Trace-based Program Analysis

Christopher Colby! Peter Lee
July 1995
CMU-CS-95-179

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Also published as Fox Memorandum CMU-CS-FOX-95-04

Abstract

We present trace-based program analysis, a semantics-based framework for statically analyzing and
transforming programs with loops, assignments, and nested record structures. Trace-based analy-
ses are based on transfer transition systems, which define the small-step operational semantics of
programming languages. Intuitively, transfer transition systems provide direct support for reason-
ing about the possible execution traces of a program, instead of just individual program states.
The traces in a transfer transition system have many uses, including the finite representation of all
possible terminating executions of a loop. Also, traces may be systematically “pieced together”,
thus allowing the composition of separately analyzed program fragments. The utility of the ap-
proach is demonstrated by showing three applications: software pipelining, loop-invariant removal,
and data alias detection.

tWork performed while on leave at Ecole Polytechnique, France.

This research was sponsored in part by the Advanced Research Projects Agency CSTO under the title “The Fox
Project: Advanced Languages for Systems Software”, ARPA Order No. C533, issued by ESC/ENS under Contract
No. F19628-95-C-0050, and in part by the National Science Foundation under PYI grant #CCR-9057567.

Keywords: semantics-based program analysis, abstract interpretation, operational semantics,
program transformation

1 Introduction

In this paper, we consider semantics-based program analysis for the purposes of static optimization,
transformation, program verification, and debugging. We have two goals. First, to capture precise
information about the run-time behavior of programs that contain loops, either from the use of
looping constructs such as goto or from recursive functions. And second, to compose the analyses
of separate code fragments to achieve the analysis of a larger piece of code. We propose a general
framework of trace-based analysis to address these problems, and we present a worked case study
along with some sample applications that illustrate the solution of our goals.

Loops have long been the bane of semantics-based program analysis. In a programming lan-
guage with a looping construct, the semantic meaning is usually modeled by infinite structures.
For example, denotational semantics [28] uses limits of infinite chains to model the meaning of re-
cursive functions. In standard formulations of structural operational semantics [26] and small-step
operational semantics [15], the behavior of loops is modeled by unbounded sequences of transitions.
An analysis based on any of these semantic models is thus forced to develop some method for rea-
soning finitely about these (potentially) infinite objects. Usually, some form of approzimation or
abstraction is used and, as we shall argue in the next section, the typical methods often incur a sub-
stantial loss of precision. Determining precise information about loops, however, is often of critical
importance for static optimization of code. One of the most striking examples is software pipelin-
ing [2, 22], a strategy for statically transforming the structure of a loop in order to take advantage
of the potential instruction-level parallelism both within a single iteration and between adjacent
iterations. Software pipelining algorithms are complex and specialized, but we demonstrate with a
worked-through example that trace-based analysis provides a general semantics-based formulation
for a form of software pipelining. In fact, with nothing more than the alteration of a three very
simple equations, the same technique becomes a strategy for factoring out loop invariants.

Another common difficulty for semantics-based program analyses is that they are rarely com-
positional. A well-known tradeoff between denotational semantics and small-step operational se-
mantics is that denotational models are compositional, but usually abstract away from how the
result of the program was computed, while small-step operational models expose useful details of
the computation process itself, but usually lack the compositionality properties provided by de-
notational models. Some special cases of program analyses, such as strictness analysis [24, 29],
can be formalized quite elegantly and compositionally using a denotational model, and a general
framework for denotational-semantics-based analysis has been developed in [25]. However, many
program analyses are concerned with details of the actual computation process itself and thus must
be based on an operational model, making it difficult to analyze a program compositionally. Again,
this is a serious problem in practice. Consider for example the analysis of data aliases in a language
with assignment. A fragment of code (basic block, procedure, etc.) that performs data structure
manipulation and assignment may have several distinctly different behaviors depending on the data
aliases occurring at the beginning of its execution. Furthermore, each of these behaviors may pro-
duce different aliases when execution leaves that fragment and enters another. For this purpose,
it is important to have a compositional analysis. We give an example of how the same trace-based
analysis that is used for software pipelining and loop optimizations also provides a compositional
alias analysis. In fact, the output of the analysis can uncover surprising possibilities for the behav-
ior of even simple imperative code and has clear applications for debugging purposes and program
verification as well as the traditional uses of alias information in optimizing compilers.

Trace-based analysis is based on a framework for describing the operational semantics of pro-
grams that we call transfer transition systems. This approach to describing the semantics of

programming languages can be derived from, and maintains all the computational detail of, the
original small-step semantics of the language, and yet provides some of the compositionality prop-
erties enjoyed by denotational semantics. The underlying motivation for transfer transition systems
is to aid reasoning about the possible execution traces of the program instead of simply the possible
states at each program point. Intuitively, a trace is a sequence of steps in the small-step operational
semantics of the program. But a single trace in the transfer transition system can represent pre-
cisely a large or even infinite set of traces in the small-step operational semantics, thereby making
it easier to reason about traces in the transfer transition system. In fact, a transfer transition
trace of a loop body can represent all possible terminating executions of the loop, which is ideal
information for reasoning about its behavior. Also, transfer transition traces may be systematically
“pieced together,” thus forming the basis for compositional analyses.

We begin by discussing our original motivations and explain why previous ideas such as “poly-
variant” analyses fall short of solving the problems. Then, we present our trace-based analysis,
starting with an informal explanation designed to provide the right intuitions, followed by a formal
presentation of the analysis framework. As a worked case study, we take a small language with
(parallel) assignment, loops (via goto), and data structures (nested records). Though simple, the
language is expressive enough to serve as a core language for many realistic programming lan-
guages. Finally, we show applications of the trace-based analysis for this language, including a
software pipelining transformation as well as analyses for removal of loop invariants and detection
of aliases.

2 Limitations of State-based Program Analyses

It is perhaps surprising that loops are not handled entirely satisfactorily by current semantics-based
methods for analyzing programs. The basic problem can be illustrated informally by some simple
examples. Consider first the following program fragment, written in a kind of structured assembly

language:

b < TRUE
Lx : gotoLg

(1) b < FALSE
Ly : gotolg

Lo : if b then ... endif

Suppose we would like to predict the set of possible values that the variable b can have at each
point in the program. In the customary formulation, a program analyzer would produce a function
S that maps program points to the properties of interest!:

S € Label — Property

! Although this is a rather naive formulation, an examination of the current literature on semantics-based program
analysis reveals that a large number (perhaps the majority) of existing analyses take essentially this form.

Here, Label is the set of program labels and Property is the set of properties. Often, a considerable
amount of effort goes into the design of the property set, with the requirement that its elements
have finite descriptions so that the analyzer can terminate. Examples of the kinds of properties
that are useful in practice include:

e The pairs of data objects that may or must be aliases at a given label [3, 14].
o Grammars giving all of the possible shapes of structured data at a given label [12, 20].

e Linear relationships amongst integer-valued variables (e.g., ¢ = y—z) at a given label [16, 21].

