
_ CMU-ITC-91-103

An Introduction to Object-Oriented Databases
and Database Systems

Michael L. Horowitz
(mh I 1+@andrcw.cmu.cdu)

August 19, 1991

© 1991 Michael L. Horowitz

Information Technology Center
Carnegie Mellon Universio'

Pittsburgh PA 15213

Acknowledgments to International Business Machines, Inc.

Abstract

Recent developments in editing applications, especially in the areas of CAD/CAM and
multimedia, have provoked interest in integrating the data abstraction capabilities of
object-oriented languages with the persistence and concurrency control of database
systems. Database systems assume the task of determining the file storage format for the
application. In addition, such systems provide support for concurrency control, atomicity
of multiple updates, recoverability, authorization, versioning, and search (i.e. associative
access).

Sophisticated editing applications, however, require better data modeling capabilities
than those normally provided by existing database systems (i.e. those presenting a
relational or network data model). Thus, an impedance mismatch exists between the way
databases view application data and how the application wishes to manipulate that data.
A database system that supports an object-oriented data model would eliminate this
impedance mismatch and furnish the desired modeling capabilities: object identity, direct
access, data abstraction extensibility, inheritance, polymorphism, genericity,
encapsulation, embedded semantics, and data type extensibility.

Integrating object-oriented concepts and normaldatabase concepts also presents the
opportunity to explore new features that would help application builders: object
composition, property propagation, cyclic queries, indexing extensibility, relationship
support, database self-containment, and schema evolution.

This paper presents a summary of current database research into new data models based
on object-oriented concepts. The concepts themselves are defined and then the different
systems are described.

Acknowledgments

Thanks to many people at the ITC for their helpful comments: in particular, Michael
Mclnerny, David Anderson, John Howard, and Andrew Palay.

- ii -

Table of Contents

1 Inu'oduction I
1.1 Motivation 2
1.2 Alexandria 4

2 Object-Oriented Databases 6
2.1 General Issues 7

2.1.1 Concurrency Control 7
2.1.2 Transactions 7
2.1.3 Triggers and Notifiers 8
2.1.4 Distribution 9
2.1.5 Versions and Configurations 11

2.2 Data Model Issues 12
2.2.1 Object Identity 12
2.2.2 Data Models 13
2.2.3 Inheritance 14
2.2.4 Polymorphism 15
2.2.5 Genericitv 16
2.2.6 Extensibilitv 16
2.2.7 Integrity Constraints 17
2.2.8 Composition 19
2.2.9 Relationship Support 21
2.2.10 Access to Meta-int'ormation 21
2.2.11 Data Shanng 22
2.2.12 Authorization 22

2.3 Language Issues 24
2.3.1 Persistence 24
2.3.2 Impedance .Mismatch 25
2.3.3 Software Engineering Issues 26
2.3.4 Host Languages 27

2.4 Query Issues 28
2.4.1 Query Language 28
2.4.2 Indexing 30
2.4.3 Query Optimization 31

2.5 Database Evolution 33
2.5.1 Schema Changes 33
2.5.2 Effects of Changes 33
2.5.3 Database Conversion 34

2.6 Storage Management 35

..o

- IU -

2.6.1 Storage Schemes 35
2.6.2 Buffer Management 36
2.6.3 Clustering 37
2.6.4 Interoperability 38

3 Research Efforts 39
3.1 POSTGRES 39
3.2 EXODUS 40
3.3 Altair 41
3.4 ORION 42
3.5 ENCORE 44
3.6 GemStone 45
3.7 Iris 46
3.8 VBase 47
3.9 GEM 48
3.10 Coral3 48
3.11 Telesophy 49
3.12 POMS 50

4 Conclusions 51

5 References 53

I Object-Oriented Languages 60
II Glossary 62
IH Index 79

f

1 Introduction
Databases fulfill several roles in the process of building computer applications. Like a file
system, databases provide the means to store data between invocations of an application
(i.e. persistence). Database systems, however, provide additional services not supported
by most, if not all, file systems. For instance, a database system typically provides
facilities to coordinate cooperative work on the same data (i.e. transactions,
authorization, and distribution) and assurances concerning the integrity of the data in the
presence of various kinds of failures (i.e. versioning and stability). In addition, databases
allow applications to manage large amounts of data, providing buffering services and
searching capabilities (i.e. associative access). Finally, databases present a uniform data
model independent of any specific application, presumably easing the burden of
application design.

Several data models have been proposed and explored, including hierarchical, network,
and relational. Currently, many commercial systems support the relational data model. A
relational database consists of a set of named relations, each of which is a set of tuples.

Each tuple, in turn, is an aggregation of tagged values (i.e. a collection of attribute-value
pairs; the attributes are common to all tuples in a relation and are defined by the
relation's schema). Each tuple represents an entity or part of an entity in an application's
data space. A reference to another entity in the space is specified by some subset of the
target entity's attribute-value pairs that uniquely identifies the target within a specified
database relation (i.e. value.based reference).

This paper presents a summary, of current research into new data models based on
object-oriented concepts. The remainder of this section explores the motivations for such
research and the reasons we feel that database systems supporting an object-oriented
paradigm are appropriate for our research in the Alexandria project. The following
section introduces a generic object-oriented data model and discusses how such models
affect database issues. Section 3 enumerates specific research efforts into object-oriented
databases and describes which design decisions were taken by each on the various issues.
A glossary and an index are included as appendices.

It is assumed the reader understands something about databases in general and the
relational data model in particular. Interested readers are directed to Principles of
Database Systems by Jeffrey Ullman [Ullman 82].

-2-

1.1 Motivation
Relational database systems have proved their worth in the domain of business
applications, particularly those dealing with accounting. The relational data model,
however, is not suitable for all application domains. New applications involving
complex data modeling (i.e. that do not map well to tables) now require the services
normally associated with database systems: persistence, transactions, authorization,
distribution, versioning, data stability, buffering, and associative access.

To illustrate, let's examine a CAD/CAM application for a company that manufactures
airplanes. The application supports both the specification and design of all parts required
to build an airplane. Modeling physical objects does not reduce easily to tabular, or
relational, form. In particular, an airplane requires many duplicate parts, each of which
would require a unique tag to be stored as a distinct entity in a relational database.
Furthermore, the relations representing sets of different parts that are mostly similar
would require separate, independent schemas. Finally, the application programmer
almost definitely would prefer to manipulate part designs as complex abstractions at a
level higher than that provided in the relational model.

Our example application, however, requires database services. An airplane design team
typically consists of several people, all of whom will desire access to the current state of
the design. In today's workplace, it is likely that these designers will be using
workstations distributed over a network. In addition, some people should not be allowed
total access to certain aspects of the design (e.g. documenters do not need update access).
Finally, a completed design can involve hundreds of thousands of parts and direct access
to each part becomes impractical: thus, associative access is essential. For instance, a
designer may wish to know how many times a given part has been used before deciding
to change its specification.

Object-oriented databases, then, are an attempt to solve the problems mentioned (as well
as others) and still maintain the advantages of database systems. Object-oriented
databases treat each entity as a distinct object. An assembly composed of several parts,
therefore, can refer directly to its components instead of explicitly associating some
unique identifier with each component in some relation. In addition, application
programmers can manipulate database entities at any desired level of abstraction by
extending the set of types recognized by the database system. This is an important point
- it means that the programmer need not be concerned with transforming an application's
persistent data into a form manipulable by the underlying storage subsystem [Cockshott
84]. In many systems, a programmer can also incorporate totally new, variable-sized
data types (e.g. multimedia objects). Finally, object-oriented databases allow embedded
semantics by associating procedural information with objects [Smith 87].

Woelk, Kim, and Luther [Woelk 86] summarize the features they feel object-oriented
databases should provide for multimedia document management applications:

- aggregation support, including modeling is-part-of I relationships and
maintaining knowledge concerning the ordering of subparts;

i Bold phrases indicate a kind of relationship.

-3-

- generalization support for the is.a relationship between types or classes;
- support for default values for attributes;
- support for embedded semantics by which object properties may be computed

instead of stored;
- support for polymorphism so that an attribute may represent any of several

types that axe only weakly related (e.g. the body of a document may be text, a
drawing, an image, a composition of these, etc.);

- general entity-relationship support (i.e. n-ary relationships with knowledge of
which roles are key);

- support for schema evolution, in which the types of existing database entities
are modified;

- control over object versioning and configurations of version sets;
- support for concurrent access;
- support for multimedia data types;
- support for sharing subcomponents among separate database objects (e.g. the

same picture shared by two documents);
- associative access, as opposed to direct access via teachability from a root

object as in pure hypertext systems; and
- support for standard database-like recovery in the presence of failures.

These features and the others mentioned earlier will be discussed in more detail in later
sections.

The next section presents another class of applications that could take advantage of the
features provided by object-oriented database systems.

-4-

1.2 Alexandria
The domain of information management in an era of increasingly easy access to on-line

data clearly requires the features provided by database systems: persistence, distribution,
access control, associative access, etc. Hypertext systems, such as Intermedia [Smith

87], comprise an initial exploration into the issues concerning information structuring.
Pure hypertext technology, however, cannot deal with the quantifies of on-line
information that will become available, even if a database is used as the underlying

storage subsystem (as in Intermedia). More work is needed on the joint problems of

access and management to have a meaningful impact on the way information is used.

The primary focus of the Alexandria research project at the Information Technology

Center (ITC) of Carnegie Mellon University (CMU) is to investigate what tools computer

users need to manage large amounts of on-line information over long periods of time.

The goals of the project include [Palay 90]:

l) Performance - The system must provide simple, fast access to large amounts
of information from multiple, diverse sources.

2) Flexible access - The system must support a spectrum of access techniques

from browsing tas in a hypenext system) to search (as in a database system).

3) Structurin_ - The system must help the user productively manage information.

In particular, it is not sufficient just to provide access to information; the user
should be able to impose personalized structure that helps organize the

information for later access or, more importantly, for furthering the user's
work. In addition, since such structure can become unwieldy, the user should
be able to browse and search structure itself.

4) Data t_pe exrensibili_.' - The system must accommodate a variety of digital
media. Although it is not expected that the system will be initially able to
recognize features from raster, graphic, audio, or video data, the design of the
system should not prevent the management and access of such information.

5) Structure evolution - The system should also help the user maintain and
evolve the structure imposed on an information space. A user's view does not
remain static; often as more information becomes available, the user will want

to change the form of his structure, not just the content.

6) Collaboration - The system should enable cooperative work within a

community of users to encourage the exchange of ideas. Specifically, the

system should make it easy for one user to view an information space using the

structure built by another. The system, however, must also ensure the privacy

of unpublished data.

7) Maintaining. currency - The system should handle changing information.

Users often must keep up with sources that augment or replace previous

information (e.g. news wires, electronic bulletin boards).

-5-

8) Integration - Finally, the system should be integrated fully into the user's
computing environment. That is, all applications should be able to take
advantage of the system's capabilities and the user should be able to integrate
data from any application into their personal information structure.

Almost all of these requirements have some implications regarding the features we desire
in the underlying database support. As we shall see in the next section, object-oriented
databases typically provide most of these desired features.

The performance goal indicates the need for database support because of the amount of
data involved. The desire both for flexible access and individualized structuring require
the ability to refer to information entities directly. Pure, hypertext-like browsing is just
jumping from one place to another in the information space. Also, shared information
should remain in context so that a user can take advantage of any additional structure on
that information.

Flexible access and maintaining currency suggest the need to be able to embed
computational semantics in the information space. Following a bibliographic reference,
for instance, should look like a direct link to the user but may require a search at the
database level. Similarly, determining what has changed that is of interest (as defined by
the user) in a changing information source necessitates search and test capabilities.

The desire to allow individualized structuring mandates the ability to extend and define
complex abstractions within the system. Also. in order to browse and search structure, it
must be possible to examine abstraction definitions. Data type extensibility indicates that
extension should also apply to the types of values handled by the storage subsystem.
Structure evolution goes even fu_her and stipulates that the underlying system must
allow types to change in the presence of existing information.

Support for collaboration implies several needs. First, locking and transaction support
would help provide the coordination required by cooperative work. Authorization and
logging support can help protect privacy, assign accountability, and keep people with
diverse roles from interfering with each other. The ability to share subentities among
distinct database objects would ease communication. Finally, publishing structure
requires that such descriptions be self-contained.

Finally, the need for integration affects the overall architecture of the system. It is not
clear whether the database component will be involved in satisfying this goal.

The next section introduces the concepts and features explored by current research efforts
into object-oriented databases. Although the goals of the Alexandria project will not be
addressed specifically below, the reader should try to correlate the features that
distinguish object-oriented databases from relational databases with the goals presented
above.

-6-

2 Object-Oriented Databases
As mentioned above, the development of object-oriented databases represents an attempt
to integrate the complex data modeling and software engineering principles of recent
programming language designs with thc persistence, coordination, and protection
characteristics supported by database technology. Of course, thc goal is to achieve all of
thc benefits of both.

So far, we have discussed the facilities provided by databases in general. The sections
below describe thc additional features provided by object-oriented databases. It is
assumed that the reader is familiar with the concepts that characterizc object-oriented
programming languages. Good presentations of these concepts can be found in both
Smalltalk-80: The Language and its Implementation by Adele Goldberg and David
Robson [Goldberg 83] and Object-Oriented Software Construction by Bertrand Meyer
[Meyer 88]. Appendix I provides a short introduction for those readers unfamiliar with
the terminology.

For applications requiring database support, objects constitute a natural unit for locking,
authorization, storage clustering, versioning, and buffering. The object-oriented model
also presents other opponunities for improved application-building support in database
systems. The following sections describe various database features and how object-
oriented concepts interact v,,ith those features:

- section 2.1presents standard database issues;
- section 2.2defines object-oriented data models and related issues;
- section 2.3discusses the interaction between database features and

programming language constructs to suppon those features;
- section 2.4concentrates on the issues specific to querying databases;
- section 2.5presents the issues relating to database evolution; and
- section 2.6discusses the lower-level issues concerning the storage management

and distribution of objects.

Incidentally, a good introduction to object-oriented databases can be found in the chapter
titled "Fundamentals of Object-Oriented Databases" in Readings in Object-Oriented
Database Systems edited by Stanley Zdonik and David Maier [Zdonik 90]. This
presentation involves a few more concepts and definitions, but less motivation. In
general, any comparisons of object-oriented systems with previous database technology
will be with relational systems because of their pervasiveness.

-7-

2.1 General Issues

Object-oriented databases must provide the same support for managing concurrency,
authorization, distribution, data persistence and stability, versioning, and associative
access as any other kind of database system. Most of thesc features are affected
significantly by thc data model, but some havc only a small connection. This section
presents thc concepts associated with locking, transactions, triggers, dismbution, and
versioning. Object-oriented concepts, in general, have litflc impact on thesc
characteristics.

2.1.1 Concurrency Control
When many clients wish simultaneous access to the same persistent data and some
clients wish to perform updates, a mechanism must exist to ensure data consistency.
Otherwise, readers could receive an inconsistent view of the data as some pans might be:
changed before other parts. Similarly, two writers may base their updates on the same
version and then the writer who commits his changes second will cause the changes of
the first to become lost.

Any mechanism provided to help application developers ensure consistency is called a
concurrency control mechanism. Two kinds of concurrency controls exist: optimistic
and pessimistic. Optimistic concurrency operates on the belief that most transactions
either involve reading only or else get aborted. It works by allowing any client to
request a copy of the data. When the client wishes to update the database version, a
check is performed to see v,hether the current database version is the same as the one
copied. If so, the update proceeds. If not, the update fails. The object-oriented model
appears to have little effect on this mechanism; some systems do employ it (e.g.
GemStone [Maier 86] and tsl [Caplinger 87]).

Pessimistic concurrenc)', on the other hand, assumes that conflicts at the time of update
either occur too often or waste too much work (in computing the updated data). The basic
pessimistic mechanism is locking. When a client wishes to update a database entity (or
set of entities), the client requests a lock on the data and then no other client may receive
a copy of the same data. Locks are issued according the nature of the client's access to
the data and the current lock on the data, if any. Thus, it is important to consider the
granularity of locking; that is, how much data may be locked at a time. Fine-grain
locking (i.e. at the object level) allows the most concurrent access but requires the most
resources for lock management.

Objects clearly comprise a good unit for locking. Ways of reducing the inefficiencies
associated with such fine lock granularity are discussed in section 2.2.8 below. Most
object-oriented systems utilize locking (e.g. Coral3 [Merrow 87] and ORION [Kim
89b]).

2.1.2 Transactions

In the presence of persistence, locking may not be sufficient to guarantee data
consistency. Complex interactions may involve changes to several data objects and
consistency may dictate that either all or no changes occur (i.e. atomicity). The facility
databases provide to achieve atomicity is called transaction support and each atomic set

-8-

of changes a database interaction wishes to make is termed a transaction. The
combination of transactions and locking implies that updates to the database are
serializable (i.e. as if no concurrency were involved).

A transaction, therefore, must accumulate all changes before actually committing them to
the database. 2 The transaction support is responsible for invoking the appropriate
concurrency control and ensuring that the commit is atomic. Typically, database systems
use shadowing (as in POMS [Cockshott 84]) or write-ahead logs to generate the new data
versions and two.phase commit to ensure that each update completes atomically (as in
EXODUS [Carey 86]).

By using transactions and logging [Carey 86], databases systems can also provide
mechanisms for recover), in the presence of failures. That is, if a failure occurs during a
transaction commit, the database system can detect whether or not the commit
completed, and, if not, can finish the job based on the information in the log. This
facility provides data stabili_. Failures can be classified into three categories [Zdonik
90]: process failures occur when the application terminates abnormally in the middle of a
transaction; media failures occur when the storage medium fails (e.g. head crash or bus
failure); and system failures occur when the database system fails, either because of a
bug in its program, the machine it runs on crashes, or the network connection to it dies.

Support for transactions may constrain each execution of an application to be an entire
transaction (as in the E [Richardson 89b] and CO2 [Bancilhon 88] programming
languages) or may provide language constructs to allow multiple transactions and
multiple save-points 3 within each transaction (as in embedded OSQL in Iris [Fishman
87]). Clearly, the latter capability allows greater flexibility for application development.

Not all application domains require transaction support. The assumption in Coral3
[Merrow 871, for instance, is that the objects manipulated are large enough that no
complex interactions are necessary. That is, all "transactions" occur to single objects in
their applications. In this case, concurrency control need consist of locks only.

2.1.3 Triggers and Notifiers
Monitoring the contents of a database can be prohibitive because of the amount of
information involved. Many database systems, therefore, provide mechanisms that
perform user-level actions automatically when specified events occur (e.g. an entity
changes value). By supporting these mechanisms internally, database systems can
achieve efficient implementations.

Automatic actions that perform some update on the database are usually called triggers.
Actions that just notify the user when the specified event occurs are sometimes called
notifiers, or alerters. The events that cause triggers to execute can either be specific
database operations (e.g. set a value or delete an object) or the transition of an arbitrary

2Note this also allows one to abort a transaction, ensuring that no changes occur.

3 Save.pointsact like nestedtransactions,in that all changesback to somespecifiedpointmaybe aborted
without aborting the entire transaction.

-9-

predicate from false to true (as in VBase [Andrews 87] and POSTGRES [Stonebraker
86a]).

The actions performed by triggers are often used to maintain application invariants. For
example, triggers can ensure that component objects are deleted when the containing
object is deleted (see section 2.2.8 on Composition) or that inverse relationships are
maintained (e.g. the division of an employee should always equal the division that hires
that employee; see section 2.2.9on Relationship Support). The system itself can also use
triggers to maintain indexes [Zdonik 88].

The problem with triggers is that updates can propagate throughout the database if the
application developer is not careful. As a result, a small transaction can end up
monopolizing a large portion of the database. In addition, the potential for deadlock 4
between transactions increases. Notifiers, on the other hand, do not exhibit this problem
because they are read-only. They can prove very useful in domains where new
information is added to a database continually by alerting users only if the new
information is of interest.

2.1.4 Distribution

Distribution presents several opportunities for database architectures. In particular,
database services may be spread among several servers. One advantage of separating
applications from database support is that true concurrency can be realized. Thus, even if
an application involves significant amounts of computation (as in CAD), it need not
affect overall database performance adversely.

Distribution occurs in two ways. First, database features can be divided among several
processes. Doing so enables concurrency and permits database access over both local-
area and wide-area networks. Second, servers providing database functionality can be
replicated, which affords protection and increases concurrency as well.

The systems surveyed for this paper divide database services into at most three groupings
of functionality. More levels of servers (with smaller sets of functionality) could be
used, but at increasingly higher communication costs without any clear gain in
concurrency or flexibility. Typically, services are divided into those dealing with:

(1) storage issues (including:
- secondary storage management,
- variable-sized data support,
- buffering,
- locking,
- transactions or other concurrency control,
- logging and recovery,
- versions);

4 When two or more processes require resources held by the other(s) in order to progress. See the glossary.

- I0-

(2) data model issues (including:
- object support,
- embedded semantics,
- shared object semantics,
- authorization,
- session control,
- indexing,
- querying and query optimization,
- configurations); and

(3) client support (including:
- embedded semantics execution,
- data packing/unpacking,
- data model presentation).

