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Abstract

We describe the development of a computer-based tutor concerned with the

graphing of algebraic expressions. The program has some of the attributes

of an "intelligent" tutor, including a built-in model for problem solving, a

coach for helping students to apply the problem solving model, a facility for

entering arbitrary new problems within a class, and the capability of solving

any problem in that class. Known as Sketch, it teaches a systematic

approach to curve-sketching, emphasizing a step-by-step procedure for

transforming a simple expression into a more complex one and then

transforming the graph accordingly. This paper details our steps in

designing, implementing, testing and improving the program.

Introduction

Computer Assisted Instruction today presents new options and opportunities: powerful

machines, advanced computer science techniques, and input from cognitive psychology.

Using these tools well is a challenge for which there are few guidelines or examples. The

purpose of this paper is to describe how we used some simple artifickd intelligence

techniques in a powerful educational pro_amming environment to capture some of the

expertise of experienced teachers for an i.nstructional pro m'am that runs on advanced
workstations.

Oven'iew of tile Program

Sketch helps students to develop skills of visualizing and quickly sketching gaphs of

simple algebraic expressions. It teaches a systematic approach to the sketching of curves,

emphasizing transformations of shape and location, rather than the plotting of individual

• . points. At present, Sketch just handles simple expressions (e.g., y(x) = 2sin(3x) or y(x) =

2x3-4) that contain a sin_c non-arithmetic function (which we call the basefi_nction), but it

can guide the graphing of any such expression• Within that class of expressions, Sketch

provides appropriate instruction tbr any problem entered by a student or teacher. Sketch

is a program of considerably greater flexibility than is usual in computer based instruction.
It features:
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A model for problem solving that is suitable for a class of problems -- the

utility of the model is not limited to any particular collection of problems.

A coach for helping students to apply the problem solving model -- the

coach is able to give appropriate help at each step.

A collection of instructive examples which is readily expandable by the

teacher -- problem sets can be designed to reinforce the current lesson or

to review previous lessons.

A facility for entering arbitrary new problems -- students can enter their

own problems, provided those problems follow certain conventions of

form and limited complexity.

An interactive guide to using the program -- no separate instructions or

documentation are required for effective use.

The same problem solving model and coaching strate_'es are used with the original

examples provided by the program's authors and with additional problems posed by the

program's users. All problem expressions use an internal representation that is suitable for

any problem within a class, so that the program is able to diagnose errors and give detailed

suggestions, regardless of whether the problem was among the set of original examples

provided with the program, added to the program by the teacher, or interactively entered

by students while using the pro_am.

Description of the Program

The program is divided into three major parts. An interactive introduction to the pro_am

uses a simple example to introduce the problem solving strategy to the studcnt. Uuon

entry, the student who has never used the program before is walked through a prculem,

following the problem solving model in a highly constrained manner which does not allow

any deviations from the correct series of steps. Extensive guidance is given, concentrating

on how to use the program, rather than on the concepts that will be taught later.

After finishing the walk-through problcm, students are on their own. They may work

•. problems from an existing set or enter their own problems. Aftcr sclecting a problem, thcy

are free to choose any stcps they like. A coach watchcs each step of the student's solution,

allowing several valid "alternative paths at each step and Wing context-specific help

whenever the student starts down an invalid path. The program is able to diagnose errors

and give detailed suggestions, regardless of whether the problcm was among the set of

"canned" examples or whether it was entered by the student. Figure 1 shows the
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appearance of the screen during a typical interaction.

Figure 1. Screen display midway throu_ a student's solution to a problem.

Problem Solving ._lodel

The problem solving model is the explicit method used by the program to solve a problem

itself. The program teaches this model by advising or correcting students when their work

fails to follow the model. The major intelligent feature of the program is its ability to

independently solve any problem of the specified type, and to use the resulting solution as

a basis for coaching.

The first step in the problem soh'ing model is to examine the problem expression and
3

identify the base fimction. For example, the base function of the expression, 2x3-5 is x .
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(._though input of this function is currently in the form, x A3, future system

developments will let the student use more natural notation.) The program currently
2 3

recom-tizes the following base functions: x, x , x , sqrt(x), lOglO(X), in(x), exp(x), abs(x),

sin(x), cos(x), tan(x), arcsin(x), arccos(x), and arctan(x), and its architecture could readily

support additional functions if desired. Once the student identifies the base function, the

computer displays a gaph of it.

