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Abstract

Proteins have evolved to perform their targeted biochemical function pre-
cisely and efficiently. Growing evidence from experiments and computational
approaches suggests an intimate synergy between an enzyme’s structure, in-
trinsic dynamics and biochemical function. In this thesis, we investigate the
role of intrinsic dynamics in enzyme catalysis by developing novel theoretical
and computational techniques and using extensive atomistic level molecular
dynamics simulations.

First, we show that there is significant similarity in collective conforma-
tional fluctuations during an enzyme’s reaction-cycle. In particular, for the
enzyme cyclophilin A, a peptidyl-prolyl isomerase, we show that there is sub-
stantial overlap (65%) in the dynamics before, during and after the catalytic
step. Second, we show that dynamics associated with the catalytic step is
evolutionarily conserved in multiple enzymes catalyzing the same biochemi-
cal reaction, even when they do not share a common fold. Finally, we show
that there is a remarkable similarity in the fluctuations coupled to the catalytic
step for several members of a super-family of enzymes sharing a common
mechanistic substep in the reaction mechanism. The Rossmann fold family
of enzymes investigated reveals the presence of three specific regions shared
by all family members that exhibit collective fluctuations coupled to the cat-
alytic step. These regions show the presence of a network formed by hydro-
gen bonds and hydrophobic interactions extending from the flexible surface
regions all the way to the active site.

Our results indicate that intrinsic dynamics coupled to the catalytic step
of enzymes may have imposed selective pressure over the course of evolution
to promote biochemical function. These observations may have far-reaching
implications in understanding how enzymes have evolved and may potentially
serve as guiding principles for designing novel enzymes in industrial and ther-
apeutic applications.
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Chapter 1

Introduction

Enzymes are a naturally occurring class of proteins that achieve their designated biochem-
ical function precisely and efficiently. Enzymes have intrigued biochemists/ biophysicists
since they are highly efficient biocatalysts with the ability to accelerate their target re-
action (anywhere between 103 and 1017 times) [203]. Their functioning involves novel
mechanisms of control including allosteric and cooperative effects. Thus, a detailed un-
derstanding at the molecular level of how enzymes function is critical for engineering
new and efficient enzymes (for industrial purposes) as well as designing novel therapeutic
agents that can treat a number of protein related diseases.

The role of enzyme’s three-dimensional shape (or fold) has been well understood in
the context of its function; the lock-and-key [89], induced-fit [161] and transition state
stabilization [275] theories have suggested that enzyme function largely depends on the
direct structural interactions between the enzyme and its substrate. However, several ex-
periments and theoretical/ computational studies also indicate that residues far-away from
the active site of the enzyme contribute critically to the function of the enzyme [152, 115].
Particularly, some of these distal residues are conserved throughout evolution and their
role in the context of enzyme fold and biochemical function is not fully understood.

Most proteins are linear polymers of amino acids; the constituent amino acids allow
the protein to fold into specific three-dimensional conformations via specific network of
interactions formed either by hydrogen bonding or by hydrophobic interactions. These
networks, while stabilizing the overall architecture of a protein, also allow it to undergo dy-
namic fluctuations under physiological conditions. These dynamic fluctuations enable the
protein to sample a complex energy landscape consisting of multiple minima that are kinet-
ically accessible. A recently emerging paradigm in understanding the structure-function
relationship in proteins is that these intrinsic dynamic fluctuations are largely responsible
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for achieving the specific biochemical function that the protein was designed for [24, 124].
Particularly, in recent years, coupled networks of protein motions have been found to ex-
ist in several enzymes conserved across different species [8, 9, 6]. Solvent motions have
been shown to dominate protein motions [5, 84, 85, 91]. However, the exact nature of
how localized structural changes and energy fluctuations influence large-scale conforma-
tional fluctuations within a protein remains a significant challenge in understanding the
structure-dynamics-function paradigm.

In this thesis, we investigate the relationship between a protein’s three-dimensional
shape (or fold), conformational fluctuations that are intrinsic to the fold (or dynamics) and
its biochemical function. For investigating biochemical function, we have chosen to study
enzyme catalysis. In the context of enzyme catalysis, we address the following questions:

• How can one identify and characterize intrinsic dynamics of a protein, incorporating
spatial and temporal information?

• How is intrinsic dynamics in specific enzyme systems conserved through the course
of evolution?

The first part of the thesis addresses the development of novel tools to identify and char-
acterize the intrinsic flexibility of an enzyme in the context of its function. The second
part of the thesis focuses on understanding how enzymes have evolved - specifically, if
intrinsic flexibility of an enzyme implicated in catalysis is also conserved as part of the
fold. The ability to answer these questions in enzyme catalysis will be applicable not only
to the design of new enzymes or drugs that enhance or inhibit enzyme function, but also
to further our understanding of how proteins, in general, have optimized their fold and
flexibility to achieve their targeted function.

1.1 Protein Dynamics

Under physiologically relevant conditions, proteins are not static structures but constantly
undergo conformational fluctuations. These fluctuations are a result of a constant interplay
with the surrounding environment (solvent, ions, other proteins, etc.) [84, 85, 91]. These
fluctuations involve several different spatial and temporal scales. As illustrated in Fig. 1.1,
the fastest time-scale fluctuations involve individual bond-vibrations which are of the order
of femtoseconds (10−15s). At pico-second (10−12s) and nano-second time-scales (10−9s),
one can observe motions along individual side-chains or a small groups of side-chains in-
volving localized regions in the protein. Beyond nano-seonds and micro-second (10−6s)
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Figure 1.1: Multi-scale nature of enzyme function and internal protein motions. An
illustration of how enzyme function and flexibility at multiple time-scales and spatial res-
olution is shown here. Some commonly known enzymes with known turnover numbers
are shown along the red arrow. Protein motions ranging from bond vibrations to breathing
motions overlap with enzyme function, leading to the question if enzyme flexibility and
function are inter-related.

time-scales, motions within a protein can span several regions including whole secondary
structures such as α-helices, β-sheets and flexible regions. These motions involving sev-
eral regions of the protein are commonly referred to as collective conformational fluctua-
tions, or breathing motions, and have attracted considerable attention in the literature due
to their likely role in protein function [52].

Enzyme catalysis is a biochemical process involving chemical changes (e.g., breakage
or formation of a bond) at the active site of the protein. However, as we observe in Fig.
1.1, the range of time-scales involved in substrate turn-over step of catalyzed reactions
and the internal protein motions are very similar. This similarity in time-scales leads to
the natural question: are internal protein motions at various temporal and spatial scales
and enzyme turn-over steps interconnected? The answer to this question requires us to
first build an integrated view of internal motions at various levels of spatial and temporal
resolution in relation to the catalytic step of an enzyme.

Only recently, such an integrated view of protein structure, dynamics and function is
emerging. A plethora of experimental techniques continue to enhance our understanding
of the interconnection between protein motions and function. Neutron scattering has been
used to monitor fast thermal motions (picosecond to 100 ps) [39, 42, 293]; nuclear mag-
netic resonance (NMR) experiments have provided information in the intermediate range
(nanoseconds and longer) [125, 49, 269]; spin-echo neutron scattering on the microsec-
ond to millisecond range [38]; hydrogen-deuterium exchange has been used to measure
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slower conformational changes occurring in proteins (milliseconds) [294]; and crystallog-
raphy [121] has revealed conformational changes occurring during the course of a protein’s
functional cycle. Moreover, recent Mssbauer effect and neutron scattering experiments
have indicated that bulk solvent and hydration-shell fluctuations control protein motions
and function [71, 84, 85]. More recently, ambient temperature X-ray crystallography and
electron density sampling have revealed in exquisite detail the nature of conformational
sub-states that may eventually affect protein function [90].

Experimental investigations of protein motions have faced an inherent problem; as
mentioned above, the internal motions of proteins occur at a wide range of time scales,
but the range of observed motions strongly depends on the relatively narrow time scale
resolution window of the experimental method used [6, 124]. Further, apart from X-ray
crystallography and NMR, it is relatively hard to relate back the observations from other
experimental techniques in the context of individual protein motions. Thus, interpreting
protein dynamics in the context of individual atomic motions is challenging.

Theoretical and computational studies are bridging this vital gap by linking motions
at multiple time-scales to protein function such as ligand binding, enzyme catalysis and
biological signaling. Bio-molecules, and proteins in particular have been challenging in
order to characterize their dynamics at various time-scales. Substantial progress has been
made in understanding protein motions since the first simulations of bio-molecules were
carried out in 1977 [193]. Here, we briefly review some of the significant developments in
the theoretical and computational literature with regards to the study of protein dynamics.
Two approaches have been commonly used to investigate protein dynamics: (a) Normal
Mode Analysis (NMA) based methods and (b) Molecular dynamics (MD)/ Monte-Carlo
(MC) based sampling techniques.

1.1.1 Normal Mode Analysis (NMA): Analysis of Protein Motions us-
ing the Harmonic Approximation

Simple analytical models such as normal mode analysis (NMA) have contributed signif-
icantly to our understanding of collective conformational fluctuations involved in ligand/
substrate binding. Pioneered by Brooks and Karplus [51] and followed up by several
others [103, 201, 179], NMA based approaches offer an intuitive and simplified represen-
tation of a protein’s conformational landscape. An implicit assumption of NMA based ap-
proaches is that the effective potential of interaction between two atoms can be expressed
as a sum of harmonic potentials between all pairs of atoms. The potential energy V for a
given conformation, ~r0, where ~r represents the Cartesian coordinates of the protein, can
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be expanded as a Taylor series in ~r, as follows:

V (~r) = V (~r0) +
∑
i

[∂V
∂ri

]0
(ri − r0

i ) +
1

2

∑
ij

[ ∂2V

∂ri∂rj

]0
(ri − r0

i )(rj − r0
j ) + . . . (1.1)

where V (~r0) is some constant (at equilibrium), and the first derivative (second term in the
summation) is zero at equilibrium. Hence, the potential can be set to the sum of pairwise
potentials, given by:

V (~r) =
1

2

∑
ij

[ ∂2V

∂ri∂rj
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j )

=
1
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∑
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i )Hij(rj − r0

j )

=
1

2
∆~rTH∆~r (1.2)

The Hessian, H, is positive semi-definite if it is built from a conformation at equilibrium,
and hence can be diagonalized to obtain a set of eigenvalues (λ) and eigvenvectors (U).
The Hessian has a total of 6 zero eigenvalues representing the 6 trivial rotational and
translational motions (as a rigid body). While the eigenvalues, λi, represent the relative
frequency of motions (small values of λi represent slow time-scale motions) where as Ui
represents the directions of these motions.

Depending on how the Hessian H is built, several flavors of NMA techniques exist.
The straightforward approach is to use an all-atom representation of the protein and build
a Hessian, assuming that the conformation is at some stable energy minimum. In this
thesis, all-atom NMA has been used. Several programs are available to do NMA. In this
thesis, NMA has been performed using nmode [204]. The details of specific settings in
NMA are explained in the methods section of the relevant chapters.

Another powerful approach is to coarse-gain the representation of the protein. This
forms a class of NMA techniques commonly referred to as the elastic network model
(ENM). Inspired by the works of Tirion [259] and extended to describe motions in pro-
teins by Bahar and co-workers [111, 23] as well as others [76, 254], this coarse-grained
approach relies on the ability to simplify the representation of the protein’s potential en-
ergy using a network of masses connected with springs. This approach, is commonly
called as the Guassian Network model (GNM) [111] where each amino-acid residue in the
protein is ‘abstracted’ into a node in a graph and interactions between residues are replaced
by springs (or edges) with a single uniform spring constant. Thus, GNM’s potential VGNM
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would be given as:

VGNM =
γ

2

[ N∑
ij

Γij∆~r
2
ij

]
, (1.3)

where ~rij , is the distance vector between residues i and j, and Γij is a simple encoding
of the connectivity of the network, given by the Graph Laplacian (also called the Kirchoff
matrix):

Γij =


−1 , if i 6= j and rij ≤ rc

0 , if i 6= j and rij > rc

−
∑

j,j 6=i Γij , if i = j.

(1.4)

Here rc is referred to as the cut-off distance. For a protein with N residues, Γ will be a
N × N matrix, representing the connectivity between residues. The eigenvectors ~uGNM
and eigenvalues ΛGNM of Γ, represent the collective modes of the network, representing
the native state dynamics of the protein. Note that the fluctuations from GNM are isotropic
in all three directions and Gaussian. The statistical mechanics and the description of the
methods are provided in detail in [28]. A subtle, yet important modification [25] to Eq. 1.3
results in the more popular Anisotropic Network Model (ANM), which uses a 3N × 3N
Hessian matrix to describe the potential (3N to describe anisotropic Gaussian fluctuations
in x, y and z directions for N residues in the protein). ANM’s potential allows one to
track changes in the direction of the inter-residue vector (∆~rij = ~ri − ~rj), in addition to
the changes in just inter-residue distances as tracked by GNM.

Even with such simplifying assumptions, ENM based approaches have provided sig-
nificant insights into the nature of dynamics and how it correlates with function [255]. Be-
ginning with the study of human-immuno deficiency (HIV)- type 1 reverse transcriptase
(RT) [22, 26], tremendous progress has been made in elucidating the nature of large-scale
conformational fluctuations in the context of function. ANM (and ENM in general) is
highly scalable, as illustrated by its applications to GRoEL-GRoES [60], ribosome com-
plex [271], viruses [289] and recently, to the entire nuclear pore complex [181]. Further
these approaches lend themselves easily to investigate hierarchical motions [62, 59] and
to study signal processing mechanisms in proteins [61].

1.1.2 Molecular Dynamics (MD): Representing Anharmonic Motions
in Proteins

In spite of their intuitive appeal, NMA based approaches do have some limitations [185].
The harmonic assumption is valid in and around the vicinity of a local minimum in the
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complex energy landscape [119]. Further, as the protein is displaced from the local min-
imum, the harmonic assumption fails and may lead to violations in the observed fluctua-
tions (and conformations) [247, 288].

Conformational fluctuations in a protein are governed by a rugged potential energy sur-
face spanned by the protein [92]. Thus, one can imagine the energy landscape to be formed
of “hillls” and “valleys” populated by discrete conformations of the protein. Within each
valley, one would find the population to share significant similarity in terms of their con-
formations as well as internal energies. Thus, a set of protein conformations that share
similar structure and energetic properties is usually referred to as a conformational sub-
state. A protein may not indefinitely stay in one sub-state, but constantly keeps switching
between different sub-states, in response to an external perturbation, such as ligand/ sub-
strate binding or solvent motions and thermal fluctuations.

The rugged potential energy surface causes the protein to “jump” between various
conformational sub-states giving rise to motions that are anharmonic. In the context of
enzyme catalysis (as well as other functional processes such as ligand/ substrate binding),
anharmonic motions play a critical role [94]. Particularly, it has been shown using NMR,
in the case of dihydrofolate reductase (DHFR) [47] that the enzyme cycles through a set of
discrete conformational sub-states separated by higher-energy sub-states during the course
of its catalytic cycle. Similar observations have also been made for enzyme systems such
as cyclophilin A (CypA) [77, 49], ribonuclease A (RNase A) [65, 163] and many other
enzyme systems [125]. Thus, in order to understand the nature of protein flexibility and
its impact on catalysis, it is necessary to characterize the dynamic energy landscape of
the enzyme with respect to both anharmonic motions and the various conformational sub-
states accessible via these motions [90].

Molecular dynamics (MD) and Monte-Carlo (MC) simulations [96], in the past thirty
years, have played a significant role in modeling the anharmonic conformational land-
scape spanned by a protein. MD simulations also provide a rich description of the pro-
tein’s conformational landscape at various levels of spatial resolution (including all-atom,
back-bone, side-chain or just Cα atoms). They can also take into account solvent and
environment conditions that mimic physiologically relevant conditions. By solving the
Newton’s laws of motion at every time-step, MD simulations can potentially sample the
vast conformational landscape of a protein and account for its rugged potential energy
surface, which can then be analyzed to gain insights into protein motions.

In MD, a atomic interactions in a protein (or any molecule) is described via a molecular
mechanics (MM) force field [172]. Force fields usually consist of a predefined set of atom-
type definitions/ descriptions based on specific chemical environment (see Fig. 1.2. For
example, the behavior of a carbon in methane and carbon in an aromatic compound like
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Figure 1.2: Illustration of Molecular Modeling. A protein (shown in light gray cartoon
representation) with its constituent atoms are connected via bonds. The first three terms
in a typical molecular mechanics force field are shown on the left. b represents bond
lengths, θ represents bond angles, φ refers to the torsion angle. The right hand side of the
image represents the last two interaction terms in Eq. 1.5: electrostatic and van der Waals
interactions. Note this is only a schematic representation.
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benzene is different, and a force-field helps describe this change succinctly. Force fields
are derived from rigorous first principle techniques such as ab-initio quantum mechanical
calculations and are then fit to experimentally known thermodynamic data to describe the
atom of interest and thus called empirical force fields . The potential energy of a molecule
VMM(~r), based on a given conformation ~r, under a typical force field is a summation of
two groups of interaction terms: (a) bonded (Vb) and (b) non-bonded (Vnb). As described
in Eq. 1.5,

VMM(~r) =

Vb︷ ︸︸ ︷∑
i,j

Kb(b− b0)2 +
∑
angles

Kθ(θ − θ0)
2 +

∑
dihedrals

Kφ[1− cos(nφ)] +

∑
non−bonded

[Aik
r12
ik

+
Cik
r6
ik

]
+

∑
non−bonded

qiqj
Drik︸ ︷︷ ︸

Vnb

(1.5)

The first three terms are the bonded interactions in the protein (see Fig.1.2). Vbond−stretch =∑
i,jKb(b−b0)2 describes the harmonic potential between atomic pairs connected by a co-

valent bond. The energy of a bond is approximated as a function of a bond’s displacement
from its ideal bond length, b0, and the force-constant Kb determines the relative strength
of the bond. The second term, Vbond−angle =

∑
anglesKθ(θ − θ0)

2, describes the alteration
of bond angles from an idealized geometry θ0. Vbond−stretch and Vbond−angle describe devia-
tions from the ideal geometry and hence describe penalties for violating these constraints.
The third term, Vdihedrals, models the steric barriers between 4 atoms, usually separated
by 3 covalent bonds. The motion associated with this term is a rotation along the dihe-
dral angle around the middle bond. This term is also harmonic, but conveniently coded
as a periodic cosine function. Note, the n in the equation represents the periodicity of the
dihedral (for example, in a C-C sp3 hybridization, n = 3).

The last two terms are collectively referred to as non-bonded interaction energy (Fig.
1.2). The fourth term in Eq. 1.5, is referred to as the Lennard-Jones potential, VLJ and
represents the van der Waals interactions. It can be either attractive or repulsive; repulsion
mainly occurring because of strong electron-electron interaction between two atoms and
attraction occurring due to dispersion effects in the electron clouds. It is common to use
a 6-12 potential to describe effects arising out of van der Waals interactions. The terms A
and C are dependent on the atom type and can be estimated via gas-phase scattering exper-
iments. rik represents the distance between the atoms. Of all the sources of interactions,
van der Waals interactions perhaps represent the most important in terms of stabilizing the
overall conformations of biological macro-molecules [203, 172]. The fifth term in Eq. 1.5
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represents the Coulombic interaction, which arises due to charged interactions in the pro-
tein; qi represents the charge of the atom/ particle and D represents the effective dielectric
function of the medium in which the atoms are immersed.

These empirical potentials do suffer from inaccuracies [145] and hence, force field
development is an active area of investigation. All empirical force fields describe electro-
static interactions as point-charges, which may not be appropriate for certain pH fluctua-
tions. Recent interest in the area of developing polarizable force fields has allowed some
progress to be made in overcoming the limitations of such inaccuracies [110].

The potential energy function defined in Eq. 1.5 is differentiable with respect to atomic
coordinates, and hence one can deduce the force acting on an atom (both direction and
magnitude) and this can be used to integrate the Newton’s laws of motion. Several inte-
gration schemes for MD exist; most popular methods include (a) Verlet algorithm, (b)
Leap-frog method, (c) velocity Verlet and (d) the Beeman technique [172, 96]. Each
method comes with advantages and disadvantages and the implementations are entirely
controlled by the choice of MD simulation software being used.

The output from an MD simulation (or a collection of simulations) is usually a set
of conformations, referred to as an ensemble. Depending on the time resolution of MD
and how often individual conformations were stored, these ensembles can be quite large.
For example, simulating a protein for 10 nanoseconds (ns) storing conformations every
picosecond can result in a total of 10,000 conformations. The time-scale resolution, sim-
ilar to the spatial-resolution is up to the end-user. In each of the simulations used in this
thesis, we mention the time-scale resolution used explicitly in the methods section. This
thesis primarily makes use of the AMBER (Assisted Model Building with Energy Re-
finement) [56] software suite for molecular modeling purposes. It uses the parm98 [218]
force-field, which has been verified to be better suited for describing protein dynamics [9].

MD based approaches have formed the basis of investigating anharmonic fluctuations
in proteins. MD is routinely used in several target application contexts [151]. MD offers
the flexibility of being easily integrated with a number of finer-grained approaches (such
as quantum dynamics) or with coarse-grained approaches (such as ANM/ ENM [137]) and
thus, provides a unique framework to gain insights into the mechanistic underpinnings of a
variety of proteins. MD is also unique since it allows the ability to mimic real cellular con-
ditions within a simulation [194] and hence, provides a unique computational microscope
into the workings of a protein [173].

However, atomistic MD simulations do suffer from drawbacks. It is quite well known
that MD simulations cannot often sample motions at biologically relevant time-scales [64,
87]. This is primarily due to the all-atom resolution at which MD functions. Several im-
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provements in the sampling problem of MD have now enabled us to overcome some of the
serious limitations. In the context of software development, the concerted efforts of sev-
eral groups including AMBER [56], GROMACS [127], NAMD [220] and Desmond [50]
have provided us with the ability to scale MD systems to hundreds of thousands (if not
millions) atoms routinely. Further more, customized hardware development using field
programmable gate arrays (FPGAs) [11] and application-specific integrated circuits (such
as Anton [242]) have accelerated the speeds at which MD can be carried out. There is
also growing interest in developing MD packages on graphics processing units (GPUs), as
evidenced by several studies [82, 249]. Apart from these, from the algorithmic side, there
has been tremendous progress in developing improved sampling techniques [175], coarse-
grained MD simulations [139] as well as continuum models to increase the accessible
times for MD [159].

1.1.3 Analysis of Collective Conformational Fluctuations from MD

Once a simulation has been completed, it is then necessary to analyze the ensemble1 to
gather insights on the actual behavior of the protein. Structural metrics such as root-mean
squared deviations (RMSD2 [143]) are commonly used to assess the stability and quality
of simulations. However, to gather mechanistic insights about internal protein dynamics
and collective conformational fluctuations, it becomes necessary to use advanced statistical
techniques. Collective conformational fluctuations have traditionally been analyzed using
principal component analysis (PCA) [142]. Various techniques [118, 155, 25] are available
of which three techniques are most popular: (a) quasi-harmonic analysis (QHA) [150] (b)
essential dynamics (ED) [15] and (c) dihedral PCA (dPCA) [14].

QHA [150, 149] was initially proposed to estimate the configurational entropy of
macromolecules. QHA approximates the Boltzmann partition function arising from the
anharmonic conformational landscape with multi-variate Gaussian distributions. It cap-
tures the large-scale conformational fluctuations from an ensemble of protein conforma-
tions by diagonalizing the mass-weighted covariance matrix known as the atomic fluctua-

1Ensembles are also commonly referred to as MD trajectories. In this thesis, we will use both ‘ensemble’
and ‘trajectory’ interchangeably.

2RMSD is a measure of the average distance between two superimposed structures. Given two confor-
mations represented by ~ri and ~rj , RMSD is defined as:

RMSD =

√
1
n

∑
i

‖~ri − ~rj‖2,

where n is the total number of atoms on which alignment is carried out.
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tion matrix (Fij). For a system with N atoms, Fij is defined as follows:

Fij = 〈m1/2
i (~ri(t)− 〈~ri(t)〉)m1/2

j (~rj(t)− 〈~rj(t)〉)〉 (1.6)

where i and j represent the 3N degrees of freedom in Cartesian space; m is the mass of
an atom and the quantity within 〈〉̇ denotes an average over the ensemble. The inverse
square roots of the eigenvalues determined by diagonalizing Fij represent the frequencies
associated with protein eigenmodes. The eigenvectors represent the displacement vectors
of the individual atoms along particular eigenmode components. The eigenvalues are typ-
ically arranged in ascending order; the first six frequencies are zero, corresponding to the
global translation/ rotation motions. The lowest frequencies (from 7 onwards) correspond
to large-scale cooperative motions in the protein and the higher frequencies represent lo-
calized motions. For a system with N atoms, there are 3N − 6 internal modes; however,
typically only a limited number of slow modes (lowest frequencies) are computed since
they are considered to be functionally relevant [295]. QHA allows identification of protein
motions at a variety of time scales, as the atomic fluctuation matrix can be computed from
protein conformations sampled during a single MD simulation (short time scale) [57], a
collection of MD trajectories (collectively representing long time scale) [9] or a set of
conformations obtained using various sampling techniques (which could represent protein
present in different stages during its functional cycle).

ED [15, 1] was introduced to develop an approach to separate the configurational space
into two subspaces: (a) essential subspace consisting of only a few degrees of freedom that
capture anharmonic motions and contributes to the maximal variance in positional fluctu-
ations and (b) a constrained subspace which has Gaussian-like behavior and is localized
to specific regions of the protein. It differs from QHA in that it uses only the atomic dis-
placements instead of the mass-weighting these displacements. Thus, given an ensemble
of conformations (~r(t)) from a MD simulation, the covariance matrix for ED is defined as
follows:

Cij = 〈(~ri(t)− 〈~ri(t)〉)(~rj(t)− 〈~rj(t)〉)〉 (1.7)

where i and j still represent the 3N degrees of freedom in the Cartesian space and the
quantity within 〈〉̇ denotes an average over the ensemble. The eigenvalues of C deter-
mine the amplitude of the fluctuations; hence, a higher amplitude (and larger eigenval-
ues) represents more fluctuations and lower eigenvalues determine constrained motions.
The eigenvectors represent the directionality of motion along the ED modes. ED has
been used to describe large-scale protein motions [263], identify hinge sites [264], study
protein folding [70] and describe motions from ensembles of experimentally determined
structures [170].
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Both QHA and ED require that the ensemble of conformations be aligned to some
reference structure before any of the analysis is performed. This approach of aligning can
be particularly cumbersome, if a well defined structure is not available. For example, in
protein folding studies, where the protein adopts multiple conformations before reaching
its native state conformation, the description of a good reference structure can be very
difficult to find. To overcome this limitation, it was proposed that one could perform PCA
based analysis in the dihedral space [14]. This approach, commonly referred to as dihedral
PCA (dPCA) uses the internal dihedral angles (φ − ψ) from the peptide backbone as the
variables on which PCA is performed. The idea here is to convert each φ − ψ into an
Euclidean representation, where each φi and ψi for residue i is converted into a 4 tuple
defined as follows:

xi−3 = cos(φi);

xi−2 = sin(φi);

xi−1 = cos(ψi);

xi = sin(ψi). (1.8)

This transformation results in a 4M × 4M covariance matrix as defined in Eq. 1.7, where
M is the total number of φ− ψ angles in the protein. This approach has also been widely
used to study the importance of collective motions in protein folding as well as describe
free-energy landscapes of several proteins [186, 199].

1.2 Evolutionary Linkage between Enzyme Fold, Flexi-
bility and Catalysis

In the first part of the thesis, we examine how we can characterize the conformational
landscape of an enzyme and its intrinsic flexibility in the context of catalysis. In the second
part of the thesis, we examine if internal motions in enzymes are evolutionarily conserved
as part of their catalytic step. Enzymes have evoked considerable interest in biochemistry
for their relevance in industrial processes as well as design of novel therapeutic agents that
can overcome protein-related diseases. Hence, in order to design better enzymes as well
as novel drugs, a good understanding of how enzymes have evolved with respect to their
flexibility and catalysis is crucial. In this section, we examine the latest developments in
our understanding of how enzymes have evolved.
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Reaction Enzyme class E.C. Example
Oxidation/ Reduction oxidoreductases 1 dihydrofolate reductase

Group transfer transferases 2 MAP2-kinase
Hydrolysis of bond hydrolases 3 Serine protease

Formation/removal of double bonds lyases 4 Carbonic anhydrase
Isomerization of functional groups isomerases 5 Cyclophilin A

Single bond formation ligases 6 Aminoacyl tRNA synthetase

Table 1.1: Summary of enzyme catalyzed reactions. Each unique reaction mechanism
receives a E.C. number, which can be then used to identify the enzyme.

1.2.1 Sequence Analysis of Mechanistically Diverse Enzymes

Six basic types of enzyme catalysis are known, as summarized in Table 1.1. Each enzyme
is classified by the Enzyme Commission (E.C.), based on the specific chemical reaction
that the enzyme catalyzes. We primarily focused on three enzyme classes: (a) oxidore-
ductases and (b) isomerases and (c) hydrolases. The specific enzymes and the enzyme
mechanisms will be covered in subsequent chapters (see Chapters 5 and 6). These three
enzyme classes constitute nearly 60% of naturally observed enzymes [29] and are most
biologically relevant for developing therapeutic agents against a variety of diseases.

In spite of having a restricted number of protein folds available, enzymes have de-
veloped features over the course of evolution that make them especially well suited to
catalyze their target chemistry as well as a diverse set of biochemical reactions [12]. This
remarkable diversity of naturally occurring enzymes begs the question whether each pro-
tein fold has evolved independently [202]. Sequence analysis of enzyme super-families
have identified structural and biochemical features [102] that have been conserved as part
of their enzymatic mechanism. Further, Meng and co-workers have also proposed the idea
of active-site templates in several protein super-families [196]. Babbitt and coworkers
have reported that mechanistically diverse enzymes that share a common sub-step have
very similar protein folds [19]. Based on the exploration of a family of proteins consist-
ing of a sub-set of two dinucleotide binding domains flavin-proteins, Ojha and co-workers
have identified features of an enzyme’s fold that can allow for diversification of biochem-
ical function [209]. It was also observed that the conserved structural features are optimal
for stereo-specic hydride transfer that is stabilized by specic interactions with amino acids
from several motifs distributed among both di-nucleotide binding domains [209]. Simi-
lar observations have been reported in the enolase, amidohydrolase/phospotriesterase and
other families [102, 101].
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1.2.2 Dynamical contributions to Enzyme Catalysis

Structural interactions and fold similarity provide valuable insights into how active site ge-
ometry and various structural motifs/ templates may be utilized in evolution to “diversify”
chemical reactions. However, it does not provide any rationale towards why mutations
to distal residues in the enzyme can play a significant role in affecting catalytic function.
This requires an understanding of the various features that impact the progress of the re-
action. Two competing theories have emerged in terms of the features that control the
catalytic step of the enzyme: (a) dynamical properties or motions of the enzyme/ sub-
strate at various time-scales that impact the catalytic step of the enzyme (or its reaction
coordinate) [114, 47, 49, 77, 78, 163, 90] and (b) electrostatic pre-organization, where by
the protein active site provides the necessary charged environment to lower the barrier re-
quired to move from the reactant (R) state to the transition (T) state [275]. While there is
substantial debate in the literature as to which of these factors contribute the most to the
catalytic step [158], we believe that it is important to understand the dynamical contribu-
tions (motions in the enzyme and substrate) that lead to catalysis.

Dynamical contributions in the context of enzyme substrate binding have been exten-
sively investigated. In the context of enzymes, ANM (and its variants) have provided
insights into how ligands may bind at target locations in the protein. Yang and Bahar,
were able to isolate the common mechano-chemical characteristics in a large data-base
of enzymes and found that catalytically important residues were co-localized with global
hinge centers in these enzymes [287]. Further, Bakan and Bahar were able to show that
the intrinsic fluctuations of an enzyme plays a dominant role in structural changes upon
ligand binding [30]. These studies were limited by the coarse-grained representation (at
Cα level) and modeling the protein’s conformational landscape using a purely harmonic
model. Moreover, enzyme catalysis is a biochemical process involving the breakage and
formation of a chemical bond, which cannot be captured by ANM (or any harmonic model)
since the processes are essentially away from equilibrium [185].

ENM has also been useful in comparing/ contrasting the dynamics of ligand-binding
in enzymes from several proteins. For example, Keskin and co-workers were able to study
the common features of ligand-binding dynamics in several proteins that shared structural
homology [153]. Similarly, Carnevale and co-workers compared large-scale conforma-
tional fluctuations associated with ligand-binding in the entire protease super-family and
were able to show significant similarity in dynamics along the ligand-binding sites in pro-
teases [55]. More recently, a comprehensive analysis of the binding dynamics of the RAS
GTPase family of enzymes revealed an exquisite similarity of motions in the conserved
core of the family and specific motions associated with respect to functional specializa-
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Figure 1.3: Reaction Mechanisms studied in this dissertation. (A) shows the reaction
mechanism of hydride transfer in the enzyme DHFR. (B) shows the reaction mechanism
of isomerization of prolyl-peptidyl substrate in the enzyme CypA.

tion [224].

Enzyme catalysis was traditionally studied using quantum mechanical (QM) or quan-
tum mechanics/molecular mechanics (QM/MM) modeling. However, the ability to im-
plement rigorous QM/MM approaches for various enzyme systems can prove to be ex-
tremely challenging. Hence, a more novel approach called the Empirical Valence Bond
(EVB) [276] method was proposed. This approach allows one to map the reaction as a
series of potential surfaces that drive the system from the reactant to the product state.
Using MD simulations to sample along the potential surfaces and then using standard
thermodynamical approaches allows one to generate a free-energy profile for the reaction
being studied. EVB has been successfully applied to a number of enzyme systems and is
summarized in [274, 210, 158].

Agarwal and co-workers were able to identify a “correlated network of coupled mo-
tions” coupled to catalysis in the enzyme dihydrofolate reductase (DHFR) [7, 8]. DHFR is
an enzyme that catalyzes the reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate.
As illustrated in Fig. 1.3A, the hydride from the co-factor nicotinamide adenine dinu-
cleotide phosphate (NADPH) is transferred to the C6 of the pterin ring in the substrate
(DHF). The collective motions in DHFR, termed as reaction coupled flexibility, involve
fluctuations that extend from the surface all the way to the active site of the enzyme. These
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motions occur at multiple time-scales from µs and beyond (spanning the entire protein) to
fast time-scale fluctuations at nanoseconds and picoseconds (in and around the active site).
Extensive experimental and computational/ theoretical work [40, 47, 41], following this
have now firmly established that coupled motions are indeed an essential feature required
for DHFR to catalyze its reaction.

