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Abstract

We consider the problem of proof search in an expressive authorization logic that con-
tains a “says” modality and an ordering on principals. After a description of the proof
system for the logic, we identify two fragments that admit complete goal-directed and
saturating proof search strategies. A smaller fragment is then presented, which supports
both goal-directed and saturating search, and has a sound and complete translation to
first-order logic. We conclude with a brief description of our implementation of goal-
directed search.
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1 Introduction

In the recent past, the use of logic to represent, enforce, and reason about access control
policies has grown significantly. Several systems and programming languages have been
proposed that express policies as logical theories, and allow or deny access depending
on the provability of specific formulas (e.g., [8–10, 21, 27, 35, 37, 53]). In all these
applications efficient methods of proof search are required. When human intervention is
not possible or undesirable the methods need to be automated. In this paper we develop
the theory of logic programming in a logic designed for expressing access control policies
(such logics are generically called authorization logics here). Our primary motivation
is to study the theoretical foundations of proof search in the context of access control.
The issue of theoretical foundations has been ignored by prior work in the area, most
of which is guided by concerns like minimizing network usage and human interaction
during distributed proof search [10, 11, 22, 41]. We consider logic programming instead
of full theorem proving since logic programming can be implemented efficiently. Existing
work on policy languages already shows that most, if not all, policies of practical interest
fit nicely into the logic programming paradigm.

Logic programming with authorization logics is non-trivial due to the inclusion of a
family of modalities, commonly written k says s [3–5, 8, 9, 17, 24, 30, 31, 33]. k says s
means that principal k states or believes formula s and is used to distinguish statements
of different principals. While the modality makes it easier to express decentralized
policies, it significantly increases the complexity of proof search. Further, there is a
trade-off between choosing a proof-theoretic interpretation of k says s that is useful for
expressing for practical policies, and one that is amenable to proof search, especially
through logic programming.

Based on these considerations, we introduce a new authorization logic, BL0, that
is not only expressive but also well suited to logic programming. After describing its
proof system and commenting briefly on its expressiveness, we examine two different
strategies for finding proofs in it: (a) Goal-directed search (backward chaining), which
is often efficient for finding large proofs of authorization one at a time, and (b) Saturating
search (forward chaining), which is useful for determining all possible permissions that
follow from a policy. For each of the two search strategies, we identify a fragment of
BL0 on which the strategy is complete with respect to the logic’s proof system. We
then identify a third fragment to which both strategies apply (via a translation). We
also present a complete translation from this third fragment to first-order intuitionistic
logic, thus opening the possibility of using existing theorem provers for BL0. A minor
contribution of this paper is a justification for the semantics of the policy language
Binder [23], and a formalization of its connection to a related language Soutei [49].

Before proceeding to the technical material, we would like to clarify the scope of
this work and its broad context. This work should be distinguished from policy lan-
guages and trust management systems that have implementations based on ideas from
or translations to logic programs [12, 13, 23, 36, 38–40, 49]. Despite their importance
in practice, the inference rules of these frameworks lack an internal justification that is
readily available in a logic in the form of meta-theoretic principles like cut-elimination.
One goal of this paper is to combine such meta-theoretic foundations with efficient
implementations in an authorization logic.
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BL0 is a simplification of a larger logic BL, which includes support for explicit
time [24], constraints, and system state, all of which BL0 lacks. Owing to the addi-
tional complexity, logic programming in BL is even harder than it is in BL0, and an
attempt to extend the results of this paper to the full logic is currently underway. The
board goal of this project is to use BL for expressing and enforcing access policies in our
implementation of a file system based on proof-carrying authorization [8–10]. For this
application, we have already implemented the goal-directed search strategy described in
this paper in a user tool that is available online [28]. In addition to the file system, we
also intend to use BL in a type system and a compiler that translates policies expressed
in BL to file system permissions. For the latter, we expect that saturating search may
be the best choice.

Organization. The rest of this paper is organized as follows. After discussing closely
related work, we introduce the logic BL0, its sequent calculus, and some meta-theorems
including cut-elimination (Section 2). In Sections 3 and 4 we discuss goal-directed search
and saturating search respectively, and identify fragments of BL0 over which the two
search strategies are complete. Section 5 introduces the third fragment that allows both
forms of search, and presents its translation to first-order logic. Section 6 discusses
some open issues and briefly comments on our implementation of goal-directed search.
Section 7 concludes the paper.

Related Work. Perhaps most closely related to our work in spirit are the policy
languages Binder and Soutei [23, 49], whose says modality and search strategies were
the inspiration for this work. (The name BL stands for Binder Logic as a tribute to
the inspiration.) However, we should carefully observe the distinction here: Binder and
Soutei are domain specific languages whose rules have no particular logical justification
whereas BL0 is a logic. We do show in Section 5 that both Binder and Soutei are closely
related to a fragment of BL0. Along the same lines, there are several other policy
languages and trust management systems that implement or admit search procedures,
often by translation to logic programs (e.g., [12–16, 32, 36, 38–40]).

Also related is work on construction of proofs for access when credentials are dis-
tributed on a network [10, 11, 22, 41]. Our setting is quite different. We assume local
access to credentials so that issues like credential chain discovery and minimizing net-
work usage are irrelevant to our cause. On the other hand, we expect to work with
large policies and use proof construction for system interfaces, so we need to address
the problem of constructing proofs very fast (at the order of milliseconds).

BL0 is one of many authorization logics [3–5, 8, 9, 17, 24, 30, 31, 33] (see [2] for
a survey) but its says modality is different from that in any of the these logics. BL0’s
says modality is based on the necessitation modality of the modal logic CS4 [6, 46]. The
sequent calculus for BL0 draws on ideas from a judgmental presentation of CS4 due
to Pfenning and Davies [46]. An earlier paper by the author formalizes the connection
between BL0 and CS4 ([29]; Section 5.5).

There is a large body of work on logic programming with modalities (see [44] for
a survey of the area). However, our work is not directly related to any of these. In-
stead, our treatment of goal-directed search extends prior work on uniform proofs for
first-order logic [43] and draws on ideas from the linear logic programming language
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Lolli [34]. BL0’s saturating search is motivated by Datalog (see e.g., [18]), the Concur-
rent Logical Framework [52] and the logic programming language LolliMon [42]. Both
search principles are related to and build upon the general principle of focusing [7]. Our
proof techniques are based on a lot of earlier work that is cited throughout the paper.

2 BL0: An Authorization Logic

BL0 extends first-order intuitionistic logic with a modality k says s, which means that
principal k states, claims, or believes that formula s is true. Predicates P express
relations between terms that are either ground constants a, bound variables x, or appli-
cations of uninterpreted function symbols f to ground terms. Terms are classified into
sorts σ (sometimes called types). We stipulate at least one sort principal whose elements
are represented by the letter k. We also assume a preorder on ground principals k � k′,
read k is stronger than k′, with a distinguished strongest element ` (` � k for every k).
` represents the “local authority” at the point of access [1]. Formulas s may either be
atomic (p, q) or they may be constructed using the usual connectives of predicate logic
and the special connective k says s.

Sorts σ ::= principal | . . .
Terms t, k, i ::= a | x | f(t1, . . . , tn) | `
Predicates P
Atoms p, q ::= P (t1, . . . , tn)
Formulas r, s ::= p | r ∧ s | r ∨ s | r ⊃ s | > | ⊥ | ∀x:σ.s | ∃x:σ.s | k says s

Axiomatic proof system. The primary proof system that we need for proof search
is a sequent calculus. However before presenting that, we briefly describe an axiomatic
proof system for BL0. This proof system is obtained by extending any axiomatization
of first-order intuitionistic logic with the following axioms and rules for says.

` s
` k says s

(N)

` (k says (s1 ⊃ s2)) ⊃ ((k says s1) ⊃ (k says s2)) (K)
` (k says s) ⊃ k′ says k says s (I)
` k says ((k says s) ⊃ s) (C)
` (k′ says s) ⊃ k says s if (k′ � k) (S)

Rule (N) means that each principal states at least all tautologies. Axiom (K) means
that the statements of each principal are closed under implication. Together they imply
that each (k says ·) is a normal modality (see e.g., [26]). Axiom (I) was first suggested
in the context of access control by Abadi [2]. It means that statements of any principal
k can be injected into the belief system of any another principal. Axiom (C) or conceit
states that every principal k believes that each of its statements is true. (S) means
that statements of each principal are believed by all weaker principals. In particular,
(` says s) ⊃ k says s for each k and s.

