf

node, it follows from the above claim that σ falsifies φ.

Extraction of falsified rl-path: If there is a a leaf node n in hpgraph such that

δ(n) = 0, then the actual rl-path (ending at n) which is falsified by σ can be ob-

tained by examining the parent of each node in the shortest path tree starting from

node n. We assume that parent of a root node is nil node. Then the required rl-

path is obtained by reversing the following sequence 〈n, par(n), par(par(n)), . . . ,nil〉

and removing the nil node.
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For the hpgraph in Fig. B.1(b) and σ = {a,b}, we have δ(8) = 0, par(8) =

7, par(7) = nil. Thus, the rl-path in hpgraph which is falsified by σ is 〈7,8〉.

Obtaining unit literals via hpgraph: If there is no leaf node n in hpgraph such

that δ(n) = 0, then there is no global conflict. In this case the set of implied

assignments under σ can be obtained by applying Corollary 6. More specifically

if there is an rl-path π := 〈n1, . . . ,nk〉 in Gh(φ) such that σ falsifies all but one

node (say ni,1≤ i≤ k) on π and Lit(ni) is not yet assigned by σ, then δ(nk) = 1.

This is because n1 is a root node (by definition of rl-path) and every node on π

different from ni has a weight of 0 and ni has a weight of 1 as Lit(ni) has not set

been assigned by σ. Thus, there is a path of length 1 to nk which is the smallest

possible length given that there is no global conflict, that is, δ(nk) 6= 0. Observe

that nk is a leaf node by definition of a rl-path. The following claim formalizes the

idea of detecting unit literals using the shortest path estimates.

Claim 2 Assuming σ does not falsify φ, the following statements are equivalent:

1. σ falsifies all but one node (say n) on a rl-path π in Gh(φ) and Lit(n) is not yet

assigned by σ.

2. There is a node n ∈ L′ such that δ(n) = 1.

Using the above claim it is possible to extract various implied literals by exam-

ining leaf nodes whose shortest path estimate is 1 (assuming no global conflict).

If there is a a leaf node n in hpgraph such that δ(n) = 1, then the actual rl-path π

whose all but one node is falsified by current assignment σ can be obtained by ex-

amining the parent of each node in the shortest path tree starting from node n. This
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allows obtaining both the implied literal l and unit-clause (literals corresponding

to nodes on π) which implied l.

Example 42 For the hpgraph in Fig. B.1(b) and σ = {a}. The shortest path es-

timates for various nodes are as follows: δ(1) = 2,δ(2) = 3,δ(3) = 1,δ(4) =

2,δ(5) = 1,δ(6) = 2,δ(7) = 0,δ(8) = 1. Observe that none of the leaf nodes

n ∈ {2,4,6,8} has δ(n) = 0. Thus, there is no global conflict. However, δ(8) = 1

which means that there is an rl-path in hpgraph such that σ falsifies all but one

node of this rl-path (using above claim). In this example, the required rl-path

is 〈7,8〉. Using Corollary 5 Lit(8) = ¬b must be set to true under the current

assignment to prevent a global conflict.

Efficiency issues: Since the hpgraph is a DAG the computation of δ(n) for all n can

be done in linear time. However, in practice the routine for detecting global con-

flicts is called very often, and computing δ(n) for every (un)assignment to a vari-

able is expensive. Thus, we use two optimizations which are crucial for efficiency:

1) incremental shortest path computation: whenever a variable is (un)assigned, in-

stead of computing the shortest path estimate for every node in the hpgraph, we

only examine the nodes whose shortest path estimate can get affected due to this

assignment. 2) by limiting the range of δ(n) to only {0,1,∞}.

B.2 Algorithm for Detection of Local Conflict

A local conflict occurs when every rl-path in Gv(φ) with CRP〈m〉 as prefix con-

tains two nodes which are conflicting and one of the conflicting nodes lies on
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Figure B.2: (a) Vpgraph for formula (a∨ c)∧ ((b∧ u∧ (¬a∨¬b))∨ (d ∧ v)) (b)
assignment of conflict labels when CRP is 〈〉 and m = 1. A colored node n denotes
con f (n) is true. (c) assignment of conflict labels when CRP is 〈1〉 and m = 3. A
local conflict occurs as con f (3) is true.

CRP〈m〉. This conflict can be detected by using a linear time algorithm as de-

scribed below.

Let σ denote the set of literals corresponding to the nodes on CRP〈m〉. That

is, σ = {Lit(n)|n ∈ CRP〈m〉}. In order to detect a local conflict, we compute for

each node n in the vpgraph a flag con f (n). If con f (n) is true for some node n,

then no satisfiable rl-path with CRP〈m〉 as prefix can pass through this node. A

local conflict happens when con f (m) becomes true.

We compute con f (n) for every n by scanning the nodes in Gv(φ) in reverse

topological order (recall that Gv(φ) is a DAG). For each node n we assign con f (n)

as follows:

1. If ¬Lit(n) ∈ σ, then set con f (n) to true.

2. Else if con f (n′) is true for every successor n′ of n, then set con f (n) to true.
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3. Else set con f (n) to false.

Example 43 Consider the vpgraph in Fig. B.2(a). Suppose CRP is 〈〉 and m = 1.

Using the above notation σ = {a}. The assignment of conflict labels sets con f (7)

to true and con f (n) to false for all other n as shown in Fig. B.2(b). Since con f (1)

is false, there is no local conflict when extending CRP by node 1. Now consider

the case when CRP is 〈1〉 and m is node 3. In this case σ = {a,b}. The assignment

of conflict labels sets con f (n) = true for n ∈ {3,5,7,8} to true and con f (n) to

false for all other n as shown in Fig. B.2(c). Since con f (3) is true, there is a local

conflict when extending CRP by node 3.

Efficiency issues: In our implementation we do not carry out the above compu-

tation of scanning the entire vpgraph whenever a variable is (un)assigned. In-

stead, we incrementally update the con f (n) flags by remembering them across

multiple calls to the local conflict detection routine. Furthermore, our algorithm

only looks at the nodes whose con f (n) flag may get affected due to a variable

(un)assignment.
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Appendix C

Proof of Duality Between rl-cuts and

rl-paths

Given two paths π1 := 〈m1, . . . ,mk〉 and π2 := 〈mk+1, . . . ,mt〉, we use π1.π2 to de-

note the path obtained by concatenating π1 with π2, that is, 〈m1, . . . ,mk,mk+1, . . . ,mt〉.

In order to prove theorems 6,7 we make use of the following lemmas.

Lemma 8 Given φ = φ1∨φ2. The following are equivalent:

(a) C is a minimal rl-cut in Gh(φ1) or Gh(φ2)

(b) C is a minimal rl-cut in Gh(φ).

Proof. Let Gh(φ1) = (V1,R1,L1,E1,Lit1) and Gh(φ2) = (V2,R2,L2,E2,Lit2). The

hpgraph of φ is obtained by connecting the leafs in the hpgraph of φ1 with roots

in the hpgraph of φ (see Figure C.1). Formally, Gh(φ) = (V1∪V2,R1,L2,E1∪E2∪

(L1×R2),Lit1∪Lit2).

(a)⇒ (b): We consider two cases:
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L1 L2

C

Gh(φ1)

C

Gh(φ2)

R1 R2

Figure C.1: Hpgraph of φ1∨φ2 is obtained by connecting hpgraph of φ1 with the
hpgraph of φ2.