Similar networks of correlated motions were also observed in the enzyme cyclophilin
A (CypA) [9, 4], which was later verified independently via experimental techniques in-
cluding NMR [78, 90]. CypA is an enzyme that catalyzes the isomerization of prolyl-
peptidyl bonds in a variety of substrates ranging from small peptides to large proteins. The
isomerization reaction mechanism is illustrated in Fig. 1.3B. These studies and a number
of others point to the importance of the enzyme’s intrinsic dynamics and how these mo-
tions enable the enzyme to overcome the energy barrier(s) separating the reactant and
product states. More recently, it was also proposed that solvent motions (especially close
to the surface of an enzyme) can also play a substantial role in modulating an enzyme’s
catalytic step [6].

1.3 Specific Aims

A summary of techniques used to examine protein dynamics at multiple time-scales was
described in Sec. 1.1. Note that all the current techniques described make an implicit
assumption that protein motions can be described as being harmonic or approximate the
anharmonic landscape spanned by a protein using multi-variate Gaussian distributions.
This would naturally lead to the question whether one could do better in describing the
protein’s conformational landscape (and energetics). The specific questions investigated
in the context of describing the internal protein motions at various time-scales (and spatial
resolution) are as follows:

1. How do techniques such as NMA and PCA based on harmonic approximation of
the landscape compare to experimentally determined large-scale (slow time-scale)
fluctuations?

2. Given that NMA and PCA based approaches face limitations, how can one charac-
terize the anharmonic nature of collective fluctuations?

3. Furthermore, with the increasing ability to sample protein motions at biologically
relevant time-scales, are there possible means to understand collective conforma-
tional fluctuations as simulations are progressing?
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We hypothesize that the internal dynamics in an enzyme at multiple time-scales in-
volving a hierarchy of local and global conformational fluctuations, are in fact crucial for
enzyme catalysis and may have induced selective pressure over the course of evolution.
A critical test for this dynamical model of enzyme catalysis to be successful is to explore
the connection between the chemical step during enzyme catalysis and protein exibility in
the context of natural evolution of enzymes. In this part of the thesis, we lay the ground
work for analyzing the evolutionary linkage between enzyme flexibility and catalysis in
a systematic way. In order to study the relationship between an enzyme’s flexibility and
catalytic function we examine two important questions which are described below:

1. Is there significant similarity in the intrinsic dynamics of enzymes before (substrate-
free), during (along the reaction pathway) and after the catalytic step?

2. Given the same bio-chemical reaction, even if two enzymes do not share a common
fold/ shape, is the flexibility associated with the catalytic step similar?

3. If enzymes from a super-family share a common mechanistic step during catalysis, is
the flexibility associated with the chemical step conserved across the super-family?

The answers to these questions will have significant impact in understanding protein dy-
namics (at various spatial and temporal scales) and also in enhancing our understanding of
how enzymes function. Our studies have resulted in the publication of three published re-
search articles and two articles that are currently being resubmitted for publication. These
are listed here:

1. Arvind Ramanathan, Pratul K. Agarwal, Computational Identification of Slow Con-
formational Fluctuations in Proteins, J. Phys. Chem. B., 2009, 113 (52), pp 16669–
16680.

2. Arvind Ramanathan, Andrej J. Savol, Christopher J. Langmead, Pratul K. Agarwal,
and Chakra S. Chennubhotla, Higher-Order Correlations in Internal Protein Mo-
tions and Energetics, Phys. Rev. Lett., 2010, (in submission).

3. Arvind Ramanathan, Pratul K. Agarwal, Maria G. Kurnikova, Christopher J. Lang-
mead, An online approach to mine collective behavior from molecular dynamics
simulations, J. Comp. Bio. (2010), 17:3 (in press).

4. Arvind Ramanathan, Pratul K. Agarwal, Evolutionary Linkage between Enzyme
Fold, Flexibility and Catalysis, .

5. Arvind Ramanathan, Pratul K. Agarwal, Enzyme Superfamily shows Conservation
of Flexibility linked to Catalysis, in revision.
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1.4 Outline of the Thesis

In chapter 2 of this thesis, we examine how well NMA and PCA based techniques (QHA)
provide insights into long time-scale collective conformational fluctuations and whether
conformational sub-states identified may be relevant in protein function. We show that
while PCA can be useful to describe experimentally observed root-mean squared fluctu-
ations (RMSF) and collective motions, it may not provide relevant information regarding
the organization of conformational sub-states in the landscape. Particularly, we observe
that the sub-states identified using PCA do not share enegetic/ conformational similarities,
hence making it difficult to interpret these states in the context of biological function. This
observation makes it difficult to characterize protein flexibility in the context of enzyme
catalysis.

Given that PCA based techniques lack interpretability in terms of identifying confor-
mational sub-states, the natural question is how do we learn about the complex anharmonic
conformational landscape of a protein? This question is investigated in chapter 3 of the
thesis. We perform a detailed analysis of the positional and internal energy distributions
of proteins and characterize the essential statistical “features” of the conformational land-
scape. Particularly, we show that the anharmonic behavior in protein fluctuations gives
rise to unique features which can then be exploited to build a representation of the con-
formational landscape. This model, which we term as quasi-anharmonic analysis (QAA),
can identify and characterize unique conformational sub-states that share significant sim-
ilarity in both energy/ conformational space. Further, we also show that the large-scale
conformational fluctuations as described by QAA can be easily interpreted in terms of a
protein’s function.

The recent improvement in hardware/ software has made all-atom MD simulations to
access biologically relevant time-scales (µs and beyond). The data from such large-scale
MD simulations can easily reach several terabytes. This unprecedented access to data
have also brought along difficulty in storing, analyzing and retrieving biologically relevant
information to the end-users. Thus, there is a need for analyzing such large simulations
on-the-fly or online. Although it is possible to use a few coarse-grained structural metrics
to track MD simulations, these properties doe not necessarily provide any information
regarding collective behavior, which is of interest to the end-users. Hence, in chapter
4 of this thesis, we introduce a novel online approach to mine MD simulations as they
are progressing. By building a novel multi-dimensional representation of MD data using
tensors, we show that it is possible to reason about collective motions and how these
behaviors evolve typically in a long MD simulation. Unlike tracking RMSD, our approach
allows us to cluster the protein into collectively moving regions based on similarity in
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distance fluctuations as well as identify time-points during which the collective behaviors
change significantly.

In chapter 5, we ask the question, if the large-scale collective conformational fluc-
tuations in an enzyme is similar throughout its functional cycle. Particularly, we study
three scenarios for the enzyme cyclophilin A (CypA), a ubiquitous enzyme catalyzing the
cis/trans isomerization of peptidyl-prolyl bonds in several peptides and proteins. We ask if
the slow conformational dynamics, intrinsic to the enzyme are similar before, during and
after the catalytic sub-step. The study shows the remarkable similarity of intrinsic motions
along the reaction pathway as well as in its substrate-free state implying that perhaps,
enzymes have evolved precisely to move in directions that enable function.

In chapter 6 of this thesis, we focus on answering if dynamics coupled to the catalytic
step of an enzyme (in spite of having different folds) show any similarity. By identify-
ing the common features in the reaction coupled flexibility across multiple species in the
enzymes that catalyze the aforementioned reaction mechanisms, we show that reaction
coupled flexibility is conserved across the enzyme fold. We also show that the distal (and
flexible) residues located on the surface of the enzyme are connected to the relatively rigid
active site of the protein via non-covalent linkages (hydrogen bonds and hydrophobic in-
teractions) that are conserved irrespective of sequence/ structural homology.

In chapter 7, we present evidence to show that enzymes from a super-family sharing a
common mechanistic step during catalysis also show similar flexibility during the chem-
ical step of the reaction. We examine the super-family of oxido-reductases, which utilize
dinucleotide cofactors: nicotinamide adenine dinucleotide (NAD+), its phosphorylated
and reduced forms (NADP+, NADH and NADPH). These cofactors play a central role
in cellular metabolism and energy production, as hydride-accepting and hydride donating
coenzymes, in many essential biochemical processes including glycolysis and the citric
acid cycle. This enzyme super-family is referred to as the dinucleotide binding Rossmann
fold proteins (DBRPs) due to the presence of the Rossmann fold, β-α-β motif that binds
a nucleotide. The investigated enzymes have very low sequence identity with diverse sec-
ondary structural topologies. The reaction coupled exibility shows existence of reaction
coupled motions that are remarkably similar. Detailed analyses indicate that in addition to
structural constraints, motions that play a promoting role in catalysis are also a conserved
feature of the entire super-family.

In chapter 8, we conclude with a perspective of how each of the techniques introduced
in the first part of the thesis are useful. The outcomes of the second half of the study
may have far reaching implications for our understanding of how proteins function as well
as what evolutionary constraints may influence enzyme catalysis. A survey of possible
applications are also discussed in this chapter.
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Chapter 2

Analyzing Slow Protein Fluctuations
using Quasi-harmonic Analysis

Slow conformational fluctuations occurring at the microsecond to millisecond time scale
have recently attracted considerable interest in connection to the mechanism of enzyme
catalysis. In this chapter, we present our studies on identification and characterization of
microsecond flexibility of ubiquitin, based on quasi-harmonic analysis (QHA) and normal-
mode analysis (NMA). First, a strategy to sample motions at long time-scales is presented,
which effectively combines information from multiple starting structures and accounts for
the natural structural diversity ubiquitin may exhibit. Next, we show that the identified
slow (large-scale) fluctuations via this strategy are in good agreement with the fluctua-
tions observed from available experimental ensembles. It is also demonstrated that the
motions along the slowest modes have functional implications for ubiquitin binding. All-
atom NMA, on the other hand, is found to strongly depend on the reference conformations.
Analysis of the internal energy of conformations along the top-most (slow) modes from
QHA reveal that the conformations do not share much homogeneity in the energy/ con-
formation space. A perspective on the advantages and limitations of using the harmonic
approximation and its ability to characterize long time-scale fluctuations in proteins is
presented in the end. 1

1Parts of this chapter is adapted from: Arvind Ramanathan, Pratul K. Agarwal, Computational Identifica-
tion of Slow Conformational Fluctuations in Proteins, J. Phys. Chem. B., 2009, 113 (52), pp 16669–16680.
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2.1 Introduction

Slow, collective conformational fluctuations, also referred to as protein breathing mo-
tions [52] have attracted considerable interest due to their possible role in enabling a
protein to perform its designated function such as enzyme catalysis [6, 52, 125, 113, 8,
114, 53, 77, 40, 5, 78]. As explained in the previous chapter (Sec. 1.1), experimental
and computational techniques are playing a significant role in elucidating the nature of
intrinsic protein dynamics and function [6, 114, 100].

Particularly, NMA [51, 25, 179, 282] and its various extensions [286] (see Sec. 1.1.1),
have provided insights into the conformational fluctuations associated with individual pro-
tein structures, as well as flexibility intrinsically associated with the overall shape of pro-
teins and its linkage to protein function. In NMA, a description of the internal motions
of a protein conformation assumed to be in a local energy minimum (or its vicinity) is
computed by diagonalization of the Hessian matrix [197]. Even though NMA provides in-
formation about fast and slow protein motions, these are representative of conformational
fluctuations observed in the vicinity of the reference structure (Fig. 2.1) [185]. Moreover,
it is widely discussed that the slow conformational changes in the proteins show a large
degree of anharmonicity [212, 72, 71, 261]. The harmonic approximation limits the use
of NMA to small amplitude motions in the potential energy surface associated with a lo-
cal minimum [34] (corresponding to the gray region in Fig.2.1). Therefore, NMA is not
well suited to study conformational changes associated with biochemical processes such
as enzyme catalysis, which covers distant areas of the conformational energy landscape.
Methods such as time-averaged normal coordinate analysis (TANCA) [205] have been de-
veloped to overcome some of the inherent limitations of NMA. TANCA provides more
reproducible modes by diagonalizing the time-averaged Hessian matrix. The fast motions
that differ considerably between the reference structures are removed in TANCA. How-
ever, TANCA is computationally very expensive, as it requires calculation of the Hessian
for each structure of the molecular dynamics (MD) trajectory.

Quasi-harmonic analysis (QHA) [150] and related principal component analysis tech-
niques [15] (see Sec. 1.1.2), based on the eigenvalue decomposition of an ensemble of
protein conformations, have provided a useful method for identifying motions particularly
at long time scales (see Fig. 2.1). QHA allows identification of protein motions at a
variety of time scales, as the atomic fluctuation matrix can be computed from protein con-
formations sampled during a single MD simulation (short time scale) [57], a collection
of MD trajectories (collectively representing long time scale) [9] or a set of conforma-
tions obtained using various sampling techniques (which could represent protein present
in different stages during its functional cycle).
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Figure 2.1: Conformational fluctuations identified by QHA and NMA based on alter-
nate ways to approximate the potential energy surface. NMA identifies motions in the
vicinity of the energy minimum, while QHA can identify motions that span distant areas
of the energy surface.

QHA is emerging as an important method for identification of slow conformational
fluctuations within proteins. However, the degree of certainty with which the motions
identified by QHA at long time scales (microsecond and longer) can reproduce the motions
observed through experimental methods such as NMR/X-ray crystallography [99, 170] re-
mains an important concern. The amount of conformational sampling that is required to
observe the slow motions corresponding to experimentally available data is also of con-
cern [1, 68, 64]. Further, QHA does not provide any information about the time scales
of motions – only the relative direction and the magnitude of motions are available from
the analysis. The eigenvalues provide relative information about the frequencies asso-
ciated with the eigenmodes; however, in a number of cases, the exact time scale of the
computed motions cannot be assessed definitively. For example, if the motions are com-
puted by combining conformations sampled by several MD simulations based on differ-
ent starting structures, information about the time scale of the identified motions is miss-
ing [31, 169]. A related concern is that of identifying and characterizing conformational
sub-states. QHA (and related PCA techniques) have been regularly used in identifying
sub-states [192, 296, 297]. However, it is not clear if these sub-states share any con-
formational or energetic homogeneity. This has important bearing on understanding the
organization of the conformational landscape of a protein and therefore needs to be clari-
fied.
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In this chapter, we present a systematic characterization of slow protein conforma-
tional fluctuations identified using QHA and NMA. Further, a methodology for identi-
fying conformational fluctuations associated with an enzyme reaction is also discussed.
Microsecond motions in ubiquitin, a small globular protein, are identified, characterized,
and compared to the experimentally available microsecond ensemble of ubiquitin struc-
tures. The selection of ubiquitin is based on the availability of a number of conformations
through NMR studies as well as a large number of X-ray crystal structures. Recent stud-
ies by Lange and co-workers have provided insights into the structural heterogeneity of
ubiquitin, characterized by NMR at the microsecond time scale [170]. Our results indicate
that the computationally obtained slow motions can reliably reproduce the conformational
fluctuations observed from experimental techniques. The use of multiple MD simulations
based on different crystal structures accounting for the structural diversity in the protein
allows the range of slow motions to be explored quickly. Further, the regions identified
to have significant conformational flexibility identified by QHA correspond to the regions
that show structural deviations in the different structures from X-ray as well as NMR.

However, while interpreting the conformational landscape using any of the PCA tech-
niques, one must be more cautious. Our results indicate that the in the conformational
landscape spanned by the top three basis vectors from PCA, the conformational sub-states
identified do not share either structural or energetic homogeneity. Further, even though
these basis vectors correspond to the slowest modes of motion, our analysis reveals that it
is difficult to identify and characterize conformational sub-states relevant to function. This
highlights the limitations of using a harmonic approximation to describe an inherently an-
harmonic landscape. Hence, we motivate the need to characterize anharmonic fluctuations
in a protein.

2.2 Simulating Long time-scale Fluctuations from Shorter
MD Simulations

This section introduces a strategy to simulate long time-scale from MD simulations from
a collection of shorter MD runs. This approach was proposed as early as 1998 [57], which
showed that time-scale accessible to MD simulations from a single 1 ns run was shorter
than the time-scale accessible to a collection of 10 individual MD runs that lasted 100 ps.
Further, Shirts and Pande [243] were able to show that using a large number of smaller
MD runs could approximate long time-scale fluctuations derived from a single long MD
run. Within the protein folding community, this approach has gathered significant support,
especially with the Folding@Home project [213]. Although parallel independent simula-
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tions approach to simulate long time-scale motions are valid, one needs to exercise caution
while interpreting kinetic parameters from such simulations, as pointed out by Fersht [88].

2.2.1 Ubiquitin: A work-horse for Protein Dynamics

Ubiquitin is found in all eukaryotes, known to have an important role in labeling proteins
for degradation [221]. Its structure is evolutionarily conserved, consisting of five β-strands
arranged as an antiparallel sheet interspersed with two α-helices located close to the N-
and C-termini of the protein [74, 278, 268]. It belongs to the well-known β-grasp fold-
family [138]. Ubiquitin is known to bind diverse targets, and therefore, its flexibility
associated with binding other proteins is of interest. As illustrated in Fig. 2.2, the protein
consists of 5 anti-parallel β-strands (β1 − β5) interspersed between two α-helices labeled
α1 and α2. The loops β1−β2 and β3−β4 and the surface extending from these loops form
the primary binding site for ubiquitin. Although there are secondary (and tertiary) binding
sites in ubiquitin, the flexibility associated with the two loops (β1 − β2 and β3 − β4) is of
prime interest since it can bind to a variety of substrates [75].

Human ubiquitin (76 residues in a single chain) was selected for computationally iden-
tifying and characterizing the microsecond conformational flexibility due to the structural
diversity available from different experimental techniques as well as microsecond flexibil-
ity as recently observed with NMR [170]. The set of conformations in this NMR study
included all of the structural heterogeneity observed from 46 X-ray crystallographic struc-
tures in which ubiquitin was complexed with diverse proteins. Moreover, it was observed
that a linear combination of a small set of principal components was able to explain the
pincer-like motion of ubiquitin residues involved in forming the binding interactions; and
conformational selection, rather than the induced-fit mechanism, was sufficient to explain
all of the structural heterogeneity in ubiquitin binding dynamics.

The availability of a number of X-ray structure/NMR ensembles and structural de-
viations within these structures provides information on the conformational fluctuations
when the protein samples the kinetically accessible parts of the energy landscape. The
recently reported microsecond NMR refinement with orientational restraints (EROS) with
116 structures (PDB code: 2K39) [170] was used for comparisons with the computational
results. The 46 X-ray crystal structures of ubiquitin available in the PDB database [44]
were also used. These structures were aligned to the reference structure 1UBQ [268] be-
fore simulation and analysis. The N-terminal residue 1 and the C-terminal tail consisting
of residues 71-76 were excluded from our analysis due to the large displacements in the
free ends, and for X-ray ensemble analysis, only the heavy atoms were used. Computa-
tional analysis of ubiquitin has served various purposes: (a) validation of force-fields and
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Figure 2.2: Structure of Ubiquitin. Ubiquitin is an ubiquitously expressed protein with
five β-strands (β1 − β5) as well as two α helicaes (α1 and α2). The flexible loops are
highlighted in dark red.

simulations [244, 189], (b) possible allosteric effects [182], (c) protein folding [190] and
(d) develop novel MD algorithms to simulate longer time-scales [191]. Thus, one may
consider ubiquitin to be a work-horse for evaluating protein dynamics at various time-
scales.

Eight different starting X-ray crystal structures, which covered the structural diversity
of ubiquitin, were used as starting points for MD simulations. These starting structures
were obtained from the Protein Data Bank with the following access codes: 1UBQ, 1P3Q
(chain U) [268], 1S1Q (chain B) [253], 1TBE (chain B) [66], 1YIW (chain A) [32], 2D3G
(chain B) [129], 2FCQ (chain B) [33], and 2G45 (chain B) [228]. Each of the eight crystal
structures was processed using the AMBER 8.0 simulation suite and the parm98 force-
field [218]. A summary of the structural differences in the eight crystal structures are
summarized in Table 2.1.
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Structure Chain RMSD (Å) Regions with structural changes
1UBQ A (reference) -
1P3Q U 0.417 β1 − β2, β3 − β4

1S1Q B 0.501 β1 − β2, β3 − β4, β2 − α1

1TBE B 0.528 α1 − β3, β1 − β2, β3 − β4

1YIW A 0.574 α1 − β3, β1 − β2, β3 − β4

2D3G A 0.380 β1 − β2, β3 − β4

2FCQ B 0.568 β1 − β2, β3 − β4

2G45 B 0.570 β1 − β2, β3 − β4

Table 2.1: Summary of starting PDB structures used for detailed molecular dynamics
simulations. These crystal structures were chosen for showing diverse binding partners
and also having sufficient structural diversity. RMSD was computed for the backbone of
each of the structures to 1UBQ (base structure). The summary of structural changes de-
scribes areas highly flexible from the ensemble, as observed by structural overlaps against
1UBQ.

2.2.2 MD Simulations

Each of the eight crystal structures was processed using the AMBER 8.0 simulation suite
and the parm98 force-field [218]. Note, we have previously verified the ability of the
parm98 force-field for its ability to reliably reproduce conformational fluctuations in pro-
teins [9]. Standard amino acid residues were used to build the protein structures. After
determining the protonation state for each amino acid residue at pH 7.0, missing hydrogen
atoms were added to the protein. The structures were placed in a rectangular box of SPC/E
water [233], such that the distance between the protein and the side of the water box was
10 Å.

The prepared systems were equilibrated using the following protocol. First, the water
molecules were minimized using the steepest descent method for 500 steps, followed by
conjugate gradients minimization until the root mean square (rms) of the gradients was
less than 0.25 kcal/mol. Å. In the next step, the protein atoms were minimized using a
similar procedure to release close contacts in crystal structures. A small MD simulation of
25.0 ps with a gradual increase of the temperature in the system to about 300 K, followed
by a 25.0 ps constant pressure simulation in which the water molecules were unrestrained
to allow occupation of vacuous regions. Five additional steps of equilibration at constant
volume were performed with each step consisting of an energy minimization (threshold
0.001 kcal/mol. Å ) followed by a 5.0 ps MD run. In these steps, positional restraints
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were applied to solute atoms. For the first of the five steps, the force constant was 100
kcal/mol. Å2, followed by a gradual scaling of 0.5 for subsequent steps. The final equi-
libration was performed without any positional restraints. Another MD simulation with a
temperature ramp over 25.0 ps to readjust the temperature to 300 K followed by a 25.0 ps
constant pressure MD step to fill any remaining voids was performed to reach the equili-
brated structure.

All production runs were performed using the NVE ensemble, with periodic bound-
ary conditions. The particle-mesh Ewald (PME) [223] method was used for electrostatic
interactions; a 10 Å cutoff for Lennard-Jones interactions and SHAKE [233] was used
for restricting motions of all covalent bonds with hydrogen atoms. All simulations were
performed at 300 K and 1 atm pressure. The data from simulations were stored every 1 ps.
A total of 62,500 snapshots were collected, totaling 62.5 ns of time for each production
run. Collectively for the eight systems, the total conformations sampled are referred to as
the 0.5 µs MD ensemble. As an aside, it should be noted that the equilibration procedure
and the production run protocols were followed through out the thesis.

Collective Conformational Fluctuations using QHA

QHA, as outlined in Sec. 1.1.3 was performed on the conformations sampled in the MD
simulations, and a corresponding principal component analysis was performed with the
116 structures in the EROS ensemble and the 46 X-ray crystal structures. For all eight
MD simulations, the structures were fit to the reference structure of 1UBQ to remove
rotational/translational movements. QHA modes were computed for the 0.1, 0.2, 0.3, 0.4,
and 0.5 µs MD ensembles; for each analysis, 1,250 structures (stored at regular intervals)
from each of the eight MD simulations, therefore a total of 10,000 structures, were used for
each ensemble. Note that the 0.1, 0.2, 0.3, 0.4, and 0.5 µs MD ensembles are based on the
12.5, 25.0, 37.5, 50, and 62.5 ns individual MD trajectories, respectively, from each of the
eight MD simulations. For each of the ensembles, the atomic fluctuation matrix 1.6 was
built for all atoms and diagonalized using the ptraj [56] program as part of the AMBER
suite. The results from QHA were visualized using custom scripts written in Python [265]
and PyMOL [73]

Normal Mode Analysis

Twelve structures from each simulation (at 5 ns, 10 ns, 15 ns, . . ., 55 ns, 60 ns), there-
fore, a total of 96 structures from the eight simulations, were analyzed with NMA. Prior
to NMA, the starting structure was minimized using both the Newton-Raphson and con-
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jugate gradients minimization methods until an rms tolerance of 10−4 kcal/mol. Å−1 was
reached. Solvent was excluded from the calculations, and the nmode program [204] from
the AMBER suite of programs was used to compute the normal modes for ubiquitin.

2.3 Slow Conformational Dynamics of Ubiquitin

Slow conformational fluctuations in ubiquitin were identified with QHA and dPCA from
the conformations extracted from the MD trajectories. In the most straightforward way,
these fluctuations could be identified by generating a microsecond trajectory followed by
the QHA of the system snapshots collected during the simulation. However, currently,
computing microsecond trajectories of even small proteins is computationally expensive
and time-prohibitive, as it would require several months of simulation run-time even with
the best computer hardware. As an alternate approach, for this study, eight independent
MD simulations each based on a different starting X-ray crystal structure and 62.5 ns
in duration were generated. The total set of conformations used for QHA corresponds
to 0.5µs sampling of the potential energy surface (obtained by combining all eight MD
simulations). This approach leads to an obvious question: does the analysis of this total
ensemble provide information about ubiquitin flexibility at the microsecond or nanosecond
time scale? We provide an answer to this important question below after the detailed
characterization of the QHA modes and comparison with the experimental information.

2.3.1 Analysis of Fluctuations in Ubiquitin

Fig. 2.3 depicts the ubiquitin backbone flexibility as identified on the basis of the individ-
ual MD trajectories as well as the 0.5µs MD ensemble. An indication of the backbone flex-
ibility of ubiquitin is provided by the root-mean-square fluctuations (rmsfs) as computed
from the 0.5µs ensemble of MD structure. The rmsf includes the complete set of motions;
however, the motivation of this study is to characterize the slow conformational flexibility.
Therefore, slow conformational fluctuations were identified by computing QHA modes
from a set of 10,000 conformations in the individual 62.5 ns MD trajectories as well as
the entire 0.5µs MD ensemble. The modes computed from the 0.5µs MD ensemble are
referred to as QHA0.5µs in the remaining text of this report. As depicted in Figure 3, QHA
analysis of individual 62.5 ns MD trajectories can identify the mobile regions qualitatively;
however, it is unable to correctly characterize the range of motions (displacements) due
to limited coverage of the energy landscape. An aggregation of the slowest 10 QHA0.5µs

modes (obtained by summing up the atomic displacements in the modes) indicates that
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Figure 2.3: Similarity in ubiquitin backbone flexibility as characterized by 0.5 µs
and 62.5 ns conformation sampling. The gray curve corresponds to an average of three
individual MD trajectories (based on the 1P3Q, 1S1Q, and 1UBQ crystal structures) each
62.5 ns in duration, while the solid black curve corresponds to a total of 0.5 µs sampling
from eight separate MD simulations. Flexibility as quantified by the slowest 10 QHA
modes (solid black curve) is compared to the total rmsf of the 0.5 µs MD ensemble (dashed
black curve), which corresponds to all modes.

they are sufficient to capture the majority of fluctuations in the most mobile region of
ubiquitin when compared to all motions; in particular, these slowest modes show simi-
lar displacements in the most mobile regions of the ubiquitin backbone. Note the slow-
est modes are defined by the low frequencies (eigenvalues) corresponding to the modes.
Quantitative estimates indicate that the slowest 10 modes represent 78.4% of flexibility
reflected in the 0.5µs ensemble (the slowest 20 modes capture 87% and the slowest 50
modes capture 94% of flexibility). Therefore, the slowest 10 modes were selected for de-
tailed analysis and characterization. The advantage of using the slowest 10 modes instead
of the total rmsfs is that it can mitigate the effects of “noise” represented by fast fluctua-
tions (at short time-scales) which are irrelevant for collective fluctuations involving global
motions in the protein.

Ubiquitin shows considerable flexibility at the microsecond time scale (see Fig. 2.4).
In addition to the QHA0.5µs, ubiquitin flexibility was also characterized on the basis of
the structures from the X-ray and NMR ensembles. Modes based on 46 X-ray structures
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Figure 2.4: Microsecond conformational fluctuations in ubiquitin as identified by
QHA0.5µs, NMR (EROS), and X-ray ensembles show high degree of similarity in
flexible regions. (a) Inverse frequency-weighted positional fluctuations for Cα atoms
are shown in a tube-like representation; thicker tubes represent large-scale fluctuations,
and thinner tubes represent lower fluctuations. The actual magnitude of the fluctuation
is also color-coded, with red indicating regions with the highest conformational flexibil-
ity and blue representing regions within the protein that are relatively less flexible. (b)
Comparison of the ubiquitin backbone fluctuation at the microsecond time scale. Inverse
frequency-weighted positional fluctuations in ubiquitin. The positional fluctuations from
MD ensembles are shown compared with the microsecond scale NMR and X-ray ensem-
ble. The secondary structure of ubiquitin is overlaid on top of the plot for ease of visual-
ization and identifying regions that show high flexibility.

and 116 structures in the NMR ensemble (EROS) were computed in a similar way to the
QHA0.5µs. Note that the EROS ensemble corresponds to the microsecond time scale as
defined by the resolution of the NMR experiments [170]. Fig. 2.4a depicts slow confor-
mational fluctuations of ubiquitin as an aggregate of the top 10 slowest modes from the
QHA0.5µs, EROS, and X-ray ensembles. The microsecond scale flexibility is observed in
three major regions: β1 − β2 hairpin, α1 − β3 loop, and β3 − α2 loop. The computational
results agree with the EROS results, except for the β3 − α2 region, where the simulations
indicate higher flexibility; also, computational simulations show additional flexibility in
the β2 − α1 region (see further discussion below). Fig. 2.4b depicts that computationally
even at 0.1µs there is qualitative agreement within the experimentally observed flexibility,
as the regions of high flexibility are similar. However, with additional sampling of the po-
tential energy surface (0.2, 0.3, 0.4, and 0.5µs), the amplitude of the motions in the flexible
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Figure 2.5: Similarity in directions of the slowest mode of ubiquitin at the microsec-
ond time scale based on the QHA0.5µs (computational) and EROS ensemble (experi-
mental). The modes are depicted in a movie-like fashion, with subsequent conformations
shown in lighter colors. Four regions of the protein are highlighted with different colors
and labeled; these regions indicate large displacements. These motions involve a pincer-
like motion involving β1− β2, the C-terminal part of the α1 helix, and α1− β3 loops. The
amplitudes of the motions are arbitrarily scaled for visualization; however, see text for a
comparison of the coverage of the conformational landscape.

regions of the protein becomes enhanced and is able to qualitatively reproduce the exper-
imentally observed backbone flexibility in the microsecond NMR ensemble. While the
NMR ensemble agrees with computationally characterized flexibility, the X-ray ensemble
shows subdued motions. This is potentially an artifact, as the amplitude of fluctuations
observed are based on simulations of unbound ubiquitin in solution, compared to the ubiq-
uitin from X-ray ensembles where it is present in complex with other proteins [45]. This
has also been reported previously in the comparison of X-ray structure with the NMR en-
semble [170]. Particularly, the residues Ile44 and His68 show close contacts with binding
partners in the X-ray structures; in simulations where the binding partners are absent, these
regions show increased flexibility.

2.3.2 Comparing Directions of Motions from Experimental and MD
ensembles

Individual slow modes from the QHA0.5µs and EROS ensembles provide interesting in-
sights into intrinsic large-scale motions of ubiquitin with a potentially functional role. Fig.

32



2.5 shows a movie-like representation of the slowest mode from the two ensembles; this
mode shows an opening/closing motion associated with the binding site of ubiquitin [154].
As also previously reported, this mode involves the pincer-like motion of α1−β3, β1−β2,
and β3 − β4 loop regions. QHA0.5µs also reveals large motions in the β2 − α1 regions
and to a smaller extent in the β4 − α2 loop region (see the Supporting Information for
animated movies of the modes). These two loops show highly correlated movements with
the opening/closing motions. The motion of residues Ile44, Lys63, and His68 that make
close contacts with the binding proteins are observed to be restricted in this mode, which
also agrees with the findings from the study of the EROS ensemble. A comparison of other
slow modes indicates that the magnitude and the directions of motions in modes 2-10 from
QHA0.5µs and EROS ensembles were also similar. As mentioned above, it was found that
the slowest 10 modes contribute>78% of the ubiquitin flexibility; therefore, the similarity
in the slowest 10 modes between the computational and experimentally calculated modes
indicates overall similar microsecond flexibility of ubiquitin. Overall, similarity in flexible
regions and the displacement amplitudes within modes from the MD simulations and ex-
perimental ensembles (EROS) indicates that QHA is able to reproduce the conformational
fluctuations of ubiquitin.

The ability of QHA0.5µs to reproduce the experimentally observed ubiquitin flexibility
at the microsecond time scale was characterized in further detail. In order to perform a
quantitative comparison, the large-scale fluctuations computed using QHA on the total
0.5µs MD simulations and EROS ensemble were compared by calculation of the overlap
for the slowest modes. The overlap between two subspaces spanned by the eigenvectors is
defined by Hess‘s metric [126] as follows:

γ =
1

D1

D1∑
i=1

D2∑
j=1

(v1
i .v

2
j)

2 (2.1)

where D1 and D2 represent the number of eigenvectors considered from each of the en-
sembles; v1

i represents the ith eigenvector from each of the ensembles. γ indicates the
degree of similarity of motions between the two ensembles, with a value of 1 indicating
identical motions. On the basis of the observation that the slowest 10 modes are able to
qualitatively reproduce the flexibility in the most mobile regions of the proteins, we com-
puted the overlap for the slowest 10 modes. As indicated in Table 2.2, the QHA modes
computed on the basis of 0.1, 0.2, 0.3, 0.4, and 0.5µs MD sampling show close to 80%
overlap, indicating that the large-scale conformation fluctuations are reproducible across
various sections of the MD sampling. This also provides an indication of the robustness
of QHA methodology in identifying slow conformational fluctuations.

