
New Theoretical Frameworks for Machine Learning

Maria-Florina Balcan

CMU-CS–08-153

September 15th, 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Avrim Blum, Chair

Manuel Blum
Yishay Mansour

Tom Mitchell
Santosh Vempala

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 Maria-Florina Balcan

This research was sponsored by the National Science Foundation under grant numbers IIS-0121678, IIS-0312814, CCF-0514922,
CCR-0122581, the U.S. Army Research Office under grant number DAAD-190213089, Google, and the IBM Ph.D. Fellowship.
The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity



Keywords: Data Dependent Concept Spaces, Clustering, Value of Unlabeled Data, Semi-supervised
Learning, Active Learning, Co-training, Similarity-based Learning, Kernels, Margins, Low-Dimensional
Mappings, Sample Complexity, Mechanism and Auction Design, Random Sampling Mechanisms, Profit
Maximization.



In memoria tatalui meu. Vei ramane vesnic in suflet, inima si gand!



iv



Abstract

This thesis has two primary thrusts. The first is developing new models and algorithms for important
modern and classic learning problems. The second is establishing new connections between Machine
Learning and Algorithmic Game Theory.

The formulation of the PAC learning model by Valiant [201] and the Statistical Learning Theory
framework by Vapnik [203] have been instrumental in the development of machine learning and the design
and analysis of algorithms for supervised learning. However, while extremely influential, these models do
not capture or explain other important classic learning paradigms such as Clustering, nor do they capture
important emerging learning paradigms such as Semi-Supervised Learning and other ways of incorpo-
rating unlabeled data in the learning process. In this thesis, we develop the first analog of these general
discriminative models to the problems of Semi-Supervised Learning and Clustering, and we analyze both
their algorithmic and sample complexity implications. We also provide the first generalization of the well-
established theory of learning with kernel functions to case of general pairwise similarity functions and
in addition provide new positive theoretical results for Active Learning. Finally, this dissertation presents
new applications of techniques from Machine Learning to Algorithmic Game Theory, which has been a
major area of research at the intersection of Computer Science and Economics.

In machine learning, there has been growing interest in using unlabeled data together with labeled
data due to the availability of large amounts of unlabeled data in many contemporary applications. As a
result, a number of different semi-supervised learning methods such as Co-training, transductive SVM,
or graph based methods have been developed. However, the underlying assumptions of these methods
are often quite distinct and not captured by standard theoretical models. This thesis introduces a new
discriminative model (a PAC or Statistical Learning Theory style model) for semi-supervised learning,
that can be used to reason about many of the different approaches taken over the past decade in the
Machine Learning community. This model provides a unified framework for analyzing when and why
unlabeled data can help in the semi-supervised learning setting, in which one can analyze both sample-
complexity and algorithmic issues. In particular, our model allows us to address in a unified way key
issues such as “Under what conditions will unlabeled data help and by how much?” and “How much data
should I expect to need in order to perform well?”.

Another important part of this thesis is Active Learning for which we provide several new theoretical
results. In particular, this dissertation includes the first active learning algorithm which works in the
presence of arbitrary forms of noise, as well as a few margin based active learning algorithms.

In the context of Kernel methods (another flourishing area of machine learning research), this thesis
shows how Random Projection techniques can be used to convert a given kernel function into an explicit,
distribution dependent set of features, which can then be fed into more general (not necessarily kernel-
izable) learning algorithms. In addition, this work shows how such methods can be extended to more
general pairwise similarity functions and also gives a formal theory that matches the standard intuition
that a good kernel function is one that acts as a good measure of similarity. We thus strictly generalize and
simplify the existing theory of kernel methods. Our approach brings a new perspective as well as a much
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simpler explanation for the effectiveness of kernel methods, which can help in the design of good kernel
functions for new learning problems.

We also show how we can use this perspective to help thinking about Clustering in a novel way. While
the study of clustering is centered around an intuitively compelling goal (and it has been a major tool
in many different fields), reasoning about it in a generic and unified way has been difficult, in part due
to the lack of a general theoretical framework along the lines we have for supervised classification. In
our work we develop the first general discriminative clustering framework for analyzing accuracy without
probabilistic assumptions.

