
CMU-ITC-86-047

MultiRPC:
A Parallel Remote Call Mechanism

CMU-ITC-047

2 August 1986

(also issued as CMU-CS-86-139)

M. Satyanarayanan
Ellen H. Siegel

Information Technology Center
Carnegie-Mellon University

Schenley Park
Pittsburgh, PA 15218

Abstract

RPC2 is a remote procedure call mechanism that has been extensively used in the
Andrew system at Carnegie Mellon University. Andrew will eventually encompass
many thousands of workstations sharing a single distributed file system. MultiRPC is
an extension to RPC2 that enables a client to simultaneously perform remote
invocations of multiple servers. The concurrency of processing on the servers, and
the overlapping of the retransmissions and timeouts with respect to each server result
in parallelism that is useful in a number of applications. A key property of MultiRPC is
that the exactly-once semantics of RPC2 is retained on each of the parallel calls. In
addition, all the basic functionality of RPC2, such as secure, authenticated
communication and the use of application-specific side effects, is retained in
MultiRPC. The underlying communication medium does not have to support multicast
or broadcast transmissions. In this paper we describe MultiRPC and show how we
have made it versatile and simple to use without compromising runtime efficiency.

Table of Contents

1. Introduction 1
2. An Ovcrvicw of RPC2 1

3. Motivation for MultiRPC 3
4. Design Considerations 5
5. Using MultiRPC 6
6. Design and Implementation 7
7. Failures and Error Conditions 12
8. Performance 13
9. Related Work 14
10. Status 15
I. Performance Figures for RPC2 versus MultiRPC 17

II. Graphs of RPC2 vs MultiRPC Performance 22

1. Introduction

RPC2 is a remote procedure call mechanism that has been extensively used in the Andrew distributed

computing environment at Carnegie Mellon University [7]. A detailed description of RPC2 may be found

elsewhere [11, 10]. MultiRPC is an extension to RPC2 that enables a client to perform remote invocations of

multiple servers while retaining the exactly-once semantics of remote procedure calls. In this paper we

describe MultiRPC and show how we have made it versatile and simple to use without compromising runtime

efficiency.

Section 2 presents a simplified overview of RPC2. Given this background, Section 3 explains why we

extended RPC2 with a parallel invocation mechanism. The considerations that influenced the design of

MultiRPC are then put forth in Section 4. Sections 5 and 6 describe the design and implementation of

MultiRPC, while Section 7 discusses some of the subtle consequences of our design decisions. The results of

controlled experiments evaluating the performance of MultiRPC are reported in Section 8. Sections 9 relates

this work to other efforts aimed at parallelism in network communication. Section 10 concludes the paper

with a description of the current status of Mul'tiRPC.

2. An Overview of RPC2

RPC2 consists of two relatively independent components: a Unix-based runtime library written in C, and a

stub generator, RP2Gen. The runtime system is self-contained and is usable in the absence of RP2Gen. The

code in the stubs generated by RP2Gen is, however, specific to RPC2.

A Subsystem is a set of related remote procedure calls that make up a remote interface. If one views a remote

interface as an abstract data type, the set of operations on that data type constitute a subsystem. RP2Gen

takes a description of a subsystem and automatically generates code to marshall and unmarshall parameters in

the client and server stubs. It thus performs a function similar to Lupine in the Xerox RPC mechanism [1]

and Matchmaker in Accent IPC [6].

The RPC2 runtime system is fully integrated with a Lightweight Process mechanism (LWP) [8] that supports.

multiple nonpreemptive threads of control within a single Unix process. When a remote procedure is

invoked, the calling LWP is suspended until the call is complete. Other LWPs in the same Unix process are,

however, still runnable. The LWP package allows independent threads of control to share virtual memory, a

feature that is not present in standard Unix. Both RPC2 and the LWP package are entirely outside the Unix

kernel and have been ported to multiple machine types.

The low-level packet transport mechanism is a separable component of RPC2. The only primitives required

of it are the ability to send and receive datagrams. At present, RPC2 runs on the DARPA IP/UDP

protocol [3, 4].

RPC2 is based on logical Connections. The rationale for choosing a connection-based rather than

connectionless protocol is presented in the design document [11]. For the purposes of this paper the following

facts about RPC2 connections are relevant:

1. A connection is created when a client invokes the RPC2._Bind primitive and is destroyed by the
RPC2__Unbind primitive. The cost of an RPC2 Bind is quite low, and is comparable to the cost
of a normal RPC.

2. One can view RPC2 Bind as a special RPC that is common to all subsystems. In fact, a server is
notified of the creation of a new connection in exactly the same way it is notified of an RPC on an
existing connection.

3. Connections use little storage. Typically a connection requires a hundred bytes at each of the
client and server ends.

4. Within each Unix process, an RPC2 connection is identified by a unique Handle. Handles are
never reused during the life of a process.

5. At any given time a Unix process can have at most 65536"active connections. This is about two
orders of magnitude larger than the number of connections in use in the most heavily used
Andrew servers.

Although one speaks of "Clients" and "Servers", it should be noted that the mechanism is completely

symmetric. A server can be a client to many other servers, and a client may be the server to many other

clients. On a given connection, however, the roles of the peers are fixed.

