
CMU-ITC-85-065

Using Andrew for Development

of Educational Applications

David Trowbridge

Center for Design
of Educational Computing
Carnegie-Mellon University

June 2., 1985

Andrew is the computing environment under development by the
Information Technology Center, a joint project of CMU and IBM.

Andrew runs on a campus wide network of high function workstations.
The two major components of Andrew are a file system and a user

interface. The file system permits users to access their files from any
workstation on campus. The user interface includes a window manager, a
base editor, a rudimentary data base package, and tools for development of
educational applications, as described in this note. At present, Andrew has
been implemented on six different displays and three different workstations.
Initial deployment of Andrew has been on Sun workstations.

1. Concepts

The Andrew window manager supports user-controllable multiple display
windows. Applications programs (referred to as "clients'3 may be displayed
in one or more windows. Typh:ally, _.h window corresponds to a
separate process.

Rather than controlling the screen directly, client programs communicate
solely with the window manager. The window manager mediates the
interaction between the user and the client. Keyboard input and mouse
clicks go to the window manager which dispatches them to the proper
client program. The client in turn processes the input and tells the window
manager how to update the display. Client programs need not be running
on the same workstation as the window manager that controls the display.

Since the size and shape of windows are ultimately set by the user, client
programs should usually be designed to generate a reasonable display over a
wide range of sizes and aspect ratios. The client program may suggest to
the window manager the minimum and maximum dimensions it wants, but
the screen "real estate" finally allocated for each display is the result of a
"negotiation" between the client program and the user. If the allocated
window is unusable by the client, the client should generate a request to the
user to reshape the window to more acceptable dimensions, but it cannot
guarantee that this request will be satisfied. In some cases, it may be
desirable for clients of the window manager to generate a fixed size image.
In such cases the image is clipped to fit the available window.

This discipline forces client programs to be more flexible and cooperative,
which is important in a multi-process environment. It also anticipates a
time when the system will be moved to many different kinds of hardware,
trying to minimize the resulting disruption to client programs by hiding
device dependencies in the window manager.



The system makes heavy use of a three-button mouse. The middle button
is reserved for menus and for moving window boundaries. It is used to
drag boundaries between windows, or to enlarge, reshape or hide windows
via a pop-up menu selection. When the cursor is in a title bar, a menu for
window manager options pops up; when the cursor is inside a window, the
items on the menu depend upon information from the client program. The
other buttons on the mouse may be used directly by client programs; for
example, to draw lines or to position a text caret.

2. Underlying Software

If desired, client programs in Andrew may be written using the window
manager alone. The window manager subroutine library has functions for
defining and selecting fonts (wm_DefineFont and wm_SelectFont), for
placing a string of characters at arbitrary pixel coordinates
(wm_DrawString), for line drawing (wm_MoveTo and wm_DrawTo) and
area flU (wm_FillTrapezoid). While all the bask: tools for displaying text
and graphics are available through function calls to the window manager,
higher level tools are also available to aid in the creation of more
sophisticated programs. Among these are the layout manager, the base
editor and the grits subroutine libraries. The layout manager and base
editor may be viewed as residing on top of the window manager;, that is,
while they depend up, Dnand use the functions of the window manager, they
package and extend window manager routines into higher level, more
Complex routines. Grits in turn uses base editor facilities and provides
enhancements.

The layout manager partitions real estate within a window using "layouts, u
separate rectangles (either filed or overlapped) which may be used for
different purposes. For instance, one layout might be used for a document
with a scroll bar, another for data base retrieval, another for animation.
Each layout has associated with it procedures for redrawing it, updating it
(an update is a partial redraw), handling mouse clicks within it, and
displaying menus specific to the layout. Layouts may be cleared and
redrawn independently.

Programs which require layout structures within windows or which make
use of documents should use the baseeditor subroutine library. The base
editor supports cutting, pasting and copying text within a document and
across documents (including to and from documents in different windows),
scrolling, and on-screen formatting of text into various typesetting styles
such as italics, bold, and special fonts. Documents usually have a scroll bar
on the left which shows what portion of the document is currently visible in
the window. It displays a cursor for repositioning the document. Standard
menus include items for saving documents, searching for strings, and
changing text styles (new text styles appear immediately on the screen).
Client programs may provide their own items for pop-up menus. In
layouts which do not contain documents, client programs provide routines
to the window manager for handling mouse clicks, for performing partial
updates of the display when necessary, and for doing complete redraws
whenever the window size is changed by the user.

Grits is a data base facility available at both a command-language level and
as a subroutine library. It provides functions for storing, organizing,
retrieving and displaying user data. The electronic mail and bulletin board



1 3 -

programs use grits facilities, as does an online faculty/staff phone directory.

