

Early-Stage Software Design for Usability

Elspeth Golden
May 2010

CMU-HCII-10-103

Thesis Committee:
Bonnie E. John (Co-Chair)

Len Bass (Co-Chair)
Sharon Carver
Robin Jeffries

Submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy in Human-Computer Interaction

Human-Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Submitted in partial fulfillment of
the requirements of the Program for

Interdisciplinary Education Research (PIER)

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Copyright © 2010 Elspeth Golden. All rights reserved.

This work was funded in part by the NASA High Dependability Computing Program under cooperative
agreement NCC-2-1298, by ABB Inc., and by the Institute of Education Sciences, U.S. Department of
Education, through Grant R305B040063 to Carnegie Mellon University. Any opinions, findings,
conclusions, or recommendations expressed in this material are those of the author and should not be
interpreted as representing the official opinions, either expressed or implied, of the funding agencies or the
U.S. Government.

Keywords

Usability; software architecture; design tools and techniques; curriculum design

 - 1 -

Abstract

In spite of the goodwill and best efforts of software engineers and usability professionals,

systems continue to be built and released with glaring usability flaws that are costly and

difficult to fix after the system has been built. Although user interface (UI) designers, be

they usability or design experts, communicate usability requirements to software

development teams, seemingly obvious usability features often fail to be implemented as

expected. The impact of usability issues becomes increasingly severe in all kinds of

software as computer use continues to rise in the home, in the workplace, and in

education. If, as seems likely, software developers intend to build what UI designers

specify and simply do not know how to interpret the ramifications that usability

requirements have for the deep structure of the software (i.e. the “software architecture”),

something is needed to help to bridge the gap between UI designers and software

engineers to produce software architecture solutions that successfully address usability

requirements. Usability-Supporting Architectural Patterns (USAPs) achieve this goal by

embedding usability concepts in materials that can be used procedurally to guide software

engineers during the complex task of software architecture design.

In order for usability to be a first-class citizen among software quality attributes, usability

design must be made cost-effective for development organizations. To achieve this goal,

usability needs to be addressed early in the design process in ways that enable it to be

successfully incorporated into software architecture designs and software engineering

implementations. Preventing late-stage changes in complex software systems by

addressing architecturally-sensitive usability concerns during the architecture design

phase is a victory for developers and users alike. This is the goal that this dissertation

addresses.

Addressing usability early in the software development process is a non-trivial problem.

The usability dicta provided by guidelines, heuristics, and UI design patterns may not

give software designers all the information they require to completely and correctly

 - 2 -

implement basic usability features. I present work to construct and evaluate an approach

to the problems of explicitly drawing and communicating the connection between

usability concerns and software architecture design, and a tool to deliver that approach to

software engineers for use in software architecture design practice. I also discuss a

possible extension of the research concepts embodied in the tool to the domain of

education research.

 - 3 -

Acknowledgements

There are so many people to thank.

First of all I would like to thank my advisors, Bonnie John and Len Bass, who have been

the best academic mentors a student could hope to have. Between Bonnie’s indefatigable

pursuit of better answers and Len’s unflappable humor in the face of the vicissitudes of

research, they have provided a tremendous wealth of opportunities for learning what it

means to be a researcher and a teacher. For this I am grateful, and even more grateful for

what they have shared about the individual nature of living well.

I would also like to thank my other committee members, Robin Jeffries and Sharon

Carver, each of whom contributed meaningful insights during the writing process that

changed the course of the final story, and improved it in ways I had not anticipated.

Many people provided practical support and helpful advice across the course of the work,

including Mary Scott, Brandy Renduels, Audrey Russo, Rob Adams, Sandy Esch, Andy

Ko, Laura Dabbish, Howard Seltman, John Pane, Nuno Nunes, and Dave Roberts.

Special thanks go to David Klahr and the PIER program; in addition to funding a good

deal of my graduate work, PIER expanded my horizons in directions I would not

otherwise have experienced as a student in HCI.

For a thoroughly enjoyable research collaboration, and for their delightful hospitality, I

am grateful to Pia Stoll, Fredrik Alfredsson, Sara Lövemark, and the software architects

who participated in the user tests at ABB in Västerås.

So many wonderful friends have made CMU a home during these years: Amy, Marty,

Lisa A., Carson and Nathan, Becky, Ido and Ofira, Matt, Anna and Mike, Ben, Tara and

Kevin. Wherever the four winds may scatter us, we’ll always have Pittsburgh,

Pennsylvania!

 - 4 -

Nor could I have made it without the love and enthusiastic support of a far-flung home

team of family and friends. Jomama, Burton Bear, Thad, Tracey, Samantha, Nicholas –

not a large family, but you each radiate enough cherishing to make up for a dozen. Pattie,

Rhett & Heather, Brad, Diana, William & Heather, Lisa C., Susan, Kwame, Janna, Scott

& Kristin, Brandon, Karen, and so many more – you are an international village of

awesomeness.

Finally, for engaged nurturing and silliness above and beyond the call, a paean of

gratitude rings out to Eelia and Noel, who tended me from afar as if I were an errant

houseplant and kept me laughing throughout the erratic process of finishing this work.

Semper amicitia, semper esoterica, je vous aime!

 - 5 -

To Bamboo, Bubu, Irene, and Britt, with love for all time.

Save me a kiss and a dance, my darlings.

 - 6 -

 - 7 -

Table of Contents
ABSTRACT.. 1
ACKNOWLEDGEMENTS ... 3
TABLE OF CONTENTS.. 7
LIST OF FIGURES... 10
CHAPTER 1. INTRODUCTION... 11

1.1 OVERVIEW ... 11
1.2 APPROACH ... 13

CHAPTER 2. PRIOR AND RELATED WORK... 18
2.1 USABILITY AND SOFTWARE ARCHITECTURE ...20

2.1.1 Software Quality Attributes ... 20
2.1.2 Usability Guidance...21
2.1.3 Usability & Software Architecture Patterns... 25
2.1.4 Juristo et al.’s Approach.. 27
2.1.5 Folmer et al.’s Approach ... 28

2.2 CONTRIBUTING FACTORS FROM OTHER FIELDS .. 29
2.2.1 Checklists .. 29
2.2.2 Technology Acceptance Model.. 31
2.2.3 Curriculum Design...32

CHAPTER 3. EMPIRICAL STUDIES... 34
3.1 EXPERIMENT 1 – CONSIDERATION OF RESPONSIBILITIES ... 34

3.1.1 Experimental Design.. 35
3.1.2 Participants... 39
3.1.3 Procedure.. 40
3.1.4 Measures ... 41
3.1.5 Results ... 41

3.2 EXPERIMENT 2 (REPLICATION) ... 45
3.2.1 Participants... 46
3.2.2 Results of Replication Experiment .. 46

3.3 COMBINING RESULTS FROM EXPERIMENTS 1 AND 2 ... 48
3.3.1 Consideration of Responsibilities: Combined .. 49
3.3.2 Time Factors: Combined ... 50
3.3.3 Not All Responsibilities Are Equally Obvious.. 53

3.4 ANALYSIS OF QUALITY – EXPERIMENT 1 ..56
3.4.1 Measures ... 57
3.4.2 Results ... 57

3.5 EXPLORATORY ANALYSIS OF VIDEO DATA...61
3.5.1 Measures of Activity Identified in Video Data Analysis ..63
3.5.2 Results ... 64

3.6 MOTIVATION FOR NEXT STEPS... 66
3.7 SUMMARY.. 67

CHAPTER 4. FROM INDIVIDUAL USAPS TO THE A-PLUS PATTERN LANGUAGE 69
4.1 REVISED APPROACH: CONTENT AND FORMAT OF USAPS ... 69

4.1.1 Content and Format of USAPs Thus Far.. 69
4.2 MOVING FROM CONTROLLED EXPERIMENTS TO INDUSTRY PRACTICE .. 72
4.3 REVISING THE FORMAT OF USAPS .. 74
4.4 EMERGENCE OF A PATTERN LANGUAGE FOR USAPS... 78
4.5 A-PLUS: AN ARCHITECTURE PATTERN LANGUAGE FOR USABILITY SUPPORT 79

 - 8 -

4.6 SUMMARY.. 86
CHAPTER 5. DESIGN FOR A TOOL-BASED APPROACH ..88

5.1 MOTIVATING THE DESIGN .. 88
5.2 REVISED APPROACH: CONTENT AND FORMAT OF USAPS ... 88
5.3 A-PLUS IN THE SOFTWARE DEVELOPMENT PROCESS.. 89
5.4 DESIGN AND PROTOTYPE OF A-PLUS ARCHITECT ... 91

5.4.1 Combining Multiple USAPs in a Single Presentation Format.. 98
5.5 USER TESTING IN PRACTICE ...101

5.5.1 Performance Results ..103
5.5.2 User Reactions..105
5.5.3 Design Observations ..106

5.6 A-PLUS ARCHITECT REDESIGN...110
5.7 SUMMARY..113

CHAPTER 6. FURTHER STEPS FOR A-PLUS ARCHITECT...115
6.1 EVALUATING PERCEIVED USABILITY AND USEFULNESS ..115

6.1.1 Measuring User Acceptance..115
6.1.2 Participants...116
6.1.3 Method ..118
6.1.4 Results ...119
6.1.5 Discussion...123

6.2 SUMMARY..124
CHAPTER 7. EXTENSION TO THE EDUCATION RESEARCH DOMAIN 125

7.1 REACHING ACROSS DOMAINS ..125
7.1.1 Solving for the Software Engineering Domain...125
7.1.2 The Problem Space in Education Research..126
7.1.3 Structural Similarities of the Problem Domains ..127

7.2 TRANSFERRING THE USAPS METHOD TO EDUCATION RESEARCH ..128
7.2.1 USAPs Content for the Software Engineering Domain ...128
7.2.2 Curriculum Design Methodology.. 130
7.2.3 A Solution Path for Transfer ...134
7.2.4 Example Scenarios ...136
7.2.5 Challenges ..138

7.3 SUMMARY..141
CHAPTER 8. CONTRIBUTIONS, OPEN QUESTIONS, AND CONCLUSIONS.............................143

8.1 RESEARCH CONTRIBUTIONS ...143
8.1.1 Validating Usability-Supporting Architecture Patterns ..144
8.1.2 Architecture Pattern Language for Usability Support... 145
8.1.3 A-PLUS Architect ...146
8.1.4 Extending USAPs Conceptually into Education Research..149

8.2 OPEN QUESTIONS .. 150
8.2.1 Research Questions ..150
8.2.2 Production questions..156

8.3 CONCLUSIONS ...157
REFERENCES...159
APPENDICES..165

APPENDIX A: USABILITY SCENARIO OF CANCEL INCLUDED IN TRAINING DOCUMENT FOR EMPIRICAL
STUDIES. ..165
APPENDIX B: GENERAL RESPONSIBILITIES OF CANCEL INCLUDED IN TRAINING DOCUMENT FOR
EMPIRICAL STUDIES. ...166

 - 9 -

APPENDIX C: “BEFORE” AND “AFTER” DIAGRAMS FROM CANCEL SAMPLE SOLUTION INCLUDED IN
TRAINING DOCUMENT FOR EMPIRICAL STUDIES. ..168
APPENDIX D: CONTENT OF TRAINING DOCUMENTS GIVEN TO PARTICIPANTS IN EMPIRICAL STUDIES. ..169
APPENDIX E: CONTENT OF TRAINING DOCUMENT GIVEN TO SCENARIO-PLUS-GENERAL-RESPONSIBILITIES
PARTICIPANTS IN EMPIRICAL STUDIES. ..170
APPENDIX F: CONTENT OF TASK INSTRUCTIONS GIVEN TO PARTICIPANTS IN EMPIRICAL STUDIES.........181
APPENDIX G: CONTENT OF ANSWER PAPER GIVEN TO PARTICIPANTS IN EMPIRICAL STUDIES.188
APPENDIX H: CODING PLAN FOR EXPERIMENTAL SOLUTIONS IN EMPIRICAL STUDIES.191
APPENDIX I: LIST OF USABILITY SCENARIOS OFFERED TO ABB..200
APPENDIX J: PATTERN LANGUAGE FOR ABB USABILITY SUPPORTING ARCHITECTURAL PATTERNS.203

Assumptions about USAPs ..203
1. Foundational USAPs...204
2. End-User USAPs ... 231

APPENDIX K: RESPONSIBILITIES USED IN ABB USER TESTS. ...244
Authoring..244
Execution with Authored Parameters...251
Logging...260

APPENDIX L: INTRODUCTORY MATERIAL FOR USERS IN ABB USER TESTS. ..263
APPENDIX M: A-PLUS ARCHITECT DESIGN USED IN ONLINE SURVEY. ...266
APPENDIX N: SURVEY ITEMS USED IN ABB USER TESTS. ...274

 - 10 -

List of Figures

FIGURE 1-1. ROADMAP OF WORK DISCUSSED IN CHAPTERS 3-7... 16
FIGURE 2-1. RELATIONSHIP OF PRIOR AND RELATED WORK TO SCOPE OF THESIS.. 19
FIGURE 3-1. USABILITY SCENARIO IN TRAINING DOCUMENT ... 35
FIGURE 3-2. SAMPLE OF RESPONSIBILITIES OF CANCEL .. 36
FIGURE 3-3. MVC MODEL BEFORE ADDING CANCELLATION. .. 37
FIGURE 3-4. MVC MODEL AFTER ADDING CANCELLATION. .. 37
FIGURE 3-5. RESPONSIBILITIES CONSIDERED BY USAP SUBSET .. 42
FIGURE 3-6. TIME ON TRAINING DOCUMENT BY USAP SUBSET... 44
FIGURE 3-7. TIME ON TASK BY USAP SUBSET .. 45
FIGURE 3-8. RESPONSIBILITIES CONSIDERED BY USAP SUBSET .. 47
FIGURE 3-9. TIME ON TRAINING DOCUMENT BY USAP SUBSET... 48
FIGURE 3-10. TIME ON TASK BY USAP SUBSET ..48
FIGURE 3-11. RESPONSIBILITIES CONSIDERED BY USAP SUBSET .. 50
FIGURE 3-12. TIME ON TRAINING DOCUMENT BY USAP SUBSET ... 51
FIGURE 3-13. TIME ON TASK BY USAP SUBSET... 52
FIGURE 3-14. RESPONSIBILITIES CONSIDERED BY TIME ON TASK... 53
FIGURE 3-15. CANCELLATION RESPONSIBILITIES CONSIDERED BY INDIVIDUALS ... 54
FIGURE 3-16. SOLUTION QUALITY BY USAP SUBSET ... 58
FIGURE 3-17. SOLUTION QUALITY VS. ADJUSTED COUNT OF RESPONSIBILITIES BY USAP SUBSET 59
FIGURE 3-18. PREDICTED VS. ACTUAL SOLUTION QUALITY ... 61
FIGURE 3-19. COVERAGE VS. QUALITY IN VIDEO OF S+GR+SS PARTICIPANTS... 62
FIGURE 3-20. CONTENT OF INDIVIDUAL PAGES OF TRAINING DOCUMENT ... 63
FIGURE 3-21. LEVELS OF PAGE ACTIVITY IN TRAINING DOCUMENT ... 64
FIGURE 3-22. TASK TIME ON TRAINING DOCUMENT PAGES BY PARTICIPANTS.. 65
FIGURE 4-1. UML-STYLE COMPONENT DIAGRAM OF THE MVC REFERENCE ARCHITECTURE BEFORE

CONSIDERING THE ABILITY TO CANCEL A LONG RUNNING COMMAND. ORIGINAL RESPONSIBILITIES OF
MVC ARE NUMBERED R1, R2, ETC. AND REFER TO PROSE DESCRIPTIONS OF THE RESPONSIBILITIES
ACCOMPANYI .. 71

FIGURE 4-2. UML-STYLE COMPONENT DIAGRAM OF MVC REVISED TO INCLUDE THE RESPONSIBILITIES
NECESSARY TO PROVIDE THE ABILITY TO CANCEL A LONG RUNNING COMMAND. NEW CANCELLATION
RESPONSIBILITIES ARE NUMBERED CR1, CR2, ETC., ARE ASSIGNED TO BOTH OLD AND NEW
COMPONENTS, AND REFER TO PROSE DESCRIPTIONS OF THE RESPONSIBILITIES IN THE CANCELLATION
USAP.. 71

FIGURE 4-3. OUR LANGUAGE OF THREE USAPS IS COMPARABLE TO A PORTION OF ALEXANDER’S NETWORK
DIAGRAM OF HIS LANGUAGE. ... 81

FIGURE 4-4. THE MULTIPLE SCALES OF THE A-PLUS PATTERN LANGUAGE, A PARTIAL DEPICTION. 82
FIGURE 4-5. NON-RESPONSIBILITY PORTIONS OF END-USER USAP FOR ENVIRONMENT CONFIGURATION ... 83
FIGURE 5-1. SOFTWARE TOOLS AS CONCEIVED IN A-PLUS TOOLSUITE. A-PLUS ARCHITECT IS THE FOCUS

OF THIS THESIS; A-PLUS AUTHOR AND A-PLUS REQUIREMENTS ARE FUTURE WORK TO COMPLETE
THE VISION. ... 90

FIGURE 5-2. OVERVIEW OF ELEMENTS IN TOOL INTERFACE .. 93
FIGURE 5-3. DISPLAYING ONLY NECESSARY INFORMATION ... 95
FIGURE 5-4. INDICATING STATES OF RESPONSIBILITIES IN END-USER USAPS .. 97
FIGURE 5-5. COMBINING RESPONSIBILITIES FOR MULTIPLE RELATED USAPS..100
FIGURE 6-1. JOB TITLES OF SURVEY RESPONDENTS ..117
FIGURE 6-2. TAM ITEMS USED IN A-PLUS ARCHITECT SURVEY ... 119
FIGURE 6-3. DESCRIPTIVE STATISTICS FOR TAM SURVEY..120
FIGURE 7-1. STRUCTURE OF PROBLEM DOMAIN ..129
FIGURE 7-2. SIMILAR SOLUTION PATHS ACROSS DISPARATE DOMAINS ..135

 - 11 -

Chapter 1. Introduction

1.1 Overview

In spite of the goodwill and best efforts of software engineers and usability professionals,

systems continue to be built and released with glaring usability flaws that are costly and

difficult to fix after the system has been built. Although user interface (UI) designers, be

they usability or design experts, communicate usability requirements to software

development teams, seemingly obvious usability features often fail to be implemented as

expected. The impact of usability issues becomes increasingly severe in all kinds of

software as computer use continues to rise in the home, in the workplace, and in

education. If, as seems likely, software developers intend to build what UI designers

specify and simply do not know how to interpret the ramifications that usability

requirements have for the deep structure of the software (i.e., the “software

architecture”), something is needed to help to bridge the gap between UI designers and

software engineers to produce software architecture solutions that successfully address

usability requirements. As described herein, Usability-Supporting Architectural Patterns

(USAPs) achieve this goal by embedding usability concepts in materials that can be used

procedurally to guide software engineers during the complex task of software architecture

design.

In order for usability to be a first-class citizen among software quality attributes, usability

design must be made cost-effective for development organizations. To achieve this goal,

usability needs to be addressed early in the design process in ways that enable it to be

successfully incorporated into software architecture designs and software engineering

implementations. Usability issues in software architecture impact several key

constituencies. End users care because they have to live with usability flaws that have

been left in systems when it becomes too costly to fix them after the system has been

built. This is also relevant in the context of educational technology when students and

teachers must spend valuable learning time working around usability flaws in the

 - 12 -

software being used for educational purposes. Software engineers care about usability

because they have to deal with the headache of trying to fix the problems too late in the

development cycle. Usability professionals care because they are responsible for creating

usable systems. Software development organizations care because user satisfaction and

late-stage changes affect the bottom line. Preventing late-stage changes in complex

software systems by addressing architecturally-sensitive usability concerns during the

architecture design phase is a victory for developers and users alike. This is the goal that

my dissertation addresses.

Addressing usability early in the software development process is a non-trivial problem.

The usability dicta provided by guidelines, heuristics, and UI design patterns may not

give software designers all the information they require to completely and correctly

implement basic usability features. Perhaps decisions made early in the software

development process about the deep structure of the software have precluded

incorporating usability concerns. Perhaps HCI researchers who package the wisdom trust

too much that it will be possible for the software engineers who implement the system to

overcome the burden of earlier decisions, trusting that “many usability problems have

fairly obvious fixes as soon as they have been identified” (Nielsen, 1994). I have two

related hypotheses that address the problem of incorporating usability into the

engineering of software systems.

Hypothesis 1: Explicitly linking specific usability concerns to architectural

decisions early in the software design process will enable software engineers to

include better support for specific usability features into the design of software

systems.

Hypothesis 2: If a technique can be shown to successfully support Hypothesis 1,

and packaged in a form that is useful and usable for software engineers, they will

be likely to use this technique in software design.

 - 13 -

In this dissertation, I present work to construct and evaluate an approach to the problems

of explicitly drawing and communicating the connection between usability concerns and

software architecture design, and delivering that approach to software engineers.

1.2 Approach

Usability is an important quality of interactive software systems that has not been well

addressed in the context of software architecture design. The International Standard

Organization’s Guidance on Usability (ISO 9241-11) defines usability as the “extent to

which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use.” Software

engineers may not have the necessary knowledge of human psychology to effectively

address such criteria. Available heuristics for usability, e.g., Neilsen (1994), are only

expressed from the user’s point of view and provide no guidance for architecture design.

In this and the following chapters, I describe an approach to early-stage software design

for usability through Usability-Supporting Architecture Patterns (USAPs) and their

application and design framework, Architecture Pattern Language for Usability Support

(A-PLUS). I will show how, through an iterative process of testing and revising, USAPs

have been embodied in a software tool that makes them useful and usable as a

performance aid for software engineers designing software architectures to support

usability concerns.

Printed materials or software tools that support independent learning in this

organizational context are generally classed as performance aids (Foley, 1972). If

performance aids are shown to facilitate the development of professional skills in the

context of software engineering (e.g., by helping software engineers to consider the

ramifications of user-centered requirements), then such performance aids could by

extrapolation be useful for professional development in other domains as well. Therefore

I also discuss how a wider interpretation of this research could result in its application to

education research.

 - 14 -

Learning to support usability requirements is a desirable goal for professional software

developers, given the increasing importance of usability as a desirable quality for

software in all manner of applications. However, like professionals in many disciplines,

software engineers and architects have little time for additional training to support new

goals. Interrupting a career for full-time education is generally out of the question. Some

software development professionals may participate in short-term courses on a specific

topic in engineering, but the bulk of learning takes place in an independent context,

through books or software tools (Kazman 2003). This type of learning is not subject to

formal assessment; the only measure is the ability of the software developer to

satisfactorily meet the needs of the organization through software design and

implementation. Performance aids are an appropriate learning tool in a professional

context where there is insufficient time to go back to school to learn new techniques, and

where assessments are weak or nonexistent. The success of USAPs as a performance aid

for applying a new technique without formal training has implications for professional

development education in fields other than software engineering, including teacher

professional development.

A critical step toward providing useful and usable resource materials to support a

technique is to ensure that the technique is of value to the target audience, in this case,

software developers. An early version of USAPs was applied to several software designs,

among them a large commercial information system (Bass & John, 2003) and a wall-

sized tool that supports collaboration of the engineers and scientists on NASA’s Mars

Exploration Rover mission (Adams, John, & Bass, 2005). Those experiences showed that

USAPs as originally conceived may be valuable, but possibly too detailed and overly

complex, which might make them difficult for software developers to apply to their own

problems without the advice of the researchers who developed the USAPs. This lead me

to examine different representations of USAPs under controlled experimental conditions

to determine which parts of a USAP were useful, usable, and necessary before attempting

wider dissemination of USAPs as a tool for software development teams.

 - 15 -

This work has been made possible by prior work in diverse disciplines. In the next

chapter (Chapter 2), I describe how the previous work in several fields has formed a basis

for the work described in the rest of this dissertation. Chapter 2 further details the

concept, early forms, and early applications of USAPs that preceded the work discussed

in Chapters 3 through 7. Figure 1-1 shows a roadmap for Chapters 3 through 7, which

are explained in more detail below.

In Chapter 3, I evaluate the effectiveness of Usability-Supporting Architecture Patterns

(USAPs) in helping software engineers to address a specific usability concern when

designing the architecture for a software system. I present a pair of studies in which

software engineering graduate students apply a USAP to the task of modifying a software

architecture design to address a specific usability concern. Using a system of counting

consideration of software responsibilities, I show that a USAP is an improvement over

providing a usability scenario alone, both in terms of coverage of responsibilities and

quality of solution. I investigate the value of different portions of a USAP in the design

task, and validate the usefulness and usability of USAPs, applied without researcher

intervention, as an approach to improving the consideration of specified usability

concerns in software architecture design. The work described in this chapter supports the

first hypothesis.

In Chapter 4, I describe the process of creating a new representation of USAPs based on

the effectiveness finding of the two studies. Commonalities discovered between several

USAPs during this process lead to the creation of Architecture Pattern Language for

Usability Support (A-PLUS), a pattern language for generating responsibilities and

reusing commonalities content across multiple USAPs. The chapter describes an

improved representation of USAPs that enables compression and re-use of

responsibilities to support the concurrent use of multiple USAPs in software architecture

design practice. The intent of this chapter is to describe A-PLUS as a change in

representation of USAPs in the context of how they will be used to support software

architecture design, not to teach how to create USAPs using the A-PLUS pattern

 - 16 -

language. The work described in this chapter was a group effort, and supports the first

hypothesis.

Figure 1-1. Roadmap of Work Discussed in Chapters 3-7

 - 17 -

In Chapter 5, I describe a browser-based tool, A-PLUS Architect, that was intended to

enable software architects to apply the A-PLUS form of USAPs in the architecture design

process. The A-PLUS pattern language described in Chapter 4 was an improved

representation of USAPs in many aspects, but was not directly usable by software

architects. This chapter describes my design for a further improved representation of

USAPs, A-PLUS Architect, which embodies the A-PLUS representation of USAPs in a

tool that enables multiple USAPs to be combined in a single solution in a form that is

both useful and usable for software architects. I then discuss user tests in which software

architects in industry used the tool to evaluate proposed and existing architecture designs

for software systems. Finally, I describe an iteration on the design of A-PLUS Architect,

based on the results of the user tests. This chapter supports both the first and second

hypotheses.

In Chapter 6, I describe work to assess the feasibility of getting A-PLUS Architect

accepted into work practice in industry. I describe a design-stage evaluation of this tool

for perceived usefulness and ease of use. The improvements on the design of the A-PLUS

Architect tool, and the work to evaluate software architects’ perceptions of the tool in its

redesigned form, support the second hypothesis.

In Chapter 7, I discuss a possible extension of the research concepts embodied in the

USAPs tool to the domain of education research. While the domain of USAPs is software

engineering and HCI, a logical analogy can be drawn from software architecture to

educational systems, and from user interface design to curriculum design. Through this

analogy, I propose extending the USAPs concept to improve the integration of existing

knowledge in curriculum design, research-based instructional guidance and interventions,

and the needs for resources from the educational infrastructure.

In Chapter 8, I conclude by discussing the contributions of the work in this thesis to the

fields of HCI, software engineering, and education research, and then suggest open

questions for future research.

 - 18 -

Chapter 2. Prior and Related Work

Solving the problem of bringing together usability and software architecture is an

inherently interdisciplinary endeavor. In seeking to solve the problem of incorporating

usability into the engineering of software systems, I have drawn on appropriate related

work that falls into several categories seated in diverse disciplines, which I will describe

in this chapter. Figure 1 below shows the relationship of prior and related research

described in this chapter to the work that will be shown in Chapters 3 through 7.

The prior work I discuss in this chapter is shown in the ovals in Figure 2-1. At the top of

Figure 1, work in usability guidance comes primarily from the field of human-computer

interaction. Software quality attributes are related to software architecture, part of the

field of software engineering. Work on usability guidance and software architecture

incorporates elements from both these fields. To design a usable system for software

architects (upper center of Figure 2-1) I also drew on prior research on checklists to

inform my efforts to apply usability knowledge to software architecture design.

Checklists have been studied in many fields, including psychology, human-computer

interaction, software engineering, and education. To assess the likelihood that software

architects would use the system (lower center of Figure 2-1), I used an instrument from

the field of information systems, the Technology Assessment Model. To extrapolate a

framework for extended the work on usability and software architecture to the education

research domain (bottom of Figure 2-1) I drew on prior research in curriculum design.

This thesis draw together diverse elements from these varied disciplines to create a

solution based on a single theme: making usability knowledge useful for, and usable by,

software architects.

 - 19 -

Figure 2-1. Relationship of Prior and Related Work to Scope of Thesis

 - 20 -

2.1 Usability and Software Architecture

2.1.1 Software Quality Attributes

To gain some insight into how software engineers and architects perceive usability, let us

briefly examine software quality attributes as a category. From the perspective of the

field of software engineering, usability is only one of many qualities that a software

system may possess, qualities being “the totality of features and characteristics of a

software product that bear on its ability to satisfy stated or implied needs” (ISO/IEC

9126, 2001). Quality characteristics in this context are defined as “attributes of a software

product by which its quality is described and evaluated,” each of which “may be refined

into multiple levels of sub-characteristics” (ISO/IEC 9126, 2001). Stakeholders in the

development of software systems may desire the software to have quality characteristics

that are not necessarily easily described or directly addressed by the functional

requirements of the system, which describe the system’s capabilities, services, and

behaviors (Bass, Clements, & Kazman, 1998; Bass, Clements, & Kazman, 2003). These

qualities are referred to as quality attributes of a software system.

The International Standard ISO/IEC 9126 (2001) identifies six main software quality

characteristics, each with a number of subsidiary attributes:

• functionality (suitability, accurateness, interoperability, compliance, security),

• reliability (maturity, fault tolerance, recoverability),

• usability (understandability, learnability, operability),

• efficiency (time behavior, resource behavior),

• maintainability (analyzability, changeability, stability, testability), and

• portability (adaptability, installability, conformance, replaceability).

Descriptions of many software quality attributes and their applications may be found in

Barbacci, Klein, Longstaff, & Weinstock (1995), and Bass et al. (1998, 2003). Quality

attributes identified by Bass et al. (2003, pp. 78-93) are:

• availability (how frequently or for how long a system may acceptably fail),

• modifiability (how difficult or costly a system is to change),

• performance (how long a system takes to respond to an event),

 - 21 -

• security (how well a system can prevent unauthorized usage),

• testability (how easily a system can be made to demonstrated its faults through

testing), and

• usability (how easily and effectively a user can perform a task).

The lists of identified software quality attributes are continually evolving.

A software system must be designed to meet its functional requirements, but quality

attributes desired by the business must also be designed for early in the development life

cycle, as changing the system later to accommodate them can be both costly and time-

consuming. Quality attributes may also necessitate tradeoffs in the design decision

process. For example, performance and security are sometimes at odd with one another,

requiring explicit decisions in favor of one or the other to be made in a software system’s

design. Decisions as to which quality attributes are most important for a software system

are driven by business needs. These decisions are reached during the requirements

gathering phase of the software life cycle, very early in the development process. Once

both functional requirements and quality attributes have been defined, the architecture of

a software system may begin to be designed. For an interactive software system, i.e., one

with human users, usability is a key quality attribute. Once the usability requirements of

an interactive system have been determined, those requirements along with others will be

considered in designing the architecture of that system.

Since usability is a quality attribute that must be designed for, but that software engineers

might not know much about (Kazman, Gunaratne, & Jerome, 2003), we next turn to the

human-computer interaction literature to see what guidance it can provide to software

engineers in helping them to design for usability.

2.1.2 Usability Guidance

The field of human-computer interaction has tried in various ways to package usability

knowledge so as to guide software design and implementation. Heuristics, guidelines, and

UI design patterns are three such types of attempts. All of these are packaged in such a

 - 22 -

way as to be used primarily by those who design and develop user interfaces, and all are

valid and valuable ways to address usability issues in user interface design. However,

they fall somewhat short of providing sufficiently detailed functional guidance for the

software engineer to apply them with full benefit in system design and implementation.

Heuristics such as Nielsen’s (Nielsen & Mack, 1994) are used to evaluate a user interface

design to determine whether the design meets a limited number of overarching usability

criteria. Nielsen defines heuristics as “general rules that seem to describe common

properties of usable interfaces,” and describes heuristic evaluation as a “discount

usability engineering method, … cheap, fast, and easy to use.” Although he claims that

“many usability problems have fairly obvious fixes as soon as they have been identified,”

he admits that the method “does not provide a systematic way to generate fixes” to

usability problems once they have been identified through heuristic evaluation. For

example, a heuristic like

“User control and freedom: Users often choose system functions by mistake and

will need a clearly marked ‘emergency exit’ to leave the unwanted state without

having to go though an extended dialogue. Support undo and redo.” (Nielsen &

Mack, 1994, p. 30)

provides guidance about the kind of mistake a user is likely to make, and general advice

as to how a user interface can be designed to minimize the negative consequences.

During a heuristic evaluation of a user interface, this heuristic would uncover any

absence of such functionality. However, the heuristic does not suggest a way to address

the technical design implications of “undo” and “redo” in the context of a complex

software system. Solutions rely instead on the engineering team’s knowledge of

“established usability principles” and ability to incorporate them in a redesign.

Early example of guidelines were those laid out by Engel and Granda (Engel & Granda,

1975) and Smith and Mosier (Smith & Mosier, 1984). An extensive current example

may be found in the National Cancer Institute’s web usability guidelines (Koyani, Bailey,

& Nall, 2003), which are numerous and supported by research-based evidence.

Guidelines provide more explicit functional descriptions of usability-related software

 - 23 -

development considerations for certain types of system functions, e.g., those related to

entering or displaying data. However, when functional suggestions are included they are

stated in general terms. Here is a sample NCI guideline titled “Warn of ‘Time Outs’”:

“Guideline: Let users know if a page is programmed to ‘time out,’ and warn users

before time expires so they can request additional time.

Comments: Some pages are designed to ‘time out’ automatically (usually because

of security reasons). Pages that require users to use them within a fixed amought of

time can present particular challenges to users who read or make entries slowly.”

(Koyani, Bailey, & Nall, 2003, p. 14)

While this guideline does provide some usability knowledge about the need for user

feedback, the knowledge is only detailed at the level of the user interface. It does not

offer software engineers practical insight into how to implement the suggestions in the

context of an interactive software system, e.g., identifying processes that must be timed,

regulating authorized access, etc. Since many of usability issues also have architectural

implications, such guidelines do not go far enough in providing usability guidance for

software engineers.

User interface design patterns (Van Duyne, Landay, & Hong, 2002; Tidwell, 2004) are

likewise aimed primarily at user interface and interaction designers, not software

engineers. The internet-suitable design patterns delineated by Van Duyne and his

colleagues are suggested for “Web design professionals, such as interaction designers,

usability engineers, information architects, and visual designers,” although they do add

that others, including software developers, might benefit by becoming more aware of the

“customer-centered design philosophy” embodied in the patterns. Tidwell’s user

interface patterns “are intended to be read by people who have some knowledge of UI

design concepts and terminology,” including “whitespace” and “branding.” These are

design concepts commonly understood by professional user interface designers, but are

not terms of art in the field of software engineering.

 - 24 -

UI design patterns do make some functional suggestions for steps a software system

should provide to successfully interact with a user. Here is an excerpt from Tidwell’s

“cancelability” UI design pattern, for canceling a long-running command:

“What: Provide a way to instantly cancel a time-consuming operation, with no

side effects.

Use when: A time-consuming operation interrupts the UI, or runs in the

background, for longer than two seconds or so – such as when you print a file,

query a database, or load a large file. Alternatively, the user is engaged in an

activity that literally or apparently shuts out most other interactions with the

system, such as when working with a modal dialog box.

How: … If you really do need to cancel it, here’s how to do it. Put a cancel

button directly on the interface… or wherever the results of the operation appear.

Label it with the word Stop or Cancel, and/or put an internationally recognizable

stop icon on it: a red octagon, a red circle with a horizontal bar, or an X. When

the user clicks or presses the Cancel button, cancel the operation immediately. If

you wait too long, for more than a second or two, the user may doubt that the

cancel actually worked… Tell the user that the cancel worked – halt the progress

indicator, and show a status message on the interface, for instance. Multiple

parallel operations present a challenge. How does the user cancel a particular one

and not others? … If the actions are presented as a list or a set of panels, you

might consider providing a separate cancel button for each action, to avoid

ambiguity.” (Tidwell, 2006, p. 151)

As you can see, this pattern communicates usability knowledge about appropriate timing

and user feedback for canceling a long-running command in a software system. It

provides more explicit advice in terms of providing for user interaction than usability

guidelines do. However, it stops short of considering related issues that the user may not

directly see, but which will affect the user’s experience, e.g., having the software system

listen for the Cancel button, or providing appropriate user feedback if the system fails to

cancel the command. In other words, UI design patterns still rely on the software

engineer to understand and generate or recall unstated deeper implications of user

 - 25 -

interface design elements. Their guidance is helpful but not sufficient for software

engineers who are designing the functionality of complex interactive systems.

2.1.3 Usability & Software Architecture Patterns

During the 1980s, separation of the user interface from the core functionality of many

software systems became common. Although usability is acknowledged to be an

important quality of interactive software systems, it has been treated as a subset of

modifiability. Software architects and engineers commonly assume that usability issues

that arise during user testing can be handled with localized modifications. As recently as

1999, usability has been labeled as a quality attribute that could not be meaningfully

addressed in the context of software architecture design (Bass et al., 1999). Usability

concerns were relegated to the user interface (UI) design phase of the software life cycle,

which was and is routinely performed long after the architecture of a software system has

been chosen and detailed.

Unfortunately, simply separating the interface from the functionality does not support all

usability concerns. In fact, many usability concerns reach deeply into the architecture of a

software system. This can have costly repercussions when usability is not considered

early in the design process and support for usability concerns are not designed into the

architecture of the system. Usability problems found in user testing can require extensive

and costly re-architecting of software systems. When this happens, projects either are

burdened with extra costs and delays, or, as often happens, cannot afford the additional

costs and therefore ship products with known usability issues that could have been

prevented if they had been considered earlier in the software life cycle.

To address this problem, research on the relationship between usability and software

architecture by John & Bass (2000, 2001, 2004) has led to the development of USAPs,

each of which addresses a usability concern that is not addressed by separating interface

from functionality. The USAPs approach will be described in detail in following

chapters. Other approaches to the problem have been proposed by Folmer et al. (2003,

 - 26 -

2004), and by Juristo et al. (2001, 2003, 2007), which will be discussed in the following

sections.

In 2000, Bass and John (Bass & John, 2000) suggested the development of collection of

Attribute-Based Architectural Styles (ABASs) for aspects of usability that might be

affected by changes in a system’s software architecture. An ABAS is a structured

description of a measurable quality attribute, a particular architectural style, and the

relevant qualitative and quantitative analysis techniques (Klein et al., 1999). The sample

ABAS they proposed was to be “used to reason about whether a proposed software

architecture will facilitate users being able to cancel their last operation.” The eight-page

ABAS included four main ideas: a problem statement, stimulus/response measures, an

architectural style, and an analysis section describing “how to reason about a solution in

terms of … measurable responses.”

In 2001, Bass et al. further refined their work on ABASs and the connection between

usability and software architecture by identifying twenty-six general scenarios that

defined architecturally sensitive aspects of usability (Bass, John, & Kates, 2001) and

describing an architectural pattern that would address each scenario. They also introduced

a hierarchy of benefits each scenario would provide to a user of the system, since

“[a]ssuming that the functionality needed by a system’s users is correctly identified

and specified, the usability of such a system can still be seriously compromised by

architectural decisions that hinder or even prevent the required benefits. In extreme

cases, the resulting system can become virtually unusable.”

Each usability scenario covered one or more positions in the hierarchy of usability

benefits. These combinations of architecturally-sensitive usability scenarios, benefit

hierarchies, and architectural solutions were later named Usability-Supporting

Architectural Patterns, or USAPs (John, Bass, Sanchez-Segura, & Adams, 2004).

The main work described in the remainder of this thesis examines the formulation and

application of USAPs for addressing specific usability concerns during software

architecture design. Before describing USAPs, however, I will discuss two other

 - 27 -

approaches that have been suggested to investigating the relationship between usability

and software architecture, as well as contributing factors from other fields as shown in

Figure A above.

2.1.4 Juristo et al.’s Approach

Both this approach and the approach in section 2.1.5 below were proposed by groups of

researchers within the STATUS (SofTware Architectures That support USability) project,

an initiative of the European Union.

The first of these groups proposed to support usability in software architecture by

“decompos[ing] usability into levels of abstraction that are progressively closer to

software architecture.” (Juristo, Lopez, Moreno, & Sanchez-Segura, 2003) This

approach suggested first breaking down the concept of usability into constituent attributes

– learnability, efficiency of use, reliability, and satisfaction – and then mapping

relationships between these attributes, usability “properties” phrased as simple

guidelines, and user interface patterns that might support those properties. They then

attempted to map relationships between user interface patterns and traditional software

architecture patterns. The approach suggested a workflow where the software architect

would trace the relationship back from the desired usability attribute (e.g., satisfaction)

through the associated usability property (provide explicit user control) and a user

interface pattern to support that property (undo) to know to use a software architecture

pattern (undoer) that would provide underlying functionality to the user interface pattern.

They later proposed a set of guidelines to help software engineering teams determine

what usability functionality would be required by stakeholders in a software system.

(Juristo, Moreno, & Sanchez-Segura, 2007; Juristo, Moreno, Sanchez-Segura, &

Baranauskas, 2007). These guidelines were intended for use during the requirements-

gathering process to assist the elicitation of functional usability requirements. While both

these guidelines and the mapping approach above describe processes by which user

interface patterns could be mapped to software architecture patterns to improve usability,

 - 28 -

it has not been shown how these approaches would function in an actual software

architecture design task.

2.1.5 Folmer et al.’s Approach

The second approach to emerge from the STATUS project took a similar tactic as far as

connecting usability attributes, usability properties, and user interface patterns. In their

work, they replaced the term “user interface pattern” with “architecturally sensitive

usability pattern,” which they defined as “a technique or mechanism that should be

applied to the design of the architecture of a software system in order to address a need

identified by a usability property at the requirements stage (or an iteration thereof).”

(Folmer, van Gurp, & Bosch, 2003)

This group’s next step, similar to the work of Juristo et al., was to propose a method of

assessing usability needs during the requirements-gathering phase of the software life

cycle. Their method focused on “usage scenarios,” defined as “interactions between

independent entities[:]… the user (as a stakeholder)… the context in which the user

operates (as part of the environment)… [and] the tasks that a user can perform (as part of

the system).” (Folmer, van Gurp, & Bosch, 2004) They suggested using use case maps to

capture design decisions regarding usage scenarios and software architecture. They also

suggested a framework to map the problem domain (Folmer & Bosch, 2004; Folmer &

Bosch, 2008).

As with the work of Juristo et al., there is no operationalized process by which the

software architect can proceed from the “architecturally sensitive usability pattern” to a

software architecture pattern. As will be shown in the remainder of this thesis, my work

in USAPs fills this gap by providing a detailed, useful, and usable process for supporting

the quality attribute of usability in the software architecture design process.

 - 29 -

2.2 Contributing Factors from Other Fields

As seen in Figure 2-1 above, material from several additional fields of research was

drawn in to support the work in this thesis. I describe these diverse subjects below.

2.2.1 Checklists

Because part of the intent of USAPs with respect to software architects was to help them

remember to attend to numerous considerations within a predefined task, the use of lists

and checklists informed both the design and content of the USAPs materials described in

Chapter 3 and the web-based tool prototype described in Chapter 5. To support this work

I looked in diverse areas for circumstances where checklists might have been used to help

people perform tasks they had not performed before, but for which they might be

otherwise qualified, since the design tasks the software architects perform often call upon

existing knowledge but are not routine.

In the fields of human factors and aviation psychology, Degani and Wiener have done

important work on the use of checklists as memory aids (Degani &Wiener, 1990; Degani

&Wiener, 1993). Their research addressed use of checklists by cockpit crews in the

performance of both normal and non-normal procedures, showing checklists to be

effective as memory aids. In these studies, the cockpit crews were performing tasks for

which they had been trained. In both normal (e.g., preparing for takeoff) and abnormal

procedures the cockpit crews were performing series of tasks on which they had been

trained previously. In normal procedures, “the checklist is intended to achieve the

following objectives:

1. Aid the pilot in recalling the process of configuring the plane.

2. Provide a standard foundation for verifying aircraft configuration that will

defeat any reduction in the flight crew’s psychological and physical

condition.

3. Provide convenient sequences for motor movements and eye fixations along

the cockpit panels.

4. Provide a sequential framework to meet internal and external cockpit

 - 30 -

operational requirements.

5. Allow mutual supervision (cross checking) among crew members.

6. Enhance a team (crew) concept for configuring the plane by keeping all crew

members “in the loop.”

7. Dictate the duties of each crew member in order to facilitate optimum crew

coordination as well as logical distribution of cockpit workload.

8. Serve as a quality control tool by flight management and government

regulators over the pilots in the process of configuring the plane for the

flight.” (Degani & Wiener, 1990, p. 7)

Although some general objectives of using checklists in normal procedures apply to the

tasks we will consider in Chapters 3 and 5 – helping with recall, allowing mutual

supervision, enhancing quality control – the function of checklists in abnormal

procedures, defined as “emergencies and/or malfunctions of the aircraft systems,” is more

relevant to our case. During abnormal procedures, the checklist “serves to

1. Act as memory guide.

2. Ensure that all critical actions are taken.

3. Reduce variability between pilots.

4. Enhance coordination during high workload and stressful conditions.”

(Degani & Wiener, 1990, p. 8)

In both normal and abnormal circumstances, checklists were found to be an effective

memory aid. Checklists have proven so effective in aviation that their use in medical

procedures is now being studied and advocated (Gawande, 2009). However, a “design

weakness” that Degani & Wiener noted in the “traditional (paper) checklist” was that “if

the individual… chooses not to use the checklist for any reason, no one can force him to

use it. (Degani & Wiener, 1990, p. 60” Additionally, none of this research examined the

use of checklists to perform tasks that had never before been performed by the people

using the checklists.

 - 31 -

In the field of software engineering, Porter et al. examined the use of checklists as one of

several fault detection methods in software requirements inspections (Porter & Votta,

1994; Porter, Votta, & Basili, 1995). In their work, they compared three methods of

manually inspecting software designs for faults: ad hoc inspection using a general

taxonomy of faults, checklist-based inspection using a subset of the faults in the ad hoc

taxonomy, and scenario-based inspection using groups of scenarios representing subsets

of the checklist items. In experiments with both students and software professionals,

their findings were not especially favorable for checklists. As a technique, checklists

provided no better fault detection than ad hoc inspection, and both of these techniques

were inferior to scenario-based fault detection, which provided an improvement in the

fault detection rate from 35% to 51% in student participants and from 21% to 38% in the

professional participants (Porter & Votta, 1998). Although it may seem at first glance

that we should take these results as an indication to throw out a checklist-based approach,

Chapter 3 will show an approach uses a combination of scenarios and checklists, for

which Porter & Votta’s results may presage a good result.

2.2.2 Technology Acceptance Model

One goal of my research is to produce knowledge that can be used successfully in

nonacademic settings. USAPs were conceived with the ultimate goal of being used by

software architects in professional practice. However, it is one thing to create a new

technique or tool for software development but quite another to get that technique or tool

accepted into practice in professional use. For a way to measure the likelihood of

technology acceptance for new technologies, the field of information systems has

developed the Technology Assessment model, which was used during the user tests

described in Chapter 5 and the design evaluation of Chapter 6.