A corresponding calculation of overlaps of the modes from MD simulation with that
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0.1 µs 0.2 µs 0.3 µs 0.4 µs 0.5 µs
0.1 µs 0.872 0.795 0.774 0.755
0.2 µs 0.880 0.855 0.783
0.3 µs 0.980 0.880
0.4 µs 0.895
EROS 0.748 0.747 0.749 0.751 0.747
X-ray 0.405 0.396 0.362 0.364 0.349

Table 2.2: Similarity of Motions Spanned by QHA, EROS, and X-ray Ensembles for Ubiq-
uitin. Each entry in the table is computed via eq 2, for the slowest 10 modes determined
from each of the ensembles from the MD simulation.

of EROS also indicates about 75% agreement between the two ensembles (see Table 2.2).
Note that the window of previous NMR investigations has been very broadly defined on
the microsecond time scale. The X-ray ensemble shows a lower degree of similarity; as
mentioned before, this is possibly due to the comparison of bound ubiquitin in X-ray com-
plexes with apo-ubiquitin. The largest differences in flexibility between the computational
and EROS ensembles are observed in the β2 − α1 and β3 − α2 loops. It is possible that
the 0.5µs scale simulations have allowed β2 − α1 and β3 − α2 loop regions to explore
areas within the potential energy surface that were not accessible during the window of
the EROS or the X-ray ensembles, particularly the higher energy regions of the conforma-
tional energy landscape that were not accessible to EROS/X-ray ensemble structures (see
the discussion below on conformational sampling of various regions of the conformational
energy landscape). Additionally, it is also possible that the force-field overestimates the
flexibility of these two regions in the MD simulations or that the NMR investigations have
underestimated the flexibility of the protein. Table 2.2 and the information in Figure 2.4b
also indicate that the extent of conformational fluctuations improves with additional sam-
pling between the 0.1 and 0.5µs ensembles. The comparison of the overlap between these
ensembles (see the last column in Table 2.2) indicates convergence toward the conforma-
tional flexibility at the microsecond time scale. Additional sampling of the conformational
landscape may lead to changes in the overlaps; however, as discussed below, these changes
are not expected to be qualitatively much different.

2.3.3 Conformational Sub-states spanned by Low-frequency Modes

The ability of the slow modes to cover the conformational landscape was also character-
ized on the basis of the calculation of projections along the MD trajectories and NMR
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ensemble. The projections from each of the ensembles were calculated using:

qi(t) = (x(t)− 〈x〉).vi (2.2)

where qi(t) is the projection of the tth snapshot in the trajectory, x(t) is the corresponding
positional vector, 〈x〉 is the mean positional vector, and vi represents the ith eigenvector.
The extent of overlap between the projections from the slow modes has been previously
used in the literature to characterize the sampling of the conformational energy landscape
in computational methods as well as the structural deviations observed in experimental
techniques (including NMR and X-ray ensembles). Within the projections of the slowest
two modes (see Fig. 2.6), it was observed that the EROS ensemble is entirely covered by
the combined MD simulation. This indicates that 0.5µs aggregate MD simulations were
sufficient to cover all of the states visited by EROS ensembles. In addition, MD simula-
tions are also able to cover certain areas of the potential energy landscape not observed
from the experimental ensembles (explaining the larger motions sampled by MD). This is
especially evident at the right side of Fig. 2.6a, which is markedly devoid of any EROS
related structures. Similarly, other slower modes also indicate that the MD simulation cov-
ers all of the conformations from the EROS ensemble (Fig. 2.6b), indicating a widespread
agreement between the subspaces spanned by MD and EROS ensembles.

The use of eight separate MD simulations based on different starting structures allows
characterization of microsecond flexibility with relatively short trajectories (62.5 ns each).
As is depicted in Fig. 2.6, the slowest QHA0.5µs modes cover the part of the landscape that
is also explored by the EROS ensemble. The projection of the slowest QHA0.5µs modes on
the MD and NMR structures indicates that starting MD trajectories from different struc-
tures allows quick sampling of the neighboring area of the landscape, while it could be
envisioned that the longer trajectories would allow sampling of other distant areas of the
landscape. From these projections, up to six areas or clusters are identified and marked
by the ellipses in Fig. 2.6. These clusters correspond to areas of the landscape visited
by MD simulations. Note that some individual trajectories visited more than one cluster
(for example, 1YIW and 2G45) with the intersection point or overlap between the ellipses
corresponding to higher energy states or transition points. Any of the eight ubiquitin MD
simulations less than 50 ns did not show the presence of these conformational states or
transition points. The use of multiple MD simulations allows quick sampling of the dif-
ferent clusters, which would otherwise take much longer simulation times. An interesting
observation from these plots indicates that the projections from the NMR ensemble are
located in one or more clusters, which are also the most visited area by the various MD
trajectories. This common area of the plot is the most visited area by multiple MD sim-
ulations. This could possibly indicate the presence of a more populated conformational
substate of ubiquitin that is visited both during the computational (MD) and experimental
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Figure 2.6: Projections of the slowest modes show considerable overlap between
QHA0.5µs and EROS ensembles. Projections of the slowest modes from the microsec-
ond MD ensemble and experimental EROS for (a) mode 1 vs mode 2 and (b) mode 3 vs
mode 4. Gray circles represent the ensemble of structures from MD simulations, and red
squares represent EROS structures. The slowest four modes computed with QHAµs were
used calculating the projections for structures from all eight MD simulations and the NMR
ensemble. As marked with ellipses, the projections can be separated into six and five clus-
ters, one or more of which are sampled by individual trajectories. Note that the computed
projections represent summation over all atoms in the protein.

(NMR) methods. These plots also provide an indication that the 0.5µs MD ensemble has
covered the extent of conformational landscape accessible by ubiquitin at the microsecond
time scale. Additionally, the coverage of a larger portion of the landscape (beyond what
is explored by NMR) provides an explanation of higher flexibility indicated by the MD
simulations. These observations are consistent with the overlaps listed in Table 2.2. Fur-
ther MD sampling would lead to filling out the gaps in these plots (sampling of the higher
energy transition points); therefore, qualitatively, any significant differences in the slow
conformational fluctuations are not expected.

In order to further characterize the nature of conformational sub-states, we also looked
at the distribution of internal energy of each conformation along the slowest three modes
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Figure 2.7: QHA description of ubiquitin landscape as spanned by the top three basis
vectors (~α). Note the lack of homogeneity in the internal energy distributions of QHA. The
top three basis vectors from QHA (α1...3) were used to project the 10,000 conformations
from the MD simulation. The projection of each conformation is colored by the scaled
internal energy. Note the apparent lack of sub-states (clusters).

determined via QHA. This is illustrated in Fig. 2.7. Each conformation from the MD
simulation is projected onto a space spanned by the top three basis vectors (slowest fre-
quencies), which contribute to over 50% of the overall variance. Each conformation is also
painted by the scaled internal energy of the protein. Although, one can clearly observe the
presence of several conformational clusters, the distribution of the scaled internal energy
is somewhat heterogenous.

2.3.4 Comparison of QHA0.5µs with NMA

NMA provides a quadratic approximation of the potential energy surface based on a ref-
erence structure, and is well suited to study motions close to a local energy minimum
(see Fig. 2.1). NMA was computed for 12 structures, each separated by 5 ns for each of
eight MD simulations; therefore, a total of 96 sets of NMA modes were obtained (see the
Methods section for more details). The results are summarized in Fig. 2.8 and 2.9. As
depicted in Figure 2.8, various ubiquitin regions show high flexibility; however, there are
considerable differences in the regions of larger flexibility between different structures.
The highlighted regions particularly show flexibility that is not reproduced in other struc-
tures. Even though the regions of flexibility are similar to the QHA0.5µs, the magnitude
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Figure 2.8: Average RMSF determined on the basis of NMA of ubiquitin based on the
eight structures show considerable variation in fluctuation profiles. The displacement
vectors for the slowest 10 modes were aggregated (by summing all atomic displacements
in the modes) and averaged for 12 conformations. Note that the fluctuations are colored
on the same scale as the results of the QHA analysis (Fig.2.4). The circled areas indicate
regions with flexibility which is not reproduced in other structures. These results show
lower amplitudes and less reliable modes than QHA.

of displacement is much smaller for NMA modes when compared to the QHA modes, as
is visible by comparison with colored regions in Fig. 2.4 (note that the color bars are on
same scale for the two figures). This difference possibly exists because NMA characterizes
motions that explore the immediate vicinity of the local minimum of the reference struc-
ture (gray area in Fig. 2.1), whereas QHA of the 0.5µs ensemble indicates sampling of
a larger portion of the conformation energy landscape [25] The conformational flexibility
identified by NMA shows considerably lower agreement with the EROS ensemble as well
(see Table 2.3); therefore, it is much less able to reproduce the experimentally observed
ubiquitin flexibility.

Characterization of the correlation between the NMA modes indicates several interest-
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EROS 1P3Q 1TBE 1S1Q 1UBQ 1YIW 2D3G 2FCQ 2G45
QHA0.5µs 0.713 0.641 0.490 0.540 0.721 0.457 0.600 0.441 0.401

EROS 0.607 0.624 0.601 0.690 0.502 0.562 0.625 0.436

Table 2.3: Correlation of Positional Fluctuations between NMA, QHA, and EROS
Modes. The comparison represents the correlation between inverse frequency-weighted
top 10 modes. NMA shows a lower agreement with EROS as compared to QHA results.

ing aspects of ubiquitin flexibility. As depicted in Figure 2.9, the NMA shows considerable
variation during the MD trajectory, as indicated by considerably lower correlations with
the other structures in the same MD simulation. For 1P3Q, 1YIW, and 2G45 in particular
as the trajectory evolved, the lower correlation indicates changes in normal modes. This
is also possibly an indication of the MD simulation sampling different areas of the energy
landscape. However, in the case of 1TBE and 1UBQ, the normal modes show a larger
correlation, possibly indicative of MD simulation sampling the neighboring areas of the
energy landscape. It is interesting to note that these observations are similar to the one
mentioned above for QHA.

2.4 Conclusions

2.4.1 Summary

The microsecond flexibility in ubiquitin was characterized using QHA of the conforma-
tions generated along eight MD trajectories starting from eight different crystal structures.
Overall, the total ensemble corresponded to 0.5 µs sampling. In addition to significantly
reducing the run time of the simulations by performing these eight runs simultaneously,
this approach enables the sampling of separate areas of the energy surface due to starting
from different crystal structures. The characterization of the slow conformations indicated
that the top 10 modes accounted for over 78% of the flexibility observed at the microsec-
ond time scale. The slowest mode indicated pincer-like motion, as was previously iden-
tified using microsecond NMR. This motion has been implicated in ubiquitin binding to
other proteins in solution. The identified motions were compared to the structural devi-
ations observed in the collection of ubiquitin structures in complex with other proteins,
as well as the recently characterized NMR ensemble. The degree of similarity between
NMR ensemble flexibility and the QHA0.5µs modes was observed to be close to 0.75 (for
the top 10 modes), indicating a significant agreement in the nature of the slow motions
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at the microsecond time scale. Further, the coverage of the conformational landscape by
the computationally and experimentally identified flexibility was observed to be similar,
even though individual trajectories sampled only 62.5 ns. The use of multiple trajecto-
ries allows for most of the conformational flexibility at the microsecond time scale to be
reproduced. Therefore, we believe that combination of multiple trajectories provides an
efficient method to explore long scale conformational fluctuations. Other investigations
have also reported similar observations [57, 58].

2.4.2 Perspectives on using PCA and NMA

Perhaps, the most widely used techniques in understanding intrinsic motions of proteins
are normal mode analysis (NMA) [25, 27] and principal component analysis (PCA) [142,
150, 15]. NMA based approaches are popular due to their inherent simplicity: beginning
with a single X-ray crystal structure or an experimental ensemble of structures, it is pos-
sible to obtain fundamental insights into the internal motions and flexibility patterns of
a protein. NMA based approaches have proven useful to understand the molecular basis
of biophysical processes such as ligand-binding [24, 30]. Several studies have shown the
ability of NMA to correlate with experimental B-factors or order parameters [28]. In the
context of enzyme catalysis, NMA has been useful to assess the role of collective and in-
trinsic mobility of specific amino-acid residues in enzymes as a mechanistic requirement
for function [287, 24].

A number of previous studies have been published, highlighting the usefulness and
limitations of NMA based techniques. Ma has pointed out that while the directions as indi-
cated by the low-frequency motions describe the overall trends of conformational changes,
the motions of side-chains (which are at much higher frequencies) need to be interpreted
with caution [185]. Further, a careful and extensive analysis of NMA based approaches by
Kondrashov and co-workers [160] also showed that incorporating chemical specificity of
residues can tremendously increase the accuracy of thermal B-factor prediction in NMA.
A comparison of NMA with MD based approaches also showed that in general, a larger
number of NMA modes were required to explain the same variance from MD [231].

While motions involved in ligand-binding and complex formation are the forte of NMA
based approaches, it must also be assessed in the context of enzyme catalysis. Chemical
catalysis involves a detailed understanding of chemical processes in the active site where
atom-to-atom contacts and specific interactions play a critical role. Such chemical speci-
ficity is not accessible to coarse-grained NMA approaches and with all-atom NMA, the
harmonic approximation typically breaks down since the formation/ deletion of a chemi-
cal bond is away from the equilibrium. Since NMA cannot explain structural deviations
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away from equilibrium, techniques such as QHA are used to approximate the potential en-
ergy landscape as sampled from MD simulations [7]. QHA has been widely used to study
biochemical processes such as enzyme catalysis and more recently, has also proven useful
to interpret experimentally observed conformational transitions for the enzyme adenylate
kinase (Adk) along the reaction trajectory [125]. It was shown that large-scale motions in
Adk at millisecond time-scales (as accessed by NMR experiments) are infrequent, while
faster and frequent motions at nano-seconds of smaller amplitude are along the direction
of this large-scale conformational change.

The conformational fluctuations as described by QHA correlate well with experimen-
tally determined large-scale motions. This is because QHA approximates the conforma-
tional landscape spanned by a protein by pursuing variance, a second order statistic. While
variance is a good measure to describe the extent of conformational fluctuations, it should
also be noted that variance is very sensitive to outliers in the underlying data. Thus, rare oc-
currences of extreme fluctuations in a MD simulation can have significant (and potentially
adverse) effects on QHA and can lead to rather non-intuitive description of the landscape
spanned by the protein. QHA has no intuition about the rich statistical diversity positional
fluctuations may exhibit. Especially, it cannot differentiate if the positional fluctuations
arose as a consequence of sampling uniformly along a particular direction or from rare
and extreme deviations from the mean atomic position.

The consequence of such also note here that the sub-states identified via QHA do not
exhibit conformational or energetic similarity. In chapter 3 of this thesis, we present a
case for describing protein motions not only in terms of the variance but also higher-order
moments determined from the MD simulation. As will be seen, the ability to describe the
statistical regularities arising out of positional fluctuations will enhance not only the inter-
pretability of the results, but also provide a natural means to organize the complex confor-
mational landscape spanned by a protein. The higher-order moments, as will be seen, pro-
vide an intuitive and powerful means to describe large-scale conformational fluctuations
associated with the landscape. This new method, as we will show, further strengthens the
case for the role of intrinsic flexibility associated with the protein’s fold and its function.
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Figure 2.9: Correlation of positional fluctuations as computed by NMA for structures
along the eight MD trajectories. The eight plots indicate the eight MD systems used in
this study. NMA was performed on 12 structures in each trajectory separated by 5 ns (5 ns,
10 ns, ..., 60 ns), and the degree of correlations of normal modes between the 12 structures
is shown as a matrix. The degree of correlation was obtained as taking a dot product of all
eigenmodes followed by normalization. These results indicate a change in NMA modes
over the course of the MD trajectory, except for 1TBE and 1UBQ that seem to be sampling
in the nearby areas.
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Chapter 3

Quasi-Anharmonic Analysis: Modeling
Internal Motions and Energetics using
Higher-order Correlations

A question that we examine in this chapter is how much of the protein exhibits anharmonic
behavior under physiologically relevant temperatures at typically long time-scales. We use
the example of ubiquitin, a widely characterized protein is used to understand the extent
of anharmonic behavior in solution. We show that over 60% of the individual residues in
ubiquitin exhibit predominantly anharmonic behavior and these residues are implicated in
its binding. A novel linear computational model, quasi-anharmonic analysis (QAA) is then
developed to characterize the anharmonic conformational landscape spanned by ubiquitin.
We show that QAA elucidates the hierarchical nature of the equilibrium conformational
landscape and identifies conformational sub-states in ubiquitin. These sub-states share
significant conformational and energetic homogeneity. Further, the motions elucidated
from QAA indicate that as ubiquitin “jumps” from one sub-state to the other, the binding
regions are modulated in such a way that the binding regions can adapt themselves to
accommodate multiple substrates. The conformational hierarchy also reveals that at every
level, even though the intrinsic motions (or the shape) does not change, the amplitude of
fluctuations in these binding regions can be quite different, leading to the natural plasticity
observed in experiments.
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3.1 Introduction

Native fluctuations allow a protein to access various conformational and energetic sub-
states (of short durations [90]), which are closely linked to protein function including en-
zyme catalysis [47]. Experimental and computational investigations continue to provide
fascinating insights into the spatial and temporal hierarchy of conformational fluctuations
[47, 40, 225, 80, 92]. Analyses of internal energetics [283, 97, 292] have established a
close tie between collective fluctuations, protein geometry, and energy transduction [176].
However, a grappling issue faced by biologists is the inability to intuitively visualize con-
formational sub-states as well as their inherent dynamics and energetics.

In Chapter 2 of this thesis, we have discussed the applicability of quasi-harmonic anal-
ysis (QHA) to characterize the long time-scale fluctuations in ubiquitin. It was shown
that by accounting for the structural diversity of ubiquitin and using multiple molecu-
lar dynamics (MD) simulations, one can reliably estimate both long time-scale (slow)
conformational fluctuations in terms of the variance in displacements and the directions
of these displacements. Computationally, the observed RMSF and slow conformational
fluctuations in human ubiquitin using a 0.5µs explicit solvent simulation were also vali-
dated [225].

However, the harmonic [128] or quasi-harmonic [180] approximation used, has met
with limited success in isolating, visualizing and intuitively explaining conformational
sub-states in a protein [192, 31, 169]. As examined in Chapter 2, although variance cap-
tures the extent of atomic positional deviations from a mean position, it is highly sensitive
to outliers in the data. This blind pursuit of variance can in fact drastically affect the in-
terpretation of results. Fig. 2.7 showed that the conformational sub-states spanned by the
lowest frequency modes do not show significant conformational or energetic homogeneity,
which can be a huge disadvantage when one wants to gather mechanistic insights into the
working of a protein. At long (µs) time-scales, molecular dynamics (MD) simulations re-
veal a much richer statistical diversity of atomic fluctuations which can be conceptualized
as mixtures of harmonic and anharmonic fluctuations [119] and this needs to be accounted
for, when describing large-scale, collective fluctuations.

Anharmonic motions can arise when a protein visits multiple sub-states [93] or samples
motions distant from equilibrium, leading to long-tailed, non-Gaussian distributions [208,
207, 135, 136]. A key question that we would like to answer in this chapter is how an-
harmonic are atomic fluctuations at long time-scales (µs and beyond) that are relevant to
biological activity. It has been argued that anharmonic motions dominate the conforma-
tional landscape beyond the dynamical transition temperature [215, 93, 216]. Also, for
any biological activity, anharmonic motions tend to contribute a significant proportion of
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the observed RMSF [118]. In this context, the characterization of individual atomic fluc-
tuations in terms of anharmonic behavior becomes extremely important.

RMSF, which measures the square root of variance, is valuable in identifying which
parts of a protein are flexible; however, it does not indicate the underlying statistical reg-
ularity of the positional fluctuations. These statistical regularities arising from positional
fluctuations allow the protein to be in multiple sub-states. To describe the regularities
in the conformational landscape arising from anharmonic fluctuations requires the use of
higher-order statistics [119]. Previous work characterizing higher-order moments in MD
simulations used only picosecond length trajectories to quantify anharmonicity in indi-
vidual atomic fluctuations [208, 135] and also to refine X-ray crystallographic data [136].
In this chapter, we extend and elaborate on the properties of anharmonic behavior in the
protein ubiquitin by studying long time-scale simulations. We first focus on individual
residues, since these constitute the functional units of any protein. To quantify the degree
of anharmonicity, we examine the kurtosis, κ, which is defined as the fourth-order moment
of a real-valued random variable z as:

κ(z) = E{z4} − 3(E{z2})2 [214]. (3.1)

Intuitively, κ is a measure of “bulge” or “peakedness” in a probability distribution. An
equivalent way of describing κ is the excess kurtosis, which is defined as [E{z4}/E{z2}]−
3. κ is specifically useful to characterize the ‘tails’ of a probability distribution. Intuitively,
(as illustrated in Fig. 3.1) it explains if the variance in the underlying distribution is a result
from infrequent yet extreme fluctuations or from frequent and modest deviations from the
mean position. It is important to note that κ can be large just because the distribution is
multi-modal (as illustrated in Fig. 3.1). Indeed, as will be seen in Fig. 3.5, κ provides
one of the motivations to characterize anharmonic motions in a protein using higher-order
moments.

We next ask the question if it is possible to exploit the higher-order dependencies
(correlations) in intrinsic fluctuations and use that to build a computational model that
describes the conformational landscape spanned by ubiquitin at long time-scales. We in-
troduce a linear computational model, termed quasi-anharmonic analysis (QAA), which
effectively decouples observed higher-order dependencies and efficiently summarizes in-
ternal protein motions. Our approach builds a novel representation for protein motions
at long (µs) time-scales by explicitly pursuing higher-order statistics. Human ubiquitin
is used as the primary example to understand the nature of anharmonic conformational
fluctuations at the microsecond time-scales using higher-order statistics. We use the 0.5µs
simulation of ubiquitin as described in Chapter 2 of this thesis to characterize the anhar-
monic landscape of ubiquitin.
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Figure 3.1: Illustration of κ for atomic fluctuations reveals statistical diversity. We
consider ubiquitin to illustrate the typical statistical behavior of positional fluctuations
in Cα atoms of some residues. The top of each panel indicates (κ, RMSF2) values. It
is important to note that κ qualifies the ‘tails’ of a distribution. For example, in panel
(A) observe that the variance is about 0.6 Åand κ is quite small, where as in panel (B)
even though κ is equal to that of panel (A), the variance is 1.2 Å. In panel (C), even
though the variance is almost similar to that of panel (A), κ indicates that there is a noted
peakedness towards the right had side of the distribution and in panel (D), there is a marked
peakedness towards the right of the distribution. Thus, κ reveals richer statistical diversity
in the underlying data.
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3.2 Anharmonic behavior in protein motions

3.2.1 Quantifying anharmonicity in protein fluctuations

The N-terminal (residue 1) and C-terminal end (71-76) exhibit considerable degree of
flexibility, and hence for this analysis, we will illustrate our results only on residues 2-70,
which form the functional core of the protein. This approach of using only residues from
2-70 was done in the previous chapter ( 2) and elsewhere [170]. Anharmonicity (or non-
Gaussianity) in positional fluctuations was characterized using the fourth-order statistic
kurtosis, κ as explained in Eq. 3.1. κ < 3.0 and κ > 3.0 indicate that the underlying
distribution is sub-Gaussian (Gs) and super-Gaussian (Gs), respectively. For a Gaussian
(G) random variable with unit variance, κ is 3.0. We will use κ to study the anharmonicity
observed in ubiquitin motions from both experimental ensembles (116 NMR structures
revealing up to µs dynamics (pdb: 2K39) [170], and 44 X-ray crystallographic structures)
and those obtained from 0.5 µs of MD simulation [225](Fig. 3.2).

A shown in Fig. 3.3, one can observe that both Cα (backbone) and all-atom positional
deviations are anharmonic in the long-timescale MD data (κ(Cα) = 6.3; κ(all atom) =
8.2), though anharmonicity is observed even at shorter time-scales . In comparison to Cα

atoms, side-chains cause greater anharmonicity in the positional deviations, thus indicating
their ability to move more freely in the protein. Interestingly, the NMR ensemble shows
similar statistical behavior, suggesting the pre-disposition of ubiquitin to undergo anahar-
monic fluctuations at long-time scales. The X-ray ensemble shows similar anharmonic
behavior qualitatively; however, the tail of the Cα distribution is insufficiently sampled to
arrive at a statistically meaningful estimate of κ.

For the rest of this chapter and to maintain clarity, we use Cα atoms to study the
anharmonic fluctuations. Using a Gaussian fit to the Cα positional deviations from MD
simulations, we compute how often each Cα atom is found three standard deviations or
more away from the mean of the approximating Gaussian distribution. Ubiquitin’s flexible
loop regions β1 − β2, β3 − β4 (collectively referred to as R1), β2 − α1, β4 − α2, and
the C-terminal tip of α1 (R2) of ubiquitin consistently exhibit significantly anharmonic
fluctuations (Fig. 3.2; bottom right panel). Anharmonicity is also associated with regions
β4−α2 and also β2−α1. However, these regions spend less than 10% of the time exhibiting
anharmonic fluctuations. It is interesting to note that while R1 forms the primary binding
region along which most substrates bind to ubiquitin, R2 forms the secondary binding
region. Given that these flexible regions have a functional role in ubiquitin binding [170],
their associated anharmonic distributions warrant close study.

To this end, we examine the kurtosis of the positional deviations projected onto a
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Figure 3.2: Anharmonic distribution of positional deviations (∆q; units Å) in ubiq-
uitin from 0.5 µs MD, NMR, and X-ray ensembles. For each atom, the positional dis-
placement from the time-averaged position was calculated at 50 ps intervals. The same
bin size (0.54 Å) was used for all histograms. Dotted curve shows a Gaussian fit to the
Cα distribution. Color map on the protein indicates the amount of simulation time spent
(%) exhibiting anharmonic behavior. Note R1 represents the binding regions (β1 − β2,
β3 − β4) and R2 represents α1 − β3 regions in the protein. R1 and R2 represent primary
and secondary binding interfaces respectively.
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Figure 3.3: Anharmonic distribution of positional deviations (Å) from MD simula-
tions at 5 ns, 50 ns and 500 ns. For each atom, the positional displacement from the
time-averaged position was calculated at 50 ps intervals. The same bin size (0.54 Å) was
used for all histograms. Distributions correspond to: Cα (red), Gaussian fit to Cα (dotted
red), side-chains (light blue) and all-atoms (black). Side-chains cause greater anharmonic-
ity than backbone motions. Observe that even at shorter time-scales there is considerable
anharmonicity.

principal coordinate system built locally at each Cα. We observe that at least 41% of
the Cα atoms are Gs, and 21% are Gs along all three principal components. It is further
interesting to note that non-Gaussian (Gs and Gs) distributions are associated with R1 and
R2, which are both involved in forming primary contacts with substrates [170]. Thus,
atomic deviations at these functionally relevant protein regions are mixtures of G, Gs, and
Gs distributions.

3.2.2 How do second-order statistics perform?

In the previous section, we have examined in detail the nature of anharmonic fluctuations
ubiquitin can exhibit. One may also recall from Fig. 3.1, that κ can reveal characteristic
‘shapes’ or ‘tails’ in the distribution, even if the variance is almost similar. This ability
to separate and quantify shapes of positional fluctuations can be seen as enriching the
statistical content from MD simulations and will offer novel ways to characterize the con-
formational landscape. This will also primarily motivate why a computational model built
using κ can be insightful.
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Figure 3.4: Joint positional deviations of pairs of atoms and use of QHA to capture di-
rections of dominant motions. Residues 2 and 14 exhibit Gaussian-like fluctuations in the
x and z directions respectively. When pairwise distributions are Gaussian like (panel A),
QHA (black) basis vectors align well with the intrinsic orientation of the data. Residues
31 and 45 are anharmonic in (x, y) and (x, z) directions. When pairwise distributions are
anharmonic the intrinsic orientation of the data can be non-orthogonal. QHA (black) does
not recover this (panels B & C). All units are in Å.

Limitations of pursuing variance

As illustrated in Fig. 3.4A, examination of the joint positional fluctuations between two
residues: 2 and 14, reveals that both residues have κ close to 3.0. It is evident that the joint
positional fluctuations are also Gaussian (G) like - meaning that a QHA like model would
capture the intrinsic directionality of fluctuations. The arrows in Fig. 3.4 illustrate the
direction of the dominant PCA vector covering the variance where as the ellipse represents
the shape of the motion covered by 2 standard deviations away from the mean positions
of both residues. Observe that the eigenvectors determined from QHA align well with the
intrinsic direction of the variance.

However, when the source distributions of residues are non-Gaussian (residues 31 and
45), the intrinsic orientations of the data are non-orthogonal, indicating that higher-order
correlations exist within these distributions. Under these circumstances, QHA fails to
capture the intrinsic motions in its blind pursuit of variance. As illustrated in Fig. 3.4B,
QHA does not describe the fluctuations since the distributions are non-Gaussian. Further,
when the distributions are as complex as the ones presented in Fig. 3.4C, the orientations
of the vectors indicate clearly that the principal components do not align with the intrinsic
orientations in the fluctuations. Therefore, for much higher dimensions, involving all of the
3N dimensions, QHA bases may not adequately capture the complex nature of positional
deviations arising from mixtures ofG,Gs, andGs distributions. This is our first motivation
towards using higher-order statistics to characterize the conformational landscape.
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Figure 3.5: RMSF is not correlated to κ. A side-by-side comparison of RMSF with
κ indicates that there is not much correlation between the two. But, as illustrated in the
left hand panel, the regions from R1 and R2 show distinct behavior in the RMSF versus κ
behavior. See the text for more explanation.

Are RMSF and κ correlated?

We consider this question to rationalize further the use of higher-order statistics is neces-
sary to explain the conformational landscape of a protein. For ubiquitin, we observe (as
illustrated in Fig. 3.5), the RMSF is not a good indicator of κ; indeed, the correlation
between κ and RMSF is very low: cc = 0.22. This implies that the RMSF as a metric
is not a good predictor for κ. However, if we turn our attention to the functionally rel-
evant regions (R1 and R2) of ubiquitin, we do observe an intriguing behavior. Residues
that line R1 (residues 7-11; 45-48) show large RMSF whereas show distinct Gs behavior;
residues that line R2 (31-33), on the other hand, show small RMSF with Gs behavior. The
β4−α2 (51-54) loops show the presence of substantial RMSF values andGs behavior. The
highlighted residues in the plot fall along a straight line showing negative correlation with
RMSF, indicating that residues with a functional role in the protein tend to visit multiple
sub-states and hence the RMSF values are negatively correlated to κ.

This observation offers the second motivation to characterize the anharmonic behavior
of the protein in terms of the intrinsic orientations within the conformational landscape,
rather than just pursue the variance. While the variance provides information regarding the
extent (or spread) of the fluctuations, it does not explain if different atoms in the protein
have a “predisposition” for movements in certain “wells”. The notion of directionality
in inter-atomic fluctuations is a strong reason for understanding the relevance for protein
function.
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3.3 Quasi-anharmonic analysis

We will build a linear computational model that can account for the intrinsic orientations
in the protein’s conformational landscape by pursuing higher-order statistics. We will
then illustrate that by pursuing higher-order statistics, it is possible to obtain a natural
description of the ubiquitin conformational landscape (see Sec. 3.4).

3.3.1 Extracting Anharmonic Modes of Motion

It is instructive to consider QHA, where the positional deviations ~x are modeled as a linear
combination of harmonic sources ~α, given by:

~x = B~α. (3.2)

The harmonic modes B are conveniently expressed by the eigenvalues Σ and eigenvectors
U of the covariance matrix given by:

C = E{~x~xT} = UΣUT . (3.3)

B is then set toB = UΣ1/2. However, the covariance matrix C captures only second order
correlations in atomic fluctuations and requires that the basis vectors to be orthogonal.

We propose quasi-anharmonic analysis (QAA), a linear model based on independent
component analysis [37, 54, 16]. We model the observable positional deviation vector, ~x,
as a linear combination of anharmonic sources, ~γ, such that:

~x = A~γ. (3.4)

Here, A is an unknown coupling matrix where each column Ai encodes an anharmonic
mode of motion describing the intrinsic higher-order correlations between different regions
of the protein. To account for higher-order statistics, specifically fourth order correlations,
we will estimate a fourth order cumulant tensor for the atomic fluctuations from which
the anharmonic bases A will be derived. The excitation of the anharmonic modes can be
quantified as:

~γ = A−1~x. (3.5)

Unlike in QHA, the basis matrix A can be non-orthogonal and hence the anharmonic
modes can be intrinsically coupled. It is important to estimate both A and ~γ to suitably
describe the anharmonic landsacpe.
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We term this analysis quasi-anharmonic for two reasons: first, we study anharmonicity
explicity whereby the sources are fully decorrelated and made as independent as possible;
second, we impose a linear model which ignores any non-linear coupling that may exist in
the fluctuations between parts of a protein.

To deriveA The fourth order cumulant tensorK, comprises of auto and cross-cumulants
given by:

k(xi) = E{x4
i } − 3E2{x2

i }
k(xi, xj, xk, xl) = E{xi, xj, xk, xl} − E{xi, xj}E{xk, xl}

− E{xi, xk}E{xj, xl} − E{xi, xl}E{xk, xj}. (3.6)

To simplify the computation of K, first we assume that the overall rotation/translation
degrees of freedom have been removed and hence the positional fluctuations are centered
around the origin. Second, the fluctuations are projected onto the QHA eigenbases and
then normalized to have unit variance using:

~y = Σ−1/2UT~x. (3.7)

The cumulant tensor, K, is now built in the ~y space, where the normalization implies
E{yiyj} = 1 when i = j and 0 when i 6= j. K is now built in the ~y space, where the
normalization implies E{yiyj} = 1 when i = j and 0 when i 6= j.