Besides RPC2 Bind and RPC2 Unbind, the most important runtime primitive on the client side is

RPC2MakeRPC. This call sends a contiguous request packet to a server and then awaits a contiguous reply

packet. Reliable delivery is guaranteed by a retransmission protocol built on top of the datagram transport

mechanism. Calls may take arbitrarily long: keep-alive packets (BUSY packets) are sent by the server during

a call to inform the client that it is still alive and connected to the network. When the reply is finally received,

the server is sent an acknowledgement. As an optimization, the acknowledgement is often piggy-backed on

the next call to the server. On the server side, the basic primitives are RPC2__GetRequest, which blocks until

a request is received and RPC2._SendResponse, which sends out a contiguous reply packet and awaits positive

acknowledgement of its receipt. Thus RPC2 provides Exactly-Once semantics in the absence of site and hard

network failures, and At-Most-Once semantics otherwise [12].

A unique aspect of RPC2 is its support of arbitrary Side Effects on RPC calls, Associated with every

connection is a (possibly null) side effect type, specified by the client at the time the connection is made. The

side effect mechanism allows application-specific protocols to be integrated with the base RPC2 code. In the

Andrew file system, for example, files are transferred via side effects using a highly pipelined protocol. In this

application, a special protocol is called for because of the large quantity of data transmitted. The integration

of the file transfer protocol into RPC2 does, however, allow small files to be piggybacked on normal RPC

packets, thus minimizing the number of packets exchanged in this important special case. Information

specific to a side effect is provided by the client and server in Side Effect Descriptors. The client provides a

side effect descriptor as a parameter to the RPC2 MakeRPC primitive. On the server side,

RPC2__InitSideEffect initiates a side effect and RPC2_.CheckSideEffect awaits its completion. Each of these

primitives takes a side effect descriptor as a parameter.

The design documents [11, 10] describe a number of other RPC2 capabilities, such as the use of Filters to

allow flexibility in structuring a server, and the incorporation of a hierarchy of Security Levels based on

authentication and encryption. We omit a discussion of those topics here since they are not essential to an

understanding of MultiRPC. Tables 2-1, 2-2, and 2-3 summarize the RPC2 primitives relevant to this paper.

Primitive Description

RPC2 Bind () Create a new connection

RPC2 MakeRPC () Make a remote procedure call (with possible side effect)

RPC2 MultiRPC () Make a collection of remote procedure calls

Table 2-1: Client Related Primitives

Primitive Description

RPC2 Export () Indicate _411ingnessto accept calls for a subsystem

RPC2 DeExport () Stop accepting new connections for one or all subsystems

RPC2 GetRequest () Wait for an RPC request or a new connection
RPC2 Enable () Allow sen, icing of requests on a new connection

RPC2...SendResponse () Respond to a request from my client
RPC2 InitSideEffect () Initiate side effect

RPC2 CheckSideEffect () Check progress of side effect

Table 2-2: Server Related Primitives

3. Motivation for MultiRPC

The principles underlying MultiRPC arose as a solution to a specific problem in Andrew. In the Andrew file

system [9], workstations cache files on their local disks from servers. In order to maintain the consistency of

the caches, servers maintain Callback state about the files cached by workstations. A callback on a file is

Primitive Description

RPC2 Init() Performruntimesysteminitialization
RPC2 Unbind() Terminatea connectionbyclientor server
RPC2 AllocBuffer() Allocatea packetbuffer
RPC2 FreeBuffer() Freea packetbuffer

Table 2-3: Miscellaneous Primitives

essentially a commitment by a server to a workstation that it will notify the latter of any change to the file.

This guarantee maintains consistency while allowing workstations to use cached data without contacting the

server on each access. Before a file may be modified on the server, every workstation that has a callback on

the file must be notified. Since the system is utimately expected to encompass over 5000 workstations, an

update to a popular file may involve a callback RPC to hundreds or thousands of workstations. The problem

is exacerbated by the fact that a callback RPC to a dead or unreachable.workstation has to time out before the

connection is declared broken and the next workstation tried. Each such workstation would cause a delay of

many seconds, rather than the few tens of milliseconds typical of RPC roundtrip times for simple requests.

Given these observations, we felt that the potential delay in updating widely-cached files would be

unacceptable if we were restricted to using simple RPC calls iterafively.

A simple broadcast of callback information is not feasible. With broadcast, every time a file is changed

anywhere in the system every workstation would have to process a callback packet and determine if the packet

were relevant to that workstation. Using multicast to narrow the set of workstations contacted is also

impractical, because each file would then potentially have to correspond to a distinct multicast address. Since

workstations flush and replace cache entries frequently, the membership of multicast groups would be highly

dynamic and difficult to maintain in a consistent manner.

Besides these considerations, the use of broadcast or multicast does not provide servers with confirmation that

individual workstations have indeed received the callback information. Such confirmation is implicit in the

reliable delivery semantics of RPC2. It became clear to us that we needed a mechanism that retained the strict

RPC semantics of RPC2 while overlapping the computation and communication overheads at each of the

destinations. This is the essence of MultiRPC.