Typically, the construction of an analyzer begins with a so-called “concrete” or “collecting”
semantics [11, 18] in which programs are assigned meanings of the form

C € Label — 8(State)

where £(State) is the powerset of program states. Then, from the collecting semantics, a program
analyzer (that is, an algorithm for computing S from the program text) is derived in such a way
that each element of Property corresponds to a set of states, in particular, the set of states for
which the property is true. Because of this relationship between properties and sets of states, we
refer to program analyzers like S as state-based analyzers and their properties as state properties.
Notationally, we will usually refer to the set of state properties as Property[State] and thus write
the functionality of S as
S € Label — Property|[State]

In order to prove that an analysis is sound, it must be shown that, for any program, C and
S will obey a certain relationship. Also, the analysis (i.e., the computation of 8) and the &
function itself must be computable and, for practical reasons, efficient. Abstract interpretation [8]
is a comprehensive mathematical theory for devising and reasoning about such relationships and
decidability problems, and in addition it provides a semantics-based framework for devising the

analysis algorithms.

Returning now to Program 1, it is well known that with this simple formulation the two possible
values of b at label Lo are unavoidably “folded” together, hence resulting in a loss of information.
In particular, we lose the fact that the value of b at label Lo is TRUE if the flow of control entered
L¢ from Ly, and FALSE if from Ly. In programs with functions, a similar loss of information can
occur when a function is called from several different points in the program. This is particularly
problematic for recursive functions.

A similar situation arises with loops. For example, consider the following (rather contrived)
program:

Li:n+1
(2) Ly:n+n+1

L3 : goto Lo
Semantically, we can view the program execution as stepping through a transition system, with
each step moving from some label-state pair, {: s, to a new label-state pair, I’: s'. (We will formalize
this notion of language semantics in the next section.) We use the following notation for such
transitions:

lis— 16

Then, the execution of the program goes as follows:

L1:81——>Lo:8g—> Lg:S3—> Lg:S4 —> Lg:Ssg —> -

3

This program has initial state L;:s; and immediately steps into a loop that alternates between
labels Ly and Lg. Note that the states are continually changing throughout the loop.

The state properties are essentially the set of objects for which the property is true. Any
state-based analysis will thus determine properties

S(L1) 2 {s1}
S(Lz) 2 {32, S4, .. }
S(L3) 2 {s3,85,---}

Of course, the practical question is what, exactly, are S(L1), §(L2), and §(L3). The smaller they
are, the more precise the properties, but in general the occurrences of O cannot be replaced with
— (up to isomorphism) because those exact sets may not be computable.?

In order to address this problem, there has been much recent work on refining the notion of
“program point” to something more descriptive of a run-time point of execution than just the
simple textual label at that point. The basic idea is to determine properties of the form

S € Point — Property|State]

where
Point = Label x Occurrence

In this improved formulation, we are given the possibility of partitioning the states that occur
at a given label into a finite number of occurrences and giving each such class its own property.
In the literature, this idea is sometimes informally referred to as polyvariance [7, 23] and is also
closely related to the notion of cloning in dataflow analysis. A common form of polyvariance
involves partitioning certain blocks of code, such as function bodies or loop bodies, by the label
that preceded their entry. _

For Program 1, we might take Occurrence = Label and use occurrences to keep track of the
label that preceded the current one. This would allow the analysis to produce a result that maps
(Lg,Lx) to a property that indicates that b must be TRUE, and (L¢,Ly) to a property indicating
that & must be FALSE.

For Program 2, we might use Occurrence = {EVEN, ODD} to differentiate between the odd and
even iterations of a loop. This would allow an analysis to infer that the value of the variable n in
the program is odd during odd iterations of the loop, and even during even iterations.

Such “polyvariant” analyses can be quite effective, especially for analyzing programs with non-
recursive functions. In these cases, functions might be called from several syntactic points in the
program, each of which might cause very different run-time behaviors worth describing separately.
Also appealing is the fact that it is straightforward to extend this idea and keep track of, say, the
last two calling points instead of just the last one, or in general the last k£ for some finite & [19, 27].
Indeed, there is quite a bit of room for creativity here, as the only real requirement on the set Point
is that its elements must have finite descriptions. Some recent proposals have used fairly complex
mechanisms such as procedure strings [17).

Unfortunately, the idea of polyvariance, and indeed any formulation of program analysis that
involves only a refinement of the notion of “program point,” is fundamentally limited. Consider

2In general, we may be satisfied with easier questions than membership (i.e., the question of whether a given state
has the property in question or not), but any interesting questions are uncomputable in general.

the following program that uses Euclid’s algorithm to compute the greatest common divisor:

L : if 5 = 0 then Leygt else Ly
(3) Ly:a,b+bamodbd
L3 : if b = 0 then Ly else Ly

Note that we use a parallel assignment operator in order to simplify some of the examples later on
in this paper.

At first glance it seems that we should be able to express the fact that the b of one iteration is
always equal to the a of the next iteration (perhaps using a variation of the even/odd occurrences
from above). This property might enable a compiler optimization that unrolls the loop once
and compiles the second copy with the opposite register order, thereby cutting the number of
assignments in half:

Ly : if b = 0 then Leyi; else Lo
Ly:a+ amodbd
Lg : if a = 0 then Ley; else Ly
Ly: b+ bmoda
Ly : if b = 0 then Leyit else Lo

However, we cannot find a simple or elegant expression of this fact, no matter how precise our
notion of program point, because we need somehow to associate sy with s4, 53 with s5, s4 with s,
ad infinitum, but the set Point of descriptions of program points must be finite. To attempt to
use polyvariance, or any other technique that involves a more precise notion of run-time points, is
extremely difficult (perhaps even impossible) because we need to distinguish among infinite sets of
states with only finite descriptions of program points. Fundamentally, all of the states that occur
at the same label are described by the same property. Thus, refining (or enlarging) the set of
program points does little more than delay the inevitable folding of states.

In fact, this is a problem that comes up in almost any analyzer for a program with loops (or
recursive functions) and is a common source of both complexity and imprecision in semantics-based
program analyzers.

3 Transfer Transition Systems

In order to solve this problem, we abandon the approach of refining the notion of “program point”
and instead refine the notion of “property.” Specifically, we generalize from state properties to

trace properties:
T € Point — Property|Trace]

Traces will be formalized below, so we will begin with an informal explanation. One can think of a
trace as a record of a possible execution history of a program, starting at some label and state. In
constrast to a state-based analysis, which infers properties as sets of states, a trace-based analysis
infers properties as sets of entire evaluation traces. So, for example, for the greatest-common divisor
program of Example 3 we have the following properties:

T(L1) D{L1:51 —> Lo:sp > L3:sg > -}
T(LQ) D {L2282 F>L3:Sg > LoiSqg -0,

Lo:84 +> L3:85 H— Lo:Sg —r ,}
T(Lg) 2 {L3:83 —> Lo:S4+— L3giSs -,
L3:85 +> Lo:Sg + L3:87 — ,}

5

For a label I, the trace property 7 (I) is a superset of the set of traces that can begin at [. Assuming
that states are pair of integers [a, b] giving the values of variables a and b, the variable-swapping
property of the program at label Ly can now be expressed (finitely) as follows:

{L2:[a,b] — L3:[b,a mod b] — Ly:[b,a mod b] | a,b € Z}

In effect, this says that if we are at label Ly, then the next time we reach label Ly the value of a
will be equal to the current value of b. (For the sake of simplicity we have avoided writing out the
full trace property for 7(Lg), which would also specify the behavior of the loop exit.) Note that
this is exactly the information we desire! Furthermore, this property gives us ezact information
about a, rather than an upper approximation of its value, so in effect we have been able to model
the program’s loop by a finite transition sequence, without any loss of information.