• C is a minimal rl-cut in Gh(φ1). Every rl-path π in Gh(φ) is of the form

π1.π2, where π1 is a rl-path in Gh(φ1) and π2 is a rl-path in Gh(φ2). Observe

that C will also be a rl-cut for Gh(φ) as every rl-path in Gh(φ) will be dis-

connected by removing nodes from C. Suppose C is not a minimal rl-cut in

Gh(φ), then there must exist C′ ⊂C such that C′ is a minimal rl-cut. But this

means that C′ is also a minimal rl-cut for Gh(φ1) leading to a contradiction.

Thus, C is a minimal rl-cut in Gh(φ).

• C is a minimal rl-cut in Gh(φ2). We can use similar reasoning as above to

prove that C is a minimal rl-cut in Gh(φ).

(b)⇒ (a): We consider three cases.

• C ⊆V1. It is easy to see that C is a minimal rl-cut in Gh(φ1).

• C ⊆V2. It is easy to see that C is a minimal rl-cut in Gh(φ2).

• C =C1∪C2,C1⊆V1,C2⊆V2,C1 6= /0,C2 6= /0. We show that this case cannot

arise by using proof by contradiction. Observe that C1 cannot be a rl-cut in
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Gh(φ1) Gh(φ2)

C2

C1 π2

π1

Figure C.2: Hpgraph for φ1∨φ2.

Gh(φ1) (otherwise C1∪C2 cannot be a minimal rl-cut in Gh(φ)). Similarly,

C2 cannot be a rl-cut in Gh(φ2). Thus, there exists a rl-path π1 in Gh(φ1)

which does not contain any node from C1. Similarly, there exists a rl-path

π2 in Gh(φ2) which does not contain any node from C2. The rl-path π1.π2

belongs to Gh(φ) and does not contain any node from C1 ∪C2 (see Figure

C.2). This means that C1 ∪C2 cannot be a rl-cut for Gh(φ) leading to a

contradiction.

�

Lemma 9 Given φ = φ1 ∧ φ2. Let Gh(φ1) = (V1,R1,L1,E1,Lit1) and Gh(φ2) =

(V2,R2,L2,E2,Lit2). Then Gh(φ) is obtained by taking a union of Gh(φ1) and

Gh(φ2). That is, Gh(φ) = (V1∪V2,R1∪R2,L1∪L2,E1∪E2,Lit1∪Lit2). The fol-

lowing are equivalent:

(a) C1 is a minimal rl-cut in Gh(φ1) and C2 is a minimal rl-cut in Gh(φ2).

(b) C1∪C2 is a minimal rl-cut in Gh(φ), where C1 ⊆V1,C2 ⊆V2.

Proof. (a)⇒ (b): Note that each rl-path in Gh(φ) is a rl-path in either Gh(φ1) or

Gh(φ2). Thus, C1∪C2 is a rl-cut in Gh(φ). It is also easy to see that C1∪C2 is a
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minimal rl-cut in Gh(φ). Otherwise, we can show that either C1 is not a minimal

rl-cut in Gh(φ1) or C2 is not a minimal rl-cut in Gh(φ2).

(b)⇒ (a): It is easy to see that C1 will be a rl-cut in Gh(φ1) and C2 will be a rl-cut

in Gh(φ2). Since C1∪C2 is a minimal rl-cut in Gh(φ) it follows that both C1,C2

are minimal rl-cuts in Gh(φ1), Gh(φ2), respectively. �

Theorem 6. Given hpgraph Gh(φ) and vpgraph Gv(φ) for a formula φ. Let π be

a rl-path in Gv(φ). Then nodes(π) form a minimal rl-cut in Gh(φ).

Proof. We prove this theorem by induction on the structure of φ.

• φ is a literal l: In this case both Gh(φ) and Gv(φ) contain a single node n

with Lit(n) = l. In this case the rl-path in Gv(φ) is simply 〈n〉 and {n} is a

rl-cut for Gh(φ).

• φ = φ1∨φ2. Since Gv(φ) is obtained by taking a union of Gv(φ1) and Gv(φ2)

we have two cases: 1) π is a rl-path in Gv(φ1). By induction hypothesis

nodes(π) form a minimal rl-cut in Gh(φ1). From lemma 8 it follows that

nodes(π) form a minimal cut in Gh(φ). 2) π is a rl-path in Gv(φ2). We can

use similar reasoning as case 1 to conclude that nodes(π) form a minimal

cut in Gh(φ).

• φ = φ1∧φ2. Since Gv(φ) is obtained by connecting leafs in Gv(φ1) with the

roots in Gv(φ2), π = π1.π2 where π1 is a rl-path in Gv(φ1) and π2 is a rl-path

in Gv(φ2). By induction hypothesis nodes(π1) form a minimal rl-cut in in
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Gh(π1) and nodes(π2) form a minimal rl-cut in in Gh(π2). From lemma

9 it follows that nodes(π1)∪ nodes(π2) = nodes(π) form a minimal cut in

Gh(φ).

�

Theorem 7. Given hpgraph Gh(φ) and vpgraph Gv(φ) for a formula φ. Let C

be a minimal rl-cut in Gh(φ). Then there exists a rl-path π in Gv(φ) such that

C = nodes(π).

Proof. We prove this theorem by induction on the structure of φ.

• φ is a literal l: In this case both Gh(φ) and Gv(φ) contain a single node n

with Lit(n) = l. In this case C = {n} and π = 〈n〉.

• φ = φ1∨φ2. From lemma 8 we have two possible cases. 1) C is a minimal

cut in Gh(φ1). By induction hypothesis there exists a rl-path π in Gv(φ1)

such that C = nodes(π). Since Gv(φ) is obtained by taking a union of Gv(φ1)

and Gv(φ2) it follows that π is a rl-path in Gv(φ). 2) C is a minimal cut in

Gh(φ2). Using similar reasoning as case 1 we can argue that there exists a

rl-path π in Gv(φ) such that C = nodes(π).

• φ = φ1∧φ2. From lemma 9 it follows that C = C1∪C2 where C1 is a min-

imal rl-cut in Gh(φ1) and C2 is a minimal rl-cut in Gh(φ2). By induction

hypothesis there exists a rl-path π1 in Gv(φ1) such that C1 = nodes(π1) and
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there exists a rl-path π2 in Gv(φ2) such that C2 = nodes(π2). But π = π1.π2

is a rl-path in Gv(φ) and C = C1∪C2 = nodes(π1)∪nodes(π2) = nodes(π).

�
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Appendix D

Proofs from Chapter 6

D.1 Proofs from Section 6.4

Proof of Lemma 1

Proof. UCX = UD is a linear combination of equations in CX = D. Let X0 be an

integral solution to CX = D. It is easy to verify that X0 also satisfies UCX = UD.

Thus, the system of LDEs CX = D implies the LDE UCX = UD for any rational

row vector U .

Since UCX0−UD = 0, any rational number m divides UCX0−UD. It follows

that X0 is also a solution to the LME UCX ≡m UD. Thus, the system of LDEs

CX = D implies the LME UCX ≡m UD for any rational row vector U and rational

number m. �
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Why F ∧G has no LDE as interpolant in Example 5.

Proof. Recall, that F is x−2y = 0 and G is x−2z = 1, where x,y,z are integers.

Observe that F has an integral solution, for example, x = 2,y = 1. Thus, by lemma

6 any LDE that is implied by F must be of the form r(x− 2y = 0), where r is a

rational number.