This choice of axioms for says is quite different from any of the existing authorization
logics, and has been developed to make logic programming simpler.
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Common policies:

(1)
admin says ∀k, k′, f.

(((hr says employee(k)) ∧ (hasLevelForFile(k, f)) ∧
(system says owns(k′, f))(k′ says may(read, k, f))) ⊃ may(read, k, f))

(2)
admin says ∀k, f, l, l′.

(((system says levelFile(f, l)) ∧ (hr says levelPrin(k, l′)) ∧
(below(l, l′))) ⊃ hasLevelForFile(k, f))

(3) ` says below(confidential, secret)
(4) ` says below(secret, topsecret)
(5) ` says below(confidential, topsecret)

Additional policies for example scenario:
(6) system says levelFile(secret.txt, secret)
(7) system says owns(Alice, secret.txt)
(8) hr says employee(Bob)
(9) hr says levelPrin(Bob, topsecret)
(10) Alice says may(read,Bob, secret.txt)

Figure 1: Simplified policies for control of classified information

Expressiveness. Besides being well-suited to logic programming, BL0 is also quite
expressive. Although there is no quantitative metric to measure the expressiveness of
an authorization logic, we list below two connections between existing authorization
frameworks and BL0, that we believe are sufficient to establish the usefulness of BL0 as
a logic for writing access policies.

- Authorization logics that interpret says as a monad, referred to by many different
names including CDD and ICL [3, 30, 31], can be translated in a sound and com-
plete manner to BL0. (See an earlier paper for details [29].) These authorization
logics have been used in many applications, including type systems [27, 35, 37].

- The policy language Binder [23] is closely related to a small fragment of BL0 and
another policy language, Soutei [49], is a subset of it (see Section 5 for details). As
a result any policies expressible in these languages can be written in BL0. Soutei
has been deployed in at least one large application: a publish-subscribe web service
with distributed and compartmentalized administration.

We have also completed a significant case study that uses BL0 to formalize policies for
control and dissemination of classified information in USA. This case study is available
online [28]. We introduce here a simplified fragment of this case study that we use as a
running example in this paper.

Example 1. Consider a hypothetical intelligence agency where each file and each in-
dividual is assumed to have a classification level, which is an element of the ordered
set confidential < secret < topsecret. Access control for files uses three distinguished
principals: admin who makes final decisions on granting access, system who is respon-
sible for governing files (e.g., setting their ownership and classification levels), and hr
who is responsible for governing individuals (e.g., giving them classification levels and
employment certifications). Figure 1 shows the policies that control access (numbered
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(1)–(5)) as well as some additional assumptions needed to get access in a specific case
(numbered (6)–(10)).

In order that principal k may read file f , the following formula must be established
from the policies in effect: admin says may(read, k, f). This is possible if k is an em-
ployee of the intelligence organization (predicate employee(k)), k has a classification
level above the file (predicate hasLevelForFile(k, f)), and k gets permission from the
owner of the file. This is captured in policy (1) which is created by admin. For read-
ability, we omit all sort annotations from quantifiers. Policy (2) defines the predicate
hasLevelForFile(k, f) further in terms of classification levels of k and f (predicates
levelPrin(k, l) and levelFile(f, l) respectively). The predicate below(l, l′) captures
the order l < l′ between classification levels (policies (3)–(5)). Since we assume that all
principals believe this order, policies (3)–(5) are stated by the strongest principal `.

As an illustration of the use of these policies, let us assume that file secret.txt owned
by Alice is classified at the level secret. Suppose that Bob is an employee cleared at
level topsecret , and further that Alice wants to let Bob read file secret.txt. We may
capture this information in formulas (6)–(10). Then it is easy to see that (1)–(10) entail
admin says may(read,Bob, secret.txt) using the axioms of BL0. The non-standard axioms
(I) and (S) play a significant role in this derivation.

In practice, the assumptions or policies (1)–(10) would be established using digitally
signed certificates, signers being the principals who state the respective policies. For
example, the certificate establishing assumption (1) would be signed by admin. The proof
which shows that (1)–(10) establish admin says may(read,Bob, secret.txt) can be used as
evidence that Bob has legitimate access to secret.txt. Depending on the mechanism
of policy enforcement, this proof may either be checked by a reference monitor prior
to access as in proof-carrying authorization [8, 9], or it may be logged for subsequent
audit [51], or it may be compiled to lower level permissions.

2.1 Sequent Calculus

Next, we develop a sequent calculus for BL0, which we later use as the basis for proof
search. We follow the judgmental method [19, 46], introducing a separate category of
judgments that are established by deductions. For BL0, we need two judgments: s true
meaning that formula s is provable in the current context, and k claims s meaning that
principal k believes that s must be the case. (k claims s) is logically equivalent to
(k says s) true. We often abbreviate s true to s. Using the judgmental method makes
the technical development easier, especially the proof of cut-elimination.

Judgments J ::= s true | k claims s
Sorting Σ ::= a1:σ1 . . . an:σn

Hypotheses Γ ::= J1 . . . Jn (n ≥ 0)

Sequent Σ; Γ k−→ s true

Sequents in BL0 have the form Σ; Γ k−→ s true. Σ is a map from term constants occurring
in the sequent to their sorts, and Γ is the set of assumed judgments (hypotheses). The
novelty here is the principal k on the sequent symbol, which we call the context of the
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sequent.1 The context represents the principal relative to whose beliefs the reasoning
is being performed. It affects provability in the following manner: while reasoning in
context k, an assumption of the form k′ claims s entails s true if k′ � k (in particular,
k claims s entails s true). This entailment does not hold in general.

The rules of our sequent calculus are summarized in Figure 2. As usual, we have
left and right rules for each connective. For common connectives, the rules resemble
those in intuitionistic logic, with the exception of the associated context, which remains
unchanged. The judgment Σ ` t:σ means that the term t has sort σ. We restrict the
(init) rule to atomic formulas only. This is merely a technical convenience because we
prove later that Σ; Γ, s k−→ s for arbitrary s. Rule (claims) enforces the meaning of
contexts as described above by allowing k claims s on the left to be promoted to s if the
context k0 is weaker than k.

(saysR) is the only rule which changes the context of a sequent. The notation Γ| in
this rule denotes the subset of Γ that contains exactly the claims of principals, i.e., the
set {(k′ claims s′) ∈ Γ}. The rule means that k says s is true in any context k0 if s is
true in context k using only claims of principals. Truth assumptions in Γ are eliminated
in the premise because they may have been added in the context k0 (using the rules
(claims) and (⊃R)), but may not hold in the context k. The left rule (saysL) changes
the judgment (k says s) true to the equivalent judgment k claims s.

Meta-theory. We prove two important meta-theorems about this sequent calculus:
admissibility of the cut rule and the identity principle. In addition, common structural
theorems such as weakening and strengthening of hypotheses are also provable, but we
do not state them explicitly.

Theorem 2.1 (Identity). Σ; Γ, s k−→ s for each s.

Proof. By induction on s.

Theorem 2.2 (Admissibility of cut). The following hold

1. Σ; Γ k−→ s and Σ; Γ, s k−→ r imply Σ; Γ k−→ r

2. Σ; Γ| k−→ s and Σ; Γ, k claims s
k0−→ r imply Σ; Γ k0−→ r

Proof. By simultaneous lexicographic induction, first on the size of the cut formula, and
then on the sizes of the two given derivations, as in [45].

Finally, we prove an equivalence between the axiomatic system and the sequent
calculus.

Theorem 2.3 (Equivalence). Σ; · k−→ s in the sequent calculus if and only if ` k says s
in the axiomatic system.