The Technology Acceptance Model, or TAM, is an adaptation of an intention model from

social psychology, Fishbein and Ajzen’s theory of reasoned action, specifically designed

to explain computer usage behavior. (Davis, Bagozzi, & Warshaw, 1989) TAM was

designed to explain the causal links between “perceived usefulness and perceived ease of

 - 32 -

use” on the one hand, and “users’ attitudes, intentions and actual computer adoption

behavior” on the other. In the model, perceived usefulness is defined as “the prospective

user’s subjective probability that using a specific application system will increase his or

her job performance within an organizational context. Perceived ease of use is defined as

“the degree to which the prospective user expects the target system to be free of effort.”

The model posits that these two factors will affect a user’s attitude toward using a system

and behavioral intention to use the system, which will in turn predict actual system use.

TAM was empirically validated through a number of studies by its originator, Davis, and

others (Davis, 1989; Davis et al., 1989; Adams, Nelson, & Todd, 1992).

Survey items from the Technology Acceptance Model used in this work were from the

TAM2 (Venkatesh & Davis, 2000; Venkatesh, Morris, Davis, & Davis, 2003). The

TAM2 is a validated survey instrument for predictive assessment of use of information

systems. Items in the survey instrument measure the perceived usability and usefulness

of a software system (or other product) once the system has been created. The instrument

is easy to administer and measures attitudes toward the new system, not task

performance. Perceived usability and usefulness are critical to new methods and tools in a

professional development environment because users, unless they are forced, will not use

software unless they perceive it as both helpful and reasonably easy to use.

2.2.3 Curriculum Design

Chapter 7 proposes a hypothetical framework for extending my work on usability and

software architecture to the education research domain. Research in curriculum design,

from the field of education research, provides the underpinning for this extension.

Curriculum may be described as “the knowledge and skills in subject matter areas that

teachers teach and students are supposed to learn…. [It] generally consists of a scope or

breadth of content in a given subject area and a sequence for learning…. Standards…

typically outline the goals of learning, whereas curriculum sets forth the more specific

means to be used to achieve those ends.” (Pellegrino, 2006) Curriculum may then be

 - 33 -

understood to be the tactics used to achieve the strategic goals already set out in

standards. This is a narrow but not uncommon definition of curriculum.

Much debate in education research surrounds the questions of what kinds of learning

environments best foster education, and how to create those environments. Four general

types of learning environments are described with the labels learner-centered,

knowledge-centered, assessment-centered, and community-centered environments.

Learner-centered environments focus on the “knowledge, skills, attitudes, and beliefs that

learners bring to the educational setting,” including cultural and language practices.

Knowledge-centered environments are concerned with helping students come to terms

with “well-organized bodies of knowledge that support planning and strategic thinking”

by “learning in ways that lead to understanding and subsequent transfer.” Assessment-

centered learning environments focus on providing “opportunities for feedback and

revision” and making certain that what is assessed is “congruent with one’s learning

goals.” Community-centered learning environments, a more recent coinage, recognize

and attempt to measure “norms for people learning from one another and continually

attempting to improve.” (Bransford, Brown, & Cocking, 2000)

Curriculum design does not exist independent of learning environment. Chapter 7 lays

the groundwork for extending the USAPs method to the education domain by drawing an

analogy between software architecture and the educational system (as learning

environment), and user interface design and curriculum design.

In the following chapters, I will show how these seemingly disparate elements combine

(as shown in Figure 2-1) to inform an approach to solving the problem of making

usability knowledge useful to, and usable by, software architects, and how the solution

could be generalized to apply to the field of education research.

 - 34 -

Chapter 3. Empirical Studies

This chapter describes work to evaluate the effectiveness of a single Usability-Supporting

Architecture Pattern (USAP) through controlled experiments in a laboratory setting.

Previous work on USAPs, as discussed in the last chapter, stopped short of experimental

validation of the form of the USAPs that had been developed by Bass and John, a logical

step before investing the extensive time and effort required to fully develop multiple

USAPs. I studied the effectiveness of a single USAP in helping software engineers to

address a specific usability concern when designing the architecture for a software

system. In the studies described in this chapter, software engineering graduate students

applied a USAP to the task of modifying a software architecture design to address a

specific usability concern. I will describe how I used a system of counting the

consideration of software responsibilities in a software architecture design to show that a

USAP is an improvement over providing a usability scenario alone, both in terms of

coverage of responsibilities and quality of solution. I will also show the results of video

analysis through which I examined the value of different portions of a USAP in the

design task.

3.1 Experiment 1 – Consideration of Responsibilities

To examine whether all parts of a USAP were useful, usable, and necessary, I designed

and carried out a controlled experiment to assess the value of the different parts of a

USAP in modifying a software architecture design. The USAP chosen for the experiment

supports an important usability concern: canceling a long-running command. The

experimental protocol asked software engineers to apply this USAP to the task of

redesigning the architecture for a software system that had not originally considered the

ability to cancel. The experiment measured whether the architectural solutions produced

as a result of using all three components of a USAP more fully supported the needs of a

usable cancellation facility than those produced by using certain subsets of the USAP.

Much of the work described in this chapter has already been published in (Golden, John,

 - 35 -

& Bass, 2005a) and (Golden, John, & Bass, 2005b).

3.1.1 Experimental Design

The experiment used a between-subjects design with participants randomly assigned to

one of three experimental conditions. Participants in each condition received a different

version of a “Training Document,” and all participants received the same architecture

redesign task. In creating the materials for this experiment, all instructional and task

materials were evaluated by eight software architecture experts for correctness and

completeness with respect to software architecture, prior to conducting the experiment.

Four of these experts were from academia and four from industry. In addition to the

instructional and task materials they were asked to critique and approve a potential

solution to the redesign task. All stimuli from the experiment can be found in Appendices

B through G, with excerpts shown in this chapter.

The Training Document received by participants in the first condition, scenario-only (S),

contained only a usability scenario describing circumstances under which a user might

need to cancel an active command. This scenario was a single paragraph of prose,

similar to the language that a usability expert might typically use to recommend that

cancellation capability be added to an application (Figure 3-1; Appendix A). This may be

compared with Nielsen’s heuristic on User Control and Freedom: “Users often choose

system functions by mistake and will need a clearly marked "emergency exit" to leave the

unwanted state without having to go through an extended dialogue. Support undo and

redo.” (Neilsen & Mack, 1994, p. 30)

Usability Scenario: Canceling a Command
The user issues a command, then changes his or her
mind, wanting to stop the operation and return the
software to its pre-operation state. It doesn’t matter why
the user wants to stop; he or she could have made a
mistake, the system could be unresponsive, or the
environment could have changed.

Figure 3-1. Usability Scenario in Training Document

 - 36 -

The Training Document for the second experimental condition, scenario-plus-general-

responsibilities (S+GR), consisted of the usability scenario and a list of 19 general

responsibilities that should be considered when designing any software implementation

of a cancel command (Figure 3-2). This list was derived from an analysis of forces

generated by characteristics of the task and environment, the desires and capabilities of

the user, and the state of the software itself (John, Bass, Sanchez-Segura, & Adams,

2004) and vetted by the panel of architecture experts mentioned above. Since this was a

list of general responsibilities designed to be considered in any system for which cancel

functionality was a requirement, the S+GR Training Document stipulated that not all

responsibilities might be applicable to solving any given design problem.

CR1

A button, menu item, keyboard shortcut
and/or other means must be provided, by
which the user may cancel the active
command.

CR2
The system must always listen for the cancel
command or changes in the system
environment.

CR3

The system must always gather information
(state, resource usage, actions, etc.) that allow
for recovery of the state of the system prior to
the execution of the current command.

Figure 3-2. Sample of Responsibilities of Cancel

The Training Document for the third experimental condition, scenario-plus-general-

responsibilities-plus-sample-solution (S+GR+SS), included the scenario, the list of

general responsibilities, and also implementation suggestions in the form of a sample

solution for adding cancellation to a software architecture design based on the Model-

View-Controller (MVC) architectural pattern (Sun Microsystems, 2002). The sample

solution contained “before” and “after” Component Diagrams of the MVC architecture,

“before” meaning a design that did not support cancellation (Figure 3-3), and “after”

meaning a design that did explicitly support cancellation (Figure 3-4). A set of numbered

responsibilities displayed in the components in the “before” diagram corresponded to a

numbered list of the responsibilities of each of the MVC components [Appendix C, Fig.

1]. Numbered responsibilities displayed in the “after” diagram additionally allocated the

general cancellation responsibilities (CRs) in the Training Document to the MVC

 - 37 -

components, and added several new components to fulfill the cancellation responsibilities

[Appendix C, Fig. 2]. The sample solution also included a UML Sequence Diagram of

how the revised MVC architecture worked when supporting cancellation. Although the

given sample solution is not the only possible arrangement of components and

responsibilities to support cancellation, the panel of eight expert architects agreed that it

was a satisfactory solution.

Figure 3-3. MVC Model before Adding Cancellation.

Figure 3-4. MVC Model after Adding Cancellation.

The three Training Documents varied in length accordingly as they differed in content.

The S Training Document was a single paragraph, the S+GR Training Document was

three pages of prose and the S+GR+SS Training Document was eight pages of both prose

and software architecture diagrams.

 - 38 -

Each participant was given the task of modifying an existing architectural design. The

original design had no support for cancellation of an active command; the modified

design they were asked to create was required to support cancellation. For this task we

chose the architectural design for Plug-in Architecture for Mobile Devices (PAMD), a

plug-in controller for the Palm OS4. PAMD had been used as a sample system in a

software architecture design and analysis course at the Software Engineering Institute

(Eguiluz, Govi, Kim, & Sia, 2002). This architecture design was chosen because (1)

PAMD was simple enough that a participant already trained in software architecture

could understand it in a relatively short period of time, (2) since the Palm OS4 was a

single-threaded architecture, adding the ability to cancel a long-running command was a

nontrivial task, and (3) PAMD was sufficiently different from MVC that participants who

received the MVC-based sample solution had to extrapolate and generalize in order to

create a specific solution for adding cancel to PAMD.

The Task Instructions included seven elements [found in Appendix F]:

• a text-based general description of the PAMD architecture;

• a text-based example scenario of how PAMD works (without considering

cancellation);

• a numbered list of responsibilities of the PAMD components for normal

operation;

• a numbered list of Component Interaction Steps detailing the run-time operation

of PAMD while calling a plug-in;

• a Component Interaction Diagram, showing the components and connectors

involved in the PAMD architecture;

• a Sequence Diagram of PAMD run-time component interaction while calling a

plug-in;

• a final page instructing the participant to add the ability to cancel a plug-in to the

PAMD architecture design.

 - 39 -

For assessment purposes we designed an Answer Packet wherein the participants could

easily and efficiently record their redesign. Since participants might have different levels

of competency with any specific computer-based tool, the Answer Packet was paper-

based. Since software architecture designs generally include architectural diagrams as

well as textual information, the Answer Packet contained a Component Interaction

Diagram, a Sequence Diagram, and a list of Component Interaction Steps, each with

sufficient white space for the participants to insert their designs. The participants were

also given several blank sheets of paper as part of the Answer Packet to use as they

wished. The Component Interaction Diagram and the Component Interaction Steps were

identical to those provided in the Task Instructions, except that the assignments of

numbered PAMD responsibilities and run-time steps to the diagrams were removed from

the Answer Packet. Since the user’s request for cancellation would always appear in the

Sequence Diagram after the command was invoked, the Sequence Diagram in the

Answer Packet showed execution steps up through invoking the command to be

cancelled but left the following steps to the participant’s discretion.

The participants were instructed to use these diagrams as the basis for their designs, and

to add any components, responsibilities, or steps as needed to express their ideas for

supporting cancellation. They were explicitly asked to make the diagrams in their

solution consistent with each other at a detailed level, just as the diagrams in the PAMD

architectural design were internally consistent.

3.1.2 Participants

Eighteen computer science graduate students participated in the original experiment. All

18 participants had completed work for a master’s degree in software engineering and/or

information technology, and were working toward an additional practice-based

Professional Development Certificate. The 15 male and 3 female participants ranged in

age from 23 to 30. Fifteen of the participants averaged 25.7 months of industrial

programming experience, with a range from 6 to 48 months; the other 3 had no

programming experience in industry. Fourteen of the participants averaged 15.3 months

of software design in industry, with a range of 4 to 36 months; the other 4 participants

 - 40 -

had no industrial experience in software design (these included the 3 with no

programming experience in industry). At the time of the experiment, participants reported

spending between 5 and 50 hours per week programming, with an average of 22.9 hours

per week, and from 0 to 30 hours per week on software design, with an average of 11.4

hours per week.

3.1.3 Procedure

Participants were randomly assigned to one of the three experimental conditions, and

participated in individual sessions with no time limit. Participants were told that they

were participating in a study about fixing a usability problem in a software architecture

design. They were informed that they would be given a handout to read, describing a

usability scenario relevant to system architecture, then read through a description of a

system architecture design, and lastly be asked to modify that architecture design to meet

the requirements of the usability scenario.

Participants were then asked to read the appropriate Training Document for their

experimental condition, and state when they had read and understood it. This ensured

that all participants read the Training Document. After reading their Training Document,

participants were given the Task Instructions. To minimize variation in time and

comprehension level during this portion of the experiment, the experimenter read the

Task Instructions aloud, while the participant read along silently and interrupted with any

questions. Participants were given the Answer Packet after the reading of the Task

Instructions. Each participant was allowed unlimited time in which to complete the

redesign task. After completion, the participant explained the details of the solution to

the experimenter to disambiguate any handwriting or diagrammatic issues.

All of the written materials – Training Document, Task Instructions, and Answer Packet

– were collected as evidence. Video recordings of each participant performing the

experimental task were also collected.

 - 41 -

3.1.4 Measures

Similarly to the method used in (Prechelt, Unger, & Schmidt, 1997; Prechelt, Unger-

Lamprecht, Philippsen, & Tichy, 2002) for counting the degree to which requirements

were fulfilled within subtasks of a programming maintenance task, I developed a scoring

system that counted the union of all cancellation responsibilities that were found to have

been considered in any elements of the participant solution. That is, I counted a

responsibility as having been considered if it appeared in the Component Interaction

Diagram, or the Sequence Diagram, or the Component Interaction Steps, or in any list of

Additional Responsibilities added by the participants. Each specific cancellation

responsibility that appeared in the participant solution was counted only once,

irrespective of the number of solution elements in which it appeared. A lower number of

cancellation responsibilities appearing in a participant solution indicated a narrower

consideration of cancellation responsibilities; a broader consideration produced a higher

number of cancellation responsibilities in the participant solution. Several measures of

time on task were also collected, including time to read each of the documents and time

to perform the architecture design modification task. Time spent in performing the

architecture design modification task began when the participant commenced work on the

Answer Packet, and ended when he/she declared completion of the design modification

task. Time spent on each the documents began when the participant began reading, and

ended when he/she declared completion and comprehension of the reading.

3.1.5 Results

3.1.5.1 Consideration of Responsibilities

Responsibilities considered by participants in the three experimental conditions are

shown in Figure 3-5 below. Statistically significant improvement was attained for the

full USAP (S+GR+SS) over scenario-alone (S) on the quantitative metric described

above (F(2,15) = 5.26, p < .05). Although no other results were statistically significant,

the scenario plus list (S+GR) condition trended to be better than the scenario-only

condition.

 - 42 -

Participants whose Training Document included all three parts of the cancellation USAP

were able to identify and address three times as many cancellation responsibilities, on

average, as participants who received only a general usability scenario, in the same

amount of time, and without having more work experience or formal training prior to the

task. Those who were given only the USAP scenario considered between 2 and 4

cancellation responsibilities in their solutions out of a possible 19, with an average of

3.17. Those who received the USAP scenario and list of 19 general responsibilities

averaged 7.7 cancellation responsibilities in their solution, with a range from 4 to 15.

Those who received the USAP scenario, the list of 19 general responsibilities, and a

sample solution, considered from 5 to 15 cancellation responsibilities in their solutions,

with an average of 9.5.

Figure 3-5. Responsibilities Considered by USAP Subset

Although no other results were statistically significant, the scenario plus list (S+GR)

condition trended to be better than the scenario-only condition. Applying Pearson’s

correlation between groups showed no significant correlation between the number of

responsibilities considered and any factor (e.g., age, gender, programming or software

design experience in industry) other than the experimental condition.

 - 43 -

3.1.5.2 Time Factors

Two measures of time were collected: time on Training Document and time on task.

Time on Training Document

The first measure, time on Training Document, measured time to use the Training

Document describing the Cancel USAP, beginning when the participant started to read

the version of the Training Document appropriate to the experimental condition, and

ending when he/she declared that he/she has finished reading. Although, as described in

Section 3.1.3, all participants also read a Task Instructions document, the experimental

protocol controlled the time spent on Task Instructions so as to be the same for every

participant (15 ± 2 minutes) by requiring the experiment to read the Task Instructions

aloud to the participant, so time spent on Task Instructions was not an experimental

measure.

Time spent reading and comprehending materials is an important factor in designing any

performance aid software design. Indeed, part of the motivation for performing this

experiment was to determine whether it was necessary to provide MVC examples in the

Training Document, since additional material takes longer for users to learn, as well as

for designers to create.

Since the three Training Documents were very different in length (one paragraph, three

pages of prose, or eight pages of prose and diagrams), we hypothesized that there would

be significant differences in the time the participants needed to read and comprehend the

materials. Participants in the S condition took an average of 1.3 minutes to read the

Training Document, with a range from 1 to 3 minutes. Participants in the S+GR

condition took an average of 8 minutes, ranging from 5 to 11, while participants in the

S+GR+SS condition averaged 16.33 minutes, and ranged from 7 to 29. As expected, one-

way ANOVA between the three experimental conditions supported this hypothesis,

showing a significant main effect of USAP subset provided on time required to read and

comprehend the Training Documents (F(2,15) = 14.95, p < .001). Pairwise comparisons

 - 44 -

made using Tukey’s HSD indicated significant mean difference between average time

required to read and comprehend the Training Documents in the S and S+GR Training

Documents (p < 0.01), the S+GR and the S+GR+SS conditions (p < 0.05) and between

the S and S+GR+SS conditions (p < 0.01) (Figure 3-6).

Figure 3-6. Time on Training Document by USAP Subset

Time on Task

Participants in the S condition took an average of 79.7 minutes to perform the design

modification task, with a range from 47 to 124 minutes. Participants in the S+GR

condition took an average of 88.2 minutes, ranging from 64 to 112, while those in the

S+GR+SS condition averaged 88.8 minutes, and ranged from 39 to 138. One-way

ANOVA between the three experimental conditions in the first experiment revealed no

significant difference in average time required to perform the task, using the three

training documents (F(2,15) = .21, p < .10) (Figure 3-7).

Summary of Experiment 1

The results of this experiment therefore showed gratifyingly significant improvement

between the S and S+GR+SS conditions. There was also a strong trend toward

 - 45 -

improvement between the S and S+GR conditions, but not at a statistically significant

level. However, power calculations suggested that a greater n, i.e., more participants in

each condition, would yield statistically significant difference between the S and S+GR

conditions. This would be an even more exciting result, because it would show that

sufficient improvement over the usability scenario alone might be achieved through a

text-based pattern in the form of a scenario and set of general responsibilities, even

absent a UML-style sample solution. If sample solutions were not necessary, it would be

far quicker and easier to create more new USAPs. Perhaps more importantly, it would

also take the software engineers less time to understand USAPs, potentially lowering the

bar to adoption in practice. Accordingly, I decided to try to find a matched set of

participants with whom to replicate the experiment and try for more power with a larger

n.

Figure 3-7. Time on Task by USAP Subset

3.2 Experiment 2 (replication)

For the replication experiment, the same experimental design and procedures materials

were used as in the first experiment.

 - 46 -

3.2.1 Participants

Fifteen students participated in our replication experiment. The 9 male and 6 female

participants ranged in age from 22 to 28, with an average age of 23.4. Six averaged 8

months each of industrial programming experience, with a range from 4 to 18 months;

the other 9 had no programming experience in industry. Four of the participants

averaged 13.72 months of software design in industry, with a range of 3 to 18 months; the

other 11 participants had no industrial experience in software design (these included the 9

with no programming experience in industry). Participants reported spending between 0

and 30 hours per week programming (average=18.33 hrs/week), and from 0 to 24 hours

per week on software design (average=7.9 hrs/week).

3.2.2 Results of Replication Experiment

3.2.2.1 Consideration of Responsibilities

Using the scoring system developed for the first experiment, I measured the number of

cancellation responsibilities considered in each participant’s redesign. Participants in the

scenario-only (S) condition considered an average of 3.8 cancellation responsibilities in

their solutions, with a range from 2 to 4. Participants in the scenario plus general

responsibilities (S+GR) condition considered an average of 7.8 responsibilities, with a

range from 4 to 16, while participants in the full USAP (S+GR+SS) condition ranged

from 6 to 14 responsibilities, with an average of 8.6. Replicating the results of the first

experiment, one-way ANOVA between the three experimental conditions showed a

significant main effect of the USAP subset given to participants on the number of

cancellation responsibilities considered (F(2,14) = 4.33, p < .05) (Figure 3-8).

3.2.2.2 Time Factors

Time on Training Document

As in the first experiment, there were significant differences in the time the participants

needed to read and comprehend the materials. Participants in the S condition took an

 - 47 -

average of 1.4 minutes to read the Training Document, with a range from 1 to 2 minutes.

Participants in the S+GR condition took an average of 9.8 minutes, ranging from 8 to 13,

while participants in the S+GR+SS condition averaged 20 minutes, and ranged from 11

to 36. One-way ANOVA between the three experimental conditions showed a significant

main effect of USAP subset provided on time required to read and comprehend the

instructional materials (F(2, 14), p < 0.01). Pairwise comparisons made using Tukey’s

HSD indicated significant mean difference between average time required to read and

comprehend the Training Documents in the S+GR and the S+GR+SS conditions (p = <

0.05) and between the S and S+GR+SS conditions (p < 0.01), but the difference between

time for the S and S+GR Training Documents was not statistically significant (Figure 3-

9).

Figure 3-8. Responsibilities Considered by USAP Subset

Time on Task

In the second experiment, participants in the S condition took an average of 81.4 minutes

to perform the design modification task, with a range from 51 to 118 minutes.

Participants in the S+GR condition took an average of 102.4 minutes, ranging from 53 to

174, while those in the S+GR+SS condition averaged 76 minutes, and ranged from 51 to

107. As in the first experiment, one-way ANOVA between the three experimental

 - 48 -

conditions in the first experiment revealed no significant difference in average time

required to perform the task, using the three training documents (F(2, 14), p = 0.44)

(Figure 3-10).

Figure 3-9. Time on Training Document by USAP Subset

Figure 3-10. Time on Task by USAP Subset

3.3 Combining Results from Experiments 1 and 2

To investigate the contributions of each part of a USAP further, I wanted to combine the

results of both experiments. The materials and procedure were identical in both instances,

 - 49 -

and the results were similar. I performed a fresh analysis of results from both

experiments to determine whether combining the results was justified. Mean

comparisons of participant demographics between the two experiments yielded no

significant differences between groups in age or in hours per week currently spent on

programming or design. Although there were statistically significant differences in

industry experience in both programming (average=21 months in the first experiment v. 5

months in the second experiment) and software design (average=12 months in the first

experiment v. 2 months in the second experiment), neither of these independent variables

was statistically associated with performance on the design modification task and were

therefore not an obstacle to combining results. There was also no significant difference

between the dependent measures of responsibilities considered, time on instruction, and

time on task, for each instructional condition. Thus, we were able to combine the

participant groups into a single analysis, the results of which are described below.

3.3.1 Consideration of Responsibilities: Combined
In measuring consideration of responsibilities, the additional statistical power afforded by

combining experiments revealed a different pattern of results than either experiment

alone. As shown in Figure 11, participants in the S condition considered fewer

cancellation responsibilities than either of the other conditions, averaging just 3

responsibilities, with a range from 2 to 4. Participants in the S+GR condition considered

an average of 7.73 responsibilities, with a range from 4 to 16, while S+GR+SS

considered an average of 9.09 responsibilities, with a range from 5 to 15. Again, one-way

ANOVA between the three experimental conditions showed a significant main effect of

the full USAP given to participants on the number of cancellation responsibilities

considered (F(2,32) = 10.5, p < .01).

However, when analyzing the combined data, pairwise comparisons made using Tukey’s

HSD indicated significant mean difference between giving the scenario alone (S) and

giving the list of general responsibilities (S+GR or S+GR+SS, both p < .01), while

adding the sample solution did not significantly improve performance (i.e., the difference

between S+GR and S+GR+SS was not significant) (Figure 3-11). This result suggested

 - 50 -

that future USAPs might not require sample solutions to be useful for software design,

cutting down the time required to develop USAPs. It should be noted that an alternate

explanation is that a single sample solution was insufficient, but that several examples

might have proved helpful. However, since creating examples greatly increase the

development time for USAPs, it is worth exploring whether the simpler version can prove

useful first.

Figure 3-11. Responsibilities Considered by USAP Subset

3.3.2 Time Factors: Combined

In terms of time on task, the scenario took less time to read and comprehend (average of

1.45 min) than the scenario plus general responsibilities (average of 8.82 min), which

took less time than the full USAP (S+GR+SS, average of 18.00 min) (Figure 3-12). One-

way ANOVA again showed a significant main effect, but pairwise comparisons using

Tukey’s HSD showed that each of the conditions were significantly different at p < 0.01.

This result makes the previous result even more interesting; not only did checklists take

less time to develop than checklists plus sample solutions (saving time for researchers

and USAP designers), but they also took half the time to read and comprehend, saving

time for every software developer who used them. By contrast, the longer time needed to

read and comprehend the full USAP might pose more of a hurdle to adoption in practice.

 - 51 -

Figure 3-12. Time on Training Document by USAP subset

Participants in the S condition took an average of 80.5 minutes to perform the design

modification task, with a range from 46 to 124 minutes. Participants in the S+GR

condition took an average of 94.6 minutes, ranging from 53 to 174; participants in the

S+GR+SS condition averaged 83 minutes, ranging from 39 to 138. As in the single

experiments, one-way ANOVA between the three experimental conditions revealed no

significant difference in average time to perform the design modification task, using the

S, S+GR, or S+GR+SS training documents (F(2,32), p < 0.49) (Figure 3-13). The

average time to redesign the architecture was not dependent on the training materials

given to the software developers, yet those who had more complete training materials

produced a better redesign. This leads one to wonder how participants used the materials

they were given during the redesign task, a question that will be addressed in some detail

in section 3.5 below.

In the combined experiment with a larger number of participants per condition, we could

investigate beyond simple ANOVA to find patterns in performance and time on task per

condition. Linear regression comparing individual time on task with individual

consideration of cancellation responsibilities is shown in Figure 3-14. This analysis

 - 52 -

showed a significant association between minutes on task and number of cancellation

responsibilities considered (F = 6.897, p < 0.05).

Figure 3-13. Time on Task by USAP subset

Closer examination of the association between time on task and consideration of

responsibilities revealed differences between conditions, and showed that the association

is only significant in the S+GR+SS condition (F = 8.98, p < 0.05). An R2 value of 0.5 in

this condition indicates that 50% of the overall variation in number of cancellation

responsibilities considered can be explained by the time spent on the design modification

task. Far less of the variation can be thus explained in the S+GR condition, and virtually

none in the S condition. Figure 3-14 speaks directly to the question we hoped to

investigate with our experiments and analyses: whether traditionally trained software

developers can design software to satisfy usability requirements without detailed usability

guidance. With only a brief usability scenario as guideline, participants considered very

few cancellation responsibilities in their design solutions no matter how long they spent

on the design task. On the other hand, with additional guidance, spending longer on the

design task produced better performance, indicating that the additional guidance was

helpful over time.

 - 53 -

Minutes to perform task

18016014012010080604020

R
e
s
p
o
n
s
ib

ili
ti
e
s
 C

o
n
s
id

e
re

d

20

18

16

14

12

10

8

6

4

2

0

USAP Subset

S+GR+SS

Rsq = 0.4995

S+GR

Rsq = 0.3047

S

Rsq = 0.0865

Figure 3-14. Responsibilities Considered by Time on Task

3.3.3 Not All Responsibilities Are Equally Obvious

We have seen in the preceding sections that participants in the S+GR and S+GR+SS

conditions considered more responsibilities in their design solutions. It is natural to

inquire as to which responsibilities most benefited from inclusion in the USAP, as not all

responsibilities appear to be equally obvious. In this section we examine which

responsibilities associated with the specified usability concern, canceling a command,

benefited from the detail of the list-based and example-based materials. Many

cancellation responsibilities were never considered in the solutions of participants who

received only the general scenario, and several responsibilities were considered by fewer

than 10% of participants overall. Figure 3-15 below shows a matrix of individual

responsibilities considered in the solutions of all experimental participants.

Figure 3-15 shows the distribution of cancellation responsibilities considered in

participant solutions. Along the horizontal axis, all the responsibilities are arrayed from

those most rarely considered (on the left) to those most frequently considered (on the

 - 54 -

right). The vertical axis arrays the participant solutions from those that considered the

fewest responsibilities to that considered the most responsibilities. Several interesting

features are revealed by this figure.

Figure 3-15. Cancellation responsibilities considered by individuals

First we will look at overall patterns in the data by experimental condition. Let us begin

by looking at the participants in the S (scenario-only) condition (show in light grey). No

S participant outperformed any participant in either the S+GR or S+GR+SS conditions,

and no scenario-only participant identified more than four of a possible nineteen

responsibilities. Furthermore, the six responsibilities identified by S participants (CR1,

 - 55 -

CR3, CR5, CR10, CR13, CR19) were also the most frequently considered by participants

in the other two conditions. Since the scenario was typical of the guidance commonly

provided to software engineers by usability professionals, this indicates that the

additional guidance provided by the other parts of the USAP helped participants to think

of responsibilities they would not otherwise have considered.

Next, observe performance in the S+GR vs. S+GR+SS conditions. Several S+GR

participants outperformed S+GR+SS participants; in fact, two of the three highest

performers had only the S+GR Training Document. So the sample solution is no more

helpful across the board than not having one. There is also a correspondence in four of

the five least-considered responsibilities (considered by fewer than 10% of participants)

between these two experimental conditions; we address this below.

In terms of which responsibilities were addressed most or least frequently, only two

responsibilities were identified by more than 90% of participants. These responsibilities

(CR1, CR5, labeled at the top in yellow) addressed providing a means for a user to

initiate a cancellation (e.g., a button), and providing a means within the software for

cancellation to occur when invoked (e.g., a method). [The complete text of all the

responsibilities provided in the Training Documents for the S+GR and S+GR+SS

conditions may be found in Appendix B.] These two responsibilities were fairly simple

to address from a software architecture standpoint since each involved only a single

component in the architecture, which may explain why they were apparently obvious

enough to be identified by the majority of participants without the aid of lists of explicit

cancellation responsibilities.

Three responsibilities (CR3, CR10, CR19, labeled at the top in red) were identified by

50-70% of participants. Five responsibilities (CR2, CR4, CR13, CR17, CR18, labeled at

the top in dark blue) were identified by only 25-50% of participants. As with the two

most commonly identified responsibilities, a solution to address CR4 involved only one

component in the software architecture. However, CR4 also involved knowing how

quickly a human user would perceive visual feedback; to identify this independently

 - 56 -

would have required knowledge which software engineers might not have, but which

usability specialists do have. Four responsibilities (CR9, CR11, CR12, CR14, labeled at

the top in maroon) were identified by merely 10-25% of participants. It is worth noting

that all nine responsibilities considered by 25% or fewer of participants were phrased as

conditionals, which the participants may therefore have regarded as less important than

responsibilities phrased as always required.

Five responsibilities (CR6, CR7, CR8, CR15, CR16, labeled at the top in light blue) were

identified by fewer than 10% of participants. Among these five responsibilities there are

clear differences between the S+GR and S+GR+SS conditions, and most of these may be

attributable to features of their respective Training Documents. One of these

responsibilities (CR6) was only considered by participants in the S+GR+SS condition.

Three of these responsibilities (CR7, CR8, CR15) were only considered by participants in

the S+GR condition. The Training Documents for both conditions contained the text of

these responsibilities, but only the S+GR+SS condition had the sample solution, in which

responsibilities were assigned to components of the sample solution; in the sample

solution, these three responsibilities were, for various reasons explained in the solution,

deliberately not assigned to any components. Participants who had the sample solution to

examine while creating their own solutions may have transferred the assignment of

responsibilities to their solutions more literally than I had hoped, despite my deliberate

choice of different types of software systems for the sample solution and the

experimental task.

3.4 Analysis of Quality – Experiment 1

Up to this point, we have focused entirely on the consideration of responsibilities in

participant solutions. However, in addition to counting the responsibilities considered in

a redesign, the quality of the resulting software architecture design was also of concern.

There were two good reasons to evaluate quality. First, consideration of responsibilities

alone was not useful unless using USAPs also helped software architects to produce a

good architectural solution. Second, expert evaluators are expensive and difficult to

coordinate, to say nothing of getting experts to agree on an opinion. I therefore wanted to

 - 57 -

see whether coverage of responsibilities could be reasonably used as a discount method

for evaluating quality of solution. The analysis presented in this section was performed

between the first and second experiments.

3.4.1 Measures

I arranged for additional analysis of the participant solutions from the first experiment to

assess the quality of the software architectures in the solutions. This assessment allowed

me to examine correlations between the cancellation responsibilities considered and the

overall quality of the software architecture design. The qualitative analysis took place

before the replication experiment, so the results only reflect the quality of the participant

solutions in the first experiment.

The same panel of eight software architecture experts who had reviewed the experimental

materials and canonical solution prior to the experiment evaluated the quality of the

participant solutions. The canonical solution was not used as a definitive “answer sheet”

by the evaluators, although the process of creating it had assured that the evaluators were

calibrated as to what constituted a reasonable solution. Participant solutions were

anonymized to normalize handwriting and drawing issues, and to remove any indication

as to which Training Document the participant might have received, and then randomly

distributed to these evaluators. Evaluators were asked to rate the overall quality of each

participant solution on a scale from 1 to 7, where a rating of 1 indicated that the

“participant solution is a substantially poor architectural solution for adding

cancellation,” a rating of 4 was an “adequate architectural solution”, and 7 was a

“substantially good architectural solution.” Finally, the evaluators were invited to add

written comments on the overall quality of the participant solution.

3.4.2 Results

3.4.2.1 Quality of Solution

One-way ANOVA showed a significant main effect of the USAP subset given to

participants on the quality of the solution (F(2,14) = 8.64, p < .01). Pairwise comparisons

made using Tukey’s HSD indicated significant mean difference between giving the

 - 58 -

scenario alone (S) and giving the full USAP (S+GR+SS), while mean difference between

other pairs of conditions was not significant (Figure 3-16). These results mirrored the

results of the coverage metric in the first experiment. Paired-sample t-tests did not show

any significant effect of time on task on the quality of the solution, and Pearson’s

correlation between groups did not find any significant correlation between the quality of

the solution and any factor other than the experimental condition, such as age, gender, or

industrial experience in programming or software design.

Figure 3-16. Solution Quality by USAP Subset

3.4.2.2 Comparing Quality of Solution with Consideration of Responsibilities

After assessing the quality of the participant solutions I compared the experts’ judgments

of solution quality with our earlier count of responsibilities considered. One goal of this

analysis was to investigate convergent construct validity, that is, whether these different

measures of the quality of a solution were measuring analogous effects of the Training

Condition. If so, our relatively easily collected and analyzed coverage metric might be

used as a discount metric for quality in future, saving the work and time of engaging and

managing expert evaluators.

 - 59 -

To compare the two measures I first adjusted the coverage metric for scalar consonance

with the quality measure, using the formula [Adjusted CR Count] = [CR Count] * 7 /20.

This adjustment was performed to allow easier visual comparison of the two outcome

measures. Fig. 3-17 shows a side-by-side comparison of the mean solution quality and

adjusted cancellation responsibilities count measures for the three different experimental

conditions.

Figure 3-17. Solution Quality vs. Adjusted Count of Responsibilities by USAP Subset

The quality evaluation showed a significant positive relationship between the count of

cancellation responsibilities and the overall quality of the solution. Pearson’s correlation

between groups found significant correlation between the number of responsibilities

considered by participants and the quality of solution as rated by expert evaluators

(F(1,15), r = .775, p < .01). We performed a linear regression to determine whether the

solution quality measure could be predicted from our coverage metric. Linear regression

of the adjusted count of responsibilities against solution quality also showed significant

 - 60 -

association between the count of responsibilities and quality of the solution (F = 22.56, p

< .01). This was an important result because it had been unclear whether simple

consideration of cancellation responsibilities would correlate with overall quality of

solution. The results were encouraging, accounting for 60% of the variance in the quality

judgments.

In an attempt to understand whether the unaccounted for variance is noise in the data or

some systematic variation, we plot Predicted vs. Actual Solution Quality in Fig. 3-18

below. Each point is a single participant, ordered by condition (S, S+GR, then S+GR+SS)

and by ascending actual solution quality within condition. [Only five cases are included

in the third condition, as one quality rating had to be dropped due to errors in

anonymizing the participant solution before submitting it to the expert evaluators.] The

figure shows an apparent tendency of the model toward centrality. That is, the model

more often appears to over-predict when the solution quality is low (condition S), and

under-predict when the solution quality is high (condition S+GR+SS). Although we do

not have sufficient data to analyze this statistically, we can hypothesize why this might

have occurred. One hypothesis is that experts may value some cancellation

responsibilities more highly than others in arriving at their quality ratings, while the

coverage metric weights all cancellation responsibilities equally. This could result in

high quality ratings for solutions that consider responsibilities that are more highly valued

by experts, even when coverage is not especially high, and lower quality ratings for

solutions that leave out expert-valued responsibilities. Additionally, in the S+GR+SS

condition, there were two cases in which the difference between coverage and quality

was markedly greater than any difference in the S or S+GR conditions.

Looking at all the evidence considered thus far, the matched pair of experiments had

provided evidence that a USAP, in whole or in part, was helpful to software engineers in

designing a more thoroughly considered and higher quality architectural solution, before

any detailed design took place. Software architecture design is like designing a course,

curriculum or assessment in that there is no “right” answer to the design problem.

Results in my experiments showed that the USAP was in fact helpful at a statistically

 - 61 -

significant level in both the measures of performance we assessed: coverage of

considerations and quality of solution. However, even the full USAP only improved the

quality of solution from poor to average (the midpoint of the quality scale). This fell

short of the desired result: improvement from poor to good (the high end of the quality

scale).

Figure 3-18. Predicted vs. Actual Solution Quality

Furthermore, measures of coverage of responsibilities seemed to be more strongly

correlated with quality of solution when the participants had the text-only portion of the

USAP to work with than when they had a full USAP. Further analysis was done to

explore why quality did not match coverage more closely when the full USAP was

provided. The experiments had provided video data of the participants using the

materials describing the USAP, and it was to this data that we turned for further detailed

explanation.

3.5 Exploratory Analysis of Video Data

During the first experiment, in addition to the written solutions to the software

architecture design modification task performed by the participants, I had collected video

of their task performance. Video data for the replication experiment was unavailable due

 - 62 -

to technical difficulties I encountered at the time of the replication. Analysis of the video

data from the first experiment provides some interesting insights into possible reasons for

our quantitative and qualitative results, with implications for the design and presentation

of further USAPs.

In this phase, I examined video of participants in the first experiment in an attempt

determine which specific parts of the original representation of the USAP were associated

with high and low performance in the architecture redesign task. As described in the last

section I had examined correlations between coverage of cancellation responsibilities,

and the overall quality of the software architecture solution, with an eye to determining

whether coverage could be used as a discount method for expert evaluations of quality

(Golden et al. ISESE 2005). We had found that coverage predicted quality of solution

well in the first and second experimental conditions, but not as well in the third condition,

where participants received the full USAP as their Training Document. I hoped to find a

better understanding of the cases where quality of solution did not correspond closely

with consideration of responsibilities by examining the video of task performance by the

five participants in the full USAP condition for whom we had both consideration of

responsibility and quality scores (Figure 3-19).

Figure 3-19. Coverage vs. Quality in video of S+GR+SS participants

 - 63 -

It was among these participants that there was the widest range of quality scores. I was

also interested in the detailed differences in usage of USAP materials between high

performance and low performance. I looked at several ways in which usage of the full

USAP might have affected the participants’ task performance.

3.5.1 Measures of Activity Identified in Video Data Analysis

During the experiments I videotaped the table in front of each participant. Participants

were requested to keep experimental materials on the table at all times. No video was

taken of participants’ faces. Experimental materials consisted of three multi-page

printed documents, each printed on one side of the paper, and each stapled at the upper

left hand corner: a seven-page set of Task Instructions, an eight-page Answer Paper (five

of the pages were blank), and a Training Document which varied in length according to

the experimental condition. The Training Document describing the full USAP

(S+GR+SS) had eight pages. The eight pages of this Training Document [Appendix G]

were divided as shown in Figure 3-20.

Page Type Content
1 Text Scenario; Responsibilities (1-4a)
2 Text Responsibilities (4b-13)
3 Text Responsibilities (14-19)
4 Diagram and text C&C diagram of MVC architecture without cancel;

Assignment of MVC Responsibilities to MVC-without-
cancel

5 Diagram and text C&C diagram of MVC architecture with cancel;
Assignment of Cancellation Responsibilities to MVC-
with-cancel

6 Text Assignment of Cancellation Responsibilities to MVC-
without-cancel

7 Diagram Sequence diagram of MVC architecture with cancel
8 Text Description of steps in sequence diagram of MVC-with-

cancel
Figure 3-20. Content of individual pages of Training Document

Participants were allowed to write on any of the documents, and to separate pages from

any document if they so desired. Since I had neither video of the participants’ faces nor

eye-tracking data, I could not say for certain which pages they were looking at, so it is

 - 64 -

not possible to speak definitively in terms of “attention” to a given page. Instead, since

the video showed the experimental materials at all times, I used the term “activity” to

refer to the state of each page of each document. To glean the richest possible

information from the video, I developed a coding system in which I measured each

participant’s use of the experimental materials at one-second intervals for the full length

of the task. I observed several states of activity in which a given page might be at any

point during the task. In the coding system I organized these states of activity into four

categories, in ascending order of activity possibly indicating attention (Figure 3-21).

Activity in this case means that the pages were visible, and the participants could see

them and/or were writing on them.

State of printed or
participant-written material
on page

Page active or
not active

Possibility/likelihood
of direct attention

Not visible Page not active Direct attention not
possible.

Partly or entirely visible Page active Direct attention possible.
Partly or entirely visible, and the
participant’s hand is hovering
over or resting on some portion
of the page

Page active Direct attention possible,
perhaps more likely than
if no corresponding hand
activity.

Partly or entirely visible, and the
participant is writing or drawing
on the page

Page active Direct attention possible
and almost a certainty.

Figure 3-21. Levels of page activity in Training Document

3.5.2 Results

As I will detail below, results showed that the graphical representation portions of the

first embodiment of the USAP did not appear to improve performance in the design task,

but several textual portions of the USAP may have done so.

3.5.2.1 Significance of Different Individual Pages of the Training Document

Because there was high variance between participants as to how long they had taken to

complete the task, I framed the data analysis in terms of percentage of task time spent on

various activities, rather than absolute time.

 - 65 -

Because I was interested in which parts of the full USAP might have affected task

performance, I looked at how usage of different pages of the Training Document, such as

text describing responsibilities, or diagrams of the sample solution, was related to

differences in coverage of responsibilities and/or quality of solution. Figure 3-22 shows

how task performance corresponded with activity in individual pages in the Training

Document for the S+GR+SS participants.

Figure 3-22. Task Time on Training Document pages by Participants

Several features emerged from examining this data. First, the highest performer in both

coverage of responsibilities and quality of solution spent more equal task time on each of

the different pages of the Training Document than any other participant. By contrast, the

lowest performer in both coverage of responsibilities and quality of solution used only

three pages of the Training document: the first page, containing the scenario and a

handful of responsibilities, and the two diagrams. This suggested that skipping text-

based portions of the USAP might severely reduce the usefulness of the USAP.

 - 66 -

Second, all five participants spent task time on the diagrams. This indicated that if we

provided diagrams as part of the USAPs, people would look at them. However, more

task time spent looking at the diagrams did not correspond with better task performance.

Taken together with the additional time required before the task to read and comprehend

the Training Document that included the diagrammatic sample solution, this suggested

that not only might including the sample solution in a USAP be a hurdle to adoption for

time-pressured professionals, it might not benefit them in their work if they paid more

attention to the diagrams than to the accompanying text!

3.6 Motivation for Next Steps

Using a full USAP increased the quality of solution that participants created in an

architectural redesign to add cancellation to the existing architecture design for the

PAMD system. Participants who used all three parts of the cancellation USAP were able

to create a solution of significantly higher quality, as well as to identify and address three

times as many cancellation responsibilities, on average, as participants who received only

a general usability scenario, in the same amount of time, and without having more work

experience or formal training prior to the task. In the combined results of the first and

second experiments, the coverage metric showed significant improvement in using the

list of responsibilities over the scenario alone. Since the quality and coverage metrics

were well aligned in the first experiment, it may reasonably be posited that quality for the

combined experiments would also have shown significant improvement for the list of

responsibilities over the scenario alone. Taken altogether, the USAP for canceling a

command could already be considered a valuable tool for modifying software

architecture designs to address a specific usability concern.

More work was clearly necessary, however, since the USAP brought these participants up

to an average quality of “adequate,” the midpoint of the Likert scale the expert evaluators

used to measure quality. This result fell short of the desired goal: to bring the average

software designer up to the high end of the quality scale. In particular, the high

 - 67 -

variability in quality of solutions produced using the full USAP indicated that the sample

solutions might benefit from an improved format, and possibly an improved delivery

mechanism.

Several design tradeoffs were involved in deciding whether to include diagrammatic

sample solutions in the next version of USAPs. The increased quality of design solutions

had to be weighed against the increased time to read and understand the Training

Document. Although there were fewer expert evaluations of quality of solution than of

coverage of responsibilities, correlation was shown between coverage and quality, and

coverage had not been significantly improved by the inclusion of the diagrammatic

portion of the USAP. Missed responsibilities in the solutions might also have been due to

inattention to the text of the responsibilities in the Training Document, as seen in the

video data where some participants who had diagrams devoted more of their time to

looking at those, and less time to looking at the responsibilities, a division of attention

that did not appear to benefit their performance.

Since text-only lists of USAP responsibilities had already produced statistically

significant improvement over scenarios alone in the first phase, with quality closely

correlated with coverage of responsibilities, I decided to focus more heavily on

improving the text-only portion of the USAPs in the next phase, with the goal of

determining whether performance could be even more improved if attention to the textual

portions were enforced in a checklist style. Educational research and human factors

research have both shown checklists to be useful, and educational research also speaks to

the benefits of guided attention. Further, a computer-based checklist has been shown to

be less error-prone than a paper-based one. Therefore I decided to develop a computer-

based tool for verified checklist-style usage of USAPs, which will be described in detail

in the next chapters.