Suppose (F,G) have an LDE I as an interpolant. Since F ⇒ I, I must be of

the form r(x−2y = 0). But I can only contain variable x (common variable of F

and G). This is possible only when r = 0. With r = 0, I reduces to 0 = 0 which is

not unsatisfiable with G. Thus, (F,G) cannot have an LDE as an interpolant. �

Proof of Lemma 2

Proof. By definition of VA\B the coefficient of xi ∈ VA\B is zero in each equa-

tion of BX = B′. Thus, the coefficient of xi ∈ VA\B must be the same in R1AX

and (R1A + R2B)X . Since R1A + R2B is integral it follows that the coefficient of

xi ∈VA\B (ai) in the partial interpolant is an integer. �

D.1.1 Proof of Lemma 3

Lemma 3. The partial interpolant R1AX = R1A′ satisfies the first two conditions

in the definition of an interpolant. That is,

1. AX = A′ implies R1AX = R1A′
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2. (R1AX = R1A′)∧BX = B′ is unsatisfiable

If ai = 0 for all xi ∈VA\B (equation 6.1), then the partial interpolant is also a inter-

polant for (AX = B,A′X = B′). In this case the partial interpolant only contains

the variables from VAB.

Proof. 1. AX = A′ implies R1AX = R1A′. This follows from Lemma 1.

2. Observe that (R1AX = R1A′)∧BX = B′ is a system of LDEs

 R1A

B

X =

 R1A′

B′


We show that the row vector [1,R2] is a proof of unsatisfiability of I∧ (BX = B′).

This requires showing the conditions in the definition of proof of unsatisfiability

are met.

- To show

[1,R2]

 R1A

B

 is integral.

The above product is equal to R1A+R2B which is integral.

- To show

[1,R2]

 R1A′

B′

 is not an integer.
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The above product is equal to R1A′+R2B′ which is not an integer. Thus, [1,R2] is

a proof of unsatisfiability of I∧ (BX = B′). So I∧ (BX = B′) is unsatisfiable. �

D.1.2 Proof of Theorem 12

Recall that rational row vector [R1,R2] is the proof of unsatisfiability of AX =

A′∧BX = B′ (A,B,A′,B′ are rational matrices) such that

R1A+R2B is integral

R1A′+R2B′ is not an integer

We call R1AX = R1A′ the partial interpolant for (AX = A′,BX = B′). It can be

written as follows:

∑
xi∈VA\B

aixi + ∑
xi∈VAB

bixi = c (D.1)

where all coefficients ai,bi and c = R1A′ are rational numbers. The above equation

is the same as Equation 6.1 repeated here for convenience.

Similarly, R2BX = R2B′ can be written as follows:

∑
xi∈VAB

eixi + ∑
xi∈VB\A

fixi = d (D.2)

where all coefficients ei, fi and d = R2B′ are rational numbers. Observe that

R2BX = R2B′ does not contain any variable from VA\B.
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Lemma 10 Using the notation from Equations D.1 and D.2:

(a) For all xi ∈VA\B, ai is an integer.

(b) For all xi ∈VAB, bi + ei is an integer.

(c) For all xi ∈VB\A, fi is an integer.

(d) c+d is not an integer.

Proof. The sum of the left hand sides of Equations D.1 and D.2 is

∑
xi∈VA\B

aixi + ∑
xi∈VAB

(bi + ei)xi + ∑
xi∈VB\A

fixi

which is the same as (R1A+R2B)X . Since R1A+R2B is integral each coefficient

in the above sum must be an integer. This gives us the desired results (a),(b),(c).

Since c+d = R1A′+R2B′ and R1A′+R2B′ is not an integer we get (d). �

Theorem 12. Assume that the coefficient ai of at least one xi ∈VA\B in the partial

interpolant (Equation D.1) is not zero. Let α denote the gcd of {ai|xi ∈VA\B}.

(a) α is an integer and α > 0.

(b) Let β be any integer that divides α. Then the following linear modular equation

Iβ is an interpolant for (AX = A′,BX = B′).

Iβ := ∑
xi∈VAB

bixi ≡ c (mod β)

Observe that Iβ contains only variables that are common to both AX = A′ and

BX = B′. It is obtained from the partial interpolant (Equation D.1) by dropping
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all variables occurring only in AX = A′ (VA\B) and replacing the linear equality

by a modular equality.

Proof. (a) By lemma 10 each ai is an integer. Since α is the gcd of {ai|xi ∈VA\B},

α must be an integer. Also note that α is non-zero since at least one ai is non-zero.

By definition of gcd α is positive.

(b) To show that Iβ is an interpolant for (AX = A′,BX = B′).

1. We need to show that AX = A′ implies Iβ. Recall, that AX = A′ implies the par-

tial interpolant R1AX = R1A′ from lemma 3. We show that R1AX = R1A′ implies

Iβ.

From basic modular arithmetic it follows that s = t implies s ≡ t (mod γ)

for any rational number γ. Thus, the partial interpolant R1AX = R1A′ implies

R1AX ≡β R1A′, where β is any integer that divides α. Consider the equation form

of R1AX ≡β R1A′ (equation D.1):

∑
xi∈VA\B

aixi + ∑
xi∈VAB

bixi ≡β c (D.3)

By definition α divides ai for all xi ∈ VA\B. Since β divides α, it follows that β

divides ai for all xi ∈VA\B. As xi is an integer valued variable, aixi is divisible by

β for all xi ∈VA\B. It follows that

∑
xi∈VA\B

aixi ≡β 0. (D.4)
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Subtract equation D.4 from equation D.3 to obtain

∑
xi∈VAB

bixi ≡β c.

The above equation is Iβ. AX = A′ implies R1AX = R1A′ and R1AX = R1A′ implies

equation D.3. Equation D.4 holds for any integral assignment to all xi ∈VA\B. So

R1AX = R1A′ implies equation D.4. Equations D.3, D.4 imply Iβ. It follows that

AX = A′ implies Iβ.

2. We need to show that Iβ ∧BX = B′ is unsatisfiable. Assume for the sake of

contradiction that Iβ ∧ BX = B′ has an integral satisfying assignment. Let the

satisfying assignment to Iβ ∧ BX = B′ be xi = gi where gi is an integer for all

xi ∈VAB∪VB\A. Since Iβ is satisfied by gi we have

∑
xi∈VAB

bigi ≡β c

Thus, there exists an integer t such that

∑
xi∈VAB

bigi + tβ = c (D.5)

The equation R2BX = R2B′ is implied by BX = B′. Thus, the satisfying assignment

xi = gi for all xi ∈VAB∪VB\A satisfies R2BX = R2B′. By plugging in the values gi
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for xi in Equation D.2 we get:

∑
xi∈VAB

eigi + ∑
xi∈VB\A

figi = d (D.6)

We can sum the equations D.5, D.6 to get

tβ+ ∑
xi∈VAB

(bi + ei)gi + ∑
xi∈VB\A

figi = c+d (D.7)

We know that t,β are integers, gi are integers for all xi ∈ VAB ∪VB\A, and from

Lemma 10 it follows that bi + ei is integer for xi ∈ VAB and fi is integer for

xi ∈ VB\A. It follows that the left hand side of Equation D.7 is an integer. While

the right hand side of Equation D.7 is not an integer by Lemma 10. Thus, the

above equation is the required contradiction. It follows that Iβ∧BX = B′ are un-

satisfiable.