Systems that adhere to this model include ENCORE [Hornick 87] and Iris [Fishman 87].
Of course, some systems partition responsibilities slightly differently; GemStone, for
example, bundles authorization and indexing in with the storage support at the lowest
level [Maier 86]. 5

Each of the three parts may be instantiated any number of times. For instance, client
support is always instantiated once per client. Data model support can be replicated as
many times as necessary to achieve the greatest concurrency. Multiple data model
servers can also reduce the contention that can be caused by complex queries. ENCORE
and 02, for instance, maintain one data model component for each client [Hornick 87,
Deux 90]. Iris, on the other hand, uses just one for all clients [Fishman 87]. Apparently,
GemStone allows any number of data model servers [Maier 86]. No one has explored
the possibility of using multiple data model servers to impose different data models on
the same data.

Since storage servers manage secondary, storage, they reflect the actual location of the
"database". Allowing more than one storage server can represent either division or
replication of the stored data. The first choice effectively indicates support for
simultaneous access to different databases. Most systems surveyed do not support access
to multiple databases. Iris does allow connecting to different databases during the same
application execution but apparently does not support simultaneous access [Fishman 87].
Allowing for simultaneous access is essential for applications that wish to provide users
with transparent access to the union of the information in more than one database. In
fact, this capability is required by the Alexandria project, since we wish to merge
personalized structure with the global structure held in the central information repository.
Even though it is not a true database system, the telesophy system tsl is designed to
support such applications; thus, it provides simultaneous access to multiple "information
unit servers" [Schatz 89].

5 In fact, the GemStone system has different names for each component of the architecture: Stone refers

to the storage server, Gem to the object server, and Agent to the client support.

-11-

Multiple storage servers may also increase access performance by replicating the data at
each server. Replication in the presence of updates, however, creates new problems for
maintaining data consistency. As yet, no object-oriented database system has attempted
this strategy.

Note that the storage server need not consist of a single process. In the Coral3 system,
the distributed file system with locks acts as the central storage server;, no one processor
has sole responsibility for concurrency control [Merrow 87].

2.1.5 Versions and Configurations
In design applications, maintaining the history of changes is almost as important as
maintaining the current state of the database. Database systems support history by saving
previous versions of entities as well as each entity's current state. Users, then, can
request the current, modifiable transient version or a past, immutable working version of
an entity [Banerjee 87a].

Since different database entities do not change at the same rate, the concept of a
configuration represents the collection of consistent versions of related entities. For
example, a configuration might contain all part designs of an airplane on a certain date.

In object-oriented data models, objects may refer to other objects. Thus, to achieve
consistency in the presence of versioning, it should be possible to tag each object
reference as generic (i.e. refernng to the most current transient version) or specific (i.e.
refemng to a specific working versionl [Kim 881. Currently, such tags (as in ORLON
[Kim 88]) constitute the sole support for configurations among the systems surveyed; that
is, a configuration can be implemented as an object with references to specific versions of
all pertinent entities. Explicit support for configurations would clearly be more expedient
for an application programmer.

Systems may require that individual objects or all instances of a given class be declared
as versionable by the application programmer (as in ORION [Kim 88] or Iris [Wilkinson
90]). On the other hand, systems may provide versioning capability at the lowest level,
allowing any instance to be versioned at any time (as in EXODUS [Carey 86]).

- 12-

2.2 Data Model Issues
The primary advantages object-oriented databases have over other kinds of databases
involve the complexity and extensibility of their data models and the additional features
those models can support. Object-oriented data models allow programmers to design
application entities at abstraction levels appropriate to their problem domains.
Relational, hierarchical, and network data models generally do not provide any
extensibility of their type systems.

Object-oriented models also incorporate mechanisms for inheritance, polymorphism, and
type paxameterization that augment the flexibility available to application developers.
Furthermore, viewing database entities as objects enables the integration of facilities that
support object identity, composition, property propagation, data sharing, embedded
semantics, and authorization. Each section below describes one of these mechanisms in
detail and discusses its benefits for the application programmer.

Before starting, it would be instructive to contrast relational and object-oriented
databases. A relational database consists of a set of named relations, each of which
consists of a set of tuples and a schema that describes the form of each tuple. A tuple
consists of a set of attribute-value pairs. The attributes and the domains of their
respective values are spectficd by the relation's schema. Thus, only tuple values need be
stored.

An object-oriented database typically consists of a set of named objects (as in EXTRA
[Carey 88]). 6 Each object embodies an aggregation of data much like a tuple, except that
the set of attribute-value pairs need not be fixed (i.e. an object can represent a set of other
objects). The database consists of all objects reachable from the "root" objects through
their attributes. Thus. objects act as both tuples and relations, and object classes act as
relation schemas.

2.2.1 Object Identity
One advantage all object-oriented data models share with network data models is object
tdentity; that is, the ability to refer to any persistent object directly [Laffra 90]. The direct
connectivity provided by object identity, though, is different from that in a network
model because of the inherent typing of the destination object, which can be used to
validate the semantic correctness of the modeled data [Duhl 88].

Object identity eliminates the need to assign unique identifiers explicitly to separate
instances of the same airplane pan. Similarly, entities that coincidentally have the same
attribute values (e.g. two employees named John Smith) retain their individuality.

Object identity can potentially save time and storage as well. In relational databases, a
tuple in one relation must refer to another tuple in (possibly) another relation by
specifying its key in that relation (i.e. value-based identity). Retrieving the tuple requires
knowing which relation contains it and a search of that relation. Furthermore, storing the

6Sometimes.as in the PersistentObject ManagementSystem(POMS),the systemrestrictsthe set of root
objectsto containonlyoneelement[Cockshott841.

-13-

key may involve multiple attribute values. In an object-oriented system, the application
programmer need not be concerned with the details of referring to another entity (e.g.
deciding which attributes constitute the key and building the query necessary to retrieve
the tuple).

Note that the time savings, however, may not be realized in some systems. Although an
object reference is direct conceptually, it may be implemented using a relational-like
storage subsystem, which requires at least a hash table search to retrieve the referenced
object. The Iris database system is built in this fashion [Fishman 87].

There are many concepts related to object identity. For example, one object is reachable
from another if there exists a path from the second to the first in the network defined by
object references.

Strong identi_ implies that an object continues to exist as long as there is any reference
to it from any other object in the database. Thus, an object cannot be destroyed explicitly
in a system that supports strong identity (e.g. GemStone [Maier 86]). Strong identity can
lead to logical pinning in some applications, where inaccessible objects continue to
reside in the database [Stein 891. This can happen, for example, when a cyclic structure is
no longer reachable from a database "root" object.

Systems that allow explicit destruction are said to provide weak identity. In such
systems, the problems associated with dangling references arise, where a referenced
object may no longer exist in the database [Stein 891. The ORION [Kim 88] and
EXODUS [Richardson 871 systems provide weak identity. Note that dangling references
are also a problem in relauonal systems.

Object identity, however, is not always good. Relational systems derive a lot of
flexibility by using value-based identity and joins. In particular, representing arbitrary
many-to-many relationships becomes much easier. Object-oriented models must provide
additional mechanism in order to support general relationships [Rumbaugh 87]. Object-
oriented models, hov,'ever, do "provide a framework for unifying value-based and
identity-based access" [Zdonik 901.

"_" "_ Data Models

In general, most object-oriented systems (e.g. VBase [Andrews 87], ORION [Banerjee
87a], EXTRA [Carey 88], ENCORE [Homick 87], O2 [Lecluse 88], GemStone [Maier
86], GEM [Zaniolo 83]) present a data model consisting of the following kinds of
objects:

- atomic values (e.g. integer, string, boolean, and floating point values);
- tuples, or aggregations of named attribute-value pairs; and
- sets of values,

where the values in tuples and sets may be any object in the data model. Thus, an
attribute in a tuple may refer to another tuple or to a set [Osborn 88]. Note that this
model, since it allows mutual references between objects, is more powerful than the pure,
nested tuple-set model [Lecluse 881.

- 14-

In object-oriented models, a class describes the form of each object. If we consider the
set of all instances'of a class in a given database, the basic model described above
satisfies the weIl-definedness properties proposed for aggregations by Smith and Smith
[Smith 77a]. To be precise, because of object identity, each object in a "relation" (i.e.
set of instances) has a unique key and, in the presence of strong identity, every object
referenced by another exists in the database.

Some systems extend the basic model with additional capabilities:
- OPAL provides relation and tree constructors as well as sets [Maier 86];
- EXTRA provides variable-sized arrays (i.e. sequences) as well as sets [Carey

88];
- VBase allows optional attributes [Andrews 87];
- GEM allows attributes to have no value [Zaniolo 83] (others do as well).

Although these capabilities are not strictly necessary, they can simplify the application
programmer's task if available.

Some of the systems surveyed do not provide the basic, object-oriented model. The tsl
system, for instance, provides only a flat value space [Caplinger 87]. Its model is not as
powerful; it cannot represent sets of objects directly, for instance.

In Iris, objects consist solely of the operations that query their behavior. Instead of tuples
and sets, Iris suppons functions that represent relationships between objects [Fishman
87]. 7 Thus, a unary, function that maps objects to values acts as a tuple attribute. In
addition, such functions may be multiple-valued, so sets are not needed directly either.

2.2.3 Inheritance

Smith and Smith describe an orthogonal extension to their aggregation model that
supports the concept of generalization. Just as a class captures the common properties of
a set of objects, generalization captures the common properties of a set of classes [Smith
77b]. Object-oriented systems support generalization through inheritance.

Wegner distinguishes four kinds of inheritance [Wegner 89]: (1) behavior compatibility,
in which inherited attributes always have the same semantics (i.e. as an algebra with
interpretations); (2) signature compatibility, in which attributes may be extended
horizontally by adding new attributes or vertically by constraining existing attributes (i.e.
as a syntactic algebra); (3) name compatibility, in which only implementation is shared;
and (4) cancellation, in which only some implementation is shared (i.e. some attributes
may be eliminated by the inheritor). The four kinds of inheritance are progressively
more permissive. Each, however, carries progressively less semantics when used. Most
systems strive to provide a form of behavior compatibility.

Behavior compatibility includes subset subtyping (e.g. positive integers are contained in
all integers), isomorphic embedding (e.g. all integers may be floating point values), 8 and

7Generally. these functions are stored as tables in the underlying relational storage subsystem.

8Such embeddings are called isomorphic because there exists a one-to-one correspondence between the
elements of one domain and a subset of the other.

- 15-

is-a hierarchies (e.g. a student is a person). In signature compatibility, horizontal
extensions are behaviorally compatible, but vertical extensions may not be (because the
added restrictions involve disallowed values during updates). Vertical extensions can
satisfy read-only compatibility where values are only examined and not changed. Name
compatibility essentially involves just the concept of overriding.

Systems may or may not allow multiple inheritance. Those systems that provide only
single inheritance include: 9

- OPAL in GemStone [Maier 86]
- Type Definition Language (TDL) in VBase [Andrews 87]

The following systems provide multiple inheritance:
- EXTRA in EXODUS [Carey 881
- ORION [Banerjee 87al
- ENCORE [Zdonik 86]
- Iris [Fishman 87]

Apparently, the current implementation of the 02 data model of the Altair project now
supports multiple inheritance [Deux 901 although an earlier report indicated that users
could specify only single inheritance [Bancilhon 88] 1° Instead of inheritance, GEM
supports union types: they argue that such incremental changes to the relational data
model is more graceful and compatible with existing approaches [Zaniolo 83].

Although multiple inheritance makes complex modeling easier, it introduces some
complications. In particular, conflict resolution is required when two attributes with
identical names are inherited from r,vo different superclasses. One method is to use the
specification order by v,hich the superclasses were inherited (e.g. inherit the attribute
from the earlier superclass) [Banerjee 87b]. Another is to force the application
programmer to specif,,' explicitly the superclass from which to inherit the attribute (as in
O2 [Deux 90]). Both of these methods essentially cancel the effect of the hidden
attribute. A better method, perhaps, is to force the programmer to rename conflicts so that
all attributes remain available. During renaming, the programmer can also specify that
conflicting attributes should be treated as identical instead of distinct.

2.2.4 Polymorphism
Much of the flexibility in the object-oriented data model derives from polymorphism.
Polymorphism is the ability to manipulate many types at once in an application. Object-
oriented databases provide polymorphism in two ways. First, an attribute may take on
any value that is type compatible with its declared domain. In object-oriented systems, a
value is type compatible with a domain if its class is a descendant of the domain class in
the is-a inheritance lattice [Meyer 88]. In other systems, less natural mechanisms must
be used to achieve polymorphism (such as union types in GEM [Zaniolo 83]).

9These systems may have removed this restriction since the date of their last technical report.

_°The formal data model specifiedby the Altair project always supportedmultiple inheritance[Lccluse
881.

-16-

The second way databases provide polymorphism is during message invocations. Recall
that inheriting classes may override methods. Thus, the class of the message receiver
may be any that contains the message in its behavior. Minimally, this includes all
descendants of the receiver's declared class (if static type checking is performed).

Determining the actual method to be executed is called method resolution. Dynamic
method resolution determines the method at run-time by using the class of the actual
receiver, it Almost all systems use this technique. Static method resolution, or
overloading, determines the method before execution according to the declared class of
the receiver. Iris uses overload resolution unless explicitly requested otherwise [Fishman
87].

2.2.5 Genericity
Additional flexibility is achieved when systems allow classes to have type parameters. In
particular, collection classes (e.g. set, array, stack, tree, graph, list, and queue) need not
be written for every component class used in an application. For example, one class can
handle both "set-of-employee" and "set-of-vehicle". This capability is called genericity
[Meyer 88].

Systems such as GemStone [Maier 86] provide genericity without explicit ,type
parameters because they do not requu'e type declarations. On the other hand, such
systems cannot guarantee that all elements of a set instance are type compatible. In our
example, one might end up with a set of employees and vehicles intermixed.

Systems that do use type parameters to provide genericity include the C Object Processor
(COP) language for VBase [Andrews 87] and the E language of the EXODUS system
[Richardson 89b]. Systems that allow and check type parameters help the programmer
maintain the semantic correcmess of the application's persistent data.

2.2.6 Extensibility
Object-oriented database systems provide extensibility in several ways. The most
important involves the ability to extend the set of types recognized by the database.
Data abstraction extensibility enables the application programmer to construct complex
persistent objects [Laffra 90]. All object-oriented systems provide this kind of
extensibility.

Generally, application objects do not map easily onto the basic types provided by a
relational database system. Thus, data type extensibility would allow applications to
derive completely new interpretations of stored data (e.g. multimedia objects [Woelk
86]). Some databases provide full type extensibility (e.g. EXODUS [Carey 861), some
limit extensibility to fixed length data (e.g. in an extension to INGRES [Stonebraker 88]),
and some do not provide this kind of extensibility at all.

_lA system may supportdynamic method resolution even if it statically checks the type compatibility of
message invocations. In such cases, static checking restricts the set of methods that might be executed to
those defined in a subtree of the class hierarchy and enables more efficient determinations at run-time, such
as the use of dispatch vectors (as in C++ IStroustrup 861).

-17-

Once new object types are allowed in a database, the database system should support
efficient access and query optimization for instances of those types. In particular,
indexing extensibility enables the integration of non-standard indexes, such as
multidimensional access methods, into the system [Stonebraker 88, Zdonik 88].
Indexing extensibility may also be achieved by providing indexing composition operators
that can understand structured data [Bertino 89]. Some systems are already
experimenting with how an application programmer can specify the performance
characteristics of indexes for query optimization (e.g. Iris [Derrett 89], EXCESS [Carey
88], ORION [Kim 89a]).

In most other data models, the only operators available to the application developer are
those dealing with the model (e.g. get and set attribute for the relational model). Once the
system can recognize other object types, it becomes possible and desirable to allow
procedural extensibility or embedded semantics [Maier 86, Carey 88].

By storing methods in the database, several benefits are realized. First, queries may
execute more efficiently since complex operators can be compiled (e.g. find all rectangles
whose height is twice their width). Second, if viewing is just another action, queries do
not need any special treatment: thev can be represented procedurally [Zhu 89]. Third,
one can abstract away access mechanisms; clients need not know whether a value is
being retrieved by look-up or by computation (as in Iris [Fishman 87]). Finally,
embedding semantics within a database helps make it self-contained, which expedites the
design and implementation of generic applications (i.e. applications that operate over
disparate sets of data; VBase [Andrews 87] and E [Richardson 89a1 support this
capability).

One problem with allowing embedded semantics is that it is difficult to protect the
database from inept or malicious behavior. Depending upon its architecture, a method
with a bug can cause an entire database system to crash. Similarly, embedded methods
can compromise a database's integrity by storing incorrect data [Stonebraker 88]. An
architecture like that used in ENCORE [Hornick 87], in which a separate process
executes object semantics, can help protect against the first problem. Versioning and
authorization can help with the second.

Note that providing extensibility for one feature (e.g. data type extensibility) has an
effect on other aspects of the system (e.g. storage, locking, logging, etc. of variable-sized
data). I feel that such interrelationships should lead to a complete re-design of the model
presented to application developers, but some clearly disagree [Zaniolo 83, Stonebraker
88]. A complete re-design would allow application input at the proper places regarding
query optimization, storage clustering, attribute composition, etc. On the other hand,
drastic changes are hard to assimilate.

2.2.7 Integrity Constraints
lntegri_, constraints in a database system restrict the applicability of certain operations
so that the validity of the data model or the semantic consistency of the stored
information is maintained. In a relational database, for example, one cannot insert two
distinct tuples with identical key values in the same relation. Similarly, object-oriented

-18-

systems that support the concept of key uniqueness in collections must ensure that two
distinct objects in a collection do not have the same key values. Such support exists in
the Iris database system [Fishman 87].

Several other integrity constraints arise in systems supporting object-oriented data
models [Banerjee 87b]. First, object-oriented systems restrict class inheritance so that
the superclass-subclass graph forms either a strict hierarchy (for single inheritance) or a
lattice (for multiple inheritance). Thus, it is not possible to construct a class that inherits
properties from itself.

Next, a class must constitute a name space for all attributes, including instance variables
and methods. This means that one cannot assign the same name (i.e. identifier) to two
different attributes. Although the name space must include the messages acceptable to
the class and all superclasses, the instance variables of ancestor classes should not be
included if strict encapsulation is enforced (i.e. only methods defined in the class
declaring the instance variable may reference the variable's name; e.g. see the E
programming language [Richardson 89a]). Of course, if encapsulation is not enforced,
all inherited instance variable names must participate in the name space (as in Iris
[Fishman 87]).

When multiple inheritance is permitted, some form of conflict resolution (see section 2.2.3
on Inheritance) must exist so that each inherited attribute has a unique source. Otherwise,
ambiguity would result just as when two attributes of the same name are declared in one
class. Also, other than the cancellation that occurs during conflict resolution, all of the
systems surveyed require that a class inherit all attributes of a superclass (i.e. no explicit
cancellation is allowed).

Systems that associate types with attributes enforce o'pe compatibili_. (see section 2.2.4
on Polymorphism). That is, the system checks statically or dynamically that the class of
any value assigned to an attribute is a descendant of the attribute's domain class in the
is-a inheritance lattice. The 02 system, for instance, statically checks all attribute
assignments [Bancilhon 88].

Some systems go further and allow the application developer to specify additional
constraints on the values that may be assigned to an attribute. Typically, these
constraints limit the range of acceptable values (e.g. days of the month must be between
1 and 31, inclusive). More complex constraints involve predicates that legal values must
satisfy; systems usually provide triggers to handle these cases (see section 2.1.3 on
Triggers and Notifiers). Generally, triggers are also the only mechanism available to
help ensure the maintenance of class invariants (i.e. predicates that must hold true for all
class instances before and after each method invocation).

Finally, a system provides referential integri_ if it guarantees that every object has a
unique identifier and that if an object is referenced in a database (i.e. its identifier is
present), then it resides in that database [Stein 89]. Clearly, databases that support strong
identity (see section 2.2.1 on Object Identity) provide referential integrity. Another
mechanism to achieve referential integrity would be to eliminate all references to deleted

-19-

objects.

If a database system provides other capabilities, additional integrity constraints might be
required; see the sections below on Composition and Relationship Support.

Up to now, this paper has discussed only those features that are inherent in an object-
oriented data model. Subsequent sections present capabilities that object-oriented
systems can provide to ease the semantic modeling task of the application developer.

2.2.8 Composition
One way to help model the semantics of an application domain is to support object
composition and property propagation. 12 Composition captures the semantics associated
with the is-part-of relationship between objects [Kim 87]. Property propagation
provides flexibility in determining attribute values (e.g. the color of a car should
determine the color of its fenders_ and allows finer control over such generic operations
as delete, print, copy, equal, and save [Rumbaugh 88].

Consider again the task of modeling ah-plane designs. In a given design, each landing
gear assembly consists of several pans, including a wheel, an axle. struts, and so forth.
When operating on the assembly as a whole, all of these pans should participate as well.
Object composition achieves this effect by associating a special composition property
with the instance variables of the "owner" object; in this case, the landing gear
assembly.