K will have a total 3N × (3N + 1)/2 matrices each of size 3N × 3N accounting for
auto- and cross-cumulant terms, where N is the total number of residues in the protein.
These matrices can then be approximately diagonalized such that the sum of squares of
cross-cumulant terms is minimized using efficient algebraic techniques like Jacobi rota-
tions [104] to obtain a new rotation matrix D of size 3N × 3N . A public domain imple-
mentation of the joint diagonalization is available in [54]. Using the new rotation matrix
D we can write:

~γ = D~y (3.8)

and substituting for ~y from above (Eq. 3.7):

~γ = DΣ−1/2UT~x. (3.9)

Thus, we obtain an expression for the anharmonic modes of motion, ~γ as:

~γ = A−1~x, (3.10)

implying that the anharmonic modes of motion A is just:

A = UΣ1/2DT . (3.11)

The anharmonic modes of motion Ai, which are the columns of matrix A, are sorted in
decreasing order of their amplitudes (‖Ai‖).
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3.3.2 Relevant Work

Note, to estimate A, we used fourth-order statistics. However, A can be estimated using
several other choices. Ichiye and Karplus [136], modeled p (~x ) as nearly Gaussian and
described p (~γ ) ∝ p (A−1~x ) with an Edgeworth expansion. However, they modeled these
higher-order cumulants of positional fluctuations locally, but did not describe the confor-
mational landscape globally. Indeed, the time-scales accessible to them was of the order of
picoseconds. Given that MD simulations are able to scale regularly to µs time-scales, the
current representation (QAA) provides a significant advantage in understanding internal
dynamics of a protein.

A second and attractive choice to learn A is to maximize mutual information [67]
I(~γ; ~x) between ~γ and ~x. Lange and Grubmuller [168] use this approach to include both
linear and non-linear correlations in the MD data and build a model of the conformational
landscape. It must be noted that, while mutual information is an excellent metric estimat-
ing it accurately is quite difficult. In a MD simulation, given sampling inaccuracies and
high dimensionality of the input data, estimating mutual information can be an extremely
arduous task. Secondly, their choice of an orthogonal representation of the landscape is not
quite justified, especially when we observe from Figs. 3.2 and 3.4 clearly that the intrinsic
orientations in the positional deviations are non-orthogonal.

In this section, we have briefly summarized how one can model the anharmonic fluctu-
ations by taking into account the higher-order statistics, particularly κ, or kurtosis. In the
next section, we will examine how QAA characterizes the landscape spanned by a 0.5µs
equilibrium simulation of ubiquitin [225].

3.4 Anharmonic Conformational Landscape of Ubiquitin

3.4.1 Anharmonicity in two dimensions

Before we examine the entire conformational landscape, we need to examine if QAA
works well in two dimensions. We consider the same pairs of residues examined in Fig.
3.4. First, we note that when the fluctuations are Gaussian-like (Fig. 3.6A), the intrinsic
orientations as determined by QAA align well with the QHA basis vectors. When the
fluctuations are typically non-Gaussian, involving Gs sources, the intrinsic orientations
determined from QAA align themselves along the directions of the ‘arms’ as observed
from the figure (Fig. 3.6B and Fig. 3.6C).
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Figure 3.6: Joint positional deviations of pairs of atoms and use of QAA to capture
directions of dominant motions. Residues 2 and 14 exhibit Gaussian-like fluctuations in
the x and z directions respectively. When pairwise distributions are Gaussian like (panel A
from Fig. 3.4; panel D), QAA (red) basis vectors align well with the intrinsic orientation of
the data. Residues 31 and 45 are anharmonic in (x, y) and (x, z) directions. When pairwise
distributions are anharmonic the intrinsic orientation of the data can be non-orthogonal.
QAA effectively captures this behavior, since the basis vectors align themselves with the
intrinsic orientation in the data (panels B and C from Fig. 3.4; panels E and F). All units
are in Å.

3.4.2 Anharmonic Modes of motion in ubiquitin

We considered the Cα atoms for residues 2-70 (N = 69) and sampled 10,000 conforma-
tions spread evenly over 0.5 µs MD. The 3N dimensional space was first projected onto
the top 30 QHA dimensions (covering 96% of the overall variance). The projection onto
this sub-space mitigates the effects of fast fluctuations (noise) and provides a more robust
sub-space tractable for the convergence of QAA. Projecting the 30 QHA dimensions onto
the top three anharmonic modes (γi), as shown in Fig. 3.7, we observe that the landscape
separates into unique conformational wells. Using a mixture-of-Gaussian (MoG) [195]
model, we identify four conformational wells (labeled I through IV) with their boundaries
marked by ellipses drawn 3 standard deviations (σ) from the respective cluster centers.

The mean structures from each well reveal novel features of ubiquitin’s plasticty, i.e.,
its ability to sample a wide range of conformations even at equilibrium. In cluster I, shown
in blue (Figs. 3.7B & 3.7C) and consisting of over 8,000 structures, ubiquitin adopts a con-
formation whereby region R1 is constrained (13.6 Å), whereas β1−β2 and R2 are far apart
(11.5 Å). Observe that a majority of the NMR ensemble (43 conformers within 2σ and 78
within 3σ) and the X-ray ensemble (42 within 2σ and 44 within 3σ) fall within cluster
I, indicating that MD sampling has indeed visited all of the bound/ unbound conformers
observed in this three-dimensional space.

55



Figure 3.7: Quasi-anharmonic analysis (QAA) of ubiquitin conformational landscape
reveals conformational sub-states. (A) The MD ensemble projected onto the top three
anharmonic modes of motion. The projection (units Å) shows four distinct clusters (I-IV).
The cluster centers are shown in blue (7,880 conformers; I) green (773; II), purple (692;
III) and red (655; IV). (B) and (C) Two different view-points (rotated around y-axis by
180 ◦) of the mean conformations from each cluster (bold circles in A) show significant
structural deviations in R1 and R2.
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QAA reveals three other clusters (shown in purple, green and red respectively in
Fig. 3.7A). They form the ‘wings’ of cluster I, exhibiting motions along β3 − β4 and
β2 − α1 regions, indicating motions that are complementary to R1 and R2 (Fig. 3.7B and
Fig. 3.7C). In cluster IV, the mean structure shows an open conformation where region R1
is extended over 18 Å and R2 is close to β1 − β2 at 7.6 Å. Note that motions in both R1
and R2 are implicated in binding diverse substrates [170, 225].

We next examine if these clusters exhibit any similarity in terms of their internal en-
ergies, defined as the sum of van der Waals and electrostatic energy over all interactions
(Eq. 1.5) in the protein and computed using the program MDEnergy [220]. We plot the
scaled internal energy values on the data in Fig. 3.7 and illustrate it in Fig. 3.8 (Level 1).
While cluster I shows considerable diversity in its internal energies, clusters II, III and
IV are homogeneous. Note that clusters I and III are separated by high-energy structures
possibly indicating a transition state between the two conformational wells. QAA is there-
fore able to succinctly capture the intrinsic fluctuations both in ubiquitin’s motions and
energetics.

3.4.3 Biological Perspective: Conformational sub-states in ubiquitin
landscape

The largest sub-state (cluster I) is highly diverse with respect to its internal energy dis-
tributions and positional deviations (Fig. 3.8). Thus, we can examine the conformational
diversity by performing QAA on this cluster to see if a subsequent decomposition might
homogenize this landscape. Fig. 3.8 (Level 2) reveals that cluster I separates into 3 sub-
states having unique structural and energetic properties. The largest structural deviations
involve the motions of R1 (Fig. 3.2). The largest sub-state in level 2 comprises more than
6,000 conformations, and the internal energy distribution in this cluster is quite diverse
(see Fig. 3.8; Level 2). Hence we use QAA to descend one more level in the confor-
mational landscape. At Level 3 of QAA, we observe that the landscape splits into three
sub-states. Compared to the preceding levels, the amplitude of motions in ubiquitin are
less pronounced and this is indicative of higher conformational homogeneity.

This successive homogenization in terms of both positional fluctuations and energetics
provides an intuitive understanding of the motions involved in ubiquitin binding, as illus-
trated on top of each panel in Fig. 3.8. At Level 1, the fluctuations are global involving
the pincer regions: β1 − β2 (red), β2 − α1 (cyan; R1), C-terminal tip of α1 (R2; orange)
and β3 − β4 − α2 (blue) regions. At Level 2 the motions become localized to the protein
binding loops: R1 albeit with lower amplitudes (see movies in supporting information). At
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Figure 3.8: Hierarchical organization of conformational sub-states in ubiquitin mo-
tions. Level 1 decomposition identifies four sub-states (clusters). Each conformation is
colored using the scaled internal energy. Levels 2, 3 and 4 are derived from the largest
sub-state of the preceding level indicating more homogeneity in both positional deviations
and internal energy. Motions along the top anharmonic mode are illustrated in each panel
in a movie like representation.
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Level 3 β2−α1 is coupled to R1 and at Level 4, R2 is coupled to R1. At a global level the
motions of R1 (primary binding regions) dominate while at subsequent levels the motions
in secondary binding regions (β2 − α1 and R2) dominate. Thus, QAA reveals spatially
localized anharmonic motions at successive levels of the conformational hierarchy.

Such progressive decomposition of the landscape combined with the homogeneity in
energy space provides new insights into the binding motions of ubiquitin. First, observe
that the top 3 anharmonic modes of motion can cover all of the conformational heterogene-
ity exhibited by the bound X-ray ensemble (Fig. 3.7; blue diamonds). Second, the hierar-
chy of motions in ubiquitin allow the protein to sample conformations that involve mod-
ulating the pincer regions (R1 and R2) to varying degrees. The subtle interplay between
global conformational fluctuations (Level 1 motions) as well as its ability to modulate
local motions (levels 2 through 4) can thus enhance ubiquitin’s ability to target multiple
substrates [170].

3.5 Conclusions

In summary, we find that the equilibrium motions of ubiquitin exhibit significant higher-
order correlations in both individual and collective fluctuations (Fig. 3.2). The sub-state
decomposition revealed a natural hierarchy of fluctuations that are important for ubiquitin
in binding to diverse substrates. Chasing anharmonic fluctuations, QAA revealed the pres-
ence of conformational sub-states with different internal energies that are homogeneous
within and heterogenous between sub-states. The unique structural features identified by
QAA elucidate the mechanism of binding motions in ubiquitin (Fig. 3.7). A hierarchical
decription of the sub-states allows the mapping of localized motions to the global fluctua-
tions and provides insights into how ubiquitin modulates these motions to achieve effective
binding (Fig. 3.8).
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Chapter 4

An Online Approach to Mine Collective
Motions from Molecular Dynamics
Simulations

Collective behavior involving distally separate regions in a protein is known to widely af-
fect its function. In this chapter, we present an online approach to study and characterize
collective behavior in proteins as molecular dynamics simulations progress. Our represen-
tation of MD simulations as a stream of continuously evolving data allows us to succinctly
capture spatial and temporal dependencies that may exist and analyze them efficiently us-
ing data mining techniques. By using tensor analysis we identify collective motions (i.e.,
dynamic couplings) and time-points during the simulation where the collective motions
suddenly change. We demonstrate the applicability of this method on simulations for
ubiquitin and barnase. We characterize the collective motions in these proteins using our
method and analyze sudden changes in these motions. Taken together, our results indi-
cate that tensor analysis is well suited to extracting information from molecular dynamics
trajectories in an online fashion 1.

1This chapter is adapted from: Arvind Ramanathan, Pratul K. Agarwal, Maria G. Kurnikova, Christopher
J. Langmead, An online approach to mine collective behavior from molecular dynamics simulations, J.
Comp. Bio. (2010), 17:3 (in press).
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4.1 Introduction

Molecular Dynamics (MD)/ Monte-Carlo (MC) simulations are perhaps the most com-
monly used computational techniques to simulate proteins (and bio-molecules in gen-
eral) [235]. These methods sample from a complex energy landscape for the protein using
either an all-atom or a coarse grained representation [18] of the protein. Solvent condi-
tions, presence of ions and other physiologically relevant conditions, which may closely
resemble in vivo conditions of the cell, can also be modeled using these techniques. Sta-
tistical sampling techniques can provide insights into rare events that may also play an
important role in biologically relevant motions [81]. However, these methods can be com-
putationally expensive and cannot sample enough of the energy landscape to observe func-
tional motions at relevant time-scales (milliseconds-seconds) [64]. Apart from having high
noise content (due to thermal fluctuations) [46], visualization and interpretation of collec-
tive fluctuations from simulation data in such high dimensions can be cumbersome.

Recent advances in MD/MC simulation methods have dramatically increased the time-
scales accessible to examination. For example, Folding@Home [213] provides a unique
resource to simulate protein folding landscape up to several microseconds [83]. Similarly,
highly scalable MD codes are being developed such as NAMD [220] and Desmond [50]
to run on both commercial clusters as well as super-computers [5] leading to a substantial
increase in the time-scales achievable for conventional MD simulations [95]. Further,
the development of customized hardware for MD simulations through Anton [242] and
field-programmable gate arrays (FPGA) [11] have allowed all-atom simulations to scale to
reach millisecond time-scales. This concomitant increase in the size of the resulting data
sets, which can easily exceed several terabytes, presents new computational challenges.
Beyond the practical issues of storage and retrieval, the scientific challenge of extracting
information and detecting patterns of interest to the end-user from such massive data sets
requires the development of new tools.

Most existing online methods for monitoring molecular dynamics trajectories track one
or a handful of coarse-grained structural features, such as root-mean squared deviations
(RMSD), radius of gyration, and secondary structure content. While useful, these metrics
do not necessarily provide any information regarding how groups of atoms move in a
co-ordinated fashion. In contrast, one would need a way of detecting and tracking fine-
grained spatio-temporal patterns, including the collective (i.e., correlated or coordinated)
motions of even widely separated regions [43]. Previously, such collective behaviors have
been examined using techniques such as NMA applied to static structures [51, 25] or PCA
(and its variants) applied in an offline fashion to MD trajectories [150, 15, 119, 118].

In the previous chapters, we have used QHA and QAA to analyze the protein’s con-
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formational landscape and characterize collective fluctuations. QHA [150] uses multi-
dimensional Gaussian distributions to model the landscape and pursues variance to de-
scribe intrinsic fluctuations of the protein. QAA pursues higher-order correlations and
analyzes the conformational landscape arising from a consequence of the intrinsic orien-
tations in the fluctuations of constituent atoms. However, it must be pointed out that both
QHA and QAA were applied post-simulation. This has some important consequences: (a)
it is not possible to understand how collective behavior may change over time as simula-
tions are progressing and (b) it is also not possible to relate how different groups of atoms
or interactions (such as Cα atoms, side-chains, hydrogen bonds, hydrophobic interactions,
etc.) collectively change as a function of time or if there are non-trivial correlations that
exist as simulations are progressing.

In this chapter, we introduce a novel technique for automatically detecting spatio-
temporal patterns and for detecting rare events and dynamic anomalies [239] in molecular
dynamics trajectories. Our online approach enables one to monitor the emergence and
dissolution of such collective behaviors through time, providing new insights into the rela-
tionship between dynamics and function. Moreover, a user-specified parameter selects the
characteristic timescale of the detectable patterns, providing a framework for comparing
and contrasting patterns at different scales. Finally, our method is based on a generaliza-
tion of PCA to multi-dimensional (i.e., tensor) data, and is therefore capable of detecting
higher-order patterns. One may thus summarize the contributions from this chapter as: (a)
introduction of a novel representation of molecular dynamics trajectories as tensors, (b) the
first application of an online algorithm for tensor analysis to MD data, and (c) the identi-
fication and analysis of collective motions in two proteins, ubiquitin and barnase. Taken
together, our results indicate that it is possible to obtain biologically significant insights
while tracking simulations online.

4.2 Tensor Representations of MD simulations

Tensors are an extension of matrices beyond two dimensions and provide a convenient
way to capture multiple dependencies that may exist in the underlying data. Formally, a
tensor X of M dimensions can be defined as a multi-dimensional array of real values,

X ∈ <N1×N2×...×NM , (4.1)

where Ni represents the ith dimension for (1 ≤ i ≤M). Many operations on matrices can
be extended to tensors. For example, in this chapter we utilize a generalization of principal

63



components analysis (see Sec. 4.3). A discussion of tensor representations and operations
is presented in appendix. In what follows, tensors are represented with calligraphic letters
(e.g. X ), matrices by bold capital letters (e.g. X), vectors as bold small letters (e.g. x) and
scalars as normal text (e.g. x).

Our primary goal is to study the evolution of the collective behaviors of a protein’s
constituent atoms. We will do this by using a tensor to encode the dynamics of the rela-
tionships between atoms. There are a number of relationships one might wish to monitor,
and each leads to a different kind of tensor. We will consider two representative encodings:
the first is a dense encoding (one with few zero elements) exhibiting symmetries. The sec-
ond representation is a sparse (one with few non-zero elements), asymmetric encoding.
The choice of representation ultimately depends on the kinds of collective motions one
wishes to identify.

Distance Map Tensors. The first kind of tensor encodes a molecular dynamics trajectory
as a sequence of interatomic distance maps. As its name implies, a distance map is a
symmetric matrix (or, equivalently, a second order tensor) encoding the pairwise Euclidean
distances between atom. Thus,

Xij = ||ri − rj|| =

√√√√ 3∑
k=1

(ri(k)− rj(k))2 (4.2)

where ri is the Cartesian position vector of atom i. An example distance map for the
protein cyclophilin A (pdb id: 1AWQ) is shown in Fig. 4.1(A). We will consider distance
maps between Cα atoms, and thus the total number of entries in X is n2, where n is
the number of residues in the protein. A molecular dynamics trajectory is essentially a
sequence of t snapshots of atomic coordinates. By computing the distance map for each
snapshot, we can encode the trajectory using a third order tensor with dimensions n×n×t.

We note that a distance map is isomorphic to a set of coordinates and it is straight
forward to compute either mapping [117]. In comparison to a set of coordinates, a distance
map has two representational advantages. First, it explicitly reveals both local and global
information about the geometry of the system. We will use this property to examine both
local and global collective motions in the protein. Second, a distance map is invariant to
translations and rotations of the molecule, which is convenient when examining internal
motions. At the same time, a distance map has a representational disadvantage because it
has higher space complexity than a set of coordinates.
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Figure 4.1: Distance matrix and Tensor Representation of MD simulations. (A) Dis-
tance map representation of the enzyme cyclophilin A (pdb: 1AWQ). Distant residues are
identified using darker shades of red. (B) The tensor streaming representation of MD tra-
jectories used in this paper. As new tensors keep arriving at every time interval T = i+ 1,
they are appended to the end of the current stream T = i. n is the number of residues, w
represents the size of the window. This can be set by the end user depending on how often
the user wants the analysis to run.

Hydrogen Bond Network Tensors. Our second kind of tensor encodes the dynamics
of hydrogen bonds. Each hydrogen bond has a donor and an acceptor. A hydrogen bond
can exist if a donor and acceptor are within about 3 Å. Thus, we can represent the set of
hydrogen bonds present in a given MD snapshot with an d×amatrix where d is the number
of hydrogen bond donors and a is the number hydrogen bond acceptors. In this matrix,
element (i, j) is the distance between donor i and acceptor j if the two atoms are with 3
Å, and zero otherwise. Unlike a distance map, this matrix is sparse and asymmetric. By
constructing this matrix for each snapshot in MD trajectory, we can encode that trajectory
as a third order tensor with dimensions d× a× t.

Windowing. An alternative to constructing a single tensor encoding the entire MD tra-
jectory is to partition the data into a collection of (overlapping or non-overlapping) win-
dows of size w, where w < t. Here, each window is represented using a third order tensor
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with dimensions n × n × w (resp. d × a × w). An ordered sequence of such windows
is called a tensor stream. Formally a tensor stream is a discrete collection of M th order
tensors X1,X2, . . . ,XT , where T = dt/we. A tensor stream representation used for MD
simulation is illustrated in Fig. 4.1(B). Each tensor represents a discrete time window
within the simulation. As the MD simulation progresses, more and more tensors become
available, and the new tensors are appended to the end of the tensor stream.

There are three basic advantages associated with windowing. First, by adjusting the
width of the window, we can selectively focus on collective motions occurring at spe-
cific time-scales. Molecules exhibit dynamics simultaneously at multiple time-scales. Our
method enables scientists to identify patterns at specific time-scales and, if desired, com-
pare and contrast the patterns occurring at different time scales by varying the size of the
window. Second, windowing enables online analysis of trajectories. This is significant
because MD simulations typically require days to months of computation, even using spe-
cialized hardware, and the specific events of interest (e.g., transitions between meta-stable
states) may be rare. Using our method, a scientist can identify such events in an online
fashion and fork off a new simulation to investigate the phenomenon in further detail (e.g.,
perturbation studies). Finally, windowing provides a practical advantage because the space
and computational complexity of the tensor operations are, of course, proportional to the
size of the tensor.

Before for proceeding to a discussion of our method, we note that the two kinds of
tensors we defined in this section are simply two of many potentially interesting tensor
streams worth analyzing. One can imagine, for example, constructing tensor streams over
a number of structurally relevant features, including: hydrophobic interactions, force vec-
tors, and electrostatic maps. Of course, it is also possible to construct tensors of higher
dimension as needed.

4.3 Tensor Analysis of Molecular Dynamics Trajectories

In this section we present our method for analyzing molecular dynamics trajectories. We
begin with a brief review of some concepts from principal components analysis (PCA)
because our method relies on a generalization of PCA to tensor data. That generalization
is commonly called tensor analysis. Next, we present an algorithm for performing tensor
analysis in an online fashion, followed by discussion of several ways to extract biologi-
cally relevant information from tensor analyses of molecular dynamics trajectories. We
conclude this section with a brief summary of related work.
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4.3.1 Background

In two dimensions, PCA is a popular method for unsupervised pattern discovery and di-
mensionality reduction. Let X be an m × n data matrix with zero empirical mean rep-
resenting n data points in an m dimensional space. PCA is a linear transformation that
projects the data into a new coordinate system such that the direction with the greatest
variance is the first coordinate (aka component), the direction with the second greatest
variance is on the second coordinate, and so forth. Mathematically, this transformation
can be computed by performing the singular value decomposition on XT or, equivalently,
by computing the eigenvectors and eigenvalues of the empirical covariance matrix cov(X).
In practice, the change of basis can reveal underlying patterns in the data. PCA is often
used to perform dimensionality reduction. Here the data are projected onto a lower dimen-
sional subspace by dropping low-variance dimensions. Such linear projections are optimal
in the least-squares sense.

Tensor Analysis. As previously mentioned, tensor analysis generalizes PCA. It too can
be used to perform pattern discovery and dimensionality reduction. In this chapter, we
focus on pattern discovery. Formally, given a collection of tensors X1,X2, . . . ,XT , each
of dimension n1×n2× . . .×nM , tensor analysis will find orthogonal matrices Ui, one for
each dimension, that minimizes the error of reconstruction, e, which is defined as follows:

e =
T∑
t=0

‖Xt −Xt
M∏
i=1

×i(UiUT
i )‖2F (4.3)

Here, ‖X‖2F is the square of the Frobenius norm of tensor X , which is defined as:

‖X‖2F =

n1∑
i1=1

. . .

nM∑
iM=1

X (i1, . . . iM)2, (4.4)

and is equivalent to the sum of inner product operation in matrices.

Informally, Eq. 4.3 is the difference between the actual data,Xt, and the approximation
of Xt in the space spanned by orthogonal matrices Ui, denoted by Xt

∏M
i=1×i(UiUT

i ).
Here, Yt = Xt

∏M
i=1×iUi is called the core tensor. The tensor-matrix multiplication

operator, Xt
∏M

i=1×iUi, is defined as:

X
M∏
i=1

×iUi = X ×1 U1 . . .×M UM (4.5)
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Note that the eigenvector matrices Ui reveal any underlying patterns that may be
present within the data.

4.3.2 Algorithms

Having defined tensor analysis as finding the orthogonal matrices that minimizes Eq. 4.3,
we briefly discuss an offline algorithm for performing that task, and then present an on-
line version. First, we note that unlike PCA, there is no closed form solution for tensor
analysis. In an offline setting, several iterative algorithms exist for performing tensor anal-
ysis [165, 120, 284, 252]. The algorithm by [252], for example, unfolds the tensor along
each dimension (see below), and then performs regular PCA to compute the projection
matrix for that dimension.

Offline tensor analysis requires all tensors available before the algorithm can be ap-
plied. However, the size of molecular dynamics trajectories (which is unbounded, in prin-
ciple) ultimately limits the utility of offline tensor analysis. Instead, we consider an online
algorithm for tensor analysis, called Dynamic Tensor Analysis (DTA) [252], which has
been used in the data-mining community to extract patterns from time-evolving data, al-
though not molecular dynamics trajectories. The DTA algorithm is shown in Algorithm 1
and shown schematically in Fig. 4.2.

Algorithm 1 Dynamic Tensor Analysis
1: Input:

New tensor X (t) ∈ <n1×...×nM ;
Eigenvector matrices from time (t− 1), U(t−1)

i |Mi=1 ∈ <ni×ni;
Eigenvalue matrices from time (t− 1), S(t−1)

i |Mi=1 ∈ <ni×ni

2: Output:
Updated eigenvector matrices at t, U(t)

i |Mi=1;
Updated eigenvalue matrices at t, S(t)

i |Mi=1;
Core tensor Y ∈ <n1×...×nM

3: for d = 1 to M do
4: Unfold X (t) as X(t)

d ∈ <
(
Q

i 6=d ni)×nd

5: Reconstruct variance C(t−1)
d ← U(t−1)

d S(t−1)
d (U(t−1)

d )T

6: Update variance matrix C(t)
d ← λC(t−1)

d + (X(t)
d )TX(t)

(i)

7: Diagonalize C(t)
d = U(t)

d S(t)
d (U(t)

d )T

8: end for
9: Calculate core tensor: Y = X (t)

∏M
i=1×U(t)

i
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Figure 4.2: Dynamic Tensor Analysis for online monitoring and analysis of protein
dynamics. A schematic representation of Algorithm (1). With the arrival of new data at
time window t, the tensor X is (1) unfolded in dimension d, and the variance in the data
is computed using an inner product of the unfolded tensor. The resulting variance matrix
XdXT

d is (3) updated to the existing variance matrix from time window (t−1), followed by
an (4) eigen-decomposition of the new variance matrix. The new eigen-basis is (2) stored
to be used for the next iteration.

The algorithm takes as input the new incoming tensor X (t) at time t, the eigenvalues
S(t−1)
i |Mi=1, and the eigenvectors U(t−1)

i |Mi=1 computed from the preceding call to DTA at
time (t − 1). If there are no previous eigenvalues/ eigenvectors (i.e., at t = 0), then the
only input is the first tensor, and the eigenvalues/ eigenvectors will be computed for use in
subsequent calls to DTA.

Example: Assuming we are applying DTA to distance map tensors (Sec. 4.2), the
inputs include tensors X (t) ∈ <n×n×w, S(t−1)

i |3i=1, and U(t−1)
i |3i=1. Recall that the window

size, w, is defined by the end-user.

We note that Algorithm 1 does not apply dimensionality reduction along. However,
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dimensionality reduction can be applied in a straight forward manner. The primary differ-
ence being that the eigenvector and eigenvalue matrices will have dimension U(t−1)

i |Mi=1 ∈
<ni×ri , and S(t−1)

i |Mi=1 ∈ <ri×ri , respectively, where ri < ni is the reduced size of the ith
dimension.

The algorithm proceeds by minimizing the variance in every dimension i, (1 ≤ i ≤
M ). Line 4 involves unfolding (or matricizing) the X (t) in the selected dimension d.
Given X (t) ∈ <n1×···×nM , the matrix unfolding in dimension d involves constructing the
(
∏

i 6=d ni) × nd matrix X(d) such that each row is a vector in <nd obtained by holding d
fixed, and varying the remaining indices. In line 5, the variance matrix associated with
dimension d from the previous call to DTA, C(t−1)

d , is reconstructed using the eigenvectors
and eigenvalues from the predecessor window (t − 1). The variance of the unfolded in-
coming tensor is, by definition, XT

d Xd. Line 6 is the key to the DTA algorithm. It involves
updating our estimate of the variance according to the rule:

C(t)
d ← λC(t−1)

d + XT
d X(i) (4.6)

where, λ is referred to as the forgetting factor. This is a parameter controls the degree to
which previous tensors influence the current estimate of the variance. When λ = 0, only
the present tensor at time t is considered to be relevant and all the past tensors are ignored
for updating the variance matrix. In our experiments, we have set λ = 1, giving equal
weight to the previous and current estimates. Line 7 of the algorithm diagonalizes the
variance matrix, resulting in an updated set of eigenvalues and eigenvectors that capture
the dynamical behavior observed in the simulations observed thus far. Finally, the core
tensor is computed as shown in line 9 of the algorithm.

Complexity. The space complexity for DTA includes storing costs involving the cur-
rent tensor, the eigenvectors and eigenvalues computed and finally, the core-tensor. Note
that the dominating factor is the storage of the current tensor X (t), which amounts to
O(
∏M

i=1 ni). In the distance map example, the storage is thus O(w × n2). In comparison,
an offline algorithm must store the entire trajectory, resulting in a storage cost ofO(t×n2).

The time complexity of the algorithm is dominated by lines 6 and 7 in Algorithm 1.
The total cost is O(

∑M
i=1 n

3
i +

∑M
i=1 ni

∏M
j=1 nj) where the first term corresponds to the

cost of diagonalization (line 7) and the second term is the cost of updating the variance
matrix (line 6). This cost is dominated by the first term when the dimension of the input
tensor is low (M ≤ 5), and by the second term otherwise. In either case, the total cost
is far less than an offline algorithm, which would require performing diagonalization of
much larger matrices.
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Finally, we note that [251] also describes an approximation to DTA, which they call
streaming tensor analysis (STA), which adaptively updates the eigenvector matrices de-
pending on the changes seen in the current tensor, instead of diagonalizing the variance
matrix at every time window. This adaptive update of eigenvector matrices provides sig-
nificant computational speedup at the cost of accuracy. However, in practice, we have
found that DTA is superior to STA in the context of analyzing MD trajectories [226].

4.3.3 Extracting Information from MD data using Tensor Analsis

As previously mentioned, PCA is often used in the context of dimensionality reduction,
and tensor analysis can also be used to perform the same task by dropping low-variance
components. This may be useful for archiving molecular dynamics data, or to summarize
the data in a compact form. We focus instead on the problems of spatio-temporal pattern
discovery and anomaly detection.

Pattern Discovery. When applied to either of the tensor streams defined in Sec. 4.2, we
will obtain three orthogonal matrices, U1,U2, and U3. While tracking Cα distance ten-
sors, observe both U1 and U2 are identical, since the input distance matrix is symmetric.
Both orthogonal matrices describe the collective spatial distance fluctuations in the pro-
tein. However, U3 describes correlations in the time dimension, which is useful to identify
time-points along the trajectory where the collective behavior of a protein changed sig-
nificantly. Given these matrices, we can identify correlations in the underlying distance
fluctuations using U1 by performing k-means clustering [116]. Analogous to the use of
clustering in the analysis of microarray data, which identifies correlated genes, the clusters
we obtain identify clusters of dynamically coupled residues. The individual cluster centers
identify the average distance fluctuations within each cluster; larger distance fluctuations
imply flexible regions, whereas smaller distance fluctuations imply rigid regions in the
protein. Further, high values along the columns of U1 or U2 indicate residues that showed
high distance fluctuations with respect to other residues in the protein. Thus, apart from
identifying clusters of residues that are dynamically coupled, we can also reason about
individual residues, if they are constrained or flexible.

Anomaly Detection. DTA is continually updating its estimates of the orthogonal matri-
ces, U1,U2, and U3, as new data arrive. These matrices are a compact description of the
dynamical behaviors exhibited in the earlier data. Given these, we can use the reconstruc-
tion error metric defined in Eq. 4.3 to detect anomalies. That is, points where there are
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significant deviations from the dynamical behavior encoded in the orthogonal matrices.
Such changes in dynamical behavior may signal a change between microstates. To detect
anomalies, we monitor the empirical mean and standard deviation of e as the simulation is
running. Next, we define an error threshold error as follows:

et ≥ mean(ei|ti=1) + α.std(ei|ti=1) (4.7)

where ei|ti=1 refers to the error of reconstruction up to time t, and α is an arbitrary positive
constant. In our experiments we set α to 2. That is, our threshold is an error that is two
standard deviations, or more, above the empirical mean. If the incoming tensor exceeds
this threshold, we declare that the new tensor is an anomaly. That is, an event of interest.

Apart from indicating changes in dynamical behavior, the events of interest can also
provide insights into the structural deviations in the protein along two or more regions in
the protein simultaneously. This change in collective dynamical behavior is complemented
by one or more conformational changes along the trajectory, which may reflect how the
protein (or its substrate) responded to changes in its dynamics. As we will show in the
results section, such changes are important from a biological perspective, especially while
studying enzyme reactions, where dynamical changes in the protein affect the conforma-
tion of the bound substrate.

4.3.4 Related Work

A number of techniques have been developed to analyze and reason about collective be-
havior from MD simulations. PCA based techniques (reviewed in [43]) are very popular in
the MD community and are used to visualize collective behavior in proteins. Other tech-
niques based on spectral analysis [63] as well as mutual information [178, 168] are also
widely used in studying collective motions. However, there are two limitations to these
approaches.

The first limitation relates to the fact that PCA can be done only in two dimensions;
hence it is possible to obtain only insights into collective behavior from the perspective
of spatial variance, no insight can be drawn from the temporal aspects of the simulation.
Mutli-dimensional PCA and multi-way analysis [245], which have been applied to as-
sign nuclear magnetic resonance (NMR) spectra [187, 248] and in cheminformatics [108],
overcome this limitation, but have not been used to study molecular dynamics trajecto-
ries, to our knowledge. Tensor analysis has also been applied in a variety of problem
domains including visual analysis of images from electroencephalogram [2] and systems
biology [290]. The identification of rigid/ flexible sub-structures within a protein is a well
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studied problem, especially from the viewpoint of rigidity theory [279, 140]. Applica-
tion of these techniques to multiple snapshots of proteins proves to be unreliable [188]
and similarly, it is not possible to obtain information about time-points where deviation in
collective behavior is observed.

The second limitation arises from the fact that most traditional molecular dynamics
analysis techniques are intended for offline use. Traditional online techniques track root
mean squared deviation and similar aggregate statistics. Here, the end user is responsible
for deciding whether sudden changes in these statistics represent an interesting change in
behavior, or just a transient. In contrast, our method explicitly monitors spatio-temporal
patterns, and alerts the user when such patterns change. Significantly, we will show in
the next section that tensor analysis can detect significant changes in collective motions
that do not necessarily correspond to large root mean squared deviations. That is, tensor
analysis reveals information in molecular dynamics trajectories that cannot be obtained by
visually inspecting snapshots, or by traditional online algorithms.

4.4 Implementation and Results

In this section, we analyze the equilibrium simulations of two proteins: (a) ubiquitin and
(b) barnase. Both proteins have been studied extensively using experimental and theo-
retical/ computational techniques and are therefore ideal to test the utility of our method.
Each trajectory was preprocessed to construct the tensors. These tensors were processed
in MATLAB using the tensor toolkit libraries [20, 21] and an implementation of the DTA
algorithm [252]. A python version of the code has also been made publicly available:
http://pytensor.googlecode.com/ [291].

