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Abstract

In this paper we describe a prototype of the ITC distributed file system, a design intended to span a network

of thousands of workstations at Carnegie-Mellon University. Key features of the design are the use of whole

file transfer and caching. The objective of the prototype is to evaluate the abilit_ of the high-level design to
meet the the goals of location transparency, user mobility, and application code compatibility.

A user community of about 75 software developers and support personnel has been using a prototype of this

design for 9 months, on a system with 50 workstations and 2 servers. Both the servers and the workstations
run Unix. Minor kernel modifications have been made on the workstations to intercept file system calls, but

the cache management code is entirely outside the kernel. No kernel modifications have been made for the
servers.

The goals of location transparency and mobility have been met. Compatibility with Unix has been met to a

high degree: existing Unix application programs run without relinking or recompiiation. We have

experienced some minor incompatibilities in the areas of links and renaming directories.

Although the system is quite usable, it is noticeably slower than a stand-alone workstation: benchmarks

indicate a degradation of about 80,% in total elapsed time. The bottleneck appears to be CPU utilization on
the servers.

Experience with this prototype has been used in redesigning certain aspects of the syste,n. The changes

mainly address the issue ¢ffperlbrmance. operability, and compatibility _ith Unix.

This paper has been
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1. Overview of Goals and_Design
This paper presenLs our experience in building a distributed file system (Vice) and die workstation attachment

(Venus) to interface with it. A separate paper [21describes the design in detail, including justification for die

decisions made and a survey of related work. Here we concentrate on implementation and experience to date,

including only enough design information to make the paper self-contained.

Vice is intended to be shared by thousands of workstations on the Carnegie-Mellon University campus. It
provides an integrated Unix-like file naming hierarchy, using a network of cooperating file servers: users'

worksLations (running Unix) attach to it by way of a high-performance local area network. At present Vice is

used by several hundred individuals and about 100 workstations: over the next year we hope to expand it to

handle several hundred workstations, with at least occasional use by anybody on campus.

The current version of Vice is a prototype, intended primarily to verify the following fundamental design

concepts:

Whole FilcTransfer

Workstations read and write entire files from file servers rather than pages or records.
What effect does this have on performance? Are large files sufficiently rare?

File Caching Workstations cache files on their local disks. Are these disks large enough to cache a

typical working set of files? How well do our cache management algorithms work?

Unix Semantics How well can we emulate Unix and retain the benefits of centralized timesharing systems
in a distributed environment? Does whole file transfer conflict with our desire to run Unix

application pmgrmns without modification?

Server Load Vice is implemented with multiple cooperating servers in order to grow with the user

community. How many workstations can a single -sen, er support? Can the load be
balanced across servers?

The rest of this paper presents key implementation decisions and our experience with the prototype system.

Section 2 describes many of the important implementation details. Section 3 gives the current status of the

system. In Section 4 we give measurements of the performance of..the prototype. Section 5 describes the

answers we discovered to our design questions and other experience we gained from the effort. Section

6 describes changes we are making to the next version based on our experience from the prototype. Finally,
Section 7 contains a brief summary of the paper.

2. General Implementation
The major components of file implementation include the file server and related programs (\"ice) and the

workstation cache manager (\:enus). They communicate using a remote procedure call package (RPC) that is

linked into each program. These programs mn on the Berkeley 4.2BSI3 release of Unix [11, which we have
modified to allow Venus to intercept file system calls on the workstation.

Since our primary goal in the prototype was to test our design, _e traded performance tbr function whenever
it would ;fffect development time. Often this meant using orf-the-shelf software, t:or example, the file server

itself is based on Unix and depends heavily on the Unix file system: the RPC package uses 4.2BS1) IP sockets.

2.1. Vice/Venus Interface

Since \"ice is ba_ed on _hole tile tr:msfer, tile illlcrface between \'ice and Ventls is \cry simple. It has two
basic t_pes of ob.iecls: ./i/cs are uninterprcted b_le stre;m]s. ;rod ,]in'clm_cs _He li_ts of Iitcs and other

directories. Objects arc named in the illlCll:lCC \'_ ilh their full pathname.
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Figure 2-1: Vice/Venus Overview

The operations provided by the Vice interface allow Venus to:

• Fetch, store and removefiles. 3"heentire file is shipped on each fetch or store.