Proof. The “if” direction follows by a direct induction on axiomatic proofs. For the
“only if” direction, we generalize the statement of the theorem to allow non-empty

1Often in literature, context is used to refer to Γ. However, we consistently use context for k and
hypotheses for Γ.
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Σ; Γ, p k−→ p
init

k � k0 Σ; Γ, k claims s, s
k0−→ r

Σ; Γ, k claims s
k0−→ r

claims
Σ; Γ| k−→ s

Σ; Γ k0−→ k says s
saysR

Σ; Γ, k says s, k claims s
k0−→ r

Σ; Γ, k says s
k0−→ r

saysL
Σ; Γ k−→ s Σ; Γ k−→ s′

Σ; Γ k−→ s ∧ s′
∧R

Σ; Γ, s ∧ s′, s, s′ k−→ r

Σ; Γ, s ∧ s′ k−→ r
∧L

Σ; Γ k−→ s

Σ; Γ k−→ s ∨ s′
∨ R1

Σ; Γ k−→ s′

Σ; Γ k−→ s ∨ s′
∨ R2

Σ; Γ, s ∨ s′, s
k−→ r Σ; Γ, s ∨ s′, s′ k−→ r

Σ; Γ, s ∨ s′ k−→ r
∨ L

Σ; Γ k−→ >
>R

Σ; Γ,⊥ k−→ r
⊥L

Σ; Γ, s k−→ s′

Σ; Γ k−→ s ⊃ s′
⊃R

Σ; Γ, s ⊃ s′ k−→ s Σ; Γ, s ⊃ s′, s′ k−→ r

Σ; Γ, s ⊃ s′ k−→ r
⊃L

Σ, x:σ; Γ k−→ s

Σ; Γ k−→ ∀x:σ.s
∀R

Σ; Γ,∀x:σ.s, s[t/x] k−→ r Σ ` t:σ

Σ; Γ,∀x:σ.s k−→ r
∀L

Σ; Γ k−→ s[t/x] Σ ` t:σ

Σ; Γ k−→ ∃x:σ.s
∃R

Σ, x:σ; Γ,∃x:σ.s, s k−→ r

Σ; Γ,∃x:σ.s k−→ r
∃L

Figure 2: BL0: sequent calculus

hypothesis: if Σ; Γ k−→ s, then ` k says (Γ ⊃ s). Next, we generalize the axiomatic
system to allow hypothesis. Finally, we induct on sequent derivations to show that
they can be simulated in the generalized axiomatic system. Although tedious, this is
approach is standard.

Using the sequent calculus we can prove that BL0 is consistent (⊥ cannot be derived),
and that k says (s ∧ r) is provably equivalent to (k says s) ∧ (k says r). Similar
distributive properties do not hold for other connectives. Also, neither s nor k says s
implies the other in general.

3 Goal-directed Search in BL0

We now turn to the problem of proving BL0 sequents through logic programming. Our
broad objective is to identify fragments of the logic on which we can describe simple,
complete search strategies adhering to two common paradigms: (1) backward chaining or
goal-directed search, the method used in Prolog, and (2) forward chaining or saturating
search, the approach used in Datalog. Goal-directed search is covered in this section,
whereas saturating search is described in the next section. Before proceeding with
technical details, we make three important observations.

7



First, both goal-directed and saturating search can be seen as instances of a general
technique called focusing [7]. Although we may apply this technique to the whole logic,
and use it construct a generic theorem prover for BL0, we refrain from doing so here.
Such a generic tool would be needlessly complicated and possibly slow because it would
have to cater to many cases that may never arise in actual policies.

Second, the distinction between goal-directed search and saturating search should
not be confused with the distinction between backwards and forwards application of in-
ference rules (the latter is also known as the inverse method). Both techniques described
here apply inference rules backwards, i.e., a sequent to be proved is matched against
the conclusion of a rule, whose premises are then recursively established. The difference
between goal-directed search and saturating search arises because the rules used in the
two cases are different.

Third, for some applications such as proof-carrying authorization [8, 9] and also
sometimes for keeping logs of access, it is essential to construct and output proof-terms.
Adding proof-terms to the logic programming strategies described below is relatively
straightforward, and even though our implementation produces them, we do not describe
them here.

Goal-directed search. The term goal refers to the formula on the right side of a
sequent to be proved. Goal-directed search, in the sense that we use it here, is char-
acterized by two principles: (1) Unless a goal is atomic, it is immediately decomposed
using the right rule of its top most connective. Proofs constructed in this manner have
previously been called uniform proofs [43]. (2) When the goal is atomic, a hypothesis
that can potentially prove the goal is chosen (technically, the head of the hypothesis
must match the goal), decomposed completely using left rules, producing several addi-
tional goals to be proved, which are then established recursively. This second principle
is called backward chaining.

Although this search strategy is incomplete for the whole logic (for e.g., it cannot
establish Σ; s ∨ r k−→ s ∨ r), there are fragments of the logic on which it is complete.
We describe one such fragment in detail below. This fragment extends the so called
Hereditary-Harrop (HH) fragment of first order logic, which is known to admit a com-
plete goal-directed search strategy [43]. We show that its extension with says also admits
a similar strategy. Although non-trivial, this is a modular extension of the first-order
case.

Hereditary-Harrop fragment of BL0. The syntax of the Hereditary-Harrop (HH)
fragment of BL0 is described below. Goals g may contain all connectives. Hypotheses are
divided into two categories: clauses d that contain only negative connectives (⊃,∧,>,∀),
and chunks h that contain positive connectives (says,∧,∨,>,⊥,∃). The left sequent
calculus rules of positive connectives are invertible, i.e., they can be eagerly applied in
the backwards direction without retaining the principal formula in the premise or losing
completeness. The left rules of negative connectives are not invertible, and they are
applied only when the result of the application will be useful. (∧ is a special connective
– its left rules can be written in two different ways, one of which is invertible, and the
other of which is not. Hence, it is both positive and negative. Figure 2 shows only the
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invertible rule.)

Goals g ::= p | g1 ∧ g2 | g1 ∨ g2 | h ⊃ g | > | ⊥ | ∀x:σ.g | ∃x:σ.g | k says g
Clauses d ::= p | g ⊃ d | d1 ∧ d2 | > | ∀x:σ.d
Chunks h ::= d | k says d | h1 ∧ h2 | h1 ∨ h2 | > | ⊥ | ∃x:σ.h
Policies ∆ ::= · | ∆, d | ∆, k claims d
Groups Ξ ::= · | Ξ, h

Sequents R ::= Σ; ∆ k⇒ g

L ::= Σ; ∆; Ξ k⇐ g

N ::= Σ; ∆ k⇔ p
F ::= Σ; d� p | g1 . . . gn

Hypotheses may be of two kinds. Policies ∆ contain assumptions of the the forms d or
k claims d, whereas groups Ξ contain chunks. We need four kinds of sequents (labeled
R,L,N,F), distinguished by the portions in which rules are applied. In R sequents Σ; ∆ k⇒
g, the goal is decomposed by right rules. This corresponds to principle (1) above. In L
sequents Σ; ∆; Ξ k⇐ g, the chunks in Ξ are decomposed using left rules. In N sequents
Σ; ∆ k⇔ p, which cause backward chaining, we choose a clause from the hypotheses that
can be decomposed to prove the atomic goal p, decompose the clause, and prove the
resulting subgoals. This corresponds to principle (2) above. F sequents Σ; d � p |
g1 . . . gn decompose the clause d, proving atomic goal p, which is an input and generate
subgoals g1 . . . gn, which are outputs.

The rules for goal-directed search are shown in Figure 3. All rules are applied
backwards. Search starts in an R sequent (it may start in an L sequent if the hypotheses
contain chunks). In this form, right rules of the top-level connective of g are successively
applied to decompose the goal to atomic formulas. An atomic goal transitions to an N
sequent (rule (atom)). The only exception to this is the rule (⊃R), which introduces a
chunk on the left and transitions temporarily to an L sequent.

In an L sequent, chunks in Ξ are decomposed using left rules of their top level
connectives. The rules may be applied to chunks in any order. Usually, a canonical left-
to-right or right-to-left order is chosen. Chunks eventually decompose into assumptions
of form d or k says d, which are pushed into the policies ∆ in the forms d and k claims d
respectively (rules (pr) and (saysL)). Eventually Ξ becomes empty, there is a transition
to an R sequent (rule (⇒⇐)), and decomposition of the goal is resumed.

An N sequent can be established in essentially one way: find a suitable clause to
prove its atomic goal, decompose the clause using left rules of its connectives successively
(judgment Σ; d � p | g1 . . . gn), and solve the generated subgoals g1 . . . gn. There are
two rules to prove an N sequent, one where the clause d is directly picked from ∆ (B1),
and another where the clause d is picked from an assumption k claims d (B2). In the
latter case, k must be stronger than the context (else the assumption k claims d does
not entail d and is hence not usable).