This dissertation also contributes with new connections between Machine Learning and Mechanism
Design. Specifically, this thesis presents the first general framework in which machine learning methods
can be used for reducing mechanism design problems to standard algorithmic questions for a wide range
of revenue maximization problems in an unlimited supply setting. Our results substantially generalize
the previous work based on random sampling mechanisms – both by broadening the applicability of such
mechanisms and by simplifying the analysis. From a learning perspective, these settings present several
unique challenges: the loss function is discontinuous and asymmetric, and the range of bidders’ valuations
may be large.
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Chapter 1

Introduction

The formulation of the classic discriminative models for Supervised Learning, namely the PAC learning
model by Valiant [201] and the Statistical Learning Theory framework by Vapnik [203], were instrumental
in the development of machine learning and the design and analysis of algorithms for supervised learning.
However, while very influential, these models do not capture or explain other important classic learning
paradigms such as Clustering, nor do they capture important emerging learning paradigms such as Semi-
Supervised Learning and other ways of incorporating unlabeled data in the learning process. In this
thesis, we develop new frameworks and algorithms for addressing key issues in several important classic
and modern learning paradigms. In particular, we study Semi-Supervised Learning, Active Learning,
Learning with Kernels and more general similarity functions, as well as Clustering. In addition, we
present new applications of techniques from Machine Learning to emerging areas of Computer Science,
such as Auction and Mechanism Design.

We start with a high level presentation of our work, and then in Section 1.1 we give a more detailed
overview of the main contributions of this thesis in each of the main directions. In Section 1.2 we summa-
rize the main results and describe the structure of this thesis, as well as provide bibliographic information.

New Frameworks and Algorithms for Machine Learning Over the years, machine learning has grown
into a broad discipline that has produced fundamental theories of learning processes, as well as learning
algorithms that are routinely used in commercial systems for speech recognition, computer vision, and
spam detection, to name just a few. The primary theoretical advances have been for passive supervised
learning problems [172], where a target function (e.g., a classifier) is estimated using only labeled exam-
ples which are considered to be drawn i.i.d. from the whole population. For example, in spam detection
an automatic classifier to label emails as spam or not would be trained using a sample of previous emails
labeled by a human user. However, for most contemporary practical problems there is often useful ad-
ditional information available in form of cheap and plentiful unlabeled data: e.g., unlabeled emails for
the spam detection problem. As a consequence, there has recently been substantial interest in Semi-
Supervised Learning, a method for using unlabeled data together with labeled data to improve learning.
Several different semi-supervised learning algorithms have been developed and numerous successful ex-
perimental results have been reported. However the underlying assumptions of these methods are quite
different and their effectiveness cannot be explained by standard learning models (the PAC model or the
Statistical Learning Theory framework). While many of these methods had theoretical justification under
specific assumptions, there has been no unified framework for semi-supervised learning in general. In this
thesis, we develop a comprehensive theoretical framework that provides a unified way for thinking about
semi-supervised learning; this model can be used to reason about many of the different approaches taken
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over the past decade in the machine learning community.1

In the context of Active Learning (another modern learning paradigm in which the algorithm can
interactively ask for the labels of unlabeled examples of its own choosing), we present several new the-
oretical results. In particular we describe the first active learning procedure that works in the presence
of arbitrary forms of noise. This procedure relies only upon the assumption that samples are drawn i.i.d.
from some underlying distribution and it makes no assumptions about the mechanism producing the noise
(e.g., class/target misfit, fundamental randomization, etc.). We also present theoretical justification for
margin-based algorithms which have proven quite successful in practical applications, e.g., in text classi-
fication [199].

Another important component of this thesis is the development of more intuitive and more operational
explanations for well-established learning paradigms, for which a solid theory did exist, but it was too
abstract and disconnected from practice. In particular, in the context of Kernel methods (a state of the
art technique for supervised learning and a flourishing area of research in modern machine learning), we
develop a theory of learning with similarity functions that provides theoretical justification for the common
intuition that a good kernel function is one that acts as a good measure of similarity. This theory is strictly
more general and involves more tangible quantities than those used by the traditional analysis.