In its strongest sense, object composition implies that the pan cannot exist without its
owner nor be shared with another owner. That is, the object referenced by a composite
instance variable must be destroyed ,.,.hen the owning object is destroyed and may onlv
be created as part of the creation process of the owner. Similarly, since the referenced
object "is pan of" the ,.,.'hole,it cannot be "pan of" another composite object [Kim 87].

These characteristics lead to new integrity constraints (see the previous section). In
particular, no assignment may occur to a composite attribute outside of any constructor
for the composite object. Second, an instance variable may not be changed from non-
composite to composite, unless one can guarantee that existing objects of the class being
modified do not already refer to another object's "part". Finally, when a new version of
a composite object is created, any attribute tagged as referring to a specific version must
be assigned either a copy of the referenced "pan" or a null value [Kim 87].

Composition can improve database efficiency by allowing the application developer to
increase the granularity of locking (see section 2.1.1 on Concurrency Control) and to
specify object clustering for the storage management subsystem (see section 2.6.3 on
Clustering) [Kim 87]. Thus, one can simultaneously lock all objects that are
transitively "pan of" a single, root composite object. (Note that locking becomes more
complicated because a lock request on an object cannot be granted without checking that

_-"Rumbaughactuallyusesthe term "attribute" propagation,but I feel that therewould thenbe confusion
withclassattributes(i.e.methodsand instancevariables).

- 20 -

the object is not "part of" a locked composite object.) Clustering improves performance
by grouping objects together on secondary storage that are likely to have similar access
patterns. Intuitively, the set of objects that are "part of" a composite object should
exhibit such behavior [Hornick 87].

Composition as described above can sometimes be too restrictive. In such cases, the
application developer probably would not use the facility. Kim, Bertino, and Gar'za
describe how to make composition more flexible during their research using the ORION
system [Kim 89b]. In particular, they separate the concepts of composition, exclusivity,
and dependence.

If an instance variable is tagged as composite, they allow the reference to be either
exclusive or shared. An exclusive reference means that an object "pan" may have only
one owner, whereas a shared reference allows multiple owners. Similarly, a reference
may be either dependent or independent. A dependent reference indicates that the
existence of the referenced object depends on its owner; i.e. it must be created and
destroyed when its owner is. An independent reference may be assigned to at any time,
not just within constructors. Thus, a "pan" may have a life of its own [Kim 89b].

Again, integrity constraints must be changed because of the added functionality. In
particular, deletion of a composite object containing dependent references will delete the
referenced objects onlv if they are exclusive or it is the last container. Also, for example,
to change a non-composite attribute into a shared composite attribute, one must ensure
that there are no exclusive composite references of any son within the database to objects
that are already referenced by that attribute. Kim, et. al. list all of the new constraints in
their paper [Kim 89bl.

Although composite atmbutes may be used to propagate information between an
"owner" and its "pans", the ability to propagate different properties independently
requires additional mechamsm IRumbaugh 88]. Generic operations (e.g. equal, delete,
copy, print, display, save) each need control over propagation. Most systems provide
only three kinds of generic operations: name, shallow, and deep. For instance, name
equality just checks whether two object references are identical, shallow equality checks
whether the instance variables of two objects are identical, and deep equality recursively
checks all references. Property propagation allows the application developer to indicate
the instance variables that should participate in the recursive step. Thus, displaying a
landing gear assembly might not show part numbers, but creating a duplicate should copy
the pan numbers as well.

In addition to the ORLON project, the EXTRA data model of the EXODUS project
allows shared and exclusive dependent composition (but apparently not independent)
[Carey 88] and the ENCORE project provides composition for locking, clustering, and
versioning [Hornick 87]. No system surveyed provides as much flexibility for property
propagation as advocated by Rumbaugh; Rumbaugh has, however, implemented a
programming language that includes features for property propagation [Rumbaugh 881.

-21 -

2.2.9 Relationship Support
Composition augments the semantics of object interrelationships. However, object
references are still inherently unidirectional. In using direct references between entities,
the basic object-oriented data model inhibits the maintenance of data independence and
the expression of multi-directional relationships, which improves semantic modeling
[Chen 76]. The ability to express arbitrary relationships between objects would eliminate
these problems and complement the advantages of the object-oriented paradigm
[Rumbaugh 87].

For example, consider a landing gear assembly in our hypothetical airplane design
application. If the designer wishes to maintain the set of struts for the assembly, he
declares an instance variable in the assembly object to hold the set of struts. If the
designer requires that each strut "know which assembly it is a part of, then he can declare
an instance variable in the strut object to refer to the containing assembly object.
Without relationship support, however, the designer must ensure that all struts contained
in an assembly's strut set refer back to that assembly. This invariant must be maintained
explicitly for all operations (e.g. insertion and deletion) that affect this relationship.

A system that provides cntit3"-relationship support, then, can maintain this extremely
common invariant automatically. In addition to enabling symmetry, new integrity
constraints can guarantee the uniqueness of either or both participants in one-to-many,
many-to-one, and one-to-one relationships [Chen 76]. Furthermore, object relationships
become explicit instead of being hidden throughout object implementations [Rumbaugh
87]. Finally, the use of relationships enhances the data independence of a database (i.e.
the degree by which the data is independent of any one application).

In his proD,'amming language DSM. Rumbaugh has demonstrated how to inte_ate
relationship support and object-oriented modeling [Rumbaugh 87]. Some database
systems do provide relationship support through automatic updating of inverse
relationships and key values (as in VBase [Andrews 87] and Iris [Fishman 87]). The
GEM database language implements the entity-relationship model directly [Zaniolo 83].
Note that relationship support and triggers (see section 2.1.3 on Triggers and Notifiers)
may be used to implement composite attributes (see the previous section on
Composition).

2.2.10 Access to Mela.information

Meta-information in a database consists of the definitions that describe the information
contained in the database. Thus, relation schemas and indexes constitute the meta-
information for relational databases. In object-oriented databases, indexes, the dictionary
of root objects, and the class definitions, including the properties of each instance
variable (e.g. value domain, composite-ness, key-hess, relationship to other objects, and
default value), comprise the meta-information of interest.

Access to meta-information is important for two reasons. First, generic applications can
be built that manage databases and their information by examining the class definitions.
Second, applications (like Alexandria) that allow users to manipulate and edit
information structure should be able to model such structure directly onto class

- 22-

definitions. Both the Iris [Fishman 87] and VBase [Andrews 87] database systems
provide built-in functions to provide access to class and index definitions.

2.2.11 Data Sharing
Databases control the sharing of data by multiple users with transaction mechanisms.
This section, however, addresses the issues concerning the sharing of data by other data.

Data sharing occurs when two or more objects refer to another, different object. In an
application that deals with multimedia documents, this can happen when two documents
contain the same picture. In CAD applications, data sharing takes place when two
designs include a part that is defined in a common library. In both cases, data sharing is a
means of reducing storage requirements and communicating updates [Woelk 86].

Object-oriented data models implement sharing naturally through direct object
references. The difficult issues concern how updates to shared data are propagated while
maintaining maximum concurrency. Using composition (see section 2.."8 on
Composition), it is possible to control the version of a shared object reference and to lock
against concurrent updates. The problem with locking, however, is that transactions that
operate on other objects that share data with a locked composite object cannot progress,
even if they do not depend on the value of the shared data. One solution is to create a
new locking mode that locks a composite object except for specified shared references
which may be already locked by other transactions. Another is a form of optimistic
concurrency. Allow the lock on a composite object to succeed even if a shared reference
is already locked, but cause the transaction to abort if the shared object's value changes
when the other transaction commits. No system surveyed has addressed these issues
other than through composition.

2.2.12 Authorization

Maintaining privacy and preventing unsanctioned updates in a database constitute
significant concerns. Database systems provide authorization, or access control,
mechanisms to achieve these goals. An authorization is effectively a relationship among
users, operations, and database entities. In a relational database, the entities are relations,
relation columns, tuples, and schemas. In an object-oriented database, entities may be
classes, objects, instance variables, or methods. As an example (for either case), the
authorization relationship may indicate that a particular user has permission to read
employee salaries but not to update them. On the other hand, because of the ability to
embed semantics, only object-oriented database systems can restrict a user's access to
executing a method that returns the total of all salaries without allowing that user to read
any individual employee's salary.

This model for authorization is very flexible but also very expensive in terms of storage.
Thus, it is essential that the explicit authorizations kept in the database be augmented
with rules for determining implicit authorizations. There are two well-known paradigms
for arranging authorizations. Capability lists associate permitted operations on classes of
objects for each user while access lists associate authorized user categories by operation
for each object. Neither paradigm alone is particularly flexible.

- 23 -

The object-oriented data model provides an opportunity to design an authorization
mechanism that is both efficient and flexible [Rabitti 88]. A crucial observation is that

each component of an authorization can be organized into a lattice of categories.
Individual users can be members of groups and groups can be members of higher-order
classifications, or "roles", and so on. Similarly, individual operations can be grouped
into sets that may share characteristics (e.g. append and write). Finally, objects and
classes naturally fall into a lattice through composition and inheritance.

As a result of this observation, a basic rule for determining implicit authorizations would
be that an authorization exists for a given user, operation, and object if there is an explicit
authorization for any user group, operation category, and object class and the user is a
member of that group, the operation is in that category, and the object inherits from that
class.

A second important observation is that sometimes it is simpler to grant sweeping
authorizations and list exceptions than to try to list only those authorizations that are
valid. Thus, one can augment the set of explicit positive authorizations with negative
authorizations [Rabitti 88]. The rule for implicit authorizations, then, must also be
augmented to determine when negative authorizations override positive authorizations,
and vice versa. Certainly. the closest authorization along any path in the lattice overrides
those farther along that path, but problems arise when differing authorizations apply from
different paths. Possibilities include assigning priorities to users, operations, or objects;
choosing the authorization closest in the lattice: or choosing negative authorizations over
positive ones (to be safe).

Composite objects present another opportunity for implicit authorization [Kim 89b].
Authorizations involving a composite class or object can imply the same authorizations
for all component objects. Conflicting authorizations for a component object, in this
case, can be resolved in favor of the authorization applicable to the composite object
dereferenced.

The overall effect of these obse_,ations is to reduce the number of explicit authorizations
that must be stored in the database without adversely affecting flexibility. Other rules

may be found that can further reduce the storage requirements for authorization. Also,
note that the rules for determining authorization can apply to arbitrary property
propagation as well.

- 24 -

2.3 Language Issues
Database developers program applications in whatever language the database system
supports. Frequently, systems provide languages that fit the database's data model (e.g.
SQL and SEQUEL for relational databases). These languages are not computationally
complete, in general, so some database systems provide translators that allow a
programmer to embed database language statements within general-purpose
programming language programs (e.g. C or FORTRAN).

Database languages may be based on any of several computational paradigms.
Languages using data model paradigms include SQL, SEQUEL, and object-oriented
variants such as POSTQUEL [Stonebraker 86a], OSQL (used in Iris) [Fishman 87], and
an unnamed language used in ENCORE [Zdonik 86]. Data descriptions may be written
in special, separate declarative languages that do not allow arbitrary computation (or
queries), such as the Type Definition Language CI'DL) used in the VBase system
[Andrews 87]. Finally, languages that do allow general computation may be based on
any paradigm that is Turing-equivalent. For example, Zhu proposes that rule-based
systems be used, in which computation is specified by pattern-action pairs (i.e. whenever
a rule's pattern is matched, the corresponding action is performed on the data that
matched the pattern) [Zhu 89]. Although many possibilities exist, however, most
object-oriented systems use the imperative paradigm, in which database actions occur as
normal statements within a pro_am as in E (used in EXODUS) [Richardson 89b] or CO2
(used in O2 by the Altair project) [Bancilhon 88].

Traditionally, pro_amming languages and database systems provide separate (but
complementary.) facilities. For example, languages have not dealt with semantic
composition, persistence, or versioning, while databases have not dealt with structure
traversal and computation [Kim 88]. In providing a framework for supporting both sets
of features, object-oriented databases also provide an opportunity for achieving a unified
language interface to those features. The following sections discuss the issues affecting
such a unification.

2.3.1 Persistence

The first issue from a programming language perspective regarding the integration of
database facilities concerns the handling of persistent entities, or values. Questions to
resolve include how orthogonal are persistent values, what determines that a given value
is persistent, and how to specify the database containing the persistent values of interest.

Full orthogonality is achieved when any value that is manipulated may be persistent
[Laffra 90]. A system that provides essentially no orthogonality is Coral3, since
persistent objects must be copied into transient space to be operated on and then returned
to their special, persistent "holders" [Merrow 87]. Languages that allow embedding
(e.g. embedded OSQL in C [Fishman 871) may or may not achieve orthogonality.
Persistent values must be transferred first between embedded language and host language
variables. Once they are in host language variables, it is conceivable that persistent
values may then be manipulated by the host language. The cleanest way to achieve
orthogonality, of course, is to integrate persistence into a single paradigm pro_amming
language, as was done in the EXODUS project with the E programming language

- 25 -

[Richardson 89b].

Languages may determine whether or not a given value is persistent in several ways.

Easiest would be to assume that all objects manipulated during the execution of an

application are persistent (as apparently is the case in OPAL in the GemStone system
[Maier 86]). A second approach is to identify one or more root objects and assume that

all objects reachable from these roots are persistent (as in POMS [Cockshott 84]).

Another approach is to specify special types for persistent values (as in E [Richardson

89b] and CO2 [Bancilhon 88]). 13

It has been claimed that using persistent type declarations yields the greatest execution

efficiency while still providing orthogonality [Richardson 87]. Unfortunately, for

applications that manipulate both persistent and transient data, this can lead to two

identical sets of types. A more natural approach 14 would be to declare whether or not an

object is persistent when it is created. Appropriate compiler technology exists so that an

application loses no execution efficiency unless the full flexibility of a feature is used
[Horowitz 88]. In this case, the appropriate way to enable efficiency is to declare

whether a specific variable may hold persistent values.

Finally, a language achieves database independence when the application can specify the

sources of persistent values. Unfortunately, most systems assume that all persistent
values reside in a single database las in E [Richardson 89b]), and, sometimes, the actual

database used can even depend on the envffonment in force when the application was

compiled. Clearly, object semantics must be stored after compilation and made available

during execution in order to manipulate objects. However, the same application should
be able to maintain separate databases for different users and share access to object
semantics [Bancilhon 88]. 15 As noted in section 2.1A on Distribution, the Iris database

does allow an application to connect to different databases during the same execution,

but apparently forbids simultaneous access [Fishman 87]. Simultaneous access is

necessary, for those applications, like Alexandria, that wish to present the information
from different sources transparently.

2.3.2 Impedance Mismatch

The concept that complements orthogonality is transparency, which evaluates how well a

programming language can hide the distinction between persistent and transient values

[Laffra 90]. For example, one measure is whether a program can pass a persistent object
to a routine that doesn't know whether or not the parameter is persistent.

Transparency and orthogonality address the larger issue of impedance mismatch in

database programming languages. Impedance mismatch reflects the degree to which an

application programmer must handle persistent values differently from transient values.

_3Note thaL for this approach, the compiler must ensure that no persistent pointer is assigned to a non-
persistent pointer [Richardson 89b1.

1"_This approach would also be more transparent: see the next section.

is Local databases can still be made self-contained (see section 2.2.6 on Extensibility) by copying object se-
manucs into them.

- 26 -

A language providing orthogonality and transparency effectively eliminates impedance
mismatch.

Clearly, different models of computation for persistent and transient values causes
impedance mismatch (e.g. the declarative TDL vs. the imperative COP in VBase
[Andrews 87] or embedded OSQL in Iris [Fishman 87]). Similarly, lack of orthogonality
or transparency causes problems.

There are only three times when a programmer must know whether data is persistent or
transient: when inserting an object into a database (e.g. during object creation), when
removing an object from a database (e.g. during object destruction), and when efficiency
is required. Computers deal most efficiently with transient values. Thus, a language
should provide features that allow the programmer to specify when only transient values
will be used. 16 Other than at these three times, a database programming language should
provide complete onhogonality and transparency.

2.3.3 Software Engineering Issues
Because of their experimental nature, database programming language designs present an
opportunity to try. out new features that support good software engineering. Since a
discussion of software engineering in general is outside the scope of this paper, this
section discusses only those features that have been tried by the systems surveyed.

In object-oriented systems, classes constitute appropriate units for abstraction,
reusability, and decomposition. The language mechanism that allows programmers to
hide implementation details and define small interfaces is called encapsulation. Almost
all systems provide encapsulation through classes; one notable exception is Iris, which
has no class or encapsulation mechanism [Fishman 87]. Zdonik argues that
encapsulation can interfere with certain database operations, such as query optimization
[Zdonik 88], but it is well-known that the language compiler should cross encapsulation
boundaries to find needed information. Classes and encapsulation also provide natural
boundaries for name spaces, which delineate the scope of name-to-object relationships.
Systems with imperative languages, such as COP in VBase [Andrews 87], can also take
advantage of the block structuring inherent in the host language.

Although object-oriented type compatibility rules allow static typing, that is, checking
the legality of assignments and message sends at translation time, to be very flexible,
greatest flexibility is still achieved by dynamic t'yping, or checking during execution.
Static typing is used in CO2 [Bancilhon 88], COP [Andrews 87], and E [Richardson 87],
whereas dynamic typing is used in OPAL [Maier 86], ORION [Kim 88] and Coral3
[Merrow 87]. OSQL (in Iris) goes even further than dynamic typing by allowing objects
to acquire types dynamically, which is particularly useful for extending existing
databases for new applications [Fishman 87].

16See, for example, the discussion in the previous section concerning the use of special database types (as
in E [Richardson89b1)vs. variabledeclarations.

- 27 -

Other features explored include type generators (as in COP [Andrews 87] and E
[Richardson 89b]; see the discussion in section 2.2.5 on Genericity), structured exceptions
(as in COP [Andrews 87]), and iterators (as in E [Richardson 89b]). Iterators allow
programs to fetch component values one at a time from compositions like sets, lists,
queues, and trees. In particular, iterators are especially useful because they enable
arbitrary searching.

2.3.4 Host Languages
A host language is the language into which a database language is embedded or on which
an integrated database language design is based. Embedded languages can use almost
any host language as long as some mechanism exists that transforms database values into
values the host language can manipulate. Iris, for instance, comes with preprocessors
that allow programmers to embed OSQL statements in C or FORTRAN programs
[Fishman 87].

Similarly, databases that present themselves as a function library can also be used in
almost any host language. Abstractions (i.e. data types) must be defined for the data
model concepts that may be manipulated (e.g. relation, tuple, database). An equivalent
mechanism for transforming values must still be provided, however [Donahue 86]. The
GemStone system, for instance, is accessible to programs written in C and Pascal [Purdy
87, Kernighan 78, Jensen 74].

No system surveyed designed an entirely new. integrated language for both database and
arbitrary computation. Several have extended the designs of existing languages:

- the ORION system IKim 881 extends Common LISP ISteele 841;
- GemStone's language OPAL IMaier 86] and the Coral3 system [Merrow 871

both extend Smalltalk [Goldberg 83];
- the COP language in the VBase project [Andrews 87] and the CO2 language in

the Altair project IBancilhon 881 both extend C [Kernighan 78];
- PS-Algol in the POMS system [Cockshott 841 extends Algol-68 [Van

Wijngaarden 75];
- the E language in the EXODUS project [Richardson 87] extends C++

[Stroustrup 861.
To a large degree, the features of the host languages affect the characteristics of their
respective systems relative to the issues presented in the previous section. For instance,
the ORION system provides dynamic typing because Common LISP does. On the other
hand, the EXODUS and VBase projects did integrate interesting non-database features
into their language designs (see the last paragraph of section 2.3.3 on Software
Engineering Issues).

- 28 -

2.4 Query Issues
Relational databases provide associative access mechanisms that allow applications to
find and manipulate entities based on their values instead of their reachability from other
entities. Object-oriented database systems can provide both. This section examines the
characteristics of search for object-oriented data models.

An application specifies a search of a portion of a database by issuing a query. A query is
a description in some language of the nature of the objects to be retrieved and the domain
over which to search. Query languages for object-oriented systems must allow more
complex formulations than relational query languages. For example, applications
dealing with hierarchically defined documents, such as those in SGML format, require
the ability to search based on hierarchical structure [Macleod 89]. Section 2.4.1 below
describes the capabilities that have been explored for object-oriented query languages.

Database systems generally support two means for speeding query execution. Indexes are
search structures imposed on a collection of persistent entities in order to minimize the
number of relatively slow secondary storage accesses and achieve sublinear complexity
for value-based comparisons. Systems also attempt to optimize queries by transforming
them into equivalent forms that execute faster. Sections 2.4.2 and 2.4.3 below discuss the
characteristics of indexes and query optimization respectively in object-oriented
databases.

2.4.1 Query Language
As noted above, databases must provide a language in which to specify queries. Most of
the issues discussed in section 2.3 on Language Issues apply, most notably the
computational paradigm used and the level of impedance mismatch. Many object-
oriented systems have extended existing relational query languages (e.g. OSQL in Iris
extends SQL [Fishman 87] and EXCESS in EXODUS extends QUEL [Carey 88]), while
others expect searches to be specified in their extended imperative language (e.g.
Common LISP in ORION [Kim 88l, CO2 in 02 [Bancilhon 88], and OPAL in GemStone
[Maier 86]).