An F sequent is given as input a clause d and a formula p. It is provable with output
g1 . . . gn if using left rules, d can be decomposed, revealing p at its head. In general, if
Σ; d � p | g1 . . . gn, d ∈ ∆, and Σ; ∆ k−→ gi for each i, then Σ; ∆ k−→ p. A proof of an F
sequent corresponds to a single step of left focusing.
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R sequents

Σ; ∆ k⇔ p

Σ; ∆ k⇒ p
atom

Σ; ∆| k⇒ g

Σ; ∆ k0⇒ k says g
saysR

Σ; ∆ k⇒ g Σ; ∆ k⇒ g′

Σ; ∆ k⇒ g ∧ g′
∧R

Σ; ∆ k⇒ g

Σ; ∆ k⇒ g ∨ g′
∨ R1

Σ; ∆ k⇒ g′

Σ; ∆ k⇒ g ∨ g′
∨ R2

Σ; ∆ k⇒ >
>R

Σ; ∆;h k⇐ g′

Σ; ∆ k⇒ h ⊃ g′
⊃R

Σ, x:σ; ∆ k⇒ g

Σ; ∆ k⇒ ∀x:σ.g
∀R

Σ; ∆ k⇒ g[t/x] Σ ` t:σ

Σ; ∆ k⇒ ∃x:σ.g
∃R

L sequents

Σ; ∆ k⇒ g

Σ; ∆; · k⇐ g
⇒⇐

Σ; ∆, d; Ξ k⇐ g

Σ; ∆; Ξ, d k⇐ g
pr

Σ; ∆, k claims d; Ξ k0⇐ g

Σ; ∆; Ξ, k says d
k0⇐ g

saysL

Σ; ∆; Ξ, h, h′ k⇐ g

Σ; ∆; Ξ, h ∧ h′ k⇐ g
∧L

Σ; ∆; Ξ, h k⇐ g Σ; ∆; Ξ, h′ k⇐ g

Σ; ∆; Ξ, h ∨ h′ k⇐ g
∨ L

Σ; ∆; Ξ k⇐ g

Σ; ∆; Ξ,> k⇐ g
>L

Σ; ∆; Ξ,⊥ k⇐ g
⊥L

Σ, x:σ; ∆; Ξ, h k⇐ g

Σ; ∆; Ξ,∃x:σ.h k⇐ g
∃L

F sequents

Σ; p� p | ·
init

Σ; d1 � p | G
Σ; d1 ∧ d2 � p | G

∧L1

Σ; d2 � p | G
Σ; d1 ∧ d2 � p | G

∧L2

Σ; d2 � p | G
Σ; g1 ⊃ d2 � p | g1, G

⊃L
Σ; d[t/x]� p | G Σ ` t:σ

Σ;∀x:σ.d� p | G
∀L

N sequents

d ∈ ∆ Σ; d� p | g1 . . . gn (Σ; ∆ k⇒ gi)n
i=1

Σ; ∆ k⇔ p
B1

k claims d ∈ ∆ k � k0 Σ; d� p | g1 . . . gn (Σ; ∆ k0⇒ gi)n
i=1

Σ; ∆ k0⇔ p
B2

Figure 3: HH: Goal-directed search (contd.)
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Example 2. We revisit Example 1 and show some of the steps in constructing a proof
of access using goal-directed search. Let us call the set of policies (1)–(10) from the
earlier example Ξ and let Σ define the constants used in the policy. We start goal-
directed search with the L sequent Σ; ·; Ξ k0⇐ admin says may(read,Bob, secret.txt), where
k0 is an arbitrary principal (we may choose k0 = `). Using the rules (saysL) and (⇒⇐),

this reduces to proving Σ; ∆ k0⇒ admin says may(read,Bob, secret.txt), where ∆ is the same
as Ξ, except that all top-level says are replaced by claims. Since this is an R sequent, we
must use the rules (saysR) and (atom) in order to get Σ; ∆ admin⇔ may(read,Bob, secret.txt)
(note that ∆| = ∆). Now we have an N sequent, hence a hypothesis must be picked.
The only clause that will successfully prove the goal is the one contained in policy (1).
We call this clause one here. Indeed we can show, Σ; one� may(read,Bob, secret.txt) | g,
where

g = hr says employee(Bob) ∧ hasLevelForFile(Bob, secret.txt) ∧
system says owns(Alice, secret.txt) ∧ Alice says may(read,Bob, secret.txt)

Hence the rule (B2) may be used, generating the following premise Σ; ∆ admin⇒ g. Only
the rule (∧R) applies to this R sequent, resulting in the following premises:

Σ; ∆ admin⇒ hr says employee(Bob)

Σ; ∆ admin⇒ hasLevelForFile(Bob, secret.txt)

Σ; ∆ admin⇒ system says owns(Alice, secret.txt)

Σ; ∆ admin⇒ Alice says may(read,Bob, secret.txt)

We show further only how the first of these premises is established. Using the rules
(saysR) and (atom), we obtain Σ; ∆ hr⇔ employee(Bob). Now we may use the clause in
policy (8) (call it eight). Since Σ; eight � employee(Bob) | ·, use of (B2) generates
no new premises, and the proof branch closes.

Observe that as we construct the proof backwards, the context changes, e.g., from k0

to admin to hr above. The change of context makes new assumptions in the hypotheses
usable via the rule (B2). For instance, we could not have used policy (8) when the
context was admin because it is not the case that hr � admin. This has practical
implications. Since the claims of only some of the principals are usable at any time
(precisely, those principals that are stronger than the context), a prover may choose to
load the hypotheses lazily. In the above illustration, the prover may choose not to load
the policies (1) and (2) until the context is admin, and may not load policy (8) until
the context is hr, without effecting completeness. This may be very useful if policies
are distributed on remote servers. In that case, policies may be “fetched” on demand
depending on the current context.

Eliminating non-determinism. The proof system of Figure 3 is largely determin-
istic. The only points of non-determinism are: (a) Choosing a clause in rules (B1) and
(B2). (b) Choosing between rules ∨R1 and ∨R2. (c) Choosing between rules ∧L1 and
∧L2. (d) Finding appropriate terms t in rules ∃R and ∀L. Of these, (a), (b), and (c)
cause backtracking during search, which can be reduced significantly in practice through
clause compilation and term-indexing (see e.g., [50]). (d) can be eliminated completely
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through unification. All these techniques are standard in logic programming and apply
to BL0 without modification, so we do not discuss them further.

Soundness and Completeness. It is quite easy to prove by induction on the rules of
Figure 3 that goal-directed search is sound, i.e., any proof it constructs can be simulated
in the sequent calculus. The converse, completeness, is harder to prove and requires a
number of properties about the sequent calculus. We state our correctness theorem
below, postponing an outline of lemmas needed for completeness to Appendix A.

Theorem 3.1 (Correctness of goal-directed search).

1. Soundness: If Σ; ∆ k⇒ g, then Σ; ∆ k−→ g

2. Completeness: If Σ; ∆ k−→ g, then Σ; ∆ k⇒ g.

4 Saturating Search in BL0

Saturating search is the method of proof construction used in Datalog. The basic tenet
is to decompose clauses eagerly by left rules, adding new assumptions to the hypotheses,
without any regard for what may or may not be useful in proving the goal. This process
of adding assumptions is called forward chaining. After enough assumptions have been
added (or when no more can be added), the goal is decomposed. Search succeeds if each
atomic formula produced by decomposing the goal exists in the hypotheses else it fails.
This is in stark contrast with goal-directed search, where a clause is decomposed only if
its head matches an atomic goal. Saturating search is useful in many cases, for example
when all possible consequences of a policy are needed.

Like goal-directed search, saturating search is incomplete for the whole logic. For
example, it cannot be used to prove Σ;∀x:σ.P (x) k−→ ∀x:σ.P (x). Once again, we identify
a fragment of BL0 on which saturating search is complete. For the lack of a better name,
we call this fragment the forward-Hereditary-Harrop fragment (FHH). In saturating
search the entire hypotheses must be available at once; the lazy strategy for loading
hypothesis on demand that we discussed for goal-directed search in Example 2 does not
work here.

Forward-Hereditary-Harrop Fragment of BL0. The syntax of FHH is shown
below. Goals contain only positive connectives, and the heads of clauses are chunks,
not atomic formulas. Another difference from HH is that, in the hypotheses, says is
restricted to atomic formulas and all atomic formulas must be enclosed by an immediate
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says. These restrictions are necessary to obtain completeness.