As we shall see, this notion of trace properties will allow us to construct very precise analyzers
for programs with loops and complex data structures. To do this, we shall introduce the semantic
framework of transfer transition systems, which in addition to formalizing the notion of execution
traces will allow us to define program transformation rules for complex optimizations such as
software pipelining and classical loop optimizations.

3.1 Notation

We now present a formal framework for trace-based analyses. The following notation is used. If
f is a function, Rng(f) denotes the range (co-domain) of f. If f is partial, Dom(f) denotes the
domain of f. The set of partial functions from A to B is written as A — B. Pairs (i.e., elements of
a set A x B) are written either as (a,b) or, when denoting a configuration of a transition system,

a:b.

3.2 Single-step transition systems

Our framework starts with a small-step operational semantics. In order to have a standard basis
for this, we use transition systems.

Definition 1 A transition system is a pair (Config,d) where Config is the set of configurations
of the system and 6 C Config X Config is the transition relation. We write cdc’ to mean that
(e,d) € 8, and we write ¢16---dcy to mean that c;dciy1 for all 1 < @ < n. We write 6* for the
reflexive transitive closure of 4.

Specifically, we are interested in transition systems of the form (Label x State, —) that satisfy the
following condition:

Condition 1 For all l,I' € Label and s € State, l:s — U':s' and l:s —> I': " implies s' = §".

Note that this condition is much weaker than requiring that the system be deterministic. Any
transition system will satisfy this condition after some simple local transformations at each point
in the system that fails the condition. For example, if{:s — I':s' and [:s — I':s" but s’ # 5", we
can simply create a new label I and change configuration I’:s” to I”:s”. Essentially, Condition 1
states that from a configuration [/:s there can be many possible single steps, but all of the target
configurations must have different labels.

3.3 Transfer functions and transfer transition systems

A transfer function A € State — State is a partial function that describes how a state evolves
during program execution. In essence, a transfer function represents part of the computation of a
program. So, if A(s) = s, then at some point the program will compute state s’ when starting

from state s.
Given a transition system (Label x State,—) that satisfies Condition 1, we can define a single-

step transfer function for each pair of labels that captures exactly the possible single-step transitions

between those labels:
PR ifl:s— 16
Ap(s) = { undefined otherwise

Then,
li:s1— lg:sg — - —3 118,

if and only if
(Al orvvo Al)(s1) = oy orall 2 < k <.

Ik
This inspires the definition of a new transition system from the original one in which states are
compound transfer functions built up from compositions of single-step transfer functions.

Definition 2 Given a transition system (Label x State,——) that satisfies Condition 1, we define
the transfer transition system (Label x (State — State), =) as

L:A = 1":(A} o A) for all A € State — State.

Intuitively, if A(s) = &/, then [: A means that it is possible to reach a configuration :s’ when
starting from state s. The definition then shows how single-step transfer functions may be composed
to specify additional steps of a program’s computation. Thus, there is a direct correspondence
between traces in a transfer transition system and traces in the standard single-step semantics.
This is stated formally in the following lemma:

Lemma 1 Ifl1:A1 = -+ = l,: Ay, and Aq(s) = s1, then Ay(s) = s; iff liisy — -+ — In 18y,
where 1 < i <mn.

Corollary 1 [:\s".s = l":Xs".s' iff l:s+— 1" 5.

The corollary states that the transfer transitions between the constant transfer functions are iso-
morphic to the transitions in the original system. But more interesting is the case of non-constant
transfer functions. For instance, suppose that

l1:81—> - —> 118,

and
lpisi— oo — Iy s,
where s; # s}. By the above lemma, both of these sequences can be represented by the single

transfer sequence
LA == 1,4,

where there exist two states s and s’ such that A;(s) = s; and A;(s’) = s{. The original two
transition sequences are then exactly

I1:A1(s) — - —> I 1 Ay (s)

7

and

l1 :Al(s') —> s > ln:An(s').
It does not matter exactly what s and s’ are, only that they “select” the two starting states
51 and s|. In fact, this finite sequence of transfer functions might specify an arbitrary number
of possible program behaviors, depending on the size of Dom(A;). This is the key point about
transfer transition systems: the transfer functions in a sequence carry information about how the
state is altered relative to the first transfer function in the sequence.

The relative nature of transfer functions allows two separate sequences of transfer transitions to
be “composed” to create a third long sequence. This is accomplished by changing, in a systematic
way, the transfer functions of the second sequence so that they describe how the state is changed
relative to the beginning of the first sequence. Intuitively, given a transfer function A, we can
view its range Rng(A) C State to be a boolean property satisfied by all states s such that I: A
might correspond to /:s in some application of Lemma 1. If A(s) = s, then s already satisfies this
property. Suppose A’(s) = s for all s € Rng(A). This intuitively means that the “output property”
of a sequence ending with A is stronger than the “input property” of a sequence beginning with
A’, because A’ may also be defined for some s’ ¢ Rng(A). In this case, the two sequences may be
composed to form a larger sequence. The following lemma specifies how the transfer functions of
the second sequence must be modified in order to carry out the composition.

Lemma 2 Ifl1: Ay = - = lp: Ay and 1A} = - = 1] Al and I, =1} and Aj(s) = s
for all s € Rng(A,,), then

l11A1=>"-$lnlAn=>
= lf:(Aho Ay) = - = 11,: (A, 0 Ap)

v 4
Proof: By the definition, for all 2 < j < m, AL, = A7 o---0 A;i o Al. If Aj(s) = s for all

i

I :
s € Rng(A,), then A} o A, = A, and thus A;- oA, = Aé‘l 0.--0 Aé,; o A,. By definition,
1A, = 1 (A

i I
Y] -
lgoAn)=>---=>lm:(AlZ 10---0Al,;oAn),

and so, since I, = I,
In: Ay =l (Ao Ay) = -+ =11, : (A}, 0 Ap).
O
This lemma provides the theoretical foundation for the compositionality of trace-based analyses.

Particularly useful is the following corollary, which describes how a sequence that begins and ends
at the same label may be composed with itself any number of times.

Corollary 2 Ifl1: Ay = - - => l,: A, and Uy = 1, and A (s) = s for all s € Rog(Ay,), then, for
all k>0,
WAl = Ao = =1, Ay =
lz:(AgOAn)=>'-'————>ln:(An0An)=>
(Ag o A = - = [(Ap 0 AD) =

S
[2¥)

lh:(Ag 0 AR = .. = [: (A 0 A,®)
i times

. e e,
where f =Ffo...0f.

This means that some transfer transition sequences of length n contain enough information to
describe sequences in the original transition system of k(n — 1) + 1 for any k. Later, we will use
transfer transition systems to define programming languages, and this corollary will allow us to
model and systematically examine all possible finite behaviors of loops with a transfer sequence
that corresponds to just one iteration. In essence, one can think of Rng(A;) as encoding the “loop

invariant” at label ;.