The specification of a query must express the domain of objects to be searched and
characterize the nature of the objects to be retrieved. In some systems, searches can only
occur over entire classes, whereas other systems allow searches over arbitrary collections
(e.g. ENCORE [Zdonik 88], 02 [Bancilhon 88], EXCESS [Carey 88], ORION [Banerjee
87a], GemStone [Maier 86]). Because of inheritance, the system should also allow one
to specify whether instances of subclasses should be included when searching over a
given class's instances [Banerjee 88]. None of the systems surveyed actually makes this
distinction.

Characterizing the objects to be retrieved involves defining a selection, orfilter predicate
(i.e. boolean expression) that each object must satisfy. The standard operations that
object-oriented systems provide for composing a predicate include [Osbom 881:

- 29 -

- constants (for direct comparison),
- comparison operators (such as "less than"),
- set operations (minimally union, intersection, and set difference),
- combination (which acts like Cartesian product), and
- partitioning (which acts like projection). 17

An extension that appears in almost every object-oriented system is the ability to specify
paths in a selection predicate. A path, or nested expression, is a sequence of attribute
tags which computes a target object reachable from a given, identified object [Banerjee
88]. For example, one might request all employees whose company's president is older
than fifty as follows:

select E

for each Emp!cyee E

where E.Division.Company.President.Age > 50

Thus, the path consists of the sequence of attributes <Division, Company,
President:, Age>. Each attribute in a path effectively acts like an identi_ join,
ensuring equal object identities. The initial use of the dot notation constitutes a
fimctional join [Zaniolo 831..Most systems also allow traditional value-based joins, in
which the value of one attribute is compared against the value of another attribute [Carey
88]. For instance, imagine if the expression E.Age replaced the constant 50 in the
example above.

The standard operators described form an algebra on which there exists a set of
equivalence transformations. These transformations may be used to improve the
performance of query execution [Osbom 88]. Some systems even transform an object-
based query into an equivalent relational query, which may then be optimized; the Iris
system, in fact, must do this since its underlying storage system is a relational database
[Fishman 87]. These issues are discussed in more detail below.

One of the more interesting advances introduced by object-oriented databases is the
ability to incorporate user-defined operators into query predicates. Arbitrary operators
may execute faster than equivalent predicates expressed using standard operators since
they can be compiled. On the other hand, introducing non-standard operators can
represent a security risk [Wilkinson 90] and complicate query optimization; again, see
below.

Some researchers have examined how to deal with cyclic queries. Cyclic queries fall
into two categories: (1) those ,.,,'hosepredicates relate an object to itself and (2) those that
iteratively operate on objects retrieved until no new objects result, which is useful for
computing transitive closures. An example of the first kind occurs when requesting all
employees managed by their spouse:

17Projection in an object-oriented system is a little strange since no user-defined class would correspond to
the result. Some systems do not provide projection, and some believe that it is antithetic:.d to the data
model [Banerjee 881. Other systems synthesize a semantics-free class for each projection. It is not clear
whether the loss of projection would have an adverse impact on application design.

- 30-

select E

for each Employee E
where E.Manager = E.Spouse

An example of the second kind occurs when requesting all direct and indirect managers
of an employee named Joe:

select into Managers(M)
for each Employee E, Employee M
where (E in Managers and E.Manager = M)

or (E.Name = "Joe" and E.Manager = M)
Both kinds generate a directed, cyclic graph as a query representation instead of an
acyclic graph. Cyclic queries complicate the generation of access plans (i.e. which
expressions in the query graph to execute when). In particular, cyclic queries greatly
expand the number of possible access plans to be searched. Thus, one would like to
show boundedness and termination, especially for iterative queries. Kim, Kim, and Dale
describe several heuristics for computing efficient access plans for cyclic queries. They
suggest a combination of forward and reverse traversals of the query graph (according to
edge direction) and basing local decisions on the estimated cost of evaluating the
expression corresponding to each node [Kim 89a]. They also seem to claim that using
indexes instead of enumerating test cases is not helpful since some objects retrieved by
an index search may not satisfy a cyclic predicate. I disagree, since a linear search after a
logarithmic retrieval should often be faster than just a linear search.

2.-1.2 Indexing
An index is a search structure in a database imposed on a collection of persistent entities.
An index is used to reduce either the number relatively slow secondary, storage accesses
(i.e. disk probes) or the number of comparisons needed to find entities with attribute
values in a given range. A search structure is based on one or more attributes (e.g. son
alphabetically by employee last name): thus, indexes act as associative memo,?." relating
attribute values to database entities. More than one index may be associated with an
entity set.

In relational databases, an index sons one or more attributes of a relation. In some

object-oriented systems, an index may be applied only to the set of instances of a class.
Most systems, however, allow indexes on arbitrary collections of objects (e.g. GemStone
[Maier 86] and EXODUS lRichardson 89b]).

Several issues arise concerning indexes in object-oriented systems. First, different search
structures are appropriate for different indexes. Several standard indexing techniques are
in common use, including single attribute sorts (e.g. B-trees and its variants), radix sons
on multiple attributes, and multi-dimensional sorts (e.g. k-d-b trees for points [Robinson
81] and R-trees for hyper-rectangles [Guttman 84]). Database systems, however, should
allow extension by user-defined structures. The ability to incorporate object semantics in
object-oriented databases provides a natural mechanism for such flexibility.

Second, as in other data models, indexes require updates when attribute values of
member objects change ILaffra 90]. For system-supported index structures, this should
not present a problem. User-defined structures, however, require hooks so that the

-31 -

appropriate invariants can be maintained. Triggers (see section 2.1.3 on Triggers and
Notifiers) can provide this functionality [Zdonik 88].

Third, extended indexing operators may take advantage of generically written index
methods. Search structures are excellent candidates for parameterization by component
type. Thus, the B-tree algorithm, for example, can be written to work for any type
having an operator that satisfies total ordering predicates [Stonebraker 88]. Object-
oriented data models reap additional benefits because any algorithm written for one class
will work for all classes that inherit that class.

Fourth, an index on the collection of class instances can include all instances of its

subclasses (i.e. class hierarchy indexing) or only those instances of that class (i.e. single
class indexing). The former yields better storage and query execution efficiency while
the latter provides more flexibility for those queries specifying single-class results [Deux
901. ORLON [Kim 90] and O2 [Deux 90] have chosen to provide only class hierarchy
indexing.

Finally, the ability to specify nested or cyclic references in queries present opportunities
for special indexing structures [Banerjee 88, Kim 89a1. Benino and Kim identify three
new structures for systems that allow path expressions in queries [Bertino 89]. 18 A
nested index associates all possible start values for each known end value of a given path
expression. Such an index would help for queries requesting all employees whose
company's president is older than fifty (see the first example in the previous section). A
path index associates for each end value of a given path expression all values that yield
that end value when starting anvv. here along the path. This appears to be equivalent to a
union of the corresponding nested indexes. In our example, a path index on the
expression E.Di','izlcn. S_.-.,._an','.?resident .Age would, for each known age,
associate all the appropriate subpaths to each age, starting from employees, divisions.
companies, or presidents. Last, they define a multi-index to be the set of nested indexes
that apply to the decomposition of the given path into single links. Thus, a multi-index
on our path expression consists of nested indexes on the expressions E .Division,

D. Company, C. Pres idenE, and?. Age.

The three indexes have different resource requirements and performance characteristics.
Nested and path indexes perform better when retrievals dominate, while multi-indexes
perform better when modifications dominate. Their statistical analysis led to the
conclusions that nested indexes should be used for paths shorter than three links and that
multi-indexes are probably optimal for longer paths [Bertino 89].

2.4.3 Query Optimization
As in other data models, it is possible in object-oriented database Systems to transform
queries into equivalent fomls that execute faster [Osbom 88]. Quer3" optimization is the
process of discovering such equivalent forms. Note that query "optimization" does not
really optimize anything: it just generates a semantically identical quer3' that executes
faster [Graefe 88]. Clearly, any speed-up achieved must at least recover the work

:_Note that these ate not the only new index structures that are possible for nested or cyclic expressions.

- 32-

expended in computing the improvement.

Transformations fall into three categories: (1) algebraic equivalences (e.g. projections
may be pushed through selections), (2) transformations that make sense only in certain
situations (e.g. removing redundant joins), and (3) those that help plan q::c,'-y execution
(e.g. noting the existence and relative cost of indexes to affect which expression gets
evaluated first) [Derrett 89].

Applying transformations is complicated in the object-oriented model because of the
presence of user-defined operators in queries. One would like to treat user-defined and
built-in operators identically (as in EXCESS [Carey 88]), but their presence forces
interpretation of transformations instead of allowing optimization to be hard-coded into
the system.

One mechanism for specifying the applicability of uansformations is rule systems
[Derrett 891. Rules take the form of predicate-transformation pairs; when a piece of a
query graph satisfies a predicate, the system may apply corresponding transformation on
the subgraph. Rules may also include cost functions (e.g. expected number of entities
returned or number of disk pages touched) to help determine which applicable rule to
execute first [Graefe 88, Stonebraker 88]. In particular, these cost functions can take into
account the existence of indexes [Zdonik 881. Rule systems should possess several
properties:

(1) soundness, both for individual rules and the rule set as a wholeJ 9
(2) order independence (i.e. it shouldn't matter which of several applicable rules
fires first),
(3) self-containment (i.e. a rule is not essential: it can be removed and the set
remains sound),
(4) boundedness (i.e. an algorithm must exist that can execute the rules using
finite and bounded resources), and
(5) efficacy (i.e. the rule set as a whole should yield more efficient queries).

In Iris, they found that dividing optimization into phases with separate rule sets makes
designing rule sets that satisfy these criteria easier [Derrett 89]. Rule-based optimizers
are also used in the EXODUS project [Graefe 871.

Graefe and Maier have proposed another approach to handle user-defined operators in
queries. Instead of telling the optimizer what transformations are possible, the optimizer
asks each user-defined operator to "reveal" an equivalent, more efficient query
expression. This approach increases encapsulation and extensibility. The objective of
such revelations should be to replace object-at-a-time evaluation with more efficient set-
at-a-time searches [Graefe 881.

_gA rule is sound if it represents a valid transformation. A rule set is sound if all applicable rule sequences
yield valid transformations.

- 33 -

2.5 Database Evolution

As a result of the long-term nature of databases, an important issue concerns how
database systems manage change. Many of the features of database systems deal with
changes to the data: concurrency control, transactions, atomicity, data stability, triggers,
notifiers, index maintenance, versions, and configurations. This section, however,
concentrates on managing changes to the definitions that structure the data (i.e. changes
to classes or schemas).

The three major concerns regarding database evolution involve what changes may occur,
how those changes affect existing database entities, and how existing data in the database
is reconciled with those changes. The next three sections consider each of these in turn.

2.5.1 Schema Changes
In an object-oriented database, the potential changes to class definitions and the class
hierarchy include [Banerjee 87b1:

- adding or removing an instance variable;
- changing the name. domain, or default value of an instance variable;
- changing the composition or propagation properties of an instance variable;
- adding or removing a method;
- changing the name. implementation, or signature of a method;
- adding or removing a superclass;
- changing the conflict resolution order of inherited superclasses;
- adding or removing a class from the class hierarchy; and
- changing the name of a class.

Of course, these changes must be performed within transactions for the same reasons that
changes to the data are [Hornick 87]. Some systems provide special transactions for
changing class definitions. GemStone, for instance, requires the use of pessimistic
locking for class modifications even though optimistic concurrency control is normal
[Penney 87]. Others require that all other activity cease while database evolution
occurs.

2.5.2 Effects of Changes
Integrity constraints reflect the invariants that must be maintained in order to ensure data
consistency. Thus, the system must either prohibit certain changes or modify objects in
the database to re-establish the invariants. The GemStone system forbids the removal of
a class with instances [Penney 871, whereas the ORION system just removes all instances
as well [Banerjee 87b].

In fact, the ORION system attempts to provide rules for modifying objects for almost all
class definition changes. For example, removing an instance variable from a class causes
it to be removed from all instances of that class as long as no other instance variable of
the same name is inherited. Furthermore, each instance of an inheriting class must be
modified similarly as long as its class does not override the instance variable. Still, some
changes cannot be allowed. The user may not introduce a cycle into the class hierarchy
[Banerjee 87b].

- 34 -

Class changes also affect the definitions of user-defined operators. In particular, some

message invocations may no longer be valid [Skarra 86]. It is difficult to see how rules
for automatically modifying embedded semantics can be generated. Certainly, however,
notification of the existence of such problems should be the minimum response.

One can also examine the effects class changes have on the results of queries. By

enumerating each possible combination of query operators and class modifications,
Osbom has shown that one can predict whether a query will result in the same set of

objects before and after a class change [Osbom 89]. These predictions can enhance one's
confidence that a given change will not affect existing applications adversely.

2.5.3 Database Conversion

Once a class change has occurred and object modifications identified, those modifications
have to be made. Some systems make the modifications immediately (i.e. eager

conversion: as in GemStone [Penney 87]) while others perform lazy conversion by

inserting checks for inconsistent objects in every operation (as in ORION [Banerjee

87b]). The first method often takes a database off-line for significant amounts of time
and the second adds a non-trivial cost to each operation.

Some systems attempt to circumvent these problems by avoiding object modifications.
The ENCORE system, for instance, treats classes as objects and generates new versions

as a result of changes [Hornick 87]. Thus, any object existing in the database before the

change is also treated as a previous version: its class is the old version [Skarra 86]. A

system can help applicauons based on the new type access objects of the old type by
providing emulation; that is, by supporting operations that allow the object to appear to
be of the new type.

Another approach is taken by the Iris system. Objects in the Iris system may acquire or

lose types dynamically. "..° Thus, if an object no longer matches a changed definition, the
user can choose to remove the type from the object instead of modifying the object to
match the type. In general. Iris tends to restrict class modifications so that object
modifications are not necessary.. For example, a class cannot be removed unless it has no
instances, nor can new supenype-subtype relationships be established [Fishman 87].

All of the effects of a class modification apply to all databases that use the affected class

definition. Clearly, every, database must be convened for those systems that allow
several databases to share definitions.

20Duhl calls this capability dynamic type acquisilion [Duhl 88].

- 35 -

2.6 Storage Management
Generally, storage management support for a database is responsible for secondary
storage management, variable-sized data support, buffering, caching, concurrency
control, versioning, logging and recovery. This section addresses the issues concerning
data storage, buffering, caching, clustering, and interoperability raised by object-oriented
models.

Although relational back-ends have been used for storage management (as in Iris
[Fishman 87]), new designs have also been explored for object-oriented systems. The
object-oriented data model leads to several performance constraints and presents several
opportunities for efficiency. For instance, the storage of complex objects generated in
object-oriented database systems would benefit from support for variable-sized data
[Carey 86]. Support for multimedia data also requires the ability to store different sizes
potentially for each object [Stonebraker 88].

The property of object identity implies the need for efficient access of direct references.
Users will tend to follow such references instead of searching and fast look-ups would
obviate the need for some user-imposed indexes [Donahue 86]. On the other hand, direct
references reduce the need for searching and enable new, more efficient indexes (see
section 2.4.2on Indexing). Also, the ability to build composite objects can make locking,
authorization, versioning, and storage management more efficient.

The next section descnbes various schemes used to store objects and manage the
transformation between storage and object formats. Section 2.6.2 deals with how objects
affect buffering and caching. A specific method for enhancing the performance of
storage management is discussed in the following section. Finally, the last section
discusses issues relating to interoperability.

2.6.1 Storage Schemes
The simplest way to store persistent data between executions of an application is to save
the program's image. This technique, however, forces persistent data to reside always in
the same place, to maintain the same format, and to fit within the process's address space
[Cockshon 84]. By treating persistent data differently, database systems avoid these
problems and provide flexibility as to the sources of data that applications can
manipulate.

Storage management for object-oriented systems must deal with issues concerning
storage reclamation (e.g. garbage collection), object identity, variable-sized data, and
transforming between external storage and internal run-time formats.

Reclaiming storage can either be done automatically when objects become inaccessible
(as in GemStone [Maier 86]) or explicitly by applications using special operators (as in E
[Richardson 89a]). Explicit object deallocation is faster but can lead to dangling
references.

- 36-

Storage reclamation of working versions (see section 2.1.5 on Versions and
Configurations) that are still referenced requires some kind of archiving strategy. For
example, a system can archive all versions (or configurations) older than a given date.
Or, if access times are available, the system could archive only those versions (or
configurations) that have not been read for a given amount of time. Such archiving is
necessary to reduce normal storage requirements.

Databases support object identity by assigning a unique object identifier to each object
which is never re-used, even when the associated object becomes deallocated. Different
databases, however, incorporate different levels of indirection between an object
identifier and the actual storage for its associated object. EXODUS maps each object's
identifier directly to its storage, which implies that the object's header cannot be moved
and that resizing requires another scheme (see below) [Carey 86]. ENCORE's storage
manager ObServer (OBject SERVER), on the other hand, uses two levels of identifiers.
The top-level object identifier maps to a set of low-level identifiers which then map to the
actual storage chunks that comprise the object [Hornick 87]. When two or more levels
are used, the top-level identifier is called a surrogate.

Resizing and handling variable-sized data can be handled in several ways. The telesophy
system tsl assumes that objects are resized infrequently and therefore stores each object
in one contiguous chunk [Caplinger 87]. ObServer uses a level of indirection to allow
each object to refer to its "chunks" [Hornick 87]. 21 EXODUS uses an implicit
indirection scheme in which each object is represented by a B+ tree (which also supports
efficient versioning) [Carey 861.

Finally, since direct references cannot be represented as actual pointers in secondary
storage, some transformation must be performed between the storage format and the
format supported bv the data model. Some systems transform each access of a direct
reference (as in ENCORE's ObServer [Hornick 87]) while others convert all references
to pointers when each object is buffered (as in ORION [Kim 881). The first makes
buffering easier but slows normal execution. Overall, however, fewer conversions may
be needed. The second scheme allows execution to proceed at normal processor speeds,
which is important in highly interactive applications. The O2 system compromises by
transforming each object once, but only if it actually manipulated [Bancilhon 88].

2.6.2 Buffer Management
Typically, a storage manager handles requests from many database clients
simultaneously and the total amount of data referenced could easily overflow its address
space. Thus, a storage manager must buffer the data actually required at any one time,
and treat that buffer as a cache.

Most systems implicitly pin the objects referenced by a transaction so that they will
remain in the buffer for the transaction's duration. A commit or abort then unpins the

data which allows the system to remove the objects from the cache. The E language

zlEach chunkcorrespondsto thememoryrequiredto store the instancevariablesof eachclass inheritedby
theclass of the object, includingoneforany instancevariablesaddedbytheobject's class.

- 37 -

run-time system, however, just pins the data implicitly. The system requires that the
application explicitly unpin the data and indicate whether the data was modified. By
making pinning explicit, the EXODUS system can allow an application direct, efficient
access to the buffered data. No copying into the application's address space is necessary
[Carey 86].

ORION uses a double buffering scheme in which the first buffer contains the file format
of an object and the second buffer contains the transformed format. Since referenced

objects may have been removed from the cache, the transformed reference actually
points to a header which keeps track of whether the object is resident. ORION, however,
does not maintain a mapping from object references to headers, so when an object is
brought back into the cache, it is given a new header. The old headers, when
dereferenced, must then be forwarded. Unreferenced memory (data and headers) are
garbage collected [K.im 88].

POMS, 22 on the other hand. maintains a double hash table that maps between persistent
references and in-memory addresses, which obviates the need for special headers. It also
uses special operating system primitives to trap attempted dereferences of persistent
identifiers (i.e. all negative addresses are "protected"). Thus, using the central hash
table, the system can maintain the state of its cache without unnecessary forwarding
structures and execution can proceed at normal speeds without special checks [Cockshott
841.

Buffering does have a negative impact on the execution of queries within transactions,
since all current data does not reside in one place. Some of the data is in the buffers
while the rest of the data Iperhaps represented by indexes) is in secondary, storage. Kim.
et. al. conclude that the system can either perform the query twice and merge the results
or flush the buffers before executing the query. The latter, of course, can have an adverse
impact on storage management support [Kim 90].

Finally, since storage managers cannot know ahead of time the access patterns of
applications, greater efficiencv could be achieved if the system can accept hints
concerning its buffer replacement policy (as in the EXODUS system [Carey 86]).

2.6.3 Clustering
Storage management performance can be improved by reducing the number of secondary.
storage operations required. The primary method for accomplishing this is to group
together objects that ,.,.ill be referenced together, effectively reducing the persistent
"working set" of an application. Since most systems cannot know a priori which objects
will be referenced together, some systems allow applications to give hints for clustering
objects into segments on secondary, storage.

Clustering hints can be determined explicitly or implicitly. The VBase system, for
instance, allows explicit clustering hints when objects are created [Andrews 87]. A
system that provides composite object support can determine clustering implicitly, since

:-'The PersistcntObject ManagcmcntSystem.

