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Abstract

As architecture-based techniques become more widkdpted, software architects face the problemeobnciling different
versions of architectural models. However, exisapgroaches to differencing and merging architegtwiews are based on
restrictive assumptions, such as requiring viewraets to have unique identifiers or explicitly loganges between
versions.

To overcome some of the above limitations, we membfferencing and merging architectural viewsdzh®n structural
information. To that effect, we generalize a putdi polynomial-time tree-to-tree correction alghrit (that detects inserts,
renames and deletes) into a novel algorithm to #amlgally detect restricted moves and support fagcand preventing
matches between view elements. We implement af $ebls to compare and merge component-and-conné€&cC)
architectural views, incorporating the algorithmin&lly, we provide an empirical evaluation of thig@ithm and the tools
on case studies with real software, illustrating fbracticality of the approach to find and recomrdihteresting divergences
between architectural views.
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1. INTRODUCTION

The software architecture of a system definesigh-fevel organization as a collection of runtin@mponents, connectors
and constraints on their interaction, along withitladditional properties defining the expectedawédr, commonly referred
to as a component-and-connector (C&C) view. Overghst decade, numerous architecture descriptigudmes (ADLS)

have been developed and applied to real-world syste

As architecture-based techniques become more watipted, software architects face the probleneodmciling different
versions of architectural models, including diffeeeng and sometimes merging architectural views— iusing the
difference information from two versions to produenew version that includes changes from bothiezarkrsions. For
instance, during analysis, a software architect magt to reconcile two C&C views representing tvariants in a product
line architecture [CCG+03]. Once the system is enpnted, an architect may want to compare a high-tmnceptual C&C
view with a C&C view retrieved from the implemeritat (using a variety of architectural recovery teigies): the architect
might be interested in implementation-level viaat of the architectural styles or other intent {28%], or in a change
impact analysis [KPS+99]. At runtime, the differenimformation could be used to perform architedtuepair [DHTO02].

Finally, during evolution, the architect may use ttifference information to better focus regressesting efforts [MDRO5].

A number of techniques and tools for differencimgl anerging C&C views have been proposed. Someaskethechniques
detect only a small number of differences. Forainse, ArchDiff [CCG+03] only detects insertions atdeletions, possibly
leading to the loss of information when elements moved or renamed. Many of these techniques aceliatited in their
ability to detect differences based purely on stmat information; they assume that elements havgue identifiers (every
time an element is changed, even when only its tyyaages, it gets a new unique identifier [AP03][K8]), or only match
two elements if both their labels and their typestah [CCG+03]. Other approaches (e.g., Mae [RHM}0ély on the
environment tracking all changes using fine-graieginent-level versioning. Although such environteenay provide the
ability to infer high-level operations such as nexgsplits or clones, in addition to the low-legekrations such as inserts
and deletes, they require a heavy upfront investimetool building and integration, and have notdimme widely adopted.
Similarly, one can maintain a record of the streaitahanges introduced to a view and replay itregianother view [Jim05].

In this paper, we propose an approach that overs@mme of the above limitations. Our main contidng are:

* An approach for differencing and merging two arettiiral views based on structural information, gdiree-to-tree
correction algorithms to identify matches and dfadbe changes between the two views. Optionat tifformation can
prevent matches between incompatible view elemeptxeding execution and improving the quality efditput.

* A generalization of a recently published tree-teticorrection algorithm for unordered labeled tri@d4P05] (that
detects renames, inserts and deletes) into a rpmighomial-time tree-to-tree correction algorithivat additionally
detects restricted moves and supports forcing aeeepting matches between view elements.

» Aset of tools incorporating such algorithms foe #emi-automated synchronization of C&C views.
* An empirical evaluation of the algorithms and tksaxiated tools on realistic case studies.

The paper is organized as follows. Section 2 dessrithe challenges in differencing and mergingctiral views, the
underlying assumptions and the limitations of oppraach. Section 3 describes our novel tree-to¢ogeection algorithm.
Section 4 describes tools that incorporate tretee®-correction algorithms to synchronize C&C vieBgctions 5 and 6
present two case studies on real systems. Finedlyliscuss related work and conclude.

2. CHALLENGES

A view can generally be described as a graph. Miéferencing and merging can then be cast as algmolin graph

matching. Hierarchical architectural views haveea$p of both graphs and trees—i.e., they have alikedierarchy but

there are cross-links that form a general graphhigsection, we consider the benefits of bottplgrand tree differencing
approaches, with graph algorithms being more géneuaitree algorithms more scalable. Having chdsees for scalability,
we describe a new algorithm in the next sectiohreets our requirements.



2.1 Differencing and Merging

Graph matching, in the general case, is NP-comjefs+04]. However, certain classes of graphs dosnffer from the
exponential complexity. For instance, graphs charaed by the existence of unique node labelsbeaprocessed efficiently
[DBB+04]. In addition, efficient algorithms have dre proposed for trees. A widely used measure ofithédarity between
two graphs is the notion of graph edit distance§®&F4]. The approach relies on using a set of guitrations that model
inconsistencies by transforming one graph into laotTypical graph edit operations include the ti@he insertion and
substitution of nodes and edges. Often a costigr@ed to each edit operation. The costs are ajait dependent and used
to model the likelihood of the corresponding indstencies (typically, the more likely a certainansistency is to occur, the
lower is its cost). If a cost is assigned to eadh eperation, then the edit distance of two graghsandg, is found by
searching for the sequence of edit operations thighminimum cost that transforga into g,. A similar problem formulation
can be used for trees; however, tree edit distdifters from graph edit distance in that operatians carried out only on
nodes and never directly on edges. In Section 3degeribe a novel algorithm based on tree edibdig that meets the
requirements of the problem domain.

2.2 Assumptions
Before we do that, we discuss some of the assungptioour approach and how they generalize thoseisfing approaches.

No Unique Identifiers. For maximum generality, we match elements basethein structure and do not require elements to
have unique identifiers, as in ArchDiff. In manypéipations, such unique identifiers do not existidig this assumption
gives the problem of graph edit distance a polyabiiine complexity, as recently shown in [DBB+0AF an optimization,
persistent unique identifiers could be assignedeaw elements to quickly match them between inviooat

No Ordering. In the general case, an architectural view has ni@rent ordering among its elements. Assuming an
architectural view is represented as a tree, thigssts that an unordered tree-to-tree correcligorithm might perform
better than one for ordered trees. Ordered lalieded (i.e., rooted trees in which the childreeath node are ordered) have
been studied extensively with many efficient altoris available (e.g., [SZ97]). However, tree-tetreorrection for
unordered trees is MAX SNP-hard [2J94]. Some atgors for unordered trees achieve polynomial-timeglexity, either
through heuristic methods (e.g., [WDCO3][CG97]}tmough an exact solution under additional asswmpt{e.g., [THPO05]).

Support Disconnected/Stateless OperatiorFor maximum generality, we assume a disconnectedstateless operation,
i.e., no monitoring of structural changes is taktace while the user is modifying a given viewg(eMae [RHM+04]) and
no trace is kept of the set of changes made tew (g.g., [Jim05]).

Detect RenamesFor maximum generality, we do not require labelsmiatch exactly. Names are often modified during
software development and maintenance: a name mayotu to be inappropriate or misleading due thegittareless initial
choice or name conflicts from separately developdatsystems [AC94]. In some application domaingjesview elements
may not have persistent names or may be assigriechatically generated names. This suggests thatltfezithms should be
able to handle sparse or incomplete labels andl&ardames. A number of existing algorithms detenames, but either
assume that a strong majority of nodes will havacdy matching semantic information (labels andeg)por have only been
tested under such a condition: e.g., at least 8Df6ades have exactly matching semantic informaitiof€CG97], and at least
99% of nodes have exactly matching semantic inftioman [RRL+04].

Detect Hierarchical Moves.Architects often use hierarchy to control compgigxand many views are hierarchical: e.g., in
C&C views, the hierarchy corresponds to the systesicomposition. However, architects differ in these of hierarchy:
components expressed at the top level in one viewdcbe nested within another component in somerotfew. A
hierarchical move shifts a node up or down N leuglhe tree, changing its parent. The ability ébedt hierarchical moves is
one of the main features which distinguish our psmal algorithm from the algorithm described in [THHP

Allow Manual Overrides. Since having a correct mapping between view elésnisncritical for the merge operation, user
control over the structural matching process isartgnt: in particular, the user should be ablediwd a match between
elements that cannot be structurally matched, dsasg@revent matches between elements that, athstructurally similar,
are in fact incompatible. Note that manual ovesideist be taken into account by the algorithmfitseld cannot happen as
a post-processing step since there are dependémdies mapping (e.g., two view elementsanda, in View A may not both



map to the same elememntin view B, even ifa; is forced to matchy,). This feature also distinguishes our algorithonir
existing ones.