4 A Case Study

To illustrate how transfer transition systems can be used to analyze programs, we will outline
the development of the system for a simple assembly-like language with data structures (records),
assignment, and loops, three language features that typically cause difficulties for analyzers. The
development is organized as follows:

1. Define the semantics of the language as a small-step transition system.
2. Design a finite representation of transfer functions of this system.

3. Redefine the semantics in terms of single-step transfer functions and show equivalence to the
first formulation.

4. Define an effectively-computable composition operation on the transfer function representa-
tion for the purposes of the transfer transition system.

5. Choose a strategy for exploring the transfer transition system.

Although the language we have chosen is rather low-level, this choice is mainly for simplicity of
presentation. What is most important is that the set State that we will choose for the transition
semantics of the language is a very general choice—essentially a store graph—and can be used for
many different languages, including languages with functions. So the development in this section
can be reused for any language whose state of evaluation can be defined with this State.

4.1 The language and a transition system semantics

A program in this language is a command, where a command is either a set of parallel assignments,
a record creation, a conditional command, an unconditional jump, or a compound command. On
the left side of each assignment is an l-ezpression denoting an /-value, which is either a variable or
a field of a record. For instance, the l-expression z.f.f' denotes field f' of the record in field f of
the record in variable z. Fields can be updated without restriction; for instance, the assignment
z.f < z sets field f of the record in z to point to that record itself. Binary operations range over

a set of basic constants.

comm == l:ley,...,lep, —e€1,...,en parallel assignment
| l:le+ (fi =e1,...,fn =en) record creation
| {:if e then comm endif conditional
| l:goto! jump
| comm; comm’ sequencing

e == k|leleope expressions denote values

le == z|le.f l-expressions denote 1-values
op == +| — | = |-+ primitive operations on values

v o= k|¢ values (constants, pointers to records)
v == z|¢.f l-values (variables, record fields)

[€ Label labels

k € Const constants

z € Var variables

f € Field record field names

¢ € Ptr record pointers

We define the small-step semantics of this language by a transition system (Label x State,—),
where a configuration [:s comprises a label representing the current syntactic point of evaluation
and a state representing the current store. States are finite partial maps from I-values to values:

su={lvy —»wv1,...,lvp = v}

Each command in the program induces a family of transitions given by the following rules. Here,
nezt(l) denotes I’ when [is the label of a sequence of commands {:s; I':s". We also use the notation
s[lv — v] to denote the state that maps v to v and is everywhere else equivalent to s, and new(s,)
returns the ith next pointer not occurring in s.3

l:ley,...,leq, « e1,...,eq U = next(l)
vy = LE[les]s v; = Ele;]s
lisv— U'is[lvy v v1] - - [lug ¥ vy

lile—{(fi=e€1,...,fn=€n) U = next(l)
lw=LE[le]s v =E&[eils ¢ = new(s,1)
lis—U:s{lv— @)[p.f1 > v1] - [@. fn = vg]

l:if e then lTR.UE .. el’ldif; lFALSE P
E[e]s = v € {TRUE, FALSE} l:goto !
lisr—>1y:s lis—1":s

The tasks of looking up values in the store and applying primitive operations are done by the basic
partial functions £E[]|s and £[]s that evaluate l-expressions to l-values and expressions to values,
respectively, in a given state. These functions are simple and do not modify the state, so they are
performed within a single transition.

LE[z]s==z Elk]s =k
LE[le.f1s = (E]le]s).f Elle]s = s(LE[le]s)
Ele op €']s = (E]e])s) op (E[€']s)

Note that the semantics of the parallel assignment command performs the bindings from left-to-
right, and so if multiple l-expressions evaluate to the same l-value it is the rightmost corresponding

3For this purpose, it is assumed that the set Pir is equipped with an enumeration.

10

expression that gets bound. However, it will simplify the presentation of the development to follow
if we know that all the l-values in a parallel assignment are different, thus rendering the order of
binding irrelevant. Therefore, we make a syntactic restriction on valid assignment commands: No
two l-expressions on the left side of a parallel assignment may be the same variable, nor may they
terminate with the same field name.

4.2 Representing transfer functions

We know from Section 3.3 that we can define a single-step transfer function Af, € State — State to
describe the transitions between configurations at label I and those at I’. We review the definition

here:
Lo [ifl:s— 15
Ap(s) = { undefined otherwise

Furthermore, we can compose these functions to define the transfer transition system (Label x
(State — State),=>). Later, in Section 4.5, we will be generating traces of the transfer system. But
to output these traces, we first need a way of representing transfer functions. As a technicality, it
will be convenient to augment the set of expressions and l-expressions with an integer representation

of pointers:
le == ---|i.f augmented l-expressions
e e | augmented expressions

where i € Z.
Then, to represent a (potentially infinite) transition function A € State — State, we use the

following grammar.*

A == {(01,C1),...,(0n,Cr)} transfer functions
o u= {ley—ey,...,len — e,} store modifications
C == {en,...,em} condition sets

In this representation, a transfer function consists of a finite set of pairs (o, C). Each pair handles
a disjoint subset of the domain of A, and together they handle the entire domain of A. Suppose
that the pair (o, C) handles the subset S C Dom(A). Then ¢ is a finite map from l-expressions
to expressions representing the modifications that A makes to each state s € S, and where C is a
finite condition set of expressions that must all evaluate to true in any state s € S.

The conditions maintain two kinds of information: control constraints (for modeling condi-
tional expressions) and sharing constraints. To give a feel for how these objects represent transfer

4In an abuse of notation, we denote by A both the transfer function representation and the actual transfer function
that it represents.

11

functions, we now present some simple examples.

A =I={0,0)}
As)=s

A ={{z—y+2}0)}
A(s) = sz = s(y) + s(2)]

A ={({z~ 1,1.CAR — a.CAR, 1.CDR ~ b},0)}
A(s) = s[z — ¢][¢.CAR — s((s(a)).CAR)][¢.CDR —> s(b)]
where ¢ = new(s, 1)

A ={{zwr 2z} {z>y})}
Als) = { slz > s(z)] if s(z) > s(y)

undefined otherwise

Note that we denote the identity function {(@,0)} by I

All of these examples have just a single pair (o, C), but in general an exact representation of
a transfer function requires more than one pair. This is because a fragment of code might behave
completely differently when evaluated in contexts with different sharing; an example of this will be

given in Section 4.4.
In general, the meaning of a transfer function representation A is

({ley — e1,...,lep = e}, C) € A
& if LE[le]s = s, Elei]s =vi, L <i<n.
A(s) = Ve € C. £[e]s = TRUE
s’ = s[lvy v v1] - -+ [lvg — vy
undefined otherwise

where LE[]|s and £[]s are extended to handle the “augmented” expressions and l-expressions as
follows:

LE[i.f]s = (new(s,3)).f Eli]s = new(s,)

At first glance it may appear that there are two potential sources of ambiguity in the definition of
A(s). There may be more than one pair (¢, C) in A that may be applicable to a given state, and also
the order of the bindings is unspecified. These potential ambiguities are avoided by maintaining
the following representation invariants:

1. For any state s, there is at most one pair (o,C) € A for which all e € C, £[e]s = TRUE.
Intuitively, each element of A imposes a disjoint set of sharing constraints on s.

2. For the unique pair ({le; — e1,...,lep, — ey}, C) that does satisfy this condition, if that pair
exists, the sharing constraints in C will ensure that LE[le;]s = LE[le;]s implies ¢ = 7, and
thus the order of binding is irrelevant.