Goals g ::= p | k says g | g1 ∧ g2 | g1 ∨ g2 | > | ⊥ | ∃x:σ.g
Clauses d ::= h | g ⊃ d | d1 ∧ d2 | > | ∀x:σ.d
Chunks h ::= k says p | h1 ∧ h2 | h1 ∨ h2 | > | ⊥ | ∃x:σ.h
Policies ∆ ::= · | ∆, d | ∆, k claims p
Groups Ξ ::= · | Ξ, h

Sequents R ::= Σ; ∆
k
� g

L ::= Σ; ∆; Ξ k⇐ g

N ::= Σ; ∆ k⇔ g
F ::= Σ; d� h | g1 . . . gn

As before, we use four types of sequents R,L,N,F. However, R sequents which played
a central role in goal-directed search have a secondary role here and occur only at the
leaves of the derivation. Instead N sequents are central. The context k changes only in
R sequents.

Figure 4 summarizes the rules for saturating search. Search starts with an N sequent,
where all forward chaining happens (search may start with an L sequent if the hypotheses
contain chunks). There are two ways to prove an N sequent. Either we may end forward
chaining, and transition to an R sequent which would decompose the goal (rule (F1)),
or we may continue forward chaining (rule (F2)). In the latter case, we pick a clause
d from the hypotheses, decompose it using F sequents (premise Σ; d � h | g1 . . . gn),
solve the goals g1 . . . gn, and then decompose the chunk h in an L sequent. This has the
effect of adding all components of h to the hypotheses, and constitutes a single forward
chaining step.

In an R sequent, we decompose a goal using the right rule of its top-level connective,
till we reach an atomic goal. At this point we simply check if k′ claims p exists in the
hypotheses for some k′ � k (rule (init)). If this happens to be the case, the branch
closes, else the branch fails. As a result, all assumptions needed to prove the leaves of
the goal must be directly present in the hypotheses before the goal is decomposed.

An L sequent is reached from an N sequent (rule (B2), fourth premise). It decomposes
chunks in Ξ using left rules. After Ξ becomes empty, it transitions back to an N sequent
(rule ⇔⇐), and forward chaining resumes. This is slightly different from goal-directed
search where L sequents arise from R sequents and lead back to them.

As in goal-directed search F sequents in FHH decompose clauses. However, in place
of taking as input an atomic formula to prove, they produce as output a chunk. The
subgoals g1 . . . gn are outputs as before.

Example 3. Returning to our running example, we observe that the syntax used in
policies (1) and (2) is outside the FHH fragment. Now we rewrite these policies in FHH.
The consequences of these new policies (1f and 2f below) are the same as those of the
original ones. We formalize this equivalence in Section 5.

(1f)
∀k, k′, f. (((hr says employee(k)) ∧ (admin says hasLevelForFile(k, f)) ∧

(system says owns(k′, f)) ∧ (k′ says may(read, k, f)))
⊃ admin says may(read, k, f))
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R sequents

k′ claims p ∈ ∆ k′ � k

Σ; ∆
k
� p

init
Σ; ∆|

k
� g

Σ; ∆
k′

� k says g

saysR

Σ; ∆
k
� g Σ; ∆

k
� g′

Σ; ∆
k
� g ∧ g′

∧R
Σ; ∆

k
� g

Σ; ∆
k
� g ∨ g′

∨ R1

Σ; ∆
k
� g′

Σ; ∆
k
� g ∨ g′

∨ R2

Σ; ∆
k
� >

>R

Σ; ∆
k
� g[t/x] Σ ` t:σ

Σ; ∆
k
� ∃x:σ.g

∃R

L sequents

Σ; ∆ k⇔ g

Σ; ∆; · k⇐ g
⇔⇐

Σ; ∆, k′ claims p; Ξ k⇐ g

Σ; ∆; Ξ, k′ says p
k⇐ g

saysL
Σ; ∆; Ξ, h, h′ k⇐ g

Σ; ∆; Ξ, h ∧ h′ k⇐ g
∧L

Σ; ∆; Ξ k⇐ g

Σ; ∆; Ξ,> k⇐ g
>L

Σ; ∆; Ξ, h k⇐ g Σ; ∆; Ξ, h′ k⇐ g

Σ; ∆; Ξ, h ∨ h′ k⇐ g
∨ L

Σ; ∆; Ξ,⊥ k⇐ g
⊥L

Σ, x:σ; ∆; Ξ, h k⇐ g

Σ; ∆; Ξ,∃x:σ.h k⇐ g
∃L

F sequents

Σ;h� h | ·
blur

Σ; d1 � h | G
Σ; d1 ∧ d2 � h | G

∧L1

Σ; d2 � h | G
Σ; d1 ∧ d2 � h | G

∧L2

Σ; d2 � h | G
Σ; g1 ⊃ d2 � h | g1, G

⊃L
Σ; d[t/x]� h | G Σ ` t:σ

Σ; ∀x:σ.d� h | G
∀L

N sequents

Σ; ∆
k
� g

Σ; ∆ k⇔ g
F1

d ∈ ∆ Σ; d� h | g1 . . . gn

(Σ; ∆
k
� gi)n

i=1 Σ; ∆;h k⇐ g

Σ; ∆ k⇔ g
F2

Figure 4: FHH: Saturating search
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(2f)
∀k, f, l, l′. (((system says levelFile(f, l)) ∧ (hr says levelPrin(k, l′)) ∧

(admin says below(l, l′))) ⊃ admin says hasLevelForFile(k, f))

The policies (1f), (2f), and (3)–(10) lie in FHH. Let us call the set of these policies
Ξ. As in Example 2, we show some of the steps in proving an access from these poli-
cies. At the top level we want to prove Σ; ·; Ξ k0⇐ admin says may(read,Bob, secret.txt),
where k0 is a fresh constant. Using the rules (saysL) and (⇔⇐), this reduces to

proving Σ; ∆ k0⇔ admin says may(read,Bob, secret.txt), where ∆ is the same as Ξ, ex-
cept that all top-level says in policies are replaced by claims. Since this is an N
sequent, we may now start forward chaining. The cardinal rule of forward chain-
ing is that a clause can be decomposed only if the subgoals that it will generate
are directly provable through R sequents. (1f) does not satisfy this condition, but
(2f) does. Accordingly, we decompose it using an F sequent. It is easy to see that
Σ; 2f� admin says hasLevelForFile(Bob, secret.txt) | g, where

g = system says levelFile(secret.txt, secret) ∧
hr says levelPrin(Bob, topsecret) ∧
admin says below(secret, topsecret)

Thus application of (F2) produces the new sequent Σ; ∆
k0� g in the third premise. Only

the (∧R) rule applies to this R sequent, resulting in the following premises: (Σ; ∆
k0�

system says levelFile(secret.txt, secret)), (Σ; ∆
k0� hr says levelPrin(Bob, topsecret)),

and (Σ; ∆
k0� admin says below(secret, topsecret)). All these sequents close immediately

by the rules (saysR) and (init). Hence in the last premise of (F2) we get Σ; ∆; admin says

hasLevelForFile(Bob, secret.txt) k0⇐ admin says may(read,Bob, secret.txt). The rules
(saysL) and (⇔⇐) must now be applied in sequence to obtain Σ; ∆, admin claims

hasLevelForFile(Bob, secret.txt) k0⇔ admin says may(read,Bob, secret.txt). This is an
N sequent, and we may choose to use (F2) again, decomposing (1f) and introducing
the assumption admin claims may(read,Bob, secret.txt) in a similar manner. The rest
of the proof is easily constructed: (F1) is used to shift to an R sequent, which closes
immediately by rules (saysR) and (init).

A salient point to observe here is that the clauses decomposed in rule (F2) need to be
guessed. Further, there is no heuristic to determine when (F1) should be used instead of
(F2). In general, a reasonable strategy for a saturating prover is to keep applying (F2)
until no new hypotheses can be generated. At that point (F1) may be used to try to
close the proof. When the objective is to find all consequences of a hypotheses, a goal
is not provided and (F1) is never used. Instead, the saturated ∆ is the output of the
search. Of course, this may result in non-termination if saturation never occurs.

Soundness and Completeness. Saturating search on the FHH fragment is sound
and complete with respect to BL0’s sequent calculus. Soundness follows by a straight-
forward induction on the rules in Figure 4. Completeness is quite difficult to prove.
Our proof extends recent work by Pfenning and Simmons [48]. We state the correctness
theorem below, deferring a description of the major steps in the proof of completeness
to Appendix B. It is difficult to extend FHH and maintain completeness. For example,
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allowing goals containing ⊃ or ∀, or not restricting says to atomic formulas in hypotheses
results in incompleteness.

