
CMU-ITC-85-003

A Large-Parameter Remote Procedure Call Mechanism in Unix

M. Satyanarayanan
Information Technology Center

Carnegie-Mellon University

The Problem

This document describes a Remote Procedure Call (RPC) mechanism for communications

between workstations and a variety of ce.ntral services. The term "RPC", as used here, connotes the

following:!

• It is an abstraction, representing a style of communication between a Client process on

one network node, and a Server process orl another node. Each of these nodes may
potentially support multiple clients and servers.

• There is no attempt to integrate RPC features into the programming language in use at
the client and server sites. In particular, the languages in use at the two sites may be
different. A network-wide standard is used to represent data types and the RPC
mechanism is implemented by a runtime library.

• Interactions begin with a rendezvous between a client and a server. This is followed by
an alternating sequence of RPC requests by the client, and replies by the server. Each
request consists of an Operation and a set of Parameters. A reply consists of a
Return Code and a set of result parameters.

• Some of the transmitted RPC parameters may be very large in size. For example, when
dealing a file server, entire files may be parameters. In the future, requests to other
servers may involve parameters representing other kinds of large objects.

• The actual transfer of these large parameters may involve interactions with other
subsystems at the client and server sites. For instance, transmission of a file is NOT
viewed as a movement of a string of bytes between the address spaces of the client and

server. Instead, it is viewed as the movement of that string of bytes between two file ,... _,
systems, mediated by the server and client processes.. > _" f;_._ " /_! - - _?_ _'_ _-

t

The performance and code structuring implications of the last two requirements have a strong

influence on the proposed mechanism.

The Proposed Mechanism

A logical RPC connection between a server and a client is associated with two logical Channels: a

Request_Reply Channel and a Bulk-Transfer Channel. Each of the channels is bidirectional,

and uses protocols tailored to its function. The bulk-transfer channel is used for the sole purpose of

transmitting large-sized parameters, generically referred to as Bulk-Units. All other data associated

with an RPC connection are transmitted over the request/reply channel.

1Anin-depthdiscussionof RPCcan be found in [2], whileexperienceswith aspecific implementationaredescribedin [1].

rf._ I

Neither server nor client code is aware of the fact that there are two logical channels. Each of them

sees a single RPC connection, modelled by a set of interface calls supported by a Stub at each end.

The initiation and coordination of activities on the two logical channels is handled entirely within the

stubs. Conversely, the stubs are ignorant of the operations being requested by the client, and the

parameters being passed between client and server.

A server can examine an RPC request before bulk-units are actually transferred. Consequently, the

transfer of bulk-units is always initiated by the server. We assume that a given RPC connection deals

with only one kind of bulk-unit.

A Bulk-Unit Descriptor is an RPC data type that is a placeholder for a bulk-unit in a parameter list.

It contains the information needed by the stubs to define a complete execution instance of the

corresponding bulk-transfer protocol. For example a file transfer bulk-descriptor will typically contain

an opcode indicating whether a file is to be sent or received, the file name on the client side, the file

name on the server side, and other optional information such as the encryption key to be used when

transmitting the file. Bulk-unit descriptors are created and partially filled by the client, and sent in an

RPC request to the server. The server examines the request, fills in the missing pieces of information

in bulk-descriptors, and requests its stub to carry out the bulk-unit transfers. On completion of all

bulk-transfers, a response is communicated back to the client.

The logical separation of bulk-transfers from other activities is motivated by the observation that the

large size of bulk-units typically necessitates the use of a specialized protocol for their transmission.

If a single logical channel were to be used, the stubs would have to be complex finite-state machines,

representing nested protocols.

Using two logical channels breaks the stub into two simple pieces, one for each channel. In the

absence of errors, the coordination of these channels is trivial. When an error does occur, more

effort is needed to clean up state. Thus this approach streamlines and simplifies the normal case,

concentrating the complexity in the area of error handling.

Implementing the Mechanism in Unix

In the 4.2BSD version of Unix, communication between processes on the same or different network

nodes is supported via an abstraction called a Socket. Sockets have unique network-wide Socket

Addresses, as well as process-specific Socket Descriptors. The Unix kernel maintains the

binding between descriptors and addresses, and multiplexes the physical network among all the

sockets on a given network node.

A socket may be parameterized with respect to its Domain, and its Type. The former attribute

determines the format of a socket address, while the latter specifies the service guarantees accorded

to transmissions via that socket. Incorporating new socket domains or new socket types is a fairly

major operation, involving extensions to the Unix kernel.