4.3 The semantics as single-step transfer functions

Now that we have a useful finite representation for transfer functions, we will redefine our small-step
semantics in terms of single-step transfer functions Al,. This is quite straightforward, and in fact

12

the rules become even simpler because all applications of LE[]s and £[]s are handled implicitly by
the transfer functions themselves. Recall that I denotes the identity transfer function {(@,0)}.

liler,...,len —e1,...,en I' =nezt(l)
Af, ={({le1— e1,...,len — ex},0)}

lile+ (fi=e€1,...,fn=en) U =nezt(l)
AL ={({le~ 1,1.fr = e,...,L.fn = e}, 0)}

l:ife then lTRUE e endif; lFALSE T

v € {TRUE, FALSE} [:goto I’
Al ={0,{e =v})} Ay =T

The following theorem states that the above rules do indeed define the correct single-step transfer
functions of the semantics.

Theorem 1
R ifl:s— 15
Au(s) = { undefined otherwise

Proof: Straightforward for each of the four rules. (]

4.4 The composition operation

We now have a representation of transfer functions and we have defined all the single-step transfer
functions Af;. These are the building blocks of a trace-based analysis, but to use Definition 2 to build
traces of the transfer system, and to use Lemma 2 and Corollary 2 to compose the traces, we must
also have an effectively computable composition operation on transfer function representations.
The composition operation is the universal tool of a trace-based analysis framework; it captures
the essence of many seemingly unrelated analysis problems (with several examples are given in

Section 5).
What makes a composition operation so subtle is the interaction with the possible sharing in
the two transfer functions being composed. As an example, consider the following code fragment

that performs two record field assignments:

L1 : aF<+ b
Ly : c.F.F+ d;
Ly

The semantics defines the following single-step transfer functions:
Afy = {({aF ~ 0},0)}
AP ={({cr.F > d},0)}

By the definition of transfer transition systems, we can consider the following transfer trace from
the identity transfer function I:

Li:T=> Ly AL ol => Lg: Af2 0 Af? o

13

We should expect A%; ol = AE;, but what then is Afi ° Af;? It is a function that, given a state
s, returns the state resulting from the two assignment operations. But to represent this function,
we need to take into consideration the different types of sharing that might occur in s. If there is
no relevant sharing, then the composition might be simply

A%Z o Aﬂ ={({a.F— b,c.F.F—>d},{a #c,a # cF})}

where the second component of the pair is the condition set that imposes the required sharing
constraints. But suppose that s(a) = s(b) = s(c) for some initial state s. Then after these two
assignment operations take place, a.F, b.F, and c.F are all equal to d, and the composition might
then be represented by

A2 o AL = {({a.F— d},{a=c,a =b})}.

Even though this is a very simple code fragment, this result is rather surprising. It says that if
the fragment is evaluated from any state in which a = b = ¢, then the entire behavior of the code
is to assign d to a.F; that is, this sequence of assignment commands is equivalent to the single

assignment command
a.F+—d

In particular, ¢.F.F might not equal d even though that was the final assignment that occurred. A
more detailed example of alias detection is given in Section 5.3.

Both of the possibilities above must be included in the transfer function AE; o A%;, and this is
why a transfer function representation can have more than one pair (o, C). For this particular ex-
ample, the composition operation actually finds two additional cases. The result of the composition
is:

AP o AP = {({a.F = d},{a =c,a=1b),
({a.F = b,b.F— d},{a =c,a# b}),
({a.F = d},{a # ¢, a0 = c.F}),
({a.F— b,c.FF—d},{a # c,a # c.F})}

The composition operation is defined structurally as follows:

Ao A = {(sies -+ €] [lel, - €41, C") |
({ley—e1,...,len > en}, {ef,...,em}) € A,
(0,C) € A,
(leh, C;) € LE[les]o and (€}, C)) € E[ei]o,for 1 <i < n,
(e”,CY) € E[ef]o,for 1 < i < m,
C'=CUCU...UC,UCiU...UC},

Uucyu...ucyu{el,...,eml,

C' is consistent }

14

where:

LE[a]o = {(=z,0)}
LE[iflo = {((new(s,4)).f,0)}
EEfie.flo = {(i.1,0) | (i, O) € Elielo)

U {(le".f,Cu{le’ =1e"}) |

(le',C) € E[le]o, le".f € Dom(c)}
U {(le'.f,CU{le’ #1c" | le".f € Dom(c)}) |
(le', C) € E[le]o}

_ E[kle ={(k,0)}
Eler op ez]o = {(e] op €5,C1 U CY) | _
N (61, Cl) € 5[61]10', (62, 02) S 5[62]]0'}
E[ilo = {(new(s,i),0)} »
Elle]o = {(cle],C) | (le,C) € LE[le]o}

Here, o[le] equals o(le) if it is defined, and le otherwise; new(o, 1) returns the sth first integer not
appearing in o; and e; 0p e; returns an expression e such that £e; op ea]s = E[e]s for all states s.
It is always correct to choose “e; op e2” for e; op ea, but it might be desirable to apply a system
of simplification equations on the primitive operations, if such a system exists.

Conceptually, given (¢,0) € A and (¢0/,C') € A/, we need to find all possible ways that
sharing interference could affect the bindings in ¢’. The functions LE [lo and £[Jo determine
all such possibilities and build up the associated condition sets describing the sharing constraints
for each case. When that is done for all augmented l-expressions and augmented expressions in
(¢’,C"), then the bindings take place, possibly overwriting some bindings already existing in o,
and the constraints are updated for that particular set of bindings. The “consistent” condition is
a structural requirement of the condition set that ensures that there is no e and €’ such that e = ¢’
and e # €' in the transitive closure of the equalities and inequalities in the condition set.

Lemma 3 For all transfer function representations A and A’ and states s, (A o A)(s) = A'(A(s))
(where o is the composition operation defined above).

4.5 The transfer transition system

Definition 2 defines the transfer transition system (Label X (State — State),=>) from the semantics.
I:A = 1":(A}, o A) for all A € State — State.

We now have a finite representation of these transfer functions A, the single-step transfer functions
Af,, and an effectively computable composition operation o on these representations. Therefore,
we have all the required tools for exploring the transfer transition system. Of course, this system
is of infinite size and cannot be explored completely, but we can use our theoretical development in
Section 3 to selectively explore the system. For instance, we can use Lemma 2 to piece individual
traces together, and we can use Corollary 2 to reason about loops by exploring only one iteration.
Many strategies are possible, and different ones will be appropriate for different problems. Below
we describe a strategy that will be useful in our example applications in Section 5.

In general, given an initial transfer configuration /;:4A;, we can start generating the possible
transfer traces [1: Ay => l3:Ag = - --. Such traces fall into two classes:

15

1. Eventually, a configuration /;: A; is reached such that there exists a j < i such that /; = [;.
These traces correspond to evaluations of the program from /; that eventually take some form

of loop.

2. Alternatively, these traces correspond to evaluations of the program from [; that reach a
configuration from which no further transitions are possible before any form of loop is taken.