-38 -

objects that are "part of" another are likely to be accessed when the parent object is
[Kim 87]. Similarly, objects in a collection (e.g. all objects of a given class) are also
likely to be accessed together, so a system might also cluster such objects implicitly (as
in ENCORE [Hornick 87]). Finally, a system could monitor access patterns and attempt

to cluster objects in the hope that such pauems are predictive of future behavior (also as
in ENCORE [Homick 87]).

2.6.4 Interoperability
The last issue to be dealt with concerns [nteroperabiliry, or the ability to transmit

persistent data in a form understandable to clients [Laffra 90]. This is particularly

important for database systems that act as servers in a distributed, heterogeneous
environment. The cleanest approach is to define pack and unpack operators for each
class and each client machine. These operators convert objects between a storage or

transfer format understood by all run-time systems (e.g. ASCII text or ANS.I byte

stream) and the specific client format for each object. This approach has been taken in
the telesophy system tsl [Caplinger 8"]].

A related problem arises concerning the storage format and execution of object
semantics. As discussed earlier in section 2.l.4 on Dismbution, data model support,

including the execution of object semantics (i.e. methods), usually occurs in data model

servers. In a heterogeneous network environment, this can pose a problem. If the
language expressing object semantics is compiled, then the server can run only on

machines for which object code is available. Similarly, if the language is interpreted,

then the server can run only on machines for which an interpreter has been written. The
latter approach is easier to implement, but decreases the execution efficiency of

applications. No system surveyed has addressed this issue.

- 39-

3 Research Efforts
Most of the issues discussed in this report were collected from presentations of research
efforts into database design. This section summarizes each of these efforts individually,
instead of spreading a system's description throughout the discussion of design issues, as
above.

3.1 POSTGRES

Affiliation:

University of California, Berkeley

Publications:

[Rowe 87] L.A. Rowe, M. Stonebraker.
The POSTGRES Data Model.

[Stonebraker 86a1 M. Stonebraker, L. A. Rowe.
The Design of POSTGRES.

[Stonebraker 87a1 M. Stonebraker.
The Design of the POSTGRES Storage System.

[Stonebraker 87b] M. Stonebraker, E. N. Hanson, S. Potamianos.
The POSTGRES Rule Manager.

Description:

POSTGRES involves an effort to extend the relational data model to include embedded

semantics, data type extensibilitv (e.g. multimedia data), cyclic queries, rule-based
triggers, and versioning. Embedded semantics is achieved by allowing attributes whose
values may be either POSTQUEL statements or external language code fragments (e.g. a
C procedure). POSTQUEL is an extension of QUEL, a language based on the relational
data model paradigm. Versioning can be achieved either by time of creation,
modification, or deletion, or by explicit version.

Although based on the relational data model, the POSTGRES data model does possess
certain object-oriented characteristics. The schema definition for a relation may inherit
the attributes of one or more other schemas. POSTQUEL also allows the creation of
user-defined operators, which may then be used in other POSTQUEL statements,
including queries. The model, however, does not support object identity.

Other issues: POSTGRES uses pessimistic concurrency with non-nested transactions. Its
architecture allows distribution where a single POSTMASTER is responsible for session
control and triggers. The POSTGRES run-time system (one per client) is responsible It'or
secondary storage management, caching, logging, recovery, authorization, query
execution, execution of embedded semantics, and object support. There is no explicit
support for configurations, polymorphism, genericity, user-defined indexes, or access to
meta-information. Composition and relationship support do not apply in this data model.

- 40 -

3.2 EXODUS

Affiliation:

University of Wisconsin-Madison

Publications:

[Carey 86] M.J. Carey, D. J. DeWitt, J. E. Richardson, E. J. Shekita.
Object and File Management in the EXODUS Extensible Database
System.

[Carey 88] M.J. Carey, D. J. DeWitt, S. L. Vandenberg.
A Data Model and Query Language for EXODUS.

[Graefe 87] G. Graefe, D. J. DeWitt.
The EXODUS Optimizer Generator.

[Richardson 87] J.E. Richardson, M. J. Carey.
Programming Constructs for Database System Implementation in
EXODUS.

[Richardson 89al J.E. Richardson, M. J. Carey.
Persistence in the E Language: Issues and Implementation.

[Richardson 89b1 J.E. Richardson, M. J. Carey, D. T. Schuh.
The Destgn of the E Programming Language.

Description."

The goal of the EXODUS project is to provide tools for exploring alternate database
designs. Thus, EXODUS itself just refers to the storage management support. A data
model called EXTRA, EXCESS. a query language variant of QUEL based on that data
model, and E, an imperative, statically typed language based on C++, have been
implemented on top of EXODUS.

The EXTRA data model is object-oriented with multiple inheritance; conflict resolution
requires explicit renaming. The E language provides embedded semantics,
polymorphism through overriding, genericity through type parameters, and iterators. The
language can be used to achieve orthogonality and transparency, but efficiency concerns
lead to some impedance mismatch. The EXTRA data model does support the notions of
shared and exclusive dependent object composition, value-based joins, and self-
referential cyclic queries.

Queries may search over specified collections instead of entire classes and may contain
user-defined operators. The query optimizer accepts hints via a rule-based system
concerning the relative costs of query operators.

-41 -

The storage manager supports variable-sized data, and multimedia may be represented in
the E language. The manager also provides direct access to the buffered objects (for
efficiency) and accepts hints concerning its buffer replacement policy and clustering
objects. Storage reclamation must be specified explicitly in the E language (i.e. weak
identity). The manager is also responsible for versioning (versions are apparently
unavailable at higher levels), locking (at arbitrary granularities; again, apparently
unavailable at higher levels), logging, and recovery.

Other issues: No support is given for transitive closure queries except through direct
programming in the E language. The E language is also the only means for introducing
new indexes, which may be imposed on arbitrary collections. The language assumes a
single database for all transactions. Also, there is apparently no support for session
control: each execution of an application constitutes a single transaction. No support is
given for acquiring access to meta-information.

3.3 Altair

AOSliation."

Altair, France

Publications:

[Bancilhon 881 F. Bancilhon, et. al.
The Design and Implementation of 02, an Object-Oriented
Database System.

[Deux 901 O. Deux, et. at.
The Stor3"of 02.

[Lecluse 88] C. Lecluse. P. Richard, F. Velez.
02, an Object-Oriented Data Model.

Description:

The Altair project is responsible for the 02 data model and the CO2 programming
language, a statically typed, imperative language based on C. The formal data model is
object-oriented with multiple inheritance. The user is expected to resolve conflicts
among identical names inherited from more than one superclass. The data model
supports polymorphism through overriding.

The CO2 language is not totally transparent since types, not values, are declared to be
persistent. Data persistence is determined by reachability from named root objects. The
model calls for strong identity; thus, the system provides garbage collection. Apparently,
multimedia support mav be achieved using the language. Queries may search over
arbitrary collections, and the system supports simple, path-oriented, class hierarchy
indexes. User-defined operators may be used in queries, which means that cyclic queries
are allowed.

- 42 -

A mirror server process is instantiated for each client to handle data model issues and

deal with communication with the secondary storage manager. Object identifiers

constitute single-level indirection into secondary storage; i.e, they do not represent
surrogates.

Other issues: The language is the only means for introducing new indexes that may be

imposed on arbitrary collections; they will not be used, however, by the standard query
mechanism. The system separates the persistence of class definitions from the

persistence of normal objects. Also, there is apparently no support for session control;
each execution of an application constitutes a single transaction (although save-points
may be specified). No support is given for genericity, specifying clustering, triggers,
composition, relationships, or acquiring access to meta-information.

3.4 ORION

Affiliation:

Microelectronics and Computer Technology Corporation (MCC)

Pttblications."

[Banerjee 87al J. Banerjee, et. al.

Data Model Issues for Object-Oriented Applications.

[Banerjee 87b1 J. Baner-jee, W. Kim. H-J. Kim, H. F. Konh.

Semantics and Implementation of Schema Evolution in Object.
Oriented Databases.

[Kim 87] W. Kim, J. Banerjee, H-T. Chou, J. F. Garza. D. Woelk.

Composite Object Support in an Object-Oriented Database System.

[Kim 881 W. Kim, et. al.

[ntegrating an Object.oriented Programming System with a
Database System.

[Kim 89a1 K-C. Kim, W. Kim, A. Dale.

Cyclic Query Processing in Object-Oriented Databases.

[Kim 90] W. Kim, J. F. Garza, N. Ballou, E. Woelk.

Architecture of the ORLON Next-Generation Database System.

[Rabitti 88] F. Rabitti, D. Woelk, W. Kim.

A Model ofA uthorization for Object-Oriented and Semantic
Databases.

_Voelk 87] D. Woelk, W. Kim.

Muhimedia Information Management in an Object-Oriented
Database System.

-43 -

Description:

The ORION system presents an object-oriented data model that provides polymorphism
through dynamic method resolution and genericity through dynamic typing (instead of
through type parameters; thus, homogeneity cannot be guaranteed). Concurrency control
is pessimistic, with transactions locking on an object or composite object basis. ORION
provides very flexible composition facilities, allowing distinctions for shared vs.
exclusive and dependent vs. independent references. It also supports object versions and
generic vs. specific references.

The data model supports multiple inheritance in which conflicts are resolved in favor of
the superclass inherited earliest. Weak identity is supported, forcing the application
developer to manage storage reclamation explicitly. Multimedia data support has been
integrated into the ORION data manager. User-defined operators may be associated with
classes and used in queries, which may operate over arbitrary collections of objects.
Cyclic nested queries (both self-referential and transitive closure) are allowed.
Applications developers may provide hints for query, optimization. Currendy, the system
manages only single attribute, class hierarchy indexes.

Authorization is addressed, with both positive and negative authorizations allowed.
Composition affects the granularity of authorization here as well. Access is provided
through an extension of Common LISP (thus. the dynamic typing). Orthogonality is
limited since types must be declared as persistent.

ORLON is the only system to address thoroughly automatic database conversion for
evolution. Many transformations have been derived to re-establish invariants after class
changes. These transformations occur lazily, by inserting checks into each operation for
objects that must be updated.

The storage manager uses a double buffering scheme: the first buffer caches segments
holding the file format of objects, while the second buffer caches the in-memory format.
Each object is converted from its file format immediately when buffered. Forwarders are
used to deal with dereferences to objects that are no longer in the object cache.

Other issues: Apparently, no nested transactions are allowed and no trigger facility is
provided. No access to meta-information is described. Other than composition, no
relationship support is provided. Also, class membership is apparently the only
mechanism for determining clustering. The only configuration support is the ability to
refer to either a generic or specific version of an object.

-44-

3.5 ENCORE

Affiliation:

Brown University

Publications:

[Homick 87] M.F. Homick, S. B. Zdonik.
A Shared, Segmented Memory System for an Object-Oriented
Database.

[Skarra 86] A.H. Skarra,S. B. Zdonik.
The Management of Changing Types in an Object-Oriented
Database.

[Smith 87] K.E. Smith, S. B. Zdonik.
lntermedia: A Case Study of the Differences Between Relational
and Object.Oriented Database Systems.

[Zdonik 86] S.B. Zdonik, P. Wegner.
Langt_age and Methodology for Object-Oriented Database
Enrironments.

[Zdonik 881 S.B. Zdonik.
Data Abstraction and Query Optimization.

Description:

The ENCORE project v,as started in response to the needs of other projects, notably the
Intermedia hypermedia project. It presents a standard object-oriented data model that
supports multiple inheritance, strong identity, versioning, and triggers. Simple exclusive
composition is provided, v.hich is also used to specify granularity for locking, versioning,
and storage clustering. No indication is given as to how or whether polymorphism and
genericity are provided. Also, although support for multimedia is a stated goal, no
indication is given as to how ENCORE provides such support.

The system uses a standard architecture for distribution, providing a data model server
for each client. The storage manager transforms each object from its storage format on
each access by an application instead of when the object is buffered.

Queries may employ user-defined operators and may operate on arbitrary object
collections. The set of indexing structures may be extended, and optimization hints are
accepted via rule systems.

Database evolution is accomplished through versions. Classes are objects: thus, class
changes are reflected through versions. No provision, however, is given for managing
configurations.

- 45 -

Other issues: Apparently, no support is given for meta-information access, nested

transactions, relationship support (other than by using triggers), or authorization.

3.6 GemStone

Affiliation:

Servio Logic Corporation

Publications:

[Maier 86] D. Maier, J. Stein, A. Otis, A. Purdv.

Development of an Object-Oriented DBMS.

[Penney 87] D.J. Penney, J. Stein.

Class Modification in tile GemStone Object-Oriented DBMS.

[Purdy 87] A. Purdy, B. Schuchardt, D. Maier.

Intcgrating an Object Server with Other Worlds.

Description:

The GemStone system presents an object-oriented data model with single inheritance (as

of their publications). Polymorphism is provided through dynamic method resolution

and genericity through dynamic typing. The primary access to GemStone is through an
extension of Smalltalk, although limited access can be achieved in C and Pascal via

libraries. Orthogonality and transparency are ignored, as all objects are considered
persistent. The system provides strong identity, so storage reclamation occurs when
objects become inaccessible.

Distribution is achieved by interposing any number of data model servers between the

storage server (which is responsible for authorization and indexing) and clients. The data
model servers execute queries written in their extended Smalltalk (called OPAL). Thus,

arbitrary queries are allov,'ed. Queries may be executed over arbitrary, collections.
Indexes may also be defined over arbitrary collections. No other indication of query
optimization has been discussed.

Concurrency control is optimistic, except for class changes. Database evolution is

generally constrained by integ-rity constraints, but some automatic changes to objects are
understood: these changes occur immediately.

Other issues: Apparently, no nested transactions are allowed and no trigger facility is

provided. No access to meta-information is described, nor any mechanism for extending

types for multimedia (other than what is provided in Smalltalk). No relationship,
composition, clustering, or versioning support is provided.

- 46 -

3.7 Iris

A_iliation:

Hewlett-Packard Laboratories

Publications:

[Derrett 89] N. Derrett, M-C. Shan.
Rule-Based Query Optimization in IRIS.

[Fishman 87] D.H. Fishman, et. al.
Iris: An Object-Oriented Database Management System.

[Wilkinson 90] K. Wilkinson, P. Lyngbaek, W. Hasan.
The Iris Architecture and Implementation.

Description."

The Iris database system does not adhere strictly to the object-oriented model. Its data
model is a form of entity-relationship model where the entity classes may inherit one or
more other classes. Polymorphism is achieved through compile-time overload
resolution, although overriding is provided when explicitly requested. Genericity applies
only to the built-in collection types.

Although there is no support for composition, full relationship support is provided. Weak
identity is provided, requiring applications to deal with storage reclamation explicitly.
Object identifiers act as surrogates and do not indicate where an object is stored. Simple
versioning is supported.

An extension of SQL, OSQL, provides access to the database. Currently, this language
may be embedded within C or FORTRAN. Thus, no transparency or orthogonality is
provided. All clients communicate v,'ith the storage system (which is relational) through
one data model server. Transactions may be nested and use pessimistic concurrency
control.

Objects may acquire and lose types dynamically, which is how it is expected databases
will evolve. Objects retain their identity across type changes. Access to meta-
information is provided. Multimedia objects can be accommodated. Queries may
include user-defined operators. Thus, queries m.',.vbe self-referential, although transitive
closures do not seem to be supported. Queries and indexes apply to entire classes; the
query optimizer will accept hints in the form of a rule system.

Other issues: Apparently, no support is provided for triggers, configurations,
authorization, or clustering.

- 47 -

3.8 VBase

Affiliation:

Ontologic, Inc.

Publications:

[Andrews 87] T. Andrews, C. Harris.

Combining Language and Database Advances in an Object-
Oriented Development Environment.

[Duhl 88] J. Duhl, C. Damon.
A Performance Comparison of Object and Relational Databases
Using the Sun Benclunark.

Description:

VBase, since renamed Ontos, presents an object-oriented data model with single
inheritance (as of their writings). The database supports embedded semantics, triggers,
optional attributes, some relationship support (i.e. inverse management), access to meta-
information, clustering hints at object creation, genericity through type parameters, and
polymorphism through ovemding. Although it is not clear, it appears that VBase
supports weak identity, requiring the application to manage storage reclamation
explicitly.

All access to the database is through two proprietary, languages, a declarative schema
definition language ITDL) and an extension of C for wwiting semantics and applications
(COP). The C extension is statically typed, although run-time type assertions may be
used. The language also includes support for exception handling. It is not clear v,'hich
values are persistent and how a database is specified.

Queries and indexes must be written in COP. apparently, no explicit support is otherwise
provided. As such, queries and indexes may therefore apply to arbitrary- collections, and
the application developer may extend the set of available indexes. No consideration is
given to query optimization.

Other issues: Apparently, no support is provided for session control, nested transactions,
authorization, logging, composition, or database evolution.

- 48 -

3.9 GEM

Affiliation:

Bell Laboratories

Publications:

[Zaniolo 83] C. Zaniolo.
The Database Language GEM.

Description:

The GEM database is an early attempt to extend the relational data model. It does not
present an object-oriented data model. Its data model can be described as a tuple-set
model or a typed, entity-relationship model. As such, GEM supports object identity,
relationships, optional attributes through null values, union types, and nested path
expressions in queries (in an extension of QUEL). Apparently, cyclic queries are not
supported.

3.10 Coral3

A.(/iliation."

System Concepts Laborator3'. Xerox Pato Alto Research Center

Publications."

[Merrow 87] T. Merrow, J. Laursen.
A Pragmatic _'stcmfor Shared Persistent Objects.

Description:

Coral3 is also not an object-oriented database system. It is an attempt to introduce
persistence into Smalltalk. Thus, Smalltalk's object-oriented model is presented: strong
identity, polymorphism through dynamic method resolution, genericity through dynamic
typing, and triggers through Smalltalk's "dependents" mechanism. Persistent objects
are accessed through special holders, which must be dereferenced before operating on the
data. Thus, no orthogonality or transparency is achieved. For performance, caching of
persistent objects is supported.

In addition, no concept of session control is provided. In the absence of transactions, an
application is provided with a facility for setting locks explicitly in order to achieve
concurrency control. The assumption is that the objects manipulated are large enough so
that no complex interactions are necessary,. No other database-like facility is provided.

- 49 -

3.11 Telesophy

Affiliation:

Bell Communications Research

Publications:

[Caplinger 87] M. Caplinger.
An Information System Based on Distributed Objects.

[Schatz 89] B.R. Schatz, M. A. Caplinger.
Searching in a Hyperlibrary.

Description:

Telesophy is a term coined by Bruce Schatz to mean "wisdom at a distance". The
system implemented to demonstrate telesophy, tsl, is primarily oriented toward
hypertext, although search is also an inherent component. The system is not strictly
object-oriented in that inheritance is not supported, although object identity is.

The primary, contribution of tsl is that it presents a model for distributed access to
distributed data. Objects mav be placed in storage se_'ers. Indexes for arbitrary object
collections are managed bv other sen, ers. An application executes a query, by first
searching one or more indexes, then submitting the resulting object identifiers to the
appropriate storage servers.

The information space is flat in that no abstraction is allowed. No restriction, however, is
placed on the form of objects: in fact, support for multimedia data is an explicit goal.
Objects are stored in contiguous chunks and optimistic concurrency control is provided
on the assumption that the data will be changed very infrequently. Interoperability is
supported by requiring each node in the netv,'ork to provide pack and unpack routines for
each data type. No other database-like facility is provided.

- 50-

3.12 POMS

Affiliation:

University of Edinburgh

Publications:

[Atkinson 82] M. Atkinson, K. Chisholm, P. Cockshott.
PS-algol: an Algol with a Persistent Heap.

[Cockshott 84] W.P. Cockshott, et. al.
Persistent Object Management System.

Description:

The Persistent Object Management System (POMS) is the storage management facility
for PS-Algol, which integrates persistent values into a variant of Algol-68 called S-Algol.
PS-Algol provides dynamic connections to databases (apparently only one at a time),
transaction support, associative access, and implicit storage reclamation (i.e. garbage
collection). The data model is that of Algol-68, which does not support inheritance.
Orthogonality and transparency, however, are achieved. Persistent objects are
determined by their reachability from a specified database root object. POMS uses a
double hash table so that no forwarding is required for caching persistent objects. Finally,
POMS stores data type information in each database so that it is self-contained.

-51 -

4 Conclusions
One of the primary objectives of a database system is to handle the storage of persistent
data for applications. By using a database system, application developers do not need to
worry about how persistent data is organized in secondary storage. They must, however,
be concerned with managing persistent data using the data model presented by the
database system. In the past, data models have been designed for such qualities as data
independence, ease of real-world modeling (for limited real-world domains), and ease of
providing other, desirable database features. Little or no consideration was given to the
need of applications to compute with persistent data or to the computational models used
to implement applications.

Object-oriented databases, then, constitute an attempt to integrate most of the desirable
features of database systems (see Figure 1) with desirable features of the object-oriented
model of computation (see Figure 2).