Type Information for Optimization Only. Unlike other approaches (e.g., ArchDiff), matchthg type information is not
critical to the operation of the algorithm; it stebbe able to deal with views containing untypeshednts, as well as views at
different levels of abstraction with possibly diffat type systems. The algorithm should be abtetover a correct mapping
from structure alone if necessary, or structure tgpé information if type information is availabldowever, the algorithm
can take advantage of the type information (whezilale) to prune the search tree, significantigesbconvergence towards
the optimal solution and improve the quality of thatching. If the view elements are representeg@ed nodes, at the very
least, the algorithm should not match nodes ofrimuatible types (e.g., do not match connegttm componeny). In some
cases, additional architectural type informatioryina available and could be used for similar puesde.g., do not match a
component of typ&ilter from a Pipe-and-Filter style to a component reprisg aRepositoryfrom a Shared Data style).

In order to remain tractable, our approach make$dtowing restricting assumptions:

Hierarchical Views. In the general case, the differencing and mergihgam-hierarchical views corresponds éaor-
correcting or inexact subgraph isomorphisf@FS+04], a problem proved to be NP Complete. st ambitiouptimal
algorithms (i.e., if a global minimum of the mateicost exists, it will be found) can handle at trafew dozen nodes. We
take advantage of the tree hierarchy in architatiiews and recast the problem into one that iseni@ctable, using trees
instead of graphs. In C&C views, hierarchy corregfsoto nested sub-architectures or decompositidimerCarchitectural
views, such as module views [CBB+03], have sintlzaracteristics.

Similar and Comparable Views. The two views being compared and merged have teobgewhat structurally similar.
When comparing two completely different views, gigorithm could produce a trivial edit script tittietes all elements of
one view and then inserts all the elements in theroview. In addition, the two views being commhasd merged must be of
the same type, i.e., comparable without any viemsformation. This also allows the approach to beenapplicable than
just C&C views, at least in principle.

Merging/Splitting Not Supported. Our approach does not currently detect the mergirgplitting of view elements.

3. TREE-TO-TREE CORRECTION

In this section, we describe in detail a novel -tietree correction algorithm for unordered labelszks. The reader only
interested in its applications can skim this sectOur TreeMDIR (Tree Move-Delete-Insert-Renamgpsethm generalizes
a recently published algorithm [THPO5], denotedra#®. We also implemented THP for experimental caimspa with our
implementation of TreeMDIR.

3.1 Problem Definition

Let us first give an unambiguous definition of fireblem, adapted from [SZ97]. We denoteithaode of a labeled tree T in
the postorder node ordering of T by T[i]. |T| dersothe number of elements of T. We define a trfge Ty, T,) to be a
mapping from Tto T,, wheredt is any set of pairs of integers (i,j) satisfying:

1) 1<=i <=[T|, 1<=j <= [}
2) For any pair of (ij;) and (b,j,) in M,

a) ip= i, if and only if j = j, (one-to-one)

b) T4i4] is an ancestor of{[i,] if and only if Ty[j 1] is an ancestor ofJ]j,] (ancestor order preserved).

We will useM instead of (L, T,,T,) if there is no confusion. To delete a node Nr@etT, we remove node N and make its
children become the children of the parent of N.ifigert a node N in tree T as a child of node M,make N one of the
children of M, and we make a subset of the childsémM become children of N (See Figure 1). Renamangode only
updates its label. In the following discussion, atched node means a node with an exactly matchingl lor a renamed
node. The edit operations that we refer to asictstk moves correspond to deletion and inserti@ratpons in the middle of



the tree: sequences of node deletions in the micidtae v x v

tree result in nodes moving up a number of levelshe X“‘a”‘»\ o delete(%
hierarchy, and sequences of node insertions inmidelle /1\ /

of the tree result in nodes moving down in the drigmy ° ¢ ¢ ° ° ¢ ¢°° = B EEE e
(by becoming children of the inserted nodes). TrB&R
does not currently support arbitrary node movesP Tdes
not allow any insertions or deletions in the middfethe rigyre 1: Edit operations in tree-to-tree correction [SZ97].

tree and works under the assumption that if twoesod
match, so do their parents (i.e., only subtreesheainserted or deleted).

X

T1 T2 ¢ d
T T2 " T2

Suppose we obtain a mappinf between treesTand . From this mapping we can deduce an edit scripiro T, into T,.
First, we flag all unmatched nodes in the firsetes deleted and all unmatched nodes in the sémmmds inserted. We order
the operations so that all deletion operations gdecall insertion operations, delete the nodegderoof decreasing depth
(deepest node first), and insert them in increadéeyth order.

We still have to define the cost of an edit scfiphich is a sequence of edit operations): for eamde in the source tree, we
choose a cost of deletion (not necessarily the damall nodes); for each node in the destinatie® twe choose a cost of
insertion (again, not necessarily the same fon@dles), and for each pair of nodasm)wheren is some node iff; andmin
T,, we choose a cost of changing the labehafito the label ofn (for example, to chang#anana” into “ananas’, we
might choose a cost of two using string-to-stringrection [WF74]). The cost of the edit scripthen equal to the sum of the
costs of insertion, deletion, and renaming openatib contains. Therefore, any given mapping hasique cost. So, in order
to find an optimal edit sequence, it is sufficiemfind an optimal mapping.

3.2 Explanation of the Algorithm

The algorithm pseudocode is given in Section 3/8vie Let C(i,j) be the cost of the optimal mapping from the subtre
rooted ai to the subtree rooted jatA set of nodeS(i)is a successor set of nodiéit is a subset of the set of descendents of
i and none of the elements $fi) is an ancestor of another, and each node of thteegurooted aitis either a descendent or
an ancestor of an element 8fi). Given two set$(i) wherei belongs tarl;, andS(j) wherej belongs tor,, it is possible to
define the optimal mapping &{i) to S(j) as a one to one function from a subseb@finto S(j) with least cost, where the cost
of mapping elemenk of S(i) to element of S(j) is equal to cost of the optimal mapping of thets# rooted ak to the
subtree rooted &t and the cost of leaving an elem&mf S(i) without image is equal to the cost of deletingulmle subtree
rooted atk, and the cost of having an umatched elerh@n§(j) is equal to the cost of inserting the entire sedtiooted alt
This suggests that if we know all the coS{sk,d,) whered; is a descendent ofandd, is a descendent ¢fit is possible to
computeC(i, j) by considering all possible pairs of s€&i),S(j)) and for each such pair, getting the minimum weigh
bipartite matching defined by the entries of thetenatrixC corresponding to the elements3(f) andS(j). Finally, letL(i,j)

be the cost of changing the label of nade the source tree to the label of ngde the destination tree. The minimum cost
obtained added ta(i, j) will be equal toC(i, j). L(i,j) uses string-to-string correction to evaluate thernsic degree of
similarity between the labels of two nodes, using $tandard dynamic programming algorithm to finel longest common
subsequence [WF74].

We choose the best paf6(i),S(j)) using abranch-and-boundbacktracking algorithm. LeDesdi) denote the set of
descendents of We try to choose a subs@tof DEsSdi)xDesdj) with minimal cost. This is done by trying to addQ one
element ofDESi)XxDES{]) such that the new element @is consistent with the previous elements (no saaue can be
matched to 2 different nodes, nor can a node appear element o, if either a descendent or an ancestor already appea
in some element of Q). The algorithm backtracksheamue it determines that there are no more vadidspto add, or when it
determines that the cost of the current branchhwltoo large to match the best solution alreadgadiered to date. As the
problem is NP-complete, the approach outlined abwam quickly become computationally infeasible with additional
constraints.

We chose to enforce an upper bouBcbn the sum of distances between elementS(9fand the closest child af
(respectively,S(j) andj) with B typically a small integer. The reasoning behind tonstraint is that nodes are not usually
moved too far from their original positions in @&tdarchy, and it is relatively rare for several heaf siblings to be deleted at
the same time. The bourigl has the additional benefit that only relativelyainrmeighborhoods of each node have to be
considered for the computation of the optimal aafsa single subtree pair, enabling us to perfornrmynaperations very



efficiently using bit manipulation. For example rihg the backtracking search, checking whetherdgeris still available is a
single bitwise AND operation instead of a time-aaning loop over an array.

TreeMDIR can be considered a generalization of DidBause THP only handles the case wBs@ (i.e., only the children
of a node can be in a successor set of that npdejucing a fully polynomial time algorithm thattigically much faster
than our generalized algorithm. But being able dodte non-zero values of B allows our algorithndé&gect hierarchical
moves. TreeMDIR is guaranteed to find the optimatahing within the constraints of the bouBdprovided it is allowed to
run long enough. Unfortunately, on a number ofdnses (especially, on trees with more than a fevdied nodes and when
the average degree of a non-leaf node is greadarftur), it is necessary to limit the running timeenforcing a boun® on
the number of recursive calls of the backtrackiegreh corresponding to a given subtree pair. Thisnd removes the
guarantee of optimality. Nevertheless, we found tha algorithm still obtains good results when hmeit the number of
recursive calls, because usually the backtrackézgch finishes very quickly when we compare simslabtrees. Since the
algorithm uses the branch-and-bound techniquepd gmatch allows for tight bounds and thereforeyeeutting of branches.
The search terminates normally for matrix entriemialy corresponding to good matches, and is inpged only when the
match is not good, which often allows the algorittorreturn an optimal match even though the backing search was
interrupted for the computation of some of the cuatrix entries (as these matrix entries corresgorishd matches which
are not part of the optimal solution).