3.7 Summary
In this chapter I described my work to investigate the value of paper-based Usability-

Supporting Architecture Patterns (USAPs), applied without researcher intervention, as an

 - 68 -

approach to improving the consideration of specified usability concerns in software

architecture design. In a pair of controlled experiments in a laboratory environment, I

validated the efficacy of USAPs in a software architecture design task. Software

engineering graduate students achieved significantly better results using a paper-based

version of USAPs to modify a software architecture design to include specific usability

concerns than they achieved using only a usability scenario. This scenario was similar to

the recommendations usability experts commonly give to software engineers in

professional practice. Even using only the scenario and the list of responsibilities from a

USAP allowed the experimental participants to achieve significantly better consideration

of responsibilities and quality of solution than they were able to achieve with the scenario

alone (Golden, John, & Bass, 2005a; Golden, John, & Bass, 2005b).

Through these controlled experiments, I demonstrated that Usability-Supporting

Architecture Patterns (USAPs) are a useful technique for incorporating usability concerns

into the software architecture design of interactive systems. Using these patterns helped

software engineers to design software architecture that considers specific usability

concerns they would not otherwise notice, and to produce higher quality software

architecture designs than the type of usability scenarios that are currently used in

software development practice.

However, there was room for improvement. The full USAP in the controlled

experiments raised the quality of solutions from the bottom to the midpoint of the quality

scale, but fell short of the desired goal of raising quality to a level of excellence. Detailed

analysis of the experimental results suggested directions for improvement: enforcing

attention to responsibilities because better performers attended to them, and omitting

diagrammatic examples since these took time to use and create and did not improve task

performance.

 - 69 -

Chapter 4. From Individual USAPs to the A-PLUS Pattern
Language

In this chapter, I describe the creation of a new representation of USAPs based on the

effectiveness findings of the empirical studies in Chapter 3. The identification of tactics

in (Bass, John, & Kates, 2001) was an earlier attempt at identifying commonalities

between USAPs. This endeavor resurfaced when commonalities discovered between

several USAPs lead to the creation of Architecture Pattern Language for Usability

Support (A-PLUS), a pattern language for generating responsibilities and reusing

commonalities content across multiple USAPs. I describe A-PLUS in this chapter.1

Though the creation of the pattern language lies outside the direct scope of this thesis, its

structure is motivated by directly relevant in earlier chapters and provides the motivation

for directly relevant work in subsequent chapters.

4.1 Revised Approach: Content and Format of USAPs

4.1.1 Content and Format of USAPs Thus Far

As described in Chapter 3, usability-supporting architectural patterns (USAPs) were

developed as a way to explicitly connect the needs of architecturally-sensitive usability

concerns to the design of software architecture (John & Bass, 2001). More than twenty

patterns were originally proposed (Bass, John, & Kates, 2001). These patterns were

loosely connected by software tactics that they might share (e.g., encapsulation of

function, data indirection, preemptive scheduling), but the relationships between the

patterns were not developed sufficiently to be of benefit in subsequent research or

practice. Thus, the original USAPs were a pattern “catalogue”, as opposed to a pattern

language (Dearden & Finley, 2006).

1 The material in this chapter was published in (Stoll, John, Bass, & Golden, 2008; John,
Bass, Golden, & Stoll, 2009) and adapted to fit this chapter.

 - 70 -

As originally conceived to emulate patterns in the Alexander style (Alexander, 1979), a

USAP had six types of information. We illustrate the types with information from the

Cancellation USAP (John, Bass, Sanchez-Segura, & Adams, 2004).

1. A brief scenario that describes the situation that the USAP is intended to solve.

For example, “The user issues a command then changes his or her mind, wanting

to stop the operation and return the software to its pre-operation state.”

2. A description of the conditions under which the USAP is relevant. For example,

“A user is working in a system where the software has long-running commands,

i.e., more than one second.”

3. A characterization of the user benefits from implementing the USAP. For

example, “Cancel reduces the impact of routine user errors (slips) by allowing

users to revoke accidental commands and return to their task faster than waiting

for the erroneous command to complete.”

4. A description of the forces that impact the solution. For example, “No one can

predict when the users will want to cancel commands”

5. An implementation-independent description of the solution, i.e., responsibilities

of the software. For example, one implication of the force given above is the

responsibility that “The software must always listen for the cancel command.”

6. A sample solution using UML-style diagrams. These diagrams were intended to

be illustrative, not prescriptive, and are, by necessity, in terms of an overarching

architectural pattern (e.g., MVC). Both component and sequence diagrams were

provided, showing MVC before and after incorporating the USAP’s

responsibilities. Responsibilities were assigned to each component and

represented in the UML-style diagrams (Figures 4-1 and 4-2).

Making all six parts complete and internally consistent is a time-consuming process and

for several years only one exemplar was fully completed, the Cancellation USAP for

canceling long-running commands. With only one USAP fully fleshed out, there was no

opportunity to discover structure that might lead to a pattern language.

 - 71 -

Figure 4-1. UML-style component diagram of the MVC reference architecture before considering the ability to
cancel a long running command. Original responsibilities of MVC are numbered R1, R2, etc. and refer to prose
descriptions of the responsibilities accompanyi

Figure 4-2. UML-style component diagram of MVC revised to include the responsibilities necessary to provide
the ability to cancel a long running command. New cancellation responsibilities are numbered CR1, CR2, etc.,
are assigned to both old and new components, and refer to prose descriptions of the responsibilities in the
Cancellation USAP.

The form of USAPs used in the controlled experiments discussed in the previous chapter

included three of the sections of information listed above: the general usability scenario,

the list of general responsibilities, and the sample solution including UML-style diagrams

applying the general scenario to an MVC architecture. However, as described in the last

chapter, participants in the experiments had achieved statistically significant

improvement in both consideration of responsibilities and quality of architectural solution

using just the list of general responsibilities in addition to the usability scenario, and

detailed examination of task performance by experimental participants had revealed no

 - 72 -

significant gain from using the sample solution diagrams, although much time was spent

in using them.

4.2 Moving from Controlled Experiments to Industry Practice

Following the two controlled experiments, we began a research collaboration with ABB,

a global company specializing in power and automation systems. A project team at the

ABB research and development facility in Sweden was in the process of developing a

new product line of process control and robotics systems. Still in the early stages of

requirements gathering and system design, a project team in the ABB business unit,

developing a new product line of systems, together with a ABB research team, had done

a use case analysis, performed a Quality Attribute Workshop to collect non-functional

requirements from prioritized scenarios (Barbacci et al., 2003) and taken steps to identify

commonalities and variation points in the products they intended to bring together under

a new system architecture. Thus, from the requirements collection and analysis

perspective, the project team was well prepared when they began to outline the

architecture.

The software architects had just begun sketching the architecture and had not yet written

any code. Their implementation plan started with the backbone of the product line

system, the core functionality, which would support all the variation points for the

products. The project’s stakeholders had prioritized usability as one of three top

important software qualities for the new architecture during the Quality Attribute

Workshop. One of the challenges they identified was that they would have to incorporate

usability requirements into the core architecture early without having either a designed

user interface, a sample user, or a complete list of future products that would be built atop

the core functionality. They had thus encountered a common problem in software

development: that the user interface was to be developed individually for each product

and each product would use common core parts of the system. How to support usability

early when the user interfaces were to be implemented last?

 - 73 -

In seeking to address this problem, the ABB research team had investigated the work on

USAPs as well as other approaches (Juristo, Moreno, & Sanchez-Segura, 2007; Juristo,

Moreno, Sanchez-Segura, & Baranauskas, 2007; Folmer, van Gurp, & Bosch, 2003;

Folmer, van Gurp, & Bosch, 2004) discussed in Chapter 2. After some investigation,

ABB decided to try USAPs in a collaborative effort with the Usability & Software

Architecture project at Carnegie Mellon University (CMU). The choice was based on the

fact that USAPs use general usability scenarios and from these construct general software

architecture responsibilities. The goal of the collaboration was to deliver appropriate

knowledge concerning usability and software architecture to ABB’s software architects in

a format and at a time that would benefit their design, and in a form that could later scale

to worldwide development efforts.

The collaborative work began with several teleconferences and a two-day workshop in

which the Carnegie Mellon research team – Bonnie John, Len Bass, and I - presented the

USAP approach and the ABB project team presented their new product line system to be

developed. The ABB team explained the general domain for their product line system and

presented an overview of how the product line system’s products would interact with

engineers, operators etc. The CMU team presented 19 general usability scenarios

possibly relevant to ABB’s domain [Appendix I]. These scenarios were:

1. Progress feedback

2. Warning/status/alert feedback

3. Undo

4. Canceling commands

5. User profile

6. Help

7. Command aggregation

8. Action for multiple objects

9. Workflow model

10. Different views of data

11. Keyboard shortcuts

12. Reuse of information

 - 74 -

13. Maintaining compatibility with other systems

14. Navigating within a single view

15. Recovering from failure

16. Identity management

17. Comprehensive search

18. Supporting internationalization

19. Working at the user’s pace

From these scenarios, ABB chose two for the collaboration to develop into USAPs: User

Profile, and Warning/status/alert feedback, which ABB called “Alarms and Events.” It

was decided that the CMU team would develop the content addressing User Profile, and

coach the ABB team in developing USAP content addressing warning/status/alert

feedback. We quickly realized that to accommodate the needs of ABB’s product line,

User Profile would need to be separated into two USAPs: the normal sense of User

Profile, where permissions and preferences vary for different users, and Environment

Configuration, where software must accommodate different physical operating

environments. The teams initially worked independently to develop content, with our

team coaching the ABB team to understand the nature and level of information contained

in a USAP.

Several major results began with this collaboration, which will be discussed in this

chapter and the next. The reformatting of the USAP content and the development of a

pattern language for USAPs will form the rest of this chapter. In Chapter 5 I will

describe the design and development of a tool for the application of the new format of

USAPs, and the experience of ABB software architects using the research results to

evaluate a preliminary software architecture design.

4.3 Revising the Format of USAPs

While developing content for the new USAPs, we asked software architects in a different

business unit at ABB for feedback on a draft of the USAP produced by the ABB

 - 75 -

researchers. The software architects appreciated the concept of USAPs, but expressed

three negative reactions to aspects of the implementation.

First, software architects at ABB expressed dislike for the UML-style sample solution

that formed a part of each USAP. The architects felt that they were being pressured to use

the overarching pattern on which the sample solution was based, i.e., MVC. If their

architecture design used a different overarching pattern, such as SOA or a pattern derived

from a legacy system, the sample solution seemed to them to be an unwanted

recommendation to redesign their system completely.

Second, the software architects felt that USAPs contained too many responsibilities. The

first draft of the Alarms and Events USAP alone included 79 responsibilities. The

software architects were apprehensive that reviewing such extensive responsibilities in

three USAPs would take them far too long.

Third, the software architects questioned whether it would be practically possible to

integrate three (or more) different USAPs within a single architecture design. They

imagined having three different UML-style sample solutions lying on their desks and

could not figure out how those would be integrated in practice.

Examining the literature in retrospect, one can find all of these criticisms anticipated in

Christopher Alexander’s writings about patterns, pattern languages, and their use. Despite

Alexander’s dictum “If you can’t draw it, it isn’t a pattern,” (Alexander, 1979, p. 267)

actually supplying a specific UML diagram violates another closely held patterns belief

…we have tried to write each solution in a way which imposes nothing on you. It

contains only those essentials which cannot be avoided if you really want to solve the

problem (Alexander, Ishikawa, & Silverstein, 1977, p. xiii).

Although a UML diagram can be drawn and included in a pattern, doing so may require

components, or arrangements of components, other than those that are essential to the

pattern. Unnecessary components or arrangements may thereby be imposed on the

 - 76 -

architecture designer. A sample UML solution had been included in the original

formulation of USAPs in the interest of conforming to standard pattern templates. Most

pattern templates call for some sort of example or multiple examples, often expressed in

diagrams.

After receiving negative user feedback from software architects at ABB, however, I

reexamined the results from the laboratory experiments and found that although the

participants spent a lot of time studying the UML-style diagrams it made no apparent

difference in the quality of the finished architecture design. These forces (resistance from

professionals and lack of clear benefit in the lab studies), led us to replace the UML

sample solution with textual descriptions of implementation details that expressed

structural and behavioral parts of a solution.

Therefore, UML-style diagrams like the ones in Figures 4-1 and 4-2 were not developed

for the three USAPs for ABB. In place of the diagrams, each responsibility was

accompanied by general implementation suggestions expressed in architecture-neutral

prose. For example, in the earlier formulation of USAPs, Figure 4-2 assigns cancellation

responsibility 1 (CR1) to the View component of the MVC architecture. Responsibility

CR1 states, “A button, menu item, keyboard shortcut and/or other means must be

provided, by which the user may cancel the active command” [Appendix B]. In the new

format, without UML-style diagrams, CR1 would instead have an implementation

suggestion like the following. “That part of the architecture that renders information to

the user should provide a button, menu item, keyboard shortcut and/or other means by

which the user may cancel the active command.” These two representations are

informationally equivalent, since the MVC’s View is “that part of the architecture that

renders information to the user.” However, the prose version is architecture-neutral, since

architectural styles other than MVC may furnish information to the user in a component

not called View, and which is not designed to be functionally identical to MVC’s View.

It seemed reasonable to conjecture that an architecture-neutral expression would be more

palatable to professional software architects working with a variety of architectural styles.

As will be seen in Chapter 5, this conjecture seems to have been correct.

 - 77 -

Removing the UML-style diagrams made the responsibilities the focus of the patterns,

rather than the structural relationship that supports the implementation of those

responsibilities. Although up until this point USAPs had been described as software

architecture patterns in the flavor of (Buschmann, Meunier, Rohnert, & Sommerlad,

1996), rather than usability patterns such as in (Tidwell, 2006), it is now reasonable to

consider that they may be neither, but something new altogether. Each USAP is a pattern

of responsibilities; each responsibility is a pattern of implementation suggestions. The

emphasis is on software responsibilities, which can also be thought of as requirements on

the architecture. Solutions which accommodate these requirements may be implemented

in many different ways, in keeping with the spirit of Alexander’s patterns for built spaces,

but patterns of responsibilities seem to be different from the more specific architecture or

usability patterns typically found in the software engineering and HCI literature.

Alternatively, it is possible that only the absence of specific examples differentiates

USAPs from these other types of patterns and changes the way practitioners use them.

Software engineers and HCI designers have been known to use sample solutions directly

and produce designs very similar in structure to those exemplars. ABB’s software

architects were working under constraints that prevented easy analogy from the sample

solution, and the sample solution for a USAP was complex enough to take substantial

time to understand. These architects preferred to examine the information at the higher

level of abstraction provided by the responsibilities and general implementation

suggestions, and then consider how to implement it only in their own context. Whatever

the reasons, this format was driven by laboratory data and real-world feedback, seems to

be consistent with a patterns philosophy, and seems to work well for software architects,

as will be shown in Chapter 5.

In exploring this different delivery format, further examination of the textual portion of

USAPs led to the development of a pattern language for USAPs. Previously USAPs had

been treated as discrete scenarios with discrete sets of attendant responsibilities. The

 - 78 -

pattern language recognizes common foundational issues that apply across multiple

usability scenarios. This language will be discussed in the next section.

4.4 Emergence of a Pattern Language for USAPS

In our collaboration with ABB, the goal was to aid in designing a real-world product line

architecture that would support important usability concerns, i.e., we had the desire to

make something. This was the first large-scale industrial application of fully developed

USAPs (as opposed to the more conceptual discussions of multiple usability concerns

that guided the architecture design in (Adams, Bass, & John, 2005)). In addition, for the

first time, there were multiple detailed USAPs developed by different groups. Alexander

predicted that this situation would foster the emergence the structure that makes

languages out of patterns, i.e., a network of patterns at different scales.

As mentioned previously, developers in a different unit of ABB criticized the approach

for having too many responsibilities and an unclear process for combining multiple

USAPs. They could not see the patterns as leading to a whole, coherent architecture

design. These criticisms were anticipated in Alexander’s writings about pattern languages

in his concepts of “principal components” and “compression”. He warned that “There

must not be too many patterns underneath a given pattern”(Alexander, 1977, p. 320),

giving the example that 20 or 30 would be too many, but that 5 allows the pattern to be

imagined coherently. He proclaimed that to create a language that does not have too

many patterns at any one level, since “it is essential to distinguish those patterns which

are the principal components of any given pattern, from those which lie still further

down.” (Alexander, 1977, p. 321)

When we compared the three USAPs chosen by the ABB requirements team, User Profile

and Environment Configuration (fleshed out by CMU) and Alarms and Events (fleshed

out by ABB), we observed that both the research teams had independently grouped their

responsibilities into similar categories, with a handful of elements at each level. These

elements seemed to be Alexander’s principal components of the level above. These

 - 79 -

elements, and their hierarchical relationships, were the beginning of a network of

patterns, a language, which was further developed in the course of the project.

In addition to imposing the structure of the language, we also saw these similarities as an

opportunity for what Alexander calls “compression”.

Every building, every room, every garden is better, when all the patterns which it

needs are compressed as far as it is possible for them to be. The building will be

cheaper, and the meanings in it will be deeper.

It is essential then, once you have learned to use the language, that you pay attention

to the possibility of compressing the many patterns which you have put together, in

the smallest possible space (Alexander, Ishikawa, & Silverstein, pp. xliii-xliv).

In building architecture, compression refers to fitting multiple patterns into the same

space. In the context of software architecture design, compressing patterns may be related

to sharing concepts, structure, and eventually code, in the design and implementation so

that the system achieves the important qualities specified for the system. Just as a

building will be less expensive and its meaning deeper with compression of patterns into

space, we expect a software system will be less expensive to build and maintain, and its

structure more deeply understood by more of the development team if the team shares

concepts, structure and code.

As will be evident in the next section, the emergence of a pattern language, with multiple

scales, attention to principal components, and with the concept of compression guiding

our choice of format, addresses the initial criticisms posed by developers.

4.5 A-PLUS: an Architecture Pattern Language for Usability Support

As described above, the CMU research team initially developed sets of general

responsibilities for the User Profile and Environment Configuration USAPs, while the

 - 80 -

ABB team independently developed a set of general responsibilities for the Alarms &

Events USAP. When we then compared the three USAPs prepared by our two different

teams, we discovered common conceptual elements in all three. Both teams had

independently grouped responsibilities into similar categories, with multiple elements in

each grouping. This led to a restructuring of the three USAPs into a pattern language,

Architecture Pattern Language for Usability Support (A-PLUS), that defines the

relationships between USAPs in terms of reusable sets of responsibilities.

As mentioned previously, each of our original USAPs is a pattern of responsibilities and

each responsibility is a pattern of implementation suggestions. Figure 4-3 shows a portion

of language in comparison to a portion of Alexander’s language. With the discovery of

intermediate levels of structure, two additional concepts arose, which we call End-User

USAPs and Foundational USAPs, and these are delineated in Figure 4-4. Our pattern

connects to other patterns in the literature (e.g., MVC, SOA, PAC, etc.) and could be

further decomposed (which is beyond the scope of this research). In short, our language is

made up of the following elements.

• End-User USAPs, which are patterns of Foundation USAPs and, if necessary, a

few responsibilities specific to each End-Use USAP.

• Foundational USAPs, which are patterns of responsibilities, and, occasionally,

other Foundational USAPS.

• Responsibilities, which are patterns of implementation suggestions (components,

communication, and behavior of the software) and, occasionally, other

responsibilities.

Alexander tells us that “Each pattern, then, depends both on the smaller patters it

contains, and on the larger patterns within which it is contained.” (Alexander, 1979) Thus

it is with the elements in our language. Foundational USAPs do not stand alone, in that

the functionality they provide is not obviously related to usability issues. Since they do

not touch the end-user’s needs directly, their benefit to the end-user cannot be estimated,

a cost-benefit analysis cannot be done, and thus, they cannot be prioritized independently

from the End-User USAPs they complete. Of the original six-part representation of a

 - 81 -

USAP described in Section 4.1.1, Foundational USAPs have only two, a description of

the forces that impact the solution, and the responsibilities. To operationalize the

relationship between Foundational USAPs and End-User (or other Foundational) USAPs

that use them, we specify aspects of Foundational USAPs, as follows.

• Purpose: A general statement of the purpose of the Foundational USAP.

• Justification: Why for this Foundational USAP is important. (This includes the

description of forces that impact the solution.)

• Parameters needed by this USAP: Parameters necessary to make the Foundational

USAP specific to referring USAPs.

Figure 4-3. Our language of three USAPs is comparable to a portion of Alexander’s network diagram of his

language.

 - 82 -

Figure 4-4. The multiple scales of the A-PLUS pattern language, a partial depiction.

End-User USAPs, however, retain the properties of the original USAPs. They relate

directly to usability concerns of end-users and this connection is easily summarized in a

short scenario (Part 1). The conditions under which they are applicable are defined as

assumptions (Part 2) and the forces from which they are derived can be enumerated (Part

4). Their benefit to the end-users can be analyzed and estimated (Part 3). As an example,

these portions of a single End-User USAP for Environment Configuration are shown in

Figure 4-5.

Now, however, given the pattern language, instead of having an independently-generated

list of responsibilities of their own (Part 5), each End-User USAP will be completed by

the Foundational USAPs it uses. However, each End-User USAP may specialize the

responsibilities of the Foundational USAPs and may include additional responsibilities of

its own.

 - 83 -

Part 1 Scenario An organization wants to supply the same software system to

different hardware environments containing different
collections of sensors and actuators. A configuration
description of the sensors and actuators will allow the system
to operate correctly in its environment.

Part 2 Conditions
for
applicability
(assumptions)

1. There is at least one user who is authorized to author
configuration descriptions.

2. The syntax and semantics for the concepts that are
included in the configuration description are defined and
known to the development team.

3. The protocol for saving the configuration description is
defined and known to the development team.

4. Defaults exist for the specifiable parameters.
5. A template exists for authors to use when creating a new

configuration description (i.e., the names and definitions of
specifiable parameters and their defaults, with optional
format).

Part 3 Benefits to

end-users
Environment configuration prevents mistakes by tailoring the
interface to present only information relevant to the current
environment.

Part 4 Forces For a software system to be configurable for different
environments, actions of the system must be parameterized
and the parameter values have to be available at execution
time. The values of the parameters must be specified, this
configuration description has to be associated with its
environment, and the configuration description has to be
persistent across sessions.

Figure 4-5. Non-responsibility portions of End-User USAP for Environment Configuration

For example, all of the fully-developed End-User USAPs – User Profile, Environment

Configuration, and Alarms and Events – have an authoring portion and an execution

portion. Specifically, a system that includes user profiles must have a way to create and

maintain (i.e., author) those profiles and the mechanisms necessary to execute as

specified in those profiles, a system that reports alarms and events must have a way to

author the conditions under which these messages are triggered and a mechanism for

displaying them. Thus, those End-User USAPs use the Authoring Foundational USAP

 - 84 -

and the Execution with Authored Parameters Foundational USAP. These Foundational

USAPs, in turn, are patterns of responsibilities and may also use other Foundational

USAPs (e.g., Authorization and Logging). The responsibilities in the Foundational

USAPs are parameterized, so that values can be passed to them by the USAPs that use

them. At the most detailed scale, implementation suggestions are patterns of components,

communication and behavior that complete each responsibility. These can be realized in

any overarching architectural pattern already chosen, usually for reasons other than

usability.

In addition to defining the values of parameters, End-User USAPs explicitly elaborate

assumptions about decisions the development team must make prior to implementing the

responsibilities. For example, in the Alarms and Events End-User USAP, it is assumed

that the development team will have defined the syntax and semantics for the conditions

that will trigger alarms, events or alerts. This is a task of the development team on which

the implementation suggestions of many of the responsibilities ultimately depend. End-

User USAPs may also have additional specialized responsibilities beyond those of the

Foundational USAPs they use. For example, the Alarms and Events End-User USAP has

an additional responsibility that the system must have the ability to translate the

names/ids of externally generated signals (e.g., from a sensor) into the defined concepts.

Both the assumptions and additional responsibilities will vary among the different End-

User USAPs. A complete listing of the language may be found in Appendix J.

More rigorously, there are two types of relationships between the patterns in Figure 4-3:

uses and depends-on. When a USAP uses another one, it passes values to that

USAP, which specialize the responsibilities that comprise the used USAP. If there are

any conditionals in the responsibilities of the used USAP, the using USAP defines the

values of those conditionals as well. The uses relationship is typically between End-

User USAPs and Foundational USAPs. However, some Foundational USAPs use other

Foundational USAPs under certain circumstances. There is only one depends-on

relationship in our language, implying a temporal relationship between Authoring

Foundational USAP and the Execution with Authored Parameters Foundational USAP

 - 85 -

(dashed line in the lower third of Figure 4-3), i.e., the system cannot execute with

authored parameters unless those parameters have first been authored. Finally, the

double-headed arrow between Authoring and Logging reflects the possibility that the

items being logged might have to be authored and the possibility that the identity of the

author of some items may be logged.

Foundational USAPs are completed by one or two levels of responsibilities under them.

Authorization has four principal components: Identification (with five lower-level

responsibilities), Authentication (with three), Permissions (with two), and Log-Off.

Authoring has five principal components: Create (with four lower-level responsibilities),

Save, Modify (with three), Delete (with three) and Exit the authoring system. Execution

with Authored Parameters has two principal components: Access Specification (with

seven lower-level responsibilities) and Use specified parameters (with two). Logging has

three principal components: Specify the items to be logged, Log during execution (with

two lower-level responsibilities) and Post-processing (with two). These single-digit

principal components and lower-level responsibilities are in line with groups in

Alexander’s pattern language and compare favorably to the flat list of twenty-one

responsibilities of the Cancel USAP that seemed to be too much for the experiments’

participants to absorb in one sitting (John, Bass, Sanchez-Segura, & Adams, 2004).

They are also far fewer than the seventy-nine responsibilities in our first draft that elicited

the negative reactions from practitioners. Since the goal of the collaboration was to

support the design of a real-world architecture in an industry setting, it seemed a step in

the right direction to address the practitioners’ objections before asking them to use the

results of our work in their project. Having developed what seemed to be a usable set of

Foundational and End-User USAPs, the next step was to embody the A-PLUS language

in a form that the practitioners could use in the software architecture design process. In

the next chapter, I describe the design and development of a tool to deliver A-PLUS to

software architects for practical use in design, and the results of user testing of the tool in

professional practice.

 - 86 -

4.6 Summary

This chapter describes the first part of research to further evolve USAPs for use by

professional software architects in an industry setting, and a major representational

change in form of USAPs that resulted. The research described in this chapter was

performed in collaboration with corporate researchers at ABB, a global company

specializing in power and automation systems. The ABB researchers were involved in

plans to design a new product line architecture to integrate several existing products for

which they had identified usability as a key quality attribute. Based on the research

literature, the ABB researchers had selected USAPs as the most promising approach to

address usability concerns early in the software architecture design phase of the product

line architecture.

In addition to allowing us to investigate USAPs in an industry setting, the ABB research

project was an opportunity to try using multiple USAPs in a single project. We began to

develop responsibilities for each of three usability scenarios that we had not previously

developed into USAPs, working in two separate teams, one at Carnegie Mellon and one

at ABB. Three responsibilities resulted in lists of more than 100 responsibilities – an

unwieldy number for use in practice – but on comparing the lists many commonalities

became apparent.

We abstracted these commonalities to create a pattern language: Architecture Pattern

Language for Usability Support (A-PLUS). Through compression the A-PLUS language

allowed three USAPs to be represented in only 33 responsibilities. A-PLUS was a

representational change in the description of USAPs in which the usability scenarios,

each with a set of assumptions, usability benefits, and any specialized responsibilities,

became End-User USAPs, while the abstractions of the commonalities, including the

responsibilities and text-based implementation suggestions, became Foundational

USAPs. The language combined End-User USAPs and Foundational USAPs into lists of

responsibilities for software architects to review, with the capability to review the same

responsibility for multiple usability scenarios to which it may apply.

 - 87 -

The A-PLUS pattern language allows multiple USAPs with common conceptual elements

to be defined in terms of reusable sets of responsibilities. Software architects can use A-

PLUS to apply patterns of related responsibilities to multiple related usability scenarios.

Experts in usability and software engineering can use A-PLUS to author usability

scenarios and lists of responsibilities that are common to the usability scenarios. The

pattern language enables compression and re-use of responsibilities to support their use in

software architecture design practice. The language is couched in terms that allow for

programmatic combination of the scenarios and the responsibilities to support scalability

and automated integration with a software tool to embody the language. The work

described in this chapter arose from collaborative work between me, Bonnie John, and

Len Bass at Carnegie Mellon, and Pia Stoll, Fredrik Alfredsson, and Sara Lövemark at

ABB Corporate Research, and was truly a group effort.

 - 88 -

Chapter 5. Design for a Tool-Based Approach

5.1 Motivating the Design

In Chapter 4, I discussed the design and creation of the A-PLUS pattern language for

describing USAPs. In this chapter, I describe the design and user testing of a web-based

prototype for a tool, A-PLUS Architect, to deliver the USAPs created with the A-PLUS

pattern language to software architects. I explain how the tool is situated in the software

development process, and briefly touch on how other A-PLUS tools might be developed

to support the creation and selection of more USAPs. I then describe the user tests of a

prototype version of A-PLUS Architect that I performed with software architects at ABB,

and the results of those tests. Finally I describe an iteration on the design of the tool,

motivated by the user test results.

5.2 Revised Approach: Content and Format of USAPs

As discussed in Chapter 3, the form of USAPs used in the controlled experiments had

included three sections of information: the general usability scenario, the list of general

responsibilities, and the sample solution including UML-style diagrams applying the

general scenario to an MVC architecture. However, participants in the experiments had

achieved significant improvement in both consideration of responsibilities and quality of

architectural solution using just the list of general responsibilities in addition to the

usability scenario, and detailed examination of task performance by experimental

participants had revealed no significant gain from using the sample solution diagrams.

Furthermore, as described in Chapter 4, software designers at ABB expressed dislike for

the UML-style sample solution when shown early drafts of the USAPs. They felt that

they were being pressured to use the overarching pattern on which the sample solution

was based, i.e., MVC. If they used another overarching pattern such as SOA or a pattern

derived from a legacy system, the sample solution seemed to be an unwanted

recommendation to totally redesign their system.

 - 89 -

The use of the sample UML solution in the original formulation of USAPs was intended

to conform somewhat to standard software architecture pattern templates, which typically

call for some sort of graphical example or multiple examples. The fact that these

templates cause resistance when dealing with existing (or partially existing) designs is

interesting but investigating its cause is outside of the scope of this thesis. However this,

along with my findings that the UML-style diagrams did not help participants in the

laboratory experiments, led to replacement of the UML sample solution with textual

descriptions of implementation details that expressed structural and behavioral parts of a

solution. As will be shown later, each general responsibility would therefore to be

delivered with implementation details, instead of delivering a single UML sample

solution for the entire USAP.

5.3 A-PLUS in the Software Development Process

It became clear, once we began to reinterpret USAPs in light of the A-PLUS pattern

language, that software tools might support several diverse yet related functions relative

to USAPs in the software development process. A-PLUS tools were conceived as a suite

of three tools, two of which lie outside the scope of this thesis. Nevertheless, a

conceptual understanding of all three may explain some of the limitations placed in the

design of A-PLUS Architect, which will be discussed in detail in this chapter and the

next.

The toolsuite as originally conceived would include one tool for creating additional

USAPs in the A-PLUS language, a second tool for choosing which USAPs to apply

within a given software development project, and a third tool to assist software architects

and engineers in applying the USAPs chosen through the second tool. Each of these tools

would have different users and a different place in the software development process

(Figure 5-1).

The A-PLUS pattern language (Chapter 4) is complex and demanding for anyone seeking

to create additional USAPs. Creation of USAPs requires the collaborative efforts of

 - 90 -

experts in usability and experts in software architecture to create the content. New

USAPs would likely require modifications to the pattern language as well. The process is

time-consuming; the three related USAPs developed in Chapter 4 took nearly three

months of effort on the part of multiple experts. However, some of that expert time was

spent in developing the structure of the USAPs, making certain the parameters passed by

the End-User USAPs were those expected by the corresponding Foundational USAPs,

and other tasks to ensure that the resulting USAPs were complete and structurally

consistent. While it was possible and relatively practical to create the initial three USAPs

that way as part of developing the A-PLUS pattern language, the task of creating further

USAPs would be far easier for content experts if a software tool could assist by providing

a linguistic structure within which to work. Such a software tool would also check for

completeness and structural consistency. As envisioned, this tool – A-PLUS Author –

would allow researchers and other interested experts to spend valuable time on

developing the content that should belong to any new USAP while taking care of the

mechanics of creation and display.

Figure 5-1. Software tools as conceived in A-PLUS toolsuite. A-PLUS Architect is the focus of this thesis; A-
PLUS Author and A-PLUS Requirements are future work to complete the vision.

 - 91 -

The output of A-PLUS Author would be additional USAPs, which could then be used by

software architects and engineers in their design practice. However, it is not only the

software architects and engineers who decide which usability scenarios are most relevant

to the business needs of a product or product line. That decision belongs to a wider group

of stakeholders. A second software tool is envisioned to aid and capture the process of

selecting USAPs, much as ABB had selected three usability scenarios relevant to the

needs of their product line. This tool would situate the selection of appropriate USAPs in

the requirements-gathering phase of the software development process: A-PLUS

Requirements. As envisioned, A-PLUS Requirements would record the decisions of the

organization regarding their choices of USAPs for different projects, and save those

choices as projects that could be imported into the third tool, A-PLUS Architect. The

design and implementation of A-PLUS Requirements and A-PLUS Author are outside

the scope of this thesis.

When software architects came to design the architecture of a software system with the

help of A-PLUS Architect, they would simply open the appropriate project shared with

A-PLUS Requirements. Since the USAPs relevant to the requirements of the project

would already have been selected, opening the project in A-PLUS Architect would

generate content automatically for the End-User USAPs chosen earlier in A-PLUS

Requirements. For the purposes of my prototype design and implementation of A-PLUS

Architect, I assumed that the three End-User USAPs for User Profile, Environment

Configuration, and Alarms & Events had already been selected. This assumption

underlies the A-PLUS Architect discussed in the rest of this chapter and the next.

5.4 Design and Prototype of A-PLUS Architect

Several potential roadblocks to widespread application of USAPs in software

development practice were the need for software architects to have direct involvement

with researchers to use USAPs in the development process, negative reactions to

diagrammatic examples using a particular overarching architectural pattern (MVC), and a

possibly overwhelming amount of information delivered to the software architect. Data

 - 92 -

from the empirical studies (Chapter 3) and the A-PLUS pattern language (Chapter 4) laid

the groundwork for addressing these problems.

In the controlled experiments with the early form of USAPs (Chapter 3), the USAPs

themselves had been delivered as a paper document. One phenomenon I had encountered

in examining the results of those experiments was that many experimental participants

apparently failed to consider each responsibility in the list of general responsibilities,

even when they had the list available and had been instructed to consider them. Analysis

of video data from the experiments, described in Chapter 3, also suggested that more

attention to the lists of responsibilities might lead to better architectural solutions, both in

terms of quality and of completeness. In the experiments I had not instructed participants

specifically to use the lists as checklists, i.e., there was no enforcing function. Also, the

lists of responsibilities in the Training Documents for the experiments did not have any

explicit affordances (e.g., checkboxes) that identify them as checklists. One challenge

was to encourage the designers to consider all the general responsibilities in any given

USAP.

The challenge to encourage the designers to consider all responsibilities was met by

transferring the USAPs into a web-based tool (Stoll et al. 2008). To encourage attention

to all responsibilities in the USAP, I chose to design a web-based tool that presented

responsibilities in an interactive checklist. The goals of this tool were to help the

designers to actively consider all responsibilities, to be easy to use with minimal learning

and with no participation by researchers, and to make the USAPs relatively easy to

understand. There is also an overarching goal of USAPs which is inherent in the tool: to

bridge the gap between usability requirements from a set of general usability scenarios to

software architecture requirements in the form of responsibilities. I designed the tool

prototype at CMU, with extensive, iterative input from the CMU team and ABB. It was

implemented in HTML and Javascript by our research partner at ABB. An overview of

the tool is shown in Figure 5-2; details will be described below.

 - 93 -

Figure 5-2. Overview of Elements in Tool Interface

 - 94 -

Although USAPs as described in the A-PLUS pattern language contain a great deal of

information, the entire layout of the USAP delivery tool was consciously made as simple

and direct as possible to support the goals of ease-of-understanding and ease-of-use. The

A-PLUS language’s internal concept of dividing USAPs into Foundational USAPs and

End-User USAPs was hidden from the user as extraneous information that was not

needed by users in order to use the tool. To support the tool’s goals, the concept is instead

expressed by presenting the Foundational USAPs hierarchy in the left content menu, and

End-User USAPs as contextual information for considering the individual

responsibilities, without using the words “Foundational” or “End-User”. As Figure 5-3

shows, the responsibilities are arranged in a hierarchy that reflects the internal structure

within the Foundational USAPs.

In designing the tool, I had to decide how to present optional additional information that

was available for each responsibility. The A-PLUS language included rationales for the

inclusion of each responsibility, and text-based implementation suggestions for each

responsibility, some of which were lengthy. Each responsibility could be considered

without this additional information, and it was unknown how much the software

architects would use it. Additionally, I was concerned that too much additional prose on

the page would hamper comprehension of the responsibilities. Since I could not precisely

anticipate the needs of the software architects, I decided to allow them to choose whether

to view the optional information on a by-request basis, displaying it only when the user

chose to display it by clicking a link, e.g., “Show rationale” for a responsibility. The

optional text could be hidden again by clicking a link, e.g., “Hide rationale” (Figure 5-3).

As well as simplifying the presentation, this design decision lent itself well to the

substitution of text-based implementation suggestions for the diagrammatic examples

used in the controlled experiments. I expected that the text-based implementation

suggestions, presented thus, would induce fewer negative reactions than the generic

example UML-style diagrams. When using the tool in-house in industry, the software

architects could interpret the text-based implementation suggestions in the context of

whatever architectural style they used in their project. My hope was that this would both

 - 95 -

ease their understanding of the examples and increase the possibility of re-using the

implementation suggestions.

Figure 5-3. Displaying Only Necessary Information

 - 96 -

In the main content area each Foundational USAP’s responsibilities are displayed with

the parameters furnished by the prioritized End-User USAPs; Alarm & Events, User

Profile, and Environment Configuration. Each responsibility has a checkbox where an

internal state is set to automatically “check” when the software architect has set the states

of the radio-buttons of each End-User USAP related to the responsibility. The

checkboxes enforce the hierarchical structure by automatically checking off a higher-

level box when all its children have been checked off, and conversely, not allowing a

higher-level box to be checked when any of its children remain unchecked. These

checkboxes cannot be changed directly by the software architect, since that would defeat

the purpose of automatically informing the architect that input is still required on

responsibilities that have not yet been considered (Figure 5-4). I hoped that this reminder

to consider each and every responsibility would increase the coverage of responsibilities,

which is correlated with the quality of the architecture solution (Golden, John, & Bass,

2005a).

The radio-buttons are set by the software architect and reflects the architecture design’s

state in relation to the responsibility. The architect was intended to read each

responsibility and determine whether that responsibility was already accounted for in the

architecture, not applicable to the system being designed, or required the architecture to

be modified to fulfill the responsibility. The choice of radio buttons reflects that the states

are mutually exclusive; a responsibility cannot be in more than one of these states at a

time. The default state of each responsibility is “Not yet considered,” indicating that the

software architect has not yet made an active choice. The other available states for a

responsibility are, “Architecture addresses this”, “Must modify architecture” and “Not

applicable”. The assumption is that the software architect will select one of these three

states after reading the responsibility text thoroughly (Figure 5-4).

A checkbox that can be set by the software architect appears below each set of four radio

buttons. This checkbox allows the software architect to record whether the state of the

responsibility merits further discussion, irrespective of the state selected in the radio

buttons. This feature arose from discussions with the ABB research team, wherein they

 - 97 -

posited a reasonable situation in which the software architects had in fact considered a

responsibility, but wanted to consult with colleagues before they could confidently make

a final choice as to how it was reflected in their design (Figure 5-4).

Figure 5-4. Indicating States of Responsibilities in End-User USAPs

 - 98 -

A separate main page described the concept of USAPs, and provided instructions on how

to use the USAP delivery tool [Appendix L]. The states of the radio-buttons and

checkboxes were persistent as long as the web-tool remained open, enabling the user to

go back and forth in the tool without losing data.

The output of the prototype was a “to do” List. This is a list of the responsibilities that

either have not yet been considered, that require a modification of the architecture, or that

need to be discussed further. The “to do” list appeared on a page in which each

responsibility appearing on the “to do” list was accompanied by an editable textbox in

which the user could enter notes before printing the list. In the prototype, the “to do” list

could not be saved, persisting only so long as the browser session continued. This

required the user to remember to print the list before ending the browser session.

However, so long as the browser session continued, the states of the responsibilities could

be changed as many times as the user desired, and those changes were reflected in the “to

do” list. A link allowed the software architects to generate and print the “to do” list as at

any point during the browser session. Since the delivery tool was a prototype we did not

take it to the level of a full-fledged content management tool with a database as the

backbone. We waited for user tests to indicate to us if this would be a good direction for

next steps before expending the effort.

Before proceeding to the user tests, however, I will discuss in detail how the design of A-

PLUS Architect addressed the problem of combining multiple USAPs in a single

presentation format.

5.4.1 Combining Multiple USAPs in a Single Presentation Format

One motivation for developing both the A-PLUS pattern language and the A-PLUS

Architect tool was that the ABB software architects could not imagine how they might

incorporate multiple USAPs in the same architectural design. Another motivation was

the opportunity to reuse the principles underlying a single USAP to develop multiple

related USAPs, and the consequent ability to show software architects similar

 - 99 -

opportunities in their design solutions. The solution was to simplify the delivery of

USAPs when multiple USAPs were deemed relevant to a particular system.

Recall that the Foundational USAPs are parameterized and each End User USAP

provides a string that is used to replace the parameter. For instance, consider a

responsibility from the Authoring Foundational USAP: “The system must provide a way

for an authorized user to create a SPECIFICATION.” Accordingly, when three End User

USAPs are relevant to the system under design, such as User Profile, Alarms & Events,

and Environment Configuration, the three responsibilities would be displayed to the user

as “The system must provide a way for an authorized user to create a [User Profile,

Alarm, Event & Display rules, and Configuration description] specification.

This presentation satisfied two goals and introduced one problem. Presenting three

responsibilities as one reduced the amount of information displayed to the architect since

every Foundational USAP responsibility is displayed only once, albeit with multiple

pieces of information. This presentation also indicated to the architect the similarity of

these three responsibilities and the reuse possibilities of fulfilling them through a single

piece of parameterized code.

The problem introduced by this form of the presentation was that the radio buttons then

became ambiguous. Did the entry “architecture addresses this” mean that all of the three

responsibilities had been addressed or that only some of them had been? I resolved this

ambiguity by repeating the radio buttons three times, once for each occurrence of the

responsibility. Thus, the three responsibilities were combined into one textual description

of the responsibility but three occurrences of the radio buttons. This is shown in Figure

5-5, which illustrates the presentation of responsibilities for multiple related USAPs in

the web-based tool prototype.

The name of each of the three USAPs chosen for delivery was enumerated under each

responsibility. The three sets of radio buttons indicated that the software architect must

respond to each responsibility in the context of each USAP. This was designed to

 - 100 -

encourage the user to consider each responsibility’s applicability for each individual

USAP, while allowing them to consider multiple USAPs simultaneously with a minimum

of effort in reaching an understanding of any given responsibility.

Figure 5-5. Combining Responsibilities for Multiple Related USAPs.

 - 101 -

With the responsibilities for the three related USAPs combined in this manner in the tool

prototype, the next step was to proceed to user testing, which I discuss in Section 5.5.

5.5 User Testing in Practice

In this section I discuss user testing of the web-based prototype of the delivery tool for

USAPs with software architects at ABB, with respect to usability and usefulness. I tested

the delivery tool using the text-only portion of three new USAPs. The user testing in this

phase took place at the ABB software development site in Västerås, Sweden.

Two days of user testing were performed. On the first day, a single software architect

used the tool prototype to review the architecture of a mature software system (ten years

old and in its fifth version). Although the tool prototype was designed primarily to assist

architects in the early phases of designing a new software system, it is also possible to

use it to uncover usability gaps in the designs of existing systems. On the second day,

two software architects from the product line system project used the tool prototype

together to review their preliminary architecture design. All the architects in the user

tests used the tool prototype to review their designs while I observed and video recorded

their process. They then filled out a 26-item survey, with questions derived from the

Technology Assessment Model (TAM2) (Venkatesh & Davis, 2000) to assess their

perceptions of the usefulness and usability of the tool prototype [Appendix N]. Finally,

they participated in semi-structured interviews to uncover information that was not

captured by the survey instrument. The instructions given to these architects can be

found in Appendix M.

Before the use of the A-PLUS Architect prototype discussed here, the research team

(ABB and CMU) had discussed whether we should include all of the four foundational

USAPs in the web tool but decided to simplify the tests by omitting the Authorization

foundational USAP. We expected this reduction to make the number of responsibilities

tractable for a single day of testing. The architects at ABB were only available for one

 - 102 -

day each of testing, and we were concerned that the list of responsibilities might

otherwise be too long for them to get through in a single day. Omitting responsibilities

generated from the foundational USAPs for Authorization, and also Logging as it related

to Authoring, was a logical division of the responsibilities and left what appeared to be a

tractable and coherent set of 31 responsibilities for the architects to consider. [See

Appendix K for a full list of responsibilities included in the user tests.]

One software architect working on a mature system in its fifth version used the tool to

check whether the USAP tool might be general enough to be used by all ABB software

developing businesses, even for systems that were not at the initial stage of architectural

design, and also to further test the utility and usability of the tool. The two software

architects from the product line system project used the USAP delivery tool at a time

when they had completed a preliminary architecture design. One of these two architects

was senior and had created most of the preliminary design. The second architect had

recently joined the project but had previously been an experienced software architect at

an automobile company.

The single architect with the mature system used the tool prototype in one session lasting

two and a half hours interrupted by a fifteen-minute break. He began by reviewing the

“Main Page” of the A-PLUS Architect tool prototype, which briefly described the USAPs

embodied in the tool and gave instructions as to how to use the tool [Appendix M]. He

examined each responsibility while thinking aloud, considering all the responsibilities at

an average of about five minutes per responsibility. However, he did not make use of all

the optional materials provided with the responsibilities. This architect viewed

implementation suggestions for 13 of the 31 responsibilities, and rationales for 19 of the

31. It may come as little surprise that he chose to skip the implementation suggestions

for 18 of the 31 responsibilities, considering that the system he was reviewing was in its

tenth year and fifth version of implementation.

The two architects from the product line system project used the tool prototype in one

session lasting six working hours broken up by a one-hour lunch break and two fifteen-

 - 103 -

minute coffee breaks. As with the single architect, they began by reviewing the “Main

Page” of the A-PLUS Architect tool prototype. They examined and discussed each

responsibility, made notes on paper as appropriate, and decided what response to make to

that responsibility. In the six hours of work they completed consideration of all of the

responsibilities for each of the USAPs. They averaged about 12 minutes per

responsibility. As part of reviewing the responsibilities, these architects chose to view a

vast preponderance of the optional materials. They clicked links to view the optional

implementation suggestions for 29 of the 31 responsibilities. The two responsibilities for

which they did not choose to review the implementation suggestions were the last two of

three responsibilities in the Authoring Foundation USAP subsection on deleting a

specification. The architects decided while reviewing the first responsibility in this

subsection that deleting a specification was not applicable to their system, and did not

examine the details of the second and third responsibilities in that subsection. The

architects also clicked links to view the optional rationale for 28 of the 31

responsibilities, omitting the two responsibilities mentioned above, and a third

responsibility related only to the execution of the system in displaying alarm state

transitions in a timely fashion.