Data persistence Object identity

Storage management Direct references

Concurrency control Inheritance

Session control Polymorphism

Atomicity. Genericity

Recoverability Encapsulation

Authorization Name space control

Versions Data abstraction extensibility

Configurations Data type extensibility

Associative access Procedural extensibility

Triggers Imperative execution model
Distribution

Interoperability

Figure 1: Features provided by Figure 2: Features provided by
database systems object-oriented lang.ages

In doing so, three issues arise. First, integation should occur without impedance
mismatch. In particular, language support for object-oriented database se_,ices should
be orthogonal and transparent. Second, integration should not lose any advantages of
existing data models. For instance, object-oriented programming does not support data
independence inherently,, so features such as relationship support and query joins shot, ld

- 52-

be provided. Finally, integration presents an opportunity for introducing new desirable
features. For example, this survey includes descriptions of the following features:

- composition
- property propagation
- cyclic queries
- indexing extensibility
- database self-containment
- access to meta-information
- database evolution
- database independence

All but the last are affected by object-oriented concepts. Composition, property
propagation, and cyclic queries take advantage of the ability to specify direct references
betweeen objects. Indexing extensibility and database self-containment derive from the
ability to embed semantics. Last, access to recta-information and database evolution
depend on the data model supported by the database system.

Object-oriented databases also present the potential for being more efficient than earlier
systems that support other data models. Direct references, the ability to represent
complex designs, and the ability to execute user-defined operators all contribute to
building more efficient database applications. The caveat, of course, is that these benefits
must offset the overhead caused by the need to interpret these higher levels of abstraction
[Duhl 88].

Finally, the list of capabilities provided by object-oriented database systems compares
favorably to those required by multimedia applications (see the discussion at the end of
section 1.1 on MotivationL and information management applications (e.g. Intermedia
[Smith 87]; see also the discussion in section 1.2 concerning our own project,
Alexandria), as well as engineering applications, such as CAD/CAM, and other design
applications. No other data model supported by database systems in current use can
make this claim.

- 53 -

5 References

[Ada 83] American National Standard Reference Manual for the Ada Programming
Language.
ANSI/USDept.of Defense.1983.
ANSI/MIL-STD 1815A-1983.

[Andrews 871 T. Andrews, C. Hams.

Combining Language and Database Advances in an Object-Oriented Development
Environment.

In Conference Proceedings, OOPSLA '87 (SIGPLAN Notices) 22(12):430-440,
December 1987.

[Atkinson 82] M. Atkinson, K. Chisholm, P. Cockshott.
PS-algol: an Algol with a Persistent Heap.
SIGPL4.V Nottces 17(7):24-3 I, July 1982.

[Bancilhon 88] F. Bancdhon, eL al.
The Design and Implementation of O2, an Object-Oriented Database System.
In Advances m Ob)ect.Orientcd Database Systems: 2nd International Workshop, ed.
K. R. D_tu'_h, pp. 1-22, Springcr-Verlag, 1988.

Banerjee 87a] J. Baner.lce. eL al.
Data .MediciIssues for Object.Oricnted Applications.
ACM l'ransacttons on Office Information Systems 5(1):3-14, January 1987.

Bancuee 87b] J. Bancrlce, W. Klm. H-J. Kim, H. F. Korth.
Semanucs and Implementation of Schema Evolution in Object-Oriented Databases.
In In'crru:ttonal Conference on tIu_Management of Data (SIGMOD Record)
16(3):311-322. December 1987.

[Bancrjce 881 J. Bancrtce. W. K_m. K-C. Kim.

Quencs m Object-Oriented Databases.
In Proceedtnes 4th International Conference on Data Engineering. pp. 31-38,
1988.

[Beruno 89] E. Bcruno, W. Kim.
Indcxmg Techniques for Queries on Nested Objects.
IEEE Transactions on Knowledge and Data Engineering 1(2): 196-214, June 1989.

[Caplinger 87] M. Capltnger.
An Information System Based on Dismbuted Objects.

In Conference Proceedings, OOPSL4 '87 (SIGPL4N Notices) 22(12):126-137,
December 1987.

[Carey 86] M.J. Carey, D. J. DeWitt, J. E. Richardson, E. J. Shekita.
Object and File Management in the EXODUS Extensible Database System.
In Proceedings of the 12th International Conference on Very Large Databases,

August 1986.

[Carcy 881 M.J. Carcy, D. J. DeWitt, S. L. Vandenbcrg.
A Data Mcxlcl and Query Language for EXODUS.
In Intcrnational Conference on the Mana_,cment of Data tSIGMOD Record)
17(3):-: 13--.123,September 19,g8.

- 54 -

[Chen 76] P.P. Chert.

The Entity-Relationship Model -- Toward a Unified View of Data.
A CM Transactions on Database Systems 1(1):9-36, March 1976.

[Cockshott 84] W.P. Cockshott, et. al.

Persistent Object Management System.
Software.Practice and Experience 14(1):49-70,]an uary 1984.

[Derrett 89] N. Derrett, M-C. Shah.

Rule-Based Query Optimization in IRIS.
In ACM 17th Annual Computer Science Conference, pp. 78-86, February 1989.

[Deux 901 O. Deux. et. al.

The Story of 02.

IEEE Transactions on Knowledge and Data Engineering, 2(1): 91-108. March 1990.

[Donahue 86] J. Donahue, C. Hauser, J. Kent.

A Client Interface to an Entity-Relationship Database System.
Technical Report CSL-86-4. Xerox Palo Alto Research Center, Xerox Corporation,
September 1986.

[Duhl 88] J. Duhl. C. Damon.

A Performance Comparison of Object and Relational Databases Using the Sun
Benchmark.

In Conference Proceedings. OOPSLA '88 (SIGPLAN Notices) 23(11): 153-163,
November 1988.

[Eppinger 89] J.L. Eppinger.
Virtual Memory Management for Transaction Processing Systems.
PhD thesis. CMU-CS-89-115. Carnegie Mellon University, February 1989.

[Fishman 87] D.H. Fishman. et. al.

Iris: An Object-Oriented Database Management System.
ACM Transacttons on Office Information Systems 5(i):48-58. January 1987.

[Goldberg 831 A. Goldberg. D. Robson.
Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, Massachusetts, 1983.

[Graefe 87] G. Graefe. D. J. DeWitL
The EXODUS Optimizer Generator.
In Proceedings of the ACM SIGMOD Conference, pp. 160-171, May 1987.

[Graefe 88] G. Graefe, D. Maier.

Query Optimization in Object-Oriented Database Systems: A Prospectus.
In Advances in Object-Oriented Database Systems: 2rid International Wor "L_hop.ed.
K. R. Ditmch, pp. 358-363, Springer-Verlag, 1988.

[Guttman 841 A. Guttman.

R-Trees: A Dynamic Index Structure for Spatial Searching.

In International Conference on the Management of Data ISIGMOD Record)
14(2):47-57, 1984.

- 55 -

[Hornick 87] M.F. Hornick, S. B. Zdonik.
A Shared, Segmented Memory System for an Object-Oriented Database.
A CM Transactions on Office Information Systems 5(1):70-82, January 1987.

[Horowitz 881 M.L. Horowitz.

Automatically Achieving Elasticity in the Implen'_ntation of Programming
Languages.
PhD thesis, C_KJ-CS-88-104, Carnegie Mellon University, January 1988.

[Jensen 74] K. Jensen, N. Wirth.

PASCAL User Manual and Report: 2nd Edition.
Springer-Verlag, Berlin, 1974.

[Kernighan 78] B.W. Kernighan. D. M. Ritchie.
The C Prograrrumng Language.
Prenuce-Hall. Englcwood Cliffs, New Jersey, 1978.

[Kim 87] W. Kim, J. Banerjee, H-T. Chou, J. F. Garza, D. Woelk.
Composite Object Suppon in an Object-Oriented Database System.
In Conference Proceedings, OOPSLA '87 (SIGPLAN Notices) 22(12):I 18-125,
December 1987.

[Kim 88] W. Kim, et. al.

Integrating an ObJect-oriented Programming System with a Database System.
In Conference Proceedtngs. OOPSLA "88 (SIGPLAN Notices) 23(11): 1-12-152.
November 19S8.

[Kim 89a1 K-C. Klm, \V. Kim, A. Dale.
Cyclic Quer:,' Processing in Object-Oriented Databases.
In Proceed_n_'s 5_h International Conference on Data Engineering, pp. 564-571,
1989.

[Kim 89b] W. Ktm. E. Bertino. J. F. Garza.

Compos,te Objects Revisited.
In Interr_ttonal Conference on the Management of Data (SIGMOD Record)
18(2):337-3-17, June 1989.

[Kim 90] W. Kim, J. F. Garza, N. Ballou, E. Woelk.
Architecture of the ORION Next-Generation Database Systcm.
IEEE Transactions on Knowledge and Data Engineering, 2(!): 109-124. ,March
1990.

[Laffra 901 C. Laffra, P. ,,'anOosterom.

Persistent Graphical Objects.
In TOOLS '90, June 1990.

[Lccluse 88] C. Lecluse, P. Richard, F. Vclez.
02, an Object-Oriented Data Model.

In International Conference on the Management of Data (SIGMOD Record)
!7(3):424--.133, September 1988.

[.Maclcod 89] I.A. Macleod.

A Query Language for Retrieving Information from llierarchic Text Structures.
Technical Report TR 89-263, Department of Computing and lnformat,on Science,

- 56-

Queen's University, Kingston, Ontario, August 1989.

[Maier 86] D. Maier, J. Stein, A. Otis, A. Purdy.
Development of an Object-Oriented DBMS.
In Conference Proceedings, OOPSLA '86 (SIGPLAN Notices) 21(11):472-482,
November 1986.

[Merrow 87] T. Merrow, J. Laursen.
A Pragmatic System for Shared Persistent Objects.
In Conference Proceedings, OOPSLA '87 (SIGPLAN Notices) 22(12): 103-110,
December 1987.

[Meyer 88] B. Meyer.
Object.Oriented Software Construction.
Prenuce Hall. New York. 1988.

[Osborn 881 S.L. Osborn.
Idenuty, Equality and Query Optimization.
In Advances in Object-Oriented Database Systems: 2nd International Workshop, ed.

K. R. Dittrich. pp. 346-351, Springer.Verlag, 1988.

[Osborn 891 S.L. Osbom.
The Role of Polymorphism in Schema Evolution in an Object-Oriented Database.
IEEE Transactions on Knowledge and Data Engineering 1(3):310-3 i7, September
1989.

!Penncy 87] D.J. Pcnncy. J. Stem.
Class .Moddicat_on m the GemStone Object-Oriented DBMS.
In Conference Proceedings. OOPSLA "87 (SIGPLAN Notices) 22(12): 111- i 17,
December 1987.

[P:.day 90] A. Palay, D. Anderson, M. Horowitz, M. Mclnerny
The Alcxandrta Pro)cot: In Search of a Unified Environment for Information Access
and Management.
In preparauon.

[Purdy 87] A. Purdy. B. Schuchardt, D. Maier.
Integrating an Object Server with Other Worlds.
ACM Transactions on Office Information Systems 5(1):27, January 1987.

[Rabitti 88] F. Rabitti, D. Woelk, W. Kim.
A Modcl of Authorization for Object-Oriented and Semantic Databases.
In Proceedings of the International Conference on Extending Database Tcchnoloey,

pp. 231-250, blarch 1988.

[Richardson 87] J.E. Richardson, M. J. Carey.
Programming Constructs for Database System Implementation in EXODUS.
In International Conference on the Management of Data (SIGMOD Record)
16(3):208-219, December 1987.

['Richardson 89a1 J.E. Richardson, M. J. Carey.
Persistence in the E Language: Issues and Implementation.

Sofnvare-Practice and Experience 19(12):1115-1150, December 1989.

- 57 -

[Richardson 89b] I.E. Richardson. M. J. Carey. D. T. Schuh.
The Design of the E Progratruning Language.
TechnicalReportCS-TR824,Universityof Wisconsin-Madison,February1989.

[Robinson 81] J.T. Robinson.

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes.
In International Conference on the Afanagemcnt of Data (SIGMOD Record) 10:10-

18, April 1981.

[Rowe 87] L.A. Rowe. M. Stonebraker.
The POSTGRES Data Model.

In Proceedings of th_ 13th International Conference on Very Large Data Bases, pp.
83-96. September 1987.

[Rumbaugh 871 J. Rumbaugh.
Relations as Semantic Constructs in an Object-Oriented l_,anguage.
In Conference Proceedings. OOPSLA '87 (SIGPLAN Notices) 22(12):466-481.
December 1987.

tRumbaugh 881 J. Rumbaugh.
Controlling Propagation of Operations using Attributes on Relations.
In Contcrence Proceedings. OOPSLA "88 (SIGPLAN Notices) 23(11):285-296,
November 1988.

[Schatz 89] B.R. Schatz..",I. A. Caplinger.
Searching m a Hyperlibrat)'.
In Protection C_5th International Conference on Data Engineering. pp. 1SS-197,
1989.

lSkarra 86] A.H. Skarra. S. B. Zdontk.

The Management of Changing Types in an Object-Oriented Database.
In Conference Proceedings. OOPSLA '86 (SIGPLAN Notices) 21(11):483--_95.
November 1986.

[Smith 77a1 J.M. Smith, D. C. P. Smith.

Database Abstractions: Aggregation.
Communicattons of the ACM 20(6):405-413, June 1977.

[Smith 77b] J.M. Smith. D. C. P. Smith.
Database Abstractions: Aggregation and Generalization.
ACM Transactions on Database Systems 2(2):105-133, June 1977.

[Smith 87] K.E. Smith. S. B. Zdonik.
Intermedia: A Case Study of the Differences Between Relational and Object-
Oriented Database Systems.
In Conference Proceedings. OOPSLA "87 (SIGPLAN Notices) 22(12):452-465.
December 1987.

[Stecle 84] G.L. Stccle, Jr.

Common LISP." The Language.
Digital Press, 1984.

- 58 -

[Stein 89] J. Stein, T. L. Anderson. D. Maier.
Mistaking Identity (Preliminary Report).
In Proceedings of the 2nd International Workshop on Database Programming
Languages, pp. 161-164, 1989.

[Stonebraker 86a] M. Stonebraker, L. A. Rowe.
The Design of POSTGRES.
In International Conference on the Managem*nt of Data (SIGMOD Record) 15(2),

May 1986.

[Stonebraker 86b] M. Stonebraker.
Inclusion of New Types in Relational Data Base Systems.
In Proceedings Second International Conference on Data Base Engineering,
February 1986.
Also in Readings in Database Systems, ed. M. Stonebraker, pp. 480-2,87, Morgan
Kaufman Publishers, Inc. (San Mateo, CA), 1988.

[Stonebraker 87a1 M. Stonebraker.
The Design of the POSTGRES Storage System.
In Proceedings of the 13th International Conference on Very Large Data Bases. pp.
289-300. September 1987.

[Stoncbrakcr 87b] M. Stoncbraker. E. N. Hanson. S. Potamianos.
The POSTGRES Rule Manager.
IEEE Transactions on Software Engineering 14(7):897-907, July 191_8.

Also m Proceedtnes ll'_rd International Conference on Data Engineering. February
1987.

[Stroustrup 86] B. Stroustrup.
The C+-,. Pro_rammtng Language.
Addison-Wesley. Reading. Massachusetts. 1986.

[Ullman 82] J.D. Ullman.
Princtples or'Database Systems.
Computer Science Press. Rockvflle, Maryland. 1982.

[Van Wijngaarden 75] A. Van \\'ijngaarden. et. al.
Revised Report on the Algorithmic Language ALGOL-68.
Acta lnformatica. 5:1-236. 1975.

[W'egner 89] P. Wegner. S. B. Zdonik.
Models of Inheritance.

In Proceedings 2nd International Workshop on Database Programming Languages,
pp. 2-18-255, 1989.

[Wilkinson 90] K. Wilkinson, P. Lyngbaek, W. Hasan.
The Iris Architecture and Implementation.
IEEE Transactions on Knowledge and Data Engineering. 2(!):63-75. ,March 1990.

[Woelk 86] D. Woelk. W. Kim, W. Luther.

An Object-Oriented Approach to Multimedia Databases.
In International Conference on the Management of Data (SIGMOD RecordJ
15(2):311-325, May 1986.

- 59 -

[Woelk 87] D. Woelk, W. K.im.
Multimedia Information Management in an Object-Oriented Database System.

In Proc. Very Large Data Bases, September 1987.

[Zaniolo 83] C. Zaniolo.

The Database Language GEM.
In International Conference on the Management of Data (SIGMOD Record)
13(4):207-218, 1983.

[Zdonik 86] S.B. Zdonik, P. Wegner.
Language and Methodology for Object-Oriented Database Environments.
In Proceedings of the Nineteenth Annual Hawaii International Conference on
System Sciences, vol. II, pp. 378-387, 1986.

[Zdonik 88] S.B. Zdonik.
Data Abstraction and Query Optimization.

In Advances in Object-Oriented Database Systems: 2nd International Wor_hop, ed.
K. R. Dittnch, pp. 368-373, Springer-Verlag, 1988.

[Zdontk 90] S.B. Zdontk. D. MaJcr, cds.

Readings tn Object-Oriented Database Systems.
Morgan Kaufman Publishcrs. Inc. (San Marco, CA), 1990.

[Zhu 89] J. Zhu, D. Maicr.
ComputauonalObjects in Object-Oriented Data Models.
In Proceedings 2nd International Workshop on Database Programming
Languages, pp. 139-160, 19_q9.

- 60 -

I Object-Oriented Languages
In an object-oriented language, all manipulable program entities are objects. Each object

consists of some private state and a set of operations that may manipulate that state. No
operations other than the associated ones may manipulate the internal state of an object.
This property is known as encapsulation. In object-oriented parlance, the operations are
called methods. The method set of an object defines its semantics.

In most programs, many collections of objects share method sets. For example, all
objects that represent pieces of mail in a mail handling application share the methods that

manipulate the internal state of mail messages. Moreover, such objects also share the
form of their internal state. Thus. the description of the common properties (i.e. form,
behavior, and methods) of a collection of objects can be localized. Most object-oriented

systems provide a facility called a class to define these common properties. Each object
in the collection described by a class is called an instance of that class. Associated with

each class may be a set of operations whose role is to create object instances; these

operations are called constructors.

A class defines the internal state of its instances by specifying a set of instance variables
or attributcs. The set of attributes itself is referred to as an aggregation. Attributes that

are shared by all instances of a class (e.g. the average age of all employees) are called
class variables or attributes. Sometimes, the specification of each am-ibute may include

a default value and/or the expected domain of values the attribute may assume. This
domain, or t3'pe, represents the behavior, 23 or set of operations, that values within that

domain possess. Typically. types and classes are identified, so that the set of operations
for each domain is specified by referring to a class.

The set of classes in an object-oriented system may be structured in two ways. One class

may use another if it refers to the other, usually as a domain for an attribute. This

organization is called an aggregation or composition hierarchy. Note that this

organization may not be a strict hierarchy: cycles are allowed in the uses relationship.

A class may also inherit properties from one or more classes. That is, the definition of a

class would include the properties of these other classes together with any new properties
added in the class itself. This organization is referred to as a generalization hierarchy. 24
Note that this organization is only a strict hierarchy if each class is limited to inheriting

from exactly one other class (i.e. single inheritance); the organization becomes a lattice,

or directed acyclic graph, if multiple inheritance is allowed. Each class inherited from is
called a superclass, and the inheriting class is called the subclass.

23Another term for behavior is protocol.

24Since the inverse relationship of generalization is specialization, this organization may sometimes be re-
ferred to as a specializatton hierarchy. It all depends on a hich point of view is taken (i.e. ,,,,hichway the
"arrows" should be drawnL

I

-61 -

In standard object-oriented systems, the properties defined in a class need not just
augment the properties inherited from its superclass(es). Some properties may replace
inherited properties. When this occurs, we say that the defined property overrides the
inherited property. Almost always, this occurs with the operations of a class. In the
presence of overriding, the method executed when one operation invokes another
depends on the actual class of the object of interest. That is, the invocation just states the
name of the operation to be executed; a method of that name must be found in the class
(or one of its ancestors) of the run-time value that is the focus of the invocation.

Because of this ambiguity, the invocation of an operation is referred to as a message send
and the object of interest is called the receiver. Furthermore, the behavior of a class is
really defined by a set of messages, which effectively are just the names and signatures of
the operations to which instances of the class will respond.

From an application programmer's point of view, these concepts provide characteristics
that aid in the application building process. In particular, the programmer may model
application entities at appropriate levels of abstraction. Furthermore, classes comprise a
good mechanism for decomposing complex design problems into manageable chunks.
Class inheritance and method overriding support polymorphism, which allows attributes
to assume values that a.re only weakly related: specifically, such values are related only
by the messages they may receive. Finally, class inheritance also enables extensibility,
so that new objects may be added consistently to an existing system without modifying
existing code (or data).