3.3 Pseudo Code of the Algorithm

In the following pseudo code of the TreeMDIR altjum, arguments that are passed by reference aieied byref. In

order to reduce the complexity of the pseudo-ctide,parameteR, and the ability to force and prevent matchesrate
reflected here. For efficiency reasons, bit vectmes stored in integers (with 0 meaniiadse, and 1 meaningrue) in and
bitwise manipulations are used heavily.

Procedure: TReeMDIR // MAIN PROCEDURE
Input:
Tree T1: first tree to compare
Tree T2: second tree to compare (turn 7z into 72)
output:
BestGlobalMatch: contains the best mapping from Ti to Tz
Declare:
CostMatrix: CostMatrix[i]l[j] 7s the cost of the optimal mapping from the subtree rooted at i
to the subtree rooted at j
BestGlobalMatch[]: array of pairs of nodes corresponding to the Teast cost mapping from T1 to T2
Bestsuccessor[][]: a 2D array of sets of pairs of nodes
(m,n)D BestSuccessor[i1][j] means (m,n) 7s a match between one element of the
successors of i and one element of the successors of j in an optimal mapping
from the subtree rooted at i to the subtree rooted at j
L(i,j): cost of changing the label of node i in T1 to the label of node j 71n T2
using string-to-string correction
Begin
Postorder Ti and T2 nodes
for(i = 1 to Ti.size)
for(j = 1 to T2.size)
BestSuccessor[i][j] = Searcu(i, j, ref CostMatrix)
CostMatrix[i][j]= BestSuccessor[i][j].cost + L(i,])
GETBESTMATCHING (BestSuccessor, ref BestGlobalmatch,
Ti.size, T2.size)
End

Procedure: SEARCH // SETUP DATA STRUCTURES FOR CALLING BACKTRACK

Input:

i: 7ndex 1n tree T1

j: 7ndex in tree T2

CostMatrix: cost matrix, same as for TREEMDIR

output:

CostMatrix[i]l[jl: updated entry in the cost matrix

return a set of node pairs representing the best found mapping of the nodes of a successor set of 7 to

the nodes of a successor set of J

Declare:

Asci[], Desi[]l: arrays of integers where the nth bit in the mth integer indicates whether mth node 7is an
ascendant (respectively, descendent) of nth node in T:

Asc2[], Descz[]: same as above, for T

BestSolution[]: set of optimal matches, implemented as a Boolean array: nth entry 7s true 7f the nth node
pair in the set of all node pairs sorted by merit belongs to the best matching
(merit is a measure of the quality of the matching)

currentSolution[]: set of matches being built, encoded in the same way as BestSolution[]

BestCost: variable



Unavailablei: 7nteger where the nth bit 7s set 7f the nth node in tree T1 7s unavailable for inclusion in
CurrentSolution because an ascendant or descendent is already included 7n CurrentSolution
Unavailablez: same as Unavailablei but for tree T:
Begin
Ge% the 7ist L of all pairs (p,q) where p 7s a descendent of i and q 7s a descendent of j
Sort the 1ist by decreasing match merit
(merit represents the percentage of subtree weight that 7s matched when two nodes are compared)

foreach node among the descendents of i and j

Associate an integer. Make the bit sequence correspond

to the set of of descendents/ascendents of the nodes

Store the integers in the Desc/Asc arrays, respectively

Initialize BestSolution and CurrentSolution arrays to 0

Initialize BestCost to an infinite value

Initialize Unavailable:r to 0, Unavailable; to 0

BackTrRACk(O  /* dindex*/, L, Asci, Asc2, Desci, Descz, Unavailablei,Unavailablez, CostMatrix,

0 /* currentCost*/, ref BestCost, ref BestSolution, ref CurrentSolution)

convert BestSolution b7t vector to a set of node pairs
regurn set of node pairs
En

Procedure: BACKTRACK //SEARCH FOR A GOOD MAPPING BETWEEN SUBTREES
Input:
ingex: position reached in Tist L
L: 7/7ist of pairs of nodes (m,n) sorted by merit
Asci[], Asca2[], Desci[], Desc:[]: same as for SEARcH
Unavailablei1, Unavailable2: same as for SEARcH
costMatrix: cost matrix, same as for SEARCH
CurrentCost: current cost of the mapping being built
(7.e., the subset of cartesian product of the set of
descendents of i and j)
ref BestCost: same as for SEARCH
ref BestSolution[]: same as for SearcH
ref CurrentSolution[] : same as for SEARCH
Output: BestCost, BestSolution, CurrentSolution: wpdated
Begin
Base case:
if (no element of L can be added to CurrentSolution)
if (CurrentCost + cost of deleted subtrees < BestCost)
BestSolution = CurrentSolution
BestCost = CurrentCost
return
foreach element 1= (m,n) in L starting at position index
Check whether 1.first and 1.second are stil]l available
if not continue
if ( adding 1 to current mapping violates bound B )
continue
Add cost of match to CurrentCost to obtain NewCost
Get a Jower bound E of remaining cost using match merit
If ( E + NewCost >= BestCost ) continue
Add 1 to currentSolution (by setting the corresponding
entry in CurrentSolution to 1)
NewUnavailable:i = Unavailablei1 OR Desci(m) OR Asci(m)
NewUnavailable; = Unavailablez OR Desc2(n) OR Asc2(n)
BackTrack (index+1, L, Asci, Asc2, Desci, Desc,
NewUnavailablei, NewUnavailablez, CostMatrix,
NewCost, BestCost, BestSolution,ref CurrentSolution);
gemove 1 from CurrentSolution
En

Procedure: GETBESTMATCHING // DEDUCE THE OPTIMAL MAPPING
Input:
BegtSuccessor[][]: same as for TREEMDIR
ref BestGlobalMatch[]: same as for TREEMDIR
i, j: 7ndices of a pair of nodes that belong to the best possible mapping between the two trees
Output: BestGlobalMatch: wpdated
Begin
foreach e = (m, n) in BestSuccessor[i][j]
Add e to to BestGlobalMatch
gETBESTMATCHING(BeStSuCCESSOF, ref BestGlobalmatch, m, n)
En

3.4 Forcing and Preventing Matches

Manual overrides are not a standard operation ist rinee-to-tree correction algorithms. We adde@ireeMDIR the ability

to force and prevent matches between a node inTtraed another node in treg. Preventing a match between two nodes
andj is easy—just assign a very large cost to the cooredipg entry in the cost matriX[i][j] . But forcing a match between
two nodes is more difficult. At first glance, it wiol seem that preventing the match of either o¢hisvo nodes with any



node other than the required one, and making theafaleletion and insertion of these nodes vegh,hivould be enough. It
would be enough if the algorithm did not have todia the additional constraint concerning the dis¢ato the subtree root.
Since this constraint exists, it is often necessagelete entire subtrees at a time. So we hapesteent that one of the nodes
involved in the forced match is deleted in onehafse subtree deletions. A possible solution woeldobprevent the deletion
of all the ancestors of the forcibly matched no@leis is indeed the best solution if we used THPt Buour case, this
solution could produce a very sub-optimal editg¢ibecause it is quite possible that a few ancegiot deleted, while the
forcibly matched node isn't deleted. This requidéstinguishing between individual delete operati@ml mass delete
operations.

We therefore allow the deletion of ancestors offtiteibly matched node, on the condition that thedetion operation is not
part of a subtree deletion operation, i.e., wheneveancestor is deleted, at least one of its aelgregs which is itself an
ancestor of the forcibly matched node must be pfthe successor set. We enforce that constraititérbase case of the
recursive BCKTRACK procedure. When computing the best cost for(itijeentry of the cost matrix, ifis an ancestor of a
forcibly matched node, &KTRACK does not record iBestSolutionany mapping that deletes the branch leading to the
forcibly matched node, although it records a mappirat deletes a few intermediate nodes on the fpathi to the forcibly
matched node. This feature is not shown in thegseode to keep it manageable.

3.5 Time and Memory Complexity

An upper bound on the running time of the TreeMRIBorithm is as follows: IeX be the set of nodes of both treege an
element ofX, p be the maximum allowable size of a connected sydgof the tree that can be deleted or insertetian
middle of the treef(x,p) be the number of nodes that lie within a distamicgp+1) from x, andF(a) = max{f(x,p): »x1X and

p=a}.