MultiRPC has applications in other contexts too. Replication algorithms such as quorum consensus [5]

require multiple network sites to be contacted in order to perform an operation. The request to each site is

usually the same, although the returned information may be different. MultiRPC could be used to

considerably enhance the performance of such algorithms.

The performance of some relatively simple but frequent operations in large distributed systems may also be

improved by MultiRPC. Consider, for example, the contacting of a name or time server. If more than one

such server is available, it may be reasonable to use MultiRPC to contact many of them, wait for the earliest

reply and abandon all further replies. Another example, relevant to Andrew, is the use of MultiRPC in

monitoring the status of multiple file servers. The monitoring program periodically contacts all the servers

and requests status information from each of them.

4. Design Considerations

The primary consideration in the design of MultiRPC was that it be inexpensive. Normal RPC calls should

not be slowed down because of MultiRPC. Although one-to-many RPC calls constitute a very important

special case, we still expect simple, one-to-one RPC calls to be preponderant. A related, but distinct, concern

is the increase in program size resulting from MultiRPC. Virtual memory usage in our workstations is

considerably higher than we originally anticipated. We wished to minimize the impact of MultiRPC on this

problem.

Another influence on our design was the desire to decouple the design of subsystems from considerations

relating to MultiRPC. No special coding should be necessary in order to make a subsystem available via

MultiRPC. Similarly, clients who access that Service via simple RPC calls should be unaffected. Only those

clients who wish to access that subsystem in parallel at multiple sites should have to know about MultiRPC.

In addition we wished to have the flexibility of intermixing simple RPC and MultiRPC calls in any order on

any combination of connections.

Since we did not wish to distinguish between connections usable in MultiRPC calls and those usable only in

simple RPC calls, MultiRPC has to be completely orthogonal to normal RPC2 features. The exactly-once

delivery semantics, failure detection, support for multiple security levels and the ability to use side effects all

have to be retained when making a MultiRPC call.

A number of the scenarios in which we envisage MultiRPC being used require replies to be processed by the

client as they arrive, rather than being batched for final processing. The exact nature of such processing is

application-dependent and therefore has to be performed by a client-specified procedure. In addition, we felt

it was important that a client be able to abort the MultiRPC call after processing any of the replies or after a

predetermined amount of time has elapsed since the start of the MultiRPC call.

Finally, we wanted MultiRPC to be simple to use. We have been successful in this even though the syntax of

a MultiRPC call is different from the syntax of a simple RPC call, the latter being similar to a local procedure

call We have had to violate this syntax for two reasons: to allow clients to specify an arbitrary reply-handling

procedure in a MultiRPC call, and to avoid expanding code size by generating a MultiRPC stub for every caU

in a subsystem.

5. Using MultiRPC

We begin our description of MultiRPC with an example. Although this example is contrived, it is adequate to

illustrate the structure of a client and server that communicate via RPC2, and the changes that must be made

to the client to use MultiRPC.

The subsystem designer designs a subsystem, chooses a name for it, and writes the specifications in the file

(SubsystemNameArpc2. This file is submitted to RP2Gen, which generates client and server stubs and a

header file. RP2Gen names its generated files using the file name of the .rpc2 file with the appropriate suffix.

Figure 5-1 presents the specification of the subsystem example in the file example.rpc2. RP2Gen interprets

this specification and produces a client stub in the file example.client.c, a server stub in example.server.c and a

header file example.h (shown in Figure 5-2). This subsytem is composed of two operations, double and triple.

These procedures both take a call-by-value-result parameter, lestval, containing both the integer to be

operated on and the result returned by the server.

RP2Gen specification file for simple subsystem

Server Prefix "serv"; tag server operations to avoid ambiguity

Subsystem "Example";

double(IN OUT RPC2 Integer testval);
triple(IN OUT RPC2 Integer testval);

Figure 5-1:example.rpc2 specification file

Once the interface has been specified, the subsystem implementor is responsible for exporting the subsystem

and writing the server main loop and the bodies of the procedures to perform the server operations. A client

wishing to use this server must first bind to it and then perform an RPC on that connection. Figures 5-3 and

5-4 illustrate the client and server code. We wish to emphasize that this code is devoid of any considerations

relating to MultiRPC.

Now consider extending this example to contact multiple servers using MultiRPC. The example.rpc2 file and

the server code remain exactly the same. Argument Descriptor Structures, used by MultiRPC to marshall and

unmarshall arguments, are already present in the client stub file; pointers to these structures are defined in the

example.h file. Only the client code has to be modified, as shown in Figures 5-5 and 5-6.

/m

(c) Copyright IBM corporation, 1985

.h file produced by RP2GEN

Input file: ex.rpc2
*/

include "rpc2.h"
#include "se.h"

/* Op codes and definitions */

define double- OP 1

extern ARG double- ARGS[];
define double- PTR double- ARGS

#define triple- OP 2
extern ARG triple- ARGS[];
define triple- PTR triple- ARGS

Figure 5-2: The RP2Gen-generated header frle example.h

From the client's perspective, a MultiRPC call is slightly different from a simple RPC2 call. The procedure

invocation no longer has the syntax of a local procedure call. Instead, the single library routine

MRPC_MakeMulti is used to access the runtime system routine RPC2MultiRPC. The use of a common

library routine rather than individual stubs cuts down on code size but does require some

additionalinformation from the client making the call.