4.4.1 Equilibrium Simulations of ubiquitin

We test our algorithm on ubiquitin, a widely characterized protein. In chapter 2 we used
QHA on ubiquitin to characterize the changes in collective motions at the µs-timescale.
In chapter 3, we characterized the hierarchical nature of the equilibrium fluctuations in
ubiquitin using a novel linear model that pursues higher-order statistics. In this chapter,
we demonstrate that it is possible to obtain insights into changes in collective behavior
as simulations progress. The equilibrium simulation of ubiquitin had a total of 10,000
conformations,spanning a total of 0.5µs [225]. Third order tensors were then constructed
with every 10 snapshots (w = 10) aggregated into one tensor, thus providing a total of
1,000 tensors.
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Collective dynamics in ubiquitin. When we examine the constrained residues from the
eigenvector matrices U1, we find that these residues line the hydrophobic core of the pro-
tein. Thr7, Thr9, Thr14, Glu18, Ser20, Ile44, Gly53, Ser57, Tyr58 and His67 Fig. (4.3(a))
are identified to be restrained. The eigenvector matrices U1 representing the correlations in
distance fluctuations from the MD trajectory for ubiquitin were clustered using k-means.
Four dynamically coupled regions in ubiquitin were observed. The assignment of clusters
obtained from k-means was then mapped onto the three-dimensional structure of the pro-
tein and visualized using PyMOL [73]. As shown in Fig. 4.3(b), the clusters show a clear
separation of the β sheet from the rest of the protein. The loops, L1, L2, L3 and L4 (shown
in yellow) exhibit most distance fluctuations, followed by the C-terminal tip of α1 (shown
in green). Both helices (shown in blue) exhibit the least distance fluctuations and the β
sheet exhibits intermediate distance fluctuations with respect to the protein. The collective
distance fluctuations indicate that different parts of ubiquitin exhibit unique dynamical be-
havior involved in binding multiple substrates. The fluctuations of loops L1 and L2 are
coupled indicating similar fluctuations across these two regions. It is interesting to note
that the C-terminal tip of α-helix seems to exhibit somewhat different collective dynamics
than that of the loops L1-L4.

From a biological perspective, the coupling in fluctuations at both L1 and L2, although
separated by over 15 Å indicates an innate ability of ubiquitin’s binding regions (L1 and
L2) to move in similar manner. Both L1 and L2 exhibit fast time-scale fluctuations and
are involved in modulating the conformational landscape (as we have seen in Chapter
3; Fig. 3.7). Further, the distinct behavior of the C-terminal end of α1 helix having an
intermediate level of fluctuations between the β sheet and flexible loops (L1-L4), shows
that this region can move independently of the other regions in the protein.

Anomaly detection in ubiquitin simulations. As previously noted, the simulations
were collected from 8 different starting structures leading to extensively analyze the col-
lective fluctuations of ubiquitin at the µs time-scales. Now, we pay close attention to the
time-evolution of the simulations. We observe, as shown in Fig. 4.4, that of the 1,000 win-
dows, 58 of these windows show e to be above the 2σ interval. Observe that the RMSD
plot shown in Fig. 4.4B does not show any correlation with the error of reconstruction.

We illustrate the collective conformational changes from three different windows (11,
2140 and 6060). In window 11 (Fig. 4.4C), collective conformational changes are domi-
nant along β1−β2 and β3−β4 as well as β1−β2 and α1−β3 loop regions. Note that in this
window, both loop regions β1 − β2 have moved far apart compared to the previous time-
window. In window 2140 (Fig. 4.4D), we observe that the most dominant changes include
α1 and β1 − β2 regions where by, these regions have moved closer to each other. Note
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Figure 4.3: Dynamically Coupled Regions in ubiquitin. (A) Constrained residues in
ubiquitin. A total of 13 residues lining the hydrophobic core of the protein are constrained.
Four clusters are identified; (B) α1 (shown in blue) and β1 − β5 (shown in cyan) undergo
low distance fluctuations. α1 − β3 (shown in green) undergo intermediate distance fluctu-
ations where as L1-L2 shown in yellow undergo maximum distance fluctuations.

in both windows 11 and 2140, the overall RMSD between the structures is quite small,
however the rearrangements of the loop regions is of importance since the modulation of
fluctuations in these regions have some relevance to binding multiple substrates. In the
third window (6060; Fig. 4.4C), the motions are substantial, involving α1, β1− β2, β5 and
β3 − β4; thus the change in collective motions observed span the entire protein.

4.4.2 Equilibrium Simulations of Barnase

Barnase is a 110 residue bacterial ribonuclease synthesized and secreted by Bacillus amy-
loliquefaciens [86]. It is known to be lethal to the cell without its strongly binding inhibitor
barstar. This protein is often used to study protein-protein binding and protein folding [69].
Barnase consists of a long α-helix (α1) and a 5-stranded β-sheet (β1 − β5), interspersed
with two shorter α-helices (α2 and α3), connected by loops (L1-L5). The equilibrium
simulation of inhibitor-free barnase had a total of 2,500 snapshots, constituting a total tra-
jectory length of 10 nanoseconds [188]. Third order tensors were then constructed with
every 10 snapshots (w = 10) aggregated into one tensor, thus providing a total of 250
tensors for barnase.
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Collective dynamics in barnase. The eigenvector matrices U1 representing the corre-
lations in distance fluctuations from the MD trajectory for barnase were clustered using
k-means. Four dynamically coupled regions in barnase were observed. The selection of
the best value of k for clustering was based on the mean value of cluster separation; for
any value of k, if the mean value of the cluster separation was higher than that of k−1, an-
other round of k-means clustering was applied, otherwise, k was chosen to be the optimal
number of clusters.

The assignment of clusters obtained from k-means was then mapped onto the three-
dimensional structure of the protein and visualized using PyMOL [73]. As shown in Figs.
4.5(b), α1 and β-sheet (β1 − β5) form two separate clusters. These two regions, on aver-
age, show low distance fluctuations compared to the rest of the protein, indicating that both
α1 and β-sheet may be involved in slow time-scale motions. Residues 21-48, including
α2 and α3, form another cluster, involving intermediate scale distance fluctuations. The
loop regions (L3-L5; N- and C-termini) cluster together into one region , with highest dis-
tance fluctuations. Residues 50-52 are clustered into three different groups indicating an
inherent difference in the flexibility of these residues which may play a role in the hinge
site dynamics of barnase [285, 86]. We were also able to identify residues that were con-
strained or flexible during the simulation which correlate well with previous experimental
and theoretical methods (Figs. 4.5(a) and 4.6).

A unique feature of DTA is its ability to characterize collective behavior in multiple
tensor streams such as hydrogen bonds (HB) or hydrophobic (HP) interactions simulta-
neously. While distances between Cα atoms are symmetric (Xij = Xji), HB interactions
involve tracking distances between two separate sets of atoms namely HB-donors (HBD)
and HB-acceptors (HBA). The resulting distance matrix between HBD and HBA involves
tracking a sparse, asymmetric tensor-stream over time.

DTA on the HBD and HBA results in two eigenvector matrices, UHBD and UHBA re-
spectively: UHBD determines correlations in donor-donor distance fluctuations and UHBA

determines correlations in acceptor-acceptor distance fluctuations. Using k-means, we
were able to cluster HB-donors into 5 groups, and HB-acceptors into 3 groups. Grouping
the HB-donors and HB-acceptors based on their respective cluster assignments, we ob-
served that α1 and β1 − β5 form the largest cluster (Fig. 4.7A), indicating the dynamical
behavior of hydrogen bonds in these two regions are similar. To examine their similarity,
we considered the average life-times [188] of these interactions during the simulation. We
found that these HB interactions were extremely stable during the course of the simulation
with an average life-time of about 70% of the simulation. The second largest cluster of
hydrogen bonds identified via DTA is localized to residues 21-48 (Fig. 4.7B), concurring
with the behavior identified in Cα distance fluctuations. Subsequent clusters of HB are
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smaller and localized along the flexible loop regions in barnase. We found the lifetimes
of these HB interactions to be more transient with life-times averaging around 50% of the
simulation.

By studying the collective behavior across multiple tensor-streams, one may gain in-
sights into the dynamical origins of collective motions in barnase. First, from our analysis
of Cα distance fluctuations, we note correlation patterns in the trajectories indicate cou-
pling between distally located residues. Loops L3, L4 and L5 that are widely separated by
an average distance of 10 Åshow similar dynamics. Second, the collective fluctuations in
Cα-atoms and HB interactions separate residues 21-48 from the rest of the protein. This
indicates the dynamical motions of these residues to be decoupled from the rest of the
protein, forming a separate dynamical domain, agreeing with previous experimental and
computational work [206, 298]. Third, the distinct assignment of residues 50-52 into three
clusters is also relevant to barnase function since the inherent difference in flexibility along
these three residues may be essential for inter-domain movements [206].

Anomaly detection in equilibrium simulations of barnase. Our method can identify
time-points during which collective behavior changed significantly. That is, time-points
where the incoming tensor exhibits patterns that are significantly different than those from
the past. This is accomplished by monitoring the error of reconstruction (Eq. 4.3) and
evaluating Eq. 4.7. A plot of the error of reconstruction against the tensor windows is
shown Fig. 4.8A. Beyond the second standard deviation threshold, we find 14 tensor win-
dows. Fig. 4.8B illustrates the average RMSD of the structures within the ith tensor to
those in the preceding tensor. Notice that the average RMSD is all very small (≈ 1 Å),
indicating that the error of reconstruction, as expected, is detecting changes in the collec-
tive behaviors of the residues, and not merely significant structural changes. Moreover, the
curves in Fig. 4.8-(A) and Fig. 4.8-(B) are not clearly not correlated, further supporting
the claim that these two statistics are revealing different kinds of information about the
MD trajectory.

In Fig. 4.8C we show two structures to illustrate changes in collective dynamics. In the
tensor window 40 (highlighted by a dotted circle), we detect the collective movement of
the flexible loops (L1-L2) in residues 21-48 towards L3, L4 and L5. This movement may
be of functional significance, since it involves the residues involved in the binding pocket
of barnase coming closer by about 3 Å. In another window (215), loop L1 had moved
with respect to α1 helix compared to the predecessor window (Fig. 5C bottom panel).
This collective displacement of these loops with respect to residues 21-48 is of importance
since they represent inter-domain movements [206].
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4.5 Conclusions

We have shown that it is possible to obtain biologically relevant information about flexible
and rigid substructures within a protein as the simulations progress. This was illustrated
on two entirely different sets of simulations and in both cases, we were able to identify
dynamically coupled regions and to identify sudden changes in those couplings. While
preliminary, our findings are consistent with those obtained via previous computational
and experimental studies.

Our experiments were limited to tensors encoding the dynamics of distance maps and
hydrogen bond networks. These are by no means the only tensors which may provide bio-
logically useful information. For example, it may be beneficial to track forces or velocities
over different atoms to detect patterns of energy flow in protein structures. Tensors also
provide a natural means for examining higher-order relationships, such as the correlations
between non-covalent interactions and how they account for large-scale motions within a
protein. This is of fundamental interest to chemists and biologists alike in domains such
as protein and drug design where networks of covalent and non-covalent interactions are
known to widely affect protein function [8, 6, 298, 250].

The core tensor X = C
∏d

i=1×Ui can be used as an efficient means to approximate
the dynamics thus far observed in a simulation, and provides a convenient means for sum-
marizing an otherwise massive data set, or to compare and cluster trajectories say, across
species. For example, imagine partitioning the trajectories of two different trajectories
into a sequence of core tensors that correspond to regions flanked by spikes in the er-
ror of reconstruction metric. Such core tensors represent quasi-stable states, and so one
can imagine comparing two trajectories by determining whether they visit similar sets of
quasi-stable states and, if so, whether they do so in roughly the same order. Alternatively,
because the tensor analysis can be tuned to identify patterns at particular time-scales, one
might compare the core tensors observed at one timescale with those obtained at another,
potentially leading to a hierarchy of spatio-temporal pattern.

From the perspective of analyzing simulations in an online fashion, a direct extension
to our method will be to fork simulations from the time-points where significant deviation
in dynamics is observed in order to sample a larger conformational space. This, in turn, is
particularly useful to drive simulations involving chemical reactions or folding pathways
which are known to be hard to simulate. We are investigating the use of tensor analysis for
analyzing protein folding trajectories as part of ongoing work.
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Figure 4.4: Error of reconstruction (EoR) for ubiquitin compared to root mean
squared deviations (RMSD). (A) shows EoR plotted as a function of tensor window.
The dotted line indicates the mean reconstruction error as per Eq.(4) and the second stan-
dard deviation interval (gray solid line) is also plotted. Dotted circles are used to highlight
tensor windows shown in the adjacent panel. (B) average window RMSD plotted for ubiq-
uitin, showing the average (gray dotted line) and standard deviation interval (gray line) for
the simulation. (C) Structural changes associated with w = 11 (top panel) showing move-
ments in L1 and L2 overall RMSD 0.85 Å; (D) w = 214 (bottom) showing movements
associated with α1 and L1 with an overall RMSD of 0.83 Åwith the preceding window.
Note in both these cases, we see changes in L1 and L2 and α1. (E) shows another window
w = 606 where motions in β sheet as well as α1 are evident, with an overall RMSD of
1.21 Å.

79



Figure 4.5: Dynamically Coupled Regions in barnase.(A) A total of 15 residues were
identified to be constrained - below the first standard deviation interval (shown as gray
dotted line). It is interesting to note that the hinge site residues Gly52 and Gly53 are con-
strained. Further residues important for the structural integrity of the protein Tyr24, Ala32,
Arg87 and Thr103 are also observed to be constrained. (B) Four clusters are identified;
α1 undergoes the least distance fluctuations (shown in dark blue) and β1 − β5 form two
clusters shown in the top panel showing slightly higher distance fluctuations (shown in
green and yellow). α2 − α3 and L1-L2 (residues 21-48) separate into a cluster (yellow).
The N- and C-termini and loops L3-L5 are form a cluster (shown in orange) undergoing
the largest distance fluctuations.
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(a)

(b)

(c)

Figure 4.6: Comparing flexibility profiles of barnase using experimental and theoret-
ical techniques. (a) DTA distance fluctuations are plotted (black solid line) against the
average root mean square fluctuations (RMSF) determined from 6 different crystal struc-
tures of barnase. (b) Distance fluctuations determined from DTA against that of RMSF
determined via guassian network model (GNM) [22], shows good agreement with respect
to the hinge sites (Gly52-Gly53) as well as the flexible regions in the protein. (c) Mobility
scores determined from FIRST [140] compared with DTA determined distance fluctua-
tions; note good agreement between flexible regions determined via FIRST and DTA,
however, there are some differences at the hinge site.
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Figure 4.7: Clustering hydrogen bond (HB) interactions based on similar dynamics.
(A) Largest cluster formed by stable secondary structure interactions along barnase, in-
cluding interactions in α1 and β1 − β5. (B) The second largest cluster consists of HB
interactions in residues 21-48. Loops (L1-L5) form HB interactions that have different
characteristics based on their location in the protein and exhibit more transient behavior.
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Figure 4.8: Error of reconstruction (EoR) for barnase compared to root mean squared
deviations (RMSD). (A) shows EoR plotted as a function of tensor window. The dotted
line indicates the mean reconstruction error as per Eqn.(4) and the second standard devia-
tion interval (gray solid line) is also plotted. Dotted circles are used to highlight tensor win-
dows shown in the adjacent panel. (B) average window RMSD plotted for barnase, show-
ing the average (gray dotted line) and second standard deviation interval (gray line) for the
simulation. Note the two snapshots selected for analysis are highlighted in dotted circles.
(c) Structural changes associated with w = 40 (top panel) showing movements in L1 and
L2 along with the functional domain 21-48, overall RMSD 1.03 Å; w = 215 (bottom)
showing movements associated with α1 and L1 with an overall RMSD of 0.612 Åwith the
preceding window. In both cases, the regions shown in a darker shade of gray represent
predecessor windows whereas lighter shade shows the current window.
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Chapter 5

Comparing the Intrinsic Dynamics of
Cyclophilin A Before, During and After
Catalysis

Enzymes are perhaps the most widely studied proteins. In this chapter, we set the back-
ground for the two questions outlined in the introduction (Chapter 1). We investigate,
in this chapter, the intrinsic dynamics of the enzyme cyclophilin A (CypA), en exten-
sively characterized enzyme. CypA catalyzes the isomerization of prolyl-peptidyl bonds
in a variety of substrates including small peptides and large proteins. In this chapter, we
characterize the internal dynamics of CypA under three scenarios: (a) when CypA is in
its unbound state - without any substrate in its active site, (b) when CypA is bound to a
substrate peptide (in reactant state and product state) and finally, (c) when CypA catalyzes
the isomerization of the bound peptide. Our analysis will be based on the techniques that
were developed in chapters 2 and 4. This chapter will serve as an illustration of how
a combination of these techniques could elucidate the complex behavior of CypA under
these scenarios. Further, it will also test critically the hypothesis where intrinsic dynamics
catalysis are closely associated with one another [47, 49, 77, 78, 125] or if there are subtle
distinctions in the way CypA “alters” its dynamics to perform its function1.

1This chapter is adapted from:

• Arvind Ramanathan, Pratul K. Agarwal, Maria G. Kurnikova, Christopher J. Langmead, An online
approach to mine collective behavior from molecular dynamics simulations, J. Comp. Bio. (2010),
17:3 (in press)

• Arvind Ramanathan, Pratul K. Agarwal, Computational Identification of Slow Conformational Fluc-
tuations in Proteins, J. Phys. Chem. B., 2009, 113 (52), pp 16669–16680.
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Figure 5.1: Reaction catalyzed by peptidyl-prolyl isomerases (PPIases) including cy-
clophilin A. The trans conformer from the peptide around the amide bond is rotated by
180◦ into the cis conformation, as depicted in this 2D plot.

5.1 Introduction

Enzyme catalysis has intrigued biochemists for over a century: even today, the origins
of the remarkable catalytic power in naturally occurring enzymes is unknown. Although
there is considerable speculation in the literature about how enzymes function, a recent
proposal gaining significant momentum is that perhaps enzymes are intrinsically dynamic
molecules that have evolved to precisely move in directions that enable function [24, 124].
In this context, one would need to examine critically the evidence presented that either
support or disagree with the dynamical hypothesis. In this part of the thesis, we are pri-
marily concerned with garnering support for the dynamical hypothesis. Before answering
these questions though, it becomes necessary to examine if the intrinsic dynamics of an
enzyme, in the absence of its natural substrates is similar at all to the functional dynamics
as the enzyme catalyzes its reaction.

In this chapter, we examine the similarity in internal dynamics of an enzyme Cy-
clophilin A (CypA) in three different scenarios: (a) when CypA is in its unbound state
- without any substrate in its active site, (b) when CypA is bound to a substrate peptide (in
reactant state and product state) and finally, (c) when CypA catalyzes the isomerization
of the bound peptide. CypA is an excellent example case study for testing the dynamical
hypothesis since there is a wealth of experimental and computational evidence that have
extensively investigated the enzyme under several conditions. It is a fairly small protein
that does not require the presence of co-factors or ions to function. Further, CypA is an
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important drug target since it is known to be involved in HIV-1 pathway.

5.1.1 Cyclophilin A: Intrinsic dynamics and its impact on the cat-
alytic process

CypA (see Fig. 5.1A) is ubquitously expressed protein in both prokaryotes and eukary-
otes, and is a major intracellular receptor for the immunosuppressive drug cyclosporin A.
It belongs to the class of enzymes called cyclophilins which play a critical role in several
biochemical pathways, including protein folding, cellular transport and biological signal-
ing. The reaction catalyzed by CypA is that of isomerization peptidyl-prolyl amide bonds
that are N-terminal to proline residues. Human CypA is a single chain polypeptide con-
sisting of 165 amino acid residues. Its molecular structure reveals the presence of eight
β-strands (β1 − β8; Fig. 5.1A), forming a β-barrel, with the hydrophobic residues lining
the inner core of the protein. Two α helices (α1 and α2) flank the hydrophobic core of the
protein. The active site is a shallow cavity on one of the faces of the protein, surrounded
by several solvent exposed surface loops which typically exhibit high beta-factors as ob-
served from X-ray crystallographic studies. The reaction mechanism catalyzed by CypA
is illustrated in Fig. 5.1B. Note that in this chapter, we study the cis/trans isomerization
reaction of the bound peptide in CypA.

NMR studies on CypA by Kern and co-workers [77] have suggested a close link be-
tween the enzyme’s internal dynamics and the substrate isomerization step (catalysis). It
was observed that internal dynamics of several regions along the protein were strongly
correlated with the catalytic step. Several active site residues and surface loop residues:
Arg55, Lys82, Leu98, Ser99, Ala101, Asn102, Ala103, and Gly109, exhibited consider-
able motions in the presence of substrate alone. It was also shown that certain residues:
Phe67, Asn71, Gly74, Ser77 and Ser110 showed motions in both presence and absence
of the substrate, where as Thr68 and Gly72 showed increased motions only during the
catalytic step of the enzyme. This evidence and follow up work [78], highlighted the
importance of CypA’s innate ability to exhibit dynamics that were somehow related to
catalysis.

Agarwal and co-workers [9, 4], using MD simulations modeled the free-energy pro-
file (see Sec. 5.2.3 for more details) for CypA with multiple susbtrates. These detailed
investigation of the free-energy landscape revealed that over the course of the reaction,
important hydrophilic (Arg55, Asn102) and hydrophobic (Phe60, Phe113, Leu122 and
His126) residues played a critical role in stabilizing the substrate peptide bound at the ac-
tive site. While the target proline is held rigid at the active site, the carbonyl oxygen from
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the preceding residue in the substrate rotates a 180◦. Quantum mechanical modeling of the
active site also revealed that this mechanism was in agreement with observations from ex-
perimental studies. Analysis using QHA (see Chapter 2), revealed three vibrational modes
that were most coupled to the catalytic step of the reaction. All the modes associated with
the catalytic step exhibited concerted motions along the surface loop regions of the en-
zyme showing large displacements. The correlated motions from the vibrational modes as
determined from QHA revealed an interesting picture about CypA’s function. A series of
interconnections extending from the flexible surface regions of the protein all the way to
the active site of the enzyme were responsible for the observed correlated motions in these
vibrational modes. These interconnections included hydrogen bonds and hydrophobic in-
teractions amongst highly conserved residues and the dynamics in these networks altered
the crucial interactions between the enzyme and substrate during the reaction process.

The vibrational modes associated with the catalytic step were also found to be promot-
ing the progress of the reaction [5]. In fact addition of kinetic energy to the flexible surface
loop regions implicated in these vibrational modes indicated that more trajectories were
successful in crossing over the transition state into the product side from the reactant side.
Addition of kinetic energy to modes not coupled to the reaction, however, did not result
in producing successful crossovers from reactant to product state. It was also shown that
addition of kinetic energy to the first solvation shell of the protein enhanced the reaction to
proceed into the product state. Thus, the motions in the enzyme can be thought of playing
a critical role in promoting the reaction to proceed from the reactant to the transition state.
Mutations to the network or alteration of the dynamics within these network could in fact
drastically change the outcomes of how CypA would function.

While the aforementioned studies are extremely important, it should also be noted that
both the computational studies considered the dynamics during the catalytic process. In
this chapter, we specifically ask the question if the dynamics before and after catalysis
(with the substrate peptide bound at the active site) and the dynamics of the substrate-free
enzyme are similar at all. We analyze this problem by carrying out extensive simulations
on the substrate-free CypA molecule as well as the substrate bound CypA molecule in
the three scenarios outlined above. The internal dynamics, as quantified by the modes of
motion determined via QHA, in the course of the reaction pathway as well as the end-state
simulations and substrate free simulations are compared and contrasted. The comparison
shows that the large-scale motions are not only similar, but share a large overlap in terms
of the conformational sub-states they visit.
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5.1.2 Simulating enzyme catalysis: Umbrella Sampling along the re-
action pathway

Simulating enzyme catalysis can be a significant challenge. Traditionally done via quan-
tum mechanics/ molecular mechanics (QM/MM) techniques [258], there has been tremen-
dous growth in the area of developing semi-empirical methods such as empirical valence
bond (EVB) [276] to understand the mechanistic aspects of enzyme catalysis. EVB em-
ploys a standard molecular mechanics force-field (see Chapter 1) and maps the potential
surface over the course of a catalytic reaction by using standard free-energy simulation
techniques such as thermodynamic integration [96] or umbrella sampling [260].

MD simulations in combination with techniques such as umbrella sampling [260] can
be used to model the free energy landscape associated with the enzyme reaction pathway as
a function of a reaction coordinate. As depicted in Fig. 5.2 the entire set of conformations
sampled along the various sections of the reaction coordinates allows identification of
conformational fluctuations at the reaction time scale. The idea behind umbrella sampling
is that these simulations would inherently help one overcome poor sampling between two
states that are divided by a large free energy barrier by sampling those regions that have a
naturally low probability to be sampled using a standard equilibrium simulation. Umbrella
sampling is a means of “bridging” the gap that exists between the two states by using a
biasing potential that can, in effect, cancel the influence of the energy barrier. Once the
umbrella sampling is performed, the free-energy profile (FEP) of the reaction can then be
generated using the weighted histogram averaging method (WHAM) [166].

5.2 MD Simulations for Cyclophilin A

In this section, we briefly outline the MD simulations for CypA that were carried out to in-
vestigate the relationship in the intrinsic dynamics and catalytic step of the enzyme. Each
of the simulations were carried out with the same protocol described in Sec. 2.2.2, involv-
ing multiple steps of energy minimization, followed by a careful equilibration procedure
that allowed the protein (or system) to equilibrate at 300K and finally full production runs
lasting for however long the simulation was scheduled for.

5.2.1 Equilibrium Simulations of Cyclophilin A

The motions in the free enzyme were characterized on the basis of five MD trajectories.
The starting points for four of these trajectories were selected from the NMR ensemble
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Figure 5.2: Methodology for identification of slow conformational fluctuations associ-
ated with an enzyme reaction. A number of MD runs are used to sample the conforma-
tions along the reaction pathway by using a suitable description of the reaction coordinate
and umbrella sampling method. The biasing potentials or umbrella potentials (marked
dark black curves) allow sampling of the higher energy regions. The set of conformations
(each conformation is indicated by a gray dot) sampled in all MD simulations is used
for generation of the free energy profile (black curve) as well as the construction of the
covariance matrix for QHA.

(PDB code 1OCA) [211] and an X-ray crystal structure (PDB code 1AWQ) [262] with
the substrate excluded. AMBERs parm98 force-field was used for simulations. Each of
these structures was simulated in explicit solvent and equilibrated following the procedure
described previously (Sec. 2.2.2). A total of 10,000 conformations corresponding to a total
of 10 ns of sampling (stored every 1 ps over 2.0 ns for each MD trajectory) were used for
further analysis.

5.2.2 CypA End-States Only

The reactant and product states of the CypA reaction (Fig. 5.1A) were modeled based on
the X-ray crystal structure (PDB code 1AWQ) [262]. Note, in the reactant state, the bound
substrate was held in the trans conformation, where as in the product state, the bound
substrate was modeled to be in the cis conformation. Extended MD trajectories of 5 ns
each for the reactant and product states were generated (storing snapshots every ps for
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both the states). Finally, a total of 8,000 equally spaced snapshots were used for further
analysis.

5.2.3 Modeling the CypA reaction pathway

For CypA, the reaction progress is a measure of how much the bound substrate has rotated
(isomerized). To track this, the easiest and most accessible measure is the ω angle of the
amide bond dihedral angle of the bound substrate. The change in the ω angle is usually
referred to as the reaction coordinate. Once a suitable reaction coordinate is identified, it
is necessary to sample along the variation of the reaction coordinate to understand how the
reaction proceeds.

The motions within cyclophilin A associated with the enzyme reaction are known to
occur on the microsecond to millisecond time scale. A combination of 39 simultaneous
MD simulations was used to characterize the conformational fluctuations associated with
the cis/trans isomerization reaction catalyzed by the enzyme. For umbrella sampling, the
amide bond dihedral (ω) of the peptide bound at the active site was restrained harmonically
with a force-constant of 0.01 kcal/mol.deg2, centered at 5◦ rotations of ω. The procedure
for generating the ensemble along the reaction pathway is shown in Fig. 5.3. For each
window along the reaction pathway, we performed a total of 20 ps equilibration using the
harmonic restraints and the production run from each window lasted another 400 ps. A
total of 18,000 conformations were collected as part of sampling the reaction pathway.
The free energy profile was computed with a convergence criterion of 1× 10−4 kcal/mol.

5.2.4 Analyzing collective dynamics in CypA

For each of the trajectories generated, we analyzed the trajectories using QHA [150]. The
subspace overlap from each trajectories were also compared using Hess’s metric given
by Eq. 2.1. Further, we also computed the projections of the snapshots along individual
modes using Eq. 2.2. The NMR ensemble (PDB code 1OCA [211]) were also analyzed as
a separate ensemble to compare and contrast the motions in the substrate-free simulation.
Dynamic tensor analysis (DTA) was performed by extracting 1800 evenly spaced confor-
mations along the reaction pathway and constructing tensors of size w = 10, resulting in
a total of 180 windows.
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Figure 5.3: Umbrella sampling methodology for CypA reaction pathway generation.

5.3 Results

5.3.1 Similarity of Motions in CypA along its functional cycle

We begin by examining the large-scale fluctuations in CypA under three different condi-
tions: (a) reaction pathway, (b) end-state simulations and (c) substrate-free simulations.
as illustrated in Fig. 5.4, the fluctuations as determined from the top ten modes show con-
siderable similarity. Observe in Figs. 5.4A, 5.4B, 5.4C that there is inherent flexibility in
the regions 12-15, 68-76, 78-84, 101-107, 118-125, and 136-152. While both the reaction
pathway and end-state simulations show increased flexibility in regions 12-15 and from
136-152, the substrate-free simulations show enhanced flexibility in the loop 68-76 due to
the absence of the substrate in the binding cavity. The increased fluctuations in the regions
when the substrate is not bound to the enzyme corresponds to the increase in the degree
of freedom available when the binding site is empty. Surprisingly, when the substrate is
bound (along the reaction pathway or the end-state simulations), there is a marked increase
in the fluctuations of the loops 12-15. The correlation in the fluctuations, as determined
from each of the simulations is 0.8, indicating that the internal dynamics as compared in
these three scenarios are very similar.

Qualitatively, the regions of flexibility agree with NMR spin relaxation studies as re-
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ported by Kern and co-workers [78]. An NMR ensemble for human CypA corresponding
to the cis/trans isomerization reaction is not available to perform an analysis similar to
ubiquitin as reported above. However, an NMR ensemble for substrate-free CypA is avail-
able with 20 structures (PDB code: 1OCA) [211]. Therefore, a comparison of flexibility in
substrate-free CypA was performed. The substrate-free simulations of CypA and the NMR
ensemble show similar conformational flexibility. As depicted in Figure 5.4D, the regions
showing large conformational fluctuations include residues 12-15, 43-51, 66-84, 101-106,
120-126, and 146-151. The QHA modes were computed with five MD simulations, each
2.0 ns in duration; therefore, the total conformational sampling only corresponds to 10.0
ns. However, even at the nanosecond time scale (left), the results qualitatively show agree-
ment with the NMR ensemble (right). On the basis of the insights from the ubiquitin
results presented in Chapter 2, it can be envisioned that with more sampling there would
be quantitative agreement in the observed flexibility as well.

The extent of conformation fluctuations observed within CypA during the course of
the reaction pathway was further characterized by computing the projections of the slow-
est modes. The projections from the slow modes of QHA from reaction path sampling and
NMR ensembles indicate that the structural heterogeneity in the reaction path sampling
as well as the substrate-free MD covered and even exceeded the NMR ensemble (see Fig.
5.5). The presence of additional structures within the reaction path sampling ensemble in-
dicates that it covered a larger area within the potential energy landscape, which includes
the NMR ensemble as a subset. Even though the NMR projections are localized to a sec-
tion of the projection maps, it provides an indication that the reaction-coupled modes are
sampled by the NMR ensemble. Note that the NMR ensemble does not have the substrate
bound; however, as previously reported, these reactions promoting motions are intrinsi-
cally associated with the CypA structure and mechanism [78, 9]. In our calculations, the
overlap between the reaction path sampling and substrate-free MD was found to be 0.65.

Identification of the reaction-coupled flexibility is computationally expensive, as it
requires sampling the entire reaction pathway; moreover, this methodology can be con-
sidered limiting if a suitable description of the reaction coordinate is not available. As an
alternate methodology, we investigated the QHA modes obtained from the set of CypA-
substrate conformations in the end-states only (reactant and product states). Comparison
of the aggregated flexibility based on the slowest 10 reaction-coupled modes (see Fig-
ure 5.4) as well as the projections of the modes computed from the reaction pathway and
the end-states only (reactant + product) indicate that the results are qualitatively similar.
A detailed comparison of the individual motions from the two simulations as well as the
overlap between the modes further indicated that the slowest reaction-coupled modes from
the reaction path sampling and end-state simulations were similar. These results indicate

93



that the intrinsic flexibility of CypA does not change; however, sampling over the reaction
pathway provides the complete extent of conformational fluctuations that are sampled by
the enzyme.

It is interesting to note that the end-state MD showed two densely sampled regions
within the landscape, whereas the reaction path sampling was more uniform. As could
be somewhat expected, the conformations sampled in the end states did not entirely over-
lap with the reaction path sampling. On the basis of these observations, it appears that
the information contained in the end-state simulations is only qualitatively representative
of the conformational flexibility within the protein during the course of the reaction step.
However, this information is not sufficient to provide quantitative estimates of the actual
motions (displacements) along the course of the reaction. Nonetheless, the end-state QHA
modes provide a quick way for identification of the reaction-coupled flexibility. It should
be cautioned that if the end-states differ considerably, and there is structural rearrange-
ment in the protein and the end-states sample different parts of the phase space, then the
qualitative insight obtained may not be representative of the reaction pathway.