TreeMDIR has a worst case running timeQg{2*F(a))! N%). In our implementation, pruning the search treeusing both
tree structure and additional semantic informatferg., type information) and being able to limiethunning time by
returning a possibly suboptimal solution, make #iverage case considerably faster than the worst ¢aspractice, the
observed runtime i©(K N) whereK is a large constant, but not quite as large ashieretical worst case bound would let
one imagine. In comparison, THP has a running ofr@(d® N?).

Regarding memory requirements: although both TH# EreeMDIR can be implemented @(N) space at the expense of
increased implementation complexity, we implemerited? inO(d N) whered is the max degree of a tree, and TreeMDIR in
O(b N), whereb is the number of bits in an integer.

3.6 Empirical Evaluation

In this section, we present an empirical evaluatibrthe performance and the accuracy of TreeMDIRallating the
accuracy of the algorithm is necessary becauseds@iandR remove the guarantee of optimality. The test dats built as
follows: 1) generate a random tree with randomIialiaken from a pool of 10 possible names so dstaon-unique); 2)
copy the tree; 3) delete a random number of nad#sei copy (both internal and leaf nodes); 4) remamumber of nodes in
the copy; 5) and finally, compare the two trees ngsi THP and TreeMDIR.
The deletion operations in the middle of the tregespond to

the restricted moves that TreeMDIR detects. Initherest of Table 1: Empirical evaluation of TreeMDIR (R = 100K)

full disclosure, however, we did not check thaleaist some of Case Nojes Ops P i TreeMDIR

the randomly generated test cases do not violat®'SH Ops | Time| Ops| Time
assumption, namely, that if two nodes match, sotltr | Rename | 640 569 | 770 2 569 64
parents. Additional details can be found in App&rli 1280 857 | 1509 7 963 442
The | th of timal edit scriot ¢ bh Lt Delete 640 492 701 2 492 50

e length of an optimal edit script must neceishe equal to =

the sum of the number of deletion added to the mrunds 1280 | 1113] 139 > 1113 169
renaming operations, since there is a tree whicksla certain| Move 640 441 | 1076 3 | 1098 215
number of nodes, and it has a number of nodes whoesn't 1280 | 652 | 2407 9 739 471
exactly match any of the nodes in the other tre® @asch of | Degree | 640 288 | 712 2 288 65
these nodes needs at least one edit operation takba into 1280 | 576 | 1194 10 576 248

account. Table 1 shows for different tree nodessittee length



of the optimal edit script, the length of the eglitipt produced by THP (including the time), and kangth of the edit script
produced by TreeMDIR (including the time). All tisyare in seconds.

On average, THP produced edit scripts sub-optimaldout 120%, whereas TreeMDIR produced edit scgpb-optimal by
about 7%. In the worst case, THP produced a subaptedit script by about 400% whereas TreeMDIR'sstvaase
performance resulted in an edit script sub-optimahround 150%. In both cases, accuracy determsEitmificantly when
nodes of large degree were allowed or when the tveee very different. TreeMDIR’s worst case wasiwource tree of 640
nodes separated from its target by an optimalsadipt of 440 operations containing both deletiand renames. In that case,
the returned edit script was 2.5 times longer ttinoptimal edit script. This behavior, howeversviar from typical and
TreeMDIR produced good results with most treesnpewvben the optimal edit script involved 2/3 of tmember of nodes.
Finally, with up to 85% of the nodes renamed (nketitens), TreeMDIR produced excellent edit scrigithin less than 1%
of the optimal script length on trees of 640 nogeeyiding us with the evidence that it can recaer mapping from tree
structure alone.

The improved match quality comes at a heavy runtiogt. With boundR set to a large value (100 K), TreeMDIR was about
60 times slower than THP on average and up to d@stslower in the worst case. As predicted, getiioundR to a much
smaller value often produced only slightly sub-oyati edit scripts for a noticeably reduced runniinget on a tree of 1280
nodes with an optimal edit script of 396 edits, Tpi®duced an edit script of 1775 edit in 7 secofadeeMDIR (with
R=100K) produced an edit script of size 459 in 6 rresuwhereas TreeMDIR (witR = 5K) produced an edit script of size
479 in 4 minutes. Finally, we would like to poinutothat we have avoided premature optimization im ourrent
implementation to allow for easier debugging, satlwek that the running time can be improved.

4. SYNCHRONIZING C&C VIEWS

We illustrate an application of the algorithm bgdnporating it in a set of scalable tools to synciwe C&C views.
4.1 C&C View Differencing and Merging

We represent the structural information in a C&@wias a cross-linked tree structure that mirroes likerarchical

decomposition of the system. The tree also includfesmation to improve the accuracy of the strugticomparison. For
instance, the subtree of a node corresponding fioraior role includes all the port's or the rolésolvements, i.e., all

components (and their ports) or connectors (and tbkes) reachable from that port or role throagtachments or bindings.
Cross-links refer back to the defining occurrenteaxh element and allow the user to navigate thieitactural graph. We
also add to each element various properties (ssidiipe information). The type information, if prded, is used to build a
matrix of incompatible elements that may not bectmed.

A graph representing a C&C view can generally hayaes in it. Representing an architectural grapla dree causes each
shared node in the architectural graph to appearaktimes in several subtrees, with cross-lirddenring back to their
defining occurrences. These redundant nodes grieapisove the accuracy of the tree-to-tree correctimwever, they may
be inconsistently matched with respect to theiinile occurrences (either in what they refer tojrothe associated edit
operations). We post-process the edit script tmiplite inconsistent matches using two passes. @uha first pass, we
synchronize the strictly hierarchical informatiang., components, connectors, ports, roles, angseptations); during the
second pass, we synchronize attachments and bsdiige post-processing step is very simple, sircénat point, the
mapping between the nodes in the two graphs is know

4.2 Tool Support

Synchronization follows the following five-step jgess: 1) Setup the synchronization; 2) View anccmgpes (optional); 3)
View and match instances; 4) View and modify thé& edript (optional); 5) Confirm and apply the editript (optional).
Because steps 1 and 5 are straightforward, weownljl discuss steps 2-4 in more detail below.

In Step 2, matching the type structures betweernvwbeviews (See Figure 2), currently a manual stap, produce semantic
information that speeds up the comparison, butheraise optional. It also reduces the amount ¢4 @mtry for assigning
types to the elements to be created by the edjitscr
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In Step 3, matching instances uses tree-to-tregecion t0 COMPAre acme Types: we Archiava Types:
b

the tree-structured data from the two views to fistuctural [s § achiavaram  Match | 80 archdava
differences and produce an edit script. It consitsa) retrieve tree- |= & micram e +1-(C3 Component Types
structured data from the first C&C view; b) retmetree-structured | SEE:E;;TTE:ES Ui 7 [?'i”;if\f”r liz=
data from the second C&C view; c) use the treade-tcorrection =4 CalRstumConnT £ Roles
algorithm for unordered labeled trees to identifyatches and 1 +Se§t°8'3; . = DP:“ATI\TSES
structural differences (classified as inserts, tédsle renames anc £3 Roles Show o [
moves— See Figure 3), and obtain an edit scriphate one view =+ Part Types . © REQUIRE_OMLY
more consistent with the other. o commandt Orcer 0 Fole types

o provideT
The differences found during structural matching shown in each o pubsubT
tree by overlaying icons on the affected elemesee Figure 3). Ifan | :Dlefj;es
element is renamed, the tool automatically selent highlights the @ providerT
matching element in the other tree; for insertedieleted elements m userT

the tool automatically selects the insertion pdintnavigating up the

tree until it reaches a matched ancestor. Figure 2: Matching Types Structures: the user manubly

specifies arbitrary matches in a view that shows ttype
dhierarchies in both views flattened and shown sidby-
side: e.g., the user assigns any ArchJava port witbnly
provided methods theprovideT Acme type defined in the
« Start at Component: the architect can have the tred¥VCFam, aModel-View-Controller style.
corresponding to the system decomposition startcextain
selected components to significantly reduce theess
» Restrict Tree Depth: an architect is often interested, at least inifjath only comparing the top-level elements. So the
trees can be restricted to not include elementerizbg certain tree depth.
» Elide Elements: the architect can selectively exclude entire sdstirfrom comparison. Elision can be instance-based
type-based, where all elements of a given typesactuded at once (e.g., only match components anig)p Elision is
temporary and does not generate any edit actions.