The next step is to identify a single arithmetic operation that, when applied to the function

or to the argument of the function, will result in a slightly more complex expression that

lies directly along the path toward the desired (complex) problem expression.

_,Vhen the student has chosen an appropriate arithmetic operation (e.g., replacing the base
3

function x with 2x3), the progam asks the student to perform a corresponding geometric

operation on the displayed base function gaph. For example, replacing the base function
3

x with 2x3 corresponds to stretching the base function in the y-direction by a factor of 2.

The model is fle.,d.ble in that at many points in a solution there are at least two steps that

can appropriately be taken. Because the progam is based on a general problem-solving

model, and not on any recorded sequence of steps, these alternative orders are

automatically acceptable to the program. The problem sclving model merely requires that

the student make the algebraic expression more complex, one step at a time, and then, for

each step, apply' the corresponding geometric transformation to the curve.

The model can be described algorithmically by:

(1) Identify a base fi_nction.

(2) Plot the curve for the currcnt exprcssion. (This is done automatically.)

(3) Repeat until the current expression is equivalent to the given problem expression:

(a) modify the expression by exactly one step:

{[(Add, Subtract, Multiply, Divide) a number (to, from, by)l,

Change the siml oP_ the (current function, independent variable}

(b) transform the curve in a way that corresponds to the algebraic

transformation:

([Shift (up, down. left, right), Stretch (vertically, horizontally)] by

a number}, (Flip (vertically, horizontally)}



Trowbridgc, Larkin & Schcftic 5

Suppose the student goalis to sketch the expression: y(x) = -41og(2x-5) + 3. Following the

problem solving model, the student identifies the variable and the base function, log(x),

and the computer plots it. In subsequent steps the student modifies either the base

function or the variable, by adding, subtracting, multiplying or dividing by numbers, or by

changing the sign, one step at a time. At each step, the student must perform the

corresponding geometric transformation of the curve, shifting it up, down, left or right,

stretching it or flipping it about one a,,ds or the other. One possible sequence of steps

appears in Figure 1. Other orders of steps (after identifying the base function) would be

equally acceptable, as long as each algebraic step corresponds to a sin_e, simple geometric

transformation.

When we give demonstrations of this program, we are often asked how we developed the

strategy it incorporates. The next section describes that process.

Design Process

The first development step was an extensive effort to import the knowledge of teachers

with experience in mathematics and science and with an interest in innovative approaches

to teaching and learning. We began by planning an open house, at which we would

display both the environment in which we would be working and some demonstration

programs developed for use with university undergraduates. We asked the superintendents

of local public school districts to nominate their top mathematics and science teachers at

the secondary level for participation in this event. After their introduction to our

resources, we invited interested tcachers to submit applications for participation in the

project.

We identified six teachcrs who appeared particularly qualified, and .grouped them into pairs.

TWO pairs consistcd of one mathematics and one science teacher each, while the third pair

wa.• made up of two mathematics teachers. Our selection criteria included a combination

ot classroom teaching and individualized tutoring experiences, curriculum planning

experience: and evidence of the use of innovative approaches. Ahhough it is unlikely that

an outstanding mathematics or science teacher today would have no experience with

computers, specific experience in that area was not a determining factor in our selection of

participants.

• . Each pair of teachers met individually with the authors to specify and plan a project. The

project reported here is the result of the sessions with the group containing two

mathematics teachers.
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PreliminaQ' Design Session

The two teachers shared a variety of experience teaching geometry, advanced algebra,

trigonometry, and calculus. We spent the first morning brainstorming areas where students

might benefit from an additional learning tool, without regard to any technical details of

how such a tool mi_ht be implemented. Topics suggested during this session ranged from

graphing skills to the meaning of the derivative, but there appeared to be a common theme

that emphasized the relationship between the algebraic and the graphical representations of

a particular problem or expression.