5.3.2 Analyzing Spatio-temporal collective dynamics using DTA

Collective behavior in CypA

Using DTA (see Chapter 4), we were able to identify six dynamically coupled regions
within CypA (Fig. 5.6(b)). The β-sheet in the protein clustered into two different regions;
the first cluster (Fig. 5.6(b)); dark blue; β1−2, β8) represents the hydrophobic core of the
protein. The second cluster (shown in cyan; β3−7) represents the surface region of the pro-
tein in close contact with the substrate. The α-helices form two clusters; one constrained
via hydrophobic interactions (α1) and held rigid, whereas the second helix (α3) exhibits
much more flexibility and is coupled with the loops at the active site of the protein (L4,
L8). Note that the loops L3, L5, L6 (shown in orange), in front of the active site are all
coupled. Similarly, L5 and L7 at the back of the active site belong to the same cluster.
The substrate and loop L1 (red) show coupled motions. These observations are in good
agreement with previous computational investigations [9, 4].

The biological relevance of our findings can be explained on the basis of the dynamic
coupling observed. Based on the clustering, we find loops L3, L5 and L6 (Fig. 5.6(b);
loops highlighted in orange) are dynamically coupled. Mutations to loop L5 are known to
affect the collective fluctuations in both L3 and L6 [78]. Similar observations can be made
about other spatially separated loops. For example, despite the fact that residues from L1
and the substrate (Fig. 5.6(b)) are separated by over 18 Å, clustering indicates that these
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two regions are coupled dynamically. Similarly, L4 and L8, which are separated by ap-
proximately 12 Å, also exhibit coupled motions. The residues identified to be constrained
(Fig. 5.6(a)) are part of a network of conserved residues inter-connected via hydrogen
bonds/ hydrophobic interactions. This network has previously been identified via post-
processing of this trajectory [9, 4] using other methods. Thus, the clusters of coupled
residues identified using DTA provide insights into to the catalytic function of CypA.

Anomaly detection along cypA reaction pathway

The simulation for CypA consisted of generating a free-energy profile using the amide-
bond dihedral angle of the bound substrate as the reaction coordinate. We identified a
total of 17 out of 180 tensors showing error of reconstructions above the second standard
deviation threshold (Fig. 5.7A). The average RMSD was about 1.45 Å. Once again, the
error of reconstruction is not correlated with the RMSD (Fig. 5.7B).

In Fig. 5.7C we show two structures to illustrate changes in collective dynamics. In
tensor window 10 (top panel), we detect the changes in the collective movements involv-
ing L1, L3, L5, L6, L8 and α2. In tensor window 40 (bottom panel), we found that
the substrate molecule showed large deviations with respect to its collective motion with
interacting partners, namely β3 and L6-L8, yet showed an RMSD of only 0.65 Åto its
predecessor window. The motions associated with these regions of the enzyme are known
to be correlated with the catalytic process [9, 4] and therefore seem to be of functional
importance. It is important to note that even though the overall RMSD for CypA in the
two windows is relatively small, the substrate peptide highlighted in Fig. 5.7C (bottom
panel) shows a distinct conformational rearrangement which could not have been detected
by using RMS deviations alone. Since our method incorporates deviations in distance fluc-
tuations, we can keep track of changes that may relate two distally located residues and
reason how collective motions along each stage of the reaction pathway changed.

5.4 Conclusions

Our objective in this chapter was to compare and contrast the intrinsic dynamics in cy-
clophilin A using three scenarios: (a) dynamics along the reaction pathway from trans to
cis configuration of the bound substrate peptide, (b) the reactant and product states and (c)
just the free enzyme. In all of the three cases, we found undoubtedly a remarkable similar-
ity in terms of the large-scale fluctuations observed. Notably, the topmost (low frequency)
modes of motion determined via QHA coupled to the reaction shows substantial overlap
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with respect to the large scale fluctuations in the reactant and product state simulations
and just the free enzyme itself. This can be seen from the regions exhibiting substantial
fluctuations (as illustrated in Fig. 5.4) and the projections spanned by these modes.

Does this mean that the intrinsic dynamics does not change in the three scenarios? As
evidenced in Fig. 5.4, there are subtle variations in the fluctuations observed from the top
ten modes. For one, the region 68-76 exhibits considerable fluctuations in unbound sim-
ulations. This is to be expected since the binding of the substrate to the active site causes
specific changes that seem to restrain the additional degrees of freedom in and around this
region of the enzyme. A second interesting observation is that the residues 12-15 in the
reaction pathway as well as the end-state simulations show considerably higher fluctua-
tions compared to that of the unbound simulations. Further enhanced are fluctuations in
the regions 146-154, all of which are involved in ‘promoting’ the progress of the catalytic
step [77, 78, 9, 5].

There is substantial overlap between the reaction coordinate simulation and just the
end-states alone. Although the simulations of the substrate-unbound simulations also show
substantial overlaps in terms of the large-scale motions, the end-state (and the substrate-
free) simulations do not “cover” all of the landscape seen from the free-energy profile. The
smaller overlaps between the full free-energy reaction profile versus 0.67 for end-state and
0.65 for substrate-free, further allows one to understand the subtle changes the enzyme
undergoes upon substrate binding and during catalysis. We also repeated our experiments
with QAA (not shown) and find that the reaction pathway samples regions in and around
the transition states which are not accessible to the substrate-free or end-state simulations.

The analysis from DTA leads to characterize the dynamical coupling that exists be-
tween different regions of CypA. An interesting observation here is that the loop L1 (see
Fig. 5.6(b)) and substrate are coupled in terms of their dynamical behavior in spite of being
separated by over 20 Å. Further more, collective dynamical changes occur along the net-
work regions implicated in previous studies [9] and therefore it highlights the importance
of having access to such states during the course of a simulation. These states might not
correlate with states showing high RMSD values.

In summary, reaction pathway sampling such as umbrella sampling in combination
with QHA and DTA provides a unique method of identifying slow conformational flexi-
bility coupled to the enzyme mechanism. Similar to the case of ubiquitin, these modes also
show agreement with the experimentally determined protein flexibility. For enzyme cat-
alyzed reactions, the reaction-coupled flexibility can be qualitatively understood by QHA
on a set of conformations obtained by a combination of the reactant and product states
only. This allows overcoming a limitation of this methodology, as it requires sampling
along the reaction pathway. The slow conformation fluctuations based on the entire re-
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action pathway and the end-states only were qualitatively similar for the CypA catalyzed
reaction. The coverage of conformational landscape was similar for the first four modes
coupled to the reaction. From a mechanistic point of view, it could be rationalized that
when the reactant and product states of the enzyme do not show large conformational
changes involving rearrangements of secondary structures, sampling just the reactant and
product states provided qualitative information about the large-scale motions involved in
the catalytic substep. Overall, the characterization of microsecond to millisecond confor-
mational fluctuations of ubiquitin and CypA indicates that flexibility is closely related to
their designated function. Even though the role of protein flexibility in function is the topic
of an ongoing debate [210] similar to the observations reported here, increasing evidence
from other groups also suggests a close link between protein conformational fluctuations
and enzyme catalysis [40, 47, 156].
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Figure 5.4: Reaction-coupled flexibility in the enzyme CypA shows similarity to mo-
tions in the end-states and substrate free enzyme. Inverse frequency-weighted posi-
tional fluctuations for the top 10 reaction-coupled modes based on QHA of conformations
from (A) the entire reaction pathway and (B) end-states only (reactant + product). The
substrate is shown in a ball-and-stick representation, while the enzyme is shown as a car-
toon. Similarity in fluctuations is also seen in (C) substrate-free simulations and (D) NMR
ensemble 1OCA [211] which qualitatively agree with the full reaction pathway.
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Figure 5.5: Projection of MD and NMR structures on the modes coupled to the re-
action catalyzed by CypA show large overlaps. (A) mode 1 vs mode 2; (B) mode 3
vs mode 4. The gray open circles correspond to the projections from the set of 18,500
conformations sampled along the reaction pathway; red squares correspond to the NMR
structures. The yellow filled circles correspond to the end-states MD only. (C) mode 1 vs
mode 2; (D) mode 3 vs mode 4. The green squares correspond to substrate-free simulation
for CypA. The large extent of overlaps in each of these simulations indicate how reaction
path sampling and the other simulations share substantial similarity in individual motions.
Note that the computed projections represent summation over all atoms in the protein.
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Figure 5.6: Dynamically coupled regions in Cyclophilin A. The left-hand panel iden-
tifies a total of 26 residues that are constrained. These residues are conserved and form
a network of interactions stretching from the outside of the enzyme to the active site, as
proposed by Agarwal and co-workers [9, 4]. Six regions of the protein dynamically cou-
pled; the hydrophobic part formed by β1−2,8 and α1 experience low distance fluctuations
(shown in dark blue); β3−7 (top middle panel) undergo slightly larger distance fluctuations
(shown in cyan); α3, L4 and L8 are grouped into one cluster (green); α2, L5 and L7 are
regions behind the substrate, L3, L5 and L6 cluster together into one group (front of the
substrate shown in orange) and L1 and the substrate form the most flexible parts of the
protein (shown in red).
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Figure 5.7: Error of Reconstruction along Cyclophilin A reaction pathway compared
against the root mean squared deviations (RMSD). (A) shows the reconstruction error
plotted as a function of tensor window. Gray dotted line: mean reconstruction error, gray
solid line: second standard deviation interval. Dotted circles highlight those tensor win-
dows with higher reconstruction errors shown in the adjacent panel. (B) RMSD showing
structural changes along the reaction coordinate defined by Agarwal and co-workers [9].
(C) Structural changes associated with CypA for two windows, namely w = 10 (top; over-
all RMSD 0.617 Å) and w = 40 (bottom; overall RMSD 0.650 Å). The structure from the
predecessor window is shown in dark gray and the current window is shown in light gray;
regions involved in collective movements highlighted in green. Note the large movement
in the substrate molecule, shown as sticks in the bottom panel. This cannot be picked up
using traditional metrics such as RMSD since it is only an average measure of structural
deviations. However, tracking distance variations, we note a significant difference in the
placement of the substrate.
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Chapter 6

Evolutionary Linkage between Enzyme
Fold, Flexibility and Catalysis

Enzymes are intrinsically flexible molecules. Emerging evidence has linked internal pro-
tein motions to the mechanism of enzyme catalysis; networks of coupled promoting vi-
brations/motions have been discovered for several enzyme systems. In this report, we
investigate the linkage between the protein flexibility, enzyme function and the overall
shape of the enzyme (enzyme fold). Three chemical reactions are studied: (a) isomeriza-
tion, (b) hydride transfer (reduction) and (c) hydrolysis of single strand RNA molecules.
For each reaction mechanism, we ask if two different folds catalyzing the same reaction
show any similarity in terms of the intrinsic dynamics coupled to the catalytic step. Our
studies show that there is a remarkable similarity in the dynamics of enzymes even if they
do not share significant structure or homology. Three enzymes in particular, cyclophilin
A, dihydrofolate reductase and ribonuclease A show the conservation of reaction coupled
slow conformational fluctuations across multiple species, particularly in the surface loop
regions. These highly flexible regions in the enzyme are interconnected by conserved
networks, which connect these regions to the crucial active-site residues. Detailed charac-
terization indicates reaction coupled flexibility as well as the network residues, along with
the crucial structural interaction in the active-site, are important aspects of the enzyme
fold. These findings also explain why there is drastic impact on the enzyme activity when
these crucial linkages, even located far away from the active-site, are altered.
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6.1 Introduction

Proteins are intrinsically flexible molecules. The relevance of conformational flexibility
or multiple conformations of proteins, with small deviations from native state, in proteins
designated function is the topic on an ongoing and interesting debate [98, 41, 210]. The
role of structure in protein function such as enzyme catalysis is well established. Tech-
niques including X-ray crystallography and nuclear magnetic resonance (NMR) have been
widely used to obtain information about the protein structure, thereby providing insights
into the mechanism of function. The obtained information reveals the functioning protein
present in slightly different but related conformations, with some areas of the protein (par-
ticularly the surface loops) being more flexible than others. Given the success of structural
effects in explaining many aspects of function, the observed fluctuations in the structure
have largely been ignored. More recently, however, it has been proposed that the pro-
tein function may involve multiple conformations; the observed deviations are not just
inconsequential random thermodynamic fluctuations but flexibility may be closely linked
to protein function including the catalytic efficiency of enzymes [41, 113, 6, 48, 229].

Internal proteins motions span a wide range of length and time-scales. The dynami-
cal landscape of a protein and the associated energy landscape have been challenging to
characterize, as the internal motions and the associated structural deviations over a broad
range of time-scales [52]. Experimental techniques including, but not limited to, NMR
spin relaxation and single molecule experiments have provided insights into the protein
motions that occur at time- scale of the enzyme catalytic step in several enzyme systems
including dihydrofolate reductase (DHFR) [47, 236] and cyclophilin A (CypA) [77, 78].
The time-scales for the slow conformational changes and the chemical step catalyzed by
the enzyme are similar, therefore, raising the question whether they are inter-related or
not [47].

Preliminary evidence has suggested the possibility of protein dynamics playing a pro-
moting role in the biophysical mechanism of enzymes [40, 115]. Conformational dynam-
ics of enzymes have been associated with substrate (and cofactor) binding and product
release for some time now; however, the interconnection between flexibility and the sub-
strate turnover step still remains the topic of debate. In the enzyme CypA, Kern and
coworkers monitored the motions of several surface loop residues only in the presence of
substrate [77]. Agarwal and coworkers, performed computational studies of CypA, iden-
tified a network of protein residues that influenced the reactive trajectories in the active-
site [9, 4, 5]. For the hydride transfer catalyzed by DHFR, groups of Benkovic, Wright,
Hammes among others have indicated the movement of surface loops Met20 and βF-βG
in associated with hydride transfer [236, 7, 8].Using computational methods, Hammes-

104



Schiffer and coworkers have identified a network of coupled protein motions linked to
enzyme function in DHFR. These networks formed by conserved residues both in and dis-
tal to the active- site have been implicated in promoting the catalytic step. These networks
extend from flexible surface loop regions, showing high conformational flexibility, all the
way to the active-site residues that directly participate in the chemical step. It has been
hypothesized that the solvent shows motion and energetic coupling with flexible surface
loops which eventually transfer the required kinetic energy to the active-site through the
conserved network interactions [6]. Evidence from computational studies and Mossbauer
and neutron scattering investigations also supports that the thermo-dynamical fluctuation
in hydration-shell and bulk solvent control the behavior of reactive trajectories; [5, 85]as
well as the motions within the active-site residues control the chemical environment, which
favors the reaction crossing the energy barrier [40].

Conservation of structural features across species has provided vital clues to their role
in protein function. In particular, it has been argued that the enzyme active-site residues
are optimally arranged to provide complementary environment to the transition state to
allow for its stabilization [217, 281]. The overall enzyme shape or the enzyme fold has
been suggested as a scaffold that orients the active-site residues that are conserved features
of the enzyme structure. This notion has lead to the structure-encodes-function paradigm
for understanding enzyme catalysis. As a result, a number of theories for understanding
enzyme catalysis have been proposed with strong emphasis on the structural interactions
between enzyme and the substrate in the active-site.

More recently, investigations have offered new insights into the linkage between en-
zyme flexibility and designated function. In particular, Klinman and coworkers have re-
ported the reciprocal flexibility in enzyme fold: the active-site shows considerable rigidity
while the external regions show flexibility in linkage with enzyme function [156]. We
hypothesize that the argument of conservation of important structural features can also be
extended to identification of protein flexibility in interconnection to enzyme function. Sim-
ilar to the secondary structure elements as well as individual residues that are conserved
for their structural role, we suggest that the chemistry promoting dynamical regions of
enzymes are also conserved as a part of the enzyme fold.

In this chapter, we describe our investigations of protein dynamics connected to en-
zyme catalysis to test the evolutionary preserved interconnection between the enzyme
fold, conformational flexibility and function. We have investigated three well charac-
terized enzymes catalyzing different chemical reactions with distinct folds and reaction
mechanisms: CypA catalyzing cis/trans isomerization of peptidyl-prolyl amide bond in
peptides/proteins; DHFR catalyzing hydride transfer and ribonucelase A (RNaseA) cat-
alyzing the hydrolysis of single-stranded RNA. For each enzyme fold, computational in-
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vestigation of enzyme structures from several species with different sequences has been
performed. Slow conformation fluctuations at the time-scale of the reaction and spanning
the entire enzyme structure have been characterized. One may argue that this result might
not be surprising given the high structural homology between these proteins.

In order to mitigate the effects of structural homology, we compare the reaction cou-
pled flexibility identified across the three reaction mechanisms across multiple folds: for
peptidyl-prolyl isomerization, we consider CypA and Pin1 catalytic domain; for hydride
transfer, we compare Ec DHFR with R67-DHFR (an older mitochondrial enzyme) and
finally for hydrolysis, we compare RNaseA with the function of angiogenin. Note that in
isomerization and hydride transfer, the two enzymes considered do not share sequence/
structural homology. In the case of hydrolysis, both proteins RNaseA and angiogenin
share 33% sequence homology and a significant structural homology [3]; however, an-
giogenin is over 6 orders of magnitude less efficient than RNaseA [240, 241]. In all the
three cases, we find that reaction coupled dynamics exhibits remarkable similarity, even if
structures do not share significant homology. However, when the network of interacting
residues are not present, the activity of the enzyme is severely affected. Thus, the presence
of this networks along with intrinsic motions associated with the protein fold are important
for catalytic activity.

6.2 Methods

The starting structures for the enzymes were obtained from the protein data bank, ac-
cording to accession codes mentioned in the main text. Enzyme-substrate complex were
modeled using molecular mechanics under explicit solvent conditions as previously de-
scribed [9]. AMBER simulation package was used for model building and simulations.
AMBERs parm98 force-field and SPC water model were used. After the model prepa-
ration enzyme-substrate in explicit water, the system was equilibrated based on protocol
described in Chapter 2. Briefly the model was minimized to remove bad contacts and
slowly heated to 300K. All production runs were performed at 300K under NVE condi-
tions. Note, previously we have verified the suitability of parm98 force-field for dynamics
modeling with comparison with other popular force-fields [9].

6.2.1 Reaction profiles

cis/trans Isomerization: The cis/trans isomerization catalyzed by CypA was modeled
for three structures from Plasmodeum yoelli (PDB code: 1Z81 [267]), Bos taurus (1IHG [256])
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and Homo sapiens (1AWQ [262]). The human cyclophilin was modeled as previously de-
scribed with peptide substrate His-Ala-Gly-Pro-Ile-Ala. For the B. taurus cyclophilin,
only the residues 2-185 (corresponding to the CypA fold) in the PDB file were used for
the model; a substrate peptide Ala-Gly-Pro-Phe was modeled on alignment of active-site
residues from human CypA. For P. yoelii cyclophilin, only the residues 40-210 in the PDB
file were used for the model; a substrate peptide His-Val-Gly-Pro-Ile-Ala was modeled on
alignment of active-site residues from human CypA.

The reaction pathway was modeled with amide bond dihedral angle (ω) as reaction
coordinate; 37 windows (in 5◦ decrements) were used to map the reaction from the re-
actant state (ω = 180◦) the product state (ω = 0◦). Reaction profiles were generated for
the cis/trans isomerization reaction catalyzed by CypA as described previously [9] and in
Chapter 5. The amide bond dihedral angle of the isomerized peptide bond was selected
as the reaction coordinate and umbrella sampling was performed on the entire section of
the reaction pathway. No covalent bonds are broken or formed during this reaction mech-
anism. Previously, we have used this methodology to investigate isomerization in several
human CypA structures [4]. Each window was simulated for 200 ps and 500 structures
from each MD simulation were collected for the QHA and correlated motion analysis.
18,500 conformations were used for computing the QHA modes and doing DTA.

Hydride Transfer: For the hydride transfer catalyzed by DHFR, which involves break-
age and formation of C-H bonds, empirical valence bond (EVB) approach [276, 272]
with a two state model as implemented in the AMBER package was used. The simula-
tion protocol, including the parameters for the Morse potential for the C-H bonds, was
same as the previous studies of hydride transfer in DHFR simulated using EVB [7, 8].
The hydride transfer catalyzed by DHFR was simulated for four structures including the
Escherichia coli (PDB code: 1RX2 [234]), Mycobacterium tuberculosis (1DG5 [183]),
Candida albicans (1AI9 [280]) and Homo sapiens (1KMV [157]). Based on previous ev-
idence the associated proton transfer was assumed to preeced the hydride transfer step.
The substrate was modeled as protonated dihydrofolate with the cofactor nicotinamide
dinucleotide phosphate (NADPH) as the hydride donor as reported in previous study.

For modeling the hydride transfer step, we used protonated substrate and empirical
valence bond (EVB) method. The procedure for EVB is described previously, was used
for mapping the reaction from the reactant state (hydride on NADPH) to product state
(hydride on DHF). Morse potential was used for the breaking C-H and forming C-H,
with the following values of the C-H Morse parameters De= 103 kcal/mol, Re =1.09 and
α=1.285 Å−1, based on previous studies [7, 8]. The parameter αwas adjusted according to
the relation α =

√
k/2De for the parm98 force-field harmonic bond force constant (k) to
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reproduce the C-H-C geometrical parameters as previously reported. A mapping potential
in the EVB framework was used to gradually map the reaction from the reactant state
(mapping parameter λ=0) to the product state (λ=1), with 21 simulations (λ=0, 0.05, 0.10,
. . ., 0.95 and 1). Each of these simulations was equilibrated by energy minimization and
followed by 70 picoseconds (ps) of molecular dynamics (MD). For production runs,100
ps of MD under constant energy conditions (300K and 1 atm) were performed. Other
conditions were similar to previous study mentioned above. For each of the 21 bins, 1000
conformations were collected representing the enzyme-substrate conformations sampled
along the reaction pathway. Thus, 21,000 conformations were used for QHA and DTA.

Single-strand RNA hydrolysis: One may observe that the reactant and product state
for RNase A is quite similar. In this scenario, we decided to model only the reactant and
product states (5 nanoseconds of MD simulation in each state) for the structures from Bos
taurus (PDB code: 1U1B [35]), Rana catesbeiana (1KVZ [133]) and Rattus norvegicus
(1RRA [107]). A summary of the sequence identity and the structural similarity for the
enzyme structures used in this study is given in Table 1. Further details of the simulation
protocol are available in the supporting information.
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Reaction coupled flexibility: Protein flexibility at long time-scales was identified using
the quasi-harmonic analysis (QHA) [150] as described previously in Chapter 2. QHA of
entire set of enzyme-complex conformations sampled along the reaction pathway allows
identification of conformational fluctuations occurring at the time-scale of the reaction.
As identification of the slow conformational fluctuation is central to our investigations,
we have verified the ability of QHA to reproduce experimentally observed protein confor-
mational fluctuations at the microsecond-millisecond time-scales [225]. In case of CypA,
we used 18,500 conformations while in case of DHFR we used 21,000 conformations
collected along the entire reaction profile. This approach provides reproducible modes
associated with long time-scales, as described in our recent study. For RNaseA, only the
reactant and product states were used for QHA with a total of 20,000 conformations. Our
detailed analysis indicates that for reactive states where the protein conformations do not
differ considerably, the slow modes can be reasonably approximated by QHA of the con-
formations from just the reactive and product states only as observed from Chapter 5. In
all cases we analyzed the first 50 modes from QHA. In CypA, the modes coupled to the
reaction were defined by computing the variation in the amide bond dihedral angle. The
largest fluctuations of the angle in the slowest modes were assigned the largest coupling to
the reaction. In DHFR, the coupling was defined as the dot product of the hydride trans-
fer displacement vector in the eigen-modes with the donor carbon (CD) and the acceptor
carbon (CA) distance vector. In the case of RNaseA, only the top 10 slowest modes were
analyzed.

Network of protein vibrations/motions were identified by characterization of enzyme
regions displaying large movements in the QHA modes, by investigating the dynamic
cross correlation maps, and monitoring the distances of correlated regions over the course
of reaction as reported previously [9]. Genomic analysis was performed using Clustal
W [257] and the structural analysis was aided by the PyMOL program [73].

6.3 Intrinsic Dynamics and Catalysis across Multiple species

6.3.1 Cyclophilin A

CypA is a prolyl-peptidyl isomerase (PPIase) catalyzing the cis/trans isomerization of pep-
tide bonds in small peptides and proteins. In the previous chapter (Chapter 5, we described
in detail the molecular architecture and the reaction coupled flexibility in CypA. We noted
that the reaction coupled dynamics with multiple substrates bound to CypA [9] and just the
unbound enzyme showed high overlaps in terms of the large-scale fluctuations observed
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from simulations. In this chapter, we examine the large-scale collective dynamics cou-
pled to the reaction coordinate across three species first, and then in a completely different
enzyme, Pin1, which shares neither structural/ sequence homology with CypA.

Characterization of the reaction coupled conformational flexibility from Bos taurus
and Plasmodeum yoelli have revealed remarkably similar flexibility for CypA across species
including human CypA (see Fig. 6.1). The motions of the enzyme residues Ala101-
Asn102-Ala103 and nearby loop 105-108 as well as Arg55 in human CypA alter the cru-
cial enzyme-substrate interactions during the reaction pathway. Additionally, motions of
Phe60 in the active-site and the associated loop region 57-60 also make important contri-
butions of the reaction mechanism. In B. taurus the equivalent residues Ala121-Asn122-
Ala-123 and the loop 125-127 also shows large movement during the enzyme catalysis,
with conserved active-site residues Arg75 and Phe80 also displaying motions along the
reaction pathway. Similarly, in P. yoelii, the residues Ala143-Asn144-Ser145 and the loop
147-149 also display large movements during the course of the reaction, with active-site
residues Arg97 and Phe102 controlling the crucial enzyme-substrate interactions.

Several regions distal to the active-site also display similar type of dynamical motions
in the slowest modes coupled to the isomerization reaction. These regions highlighted in
Figure 6.1 include the highly flexible surface loops (for e.g. the region 82-88 in human
CypA). Careful comparison of the regions with high flexibility in these reaction coupled
modes has led to the discovery that the slowest 3 protein vibrational modes coupled to
the cis/trans isomerization are conserved over evolution (see Figure 6.1A). These three
reaction promoting modes show absolute similarity in the location of large flexibility in the
distant areas of the enzyme, even though the protein structures are from different species.

To rule out the possibility of biasing the active-site dynamics, 3 different substrates
were used in these simulations. Further, in previous investigation of human CypA with
a biologically relevant substrate also provided the same vibrational modes coupled to the
reaction [4]. The regions of the protein showing displacement within these modes have
been indicated to show increased fluctuations in presence of substrate as measured by
N15 spin relaxation experiments [77, 78]. In spite of having different substrates bound at
the active site, it was also observed that the correlated motions across the three different
species were extremely similar (see Fig. 6.2).

Characterization of intrinsic CypA flexibility in the structures from different species
shows the presence of regions of similar dynamical fluctuations, as indicated by a k-means
clustering analysis of protein regions (see Fig. 6.3). The proteins residues separate into 6
clusters based on their characteristic flexibility over the course of isomerization; these
include the β-sheet separating into two clusters, the two large helices in separate clusters,
while the flexible loop regions forming two additional clusters. Structural analyses of the
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Region H. sapiens B. taurus P. yeolii
I1 29-33/ 85-86 40-44 / 104-105 27-31/ 88-89
I2 34-36 / 77-78 45-47 / 96-97 32-34 / 80-81
I3 56-57 / 142-150 75-76 / 155-162 60-61 / 143-151
I4 82-85 / 104-105 101-104 / 123-124 85-87 / 107-108

Table 6.2: Regions in CypA that exhibit correlated motions.

I D13N-K155O N35Nδ2-G109O I56N-G150O A101N-Q111O F83N-N108O
II G21N-D164O N43Nδ2-G117O V64N-D159O A109N-Q119O F91N-N116O
III D16N-D167O N38Nδ2-G120O V67N-N162O A112N-Q122O F94N-N119O
IV G25N-L175O N47Nδ2-G129O I76N-E170O A121N-Q131O F103N-N128O
V N7N-I156O N26Nδ2-T95O V44N-D149O A86N-Q97O I68N-A94O

Table 6.3: Network Residues in CypA and the conserved linkages. The corresponding
hydrogen bond linkages are shown for each of the five species: human CypA (I) PDB
code: 1RMH; human cyclophilin B (II) PDB code: 1CYN; B. Malayi (III) PDB code:
1A33; B. Taurus (IV) PDB code: 1IHG; E. coli (V) PDB code: 2NUL.

PPIase fold indicates the regions showing reaction coupled flexibility are interconnected
by network of hydrogen bonds; the residues and interaction (hydrogen-bonds) forming
these networks are conserved over evolution (Fig. 6.1C). These interactions originate in the
highly flexible surface loop regions on opposite sides of the protein (Phe83N-Asn108O,
Asn35Nδ2-Gly109O and Asp13N- Lys155O in human CyPA), and pass through internal
regions (Ala101N-Gln111O and Ile56N-Gly156O) to eventually connect to the residues
involved in structural contacts with the substrate (Arg55, Phe60, Asn102 and Ala103). It
is interesting to note that even though the exact residue is not conserved, the linkage at
the location is conserved keeping the network intact. The presence of regions with similar
dynamical characteristics in distal areas of the protein, the preservations of these clusters
as well as conservation of the linkages connecting the flexible clusters to the active-site
regions form an important feature of the enzyme fold.

6.3.2 Dihydrofolate reductase

DHFR catalyzes the catalyzes the reduction of 7,8- dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate
(THF) using nicotinamide adenine dinucleotide phosphate (NADPH) as a coenzyme. DHFR

112



belongs is a member of family of proteins sharing the nucleotide binding Rossmann fold,
characterized by a central core formed β-sheet surrounded by α-helices; in DHFR there
are two occurrences of the Rossmann fold fused in the same peptide chain. Previously,
a network of coupled motions promoting hydride transfer in DHFR has also been iden-
tified using detailed theoretical and computational modeling. Similar to the network in
CypA, this network is also formed by surface residues present on the flexible loop regions
(particularly the βF- βG and the Met20 loop) interacting with other conserved residues all
the way to the active-site. The detailed characterization of this network had lead to the
identification of a chain of residues, as a dynamical contributor to hydride transfer reac-
tion. Previous investigations had also connected the dynamics of some of these residues
to the chemical step during enzyme function. The presence of this network has also been
confirmed by several studies including experimental investigations.

Conformational flexibility linked to the hydride transfer catalyzed by DHFR from E.
coli, M. tuberculosis, C. albicans, and humans show considerable movements in the sur-
face loop regions. The k-means clustering method indicates that over the course of hydride
transfer reaction the dynamical motions of the β-strands separate into 2 clusters. There
are 3 additional clusters: the Met-20 and βF-βG loops; adenosine binding domain; and
the substrate binding pocket. This clustering was same in all the 4 species investigated.
The slow protein vibrational modes coupled to the hydride transfer reaction show conser-
vation across species with different structures (see Figure 6.5A). The most characteristic
feature of the slowest vibrational modes are the large activity in the surface loop Met20
and βF-βG loops as well as the substrate binding pocket which is close to the DHF aro-
matic ring. These regions have impact on the reaction by positioning the nicotinamide
ring of the cofactor in close proximity of the substrate ring. Similar to CypA, DHFR from
different species also shows the complete similarly of motions in the equivalent regions
(see Fig. 6.5C). These regions contain the residues that form the network of coupled pro-
tein motions including the Tyr100, Ile14 and the Phe31 in E. coli DHFR. Additionally
residue Arg57 shows concerted movement with DHF tail. Structural analysis indicated
that these residues and the interactions are also conserved over evolution and display same
motions along the reaction pathway in M. tuberculosis (Tyr100, Ile14, Phe31, Arg60), C.
albicans (Tyr118, Ile19, Phe36, Arg72) and human (Tyr121, Ile16, Phe34, Arg70) enzyme
(Fig. 6.8).

The interconnection between the DHFR fold and the reaction coupled flexibility is
similar to CypA. The clusters of flexible surface loops are connected to the active-site
residues through the preserved linkages (Fig. 6.5C). Particularly the surface hydrogen
bond Asp122-Gly15 in E. coli, Asp126-Gly15 in M. tuberculosis, Asp146- Gly20 in C.
albicans and Asp145-Gly15 in human is conserved. Therefore, these regions also form
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Region E. coli M. tuberculosis C. albicans H. sapiens
I1 15-22 / 116-125 15-22 / 116-125 16-26 / 140-150 14-24 / 142-149
I2 31-36 / 142-150 31-36 / 142-150 36-45 / 178-186 34-43 / 170-176
I3 64-72 / 142-150 66-74 / 142-150 78-90 / 178-186 76-87 / 170-176

Table 6.4: Regions in DHFR that exhibit correlated motions.

E. coli D122N-G15O I14-Y100 Y100-NADPH F31-DHP
M. tuberculosis D122N-G15O I14-Y100 Y100-NADPH F31-DHP

C. albicans D146N-G20O I19-Y118 Y118-NADPH F36-DHP
H. sapiens D145N-G19O I16-Y121 Y121-NADPH F34-DHP

Table 6.5: Network Interactions conserved in DHFR.

characteristic feature of the enzyme fold with implications for catalysis. Note that the im-
portance of Ile14, a non-active-site residue but a part of the network contributing to the
enzyme mechanism, has been confirmed by NMR and mutation studies [47]. Mutation in
the network residues is known to alter the reaction rates for the hydride transfer. Further,
Met20 loop of E. coli DHFR, particularly is known to exist in 2 conformations, occluded
and closed and has been implicated in the catalytic step, mutations around these regions
lead to considerable decrease in catalytic efficiency. Single molecule experiments have
also suggested the concerted movement of this loop with the hydride transfer.

Examining the patterns of correlations across the multiple DHFRs (as shown in Fig. 6.6),
further reveals how similar these motions are during the reaction pathway. As clearly ob-
served, motions along βF-βG are highly correlated with motions in the Met20 loop, where
as motions in residues 64-72 are negatively correlated with motions in βG-βH. It is sig-
nificant to note that residues 64-72 and βG-βH are separated by over 30 Å, implying
some form of long-range connectivity in the dynamical sense. Further, it is also possible
to compare the dynamical behavior by examining the clusters as examined via DTA (see
Chapter 4). DHFR is comprised of five dynamically coupled regions (see Fig. 6.7). The
core β-sheet separates into two clusters (shown in blue and cyan respectively) where as
the Met20 and βF-βG loops are clustered together (shown in orange). α-helix consisting
of the residue Phe31 forms a distinct cluster (yellow) as well as αD (consisting of residue
Tyr100; shown in green) indicate that these regions exhibit different dynamics compared
with the rest of the protein. While the hydrophobic core of the protein (shown in blue and
cyan) exhibit slower motions, the αA, αB and αD show higher levels of fluctuations. This
pattern of coupling is also seen across all the four members examined.
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Region B. taurus R. norvegicus R. catesbeiana
I1 15-19/ 79-83 15-19/ 79-83 14-17/ 63-67
I2 62-76/ 40-51 62-76/ 40-51 49-56/ 31-38
I3 86-97/ 100-105 86-97/ 100-105 73-78/ 82-86

Table 6.6: Regions in RNaseA that exhibit correlated motions.