Theorem 4.1 (Correctness of saturating search).

1. Soundness: If Σ; ∆ k⇔ g, then Σ; ∆ k−→ g

2. Completeness: If Σ; ∆ k−→ g, then Σ; ∆ k⇔ g.

5 From Goal-directed Search to Saturating Search and
First-Order Logic

We consider a subfragment of HH, and show that it admits a sound and complete
translation to FHH. Policies written in this fragment can therefore be used with both
kinds of provers: they may be given directly to goal-directed provers for HH, and via the
translation they may also be given to saturating provers for FHH. We go a step further
and show that this smaller fragment also admits a sound and complete translation
to intuitionistic first-order logic. Thus we may, in fact, use first-order provers on the
fragment. The two translations are quite similar and we present them side by side. We
call this smaller fragment of BL0 Horn, because it looks similar to the Horn fragment
of first-order logic.

Horn fragment of BL0. The syntax of the Horn fragment is shown below. We
restrict goals to only positive connectives, while clauses contain only negative connec-
tives. Hypotheses are always of the form k claims d. It is easy to check that this is a
subfragment of HH and hence a complete goal-directed search strategy exists for it.

Goals g ::= p | k says g | g1 ∧ g2 | g1 ∨ g2 | > | ⊥ | ∃x:σ.g
Clauses d ::= p | ∀x:σ.d | g ⊃ d | > | d1 ∧ d2

Policies ∆ ::= · | ∆, k claims d

Despite its simplicity, the Horn fragment is quite expressive. For instance, the example
presented in this paper as well as the full policy from which it is derived can be expressed
in this fragment through only very minor changes. It is our belief that this fragment is
expressive enough to express most policies of interest.

Translations. We assume that every predicate in BL0 corresponds to a predicate of
the same name in first-order logic that takes one extra argument. For translating ⊥,
we also assume a new predicate contra in first-order logic, which is not used by any
policy. Figure 5 lists the translations 〈·〉 and [[·]] from the Horn fragment to FHH and
intuitionistic first-order logic respectively. In both cases we use auxiliary translations
that are indexed by a principal k. This k is the principal in the nearest says or claims
outside the formula being translated.

The central “trick” of the translation to FHH is to push the says connective down
to atomic formulas. That this simple idea works for a reasonably large fragment was
surprising to the author. It was not obvious a priori that the nature of the says modality
could be captured by pushing it to the leaves. We note, however, that the translation
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FHH First-order

Goals 〈P (t1 . . . tn)〉k = k says P (t1 . . . tn) [[P (t1 . . . tn)]]k = P (k, t1 . . . tn)
〈k′ says g〉k = 〈g〉k′ [[k′ says g]]k = [[g]]k′

〈g1 ∧ g2〉k = 〈g1〉k ∧ 〈g2〉k [[g1 ∧ g2]]k = [[g1]]k ∧ [[g2]]k
〈g1 ∨ g2〉k = 〈g1〉k ∨ 〈g2〉k [[g1 ∨ g2]]k = [[g1]]k ∨ [[g2]]k
〈>〉k = > [[>]]k = >
〈⊥〉k = k says ⊥ [[⊥]]k = contra(k)
〈∃x:σ.g〉k = ∃x:σ.〈g〉k [[∃x:σ.g]]k = ∃x:σ.[[g]]k

Clauses 〈P (t1 . . . tn)〉k = k says P (t1 . . . tn) [[P (t1 . . . tn)]]k = P (k, t1 . . . tn)
〈∀x:σ.d〉k = ∀x:σ.〈d〉k [[∀x:σ.d]]k = ∀x:σ.[[d]]k
〈g ⊃ d〉k = 〈g〉k ⊃ 〈d〉k [[g ⊃ d]]k = [[g]]k ⊃ [[d]]k
〈>〉k = > [[>]]k = >

〈d1 ∧ d2〉k = 〈d1〉k ∧ 〈d2〉k [[d1 ∧ d2]]k = [[d1]]k ∧ [[d2]]k
Policies 〈·〉 = · [[·]] = ·

〈∆, k claims d〉 = 〈∆〉, 〈d〉k [[∆, k claims d]] = [[∆]], [[d]]k

Figure 5: Translations from the Horn fragment to FHH and intuitionistic logic

does not extend to significantly larger fragments. In particular, allowing either hypothe-
ses of the form d true or other connectives in goals makes the translation unsound. The
first-order translation is a mild extension of the FHH translation based on the obser-
vation that k says p behaves atomically in FHH (modulo the effects of k � k′). As a
result, k says P (t1 . . . tn) can be replaced by P (k, t1 . . . tn).

The effects of the order k � k′ on principals need to be incorporated explicitly in
the first-order translation. We do this by assuming the following theory during proof
search.

O = {(∀~x. P (k, ~x) ⊃ P (k′, ~x)) | k � k′, P is a predicate}
Given this theory, k � k′ entails [[(k says P (t1 . . . tn)) ⊃ (k′ says P (t1 . . . tn))]]k0 for any
k0. This is sufficient to recover the effects of k � k′ in the translation. In order to keep
O finite, we assume that the set of predicates and the relation � are both finite. These
assumptions are reasonable in any realistic scenario.

Theorem 5.1 (Correctness of Translations). The following are equivalent for any policy
∆ and any goal g in the Horn fragment.

1. Σ; ∆ k⇒ g by the rules of HH.

2. Σ; 〈∆〉 `⇔ 〈g〉k by the rules of FHH.

3. Σ; [[∆]],O ` [[g]]k in first-order intuitionistic logic.

Proof. Since we have already proved equivalence between HH (resp. FHH) and the
sequent calculus, it suffices to prove that Σ; ∆ k−→ g (resp. Σ; 〈∆〉 `−→ 〈g〉k) is equivalent
to (3). In each case, and in each direction, this follows by a direct induction on given
derivations. The inductions are easier if we subinduct on the size of g, and case analyze
principal formulas in the last rules of the derivations.
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Example 4. If we replace all top-level says in the policies of Example 1 by claims
(a change which has no effect on the consequences of the policies), then the resultant
policies lie in the Horn fragment. The transformation for policies (1) and (2) considered
in Example 3 is exactly the effect of the translation 〈·〉. As a result, (1f) and (2f) have
the same consequences as (1) and (2). It is also easy to check that the access considered
in earlier examples may be derived after translation to first-order logic.

Connection to Binder and Soutei. The policy language Binder [23] contains a says
modality that is extremely similar in nature to says in BL0. In fact, Binder is almost a
proper subset of the Horn fragment of BL0, the only exception being that Binder allows
says over clause heads. The semantics of Binder are defined by a translation to Datalog,
that uses the same technique as the translation from the Horn fragment to first-order
logic – principals are made arguments to predicates that occur under their statements.
We believe that the above translation to first-order logic justifies the logical correctness
of this implementation technique.

Soutei [49] is a dialect of Binder that uses goal-directed search instead of the satu-
rating search. Soutei is a proper subset of the Horn fragment of BL0, because it does
not allow says on clause heads that Binder does, and its provability coincides with that
of BL0. As a result, Theorem 5.1 provides formal evidence that Soutei is indeed an im-
plementation of Binder, and that (on their common fragment) they authorize the same
accesses.

6 Implementation and Open Issues

We have implemented the goal-directed search for HH described in Section 3. Our imple-
mentation also supports a hybrid modality to represent time explicitly [24], constraints,
and system state, and it produces explicit proof-terms. The implementation is less than
500 lines of SML code, and follows a generic structure for logic programming engines
described by Pfenning and Elliott [25]. The implementation is quite fast. For exam-
ple, in the case of policies for controlling classified information, all proofs that we have
seen so far can be constructed in less than 300ms on a 2.4GHz Core 2 Duo machine.
Some of these proofs are quite large, containing approximately 1100 rule applications
and nearly 70 hypotheses. Further, these figures are conservative because we have not
yet implemented any optimizations such as residuation and term indexing.

We have also implemented goal-directed search as well as a proof verifier for BL0 in
the logical framework Twelf [47]. We provide online both our implementations and the
full case study from which the examples of this paper are derived [28].