3. By the definition of Iβ it follows that Iβ only contains common variables of

AX = A′ and BX = B′. �
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D.2 Proofs from Section 6.5

D.2.1 Proof of Theorem 13

In order to prove theorem 13 we reduce the given system of LMEs to an equisat-

isfiable system of LDEs. We then use theorem 11 about the satisfiability of LDEs

in order to complete the proof.

Reduction of a System of LMEs to an Equisatisfiable System of

LDEs

Suppose we are given a system CX ≡l D of linear modular equations:



c11 . . . c1n

c21 . . . c2n

. . .

cm1 . . . cmn


︸ ︷︷ ︸

C



x1

.

.

xn


︸ ︷︷ ︸

X

≡l



d1

d2

.

dm


︸ ︷︷ ︸

D

For each equation ∑ j ci jx j ≡l di in CX ≡l D we introduce a new integer variable

vi, to obtain a new equation (without modulo), given as follows:

n

∑
j=1

ci jx j + lvi = di

The above equation is equi-satisfiable to the linear modular equation ∑ j ci jx j≡l di.

Let V denote the vector of variables v1, . . . ,vm. We call the new system of linear
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equations as C′Z = D, where Z denotes the concatenation of variable vectors X

and V . Note that C′Z = D is a system of linear diophantine equations.



c11 . . . c1n l 0 . . . 0

c21 . . . c2n 0 l . . . 0

. . .

cm1 . . . cmn 0 0 . . . l


︸ ︷︷ ︸

C′



x1

.

xn

v1

.

vm


︸ ︷︷ ︸

Z

=



d1

.

.

dm


︸ ︷︷ ︸

D

Lemma 11 The following are equivalent:

(a) the system of linear modular equations CX ≡l D has an integral solution

(b) the system of linear diophantine equations C′Z = D has an integral solution.

Proof. The proof of the above lemma is elementary.

Theorem 13. Let C be a rational matrix, D be a rational column vector, and l be

a rational number. The system CX ≡l D has no integral solution X if and only if

there exists a rational row vector R such that RC is integral, lR is integral, and

RD is not an integer.

From lemma 11 and theorem 11 the following are equivalent:
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(a) linear modular equations CX ≡l D has no integral solution

(b) linear diophantine equations C′Z = D has no integral solution

(c) There exists a row vector R such that RC′ is integral and RD is not an integer.

We show that the property of R in (c) is equivalent to “(d) RC is integral, lR is

integral, and RD is not an integer”.

Let R = [r1, . . . ,rm] then

RC′ =

[
m

∑
i=1

rici1,
m

∑
i=1

rici2, . . . ,
m

∑
i=1

ricin, lr1, . . . , lri, . . . , lrm

]

RC′ = [RC, lR]

Thus, RC′ is integral if and only if RC and lR are integral. This shows (c) is

equivalent to (d). Thus, (a) is equivalent to (d) as required by the proof. �

D.2.2 Proof of Theorem 14

Recall that VA\B denotes the set of variables that occur only in AX ≡l A′ (and not

in BX ≡l B′) and VAB denotes the set of variables that occur in both AX ≡l A′ and

BX ≡l B′. The rational row vector R = [R1,R2] is a proof of unsatisfiability of

AX ≡l A′∧BX ≡l B′ such that

R1A+R2B is integral (D.8)
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lR = [lR1, lR2] is integral (D.9)

R1A′+R2B′ is not an integer. (D.10)

Lemma 12 The coefficient of xi ∈VA\B in R1AX is an integer.

Proof. By definition of VA\B the coefficient of xi ∈ VA\B is zero in R2BX . Thus,

the coefficient of xi ∈ VA\B is the same in R1AX and (R1A + R2B)X . We know

R1A+R2B is integral from equation D.8. So the coefficient of xi ∈VA\B in R1AX

is an integer. �

Theorem 14. We assume l 6= 0. Let S1 denote the set of non-zero coefficients of

xi ∈ VA\B in R1AX. Let S2 denote the set of all non-zero elements of row vector

lR1. If S2 = /0, then the interpolant for (AX ≡l A′,BX ≡l B′) is a trivial LME

0≡l 0. Otherwise, let S2 6= /0. Let α denote the gcd of numbers in S1∪S2. (a) α is

an integer and α > 0. (b) Let β be any integer that divides α. Let U = l
β

R1. Then

UAX ≡l UA′ is an interpolant for (AX ≡l A′,BX ≡l B′).

Proof. S2 = /0: If S2 = /0 it follows that all elements of lR1 are zero. Since l 6= 0,

R1 must be a zero vector. It follows that R1A is a zero vector and R1A′ = 0. Us-

ing equation D.8 and R1A is a zero vector, it follows that R2B is integral. Using

equation D.10 and R1A′ = 0, it follows that R2B′ is not an integer. Thus, BX ≡l B′

is itself unsatisfiable with R2 as the proof of unsatisfiability. In this case we can
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simply take true as the interpolant for the pair (AX ≡l A′,BX ≡l B′). The inter-

polant true can be expressed as a trivial LME 0≡l 0.

S2 6= /0: We first show that α is an integer. Since lR1 is integral (see equation D.9)

all elements of S2 are non-zero integers. All elements of S1 are non-zero integers

due to Lemma 12. Thus, S1∪S2 is a set of non-zero integers. Since S2 6= /0 there

exists at least one element in S1∪S2. α is the gcd of the numbers in S1∪S2. So α

is a non-zero integer and by definition of gcd α is positive.

Let β be any integer that divides α. Note that β 6= 0 as α 6= 0. We define

Iβ := UAX ≡l UA′ where U =
l
β

R1. (D.11)

We need to show that Iβ is an interpolant for the pair (AX ≡l A′,BX ≡l B′).

(a) To show AX ≡l A′ ⇒ Iβ. If we show that U is integral, then by lemma 4 it

follows that AX ≡l A′⇒UAX ≡l UA′ and thus AX ≡l A′⇒ Iβ. We need to show

that U is integral.

Recall from equation D.9 that lR1 is integral. By definition of α it follows that

α divides every element in S2 or the row vector lR1. Since β divides α, β divides

every element in lR1. So lR1
β

= l
β

R1 = U is an integral vector.
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(b) To show Iβ ∧ (BX ≡l B′) is unsatisfiable. Observe that Iβ ∧ (BX ≡l B′) is

another system of LMEs

 UA

B

X ≡l

 UA′

B′


We show that the row vector [β

l ,R2] serves as the proof of unsatisfiability of

Iβ ∧ (BX ≡l B′). We will check the conditions in the definition of proof of un-

satisfiability.

- To show

[
β

l
,R2]

 UA

B

 is integral

The above product is equal to β

l (UA)+ R2B = R1A + R2B. By equation D.8 we

know that R1A+R2B is integral.

- To show that l[β

l ,R2] = [β, lR2] is integral. From equation D.9, lR2 is integral

and β is an integer by definition.

- To show

[
β

l
,R2]

 UA′

B′

 is not an integer

The above product is equal to β

l (UA′)+ R2B′ = R1A′+ R2B′. By equation D.10

we know that R1A′+R2B′ is not an integer.
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We conclude that [β

l ,R2] is a proof of unsatisfiability of Iβ∧ (BX ≡l B′). Thus,

Iβ∧ (BX ≡l B′) is unsatisfiable.