The client is responsible for supplying a Handler Routine for any server operation which is used in a

MultiRPC call. The handler routine is called by MultiRPC as each individual server response arrives,

providing an opportunity to perform incremental bookeeping and analysis. The return code from the handler

gives the client control over the continuation or termination of the MultiRPC call.

6. Design and Implementation

Since MultiRPC was intended to fit into the existing RPC2 package, its design mirrors that of RPC2. Support.

for MultigPC exists both at the runtime level and at the language level. MultigPC is supported by one RPC2

runtime primitive, RPC2 MultiRPC, and the RPC2 library routines MRPC MakeMulti and

MRPC._UnpackMulti which perform the parameter marshalling and unmarshalling. Language support for

MultiRPC has been achieved by extending RP2Gen to generate argument descriptor structures for each

server operation.

Although MultiRPC retains the semantics of an RPC2 call, its syntax diverges slightly from a strict procedural

interface. The call no longer resembles direct invocation of the server operation, but is made via

TrivialclientillustratingRPC2callformat

m_nO
{
inttest_l;

PerformLWPandRPC2 Initialization

Establishconnectionsto serverusingRPC2._Bind"

RPC2-Bind(/* Bindarguments*/);

while(TRUE)
{
printf("\nDouble [= 1]or Triple [= 2] (type0 to qui0? ");
scanf("%d",op);
if(op = = 0)

break;
printf(Number?");
scanf("%d",testval);
if(op = = 1){
double(cid,testval); PerformRPC2 callon connectioncid
printf("doubled value = %dkn",testval);
}

else{
triple(cid,testval);
pfinff("tripledvalue = %d\n", testval);
}

}

printf("Bye...\n");
RPC2- Unbind(cid);

}

Figure 5-3: A Simple RPC2 Client

MRPC MakeMulti. A client can perform a MultiRPC call on any subsystem with an RP2Gen generated

interface, but the MultiRPC packing and unpacking facilities exist in a pair of library routines rather than in a

stub package as in RPC2. The slight additional processing cost of parameter interpretation is outweighed by

the savings in the code size. The packet which is finally transmitted to the server is identical to a packet

generated by an RPC2 call, and the MultiRPC protocol requires only a normal response from each server. A

server is not even aware that it is participating in a MultiRPC call.

The followingroutines form the backbone of MultiRPC.

RPC2MultiRPC is the parallelanalog of the RPC2 MakeRPC call. It initializesthe RPC2 runtime state in
preparation for packet transmission and then calls mrpc_.SendPacketsReliably an internal

routine which performs the request transmissions and processes the server responses.

9

Serverloop forexample Rl_2 subsystem

main()

RPC2 RequestFilter reqfilter;
RPC2 PacketBuffer *reqbuffer;
RPC2 ltandle eid;

InitRPC0; Perform L WP and RPC initialization

Set filter to accept auth requests on new or existing connections

while(TRUE)
{

Await a client request
RPC2 GetRequest(&reqfilter, &cid, &reqbuffer. NULL, NULL, NULL, NULL);
serv- ExecuteRequest(eid, reqbuffer) This routine is generated by RP2Gen
}

}

Trivial serverprocedure to demonstrate RPC2 functionality

long serv- double(cid, testval)
RPC2- Handle cid;
RPC2- Integer *tesWal;
{
*testval = (*testval) * 2;
}

long serv- triple(eid, testval)
RPC2- Handle cid;
RPC2- Integer *testval;
{
*testval = (*testval) * 3;
}

Figure5-4: A SimpleRPC2 Server

MRPC_MakeMulti

is the library routine which providesthe parameter packinginterface to RPC2_.MultiRPC.
It takes as arguments RP2Gen generated argument descriptor structures, the appropriate
opcode (from the (subsysk.h)file) the number of servers to be called, and a pointer to a
client supplied handler routine as well as an array of connection ids and the appropriate
server arguments.Using the argument descriptors,MRPC MakeMulti packs the supplied
server arguments into an RPC2 request buffer; it then creates a data structure containing
argument descriptorstructuresand a pointer to the client handler routine. Finally, it makes
the RPC2 MultiRPC call and passes the final return code back to the client whenthe call
terminates.