• Make and remove directories. Venus cannot directly store a directory: directories are updated as
side effects of other operations.

• Get attd set status information. For both files and directories.

• Check access rights andfile curreno'. Access rights are checked for a particular user relative to a
particular file or directory. The same operation also returns the last change date for the file or
directory.

• Acquire and release locks. To implement Unix advisory locking.

2.2. Vice

Vice is distributed over several server machines. On each of these machines, there are a number of

independent Unix processes that implement the server function by fielding requests and performing updates
on the local Unix file system.

2.2.1. Data Storage

A Vice file server stores its data in the server machine's Unix file system. The Vice directory hierarchy is
represented by an identical Unix hierarchy, plus additional files and directories used to store status
inIbrmation.

There are two types of file storage within Vice. Normalfih's are stored _ztone server onh'. Repticatcdfilcs are
stm'cd at all servers. Venus can fetch rcplic,lted files from ;my serxcr. I:,,_chfile hz_sa single server, its
custodian, to which all stores must be directed. When replicated files arc upd,ltcd, the custodkm is rcspcmsible

for copying the changes it) all ¢_thcrscr_crs. Ihc upd_lting is done (hrot@l an aS\IlcllrolloLIs pl'OCCss, and
_hilc the updating is going on the n¢m-cuslodi_mserxers h,l_c an old copy of the lilt. Replicated lilts are
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Figure 2-2: File Distribution

A replicated directory must have a replicated parent. This results m a tree that is replicated down to a frontier

in the hierarchy, and is normal fl'om there on down. Note that the subtrec extending l'rom a normal directory
has a single custodian, and a server stores a file (or directory} onl_ if it stores its parent.

]'he location dau_base, that tells which server is the custodian for each file, is embedded in the file tree. A

server finds the custodian tbr a file by searching tile replicated part of the tree until it finds either the file or a

normal (non-replicated) directory whose custodian is not the server doing the searci_. Stub directories are
maintained on all servers for the top level of non-replicated subtrees in order to point to the custodians of the

subtrees. The server returns the name of the custodian and the name of the root of the normal subtree that

contains the file. Venus keeps this information in a cache which it uses to guide subsequent requests to the
proper server.

Ifa server is down, non-replicated files on that server can neither be read nor updated. If the custodian server

for a replicated file is down, the file can be read from other servers but not updated.

Status information is stored in Vice in a set of shadow files. For each directory stored in Vice there is an

associated .admin directoo'. Within that .admin directory is a .a,bninfile that contains status information for
the director)'. Each file in the stored dircctor_' also has a corresponding file in the .admin directory that
contains status information/'or the file.

Vice stores status information about flies organi/ed as a list or' named properties. The information stored
includes:

Type Rcplicated (stored at all scr\crs) or normal _stoIcd only at one scr\er}. This is stored for
directories only.

l.ocation The custodial1 for the lilt. Ihis is stored For directories OlfiV.

IJatcs The time at which the l)le last stured ,rod the time that the st;lltl, was last modilicd.

Access [.ist • The access list x_hich conlrols ,lcccss to the Iilcs. I'his is stored li_l directories only.
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Figure 2-3: Status Information

Owner The name of the owner oft.he directory. This is stored for directories only. The owner of a
director), can always change the access list.

User Defined Clients are allowed to define named properties and store them with the file. Venus uses
this for the execute and setuid bits.

Since some of the properties are stored only with directories, all files in a directory have those properties in
common. Specifically, all of the files in a directory have the same custodian, type. owner, and access list.

We chose this representation to avoid writing our own underlying file system. In addition to allowing us to
use the storage and naming mechanism, it made available utility programs such as tape backup/restore and
the file system consistency checker. Also. we have access to the files even if our file server fails. However, dlis
choice imposes on us various restrictions in the way we can share files, and it leads to noticeable CPU
overheads, for example, in looking up file names.

2.2.2. Process Structure

When a server machine is brought up several processes are started to handle the requests to the server. The
primary process is the file server process, which listens for connecting workstations. When a workstation
connects, the file server process forks a worker process which handles all requests for a particular user from
that workstation. All requests from that user on that workstation are routed to daissingle worker process.

The lock process is used to handle any lock requests. Unix does not allow memory to be shared between
processes, so we use a separate process in order to keep the locks in memory. [.ock requests must be directed
to the custodian of the file being locked.