6.3.3 Ribonuclease A

RNaseA is secreted by pancreas and catalyzes the hydrolysis single strand RNA (see Fig.
6.9A). RNaseAs characteristic shape is formed by β-sheet in the center surrounded by
several flexible loop regions and α-helices. NMR experiments have suggested the link be-
tween flexibility and function [65, 162, 163]. The active-site is located at the bottom of the
inverted β-sheet. A distinctive feature of this fold, different from CypA and DHFR, is the
linkage of the flexible surface loops through disulphide linkages (Fig. 6.9C). The dynam-
ical clustering shows the separation of the residues into 4 clusters (the β-sheet forming
two clusters and the two loop areas forming two additional clusters). Reaction coupled
flexibility is also preserved over evolution (Fig. 6.11). In particular, the slowest modes
across the 3 species investigated show the displacement in the surface loop areas near the
active-site as well as distal to the active-site. Further, one can also note that there is distinct
similarity in the motions as noted by the correlated motions (Fig. 6.10).

A network of interactions coupled to catalysis and connecting the regions of high flexi-
bility is also present in RNaseA (Fig. 6.9C). Similar to the CypA and DHFR network, this
network is formed by connection of the surface loop regions all the way to the active-site.
In RNaseA, the highly flexible surface regions are linked to other loops through disulphide
linkages (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110 in B. taurus) and a hydrogen-bond
(Tyr97OH- Lys41O). Conserved residues in active-site (His12 and His119) mediate these
network motions between the enzyme and the substrate. These linkages are conserved
over evolution as a part of the enzyme fold (Fig. 6.12).

6.4 Diverse Enzyme folds catalyzing same Chemistry

Enzyme structures with high degree of sequence similarity are expected to show similar
intrinsic flexibility due to similar molecular architecture. It could potentially be argued,
against the findings reported here, that the conservation of flexibility could purely be a
coincidence due to the similarity in shape. Note that the conserved flexibility discussed in
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this report focuses not only on the slowest conformational fluctuations but on the global
conformational fluctuations that are coupled to the enzyme catalysis step, which may not
necessarily be the same as intrinsic slow movements of the enzyme folds. More impor-
tantly, a test of the hypothesis of inter-connection between the flexibility and function can
come from comparison of enzyme folds catalyzing the same chemistry but different struc-
tural folds. Therefore, we have closely inspected the reaction linked flexibility, if any, for
3 enzyme systems that catalyze the same chemistry as discussed above.

6.4.1 Pin1 PPIase

Pin1 is also a PPIase that catalyzes the isomerization of the peptidyl-prolyl bonds. Al-
though Pin1 catalyzes the same reaction as CypA, a difference between the two enzymes
is that Pin1 is preferential to the isomerization of phosphorylated substrates (pSer-Pro or
pThr-Pro motifs). NMR studies have provided preliminary indications that the intrinsic
flexibility for both enzyme folds during catalytic turnover are very similar, Pin1 compu-
tational modeling of the isomerization provides vital insights that the catalytic residues,
which form critical interactions with the bound substrate, are interconnected to flexible
surface, loop regions (see Figure 6.13A), similar to that of CypA [167].

The location and impact of reaction coupled flexibility in CypA and Pin1 is remarkably
similar, even though there is no sequence or structural similarity. While Pin1 active-site
residues show considerable rigidity (providing the hydrophobic pocket for the target pro-
line residue); however, the loops in proximity to the active-site show significant flexibility
coupled to the reaction pathway. In particular the surface loops 47-56 and 117-132 show
large displacements and are interconnected through hydrogen bond (see Fig. 6.13A). On
the other side, the catalytically important residue R68, is also connected to surface regions
of large flexibility through hydrogen bonds.

Note that all the flexible regions in Pin1 consist of residues with long side-chains sim-
ilar to that of CypA loops that play a critical role in catalysis. It is also interesting to
note that both CypA and Pin1 show the presence of networks that extend from the flexible
surface loop regions all the way to the active site of these proteins. Mutations of some
of these network residues have previously indicated significant decrease in the catalytic
activity [36].
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6.4.2 R67 DHFR

The structure of this plasmid encoded DHFR consists of a homo-tetramer (each subunit 76
amino acids in length). While the reaction is the same as that catalyzed by the chromoso-
mally encoded DHFR, R67 shows neither sequence nor structural homology with chromo-
somal DHFRs. This type II DHFR was discovered due to its ability to confer trimethoprim
resistance upon host bacteria. Both DHFR and R67 DHFR catalyze the hydride transfer
from cofactor NADPH to substrate DHF. Recent computational and experimental inves-
tigations have revealed interesting similarities in the reaction coupled flexibility for the
two enzyme folds. While R67 DHFR uses an endo transition state and EcDHFR uses an
exo transition state, the computational modeling show similarities as to how these two
enzymes provide crucial structural interactions in the active-site (see Fig. 6.14A).

There are similarities with regards to the relative motions (see Fig.6.14), both in the
center and on the edge of the active-site, that alter the chemical environment making it
suitable for catalysis to occur. In particular, puckering of the NADPH ring and a change in
the DHF-tail angle coupled with the hydride transfer are observed in both enzyme systems.
In DHFR, the nicotinamide ring puckering motion has been suggested to be induced by
a network of coupled motion originating from Asp122 on the surface and terminating in
Tyr100 in the active-site, positioned behind the CD. In R67 DHFR, the Gln67 side-chain
appears to provide similar motions to the CD atom, also positioned behind the cofactor
ring. The most interesting difference in the enzyme mechanism appears to impact the
chemical environment at the CA (see Figure 6.13A). In DHFR, it has been suggested that
the motions of the Phe31 side chain provide promoting motions that alter the DHF-tail
angle, thereby making the CA more suitable for the incoming hydride. In R67 DHFR,
the present computational studies predict that the same change in the chemical environ-
ment results from the p-ABG tail movement. Sampling of the DHF-tail angle is made
possible by the large flexibility of the tail located at the edge of the pore surrounded by
bulk-solvent. The two extreme states for the conformations are ion-pairs between the α-γ
carboxylate groups of DHF interacting with symmetry related lysines from two different
subunits (K232 and K332).

6.4.3 Human Angiogenin

The human angiogenin protein provides an interesting comparison for the chemistry cat-
alyzed by RNaseA. This protein also catalyzes hydrolysis of single stranded RNA; how-
ever, with low catalytic efficiency (at rates 105−106 less) than RNaseA [240, 241]. Angio-
genin is structurally similar to RNaseA, with the active-site showing similar contacts with
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the substrate, however, the major difference with RNaseA is the presence of a truncated
surface loop (see Fig. 6.13C). This surface loop forms an important part of the network
in RNAseA; however, angiogenin is missing portion of the network due to a truncated
flexible loop near RNaseAs Asp121. Interestingly, the dynamical motions of Asp 121, a
network residue that interacts with Lys66 on the truncated loop, have been implicated in
catalysis and mutation of this residue results in 90% activity loss in RNaseA [65, 35].

6.5 Conclusions

An integrated view of protein structure, flexibility and function is emerging for better
understanding of the detailed biophysical mechanism of enzyme catalysis.6 The role of
conserved structural interactions between active-site residues and substrate has been un-
derstood for some time; however, the role of overall enzyme fold still remains a mystery,
particularly the conserved residues that are located far away from the active-site. On the
other hand, increasing evidence continues to link protein motions with designated func-
tion. The intrinsic flexibility of a protein is related to the overall shape that is the protein
fold, as well as local organization of dynamical regions. Does all the emerging evidence
suggest that the overall enzyme fold is optimized for structural as well as dynamical effects
to carry out the protein function?

Careful characterization of the networks discovered in the three enzymes described in
this study, leading to certain common features (see Fig. 6.13). The networks discovered
connect surface loop regions to conserved active-site residues that make direct contacts
with the substrates. The surface loop regions show large flexibility as observed in X-
ray and NMR investigations as well as computational studies. These regions are exposed
to the solvent and contain non-conserved residues that share a common feature of large
side-chains, suggesting coupling with the solvent fluctuations. Another common feature
observed in these networks is the connection of these flexible loops through a conserved
hydrogen-bond with another region of the protein in the direction of the active- site. It has
been reported that bulk solvent fluctuations drive internal protein dynamics, therefore, im-
pacting protein function [84, 5]. Previous investigations have also suggested the existence
of energy pathways as a part of protein structure [184, 250]. Further, evidence supporting
the interconnection of the network surface loops to catalysis comes from human angio-
genin protein [65, 163].

The interconnection between enzyme fold, flexibility and function presented here sug-
gests the conventional emphasis structure-encodes-function may need revision to better
understand the fundamental mechanism of how enzymes work. Conservation of reaction
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coupled conformational flexibility as an important characteristic of the enzyme fold sug-
gest that structure encodes dynamics and structure-dynamics encode function. It is entirely
possible that specific enzymes have evolved to utilize the structural interactions with flex-
ibility making only minor contributions.3 While in other systems such as CypA, DHFR
and RNaseA the contributions of flexibility could be closely related to the enzyme mech-
anism. This emerging view of proteins provides some basis for understanding allosteric
and cooperative effects and also has wide implications for drug design as well as protein
engineering.
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Figure 6.1: Conservation of reaction coupled flexibility in enzyme CypA across 3 dif-
ferent species. (a) Top 3 slowest modes coupled to the cis/trans isomerization reaction
show large fluctuations in identical regions (near and away from the active-site). Multiple
snapshots are shown to indicate movements along the modes, and the regions with high
flexibility are shown in color. (b) Enzyme back-bone flexibility depicted as root mean
square fluctuations (RMSF); computed by aggregating the Cα displacement magnitude
in the top 10 modes coupled to the reaction. For comparison consensus sequence has
been used and RMSF has been normalized by dividing by the average Cα flexibility of
all residues in the enzyme. (c) Conservation of the network interactions connecting the
flexible regions as a part of CypA fold (only human CypA is shown; however these inter-
actions are conserved in human cyclophilin B, CypA from B. Malayi, B. Taurus and E.
coli as well). See supporting information for the animated movies.
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Figure 6.2: Cross-correlations observed along the reaction profile for cyclophilin A.
B1-B8 correspond to the correlations along the β-sheet of the enzyme. H1-H3 correspond
to the 3 α-helices. Regions marked I1-I4 correspond to distal correlations observed along
loop structures. I1: residues 29-33 with 85-86, I2: 34-36 with 77-78, I3: 56-57 with 142-
150 and I4: residues 82-85 with 104-108. Note, residue numbers refer to H. sapiens as
the reference species; corresponding residue numbers for the two species are available in
table: 6.2.
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Figure 6.3: Dynamical clusters in enzyme cyclophilin A. Six clusters were identified
(marked in different colors), that were identically across the three species. The substrate
(shown in red stick representation) and the β-hairpin formed by residues 13-16 (H. sapiens;
red cartoon) exhibit large-scale fluctuations. The hydrophobic core of the protein (dark
blue) and the active site regions (cyan) show similar motions across all the three species.
Flexible surface loops along the outer edge of the active site (orange) are coupled across
all the three species. The flexible loops behind (yellow) and adjacent (green) to the active
site region exhibit coupled motions that are conserved features of this enzyme fold. Note,
regions that are insertions in the other two species (B. taurus and P. yeolii) are shown
in dark gray color. Regions of similar dynamical fluctuations are conserved, indicating
that dynamics coupled to the catalytic mechanism are conserved across multiple species
regardless of sequence homology.
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Figure 6.4: Conservation of the network interactions as a part of PPIase fold. human
CypA (I) PDB code: 1RMH; human cyclophilin B (II) PDB code: 1CYN; B. Malayi (III)
PDB code: 1A33; B. Taurus (IV) PDB code: 1IHG; E. coli (V) PDB code: 2NUL. The
equivalent hydrogen bonds are listed in the table 6.3.

123



Figure 6.5: Conservation of reaction coupled flexibility in enzyme chromosomal
DHFR across 4 species. (a) Slowest mode coupled to hydride transfer show large fluctu-
ations in same regions (near and away from the active-site) of the enzyme from 4 species.
(b) Enzyme back-bone flexibility depicted as normalized root mean square fluctuations
(RMSF). (c) Conservation of the network interactions connecting the flexible regions as a
part of DHFR fold (only E. coli DHFR is shown). The modes are depicted/colored and the
RMSF is normalized in a similar way to the CypA results.
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Figure 6.6: Cross-correlations in enzyme DHFR along the hydride-transfer. Regions
marked S1-S2, H1-H4 represent the correlated dynamics of the secondary structural ele-
ments in DHFR. Regions I1-I3 however correspond to distal correlations observed from
the reaction profile. I1: residues 15-22 correlated with 116-125 (Met20 and βF-βG loops),
I2: 31-36 (αA) correlated with 142-150 (βG-βH). I3: residues 64-72 (βG-βH) negatively
correlated with residues 142-150 (βG-βH). Note, we have used the reference structure as
E. coli (1RX2). Corresponding regions from other species are shown in the table 6.4.
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Figure 6.7: Dynamical clusters of residues in enzyme DHFR. Five dynamical clusters
were identified across the four species studied, indicating a identical behavior of flexibil-
ity coupled to hydride transfer. The Met-20, βF-βG, βG-βH and the substrate binding
loops (shown in orange) exhibit large-scale fluctuations. The flexibility of these regions
is a conserved feature of this enzyme fold. The central β-sheet is split into two clusters
(cyan and dark blue) which is consistent with the observation by Sawaya and Kraut [234]
regarding the intrinsic twist in the β-sheet. Further, loops shown in yellow are coupled
to the substrate-binding region. Regions shown in dark gray (in M. tuberculosis and H.
sapiens) are additional inserts not found in the other species.
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Figure 6.8: Details of the conserved network of coupled motions in enzyme chromo-
somal DHFR. The flexible loops on the surface are connected to the active-site through
conserved residues, hydrogen bonds and hydrophobic interactions as listed in the table 6.5.
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Figure 6.9: Conservation of reaction coupled flexibility in enzyme RNaseA across 3
species. (A) Slowest mode coupled to RNA hydrolysis show large fluctuations in same
regions (near and away from the active-site) of the enzyme from 3 species. (B) En-
zyme back-bone flexibility depicted as normalized root mean square fluctuations (RMSF).
(C) Conservation of the network interactions connecting the flexible regions as a part of
RNase fold (only B. taurus RNaseA is shown). Other network residues are shown in detail
(Fig. 6.12).
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Figure 6.10: Cross correlations in RNase A. Regions H1-H3 and S1-S4 correspond to
correlations observed from secondary structural elements (α1-α3, β1-β5) respectively.
Regions I1-I2 corresponds to distal correlations observed. The distal correlations observed
from RNase A are depicted in the table 6.6.

Figure 6.11: 3 identical clusters were identified across the species.The 3 α-helices are
clustered into three regions (blue, green and cyan), indicating that the dynamics of these
helices are quite different. The β-sheet is split into 2 distinct clusters (green and blue)
depending on how these regions flank the substrate in the active site. The opposed move-
ments of the β-sheet regions (see movies), and the motions of the flexible loop regions
(cyan and blue regions) are a conserved dynamical feature of the RNaseA fold.

129



Figure 6.12: Details of the conserved network of coupled motions in enzyme RNase
A. The flexible loops on the surface are connected to the active-site through conserved
residues and disulphide bonds as labeled in the figure.
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Figure 6.13: Conservation of Reaction Coupled Dynamics in enzymes catalyzing the
same biochemical reaction. Three reaction mechanisms were considered (A) isomeriza-
tion (B) hydride transfer and (C) hydrolysis. Observe that in (A) top panel: CypA shows
the presence of a highly conserved residue F113 which shows motions coupled to the cat-
alytic step by providing crucial hydrophobic interactions with the bound peptide. In (A)
bottom panel, the reaction mechanism for Pin1 PPIase is illustrated; observe the presence
of L122 and M130- both residues provide hydrophobic interactions to the substrate. In
both enzymes, a conserved hydrogen bond extending from the surface region to the active
site is present, illustrating the importance of the network. In (B), we highlight the reac-
tion coupled mechanism for DHFR from chromosomal DHFR (top panel) and a primitive
enzyme mitochondrial DHFR (bottom panel). Observe the presence of Y100 behind the
substrate in chromosomal DHFR - the corresponding residue in mitochondrial DHFR is
Q67 which provides the required hydrophobic interaction for the accurate placement of
the substrate in both cases (see Fig. 6.14). In panel (C), we illustrate ribonuclease A (top
panel) with angiogenin (bottom), showing the truncated loop. The consequence of losing
the loop is that crucial interactions extending from the surface to the active site (shown as
hydrogen bonds in the top panel) are missing in angiogenin, which may contribute to its
lower catalytic efficiency.
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Figure 6.14: Comparison of R67 DHFR with E.coli DHFR. (A) Reaction profiles gen-
erated from E.coli DHFR (black) versus R67 DHFR (red) show how the primitive enzyme
differs in its ability to catalyze the reaction. (B) Equilibrium averages of geometric prop-
erties along the reaction coordinate for E. coli DHFR (top panels) and R67 DHFR (bottom
panels).
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Chapter 7

Enzyme Super-family shows
Conservation of Protein Flexibility
linked to Catalysis

Enzymes catalyzing diverse chemical reactions have shown the presence of networks of
coupled motions promoting catalysis. It is hypothesized that the identification of con-
served regions of enzyme flexibility could provide vital information about the link be-
tween protein motions and function. As a test, the slow conformational fluctuations asso-
ciated with the common sub-step of hydride transfer catalyzed by four diverse members
of the dinucleotide binding Rossmann fold proteins (DBRPs) enzyme super-family have
been characterized. These enzymes, while sharing only about 10% sequence identity and
low structural similarity, show remarkably identical patterns in reaction coupled flexibil-
ity in three regions. These flexible regions, located in distant areas of enzyme structures,
are interconnected by conserved network of interactions. Enzyme motions in these net-
works impact hydride transfer reaction by decreasing the distance between the donor and
acceptor atoms. The preservation of flexibility in distant regions, along with structural
interactions in the active-site, is proposed to be important characteristic feature of the
DBRP super-family for catalyzing hydride transfer. These findings support the emerging
paradigm of understanding enzyme catalysis that states structure encodes dynamics and
together structure-dynamics encode function.
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7.1 Introduction

Conserved features of proteins provide vital clues about various aspects of their life cycle
including the designated function. In enzymes, active-site residues that form crucial inter-
actions with the substrate or structural elements facilitating in positioning of the substrate
(or cofactor) are conserved from prokaryotes to eukaryotes. Therefore, identification of
conserved features has become an important technique in search for the fundamental un-
derstanding of proteins. Recently, an integrated view of enzyme structure, dynamics and
catalysis has been proposed [164]. Increasing evidence indicates that in addition to struc-
tural interactions between the enzyme and substrate, internal protein motions also play a
vital role in the biophysical mechanism of catalysis. In this chapter, extending the con-
cept of conserved elements to flexible enzyme regions, we investigate the interconnection
between internal protein motions and catalysis.

Proteins are flexible molecules. Even at ambient conditions proteins are constantly
undergoing conformational fluctuations, which enable them to sample the kinetically ac-
cessible parts of the conformational landscape [47]. Motions occurring at time- scales of
enzyme catalysis have been identified in a number of enzymes, raising the question of
whether they are interrelated to mechanism of catalysis or not [6, 40, 156]. The idea of
possible connection between protein motions and substrate turnover during the enzyme
function is not new and dates back several decades [112, 113]. As experimental tech-
niques are providing more detailed information and computational models are becom-
ing more realistic, new insights into the linkage between protein flexibility and function
are becoming available. Experimental techniques including nuclear magnetic resonance
(NMR) spin relaxation, single molecule experiments have probed the motion of protein
residues in connection with substrate turnover step catalyzed by enzymes [47, 78, 40].
In particular, movements of back-bone as well as single residues in active-site and distal
regions at time-scale of the reaction have been identified in enzymes including dihydro-
folate reductase (DHFR) catalyzing hydride transfer and cyclophilin A (CypA) catalyzing
peptidyl-prolyl cis/trans isomerization [47, 78]. As we described in the previous chapter,
computational techniques continue to provide fascinating details ranging from fast mo-
tions of single amino-acids in the active-site to slow conformational fluctuations spanning
entire protein. Theoretical and computational investigations have lead to the discovery of
networks of protein motions/vibrations promoting catalysis in DHFR and CypA. These
networks are formed by protein residues and hydrogen bonds extending from surface re-
gions all the way to the active site. The presence of these networks has been confirmed by
NMR spin relaxation investigations performed [270].

Intrinsic protein flexibility of small enzymes has been discovered to be closely linked to
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enzyme function, therefore, is an important aspect of the overall shape or the enzyme fold.
In the previous chapter (Chapter 6), we have described that the reaction coupled confor-
mational fluctuations are conserved over evolution in a number of enzyme folds catalyzing
different types of chemistry: DHFR, CypA and ribonuclease A (RNAseA). Even though
the protein sequence is different, active-site and distal regions of the enzyme exhibit same
movements across species ranging from bacteria to human. Regions of these enzymes
showing high flexibility in the surface residues are connected to active-site through the
networks formed by conserved residues and interactions. The reaction coupled motions
originate in the flexible surface loop areas of the protein and extend all the way into the
active-site connected via the discovered networks. Slow conformational fluctuations in the
discovered networks are coupled to the reaction pathway. Mossbauer effect and neutron
scattering experiments have indicated that fluctuations in the hydration shell and the bulk
solvent enslave protein motions [85]. These solvent driven motions of the protein residues
on the surface impact the active-site enzyme-substrate interaction by a series of coupled
motions in the discovered networks. The biophysical role of these motions lies in altering
the environment in the active-site, near the transition state, impacting reaction trajectories
to successfully cross over the activation energy barrier [5]. Furthermore, multiple path-
ways provide alternate ways for the energy to be propagated to the site of catalysis where
the conserved residues through subtle motions manipulate the chemical environment to
favor the reaction to proceed from the reactant to the product state.

Enzymes over evolution have developed features that make them especially well suited
to catalyze the target chemistry. The ability of enzymes to catalyze the large number of
biochemical reactions in diverse substrates begs the questions whether each protein fold
has evolved independently. Structural and sequence analysis of a diverse enzyme super-
family with extremely different sequences and structures have provided an example of
the existence of common characteristics between functionally diverse members of en-
zyme super-families share common structural and biochemical features [101]. Babbitt
and coworkers have reported that mechanistically diverse enzymes that share a common
sub-step have very similar protein folds, based on the exploration of a family of proteins
as a sub-set of two dinucleotide binding domains flavin-proteins [209]. It was observed
that the conserved structural features are optimal for stereo-specific hydride transfer that is
stabilized by specific interactions with amino acids from several motifs distributed among
both dinucleotide binding domains. Bahar and co-workers investigated four structurally
similar yet functionally diverse proteins and found that the binding dynamics of the pro-
teins were largely similar characterized by a common fold and stretches of residues with
distinctive dynamical features [153]. Similarly, protease enzyme super-family as well
as the RAS GTPase family shows convergent dynamics associated with substrate bind-
ing [55, 224]; where the movements of the active-site residues are similar even though the
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structures shown considerable variations. However, the connection between the chemical
step during enzyme catalysis and protein flexibility in enzyme super-family has not yet
been explored.

Conservation of flexible regions in enzyme super-families could provide vital clues to
their role in the catalytic function, similar to how conserved enzyme-substrate interactions
provide insights into the mechanism. In this chapter, we present our investigations to char-
acterize reaction coupled flexibility in diverse members of an enzyme super-family. The
selected super-family consists of oxido-reducatses that bind and utilize dinucleotide cofac-
tors: nicotinamide adenine dinucleotide (NAD+), its phosphorylated and reduced forms
(NADP+, NADH and NADPH). These cofactors play a central role in cellular metabolism
and energy production, as hydride-accepting and hydride donating coenzymes, in many
essential biochemical processes including glycolysis and the citric acid cycle. We refer
to this enzyme super-family as the dinucleotide binding Rossmann fold proteins (DBRPs)
due to the presence of the Rossmann fold, β − α − β − α − β motif that binds a nu-
cleotide [230]. Here, protein flexibility of four diverse members coupled to the common
sub-step transferring hydride transfer step between substrate and cofactor has been char-
acterized (see Fig. 7.1). The investigated enzymes have very low sequence identity with
diverse structural topologies. The reaction coupled flexibility shows existence of promot-
ing motions that are remarkably similar. Detailed analyses indicate that in addition to
structural constraints, motions that play a promoting role in catalysis are also a conserved
feature of the entire super-family.

7.2 Methods

Complete reaction profiles for the hydride transfer reactions catalyzed by the four enzymes
were generated using molecular mechanics potentials in combination with empirical va-
lence bond (EVB) [272] method. Based on previous evidence, protonation of the substrate
associated with the reaction was assumed to occur prior to the hydride transfer [8, 13, 273].
Conformations of the enzyme-cofactor-substrate complex sampled along the entire reac-
tion pathway were used to identify the slow conformational fluctuations associated with
the hydride transfer reaction.

7.2.1 Modeling the hydride transfer reaction pathway

The four enzyme systems were simulated in explicit water with parm98 force-field and
AMBERs associated simulations package. The starting protein conformations were taken
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No. Enzyme Species PDB Code
1 dihydrofolate reductase (DHFR) Escherichia coli 1RX2 [234]
2 human biliverdin IX beta reductase (HBBR) Homo sapiens 1HE4 [219]
3 6,7-dihydrobiopterin reductase (DHPR) Rattus norvegicus 1DHR [266]
4 pteridine reductase (PR) Leishmania major 1E92 [106]

Table 7.1: Rossmann Fold (DBRP) members studied in this chapter

from the protein data bank. The four proteins simulated are summarized below in ta-
ble 7.1. For PR, the missing coordinates for following residues 1-5, 74-80 and 123-130
were generated based on homology modeling and simulation in vacuum. For the miss-
ing protein regions in enzyme PR, comparison with other known Rossmann fold proteins
indicated that the region correspond to extended loops. Therefore, we modeled the Cα ex-
tended from the protein and AMBERs leap module was used to add the remaining atoms.
Slow minimization in vacuum was used to relax to added residues (these coordinates are
available on request). For missing substrate in DHPR, the structure was aligned with PR
(using DaliLite server: http://www.ebi.ac.uk/Tools/dalilite/) [130, 131, 132] and the co-
ordinates of the substrate in PR was used for modeling the substrate in DHPR. After the
model preparation enzyme-substrate in explicit water, the system was equilibrated based
on protocol described previously (see Chapter 2). Briefly the model was minimized to
remove bad contacts and slowly heated to 300K. All production runs were performed at
300K under NVE conditions. EVB method was used for the reaction pathway sampling,
as outlined in Chapter 6.

EVB method in combination with classical molecular mechanics was used for genera-
tion of the conformations along the hydride transfer reaction. The EVB method developed
by Warshel and coworkers,14 has been used by a wide community of researchers to inves-
tigate enzyme reactions[8, 13, 273]. In EVB approach, the Hamiltonian for the system is
represented as a matrix.

H =

[
H11 H12

H21 H22

]
(7.1)

where H11 represents the reactant state and H22 represents the product state that can be
computed using molecular mechanics method such as AMBER or others. The off- diag-
onal terms (which can be assumed to be constant for simple implementation) and a cor-
rection term (δ22) to the H22 can be computed from the experimentally measured forward
and reverse reaction rates. Using a mapping potential framework, where the Hamiltonian
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is described by the equation:

Vλ = H11 × (1− λ) +H22 × λ (7.2)

and varying the mapping parameter λ from 0 to 1, the reaction was gradually mapped
along the reaction coordinate, with 7 different values of mapping parameter: λ=0 (reactant
state), 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 (product state) were used. The values of these parame-
ters are α=1.785 Å−1, De= 103 kcal/mol, and Re =1.09 for the bond between the donor
carbon and the hydride, and α=1.758 Å−1, De =103 kcal/mol, and Re=1.09 Å−1 for the
bond between the acceptor carbon and the hydride. For each of the 7 bins, 1000 conforma-
tions were collected representing the enzyme-substrate conformations sampled along the
reaction pathway.

7.2.2 Protein flexibility coupled to the hydride transfer step

The reaction coupled protein flexibility was analyzed using quasi-harmonic analysis (QHA) [150].
The atomic fluctuation matrix for QHA (Eq. 1.6) was constructed from system snapshots
traversing the entire reaction path, collected during EVB runs. Reaction path averaged
QHA provides information about the protein conformational fluctuations occurring at the
time-scale of the enzyme reaction (typically microsecond and longer). The low frequency
modes correspond to longer time periods and adequate sampling ensures reproducibility.
Coupling of these QHA modes to the hydride transfer step is defined by dot product for the
CD-CA vector and the hydride displacement vector in the mode. Note that we have used
a similar definition for the computation of the modes coupled to CypA activity indicate
large fluctuation in the peptide bond being isomerized.

7.3 Results

As described in Fig. 7.1, these enzymes share the common step of catalyzing hydride
transfer from cofactor NAD(P)H to substrate. However, as depicted in Table 1, these
enzymes are considerably diverse in sequence as well as in structure, sharing only 4-
13% of sequence identity and low structural similarity (RMSD of 3-5 Å). Even though
these proteins contain 2 occurrences of the Rossmann fold fused together in the same
protein chain, the topologies of the proteins are considerably different. Each Rossmann
fold consists of a core β-sheet formed by 4 stands surrounded by α-helices; however,
the location β-strands and α-helices in the primary sequence are different between the
enzymes. Intrinsic flexibility of the 4 enzymes over the course of hydride transfer indicates
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common characteristics (see Fig. 7.2). These enzymes show presence of 4 distinct regions
with similar flexibility, as identified by correlated motions between residues and dynamical
clustering analysis of enzyme-substrate conformations along the entire reaction pathways.
The first distinct region consists of the rigid core formed by the central β-sheet, except for
DHFR where it separates into 2 rigid regions.

The central β-sheet in HBBR, DHPR and PR (shown in dark blue) are dynamically
coupled and exhibit low conformational flexibility. The β-sheet forms the rigid core of the
protein, which is a conserved feature of this enzyme super-family. The flanking helices
along the β-sheet cluster into two and are shown in green and yellow respectively. The
helices shown in green are dynamically coupled to the co-factor. The parts of the helices
shown in yellow couple to the substrate motions and largely involve interactions that sta-
bilize the substrate within the active site environment. The flexible loop regions (orange),
layering the surface of each enzyme exhibit large-scale fluctuations. Each of these flexible
loops can be mapped on to a corresponding area within DHFR. In DHFR the flexible loops
around the active site consist of Met-20, βF-βG, βG-βH loops (cluster A). The equivalent
loops in HBBR (150-163, 169-178), DHPR (182-198), and PR (224-254) are located on
the opposite side of the protein as marked on the structures. Depending on the location
of the active site, these loops show coupled motions in the protein. The substrate-binding
loop (cluster B) in DHFR comprises of two flanking helices (shown in green and yellow).
Corresponding regions in HBBR (75-88, 115-130), DHPR (82-99, 133-147) and PR (109-
147, 181-196) are also marked on the figure. Only in DHFR, the large-scale fluctuations
of the adenosine binding loops (cluster C; 64-72) are separated from the rest of the protein
(cyan) however, in HBBR (34-49, 52-59), DHPR (37-41, 50-63) and PR (36-42, 63-85),
these regions are clustered along with the loops shown in orange. The presence of extra
cluster in DHFR (shown in cyan) is attributed to the fact that the two Rossmann folds in
DHFR are fused at an angle of 41◦ [234], and hence the motions between the β-strands
may be influenced by the presence of this intrinsic twist in the structure. The presence
of similar dynamical coupling indicates that the overall dynamics as measured by the dis-
tance fluctuations along the hydride-transfer step is a conserved feature of the enzyme
super-family.

Additional clusters are formed by less flexible helices and surrounding loop regions.
The most flexible cluster region is formed by surface loops, including the loops in the
proximity of the cofactor nicotinamide ring binding pocket in the active-site, showing
correlated motions with large displacements. In DHFR this region consists of the Met 20
and βF-βG loop regions, previously implicated in the enzyme activity through dynamical
motions Additionally, the surface loops regions near the substrate binding pockets of all
the 4 enzymes shows considerable flexibility and correlated motions over the course of
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HBBR (205) DHPR (236) PR (288)
DHFR (159a) 10% / (90b)1.7 / 3.8 Å 4% / (78) 0.6 / 5.6 Å 5% / (99) 1.8 / 4.6 Å

HBBR 10% / (173) 15.8 / 2.6 Å 12% / (181) 18.0 / 2.7 Å
DHPR 13% / (215) 20.3 / 2.9 Å

Table 7.2: Sequence and structural comparison the four enzymes investigated in this
study. The alignments were performed using DaliLite pair wise comparison web tool:
http://www.ebi.ac.uk/DaliLite/. a = Total number of residues in the enzyme b = Number
of resides used in the alignment by DaliLite

reaction. The edge of the β-sheet with surface loop regions (including adjacent helix in
HBBR and DHPR), where the adenosine part of the cofactor binds, also indicates large
displacement with correlated motions.

Slow conformational fluctuations, coupled to the catalyzed hydride transfer, display
motions in structurally equivalent regions of the 4 enzymes. Protein vibrational mode
showing the largest coupling to the hydride transfer step for the 4 enzyme systems is
depicted in Fig. 7.3. Note that this mode provides information about the enzyme motions
at the time-scale of the hydride transfer. As we previously reported, reaction coupled
modes for cis/trans isomerization catalyzed by enzyme CypA were obtained using similar
methodology [9, 4]. Fig. 7.2 depicts the highest flexibility in the reaction coupled modes
is present in structurally equivalent regions of the enzyme fold: residues 9-24 (Met20
loop), 48-54, 64-72 (adenosine binding domain) and 114-126 (βF-βG loop) in DHFR;
regions 34-49, 52-59, 75-88, 115-130, 150-163 and 169-178 in HBBR; residues 37-41,
50-63, 82-99, 133-147 and 182-198 in DHPR; and regions 36-42, 63-85, 109-147, 181-
196 and 224-254 in PR. These regions of the protein include the surface loop regions
where side-chains show large displacements; other flexible regions are located at the edge
of the active-site or in its vicinity. The residues in these regions show correlated motions
over the course of hydride transfer. Two additional modes that correspond to second and
third most reaction coupled modes also show motions in the above mentioned regions. As
the animated movies of these modes in the Supporting Information indicates, all regions
listed above show displacements in the 3 modes; however, the extent of displacements
depends on the mode.