MRPC--UnpackMulti

is a RPC2 library routine which functionsas the complement of MRPC._MakeMulti. It

10

The following demonstrates a simple MultiRPC call

Include RPC2 and any other &cludefiles

define HOWMANY 3

long HandleResult0;

main0
{
int tesWal[MAXSERVERS];
RPC2 Handle cid[MAXSERVERS];

Perform L WP and RPC2 Initialization
Establish connections to all desired serversusing RPC2_Bind

for(count = 0: count < HOWMANY; count + +) {
ret = RPC2 - Bind(/* Bindarguments */);

}

while (TRUE)
{
printf("\nDouble [= 1] or Triple [2] (type 0 to quit)? ");
scanf("%d", op);
if(op = = 0) break,
prinff("\nNumber? ");
scanf("%d", tesVcal);

Make the MultiRPC call

if(op = = 1)
MRPC MakeMulti(double-OP, double-PTR, HOWMANY, cid, HandleDouble, NULL, testval);

else MRPC MakeMulti(triple- OP, triple- PTR, HOWMANY, cid, HandleTriple, NULL, testval);
prinff("results = %d, %6, %dkn", testval[0], testval[1], testval[2]);
}

printf("Bye...\n");
for (count = 0; count < HOWMANY; count+ +)

RPC2 - Unbind(old);
}

Figure5-5: Clientusing MultiRPC

unpacks the contents of the response buffer into the appropriate positions in the client's
argument list and calls the client handler routine. It returns with the return code supplied
by the client handler routine.

mrpc._SendPacketsReliably
is an internal RPC2 runtime routine which is the heart of MultiRPC retransmission and
result gathering. It is called by RPC2 MultiRPC with the prepared request buffers,
performs an initial transmissionof all the request packets, and then suspends itself to wait
for the serverresponses. As each response arrives,RPC2 error codes are checked and any
appropriate side effect processing is performed, mrpc SendPacketsReliablythen calls
MRPC UnpackMulti with the server reply buffer and the relevant return code. Any
client-specifiedtimeout willexpire in thisroutine.

11

Client Supplied llandler Routines

long I landleDoublc(I lowMany, ConnArray, offset, rpcval, testval)
RPC2- Integer HowMany, offset, rpcval, testvall];
RPC2 - ttandle ConnArray[];
{
if(rpcval != RPC2-SUCCESS)

printf("llandleResult: rpcval = %d\n", rpeval);
if(+ + returns = = tlOWMANY) return -1; Terminate the MultiRPC call

return(0); Continue accepting server responses

long HandleTriple(HowMany, ConnArray, offset, rpeval, testval)
RPC2-Integer HowMany, offset, rpcvat, testval[];
RPC2- Handle ConnArrayl];
{
if (rpcval != RPC2- SUCCESS)

printf("HandleResult: rpeval = %dkn", rpcval);
if(+ +returns == HOWMANY) return-I; Terminate the MultiRPC call

return(0); Continue accepting server responses

Figure 5-6: MultiRPC Client Handler Routines

The client supplied handler routine is called once for each connection by MRPC UnpackMulti either with

the newly arrived server reply or with connection failure information. The handler routine allows the client to

process each server response as it arrives rather than waiting for the entire MultiRPC caU to complete. After

processing each response, the client can decide whether to continue accepting server responses or whether to

abort the remainder of the call. It can perform as much or as little processing as the client deems necessary.

The library packing routines receive their call-specific information from argument descriptor structures

created by RP2Gen and passed to MultiRPC by the client. RP2Gen generates an array of these descriptors for

each server operation, with one structure being generated for each parameter. The structure fields contain

information about the parameter's type, usage (e.g. IN, OUT, IN-OUT) and size; for structure arguments,

the descriptor also points to an array of descriptors describing the structure fields. The argument packing and

unpacking is performed at runtime by iterating in parallel through the descriptors and the argument list. Since

structures can be nested arbitrarily deeply, structure packing is done recursively using nested descriptors.

MultiRPC provides the same correctness guarantees as the standard RPC2 package except in the case where

the client exercises his right to terminate the call. If the call completes normally, a return code of

RPC2__SUCCESS guarantees that all messages have been received by the appropriate servers.

12

7. Failures and Error Conditions

The semantics for errors in the MultiRPC case are somewhat different from those in RPC2. Since several

messages are being transmitted in the same call, an error on one connection should not be sufficient to

terminate the call. The client does, however, need to be informed of error states on any of his connections.

The handler routine will be called at most once for each connection submitted to the MultiRPC call, either

with an error condition or with the server response. No packet will be sent on any connection for which an

error was detected in the course of initial processing.

The additional flexibility provided by the client handler routine incurs some risks. RPC2 makes no guarantees

about the state of the connections which have not been examined before a client-initiated termination of

MultiRPC. When the client returns an abort code from his handler, there may still be replies outstanding on

some connections. On each such connection RPC2 MultiRPC increments the connection sequence number

and resets the connection state, thus pretending that the response in question was actually received. This

allows the system to continue with normal operation.

If the response in question does arrive before the next call is made it will be thrown away as an old response

and an acknowledgement will be sent to the server. If, however, it arrives after a second call has been aborted

by the client it will be treated as a bad packet and thrown away without an acknowledgement. Further

requests will now be thrown away because the server will be repeatedly retrying the original response and

waiting for an acknowledgement. The server will eventually decide that the client is dead, but will waste

retrying before it gives up. The client can continue indefinitely without realizing that the server is functionally

dead. The client will not appreciate his predicament unless he waits for responses on all connections in the

MultiRPC call or sends a simple RPC2 call on that specific connection.

This pathological situation was observed during initial testing of MultiRPC, and led to a change in the

implementation of RPC2. If a packet whose sequence number is greater than that expected by its connection

state arrives, an explicit negative acknowledgement is now sent. The negative acknowledgement will kill the

connection. This allows the client to learn explicitly that the connection is useless and give him an

opportunity to rebind to the relevant server. It also lets the server recognize the failure promptly.