The backup and cluster process are used to keep replicated files up-to-date on all servers. Worker processes
write entries to a backup queue whenever a replicated file is modified. The backup process examines the
queue and sends requests to update the file to the cluster processes on the other servers. The cluster process is
like a worker process, but has ,_simpler interface and bypasses normal checking of requests.

2.3. Venus

\'onus is implenlentcd ,is a user-level processlLmnin,,_on a workstalJouwilh a modil]cd Llnix kernel. In
responseto file s_stemcalls madebx client program,<Venuscachesfiles from the scrxcnsarid makes the files

in its c;_dw a_aitablc to the client programs. In oldcr tO do this. Venus mum locale the files among the



servers, connecting to servers as needed on behalf of the client.

2.3.1. Kernel interface

From the point of view of an application running on the workstation, the \:ice file system appears as a subtree

in the name space. The workstation kernel intercepts file system calls directed to files in that subtree and

routes them to Venus. When it has performed the system call, Venus sends a reply via the kernel to the
original calling process.

Unix uses a special kind of file system object known as a device file to implement device drivers. This
mechanism alh)ws the kernel implementor to provide special routines to handle reads and writes to the device
file. Venus uses such a file to communicate with the kernel. Whenever Venus reads from the device file, the

kernel delivers the parameters for an intercepted file system call. Venus replies to the call by writing to the
device file.

When a program opens a remote file, Venus first verifies that the program making the request is allowed to
open the file. It then checks that the file is in the cache and up-to-date, t'etehing a new copy if necessary.

Venus sends the name of the local copy of the file to the kernel. The kernel opens the file in the cache and

gives the requesting program a file descriptor for the local copy. Read. writes, and seeks applied to this
descriptor are not trapped by d_e kernel, so they run at full speed.

Close requests are trapped and sent to Venus. If the file _as open for writing, Venus stores it back to the file
server.

Other calls are simpler: Venus receives the request, does some work to peril)tin the operation, and sends a

reply back to the kernel. For example, a utimes system call. _hieh sets the modified date for the file, is
translated into d_e Vice call that sets the file's status information.

2.3.2. The cache

The cache is maintained _ith an I_RU replacement algorithm. The current impiementation limits the cache

size by the number of files in the cache: a later xersion x_ill use t,he disk space available on the local disk to
control the cache size.

Each entry is marked with the version number of the file that was fetched to create it. When a program opens
a file that is in the cache, Venus must check that the cache entry is still valid. In addition, Venus checks that

the user making the request is authorized to open the file. for it may have been fetched into the cache by
another user. These checks are combined into a single file server operation (TestAulh).

Ira file is open for writing. Venus satisfies requests concerning the file from the _ersion being modified in the

cache. For example, if a program is writing a file and requests its length, this intbiTnation is taken from the
version being written instead of from the version on the server.

Unix supports fine-grain sharing of file data between processes on a single worksultion. Ira process writes ten

bytes of data to a file, then the new data is immediately visible to any other process that attempts to read it.

Because our server only supports the transfer of entire files, we cannot support this degree of sharing between

processes on different machines.

Fine-grain sharing between processes on the same m,_chine is supported by having the ptocesscs share cache

entries. Ifa program is writing a file and another (_pem, it. the_ will wind up with lilt descriptors onto the

same tile in the cache. Processes that are related \ia l]_rk_arc gtmrantced to get l]nc-grain sharing because

the_ must be on the same inachJllC. Also. a user c,m _atL+h the progress ol" a l+togr,tm that is +_riting ,1 large
output file.

Applications that auempt to synch_mi/c tmrclzJled pr_wc,,c_ (e.g. t_o ttser_ ltlnllllm ,I d,_tahasc pr(_gl,llll ir()lll

dillL'rcnt _orkstations} c,mnot usc the t]llC-gl',lill sh/irilu,2. Ihe :H_l)liL'ations ('(ul ,hare data (m ,m _q_cn/dose



granularity instead of read/write granularity.

We have not ,vet encountered ;lily applications that are affected by this difference, but it may become a
problem later as more database applications are developed for our system.

2.3.3. Locating files

Whenever Venus sends a request to the wrong server, it receives in the reply the name of a subtree that

contains the file it needs and the custodian for that subtree. Venus uses the custodian name to continue its
search for the file.