By mid-day, we had reached agreement that we would focus on a tool concerned with the

rapid sketching of algebraic expressions, where the emphasis would be on the general

position and shape of the curve, rather than on the details of plotting points. We were

thus able to spend the afternoon in determining a vocabulary of relevant issues, a

description of the problem solving strategy to be implemented, an overview of necessary

modules, and a diagram of the relationships among the components. We selected a couple

of sample problems and considered specifically how we would handle them in this type of

context, concentrating on the pedagogical issues of the interaction between the teacher

(human or machine) and the student. Again, we deliberately refused to limit our thinking

by concern over technical issues about how this would actually be implemented. We did,

however, take extensive notes on the teachers' comments and suggestions.

The First Prototype

It would be several weeks before we would again meet together as a group. The two

teachers agreed to come up with twenty questions each, of the type that they would want

this system to be able to handle. Using a highly interactive programming environment (see

Programming E:wironmcnt section of this paper), we quickly generated some technically

feasible _aphical displays that eventually mig_ht be used in our program and then, when we

had received the teachers' .;ample questions, investigated how they might be presented in

our displays.

Subsequent Design Sessions

. Our next set of meetings covered two consecutive days. We began by reviewing our

understanding of the the system to be desiDncd, based on our previous meeting. We

promptly moved into detailed discussions of the interactions that mi_lt take place as a

student proceeded through several of the sample problems.

We started with one problem, y(x)= 2sqrt(x+ 3), and spent most of the first day examining
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how our system might handle it. The teachers discussed how they would present the

sketching of this equation if they were individually tutoring a student. We tried to relate

their suggestions to our sample displays, modifying the visual representations as necessary

to meet the conditions the teachers considered most important. We discussed the system's

responses to both correct and incorrect input from the students, noting and diagramming

each step.

Next, we went throum'a the same steps for several additional problems. We tried to use the

same process, the same form of input and responses, for several different types of problem.

When we found a situation that was not covered adequately by our original plan, we

modified the plan so that it would cover both the new problem and all previous ones.

Program Development

The desiL-msheets from our three days of work with these expert teachers can be viewed as

what cognitive psychologists call a protocol -- a detailed, on-line record of the thinking of

these expert teachers as they designed a lesson (Newell & Simon, 1972; Anderson er al.,

1984).

From such design sheets it is possible (and often appropriate) simply to write an

instructional program that implements sequentially the interactions described in them

(Bork, 1985). Viewing the design sheets as a record of expert teacher thinking, however,

we took a somewhat different approach. We designed a program to capture the knowledge

of the teachers in a way that could generate a lesson on any of a broad range of problems.

The lessons on the design sheets were then naturally generated by this general progam, but

the program would be able to handle a large class of additional problems as well.

This approach also simplifies the task of providing appropriate feedback to the student.

Since our system can gencrate its own multiple versions of possibl': solution sequences, the

pro_am is able to give very specific responses to a wide range of diffcrer..t steps that a

student might propose. This is possible, furthermore, regardless of whether the problem

under consideration is one of the system's standard examples or whether it was proposed

by tbe student.

Field Testing

Initial testing was done by making the pro_am available to a variety of users of CMU's

Andrew system and then modit_'ing the program based on the informal feedback thus

obtained. A more systematic test was conducted in the Fall of 1986, when the program

was made available to students at a local high school for two days. Detailed observations

were made, followed by appropriate modifications.
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As a result of both the formal and informal testing, we are revising some of the system

responses, speeding up some of the interface features, and clarifying some segments of the

walk-through portion. It is interesting to note that, due to the extremely short

revision/review cycle (see the section below on the Programming Environment), it was

possible to make some of the indicated changes in the five minutes between class periods at

the high school, and to test the revised program immediately!

Future Plans

We look forward to having the Sketch program in regular use in several local high schools

during the Spring of 1987. We are also considering severn major enhancements to the

pro_am. These include permitting the use of non-integer factors and expanding the class

of allowed problems to include combinations and compositions of functions (i.e., Nlowing

more than one base function at a time).

Implementation

Implementation of these ideas required design of a suitable data structure. As is often the

case, a good choice of data structure is central to the program's performance. In Sketch,

expressions are represented internally as a tree. The nodes of the tree correspond to the

base function, the independent variable, and the operators that act on them.

llow the Data Structure is Used

The diagam in Figure 2 illustrates the tree as it would be set up for the expression

-41og(2x-5) + 3. In the tree, the next appropriate steps are always the adjacent nodes either

upward or dowmvard from the current function. As can be seen in Figure 2, after

sketching y = log(x), the student could modify it to produce either y = log(x-5) (one down

in the tree) or y = 41og(x) (one up in the tree). If student chose to sketch 4log(x), then the

following step could be either -41og(x) or 41og(2x-5), moving one up or one do:vn from the

subtree for the preceding expression. The system "also recognizes the special case c.f unary

minus (changing the sign, tlipping the curve), where an operation two nodes away from the

current function is considered a valid next step.
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y(x) = -41og(2x-5) + 3

.- ,._.