5.5.1 Performance Results

The architects achieved positive results using the tool prototype to review their software

architecture designs during the user tests. The architect reviewing the mature architecture

discovered one issue that had never been considered before, even though the USAPs had

not been prioritized with his system in mind and was not designed to be used with a

mature architecture. The architects reviewing the preliminary design of the new product

line architecture identified nineteen “Must modify architecture” responses to the thirty-

one responsibilities presented in the tool during the course of the one-day user test. A To-

Do list was generated by the architects at the end of their user test. The architects chose to

include the implementation suggestions for the responsibilities in their To-Do list, which

they planned to review later when they addressed the usability issues they had identified

in their preliminary architecture design.

 - 104 -

During their use of the tool, the architects identified 14 issues that needed further

consideration. Over the next several weeks, the architects considered these fourteen

issues and their actual impact. The architects’ judgment as to the resolution of each of the

issues is detailed below.

Issue 1. Cost Saving: - would have been done anyway

Issue 2. Cost Saving: - 1week

Issue 3. Cost Saving: - 1week

Issue 4. Cost Saving: - would have been done anyway

Issue 5. Cost Saving: - very uncertain of value

Issue 6. Cost Saving: - very uncertain of value

Issue 7. Cost Saving: - very uncertain of value

Issue 8. Cost Saving: - 1 week

Issue 9. Cost Saving: - very uncertain of value

Issue 10. Cost Saving: - would have been done anyway

Issue 11. Cost Saving: - very uncertain of value

Issue 12. Cost Saving: - 2 weeks, could be more if this idea is fully exploited

Issue 13. Cost Saving: - very uncertain of value

Issue 14. Cost Saving: - very uncertain of value

For the issues where the architect felt secure in providing a value, 5 weeks were saved.

Note the uncertainty of the architect with respect to many of the other issues. In the worst

case, this uncertainty translates to no additional savings but, likely, there were additional

savings beyond that estimated initially. This cost savings of five weeks represents a

return-on-investment (ROI) of 16.67-to-1, given six hours of work (0.75 days) for two

software architects invested to save twenty-five eight-hour days of future work. Note that

this ROI derives from a first use of a prototype version of A-PLUS Architect during a

first user test. The savings does not include the time the researchers have invested in

producing the USAPs but Alarms and Events and user profiles are common usability

 - 105 -

scenarios. These USAPs are reusable across many projects and thus the investment to

produce them will get amortized across multiple projects.

5.5.2 User Reactions

In general the architects felt that the USAP delivery tool was quite helpful. As one

indication that they considered it useful, they asked for a copy of the tool so that they

could have it available as they worked through their to-do list after the user tests. In

semi-structured interviews immediately after the user tests they provided some insights

regarding their impressions of the tool.

The main goal ABB had sought to achieve when applying the USAP technique was to

incorporate usability support early in the design process in order to build in the support in

the core architecture. By building in usability support early in the architecture, ABB

expected to avoid late and costly redesign after the users have tested an actual version of

the product line systems products. Some of the comments the architects made both during

and immediately after the user tests reflected directly on the goal of early architectural

usability support2:

Software Architect 1 (single architect, mature system): I think the tool would be used

probably after any of the requirements but before doing the design, you will

use this as a checklist of your…first design ideas or something, to make sure

you… covered all this stuff. That would be very useful.

Software Architect 2 (paired architects, new system): We have discussed lots of internal

stuff in the system but this gave us some picture of what the user is going to

see.

Software Architect 3: And that is things that we were not going to get that input until

very late in the design process, if we hadn’t used this tool now. So it was good

2 All the architects in the ABB user tests spoke English as a second language.

 - 106 -

to have these points of view come in this early. I think we have identified at

least a couple of new subsystems.

Software Architect 2: Yes. And some shortcomings of the previous design.

In contrast to the negative reaction to UML diagrams of a sample solution, as the paired

software architects examined the responsibilities, they nearly always examined and

discussed the implementation suggestions. One of their suggestions for improvement of

the tool was that the implementation suggestions would be automatically included in the

to-do list so that they would be available for future use, indicating that they saw these

suggestions as useful instead of intrusive.

As the tool functioned during the test, the possibility of adding implementation details

manually to each responsibility was perceived as tedious, since the software architects

wanted to view all implementation details in the generated to-do list and were therefore

forced to click “Add implementation details” for each responsibility.

The results of the TAM2 survey instrument were positive but not generalizable because

of the very small sample size (n = 2, plus one incomplete instrument). I was able to apply

TAM2 instrument items more broadly to assess the next iteration of the tool’s design; this

will be discussed in the next chapter. Several important usability issues with the tool

were also revealed by the user test, some of which I had anticipated and some not; these

will also be discussed in the next section.

5.5.3 Design Observations

In order to identify issues in the design of the tool prototype that might make it difficult

to understand or problematic to use, I performed a critical incident analysis of the video

recordings of the user tests. I identified both positive and negative critical incidents

based on types of statements users made in reaction to the user interface (UI) of the tool

prototype (Figure 5-6). In order to qualify as critical, an incident had to last for at least

one minute, beginning when the user first expressed either positive or negative reaction,

 - 107 -

and ending when the user either moved on to something else or found a solution to a

problem. User interface incidents falling within the scheme but lasting less than a minute

were recorded but regarded as non-critical.

Positive Reaction Types:
User said something like…

Negative Reaction Types:
User said something like…

That is good That is bad OR that is not good

That works well That does not work well
I can do <x> here I want to <x> but I can't…
This is easy to use This is hard to use

Figure 5-6. UI incident scheme for user statements

Two critical UI incidents and four non-critical UI incidents occurred during the course of

the user tests. All of them took place during testing with the paired users (U2 and U3).

The UI incidents are listed in Figure 5-7 below.

Incident Evidence Explanation
Possible solution and/or
tradeoffs

Negative
aspect: Cannot
add comments
until ToDo list
is generated.

U2: "Hey, could I add
comments? Where do I add my
comments?" Said while
viewing and discussing a
responsibility. U2 referred
back to tool's instructions,
which say “The ToDo list has a
place to record comments for
any responsibility you wish to
annotate. Annotate the list as
desired, and then print it.” U2
then recorded notes on paper.

Comments fields only
occur on the ToDo list,
not where the user is
reviewing each
responsibility. U2
wrote four pages of
notes on paper while
reviewing
responsibilities during
six hours of user
testing.

Possible solution: provide
functionality to add
comments with each set of
radio buttons. Tradeoffs:
screen real estate; question
as to how to save/display
comments in ToDo list.

Negative
aspect: Cannot
add End-User
USAPs to a
visible
responsibility.

U2 and U3 reviewed a
responsibility that only used
one End-User USAP (Alarms
& Events).
U3: “I would like to have the
opportunity to choose
Configuration Description [the
parameter from the
Environment Configuration
End-User USAP] here.”
U2: “Yeah, I agree. It’s not
only a matter of…”
U3: “It’s not just Alarms &
Events.”

U2 and U3 wanted
flexibility to discuss a
responsibility for End-
User USAPs in a case
where the authors had
not included that
responsibility in that
End-User USAP. The
UI did not support this.

Possible solution: See
discussion below the
figure.

Figure 5-7. User Interface Incidents during User Tests

 - 108 -

Incident Evidence Explanation
Possible solution and/or
tradeoffs

Positive aspect:
Heirarchical
checklist is
checked
automatically.

U2 read the tool’s instructions
aloud: “When you have
checked off the individual
items under a responsibility,
the checkbox to the left of the
responsibility will be checked
automatically to indicate that
you have completed that
section of the checklist.”
They responded:
U2: “That could be good, this
checklist.”
U3: “Yeah… we can see if we
have missed something in the
model.”

U2 liked the idea of the
checklist. U3 saw the
automatic checking-off
of the responsibilities
hierarchy as potentially
useful in avoiding
errors of omission.

Tradeoff: New users may
be confused by inability to
manually check
hierarchical checkboxes.

Positive aspect:
ToDo list is
generated as
output.

U2 read the tool’s instructions
aloud:
“When you have finished
reviewing all the
responsibilities in the checklist,
click the “Generate ToDo List”
link in the left menu to see a
list of the current status of the
responsibilities. This list will
show all responsibilities that
have yet to be addressed,
required architectural changes,
and/or need to be discussed
further.”
U2 responded: "Hey, look here,
we won't have to modify our
model during the task because
we will have a to-do list as
output. That's good."

U2 liked the idea of
having a To-Do list to
take away from using
the tool. Users may not
want to perform
changes in their
architecture designs
while using the tool.
They may prefer to
address them later with
software architecture
design or discussion.

Tradeoff: ToDo is a static
snapshot, user may not
think to generate new
ToDo list if status changes
on responsibilities.

Negative
aspect:
Hide/Show
Rationale
Hide/Show
Implementation
Details links
change text
when used.

U3 clicked the “Show
Rationale” link in a
responsibility. The text of the
link changed to “Hide
Rationale” and the rationale
information appeared beneath
the “Hide Rationale” link.
U3: “I have a comment there
about this Hide and Show
Rationale. I would like to see,
when I click Show, I would
like to have the text beneath
Show… It's a bit confusing.”
Implementation Details are
displayed/hidden in the same
way as Rationale in the UI.

User was confused by
the way optional
Rationale text was
displayed / hidden
using “Show Rationale”
link when rationale text
is hidden, and “Hide
Rationale” link
replacing “Show
Rationale” link when
rationale text is shown.

Possible solution: Use
collapsible panels to
indicate whether Rationale
and Implementation
Details are shown or
hidden. In order to make
this behavior clear to the
users, an arrow pointing to
the right (collapsed state)
or down (expanded state)
can be used. Tradeoff:
Less experienced users
may be confused.

Figure 5-7(cont). User Interface Incidents during User Tests

 - 109 -

Incident Evidence Explanation
Possible solution and/or
tradeoffs

Negative
aspect:
Implementation
Details must be
added to ToDo
list one at a
time.

U2 and U3 viewed the ToDo
list they had generated. A link
labeled “Add Implementation
Details” appeared next to each
responsibility displayed in the
list.
U2: "What is this Add
Implementation Details?" U3:
"We would like to get all
implementation details for
everything in the ToDo list,
just to sort of provide a bigger
context.”
U2: “We should have a…”
U3: “Yeah, add all
implementation details."
U2 then clicked the “Add
Implementation Details” link
for each responsibility
displayed (10 links in 38
seconds).

User wanted an easier
and/or faster way to
include Implementation
Details for all
responsibilities on
ToDo List.
Implementation Details
can be shown on the
ToDo list one
responsibility at a time,
by clicking a separate
link on the ToDo list
for each item on the list.

Possible solution: add one-
click functionality to allow
user to add Implementation
Details to all ToDo list
items at once. Tradeoff:
User may add information
she does not need to the
ToDo list.

Figure 5-7(cont). User Interface Incidents during User Tests

The most interesting incident in Figure 5-7 was one in which users encountered the first

specialized responsibility (EX 3.1, Appendix I) in the list of responsibilities, i.e., one that

only addressed the End-User USAP for Alarms and Events. Upon reading this

responsibility and noticing that it was only applied to Alarms and Events, one user

remarked that he would like to be able to consider it for User Profile as well. This was

not possible in the prototype tool, and the users moved on to discuss the responsibility in

the context of Alarms and Events.

Although it is impossible to know precisely why this occurred, several possible

explanations are worth considering. One possible explanation is that the users were

experiencing functional fixedness (Duncker, 1945, cited in Functional fixedness, n.d.,

Examples in Research section, para. 1). By the time the users arrived at the responsibility

in question, they had used the tool for several hours and had encountered only

responsibilities with three parameters, so that became their new tradition. If this was the

case, then the first time they encountered a responsibility with only a single parameter

their expectations were confounded and they simply responded by expressing a desire to

 - 110 -

handle this responsibility exactly as they had handled those that came before.

Another possibility is that we should have written the responsibility differently, since

perhaps it could have been phrased in a way that made it clear to users why it was only

relevant to the Alarms and Events USAP, and not to the User Profile USAP. Training

might also have mitigated this situation. The instructions the users read before using the

tool did not include any explicit statement that the number of End-User USAPs addressed

in a single responsibility could vary, so perhaps they were not sufficiently prepared for

what they could expect in using the tool. Yet another possibility is that the user is correct

and this responsibility actually does apply to more than Alarm and Events and we should

have included this responsibility in more than that single End-User USAP. This

possibility opens up a question for further research: how might the users of A-PLUS

Architect contribute to its content. This will be discussed more in Chapter 8.

When combined with comments made during the post-test interviews as to what they did

and did not like about using the tool, several issues emerged that formed a list of

requirements for redesign. I incorporated these issues in a redesign of the delivery tool:

A-PLUS Architect.

5.6 A-PLUS Architect Redesign

Based on the results of user tests of the tool prototype in the previous phase, the design of

A-PLUS Architect retained use of automated hierarchical checkboxes in the user

interface to encourage attention to each responsibility through automated hierarchical

checkboxes. The software architects in the user tests obtained good results and

commented favorably on the usefulness of the checklist in forcing them to pay attention

to all the responsibilities in each USAP (Figure 5-8).

In response to the critical incident regarding inability to record comments in the tool until

the To-Do list was generated, a note-taking field was added to each USAP in the tool.

During the user tests, the software architects had recorded some notes on paper when

 - 111 -

they found that the tool had no mechanism for capturing process notes. In the revised

design, editable text Notes fields were added so that users could capture their thought

processes while evaluating individual responsibilities.

Figure 5-8. Design Iteration on UI of A-PLUS Architect

 - 112 -

To address any user confusion regarding the mechanisms for hiding and showing optional

rationale and implementation suggestions, links that changed text when changed were

replaced with collapsible panels. These icons indicated whether additional text was

either available to view, or available to hide. In order to make this behavior clear to the

users, an arrow pointing to the right (collapsed state) or down (expanded state) was used.

Users were given options to include rationale and/or implementation details in the To-Do

list, and to view any of the USAPs separately, or all of them together.

The To-Do list had elicited both positive and negative responses in the user tests: the

users responded positively to the concept, but negatively to part of the implementation.

In exploring solutions to the problem of users wanting a simple way to show all

implementation details at once on the To-Do list, I realized that simple redesigning the

To-Do list UI as a view on the entire set of USAPs could add a great deal of flexibility for

the user. Like the To-Do list in the first UI, a view could be saved or output as a snapshot

at any time during the review process. However, unlike the original To-Do list, which

was conceived as a report, the view-based To-Do list precisely matched whatever the user

chose to view in the tool at the time that the To-Do list was created. A user could select

to filter their view of the tool at any time, e.g., to view only the responsibilities for one

End-User USAP at a time, to show Rationales, etc., and the output of the To-Do list

would capture that view. With the To-Do list captured as a view of the checklist, the

new Notes fields by the individual USAPs were also shown in the To-Do list unless the

user selected otherwise in the view. Redesigning the To-Do list as a view on the current

state of the USAPs at any time introduced additional flexibility for the end users.

Some visual design changes were made as well, including elements of the color palette,

fonts, and use of white space to reduce clutter and make it easier to read large amounts of

text.

One significant structural improvement that was included in the design of A-PLUS

Architect did not arise from user testing, but was necessary to move from prototype to

full-fledged design tool. The browser-based tool prototype was implemented only in

 - 113 -

HTML and JavaScript, had no persistence beyond a single browser session, and no way

to store the output beyond printing a To-Do list. A-PLUS Architect was designed to use

a content management system to support the content of the foundational and end-user

USAPs, and to be supported by a database backbone. It is intended to be a web-based

application, suitable for use on multiple browsers and operating systems, so as to be

usable by software architects on a variety of systems.

Implementation of the A-PLUS Architect application is beyond the scope of this thesis. I

did work with a team of graduate software engineering students who attempted to

implement the revised tool design, but their full implementation never achieved an

acceptable level of functionality or performance. Nor was the implementation necessary

in order to evaluate the design of A-PLUS Architect for perceived usefulness and

usability in a broader scope, as will be discussed in the next chapter.

5.7 Summary

The A-PLUS pattern language discussed in Chapter 4 produced a representation of

USAPs that separated End-User USAPs from Foundational USAPs and allowed more

uniform and reusable authoring of USAPs. For software architects to use the information

in A-PLUS, End-User USAPs and Foundational USAPs must be combined to form lists

of responsibilities. In chapter I described a tool, A-PLUS Architect, that I designed to

embody and combine the elements of the A-PLUS pattern language and deliver them to

software architects for use in architecture design practice. I designed this browser-based

tool simultaneously with the group development of the A-PLUS language.

I designed A-PLUS Architect to allow the software architects to review their software

architecture designs against the checklist of responsibilities included in one or more

USAPs, determine if each responsibility was addressed, and if it was not, decide whether

to alter the architecture design. I hid the A-PLUS language’s internal concept of dividing

USAPs into Foundational USAPs and End-User USAPs from the user as extraneous

information that was not needed by users in order to use the tool. I used automated

 - 114 -

checkboxes to enforce the hierarchical structure of the sets of responsibilities and to

remind the architects to consider every responsibility included in each USAP. I chose to

display the text-based implementation suggestions and rationales for each responsibility

as optional information that users could view on demand. A prototype of my tool design

was implemented by the researchers at ABB.

I conducted user testing of the A-PLUS Architect prototype with software architects at

ABB’s corporate development site. Two paired architects working on the new product

line system design used the prototype for a single day. They uncovered fourteen major

usability issues in their preliminary software architecture design. The lead software

architect reviewed the list of issues after the user tests and estimated that the single day of

user testing by two software architects had saved twenty-five days of development time

further down the road, for a return on investment (ROI) of 25:2.

Following the positive results of the user tests, I iterated on the design of A-PLUS

Architect. Given the predominantly smooth interaction observed during the user test and

confirmed by comments by the users, I retained the simplicity of the hierarchical

checklist format. However, the redesign addressed the few usability issues that were

uncovered in the user tests, e.g., allowing user to record process notes, and some known

issues that had been deferred until after the first prototype was tested for usefulness, e.g.,

data persistence. The evaluation of the redesign will be discussed in the next chapter.

 - 115 -

Chapter 6. Further steps for A-PLUS Architect

6.1 Evaluating Perceived Usability and Usefulness

In this chapter I discuss the evaluation of a revised design of the A-PLUS Architect tool

for perceived usability and perceived usefulness. In order for A-PLUS Architect to be

practical for use in the field, a software engineer must be able to use it to apply USAPs

independently in the software architecture design process. Although I have shown

USAPs to be useful in laboratory studies and industry user tests, a significant problem

that remains is to get them accepted into work practice by professional software

developers. To this end I used the Technology Assessment Model to assess the

perceptions of software architects as to whether the redesigned A-Plus Architect tool

would be useful and usable. The question to be answered was whether this tool was

something software architects could see themselves using to address usability issues in

their software architecture designs, provided that those usability issues were deemed

important by the project stakeholders of the software being designed.

6.1.1 Measuring User Acceptance

Although implementing the iterated design for A-PLUS Architect lay outside the scope of

my thesis, I wanted to assess the likelihood that the intended end users of the tool,

software engineers and architects, would accept the tool for professional practice if it

were implemented and made available to them. In this work, user acceptance was

measured by intent to use rather than by actual usage. This approach was taken by (Hu,

Chau, Sheng, & Tam, 1999) in evaluation the potential of acceptance for then-new

telemedicine technology by medical professionals.

Data were collected using an online survey instrument, with items drawn from the

Technology Acceptance Model, or TAM. The Technology Acceptance Model, as

described in Chapter 2, is designed to explain the causal links between “perceived

usefulness and perceived ease of use” on the one hand, and “users’ attitudes, intentions

and actual computer adoption behavior” on the other.

 - 116 -

6.1.2 Participants

Recruiting participants for meaningful testing of software architecture design tools and

methods is difficult because software architecture design is an expert discipline within the

field of software engineering. Such experts are difficult to corral, costly to hire, and often

rather busy. On the other hand, testing the same tools and methods with more readily

available software engineering students could lead to questions about whether the results

were generalizable to experts in practice. Given these constraints, I elected to recruit

participants for my evaluations from several possible pools of professional software

engineers and software architects for remote evaluations. Participants were recruited via

email and web postings to professional organizations.

Of 133 people who accessed the online survey, 43 participants completed the survey

instrument. All 43 participants attested to be over 18 years of age. Participants reported

having worked an average of 15.94 years in professional software development, with a

range of 4 to 33 years.

To determine participants’ level of design experience we asked whether they had

performed several design tasks of varying complexity. All participants reported some

design experience: 88% of participants reported having designed the overall structure of a

system, 100% reported having designed the structure of a subsystem within a system,

93% reported having designed the structure of a component within a subsystem, and 81%

reported having designed a class hierarchy within a component.

Participants were also asked to report on circumstances under which they had studied

software architecture. Fifty-three percent of participants reported having studied

software architecture in university at the undergraduate level, 33% in graduate school,

63% in professional development courses/seminars, 74% through on the job training, and

63% of participants reported having studied software architecture independently, these

 - 117 -

options being non-exclusive. Additionally, 5% reported that they had not studied

software architecture at all.

Participants were also asked to report their job titles. The large number of different job

titles is indicative of the wide variety of job positions held by software development

professionals whose responsibilities include designing software architecture. A table of

these titles and their frequency appears in Figure 6-3, from which you can see the

diversity of nomenclature.

Job Title # of Respondents
Application Architect 3
Architect 2
Consultant 2
CTO 1
Data Processing Supervisor 1
Director of Senior Architecture 1
Enterprise Architect 1
Integration Architect 1
IT Architect 2
IT Consultant 1
Lead Technical Architect 1
Principal Architect 1
Principal Software Development Engineer 1
Principal Solutions Consultant 1
Product Development Manager 1
Programmer Analyst 1
Scientific System Developer 1
Senior Software Consultant 1
Senior Software Engineer 3
Senior Systems Analyst 1
Senior Technology Architect 1
Software Architect 5
Software Consultant 1
Software Designer/Architect 1
Software Developer 1
Software Developer/Architect 1
Technical Architect 1
Technical Manager Software Architecture 1
UK Head of Architecture and Analysis 1
VP of Product Development 1

Figure 6-1. Job Titles of Survey Respondents

 - 118 -

6.1.3 Method

The evaluation used items drawn from the Technology Acceptance Model (TAM) (Davis,

1989; Davis, Bagozzi, & Warshaw, 1989; Venkatesh & Davis, 2000; Venkatesh, Morris,

Davis, & Davis, 2003), which I will describe first. The TAM is a validated survey

instrument for predictive assessment of use of a software system, measuring the

perceived usability and usefulness of a software system (or other product) once the

system has been created. It is easy to administer and measures attitudes toward the new

system, not task performance. Perceived usability and usefulness are critical to new

methods and tools in a professional development environment because users, unless they

are forced, will not use software unless they perceive it as both helpful and reasonably

easy to use.

Twenty-one items measured responses in four categories: perceived usefulness, perceived

ease of use, intention to use, and attitude. Different versions of the TAM have included a

variety of items. In choosing these items, I followed an approach used by (Hu, Chau,

Sheng, & Tam, 1999), who evaluated the potential of acceptance for then-new

telemedicine technology by medical professionals when actual usage of the technology

could not be measured. The TAM items included in the survey are shown in Figure 6-4

below.

I made the revised design of A-PLUS Architect, including changes described in Section

1.2, available to online participants for them to examine on their own (Appendix M).

After reviewing the design, participants were asked to fill out the TAM survey items.

Participants were also asked to respond to a brief set of items regarding their professional

experience in the field of software architecture. Using the online survey had the

advantage of allowing me to collect data from a greater number of participants than might

have been available to participate in a focus group, for reasons of time, convenience, or

location. On the other hand, there was the disadvantage of not being able to ask

participants why they provided the answers they did.

 - 119 -

Perceived Usefulness (PU)
PU1: Using A-PLUS Architect can enable me to complete software architecture design work
more quickly.
PU2: Using A-PLUS Architect cannot improve my software architecture designs.
PU3: Using A-PLUS Architect can increase my productivity in software architecture design
work.
PU4: Using A-PLUS Architect cannot enhance my effectiveness at software architecture design
work.
PU5: Using A-PLUS Architect can make my software architecture design work easier.
PU6: I would find A-PLUS architect not useful in my software architecture design work.

Perceived Ease of Use (PEU)
PEU1: Learning to use A-PLUS Architect would not be easy for me.
PEU2: I would find it easy to get A-PLUS Architect to do what I need it to do in my software
architecture design work.
PEU3: My interaction with A-PLUS Architect would be clear and understandable.
PEU4: I would find A-PLUS Architect inflexible to interact with.
PEU5: It would not be easy for me to become skillful in using A-PLUS Architect.
PEU6: I would find A-PLUS Architect easy to use.

Attitude (ATT)
ATT1: Using A-PLUS Architect in software architecture design is a good idea.
ATT2: Using A-PLUS Architect in software architecture design would be unpleasant.
ATT3: Using A-PLUS Architect would be beneficial to my software architecture design work.

Intention to Use (ITU)
ITU1: I intend to use A-PLUS Architect in my software architecture design work when it
becomes available to me.
ITU2: I intend to use A-PLUS Architect to review my software architecture designs as often as
needed.
ITU3: I intend not to use A-PLUS Architect in my software architecture design work routinely.
ITU4: Whenever possible, I intend not to use A-PLUS Architect in my software architecture
design work.
ITU5: To the extent possible, I would use A-PLUS Architect to review different software
architecture designs.
ITU6: To the extent possible, I would use A-PLUS Architect in my software architecture design
work frequently.

Figure 6-2. TAM items used in A-PLUS Architect Survey

6.1.4 Results

6.1.4.1 Results of TAM Questions

Survey items were measured on a 7-point scale, anchored at 1 (strongly disagree) and 7

(strongly agree), with a value of 4 representing neutrality (neither agree nor disagree).

 - 120 -

Half of the questions had been negated and the questions randomized to reduce potential

monotonous response effects. Responses to the negated items were inverted on the 7-

point scale during analysis to allow assessment of convergent validity among the items in

each category. Figure 6-5 below shows descriptive statistics for each of the 21 items in

four categories. Values for the negative valence items were inverted prior to statistical

analysis.

Category & Item Mean Standard
Deviation

Cronbach’s
Alpha

Perceived usefulness (PU) 0.87
PU1 4.30 1.63
PU2 5.05 1.80
PU3 4.95 1.29
PU4 5.33 1.49
PU5 4.88 1.24
PU6 5.00 1.63

Perceived Ease of Use (PEU) 0.85
PEU1 5.65 1.46
PEU2 4.53 1.50
PEU3 5.37 1.22
PEU4 4.77 1.48
PEU5 5.40 1.26
PEU6 5.28 1.35

Attitude (ATT) 0.83
ATT1 5.47 1.50
ATT2 5.16 1.70
ATT3 5.16 1.33

Intention to Use 0.93
ITU1 4.84 1.73
ITU2 4.44 1.58
ITU3 4.56 1.84
ITU4 5.26 1.63
ITU5 4.84 1.36
ITU6 4.70 1.60

Figure 6-3. Descriptive Statistics for TAM Survey

Mean values for perceived usefulness ranged from 4.30 to 5.33, with a combined average

of 4.92. Mean values for perceived ease of use were slightly higher, ranging from 4.52 to

5.65 with a combined average of 5.17. Mean values for attitude were the highest of the

 - 121 -

four constructs, with a range from 5.16 to 5.47 and a combined average of 5.26. Mean

values for intention to use were comparable to those for perceived usefulness, having a

range from 4.44 to 5.26 and a combined average of 4.92.

At this writing, there are no published norms for what the absolute results mean for

technology adoption. The model for combining the components and their effect on

intention to use is evolving and stabilizing and a correlation with technology adopted has

been obtained in four longitudinal studies (Venkatesh & Davis, 2000), but the absolute

responses are not reported for those studies. A later set of longitudinal studies (Venkatesh

& Bala, 2008, p. 287), however, do report their absolute results for TAM items

administered after initial training on new systems but before those systems had been

used. In these studies, means were reported at 4.14 for perceived usefulness, 3.98 for

perceived ease of use, and 4.10 for behavioral intention (a renaming of intention to use).

No measurement of attitude was collected in these studies. Their results were smaller

than those in my survey, and in all cases the new technology was adopted by the users.

Their findings were that perceived usefulness was the strongest predictor of behavioral

intention at all points of measurement (p. 290), and that behavioral intention was a

significant predictor of use at all points of measurements (p. 291). This suggests that my

survey’s high results for perceived usefulness would translated to a likelihood that

software architects would be willing to try A-PLUS Architect.

6.1.4.2 Examination of the TAM

To contribute to the ongoing endeavor of evolving the TAM, we examined the internal

consistency and explanatory power, as have previous researchers. Internal consistency in

terms of reliability was evaluated using Cronbach’s alpha. As shown in Figure 6-5, the

values were at or above 0.82. This result is similar to results found in other TAM studies

(Venkatesh & Davis, 2000, p. 201; Moon & Kim, 2001, p. 224; Hu, Chau, Sheng, &

Tam, 1999, p. 101). These strong results for reliability and internal consistency indicate

that TAM survey items for each construct are well correlated.

 - 122 -

I examined the explanatory power of the model for the individual constructs included,

using the resulting R2 for each dependent construct (Figure 6-6). The R2 values indicate

the extent to which the overall variation in an outcome can be explained by an input

variable. The data supported the causal paths postulated by TAM. Perceived ease of use

had a significant direct positive effect on both perceived usefulness and attitude, with

path coefficients of 0.74 and 0.96 respectively. These coefficients mean that for every

unit increment in perceived ease of use, we could expect perceived usefulness to increase

by 0.74, and attitude to increase by 0.96. Perceived usefulness, in turn, had a significant

direct effect on both attitude and intention to use, both with path coefficients of 0.96.

Attitude also had a direct significant effect on intention to use, with a path coefficient of

0.90. All of these were significant at a level of p < 0.0001.

Figure 6-4. Results of the model

It is worth noting that Hu’s use of the TAM with physicians found no significant

influence of perceived ease of use on altitude or perceived usefulness. They hypothesized

that “TAM may not be appropriate for user populations who have considerably above-

average general competence and intellectual capacity or have constant and reliable access

to assistance in operating technology. The explanatory power of TAM, particularly the

 - 123 -

perceived ease of use factor, may weaken as the competency of the users increases.” (p.

106). Our results belie this hypothesis. The experienced software engineers who

responded to our survey are almost certainly generally competent, have high intellectual

capacity, and are especially technically competent, but perceived ease of use significantly

influenced their perception of usefulness and attitude. Perhaps it is precisely their

competence and their extensive experience with computer applications (especially with

frustratingly un-usable applications!) that increases the influence of perceived ease of use

on these factors. This points to the need for more research to unearth the situations under

which TAM is appropriate.

6.1.5 Discussion

Assessing the factors related to likelihood that new technology will be accepted could be

very helpful in educational software as well, especially when it is not practical to

immediately assess learning from new tools used by teachers in their classrooms. The

use of the TAM survey instrument may therefore also be applicable to new technologies

in education research. The significance of this statement will become apparent in

Chapter 7 below.

On average the responses to the revised design of A-PLUS Architect were entirely

positive as indicated by the TAM items. However, stronger positive results would have

been a better indication of the likelihood that A-PLUS Architect would be accepted into

professional practice in the form taken by the revised design. The most encouraging

results of the survey instrument were those for attitude and perceived usefulness, while

results for perceived ease of use and intention to use were slightly lower. From this it

seems that survey respondents might have been less satisfied that the tool would be easy

to use than that it would be useful and beneficial. If this were the case, then increasing

their confidence in perceived ease of use might contribute to a greater likelihood that they

would be willing to use the tool if it were made available to them. User acceptance has

long been a problem in information technology, but with the use of a model like the

TAM, we can surmise that a mildly positive result would correspond to some willingness

 - 124 -

trying the tool. And if users were to achieve positive results with A-PLUS Architect as

did the architects at ABB, they would be motivated to use it again where relevant.

Although the work on USAPs has been confined to a highly specialized subdomain of

software engineering, it is possible to extrapolate some of the understanding we have

reached to benefit research in other domains. In Chapter 7, we will examine the possible

application of some of the research concepts from the work on USAPs to the domain of

education research.

6.2 Summary

I showed the iterated design of A-PLUS Architect online to professional software

architects and used a survey instrument, the Technology Assessment Model, to measure

their perceptions of the redesigned tool’s usefulness and usability, attitudes toward the

tool, and whether they would intend to use the tool if it became available to them.

Forty-three software architects examined the design and completed the survey. On

average the responses to the revised design of A-PLUS Architect were entirely positive

as indicated by the TAM items. In the TAM model, perceived ease of use, perceived

usefulness, and attitude are predictive of intention to use. The strongest results of the

survey instrument were those for attitude and perceived usefulness, while results for

perceived ease of use and intention to use were slightly lower.

User acceptance is often a problem in information technology, but from the results of this

model we can surmise that a positive result would correspond to willingness trying the

tool. And if users did achieve positive results with A-PLUS Architect, as did the

architects at ABB, they would be motivated to use it again where relevant.

 - 125 -

Chapter 7. Extension to the Education Research Domain

7.1 Reaching Across Domains

In the preceding chapters I discussed a method for addressing usability issues in software

architecture design through USAPs, as well as a software tool to apply that method in

practice. Although this method and tool were developed specifically for use to bridge the

domains of human-computer interaction (HCI) and software engineering, the embodied

concept of using checklists of responsibilities developed in collaboration by experts in

multiple domains is not, in principle, limited to the domains I have shown. In this

chapter, I speculatively extend research concepts embodied in my work on USAPs to the

domain of education research.

7.1.1 Solving for the Software Engineering Domain

The USAPs method works by helping software architects analyze software architecture

designs using a checklist of usability responsibilities to determine whether the software

architecture design includes support for each responsibility. Using USAPs, software

architects decide whether each responsibility is applicable to the software system they are

designing. Their decisions are based on their knowledge of the conditions and constraints

under which the software will be used. If the architects decide that a responsibility is

applicable to their software system, they then determine whether the design of the system

provides adequate support for the fulfillment of that responsibility. This method is

embodied in a software tool, A-PLUS Architect. The resulting outputs of analyzing a

software architecture design using A-PLUS Architect are lists of which usability

responsibilities are already supported by the architecture design, and which will require

changes to the architecture before they can be supported. The software architects also

have the option to receive lists of suggestions for functional elements a software

architecture design should include in order to fulfill each responsibility on these lists.

 - 126 -

As will be discussed in Section 7.2.2, existing curriculum design templates are deficient

in dealing with the full range of conditions and constraints that must be satisfied by the

educational infrastructure in order to achieve the learning goals expressed in curriculum

standards. Further, even where different aspects of curricula are considered in related

frameworks (e.g., California Department of Education 2000, California Department of

Education 2010), they do not provide explicit linking between these aspects, making it

difficult for decision-makers to understand the implications of choices in one aspect on

the efficacy of another. In this chapter I propose an enhanced curriculum design analysis

method, capable of providing more complete descriptions of the conditions and

constraints that must be satisfied by the educational infrastructure in curriculum designs.

The goal of the proposed method is to apply the structure of USAPs as expressed in the

A-PLUS language, and the tool embodiment of that language in A-PLUS Architect, to

the task of analyzing curriculum design within the larger context of the educational

infrastructure.

This chapter is intended to provide the basis for a future research proposal to the Institute

of Education Sciences (IES) in the U.S. Department of Education, entitled “Addressing

Important Issues In Education Through Analogy From Another Domain: A Method and

Tool for Curriculum Design Review.”

7.1.2 The Problem Space in Education Research

Much educational research focuses on improvements and interventions in curriculum.

Within the definitional structure of the IES, research on curriculum standards falls into

the area of education policy, finance, and systems. “Through the Policy/Finance

program, the Institute supports research to improve student learning and achievement

through the implementation of systemic programs and broad policies that affect large

numbers of schools within a district, state or the nation. Systemic programs and policies

may seek to impact student outcomes by attempting to change the behavior of large

numbers of students (e.g., offering material incentives for improved academic and

 - 127 -

behavioral outcomes). More often, systemic programs and policies work indirectly to

impact student outcomes through changing how large numbers of schools or districts

carry out instruction and the functions that support or evaluate instruction. For example,

district and state curriculum standards and assessments directly impact what is taught

(Institute of Education Sciences, 2010, p. 34).” The project described in this chapter

would come under the further IES definition of a Development/Innovation project, which

is intended “to support development of and innovation in education interventions –

curricula, instructional approaches, technology, policies, and programs….

Development/Innovation applications are about development and not about

demonstrations of the efficacy of the intervention (p. 54).”

Despite the perceived impact of curriculum standards on student outcomes, curriculum

design is often so constrained by the rest of the educational system that many potential

ideas may not even be considered because curriculum designers accept (implicitly or

explicitly) the many constraints of the system. Curriculum, in the form of content

standards, is designed and redesigned independently of and after the deep structure of the

educational system: funding of school districts, professional education requirements for

teachers, even assessments of student learning. The deep structure of the educational

system constrains the structure of the curriculum, and educational researchers seeking to

improve curriculum design rarely have opportunities to suggest or implement changes to

the school system.

7.1.3 Structural Similarities of the Problem Domains

There are many structural similarities between curriculum design in education and user

interface design in software engineering. Software development practices in the 1980s

separated the user interface from the core functionality of software systems. This

separation had the effect of constraining user interface design to rely on what core

functionality was provided by the system. In practice, this is much like the constraints

placed on curriculum design, that make it easier for designers to change the curriculum

than to change the deep structure of educational systems. In the separated model in

 - 128 -

software architecture, the user interface, like curriculum design, is often developed after

the rest of the system is already in place and must utilize whatever functionality the deep

structure of the system can provide as best it can. If the user interface has needs that are

not supported by the core functionality, meeting those needs may require changes or

redesign of the core; and if the changes are too great, and the expenses thus too high,

those changes may be rejected regardless of whether severe disadvantages result to the

end user. Likewise, excellent curriculum design may not have a chance to reach the

student if the education system considering its adoption does not support its

requirements.

Curriculum designers have many commonalities with user interface designers. Both user

interfaces and curricula are constrained by the systems in which they must function.

Tradeoffs must be considered and made to satisfy the availability of time and resources.

In curriculum design, for instance, there might be a strong learning-based reason for

wanting to combine some math and science classes; this integration could have impact on

a host of educational system constraints, e.g., teacher training, facilities management,

technology, etc. Both curriculum designers and user interface designers may have

expertise in some areas, but not in others, and may therefore need to enlist the assistance

of experts in other domains to fulfill their design requirements.

Some of the similarities in the structure of these two problem domains are shown in

Figure 7-1 below.

7.2 Transferring the USAPs Method to Education Research

7.2.1 USAPs Content for the Software Engineering Domain

In the preceding chapters, I described work to address this problem in the software

engineering domain. I described a method for addressing usability issues (which the user

will encounter through the user interface) early in the design process, when the deep

structures of the software architecture are being designed. Part of that work included

 - 129 -

creating a language to enumerate issues that need to be addressed in the UI design

(Chapter 4) and expressing that language in a template so that software architects could

use it to identify areas where the software architecture might need to be modified to

support those UI design issues (Chapter 5). Developing the content for that template

required extensive participation from experts in software architecture and usability.

Software engineering Education

Software architecture.
• mostly legacy
• mostly accrued, not designed
• more intractable to change the longer the

system has been in place

Educational system.
• mostly legacy
• mostly accrued, not designed
• more intractable to change the longer the

system has been in place

User interface (UI) design.
• after design of the rest of the software

system
• severely constrained
• not generally allowed to make changes to

the software architecture

Curriculum design.
• after design of the rest of the educational

system
• severely constrained
• not generally allowed to make changes to

the educational system

User interface.
• designed and redesigned independently of

and often after the deep structure of the
software architecture

Curriculum.
• designed and redesigned independently of

and often after the deep structure of the
educational system

Constraints.
• hardware environment
• intended users
• legacy software systems
• time, costs, standards, etc.

Constraints.
• educational system infrastructure
• availability and training of teachers
• legacy materials and technology
• time, costs, standards, etc.

Experts needed to get it right.
• experts in usability
• experts in software architecture

Experts needed to get it right.
• experts in curriculum design
• experts in educational systems

Figure 7-1. Structure of Problem Domain

Through the work described in the preceding chapters, experts in the domain of software

architecture and usability have access to:

• Re-occurring usability scenarios that have benefit to the user;

 - 130 -

• For each scenario, conditions under which the scenario may be applicable;

• For each scenario, an enumeration of activities that the software architecture may

have to perform to achieve that benefit;

• For each activity, suggestions for implementation in the software architecture;

• For each activity, a rationale for why this activity supports its scenario;

• Suggestions for enumerating these activities (i.e., considerations such as time,

scope, initiative, and feedback)

• A checklist of responsibilities that address usability concerns arising from each

scenario, all of which must be considered when designing software architecture.

I have verified that use of the method results in improved software architecture design,

both in experiments (Chapter 3) and in the field (Chapter 5). I have also developed an

effective delivery mechanism for the method, as embodied in the A-PLUS Architect tool

(Chapter 5).

7.2.2 Curriculum Design Methodology

The question remains, how could this method be transferred productively to the domain

of education? Using the methodology we have developed, education experts could have

a method for enumerating issues that need to be addressed in curriculum design and

identifying changes that need be made to the education system to support those

curriculum design issues. Many curriculum standards, as they exist today, address

content separately from the instructional materials, technology, teacher training, and

other environmental variables that affect the ability of an educational system to educate

students, i.e., the context in which learning will take place. Examples may be found at

(California Board of Education, 2010; New York State Education Department, 2009).

The separation of content standards and educational system constraints within the

development of curriculum and instruction standards makes it a complex task to identify

whether changes in how the curriculum is implemented will necessitate changes to the

educational environment.

 - 131 -

Despite the fact that most K-12 education is constrained by curriculum standards, some

educational design researchers take the position that curriculum design based on content

standards is the wrong place to begin. The backward design model proposed by Wiggins

and McTighe suggests that educators should first identify the desired learning results or

goals for students, then determine what constitutes acceptable evidence of those learning

results, and finally plan learning experiences and instruction to achieve those results

(Wiggins & McTighe, 2005, p. 18). Their approach to curriculum design uses templates

that begin with established goals such as content standards but that also require educators

to consider what understandings are desirable, what misunderstandings can be predicted,

what critical knowledge and skills students will acquire, and the implications of that

knowledge for further learning and understanding. Only after considering these issues

are educators encouraged to progress to devising performance tasks and learning

activities that will help students to achieve the desired learning goals. In this model,

termed Understanding by Design (UbD), curriculum standards and environmental factors

become design considerations (p. 34) that inform the design of instructional units, with

each unit resulting in new knowledge and skills that can serve to scaffold students’

further understanding of the subject matter. Since curriculum standards are at the same

level of consideration with environmental factors in this model, both act as constraints on

the design, but suggestions for change to either one are not part of the output of the UbD

design method.

Other research addresses the notion of design research to include environmental factors in

creating a learning environment within a local classroom context. Bielaczyc (2006)

suggested a Social Infrastructure Framework for use in design research at this localized

context, taking into account not only the content being taught and the tools being used to

teach it, but the cultural beliefs of students and teachers, the practices through which

learning activities are organized, the socio-techno-spatial relations governing locations of

computers and data and the extent to which students work in collaboration, and the level

of interaction with the “outside world” (Bielaczyc, 2002, pp. 314-15). Although this

framework focuses on social factors associated with using a “technology-based tool” in a

local classroom setting, Bielaczyc states that research is needed “to go beyond

 - 132 -

understanding the impact of a given classroom social infrastructure on the integration of a

technology-based tool and begin to systematically identify and analyze the aspects of

social infrastructure that are amenable to design” (2006, p. 303).

By using a method and a software tool similar to the one described in Chapters 5 and 6

above, in which software architects were able to review software architecture designs

systematically against a set of usability responsibilities, many environmental factors

related to specific curriculum needs could be addressed in design research at multiple

levels using a single tool. Curriculum designers could review content and instruction

standards against the environmental constraints of an educational system, at the state,

district or school level, to identify changes that might need to be made in that system to

support delivery of the standard curriculum. Enumerating needs for resources to support

teaching is not a novel idea. The “Doing What Works” website (U.S. Department of

Education, 2010) offers planning templates for educators to “carry out comprehensive

needs assessment and planning” in preparation for working with state education agencies,

school districts and schools to get the resources they need to implement research-based

best practices. At each of the three levels of the education system, these templates

enumerate areas of support the system should provide: leadership, setting standards and

expectations, recommending and providing research-based curricula, instruction and

assessments, quality of staff, planning and accountability. Additional areas are included

at different levels: fiscal adequacy at the state level, family and community engagement

at the district and school level, and a safe and supporting learning environment at the

school level. Educators using these templates are directed to note whether support exists

in each of these areas, potential areas for development, and what next steps might be

taken at the appropriate level of the education system to address each area using research

included in the list of “Doing What Works” resources.

More detailed recommendations for instruction in specific areas of curriculum are

provided in the Institute of Education Sciences (IES) “Practice Guides” through the

“What Works Clearinghouse” (Institute of Education Sciences, 2010b). The goal of the

Practice Guides is to provide evidence-based suggestions for screening students for

 - 133 -

difficulties in different instructional areas (e.g., mathematics), provide interventions for

struggling students, and suggest ways to monitor student responses to those interventions.

The IES Practice Guides offer concrete implementation steps for interventions in a

number of curriculum areas: literacy (K-12), mathematics (K-8), and early childhood

education (pre-K). They also address strategies for special student populations – English

language learners and students with learning disabilities – and socio-educational issues of

character education and dropout prevention. Although the Practice Guides do not address

instructional practices in other basic areas like science education or social sciences, they

do cover identifying and addressing student difficulties in K-8 mathematics and K-12

reading at a formidable level of detail. Each Practice Guide includes a checklist for

general steps to implement the recommendations therein, as well as research-based

evidence for why the suggested recommendations are included. Unlike the Doing What

Works materials, the IES Practice Guides do not make recommendations for general

classroom instruction in mathematics or reading; instead they focus on identifying

struggling students and helping them succeed.

Some of the principles embodied in the Doing What Works templates and the IES

Practice Guides align with what I am proposing. The technique of considering whether

the various levels of the education system provide adequate support for instructional

practices, and noting areas in which additional support may be needed, is similar to how

software architects used A-PLUS Architect to review usability responsibilities. However,

the three Doing What Works templates for working with state education agencies, school

districts and schools differ from USAPs and their A-PLUS embodiment in three

important ways. First, the Doing What Works templates do not share information with

one another; each template must be filled in separately by hand, with no assurance of

completeness or internal consistency, and no linking of the consequences that a choice (or

no choice) at one level will have on the other levels. Second, the Doing What Works

templates address application of research-based teaching practices, but they are not

directly linked to the content of standards in the different areas of curricula (e.g., math,

science, literacy), i.e., they are more general in their approach than USAPs. Third, they

are not directly linked to the resources that would suggest specific research-based steps to

 - 134 -

address; instead, the educator who identifies an area for further development must access

the research and make the connections.