Venus remembers the names of the subtrees and uses this information to make first guesses as to where to
find files in subsequent requests. When Venus needs to direct a file operation to some server, it looks in the

location table for the longest prefix of the pathname named in the operation. ]'his prefix gives the deepest
spot in the file hierarchy along the path to this file for which a server is known. "['his server is used as the first
guess for the real location of the file.

2.3.4. Connection management

Since authentication applies to RPC connections instead of to individual remote procedure calls. Venus must
maintain separate connections to the file servers for each user on the workstation. The current

implementation of RPC restricts the number of active connections, so Venus maintains a table of active

connections, making and breaking connections to file servers as needed, using an LRU replacement
algorithm. Venus closes connections that are idle for 30 minutes to conserve server resources.

2.4. Other

2.4.1. RPC

The RPC package provides a high level of communication between Vice and Virtue based on a client-server

model using remote procedure calls for transfer of data and control. The RPC subroutine package has been

implemented on top of the lnternet protocols. The distinctive features of the RPC package are:

• The transfer offiles as side effects of remote procedure calls. This capability is used extensively in
the file system for transferring files to and from the workstations. A separate channel is used for

file transfer to allow for optimization by the system for the differences between file and control
transfers.

• Built-in aulhentication facililies which allow two mutually suspicious parties to exchange
credentials via a three way encrypted handshake.

• Optional use of encm'ption for secure communication, using session keys generated during the
authentication handshake.

"['he server half of the RPC package supports the file server's process structure by automatically fi)rking a
worker process fi)r each new connection. The fi)rk can he suppressed fin new connections, but the server
process must then disconnect from the client before serving a new client.

2.4.2. Protection

We felt that standard Unix protection would not be sufficient to handle a group of users as large as the CM U

campus. ro allow for this. a more elabor, ltc protection mcc'h,ufi,+nl was dexised. This allows users or groups

to be gixell access lo directories. /.l.scr_ arc ,iccounlablc ClHitics v+ithin the Iilc svsleln ;.illd gl_)lll_S ;ire

ctfllcctions t)l"tlSClSor other giOUl+S. An _lCCC.vs/:_1is SlOlCd _+ith tilth directory that IllapS tlSCl'Sor groups to
access rights to that directory. The ,recess rights that are supported are:



Read Allows a file to be fetched.

Write Allows an existing file to be stored.

Insert Allows a new file or subdirectory to be created.

Delete Allows an existing file or subdirectory to be removed.

Lookup Allows the names of the members of a directory to be retrieved.

Lock Allows a l,ock call to be made.

Administer Allows the access list to be changed.

qqlese access lists allow better control of who can do what to files than the Unix protection system. However,

since they are associated only with directories and not with files, all files in a given directory must have the
same level of controL

2.4.3. Authentication

RPC implements a three way handshake authentication protocol and the ability to encrypt traffic on the

ethernet. Initially, however, we have just used the userid on the workstation to establish the connection to

Vice. There is currently no check in Vice to ensure that the user is _,:llo he claims to be: we intend to capture

the login password and use it to authenticate connections.

3. Status
Our servers run on SUN 170s and VAX 11/750s with four megabytes of memor.v and two 400 megabyte disk

drives each, The workstations are SUN 120s and SUN 100s with two megabytes of memory and 70 megabyte

local disks. SUNs are based on the Motorola 68010 processor chip.

By using standard facilities and by using machines that store data in different byte orders, we have tried to

keep our code machine independent so that we can port it to other machines easily.

As of March 1985 we have two file systems running. One is our internal system and consists of two servers

with about 50 workstations and 75 users and has been in operation for nine months. The other is used outside
the ITC and consists of four servers, with 50 workstations attached exclusively to it in addition to the internal

workstations has been in operation about two months. About 250 users are authorized to use the external

system. We use Ethernets with fiber optic links between gateways to connect the workstations and servers.

The internal system has about a gigabyte of data stored in it, and the external system has about 1.5 gigabytes
of data.

4. Performance
In this section, we discuss a number of performance-related issues pertinent to our implementation. One of
the most important of these issues is the ratio of remote to local file access tittles. Also important are the

effects of whole-file transfer and caching on perfbnnance. We are also interested in knowing how many users

can be reasonably assigned to a server, whether we are balancing the load on our servers evenly, and on the
factors whicl_ currently limit performance.