In both cases, the traces have length at most n+ 1, where n is the number of labels in the program,
and are thus computable. It is particularly useful to compute these traces from the identity transfer
function I, because then we are sure to be able to use Lemma 2 and Corollary 2 to “piece together”

these traces in order to compute longer traces.
Given a label I1, we can compute the set loops(l1) of traces of the first kind:

loops(li) ={lh1: 1= - = 1,:A|
Eli<n.l,-=ln, —|E|i<j<n.l,-=lj)}

and the set terminals(l;) of traces of the second kind:

terminals(l}) ={lh: I = =1 A |
-3 A L A= 1A, -Fi<j<n =1}

By repeated applications of Lemma 2, we can inductively define (but not necessarily compute) the
sets traces(l) for all labels { of all traces from configuration /:I. (The occurrences of A; and A] in

these rules are always equal to I.)

l1:A; = - = 1,: A, € terminals(ly)
hi\i= = 1[,:A, € tmces(ll)

l1:A) = - = I A, € loops(ly)
A= =1 Al € traces(l]) In=1]
A == A, =
I5: Ao Ay = - => 1]t A} o Ay € traces(ly)

5 Applications

In this section we present some concrete examples of how trace-based analysis can be applied to
solve problems in program analysis and transformation.

5.1 Software pipelining

One of the advantages of trace-based analysis is that it provides a direct way to reason about
program equivalences, and thus it can serve as a basis for specifying and proving the correctness of
program transformations. In this section, we demonstrate this by showing how a form of software
pipelining can be developed using a transfer transition system.

Software pipelining is a program transformation on loops that attempts to exploit instruction-
level parallelism in superscalar and VLIW architectures [2, 22]. As an example, consider the
following code fragment taken from [2] (but with a conditional statement added so that the loop

16

exit can be expressed):

Lentry i+ i+ 1
11 Dtk
Lo k14 g
L3 Pl g+ L
(4) L4 :otest i < m;
Ls . if test then
Lg : 8010 Lentry
endif;
Lexit

The classical approach to optimizing this loop involves unrolling it once, analyzing the data de-
pendencies, and then optimizing for maximum parallelism within the loop body. This yields the
following:

Lentry @ ¢4 t+1;

L1 © gk test — i+ h,i+ g, < my
Lo : if test then

L3 : Lii+—j+1,i+1;

Ly : J k,test — i+ h,i+g,1 <n;
Lg : if test then

Lg : l+—j+1;

L7 : gOtO Lentry

Lg : endif:

Lo endif;

Li0 : l+j+1

Lexit

While this is definitely an improvement, this simple approach fails to extract all of the parallelism
available between adjacent loop iterations. In particular, the assignments to [and i at labels
L and Leniry, respectively, can be performed in parallel, but this is not detected by the classical
approach. Software pipelining achieves this additional parallelism by first determining the patterns
of potential parallelism across loop iterations and then using this information to transform the
loop. The effectiveness of this technique can be seen in the following code, which is the result of
applying software pipelining to our original loop:

Lentry : $ 4 1+1;
L1 2 jyk,test — i+ hi+ 9,1 <m
Lo : if {est then
L3 : lLii+—j+1,i14+1;
(5) Ly : goto Ly
endif;
Ls : le—j+1
Lexit

The state-of-the-art in software pipelining is quite powerful, but rather ad hoc. The transfor-
mations rely on much a priori knowledge (such as the lack of aliases), as well as knowledge of
the loop structure and data dependencies. The correctness proofs are thus long and tedious and
are not based on satisfactory mathematical underpinnings. Using the transfer transition system
semantics, we can formalize what it means for two looping program fragments to be equivalent and
thus interchangable without affecting the observational behavior of the whole program.

17

Recall that a loop in our language is syntactically a command, comm. We assume that there
is a distinguished entry label denoted by entry(comm) and a distinguished exit label denoted by
ezit(comm). In our current example, the entry and exit labels are Lentry and Leyxt. Given the
transition system semantics, (Label x State,—), the meaning of comm, u(comm), is defined as
follows:

p(comm) = As. {s" | (entry(comm)):s —* (ezit(comm)):s'}

Since our language is deterministic, the set u(comm)(s) is either @ if evaluation from state s never
reaches the exit label, or else {s'}, where s’ is the unique resulting state at the exit label. We
note, however, that the following methodology is applicable to any transition system that satisfies
Condition 1, including nondeterministic systems.

If u(comm) = p(comm'), it is safe to replace comm by comm’ in any context. Of course,
this question is undecidable in general, and indeed one of the most important motivations for the
formal semantics of programming languages is to reason about such program equivalences. In many
difficult cases, an analysis of the transfer transition system can automatically prove such an equality
and thus support optimizing program transformations such as software pipelining. In general, we
have the following theorem that proves semantic equivalence of two looping commands.

Theorem 2 Given two commands comm and commy, for i € {1,2} let terminals; and loops;

be computed from comm; as in Section 4.5, where == denotes the transfer transition relation of
comms, and let lenyry; = entry(comm;) and lexiy; = exit(comm;). If there ezists a Agnigy such that
the following equations hold for 1 € {1,2}, then pu(comm,) = p(comms).

Iterminalsi(lemryiﬂ =1
loopsz‘(lentry,;) { ’ :Z> lloopi : Aentryi = = lloopi : Az}
loops(hoopy) = {- - :z> hoop; : Aloop; }

) { ‘ :z> lexiti:Aexiti}

terminals;(loop;

Aentryg = Agnift © Aen1:ry1
Aloopy © Ashit = Ashift © Aloop;
Aexit2 © Aghitt = Dexit1

Proof: First we need an auxilliary lemma about function composition. If f, g, A, f’, ¢’, A/, and
d are functions in X — X and if (1): f =do f', (2): god =do0g, and (3): hod = I, then
hog®o f="no g’(") o f' for all n > 0. To prove this, we apply axiom (1) to the statement that
hog™od =h'og ™ for all n > 0. The latter has a straightforward proof by induction on 7;
axiom (3) is the base case, and axiom (2) proves the inductive case.

Let —5 be the transition relation of the semantics of comm;. Then s' € p(commy)(s) iff

*
(entry(comm)):s N (ezit(comm)):s’, which in turn holds iff there exists a trace
1 1 1 1 /
lentryis = 1181 — oo > lpisp > lexity 0 8,
And, by Lemma 1, this trace exists iff there exists a transfer trace
1 1 1 1
lentry; : I = 11: A1 = ... = 11 Ay = lexit1: A

such that A(s) = s’. By Lemma 2 and Corollary 2 (terminals; and loops,), such a transfer trace
exists iff there exists a k£ > 0 such that (Aeit1 © Aloopl(k) o Acntry,)(s) = s'. Then, by the above

18

lemma about function concatenation, this holds iff (Aexito © A100p2(k) o Aentry,)(s) = s', which in
turn holds iff s’ € u(commy)(s) (by a reversal of the above).
Therefore, we can conclude that u(commi) = u(comms). O

The intuition behind this theorem is that comm; is a code fragment that contains a single loop;
Aentry, represents the computation from the entry of the command up to the first loop entry point,
Ajoop; Trepresents the computation from one loop entry point to the next (i.e., one loop iteration),
and Aeyit; represents the computation from the loop entry point to the exit of the command. Any
evaluation of comm that exits will thus be represented by Agyit; © Aloopl(k) © Aentryy, Where £ is
the number of times the loop was taken. Everything is similar for commeg, except that its loop is
“shifted” by Aghift-