The IES Practice Guides detail more specific implementation suggestions for

interventions in some areas of curriculum, similar to and indeed more prescriptively

detailed than USAPs’ implementation suggestions. The Practice Guides also provide

general checklists to help educators track their progress and trace interventions back to

the research that justifies using them, which is similar to the rationale provided for the

inclusion of each responsibility in a USAP. However, as with the Doing What Works

templates, each Practice Guide must be accessed and connections made by each

instructor between that instructor’s needs and the Practice Guide’s suggested practices.

In addition, while the Practice Guides for mathematics and reading generally suggest that

schools consider the availability and allocation of resources, they do not provide a

detailed mechanism for enumerating resource needs. The solution path I propose in the

next section could directly link curriculum standards to responsibilities for needs

assessment and planning, providing a method and tool that would improve the current

state of needs assessment and planning for educators.

7.2.3 A Solution Path for Transfer

A successful solution path for applying USAPs to user interface design and software

systems, and for embodying that solution path in a web-based software tool, has already

been described. The elements for a corresponding solution path in the domains of

curriculum design and education systems are delineated in Figure 7-2 below.

It is important to note that the content for the checklists described in Figure 7-2(16) must

be a collaborative effort on the part of experts in curriculum design and educational

system design, and that it is a time-consuming process. For example, experts in usability

and software architecture took weeks of person-hours over an eight-month period to

develop the content for checklists of responsibilities to support three usability scenarios

(Chapter 4). However, once the content has been developed, it can be re-used by an

 - 135 -

unlimited number of practitioners, and the practitioner can readily use the checklist tool

(Chapter 5).

Software Engineering & HCI Education

As experts in the domain of usability and software
architecture, we have:

Experts in the domain of curriculum design and
education systems could have:

1. Recurring usability scenarios
(benefits are to the end-user)
e.g., Canceling A Command

2. Recurring curriculum design scenarios
(benefits are to the student)
e.g., Scientific Investigation and Experimentation

3. Conditions under which the scenario may be
applicable, e.g.,

• type of software system
• environment in which system will function

4. Conditions under which the scenario may be
applicable, e.g.,

• age of student
• grade level
• class size
• learning domain

5. Enumeration of activities that the software
architecture may have to perform to achieve that
benefit, e.g.,

• when software has to record information
• when software has to provide user

feedback
• how fast software has to work

6. Enumeration of elements that the educational
system may have to include to achieve that benefit,
e.g.,

• teaching time
• teacher training
• instructional goals
• assessments
• instructional materials
• technology

7. Suggestions for implementation in the software
architecture

8. Suggestions for implementation in the
educational system

9. Rationale for why each activity supports its
scenario

10. Rationale for why each element supports its
scenario

11. Suggestions for enumerating activities, e.g.,
• time
• scope
• initiative
• user feedback

12. Suggestions for enumerating these elements,
e.g.,

• time
• scope
• division of responsibility
• mechanism for feedback

Figure 7-2. Similar Solution Paths Across Disparate Domains

 - 136 -

Software Engineering & HCI Education

13. Sample re-occuring usability scenario:
Canceling an Active Command.
The user issues a command, then changes his or her
mind, wanting to stop the operation and return the
software to its pre-operation state. It doesn’t matter
why the user wants to stop; he or she could have
made a mistake, the system could be unresponsive,
or the environment could have changed.

14. Sample re-occurring curriculum design
scenario:
Scientific Investigation and Experimentation.
Scientific progress is made by asking meaningful
questions and conducting careful investigations. As
a basis for understanding this concept and
addressing content in the curriculum, students
should develop their own questions and perform
appropriate investigations.

15. Output
• checklist of responsibilities that a software

architecture must fulfill to support specific
user interface concerns

• software architects use this checklist to
design software architecture that can
support usability concerns

• user interface design teams could use this
checklist to review proposed user interface
designs to determine whether they are
feasible within the existing software
architecture design

16. Output
• checklist of responsibilities that an

education system must fulfill to support
specific curriculum design concerns

• curriculum designers can use this checklist
to make suggestions for educational
system design or changes that can support
curricular needs

• curriculum designers could use this
checklist to review proposed curricula to
determine whether they are feasible within
the existing educational system

Figure 7-2(cont). Similar Solution Paths Across Disparate Domains

7.2.4 Example Scenarios

To illustrate how analogous patterns could be created in education research, I will show

three possible examples of recurring learning scenarios that could be used to create

patterns in education, and some sample responsibilities that might apply for each

scenario. For each of these scenarios (Figure 7-2, 14), users of the method would review

each of the responsibilities and determine whether appropriate resources are available to

support that responsibility in the context of the education system. My sample scenarios

are drawn from state standards for K-12 curricula. Because these patterns would address

the relationship between curriculum design and educational infrastructure, the actual

responsibilities for such scenarios would have to be created in collaborative work

 - 137 -

between curriculum designers and other education experts, not by one person alone.

Creating detailed content for the three End-User and four Foundation USAPs enumerated

in the A-PLUS language (Chapter 4) required months of extensive collaborative work

between usability and software architects. Creating analogous content for Curriculum-

Supporting Educational Patterns (CSEPs) will also probably require an extensive

collaborative process, although some transfer many turn out to be possible from existing

sets of standards, practice guides, and curriculum design frameworks.

Example 1: Scientific Investigation and Experimentation

Scenario: Scientific progress is made by asking meaningful questions and conducting

careful investigations. As a basis for understanding this concept and addressing content in

the curriculum, students should develop their own questions and perform appropriate

investigations (California Department of Education, 2000, p. 52).

Example 2: Reading Fluency and Systematic Vocabulary Development

Scenario: As the English language learner recognizes and produces the sounds of

English, the student is simultaneously building vocabulary. Learning new labels for

concepts, objects, and actions is a key building block for the integration of the language.

The pathways in the English-Language Development (ELD) standards lead to the

achievement of fluent oral and silent reading. Those pathways are created by building

vocabulary and are demonstrated through actions and spoken words, phrases, and

sentences and by transferring this understanding to reading (California Department of

Education, 2002, p. 36).

Example 3: Symbolic Reasoning in Algebra

Scenario: Symbolic reasoning and calculations with symbols are central in algebra.

Through the study of algebra, a student develops an understanding of the symbolic

language of mathematics and the sciences. Students should use and know simple aspects

of a logical argument (California Department of Education, 1999, pp. 38-40).

 - 138 -

It is difficult to estimate how many such CSEPs might exist for curriculum and education

systems development. In enumerating and creating USAPs, we have only begun to map

the solution space for the software engineering domain with three completed USAPs in

the A-PLUS language and a potential list of approximately two dozen more that focus

only on a single-user at a desktop, perhaps analogous to the work of a single student in an

individual learning activity. There are potentially more USAPs specific to group activities

(such as social networks or collaborative work environments) which might be analogous

to shared learning environments, and to mobile computing devices (like smart phones or

Apple’s iPad) which might be analogous to educational situations outside the classroom.

In addition to USAPs, which explore the relationship between usability and software

architecture, more patterns could be developed in software engineering to address each of

many other quality attributes (e.g., security, learnability), and also the tradeoffs between

supporting conflicting quality attributes. Similarly, sets of patterns for educators could

cover a variety of subjects (e.g., mathematics, science, reading, social sciences) for

different grade levels and educational settings. In practice, user testing with curriculum

designers and educators will be needed to determine the properly usable level of

decomposition for using these patterns in education. Just as End-User USAPs share

Foundational USAPs, End-User CSEPs for science, mathematics, reading and other areas

of curriculum could share Foundational CSEPs that abstracted issues common to multiple

subjects, e.g., learning subject-related vocabulary.

7.2.5 Challenges

7.2.5.1 Design Challenges

This method has the potential to be useful to creators of curricula at state, school district,

and individual school levels, as well as in advocating for education research at the federal

level. Standards boards at the state level and curriculum committees of school districts or

charter schools could benefit, as could teachers constructing lesson plans. All of these

educators are tasked with reconciling content requirements with complex factors of the

 - 139 -

educational environment. Commercial curriculum developers are another potential type

of user. All of these kinds of users may respond differently to the patterns or the tool

embodiment than the software architects who used A-PLUS Architect did. The

parameterized responsibilities of the A-PLUS language may be easier for software

engineers to understand and use than for educators. Although we know the software

architects were able to use A-PLUS without researcher intervention, it will be necessary

to conduct tests with education users to find whether they, too, can use the analogous

patterns independently.

One interesting difference between using this method in software engineering and using it

in education is the difference in user groups. In software engineering, USAPs were

designed for use by software architects, but not UI designers, to anticipate the usability

needs of UI designs. In the case of USAPs, expertise in usability was needed to

enumerate the usability concerns, and expertise in software architecture was needed to

couch the responsibilities and implementation suggestions in the professional language of

software engineering. In education, the patterns would be used by curriculum designers

and educators developing curricula to anticipate and communicate needs for resources to

support the curricula they are developing. The scenarios and responsibilities would need

to be understandable to educators and curriculum designers, and the resulting lists of

needs phrased in an understandable way for these as well as administrators at state,

district, and school levels. A great challenge for this extension is to achieve collaboration

between the appropriate education experts to develop the education patterns in language

that is understandable for users in different parts of the education domain.

Some taxonomies in education design may be difficult to represent in the current level of

complexity of USAPs. As will be discussed in the next chapter, USAPs as currently

written do not include a mechanism for evaluating design tradeoffs between competing

needs. Educational design for the needs of different learning environments may want to

include support for considering tradeoffs between competing factors in detailed curricula

to support a learning scenario, or to weigh different curriculum strategies for the same

scenario with different balances between the four learning environments. This capacity

 - 140 -

for examining tradeoffs might be especially valuable for those modifying existing

curricula to fit changes in the learning environment, e.g., supporting Scientific

Experimentation and Investigation in an environment currently heavily knowledge-

centered but seeking to integrate more formative assessments and feedback, become more

sensitive to students’ existing knowledge structures, or foster feelings of community in

the classroom.

Another risk to the feasibility of implementation is that curriculum developers may not

perceive the process as difficult to manage without the checklists, so they may need to

have the method’s usefulness proven before they will be willing to try it. To address this

risk, part of the task of extending this method to the education domain will involve

working with curriculum developers to identify their perceived areas of difficulty.

Surveying curriculum developers to determine whether any curricula they developed

were not accepted or adopted, and why that acceptance or adoption was denied, could

indicate what scenarios the education patterns should cover first.

7.2.5.2 Evaluation Challenges

An additional challenge lies in evaluating the impact of the method on student outcomes.

In the work in software development, I was able to assess coverage and quality of

architecture support for the usability concern and the software architects in the field were

able to estimate the time they had saved by each need for change they uncovered while

reviewing their software architecture design against several relevant USAPs. It is unclear

whether standards boards, curriculum committees, individual teachers or commercial

curriculum developers would be equally able to estimate their time savings, or other

impacts of using the method on their design process. Although outcome evaluation is not

strictly within the IES mandate for a Development/Innovation research project, some

metric of success would be desirable in education research, as it is in software

engineering research, to ease barriers to adoption in practice.

However, if we cannot measure the direct impact of the method and tool on student

learning outcomes, we can measure its usefulness and usability for curriculum designers

 - 141 -

and educators and then gauge the likelihood of its acceptance in practice, using some of

the same methods we used to measure those constructs for USAPs as embodied in A-

PLUS Architect. In this model, a limited number of education patterns could be

developed and embodied in a tool similar to A-PLUS Architect. User testing of this tool

could be performed initially with a small number of curriculum designers and/or

educators to see how education users would interact with both the tool and the content.

In user testing of A-PLUS Architect, video data captured during the user tests allowed me

to identify usability issues in the tool and understand how the users used the tool,

enabling me to respond to users’ needs in a redesign (Chapter 6); the same process would

be both necessary and beneficial to making the technique work for education users. In

addition to testing and refinement of in small numbers of user tests, TAM survey items

could be used to allow the tool to be reviewed by larger numbers of education experts for

perceived usability and usefulness. The results of TAM survey items would help to

discover whether improvement was needed before getting larger numbers of users to try

the education patterns, as well as to suggest possible directions for improvement.

7.3 Summary

For education researchers, this analogical approach offers a preliminary framework for

applying my research in usability and software architecture to a different domain. The

USAPs method has been shown to be helpful in the software engineering domain when

suitable content is created in collaborative work between usability and software

architecture experts. With experts in education collaborating to create the content for a

similar curriculum design tool, this same method could be used to create patterns of

responsibilities for specific issues in curriculum design that would include

recommendations as needed for elements that reach beyond content standards, into the

deep structure of the educational system. Existing curriculum design templates are

deficient in integrating curriculum standards, research-based instructional guidance and

interventions, and detailed needs for resources at the state, district, and local level. An

enhanced template embodied in a software tool is proposed, capable of providing better

integration of existing knowledge in curriculum design, research-based instructional

 - 142 -

guidance and interventions, and needs for resources that must be supported by the

educational infrastructure. This tool would be useful to educators and other curriculum

designers in their design work and provide clear and consistent enumerations of the

resources needed to support curricula in practice.

In the next chapter, I will conclude by discussing the contributions of the work in this

thesis to the fields of HCI, software engineering, and education research, and then

suggest open questions for future research.

 - 143 -

Chapter 8. Contributions, Open Questions, and Conclusions

8.1 Research Contributions

The work presented in Chapters 3, 4, 5, and 6 represents three phases of investigation of a

single research problem: how to address architecturally-sensitive usability concerns early

in the development process of complex software systems so as to prevent the need for

costly late-stage changes in software architecture designs.

I posited two hypotheses in response to the research problem. The first hypothesis was

that explicitly linking usability concerns to implementation decisions early in the

software design process would enable software engineers to design better for basic

usability features. Work in Chapters 3, 4, and 5 supports the first hypothesis. The second

and related hypothesis was that if a technique could be shown to successfully support the

first hypothesis, and packaged in a form that was useful and usable for software

engineers, they would be likely to use this technique in practice. The second hypothesis

is supported by Chapters 5 and 6.

The work described in this dissertation makes several contributions to HCI and software

engineering. The effectiveness of USAPs in supporting the design of software

architecture for interactive systems has been demonstrated in the controlled experiments

in Chapter 3. A pattern language to represent USAPs has been developed that reuses

shared responsibilities between usability scenarios and allows for multiple USAPs to be

compressed into a shorter form for easier use (Chapter 4). An enhanced method and tool

have been created and refined for the design of software architecture for interactive

systems based on USAPs, and their effectiveness confirmed in supporting the use of

USAPs in software architecture design (Chapters 5 and 6). This section reviews the

several phases of this research and summarizes open questions raised by this work that

may provide guidance to future researchers.

 - 144 -

8.1.1 Validating Usability-Supporting Architecture Patterns

In Chapter 3, I investigated the value of Usability-Supporting Architecture Patterns

(USAPs), applied without researcher intervention, as an approach to improving the

consideration of specified usability concerns in software architecture design. Before the

creation of USAPs (Bass & John, 2000), usability knowledge in HCI had not been

packaged in a way that explicitly addressed the relationship between usability and

software architecture. USAPs were designed to achieve better usability of systems

through making more informed early software design decisions by identifying aspects of

usability that are architecturally significant and then describing each aspect with a small

scenario, a list of important software responsibilities, and possible implementation

suggestions to satisfy the scenario.

USAPs seemed like a plausible approach to integrating usability into software

architecture design. There was a successful intervention in the software architecture

design process of the NASA MERboard -- a shared whiteboard project to support

scientific planning for the Mars Exploration Rovers -- but that was a single case that

required researcher intervention (Adams, John, & Bass, 2005). Participants in a

conference tutorial on USAPs responded enthusiastically, but that was anecdotal

evidence. There was no experimental validation of the efficacy of USAPs, and they had

not been applied without researcher intervention.

Through controlled experiments in a laboratory setting, I validated the efficacy of USAPs

in a software architecture design task. Software engineering graduate students achieved

significantly better results in a software architecture design task using a paper-based

version of USAPs without researcher intervention than they did using only a usability

scenario, similar to the recommendations usability experts give to software engineers in

professional practice. Even using only the scenario and the list of responsibilities from a

USAP allowed them to achieve significantly better consideration of responsibilities and

quality of solution than they could achieve on their own (Golden, John, & Bass, 2005a;

Golden, John, & Bass, 2005b).

 - 145 -

Through these controlled experiments, I demonstrated that Usability-Supporting

Architecture Patterns (USAPs) are a useful technique for incorporating usability concerns

into the software architecture design of interactive systems. Using these patterns can help

software engineers to design software architecture that considers specific usability

concerns they would not otherwise notice, and to produce higher quality software

architecture designs than the type of usability scenarios that are currently used in

software development practice.

8.1.2 Architecture Pattern Language for Usability Support

I had successfully demonstrated the usefulness of a USAP in an architecture design task

in controlled experiments in a laboratory setting. Two open questions that followed were

whether USAPs would be useful for professional software architects in an industry

setting, and how multiple USAPs could be incorporated in a single software architecture

design. An opportunity arose to investigate these questions in collaboration with

corporate researchers at ABB, a global company specializing in power and automation

systems. The ABB researchers were involved in plans to design a new product line

architecture to integrate several existing products that measured ongoing forces in real

time in manufacturing equipment and large engines. Prior to our involvement, the ABB

business unit had decided on usability as a key quality attribute for their new product line.

Based on our previous publications, the researchers had selected USAPs from among the

research literature as the most promising approach to including usability in software

architecture design.

The ABB research project afforded an opportunity to try using multiple USAPs in a

single project. Three usability scenarios that we had not previously developed into

USAPs were chosen by the ABB business unit as important for their needs, and we began

to develop responsibilities for each of these in two separate teams, one at Carnegie

Mellon and one at ABB. These three scenarios resulted in more than 100 responsibilities

– an unwieldy number for use in practice – but on comparing the lists many

commonalities became apparent. We abstracted these commonalities to create a pattern

 - 146 -

language: Architecture Pattern Language for Usability Support (A-PLUS). As

represented in the A-PLUS language, only 33 responsibilities were needed to address the

three USAPs. A-PLUS was a new way to describe USAPs in which the usability

scenarios became End-User USAPs, while the abstractions of the commonalities,

including the responsibilities and text-based implementation suggestions, became

Foundational USAPs. The language combined End-User USAPs and Foundational

USAPs into lists of responsibilities for software architects to review, with the capability

to review the same responsibility for multiple usability scenarios to which it may apply.

In the Architecture Pattern Language for Usability Support (A-PLUS), we created a

pattern language that allows multiple USAPs with common conceptual elements to be

defined in terms of reusable sets of responsibilities. Software architects can use A-PLUS

to apply patterns of responsibilities that experts in usability and software engineering

have identified and defined for one usability scenario to multiple related usability

scenarios, and they can be applied by an unlimited number of software developers to their

software development projects. Experts in usability and software engineering can use A-

PLUS to author usability scenarios and lists of responsibilities that are common to the

usability scenarios. The pattern language enables compression and re-use of

responsibilities to support their use in software architecture design practice. The

language is couched in terms that allow for programmatic combination of the scenarios

and the responsibilities to support scalability and automated integration with a software

tool to embody the language. The A-PLUS pattern language arose from collaborative

work between me, Bonnie John, and Len Bass at Carnegie Mellon, and Pia Stoll, Fredrik

Alfredsson, and Sara Lövemark at ABB Corporate Research. It was truly a group effort

and is a collective contribution.

8.1.3 A-PLUS Architect

The A-PLUS pattern language produces a representation of USAPs that separates End-

User USAPs from Foundational USAPs and allows for more uniform and reusable

authoring of further USAPs. The elements in this representation can be combined to

 - 147 -

form lists of responsibilities and implementation suggestions for software architects to

use in architecture design practice. End-User USAPs and Foundational USAPs are not,

however, usable for software architects until they have been combined to form lists of

responsibilities. The A-PLUS pattern language is designed to be used in conjunction

with a software tool that embodies the language and presents it in a form that software

architects can use. Simultaneously with the development of the A-PLUS language, I

designed a browser-based tool, called A-PLUS Architect, to embody the language and

deliver it to software architects.

The purpose of A-PLUS Architect was to allow the software architects to review their

software architecture designs against the checklist of responsibilities included in one or

more USAPs, determine if each responsibility was addressed, and if it was not, decide

whether to alter the architecture design. The A-PLUS language’s internal concept of

dividing USAPs into Foundational USAPs and End-User USAPs was hidden from the

user as extraneous information that was not needed by users in order to use the tool.

Automated checkboxes enforced the hierarchical structure of the sets of responsibilities

and provided a reminder to the architects to consider every responsibility included in

each USAP. Lists of text-based implementation suggestions for each responsibility were

included as optional information that users could view on demand. A prototype of my

tool design was implemented by the researchers at ABB.

I conducted user tests of the A-PLUS Architect prototype with software architects at

ABB’s corporate development site. Two paired architects working on the new product

line system design used the prototype for six hours in a single day. They uncovered

fourteen major usability issues in their preliminary software architecture design while

using the A-PLUS Architect prototype. The lead software architect reviewed the list of

issues after the user tests and estimated that the single day of user testing with two

software architects (i.e., two person-days) had saved twenty-five days of development

time further down the road, for a return on investment (ROI) of 25:2. The software

architects also made many favorable and helpful comments about the user interface.

 - 148 -

Following the positive results of the user tests, I iterated on the design of A-PLUS

Architect. Given the predominantly smooth interaction observed during the user test and

confirmed by comments by the users, I retained the simplicity of the hierarchical

checklist format. However, the redesign addressed the few usability issues that were

uncovered in the user tests, e.g., allowing users to record process notes, and some that

were known issues that had been deferred until after the first prototype was tested for

usefulness, e.g., data persistence. I showed the iterated design of A-PLUS Architect

online to professional software architects and used a survey instrument, the Technology

Assessment Model, to measure their perceptions of the redesigned tool’s usefulness and

usability, and whether they would intend to use the tool if it became available to them.

Forty-three software architects examined the design and completed the survey. On

average, the responses to the revised design of A-PLUS Architect were entirely positive

as indicated by the TAM items. In the TAM model, perceived ease of use, perceived

usefulness, and attitude are predictive of intention to use. The strongest results of the

survey instrument were those for attitude and perceived usefulness, while results for

perceived ease of use and intention to use were slightly lower. User acceptance is often a

problem in information technology; but from the results of this model, we can surmise

that a mildly positive result would correspond to some willingness trying the tool. And if

users did achieve positive results with A-PLUS Architect as did the architects at ABB,

they would be motivated to use it again where relevant.

I have shown A-PLUS Architect to be a useful and usable prototype tool that embodies

this technique. I have designed and demonstrated the usability and usefulness of this

prototype tool. I have produced a second iteration of the design of the tool and assessed

the likelihood of its acceptance by professional software architects. A-PLUS Architect

enables software architects to apply USAPs to their software architecture designs without

researcher intervention, and thereby identify specific areas where their designs need to

accommodate the usability concerns that have been identified as important for their

software projects.

 - 149 -

8.1.4 Extending USAPs Conceptually into Education Research

As an outcome of the work on incorporating usability concerns into software architecture

design, this thesis also makes a contribution to education research. I have described an

analogy between user interface design and software architecture in the software

engineering domain, and curriculum design and educational system infrastructure in the

education domain. This analogy is a first step toward applying the method and tool

described herein for HCI and software architecture to the education problem of

curriculum design in the context of educational systems.

I have shown that the USAPs method is helpful for bridging the gap between usability

and software architecture in the software engineering domain, and that it can be

beneficially applied to software architecture design with suitable content created in

collaborative work between usability and software architecture experts. With experts in

education collaborating to create patterns for an analogous method and tool, the USAPs

method could be used to create patterns of responsibilities for specific issues in

curriculum design that would include recommendations as needed for elements that reach

beyond content standards, into the deep structure of the educational system. These

patterns developed specifically for the education domain could be termed Curriculum-

Supporting Educational Patterns (CSEPs).

Existing curriculum design templates are deficient in integrating curriculum standards,

research-based instructional guidance and interventions, and detailed needs for resources

at the state, district, and local level. I have proposed an enhanced template embodied in a

pattern language and a software tool, capable of providing better integration of existing

knowledge in curriculum design, research-based instructional guidance and interventions,

and the needs for resources that must be supported by the educational infrastructure. This

pattern language and tool could be useful to educators and other curriculum designers in

their design work and would help to provide clear and consistent enumerations of the

resources needed to support curricula in practice.

 - 150 -

8.2 Open Questions

The work in this thesis answers many questions, as described above, but raises more if

the work I have discussed is to be taken to its full potential. In this section, I discuss

open questions raised, both for future research and future production.

A-PLUS Architect has been shown to be useful and usable in user tests of the prototype,

and software architects have reacted positively to a description of an iterated design.

Further research on USAPs, the A-PLUS language, and conceptual extensions could

proceed in several different directions discussed here. I also discuss some production

questions of proceeding to take A-PLUS Architect from a tool prototype and a design

iteration to best practices use in software development.

8.2.1 Research Questions

8.2.1.1 Usefulness of Diagrams in Solution Suggestions for USAPs

One interesting set of findings in the controlled experiments described in Chapter 3

concerned the effect of including or omitting diagrammatic solution suggestions in the

USAPs participants used to help them redesign software architecture. In those studies,

participants who had solution suggestions including UML diagrams did not perform

significantly better than those without them, either in coverage of responsibilities or in

quality of solution. A detailed analysis of video recordings of five participants

performing the design task revealed that all who had diagrams in a sample solution

looked at the diagrams, but we know from analyzing their task performance that the

diagrams did not help those participants achieve better coverage of responsibilities or

higher quality of solution. The open question is, why did the diagrams not help those

participants who had them?

This question is important because software architecture patterns as presently constructed

are largely expressed with diagrams. If, as my research on USAPs suggests, patterns

consisting entirely of written responsibilities, rationales for including each responsibility

 - 151 -

in the pattern, and implementation suggestions for designing software architecture to

address the responsibility, and lacking any diagrams whatsoever, are useful and usable

for software architects in the design process, then why did the diagrams not improve their

performance even more than the responsibilities alone?

One possible answer to this question is that a single example expressed in diagrams, as

provided in the empirical studies, was not sufficient to impart the additional

understanding that users would gain from having multiple examples. Investigation into

this question would explore whether multiple sample solutions expressed in diagrams

could produce the significant performance gain over responsibilities alone that the single

diagrammatic solution failed to produce.

A second possibility is that the level of the particular USAP used in the controlled

experiments, Canceling an Active Command, may not have been well matched to the

level of the UML representations we used in the experimental materials. Research to

investigate this question would examine the impact of different levels of solution

suggestion diagrams to USAPs to determine whether a kind of pictorial representation

should be added to improve their usefulness.

8.2.1.2 Implications of Creating More USAPs

At present the A-PLUS pattern language, described in Chapter 4, includes three End-User

USAPs and four Foundational USAPs. The End-User USAPs are derived from usability

scenarios: User Profiles, Environment Configuration, and Alarms and Events. The

Foundational USAPs were abstracted from commonalities discovered between the End-

User USAPs when we developed the language, and fell into four categories:

Authorization, Authoring, Execution with Authored Parameters, and Logging. The list of

potential End-User USAPS is therefore the same as the list of potential usability

scenarios. This list is not complete but those we have enumerated currently numbers

roughly twenty (Appendix I). An open research question is what the potential number of

Foundational USAPs might be. If the body of USAPs were enlarged, how would the

 - 152 -

proportion of End-User and Foundational USAPs change?

The proportion of Foundational USAPs to End-User USAPs and the number of potential

Foundational USAPs yet to be discovered and developed are questions of interest because

the responsibilities included in End-User USAPs come directly from the Foundational

USAPs. Simply put, adding more Foundational USAPs would mean adding more

responsibilities for software architects to review and understand, extending the time

required to use the method in software architecture design. Since the architects at ABB

estimated their cost savings from the user tests in time, we know that time is valuable to

them, so an important question in adding more Foundational USAPs would be how

changes in time overhead for users would affect the benefit they received from using

USAPs.

The number of Foundational USAPs could also affect the time and effort needed to create

more End-User USAPs. Foundational USAPs are the building blocks that End-User

USAPs use to compile the majority of responsibilities required to support their scenarios.

As such, if a small number of Foundational USAPs sufficed to support most End-User

USAPs, their re-use would make it much easier for authors to create new End-User

USAPs. On the other hand, the process of creating an End-User USAP involves

determining which Foundational USAPs include commonalities shared by the End-User

USAP, i.e., usability scenario, and then reviewing each of the individual responsibilities

in each Foundational USAP used by the scenario to understand how to use directly or

specialize each responsibility for the usability scenario in question, so more Foundational

USAPs could mean more responsibilities for USAP authors to review during the creation

process, adding time and complexity to an already lengthy and complex process.

8.2.1.3 Scalability of the USAPs Approach

More questions of scale arise when we consider applying the USAPs approach to include

patterns for more software qualities than usability alone. USAPs are Usability-

Supporting Architecture Patterns, designed to help software architects address usability

 - 153 -

concerns in software architecture design. Usability is only one of many software

qualities for which such patterns could be developed. As discussed in Chapter 2, various

taxonomies enumerate a wide range of other software quality characteristics. In addition

to usability, software engineering recognizes qualities of availability, modifiability,

performance, security, testability, reliability, efficiency, portability, and many others

(International Standards Organization, 2001; Bass et al., 2003, pp. 78-93). The number is

inexact since various taxonomies categorize different qualities as overarching,

overlapping, and subsidiary. Each of the many quality attributes could have its own set

of Supporting Architecture Patterns, just as usability has USAPs. The open question is

whether the approach to using USAPs in software architecture design would scale up

when more qualities and more patterns are added. What is the relationship between the

number of patterns and their effectiveness in practice?

Software architects at ABB took six hours to review three USAPs in user tests (Chapter

5). The number of possible USAPs is at least twenty. We do not yet know how many

other Quality-Supporting Architecture Patterns (QSAPs) there might be, but it is easy to

see how the number could easily climb into the hundreds if several software qualities

were addressed. A much larger number of patterns might make it impractical for

software architects to use the same approach unless they could choose up front which

patterns to target. Since time was shown to be valuable to the architects at ABB, we

know that an important question of scaling up to address more software quality attributes,

as with the question of the total number of Foundational USAPs to End-User USAPs, is

the increase in time overhead for users.

Adding patterns for more quality attributes also raises the question of how the A-PLUS

language could or should be expanded to include support for design tradeoffs between

quality attributes with potentially conflicting responsibilities, e.g., usability and security,

or security and performance. Tradeoffs between quality attributes would be a new

category of information added to the A-PLUS language. Research to address including

tradeoffs in USAPs would be a complex problem requiring collaborative input between

experts in whatever quality attributes were being considered as well as experts in

 - 154 -

software architecture.

8.2.1.4 Modification of USAPs by Users

In the course of the work described in this thesis, USAPs have gone through three

representational changes. The first representational change was from the earliest versions

that required researcher intervention to a paper-based form that represented a USAP as a

usability scenario, a list of responsibilities, and a sample solution with UML diagrams,

and enabled USAPs to be used without researcher intervention. The second

representational change was from the paper-based USAPs to the A-PLUS pattern

language with its separation of End-User USAPs, consolidation of Foundational USAPs,

and text-based implementation suggestions. The third representational change from the

pattern language to its embodiment in the A-PLUS Architect tool, which hides the

separation of Foundational and End-User USAPs while using it to create the structure of

responsibilities, and which encourages attention to responsibilities through hierarchical

checklists.

Throughout this process, the content of USAPs was determined entirely by a small

number of researchers. An open question is how, and how much, we can or should shift

control during the further evolution of USAPs into the hands of software architects.

Should users be allowed to add more responsibilities to USAPs? What would be the

impact of their additions on the A-PLUS language?

When we authored the three End-User USAPs and four Foundational USAPs in the A-

PLUS pattern language, usability and software architecture experts collaborated to review

each individual responsibility in each of the Foundational USAPs and then decided

whether it applied to each End-User USAP that might use it. There is no guarantee that

users would follow the same rigorous process, so they might add misconceptions that

would cause design errors. On the other hand, if users find in practice that they want to

add more responsibilities, in effect either extending a Foundational USAP, it may

indicate that the authors of USAPs have missed something. One approach that would

 - 155 -

allow users to make desired changes without compromising the integrity of the A-PLUS

language, which mitigates the risk of propagating misconceptions forward, would be to

have a gating committee of experts who would review suggested changes to USAPs for

approval to add them to the A-PLUS language. In addition to the logistical problems

posed by creating a reviewing body, however, an open question remains as to whether the

quality of the A-PLUS language is best served by strict researcher control or by allowing

for the flexibility of natural evolution.

8.2.1.4 USAPs and a Tool for Curriculum Design

Just as the A-PLUS language was created to support USAPs in software architecture

design, a pattern language of learning scenarios and responsibilities, Curriculum-

Supporting Educational Patterns (CSEPs), could be developed to support curriculum

design in the education domain, fulfilling the promise of the research concepts proposed

in Chapter 7. Such a pattern language would require collaboration among experts in

curriculum design, education systems design, and education research. Experts in these

fields would be needed for collaborative creation of patterns of responsibilities, which

would be disseminated using a CSEPs tool similar to the A-PLUS Architect for using

USAPs. In theory it would be possible to use the A-PLUS Architect tool design with

different domain-specific content. However, the tool has only been tested with one type

of users – software architects – and different usability results might occur with a different

kind of users. Therefore it would be necessary to prototype, test, and redesign the tool as

needed for use by educators and curriculum developers. Creating a language of CSEPs

that is useful and usable for the education community, and developing a tool for their

successful dissemination in education and curriculum design practice, is a non-trivial set

of research problems.

 - 156 -

8.2.2 Production questions

8.2.2.1 Adding USAPs to the A-PLUS Language

In addition to open research questions, the work in my dissertation leaves open the

question of production for the next steps to be taken with the products of the completed

research. As a next step for the A-PLUS pattern language, more End-User USAPs could

be developed that share commonalities already addressed by the existing Foundational

USAPs. More Foundational USAPs might be developed, or the existing Foundational

USAPs extended, as needed to accommodate conceptual commonalities in new End-User

USAPs yet to be developed. The creation of new Foundational USAPs and/or End-User

USAPs is a question of production as well as of research. The work would require

collaboration between experts in usability and software engineering.

8.2.2.2 Integration with Existing Processes

One clear direction would be to further improve, develop, and disseminate A-PLUS

Architect as a tool for use in professional software development practice. However,

dissemination might be more successful if A-PLUS Architect were incorporated into

existing practices. Organizations already have tools that they use in the requirements

process. Software engineers have tools they use in the architecture design process.

Incorporating A-PLUS Architect and A-PLUS Requirements into existing software

development processes would lower barriers to acceptance and provide a larger body of

active users whose experiences could suggest productive avenues for specific

improvements.

8.2.2.3 A-PLUS Author and A-PLUS Requirements

Perhaps the most positive step toward lowering the barriers to developing further USAPs

and integrating them into professional practice is to develop the two other software tools

envisioned in an A-PLUS suite of tools. One of the additional tool concepts is A-PLUS

Requirements, which would be used to facilitate incorporating USAPs into software

development practice at the organizational level. A-PLUS Requirements would helps

 - 157 -

software development organizations to identify the USAPs that are most relevant to their

projects by selecting relevant usability scenarios from among the existing body of

USAPs. A-PLUS Requirements, like A-PLUS Architect, should be developed in a way

that is compatible with inclusion in existing requirements processes and the developers or

development organizations that use them.

Another tool concept is for A-PLUS Author, a tool to assist in the authoring of more

USAPs in the A-PLUS pattern language. The A-PLUS language thus far was created

laboriously using Microsoft Word, an approach which is not scalable. Developing A-

PLUS Author would be a positive step for further expansion of the A-PLUS pattern

language. The A-PLUS pattern language has been created and demonstrated for four

Foundational USAPs: Authorization, Authoring, Execution with Authored Parameters,

and Logging, and three End-User USAPs with conceptual commonalities: User Profiles,

Environment Configuration, and Alarm and Events. The process of creating these

elements took six months, a production barrier that might prove insuperable to future

authors.

Developing A-PLUS Author could make collaboration between usability and software

architecture experts easier, lowering the barriers to creating additional USAPs. A-PLUS

Author could also make it easier for experts to develop responsibility-based architectural

patterns to investigate relationships between other software quality attributes (e.g.,

security) and software architecture. Developing these patterns would require

collaborative work between experts in those other quality attributes and software

architecture, but the same tool could be used to facilitate the collaborative work as with

USAPs.

8.3 Conclusions

Taken together, the work described in this dissertation has laid a foundation for the

integration of usability knowledge into best practice in software engineering

 - 158 -

development, and the extension of an integrative method into curriculum design in

education.

Usability-Supporting Architecture Patterns have undergone many changes in

representation in the decade since they were first conceived. The first representations

were useful but required researcher intervention to be usable. The paper-based

representations used in experiments were useful and usable without researcher

intervention, but they contained possibly unnecessary elements and were not designed in

a way that supported combining them. The A-PLUS language representation included

fewer elements and compressed and redistributed information in a way that was more

scalable, but the patterns expressed in this language were not directly usable by the

intended user. The A-PLUS Architect tool representation supported combining multiple

USAPs in a single solution and rendered the A-PLUS pattern language usable and useful

for software architects. The A-PLUS language and A-PLUS tool representations embody

principles that are sufficiently developed to allow the concepts to be extended to other

software qualities and other research domains. Many questions remain as to how the

current representations may evolve in the hands of more end-users and researchers, both

in software engineering and education research.

The natural evolution of a successful method is that it grows beyond the boundaries

originally conceived by its creators. If the USAPs approach is to be successful in the

long term, more patterns will need to be created by more experts interested in their

creation and their use. Future research should be directed toward

− encouraging and assessing the impact of evolution in the A-PLUS language over

time,

− incorporating useful contributions as they arise, and

− investigating effective mechanisms to apply and disseminate more and different

types of content, created by more and different types of authors collaborating

across a variety of knowledge domains.

 - 159 -

References

1. Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived Usefulness, Ease of

Use, and Usage of Information Technology: A Replication. MIS Quarterly, 16(2),
227-247.

2. Adams, R. J., John, B. E., & Bass, L. (2005). Applying general usability scenarios
to the design of the software architecture of a collaborative workspace. In A.
Seffah, J. Gulliksen & M. Desmarais (Eds.), Human-Centered Software
Engineering — Integrating Usability in the Software Development Lifecycle (Vol.
8): Springer Netherlands.

3. Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language:
Towns, Buildings, Construction.: Oxford University Press.

4. Alexander, C. (1979). A Timeless Way of Building: Oxford University Press.

5. Barbacci, M. R., Ellison, R., Lattanze, A. J., Stafford, J. A., Weinstock, C. B., &
Wood, W. G. (2003). Quality Attribute Workshops (QAWs), Third Edition:
Carnegie Mellon University / Software Engineering Institute, Technical Report
CMU/SEI-2003-TR-016).

6. Barbacci, M. R., Klein, M. H., Longstaff, T. A., & Weinstock, C. B. (1995).
Quality Attributes: Carnegie Mellon University / Software Engineering Institute,
Technical Report CMU/SEI-95-TR-021).

7. Bass, L., & John, B. E. (2000). Achieving usability through software architectural
styles. Paper presented at the CHI '00 extended abstracts on Human factors in
computing systems, The Hague, The Netherlands.

8. Bass, L., & John, B. E. (2003). Linking usability to software architecture patterns
through general scenarios. Journal of Systems and Software, 66(3), 187-197.

9. Bass, L., & John, B. E. (2001). Supporting Usability Through Software
Architecture. Computer, 34, , October 2001, 113-115.

10. Bass, L., John, B. E., & Kates, J. (2001). Achieving Usability Through Software
Architecture. Pittsburgh, PA, USA: Carnegie Mellon University/Software
Engineering Institute, Technical Report No. CMU/SEI-TR-2001-005.

11. Bass, L., John, B. E., Juristo, N., & Sanchez-Segura, M.-I. (2004). Usability and
Software Architecture, 26th International Conference on Software Engineering,
ICSE 2004. Edinburgh, Scotland.

12. Bass, L., Clements, P., & Kazman, R. (1999). Software Architecture in Practice:
Addison-Wesley.

13. Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice
(2nd ed.): Addison-Wesley.

14. Bhavnani, S. K., Peck, F. A., & Reif, F. (2008). Strategy-Based Instruction:
Lessons Learned in Teaching the Effective and Efficient Use of Computer

 - 160 -

Applications. ACM Transactions on Computer-Human Interaction (TOCHI),
15(1).

15. Bielaczyc, K. (2006). Designing Social Infrastructure: Critical Issues in Creating
Learning Environments With Technology. The Journal of the Learning Sciences,
15(3), 301-329.

16. Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). How People
Learn: Brain, Mind, Experience, and School. Washington, DC, USA: National
Academy Press.

17. Buschmann, F., Meunier, R., Rohnert, H., & Sommerlad, P. (1996). Pattern-
Oriented Software Architecture Volume 1: A System of Patterns: Wiley.

18. California Department of Education (2010, February 05). Curriculum Frameworks
& Instructional Materials. Retrieved 3/25/10, from
http://www.cde.ca.gov/ci/cr/cf/index.asp

19. California Department of Education (2002). English-Language Development
Standards for California Public Schools, Kindergarten through Grade Twelve,
California Department of Education.

20. California Department of Education (1999). Mathematics Content Standards for
California Public Schools, Kindergarten through Grade Twelve, California
Department of Education.

21. California Department of Education (2000). Science Content Standards for
California Public Schools, Kindergarten Through Grade Twelve, California
Department of Education.

22. Clements, P., & Northrop, L. (2001). Software Product Lines: Practices and
Patterns: Addison Wesley.

23. Davis, F. D. (1989). "Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology." MIS Quarterly 13(3): 319-340.

24. Davis, F. D., & Bagozzi R. P. (1989). "User Acceptance of Computer Technology:
A Comparison of Two Theoretical Models." Management Science 35(8): 982-
1003.

25. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of
Computer Technology: A Comparison of Two Theoretical Models. Management
Science, 35(8), 982-1003.

26. Dearden, A., & Finley, J. (2006). Pattern Languages in HCI: A critical review.
Human-Computer Interaction, 21(1), 49-102.

27. Degani, A., & Wiener, E. L. (1990). Human Factors of Flight-Deck Checklists:
The Normal Checklist: National Aeronautics and Space Administration, NASA
Contractor Report 177549.

28. Degani, A., & Wiener, E. L. (1993). Cockpit Checklists: Concepts, Design, and
Use. Human Factors, 35(2), 28-43.

 - 161 -

29. Duncker, K. (1945) On problem solving. Psychological Monographs, 58(5).
(Whole No. 270)

30. Engel, S. E., & Granda, R. E. (1975). Guidelines for Man/Display Interfaces. (IBM
Technical Report TR00-2720)

31. Folmer, E., & Bosch, J. (2003). Usability patterns in Software Architecture. Paper
presented at the 10th International Conference on Human-Computer Interaction,
Crete.

32. Folmer, E., & Bosch, J. (2004). Architecting for usability: a survey. Journal of
Systems and Software 70(1-2), 61-78.

33. Folmer, E., & Bosch, J. (2008). Experiences with Software Architecture analysis
of Usability International Journal of Information Technology and Web
Engineering 3(4), 1-29.

34. Folmer, E., Gurp, J. v., & Bosch, J. (2003). A Framework for capturing the
Relationship between Usability and Software Architecture. Software Process:
Improvement and Practice, 8(2), 67-87.

35. Folmer, E., van Gurp, J., & Bosch, J. (2004). Scenario-Based Assessment of
Software Architecture Usability. Paper presented at the 9th IFIP Working
Conference on Engineering for Human-Computer Interaction, Jul 2004, Hamburg,
Germany.

36. Foley, J. P., Jr. (1972). Task Analysis for Job Performance Aids and Related
Training. Paper presented at the Conference on Uses of Task Analysis in the Bell
Systems, Hopewell, NJ.

37. Functional fixedness. (n.d.) In Wikipedia. Retrieved May 7, 2010, from
http://en.wikipedia.org/wiki/Functional_fixedness.

38. Gawande, A. (2009). The Checklist Manifesto. New York, NY: Metropolitan
Books.

39. Golden, E., John, B. E., & Bass, L. (2005). The value of a usability-supporting
architectural pattern in software architecture design: a controlled experiment.
Paper presented at the 27th International Conference on Software Engineering
(ICSE 2005), St. Louis, MO, USA.

40. Golden, E., John, B. E., & Bass, L. (2005). Quality vs. quantity: comparing
evaluation methods in a usability-focused software architecture modification task.
Paper presented at the International Symposium on Empirical Software
Engineering (ISESE 2005), Noosa Heads, Queensland, Australia.

41. Halawi, L., & McCarthy, R. (2007). Measuring Faculty Perceptions of Blackboard
Using The Technology Acceptance Model. Issues in Information Systems, VIII(2),
160-165.

42. Halawi, L., & McCarthy, R. (2008). Measuring Students Perceptions of
Blackboard Using The Technology Acceptance Model: A PLS Approach. Issues in
Information Systems, IX(2), 95-102.

 - 162 -

43. Institute of Education Sciences (2010). REQUEST FOR APPLICATIONS:
Education Research Grants, CFDA Number: 84.305A.

44. Institute of Education Sciences (2010). What Work Clearinghouse. Retrieved
4/30/10, from http://ies.ed.gov/ncee/wwc/

45. International Standard ISO/IEC 9126. Software engineering - Product quality.
International Organization for Standardization / International Electrotechnical
Commission, Geneva, 2001.

46. John, B. E., & Bass, L. (2001). Usability and software architecture. Behaviour &
Information Technology, 20(5), 329-338.

47. John, B. E., Bass, L., Sanchez-Segura, M.-I., & Adams, R. J. (2004). Bringing
Usability Concerns to the Design of Software Architecture. Paper presented at the
9th IFIP Working Conference on Engineering for Human-Computer Interaction
and the 11th International Workshop on Design, Specification and Verification of
Interactive Systems, July 11-13, 2004, Hamburg, Germany.

48. Juristo, N., Windl, H., & Constantine, L. (2001). Introducing Usability. IEEE
Software, 20-21.

49. Juristo, N., Lopez, M., Moreno, A., & Sanchez-Segura, M.-I. (2003). Improving
software usability through architectural patterns. Paper presented at the ICSE
2003 Workshop on Bridging the Gaps Between Software Engineering and Human-
Computer Interaction, Portland, Oregon, USA.

50. Juristo, N., Moreno, A., & Sanchez-Segura, M.-I. (2007). Guidelines for Eliciting
Usability Functionalities. IEEE Transactions on Software Engineering, 33(11),
744-758.

51. Juristo, N., Moreno, A., Sanchez-Segura, M.-I., & Baranauskas, M. C. C. (2007). A
Glass Box Design: Making the Impact of Usability on Software Development
Visible. Paper presented at INTERACT 2007.

52. Kan, M., & Cheng, D. (2007, August 20-22, 2007). An Empirical Research on
Online Infomediary Based on Extension of the Technology Acceptance Model
(TAM2). Paper presented at the 14th International Conference on Management
Science & Engineering, Harbin, China.

53. Kazman, R., Gunaratne, J., & Jerome, B. (2003). Why Can't Software Engineers
and HCI Practitioners Work Together? In C. Stephanidis & L. Erlbaum (Eds.),
Human-Computer Interaction Theory and Practice, Elsevier.

54. Klein, M. H., Kazman, R., Bass, L., Carriere, S. J., Barbacci, M. R. & H.F. Lipson
(1999). Attribute-Based Architecture Styles. Kluwer.