A user who is accustomed to a stand-alone workstation perceives some qualitative perlormancc differences
when he uses a Virtue workstation. Section 4.1 describe these differences. \\'e then present quantitative

resuhs in Sccti(m 4.2, based _))laclua[ measurements (fl"tile system.



4.1. Qualitative Observations

Although command execution is noticeably slower in Virtue than on a stand-alone workstation, the

performance is oEen better than on tile timesharing systems used by tile general campus user community at

CM U. Perfonnance degradation is not uniform across all operations. Some operations, like the compilation

of a large program, proceed at almost stand-alone speed. Other operations, such as a recursive search of a
subtree of files, take much longer when the subtree is in Vice.

Certain programs run much slower than we had originally expected, even _vhen all relevant files are in the

local cache. This is because such programs obtain status infi)nnation about files {using the sial primitive in

Unix). betbre actually opening them. Since each _'lal call either involves a cache miss or a cache validity

check, the total number of client-server interactions is significantly higher than the number of file opens. This
increases both the total running time of these programs and the load on the servers.

The whole-file transfer approach contributes significantly to good performance during many frequent user

operations such as program compilation. Execution proceeds at the same speed as on a stand-alone system
except for an initial delay to fetch the compiler binary and the file being compiled (or to validate their cache

entries), and to store the generated code back into Vice. Another common user operation is the editing of

files. The editors in use in our environment read the entire file being edited into virtual memory prior to
using them. Whole-file transfer neither improves nor hurts performance in this case,

We find that performance is usually acceptable tip to a limit of about 25 active users per server. However,

there have been occasions when even a few users intensely using the file system have caused performance to
degrade intolerably.

4.2. Measurements

An obvious quantity of interest in a caching file system is the hit ratio observed during actual use. Venus uses

two caches: one fi)r files and the other for status infilrmation about files. :\ snapshot of the caches of 12

machines in our environment shows an average file cache hit ratio of 81%, _vith a standard deviation of 9.8%,
and an average status cache hit ratio of 82%, with a stand deviation of 12.9%.

Also of interest is the relative distribution of individual \/ice calls. Such a profile is valuable in improving
server performance, since attention can be focussed on the most frequent calls. Table 4-1 shows the observed

distribution of each Vice call which accounts for more than oae percent of the total. This data was gathered
over a one-month period on five cluster servers. The distribution is dramatically skewed, with two calls

accounting for nearly 90% of the total. The Tesl/lulh call is used to validate check entries, while GetFileStal is

used to obtain status information about files absent from the cache. The table also shows that only 6% of the
calls to Vice (Fetch and Store) actually involve file transfer, and that the ratio of l"etcD calls to Store calls is
approximately 2:1.

In order to investigate the performance penalty caused by Vice and Venus, we performed a series of

controlled experiments using a benchmark. This benchmark stresses the file system far more intensely than a

typical user and involves a series of file copy operations, directory and file scans, and a large compilation.
Table 4-2 presents the total running time for the benchlnark as a tunction of the number of clients

simultaneously executing that benchmark. The table also shows the average response time for the most

frequent Vice operation, Te,_I/Ittlh, during each of the experiments. One important observation f'rom this

lable is that the benchmark takes about 80% longer in the 1client/server case than in tile stauld,llone case. A

second observation is that the time lbr 7"esl,,lultl rises r,ipidly be)end ii load of5 clients/server, indic,iting
server saturation. For this benchmark, thcrefi_re, a client-server ratio between 5 and 10 is the maximum
feasible.

I:or measuring server usage,_e h:i_c installed sol't_ale im SClVelS((i Illaiiltain statistics abOtlt CI>LI and disk
utilization, lind aboilt data trallslk.'rsto alld iroln the disks. lklble 4-3 pl'CSClltStills d<ildl Ior fi_tlr sci_ers over :i



Server TotalCalls ' Call I)istrillulion

FestAuth GctFileStat Fetch Store Sctt.ilcStat GctMcmbers AlIOthers

clusterO 1625954 64.2% 28.7% 3.4% 1.4% 0.8% 0.6% 0.9%

_ _8%cluster1 564981 64.5% ,2.7,o 3.1% 3.5% ,. , 1.3% 2.1%

cmu-0 281482 50.7% 33.5% 6.6% 1.9% 1.5% 3.6% 2.2%

cmu-1 1527960 61.1% 29.6% 3.8% 1.1% 1.4% 1.8% 1.2%

cmu-2 318610 68.2% 19.7% 3.3% 2.7% 2.3% 1.6% 2.2%

Mean 61.7% 26.8% 4.0% 2.1% 1.8% 1.8% 1.7%

(6.7) (5.6) (1.5) (t.0) (0.8) (1.1) (0.6)
i

NOTI':

Figures in parentheses are standard deviations.