In general, programming with the base editor involves writing some
initialization code and supplying specific handler routines for displaying
pop-up menus, updating part of the window, redrawing the entire window,
processing mouse hits, and responding to keystrokes. Typically, the last
control structure in the mainO block is an infinite loop:

whi ie(TRUE)
Interact();

Each time Interact is called it processes one "event": an input, a redraw
request, or the firing of a timer.

•3. Tools for Writing Client Programs

In addition to the subroutine libraries of the window manager, base editor,
layout manager and grits, a few other tools are available to assist in the
development of educational applications. Several of these are under
development.

A Graphics Layout Organizer (glo) enables the designer to organize layouts
on the screen and to revise them. Using the mouse to point, the author
partitions the window into sub-windows ("layouts"). When the author is
satisfied that the physical layout of the window is correct, a "pro to type" of
the program is created by selecting the menu item, "create prototype."

Those layouts which will be used for displaying documents are assigned
functions from the base editor. Other layouts may be defined arbitrarily by
specifying a HitProc (a procedure for processing mouse button presses), a
RedrawProc (responsible for redrawing the display upon receiving a redraw
request from the window manager), an AddMenuProc (for displaying pop-
up menus), and an InitProc (for initialization). One then creates a file
containing the C code for these procedures, and compiles it with a header
file generated by the glo editor and the glo subroutine library. The result is
an executable program whose layouts am editable using the glo editor.

Several drawing editors are under development. One, dubbed the Frame-
oriented Animation Drawing (fad) editor, allows line drawing of "frames"
using the mouse and animated interpolation of images between frames.
The animation gradu_ly transforms vertices in the first frame into
corresponding vertices m the second frame. The fad editor is closely
associated with glo, and can be used to generate animation within a glo
window.

Another graphics editor, currently known as "banzai," is constraint based.
The user defines points using the mouse and selects constraints (e.g.,
parallel to, congruent to, vertical or horizontal) to be applied to a collection
of selected points. Figures are stored as ASCII files consisting of control
structures and statements in the banzai programming language. They may
be modified using either the banzai interactive graphics editor or by editing
the source text file. Complex figures may be constructed by assembling
routines which call on more primitive figures. An interface between client
programs and the banzai subroutine library is currently under development.



-4 o
1,, A,"

Recently, a G KS (Graphics Kemal System) graphics package has been
implemented in the Andrew environment. Applications programs may call
routines for displaying and transforming a wide range of two-dimensional
graphics images.

The standard suite of programs in BSD 4.2 UNIX are all available in
Andrew. These include some utilities which are particularly germane to the
creation of educational applications. For instance, awk, a pattern scanning
and processing language is useful for creating and improving dialogs. An
author may specify in a text file the patterns he would like to search for in a
student's input string, the logic for branching on the analysis of that input,
and the messages to display in response to the student. The awk program
may be called from a window manager/base editor program created using
the glo editor. Thus an author may specify a first draft for a dialog in an
awk script, create an executable program using glo, and test the program
with human subjects. As revisions axe required in the logic of the dialog,
the author may edit the awk script, re-execute the program without
recompilation and test the result_ Turnaround time for revisions may be
reduced to minutes. Programs may be improved on the basis of testing
with students in the target population immediately after the first draft :is
ready.

The UNIX utilities lex and y',cc also contain powerful tools for analysis of
student input. For instance, they can be used to build a general purpose
expression parser, so that students may enter expressions in standard
algebraic format, and programs can generate graphs or other output
representing the mathematical or physical content of the expressions.

Exploration of these various tools has begun with the creation of several
small educational applications, each of which exploit one or more of the
capabilities described above.

"Graphs and Tracks" was developed using the window
manager and the base editor. It is designed to help
students interpret graphs of position, velocity and
acceleration, using animation of a ball rolling along an
adjustable arrangement of sloping tracks, with
simultaneous graph plotting.

"Orbit" allows students to experiment with trajectories of a
mass subject to the gravitational attraction of two fixed
"Earths." The student indicates the initial position and
initial velocity vector using the mouse, and then
observes the resulting orbit in two dimensions. Even
without a floating point co-processor, such calculations
are fast enough on the Sun 120 to produce interesting
complex orbits within a few seconds.



_°

4 G

"Optics" simulates an optics bench on which the student may
place lenses and mirrors (convex and concave), an
aperture and a plate of "film." Using the mouse, the
student selects an origination point for a spray of rays
which emanate from it, pass through the optical
elements and strike the film. A face-on view of the
film illustrates a facsimile of the image which would
have been formed from We point source. Again,
computation speed is sufficient to display a bundle of
rays passing through several elements in a fraction of a
second.

"Graph" is a program which parses algebraic expressions and
draws graphs from them. It uses lex and yacc to parse
the input and compile tokgns into interpretable code at
runtime.

"Vgraphs" teaches through questioning. The student is asked
to give verbal interpretations of simple graphs of
velocity versus time. The program analyzes the input
and responds with kudos, help, or additional questions.
It illustrates the use of awk for pattern matching of
open-ended string input.