These problems are a result of the client's ability to ignore the responses on some connections in a MultiRPC

call, and will generally only manifest themselves in a case where a server is forced to queue a request because

it is busy processing an earlier request. This means that the MultiRPC call should be used with caution in

cases where simultaneous binding to a single site might result. The negative acknowledgement by the server is

intended to give the client the opportunity to learn that something has gone wrong with the connection and

act accordingly.

13

8. Performance

In this section we assess MultiRPC performance by focussing on two specific questions. First, how is the RPC

roundtrip time to a single site affected by using MultiRPC rather than RPC2? Second, as a function of the

number of sites contacted, how much reduction in elapsed time does one obtain by using MultiRPC?

Our analysis is based on actual controlled experimentation. The experiments were conducted on unloaded

IBM RT-PC workstations running the Unix 4.2BSD operating system. Some of these workstations are on an

Ethernet while others are attached to an IBM token ring network. Routers provide the necessary connectivity

between all these workstations. The experiments were run at periods of low network utilization.

Table I-1 shows the effect of using MultiRPC to contact a single site. Ten trials, each consisting of 1000 null

RPC2 calls and 1000 null MultiRPC calls, were run. As the table shows, the difference in elapsed times for

these two cases is negligible. Further, the null RPC2 times are within 3 percent of the times we observed on

an earlier version of RPC2 that lacked MultiRPC support. Our original design criterion of not slowing down

simple RPCs has thus been met.

The server computation time per RPC request is a key parameter in determining the improvement dt_e to

MultiRPC. If this time is very short, the transmission, marshalling and unmarshalling overheads dominate. If

the time is very long, these overheads are negligible and the overlapping of server computation improves

performance considerably.

We measured the effect of varying the number of servers and the length of the server computation time on

the performance of MultiRPC. These tests were for 1 to 50 servers with computation times in the range 10

milliseconds to 1 second. The data from these experiments is presented in tabular form in Tables I-2 through

I-5 and graphically in Figure II-1. In the tables and graphs the roundtrip elapsed time for a MultiRPC call is

compared with the elapsed time for the equivalent number of iterative RPC2 calls.

As expected, the performance improvements are larger for longer computation times. For RPC2, these

computation times are strictly additive; for MultiRPC, the server computation times are overlapped

significantly. One would typically expect the performance to improve monotonically for increasing numbers

of servers. Figure II-1 shows, however, that beyond about 20 servers the performance saturates and in fact

declines slightly. Detailed examination of the experimental data revealed an increase in the number of retried

packets beyond about 20 servers. This coincidence led us to the hypothesis that the constant computation

time at the servers is the origin of the problem. All the servers send their responses back at the same time,

saturating the client with packets and causing it to drop many of them.

14

To test our hypothesis we repeated the experiments with the computation times exponentially distributed

around a specified mean. The data for these tests is presented in Tables I-6 through I-9 and in Figure II-2.

For small computation times these measurements still show that saturation occurs. However, for a 1 second

computation time performance monotonically improves up to 50 servers.

To obtain more conclusive evidence and to further investigate the performance characteristics of MultiRPC,

we are planning experiments with a larger number of servers and with different server computation time

distributions. Measurements from actual applications will provide us with further insights into MultiRPC

performance.

9. Related Work

Work in the area of parallel network access has typically addressed broadcast and multicast protocols. The

Sun Microsystems Broadcast RPC [13] has a design similar to that of MultiRPC, but chooses a low-level

broadcast mechanism. The Sun Broadcast RPC resolves addresses by going through a central port, so servers

must register with the central port in order to be accessible via the broadcast facility. This means that the

server must allow in advance for the possibility of broadcast communication, rather than leaving the decision

completely in the hands of the client. MultiRPC's connection-based communication allows parallel calls to be

made to any existing servers.

Sun Broadcast RPC provides the client with the flexibility of a timeout and the equivalent of MultiRPC's

client handler routine, but it does not provide the same correctness guarantees and error information as

MultiRPC. Any unsuccessful response is filtered out and thrown away; no distinction is made between real

garbage and response errors such as mismatched version numbers. Since MultiRPC is connection based and

orthogonal to the server implementation, all server responses are processed exactly as in the RPC2 case: all

relevant error information is recognized and passed on to the client.

The Group Interprocess Communication (IPC) in the V Kernel [2] uses the Ethernet multicast protocol as its

basis. This implementation uses the concept of host groups as message addresses. A request is multicast

throughout the network, and it is up to each host to recognize any group address for which it has local

members.

Unlike MultiRPC, reliability is not an important goal of the V group IPC. Multiple retransmissions are

suggested to increase reliability, and lost responses are common (due largely to simultaneous arrival of packets

at the client). If confirmation is required, it is the client's responsibility to query the appropriate group until

he has received adequate confirmation. The client again has control over termination, although the

mechanism here is different. The client blocks only until the first response is received, so it can process

15

responses as they arrive. The multicast Call is terminated when the client makes another call, causing any

further responses to the first call to be thrown away.