The daL_ shown here was gathered over a one-month period.

Table 4-1: Observed Distribution of Vice Calls

two-week period. The data is restricted to observations made during 9am to 5pro on weekdays, since this is

the period of most intense system use. As the CPU utilizations in the table showy, the servers are not evenly
balanced. This fact is independently confirmed by Table 4-1, which shows a spread of about 5:1 in the total

number of Vice calls presented to each server. Moving users to less heavily loaded servers is possible, but
relatively cumbersome at the present time.

Table 4-3 also reveals that tke two most heavily used servers show an average CPU utilization of about 40%.

This is a very high figure, considering that it is an average over an 8-hour period. Closer examination of the

raw data shows much higher short-term CPU utilization: figures in the neighborhood of 75% over a 5-minute

averaging period arc common. Disk utilizations, howc_er, arc Intich lower. The 8-hour average is less than

15%, and the short-term peaks are rareh' above 20%. We conclude from these figures, and fiom server

utilization data obtained during the benchmarks, that the current performance bottleneck is the server CPU.

Ilascd on profiling of the servers, wc are led to believe th,it the two t_lctors chiefly responsible for this high

CPU utilization are the frequency of context switches bet_veen the rnanv server processes, and the time spent
by the servers in traversing (ull pathn,unes presented by _orkstations.

To summarize, the measurements presented in this section indicate th,_t significant performance
improvements are possible if we reduce the frequcnc,v ofcac.he xaliditx checks, i-edtlcC the ntnllbcr of server

processes, retluire workstations rather th:m the scrxcrs to do p;_thnamc tr4xcrsals, and b;llancc SCl_cr usage bv

reassigning users. Section 6 tlisctlsSCS the spccitic _avs in _ hich _e intend t_) illct)ll_orate these changes.
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Configuration O, erall l_enchmark Time Time per TestAuth (;all

Absolute (s) Relative Absolute (ms) Relative

Stand-Alone 998 100% NA NA
(9)

1client/server 1789 179% 87 100%
(3) (0)

2 clients/ser_'er 1894 190% 118 136%

(4) (1)

5 clienL_/ser_'er 2747 275% 259 298%

(48) (16)

8 clients/server 5129 514% 670 770%

(177) (23)

10 clients/serxer 7326 734% 1050 1207%
(69) (13)

1

NOTE:

Figures in parentheses are standard deviations.
Each client had a 300-entry cache.

Each data point is the mean of 3 independent replications.

Table 4-2: Stand-Alone versus Remote Access

5. Evaluation

This sectionpresentsour observationsof the prototype along dimensions other than performance. We first

discussthe extent to which our high-level designdecisionswerevalidated by dacprototype. Wc then present
additional observations that bear on the detailed design decisions. The material presented this section
motivates the changes proposed in Section 6.

5.1. High-Level Design

5.1.1. Whole file transfer

"lranslL'rring entire tiles to and from the workst,_ticm contributes greatly to the success of our prototyl)c.
I)cH_itc the relatixelv slo_ pcrlbrnmncc of our servers, the overall system is quite us:d_lcbecause rc,tds, and
_iitc_ ,ire performed locally.
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Sener Samp|es CPU L'tilization Disk 1 i Disk 2

total user system util KBytes xfers util KBytes xfers

!

clusterO 13 37.8% 9.6% 28.2% 12.0% 380058 132804 6.8% i 18(_017 75212

(12.5) (4.,1) (8.4) (3.3) (84330) (35796) (42) (1046821 (42972}

cluster1 14 12.6% 2.5% 10.1% 4.1% 159336 45127 4.4% ! 168137 49034

(4.0) (1.1) (3.4) (1.3) (41503} (21262) (2.1) i (63927) (32168}

cmu-0 15 7.0% 1.8% 5.1% 2.5% 106820 28177

(2.5) (0.7) (1.8) (0.9) {41048} (10289)

cmu-1 t4 43.2% 7.2% 36.0% 13.9% 47S059 126257 15.1 373526 140516

(10.0) (1.8) (8.7) (4.5) 1151755} (42409) (5.4) (105840) I (40464}
l

NOTE:

Figures in parentheses are standard deviations
Peak period is defined as 9am to 5pm on weekdays.
The data shown here was gathered over a two-week period.