Open Issues and Future Work. A very relevant issue that we have not addressed
here is termination. For most applications, it is useful to have a guarantee that the
prover will terminate. It seems likely that mode and termination checking (for e.g., as
implemented in Twelf) can be used to statically rule out policies on which goal-directed
search may not terminate. For saturating search, it is hard to prove termination, except
on simple fragments such as Datalog. It may be interesting and extremely useful to
study this problem further.
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Another possibility not considered here is meaningful combination of backward and
forward chaining in the same procedure. This is beneficial because predicates whose
proofs are reused often can be forward chained and others can be backward chained
to improve efficiency. This kind of a mixed search strategy is known to be complete
for intuitionistic logic [20], and we expect that the same results will extend to BL0. In
ongoing work, we are also extending the results of this paper to the larger logic BL,
which contains both explicit time and constraints. The interaction between the two is
non-trivial, especially in the case of saturating search.

7 Conclusion

We have introduced BL0, an authorization logic with an unusual but useful says modality,
and identified fragments of the logic that admit complete goal-directed and saturating
proof search strategies. Given that these strategies exist, the next step would be to apply
them to meaningful problems. We are currently considering many such applications
including an implementation of proof-carrying authorization in a file system, which uses
goal-directed search, and policy compilation to low level permissions that uses saturating
search.
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A Proof of Theorem 3.1

We summarize the basic steps in the proofs of soundness and completeness of goal-
directed search on HH.

Theorem A.1 (Soundness). The following hold.

1. Σ; ∆ k⇒ g implies Σ; ∆ k−→ g

2. Σ; ∆; Ξ k⇐ g implies Σ; ∆,Ξ k−→ g

3. Σ; ∆ k⇔ p implies Σ; ∆ k−→ p

4. Σ; d� p | g1 . . . gn, d ∈ ∆, and Σ; ∆ k−→ gi imply Σ; ∆ k−→ p

Proof. We first prove (4) by induction on the derivation of Σ; d� p | g1 . . . gn. (1), (2),
and (3) follow by simultaneous induction on the given derivations, using (4) in the cases
of rules (B1) and (B2).

Completeness of goal-directed search is harder to establish. We define and prove
invertibility of rules in the sequent calculus, and use that to prove completeness.

Definition. A connective is called strongly invertible on the right if there is a right
sequent calculus rule for the connective whose premises can be established by shorter
derivations whenever its conclusion can be. A connective is called strongly invertible
on the left if the premises of all its left sequent calculus rules (without the principal
formulas) can be established by shorter derivations whenever their conclusions can be.

Lemma A.2 (Invertibility). The following hold for the sequent calculus in Figure 2.

1. The connectives ∧, ∀,⊃ are strongly invertible on the right.

2. The connectives ∨, ∃, says are strongly invertible on the right if hypotheses are
restricted to HH policies (∆) only.

3. The connectives ∨, ∃,∧, says are strongly invertible on the left.

4. If Σ; ∆ k−→ p, then there is a clause d and formulas g1 . . . gn such that

(a) Either d ∈ ∆ or for some k′, k′ claims d ∈ ∆ and k′ � k.

(b) Σ; d� p | g1 . . . gn.

(c) Σ; ∆ k−→ gi by shorter derivations for 1 ≤ i ≤ n.

Proof. In each case we induct on given derivations. In (1), (2), and (3), a separate
induction is needed for each connective.

Theorem A.3 (Completeness). The following hold.

1. If Σ; ∆ k−→ g, then Σ; ∆ k⇒ g

2. If Σ; ∆,Ξ k−→ g, then Σ; ∆; Ξ k⇐ g
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3. If Σ; ∆ k−→ p, then Σ; ∆ k⇔ p

Proof. We use a simultaneous induction on the depth of the given derivations. For
given derivations of same depth, we assume the suborder (2) > (1) > (3), freely using
(3) inside proofs of (1), and (1) inside proofs of (2). The proof proceeds through case
analysis on g in (1), and on formulas in Ξ in (2), using Lemma A.2.

B Proof of Theorem 4.1

In this appendix, we outline a proof of completeness of saturating search. Soundness is
easy to prove, we only need to induct on derivations of Figure 4. To prove that saturating
search on FHH is complete, we construct an intermediate weak focusing system (WF)
for FHH. Then we show that any sequent calculus proof (over the FHH fragment) can be
simulated in WF, and finally show that any proof in WF can be simulated in FHH. WF
is similar to the saturating system in Figure 4, but does not contain L sequents. Instead
it allows left rules on chunks to be applied at any time. This technique is adapted from
work by Pfenning and Simmons [48].

Weak focusing system. The syntax of formulas for WF is the same as FHH. The
hypotheses ∆ and Ξ are merged into one set, which we denote Ψ.

Hyps Ψ ::= · | Ψ, k claims p | Ψ, d | Ψ, h

Sequents R ::= Σ; Ψ k=⇒ [g]

N ::= Σ; Ψ `=⇒ g

F ::= Σ; Ψ, [d] `=⇒ g

We use three judgments R (right focus), N (neutral), F (left focus). Instead of using
different sequent arrows, we indicate the type of sequent by putting the formula in focus
in square brackets [·]. The rules are shown in Figure 6. WF admits some obvious
structural rules, that we do not state explicitly.

From the Sequent Calculus to WF. First, we prove that any proof in the sequent
calculus can be simulated in WF. In order to do that, we need to show that most rules
of sequent calculus are admissible in N sequents in WF.

Lemma B.1 (Rule admissibility). The following hold for WF.

1. k′ claims p ∈ Ψ and k′ � k imply Σ; Ψ k=⇒ p

2. Σ; Ψ| k=⇒ g implies Σ; Ψ k′
=⇒ k says g

3. Σ; Ψ1
k=⇒ g1 and Σ; Ψ2

k=⇒ g2 imply Σ; Ψ1,Ψ2
k=⇒ g1 ∧ g2

4. Σ; Ψ k=⇒ g1 implies Σ; Ψ k=⇒ g1 ∨ g2

5. Σ; Ψ k=⇒ g2 implies Σ; Ψ k=⇒ g1 ∨ g2

6. Σ, x:σ; Ψ k=⇒ g implies Σ; Ψ k=⇒ ∀x:σ.g
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R sequents

k′ claims p ∈ Ψ k′ � k

Σ; Ψ k=⇒ [p]
init

Σ; Ψ| k=⇒ [g]

Σ; Ψ k′

=⇒ [k says g]
saysR

Σ; Ψ k=⇒ [g] Σ; Ψ k=⇒ [g′]

Σ; Ψ k=⇒ [g] ∧ [g′]
∧R

Σ; Ψ k=⇒ [g]

Σ; Ψ k=⇒ [g ∨ g′]
∨ R1

Σ; Ψ k=⇒ [g′]

Σ; Ψ k=⇒ [g ∨ g′]
∨ R2

Σ; Ψ k=⇒ [>]
>R

Σ; Ψ k=⇒ [g[t/x]] Σ ` t:σ

Σ; Ψ k=⇒ [∃x:σ.g]
∃R

N sequents

Σ; Ψ k=⇒ [g]

Σ; Ψ k=⇒ g
F1

d ∈ Ψ Σ; Ψ, [d] k=⇒ g

Σ; Ψ k=⇒ g
F2

Σ; Ψ, k′ claims p
k=⇒ g

Σ; Ψ, k′ says p
k=⇒ g

saysL

Σ; Ψ, h, h′ k=⇒ g

Σ; Ψ, h ∧ h′ k=⇒ g
∧L

Σ; Ψ k=⇒ g

Σ; Ψ,> k=⇒ g
>L

Σ; Ψ,⊥ k=⇒ g
⊥L

Σ; Ψ, h k=⇒ g Σ; Ψ, h′ k=⇒ g

Σ; Ψ, h ∨ h′ k=⇒ g
∨ L

Σ, x:σ; Ψ, h k=⇒ g

Σ; Ψ,∃x:σ.h k=⇒ g
∃L

F sequents

Σ; Ψ, h k=⇒ g

Σ; Ψ, [h] k=⇒ g
blur

Σ; Ψ, [d1] k=⇒ g

Σ; Ψ, [d1 ∧ d2] k=⇒ g
∧L1

Σ; Ψ, [d2] k=⇒ g

Σ; Ψ, [d1 ∧ d2] k=⇒ g
∧L2

Σ; Ψ k=⇒ [g1] Σ; Ψ, [d2] k=⇒ g

Σ; Ψ, [g1 ⊃ d2] k=⇒ g
⊃L

Σ; Ψ, [d[t/x]] k=⇒ g Σ ` t:σ

Σ; Ψ, [∀x:σ.d] k=⇒ g
∀L

Figure 6: WF: Weak focusing system for FHH
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7. Σ; Ψ k=⇒ g[t/x] and Σ ` t:σ imply Σ; Ψ k=⇒ ∃x:σ.g

8. Σ; Ψ, d1, d2, d1 ∧ d2
k=⇒ g implies Σ; Ψ, d1 ∧ d2

k=⇒ g

9. Σ; Ψ1, g1 ⊃ d2
k=⇒ g1 and Σ; Ψ2, d2, g1 ⊃ d2

k=⇒ g imply Σ; Ψ1,Ψ2, g1 ⊃ d2
k=⇒ g.