Since one of the primary design goals for MultiRPC was retaining the RPC2 correctness guarantees, broadcast

and multicast protocols are less attractive despite their transmission efficiency. MultiRPC is heavily

dependent on its connection sequence numbers to guarantee its exactly-once semantics, and a multicast

protocol would greatly complicate careful sequence numbering. Another issue is security: MultiRPC, like

RPC2, allows a per-connection encryption key. This works for MultiRPC because it is a connection based

protocol, but site-specific encryption would be impossible for true multicast. In addition, to maintain

reliability, acknowledgements would have to be provided. Without connections, this could potentially

introduce the lost packet problem of the V group IPC; it would certainly cut down on the performance gains

of the multicast protocol itself.

Neither SUN RPC or V Group IPC is able to deal effectively with long computations while providing timely

notification of site or network failures. A sufficiently long computation would simply cause a timeout on the

connection, indicating server death. MultiRPC, on the other hand, employs a BUSY protocol that alleviates

this problem. If a server is busy with a long computation and another request arrives, the low-level RPC2 will

queue the request and respond With a BUSY packet so that the client knows that the server is alive. The client

then knows to sleep, waking periodically to retry the request. This protocol in conjunction with the LWP

package allows useful processing to be performed even when the server is busy with a long computation.

Some of the difficulties of integrating broadcast or multicast with correctness and reliablility could be

overcome by application specific protocols with greater domain knowledge. Depending on the application,

acknowledgements could possibly be batched at specified intervals; lost packets could be dealt with by high

level code. This approach might be useful for specific applications, but it no longer provides the semantics of

a general purpose RPC.

10. Status

MultiRPC is fully implemented and operational at the present time. An actual application that now uses

MultiRPC is the Filestats program. Filestats monitors the status of Andrew file servers by periodically polling

them and graphically displaying the results on an operator's console. We will shortly convert the callback

mechanism in the Andrew file system to use MultiRPC. At the present time the servers still iterate over

RPC2 connections. We also intend to use the MultiRPC facility in implementing a fully replicated version of

the Andrew authentication server. In this application we expect MultiRPC to significantly improve the

performance of the replication algorithms.

16

We are aware of at least one potential improvement to MultiRPC. Currently, RP2Gen does not take

advantage of repeated argument types when it generates argument descriptor structures, but creates a new

descriptor for each parameter of each operation. For recursive structure arguments, these descriptors can

become quite large. Since structure arguments must be defined in the RP2Gen specification file, it should be

possible to share these descriptors when structure arguments appear more than once.

Using software in actual applications often results in unexpected lessons and refinements to the original

design. It is premature at this point in our work to'predict what such changes might be. Our immediate future

plans involve more detailed and comprehensive testing of MultiRPC. Controlled experimentation and

incorporation in application programs will both play a part in making MultiRPC mature, robust and efficient.

Based on our experience so far, we are confident that MultiRPC will prove to be an important building block

in Andrew and other large distributed systems.

17

I. Performance Figures for RPC2 versus MultiRPC

The following tables contain roundtrip call times in milliseconds of iterative RPC2 and MultiRPC calls. The

figures in parentheses are 90% confidence intervals.

RPC2(ms) MultiRPC(ms) RPC2/ MuitiRPC

32.02 32.48 0.986
(1.93) (1.29)

TableI-l: TimesfornullRPC2andMultiRPCcalls

Servers IterativeRPC2(ms) MultiRPC(ms) RatioofRPC2/MultiRPC

1 148.68 152.01 0.978

(128.96) (121.77)

2 226.49 . 121.15 1.870

(235.61) .(141.44)

5 192:46 78.81 2.442

(14.83) (4.32)

10 466.58 169.55 2.752

(112.76) (80.06)

20 1141.87 385.76 2.960

(642.42) (158.16)

50 3292.56 1968.84 1.672
(851.39) (945.57)

Table1-2:10 msComputation(Constant)

18

Servers Iterative RPC2 (ms) MultiRl'C (ms) Ratio of RPC2/MulliRPC

1 79.42 80.66 0,985

(5.59) (12.,83)
2 268.34 155.49 1.726

, (189.29 (132.00) .

5 433.37 170.41 2.543

(95.33) (27%90)

10 943,49 212.97 4.430

(222,84) (278.18)

20 2237.81 434.91 5,145

(539.04) (338.52)

50 5534,18" 1830,80 3,023

(1155.74) (885.08)

Table I-3:50 msComputation (Constan0

Servers Iterative RPC2 (ms) MultiRPC (ms) Ratio of RPC2/MultiRPC

1 196.95 194.80 1.011

(118.57) (_94:31)

2 337.27 188.73 1,787

(128.29) (73:96)

5 667.28 171.68 3,887

(17.50) (3.63)

10 1418.41 256.98 5.520

(202.63) (123.31)

20 2933.38 408.12 7.188

(173.00) (338.53)

50 7770.98 1794.18 4,331

(717.66) (875.09)