(c) To show that Iβ only contains variables that are common to both (AX ≡l

A′,BX ≡l B′). Since Iβ is obtained by a linear combination of equations from

AX ≡l A′, we can write Iβ as follows:

∑
xi∈VA\B

aixi + ∑
xi∈VAB

bixi︸ ︷︷ ︸
UAX

≡l c︸︷︷︸
UA′

(D.12)

where all coefficients ai,bi and c = UA′ are rational numbers.

We will show that the coefficient ai of each xi ∈ VA\B in equation D.12 is

divisible by l. This will in turn show that

∑
xi∈VA\B

aixi ≡l 0 (D.13)

since xi are integer variables. This will allow Iβ to be written in an equivalent

manner (containing only variables from VAB) as follows:

∑
xi∈VAB

bixi ≡l c.
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We now show that the coefficient ai of each xi ∈ VA\B in equation D.12 is

divisible by l. Recall, that

Iβ := UAX ≡l UA′ where U =
l
β

R1 and β divides α. (D.14)

By definition α divides every element in S1

⇒ α divides the coefficient of each xi ∈VA\B in R1AX

⇒ β divides the coefficient of each xi ∈VA\B in R1AX .

⇒ the coefficient of xi ∈VA\B in 1
β

R1AX is an integer.

⇒ the coefficient of xi ∈VA\B in l× 1
β

R1AX is divisible by l.

⇒ the coefficient of xi ∈VA\B in UAX is divisible by l (as U = l
β

R1)

The coefficient of xi ∈VA\B in UAX is simply ai (equation D.12). So l divides ai.

�

Degenerate case l = 0. Let AX ≡l A′ be a system of LMEs. For l = 0, AX ≡l A′

is equivalent to a system of LDEs AX = A′. In order to see this, consider an LME

∑
n
i=1 aixi ≡0 b. This LME is satisfied if and only if ∑

n
i=1 aixi−b = 0×λ, for some

integer λ. Thus, the LME ∑
n
i=1 aixi ≡0 b is equivalent to the LDE ∑

n
i=1 aixi = b.

Suppose AX ≡0 A′∧BX ≡0 B′ is unsatisfiable. Then the interpolant for (AX ≡0

A′,BX ≡0 B′) can be obtained by computing the interpolant for the pair of LDEs

(AX = A′,BX = B′).
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D.3 Proof of Corollary 14

Corollary 14. Given CX = D where C,D are rational matrices, and C has full

row rank. Let [E 0] denote the Hermite normal form (HNF) of C. If CX = D has

no integral solution, then E−1D is not integral (due to lemma 5). Suppose the ith

entry in E−1D is not an integer. Let R′ denote the ith row in E−1. Then

(a) R′D is not an integer

(b) R′C is integral

Thus, R′ serves as the required proof of unsatisfiability of CX = D.

Proof. (a) Follows from the definition of R′

(b) We know that

CU = [E 0]

where U is a unimodular matrix. Since E is invertible (by definition of HNF) we

can multiply both sides of the above equation by E−1 to obtain

E−1CU = E−1[E 0].

The above equation simplifies to

E−1CU = [I 0]

where I is the identity matrix. Since U is unimodular its inverse (U−1) exists and

it is a unimodular matrix. Multiply both sides of the above equation by U−1 to
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obtain

E−1CUU−1 = [I 0]U−1.

The above equation simplifies to

E−1C = [I 0]U−1.

Since U−1 is unimodular the right hand side of the above equation has integral en-

tries. Thus, the left hand side E−1C is integral. In particular the ith row in E−1C

is integral. Observe that the ith row in E−1C is simply R′C. Thus, R′C is integral.

�

D.4 Proof of Lemma 6

We need to introduce cutting-plane proof system [129, 44] in order to prove this

lemma. Suppose we are given a system of integer linear inequalities AX ≤ B,

where A,B are rational matrices and X is a column vector of integer variables.

The following inference rules allow us to derive new inequalities that are implied

by AX ≤ B.

nonneg lin comb: We can take a non-negative linear combination of inequal-
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ities to derive a new inequality.

AX ≤ B
RAX ≤ RB

R≥ 0

(R is a rational row vector whose each element is non-negative.)

rounding: If we have a linear inequality EX ≤ F such that all coefficients in

E are integers (E ∈ Zn), then we can round down the right hand side F .

EX ≤ F
EX ≤ bFc

E ∈ Zn

(EX ≤ F in the above rule represents a single inequality and not a system of in-

equalities. E is a row vector containing n integers.) We say an application of the

rounding rule is redundant if F = bFc in the above inference rule.

weak rhs: Given F ≤F ′ and a linear inequality EX ≤F we can derive EX ≤F ′

EX ≤ F
EX ≤ F ′

F ≤ F ′

We say an application of the weak rhs rule is redundant if F = F ′ in the above

inference rule.

A cutting plane proof of an inequality EX ≤ F from AX ≤ B is a sequence of
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inequalities E1X ≤ F1, . . . ,ElX ≤ Fl such that

AX ≤ B,E1X ≤ F1, . . . ,Ei−1X ≤ Fi−1

EiX ≤ Fi
nonneg lin comb or rounding

for each i = 1, . . . , l and each step is an application of the nonneg lin comb or

the rounding inference rules (E1, . . . ,El are rational row vectors and F1, . . . ,Fl

are rational numbers). We do not need the weak rhs rule anywhere, except

possibly as the last step in a cutting plane proof.

ElX ≤ Fl

EX ≤ F
E = El,Fl ≤ F ′.

The cutting plane proof system provides a sound and complete inference sys-

tem for integer linear inequalities. This is stated formally in the following theo-

rem.

Theorem 16 (Schrijver [129]) We are given a system of integer linear inequali-

ties AX ≤ B, where A,B are rational matrices and X is a column vector of integer

variables. Let EX ≤ F be an inequality, where E is a rational row vector and F

is a rational number.

1. AX ≤ B has an integral solution and AX ≤ B implies EX ≤ F if and only if

there is a cutting plane proof of EX ≤ F from AX ≤ B.

2. AX ≤ B has no integral solution if and only if then there is a cutting plane proof

of 0≤−1 from AX ≤ B.

We need to prove the following:
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Lemma 6: The following are equivalent:

1. A system of LDEs AX = B implies a LDE EX = F

2. AX = B has no integral solution or there exists a rational row vector R such

that E = RA and F = RB.

Proof. (2)⇒ (1) is straightforward.

(1) ⇒ (2): Given AX = B implies a linear equation EX = F . If AX = B has no

integral solution we are done, that is, (2) holds. Otherwise, assume that AX = B

has an integral solution.

We can write AX = B as an equivalent system of inequalities AX ≤ B∧−AX ≤

−B. The cutting plane (CP) proof rules provide a complete inference system

for integer linear inequalities. We can write the LDE EX = F as EX ≤ F ∧

−EX ≤ −F . The system of linear inequalities AX ≤ B∧−AX ≤ −B implies

EX ≤ F∧−EX ≤−F . Let us consider the CP proof of EX ≤ F from the inequal-

ities AX ≤ B∧−AX ≤ −B. We show that the inference rules used in this proof

will only involve nonneg linear comb rule. Any application of rounding

or weak rhs rule will either be redundant or will lead to a contradiction. The

later case is not possible because AX = B or the equivalent system of inequalities

has an integral solution.

Consider the first application of rounding in the CP proof of EX ≤ F .