This shifting essentially captures the notion of software pipelining. To illustrate this theorem,
take comm to be the original looping program (Program 4) and commg to be the optimized version
(Program 5). First, the computation of terminals and loops for each command generates:

Aentrylzl
Apop; ={({im i+, ji+h+1l, k=it+g+1,
I— i+ h+2, test = i+1 < n},
{(: +1 < n) = TRUE})}
Amity ={{i— i+l j—i+h+1, k—>i+g+1,
I i+ h+4+2, test = i+1 < n},
{(i +1 < n) = FALSE})}
Aentryy = {({i = i +1},0)}
Algopy ={({i—=i+1, j=i+h, kity,
l—i+h+1, test =i < n},
{(# < n) = TRUE})}
Aexita ={({jl—>i+h, k—i+g,
I—i+h+1, test — i <n},
{(i < n) = FALSE})}

Here, we have written bindings in lexicographic order and have assumed a canonical form for
expressions, where for clarity we have replaced 1 + 1 with 2. Note the differences between the
bindings of j, k, and [in Ajgep, and those of Ajygp,. This is because in comm; these assignments
take place after the increment of i, while in commg they take place before.

Next, we find an appropriate Agyig. Since Aentry; = I, Agniry must be the same as Aentryy:

Aghift = Aentry2 = {({Z o+ 1},®)}

This corresponds to the fact that the loop of comm has been “shifted” in comms. In each increment
of 7 in commg conceptually corresponds to that of the nezt iteration.
The final step is the proof that the following hold:

Aentryg = Aghift © Aentlryl
Aloop2 o Aghift = Aghift © Aloop1
Aexite © Aghift = Aexit1

First we compute the compositions and then approximate the equality check by checking for struc-
tural equality. If two transfer function representations are structurally equivalent, then they are
guaranteed to represent the same function. Much more sophisticated strategies could be developed,

19

for instance using algebras for expression equality, but the important point is that while structural
equality is usually of very little use in standard transition systems, it is quite powerful for transfer
transition systems. It is sufficient for the above example, and we believe that it will be sufficient
for many uses.

In short, the entire proof is completely automated and with a tractable complexity.? The
algorithm used the fact that Aepery; = I for the derivation of Agir a8 Aentry,, but in general we
need an algorithm to solve A = Agpiry 0 A’ given any A and A’. One can imagine a unification
algorithm for this purpose, but space does not permit further development.

The automation of the proof suggests that the procedure could be used directly to derive correct
program transformations, not just for software pipelining, but for loop optimizations in general. In
the next section we see another example.

5.2 Loop-invariant removal

We can use a technique similar to that of software pipelining to reason automatically about a
transformation that factors out calculations that remain invariant in each iteration of a loop. The
only difference between software pipelining and loop-invariant removal is the set of axioms.

Theorem 3 Given two commands comm] and comma, if there ezists a Ainy such that the following
equations hold, where Aentry;, Dloop;, and Aexit; are defined as in Theorem 2, then p(comm,) =
u(commy).
Aen1;ry2 = Ajnv © Aentry1
Aloop2 o Ajpy = A100p1
Ay © Aloopz = Aloopg
Aexitz © Ainy = Aexit1

Proof: The proof mirrors that of Theorem 2, but with a different lemma about function compo-
sition. If f, g, h, f', ¢', #’, and § are functions in X — X and if (1): f =do f', (2): god = ¢,
(3): dog=yg,and (4) hod = K, then ho g™ o f = K ogd™o f foralln > 0. To prove
this, we apply axiom (4) to the statement that g(® o f = o g ™ o # for all n > 0. The latter
has a straightforward proof by induction on n; axiom (1) is the base case, and axioms (2) and (3)
prove the inductive case as follows: g™ o f = ogog® o f = Jogoéog’("_l) of! = 6og’(") of. O

The transfer function Ajyy (§ in the proof) represents some computation that comm; does
inside every loop iteration, but which commgy does once and for all before the loop is first entered.

5.3 Alias analysis

The following program is intended to evaluate in a context in which a is bound to a linked list of
at least one element and b is bound to a linked list of at least two elements. The intended result
of the program is that b should be bound to a list whose first element is the same, whose second
element is a’s original first element, whose third element is b’s original second element, and which
is thereafter equal to the rest of a. The code does this by destructive assignment rather than by

SConstruction of eight traces of no more than n+1 in length each (every step of which is a composition operation),
four additional composition operations, and three O(n) structural equality tests. All composition operations are O(n)
because no sharing constraints are generated.

20

BEFORE AFTER

e b,
a b

[y

;
on
&

ISR
5. % %

Figure 1: Output of the alias analysis.

copying nodes.

Ly : b.P.P <+ a.P;
Ly : a.P¢« b.P;
L3 : b.P+ o

Ly

Here, the P field contains the link to the next list element.

Examining the transfer transitions from the initial configuration L; : I, representing all possible
entry configurations, terminates after three steps at configuration Ls:A, where A is a set of five
pairs that describe all possible results:

({b.p.P > a.P,a.P— b.P,b.P— a},{a # b.P,b# b.P,b# a})
({b.p.P— a.P,aP— a}t,{a #bP,b#bP,b=0a})
({b.p — a},{a # b.P,b = b.P})
({a.Pp > a},{a =b.P,b # b.P})
({b.p— a},{a =b.P,b=b.P})

The second component of each pair describes a possible set of sharing constraints on the input
set, and the first element describes the updates to the store that take place under those sharing
constraints. The updates should be interpreted as one big parallel assignment on the initial state.
The first pair is the intended result, and the other four pairs represent different types of undesirable
behavior. The analysis output can be equivalently described by the diagram shown in Figure 1.

21

One advantage to this analysis is that the composition operation on transfer functions auto-
matically maintains only the relevant sharing constraints. For instance, in this example the five
different pairs correspond to five truly different behaviors, and the sharing constraints in those
pairs are the minimum constraints necessary to identify each case.

This analysis has several potential uses:

e A sophisticated alias analysis that is ezact on straight-line code, that can relate the output
aliases with the input aliases, and that can compose such relations together to analyze blocks
of code separately or describe the aliasing of looping code. Currently, there is little understood
about relational alias analyses or compositional alias analyses.

¢ A symbolic debugging tool. One can look at all possible ways a fragment of code might go
wrong, and in what contexts.

¢ A modular program verification tool. In the example above, the analysis infers an exact
minimal set of input preconditions {a # b.P,b # b.P,b # a} that guarantees the correct
output. More sophisticated code with loops might use Corollary 2 to determine a sufficient,
but perhaps not necessary, set of preconditions.

6 Conclusions

In this paper we have presented transfer transition systems, a formal framework for describing
the operational semantics of programs, and demonstrated its utility on a language with loops,
assignments, and nested record structures. This framework allows us capture the notion of trace
properties and trace-based program analysis, thereby realizing significant advantages in expressive
power and elegance in solving complex static-analysis problems, particularly for programs with
loops. Furthermore, we have shown how transfer transition systems can be used to derive and
formalize program transformations for carrying out optimizations as complex as software pipelining,
classical loop optimizations, and detection of aliases.