TableI-4:100 msComputation (Constan0

19

Servers llerative 111'(::2(ms) MulliRPC (ms) Ratio of]U)C2/MuitiRPC

1 1069.15 1073.16 0.996

Q5.55_ I97.53t|

2 2116.17 I 1092.87 1.936

(83.55) I (273.58)

5 5285.91 1103.84 4.789

(121.98) (79.77)

10 10591.13 1178.58 8.986

(318.89) (116.28)

20 21248.18 1334.42 15.923

(260.72) (269.60)

50 53689.08 3138.50 17.107

(NAN(_ (802.70)

Table I-5: 1.secondComputation (Constant)

Servers Iterative RPC2 (ms) MaltiRPC (ms) Ratio of RPC2/MaltiRPC

1 154.78 138.20 1.120

(120.58) (125.39)

2 233.13 151.54 1.538

(164.37) (115.45)

5 450:28 148.46 3.033

(379.57) 046.86)

10 763.86 209.82 3.641

(572.55) (184.38)

20 1620.13 " 439.44 3.687

(706.83) (369.08)

50 3801.58 1318.58 2.883

(889.03) (757.91)

TableI-6:10 ms Computation (ExponentialDistribution)

2O

Servers Iterative RPC2 (ms) MultiRPC (ms) Ratio of RI_2/MulliRPC

1 169.85 153.41 1.107

(120.41) (109.15)

2 299.60 182.08 1.645

(170.08) (114.42)

5 629.57 207.38 3.036

(322.07) (116.02)

l 10 1182.61 289.44 4.086(548.92) (193.23)

I 20 2212.71 456.04 4.852(686.29) (327.76)

50 5843.48 1305.08 4.478

(957.77) (799.55)

Table1-7:50 msComputation(ExponentialDistribution)

Servers Itemtive RPC2 (ms) MultiRPC (ms) Ratio of RPC2/MultiRPC

1 182.81 185.31. 0.987

(130.11) (132.60)

2 370.90 244.72 1.516

(262.26) (168.02)

5 777.25 309.74 2.510

(356.11) (200.25)

10 1621.05 400.40 4.049

(620.10) (193.64)
I

20 3210.61 [574.13 5.592
(752.76)] (411.51)

50 7803.74 1424.02 5.480

(1170.27) (775.67)

Table1-8:100 msComputation (ExponentialDistribution)

21

Servers Iterative RPC2 (ms) MultiRPC (IllS) Ratio of RPC2/MuiIiRPC

1 1038.58 1027.84 1.010

(1245.74) (1213.16)

2 2188.32 1552.77 1.409

(2147.14) (1190.86)

5 5257.67 2695.02 1.951

(2973.58) (1736.84)

10 10509.11 . 3263.36 3.220

(3823.18) , (1799.50)

20 2183L53 4051.06 5.389

(6037.77) (1734.42)

50 53456.24 4737.28 11.284

(NAN0) (1390.78)

Table I-9: i secondComputation (Exponential Distribution)

22

II. Graphs of RPC2 vs MultiRPC Performance

23

FigureII-l: Constant Computation Time

24

FigureII-2: ExponentialComputation Time

25

References

[1] Birrell, A.D. and Nelson, B.J.
Implementing Remote Procedure Calls.

ACM Transactions on Computer Systems (1):39-59, February, 1984.

[2] Chcriton, David R., and Zwaenepoel, Willy.
Distributed Process Groups in the V Kernel.

ACM Transactions on Computer Systems 2(2):77-107, May, 1985.

[3] Defense Advanced Research Projects Agency, Information Processing Techniques Office.
RFC 791: Internet Program Protocol Specification
September 1981.

[4] Defense Advanced Research Projects Agency, Information PrOcessing Techniques Office.
RFC 768: User Datagram Protocol Specification
September 1981.

[5] Herlihy, M.

A Quorum-Consensus Replication Method for Abstract Data Types.
ACM Transactions on Computer Systems 4(1):32-53, February, 1986.

[6] Jones, M.B., Rashid, R.F., and Thompson, M.
MatchMaker: An interprocess specification language.
In Proceedings of the ACM Conference on Principles of Programming Languages. January, 1985. •

[7] Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S.H., and Smith, F.D.

Andrew: A Distributed Personal Computing Environment.
Communications of the ACM 29(3): 184-201, March, 1986.

[8] Jonathan Rosenberg, Larry Raper; David Nichols, M. Satyanarayanan.
L WP Manual

Information Technology Center, CMU-ITC-037, 1985.

[9] Satyanarayanan, M., Howard, J.H., Nichols, D.N., Sidebotham, R.N., Spector, A.Z. and West, M.J.
The ITC Distributed File System: Principles and Design.
In Proceedings of the lOth ACM Symposium on Operating System Principles. December, 1985.

[10] M.Satyanarayanan.
RPC2 User Manual

Information Technology Center, CMU-ITC-038, 1986.

[11] M. Satyanarayanan.
RPC2: A Communication Mechanism for Large-Scale Distributed Systems.
Manuscript inpreparation, 1986.

[12] Spector, A.Z.

Performing remote operations efficiently on a local computer network.
Communications of the ACM 25(4):246-260, April, 1982.

[13] Sun Microsystems Inc.
Networking on the Sun Workstation
15 May 1985.