EiX ≤ Fi

EiX ≤ bFic
Ei ∈ Zn
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Since all the rules used to derive EiX ≤ Fi are non negative linear combination

rules, we can combine all steps used to derive EiX ≤ Fi by a single application

of the nonneg lin comb rule. That is, we can find rational row vector [R1,R2]

such that  A

−A

X ≤

 B

−B


[R1,R2]

 A

−A

X

︸ ︷︷ ︸
EiX

≤ [R1,R2]

 B

−B


︸ ︷︷ ︸

Fi

[R1,R2]≥ 0

where R1,R2 are non-negative, Ei = R1A + R2(−A) and Fi = R1B + R2(−B). We

can also derive−EiX ≤−Fi by taking a non negative linear combination of AX ≤

B∧−AX ≤−B using [R2,R1]. If Fi = bFic then the application of rounding rule

EiX ≤ Fi

EiX ≤ bFic
Ei ∈ Zn

is redundant. Otherwise, let bFic= k(6= Fi) and

EiX ≤ Fi

EiX ≤ k

Since b−Fic=−k−1. We apply apply rounding to −EiX ≤−Fi to obtain

−EiX ≤−Fi

−EiX ≤−k−1
−Ei ∈ Zn

252



By combining the above two equations (EiX ≤ k and −EiX ≤−k−1) we ob-

tain an equation 0 ≤ −1. But this means that the original system of inequalities

AX ≤ B∧−AX ≤ −B has no integral solution, which contradicts our assump-

tion. Thus, the first application of the rounding rule in the CP proof must be

redundant. Using similar reasoning (induction on the length of the proof) we can

conclude that all applications of rounding in the CP proof must be redundant.

In the CP proof system described above there can be only one application of

weak rhs rule as the last step in a CP proof. We now show that the application

of weak rhs at the end of the CP proof must be redundant.

EX ≤ Fl

EX ≤ F
Fl ≤ F.

If Fl = F , then the application of weak rhs is redundant. Otherwise, suppose

Fl < F . Recall, that −EX ≤ −F is also an implied inequality of the original

system. We can add −EX ≤−F and EX ≤ Fl to obtain 0≤ Fl−F . Since Fl < F

we can divide 0≤Fl−F by positive rational number F−Fl , to obtain the equation

0≤−1. But this is a contradiction.

Thus, the cutting plane proof of EX ≤ F can only involve redundant applica-

tions of rounding or weak rhs rules. These applications of rounding or

weak rhs rules can be removed to obtain a derivation of EX ≤ F that only in-

volves nonneg linear comb rule. All applications of nonneg linear comb

rule in a CP proof can be combined to obtain a vector [S1,S2] such that
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 A

−A

X ≤

 B

−B


[S1,S2]

 A

−A

X

︸ ︷︷ ︸
EX

≤ [S1,S2]

 B

−B


︸ ︷︷ ︸

F

[S1,S2]≥ 0

where S1,S2 are non-negative, E = S1A +S2(−A) and F = S1B +S2(−B). (Note

that a proof of−EX ≤−F can be obtained by taking a non negative linear combi-

nation of AX ≤ B,−AX ≤ −B using [S2,S1].) Thus, there exists a rational vector

R = S1−S2 such that E = RA and F = RB. This shows (2) holds. �

D.5 Proof of Lemma 7

We use the following result in the proof.

Theorem 17 (Schrijver [129]) Let AX = B be a system of LDEs, where A,B are

rational matrices and X is a column vector of n integer variables. If AX = B is

satisfiable (has an integral solution), then we can find in polynomial time integral

vectors X0, . . . ,Xt ∈ Zn such that

{X |AX = B;X integral}= {X0 +λ1X1 + . . .+λtXt |λ1, . . . ,λt ∈ Z}
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with X1, . . . ,Xt linearly independent. (We think of X0,X1, . . . ,Xt ∈ Zn as column

vectors.)

Example 44 Consider a system of LDEs AX = B:

 2 6 3

1 1 0




x

y

z

 =

 4

2



The set S of solutions to AX = B is given as:

S =




2

0

0

+λ1


−3

3

−4


∣∣∣∣∣λ1 ∈ Z

 =




2−3λ1

3λ1

−4λ1


∣∣∣∣∣λ1 ∈ Z


Lemma 7: Let AX = B denote a system of LDEs, where A,B are rational matrices

and X is a column vector of integer variables. Let CiX = Di denote a LDE for

1≤ i≤m (Ci is a rational row vector and Di is a rational number). The following

are equivalent:

1. AX = B implies
Wm

i=1CiX = Di

2. There exists a 1≤ k ≤ m such that AX = B implies CkX = Dk.

Proof. (2)⇒ (1): This direction of the proof is straightforward.

(1) ⇒ (2): If AX = B has no integral solution, then AX = B implies any linear

equation. Thus, (2) holds.
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Assume that AX = B has an integral solution. In this case we can use the

theorem 17 and write the set S of all integral solutions to AX = B as

S := {X0 +λ1X1 + . . .+λtXt |λ1, . . . ,λt ∈ Z}

where X0,X1, . . . ,Xt ∈ Zn (assuming X has size n×1).

By substituting X = X0 + λ1X1 + . . .+ λtXt (with λ1, . . . ,λt as symbolic vari-

ables) in CiX−Di we obtain

Ci(X0 +λ1X1 + . . .+λtXt)−Di.

Since CiX0, . . . ,CiXt are scalars (rational numbers), the difference CiX −Di for

X ∈ S is a linear expression in λ1, . . . ,λt . We denote the difference CiX −Di for

X ∈ S by δi. It follows that

δ1 = u10 +u11λ1 + . . .+u1tλt

. . .

δi = ui0 +ui1λ1 + . . .+uitλt

. . .

δm = um0 +um1λ1 + . . .+umtλt


EQ

where ui j are rational numbers, λ1, . . . ,λt , δ1, . . . ,δm are symbolic variables. An

integral assignment λ1 = β1, . . . ,λt = βt where β1, . . . ,βt ∈ Z gives a solution

Xβ ∈ Zn to AX = B (Xβ ∈ S). If δi evaluates to zero for λ1 = β1, . . . ,λt = βt , then
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Xβ satisfies the LDE CiX = Di. Otherwise, Xβ does not satisfy the LDE CiX = Di.

We consider two cases.

Case 1: If for some 1 ≤ k ≤ m, uk0 = . . . = ukt = 0, then δk = 0. That is, every

X ∈ S satisfies CkX = Dk. Therefore, AX = B implies CkX = Dk. In this case (2)

holds.

Case 2: For all 1 ≤ k ≤ m there is a 0 ≤ j ≤ t such that uk j 6= 0. We show that

case 2 cannot arise using proof by contradiction. We will give an algorithm for

assigning integral values to λ1, . . . ,λt such that δ1 6= 0, . . . ,δm 6= 0. In other words,

we will show that there exists an X ′ ∈ S such that CiX ′ 6= Di for all 1≤ i≤m. This

will mean that AX = B does not imply ∨m
i=1CiX = Di, leading to a contradiction.

It is convenient to think of expressions for δ1, . . . ,δm as a system of equations

in δ1, . . . ,δm,λ1, . . . ,λt . We denote this system of equations as EQ.

We now give an algorithm for assigning integral values to λ1, . . . ,λt such that

δ1 6= 0, . . . ,δm 6= 0. Our algorithm will assign λi before λi+1 for each 1≤ i≤m−1.

Let EQ0⊆EQ denote the equations that do not contain any variables λ1, . . . ,λt .

If δk = uk0 is an equation in EQ0, then we know that uk0 6= 0 (by case 2 as-

sumption). Thus, CkX 6= Dk for any X ∈ S. Alternatively, AX = B cannot imply

CkX = Dk. We can safely ignore the equations in EQ0 for the rest of the proof.