The tool provides various features to restrictglze of the trees an
therefore, significantly reduce the comparison time

Various features give the user additional manuatrob

» Forced matches:the architect can manually force a matc

Acme Instances: 18 Archlava Instances:
between two elements that cannot be structurallgimeal. FE Aphyds_Step3a Compare [ 3% Aphyds
=23 Components =23 Components
. . . . . + h. | l + h. | i
» Manual overrides: the architect can override any edit actic| ! sl Clear S
suggested by the comparison, e.g., cancel a detat. 20 Ports how =l model
=% repmodel +-[23 Ports
) X . =23 Components - =% repmodel
In Step 4, the edit script is used to produce ansomsupertree to +-@ channel Osef =I- (23 Components
. . . +- (&) circuit T +- (& channelFout
preview the merged view. This step can be usedpplement the 1@ floorplanner 500t 5@ crcutbets
edit script with additional semantic informatiororinstance, the +-@ partitioner = #/-@) floorplanner
user can assign types to elements to be creatadgetthe types i Report B
of existing elements, or override automaticallyeméd types. =3 Connectors . +- @ placer
. . . + conn_floorPlanne i =23 Connectors
Finally, the user can cancel any unwanted edibasti 4. conn_partitioner. Rﬁt R W conn_circu
+ conn_place_routy M55 +-(& placeRouteviewer
Acme and ArchJava C&C Views.One specialized tool based o T et e iRy
this approach can synchronize a C&C view describecan +. @) circuitviewer +- g window
. P +- (5} AoorPlanYiewer +- (&) viewer
Architectural Description Language (ADL), Acme [GMW], 5@ ploccRovbeliener N
with a C&C view retrieved from an implementationAnchJava |& 3 connectors
[ACNO2]. We chose Acme, since it is a general pagp@dDL £ L £ L

with good tool support; we chose ArchJava sincealibws Figure 3: Structural comparison of architectural instances in
recovering a C&C view from an existing implemerdati a C&C view retrieved from Acme and a C&C view retrieved
Furthermore, both AcmeStudio [SGO04], a domain-regutirom ArchJava: component privateAphyds exists in ArchJava
architecture modeling environment for Acme, and h¥ava's but not in Acme; similarly, connector starConnector matches
development environment are Eclipse plugi’ns [Ecl0Bius a connector in ArchJava with an automatically geneated
. . . ) name (highlighted nodes).

reducing the tool integration barrier. We have cletenl the Symbols: Match (#), Insert (8), Delete &), Rename )
functionality needed to make an Acme model increaibn
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consistent with an ArchJava implementation. Wel stded to change the ArchJava infrastructure topsrpmaking
incremental changes to an existing ArchJava impieatien.

This problem domain clearly requires going beyargkitions and deletions to support renames andsnabvere will always

be name differences of the same structural infaonabetween Acme and ArchJava. As an illustratiewen if code

generation is used to automatically produce a tkelienplementation from an architectural model,resetor names and role
names are lost during code generation (since Avehdaes not even name those elements). Identifyirggnamed element in
one view as being deleted and then re-insertedevgtoducing structurally equivalent views, resuitdosing properties

about view elements that are crucial for architedt@analyses (such style and type information, tireio architectural

properties).

Matching the type structures in this context istipafarly useful. Acme has a predicate-based tystesn: an element is an
instance of any type whose properties and ruleatisfies, and one type is a subtype of anothttreifpredicate of the first
type implies the predicate of the second type. ém@ntation-level type systems such as the oneddaa\yby C2SADL
[MOR+96] or ArchJava are more like programming-laage type systems. We allow the user to manuadgifsparbitrary
matches between the two type hierarchies in thesygtems in a view that shows the type hierarahié®th views flattened
and shown side-by-side (See Figure 2).

Matching type structures between Acme and Archdawvetake several forms:
e Match explicit types when possible: e.g., matcieshJava component type with one or more Acme caorapbtypes;

* Assign types to instances when no explicit typesilable: e.g., assign types to individual ports am ArchJava
component type;

e Assign types to special wildcards: e.g., using &rehJava connector typANY, one can assign the Acme type
CallReturnTto all ArchJava implicit connector instances; &mhy, one can assign a specific Acme type to d pith
only required and no provided methods (euge’) or with only provided and no required methodg.(@rovideT);

» Finally, infer types when possible: e.g., infer tigpes of implicit ArchJava roles based on Acmenamtion patterns
optionally defined for an architectural style: liletarchitect assigns types to components, portcandectors, the role
type (e.g.providerT) is inferred based on the source component tyje, feNY), source port type (e.goprovideT), and
connector type (e.gANY).

Two Acme C&C Views. Another specialized tool can more generally synolmetwo C&C views represented in Acme: one
view could correspond to a documented architectamd, the second could correspond to a C&C viewvesa using any
architectural recovery technique (e.g., [YGS+04hother version of the Acme model retrieved frontomfiguration
management system or to another variant in a ptduhec

Detecting moves across levels of the hierarchyitenchelpful, since two architects will often diffan their use of hierarchy,
so that components expressed at the top level énG&C view are nested within another componentoimes other C&C
view. For example, one architect may use hieratohyide certain decision decisions from some pafrthe system [Par72],
but a designer may flatten the hierarchy for efficiy reasons. In an Acme system, this would coorebgo replacing an
architectural element with its representation (gtee system).

5. CASE STUDY: APHYDS

We illustrate the first tool on an ArchJava impletagion of a pedagogical circuit layout applicatigyphyds [ACNO2]. The
goal of this case study is to compare the architecbased on an informal drawing by the developethe extracted
architecture from the ArchJava implementation.
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Building the Conceptual Architecture. The starting point was an
informal drawing (See Figure 4) of the desired emtoal

architecture which loosely followed the Model-Vi&entroller

style, with theviews consisting of user interface elements and -
model consisting of a circuit database and a set of coatipnal

components. The architect converted the informaf@dim into a
C&C view (See Figure 5a): he created a single Acoraponent to
represent thecircuitModel and added all the computation:
components to a representationcotuitModel (See Figure 5b). In
the informal diagram, some arrows were meant toesemt control
flow and others data flow. The architect did nohtvep distinguish
between data and control flow, so he convertethallarrows in the
original diagram to connectors in the Acme model.

Matching Types. The architect was interested in the control flow
he assigned thprovideT, useT, provregAcme types to ArchJave
ports which only provide, only require, or have tbahethods,
respectively; he assigned the gendrierNodeTAcme type to all
components and th€allReturnT Acme type to all the implicit
ArchJava connectors.

Matching Instances. The architect let the synchronization to
compare the two views: he noticed a few renames, ArchJava o
uses model instead of circuitModel, and in that representationfigure 4: Original Java developer's model.
ArchJava useglobalRouterinstead ofroute (See Figure 3)The

Acme architect was the least sure about how heesepted the channeRoute Viewer
placeRouteViewer

circuitModel component in Acme; facing a number of nar

differences certainly did not raise his confideregel. So, he

decided to focus on theircuitModel Acme component instanci
which was matched to thmodel ArchJava component instanct

Running the structural comparison showed that themeé\
representation forcircuitModel had more connectors than tt
ArchJava implementation, i.e., the tool only mattearConnector circuithodel
in the middle of Figure 5, modulo renaming (Seeukég3). The
architec'F invest?gated this further and confirl_”nedttthe dataflow Figure 5a: Original developer’s model in Acme.
arrows in the informal Aphyds boxes-and-lines daagrare not ] ] N

actually in the implementation, so he acceptedetii¢ actions to

delete the extra connectors from the Acme moded {Sgure 5b).

Merging Instances. The architect next turned his attention to tt % o O
additional top level component, shown @$/ateAphydsn Figure .
3). privateAphydsepresents a privatgindowport in ArchJava and =
the corresponding glue. By looking at the contloif the architect
decided to assign that subsystem the publish-sibesstyle, so he
renamed componergrivateAphydsas window and renamed the
added connector tevindowBus and assigned it th&ventBusT
connector type from the Publish-Subscribe stylge architect also
decided to use the same component names as thda&echmplementation to avoid future confusion, sdeh the tool apply

the edit script.

[
S parivoner

Figure 5b: Acme representation for the circuitModel
component. Extra connectors are marked withk.

Discussion.Figure 6 shows the resulting C&C view after it leeen manually laid out in AcmeStudio. Unlike théymal
architect's model (Figure 4), Figure 6 shows bediional communication taking place between comptne
placeRouteVieweand mode] upon further investigation, the architect tradbdt to a callback. Since Aphyds is a multi-
threaded application with long running operationsved onto worker threads, the architect made nétthe fact that
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developers should not carelessly add callbacks feomorker window
thread onto the user interface thread. Finally attehitect decided .
to use the up-to-date C&C view with types and styls the basis | windeBus

for evolving the system in the future.
N
... 7
(2

*—

IRouteViewer

Performance Evaluation. On an Intel Pentium4® CPU 3GH: —

with 1GB of RAM, comparing an Acme tree of arouriDéiodes Ports
with an ArchJava tree of around 1,150 nodes (aBigure 3) placeRouteViewer © use
currently took under 2 minutes, whereas our impleatéon of » g o
THP took around 30 seconds but produced less aecrgaults: Roles
in particular, THP did not treat compongtvateAphydsas an ¢ - provider
insertion and mismatched all the top-level comptsmem this e
case study, the edit script consisted of over 8d@mes, over 60C ©
inserts and over 100 deletes. &
medel

6. CASE STUDY: DUKE'S BANK

We illustrate the tool to compare two C&C views ngsithe

Duke’s Bank Application, a simple Enterprise Javaie (EJB) banking application created as a denadiwir of EJB
functionality [EJB]. Duke’s Bank allows bank custers to access their account information and tradsfances from one
account to another. It also provides an administnainterface for managing customers and accoumtthis case study, the
architect wanted to compare the architecture ptedeim the documentation with the actual architectdiscovered by
instrumenting the running system as explained i@ $¥04].