55. Moon, J.W., & Kim, Y.G. (2001). Extending the TAM for a World-Wide-Web
Context. Journal of Information & Management, 38, pp. 217-230.

56. New York State Education Department, (2009, October 1). New York State
Learning Standards and Core Curriculum. Retrieved March 25, 2010, from
http://www.emsc.nysed.gov/ciai/cores.html#MST.

 - 163 -

57. Nielsen, J. (1994). Heuristic evaluation. In Usability Inspection Methods (pp. 25-
62). New York, NY, USA: John Wiley & Sons, Inc.

58. Pellegrino, J. W. (2006). Rethinking and Redesigning Curriculum, Instruction, and
Assessment: What Contemporary Research and Theory Suggests (Commissioned
Paper): National Center on Education and the Economy for the New Commission
on the Skills of the American Workforceo. Document Number)

59. Porter, A. A., & Votta, L. G. (1994). An experiment to assess different defect
detection methods for software requirements inspections. Paper presented at the
16th International Conference on Software Engineering.

60. Porter, A. A., & Votta, L. G. (1998). Comparing Detection Methods For Software
Requirements Inspections: A Replication Using Professional Subjects Empirical
Software Engineering, 3(4), 355-379.

61. Porter, A. A., Votta, L. G., & Basili, V. R. (1995). Comparing detection methods
for software requirements inspections: a replicated experiment. IEEE Transactions
on Software Engineering, 21(6), 563-575.

62. Prechelt, L., Unger, B., & Schmidt, D. C. (1997). Replication of the First
Controlled Experiment on the Usefulness of Design Patterns: Detailed Description
and Evaluation (Technical Report No. wucs-97-34). St. Louis, MO: Washington
University.

63. Prechelt, L., Unger-Lamprecht, B., Philippsen, M., & Tichy, W. F. (2002). Two
Controlled Experiments Assessing the Usefulness of Design Pattern
Documentation in Program Maintenance. IEEE Transactions on Software
Engineering, 28(6), 595-606.

64. National Cancer Institute. Research-Based Web Design & Usability Guidelines.
from http://www.usability.gov/guidelines/.

65. Rubin, J. (1994). Handbook of Usability Testing: How to Plan, Design, and
Conduct Effective Tests: John Wiley & Sons.

66. Smith, S. L., & Mosier, J. N. (1984). Guidelines for Designing User Interface
Software Hanscom Air Force Base, MA: USAF Electronic Systems Division,
Technical Report ESD-TR-86-278).

67. Stoll, P., John, B. E., Bass, L., & Golden, E. (2008). Preparing Usability
Supporting Architectural Patterns for Industrial Use. International Workshop on
the Interplay between Usability Evaluation and Software Development, Pisa, Italy.

68. Stoll, P., Wall, A., & Norstrom, C. (2008). Guiding Architectural Decisions with
the Influencing Factors Method. Seventh Working IEEE/IFIP Conference on
Software Architecture (WICSA), Vancouver, Canada.

69. Sun Microsystems.(2002) Java BluePrints: Model-View-Controller. Retrieved
from http://java.sun.com/blueprints/patterns/MVC-detailed.html.

70. Tidwell, J. (2006). Designing Interfaces: Patterns for Effective Interation Design.
Sebastopol, CA: O'Reilly Media.

 - 164 -

71. Tidwell, J. (2004). UI Patterns and Techniques. from http://time-
tripper.com/uipatterns/.

72. U.S. Department of Education (2010). Doing What Works. Retrieved 4/30/10,
from http://dww.ed.gov.

73. Van Duyne, D. K., Landay, J. A., & Hong, J. I. (2002). The Design of Sites:
Patterns, Principles, and Processes for Crafting a Customer-Centered Web
Experience. Boston, MA: Addison-Wesley.

74. Venkatesh, V., & Davis, F.D. (2000). "A Theoretical Extension of the Technology
Acceptance Model: Four Longitudinal Field Studies." Management Science 46(2):
186-204.

75. Venkatesh, V., & Morris, M.G. (2003). "User acceptance of information
technology: Toward a unified view." MIS Quarterly 27(3): 425-478.

76. Wiggins, G. & J. McTighe. Understanding by Design, 2nd edition, Association for
Supervision and Curriculum Development, 2005.

77. Wu, M.-Y., Chou, H.-P., Weng, Y.-C., & Huang, Y.-H. (2008, December 9-12,
2008). A Study of Web 2.0 Website Usage Behavior Using TAM 2. Paper presented
at the IEEE Asia-Pacific Services Computing Conference, Yilan, Taiwan.

 - 165 -

Appendices

Appendix A: Usability Scenario of Cancel Included in Training Document
for Empirical Studies.

Usability Scenario: Canceling a Command
The user issues a command, then changes his or her mind, wanting to stop the operation
and return the software to its pre-operation state. It doesn’t matter why the user wants to
stop; he or she could have made a mistake, the system could be unresponsive, or the
environment could have changed.

 - 166 -

Appendix B: General Responsibilities of Cancel Included in Training
Document for Empirical Studies.

CR1 A button, menu item, keyboard shortcut and/or other means must be provided,
by which the user may cancel the active command.

CR2 The system must always listen for the cancel command or changes in the system
environment.

CR3
The system must always gather information (state, resource usage, actions, etc.)
that allow for recovery of the state of the system prior to the execution of the
current command.

CR4

The system must acknowledge receipt of the cancellation command
appropriately within 150 ms. Acknowledgement must be appropriate to the
manner in which the command was issued

i. For example, if the user pressed a cancel button, changing the color
of the button will be seen.

ii. ii. If the user used a keyboard shortcut, flashing the menu that
contains that command might be appropriate.

CR5

If the command itself is able to cancel itself directly at the time of cancellation,
the command must respond by canceling itself (i.e., it must fulfill
responsibilities CR9-CR19 below (e.g., an object-oriented system would have a
cancel method in each object)).

CR6
If the command itself is not able to cancel itself directly at the time of
cancellation, an active portion of the system must ask the infrastructure to
cancel the command, or must fulfill responsibility CR7 below.

CR7

If the command itself is not able to cancel itself directly at the time of
cancellation, the infrastructure itself must provide a means to request the
cancellation of the application (e.g., task manager on Windows, force quit on
MacOS), or must fulfill responsibility CR6 above.

CR8

If either CR6 or CR7 are fulfilled, then the infrastructure must also have the
ability to cancel the active command with whatever help is available from the
active portion of the application (i.e., it must fulfill Responsibilities CR9-CR19
below).

CR9

If the command has invoked any collaborating processes, the collaborating
processes must be informed of the cancellation of the invoking command (these
processes have their own responsibilities that they must perform in response to
this information, possibly treat it as a cancellation.). The information given to
collaborating processes may include the request for cancellation, the progress of
cancellation, and/or the completion of cancellation.

CR10
If the system is capable of rolling back all changes to the state prior to execution
of the command, the system state must be restored to its state prior to execution
of the command.

CR11
If the system is not capable of rolling back some of the changes made during the
operation of the command prior to cancellation, the system must be restored to a
state as close to the state prior to execution of the command as possible.

 - 167 -

CR12
If the system is not capable of rolling back some of the changes made during the
operation of the command prior to cancellation, the system must inform the user
of the difference, if any, between the prior state and the restored state.

CR13 The system must free all resources that it can that were consumed to process the
command.

CR14
If some resources has been irrevocably consumed and cannot be restored, the
system must inform the user of the partially-restored resources in a manner that
they can see it.

CR15 If the command takes longer than 1 second to cancel, control must be returned
to the user, if appropriate to the task.

CR16 If control cannot be returned to the user, the system must inform the user of this
fact (and ideally, why control cannot be returned).

CR17 The system must estimate the time it will take to cancel within 20%.

CR18

The system must inform the user of this estimate. i. If the estimate is between 1
and 10 seconds, changing the cursor shape is sufficient. ii. If the estimate is
more than 10 seconds, and time estimate is within 20%, then a progress
indicator is better. iii. If estimate is more than 10 seconds but cannot be
estimated accurately, provide other form of feedback to the user.

CR19

Once the cancellation has finished, the system must provide feedback to the
user that cancellation is finished (e.g., if cursor was changed to busy indicator,
change it back to normal; if progress bar was displayed was displayed, remove
it; if dialog box was provided, close it).

 - 168 -

Appendix C: “Before” and “After” Diagrams from Cancel Sample
Solution Included in Training Document for Empirical Studies.

Figure 1. MVC before Cancel is added and cancellation responsibilities allocated

Figure 2. MVC after Cancel is added and cancellation responsibilities allocated

 - 169 -

Appendix D: Content of Training Documents Given to Participants in
Empirical Studies.

Training Document

The following is an architecturally-sensitive usability scenario. Usability scenarios are
considered to be architecturally-sensitive if it is difficult to add the scenario to a system
after the architecture has been designed.

Usability Scenario: Canceling a Command
The user issues a command, then changes his or her mind, wanting to stop the
operation and return the software to its pre-operation state. It doesnʼt matter why
the user wants to stop; he or she could have made a mistake, the system could
be unresponsive, or the environment could have changed.

 - 170 -

Appendix E: Content of Training Document Given to Scenario-plus-
General-Responsibilities Participants in Empirical Studies.

Training Document

The following is an architecturally-sensitive usability scenario. Usability scenarios are
considered to be architecturally-sensitive if it is difficult to add the scenario to a system
after the architecture has been designed.

Usability Scenario: Canceling a Command
The user issues a command, then changes his or her mind, wanting to stop the
operation and return the software to its pre-operation state. It doesnʼt matter why
the user wants to stop; he or she could have made a mistake, the system could
be unresponsive, or the environment could have changed.

Checklist of Cancellation Responsibilities
CR = Cancellation Responsibility.

CR1 – CR19 enumerate the responsibilities that should be fulfilled by any
implementation of a cancel command. These are intended to be general
responsibilities, covering a range of conditions, so many of them contain
conditionals (if statements). Not all the responsibilities are relevant to every
possible scenario. In a given scenario, the task and/or the system environment
may make some cancellation responsibilities relevant, and some irrelevant, for
that scenario.

CR1. A button, menu item, keyboard shortcut and/or other means must be

provided, by which the user may cancel the active command.

CR2. The system must always listen for the cancel command or changes in the

system environment.

CR3. The system must always gather information (state, resource usage,

actions, etc.) that allow for recovery of the state of the system prior to the
execution of the current command.

CR4. The system must acknowledge receipt of the cancellation command

appropriately within 150 ms. Acknowledgement must be appropriate to the
manner in which the command was issued.

a. For example, if the user pressed a cancel button, changing the color of

the button will be seen.

 - 171 -

b. If the user used a keyboard shortcut, flashing the menu that contains
that command might be appropriate.

CR5. If the command itself is able to cancel itself directly at the time of

cancellation, the command must respond by canceling itself (i.e., it must
fulfill responsibilities CR9-CR19 below (e.g., an object-oriented system
would have a cancel method in each object)).

CR6. If the command itself is not able to cancel itself directly at the time of

cancellation, an active portion of the system must ask the infrastructure to
cancel the command, or must fulfill responsibility CR7 below.

CR7. If the command itself is not able to cancel itself directly at the time of

cancellation, the infrastructure itself must provide a means to request the
cancellation of the application (e.g., task manager on Windows, force quit
on MacOS), or must fulfill responsibility CR6 above.

CR8. If either CR6 or CR7 are fulfilled, then the infrastructure must also have

the ability to cancel the active command with whatever help is available
from the active portion of the application (i.e., it must fulfill Responsibilities
CR9-CR19 below).

CR9. If the command has invoked any collaborating processes, the

collaborating processes must be informed of the cancellation of the
invoking command (these processes have their own responsibilities that
they must perform in response to this information, possibly treat it as a
cancellation.). The information given to collaborating processes may
include the request for cancellation, the progress of cancellation, and/or
the completion of cancellation.

CR10. If the system is capable of rolling back all changes to the state prior to

execution of the command, the system state must be restored to its state
prior to execution of the command.

CR11. If the system is not capable of rolling back some of the changes made

during the operation of the command prior to cancellation, the system
must be restored to a state as close to the state prior to execution of the
command as possible.

CR12. If the system is not capable of rolling back some of the changes made

during the operation of the command prior to cancellation, the system
must inform the user of the difference, if any, between the prior state and
the restored state.

 - 172 -

CR13. The system must free all resources that it can that were consumed to
process the command.

CR14. If some resources has been irrevocably consumed and cannot be

restored, the system must inform the user of the partially-restored
resources in a manner that they can see it.

CR15. If the command takes longer than 1 second to cancel, control must be

returned to the user, if appropriate to the task.

CR16. If control cannot be returned to the user, the system must inform the user

of this fact (and ideally, why control cannot be returned).

CR17. The system must estimate the time it will take to cancel within 20%.

CR18. The system must inform the user of this estimate.

a. If the estimate is between 1 and 10 seconds, changing the cursor
shape is sufficient.

b. If the estimate is more than 10 seconds, and time estimate is within
20%, then a progress indicator is better.

c. If estimate is more than 10 seconds but cannot be estimated
accurately, provide other form of feedback to the user.

CR19. Once the cancellation has finished, the system must provide feedback to

the user that cancellation is finished (e.g., if cursor was changed to busy
indicator, change it back to normal; if progress bar was displayed was
displayed, remove it; if dialog box was provided, close it).

 - 173 -

Appendix G: Content of Training Document given to Scenario-plus-
General-Responsibilities-plus-Implementation-Suggestions Participants in
Empirical Studies

Training Document

The following is an architecturally-sensitive usability scenario. Usability scenarios are
considered to be architecturally-sensitive if it is difficult to add the scenario to a system
after the architecture has been designed.

Usability Scenario: Canceling a Command
The user issues a command, then changes his or her mind, wanting to stop the
operation and return the software to its pre-operation state. It doesnʼt matter why
the user wants to stop; he or she could have made a mistake, the system could
be unresponsive, or the environment could have changed.

Checklist of Cancellation Responsibilities
CR = Cancellation Responsibility.

CR1 – CR19 enumerate the responsibilities that should be fulfilled by any
implementation of a cancel command. These are intended to be general
responsibilities, covering a range of conditions, so many of them contain
conditionals (if statements). Not all the responsibilities are relevant to every
possible scenario. In a given scenario, the task and/or the system environment
may make some cancellation responsibilities relevant, and some irrelevant, for
that scenario.

CR1. A button, menu item, keyboard shortcut and/or other means must be

provided, by which the user may cancel the active command.

CR2. The system must always listen for the cancel command or changes in the

system environment.

CR3. The system must always gather information (state, resource usage,

actions, etc.) that allow for recovery of the state of the system prior to the
execution of the current command.

CR4. The system must acknowledge receipt of the cancellation command

appropriately within 150 ms. Acknowledgement must be appropriate to the
manner in which the command was issued.

a. For example, if the user pressed a cancel button, changing the color

of the button will be seen.

 - 174 -

b. If the user used a keyboard shortcut, flashing the menu that contains
that command might be appropriate.

CR5. If the command itself is able to cancel itself directly at the time of

cancellation, the command must respond by canceling itself (i.e., it must
fulfill responsibilities CR9-CR19 below (e.g., an object-oriented system
would have a cancel method in each object)).

CR6. If the command itself is not able to cancel itself directly at the time of

cancellation, an active portion of the system must ask the infrastructure to
cancel the command, or must fulfill responsibility CR7 below.

CR7. If the command itself is not able to cancel itself directly at the time of

cancellation, the infrastructure itself must provide a means to request the
cancellation of the application (e.g., task manager on Windows, force quit
on MacOS), or must fulfill responsibility CR6 above.

CR8. If either CR6 or CR7 are fulfilled, then the infrastructure must also have

the ability to cancel the active command with whatever help is available
from the active portion of the application (i.e., it must fulfill Responsibilities
CR9-CR19 below).

CR9. If the command has invoked any collaborating processes, the

collaborating processes must be informed of the cancellation of the
invoking command (these processes have their own responsibilities that
they must perform in response to this information, possibly treat it as a
cancellation.). The information given to collaborating processes may
include the request for cancellation, the progress of cancellation, and/or
the completion of cancellation.

CR10. If the system is capable of rolling back all changes to the state prior to

execution of the command, the system state must be restored to its state
prior to execution of the command.

CR11. If the system is not capable of rolling back some of the changes made

during the operation of the command prior to cancellation, the system
must be restored to a state as close to the state prior to execution of the
command as possible.

CR12. If the system is not capable of rolling back some of the changes made

during the operation of the command prior to cancellation, the system
must inform the user of the difference, if any, between the prior state and
the restored state.

 - 175 -

CR13. The system must free all resources that it can that were consumed to
process the command.

CR14. If some resources has been irrevocably consumed and cannot be

restored, the system must inform the user of the partially-restored
resources in a manner that they can see it.

CR15. If the command takes longer than 1 second to cancel, control must be

returned to the user, if appropriate to the task.

CR16. If control cannot be returned to the user, the system must inform the user

of this fact (and ideally, why control cannot be returned).

CR17. The system must estimate the time it will take to cancel within 20%.

CR18. The system must inform the user of this estimate.

a. If the estimate is between 1 and 10 seconds, changing the cursor
shape is sufficient.

b. If the estimate is more than 10 seconds, and time estimate is within
20%, then a progress indicator is better.

c. If estimate is more than 10 seconds but cannot be estimated
accurately, provide other form of feedback to the user.

CR19. Once the cancellation has finished, the system must provide feedback to

the user that cancellation is finished (e.g., if cursor was changed to busy
indicator, change it back to normal; if progress bar was displayed was
displayed, remove it; if dialog box was provided, close it).

 - 176 -

Sample Solution

In this sample solution, we will show you an example of how the Cancellation
Responsibilities checklist above could be used. Our example will use the J2EE-
MVC architecture. First we will show you a context, i.e., an architecture without
the ability to cancel an active process. Then we will show you a sample solution,
i.e., the same architecture after cancellation has been added, using the
Cancellation Responsibilities checklist.

Weʼll use a non-critical task for the example. This implies that

• The user can have control while the cancellation is happening
• The user need not acknowledge the results of the cancellation

J2EE MVC architecture - Component Interaction Diagram

Assignment of Responsibilities of Components to J2EE-MVC without
Cancellation:

View (Type: View)
R1. The view must render the models.
R2. The view must request updates from models.
R3. The view must send user gestures to the controller.
R4. The view must allow the controller to select views.

Active-Command (Type: Model)
R5. The model must encapsulate application state.
R6. The model must respond to state queries.
R7. The model must expose application functionality.
R8. The model must notify views of changes.

Controller (Type: Controller)
R9. The controller must define application behavior.
R10. The controller must map user actions to model updates.
R11. The controller must select a view for response.
R12. There must be a controller for each functionality.

 - 177 -

Component Interaction Diagram for a Solution to Adding Cancel

Assignment of our Checklist of Responsibilities to new Components in
J2EE-MVC with Cancellation

Listener (Type: Controller)
• Must always listen for the cancel command or environmental changes (CR2)

Cancellation Manager (Type: Model)
• Always listen and gather information (CR2, CR3)
• If the Active Command is not responding, handle the cancellation (CR6, CR9,

CR10, CR11)
• Free resources (CR13)
• Estimate time to cancel (CR17)
• Inform the user of Progress of the cancellation (CR12, CR14, CR18, CR19)

Prior State Manager (Type: Model)
• Must always gather information (state, resource usage, actions, etc.) that

allow for recovery of the state of the system prior to the execution of the
current command (CR3)

• If the Active Command is not responding (CR6), work with the Cancellation
Manager to restore the system back to its state prior to execution of the
command (CR10) or as close as possible to that state (CR11)

 - 178 -

Assignment of our Checklist of Responsibilities to existing Components in
J2EE-MVC with Cancellation

View (Type: View)
• Provide a button, menu item, keyboard shortcut and/or other means to cancel

the active command (CR1)
• Must always listen for the cancel command or environmental changes (CR2)
• Provide feedback to the user about the progress of the cancellation (CR4,

CR12, CR14, CR18, CR19)

Active Command (Type: Model)
• Always gather information (CR3)
• Handle the cancellation by terminating processes, and restoring state and

resources (CR5, CR9, CR10, CR11, CR13)
• Provide appropriate feedback to the user (CR12, CR14, CR17, CR18, CR19)

Responsibilities not assigned or shown in our diagrams, and reasons why
they are not assigned or shown
• Our diagram does not show the infrastructure (e.g., operating system) in

which the application runs, therefore responsibilities assigned to the
infrastructure (CR7, CR8) are not assigned.

• J2EE-MVC implicitly returns control to the user during cancellation, so CR15
is not assigned.

• We are not considering a “critical task” where the progress and results of the
cancellation must affect user behavior, therefore CR16 is not assigned.

 - 179 -

Sequence diagram: Component interaction during cancellation of active
command

 - 180 -

Component Interaction Steps (these correspond with the diagrams above)
during successful cancellation of active command

S0. User performs normal operation in View, which passes the operation to
Controller.

S1. Controller invokes Active Command.
S2. Active-command registers command with Cancellation Manager, and

saves current state to Prior State Manager (CR3).
S3. User presses cancel button in View (CR1).
S4. View sends cancel request to Listener (CR1, CR2).
S5. Listener requests Cancellation Manager to cancel active command, and

acknowledges user’s command (CR2, CR4).
S6. Cancellation Manager estimates cancel time between 1 and 10 seconds

(CR17).
S7. Cancellation Manager directs View to change cursor shape (CR18, busy

cursor needed).
S8. Cancellation Manager verifies that Active Command is alive (CR5).
S9. Active Command requests original state from Prior State Manager,

which returns original state to Active Command (CR10, CR11, CR12).
S10. Active Command releases resources consumed to process the

command (CR13, CR14).
S11. Active Command exits, passing control to Cancellation Manager

(CR19).
S12. Cancellation Manager restores original cursor to View, providing

feedback to User that cancellation is finished (CR19).

 - 181 -

Appendix F: Content of Task Instructions given to Participants in

Empirical Studies

Usability & Software Architecture Training
TASK INSTRUCTIONS
Some background: How Plug-ins Work

A plug-in is a separate module of code that behaves like an extension to the application that
invokes it. Plug-ins enable the features of an existing application to be extended beyond its
original design. For example, plug-ins are frequently used in Web browsers to increase the
flexibility of the browser by handling one or more data types (through Multipurpose Internet Mail
Extensions [MIMEs]), thereby extending the capabilities to a wide range of interactive and
multimedia capabilities. The details of the plug-in mechanisms may be different from each other
due to the various platforms and semantics. In desktop operating systems (e.g. Windows), a
browser (e.g. IE) stores a list of plug-ins in a plug-in directory that acts like a registry. When the
browser encounters data of a particular MIME data type, it searches its registry for a matching
plug-in that can handle that data type. Once located, the plug-in is loaded into memory and
initialized, and an instance of it is created. The life cycle of the plug-in is controlled by the browser
that invokes it. When the browser window is closed, the plug-in instance is deleted, and the code
is unloaded from memory.

The architectural design: Plug-In Architecture for Mobile Devices (PAMD)
PAMD is an architecture design for the exchange of data and control between applications
operating on a device using Palm OS 4. PAMD details the architecture, syntax, and semantic
behavior of applications to support application-level data exchange.

Example Scenario: How PAMD Works
There is no easy and standard way for applications to communicate inside a PDA running Palm
OS 4, which uses a single-threaded architecture. PAMD was designed to help a user facilitate
this communication. The following end-to-end scenario explains how PAMD can help achieve
this and assumes that PAMD-aware applications and the plug-ins used are already installed in
the user's device.

1) A user launches the PAMD-aware browser application.
2) The user surfs to an online movie trailer website in the browser application.
3) The user decides to view a Shockwave trailer for a movie in the browser application, and

clicks on the appropriate link to select the Shockwave trailer. The browser informs the user
that there are no Shockwave file viewing capabilities (as determined by the MIME data type),
he decides to see if any plug-ins already installed on the device can be used to view
Shockwave files.

4) The user selects the Plug-Ins menu item to locate the available plug-in services installed in
the Palm device.

5) PAMD displays a list of all the plug-ins available for the browser application to use. In this
case, plug-ins such as Shockwave, RealPlayer, and Java Console are displayed.

6) The user selects the Shockwave plug-in.
7) PAMD sends the link for the movie trailer to the Shockwave plug-in.
8) The Shockwave window is launched, and the movie trailer begins to load in that window. A

progress indicator shows the progress of the download.

 - 182 -

9) When the movie trailer is completely loaded, the Shockwave plug-in plays the movie trailer.

If the user wishes to cancel the operation of the plug-in, for example if the download is
taking too long, he/she might do so during step 8 of this scenario.

PAMD Requirements

Here are the overall requirements of PAMD:

• Any application that complies with the PAMD framework will access PAMD plug-ins to extend
its capabilities, and any plug-in that complies with PAMD shall be used by any PAMD-aware
application.

• PAMD uses bi-directional communication between applications and plug-ins. PAMD-aware
applications shall be able to pass and receive complex information to and from plug-ins.

Checklist of Responsibilities of PAMD Components

The PAMD architecture is composed of three active entities: a PAMD plug-in manager, a PAMD-
aware application, and a PAMD plug-in, and three repositories: a system database, a plug-in
registry, and shared memory.

PR = PAMD Responsibility (e.g. PR1 = PAMD Responsibility 1)

PR1. PAMD-aware applications and PAMD plug-ins must interact via the plug-in manager. When
the application sends a request for services to the plug-in manager, the plug-in manager
delegates the request to a plug-in. The assumption behind this process is that applications
and plug-ins should know what kind of data types they exchange.

PR2. PAMD-aware applications and PAMD plug-ins must exchange data through direct access
to the shared memory.

PR3. To maintain up-to-date PAMD plug-in information, the plug-in manager must query the
system database.

PR4. The plug-in manager must cache this information in a private database called a plug-in
registry, for faster use.

PR5. The plug-in manager must coordinate communication between plug-ins and applications.
When an application wants to execute a plug-in, it requests the plug-in manager to execute
the plug-in on its behalf. At this point, the plug-in manager calls the specified plug-in and
passes control to it. Once the plug-in executes, the plug-in manager regains control and
then returns the result and control back to the calling application.

PR6. The plug-in manager must maintain the plug-in registry, where information about each
installed plug-in, such as the data it can handle, is stored. The PAMD system uses that
information to determine the state of availability of every registered plug-in. The type of
information that can be processed by a given plug-in serves as selection criteria for
matching plug-ins and applications.

PR7. The PAMD plug-in must provide a service to applications.

PR8. The PAMD plug-in does not store any information about which applications will use it.

 - 183 -

PR9. The PAMD plug-in does not need to be aware of PAMD as long as it conforms to the
PAMD specification.

PR10. The PAMD-aware application must be aware of the availability of the plug-in manager.

PR11. The PAMD-aware application must request and receive services from PAMD plug-ins.

PR12. The PAMD-aware application must be able to request and receive services through the
provided PAMD APIs and abstract data types (ADTs).

PR13. The PAMD-aware application must know about plug-ins in regards to PAMD.

PR14. The PAMD-aware application must not assume that a given plug-in is present.

PR15. The shared memory must store data, and must be accessible by the PAMD-aware
application and by the PAMD Plug-in.

PR16. The system database must store data about registered plug-ins, and must be accessible
by the Plug-in Manager.

PR17. The Plug-in Registry must store data about registered plug-ins in cache memory, and must
be accessible by the Plug-in Manager.

 - 184 -

For the sake of simplicity, the following architectural diagrams show only one PAMD-aware
application, and one plug-in which acts as a service provider. The Component Interaction
Diagram below describes the basic components and connectors in PAMD.

Component Interaction Diagram

In this diagram, PR = PAMD Responsibility, and S = Step. PR numbers (PR1, PR2, etc.) in this
diagram correspond with the PAMD Responsibilities in the checklist on pages 2 and 3.
S numbers (S1, S2, etc.) correspond with the Component Interaction Steps listed on page 6 of
these instructions.

 - 185 -

Sequence Diagram: Component Interaction During Plug-In
Execution - Calling A Plug-In

In this diagram, S = Step. S numbers (S1, S2, etc.) correspond with the Component Interaction
Steps listed on page 6 of these instructions.

 - 186 -

Component Interaction Steps

These steps correspond with the Component Interaction Diagram on page 4
of this document, and the Sequence Diagram on page 5 of this document.

S = Step (e.g. S1 = Step 1)

Assumption: The needed plug-in is already registered.

The plug-in manager searches the system database to detect a newly installed
plug-in. If one is found, the plug-in manager registers it by asking it for its name
and description, and the data types it supports. (Note: this occurs before the
sequence diagram starts.)

S0. User performs plug-in operation.

User selects the plug-ins menu in the PAMD-aware application.

S1. A list of compatible plug-ins is requested.

A PAMD-aware application requests a list of compatible plug-ins that can
process the input and output data types handled by the application. Upon
receiving this request, the plug-in manager searches the plug-in registry and
returns the list of compatible plug-ins to the application.

S2. The application copies its data into shared memory.

This allows the plug-in to access required input data.

S3. The execution of the plug-in is requested.

A PAMD-aware application requests the plug-in manager that a specified plug-
in be executed.

S4. The plug-in is called.

The plug-in manager calls the plug-in to perform its service and yields the
control thread to it.

S5. Needed data is accessed.

If a plug-in needs to access the input data during execution, it accesses it from
shared memory. At the end of its execution, the plug-in can save its output
data in shared memory.

S6. After the plug-in finishes execution, control and the result are returned to the
plug-in manager. The plug-in manager then returns the result and control to
the calling application.

 - 187 -

Task

Using the materials in the Training Document, and the information we just went
over, add the ability to cancel a plug-in to the PAMD architectural design.

 Only modify the architecture to address cancellation. Do not attempt to

modify the architecture to address any other concerns, just cancellation. Only the
concerns described in the Training Document are relevant to this task. This also
means that you do not need to preserve any other existing concerns (e.g.
extensibility or performance) in considering your solution.

 Be as complete as possible. The diagrams and checklists of responsibilities

currently correspond with each other, that is, the components, numbered steps and
responsibilities match across all diagrams and written lists. Be sure that your
modified diagrams and checklists of responsibilities also correspond with each other,
including any changes to static elements, sequential operations, and responsibilities
of the elements during the operation.

 Indicate changes by modifying the diagrams and written steps on the

Answer Paper (the same diagrams and steps shown above):

o Component Interaction Diagram
o Sequence Diagram: Component Interaction During Plug-In Execution
o Component Interaction Steps

Please modify the diagrams on the Answer Paper. In adding cancel to the
PAMD architectural design, you should add new components, connectors,
component interaction steps and/or responsibilities, to the diagrams, lists of
steps, and/or checklists of responsibilities, as needed.

We have provided extra Answer Paper for your convenience. The number of
pages provided is not indicative of how many pages your answer might
require.

If you add new connectors, use the notation shown in the Legend on the
Component Interaction Diagram.

If you add new components, use the notation shown in the Component
Interaction Diagram: draw a box for each new component, list its
responsibilities and steps inside the box (you may go outside the box if you
don’t have enough space to write).

If you create any new responsibilities for any components, write them in a
checklist and number them. Then assign the responsibilities you created by
writing their numbers inside or next to the corresponding components in the
Component Interaction Diagram.

 - 188 -

Appendix G: Content of Answer Paper Given to Participants in Empirical

Studies.

Component Interaction Diagram

 - 189 -

Sequence Diagram: Component Interaction During Plug-In
Execution – Calling A Plug-In

 - 190 -

Component Interaction Steps

These steps correspond with the Component Interaction Diagram, and the Sequence
Diagram. The steps currently have no numbers, because you may add steps as
needed at any point in this list. When you have finished adding steps, please
number all the steps, including the existing ones and any you have added. Make
sure these step numbers appear in your finished Component Interaction Diagram
and Sequence Diagram.

S = Step (e.g., S1 = Step 1)

Assumption: The needed plug-in is already registered.

The plug-in manager searches the system database to detect a newly installed plug-in.
If one is found, the plug-in manager registers it by asking it for its name and
description, and the data types it supports. (Note: this occurs before the sequence
diagram starts.)

S7. User performs plug-in operation.

User selects the plug-ins menu in the PAMD-aware application.

S8. A list of compatible plug-ins is requested.

A PAMD-aware application requests a list of compatible plug-ins that can process the
input and output data types handled by the application. Upon receiving this request,
the plug-in manager searches the plug-in registry and returns the list of compatible
plug-ins to the application.

S9. The application copies its data into shared memory.

This allows the plug-in to access required input data.

S10. The execution of the plug-in is requested.

A PAMD-aware application requests the plug-in manager that a specified plug-in be
executed.

S11. The plug-in is called.

The plug-in manager calls the plug-in to perform its service and yields the control
thread to it.

S12. Needed data is accessed.

If a plug-in needs to access the input data during execution, it accesses it from shared
memory. At the end of its execution, the plug-in can save its output data in shared
memory.

S13. After the plug-in finishes execution, control and the result are returned to the plug-in
manager. The plug-in manager then returns the result and control to the calling
application.

 - 191 -

Appendix H: Coding Plan for Experimental Solutions in Empirical
Studies.

USAPs Experiment Participant Data Coding Plan for Written Participant Solutions

(In this plan, the term “Template” refers to individual participant solution coding

template ScoredData-PIDTemplate.xls)

1. PORTIONS OF PARTICIPANT SOLUTION TO IGNORE. If any diagram

or text in the Participant Solution is marked by the Participant as indicated in the

instructions of this step, that part of the Participant Solution will be ignored.

a. If any diagram or text in the Participant Solution is marked with the word

“IGNORE” by the Participant, that part of the Participant Solution will be

ignored. [This rule was added during coding of PID 19.]

b. If any diagram or text in the Participant Solution is crossed with a single

solid line, “X,” or wavy line or “squiggle,” that part of the Participant

Solution will be ignored. [This rule was added during coding of PID 19.]

c. If any diagram or text in the Participant Solution is marked with the word

“ROUGH” by the Participant, that part of the Participant Solution will be

ignored. [This rule was added during coding of PID 22.]

d. If any preprinted page of the Answer Paper has not been written on or

marked in any way by the Participant, that part of the Participant Solution

will be ignored. [This rule was added during coding of PID 22.]

e. If any preprinted step of the Component Interaction Steps has no number

or notation attached to it by the Participant, that part of the Participant

Solution will be ignored. [This rule was added during coding of PID 25.]

f. If any diagram or text in the Participant Solution is crossed out with a

series of lines or “crosshatching,” that part of the Participant Solution will

be ignored. [This rule was added during coding of PID 29.]

 - 192 -

g. If any diagram or text in the Participant Solution is marked with the word

“worksheet” by the Participant, that part of the Participant Solution will be

ignored. [This rule was added during coding of PID 38.]

h. Using colored highlighter, mark off each area to be ignored under the rules

above on the Participant Solution, until there are no unmarked areas to be

ignored remaining on the Participant Solution. [This step was added

following the scoring of PID27, and applied retroactively to the previously

scored solutions.]

2. ADDITIONAL RESPONSIBILITIES. Find any Additional Responsibilities

written in Participant Solution. Three types of entries will be classified as

Additional Responsibilities.

a. If the participant wrote any CRs (CR1, CR2, etc.) in the Component

Diagram, these will be counted as Additional Responsibilities.

i. Number each referenced CR with the corresponding AR number

(CR1 = AR1, etc.).

ii. Enter the new AR number in Column D of the Template, in the

same row as the corresponding CR number. The possible numbers

are AR1 through AR19.

iii. AR1 through AR19 will not require rewriting the text of the

original CR in column E of the Template.

iv. Using colored highlighter, mark off each CR on the Participant

Solution after transferring to the Template, until there are no

unmarked CRs remaining on the Participant Solution. [This step

was added following the scoring of PID27, and applied

retroactively to the previously scored solutions.

b. If the participant wrote any new PRs (PR18, PR19, etc.) anywhere on the

answer paper, these will be counted as Additional Responsibilities.

i. Number each new PR with an AR number beginning with AR20

(PR18 = AR20, PR19 = PR21, etc.). [anonymization only]

 - 193 -

ii. Enter the new AR number(s) in Column D of the Template,

beginning with the row immediately following the row containing

CR19. [anonymization only]

iii. Enter the text of each new PR in Column E of the Template,

immediately to the right of the AR designation corresponding to

that text. [anonymization only]

iv. Where applicable, move each new AR and its corresponding text

to the row of the CR (in Column A) whose responsibility the new

AR satisfies (keeping the AR number and the AR text in Columns

D and E of the same row). If there is more than one AR

corresponding to any CR, add multiple rows to the CR so that there

is one row (from Column D through the end of the individual

column components) for each AR within the CR. [anonymization

only]

v. Correspondence of PRs/ARs to CRs:

1. If the text of the AR speaks to the provision of a user

interface for invoking cancellation, the AR will be

considered to correspond to CR1.

a. This can be indicated by the inclusion of the words

“cancel” or “cancellation,” AND “user” or “users,”

OR “button” or “menu”, OR optionally “interface.”

[This rule added during coding of PID22.]

2. If the text of the AR speaks to the estimation of time

required for cancellation, the AR will be considered to

correspond to CR17.

a. This can be indicated by the inclusion of the words

“estimate,” “estimated,” or “estimating,” AND

“time.” [This rule added during coding of PID 22.]

3. If the text of the AR speaks to the notification of the user of

time estimation required for cancellation, the AR will be

considered to correspond to CR18.

 - 194 -

a. This can be indicated by the inclusion of the words

“notify” or “display” or “inform” AND “estimate”

or “estimated” or “calculated” AND “time” or

“progress.” [This rule added during coding of PID

22.]

4. If the text of the AR speaks to the freeing of resources, the

AR will be considered to correspond to CR13.

a. This can be indicated by the inclusion of the words

“removes,” “releases,” “free” or “clear” or “unload”

or “dispose” AND “resource” or “resources,” or

“memory.” [This rule added during coding of PID

22.]

b. This can also be indicated by the inclusion of the

words “delete” or “deletes,” “erase” or “erased,”

and “list” or “information.” [This rule added during

coding of PID34.]

5. If the text of the AR speaks to listening for cancellation, the

AR will be considered to correspond to CR2.

a. This can be indicated by the inclusion of the words

“listen” or “listens” or “listener” and “cancel” or

“cancellation” or “users.” [This rule added during

coding of PID 28.]

6. If the text of the AR speaks to the provision of an internal

system mechanism for cancellation, but not to the provision

of a UI, the AR will be considered to correspond to CR5.

a. This can be indicated by the inclusion of the words

“terminate” or “terminates,” or “cancel” or

“cancels,” or “kill” or “kills,” or “halts” or “abort”

AND “plug-in” or “application” or “plug-in

manager” or “sequence,” but NOT “user.”

 - 195 -

7. If the text of the AR speaks to gathering of state

information for restoration of state in the event of

cancellation, the AR will be considered to correspond to

CR3.

a. This can be indicated by the inclusion of the words

“save” or “saving,” or “store” or “storing,” or

“gather” or “gathering,” or “collect” or “collecting,”

or “write” or “written,” AND “state,” “usage,”

“resource usage,” or “actions,” [This rule added

during coding of PID 23.]

b. This can also be indicated by the inclusion of the

words “maintain” or “maintaining,” or “update” or

“updating” AND “a list” or “details” or “log” of

specific actions. [This rule added during coding of

PID34.]

8. If the text of the AR speaks to restoration of state in the

event of cancellation (but not to gathering of information

related to state), the AR will be considered to correspond to

CR10.

a. This can be indicated by the inclusion of the words

“restore” or “restored,” or “return” or “display” or

“regress” AND “state” or “data” or “values” AND

“after cancellation” or “after canceling” or “after …

cancelled” or step takes place after cancellation.

[This rule added during coding of PID 39.]

9. If the text of the AR speaks to the mechanism of

communication between two or more components, but not

to any other issue of functionality besides communication,

and if none of the components mentioned is the User, that

AR should not be deemed to be a cancellation

responsibility.

 - 196 -

10. If the text of the AR speaks to notification to the user that

cancellation is complete, the AR will be considered to

correspond to CR19.

a. This can be indicated by the inclusion of the words

“notify” or “notification” or “acknowledge” AND

“user” AND “cancelled,” OR {“cancel” or “abort”

AND “complete” or “completed” or “finished” or

“restored”} but NOT “estimate” or “estimation.”

11. If the text of the AR speaks to notification to the user that

cancellation has been requested, the AR will be considered

to correspond to CR4.

a. This can be indicated by the inclusion of the words

“notify” or “notification” or “acknowledge” AND

“user” AND “cancel” or “abort” or “cancelled,” but

NOT “estimate” or “estimation.”

12. If the text of the AR speaks to notification to the user that

control cannot be returned to the user, the AR will be

considered to correspond to CR16.

a. This can be indicated by the inclusion of the words

“notify” or “display” AND “error message”

immediately following any description of returning

control to user.

13. If the text of the AR speaks to notification to the user that

resources cannot be released, the AR will be considered to

correspond to CR14.

a. This can be indicated by the inclusion of the words

“notify” or “display” AND “error message”

immediately following any description of releasing

resources.

vi. Using colored highlighter, mark off each PR on the Participant

Solution after transferring to the Template, until there are no

 - 197 -

unmarked PRs remaining on the Participant Solution. [This step

was added following the scoring of PID27, and applied

retroactively to the previously scored solutions.

c. If the participant wrote any new “Functionalities” anywhere on the answer

paper, these will be counted as Additional Responsibilities. [This set was

added during the scoring of PID33.]

i. These will be identified by the inclusion of the word

“functionalities” by the participant.

ii. Follow same procedure as for substep b above.

d. If the participant rewrote the contents of P1 through P17 on the Answer

Paper, these shall not be counted as new responsibilities.

3. ADDITION OF COMPONENTS.

a. If the Participant has added any Components to the Component Diagram,

add a column to the Template for each Component added by the

Participant. Such columns are to inserted immediately to the right-most

existing component in the Template, and the header cell to be included in

the merged cells that begin with Column M in Row 1 of the Template.

Additional columns should be added until there is an individual column

for each preprinted component, and each participant-added component, in

the Participant Solution.

4. CODING OF WRITTEN COMPONENT INTERACTION STEPS.

a. If preprinted Component Interaction Steps in the Participant Solution are

numbered by the Participant, those steps are to be handled as follows:

i. Only steps relevant to Cancellation Responsibilities will be

counted. Steps that relate only to the execution of the PAMD

system previous to cancel, and that do not speak to listening for

cancellation, gathering of state information, or provision of UI for

cancellation, should not be entered in the Template.

ii. Using colored highlighter, mark off each numbered, preprinted

Component Interaction Step on the Participant Solution after

transferring to the Template, until there are no unmarked,

 - 198 -

numbered, preprinted Component Interaction Steps remaining on

the Participant Solution. Steps so crossed out should also be

crossed out where referenced in the Sequence Diagram and the

Component Interaction Diagram, leaving only steps added or

altered by the Participant. [This step was added following the

scoring of PID27, and applied retroactively to the previously

scored solutions.]

b. If any preprinted Component Interaction Steps in the Participant Solution

are not numbered by the Participant, those steps are to be ignored.

c. If any Component Interaction Steps in the Participant Solution are added

by the participant, those steps are to be handled as follows:

i. Only steps relevant to Cancellation Responsibilities will be

counted. Steps that relate only to the execution of the PAMD

system previous to cancel, and that do not speak to listening for

cancellation, gathering of state information, or provision of UI for

cancellation, should not counted.

ii. Language of the specific steps should be handled according to the

rules set forth for Additional Responsibilities above.

iii. Using colored highlighter, mark off each handwritten Component

Interaction Step on the Participant Solution after transferring to the

Template, until there are no unmarked Component Interaction

Steps remaining on the Participant Solution. [This step was added

following the scoring of PID27, and applied retroactively to the

previously scored solutions.]

5. CODING OF SEQUENCE DIAGRAM STEPS.

a. If any preprinted Sequence Diagram steps in the Participant Solution are

numbered by the Participant, those steps are to be handled as follows:

b. If any preprinted Component Interaction Steps in the Participant Solution

are crossed out by the Participant, those steps are to be ignored.

c. If more than one Sequence Diagram is provided by the Participant, the

union of all Sequence Diagrams provided by the Participant will be

 - 199 -

included in the Participant Solution. [This rule was added during the

coding of PID 36.]

d. If any Sequence Diagram steps in the Participant Solution are added by the

participant, those steps are to be handled as per the rules for Written

Component Interaction Steps.

 - 200 -

Appendix I: List of Usability Scenarios Offered to ABB

1. Progress Feedback – for commands that take between 2-10 sec, the shape of the

cursor should change. For commands that take longer than 10 sec, the user should see

the amount of work completed, the amount remaining, and, possibly, the time

remaining. The user should also have the ability to cancel long running commands.

2. Warning/status/alert feedback – Status or alert indicators should be displayed when

the appropriate conditions are satisfied. Some of the issues associated with they type

of feedback are: how are “appropriate conditions” specified, is the feedback presented

under the initiative of the system or does the user have to request it, is the feedback

blocking or can other input proceed, how is the feedback dismissed from the screen –

time based or user input.

3. Undo – commands issued by the user should be able to be undone after the command

completes. The command issued immediately prior to the one that is undone should

then be available for being undone, and so forth.

4. Cancel – long running commands should be able to be canceled by the user at any

point prior to the completion of the command. The system should be reset to the

extent possible to its state prior to the issuance of the command.

5. User profile – each user should be able to set various parameters that control the

presentation. Customizations such as special icons, special terms, font and size of

characters should all be settable by the user.

6. Help – user should be able to receive on line help at any point in a session. The help

should be customized to the context.

7. Command aggregation – the user should be able to invoke a file with a collection of

commands in it and have the individual commands executed. Some issues are: how

 - 201 -

are the parameters of the individual commands specified, how is the collection

created, how is it named and stored.

8. Action for multiple objects (aggregation of data). The user should be able to execute

commands on collections of objects as well as individual objects. Some issues are:

how are the collections specified, named, and stored.

9. Workflow model. Users should have support in sequencing their commands. That is,

if one command must be executed prior to executing a second command, the system

should disable the second command until the first one is executed. Help should

provide a list of available commands and dependencies among commands.

10. Different views – Users should be able to look at data through different views. For

example, a tabular view or a graphical view of numeric data should be available.

Some of the issues are: how are different views invoked, the data seen in each view

should be consistent and updated together, commands available in one view should be

available in all views (where this makes sense).

11. Shortcuts (key and tasks) – The user should be able to identify special keys and

abbreviations for commonly used commands.

12. Reuse of information. Information already in the computer should not have to be re-

input by the users. Mechanisms for achieving this may be cut and paste or the

propagation of data from one portion of the system to another.

13. Maintaining compatibility with other systems (leveraging human knowledge). System

upgrades should not change the user interface for features that existed in the old

system.

14. Navigating within a single view (e.g., scrolling, overview+detail, panning, zooming,

outliner, etc.). Users should have the ability to move around a view using techniques

 - 202 -

such as increasing font size, zooming, panning, scrolling. While performing these

movements, the system should keep the user oriented as to their current context

through showing an overview of the whole view.

15. Recovering from failure. When the system, the processor, or the network fails, the

user should not lose any work in progress.

16. Identity management (retrieving forgotten password). Password protected systems

should provide means to inform users of forgotten passwords. These means may

involve mechanisms outside of the scope of the current system – e.g., sending mail

with a temporary password.

17. Comprehensive searching. The user should have the ability to search the system to

locate any kind of information managed by the system. This includes documents,

data, file stores, project management, etc.

18. Supporting international use. The user should have the ability to use the system in a

language and with a display format that is familiar to them.