Table +3: Server Usage During Peak Period

With the current system's performance, we feel quite comfortable handing files up to about a megabyte. We

have rarely encountered larger files in day-to-day usage.

5.1.2. File caching
The default file cache for Venus is 300 files. With this cache size. we achieve an average cache hit rate of over

80%. The cache normally fits into about ten megabytes of the 30 megabytes of disk our workstations allocate
for the cache. This disk allocation has been generous enough that we have not yet devoted the effort to
converting Venus to use a disk space limited cache.

5.1.3. Unix semantics

The cache manager provides an interface to the file system that is highly compatible with Unix. We run

standard Unix applications without modification. The high-level design decisions do not interfere with our
ability to emulate Unix. The difference in file-sharing granularity has not proved to be a problem in practice.
tqowcver, as described in Sections 5.2.3 and 5.2.4. certain decisions made in the prototype implementation

precluded the renaming of directories and the use of symbolic links.
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5.1.4. Server load

The current prototype can handle 15 to 25 workstations per server while providing acceptable perfi)rmance.
Our measurements indicate, and experience bears out, that the servers can become substantially slower if a
few workstations are doing file system intensive work.

Replication of system files will allow us to balance server load. The current imbalance reported in Section
4.2 is due both to a bug ill the implementation of the file location algorithm and to the difficulty of
reassigning users to servers in the current system.

5.2. Detailed Design

In dais section we discuss certains effects of decisions made in the prototype implementation. These
observations do not reflect adversely on the high-level design, but indicate changes that need to be made in
building a more usable system.

5.2.1. Operation
The current system is difficult to operate and maintain. The two main problems are an inability to reassign
users to servers easily and the lack of convenient facilities for backup and restoration of files.

The fact that the file system does not tie the file name to the server that it is on is a big advantage. It allows us
to move users from one server to another without changing the names of their files. However, actually
moving a user to a different server is difficult because the location database is embedded in the files. To move
a user's subtree of files, we must save the files somewhere, delete the old subtree, create a new directory for
the user on the new custodian, and then restore his files.

We back up the current system by doing tape dumps of the server file structure. Because the dump programs
do not understand the invariants of the Vice data structures, special care must be taken when restoring files
from the backup tapes.

5.2.2. Protection

We have found the access list mechanism to be quite useful. It is superior to Unix group protection because
the user is easily able to create lists of users for protection purposes without interacting with the system

administrator. While it has many advantages, it makes emulation of the Unix protection scheme difficult. We
are occasionally inconvenienced by not being able to set protections separately on individual files. Also. since
the chmod system call does not change the access lists, Unix programs cannot change the protection of files.
This has been a minor inconvenience.

5.2.3. Symbolic Links
Vice does not implement symbolic links. While few programs use them explicitly, they are quite useful in
administering the Unix system. They allow sharing of directories, and are frequently used to convince

existing software with wired-in pathnames to look else_here for files. We are quite inconvenienced by their
absence from Vice. For some of our problems, symbolic links on the local disk of the workstation pointing
into Vice are sufficient. However. even _hen this scheme works, the solutions are more complicated than
they would be if we could put symbolic links in Vice.

5.2.4. Rename

The rename system call is allowed in Vice only fi_[ordinary files, not fi_rdirectories. "l'he inability to support

rename on directories is a tmanticipatcd side-eflL'ct of uur decision to use full pathnames in the Vice/Venus
intcrli=ce. Since we have no Iow-lcxel idcntll]ers for files in Vice, the names used to rcA.'r to files in the cache

change during a rename, making it impussilHe to reliabh _alidate these cache entries.
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,ks is file case with symbolic links, we have found the inability to rename directories more a user
inconvenience than a source of incompatibility for application programs.