Figure 6: Acme model with styles and types.

The architect defined an Acme family (or style) dapges based on the EJB specification. The ardhiteaverted a boxes-
and-lines diagram documented in a tutorial [J2EE) an Acme

model (See Figure 7). -

B g
As mer_ltioned earlier, the two \_/iews must be conigaraithout - o ¢i—n ]
any view transformation. Since the model recovereg T
instrumentation includes each session and entign kiastance —
created at runtime, the architect post-processed iliminate TeContaler.® = @
duplicates and consolidate multiple instances e instance || ...

with a property indicating multiplicity (not show) Figure 8, to
match the documented architecture where each caenpo
instance represents a number of run-time components

igure 7: Duke’'s Bank documented architecture in Ame;
e components were added inside the Acme
representation of an EJB container (shown as a thick

. o border).
The architect ran the synchronization tool betwdentwo Acme )

C&C views. The tool was able to match all the eletadetween EEmummm”wgwwl A
the two views, despite the large number of rengiag®matically — —
generated by the recovery tool). Furthermore, twd torrectly —_ ,
detected all the moves corresponding to replacing EJB T = o
container component in one view with its representationhia t @ D

other view (See Figure 9). The tool also enabledafchitect to - [} o Dozt

quickly detect the additional undocumented port *
Account_Controller_Begnwhich is communicating to th®B Figure 8a: Duke’s Bank recovered architecture in Ame.
component through BbWriter connector. Figure 7 does not sho' “Gmmen Connectors Pors Roles

any connections between the session beans and atldade, O T bt
which implies that all database access is throbgrentity beans, A e
as recommended by the EJB specification: the achjilanned o *
to investigate this apparent violation using souwrode analysis @

techniques. —

Performance Evaluation. On an Intel Pentium4® CPU 3GHZi9ure 8b: Legend.
with 1GB of RAM, TreeMDIR took around 30 seconds to
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compare the two Acme trees, one with around 33@&s0dnd Instances: g Instances:

one with around 390 nodes. In this case, the edliipts !?‘_}I"‘Ee:;‘;':;‘;ﬁfs—"‘“"“’e“ted B comoaie E'k:;:;o':;:tpsp &
consisted of over 250 renames and over 50 iNSE&$s. |= & container i 5 () AccountBean_e55d7
expected, THP did not correctly identify any of theved view | _ & =" o O
. . [al
elements in this case. = [ Compenents = op
+ (5 Account_Bean = = 23 Attaches
- () Account_Controller_Bi Order ety ACcountt
=3 Part LS - atly Cush
7. RELATED WORK 2 o ol - 4 bataso
+ (5} Customer_Bean + Dati
. . . + (%) Cust _Controller_ +-h DbW
In addition to the related work previously mentidne e, | W o
H +-(5) Ta_Bean 5 3 Binds
throughout the paper, we point out a few relatadilts. g Watch il
=73 Conneckors RL it ¥ {?j CustomerBean_13a5
. . . . 1 £5e "
Program Differencing. Tree-to-tree correction algorithm: 2 ;ﬁ;::::g:::::i' 5 8;15::;‘122”3"3'395“
have been used for finding differences betweennarog; most #-4y BeanChannel2 + () TuBean_433461
approaches consider abstract syntax trees (ASTsrdeved s i;:j::ﬁ::::::; 29 et
trees with several polynomial time algorithms aaflié (e.g., +-4 DbReadd # 4y AccountControllerBean_
+ ritel v +-=5 AccountControllerBean_
5797 % DbWrited b AccountController®
[ )2 < > < >

The Difference Extract (Dex) [RRL+04] includes dgaaithm Figure.9: Comparison of the documgntgd and the resered
that supports two kinds of move operations: a mtvat C&C views for the Duke’s B”k application. .

changes parents (a match between nodes whosearentot SYMPOIs: Match (), Insert (H), Delete (), Rename ¢)
matched to each other), and a move that changes @anatch

between two nodes with matching parents but diffesibling ranks). This work is probably the cldst&sours. Although
intended to solve the differencing problem for aedktrees, Dex includes a bottom-up algorithm wiéchiaguely similar to
THP as a subroutine that solves an unordered tadsgm. Dex purports to support arbitrary moveg,the authors warn that
no guarantee can be given that the obtained ettt $& optimal because Dex is only a heuristicisTib a reasonable choice
for Dex as it typically handles trees that are sgverders of magnitude larger than our typicablitsp

There are several important differences betweeaMEBR and Dex, one being that Dex targets inputeretess than 1% of
the nodes are affected by edit operations (e.gnoat 200 changed nodes with tree sizes reachid@@0 nodes or so). The
remaining nodes are matched exactly, including tlbiels. The labels or the semantic informaticsoamted with the nodes,
which represent the control flow and data of a cat@pprogram, have very few duplicates, if any.sTémables a linear time
subroutine in Dex, called top-down matching, tontifg 94% of the matches, and the remaining matcaesbe deduced by
other subroutines. This makes the running time ek @row linearly until around 100,000 nodes. In tcast, our
implementation of THP, while much slower than Dewuld still work even in the total absence of setitanformation (i.e.,
using tree structure only) without significant ingpan running time. Our implementation of TreeMDARuld see its running
time increase in practice, but it would still worknd if semantic information is only present on faades or is otherwise
incomplete, TreeMDIR would still be able to makd fise of it. Typical inputs for our algorithms eft have more than half
of their nodes renamed, and may have a large nuofbauplicates (for example if the only semantiformation we have
about the nodes is their type) which would make Erex top-down subroutine ineffectual, because iuldoack the
information that lets it quickly match a node tmter. Also, TreeMDIR provides the capability ofdimg and preventing
matches manually, and can find the optimal matchwitbin these user-imposed constraints, assumiagetitonstraints are
consistent. This feature does not exist in Dex\wadare not sure how difficult it might be to addrinally, Dex converts an
Abstract Syntax Graph (ASG) into a tree simply bymoving non-tree edges corresponding to type irdtiom; through
empirical evaluation, adding sub-tree informatioeatly improves the accuracy of the tree-to-treeemion algorithm.

[CG97] proposes a heuristic solution with a womsaO(N°) time that supports arbitrary move, copy and glperations.
However, the approach was only tested on instaocasfew hundred nodes where 80% or more of thesegre matching
exactly (same semantic information) without anyiéation of how many of these labels were uniquesoAthe largest
instance over which the accuracy of the heuristis tested did not contain more than six edit omera{including renames):
even on that, the heuristic returned a suboptimsivar in some cases (about 15% larger than theapéidit script).

JDIFF [AOHO04] bears some vague similarity to Treel®Das hammock graphs can be turned into treesoutittoss of
information or structure. We think that it would triwial to add the ability to prevent matches RIBF, but adding the ability
to force matches would be substantially more coraptid. JDIFF is faster than TreeMDIR since it i@ matching labels
exactly, but it loses the ability to detect renanoee of our requirements.
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Tree Alignment vs Tree Edit. Tree differences can be represented using trganadint instead of tree edit distance. Each
alignment of trees actually corresponds to a i&stiitree edit in which all the insertions precati¢he deletions. There are
algorithms based on tree alignment that can detgmbunded deletes (e.g., [JWZ95]). Another advantddree alignment is
that it can easily generalize to more than twosremmething not easily done with tree edit distarBut the memory
requirements of such algorithms are prohibitive tlog tree sizes and branching factors that aredymf our inputs: the
memory requirements would typically be several csaé magnitude higher than those of TreeMDIR-2" N %) whered is

the maximum degree of the tree. Due to the prahéispace requirements, there's no need to pneferalignment to an
algorithm based on tree edit distance.

8. CONCLUSIONS

In this paper, we presented a novel algorithm fodifig differences and merging tree-structured .d&en two tree-
structured representations, our algorithm idergtjfia addition to inserts, deletes, and renamesiicted moves across levels
of the hierarchy. The algorithm also supports méyéarcing and preventing matches between viewngsts.

We also presented tools that use the tree-to-meeation algorithm to compare and merge architettcomponent-and-
connector (C&C) views. Finally, we provided an enmail evaluation of the algorithms and tools witise studies on real
programs. The case studies show the practicalitthefalgorithm and the tool, as they enabled uding interesting
architectural divergences in both cases.
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Appendix A

The test cases were built as follows:

1) generate a random tree with random labels (t&kem a pool of 10 possible names so as to be miue);

2) copy the tree;

3) delete a random number of nodes in the copyh(imé¢rnal and leaf nodes);

4) rename a number of nodes in the copy;

5) and finally, compare the two trees using THP @reeMDIR.