Overall, the detailed characterization of the reaction coupled flexibility show inverse
relationship between the enzyme activity and flexibility. The enzyme active-sites are con-
siderably rigid while the loop regions, particularly the solvent exposed external loops,
show large displacements in the slow conformational fluctuations coupled to the enzyme
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catalysis step. These observations are consistent with other studies [113]. An indication of
the reaction coupled flexibility is provided by the aggregated atomic displacements in the
10 modes that show the largest coupling with the hydride transfer, as depicted in Fig. 7.4.
This figure depicts that the protein regions with implications in the catalytic mechanism
show remarkably identical flexibility, even through the structural organization and the se-
quence homology is very low, and structures differ in topology as well. The β-strands
provide structural motifs, along with conserved residues, for the binding of cofactor and
substrate in the rigid environment of the active-site. The dark blue color in Fig. 7.2 in-
dicated this central core is rigid over the course of the reaction, and shows the presence
of conserved enzyme-substrate interactions [7]. On the other hand, the three highly flex-
ible surface and associated loop regions are preserved across the diverse members of the
enzyme super-family, and have important implications for the catalyzed hydride transfer.
These regions are consistent with the findings from correlated motions and dynamic clus-
tering and are marked as Clusters A, B and C in Fig. 7.4.

The biophysical role of these preserved flexible clusters can be understood by detailed
structural analysis as well as characterization of motions over the course of hydride transfer
(Fig. 7.5). Present within Cluster A and B are networks of motions formed by a chain of
interactions that connect the flexible surface loops on the enzyme surface all the way to
the residues that form the active-site. Characterization of cross- correlation of motions
(see Fig. 7.6) over the course of the reaction and the reaction coupled modes indicate that
these networks facilitate in positioning the substrate and cofactor suitable for the hydride
transfer. The flexible surface loops of Cluster A impact the cofactor binding pocket, in
particular the nicotinamide ring with the donor carbon. The flexible loops as well as the
helices in Cluster B play a role in bringing the acceptor atom of the substrate in proximity
of the cofactor. Note that in DHFR, the substrate binding pocket is present on the opposite
side of the cofactor; therefore, this region is located on the opposite face of the cofactor as
compared to the other 3 proteins. The flexible loop regions of Cluster C possibly play a role
in the cofactor binding [40]; however, further investigations are required for understanding
the role of Cluster C.

In DHFR, a network of coupled motions promoting the hydride step has been pre-
viously proposed [7] and verified [40]. Starting from surface hydrogen bond Asp122-
Gly15 and mediated through Ile14; a conserved element of Cluster A is active-site residue
(Tyr100) positioned behind the donor carbon (CD) within the nicotinamide ring of dinu-
cleotide cofactor. In Cluster B, residue Arg57 and Phe31 facilitate the movement of ac-
ceptor carbon (CA) toward the donor carbon (CD). In the active-site, the motions in these
networks control the electronic environment; the role of dynamical active-site residues
with NADPH/NADH has been implicated in the ring puckering, which has been suggested
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as a contributor to the reaction coordinate and an important event in the hydride transfer
mechanism [277, 10]. The ring puckering alters the aromatic character (hybridization state
of CD changes from sp3 to sp2) thus allowing the hydride to leave. Similarly motions al-
ter the environment around the acceptor carbon (CA changes from sp2 to sp3) making it
suitable for the incoming hydride. Our recent studies have also indicated that these in-
teractions, as well as the protein fluctuations in this network, are a conserved part of the
DHFR fold (see Chapter 6).

In HBBR, present within Cluster A is the surface hydrogen bond Ile176N- His153O,
which relays the motions to Pro151, positioned behind the CD. Similarly within Cluster B,
starting from the surface regions consisting of two helices and the associated loop regions
that are interconnected by hydrogen-bonds between Ser88 - Asp131, motions are trans-
ferred to the active-site through Leu125 positioned behind NA of the substrate. Similar to
DHFR, slow conformational fluctuations in these network residues lead to a decrease in
the donor-acceptor distance.

In DHPR, motions of Cluster A network hydrogen bond Thr199O-Asp182N and the
residue Pro178 positioned behind the nicotinamide ring impact CD. On the other side,
the motions of Cluster B network hydrogen bond between Lys150 and Ser107, and the
residue Trp86 behind the substrate ring impact CA position; therefore, facilitate the hy-
dride transfer. Similarly in PR, these motions are present in Cluster A network hydro-
gen bond Ser252N-Leu226O and Pro224 behind CD, and Cluster B network hydrogen
bond Asn147-Lys198 and residue Tyr194 behind CA. An important observation is that in
HBBR, DHPR, and PR Cluster B consist of edges of two helices and the neighboring sur-
face loop regions, which interact through a number of other hydrophobic and hydrophilic
interaction in addition to the ones mentioned above. Additional interactions are expected
to be present within the network of coupled motions.

Beyond the active-site, the role of these preserved network interactions possibly lies in
the coupling of enzyme motions to those of the surrounding solvent. Previous computa-
tional as well as experimental investigations have revealed that the motions in the solvent
enslave and drive protein dynamics. Thermodynamical fluctuations of the hydration-shell
and the bulk solvent [5] reach the active-site (through the interactions in the networks)
where small changes in the enzyme-substrate interaction control the progress of the reac-
tion near the transition state. It has also been shown that the energy, from these fluctua-
tions, alters the recrossing behavior of the dynamical trajectories near the transition state,
so that more trajectories become successful.

142



7.4 Conclusions

In this chapter, we have characterized the protein flexibility in an enzyme super-family
of dinucleotide binding proteins. Four diverse members (DHFR, DHPR, PR and HBBR)
with very low sequence homology and considerable difference in the structural topology
show conserved protein flexibility coupled to the common hydride transfer step. There
are three regions of protein that show similar flexibility: cluster A, located near the dinu-
cleotide binding pocket; cluster B, located near the substrate binding pocket; and cluster
C, located near the adenosine binding pocket. Each of these clusters show presence of
conserved pathways that start from surface regions and lead into the inside of the enzyme.
In the active-site, the arrangement of conserved residues subtly controls the electronic en-
vironment to favor the product state. Therefore, consistent to with the widely accepted
view the structural arrangement of these conserved residues is a critical element of the
3-dimensional make of the enzyme structure or the overall fold. Other diverse members of
DBRP super-family confirm the preservation of the three flexible clusters as well as struc-
tural features whose dynamical motions impact catalysis (see Fig. 7.7). In addition, the
results presented here also indicate that for the system studies the conserved interactions
and protein vibrations are also a conserved part of the overall enzyme fold. We therefore
hypothesize that the flexibility signature of the enzyme-fold is also an important character-
istic that is required for defining an enzyme super-family. The multiple pathways observed
in the enzyme fold may possibly provide robustness to the enzyme for performing the des-
ignated function.
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Figure 7.1: Hydride transfer catalyzed by DBRP enzymes investigated in this study.
Each of the reaction requires binding of the cofactor (NADH or NADPH) to the enzyme.
The conversion of substrate requires the transfer of a proton (indicated by H*) and hydride
(indicated by circles H). The cofactor NADH/NADPH serves as a hydride donor.
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Figure 7.2: Dynamical clusters in the 4 enzymes reveal common dynamical behavior.
HBBR, DHPR and PR show the presence of four dynamically coupled regions, where as
DHFR shows the presence of five clusters. The substrate (brown) and co-factor (light blue)
in each protein is shown using a transparent stick representation.
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Figure 7.3: Slow conformational fluctuation coupled to the hydride transfer catalyzed
by the four enzyme systems investigated in this study. The protein vibrational mode is
depicted in a movie like fashion with subsequent frames shown in lighter colors. Corre-
sponding regions displaying large motions are colored and labeled. The substrate (brown)
and the NAD(P)H cofactor (blue) are shown as sticks; the motions of substrate and cofac-
tor have been omitted for clarity. Movies of these and two additional modes are provided
in supplementary information.
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Figure 7.4: Common dynamical characteristics of dinucleotide binding Rossmann
fold proteins (DBRPs) catalyzing hydride transfer. Aggregate atomic displacements
from top 10 reaction coupled modes (obtained by summing the displacement vectors in
the modes) are shown with the dark blue regions corresponding to rigid protein, while the
red (yellow and green as well) indicates regions displaying large movements coupled with
the reaction. Cofactor (orange) and substrate (white) are shown as sticks. The residues
corresponding to Cluster A, Cluster B and Cluster C are identified.
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Figure 7.5: Conservation of network residues in DBRP enzymes. These networks were
identified based on correlated motions and structural analysis. These networks start on the
enzyme surface and span all the way to the active-site (indicated by arrows), where they
facilitate the movement of the donor (CD) and acceptor (CA or NA) atoms for the hydride
transfer.
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Figure 7.6: Cross-correlations observed along the reaction profile. Positively corre-
lated regions are identified by darker shades of red, while negatively correlated regions in
the proteins are identified by darker shades of blue. Along the diagonal, positive correla-
tions are observed for secondary structure elements, namely the α-helices and β-sheets.
For clarity of presentation, the marking of secondary structural elements is not shown on
the correlation plots. Three distally separate regions marked R1-R3 show correlated move-
ments in the protein. These regions are part of a network of coupled motions identified for
the super-family of enzymes (see main text). The extent of these four regions is identified
in the table below. Note, in DHFR, the regions R1 and R3 are inter-changed depending on
the placement of the substrate-binding region, which is located on the opposite side of the
enzyme compared to HBBR, DHPR and PR. The positive correlations along R1 are weak
in all the four enzymes studied, while R2 and R3 show strong positive correlations.
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Figure 7.7: Conserved flexibility in the Clusters A. B, C and conserved network
residues in other members of the super-family. The flexibility based on the X-ray
temperature factors is depicted. The conserved residue in Cluster A behind the cofac-
tor nicotinamide ring is listed. 1ae1: Tropinone reductase from Datura stramonium; 1cyd:
Carbonyl reductase from Mus musculus; 1nas: Sepiapterin reductase from Mus musculus;
and 2hrb: Carbonyl reductase from Homo sapiens.
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Chapter 8

Conclusions

In this chapter, we summarize the major contributions of this thesis. We critically examine
the outcomes from each of the questions outlined in the introduction (Chapter 1) and an-
alyze them in the context of understanding both protein dynamics and enzyme catalysis.
We also outline future work that would arise out of this thesis. In the first part, we present
our perspectives on protein dynamics and how we can build better models to describe pro-
tein flexibility in the context of its function. In the second part, we discuss our findings in
the context of enzyme catalysis and protein design. Finally we conclude with a summary
on how our knowledge could be combined with experimental design to better understand
how enzymes (and proteins) work.

8.1 Protein Dynamics at Multiple Time-scales

8.1.1 Relation to Previous Work

It is important to set the context of our work in perspective of prior work. Most stud-
ies subscribe to the protein’s conformational landscape as being anharmonic, involving
multiple conformational sub-states that share significant structural and energetic similar-
ities [94]. The means of describing the conformational landscape spanned by a protein
has typically relied on highly effective techniques such as normal mode analysis [185] and
elastic network models (ENM) [28]. Recent studies on protein dynamics in several impor-
tant drug-targets have revealed that intrinsic dynamics dominates the binding motions in
recognizing the substrate [30]. Analysis using PCA techniques to characterize collective
fluctuations in proteins have also revealed that proteins tend to sample substrate bound and
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unbound forms within the same ensemble [170].

Our work on characterizing protein dynamics at multiple time-scales have focused
on ubiquitin. While previous work using both experimental [170] and theoretical [30]
techniques have highlighted the importance of intrinsic dynamics in function, our studies
reveal richer detail about how ubiquitin achieves its ability to bind to diverse substrates. As
presented in chapter 3, Quasi-Anharmonic Analysis (QAA) revealed that ubiquitin exhibits
motions that allow it to adapts its binding region extensively (as presented in Fig. 3.7).

QAA also reveals motions that modulate the binding regions exquisitely to adapt con-
formations that resemble that of the bound and unbound forms. QAA identifies isoener-
getic conformational sub-states (see Fig. 3.8), not revealed by both PCA based techniques
(Fig. 2.7) or NMA based techniques. These isoenergetic sub-states can also be further
decomposed into a natural hierarchy showing how ubiquitin could potentially modulate its
binding regions can adapt to potentially large number of substrates. The natural hierarchy
can also be used to interpret motions along every sub-state, indicating how motions that
are global in Level 1 of the hierarchy turn into potentially local motions in Level 2 (and
subsequent decomposition). All these observations complement both previous work and
add to the richness of the description of the conformational landscape spanned by ubiquitin
at µs time-scales.

8.1.2 Summary of Contributions

We began by examining, in detail, two questions outlined in the introduction section of the
thesis. The first question, asked how one could characterize the nature of protein dynamics
at multiple time-scales. The current state-of-the-art techniques to investigate protein flex-
ibility were considered. We used quasi-harmonic analysis (QHA) to examine large-scale,
collective conformational fluctuations by approximating the fluctuations observed from a
molecular dynamics (MD) simulation (and experimental ensembles) as a single harmonic
well. We used ubiquitin to describe the equilibrium conformational landscape. By ef-
fectively accounting for the structural heterogeneity observed from different crystal struc-
tures and sampling the landscape from different starting structures, we were able to obtain
an ensemble that could describe the µs-scale root mean-square fluctuations observed via
NMR experiments. We also found that the diagonal and off-diagonal elements along the
covariance matrices as determined from the NMR ensemble and the MD ensemble shared
significant similarities.

QHA approximates the conformational landscape by pursuing variance, which is a
second order statistic. Variance, as a statistical measure is sensitive to the outliers in
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Figure 8.1: Ubiquitin landscape represented by the first three basis vectors using
dihedral PCA [14]. While the projected conformation show the presence of different
clusters, observe that they lack homogeniety when colored by the scaled internal energy,
unlike the QAA basis in Fig. 3 of the main text.

the underlying data. Hence, rare occurrences of extreme fluctuations in an experimental
ensemble or MD simulation can lead to significant (and potentially adverse) effect on
interpreting the conformational landscape. Further, on examining the top-most modes
of motion spanned by the QHA vectors in ubiquitin, the conformational landscape, as
spanned by these eigenvectors do not show much similarity in terms of their conformations
or internal energy distributions (see Fig. 2.7). We note that this heterogeneity is also
observed as in the case of performing QHA in internal variables (φ-ψ) dihedral angle
space; see Fig. 8.1). This heterogeneity in both internal energy values and conformations
means that it is difficult to interpret the conformational sub-states spanned by the protein
using QHA.

These observations prompted us to characterize the statistics of positional fluctuations
in ubiquitin at a much finer detail (Chapter 3). Our observations, in line with previous
work, showed that ubiquitin typically exhibits anharmonic (non-Gaussian) fluctuations
under ambient conditions. While this is not surprising, we observed that up to 60% of
the protein can potentially exhibit anharmonic fluctuations along x, y and z directions.
Further, we also noted that the anharmonic motions were dominant along the functionally
relevant regions of ubiquitin; hence one would have to account for these anharmonic dis-
tributions in these regions to obtain a relevant and useful description of the conformational
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landscape spanned by ubiquitin.

In Chapter 3 of this thesis, we built a novel computational model to describe the an-
harmonic conformational fluctuations in the ubiquitin landscape. We termed this compu-
tational model quasi-anharmonic analysis (QAA), since it builds a linear model of anhar-
monic fluctuations. The results from the application of QAA on the ubiquitin landscape il-
lustrated the hierarchical organization of the landscape. Pursuing anharmonic fluctuations
leads us to visualize the landscape in terms of sub-states that are not only homogeneous in
terms of their conformations, but also in terms of their overall internal energy distributions.
The motions described at every level of the landscape further show the inherent ability of
ubiquitin to modulate its binding regions to accommodate a wide variety of substrates.
The ability to describe anharmonic fluctuations in the context of a protein’s conforma-
tional and energetic landscape provides a number of opportunities which are described in
the next sub-section 8.1.3.

In a complementary effort we outlined an online or on-the-fly approach to character-
ize collective dynamics as MD simulations are progressing in Chapter 4. This was based
on a novel representation of MD simulations as tensors and tracking how distance maps
changed over the course of a MD simulations. We demonstrated our approach on three
different proteins: barnase, ubiquitin and cyclophilin A. We showed that our technique
can identify constrained and flexible regions and also characterize the dynamical coupling
between different regions of the protein. Further, we also showed that it was possible to
identify time-points along the simulation where collective behavior differed significantly
from the previous time-window(s). The ability to track and monitor MD simulations on-
line offers a powerful means to explore conformational landscape given the context that
MD simulations do suffer from sampling inefficiencies. Further work on incorporating
online analysis and improving conformational sampling capabilities are explored in sub-
section 8.1.4.

We also examined the conformational landscape spanned along a reaction pathway for
the enzyme cyclophilin A (CypA). When the reactant and product states in the enzyme
show relatively small changes with respect to their overall conformations, QHA based
description of the enzyme-substrate complex along the reaction pathway and equilibrium
simulations of just the reactant and product state share significant overlap in terms of the
large-scale fluctuations. However, this overlap in terms of the collective motions provides
only a qualitative description of the landscape and must not be interpreted as being directly
related to the catalytic activity of the enzyme. A careful evaluation of these collective mo-
tions along the reaction co-ordinate is necessary before one can conclude their relevance
to the catalytic step of the enzyme (see Chapters 5 and 6).
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Figure 8.2: Coupling between anharmonic modes of motion (η). Most anharmonic
modes are weakly coupled as indicated by the coupling co-efficients (left; |cc| > 0.3). An
example of anharmonic coupling between modes 1 and 2 (|cc| = 0.41) showing spatially
coupled regions in the protein. Observe the long-range coupling between R1 and β2− α1.
Cα atoms are shown as gray spheres and residues commonly activated by modes 1 and 2
are marked and connected by gray lines.

8.1.3 Quasi-anharmonic Analysis

Coupling between Anharmonic Modes of Motion. Unlike QHA, the anharmonic modes
of motion from QAA need not be orthogonal. Hence, it is possible for these anharmonic
modes to activate each other depending on their intrinsic coupling, given by:

η = ATi Aj/ (||Ai|| ||Aj||) (8.1)

We illustrate the coupling in the anharmonic modes for the protein ubiquitin (see Chapter
3). As shown in Fig. 8.2, observe that most modes are weakly coupled [198]. Consider
modes 1 and 2; mode 1 shows global fluctuations involving R1 and R2 whereas mode
2 activates motions along β2 − α1 and R1. As illustrated in Fig. 8.2 (right), commonly
activated residues and their interactions were identified by thresholding the matrix η based
on interaction strength. These specific activation patterns along particular anharmonic
modes of motion may provide additional insights into how energy transfers from local to
global conformational fluctuations [61, 177].
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Understanding the Thermodynamical Basis for QAA. The conformational sub-states
identified via QAA share significant similarities in terms of their structure and internal en-
ergy distributions. A closer and more rigorous understanding of these sub-states will arise
when one can interpret them in terms of free-energy changes required to “jump” between
the various sub-states. We propose two feasible approaches to examine the thermodynam-
ical basis for QAA.

The first approach uses a novel Markov Random Field (MRF) [148, 147] representation
of a protein structure which can then be used to evaluate the free-energy propensity for an
ensemble of conformations generated by altering the side-chains. This approach has been
successfully used in the past to examine free-energy changes involved in protein-protein
interactions [147] and understand the sequence/ structure specificity in proteins [146].
MRF based representation combine the powerful tools of statistical mechanics with effi-
cient algorithms from computer science and thus be used to characterize the free-energey
landscape as described by the QAA basis vectors. As illustrated in Fig. 8.3, an MRF based
coloring of every conformation from the ubiquitin landscape shows considerable homo-
geneity in terms of the free-energy values. This observation, in spite of using Rosetta
force-field parameters and rotamer discretization for the MRF representation, implies that
the QAA interpretation of the landscape is robust (and independent) of issues related to
force-field selection and type of MD simulation used to sample the landscape 1.

The second approach is based on the observations from QHA of the configurational en-
tropy S, which is an upper limit in terms of 3N independent classical harmonic oscillators.
For a protein, large-scale conformational changes involving conformational transitions be-
tween multiple states and the high level of anharmonicity in the landscape almost always
means that the entropy estimations from QHA are an over-estimate. Recently, Lange and
Grubmuller proposed a novel approach, Full Correlation Analysis (FCA) [168], which
builds an orthogonal basis description of the landscape spanned from an equilibrium sim-
ulation and accounts for linear- and non-linear correlations. Based on FCA, mutual in-
formation expansions [17] and adaptive kernel density estimation [122], the authors also
estimated configurational entropy that was shown to be better than QHA estimates of the
entropy [123]. This approach could potentially be a starting point for estimating entropy
using QAA.

QAA in Internal Variable (Dihedral) Space. While analyzing large-scale fluctuations
in cartesian coordinates, it is important to align the protein to some reference structure
before performing QHA or QAA. This is often challenging, especially in the context of

1This work is currently in preparation: Arvind Ramanathan, Xin Gao, Christopher J. Langmead, Mech-
anistic Interpretation of the Binding Energy Landscape of Ubiquitin. 2010.
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Figure 8.3: Ubiquitin landscape spanned by the top 3 QAA basis vectors from
1YIW [32] and simulated via Desmond for 150 ns in explicit solvent conditions. Each
conformer represents a local ensemble where by side-chains are flexible sampled through
a discrete rotamer library and a free-energy associated with the local ensemble is plotted
as a function of the top 3 QAA basis vectors. A clear separation in states with higher
free-energy (red colors) and lower free energy (blue colors) can be seen.
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protein folding simulations or large conformational changes. Alternatives to this often
require the use of internal variable descriptors such as dihedral angles. A simple and
straight-forward implementation of dihedral PCA (dPCA) was carried out (see Fig. 8.1)
and we observed that this description of the landscape, while revealing several clusters
of related conformations, still fails to reveal any energetic homogeneity in the conforma-
tions. This indicates that even in the dihedral space, the the dynamics in the φ − ψ space
may have significant anharmonicity, which may be captured by using QAA. There are also
indications that the coupling arising in positional fluctuations (and dihedral fluctuations)
can be potentially non-linear [168]. Hence it will be of interest to integrate techniques
such as QAA with techniques introduced by Schroder and collegaues [237] to see if ac-
counting for non-linear dependencies in the positional fluctuations can further improve our
understanding of the conformational landscape.

8.1.4 Dynamic Tensor Analysis: Applications to Improved MD Sam-
pling

Tracking of multiple tensor streams for MD simulations. A fairly straightforward ex-
tension to DTA would be the ability to track multiple streams of data simultaneously. A
recent implementation of this algorithm has been made available in the data-mining com-
munity; however for MD simulations, such a tool needs to incorporate a flexible frame-
work to track multiple features. By tracking multiple streams of co-evolving tensors (such
as hydrogen bond/ hydrophobic interaction distances, electrostatic field/ potential tensors,
etc.), it would be possible to answer questions such as: (a) how movement of one residue
(for example Cα displacement) affects the formation of a hydrogen bond?, (b) how do
variations in electrostatic potentials affect motions in different parts of the protein? and
so on. The answers to these questions can potentially help unravel mechanistic details of
how proteins function.

Improved sampling of rare events during MD simulations. An advantage of DTA
is that it can track changes in collective motions even though these changes may imply
minor changes in terms of overall RMSD values. This in turn can be exploited to po-
tentially sample around such events, which represent rare excursions from the observed
fluctuations. This provides the biologist with the ability to fork off simulations from each
of these excursions to potentially gain insights into the nature of how the landscape has
changed. Since most MD simulations do suffer from insufficient sampling, the ability to
fork off multiple simulations will provide another means to improve the sampling of the
conformational landscape. Further more, changes in collective behavior are of relevance
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in biology (in the context of enzyme catalysis) and hence incorporating DTA into standard
MD simulation software could be of great advantage.

8.2 Role of Protein Motions in Enzyme Catalysis

In the first part of the thesis, the overarching theme was to characterize the internal mo-
tions of proteins at various time-scales. For this purpose, we examined the equilibrium
conformational landscape of ubiquitin, a well characterized protein. In the second part,
we focussed on the dynamical hypothesis and its effect on enzyme catalysis. Specifically,
we were able to gain some insights on how enzymes, over the course of evolution have
been constrained to maintain certain “dynamical features” that allow them to carry out
their biochemical function. This is significantly different from dynamical features that
play a role in substrate binding, since the motions detected are along the progress of the
chemical step of the enzyme.

8.2.1 Relation to Previous Work

From the perspective of enzyme catalysis, we were mostly drawn to the question of if and
how intrinsic motions in the protein fold affect the biochemical step of an enzyme reaction.
Most previous studies have focused on either large-scale studies of sequence alignments of
enzyme super-families [19, 101, 102, 196, 209] or analyses of structural profiles along the
active site(s) of enzymes to identify molecular function [134]. Dynamical contributions
to enzyme-substrate binding have been the focus of several computational and theoretical
studies including Bahar and co-workers [24, 30, 287]. While certainly insightful about the
nature of intrinsic motions and their impact on substrate binding, the coupling of intrinsic
dynamics to the catalytic (chemical) step of the enzyme has only recently attracted atten-
tion. Experimental [49, 78, 125, 47] and computational modeling [7, 8, 9, 4, 5] have now
revealed the presence of coupled networks of interactions in several enzymes which play
an important role in promoting the chemical step of the reaction.

Our studies have now revealed, in a complementary fashion, that these networks are
a conserved feature of the enzyme fold across multiple enzymes including cyclophilin A,
dihydrofolate reductase and ribonuclease A. We also found a remarkable feature shared
by enzymes catalyzing the same biochemical reaction but no structural similarity whatso-
ever: the dynamics coupled to the reaction step of these enzymes showed similar profiles
over the reaction co-ordinate. This remarkable similarity in the dynamics coupled to the
reaction step indicates that for the chemical step to progress forward, these motions (at
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potentially multiple time-scales [238]) are critical. Our observations also extend to the
Rossmann family of enzymes that share a mechanistic sub-step of hydride transfer.

8.2.2 Summary of Contributions

The knowledge of evolutionary constraints on enzyme catalysis could prove to be a power-
ful tool to design and even enhance the function of novel enzymes. Efforts from Baker and
co-workers [141, 171] have already resulted in designing novel enzymes. However, efforts
to artificially evolve enzymes in labs have proven to be extremely hard and the enzymes
designed through such approaches are several orders of magnitude less efficient than the
naturally occurring enzymes [227]. Thus, the most intriguing aspect of enzyme catalysis
is whether we can develop tools and technologies that enable (or predict) the design of
highly efficient enzymes.

Perhaps, the knowledge of intrinsic dynamics and their role in catalysis could accel-
erate this field. Our approach to analyze the mechanistic behavior of enzymes is via a
rigorous sampling of the conformational landscape along a pre-defined reaction coordi-
nate. While the approach has merits and certain limitations, our observations about the
collective conformational fluctuations before, during and after catalysis from the enzyme
CypA indicate that the large-scale collective fluctuations overlap consistently. Apart from
the large-scale fluctuations observed in multiple states showed remarkable similarity (sub-
strate unbound, reactant, product and over the course of the isomerization reaction), the
projections from each of the simulations also showed large overlaps in the space spanned
by the lowest frequency QHA based modes.

In Chapters 6 and 7 of this thesis, we analyzed if the motions coupled to catalysis
imposed evolutionary constraints. Our studies have revealed complementary insights to
several studies that have focused on enzyme-substrate binding. In the first study, we were
able to show that enzymes catalyzing the same biochemical reaction, in spite of sharing
no apparent structural homology exhibit remarkable similarity when it came to dynamics
coupled to the catalytic step. In the case of CypA and Pin1 isomerases, the critical active
site residues were surrounded by highly flexible loops connected by a network of hydrogen
bonds (and hydrophobic interactions) that influenced the catalytic process. As observed
from R67 DHFR and E. coli DHFR, several critical profiles of distance variations along the
reaction pathway are very similar. This similarity in dynamics coupled to the catalytic step,
in spite of having no apparent structural homology underlines the importance of dynamics
in the catalytic process. As a control example, where angiogenin and ribonuclease A
shared absolute structural homology, yet angiogenin was at least 5 orders of magnitude less
efficient than ribonuclease A illustrates the importance of the network regions; although
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residues important for catalysis are conserved as part of the fold, the interactions (which
are part of the network) are absent in angiogenin, which may explain why angiogenin is a
poor catalyst in comparison to ribonuclease A.

It is remarkable to note that enzymes sharing a mechanistic sub-step common in catal-
ysis do show similar dynamical behavior. A notable observation amongst the enzymes
investigated is that these enzymes do share structural homology; however, the topology
(or organization) of the secondary structural elements is quite different. It is also impor-
tant to note that the topology of these enzymes give rise to different orientations of the
binding sites. In spite of the variations in orientations of the binding site, there are remark-
ably similar dynamical features the promote the hydride transfer in these enzymes. While
a conserved proline (in case of DHFR, Tyr 100) across multiple members of the family
played a role in altering the environment of the active-site, a hydrophobic residue located
behind the substrate aided optimal alignment for hydride transfer to take place. Note that
these residues are located along flexible regions of the protein and form a connected net-
work that act in concert to promote the reaction progress. Further, from an evolutionary
perspective, the identified residues are conserved across multiple enzyme members of the
super-family.

On the one side, while these studies provide unique insights into the function of such
enzymes, it must be noted that experimental evidence for such mutations along the pro-
posed networks are quite hard to come by. Of the 767 enzymes available, only two or three
enzyme systems have kinetic parameters derived from experiments under a variety of con-
ditions that mutate the network regions. The availability of such studies especially for car-
bonyl reductase (CBR) with a variety of substrates bound at the active site provides ideal
positive and negative control strategies to test the proposed dynamical hypothesis. CBR is
an interesting test case since the mutations along the network regions provides evidence of
both enhancing and diminishing the catalytic efficiencies of the enzyme [79, 222]. Further,
as a recent study [144] showed, mutations to the network residues in R67 DHFR showed
remarkable alterations to the catalytic power of the enzyme. Hence, such a study of how
mutations to the network residues can enhance/ diminish enzyme catalysis would be of
great benefit to test our theories.

The principled understanding of how motions in an enzyme is coupled to its catalytic
step also brings about knowledge about how proteins may have evolved. For example, sta-
tistical coupling analysis (SCA) [184] has been used in a number of application contexts:
to study evolution of multiple proteins [250], design proteins [246, 232] and study organi-
zation of enzyme structure [109]. Our insights enhance these observations by elucidating
the mechanistic roles of how and why certain networks of residues must be constrained by
evolution to maintain function by qualifying the specific role they play in catalysis. Fur-
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Figure 8.4: Emerging paradigm of protein dynamics and catalysis.

ther, knowledge about these networks could enhance one’s ability to assess why and how
certain residues co-evolve.

8.2.3 Understanding the energetic coupling between solvent fluctua-
tions, enzyme motions and catalysis

An emerging paradigm in enzyme chemistry is that protein motions at all time-scales
(from femtoseconds/ picoseconds at the active site to microseconds and beyond collec-
tively throughout the protein) contribute to enzyme catalysis. Although there is much
debate, initial studies on the constraining slow conformational motions coupled to the re-
action coordinate indicate that they impose a significant barrier on the catalytic process.
Furthermore, constraining/ enhancing solvent motions in and around these flexible loop re-
gions of the protein exhibiting slow conformational fluctuations also significantly impacts
how successful an enzyme can catalyze its reaction. Based on this, an emerging picture
about the relationship between enzyme dynamics and catalysis is arising, as illustrated in
Fig. 8.4.

According to this emerging picture, along with structural interactions, internal pro-
tein motions at fast time-scales (femto/picoseconds) provide crucial support to alter the
chemical environment within the active site, favoring the catalytic step to move forward
to the product state [200, 238]. In the absence of co-factors or other promoting molecules
(as is the case with CypA), the fluctuations at the flexible surface regions of the protein,
enslaved by the solvent [84, 85, 91, 6], provide energy to overcome the activation barrier.
The energy from the solvent is first transferred to the flexible surface regions of the protein,
which then “trickle” to the active site of the protein via the networks of interactions (as

162



well as motions in these networks), which then provide the necessary energy to overcome
the barriers associated with catalysis [177]

This raises the question if there are inherently “engineered” pathways in the protein
through which energy can flow between the flexible regions of the protein to the active
site. Topology-based approaches using simple models such as GNM [23], and an inte-
gration of information theoretic concepts quantifying the signal transduction processes
within an enzyme’s three dimensional structure [61] have already indicated that catalyt-
ically important residues in an enzyme are better receivers of information than the other
residues in the protein. We are actively engaged in evaluating this proposal by combining
biophysical techniques involving novel MD simulation techniques with information theo-
retic approaches to study if an enzyme’s catalytic residues are indeed better conductors of
energy through them.

8.2.4 Enzyme Catalysis: Allosteric Regulation from distal residues

The presence of energy-flow pathways within the protein raises another question, which
is more subtle and difficult to answer. This question relates to our knowledge of allosteric
regulation within an enzyme. As recently pointed out by Goodey and Benkovic [105],
allostery and catalysis arise via conformational dynamics being the bridge between them.
There are several enzymes, known in the literature, where mutations to a distal site in the
protein, as far away as 20 Å, close to the surface of the protein, leads to significant effect on
catalysis. As ably demonstrated by Benkovic and Ranganathan (and co-workers) [174],
modulating these surface residues can bring about novel activation/ inhibition processes
that can aid the drug-discovery process.

The approaches used here clearly are applicable in better understanding and charac-
terizing the role of allostery in enzyme catalysis. Particularly, the networks discovered
extend from the flexible surface regions all the way to the active site, connected via hydro-
gen bonds and hydrophobic interactions. Altering site-specific properties may alter allow
one to possibly characterize the long-range effects on controlling the catalytic step of the
enzyme. Availability of such tools could clearly lead to the design of alternate binding
sites or engineering novel drugs that could bind at the allosteric sites to modulate function.
Indeed, it is our hope that the discovery of allosteric “hot-spots” on the entire protein could
lead to novel insights into the systemic regulation of cells and enhance our understanding
of how cells function.
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