MINUS " ..... "

I MULTIPLY

SUBTRACT ]

Figure 2. Problem representation using a tree data structure.

Representing the equations as trees has the following advantagcs. First, any equation with

a sinNe base function can be represented with equal case simply by making a smaller or

larger tree. Second, this data structure lets the pro_am easily find the next step(s) in the

problem-solving model. Therefore it can either otter suggestions or, if the student is really

stuck, execute the step. Third, the tree naturaUy supports a variety of possible correct

solutions because it ahvays lets the student take any appropriate next step. Finally, by

finding exact discrepancies between the tree and students' proposed algebraic steps, very

specific feedback can bc _ven.

The following sample interactions illustrate Skctch's ability to respond to errors. The

student is working toward the finn equation y(x) = -41og(2x-5) + 3, and is entering the step

following the base cquatien log(x). The program is using the tree in Figure 2. Each

interaction is followed by a summary of the progam's process for recognizing the student's

error. In all cases the pro_am inserts numbers and variables appropriate to the current

example.
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Student entry: -41og(2x-5) + 3

Pro_am response: That's the whole equation, but we're not ready

to make such a complex change from the previous equation.

Process: It compares the student's expression

with the complete problem expression.

Student entry': log(2x-5)

Program response: You have indicated two operations on the variable:

subtracting 5, and multiplying by 2.

Please choose one or the other.

Process: It "walks the tree" down from the base equation node (log)

two levels (subtract and multiply). The student expression

is identical to the sub-tree of the problem expression

that is spanned dowmvard from the base ji_nction to the

independent variable.

Student entry': log(2x)

Program response: Your answer, replacing x with 2x, is a very' tempting idea.

But, if you do that, you will not be able

to replace x with x-5 in order to get 2x-5.

Process: The step is out of order -- the student's entry corresponds

to the node two down from the base equation rather than

directly below it.

The last of these errors is particularly common and tricky. The program is correct -- if the

student first sketches log(2x), a later step would require subtracting 5/2 from the variable in

order to get log[2(x-5/2)] = log(2x-5). This fractional shift is awkward for the student, since

it requires additional algebraic steps of factoring and rewriting the expression.

Furthermore, the _aphic interface in Sketch currently allows only integer input. We hope,

ultimately, to support both the explicit rewriting of expressions, and the transforming of

graphs by fractiomd amounts, while maintaining the simplicity of the progam's user

interface.
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Implications of Using a Tree

A tree data structure like that used here is common in computer science, but less common

in CAI. Our tree was implemented using simple arrays (see Appendix), rather than lists, or

records and pointers (as would be done in LISP or Pascal, respectively). Using the tree

requires one other moderately advanced technique. Because the data structure (the tree)

does not have a predefined size, but may be larger or smaller depending on the problem,

getting information from the tree requires a recursive technique to do dcpth-ftrst search.

This technique, easily implemented in most langaaages (Winston & Ilom, 1981), looks

through a tree, to whatever depth is necessary, to find any specified item that the program
currently needs.

Although the tree is a fine data structure for the program, this is not how people write

equations. Therefore, to let both students and teachers define their own problems, we have

built a parser that takes an equation in conventional form and builds the tree that the

program needs.

User Interface

For Sketch to be an easy-to-use aid in thinking about curves, it requires a display that

reflects the problem solving model and that makes the program's operation self-evident.

The algebra interface is reasonably straightforward, with the student simply typing in

successive expressions. The geometry interface, on the other hand, requires a special device

that makes it easy to move or reshape curves.