TreeMDIR was run once with bourRi= 100K, and another time with bouRl= 5K. BoundR was left unchanged from its
default value in all runs.

This appendix contains the test results.

Table 1: List of abbreviations

Abbreviation | Description

N Number of Nodes

R Number of Renames

D Number of Deletes

ID% Percentage of Internal Deletes

DE Tree Degree

O] Number of Optimal Edit Operations
AE Actual Number of Edit Operations
S% Percentage by which the generated edit scrittieptimal
T Running time (in seconds)

F Slow down factor (compared to THP)

Table 2: List of tables.

Table 2 Testing Renames
Table 3 Testing Deletes

Table 4 Testing Internal Deletes
Table 5 Testing Node Degree
Table 6 Summary
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Table 2: Testing Renames.

N [R o) THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)
AE S% AE [ S% T F AE [ S% T

320 0 9% 350 265% 0591 114  19% 17781 9| 114| 19% 15.074 24
320 3 99 460 365% 0.438 143  44% 34.625 7g| 143| 44% 16.265 34
320 6 102 367 260% 0.484 112  14% 19|11 3g| 112 10% 16.609 33
320 9 105 526 401% 0.484 109 4% 27109 55| 109 4% 16.141] 32
320 12 108 244 122% 0.4d4 109 1% 14825 o9| 109 1% 14563  2d
320 19 115 326 183% 0.469 116 1% 15893 35| 116 1% 15.141 3]
320 25 121 402 232% o0.4da 125 3% 16.435 34| 125 3% 15843 32
320| 35 131 473 2619 ob 138 506 31.672 gp| 138 5% 16.2977 32
320 44 140 336 140% 0.469 141 1% 14396 o9| 141 1% 14.266  2d
320| 57 153 364 141% 0484 158 3% 19.434 39| 158 3% 17.329 35
320 73 169 437 159% 0453 171 1% 26375 57| 171 1% 17.265 37
320 92 188 36( 91% 0485 188 0% 16437 33| 188 0% 15.684 3]
320 118 214 433 102% 0.469 214 4% 16.156 33| 214 0% 15.485 32
320| 150 246 480 95%  0.468 250 2% 25125 53| 250 2% 16563 34
320| 188 284| 516 82% 0453 295 4% 32375 70| 295 4% 17.391] 37
640 0 192 895 366% 2032 309 61% 67.312 32| 309| 61% 56.766 27
640 6 198 586 1969 176 241 1% 71172 40| 221 12% 64.75 34
640 12 204 707 247% 1875 216 d% 85419 44| 216 6% 64.547 33
640 19 211 789 274% 1906 239  13% 80.563 41| 239| 13% 64 33
640 25 217 827 281% 1907 239  14% 140421 73| 239| 10% 71423 34
640| 38 230 1054 360% 1.906 266  16%  136.812 77| 266| 16% 64.063 33
640| 51 243 883 263% 1907 248 2% 88.487 46| 248 2% 65.922 34
640 70 262 817 212% 1968 3]0  18% 126 3| 310| 18% 64.141 32
640| 89 281 1041 270% 1.848 323  15%  158.297 gg| 323| 15% 70797 34
640| 115 307 634 107% 1.849 307 4% 74578 40| 307 0% 65.484 3%
640 | 147 339 983 190% 1.782 400  18% 86|64 4g| 400| 18% 61.906 34
640| 185 377 802 113% 1.984 405 1%  109.125 54| 405 7% 74.4229 37
640 | 236 428 924 116% 1.906 445 4% 109579 5g| 445 4% 65.735 33
640 | 300 492 994 102% 1.841 529 8% 98.609 51| 529 8% 65.625 34
640 | 377 569 103 81% 1.845 591 4% 95165 50| 591 4% 69.141 36
1280 0 384 187d 3899 8.14 5%2  44% 446141 54| 552| 44%| 260.641 31
1280 12 396 1879 374% 7.141 408 3%  341.891 47| 408 3% 26439 36
1280 25 409 2117 416% 7.125 413 1%  334.703 46| 413 1%| 259.374 3%
1280| 38 422 1689 300% 7.612 775  84% 431578 55| 775| 84%| 252901 32
1280 51 435 2099 3829 711 471 8%  419.687 5g| 471 8%| 281.920 39
1280 76 460 2097 356% 7.063 483 5% 454547 g3 | 483 5%| 256.687 3%
1280| 102 486 2041 320% 7.469  6p8  29% 390 51| 628| 29%| 261.328 34
1280| 140 524 1891 261% 7.125  7B9  41%  360.891 50| 739| 41%| 255.878 35
1280| 179 563  213¢ 280% 7.100  7M7  33%  596.25 g3 | 747| 33%| 266.203 36
1280| 230 614 1792 192% 7.422 13p6 11B%  357[156 47| 1310 113%| 257.73% 34
1280| 294 678 193 185% 7.297 849  25% 344875 45| 849| 25%| 246313 33
1280| 371 755 1819 141% 7.266  8p7  1%%  427.859 5g| 867| 15%| 266.625 36
1280| 473 857 2114 147% 7.172 85 20 480828 gg| 875 2%| 279.674 3%
1280| 601 985 1831 86% 8.339 1058 1% 413069 49| 1058 7%| 259.891 3
1280| 755| 1139 2133 87% 7.235 11p6 20  468.197 4| 1166 2%| 292422 39
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Table 3: Testing Deletes.

N [D o) THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)
AE S% AE S% [T F AE S% T

320 o] 128 128 0% 0.62p 178 opo 19.578 30 128 0% 19.609  3(
320 3] 131 131 0% 0.98p 141 opo 19.859 19 131 0% 19.891  1d
320 6| 134 134 0% 0.59B 134 opo 19057 31 134 0% 19.171 3]
320 9| 137 137 0% 0.594 137 opo 19.031 31 137 0% 19.047 3]
320 12| 140 140 0% 0.59% 140 opo 20453 33 140 0% 20485 33
320 19| 147 147 0% 0.56p 147 opo 19.409 34 147 0% 19.625 34
320| 25| 153 153 0% 0579 143 opo 18.78 30 153 0% 18.125  3(
320| 35| 163 166 2% 0547 1643 opo 16.165 30 163 0% 16.781  3(
320| 44| 172 184 7% 0547 1712 opo 17419 31 172 0% 17.759 31
320| 57| 185 190 3% o0.48h 145 opo 15922 3o 185 0% 15939 33
320 73| =201 215 7% 0.458 241 opo 15469 33 201 0% 155 33
320 92| 220 276 25%  0.437 220 d% 13922 31 220 0% 13934 3]
320| 118 246 266 8% 0.4d6 246 d% 11.391 o7 246 0% 11453 21
320| 150 278 372 34% 0.344 218 doe 10.916 28 278 0% 10.03] 2§
640 o| 256 256 0% 2.32B 2596 opo B0 33 256 0% 795794 33
640 6| 262 262 0% 2.42p 262 opo 79.6872 32 262 0% 79.674 33
640 | 12| 268 268 0% 2.81p 248 opo 76.7981 26 268 0% 76.813 26
640 | 19| 275 275 0% 2.40p 215 opo 71.328 29 275 0% 71453  2d
640 | 25| 281 281 0% 2297 242 opo 79.963 34 282 0% 79.703 34
640 | 38| 294 294 0% 2.28p 244 opo 76.459 33 294 0% 76.453 33
640| 51| 307 309 1% 2.21p 347 opo 74343 33 307 0% 7425 32
640| 70| 326 331 2% 2531 346 opo 72953 g 326 0% 72953 2§
640| 89| 345 352 2% 2125 345 opo 67.907 31 345 0% 67.437 3]
640 | 115 371 384 2% 2208 371 d% 67.494 30 371 0% 67579  3(
640 | 147 403 440 9% 1.844 403 d% 64.047 34 403 0% 64.093 34
640 | 185 441 495 129% 2.031 441 doe 56.375 27 441 0% 56.344 21
640 | 236 492 745 51% 1562 493 do 50.469 31 493 0% 50.60d 31
640 | 300 556 806 45%  1.313 556 doe 42403 32 556 0% 42484 3]
1280 o] 512 512 0% 108 513 o 330953 30 513 0%| 33071  3(
1280 12| 524 524 0% 1041 525 d% 322434 30 525 0%| 322329 3(
1280 25| 537 537 0%  10.59 537 d% 308[75 28 537 0%| 308239 2§
1280 38| 550 553 19 103 540 o 322415 30 550 0%| 321469  3(
1280 51| 563 5671 19 103 543 o 313907 29 563 0%| 308579 24
1280 76| 588 58d 0% 10.19 588 d% 1 29 588 0%| 299.76 24
1280 102 614 61 19 1p 614 o  289.672 28 614 0%| 289.429 24
1280 140 652 661 1% 8625 654 dw 285172 3o 654 0% 285.14 32
1280 179 691 69¢ 19 9.25 691 d% 278[86 o9 691 0%| 278657 29
1280 230 747 777 2% 7.765 743 dw 274485 34 743 0%| 274604 34
1280 294] 806 879 89 8b 8d6 o 243425 o8 806 0% 24364  2¢
1280 371 883 103 17%  6.741 883 9%  230.453 33 883 0%| 23001 39
1280 473 o989 1379 40% 6.094 986 9%  200.003 32 986 0%| 200019 31
1280 601 1113 1435 29% 5734 1145 %  168.094 »g| 1115 0%| 167.43§ 28
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Table 4: Testing Internal Deletes.