19. Working at the user’s pace. Users can only read and respond at human scale. The

system should not flash messages, scroll, or otherwise present output too fast for the

user to read and react. Similarly, users expect output to appear in a timely fashion and

systems should operate at a speed appropriate to the task they are performing.

 - 203 -

Appendix J: Pattern Language for ABB Usability Supporting
Architectural Patterns.

Assumptions about USAPs
・ There are intra-responsibility assumptions (e.g., Communication between involved

portions of the system is assumed).
・ There are inter-responsibility, intra-USAP assumptions (e.g., things done by one

responsibility are accessible to other responsibilities in the USAP)
・ There are inter-USAP assumptions (e.g., that the protocol for saving an authored

specification is defined and known to the developers of both the authoring system and
the execution system). These are “in” the red arrows in the diagram below and we just
put in a “shared assumptions” section into the front-matter of each USAP.

・ There are assumptions about the execution environment for systems informed by
USAPs (i.e., code developed unconnected to USAPs and code developed by
considering USAPs). For example, USAPs assume that there is a portion of the
system that displays information to a user.

 - 204 -

1. Foundational USAPs
For each Foundational USAP, provide:

Purpose:
・ A general statement of the purpose of the foundational USAP.
Justification:
・ Justification for this foundational USAP
Glossary:
・ Definitions of terms introduced in this foundation USAP
Parameters needed by this USAP:
・ These parameters are used to make the foundational USAP specific to referring

USAPs.

(NOTE: Our expectation is that the following information will ultimately be generated
automatically from the USAPs that use and are used by this USAP either directly or
indirectly, otherwise there will be a maintenance headache.)

For each Foundational USAP used by this USAP (if any), provide:

Parameters furnished to the foundational USAP:
・ The parameter values furnished to the foundational USAP used by this USAP.

For each End-User USAP that refers to this foundational USAP, provide
End-User USAP interpretation:
・ The parameter values furnished to this foundational USAP by the referring end-

user USAP.

1.1 Authorization
Purpose:
The Authorization Foundational USAP’s purpose is to identify and authenticate users
(human or other systems) of the system.

Justification:
Users must be authorized when security or personalization is important.

Glossary:
・ To be completed after user testing

Parameters needed by this USAP:
・ USER: Who the users are, i.e., the role they play. These can be human and/or other

systems.
・ ACTIVITY: What activities authorization will authorize (i.e., permissions).

Foundational USAPs used by this USAP:
None.

USAPs that use this Foundational USAP:

 - 205 -

In the User Profile End-User USAP, there are two paths to this USAP, with two sets of
parameters.

Through the Authoring Foundational USAP:
・ USER: Author.

ACTIVITY: Author user profile.
Through the Execution with Authored Parameters Foundational USAP:
・ USER: End user.

ACTIVITY: Execute the system with parameter values from user profile.

In the Environment Configuration End-User USAP, there are two paths to this USAP,
with two sets of parameters.

Through the Authoring Foundational USAP:
・ USER: Author.
・ ACTIVITY: Author configuration description.

If necessary environment information must be entered by an authorized user, then
through the Execution with Authored Parameters Foundational USAP:
・ USER: End user.
・ ACTIVITY: Execute the system with parameter values from configuration

description.

In the Alarms and Events End-User USAP, there are two paths to this USAP.
Through the Authoring Foundational USAP:
・ USER: Author.
・ ACTIVITY: Author alarm and event rules and displays.
Through the Execution with Authored Parameters Foundational USAP:
・ USER: End user.
・ ACTIVITY: Author alarm and event rules and displays.

1.1.1 Identification

1.1.1.1 The system has to provide a way for the USER to input his, her or its

identity. (For a human user, this input could be user typing a login ID,
running a finger over a fingerprint reader, or standing in front of a
camera for face recognition, etc. For a system user, this input could be
an IP address, a previously specified identity, etc.)

1.1.1.1.1 Rationale
Software has no way of recognizing a USER without explicit input.
USERs want to access the system.

The environment contains multiple potential users only some of whom are
allowed to use the system.

1.1.1.1.2 Implementing this responsibility

 - 206 -

The USERs are involved because they must take explicit action.

The portion of the system that receives user input is involved, because
users’ explicit action must be handled by the system.

There must be a portion of the system that processes the input.

1.1.1.2 The system should inform the USER and/or the system administrator
of the results of the identification. Typically, a successful identification
is indicated by allowing the USER to proceed. (If logging of
identification results is desired use Logging Foundational USAP with
parameter CONTEXT=Identification.)

1.1.1.2.1 Rationale
USERs want to know if their identification succeeded so they can proceed.

USERs want to know if their identification failed because they cannot
proceed without it.

System administrators might want to know of a failed identification
because it might be an indication of unauthorized users attempting to
access the system.

The environment contains multiple potential users, some of whom might
be malicious.

1.1.1.2.2 Implementing this responsibility
In the event of failing to be identified, the portion of the system that does
the identification must provide information about the failure.

If informing the system administrator: In the event of a failure, a portion
of the system must have a mechanism to inform the system administrator.
This may be quite complicated (e.g., sending email) and is beyond the
scope of this USAP.

For informing the USER: In the event of a failure, the portion of the
system that renders information to the user should display information
about the failure. Often this feedback will wait for authentication
information to be input and the feedback will be of the form that this
userID/password are not known to the system.

In the event of a successful identification, the portion of the system that
renders information to the user should indicate success in some way (e.g.,
simply letting the USER proceed).

 - 207 -

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

1.1.1.3 The system must remember the USER’s identity for the duration of

the session.

1.1.1.3.1 Rationale
The software will use this information later (e.g., in determining
authorization).

The USER only wants to enter this information once per session.

The environment contains multiple potential users only some of whom are
allowed to use the system.

1.1.1.3.2 Implementing this responsibility
There must be a portion of the system that maintains the USER’s identity.

1.1.1.4 The system must display the identity of the current USER.

1.1.1.4.1 Rationale
The USER wants to be sure that the system knows who he or she is.

1.1.1.4.2 Implementing this responsibility
The portion of the system that maintains the USER’s identity provides the
USER’s identity.

The portion of the system that renders information to the user displays the
USER’s identity.

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

1.1.1.5 The system must provide a way for the USER to recover from

mistakes in identification. (This could be an erroneous input by the
user or the system or it could be the user forgetting his or her user ID.
In the case of erroneous input, the solution could be as simple as re-
entering the information, so this section will expand on the case of
forgetting.)

1.1.1.5.1 Rationale
USERs sometimes forget the way to identify themselves to the system.

Software has no way of recognizing a USER without correct explicit
input.

 - 208 -

The environment contains multiple potential users only some of whom are
allowed to use the system.

1.1.1.5.2 Implementing this responsibility
The USERs are involved because they must explicitly indicate that they
forgot their ID.

The portion of the system that receives user input is involved, because
users’ explicit action must be handled by the system.

There must be a portion of the system that has a mechanism to inform the
USER of the correct ID. This mechanism may be quite complicated (e.g.,
sending email to a previously-stored address), and is beyond the scope of
this USAP.

1.1.2 Authentication

1.1.2.1 The system has to provide a way for the USER to input his, her or its

authentication. (For a human user, this input could be user typing a
password, running a finger over a fingerprint reader, or standing in
front of a camera for face recognition, etc. For a system user, this
input could be a certificate or previous authentication, etc.)

1.1.2.1.1 Rationale
Software has no way of authenticating a USER without explicit input.

USERs want to know that they are the only ones able to take action under
their names.

The environment contains multiple potential users only some of whom are
allowed to use the system.

The organization wants to restrict access to authorized USERs and to have
USERs be accountable for their actions.

1.1.2.1.2 Implementing this responsibility
The USERs are involved because they must take explicit action.

The portion of the system that receives user input is involved, because
users’ explicit action must be handled by the system.

There must be a portion of the system that processes the input.

 - 209 -

1.1.2.2 The system must perform and remember the results of the
authentication. (This could be matching a password, recognizing a
fingerprint, face recognition, etc. This might be a multi-stage process,
e.g., first validating a user’s ID and then matching it to the password.)

1.1.2.2.1 Rationale
The system is the entity that has the information necessary to perform the
authentication.

1.1.2.2.2 Implementing this responsibility
The portion of the system that maintains the USER’s identity provides the
USER’s identity.

There must be a portion of the system that performs the authentication.

The portion of the system that maintains the USER’s identity must
remember whether this USER has been authenticated.

1.1.2.3 The system should inform the USER and/or the system administrator

of the results of the authentication. (If logging of identification results
is desired use Logging Foundational USAP with parameter
CONTEXT=Authentication.)

1.1.2.3.1 Rationale
USERs want to know if their authentication succeeded so they can
proceed.

USERs want to know if their authentication failed because they cannot
proceed without it.

System administrators might want to know of a successful authentication
for audit trail purposes.

System administrators might want to know of a failed authentication
because it might be an indication of unauthorized users attempting to
access the system.

The environment contains multiple potential users, some of whom might
be malicious.

1.1.2.3.2 Implementing this responsibility
In the event of failing to be authenticated,the portion of the system that
does the authentication must provide information about the failure.

If informing the system administrator: In any event, a portion of the
system must have a mechanism to inform the system administrator. This

 - 210 -

may be quite complicated (e.g., sending email) and is beyond the scope of
this USAP.

For informing the USER: In the event of a failure, the portion of the
system that renders information to the user should display information
about the failure. In the event of a successful authentication, the portion of
the system that renders information to the user should indicate success in
some way (e.g., a welcome message or simply letting the user proceed).

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

1.1.3 Permissions

1.1.3.1 The system must permit or prohibit specific ACTIVITY dependent on

who the USER is and on the ACTIVITY they are attempting to
perform, i.e., the system must know (built in, stored, provided by the
OS, etc.) the specific permissions for each USER and then enforce
these permissions.

1.1.3.1.1 Rationale
The organization may wish to allow different USERs to have different
capabilities.

The USERs want access to the ACTIVITY they have permission for.

The system has to have a concept of permissions to be able to allow or
disallow an ACTIVITY.

The system has to know the mapping between USERs and ACTIVITY to
grant different permissions to different users.

1.1.3.1.2 Implementing this responsibility
The portion of the system that maintains the USER’s authenticated
identity provides the USER’s identity.

The portion of the system that does the ACTIVITY must provide the
requested ACTIVITY.

There must be a portion of the system that maintains the mapping between
USERs and their permitted ACTIVITY.

This latter portion of the system must use the USER’s authenticated
identity, the particular ACTIVITY desired and the map to determine
whether the ACTIVITY is allowed.

 - 211 -

1.1.3.2 The USER and/or the system administrator should be informed when
permission is granted or denied for doing an ACTIVITY. Typically,
this is done through the portion of the system that requests the
ACTIVITY.

1.1.3.2.1 Rationale
USERs want to know if their operations failed because of permission.

System administrators might want to know if permission is denied because
it might be an indication of users attempting to exceed their permissions.

The environment contains multiple potential users, some of whom might
be malicious.

1.1.3.2.2 Implementing this responsibility

In the event of failing to be allowed to do ACTIVITY,the portion of the
system that does the ACTIVITY must provide information about the
failure.

If informing the system administrator: A portion of the system must have a
mechanism to inform the system administrator. This may be quite
complicated (e.g., sending email) and is beyond the scope of this USAP.

For informing the USER: In the event of a failure, the portion of the
system that renders information to the user should display information
about the failure. In the event of a successful permission, the portion of the
system that does the ACTIVITY should proceed and inform the USER
appropriately, typically through the results of performing the ACTIVITY.

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

1.1.4 Logging Off

1.1.4.1 The system must have a way for the USER to log off. (If there are

requests still pending (e.g., unsaved changes), then notify the user and
ask for confirmation of the log-off request. Consider some way to
protect the system if the confirmation if not forthcoming in a
reasonable amount of time.)

1.1.4.1.1 Rationale
Software has no way of knowing that a USER is finished without explicit
input.

 - 212 -

USERs want to protect their work.

The environment contains multiple potential users, some of whom may be
malicious, so logging off prevents them from having access.

1.1.4.1.2 Implementing this responsibility
If log-off is at the USER’s request:
The system must provide a means for the USER to indicate a desire to log-
off (e.g., a button, keyboard shortcut, voice command).

The USER must indicate their desire to log off and respond to any
confirmation request.

The portions of the system that do the ACTIVITY must ask for
confirmation in the event of request still pending. This involves keeping
track of pending requests and requesting the appropriate interactions with
the USER.

There must be a portion of the system that de-authenticates the USER after
receiving the log-off request and any necessary confirmations.

If with a system-initiated request:
There must be a portion of the system with a mechanism to initiate a log-
off request. (This may be as simple as a time-out or quite complicated
(e.g., shutting down the entire system), and is beyond the scope of this
USAP.)

If there are pending requests, waiting for the USER to confirm is not a
good idea, either the requests are aborted or the log-off is aborted.

1.2 Authoring
Purpose:
The Authoring Foundational USAP’s purpose is to allow specification of the behavior of
the system in certain ways under certain circumstances.

Justification:
Users want to control the behavior of the system in certain ways under certain
circumstances without having to set it up every time. The system needs a specification of
parameters to determine its behavior in these circumstances. Therefore the user must
author a specification of parameters that will subsequently be used upon execution (see
Foundational USAP Execution with Authored Parameters).

Glossary:
・ To be completed after user testing

 - 213 -

Parameters needed by this USAP:
・ SPECIFICATION: The persistent parameter values that are authored.
・ APPROPRIATENESS-INFORMATION: The circumstances under which it

is appropriate to use a particular SPECIFICATION.

Shared Assumptions:
Shared with any other USAP that uses the SPECIFICATION:
・ The syntax and semantics for the concepts that are included in the SPECIFICATION

are defined and known to the developers of both the authoring system and the systems
informed by other USAPs that share the SPECIFICATION.

・ The protocol for saving the SPECIFICATION is defined and known to the developers
of both the authoring system and the systems informed by other USAPs that share the
SPECIFICATION.

・ USAPs sharing these assumptions
o Execution with Authored Parameters foundational USAP

Foundational USAPs used by this USAP:
Authorization Foundational USAP:
・ USER: Author
・ ACTIVITY: Author the SPECIFICATION

USAPs that use this Foundational USAP:

(Optional) Logging Foundational USAP
・ SPECIFICATION: Logging specification.
・ APPROPRIATENESS-INFORMATION: Logging state.
・
(Optional) Execution with Authored Parameters USAP
・ SPECIFICATION: Execution with Authored Parameters.SPECIFICATION

(this is the SPECIFICATION parameter that was passed to Execution with Authored
Parameters)

・ APPROPRIATENESS-INFORMATION: Execution with Authored Parameters.
APPROPRIATENESS-INFORMATION
(this is the APPROPRIATENESS-INFORMATION parameter that was passed to
Execution with Authored Parameters)

User Profile End-user USAP:
・ SPECIFICATION: User profile.
・ APPROPRIATENESS-INFORMATION: User identity.

Environment Configuration End-User USAP:
・ SPECIFICATION: Configuration description.
・ APPROPRIATENESS-INFORMATION: Environment identity.

Alarms and Events End-User USAP:

 - 214 -

・ SPECIFICATION: Rules for Alarms, Events and Displays.
・ APPROPRIATENESS-INFORMATION: Context of use.

1.2.1 Create a SPECIFICATION

1.2.1.1 The system must provide a way for an authorized author to create a

SPECIFICATION. (See Authorization Foundational USAP with
parameters USER=Author and ACTIVITY=Author the
SPECIFICATION.)

1.2.1.1.1 Rationale
A SPECIFICATION doesn’t exist unless it is created.

1.2.1.1.2 Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the parameters to be specified and displays existing values.

The portion of the system that accepts input from the user must accept
parameters.

There must be a portion of the system with a mechanism to create new
SPECIFICATIONs.

1.2.1.2 Consider providing default values for all specifiable parameters when

a SPECIFICATION is created. (Providing defaults simplifies the
creation process, but may increase the probability of error for
environments that deviate from those defaults. If the cost of error is
high, then consider not providing defaults or requiring confirmation
of each value. Default values can be changed through modification.)

1.2.1.2.1 Rationale
System has to have something so defaults might be provided.

Circumstances might be very similar so defaults might capture that
similarity.

Authors may want to be efficient and defaults may save authoring time.

Authors may only be interested in changing specific aspects of the
SPECIFICATION, so having defaults for the rest of it is useful.

1.2.1.2.2 Implementing this responsibility
The portion of the system that creates a new SPECIFICATION must
assign defaults.

 - 215 -

1.2.1.3 The SPECIFICATION must be given an identifier. The identifier
should be treated as a parameter that has a default value and can be
modified by the user. (One mechanism for assigning this identification
might be a “Save as”.)

1.2.1.3.1 Rationale
Circumstances might be very similar so values in one SPECIFICATION
may transfer to other circumstances.

Authors may want to be efficient and may want to begin the specification
process with a similar SPECIFICATION.

The authoring system must have an identifier to distinguish one
SPECIFICATION from another.

1.2.1.3.2 Implementing this responsibility
If the identifier is provided by a author:
The portion of the system that renders output must render a UI that allows
the author to provide an identifier and display it.

The portion of the system that accepts input from the user must accept the
identifier.

There must be a portion of the system that manages the authoring process.

The portion of the system that manages the authoring process must
associate the SPECIFICATION with the identifier.

If the identifier is provided automatically by the system:

The portion of the system that creates the SPECIFICATION generates an
identifier (e.g., MSWord automatically generates a name for a new
document).

The portion of the system that manages the authoring process must
associate the SPECIFICATION with the identifier.

1.2.1.4 The SPECIFICATION must be associated with the

APPROPRIATENESS-INFORMATION (i.e., the circumstances
under which it should be invoked (e.g., for specific users, roles,
environments)). The APPROPRIATENESS-INFORMATION should
be treated as a parameter that has a default value and can be
modified by the author.

1.2.1.4.1 Rationale

 - 216 -

The SPECIFICATION is only appropriate for use under certain
circumstances.

System can only use a SPECIFICATION if it is associated with a
circumstance.

Users want the system to work for them the way they want it to work
when they want it to work that way.

1.2.1.4.2 Implementing this responsibility
If the association is provided by an author:
The portion of the system that renders output must render a UI that allows
the authoring of APPROPRIATENESS-INFORMATION and display
existing values.

The portion of the system that accepts input from the user must accept the
APPROPRIATENESS-INFORMATION.

The portion of the system that manages the authoring process must
associate the SPECIFICATION with the APPROPRIATENESS-
INFORMATION.

If the association is provided automatically by the system when a new user
or role is created:
The portion of the system that creates the SPECIFICATION generates an
association.

The portion of the system that manages the authoring process associates
the SPECIFICATION with the circumstances.

1.2.2 Save a SPECIFICATION.

1.2.2.1 The system must provide a means for an authorized author to save
and/or export the SPECIFICATION (e.g., by autosave or by author
request). (See Authorization Foundational USAP with parameters
USER=Author and ACTIVITY=Author the SPECIFICATION.) If
other systems are going to use the SPECIFICATION, then use a
format that can be used by the other systems. (If logging of authoring
results is desired use Logging Foundational USAP with parameter
CONTEXT=Authoring, SPECIFICATION=SPECIFICATION.)

1.2.2.1.1 Rationale
Authors want to be efficient (i.e., input information into the
SPECIFICATION only once).

 - 217 -

The system can only remember things if they are persistent from session to
session.

The software may need to share a SPECIFICATION with other software.

1.2.2.1.2 Implementing this responsibility
If the initiation of the save was automatic:
That portion of the system that manages the authoring process performs
the initiation.

That portion of the system that manages the authoring process stores
and/or exports the SPECIFICATION.

If the initiation of the save was at the author’s request:
The portion of the system that renders output must render a UI that allows
the parameters needed by the system (e.g., format, location) to be input
and display them.

The portion of the system that accepts input from the user must accept the
parameters.

That portion of the system that manages the authoring process stores
and/or exports the SPECIFICATION.

1.2.3 Modify a SPECIFICATION

1.2.3.1 Provide a way for an authorized author to retrieve a

SPECIFICATION (e.g., import a previously-saved file, utilize a
previously-generated data structure, or restore to default values). (See
Authorization Foundational USAP with parameters USER=Author
and ACTIVITY=Author the SPECIFICATION.)

1.2.3.1.1 Rationale
Authors might want different values than are currently assigned.

System has stored the information and must have a current set of data to
work with.

1.2.3.1.2 Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the author to request a retrieval of a SPECIFICATION.

The portion of the system that accepts input from the user must accept this
request.

 - 218 -

That portion of the system that manages the authoring process retrieves
the SPECIFICATION.

1.2.3.2 Display the current parameter values for the SPECIFICATION

(including identifier and circumstances).

1.2.3.2.1 Rationale
Authors want to see what they are editing.

1.2.3.2.2 Implementing this responsibility
That portion of the system that manages the authoring process must
provide the values.

The portion of the system that renders output must render a UI that
displays the values.

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

1.2.3.3 The system must provide a ways for an authorized author to change

the parameter values. The syntax and semantics of the values
specified should conform to the assumptions of the execution
environment of the system. (More details: Best practice is to constrain
the author to such conformation (e.g., choose from drop-down list,
provide a slider for a range of values). If the author’s choices are not
constrained, then the system should check the syntax and semantics
and provide feedback if either are unreasonable.) (See Authorization
Foundational USAP with parameters USER=Author and
ACTIVITY=Author the SPECIFICATION.)

1.2.3.3.1 Rationale
Authors might want different values than are currently assigned.

1.2.3.3.2 Implementing this responsibility
The portion of the system that renders output must render a UI that allows
values to be changed.

The portion of the system that accepts input from the user must accept
new values.

That portion of the system that manages the authoring process replaces the
current values with the new values.

1.2.4 Delete a SPECIFICATION

 - 219 -

1.2.4.1 Provide a way for an authorized author to tentatively remove a
SPECIFICATION from the system (e.g., analogous to dragging a file
to the trash). The system might require a confirmation from the
author prior to performing this action. (See Authorization
Foundational USAP with parameters USER=Author and
ACTIVITY=Author the SPECIFICATION.) (If logging of authoring
deletions is desired use Logging Foundational USAP with parameter
CONTEXT=Authoring, SPECIFICATION=SPECIFICATION.)

1.2.4.1.1 Rationale
Authors might accidentally delete a SPECIFICATION and want to restore
it.

The organization doesn’t want extraneous SPECIFICATIONs on the
system.

The system has to keep it around in case it has to be restored.

1.2.4.1.2 Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the author to tentatively delete a SPECIFICATION.

The portion of the system that accepts input from the user must accept this
request.

That portion of the system that manages the authoring process saves the
SPECIFICATION in case has to be restored.

The portion of the system that renders output must indicate that the
SPECIFICATION has been (tentatively) deleted.

 1.2.4.2 Retrieve a tentatively-deleted SPECIFICATION from the system

(e.g., analogous to dragging a file out of the trash)

1.2.4.2.1 Rationale
Authors might want to restore an accidentally deleted SPECIFICATION.
The system has kept it around so that it can be restored.

1.2.4.2.2 Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the author to restore a tentatively deleted SPECIFICATION.

The portion of the system that accepts input from the user must accept this
request.

 - 220 -

That portion of the system that manages the authoring process must
restore the SPECIFICATION.

The portion of the system that renders output must indicate that the
SPECIFICATION has been restored.

1.2.4.3 Provide a way for an authorized author to permanently remove a

SPECIFICATION from the system (e.g., analogous to emptying the
trash). The system should require a confirmation from the author
prior to performing this action. (See Authorization Foundational
USAP with parameters USER=Author and ACTIVITY=Author the
SPECIFICATION.)

1.2.4.3.1 Rationale
Authors want to delete a SPECIFICATION that is no longer relevant to
their needs.

The organization doesn’t want extraneous SPECIFICATIONs on the
system.

The system has limited resources.

1.2.4.3.2 Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the author to permanently delete a SPECIFICATION.

The portion of the system that accepts input from the user must accept this
request.

That portion of the system that manages the authoring process
permanently deletes the SPECIFICATION.

The portion of the system that renders output must indicate that the
SPECIFICATION has been deleted.

1.2.5 Exit the Authoring System

1.2.5.1 The system must have a way for the author to exit the authoring

system for the SPECIFICATION. (If there are requests still pending
(e.g., unsaved changes), then notify the author and ask for
confirmation of the exit request.)

1.2.5.1.1 Rationale
Software has no way of knowing that an author is finished without explicit
input.

 - 221 -

Authors want to exit when they are done.

1.2.5.1.2 Implementing this responsibility
The system must provide a means for the author to indicate a desire to exit
(e.g., a button, keyboard shortcut, voice command).

The authors must indicate their desire to exit and respond to any
confirmation request.

The portions of the system that do the authoring activities must ask for
confirmation in the event of request still pending. This involves keeping
track of pending requests and requesting the appropriate interactions with
the author.

1.3 Execution with Authored Parameters
Purpose:

・ The Execution with Authored Parameters USAP’s purpose is to allow a
system to use a specification of parameters to determine its behavior in the
areas in which the parameters apply.

Justification:
・ Users want to control the behavior of the computer in certain ways under

certain circumstances that they have previously specified (see the Authoring
foundational USAP).

Glossary:
・ To be completed after user testing

Parameters needed by this USAP:

・ SPECIFICATION: The persistent parameter values that have been previously
specified.

・ APPROPRIATENESS-INFORMATION: The information necessary to
locate the appropriate SPECIFICATION.

Shared Assumptions:
Shared with any other USAP that uses the SPECIFICATION:
・ The syntax and semantics for the concepts that are included in the SPECIFICATION

are defined and known to the developers of both the authoring system and the systems
informed by other USAPs that share the SPECIFICATION.

・ The protocol for saving is defined and known to the developers of both the authoring
system and the systems informed by the Execution with Authored Parameters USAP.

・ USAPs sharing this assumption
o Authoring Foundational USAP

Foundational USAPs used by this USAP:
Authorization Foundational USAP:
・ USER: End user
・ ACTIVITY: Execute the system with parameter values from SPECIFICATION

 - 222 -

 (Optionally) Authoring Foundational USAP:
・ SPECIFICATION: SPECIFICATION.
・ APPROPRIATENESS-INFORMATION: APPROPRIATENESS-INFORMATION.

USAPs that use this Foundational USAP:
User Profile End-user USAP:
・ SPECIFICATION: User profile.
・ APPROPRIATENESS-INFORMATION: User identity

Environment Configuration End-User USAP:
・ SPECIFICATION: Configuration description.
・ APPROPRIATENESS-INFORMATION: Environment identity

Alarms and Events End-User USAP:
・ SPECIFICATION: Rules for Alarms, Events and Displays.
・ APPROPRIATENESS-INFORMATION: Context of use

1.3.1 Access the appropriate SPECIFICATION

1.3.1.1 Retrieve APPROPRIATENESS-INFORMATION (which will allow

determination of appropriate SPECIFICATION). (If
APPROPRIATENESS-INFORMATION depends on the user then the
user must be authorized, see Authorization USAP with parameters
USER=End user and ACTIVITY=Execute the system with parameter
values from SPECIFICATION.)

1.3.1.1.1 Rationale
The system needs a SPECIFICATION in order to execute appropriately.

System has no way to determine appropriateness of a SPECIFICATION
without APPROPRIATENESS-INFORMATION. Sometimes this
information may have to come from a user, sometimes it can be inferred
from the environment.

Users and organizations want the system to execute appropriately.

1.3.1.1.2 Implementing this responsibility
There must be a portion of the system that knows how to retrieve
APPROPRIATENESS-INFORMATION. For example,
APPROPRIATENESS-INFORMATION may be maintained in a fixed
location within a system or within the file structure of the system.

1.3.1.2 The system must retrieve the appropriate SPECIFICATION.

1.3.1.2.1 Rationale

 - 223 -

The system needs a SPECIFICATION in order to execute appropriately.

Users and organizations want the system to execute appropriately.

1.3.1.2.2 Implementing this responsibility
The portion of the system that will use the specified parameters must
retrieve the SPECIFICATION.

1.3.1.3 The system should inform the user and/or the system administrator of

the results of attempting to retrieve the appropriate
SPECIFICATION. There are three cases: find zero, find one, find
many. (Typically, finding zero generates an error message, finding
one is indicated by allowing the user to proceed, finding many is
indicated by listing their identifiers and allowing the user to view the
contents of the SPECIFICATION.)

1.3.1.3.1 Rationale
Users want to know if the appropriate SPECIFICATION has been located
so they can proceed.

Users want to know if the appropriate SPECIFICATION has not been
located because they cannot proceed without it.

Users want to know if more than one appropriate SPECIFICATION has
been located because they can help resolve the ambiguity.

System administrators might want to know if the appropriate
SPECIFICATION has not been located or if there are many, because it
might be an indication of system error.

1.3.1.3.2 Implementing this responsibility
In the event of failing to be located or finding more than one appropriate
SPECIFICATION:
The portion of the system that does the locating must provide information
about the failure or the identities of each SPECIFICATION.

If informing the system administrator: In the event of a failure or locating
more than one appropriate SPECIFICATION, a portion of the system
must have a mechanism to inform the system administrator. This may be
quite complicated (e.g., sending email) and is beyond the scope of this
USAP.

For informing the user:

In the event of a failure: the portion of the system that renders information
to the user should display information about the failure.

 - 224 -

In the event of a successfully locating an appropriate SPECIFICATION:
The portion of the system that renders information to the user displays
should indicate success in some way (e.g., progress feedback saying it is
retrieving the SPECIFICATION).

In the event of finding many: The portion of the system that renders
information to the user should indicate the identifier of each
SPECIFICATION.

The portion of the system that renders information to the user should
provide a UI for allowing the user to resolve the ambiguity.

The portion of the system that handles input from the user should allow
the user to select one of the located SPECIFICATIONs or request to view
the contents of one or more of the located SPECIFICATIONs.

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

1.3.1.4 The system must check that the retrieved SPECIFICATION is valid

for use.

1.3.1.4.1 Rationale
System cannot use an invalid SPECIFICATION.

1.3.1.4.2 Implementing this responsibility
The portion of the system that will use the specified parameters must
check the SPECIFICATION to make sure it is valid (e.g., it could be
empty, corrupt, or incomplete).

1.3.1.5 The system should inform the user and/or the system administrator of

the results of validating the SPECIFICATION.

1.3.1.5.1 Rationale
Users want to know if the SPECIFICATION is valid so they can proceed.
Users want to know if the SPECIFICATION is not valid because they
cannot proceed with an invalid SPECIFICATION.
System administrators might want to know if the SPECIFICATION is not
valid, because it might be an indication of system error.

1.3.1.5.2 Implementing this responsibility
In the event of an invalid SPECIFICATION: The portion of the system
that does the validation must provide information about the failure.

 - 225 -

If informing the system administrator: In the event of a failure, a portion
of the system must have a mechanism to inform the system administrator.
This may be quite complicated (e.g., sending email) and is beyond the
scope of this USAP.

For informing the user:

In the event of an invalid SPECIFICATION: The portion of the system
that renders information to the user should display information about the
failure.

In the event of a valid SPECIFICATION: The portion of the system that
renders information to the user displays should indicate success in some
way. This is typically indicated by allowing the user to proceed.

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

1.3.1.6 In the event of a missing, invalid or partially invalid

SPECIFICATION, the system should provide the user with options
for exiting the system or fixing the problem e.g., offering defaults for
values or offering to direct the user to the authoring interface. (If
directing the user to the authoring interface, use the Authoring
Foundational USAP with parameter SPECIFICATION=
SPECIFICATION, APPROPRIATENESS-INFORMATION=
APPROPRIATENESS-INFORMATION).

1.3.1.6.1 Rationale
Even though the portion of the system that creates a new
SPECIFICATION provides defaults, a SPECIFICATION might have been
corrupted.

A system cannot work without a valid SPECIFICATION.
The user wants to use the system, so if the system can’t be used for lack of
a valid SPECIFICATION then the user wants to fix it.

1.3.1.6.2 Implementing this responsibility
The portion of the system that renders information to the user should
display information about the options.

The portion of the system that handles input from the user should allow
the user to select one of the options.

The portion of the system that validates the SPECIFICATION should
generate defaults for unspecified or invalid parameters. These defaults

 - 226 -

should be consistent with the defaults generated by the portion of the
system that creates a new SPECIFICATION.

The portion of the system that validates the SPECIFICATION should act
on the option selected by the user.

1.3.1.7 The system must provide a means for displaying and dismissing the

content of a SPECIFICATION. (This is so they can decide between
multiple SPECIFICATIONs or check that the current
SPECIFICATION has correct values.) Optionally, when displaying,
the system could offer the user access to the authoring interface to
modify parameter values. If directing the user to the authoring
interface, use the Authoring Foundational USAP with parameter
SPECIFICATION= SPECIFICATION, APPROPRIATENESS-
INFORMATION= APPROPRIATENESS-INFORMATION).

1.3.1.7.1 Rationale
Users might want to check the parameter values in the SPECIFICATION.

Users might want to modify the parameter values in the
SPECIFICATION.

1.3.1.7.2 Implementing this responsibility
The portion of the system that retrieves the SPECIFICATION must
provide the parameters and their values.

The portion of the system that renders information to the user should
display the parameters and their values.

The portion of the system that handles input from the user should provide
a UI to request the display and dismiss any unwanted information.

Optional connection to the authoring system for users with authoring
permission:

The portion of the system that handles input from the user should provide
a UI to invoke the authoring system (with parameter SPECIFICATION).

The portion of the system that retrieves the SPECIFICATION should
invoke the authoring system (with parameter SPECIFICATION).

1.3.2 Use specified parameters

 - 227 -

1.3.2.1 The system must apply the specified parameters as necessary for
execution. That is, the items specified must be treated as parameters
by the system code (i.e., not hard-coded anywhere) and the values
must be taken from the SPECIFICATION. (If logging of execution
with specified parameters is desired use Logging Foundational USAP
with parameters CONTEXT=Execution,
SPECIFICATION=SPECIFICATION.)

1.3.2.1.1 Rationale
The entire point of this foundational USAP is that users want to control
the behavior of the computer in certain ways under certain circumstances
that they have previously specified. Therefore, the system must use the
specified parameters.

1.3.2.1.2 Implementing this responsibility
There must be a portion of the system where the parameters that have been
specified have some effect.

This portion of the system must treat the parameters as variables rather
than as hard-coded values. It must assign the specified parameter values to
these variables.

1.3.2.2 The system must provide a UI for the SPECIFICATION to accept

operator inputs as necessary. (If logging of operator input is desired
use Logging Foundational USAP with parameters
CONTEXT=Execution, SPECIFICATION=SPECIFICATION.)

1.3.2.2.1 Rationale
Some of the actions of the SPECIFICATION may require operator input.

1.3.2.2.2 Implementing this responsibility
The portion of the system that renders information to the user should
display the request/opportunity for operator input.

The portion of the system that handles input from the user should provide
a UI to provide operator input.

There must be a portion of the system that receives and interprets operator
input.

1.4 Logging

 - 228 -

Purpose:
・ The Logging foundational USAP’s purpose is to retain and examine selected

information generated during execution.
Justification:

・ Some information known only during execution needs to be retained either
for debugging or audit-trail purposes.

Glossary:
・ To be completed after user testing

Parameters needed by this USAP:

・ CONTEXT: The activities that generate the events that are logged.

Foundational USAPs used by this USAP:
(Optionally) Authoring Foundational USAP:
・ SPECIFICATION: Logging specification.
・ APPROPRIATENESS-INFORMATION: Logging state.

Shared Assumptions:
Shared with any other USAP that uses the Logging Specification:
・ The development team has defined the syntax and semantics for the concepts that

are included in the Logging Specification.
・ The protocol for saving the Logging Specification is defined and known to the

developers of both the authoring system and the systems informed by other
USAPs that share the Logging Specification.

・ USAPs sharing these assumptions
o Authoring Foundational USAP
o Execution with Authored Parameters Foundational USAP

 (Optionally) Execution with Authored Parameters Foundational USAP:
・ SPECIFICATION: Logging specification.
・ APPROPRIATENESS-INFORMATION: Logging state.

Shared Assumptions:
Shared with any other USAP that uses the Logging Specification:
・ The development team has defined the syntax and semantics for the concepts that

are included in the Logging Specification.
・ The protocol for saving the Logging Specification is defined and known to the

developers of both the authoring system and the systems informed by other
USAPs that share the Logging Specification.

・ USAPs sharing these assumptions
o Authoring Foundational USAP
o Execution with Authored Parameters Foundational USAP

USAPs that use this Foundational USAP:
Authorization foundational USAP has two potential contexts that might produce events to
be logged
・ CONTEXT: Identification.
・ CONTEXT: Authentication.

 - 229 -

Authoring foundational USAP
・ CONTEXT: Authoring.

Execution with Authored Parameters foundational USAP
・ CONTEXT: Execution.

1.4.1 Specify the items to be logged.

1.4.1.1 This could be done either during development (in which case, this is

beyond the scope of this USAP) or during or after deployment (in
which case, use the Authoring Foundational USAP with parameter
SPECIFICATION=Logging specification, APPROPRIATENESS-
INFORMATION=Logging state). Ensure that sufficient parameters
of the SPECIFICATION are specified for logging so that subsequent
analysis is meaningful (e.g., CONTEXT, parameter name, and time
stamp). Consider prototyping and testing log information and analysis
to ensure sufficiency.

1.4.1.1.1 Rationale
Software must know the information to be logged.

The values in the repository are going to be examined at a later time and
these values must be able to be uniquely identified with sufficient
information to be useful.

1.4.1.1.2 Implementing this responsibility
If done during development:
Implementation is beyond the scope of this USAP.

If done during or after deployment:
Use the Authoring Foundational USAP with parameters
SPECIFICATION=Logging specification and APPROPRIATENESS-
INFORMATION=Logging state.

1.4.2 Log items during execution

1.4.2.1 Have a repository in which to store logged items relevant to the

SPECIFICATION. This repository could be bounded in size, e.g.,
circular buffer, or unbounded, e.g., disk file.

1.4.2.1.1 Rationale
The system must have a place to put logged information.

1.4.2.1.2 Implementing this responsibility
There must be a portion of the system that logs information.

 - 230 -

The portion of the system that logs information must know the form of the
repository and its location and may be responsible for creating the
repository.

1.4.2.2 Enter values relevant to the SPECIFICATION into the repository as

specified. (If a Logging specification has been Authored, then use the
Execution with Authored Parameters Foundational USAP with
parameters SPECIFICATION=Logging specification and
APPROPRIATENESS-INFORMATION=Logging state, to access the
appropriate specification and use it to enter the values into the
repository.)

1.4.2.2.1 Rationale
Users need the logged values for debugging or audit trail purposes.

Stored information must persist long enough for analysis to be undertaken.

1.4.2.2.2 Implementing this responsibility
The portion of the system that logs information enters the particular values
into the repository.

Attention should be paid to performance considerations since this code
may be executed many times.

1.4.3 Post-processing

1.4.3.1 Retrieve items relevant to the SPECIFICATION from the repository.

This is typically done some time after the information has been
logged, e.g., during the analysis of an anomaly.

1.4.3.1.1 Rationale
Users need information to analyze past events.
The information they need has been stored in the repository and must be
retrieved.

1.4.3.1.2 Implementing this responsibility
There must be a portion of the system that knows how to get information
out of the repository and does so.

1.4.3.2 Support analysis of retrieved items relevant to the SPECIFICATION

by a log analyst (a special type of user).

1.4.3.2.1 Rationale
Users need support to analyze past events.

 - 231 -

1.4.3.2.2 Implementing this responsibility
This may be quite complicated (e.g., graphical display, manipulation,
mathematical modeling, debugging) and is beyond the scope of this
USAP.

2. End-User USAPs

For each End-User USAP, we expect to include

Scenario:
・ A story from the end-user’s perspective showing the purpose of the end-user

USAP.
Usability Benefits:
・ Justification for this end-user USAP in terms of usability benefits potentially

achieved by implementing this USAP.
For each Foundational USAP used by this USAP (if any), provide:

Parameters furnished to the foundational USAP:
・ The parameter values furnished to the foundational USAP used by this USAP.

2.1 Environment Configuration

Scenario:
・ An organization wants to supply the same software system to different hardware

environments containing different collections of sensors and actuators. A
configuration description of the sensors and actuators will allow the system to operate
correctly in its environment.

Overview:
・ For a software system to be configurable for different environments, actions of the

system must be parameterized and the parameter values have to be available at
execution time. The values of the parameters must be specified, this configuration
description has to be associated with its environment, and the configuration
description has to be persistent across sessions.

Glossary:
・ To be completed after user testing

Usability Benefits:
・ Environment configuration prevents mistakes by tailoring the interface to present

only information relevant to the current environment.

Assumptions:
6. There is at least one user who is authorized to author configuration descriptions.

 - 232 -

7. The syntax and semantics for the concepts that are included in the configuration
description are defined and known to the development team.

8. The protocol for saving the configuration description is defined and known to the
development team.

9. Defaults exist for the specifiable parameters.
10. A template exists for authors to use when creating a new configuration description

(i.e., the names and definitions of specifiable parameters and their defaults, with
optional format).

Foundational USAPs used by this USAP:
Authoring Foundational USAP:
・ SPECIFICATION: Configuration description.
・ APPROPRIATENESS-INFORMATION: Environment identity
Execution with Authored Parameters Foundational USAP:
・ SPECIFICATION: Configuration description.
・ APPROPRIATENESS-INFORMATION: Environment identity

2.1.1 Author Configuration Description
Use Authoring Foundational USAP with SPECIFICATION= Configuration
description, APPROPRIATENESS-INFORMATION= Environment identity.

Additional responsibilities beyond those inherited from foundational USAPs
 None.

Specializations are as follows.
 None.

2.1.2 Execute with Authored Configuration Description

Use Execution with Authored Parameters Foundational USAP with
SPECIFICATION= Configuration description, APPROPRIATENESS-
INFORMATION= Environment identity.

Additional responsibilities beyond those inherited from foundational USAPs
 None.

Specializations are as follows.

1.3.1.1 Retrieve APPROPRIATENESS-INFORMATION (which will allow
determination of appropriate SPECIFICATION) (If APPROPRIATENESS-
INFORMATION depends on the user then the user must be authorized. See
Authorization USAP with parameters USER=End user and
ACTIVITY=Execute the system with parameter values from SPECIFICATION.)
For the Environment Configuration End-User USAP, the

 - 233 -

APPROPRIATENESS-INFORMATION=environment identity, so there is
no need for authorization. In many cases, APPROPRIATENESS-
INFORMATION may not need to be retrieved at all because the location of
the configuration description is built-in (e.g., config.dat at a known location).
If so, this responsibility is not applicable.

1.3.1.1.1 The system must check that the retrieved SPECIFICATION is
valid for use.
For the Environment Configuration End-User USAP, the validity
depends on the consistency between the Configuration Description
and the physical reality of execution environment. Thus, consistency
involves checking hardware. For example, sensors may need to be
polled to verify that they are currently present and working.

2.2 User Profile

Scenario:
・ A user wishes to have the capabilities of the system personalized to reflect his or her

preferences or role. The capabilities that can be personalized may include language,
access to system functionality, display characteristics, account information or any
preference that might vary among users or roles.

Overview:
・ For a user profile to work, configurable actions of the system must be parameterized

and the parameter values have to be available at execution time. The values of the
parameters must be specified, this specification (the “user profile”) has to be
associated with the user and persist across sessions.

Glossary:
・ To be completed after user testing

Usability Benefits:
・ User profile accelerates error-free portion of routine performance by providing

information in a familiar and individually-tailored form, providing user-defined hot-
keys and allowing common operations to be easily accessible.

・ User profile prevents mistakes by simplifying the interface to that which is familiar
and necessary. This prevents infrequent users from making the types of mistakes
caused by too many options.

・ User profile accommodates mistakes by enabling the user to disallow certain options
(e.g., disabling the tap-to-click option on a track pad).

・ User profile increases user confidence and comfort by providing an individualized
interface.

Assumptions:
1. There is at least one user who is authorized to author user profiles.

 - 234 -

2. The syntax and semantics for the concepts that are included in the User Profile are
defined and known to the development team..

3. The protocol for saving the User Profile is defined and known to the development
team.

4. Defaults exist for the specifiable parameters.
5. A template exists for authors to use when creating a new user profile (i.e., the names

and definitions of specifiable parameters and their defaults, with optional format).

Foundational USAPs used by this USAP:
Authoring Foundational USAP:
・ SPECIFICATION: User profile
・ APPROPRIATENESS-INFORMATION: User identity.
Execution with Authored Parameters Foundational USAP:
・ SPECIFICATION: User profile
・ APPROPRIATENESS-INFORMATION: User identity

2.2.1 Author User Profile

Use Authoring Foundational USAP with SPECIFICATION=User Profile,
APPROPRIATENESS-INFORMATION=User identity.

Additional responsibilities beyond those inherited from foundational USAPs
 None.

Specializations are as follows.
 None.

2.2.2 Execute with Authored User Profile

Use Execution with Authored Parameters Foundational USAP with
SPECIFICATION=User Profile and APPROPRIATENESS-
INFORMATION=User identity.

Additional responsibilities beyond those inherited from foundational USAPs
 None.

Specializations are as follows.

1.3.1.1 Retrieve APPROPRIATENESS-INFORMATION (which will
allow determination of appropriate SPECIFICATION) (If
APPROPRIATENESS-INFORMATION depends on the user then the
user must be authorized. See Authorization USAP with parameters
USER=End user and
ACTIVITY=Execute the system with parameter values from
SPECIFICATION.)
For the User Profile End-User USAP, the APPROPRIATENESS-

 - 235 -

INFORMATION=user identity, so use the AUTHORIZATION
foundational USAP with USER=End user and ACTIVITY=Execute
the system with parameter values from user profile.

2.3 Alarms and Events

Scenario:
The user needs feedback from the system when an error occurred or a specific condition
is met. The user can be the operator of the system or a superior system. The feedback can
be needed for safety reasons, diagnostic, problem solving or information purposes.

Overview:
Alarm, Events and Messages Management System
EEMUA describes how Alarm & Events are important in the control of plant and
machinery. Alarm and Event systems form an essential part of the operator interfaces in
large modern industrial systems. They provide vital support to the operators managing
these complex systems by warning them of situations that need their attention.
Alarms are signals which are annunciated to the operator typically by an audible sound,
some sort of visual indication, usually flashing, and by the presentation of a message or
some other identifier. An alarm will indicate a problem requiring operator attention, and
is generally initiated by a process measurement passing a defined alarm setting as it
approaches an undesirable or potentially unsafe value. Alarm systems help the operator;

・ to maintain the plant within safe operating envelope;
・ to recognize and act to avoid hazardous situations;
・ to identify deviations from desired operating conditions that could lead to financial

loss;
・ to better understand complex process conditions. Alarms should be an important

diagnostic tool, and are one of several sources that an operator uses during an upset.

The terms alarm and event are often used interchangeably and their meanings are not
distinct. An alarm is an abnormal condition that requires special attention. An event may
or may not be associated with a condition. For example, the transitions into the level
alarm condition and the return to normal are events which are associated with conditions.
However, operator actions, system configuration changes, and system errors are
examples of events which are not related to specific conditions.

Alarm processing and handling
The Norwegian Petroleum Directorate(NPD) has identified alarm processing and
handling concepts described in Figure 1 and used in this document;

 - 236 -

Figure 1. NPD's definition of alarm processing.