Let EQi⊆EQ for 1≤ i≤ t denote the set of equations which contain only vari-

ables λ1, . . . ,λi such that the coefficient of λi is not zero (coefficients of λ1, . . . ,λi−1

can be zero).
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We now describe an algorithm for assigning integer values to λi for 1 ≤ i ≤

t. The algorithm uses EQi to assign a value to λi. Suppose we have assigned

integral values α1, . . . ,αi−1 to λ1, . . . ,λi−1, respectively. If EQi = /0, then assign

an arbitrary integer value αi to λi. Otherwise, substitute λ1 = α1, . . . ,λi−1 = αi−1

in EQi to obtain a system of equations EQ′i. A representative equation in EQ′i is

δl = vl0 +uliλi uli 6= 0

where vl0 is a rational number and uli is a non-zero rational number by definition

of EQi. We want to assign λi such that δl 6= 0 for every equation δl = vl0 + uliλi

in EQ′i. This can be done by assigning λi any integer value that is different from

−vl0
uli

. Let

λi := αi where αi ∈ Z and αi /∈
{
−vl0

uli
|l ∈ EQ′i

}

where l ∈ EQ′i is a short form of saying that equation δl = vl0 + uliλi is in EQ′i.

We can always find a suitable αi because the set of integers has infinite cardinality

(and we have a finite set of rational numbers/integers that cannot be assigned to

λi).

Let δl = ul0 +∑
i
j=1 ul jλ j denote an equation in EQ1∪ . . .∪EQi. The following

invariant holds after λi is assigned αi: if λ1 = α1, . . . ,λi = αi is substituted in

δl = ul0 +∑
i
j=1 ul jλ j, then δl 6= 0.

Thus, once we have assigned λ1 = α1, . . . ,λt = αt using the above algorithm

we have δ1 6= 0, . . . ,δm 6= 0. Let X ′ ∈ S be an integral solution to AX = B given
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by λ1 = α1, . . . ,λt = αt . Then δi = CiX ′−Di 6= 0 for each 1 ≤ i ≤ m. That is,

AX = B does not imply ∨m
i=1CiX = Di, leading to a contradiction. Thus, Case 2

cannot arise. �

D.6 Proof of Theorem 15

In addition to lemmas 6,7 we will use the following theorem.

Theorem 18 (Schrijver [129]) Let A be a rational matrix, B be a rational column

vector, C be a rational row vector. Assume that the system AX = B has a rational

solution. Then AX = B implies (over rationals) CX = D if and only if there is a

row vector R such that RA = C and RB = D.

Theorem 15. Let F denote AX = B∧
Vm

i=1CiX 6= Di. The following are equiva-

lent:

1. F has no integral solution

2. F has no rational solution or AX = B has no integral solution.

Proof. (2)⇒ (1) is straightforward.

(1)⇒ (2): Given F has no integral solution. If AX = B has no integral solution,

then (2) holds. Otherwise, assume AX = B has an integral solution. Since F has

no integral solution, every integral solution to AX = B must satisfy CiX = Di for
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some 1≤ i≤ m. That is,

AX = B⇒
m_

i=1

CiX = Di

By lemma 7 it follows that there exists a 1≤ k ≤ m such that

AX = B⇒CkX = Dk

By lemma 6 (and our assumption that AX = B has an integral solution) it follows

that there exists a rational row vector R such that

Ck = RA and Dk = RB

Using the vector R and theorem 18 we can conclude that AX = B implies CkX = Dk

over rationals. So

AX = B∧CkX 6= Dk

is unsatisfiable over rationals, or

AX = B∧
m̂

i=1

CiX 6= Di

is unsatisfiable over rationals. Thus, F is unsatisfiable over rationals and (2) holds.

�
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D.7 Interpolants for Linear Diophantine Equations

and Disequations (LDEs+LDDs)

We use the following theorem.

Theorem 19 (Schrijver [129]) Let A be a rational matrix, B be a rational column

vector. The system AX = B has no rational solution if and only if there exists a

rational row vector R such that RA = 0 and RB 6= 0.

Let F ∧G be systems of LDEs+LDDs.

F := AX = B∧
^

i

CiX 6= Di

G := A′X = B′∧
^

j

C′jX 6= D′j

F ∧G represents another system of LDEs+LDDs. Suppose F ∧G is unsatisfiable

(no integral solution). In this case we want to compute an interpolant for the pair

(F,G). We divided this problem into two cases in Section 6.7. We describe Case

1 below.

By case 1 assumption we know that F ∧G has no rational solution. We want

to compute an interpolant for (F,G). The interpolant for (F,G) can be obtained

by using the techniques discussed in [113, 144, 128, 54]. For completeness we

show how to obtain an interpolant for (F,G) by considering three sub-cases.
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Case 1.1: AX = B∧A′X = B′ has no rational solution. Using theorem 19 there

exists a row vector [R1,R2] such that

R1A+R2A′ = 0

R1B+R2B′ 6= 0

In this case an interpolant for the pair (F,G) is the linear equation R1AX = R1B.

One can verify that R1AX = R1B satisfies all the conditions required by the defi-

nition of interpolants.

We describe Case 1.2 and Case 1.3 next. Since F ∧G is unsatisfiable over

rationals we have

AX = B∧A′X = B′⇒ (
_

i

CiX = Di∨
_

j

C′jX = D′j) (D.15)

The above implication holds for any rational X . We know that if a set of

rational linear arithmetic constraints Γ imply a disjunction of linear equationsWm
i=1 Eqi, then for some 1 ≤ k ≤ m, Γ implies Eqk. This is due to convexity of

rational linear arithmetic [120].

Due to convexity AX = B∧A′X = B′ will imply either an equality belonging

to
W

iCiX = Di or an equality belonging to
W

j C
′
jX = D′j in equation D.15. This

gives Case 1.2 and Case 1.3.
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Case 1.2: For some j, AX = B∧A′X = B′⇒C′jX = D′j.

Using theorem 18 there exists a row vector [R1,R2] such that

R1A+R2A′ = C′j

R1B+R2B′ = D′j.

In this case an interpolant for (F,G) is the linear equation R1AX = R1B. One can

verify that R1AX = R1B satisfies all the conditions required by the definition of

interpolants.

Case 1.3: For some i, AX = B∧A′X = B′⇒CiX = Di.

In the above two cases (1.1 and 1.2) the interpolant is a linear equation. In this

case the interpolant will be a linear disequation. Using theorem 18 there exists a

row vector [R1,R2] such that

R1A+R2A′ = Ci

R1B+R2B′ = Di

Let VFG denote the variables that occur in both F and G and let VF\G denote the

variables that occur only in F (and not in G).

Observe that R1AX = R1B can be written as follows:

∑
xi∈VF\G

aixi + ∑
xi∈VFG

bixi = k
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Similarly, CiX = Di can be written as follows:

∑
xi∈VF\G

aixi + ∑
xi∈VFG

cixi = Di

Observe that the variables xi ∈VF\G have same coefficients in R1AX and CiX .

This is because Ci = R1A+R2A′ and the coefficients of xi ∈VF\G in R2A′X is zero.

We can write CiX 6= Di as

∑
xi∈VF\G

aixi + ∑
xi∈VFG

cixi 6= Di

Note that F implies R1AX = R1B and CiX 6= Di. Thus, F implies the disequa-

tion obtained by subtracting R1AX = R1B and CiX 6= Di.