N D% [ O THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)
AE [ S% T AE S% T F AE | S% T

320 o] 128 128 09 0.62 178 obe 2114 33| 128 0% 21.125
320 1| 131 135 39 0.6 131 ob6 21.265 34| 131 0% 21.281
320 2| 134 244 820 0.62 134 ob6 21032 33| 134 0% 20.734
320 3| 137 213 550 0.62 137 ob6 19.934 39| 137 0% 19.282
320 4| 140 199 389 0.60 140 ob6 18475 30| 140 0% 18.859
320 6| 147 274 89 0.57 149 106 26.031 44| 149 1% 23.015
320 8| 153 407 166%  0.5§ 154 1% 24469 42| 154 1% 22.062

320 11 163 409 151% 0.54

[EEY
Ho
N

18§% 23.922 42 192 18% 18.927

320 14 172 562  221% 0.53

[EnY
©
S}

<
>

42906 go| 176 2% 26.014

320 18 185 524 183% 0.53 200 g% 50.328 94 200 8% 23.328
320 23 201 510 154% 0.45 308 53% 57.%32 126 308 53% 19.265
320 29 220 523 138% 0.64 350 59% 51125 79 350 59% 19.578
640 0 256 256 09 2.43 256 Opo 78.828 31 256 0% 79.032
640 1 262 294 129 2.84 242 Oopo 75969 26 262 0% 76.031
640 2 268 433 629 2,51 248 Oopo 80.609 31 268 0% 79.875
640 3 275 409 499 2.48 215 Oopo 79.5 31 275 0% 79.187
640 4 281 476 699 2.6 282 Opo 78.782 29 282 0% 78.687
640 6 294 484 659 2.43 296 1P 90.672 36 296 1% 83.654
640 8 307 915  198% 2.34 7 0o 112.234 47 307 0% 91.813

640 11 326 1104 239% 2.39

w
S
N
N
fan
X

109.062 45 392 20% 83.047

640 14 345 902 161% 2.51 394 14% 174.125 68 394 14% 89.781
640 18 371 848 129% 2.01 415 12% 199.297 98 415 12% 89.203

640 23 403| 1097 171% 2.03

©
>
N

131% 202.516 99 933 | 132% 82.031

640 29 441 1039 134% 1.84

(<2}
i
N
w
MYl
O\O

240921 130| 614 39% 76.875

1280 0 512 512 09 11.8 512 Oopo 316.453 26 512 0% 316.641
1280 1 524 664 27% 10.0 524 0opo 328.969 32 524 0% 323.813
1280 2 537 675 26% 10.1 537 0opo 329.947 31 537 0% 326.39
1280 3 550 892 62% 9.90 550 0Po 340.197 33 550 0% 330.359
1280 4 563 1787 217% 11.9 563 0% 400.%62 35 563 0% 342.1772
1280 6 588 1104 88% 9.79 589 d% 345984 34 589 0% 337.547
1280 8 614( 1241 102% 9.57 618 1% 442.375 45 618 1% 340.641
1280 11 652 21593 230% 9.2( g

[*2]
1>
(31

% 515969 55| 685 5%| 361.514

1280 14 691 1911 177% 9.43

~
o
ol

11%  706.813 74| 765| 11% 374.25

1280 18 742 2244 203% 8.43 23P8  214% 627.022 73| 2328 214% 323.40¢4

1280 23 806 21993 172% 8.1§ 11p5 48% 1028.66 125 1195 48% 365.125

NI M N R R N EE RN N RN R E RN AN EE N R T U U L
w
o

1280 29 883 2117 139% 7.69 1459 66% 1026.74 133 | 1477 67% 360.18]
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Table 5: Testing Degree.

N [D o) THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)
AE [ S% AE S% T F AE | S% T F
320 2 144 399 1729 0.578 144 0% 17041 29| 144 0% 17204  2d
320 3 144 222 549 0.591 144 ob6 21.687 36| 144 0% 21.453 38
320 4 144 261 819 0.65p 140 a6 44047 66| 150 4% 23.797 3%
320 5 144 254 799 0.65[7 144 ob6 68.406 103| 144 0% 26.156 39
320 6 144 259 759 0.6} 145 1P6 109)86 171| 146 1% 27531 47
320 7 144 193 349 0.62b 144 ob6 98547 157| 144 0% 25.406  4(
320 8 144 274 939 0.60P 1491 5D6 B2 134| 151 5% 22324 36
320 9 144 48 2339 0.578 144 0%  100.172 172| 144 0% 25.766 44
320 10 144 23§ 639 0.600 144 0% 60.938 99| 144 0% 23515 3¢
320 11 144 224 549 0.891 144 0%  113.841 17| 144 0% 24.453 26
320 12 144/ 21§ 509 0.562 146 1% 80.875 143| 146 1% 23.469 41
320 13 144] 403 1800 0.593 144 doe 70494 118| 144 0% 23.1258 38
320 14 144 356 1479 0.6/ 218 93% 67.456 110| 278| 93% 20379 32
640 2 288] 693 1419 2.063 289 0% 62.969 30| 289 0% 63.156  3(
640 3 288] 489 699 2.65p 248 ob6 75.004 27| 288 0% 74574 27
640 4 288 804 1799 2.266 393 3% 204331 gg| 393| 36% 85.184 37
640 5 288 699 1439 2.625 318 1dw 345766 131| 318| 10%| 112.109 42
640 6 288 637 1199 2.600 289 0% 272[25 103| 289 0% 91.32d 3/
640 7 288] 98d 2439 2.718 339  14% 306.282 112| 329| 14% 88.924 32
640 8 288] 1007 2509 2.547 296 d%  370.031 144| 296 3% 92203 3%
640 9 288 680 1369 2.600 380 3J% 337.532 12g| 380| 32% 97.431 36
640 | 10 288 1024 2559 2.594 30  11%  293.656 112| 320 11% 87.21d 33
640 | 11 288 394 389 2.766 288 0% 315.109 113| 288 0% 94.929 33
640 | 12 288 514 799 2.593 300 4% 442844 170| 300 4%| 106.954  4(
640 | 13 288 544 909 2.578 294 2% 255.365 g9og| 294 2% o01.11] 34
640 | 14 288 75 1600 2.578 394  37% 320391 123| 394 37% 87.849 33
1280 2 576 1571 1739 8.995 578 d%  246.937 .| 578 0%| 246781 24
1280 3 576 1434 1499 9.062 576 d% 309.172 33| 576 0%| 294314 31
1280 4 576 1550 1699 9.444 578 d% 863.906 g9p| 578 0%| 386.374  4(
1280 5 576 15184 1639 9.641 600 4% 129305 133| 600 4%| 390.154 39
1280 6 576] 12964 1259 10.41 519 1% 1527169 143| 579 1%| 414984 3§
1280 7 576] 954 669 10.06 579 1%  1517[95 150 581 1%| 416703 44
1280 8 576 23271 3049 9.743 576 d% 1420003 145| 576 0%| 397.819  4(
1280 9 576] 2233 2889 9.235 2164  27h%  1208.19 130| 2154| 274%| 362.18%8 3B
1280| 10 576/ 1194 1079 9.515 687  19% 1314.38 137| 687 19%| 360514 37
1280 11 576/ 1021 779 9.375 586 4% 117348 124| 586 2% 361.86 3¢
1280 12 576/ 1160 1019 9.543 7b2 2%5% 132464 137| 683 19%| 352.624 36
1280| 13 576/ 1186 1069 9.516 705  22% 134483 141| 705| 22%| 374453 38
1280| 14 576 1988 245 9.375 604  20% 1684.02 179| 697 21%| 404.674 4%
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Table 6: Summary.

THP

TreeMDIR (R = 100K)

TreeMDIR (R = 5K)

Sub-Optimal %

Sub-Optimal % Slowdown

Sub-Optimal Slowdown

Factor % Factor
Average | 121% 13% 61.86( 13% 34
Min 0% 0% 19.16| 0% 19
Max 416% 274% 179.06 274% 4
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