The stubs in tile proposed RPC mechanism will be implemented as code above the Unix kernel.

Each Unix process will have its own copy of stub code and data linked in.

A key implementation issue is the mapping of the logical request/reply and bulk-transfer channels

into sockets. The obvious approach is taken here: two sockets are used, one for each logical

channel. The types of sockets for each of the channels can be chosen to take advantage of the

characteristics of data transmission on them. For example, requests and responses are brief and are

unlikely to require sophisticated flow control. File transfer, on the other hand, may require extensive

sequencing, reassembly and flow control.

It has been suggested that this use of two sockets to implement a single RPC connection is

counterproductive for two reasons:

• One reason is a flavour of the "Two is harder to manage than one" argument, which
basically says that keeping track of and coordinating two loci of communication is harder
than multiplexing all communication on one locus.

• The second reason cited is that the use of more than the bare minimum of sockets is an
unnecessary consumption of resources.

The decision to persist in using two sockets is based on the following observations:

• Two is not always harder to deal with than one. In particular, if the code dealing with each
of the two logical channels is physically distinct, each is individually likely to be simpler
than code that multiplexes a single socket. Since we are proposing a synchronous RPC
mechanism, the amount of coordination needed between the two channels is minimal. As
mentioned eadier, even if error handling turns out to be more complex, it is worth
simplifying and optimizing the error-free path, which is the one used most often.

• Multiplexing two logical channels on one socket involves the insertion and recognition of
intormation disambiguating the two channels. This complicates the format of the data

being transmitted. Further, it is redundant because the Unix kernel is perfectly capable of
performing the multiplexing and probably does it more efficiently than one can in a user-
level process.

• Using a single socket means that the path from the kernel interface to the actual network

cannot be independently optimized for bulk- and non-bulk transmissions. Any attempt to
perform such an optimization would necessarily complicate the code within the kernel
that implements sockets, because it would have to recognize and optimally deal with a

3

variety of cases.

• By writing the code from the very beginning to use two sockets, it will be much easier to
experiment with a variety of strategies. If only one socket is used initially, it is inevitable
that structural changes to stub code would be necessary to allow experimentation with
multi-socket implementations later.

Two resources are impacted by the use of an extra socket per RPC connection: a socket

descriptor, and memory for the data structure representing the socket. Neither of these is a

sufficiently precious and scarce resource to warrant insistence on a single socket per RPC

connection.

A Fringe Benefit

Maintaining the distinction between the two logical channels in the actual implementation yields an

interesting spin-off: bulk-units may be transferred to a site other than the client, in a manner that is

transparent to the server. The significance of this observation can be best appreciated in the context

of diskless workstations. Suppose such a workstation W is on a local area network with a file server F

on one node and a disk server D on another node. One could set up an RPC connection with the

request/reply channel between W and F, and the bulk-transfer channel between F and D. Once

initiated by a request from W to F, the transfer of a bulk-unit would proceed directly between F and D.

The key observation here is that neither the server nor client code need be aware of this dichotomy of

sites: the dependency is internal to the RPC stubs.

Whether this potential benefit is really worthwhile can best be determined by actual

experimentation. Using two sockets to implement an RPC connection leaves open this option, if one

chooses to exercise it. Multiplexing both channels on one socket gives up this option, a priorL

Summary

In conclusion, the major points made in this brief document are:

• The efficient transmission of large parameters, lazily-evaluated, is a critical consideration
in the design of the proposed RPC mechanism.

• The use of two logical channels simplifies the structuring of the RPC stub code.

• Mapping each logical channel onto a separate Unix socket paves the way for valuable
performance optimizations.

• The independent mapping also suggests a method for efficiently handling diskless
workstations.

• The resources expended to achieve all these benefits is minimal. The key resource

p w

II ., 4

! expended is, in fact, conceptual and not material.

g

N References
[1] Birrell, A.D. and Nelson, B.J. i

N Implementing Remote Procedure Calls Efficiently.In Preprints ol the Ninth SYmPOsium on Operating Systems Principles. ACM, October, 1983.

[2] Nelson, B.J.

N Remote Procedure Call.Technical Report CSL-81-9, Xerox Palo Alto Research Center, 1981.

!
I
!
i
I
!
I
I
I
!
I
i
i
I