- 62 -

II Glossary

A o._

abort The act of terminating a transaction such that the state of the database remains as it was
when the aborted transaction commenced.

access control See authorization. Usual kinds of access that are discriminated include read, write,
append, execute, modify definition, etc.

access list A form of explicit authorization in which associated with each object is a set of user-
permitted operation pairs. Contrast with capability list.

access plan An execution order for evaluating the subparts of a query.

acyclic graph A directed graph that contains no cycles.

aggregation A collecuon of data. Each data item is tagged with an attribute name.

aggregation hierarchy
The graph that results among classes when considering the uses relationship. That is,
each edge in this graph reflects that the source class uses the destination class. Note
that this graph is rarely a strict hierarchy and often contains cycles.

alerter See not(fcr.

algebraic equivalcnce
An equivalent express=on based on equalities proven in some algebra.

applicatwn A program that rcquires the services of one or more subsystems and provides an
tnterface to some interpretation of those services. For instance, a mail handling
applicauon provides an interpretauon on the data in a database of messages.

archiving The storage of old object versions off-line (e.g. on tape or optical disk), which is not
accessible _ _thout operator intervention.

associative access

The ability to rc_eve enutics from a database based on associated data. For example.
associative access allows one to retrieve all records for employees earning more than
their manager. Contrast with direct access.

associative mernorv

Memor3' in which accesses are made by association instead of by address. In other
words, one looks for the item associated with a given value instead of, say, the tenth
item in memory.

atomic value A value which has no subparts; for example, an integer, boolean, or floating point
value.

atomicity The property that a database reflects either all changes engendered by a transaction or
no changes, even in the presence of failures.

attribute A name to be used when dealing with (i.e. assigning to and fetching) a specific value in
an aggregation. See, for instance, the concept of inztance variable for objects.

authorization A protection mechanism provided by database systems to ensure that a given user is
allowed to pcrtbrm a specified operation on a particular object.

- 63 -

behavior The setof operations, or methods, that describe the semantics of a domain or type.

behavior compatibility
A form of inheritance in which inherited attributes always have the same semantics
(i.e.asanalgebrawith interpretations).

boundedness A property that states that a computadon's use of a resource (e.g. time or storage) has a
reasonable limit.

browsing The ability to retrieve database entities through direct references as opposed to
searching based on attribute values. See direct access, search, and associative access.

buffering The process by which databases provide access to persistent entities. The database
system must transform the data from the format used for secondary storage to a form in
main memory that applications can use. For object-oriented systems, this may involve
translaung unique object identifiers into direct references.

C o..

caching A buffering scheme that attempts to provide the most efficient access for data expected
to be used by a client, especmlly when it is impractical to maintain such access for all
data. Caches are used for buffering database data kept on secondary storage and for
keeping local copies of data kept across a network. A popular caching scheme is to
buffer a fixed number of data items that have been most recendy used. on the
assumpuon that something just used is likely to be used again soon.

cancellation A form of inheritance in _hich only some implementation is shared and some
atmbutes may be eliminated by the inheritor.

capability list A form of explicit authorization in which associated with each user ts a set of object-
permitted operation p:urs. Contrast with access list.

Cartesian product
The construction of virtual database entities from two collections of other entities

(either actual or virtual) by unioning the atmbutes of each entity from one collection
with the atmbutes of each enuty from the other. Thus, if there are N and M entities in
the two collecttons, the resulting collecuon has NxM entities.

cla._s In object-oriented systems, a repository for the common definitions (i.e. instance
variables and methods) of a collecuon of similar objects and for common properues
(e.g. constructors, default values, and global variables) shared by the collection.
Classes may inhent definitions and properties from one or more other classes.

class attribute See class variable.

class hierarchy index
An index on a collection representing the instances of a class that includes the
instances of all the subclasses of that class.

class variable An attribute-value pair associated with a class and shared by all objects described by
that class.

clustering A policy of grouping objects together on secondary, storage that are likely to have
similar access patterns in order to improve performance.

column In relational systems, a column is the same as an attribute in a relation. Relations are
often compared to tables in which attributes head the columns and tuples comprise the
rows.

-64-

combination SeeCartesianproduct.

commit The actofterminatinga transactionsuchthatthesmt_of thedatabaseisupdatedto

reflectallchangesbroughtaboutby thetransaction.

composite attribute
See composite reference.

composite reference
A reference from one object to another reflecting a composition relationship between
theobjects.

composition A propertyof a setof objectswhen one refersto the othersas itspartsor

subcomponents.Thatis,compositionreflectstheis-part-ofrelationship.

compositionhierarchy

Seeaggregationhierarchy.

computational paradz'_m
A model for how data computation and manipulation occurs. A programming language

presents a computauonal paradigm to programmers.

concurrency control
Any mechanism provided to ensure data consistency in the presence of concurrent
access. See optimistic concurrency and pessimistic concurrency.

concurrent access

The abdtty of more than one user to access the same database at the same time.

configto'ation A set of ob)cct versions that reflects a consistent state for the set of objects as a whole.

conflict resolutton
A mechanIsm that chooses one definition over another when both have been inherited

and both have the same identifier name. Conflict resolution is necessary in the
presence of multiple inheritance and constitutes a limited form of cancellation.

constructor A class property that is an operation which may be used to create an instance of that
class.

cycle A situation in a graph in which a path exists from a given node to itself along one or
more links.

cyclic graph A directed graph that contains one or more cycles.

cyclic query A query whose graph representation contains one or more cycles. This occurs when
the query either refers to its own results (as in transitive closure) or relates a database
entity to itself.

D _tl

DAG An abbreviation for directed, acyclic graph.

dangling reference
A direct or value.based reference whose target entity is not in the database. Dangling
references can arise in systems that provide weak identity.

data abstraction extensibility
The ability to extend the set of types recognized by a system.

data consistency

The property that changes are not lost and that data interrelationships make sense.

- 67 -

exclusivereference
A compositereferencetoanobjectindicatingthatno otherrootobjectmay reference

thatobject.Seesharedreference.

explicit authorization
An authorization that is kept in the database and can be consulted directly. See implicit
authorization.

extensibility The ability to incorporate new functionality into an existing system. The best
extensibility is when new functionality is treated just as built-in functionality.

F °o_

field See attribute.

file system The facility provided by operating systems which permits applications to store data in
discrete umts called files for long periods of time. File systems often provide a
hierarchically organized name space, but rarely provide any other structuring
meehantsms.

filter predicate See selectton predicate.

fiat value space A value space that allows no composition. Composition in this sense occurs during
aggregation or when constructing value sets.

fanctton library' A set or operators that may be called from any application that has access to library's
name space.

functtonal)otn A join _,hlch ts based on the value of a function (e.g. a simple attribute dereference).

('j o=o

_arbage collecuon
See storage reclamation. Garbage collection generally refers to schemes that reclaim
storage of inaccessible objects.

_eneralizatton The abstraction of common properties. In object-oriented systems, generalization is
used to describe the relationship between a class and its subclasses that inherit it. The
inverse relationship is called specialization.

generalizauon hierarchy
The graph that results when considering the inheritance relationships between classes.
That is, each edge of this graph reflects that the source class is inherited by the
destination class. Note that a strict hierarchy results only when single inhent.ance is
allowed; otherwise, a lattice results.

generic reference
An inter-object reference indicating that the referenced object should be the most
current, transient version. See also specific reference.

genericity The ability to handle different types using the same code but yet guaranteeing some
form of homogeneity. For example, one module can implement both "set-of-
employee" and "set-of-vehicle" and yet enforce that no vehicle be allowed in the
former.

granulari O' The coverage of a given characteristic. When applied to data, granularity can range
from the smallest identifiable unit of data to arbitrary data collections. See. for

example, lock _ranularity.

- 68 -

H eQ_

hierarchical data model
A data model in which database entities (i.e. records of attribute-value pairs) may be

related in strict hierarchies (i.e. each entity may have a single parent).

hierarchy A graph or network in which each node has at most one identifiable parent and
possibly many children. In particular, this implies that there exists exactly one path
from a root to any other node in the graph.

horizontal extension
The addition of new properties by the inheritor. Thus, for example, a subclass

typically adds messages or instance variables to what is inherited from its
superclass(es).

host language A language in which another language is embedded or on which a new language is
based.

hypertext An organization (i.e. directed graph) for documents that effectively allows readers to
follow related ideas as they wish.

I oo.

identi_, join A join _hzch _sbased on the equality of database entities in the two collections being
joined.

identitT,'-bascd access
See direct access.

impedance mismatch
The degree to _.hich an application must handle persistent and trans|cnt values
differently.

imperative paradigm
A computauonal paradigm in which desh-ed results are specified by indicating exactly
how to achieve tho_ results. Contrast with declarative paradigm.

implicit authori:ations
An authorization that is not stored in the database and is determined from other

authonzauons. _ hethcr explicit or implicit. See explicit authori:ation.

independent reference
A compos,te reference that may be assigned different objects at any time. The
referenced object need not be destroyed when an owning object is. See dependent
reference.

index A search structure m a database imposed on a collection of persistent entities. Thus,
one collection may have several associated indexes which "optimize" searching that
collection in different ways.

indexing extensibility
The ability to extend the kinds of indexing structures used in a database system. Most
systems provide B-tree variants for indexing single attributes. Extcnsibility would
allow the incorporation of radix and multi-dimensional indexing structures _e.g. k-d-b
trees and R-treesl.

inheritance The sharing of definitions of one class by another. That is, if one class inherits from
another, the definitions of the first class include in some way the delinitions of the
second.

- 65 -

data independence
The degree to which two sets of data do not depend on each other. In the object-
oriented model, inter-object references reduce data independence, whereas in the
relational model, relations are independent of each other because of value-based
identity.

data model A mathematical description of the allowable ways a user may organize the data held in
a database. Several examples include the hierarchical data model, the network data
model, the relational data model, and the object-oriented data model.

data model paradigm
A computational paradigm that includes just those operations specified by a data
model. See the various database data models: entity-relationship data model,
relational data model, hierarchical data model, network data model, object-oriented
data model.

data sharing The ability to consider a database entity as a subcomponent of two or more other
entities (e.g. a picture shared by two documents).

data t_pe extensibility
The ability to extend the kind of data recognized by a system. In particular, this allows
new interpretations of data (e.g. an array of bytes may represent an image, a matrix, a
sequence of audio, a collection of graphic objects, or a sequence of video).

database A subsystem that provides services relating to the maintenance of persistent data.

database conversion

The process of changing existing database entities to match changed schema or class
definitions. Conversion may be lazy (as entities are encountered during subsequent
normal processing) or eager (i.e. off-line; immediately after the schema changes and
before normal database processing resumes). Also, instead of conversion, database
entities can be made to appear as instances of the changed class via emulation.

database evolution

The process of changing the definition of data instances and the support for
transforming extsting database instances to the new definition.

database independence
The property that applications can specify the source(s) of persistent data instead of
assuming a source based on the environment in effect at the time of compilation or
execution. Execution time is still better than compile time since then the application
can work on different databases for different users. Full independence occurs when the

application can specify the source(s) during execution.

deadlock A condition in a system allowing concurrency when a cycle exists in the graph of
processes waiting on other processesto release needed resources. The simplest case
occurs when two processes each possess a resource the other needs in order to
complete its transaction. Locks constitute one such resource.

declarative paradigm
A computational paradigm in which the desired result is specified with litde or no
indication of how the result is to be achieved. Contrast with imperative paradigm.

default value A value that should be associated with an attribute until some other value is _pecificd.

dependent reference

A composite reference to an object indicating that the object must be created and
destroyed when its owner is. See independent reference.

/
- 66 -

direct access The ability to retrieve an entity from a database based on its name or unique identifier.

In object-oriented systems, objects may refer to one another directly, and direct access
is achieved when one retrieves an object referred to by another.

directed graph A graph in which each edge has a distinct source and target. See undirected graph.

distribution The ability of a database to operate over a network, to divide responsibilities or data
among several processes (potentially on different machines), or to manage data

replicated on several machines.

domain A characterization of the set of legal values that may be associated with an attribute.
In object-oriented systems, the domain specification is almost always the class of
objects that are allowed. See also type compatibility.

dynamic method resolution
Any mechanism that determines at run-time the method to execute for a message send.

dynamic _pe acquisition
The ability of an existing database object to assume and lose types during its lifetime.

dynamic _ping Type checking that occurs during program execution instead of during translation.
Dynamic typing requires the presence of type information at run-tame. See static
_ping.

E I_g

eager conversion The conversion of database instances of a modified class immediately after the change
is committed.

embedded language
A self.contained language that has been made accessible inside of another language.

For example, the language of expressions can be considered as embedded within a full,
imperative language <such as Pascal).

embedded semantics

The storage of how to interpret data along with the data itself. Typically, "how to
interpret'" the data means either some form of data description (e.g. schemas in
relational databasesl or computer programs for the operations that manipulate the data
(as in obJeCt-oriented database systems).

emulation The inte_retation of database instances of a old class version to make them seem as if

they arc _tanccs of a new class version.

encapsulatton The property where all access to an entity's internal state must occur through a
relatively small interface which abstracts away the details of its implementation

entity The smallest unit of data that may be retrieved from a database. In a relational
database, a tuple is an entity. In an object-oriented database, an object is an entity.
Contrast with values which are associated with attributes.

entity-relationship
See relationship.

entity-relationship data model
A data model in which there are entities with attributed properties and relationships.

The attributed properties of each entity only contain atomic values. In a pure version.
the attributes are all replaced by relationships; each entity only has an identity.

evolution See database evolution.

- 69 -

instance Any object in the collection of objects described by a given class.

instance variable

An attribute of an object and its storage. Typically, the set of instance variables for an
object is defined by its class. Sometimes, the class also specifies the domain of legal
values that each instance variable may assume.

integrity constraint
A restriction on the applicability of a database operation so that a given invariant (i.e.
predicate) is maintained (i.e. kept true). Frequently, the invariant deals with some form
of data consistency.

interoperability The ability to transmit data in a form understandable to its destination.

invariant A predicate that must be kept true. For example, the class inheritance lattice must
contain no cycles is an invariant for the object-oriented data model.

inverse relationship
A relationship is t)39icaUy specified in one direction only, although a true relationship
is undirected. An inverse relationship is one specified as the other direction of another
specified relauonship, and thus must be maintained as such. For example, parent-of is
the inverse relationship for child-of.

inverse relationship support

In :,n object.oriented system, inter-object references reflect uni-directional
rclatlonsh_ps (e.g. child refers to parent). A database can provide inverse relationship
support _f two such uni-directional relationships are declared to be inverses of each
other le.g. the parent maintains a set of children references).

is.a hierarchy See gcneralizatJon luerarchy. The term comes from the relationship that one class "is
a" another; e.g. a car "is a" vehicle.

is-part.of hierarchy
See a_',crcgatton Jucrarchv. The term comes from the relationship that one object "is
part o1" another.

isomorphic embedding

A property between two types v, hen there exists a one-to-one correspondence between
all values of one type and a subset of the values of the second type (e.g. all

integers may be floating point values).

iterator A language mechanism for enumerating each element of an aggregation value (e.g. set.
list, queue, tree) one at a time.

join The construction of vinual database entities from two collections of other entities
(either actual or virtual) based on a relationship (usually equality on some attribute)
that must hold on each entity of the Cartesian product of the two collections.

K .og

key An attribute set of a tuple or object whose associated set of values must be unique
within a specified relation or object collection.

/
/__ - 70 -

L .w_

lattice A directed graph or network in which no cycles occur.

lazy conversion The conversion of database instances of a modified class to reflect the changes only
when each instance is accessed.

lock granularity The amount of data covered by a lock. In object-oriented systems, locks might be
placed on a specific instance variable of a single object or a collection of objects, on
the entire object, or on a collection of objects. The collection may be specified in
special ways: see, for example, object composition.

locking The most basic pessimistic concurrency control mechanism. A lock establishes some
protection so that the owner of the lock can assume that it "owns" the locked data (i.e.
no one else can change the data) until it releases the lock. Locks may establish
different capabilities for the lock owner, read locks allow only reading, read-write
locks allow modifications, etc. See also lock granularity.

logging The act of recording the current state of all transactions and the updates performed by
committed transactions on persistent data. Committed transactions whose updates
have been stored may be removed from the log.

logical pinmng The condiuon that arises when unreachable objects exist in the database. Logical
pinning can happen if a database uses strong identity and an object cycle becomes
unreachable from any database root.

media failure A fmlure of the subsystem that stores persistent data during the execution of the
database system (e.g. head crash or bus failure).

messaee The name and s_gnature of a method. Since the actual method executed depends on the
actual value of an mvocat_on's receiver, the set of all methods that may be executed by
an mvocauon _scalled a message.

messaze send An invocation of a method on an object. Because of the possibility of ovemding, the
actual method executed depends on the actual class of the receiver (i.e. the object of
interestl.

meta-informatton
Informauon that describes other information. In database systems, recta-information
conststs of schema or class definitions, indexes, and the directory (i.e. root objects) of
entities held by the datab_. For object-oriented databases, the properties of each
attribute (e.g. value domain, composite-hess, key-hess, relationships, and default value)
also comprise recta-information.

method The implementation of an operation that can manipulate the internal state of an object.

method resolution

A rule for determining the actual method to execute for a given message send. In
simple imperative systems, the method is exactly the operation whose name is the same
and visible in the invocation scope (see static method resolution). In object-oriented
systems, the method to be executed is the first one defined when se_ching from the
actual class of the receiver to the root of the class generalization hierarchy (see
dynamic method resolution).

multi-dimensional sort

A sort that does not yield a total ordering among the items. Typically, however, there
ate dimensions along which the items can be totally ordered. For example, a multi-
dimensional sort of points in the plane would yield efficient access based on Cartesian
location.

-71 -

multi-index A database index that is actually a set of nested indexes, each of which applies to a
single link of a given path expression.

multimedia The interpretation of computer data as non-standard visual or audio information, e.g.
music, raster, graphics, and video.

multiple inheritance
Inheritance relationship in which each class may inherit from several other classes.

name compatibility
A form of inheritance in which only implementation is shared.

name space A scope in which any given name has a uniquely determined association. In database
systems, how name spaces for entities are organized affects the flexibility with which
users can build applications.

negative authorization
An authorization that indicates the associated user is prohibited from performing the

associated operation on the associated object.

nested expression
See path.

nested index A database index that associates all possible start values for each known end value of a
given path expression.

nested transaction
A transaction that occurs within other transactions, and. when committed or aborted,

affects only the surrounding transaction. Thus. if the top-level transaction aborts, no
changes occur to the database. See save-points.

nested tuple-set data model
A data model similar to the network and object-oriented data models in which values

may be atomic, tuples, or sets. The primary difference is that object reference cycles
are not allowed.

network A graph whose links are undirected.

network data model
A data model in which database entities (i.e. records of attribute-value pairs) may be

related in arbitrary networks (i.e. each entity may have more than one parent). A
network is acyclic if an entity may not transitively refer to itself; otherwise, it is cyclic.

notifier A trigger whose acuon is to notify the user when the specified condition occurs within
the database. Typically, notifiers are used to inform a user when a specified value in an
entity changes. Also called an alerter. See notifier.

O o_l

object Data, when treated as an individual entity. Most often, an object is totally responsible
for the manipulation of its internal state; no object may directly alter the internal state
of another.

object corrlposition
See corrzposition.

object identifier
A unique nzlme assigned to each object in a database (i.e. unique within that database).

- 72-

object identity The ability to refer from one object to another directly, without requiring any search (at
the conceptual level; the implementation may involve search).

object-oriented
A characteristic of a system when it Ireats data as individual entities, called objects.
Almost always, object-oriented systems associate procedural semantics with objects
(i.e. only the objects themselves can modify their internal state) and some form of
inheritance.

object-oriented data model
A data model much like the network data model in which database entities (i.e. records

of attribute-value pairs) may be typed. In addition, operations reflecting type
semantics may be associated with classes of objects. Finally, object types may be

organized into a hierarchy or lattice through inheritance.

optimistic concurrency
Describes any concurrency control mechanism that allows transactions to proceed

regardless and checks for collisions only when transactions are committed. Optimistic
concurrency works best when most transactions don't interfere (e.g. read-only
transactions j or have a high likelihood of being aborted.

opttonal attrtbute
An attribute of a tuple or object for which no value need be assigned. In other words, a
special "'null" value may be associated with such attributes.

ortho_onality" The de_ee to v.hJch one feature is independent of another. In database languages,
orthogonahty pcrt_ns specifically to program values and persistence. That is. full
orthogonality is achieved when any manipulable program value may be persistent.
Non-orthogonality results when perststent values and transient values must be
mampulated m different ways.

overloading A stauc method resolution that allows multiple definitions for the message name in
scope of the revocation. Resolution, therefore, must be based on other characteristics,
such as the declared type of the receiver.

override When a subclass (i.e. the inheriting class) re-defines an attribute (e.g. the domain of an
instance varmble or the implementation of a method) that would otherwise be inherited
from a supcrclass (i.e. the inherited class). Generally, systems establish rules that
delineate _ hether a re-definition is legal.

owner An object that has a composite reference to another objecc The term arises from the
owner's role in the is-part-of relationship.

p ...

partial ordering A relationship that relates some proper subset of pairs of items in a collection and
transitivity applies (this is not a strictly mathematical definition). In parttcular, there
may exist a pair of items in a collection that are not related by the relationship. For
example, multi-dimensional sorts yield a parual ordering, not a total ordering.

path A sequence of attributes and a class. The class specifies the head of the path, and each
attribute in the sequence describes the next reference to follow in the path. An actual
path, therefore, describes a target object when given a source object in the specilied
class.

path index A dJtabase index that associates for each end value of a given path expression all
values that yield that end value when starting anywhere along the path.