On-screen buttons are provided. The student clicks once or more on a button to shift,

stretch or flip the curve. (See Figure 1, upper right comer of the display) Tiffs seems to

work satisfactorily, provided that students receive adcquate explanation and practice during

the initial walk-through problem. A two-column table records the history of "algebraic

steps and corresponding geometric transformations. The desired generality of the program

required us to develop algorithms for producing nice looking axes with reasonable labels,

numbers and tick marks. Designing the screen was aidcd by ports, rectangular rc_ons

within the window corresponding to subroutines containing information about how they

behave under varying conditions. During dcsi:_m, ports can be rearranged on the screen to

improve the display without losing their properties.

Workstations

Certain characteristics of advanced computing technology were central to the development

of this program. Advanced workstations (e.g., the IBM RT Personal Computer, the DEC
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VAXstationlI, and Sun Micros.vstems Sun-2 and Sun-3) provide essential features

including: (1) virtual memou, which allows the progammer to work largely as if the

machine had almost unlimited memory'; (2) a high-level operating system (in our case,

BSD 4.2 UNIX tin), which provides both development tools and the potential for easily

moving pro_ams from machine to machine without modification; (3) a large bit-mapped

display (like that of the Macintosh, but having about four times as many dots), which

makes it much easier to display a large amount of information in a clear, logical fashion.

The value of this last feature is illustrated in the figures of our Sketch program, where the

student has simultaneous views of a developing list of equations, an interactive graphing

environment, and instructions and coaching from the program. Features like this require

about 3 megabytes of memory and a processing speed of roughly a million instructions per
second.

Programming Environment

This program was implemented using CMU Tutor, a pro_amming environment for

advanced-function workstations which includes a number of features especially valuable in

the development of cducational software (Sherwood and Shcrwood, 1986). CMU Tutor is

a descendent of the TUTOR and MicroTutor languages.origina.lly developed in the

PLATO project at the University of Illinois. With this history., many of its features have

had 20 years of testing for effectiveness and clticicncy.

CMU Tutor gives authors full access to the eMldrew system, an educational computing

environment being built at Carnegie Mellon University. _Mndrew is the distributed personal

computing environment being developed in a joint project between IBM and CMU

(Morris, et. al., 1986). Aspects of Andrew that are most relevant to the discussion here are

the use of 1000 x 1000 pixel _aphics screens, a windowing environment using a mouse,

and a processing speed of roughly a million instructions per second.

The language is particularly well-suitcd for non-expert progammers. In addition to :ill of

the usual control structures of a general-purpose pro_amming language, CMU Tutor

supports many capabilities which are particularly germane to the creation of educational

applications. These include picture drawing, graph drawing, animation, answer judging,

menus, mouse input, and display of fancy text.

CMU Tutor is an incrementally compiled language, making possible an extremely short

revision/review cycle. Even with large progams, an author need never wait more than

about 10 seconds to see the effects of changes just made.

The complex interactive interface developed for Sketch could not have been done in any

reasonable manner without this set of tools. Implementation of Sketch has involved three
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people pro_amming concurrently'. Presently, the pro_am consists of 7000 lines of code.
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Appendix

The following declarations illustrate how the tree data structure was actu:/iy implemented

using an early version of CMU Tutor (before it supported rich data types), how it would

be done in Pascal, and how it might be done in an improved CMU Tutor having Pascal-

like data types.

CMU Tutor version (uses numbered nodes and integers to link nodes in a linear tree; static

allocation)

define f:Operator(15),Argl(15),Arg2(15),Up(15)

ADD=l, SUBTRACT=2, MULTIPLY=3, DIVIDE=4,

SQUARE=5,CUBE6, LOG=7,

FCN=8, VAR=9, NUMBER=10
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Pascal version (uses pointers to rink nodes in a linear tree; dynamic allocation)

TYPE OpType = [FCN, VAR,

ADD, SUBTRACT, MULTIPLY, DIVIDE,

SQUARE, CUBE, LOG];

NumPtr = ^INTEGER;

NodePtr = ^NodeType;

NodeType = RECORD

Operator : OpType

Argl, Up : NodePtr;

Arg2 : NumPtr;

END;

VAR Node : NodeType;

Possible appearance of CMU Tutor declarations in the near future (uses Pascal-like

enumeration types, records and pointers in a linear tree; dynamic allocation)

type enum: OpType = (FCN, VAR, ADD ....... )

type integer: *NumPtr

record NodeType

OpType: Operator

NodeType: *Argl, *Up

NumPtr: Arg2

define NodeType: Node, *NodePtr