6. Vice II

In response to the problems we encountered with the prototype we are making a number of changes in the

next system. The concept of file system volumes answers many of our operational problems. The use of file
identifiers in the Vice/\"enus interface will allow us to rename directories and implement symbolic links.

Using a single-process file server and changing the servers data representation should substantially reduce the

system overhead we encounter on the server.

6.1. Volumes

A volume is a collection of files comprising a partial subtree of the file system hierarchy. The volume is the

administrative unit: the files within a volume are owned by a single user and charged to a single account.

\,'olumes will have disk space quotas, an expiration date, access control (to bc used in addition to normal

access control on tiles), and other useful attributes. Volumes will typically be quite small (one student's files,

for cxampte) and will be easy to move between servers. Snapshots of volumes, called wad-only volumes, will

be replicablc to any subset of the sen'ers in the s_stem: daese will be used to distribute highly available but
slowly changing public files.

6.2. Vice/Venus interface

The new system will use unique file identifiers (jqds) to identify files. A rid contains a volume number, a key

into the volume index, and a additional field to ensure uniqueness within the volume. The interface will

remain basicall_ the same, _ith rids taking the place of pathnames and some restrictions removed.

The unit of file transfer will still be the entire file. When a file is fetched, ho_ever, a callback is generally

obtained, unless the file is being fetched from a read-only _olume. When the file changes, Vice will notify all

interested parties. This should greatly reduce the number of interactions between Vice and Venus as cache

validation tests account for over 60% of the calls in the present system.

6.3. Vice

The changes for the next design are intended to speed tlp the system by reducing the overheads caused by

using man.v processes and storing files in the Unix file system hierarchy. Our use of one process per
workstation connection has frequently pushed Unix to its limits. We had to rcconfigure our server kernels
several times to increase various table sizes.

6.3.1. File storage

The current system uses the Unix file system for naming :tnd storing information, and tacks on extra files for
status information. 'lhe new system will keep a volume index, indexed by rid, containing status information

and file addressing informatitm. We plopt_sc to simply use a Unix inode nulnber for the latter: in order tt) do

dais some ininor kcrnel n]odifications are required. Each serxer will Stole :t replicated volume location

database which will he used to direct clients to the :_ppropriate serx cr machine.

6.3.2. Single Process Server
"lhc current unplcment,_tion uses many Llnix procc_se_ per server. This results II1context switcimag mcrhc:,d

,rod high Xilltl;ll memory I_a',-:'ingdcnlands. It al_o limits our abilit_ t(_cxplicitI3 cache inlbrmatlon or to share

inl;,ulnaHiou _ithout illtrodtlcillg 3ct ;llll)lhcr pit,co,,,, (the h>ck process. I_)l" c\:mHHc)or storing the 'daaued

information in the lilt system. Io address btRh of these I','qlCS.\_C ilalXe decided t_ implement tile I11_1ill file
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server tractions within a single process. In order to allow this process to handle requests rapidly, it will
control a small number of file transfer processes which will perform the actual bulk transfer of data to/from

tile workstation, l'he majority of requests witl be handled directly by the server.

6.3.3. Venus

Venus will change to handle the new file identifier interface. This interface forces Venus to handle pathname
lookups, and enables us to support symbolic links that cross server boundaries. The current implementation
of Venus handles only one request at a time: the next version of Venus will overlap requests from several
processes. The system call intercept code in the kernel will remain essentially the same.

6.4. RPC

The current RPC package restricts server processes to ser_,ing at most one client connection at a time. The

new implementation will allow multiple clients to connect to the same server process concurrently, which will
enable us to build the single process server for Vice.

7. Summary

The work described in this paper was motivated by a desire to validate the high-level decisions we had made

in the design of a large-scale, location-transparent distributed file system. The most important of these
decisions are the transfer of entire files to and from servers, and caching at workstations.

Our experience with the prototype has been mostly positive. A workstation using the distributed file system is
quite usable despite the fact that remote file access is noticeably slower than h)cal access. We have met the

goals of location transparency and user mobility, and are able to emulate the Unix file system closely enough
to be able to run application programs unchanged.

The experience of running the prototype with an actual group of users has given us confidence in our

high-level design. It has also revealed that certain detailed design decisions need to be changed in order to
allow the system to scale better, and to provide a more accurate emulation of Unix.

Work on a refined implementation is currently under way, and should be complete within a year.
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