-73 -

persistence The ability to store data between distinct executions of an application.

pessimistic concurrency
Describesany concurrencycontrolmechanismthat ensures that any transactionthat
proceeds can commit safely. Pessimistic concurrency assumes that conflicts at commit
time occur too often or that aborting transactions wastes too many resources. See
locking.

pinning The act of indicating to a cache manager that the specified buffers must remain in the
cacheuntilunpinned.

polymorphism The ability to manipulate values of different types simultaneously. In object-oriented
systems, polymorphisrn occurs during the assignment of values to attributes and during
method resolution.

positive authorization
An authorization that indicates permission for the associated user to perform the
associated operation on the associated object.

predicate An expression that always evaluates to either true or false.

presence A reference to an object by another implies that the object referred to is "present" in
the database.

procedural extensibility
The ability to extend the operators known to a system. In a database system,
procedural extenstbtltty is equivalent to embedded semantics. Object-oriented systems
provide procedural extensibility.

process failure An abnormal termination of a database application in the middle of a transaction.

projection The construction of virtual database entities from a collection of other enuties (either
actual or vtrtual) by ignoring certmn attributes of the other entities and. perhaps,

removing duplicates m the resulting collection.

property propagation
Rules concerning the computation of underspecified values. For example, a part can
assume the color of the composition of which it is a component. Or, equality tests
revolving an object may also have to consider one of the objects it references.

protocol See behavior.

Q ..m

query A description in some language of the nature of the objects to be retrieved from a
database and the domain over which to search.

query language The language used to specify a query.

query optimization
The process of transforming a database query into an equivalent query that executes
faster than the original. This term is actually a misnomer, since there is generally no
guarantee that the transformed query has the fastest execution.

query, predicate See selection predicate.

- 74 -

r_l& sort A son that takes into account several values associated with each item,giving priority
to each value in turn. Alphabetization is just a radix son on letter positions: son first
on a word's first letter, then the second, and so on.

reachability The property that one object can be retrieved only by following direct links from
another object, re.cursively.

read-only compatibility
A form of type compatibility that requires values to remain unchanged.

receiver The object on which an invoked method should operate, Since the internal state of an
object may be manipulated only by its class's methods, the act of invoking a method
can be considered as sending a message (i.e. the method's name) to the (receiver)
objecL

recovery The process a database system implements to complete updates of commiued
transactions to persistent data inmrrupted by a failure. See also logging, process
failure, media failure, and system failure.

referential integrity

A propeny of a database indicating that every entity referenced by another exists in the
database. Databases that support strong identity must also support referential integrity.

relation A set of tuples tn a relational database.

relational data model

A data model in whzch database entities (i.e. records of attribute-value pairs) must be
organized into sets called relations and all inter-entity references must be by atmbute
values instead of threct.

relationship A semantic connection among a set of entities or objects. A binary relationship is
between two objects. If the set is of cardinality n, then the relationship is n-ary. A
relationship is undirected: for example, a husband and wife are connected by a spouse
relationship. Each entity may also have a cardinality; for example, the mother-children
relationship is l-to-many. The cardinality may hold semantic content; for instance, the
relationship between biological parents and a child is 2-to. I.

role The funcuon of an object in a system. For example, in an authorization system, users
can be organized into a lattice of roles such that an edge between two roles indicates
that a source role is also considered as the target role; thus, if an authorization exists
for the source role. it implicidy applies to anyone that is a member of the target role as
well.

row In relational systems, a row is the same as a tuple in a relation. Relations are often
compared to tables m which amabutes head the columns and tuples comprise the rows.

rule A pattern-action pair. A rule is said to be enabled when its pauem is matched be, or
unified with, the global data. Once a rule is enabled, it may be "fired" by executing
its associated acuon,

rule.based paradigm
A paradigm based on rules in which a set of rules are specified and applied. See rule.

S _go

save.point A declared moment within a transaction at which point all values must be saved
because a later action may choose to "abon" all changes since then. See nested
transaction.

-75 -

schema The definitionof a relation in a relational database. A schemareflects the attribute for
each columnof mples in the relation andthe domainfor associatedvalues. Sometimes,
object-oriented systemsuse the term schemainsteadof class to describe the definition
for object instances.

schema evolution

See database evolution. Relates specifically to modifying relation schemas in
relational databases.

search The ability to retrieve entries from the database based on their characteristics (e.g.
attribute values) instead of through direct references. See also associative access and
direct access.

secondary storage management
The subsystem of a database system that handles the actual persistence of database
entities, typically by managing their storage in a file system.

segment A unit of clustering.

selection predicate
A boolean expression that effectively selects the database items that satisfy a query.
That is, each database entity retrieved should satisfy (i.e. make true) the selection
predicate.

self-containment

A property of a database indicating that all information needed to understand the
contained data is within the database. Such a database is considered to be self-

describing. Embedded semantics is one method for achieving self-containment.

semantics Used to describe the interpretation of the model an object represents. Object semantics
is defined by its associated set of methods.

seriali:abtlity A property of transaction support indicating that the effects of a set of concurrent
transactions are the same as if the transactions were performed one at a time in some
order.

session control The management of the activities during the time an application is communicating with
a database, including establishing a connection and managing transactions.

shadowing Technique used to ensure atomicity. Basically, a copy of the database portion affected
by modifications is made, and then the database itself is changed in a single operation
to refer to the new version.

shared reference
A composite reference to an object indicating that other root objects may also
reference that objecL See exclusive reference.

sharing See data sharing.

signature compatibility

A form of inheritance in which attributes may be extended horizontally by adding new
attributes or vertically by constraining existing attributes (i.e. as a syntactic algebra).

single class index An index on a collection representing the instances of a class that includes only
instances of that class.

single inheritance

Inheritance relauonship in which each class may inherit from only one other class.

sound A rule is sound if it represents a valid translbrmadon. A rule set is sound if all
applicable rule sequences yield valid translbrmations.

_ - 76-
specialization The addition of new properties to make a definition more specific. In object-oriented

systems, specialization is used to describethe relationship between a subclassand its
superclass(es) that it inherits. The inverse relationship is called generalization.

specific reference
An inter-object reference indicating that the referenced object should be a specific
working version. See also generic reference.

stability A property a database system must support which ensures that persistent data always
reflects the results of committed transactions, even in the presence of failures. See also
recovery, process failure, media failure, and system failure.

static method resolution

Any mechanism that determines at translation time the method to execute for a
message send. See overloading.

static typing Type checking that occurs during program translation instead of during execution.
Stauc t_'pmg can obviate the need for the presence of type information at run.time.
See dvnarntc typtng.

storage reclamation
The process by which unused storage is registered as being available. Unused storage
atases v.hen obJeCts are deleted from the database or become inaccessible.

strong tdenttty The property that an,,' object exists as long as some direct reference exists to it from
any other object tn the database. See logical pinning.

5lruClur£ traversal

The abd=ty to chance focus from one entity directly to another, as is posstble in the
network or object-oriented data models.

jtru_:tured exception

An exception mechanism that organizes exceptions into a lattice, so that a handler for
any ancestor of a raised exception is considered a match.

subclass In an ,nhcntance relauonship, the class doing the inheriting.

subset std_t._ptng
A form of t.vpc compattbllity in which a type is characterized by the set of vaJues it
contains. Thus. one type is compatible with another if the values of the first is a subset
of the values of the second (e.g. the positive integers are contained in the set of all
intcgersl.

superclaJs In an inheritance relauonship between two classes, the class being inherited.

surrogate An object identifier that does not refer directly to the object's storage but requires the
translation of at lea.st one level of indirection.

system failure A failure of the database system itself, either because of a bug in its program, the
machine ,t executes on crashes, or the network connection to it dies.

T =it

table Another name for relation in the relational data model, since a relation can be viewed

as a table in a hich the columns are labeled by attributes and each row constitutes a
tuple or cnuty.

telesophy A term coined by Bruce Schatz meaning "wisdom at a distance".

termination A propcrty that states that a computation's use of a resource (usually time. but also
storage) _snot infinite.

- 77 -

total ordering A relationship that ensures that any two items in a collection are related and transitivity
applies (this is not a strictly mathematical definition).

transaction A set of actions whose overall effect on persistent data should be considered atomic. A
u'ansaction may be committed or aborted.

transaction support
The mechanism provided by databases that implements transactions.

transient value A program value that is not persistent, i.e. a value that is not stored between executions
of an applications. See persistence.

transient version

The current, modifiable version, or state, of an object.

transitive closure

The collection of items that results when satisfying a relationship on a universe
collection recursively (that is, on every item added to the result collection). For
example, the ancestors of a person can be found by finding the transitive closure of the
parent-of relationship for that person.

transparency The degree to which distinctions between similar but different entities are hidden. In
database languages, transparency pen,aim specifically to how well algorithms can be
written that don't distinguish between persistent and transient values. Non-
transparcncy occurs when values must be declared as either persistent or transient.

trigger A set of user-defined database actions that occur when a user-defined condition arises
within the dat.aba__e.Typically. a trigger changes a value of an entity when a specified
value of another entity changes. See also notifier.

tuple A set of attribute-value pairs. See also aggregation.

Turing-equivalent paradigm

An)' paradigm that can compute anything a Turing machine can: used as a measure of
power, since a Turthg machine can compute all computable functions.

two-phase cormnit
(1) A method for coordinating multiple commits (first coordinate whether to commit
and then decide to commit), or (2) the two phases involved in ensuring that a commit is
atomic.

t)pe See domain.

type compatibili_
A rule for deciding whether a value computed during execution will be appropriate for
an operauon that is to be applied to it. The rule must be applied in at least three
situations: during assignment, during function invocations, and during parameter
evaluation. Normally, in object-oriented systems, a value is type compatible with a
type if its actual class inherits the class associated with the type.

_.'pe evolution See database evolution. Relates specifically to modifying object types or classes in
object-oriented databases.

ty'pe generator A parametcrizcd type specification that actually represents a (potentially infinite)
family of types, one for each combination of actual types replacing the type
parameters.

t)pe parameterization

A method for achieving gcnericity by allowing a subprogram to handle several
different types using the same code, typically when implementing a data structure that
uses those types _c.g. set-of-<type>).

/ -78 -

O ...

undirected graph
A graph in which the two ends of each edge are unordered (i.e. neither is the source).
See directed graph.

use One class uses another if the first references the second as a domain (e.g. of an
instance variable) or references an attribute of the second (e.g. invokes a
method/message defined by the second).

value-based identity
The method by which one database entity refers to another by specifying the values of
its key attributes and the relation that contains it. Such a reference is called a value-
based reference.

value-based join
A join which is based on the equality of the values of a set of attributes in each of the
parucipatmg collection of entities.

value.based reference
A reference in a database entity to another specified by a set of attribute-value pairs
which may be used to search a specific relation for the desired cntity.

version The state of an object at some point in time. See also transient version and working
version.

vertical extension

The restriction of inherited properties by the inheritor. Thus, for example, a subclass
can restrict the domain of an instance variable inherited from its superclass.

_W "'"

weak identity The property that objects may be removed explicitly from a database. See dangling
reference.

,ell-definedness proper.,
An mvariant that must hold on an instantiation (i.e. actual database) of a data model.

For example, an object-oriented database possessing the strong identity property must
ensure that ever3,'referenced object exists in the database.

working version A past, immutable version, or state, of an object.

write-ahead logs
Technique used to ensure atomicity. Database changes are recorded in a non-volatile,
single, linear stream. The changes are designed so that multiple attempts to
incorporate them produce identical results. A pointer into the stream always refers to
the boundary between those transactions that have been committed successfully and
those yet to be committed completely.

X ...

Z ...

- 79 -

III Index

-A - C]ustenng.19.3"/ lazy.34

Abot,.. 8.28.36 CO2. g.24-26.2g Databaseefficiency.52

Access control. 22 Commit. 36-8 Database evolution. 33

Accesslist,22 Common LISP.27-2g Databaseind_enot. 25

Asgrtgauon.1.13.60 Composition.9.19.21-23.33.38 De.t,dlock.9

Aggrtgauon hientrchy. 2.60 Composition hiertrchy, 60 Dcclarltive p_rtdigm. 24

AJermrs,8 Composiuon DefaultvMue.3.21.33.60
dependentrefenmce.20

A]extndna. 4 exclusive reference. 20 Dependent composite refenmct. 20
independent reference. 20

Algol-68. 27 shlrtd reference. 20 Dir*._ reference, 2,5,12,35

Alt_r, 4 |
Computational paradigm. 24.28 Distribution. 1

CO2. 8.24-28 dam model. 24
02. 13.15.1 g.36 declarat,ve. 24 Dora-re. 21.33.60

trnpcrauve. 24
Amhtvmg. 36 rule-bascci. 24 DSM. 21

Assoctauveaccess.1.3.28 ConcaJrt_ncycontrol.7.9.35 Dynamic t)'pcicqulsttlon.34

opumlst_c. 33.'/
Associative memory. 30 pesttmtsuc. 33-7 Dynamic typing. 26-27

AtOrnlcity. 7 Concurrentaccess.3 - E -

Aunbute, 60 Cord-.gur_tlon.3.10-I 1 E.g.16-18_4-27.35

Aunbute-vidue parr. 1.12 Cord'uct ttsotuuon. 15.1S.33 Eager conversion. 34

Authonzatiota. 1.5.10_2 Consmacaor. 60 Embedded language. 24.2?
exphctt, 22

tmphctt.._'_ COP. 16..6-.?""_ Embedded sanamlcs.3._.10.17
negau_e.23

posluve.23 Cond3.7-g.l '......_ "_'-,"7.4_z_ Emulation.34

-B - Cyclicquery.29 Enc.zpmlauon.18.26.60

B-trees.30 ENCORE. 10,13.15.17.20.2425.34.38.44
-D-

Behavior. 60 Dlunglung nden:nce. 13 ENCORE and O. I0

Behav,orcompaub_ty. 14 Dam a_trtcaton extens_bflity.5 ENCORE
ObServer. 36

Buffetrtpl_:_ment#icy. 37 Dam fon"nau, 35,37
Entity-ntlationsh/p.21-3

Buffering. 1.9.35.37 Data mdependen,','. 21.51
Exceptions.27

-C - Datamodel.1.10.13
EXCESS. 1"72g.32

C. 27 Data model paradigm. 24
Exclusive cc,nposttereference.20

Cc+, 27 D_ta model servers. I0
EXODUS. 8.11.13,16.30.32.36.37,40

Caching.36 Datamodel E.g.l6-18.2-1-27.35

nested topic-teL 13 EXCESS. 17.28.32
CanmUauon. 14 network. 12 EXTRa'... 12- [_.20

C.apabdity list.,22 object.-onente.d. 12.14_lattonal.l-2.l2 Explicit authonzattion. 22

C_ass.21.33.60 Data shtnng. 3,5.2.2 ExtcnslbLlity
dataabstraCt|on.]6-5

Class hierarchy indexing. 31 Data type extensJbdity. 5 data type. 16-5
indexing.17

Class variable. 60 Database c(mverston. 34 proCcclural. 17

eager. 34
cmuiauon. 34

EXTRA, 12-15,2_ si&namm oomp_ibi_i|y, 14 - N -

sml|e, 15,60 Nlumecoml_t_bi_|y, 14
oF-

_sum,'-', 60 Name spice. 18,26Failun:

media, 8 Instance wu'iable, 33,60 Negative autbonz_ion,process.8

syst=rn.8 Integrity consulinu, 17,19.33 Nestedexpn_ssion.29

File sysu:m. I. I I Intermedia. 4 Nes','d index. ;3I

FORTRAN. 27 Inl_rope_bLlhy,10.38 Nesl_dmmsacfion,8

Fu_c_onLI join. 29 Inverse rel_uonships. 9 Nested tuplc-sezdata model. 13

-G - lais,8,10,13-1g.21-22,25-26,29,32,34- Networkd_u model,12
35,46

Garbagecollecuon,35 OSQL` 8.24,26-28 Notifien,8

GE.M. 13-15,21,48 Is-a relauonshlp.15-3
-O-

GemStone,7,10,13.1627,30.33-35.45 Is-pars-oftelallonshtp,19-2 02,]3,]5,]8,36
OPAL, 14-15.25-28

It_rztors.27 Object,60
Genendiz_ion,14

-] - Objectidcmd_cr,36Gene_"_z_lon hac-rarchy.3.00

]oLn Ob_cl ide'mlty.12.35Gcnenc rcfcr_nc.e. 11 funcuonal. 29

b&:ntay.29 Ob_ct-onente.ddatamodel.12.14Gcnencay, 16.31 vsJuc-bascd.29

ObServer.36
Granulznty - K -

clusu_rmg.19,38
locking,19-7 K-d-b tr_es. 30 Ontos,47

tl - Key, 12.21 OPAl.. 14-15...5-.8

Optunlsuc concurnmcy conurol. 33-7
l[ost language. 27 -L -

iqype_e.xt. 4 Lazy conversion. 34 Optional atmbules. 14

ORLON, 7.11,13.15.17,20.26-28.33-
-I- Lot.king. 5,7-9....33 34.36-37,43

Idenlslyioun,29 L._ckmg granuJanty,19-7
Onhogonah|y.24.51

Idenuty-basedaccess'. 13 Logging..S,8-9.35 OSQL. $24.26-28

Lmpexla.nczmismatch.25.51 Logical punning.13 Overloadinlh 16

Impera|,ve par'adJgm. 24 - M - Overriding. 16,61

L"npliclt authOnx_uon,22 .Mediafadurc,8
.p.

Independentcomposae rtfertnce.20 Message,61 Pascal,-)7

Index,21_$,30.35 .Messsgesend,61 Path,29
class h,er_rchy, 31

mulu-, 31 MeLa-mforTnatlan,21-5 Path index, 31
nes_d. 31

pa_. 31 Me_od, 33.60 Perslslcno=.1,24
sungleclass.31

.Methodncsolution Pess,m,s.cconcurrencycontrol. 33-7
Indexungcxtcnslbday, 17 dyn_mc, 16

static.16 Pinning.37
D,'GRES,16

Mu]n-indcx. 31 Polymor_hmsin. 3.|5,6l
Inhentance.14,-"8,31.60

bchav_or compalibdily. 14 .Muhunedma.-'.35 POMS. -, -_c -_ c8.I..... 2, ..O
canccLlatlon,14 :" I'S-AII;ul. _")
multiple,I_.60 .%luh*plcmhcnlancc.15,60 " "'
name compat_bLhly.14

Positive authorization, 23 SeLf-containment. 17-5 Type,60

POSTGRES, 39-9 Semantics, 60 Type compatibility, 15,18
POSTQUEL, 24

SEQUEL. 24 Type generators, 27
POSTQUEL. 24

SesializabiJily,8 Type parameterization,16
Proccdund extensibility, 17

Session oomrol,10 Typestochmge, 5

Processfailun_, 8
Shadowing. 8 - U -

Projection. 29
Shared composite refenmce,20 Union types,15

Propewy propagation, 19-20
Signature c,ompaubility. 14 Uses reJationship, 60

Pnxocok 60

Single chss indexing, 31 - V -

"Q " Single inhentance. 15,60 Value-based identivy. 12
QUEL, 28

Smalltalk. 27-6 Value-based join. 29

Query. 28.34.37
Spectahzauon. 60 Value-based n_fe.._nce. I

QueryopttmizaUon. 10.17_8-29.31
Specific reference. 11 Van,,ble-sized data. 9.35

Query
cyclic. 29 S QI... _4..8 VBase. 9.13-14.17.21.22.37.47

COP. 16.26-27

-R - S_bdaty. 1.8 TDL. 15.24_6

R-trees. 30 S_uc typing. 26 Version
trlmslertt. I 1

Reachabil|ty. 13.2.5_8 Storage reclamation. 35 wockmg. 1 1

cxphctl. 3.5

Reactutbility from • _ object, 3 trap|loll. 35 Vet•toning. 1.3.9.11.34-35
genenc reference. ! 1

Rece:ver, 61 Storage schemes, 35 specificreference, I 1

Recovery, 3.g-9.35 Strong idenuty. 13.18 . W -

Referential integnry. 18 Subclass.6,0 Weak tdenttly. 13

Relation. 1,12 Sopcrclass.33.60 WoAmg verston. 11

Relational data model. 1-2.12 Surrogate. 36 Wnte-ahead logs. 8

Relauonships. 13.21.52 System fadur_. 8

Rephcauon, 11 - T -

Root object. 12-13.21.25 Table. 2

Rule sysmms, 32 T'DL. 15_4.?_,

Rule-bated paradigm. 24 Telesophy. 10,14.36.38.49

- S - Transaction. 1.5,8,22

Save-points, 8 Transaction suppo_ 7

Schema.12,21.33 Transalveclosure,29

Schema evolution.3 Transparency.25.51

Search, 1.10,35 Triggers. 8.18.21.31

Secondary. storage management. 35-9 Tsl. 7.10.14.36.38.49

Segmems. 37 Tuple. 1.12-13

Selecuon predicate, 28 Tv, o-phase comm_(,8