10. Σ; Ψ,∀x:σ.d, d[t/x] k=⇒ g and Σ ` t:σ imply Σ; Ψ, ∀x:σ.d k=⇒ g.

Proof.

1. We have the following direct derivation

k′ claims p ∈ ∆ k′ � k

Σ; Ψ k=⇒ [p]
init

Σ; Ψ k=⇒ p
F1

2. The only rule that may derive Σ; Ψ| k=⇒ g is F1. This is because Ψ| only has
assumptions of the form k′ claims p, so no left rule applies. Hence it follows that
we must have Σ; Ψ| k=⇒ [g] (premise of F1). By rule (saysR), Σ; Ψ k′

=⇒ [k says g],

and by F1, Σ; Ψ k′
=⇒ k says g.

3. We generalize the statement of (3), adding the following two new hypothesis:

(a) Σ; Ψ1
k=⇒ g1 and Σ; Ψ2, [d] k=⇒ g2 imply Σ; Ψ1,Ψ2, [d] k=⇒ g1 ∧ g2

(b) Σ; Ψ1, [d] k=⇒ g1 and Σ; Ψ2
k=⇒ g2 imply Σ; Ψ1,Ψ2, [d] k=⇒ g1 ∧ g2

All three statements follow by a simultaneous induction on the two given deriva-
tions.

4. We generalize the statement of (4), adding the following new hypothesis:

(a) Σ; Ψ, [d] k=⇒ g1 implies Σ; Ψ, [d] k=⇒ g1 ∨ g2

Both statements follow by a simultaneous induction on given derivations.

5. Same technique as (4).

6. Same technique as (4).

7. Same technique as (4).

8. We generalize the statement of (8), adding the following new hypothesis:

(a) Σ; Ψ, d1, d2, d1 ∧ d2
k=⇒ [g] implies Σ; Ψ, d1 ∧ d2

k=⇒ [g]

(b) Σ; Ψ, d1, d2, d1 ∧ d2, [d] k=⇒ g implies Σ; Ψ, d1 ∧ d2, [d] k=⇒ g
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(a) follows by induction on the given derivation. Next, we prove (8) and (b) by
simultaneous induction on given derivations, using (a) for the case of rule (F1).
The only other interesting case is when the given derivation is the following:

Σ; ∆, d1, d2, d1 ∧ d2, [d1] k=⇒ g

Σ; ∆, d1, d2, d1 ∧ d2
k=⇒ g

F2

By i.h. on premise, Σ; ∆, d1 ∧ d2, [d1] k=⇒ g. By rule (∧ L1), Σ; ∆, d1 ∧ d2, [d1 ∧
d2] k=⇒ g. By rule (F2), Σ; ∆, d1 ∧ d2

k=⇒ g.

9. We generalize the statement of (9), adding the following hypothesis

(a) Σ; Ψ, d2, g1 ⊃ d2
k=⇒ [g] implies Σ; Ψ, g1 ⊃ d2

k=⇒ [g].

(b) Σ; Ψ1, g1 ⊃ d2
k=⇒ [g1] and Σ; Ψ2, d2, g1 ⊃ d2

k=⇒ g imply Σ; Ψ1,Ψ2, g1 ⊃
d2

k=⇒ g.

(c) Σ; Ψ1, g1 ⊃ d2
k=⇒ [g1] and Σ; Ψ2, d2, g1 ⊃ d2, [d] k=⇒ g imply Σ; Ψ1,Ψ2, g1 ⊃

d2, [d] k=⇒ g.

(d) Σ; Ψ1, g1 ⊃ d2, [d] k=⇒ g1 and Σ; Ψ2, d2, g1 ⊃ d2
k=⇒ g imply Σ; Ψ1,Ψ2, g1 ⊃

d2, [d] k=⇒ g.

(a) follows by induction on the given derivation. (b) and (c) follow by simultaneous
induction on the second given derivations, using (a) when the derivation ends
in rule (F1). (9) and (d) follow by simultaneous induction on the first given
derivation, using (b) and (c) when the derivation ends in rule (F1).

10. We generalize the statement of (10), adding the following two new hypothesis:

(a) Σ; Ψ, ∀x:σ.d, d[t/x] k=⇒ [g] and Σ ` t:σ imply Σ; Ψ,∀x:σ.d k=⇒ [g].

(b) Σ; Ψ, ∀x:σ.d, d[t/x], [d′] k=⇒ g and Σ ` t:σ imply Σ; Ψ,∀x:σ.d, [d′] k=⇒ g.

(a) follows by induction on the given derivation. (10) and (b) then follow by a
simultaneous induction on given derivations, using (a) for the case of rule (F1).

We can now prove that on the FHH fragment of BL0, the sequent calculus can be
simulated in WF. We define a class of regular sequents as follows.

Definition. A sequent Σ; Γ k−→ s is called regular if:

1. s is an FHH goal g.

2. Γ contains assumptions of the following forms only

(a) FHH clauses d

(b) FHH chunks h
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(c) k′ claims p

(d) p, where for some k′ � k, k′ claims p ∈ Γ.

Further if Γ is regular, we define Γ ↑ to be its largest subset that does not contain
any atoms. Note that Γ↑ is always a valid hypotheses in WF (i.e., it is of the form Ψ).

Lemma B.2 (Weak completeness). If Σ; Γ k−→ s is regular, and provable in BL0’s sequent
calculus, then Σ; Γ↑ k=⇒ g in WF.

Proof. We induct on the depth of the derivation of Σ; Γ k−→ s. We case analyze the last
rule of the derivation. For the rules (∨ L), (∃L), and (says L) and (∧ L) applied to a
chunk, we first appeal to Lemma A.2.3, apply the i.h. to the smaller derivation, and
then apply the corresponding rule in WF. Case (⊥L) follows by the corresponding rule
in WF. Case (>R) follows by rules (>R) and (F1) in WF. For (∧ L) applied to a clause,
we use Lemma B.1.8. The remaining cases except (init) and (claims) also follow from
Lemma B.1. The cases (init) and (claims) are shown below.

Case.
Σ; Γ, p k−→ p

init

By the assumption of regularity, for some k′ � k, k′ claims p ∈ Γ. Clearly,
k′ claims p ∈ Γ↑. Hence by Lemma B.1.1, Σ; Γ↑ k=⇒ p.

Case.
k � k0 Σ; Γ, k claims s, s

k0−→ r

Σ; Γ, k claims s
k0−→ r

claims

By assumption of regularity, s must be an atom. It follows that (Γ, k claims s, s)↑=
(Γ, k claims s)↑. Therefore, by i.h. on the premise, Σ; (Γ, k claims s)↑ k0=⇒ r.

From WF to FHH. Next we show that every proof in WF can be simulated in
FHH. Completeness of saturating search follows immediately from this and the preceding
lemma.

Lemma B.3 (WF to FHH). The following hold for WF and FHH.

1. Σ; ∆,Ξ k=⇒ g implies Σ; ∆; Ξ k⇐ g

2. Σ; ∆ k=⇒ g implies Σ; ∆ k⇔ g

3. Σ; ∆, [d] k=⇒ g implies that there exist g1 . . . gn and h such that Σ; d� h | g1 . . . gn,

Σ; ∆
k
� gi and Σ; ∆;h k⇐ g

4. Σ; ∆ k=⇒ [g] implies Σ; ∆
k
� g

Proof. All statements follow by a simultaneous induction on given derivations.

Theorem B.4 (Completeness). If Σ; ∆ k−→ g in BL0’s sequent calculus, then Σ; ∆ k⇔ g
in FHH.

Proof. Assume that Σ; ∆ k−→ g. Since Σ; ∆ k−→ g is always a regular sequent, and ∆↑= ∆,
by Lemma B.2 we get Σ; ∆ k=⇒ g in WF. Hence by Lemma B.3.2, Σ; ∆ k⇔ g in FHH.
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