・ Alarm generation means generating an alarm according to some defined rules.
・ Alarm filtering means preventing an alarm signal so that it is not available for the

operator in any part of the system.
・ Alarm suppression means preventing an alarm from being presented in main alarm

displays, e.g., overview displays, but the alarm is still available in the system at a
more detailed level.

・ Alarm shelving is a facility for manually removing an alarm from the main list and
placing it on a shelve list, temporarily preventing the alarm from re-occurring on the
main list until it is removed form the shelf. Shelving will normally be controlled by
the operator, and is intended as a "last resort" for handling irrelevant nuisance alarms
that have not been caught by signal filtering or alarm suppression mechanisms.

Figure 2 shows the actions which cause transitions between the states that a displayed

alarm may have according to EEMUA.

Other definitions
・ Alarm prioritization is a categorization of alarms based on the importance of each

alarm for the operator tasks.
・ Overview displays are designed to help operators get an overview of the state of the

process. Overview displays include: Main alarm lists, tiles or enunciator alarm
displays, as well as large screen displays showing key information.

・ Selective lists show only a selection of the available alarm information, based on
selection and sorting criteria specified by operators. For more definitions see Table 1.

 - 237 -

Figure 2. EEMUA's definitions of alarm state transitions.

References
[1] EEMUA 191: Alarm Systems. A Guide to Design, Management and Procurement.

1999, ISBN 0 8593 1076 0 (http://www.eemua.co.uk).
[2] Norwegian Petroleum Directorate YA-711: Principles for alarm system design, 2001

(http://www.ptil.no/regelverk/R2002/ALARM_SYSTEM_DESIGN_E.HTM).
[3] MSDN library, Windows Vista User Experience
[4] M.Hollender, Beuthel, C.: Intelligent alarming, Effective alarm management

improves safety, fault diagnosis and quality control, ABB Review 1, 2007.

Glossary:
The following definitions are used in this document. <insert Pia’s table)

Usability Benefits:

・ Reduces impact of slips by informing the user about the deviation from
normal procedure.

・ Supports problem solving by helping user understand the problem and
contributes to the solution of the problem.

・ Facilitate learning by helping the user to understand and learn the
consequences of actions

・ Action confirmation feedback prevents the user from going any further with
a mistake. The feedback acts as a gatekeeper, and need an acknowledgement
to go ahead with the procedure.

・ Feedback helps user tolerate system error by informing the user that there is a
problem and possible cause of the problem.

・ Being able to solve a problem with help of a system’s feedback will increase
user confidence by supporting the user performing his/her work. It will also
build trust for the system as it always presents accurate and helpful feedback.

 - 238 -

Assumptions:
1 There is at least one user who is authorized to author rules for alarms, events and

display.
2 The syntax and semantics for the concepts that are included in the Alarms&Events

specification are defined and known to the development team. These concepts may
include values, logic, properties, etc. to control the behavior of alarms and events.
These concepts must support the customers current alarm philosophy and the
relevant standards that apply for the systems customers. See
AlarmLanguage_BassJohnGolden.doc for an example inspired by the Norwegian
Petroleum Directorate YA-711: Principles for alarm system design, 2001
(http://www.ptil.no/regelverk/R2002/ALARM_SYSTEM_DESIGN_E.HTM).

3 The development team has defined presentation conventions that are salient to the
user, e.g, fonts, icons, colors. These conventions must differentiate alarms, events,
and messages from each other.

4 The protocol for saving an Alarms&Events specification is defined and known to the
development team.

5 There is no more than one Alarms&Events specification per context of use. That is,
all of the rules are bundled into one specification that the system loads when it is
executed in a particular context. So, for example, there may be a single specification
for normal operation of the system and a different single specification for diagnosis
procedures.

6 The development team has decided on an appropriate protocol for concurrent users.
That is, can each user be completely autonomous (e.g., being able to dismiss or
suppress alarms), is one user the “master” and all the rest can only observe, etc.

7 The development team has decided which items will be logged during execution. For
example, these items might include: state transitions of an alarm, the event of failure
of the alarm generation routine, the alarm generation rate,

Foundational USAPs used by this USAP:
Authoring Foundational USAP:
・ SPECIFICATION: Rules for Alarms, Events and Displays
・ APPROPRIATENESS-INFORMATION: Context of use.
Execution with Authored Parameters Foundational USAP:
・ SPECIFICATION: Rules for Alarms, Events and Displays
・ APPROPRIATENESS-INFORMATION: Context of use.

2.3.1 Author Rules for Alarms, Events and Displays
Use Authoring Foundational USAP with SPECIFICATION=Rules for Alarms,
Events and Displays, APPROPRIATENESS-INFORMATION= Context of use.
By “Context of use” we mean things like “in operation” “in maintenance” “in
diagnosis”.

Additional responsibilities beyond those inherited from foundational USAPs
 None.

Specializations are as follows.

 - 239 -

1.2.1.1 The system must provide a way for an authorized author to
create a SPECIFICATION. (See Authorization Foundational USAP
with parameters USER=Author and ACTIVITY=Author the
SPECIFICATION.) For the Alarms and Events End-User USAP, there is
an assumption that a language has been defined that describes the
parameters and their interactions (Assumption 1). The specification being
created must conform to this language.

1.2.2 Save a SPECIFICATION. The system must provide a means for the
SPECIFICATION to be saved and/or exported (e.g., by autosave or by
author request). If other systems are going to use the SPECIFICATION,
then use a format that can be used by the other systems. (If logging of
authoring results is desired use Logging Foundational USAP with
parameter CONTEXT=Authoring.) For the Alarms & Events End-User
USAP logging authoring results may be needed for regulatory purposes.
If this is the case, then use the Logging Foundational USAP with
Context=Authoring.

Display the current parameter values (including identifier and
circumstances).
For the Alarms & Events End-User USAP the system must not
only display the current parameter settings, but also display some
of the implications of some of the current parameter settings. For
example, the system must display the current priority distribution
of the alarms during authoring of the setting of the alarm
priority. E.g., “5% of the configured alarms are high priority”.
[Section 2.5. #27, p. 15 Norwegian Petroleum Directorate YA-
711: Principles for alarm system design, 2001
(http://www.ptil.no/regelverk/R2002/ALARM_SYSTEM_DESIG
N_E.HTM).

The system must provide a ways for an authorized author to
change the parameter values…
For the Alarms & Events End-User USAP the authorization
information to modify a rule is a property of the rule. Therefore
use the Authorization Foundational USAP with parameters
USER=Author and ACTIVITY=Modify a particular rule.

The system must permit or prohibit specific ACTIVITIES
dependent on who the USER is and on the set of ACTIVITIES
they are attempting to perform, i.e., the system must know (built
in, stored, provided by the OS, etc.) the specific permissions for
each USER and then enforce these permissions
For the Alarms & Events End-User USAP the permission
information to modify a rule is a property of a rule and the

 - 240 -

system must know how to retrieve the permission information
from that rule.

2.3.2 Execute with Authored Rules for Alarms, Events and Displays

Use Execution with Authored Parameters Foundational USAP with
SPECIFICATION=Rules for Alarms, Events and Displays and
APPROPRIATENESS-INFORMATION=Context of use.

Additional responsibilities beyond those inherited from foundational USAPs

2.3.2.1 The system must permit multiple users to operate simultaneously in

accordance with the protocol defined in the assumptions, e.g., each
user could have the ability to have their own display filter settings.

2.3.2.1.1 Rationale
Some large systems may require more than one operator to function
safely.

Each operator may want to sort the alarm list display according to
different criteria depending on his/hers current task or preferences.

2.3.2.1.2 Implementing this responsibility
The portion of the system that stores system data must be shareable among
multiple users.

The portion of the system that manages system data must synchronize
among multiple users to avoid simultaneous update of system data.

The portion of the system that manages system data must implement a
protocol that determines what the system must do in the event that two
users simultaneously issue conflicting commands. Consider informing the
users in the event of a conflict as a portion of the protocol.

The portion of the system that manages user-specific data must be thread
safe (e.g., re-entrant)

The portion of the system that interacts with the users must be thread safe.

2.3.2.2 The system must have the ability to translate the names/ids of

externally generated signals, e.g., from a sensor, into the concepts that
are included in the Alarms&Events specification.

2.3.2.2.1 Rationale

 - 241 -

The environment contains sensors that generate and actuators that respond
to analog or digital signals in their own form.

The alarm and event portion of the system can only operate with logical
concepts.

2.3.2.2.2 Implementing this responsibility
There should be a portion of the system (e.g., an intermediary) that sits
between those portions of the system that interact directly with sensors
and actuators (e.g., the device drivers) and the portion of the system that
implements the alarm and event logic.

This intermediary should translate between the signals by the sensors and
actuators and the logical concepts required by alarm and event rules.

2.3.2.3 The system must have the ability to broadcast a generated event so

that an external system can use it. E.g., an external long-time storage
system.

2.3.2.3.1 Rationale
Some events require informing external people or systems. For example,
an explosion may need to call emergency responders.

2.3.2.3.2 Implementing this responsibility
The portion of the system that executes the alarm and event rules must
have the capability to broadcast to appropriate external systems.

2.3.2.4 The system must have the ability to present alarm state transitions in

the alarm displays within the time restrictions valid for this system.

2.3.2.4.1 Rationale
Users have limits as to how fast they can operate, i.e., perceive
information, comprehend information, make decisions, and perform motor
actions. This imposes a lower bound on how long information has to be
displayed (visual or auditory).

Because the alarm system may supervise hazardous environments, safety
regulations may require specific response times. This imposes an upper
bound on the number of human actions that can be required to respond to
alarms.

Any claims made for the operator action in response to alarms should be
based upon sound human performance data and principles.

2.3.2.4.2 Implementing this responsibility

 - 242 -

The portion of the system that displays information to the user should
ensure that information is displayed long enough for a person to see or
hear it. This requires that this portion of the system maintain timing
information of how long information has been displayed and ensure that it
is longer than minimal human perceptual limits.

The portion of the system that does the scheduling should schedule alarms
as high-priority activities.

The portion of the system that interacts with the user during emergency
situations must be designed to meet the response time requirements. This
is the responsibility of the UI designers and does not impose additional
architectural requirements.

2.3.2.5 The system must have sufficient persistent storage for alarms, rules

and data to be saved. It may be acceptable to limit the number of
events to be saved.

2.3.2.5.1 Rationale
Regulations might require long-term storage of alarms, rules and data
(e.g., in the food and drug business).

An organization may have publication, notification, history, fault
diagnostic needs that require persistent data.

The system may be stopped and started again and the rules and data must
not get lost when this happens.

There might be a lot of data.

Storage media has cost (hardware, time to read and write, network
bandwidth).

2.3.2.5.2 Implementing this responsibility
The portion of the system that manages persistent data must ensure that
the most recent and the most important data is not lost. This could be done
by having large persistent data stores; it could be done by overwriting
older data with newer data.

The portion of the system that manages persistent data must have a
protocol to determine which data gets overwritten when persistent storage
is almost full.

Additional responsibilities beyond those inherited from foundational USAPs

 - 243 -

1.3.1.1 Retrieve APPROPRIATENESS-INFORMATION (which will allow
determination of appropriate SPECIFICATION) (If
APPROPRIATENESS-INFORMATION depends on the user then the
user must be authorized. See Authorization USAP with parameters
USER=End user and ACTIVITY=Execute the system with parameter
values from SPECIFICATION.)
For the Alarms & Events End-User USAP the APPROPRIATENESS-
INFORMATION may include not only the Context of use, but in the
case of concurrent users also who is using a display. Therefore also use
the Authorization Foundational USAP with parameters USER=End-
user and ACTIVITY=Execute with Rules for Alarms, Events and
Displays.

1.3.2.1 The system must apply the specified parameters as necessary for
execution. That is, the items specified must be treated as parameters by the
system code (i.e., not hard-coded anywhere) and the values must be taken
from the SPECIFICATION. (If logging of execution with specified
parameters is desired use Logging Foundational USAP with parameters
CONTEXT=Execution.)
For the Alarms & Events End-User USAP, the information to be logged
must be in accordance with the assumptions about logged information.
Therefore use the Logging Foundational USAP with parameters
CONTEXT=Execution.

Other things to consider when designing alarms, events and displays:
Provide the ability to support native languages.

Provide context-sensitive help for instances of alarms, events and
messages guided by their unique specification identity.

Present multiple views of the alarm displays. For example, one view could
include N number of raised alarms, another could include all raised alarms
since the timestamp of the oldest raised and non-cleared alarm.
Give feedback on user actions within 150 ms. Feedback must be
appropriate to the manner in which the command was issued. For
example, if the user pressed a button, changing the color of the button
would indicate the user feedback.

 - 244 -

Appendix K: Responsibilities used in ABB User Tests.

Authoring

AU.1. Create a Specification

AU.1.1 The system must provide a way for an authorized author to create a

[User Profile, Configuration Description, Conditions for Alarms, Events
and Displays].

Rationale
A [User Profile, Configuration Description, Conditions for Alarms, Events
and Displays] doesn’t exist unless it is created.

Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the parameters to be specified and displays existing values.

The portion of the system that accepts input from the user must accept
parameters.

There must be a portion of the system with a mechanism to create new
[User Profile, Configuration Description, Conditions for Alarms, Events
and Displays].

AU.1.2 Consider providing default values for all specifiable parameters when a
[User Profile, Configuration Description, Conditions for Alarms, Events
and Displays] is created. (Providing defaults simplifies the creation
process, but may increase the probability of error for environments that
deviate from those defaults. If the cost of error is high, then consider not
providing defaults or requiring confirmation of each value. Default
values can be changed through modification.)

Rationale
System has to have something so defaults might be provided.
Circumstances might be very similar so defaults might capture that
similarity.
Authors may want to be efficient and defaults may save authoring time.
Authors may only be interested in changing specific aspects of the [User
Profile, Configuration Description, Conditions for Alarms, Events and
Displays], so having defaults for the rest of it is useful.

Implementing this responsibility

 - 245 -

The portion of the system that creates a new [User Profile, Configuration
Description, Conditions for Alarms, Events and Displays] must assign
defaults.

AU.1.3 The [User Profile, Configuration Description, Conditions for Alarms,
Events and Displays] must be given an identifier. The identifier should
be treated as a parameter that has a default value and can be modified
by the user. (One mechanism for assigning this identification might be a
“Save as”.)

Rationale
Circumstances might be very similar so values in one [User Profile,
Configuration Description, Conditions for Alarms, Events and Displays]
may transfer to other circumstances.

Authors may want to be efficient and may want to begin the specification
process with a similar [User Profile, Configuration Description,
Conditions for Alarms, Events and Displays].

The authoring system must have an identifier to distinguish one [User
Profile, Configuration Description, Conditions for Alarms, Events and
Displays] from another.

Implementing this responsibility
If the identifier is provided by a author:
The portion of the system that renders output must render a UI that allows
the author to provide an identifier and display it.

The portion of the system that accepts input from the user must accept the
identifier.

There must be a portion of the system that manages the authoring process.

The portion of the system that manages the authoring process must
associate the [User Profile, Configuration Description, Conditions for
Alarms, Events and Displays] with the identifier.

If the identifier is provided automatically by the system:
The portion of the system that creates the [User Profile, Configuration
Description, Conditions for Alarms, Events and Displays] generates an
identifier (e.g., MSWord automatically generates a name for a new
document).

The portion of the system that manages the authoring process must
associate the [User Profile, Configuration Description, Conditions for
Alarms, Events and Displays] with the identifier.

 - 246 -

AU.2. Save a Specification.

AU.2.1. The system must provide a means for an authorized author to save
and/or export the [User Profile, Configuration Description, Conditions
for Alarms, Events and Displays] (e.g., by autosave or by author
request). If other systems are going to use the [User Profile,
Configuration Description, Conditions for Alarms, Events and
Displays], then use a format that can be used by the other systems.

Rationale
Authors want to be efficient (i.e., input information into the [User Profile,
Configuration Description, Conditions for Alarms, Events and Displays]
only once).

The system can only remember things if they are persistent from session to
session.

The software may need to share a [User Profile, Configuration
Description, Conditions for Alarms, Events and Displays] with other
software.

Implementing this responsibility
If the initiation of the save was automatic:
That portion of the system that manages the authoring process performs
the initiation.

That portion of the system that manages the authoring process stores
and/or exports the [User Profile, Configuration Description, Conditions for
Alarms, Events and Displays].

If the initiation of the save was at the author’s request:
The portion of the system that renders output must render a UI that allows
the parameters needed by the system (e.g., format, location) to be input
and display them.

The portion of the system that accepts input from the user must accept the
parameters.

That portion of the system that manages the authoring process stores
and/or exports the [User Profile, Configuration Description, Conditions for
Alarms, Events and Displays].

 - 247 -

AU.3. Modify a SPECIFICATION

AU.3.1 Provide a way for an authorized author to retrieve a [User Profile,
Configuration Description, Conditions for Alarms, Events and Displays]
(e.g., import a previously-saved file, utilize a previously-generated data
structure, or restore to default values).

Rationale
Authors might want different values than are currently assigned.

System has stored the information and must have a current set of data to
work with.

Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the author to request a retrieval of a [User Profile, Configuration
Description, Conditions for Alarms, Events and Displays].

The portion of the system that accepts input from the user must accept this
request.

That portion of the system that manages the authoring process retrieves
the [User Profile, Configuration Description, Conditions for Alarms,
Events and Displays].

AU.3.2 Display the current parameter values for the [User Profile,

Configuration Description, Conditions for Alarms, Events and Displays]
(including identifier and circumstances).

Rationale
Authors want to see what they are editing.

Implementing this responsibility
That portion of the system that manages the authoring process must
provide the values.

The portion of the system that renders output must render a UI that
displays the values.

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

AU.3.3 The system must provide a ways for an authorized author to change the

parameter values. The syntax and semantics of the values specified

 - 248 -

should conform to the assumptions of the execution environment of the
system. (More details: Best practice is to constrain the author to such
conformation (e.g., choose from drop-down list, provide a slider for a
range of values). If the author’s choices are not constrained, then the
system should check the syntax and semantics and provide feedback if
either are unreasonable.)

Rationale
Authors might want different values than are currently assigned.

Implementing this responsibility
The portion of the system that renders output must render a UI that allows
values to be changed.

The portion of the system that accepts input from the user must accept
new values.

That portion of the system that manages the authoring process replaces the
current values with the new values.

AU.4. Delete a SPECIFICATION

AU.4.1 Provide a way for an authorized author to tentatively remove a [User
Profile, Configuration Description, Conditions for Alarms, Events and
Displays] from the system (e.g., analogous to dragging a file to the
trash). The system might require a confirmation from the author prior to
performing this action.

Rationale
Authors might accidentally delete a [User Profile, Configuration
Description, Conditions for Alarms, Events and Displays] and want to
restore it.

The organization doesn’t want extraneous [User Profile, Configuration
Description, Conditions for Alarms, Events and Displays] on the system.

The system has to keep it around in case it has to be restored.

Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the author to tentatively delete a [User Profile, Configuration Description,
Conditions for Alarms, Events and Displays].

The portion of the system that accepts input from the user must accept this
request.

 - 249 -

That portion of the system that manages the authoring process saves the
[User Profile, Configuration Description, Conditions for Alarms, Events
and Displays] in case has to be restored.

The portion of the system that renders output must indicate that the [User
Profile, Configuration Description, Conditions for Alarms, Events and
Displays] has been (tentatively) deleted.

AU.4.2 Retrieve a tentatively-deleted [User Profile, Configuration Description,

Conditions for Alarms, Events and Displays] from the system (e.g.,
analogous to dragging a file out of the trash)

Rationale
Authors might want to restore an accidentally deleted [User Profile,
Configuration Description, Conditions for Alarms, Events and Displays].

The system has kept it around so that it can be restored.

Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the author to restore a tentatively deleted [User Profile, Configuration
Description, Conditions for Alarms, Events and Displays].

The portion of the system that accepts input from the user must accept this
request.

That portion of the system that manages the authoring process must
restore the [User Profile, Configuration Description, Conditions for
Alarms, Events and Displays].

The portion of the system that renders output must indicate that the [User
Profile, Configuration Description, Conditions for Alarms, Events and
Displays] has been restored.

AU.4.3 Provide a way for an authorized author to permanently remove a [User
Profile, Configuration Description, Conditions for Alarms, Events and
Displays] from the system (e.g., analogous to emptying the trash). The
system should require a confirmation from the author prior to
performing this action.

 - 250 -

Rationale
Authors want to delete a [User Profile, Configuration Description,
Conditions for Alarms, Events and Displays] that is no longer relevant to
their needs.

The organization doesn’t want extraneous [User Profile, Configuration
Description, Conditions for Alarms, Events and Displays] on the system.

The system has limited resources.

Implementing this responsibility
The portion of the system that renders output must render a UI that allows
the author to permanently delete a [User Profile, Configuration
Description, Conditions for Alarms, Events and Displays].

The portion of the system that accepts input from the user must accept this
request.

That portion of the system that manages the authoring process
permanently deletes the [User Profile, Configuration Description,
Conditions for Alarms, Events and Displays].

The portion of the system that renders output must indicate that the [User
Profile, Configuration Description, Conditions for Alarms, Events and
Displays] has been deleted.

AU.5. Exit the Authoring System

AU.5.1 The system must have a way for the author to exit the authoring system.
(If there are requests still pending (e.g., unsaved changes), then notify
the author and ask for confirmation of the exit request.)

Rationale
Software has no way of knowing that an author is finished without explicit
input.

Authors want to exit when they are done.

Implementing this responsibility
The system must provide a means for the author to indicate a desire to exit
(e.g., a button, keyboard shortcut, voice command).

The authors must indicate their desire to exit and respond to any
confirmation request.

 - 251 -

The portions of the system that do the authoring activities must ask for
confirmation in the event of request still pending. This involves keeping
track of pending requests and requesting the appropriate interactions with
the author.

Execution with Authored Parameters

EX.1. Access the Appropriate SPECIFICATION

EX.1.1 Retrieve [User identity, Environment identity, Context of use] (which will
allow determination of appropriate [User profile, Configuration
description, Rules for Alarms, Events and Displays]). In many cases,
Environment identity may not need to be retrieved at all because the
location of the configuration description is built-in (e.g., config.dat at a
known location). If so, this responsibility is not applicable for
Configuration Description.

Rationale
The system needs a [User profile, Configuration description, Rules for
Alarms, Events and Displays] in order to execute appropriately.

System has no way to determine appropriateness of a [User profile,
Configuration description, Rules for Alarms, Events and Displays] without
[User identity, Environment identity, Context of use]. Sometimes this
information may have to come from a user, sometimes it can be inferred
from the environment.

Users and organizations want the system to execute appropriately.

Implementing this responsibility
There must be a portion of the system that knows how to retrieve [User
identity, Environment identity, Context of use]. For example, [User
identity, Environment identity, Context of use] may be maintained in a
fixed location within a system or within the file structure of the system.

EX.1.2 The system must retrieve the appropriate a [User profile, Configuration
description, Rules for Alarms, Events and Displays].

Rationale
The system needs a [User profile, Configuration description, Rules for
Alarms, Events and Displays] in order to execute appropriately.

Users and organizations want the system to execute appropriately.

 - 252 -

Implementing this responsibility
The portion of the system that will use the specified parameters must
retrieve the [User profile, Configuration description, Rules for Alarms,
Events and Displays].

EX.1.3 The system should inform the user and/or the system administrator of

the results of attempting to retrieve the appropriate [User profile,
Configuration description, Rules for Alarms, Events and Displays].
There are three cases: find zero, find one, find many. (Typically, finding
zero generates an error message, finding one is indicated by allowing
the user to proceed, finding many is indicated by listing their identifiers
and allowing the user to view the contents of the [User profile,
Configuration description, Rules for Alarms, Events and Displays].)

Rationale
Users want to know if the appropriate [User profile, Configuration
description, Rules for Alarms, Events and Displays] has been located so
they can proceed.

Users want to know if the appropriate [User profile, Configuration
description, Rules for Alarms, Events and Displays] has not been located
because they cannot proceed without it.

Users want to know if more than one appropriate [User profile,
Configuration description, Rules for Alarms, Events and Displays] has
been located because they can help resolve the ambiguity.

System administrators might want to know if the appropriate [User profile,
Configuration description, Rules for Alarms, Events and Displays] has not
been located or if there are many, because it might be an indication of
system error.

Implementing this responsibility
In the event of failing to be located or finding more than one appropriate
[User profile, Configuration description, Rules for Alarms, Events and
Displays]:

The portion of the system that does the locating must provide information
about the failure or the identities of each [User profile, Configuration
description, Rules for Alarms, Events and Displays].

If informing the system administrator:
In the event of a failure or locating more than one appropriate [User
profile, Configuration description, Rules for Alarms, Events and
Displays], a portion of the system must have a mechanism to inform the

 - 253 -

system administrator. This may be quite complicated (e.g., sending email)
and is beyond the scope of this USAP.

For informing the user:
In the event of a failure: The portion of the system that renders
information to the user should display information about the failure.

In the event of a successfully locating an appropriate [User profile,
Configuration description, Rules for Alarms, Events and Displays]:
The portion of the system that renders information to the user displays
should indicate success in some way (e.g., progress feedback saying it is
retrieving the [User profile, Configuration description, Rules for Alarms,
Events and Displays]).

In the event of finding many:
The portion of the system that renders information to the user should
indicate the identifier of each [User profile, Configuration description,
Rules for Alarms, Events and Displays].

The portion of the system that renders information to the user should
provide a UI for allowing the user to resolve the ambiguity.

The portion of the system that handles input from the user should allow
the user to select one of the located [User profile, Configuration
description, Rules for Alarms, Events and Displays] or request to view the
contents of one or more of the located [User profile, Configuration
description, Rules for Alarms, Events and Displays].

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

EX.1.4 The system must check that the retrieved [User profile, Configuration

description, Rules for Alarms, Events and Displays] is valid for use. For
Configuration description, the validity depends on the consistency
between the Configuration description and the physical reality of
execution environment. Thus, consistency involves checking hardware.
For example, sensors may need to be polled to verify that they are
currently present and working.

Rationale
System cannot use an invalid [User profile, Configuration description,
Rules for Alarms, Events and Displays].

Implementing this responsibility
The portion of the system that will use the specified parameters must
check the [User profile, Configuration description, Rules for Alarms,

 - 254 -

Events and Displays] to make sure it is valid (e.g., it could be empty,
corrupt, or incomplete).

EX.1.5 The system should inform the user and/or the system administrator of the

results of validating the [User profile, Configuration description, Rules
for Alarms, Events and Displays].

Rationale
Users want to know if the [User profile, Configuration description, Rules
for Alarms, Events and Displays] is valid so they can proceed.

Users want to know if the [User profile, Configuration description, Rules
for Alarms, Events and Displays] is not valid because they cannot proceed
with an invalid [User profile, Configuration description, Rules for Alarms,
Events and Displays].

System administrators might want to know if the [User profile,
Configuration description, Rules for Alarms, Events and Displays] is not
valid, because it might be an indication of system error.

Implementing this responsibility
In the event of an invalid [User profile, Configuration description, Rules
for Alarms, Events and Displays]: The portion of the system that does the
validation must provide information about the failure.

If informing the system administrator:
In the event of a failure, a portion of the system must have a mechanism to
inform the system administrator. This may be quite complicated (e.g.,
sending email) and is beyond the scope of this USAP.

For informing the user:
In the event of an invalid [User profile, Configuration description, Rules
for Alarms, Events and Displays]:
The portion of the system that renders information to the user should
display information about the failure.

In the event of a valid [User profile, Configuration description, Rules for
Alarms, Events and Displays]:
The portion of the system that renders information to the user displays
should indicate success in some way. This is typically indicated by
allowing the user to proceed.

The portion of the system that handles input from the user should provide
a UI to dismiss any unwanted information.

 - 255 -

EX.1.6 In the event of a missing, invalid or partially invalid [User profile,
Configuration description, Rules for Alarms, Events and Displays], the
system should provide the user with options for exiting the system or
fixing the problem e.g., offering defaults for values or offering to direct
the user to the authoring interface.

Rationale
Even though the portion of the system that creates a new [User profile,
Configuration description, Rules for Alarms, Events and Displays]
provides defaults, a [User profile, Configuration description, Rules for
Alarms, Events and Displays] might have been corrupted.

A system cannot work without a valid [User profile, Configuration
description, Rules for Alarms, Events and Displays].

The user wants to use the system, so if the system can’t be used for lack of
a valid [User profile, Configuration description, Rules for Alarms, Events
and Displays] then the user wants to fix it.

Implementing this responsibility
The portion of the system that renders information to the user should
display information about the options.

The portion of the system that handles input from the user should allow
the user to select one of the options.

The portion of the system that validates the [User profile, Configuration
description, Rules for Alarms, Events and Displays] should generate
defaults for unspecified or invalid parameters. These defaults should be
consistent with the defaults generated by the portion of the system that
creates a new [User profile, Configuration description, Rules for Alarms,
Events and Displays].

The portion of the system that validates the [User profile, Configuration
description, Rules for Alarms, Events and Displays] should act on the
option selected by the user.

EX.1.7 The system must provide a means for displaying and dismissing the

content of a [User profile, Configuration description, Rules for Alarms,
Events and Displays]. (This is so they can decide between multiple [User
profile, Configuration description, Rules for Alarms, Events and
Displays]or check that the current [User profile, Configuration
description, Rules for Alarms, Events and Displays]has correct values.)
Optionally, when displaying, the system could offer the user access to
the authoring interface to modify parameter values.

 - 256 -

Rationale
Users might want to check the parameter values in the [User profile,
Configuration description, Rules for Alarms, Events and Displays].

Users might want to modify the parameter values in the [User profile,
Configuration description, Rules for Alarms, Events and Displays].

Implementing this responsibility
The portion of the system that retrieves the [User profile, Configuration
description, Rules for Alarms, Events and Displays]must provide the
parameters and their values.

The portion of the system that renders information to the user should
display the parameters and their values.

The portion of the system that handles input from the user should provide
a UI to request the display and dismiss any unwanted information.
Optional connection to the authoring system for users with authoring
permission:

The portion of the system that handles input from the user should provide
a UI to invoke the authoring system (with parameter [User profile,
Configuration description, Rules for Alarms, Events and Displays]).

The portion of the system that retrieves the [User profile, Configuration
description, Rules for Alarms, Events and Displays]should invoke the
authoring system (with parameter [User profile, Configuration description,
Rules for Alarms, Events and Displays]).

EX.2. Use Specified Parameters

EX.2.1 The system must apply the specified parameters as necessary for
execution. That is, the items specified must be treated as parameters by
the system code (i.e., not hard-coded anywhere) and the values must be
taken from the [User profile, Configuration description, Rules for
Alarms, Events and Displays]. If logging of execution with specified
parameters is desired, see Logging responsibilities.

Rationale
The entire point of this foundational USAP is that users want to control
the behavior of the computer in certain ways under certain circumstances
that they have previously specified. Therefore, the system must use the
specified parameters.

 - 257 -

Implementing this responsibility
There must be a portion of the system where the parameters that have been
specified have some effect.

This portion of the system must treat the parameters as variables rather
than as hard-coded values. It must assign the specified parameter values to
these variables.

EX.2.2 The system must provide a UI for the [User profile, Configuration

description, Rules for Alarms, Events and Displays] to accept operator
inputs as necessary. If logging of operator input is desired, see Logging
responsibilities.

Rationale
Some of the actions of the [User profile, Configuration description, Rules
for Alarms, Events and Displays] may require operator input.

Implementing this responsibility
The portion of the system that renders information to the user should
display the request/opportunity for operator input.

The portion of the system that handles input from the user should provide
a UI to provide operator input.

There must be a portion of the system that receives and interprets operator
input.

EX.3. Additional Responsibilities for Execution

EX.3.1 The system must permit multiple users to operate simultaneously in
accordance with the protocol defined in the assumptions, e.g., each user
could have the ability to have their own display filter settings.

Rationale
Some large systems may require more than one operator to function
safely.

Each operator may want to sort the alarm list display according to
different criteria depending on his/hers current task or preferences.

Implementing this responsibility
The portion of the system that stores system data must be shareable among
multiple users.

 - 258 -

The portion of the system that manages system data must synchronize
among multiple users to avoid simultaneous update of system data.

The portion of the system that manages system data must implement a
protocol that determines what the system must do in the event that two
users simultaneously issue conflicting commands. Consider informing the
users in the event of a conflict as a portion of the protocol.

The portion of the system that manages user-specific data must be thread
safe (e.g., re-entrant)

The portion of the system that interacts with the users must be thread safe.

EX.3.2 The system must have the ability to translate the names/ids of externally
generated signals, e.g., from a sensor, into the concepts that are
included in the Alarms&Events specification.

Rationale
The environment contains sensors that generate and actuators that respond
to analog or digital signals in their own form.

The alarm and event portion of the system can only operate with logical
concepts.

Implementing this responsibility
There should be a portion of the system (e.g., an intermediary) that sits
between those portions of the system that interact directly with sensors
and actuators (e.g., the device drivers) and the portion of the system that
implements the alarm and event logic.

This intermediary should translate between the signals by the sensors and
actuators and the logical concepts required by alarm and event rules.

EX.3.3 The system must have the ability to broadcast a generated event so that
an external system can use it. E.g., an external long-time storage system.

Rationale
Some events require informing external people or systems. For example,
an explosion may need to call emergency responders.

Implementing this responsibility
The portion of the system that executes the alarm and event rules must
have the capability to broadcast to appropriate external systems.

 - 259 -

EX.3.4 The system must have the ability to present alarm state transitions in the
alarm displays within the time restrictions valid for this system.

Rationale
Users have limits as to how fast they can operate, i.e., perceive
information, comprehend information, make decisions, and perform motor
actions. This imposes a lower bound on how long information has to be
displayed (visual or auditory).

Because the alarm system may supervise hazardous environments, safety
regulations may require specific response times. This imposes an upper
bound on the number of human actions that can be required to respond to
alarms.

Any claims made for the operator action in response to alarms should be
based upon sound human performance data and principles.

Implementing this responsibility
The portion of the system that displays information to the user should
ensure that information is displayed long enough for a person to see or
hear it. This requires that this portion of the system maintain timing
information of how long information has been displayed and ensure that it
is longer than minimal human perceptual limits.

The portion of the system that does the scheduling should schedule alarms
as high-priority activities.

The portion of the system that interacts with the user during emergency
situations must be designed to meet the response time requirements. This
is the responsibility of the UI designers and does not impose additional
architectural requirements.

EX.3.5 The system must have sufficient persistent storage for alarms, rules and
data to be saved. It may be acceptable to limit the number of events to be
saved.

Rationale
Regulations might require long-term storage of alarms, rules and data
(e.g., in the food and drug business).

An organization may have publication, notification, history, fault
diagnostic needs that require persistent data.

The system may be stopped and started again and the rules and data must
not get lost when this happens.

 - 260 -

There might be a lot of data.

Storage media has cost (hardware, time to read and write, network
bandwidth).

Implementing this responsibility
The portion of the system that manages persistent data must ensure that
the most recent and the most important data is not lost. This could be done
by having large persistent data stores; it could be done by overwriting
older data with newer data.

The portion of the system that manages persistent data must have a
protocol to determine which data gets overwritten when persistent storage
is almost full.

Logging

LG.1. Specify the Items to be Logged

LG.1.1 Ensure that sufficient parameters of the [User Profile, Configuration
Description, Rules for Alarms, Events and Displays] are specified for
logging so that subsequent analysis is meaningful (e.g., execution,
parameter name, and time stamp). Consider prototyping and testing log
information and analysis to ensure sufficiency. (Assumption: logging
will be specified during development, not during or after deployment.)

Rationale
Software must know the information to be logged.

The values in the repository are going to be examined at a later time and
these values must be able to be uniquely identified with sufficient
information to be useful.

Implementing this responsibility
Implementation is beyond the scope of this USAP.

LG.2. Log Items During Execution

LG.2.1 Have a repository in which to store logged items relevant to the [User
Profile, Configuration Description, Rules for Alarms, Events and
Displays]. This repository could be bounded in size, e.g., circular buffer,
or unbounded, e.g., disk file.

 - 261 -

Rationale
The system must have a place to put logged information.

Implementing this responsibility
There must be a portion of the system that logs information.

The portion of the system that logs information must know the form of the
repository and its location and may be responsible for creating the
repository.

LG.2.2 Enter values relevant to the [User Profile, Configuration Description,
Rules for Alarms, Events and Displays] into the repository as specified.

Rationale
Users need the logged values for debugging or audit trail purposes.

Stored information must persist long enough for analysis to be undertaken.

Implementing this responsibility
The portion of the system that logs information enters the particular values
into the repository.

Attention should be paid to performance considerations since this code
may be executed many times.

LG.3. Post-processing

LG.3.1 Retrieve items relevant to the [User Profile, Configuration Description,
Rules for Alarms, Events and Displays] from the repository. This is
typically done some time after the information has been logged, e.g.,
during the analysis of an anomaly.

Rationale
Users need information to analyze past events.

The information they need has been stored in the repository and must be
retrieved.

Implementing this responsibility
There must be a portion of the system that knows how to get information
out of the repository and does so.

LG.3.2 Support analysis of retrieved items relevant to the [User Profile,

Configuration Description, Rules for Alarms, Events and Displays] by a
log analyst (a special type of user)

 - 262 -

Rationale
Users need support to analyze past events.

Implementing this responsibility
This may be quite complicated (e.g., graphical display, manipulation,
mathematical modeling, debugging) and is beyond the scope of this
USAP.

 - 263 -

Appendix L: Introductory Material for Users in ABB User Tests.

Overview of USAPs Tool

A Usability-Supporting Architectural Pattern (USAP) provides a set of architecturally
significant usability responsibilities that a software architect should consider when
designing the architecture of a software system.

This USAPs tool prototype is designed to help you review usability concerns that may
impact your software architecture. The prototype was designed under the assumption that
you have selected to review architectural implications of User Profiles, Environment
Configuration, and Alarms, Events, and Displays, for the software system on which you
are already working. The USAPs tool will help you consider whether your architecture
design supports usability issues for the following USAPs:

User Profile USAP

Scenario: A user wishes to have the capabilities of the system personalized to
reflect his or her preferences or role. The capabilities that can be personalized
may include language, access to system functionality, display characteristics,
account information or any preference that might vary among users or roles.

Environment Configuration USAP

Scenario: An organization wants to supply the same software system to different
hardware environments containing different collections of sensors and actuators.
A configuration description of the sensors and actuators will allow the system to
operate correctly in its environment.

Alarms, Events & Displays USAP

Scenario: The user needs feedback from the system when an error occurred or a
specific condition is met. The user can be the operator of the system or a superior
system. The feedback can be needed for safety reasons, diagnostic, problem
solving or information purposes.

How to use the USAPs tool

This tool contains a checklist of architecturally significant responsibilities you should
consider when seeking to support User Profiles, Environment Configuration, and Alarms,
Events and Displays in the architecture of a software system. Not all these
responsibilities may be applicable to a particular system. However, each responsibility
should be reviewed against the software architecture design of your system. As you
review the checklist, you can generate a To-Do list for supporting usability issues in the
architecture design with respect to User Profiles, Environment Configuration, and
Alarms, Events and Displays.

 - 264 -

A responsibility may be in one of four states, as shown below. By clicking the radio
buttons, you set the status of the responsibility.

• “Not yet addressed” is the default state, and indicates that you have not yet
considered the responsibility.

• “Not applicable” indicates that you have considered the responsibility and decided
that it does not apply to the system you are designing.

• “Must modify architecture” indicates that you have considered the responsibility,
found it applicable, but do not yet have functionality in the architecture design to
support it.

• “Architecture addresses this” indicates that you have considered the
responsibility, found it applicable, and also found that the architecture design
already contains functionality to support the responsibility.

Additionally, if you think that discussion of a responsibility (with team members or
others) is desirable, you may check the “Discuss status of this responsibility” checkbox.

Each responsibility also contains links you can click for further information. Clicking
"Show Rationale" or "Show Implementation Details" will show you a more detailed
background of the responsibility. Clicking these links will not cause you to navigate away
from the responsibility.

 - 265 -

When you have considered a responsibility, check the appropriate radio button. Do not
leave it in the default state (not yet addressed). When you have checked off the
individual items under a responsibility, the checkbox to the left of the responsibility will
be checked automatically to indicate that you have completed that section of the
checklist.

Responsibilities are arranged in sets of related issues (i.e., authoring, execution with
authored parameters, logging). When you have completed a set of responsibilities, the
checkboxes for that set of responsibilities will also be checked automatically. This will
help you know when you have reviewed all the responsibilities.

When you have finished reviewing all the responsibilities in the checklist, click the
“Generate ToDo List” link in the left menu to see a list of the current status of the
responsibilities. This list will show all responsibilities that have yet to be addressed,
required architectural changes, and/or need to be discussed further. The ToDo list has a
place to record comments for any responsibility you wish to annotate. Annotate the list
as desired, and then print it. For the prototype, print to a PDF file using CutePDF as the
printer name.

 - 266 -

Appendix M: A-PLUS Architect Design Used in Online Survey.

An Introduction to A-PLUS Architect

As a software architect, you need to be able to evaluate whether your architecture designs

will support usability concerns that arise from your business drivers. A-PLUS Architect

is a tool to help do just that: review usability concerns that may impact your software

architecture.

There are usability concerns commonly found in modern computer-based systems (e.g.,

the ability to cancel and undo, customizable user profiles, configurable environment,

ubiquitous search, etc.) that can be specified during requirement formulation. Many of

these will have impact on the software architecture design. The relationship between a

usability concern and its architectural impact has been captured in research in Usability-

Supporting Architectural Patterns (USAPs). A-PLUS Architect embodies the knowledge

in USAPs in a tool to help ensure that the architecture design will support the necessary

usability capabilities.

For example, suppose your system is required to cancel long-running processes. One

responsibility of this usability concern is to release resources that the process is using as

it executes. If that responsibility were not considered at design time, retrofitting an

architecture to keep track of resources for every running process and release them on

demand would be much more difficult than designing this in at the beginning.

For the purpose of this survey, suppose that you are evaluating the preliminary software

architecture design for a system to determine whether it supports customization of the

user interface (i.e., user profiles). A-PLUS Architect will help you review all the usability

responsibilities necessary to support that capability. The example you see here only

shows architecture design support for customizable user profiles, but the tool can support

many different usability scenarios. Many responsibilities may be shared between

usability concerns in more than one scenario. A-PLUS Architect can make evaluation

easier by helping you review the responsibilities for multiple scenarios at the same time.

 - 267 -

The software responsibilities in A-PLUS Architect are divided into convenient sets, each

set coming from one or more USAPs. Each of these USAPs includes the software

responsibilities that may arise from a single usability scenario. In the example shown

below, the responsibilities that a system may have to include to provide for multiple user

profiles come from this scenario:

“A user wishes to have the capabilities of the system personalized to reflect his or her

preferences or role. The capabilities that can be personalized may include language,

access to system functionality, display characteristics, account information or any

preference that might vary among users or roles.”

You can use A-PLUS Architect to review these sets of usability responsibilities

systematically. This will help you identify which responsibilities are relevant to your

particular software system. If a responsibility is relevant to your system, you can decide

whether design modifications will be needed, whether further discussion is warranted,

and make notes about your design decisions. This systematic review will let you

thoroughly evaluate the ability of your design to support usability concerns related to

usability concerns before detailed design or implementation even begin. By addressing

these issues up front you can avoid painful late-stage architectural changes to your

system.

How to Use A-PLUS Architect

A-PLUS Architect is a browser-based tool. It contains a checklist of architecturally

significant responsibilities you should consider when seeking to support different User

Profiles in the architecture of a software system. Not all these responsibilities may be

applicable to a particular system. However, each responsibility should be reviewed

against the software architecture design of your system. As you review the checklist, you

can generate a To-Do list for supporting usability issues in the architecture design with

respect to User Profiles.

 - 268 -

A responsibility may be in one of four states, as shown below. By clicking the radio

buttons, you set the status of the responsibility.

− “Not yet considered” is the default state, and indicates that you have not yet

noted whether you have considered the responsibility.

− “Must modify architecture” indicates that you have considered the

responsibility, found it applicable, but do not yet have functionality in the

architecture design to support it.

− “Architecture addresses this” indicates that you have considered the

responsibility, found it applicable, and also found that the architecture design

already contains functionality to support the responsibility.

− “Not applicable” indicates that you have considered the responsibility and

decided that it does not apply to the system you are designing.

 - 269 -

Additionally, if you think that discussion of a responsibility (with team members or

others) is desirable, you may check the “Discuss status of this responsibility” checkbox.

Each responsibility also contains links you can click for further information. Expanding

the "Rationale" or “Implementation" links will show you a more detailed background of

the responsibility. Clicking these links will not cause you to navigate away from the

responsibility.

 - 270 -

Expanding the Rationale link for a responsibility shows the rationale behind including the

responsibility when considering User Profiles.

Expanding the Implementation link for a responsibility shows general implementation

suggestions for including that responsibility in an architecture design.

 - 271 -

A responsibility may be in one of four states, as shown below. By clicking the radio

buttons, you set the status of the responsibility.

 - 272 -

When you have considered a responsibility, check the appropriate radio button. Do not

leave it in the default state ("Not yet considered"). When you have checked off the

individual items under a responsibility, the checkbox to the left of the responsibility will

be checked automatically to indicate that you have completed that section of the

checklist.

Responsibilities are arranged in sets of related issues (i.e., authoring, execution with

authored parameters, logging). When you have completed a set of responsibilities, the

checkboxes for that set of responsibilities will also be checked automatically. This will

help you know when you have reviewed all the responsibilities.

When you have finished reviewing all the responsibilities in the checklist, you will have a

ToDo list of the current status of all the responsibilities related to User Profile. This list

can be filtered as you wish to show or hide responsibilities in any of the four states, those

that need to be discussed further, the rationale and implementation details. The list will

include the notes you have added to any responsibility. Filter the list as desired, and then

print it using the “Generate PDF Report”.

 - 273 -

 - 274 -

Appendix N: Survey Items Used in ABB User Tests.

TAM2 Measurement Items (adapted from Venkatesh & Davis, 2000)

Intention to Use
1. Assuming I have access to the tool, I intend to use it.
2. Given that I have access to the tool, I predict that I would use it.

Perceived Usefulness
1. Using the tool improves my performance in my job.
2. Using the tool in my job increases my productivity.
3. Using the tool enhances my effectiveness in my job.
4. I find the tool to be useful in my job.

Perceived Ease of Use
1. My interaction with the tool is clear and understandable.
2. Interacting with the tool does not require a lot of my mental effort.
3. I find the tool to be easy to use.
4. I find it easy to get the tool to do what I want it to do.

Subjective Norm
1. People who influence my behavior think that I should use the tool.
2. People who are important to me think that I should use the tool.

Voluntariness
1. My use of the tool is voluntary.
2. My supervisor does not require me to use the tool.
3. Although it might be helpful, using the tool is certainly not compulsory in my job.

Image
1. People in my organization who use the tool have more prestige than those who do not.
2. People in my organization who use the tool have a high profile.
3. Having the tool is a status symbol in my organization.

Job Relevance
1. In my job, usage of the tool is important.
2. In my job, usage of the tool is relevant.

Output Quality
1. The quality of the output I get from the tool is high.
2. I have no problem with the quality of the tool’s output.

Result Demonstrability
1. I have no difficulty telling others about the results of using the tool.
2. I believe I could communicate to others the consequences of using the tool.

 - 275 -

3. The results of using the tool are apparent to me.
4. I would have difficulty explaining why using the tool may or may not be beneficial.