The idea of reasoning about traces instead of states is not new. The theoretical foundations go
back to Cousot and Cousot [9]. Their work on G*°SOS [10] is also related, but whereas the main
focus of their system is to achieve a unified compositional operational model of non-termination,
our motivation for transfer transition systems is ultimately a practical one: to provide a new
framework not only for static analysis of programs, but also for developing complex program
transformations and optimizations that depend on precise understanding of complex control flow
and data structures.

There are a handful of “trace-based” analyses in the literature, such as Colby’s analyses of
concurrency [4, 5, 6] and Deutsch’s online alias analysis [13, Sect. 4.4]. It is also common to use
some notion of execution traces when reasoning about concurrent computations. But in the areas
of static program analysis and program transformation the technique is little known. It is our belief
that this is due to the lack of a presentation of the method that is both general enough for wide
applicability and specific enough to be easily instantiable.

One might reasonably ask why trace-based analysis is necessary, since ad hoc techniques, many
based on dataflow analysis, often work in practice, at least in simple cases [1]. Indeed, for the ged
example shown in Section 2, it is a simple matter to unroll the loop once and then perform standard
optimizations such as constant propagation. One basic reason is that semantics-based approaches
provide a way to reason about correctness and safety of analysis-based program transformations.
But there is a less obvious reason of great practical importance: the formalism of semantics-based

22

program analysis is extremely general, and thus yields insight into ways to solve much more complex
analysis problems. Indeed, it is easy to see that the technique of “unroll once and then do constant
propagation” is not very general, and in fact does not work for the purpose of software pipelining.
Abstract interpretation, on the other hand, clearly aided the solution to control-flow analysis of
higher-order functions [20, 27]. Even further, it is difficult to imagine many of the more advanced
alias and storage analyses (e.g., [14, 6]) without abstract interpretation, and nor is it likely that
the analyses of concurrency in [5, 4] would have been found. The problem is that ad hoc techniques
rarely generalize or shed any light on techniques that might be adapted for other problems, while
the methodology of semantics-based approaches root analyses in the most general soil—a semantics
of the language—from which other analyses may spring.

Acknowledgements

The authors wish to thank Mark Leone, Chris Okasaki, and Frank Pfenning for their helpful
comments and suggestions on earlier drafts of this paper.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[2] A. Aiken and A. Nicolau. Perfect pipelining: A new loop parallelization technique. In Pro-
ceedings of the 1988 European Symposium on Programming, LNCS. Springer-Verlag, March

1988.

[3] D.R. Chase, M. Wegman, and F.K. Zadeck. Analysis of pointers and structures. In Conference
on Programming Language Design and Implementation, pages 296-310, June 1990.

[4] Christopher Colby. Analysis of synchronization and aliasing with abstract interpretation.
Unpublished.

[5] Christopher Colby. Analyzing the communication topology of concurrent programs. In ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manupulation,
pages 202-214, June 1995.

[6] Christopher Colby. Determining storage properties of sequential and concurrent programs
with assignment and structured data. In International Static Analysis Symposium, 1995. To

appear.

[7] Charles Consel. Polyvariant binding-time analysis for applicative languages. In Partial Evalu-
ation and Semantics-Based Program Manipulation, New Haven, Connecticut (SIGPLAN No-
tices, vol. 26, no. 9, September 1991), pages 6677, 1993.

[8] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximations of fixpoints. In Fourth Annual ACM Symposium

on Principles of Programming Languages, 1977.

[9] P. Cousot and R. Cousot. Semantic design of program analysis frameworks. In Sizth Annual
ACM Symposium on Principles of Programming Languages, San Antonio, Texas, pages 269—
282, 1979.

23

[10]

[11]

[12]

[13]

[14]

[17]

[18]

[19]

[20]

[21]

[22]

P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In
Conference Record of the 19th ACM Symposium on Principles of Programming Languages,
pages 83-94, 1992,

P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to comport-
ment analysis generalizing strictness, termination, projection and PER analysis of functional
languages). In Proceedings of 1994 IEEE International Conference on Computer Languages
(ICCL’94), Toulouse, France, pages 95-112, May 1994.

P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based program anal-
ysis by abstract interpretation. In Conference on Functional Programming and Computer
Architecture, 1995.

Alain Deutsch. Operational Models of Programming Languages and Representations of Rela-
tions on Regular Languages with Application to the Static Determination of Dynamic Aliasing
Properties of Data. PhD thesis, LIX, Ecole Polytechnique, Palaiseau, France, 1992.

Alain Deutsch. A storeless model of aliasing and its abstractions using finite representations of
right-regular equivalence relations. In Proceedings of the IEEE 1992 International Conference
on Computer Languages, San Fransisco, California, pages 2-13, April 1992.

M. Felleisen and D.P. Friedman. Control operators, the secd-machine, and the lambda-calculus.
In 8rd Working Conference on the Formal Description of Programming Concepts, August 1986.

P. Granger. Static analysis on linear congruence equalities among variables of a program. In
TAPSOFT’91, volume 493 of Lecture Notes in Computer Science, pages 169-192. Springer
Verlag, 1991.

Williams Ludwell Harrison. The interprocedural analysis and automatic parallelisation of
scheme programs. Lisp and Symbolic Computation, 2(3):176-396, October 1989.

Paul Hudak and Jonathan Young. Collecting interpretations of expressions. ACM Transactions
on Programming Languages and Systems, 13(2):269-190, April 1991.

Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-
order languages. In Proceedings of the 22°¢ ACM Symposium on Principles of Programming
Languages, 1995.

N. D. Jones and S. S. Muchnick. Flow analysis and optimization of LISP-like structures. In
Sizth Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas,
pages 244-256, January 1979.

M. Karr. Affine relationships among variables of a program. Acta Informatica, 6:133-151,
1976.

Monica Lam. Software pipelining: An effective scheduling technique for VLIW machines.
In SIGPLAN’88 Conference on Programming Language Design and Implementation, pages
318-328, June 1988.

Torben Mogensen. Binding time analysis for polymorphically typed higher order languages.
In J. Diaz and F. Orejas, editors, TAPSOFT ’89. Proc. Int. Conf. Theory and Practice of
Software Development, Barcelona, Spain, March 1989 (Lecture Notes in Computer Science,
vol. 352), pages 298-312. Springer-Verlag, 1989.

24

[24]

[25]

[26]

[27]

[28]

[29]

Alan Mycroft. Abstract Interpretation and Optimising Transformations for Applicative Pro-
grams. PhD thesis, Department of Computer Science, University of Edinburgh, Scotland,

1981.

Flemming Nielson. Strictness analysis and denotational abstract interpretation. Information
and Computation, 76(1):29-92, January 1988.

Gordon Plotkin. A structural approach to operational semantics. Technical Report DAIMI-
FN-19, Computer Science Department, Aarhus University, 1981.

Olin Shivers. Control-flow Analysis of Higher-Order Languages. PhD thesis, Carnegie Mellon
University, Pittsburgh, Pennsylvania, May 1991.

Joseph E. Stoy. Denotational Semantics : The Scott-Strachey Approach to Programming
Language Theory. MIT Press, 1977.

Philip Wadler and R. J. M. Hughes. Projections for strictness analysis. In Third International
Conference on Functional Programming and Computer Architecture, 1987.

25