∑
xi∈VFG

bixi− ∑
xi∈VFG

cixi 6= k−Di

The above equation is the required interpolant. It it implied by F and only

contains variables common to F,G. One can show that above disequation is

R2A′X 6= R2B′. Since G implies R2A′X = R2B′ the above equation is unsatisfi-

able with G.

D.8 Handling of Linear Modular Disequations

Lemma 13 The problem of deciding whether a system (conjunction) of linear

modular disequations (LMDs) have an integral solution is NP-hard.
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Proof. We reduce a well known NP-hard problem 3-SAT to a system of LMDs

denoted by L . Let the variables in 3-SAT problem be z1, . . . ,zn. For each variable

zi in the 3-SAT problem we introduce two integer variables xi and x′i in L , where

xi represents the literal zi and x′i represents the literal z̄i.

The modulus of LMDs in L will be four. We first express the constraints that

xi ≡4 1 and x′i ≡4 0 or xi ≡4 0 and x′i ≡4 1. This done by means of the following

LMDs.

L1 :=
n̂

i=1

¬(xi ≡4 x′i) ∧
n̂

i=1

¬(xi ≡4 2)∧
n̂

i=1

¬(xi ≡4 3)∧

n̂

i=1

¬(x′i ≡4 2)∧
n̂

i=1

¬(x′i ≡4 3)

Now consider any clause u∨ v∨w in the given 3-SAT formula, where u,v,w ∈

{z1, . . . ,zn, z̄1, . . . , z̄n}. Let δ(u) map the literal u to the corresponding variable in

L . For each clause u∨ v∨w in the 3-SAT formula, we generate the following

LMD

¬(δ(u)+δ(v)+δ(w)≡4 0).

The LMD above is falsified only when δ(u),δ(v),δ(w) are assigned 0 (mod 4).

For all other assignment of values δ(u),δ(v),δ(w) the LMD is satisfied (captures

the semantics of the clause).

Let the set of clauses in the 3-SAT formula be C.

L2 :=
^

(u∨v∨w)∈C

¬(δ(u)+δ(v)+δ(w)≡4 0)

265



Let L = L1∧L2. Observe that the 3-SAT formula is satisfiable if and only if L is

satisfiable. The reduction from the given 3-SAT formula to L is polynomial time.

This establishes the NP-hardness of checking the satisfiability of conjunctions of

LMDs. �

D.8.1 Proofs of Unsatisfiability and Interpolants for LMDs

We can reduce a system of LMDs or LMEs+LMDs to a conjunction of atomic

formulas in integer linear arithmetic (both problems are NP-hard) and use the

cutting-plane proof system to obtain a proof of unsatisfiability. Pudlak’s [126]

algorithm can be used for obtaining interpolants.

D.9 Obtaining Polynomially Sized Cutting-plane Proofs

for LDEs

Given an unsatisfiable system of LDEs AX = B, a proof of unsatisfiability is a

rational row vector R such that RA is integral, while RB is not an integer. We

know that R can be obtained in polynomial time.

We show that using R we can obtain a polynomially sized cutting plane proof

of unsatisfiability of AX = B. The cutting plane proof system was described in Ap-

pendix D.4. It consists of three inference rules nonneg lin comb, rounding

and weak rhs.
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We first write R = S1−S2, where both S1,S2 are non-negative row vectors. For

example, we can write [1
2 ,−3

4 ] = [1
2 ,0]− [0, 3

4 ].

We write AX = B as AX ≤ B∧−AX ≤−B. The cutting plane proof of unsat-

isfiability consists of following steps.

AX ≤ B
S1AX ≤ S1B

S1 ≥ 0 nonneg lin comb

−AX ≤−B
−S2AX ≤−S2B

S2 ≥ 0 nonneg lin comb

S1AX ≤ S1B −S2AX ≤−S2B
[S1−S2]AX ≤ [S1−S2]B

nonneg lin comb

Since R = [S1−S2] we can write the above step as

S1AX ≤ S1B −S2AX ≤−S2B
RAX ≤ RB

nonneg lin comb

Multiplying AX ≤ B by S2 and −AX ≤−B by S1 we can derive

S2AX ≤ S2B −S1AX ≤−S1B
−RAX ≤−RB

nonneg lin comb

By definition of R we know that RB is not an integer. Let bRBc = k. Then

b−RBc = −k− 1. Since RA is integral we can apply rounding to RAX ≤ RB

and −RAX ≤−RB.

RAX ≤ RB
RAX ≤ k

rounding
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−RAX ≤−RB
RAX ≤−k−1

rounding

The contradiction is obtained by summing RAX ≤ k and RAX ≤−k−1.

RAX ≤ RB −RAX ≤−RB
0≤−1

nonneg lin comb

Since R is polynomially sized the cutting plane proof is also polynomially sized.

D.10 Using SMT Solvers for Obtaining a Proof of

Unsatisfiability for LDEs/LMEs

We can determine if a system of LDEs CX = D is unsatisfiable and obtain a proof

of unsatisfiability (if applicable) by using decision procedures for (mixed) integer

linear arithmetic in a black-box fashion. For example, one can use modern SMT

solvers such as Yices [24] to obtain proofs of unsatisfiability. The idea is to en-

code the existence of a rational row vector R such that RC is integral and RD is

not an integer in form of a formula that can be checked using existing decision

procedures. This is motivated by the idea proposed in [128] for real and rational

linear arithmetic. We illustrate the technique by means of an example.
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Example 45 Consider the system of LDEs CX = D:

 1 −2 0

1 0 −2




x

y

z

 =

 0

1



We use two rational variables r1,r2 to denote the proof of unsatisfiability R =

[r1,r2]. We use three integer variables v1,v2,v3 to express the constraint that RC

is integral. We introduce another integer variable v4 to express the constraint that

RD = r2 is not an integer.

P := (v1 = r1 + r2)∧ (v2 =−2r1)∧ (v3 =−2r2)∧ (v4 < r2)∧ (r2 < v4 +1)

If the decision procedure for integer linear arithmetic determines that P is satisfi-

able, then we get a proof of unsatisfiability for CX = D by looking at the assign-

ments to r1,r2. If P is unsatisfiable, it means that the system CX = D is satisfiable.

We formalize the idea below. Suppose the sizes of C,X ,D in the system of

LDEs CX = D are m×n,n×1,m×1, respectively. The formula P contains:

- m rational variables r1, . . . ,rm such that R = [r1, . . . ,rm]

- n integer variables v1, . . . ,vn to express that each element of RC is integral.

- One integer variable vn+1 to express the constraint RD is not an integer by using

two strict inequalities
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Let (RC)i denote the ith element in the row vector RC. Then we have

P :=
n̂

i=1

vi = (RC)i ∧ (vn+1 < RD) ∧ (RD < vn+1 +1)

The formula P is given to a SMT solver. If P is satisfiable, we get the required

proof of unsatisfiability R. Otherwise, we know that the given system of LDEs is

satisfiable.

The proof of unsatisfiability for a system of linear modular equations can be

computed in a similar manner as well (using definition 17).

As shown by experimental results in Section 6.8, the black-box use of SMT

solver Yices to obtain proofs of unsatisfiability is not efficient (as compared to the

use of HNF). The main reason for this seems to be the structure of P. Even though

the encoding used to obtain P is natural, it is difficult for algorithms used in Yices

to decide P.
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