Finally, we also present a new perspective on the classic Clustering problem. Problems of clustering
data from pairwise similarity information are ubiquitous in science and as a consequence clustering re-
ceived substantial attention in many different fields for many years. The theoretical work on the topic has
generally been of two types: either on algorithms for (approximately) optimizing various distance-based
objectives such as k-median, k-means, and min-sum, or on clustering under probabilistic “generative
model” assumptions such as mixtures of Gaussian or related distributions. In this thesis we propose a
new approach to analyzing the problem of clustering. We consider the goal of approximately recovering
an unknown target clustering using a similarity function (or a weighted graph), given only the assump-
tion of certain natural properties that the similarity or weight function satisfies with respect to the desired
clustering. Building on our models for learning with similarity functions in the context of supervised
classification, we provide the first general discriminative clustering framework for analyzing clustering
accuracy without probabilistic assumptions. In this model we directly address the fundamental question
of what kind of information a clustering algorithm needs in order to produce a highly accurate clustering
of the data, and we analyze both information theoretic and algorithmic aspects.

At a technical level, a common characteristic of many of the models we introduce to study these learning
paradigms (e.g., semi-supervised learning or learning and clustering via similarity functions) is the use
of data dependent concept spaces, which we expect to be a major line of research in the next years in
machine learning. The variety of results we present in these models relies on a very diverse set of insights
and techniques from Algorithms and Complexity, Empirical Processes and Statistics, Optimization, as
well as Geometry and Embeddings.

Connections between Machine Learning and Algorithmic Game Theory This thesis also includes a
novel application of machine learning techniques to automate aspects of Mechanism Design and formally
address the problem of market analysis, as well as development of pricing algorithms with improved
guarantees over previous methods.

Developing algorithms for a highly distributed medium such as the Internet requires a careful consid-
eration of the objectives of the various parties in the system. As a consequence, Mechanism Design has
become an increasingly important part of algorithmic research and computer science more generally in

1 This model appears in a recent book about Semi-Supervised Learning [27] and it can be used to explain when and why
unlabeled data can help in many of the specific methods given in the other chapters of the book.
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recent years. Mechanism design can be thought of as a distinct form of algorithm design, where a central
entity must perform some computation (e.g., resource allocation or decision making) under the constraint
that the agents supplying the inputs have their own interest in the outcome of the computation. As a result,
it is desirable that the employed procedure be incentive compatible, meaning that it should be in each
agent’s best interest to report truthfully, or to otherwise act in a well-behaved manner. Typical examples
of such mechanisms are auctions of products (e.g., software packages) or pricing of shared resources (e.g.
network links) where the central entity would use inputs (bids) from the agents in order to allocate goods in
a way that maximizes its revenue. Most of the previous work on incentive compatible mechanism design
for revenue maximization has been focused on very restricted settings [122, 174] (e.g., one item for sale
and/or single parameter agents), and many of the previous incentive compatible mechanisms have been
“hand-crafted” for the specific problem at hand. In this thesis we use techniques from machine learning
to provide a generic reduction from the incentive-compatible mechanism design question to more stan-
dard algorithmic questions, for a wide variety of revenue-maximization problems, in an unlimited supply
setting.

1.1 Overview

A more detailed overview of this thesis follows below.

1.1.1 Incorporating Unlabeled Data in the Learning Process

As mentioned earlier, machine learning has traditionally focused on problems of learning a task from
labeled examples only. However, for many contemporary practical problems such as classifying web
pages or detecting spam, there is often additional information available; in particular, for many of these
settings unlabeled data is often much cheaper and more plentiful than labeled data. As a consequence,
there has recently been substantial interest in using unlabeled data together with labeled data for learning
[59, 62, 135, 141, 159, 176, 181, 215], since clearly, if useful information can be extracted from it that
reduces dependence on labeled examples, this can be a significant benefit [58, 172].

There are currently several settings that have been considered for incorporating unlabeled data in the
learning process. Here, in addition to a set of labeled examples drawn at random from the underlying data
distribution, it is assumed that the learning algorithm can also use a (usually much larger) set of unlabeled
examples from the same distribution.

A first such setting is passive Semi-Supervised Learning (which we will refer to as SSL) [6]. What
makes unlabeled data so useful in the SSL context and what many of the SSL methods exploit, is that for
a wide variety of learning problems, the natural regularities of the problem involve not only the form of
the function being learned by also how this function relates to the distribution of data. For example, in
many problems one might expect the target function should cut through low density regions of the space,
a property used by the transductive SVM algorithm [141]. In other problems one might expect the target
to be self-consistent in some way, a property used by Co-training [62]. Unlabeled data is then potentially
useful in this setting because, in principle, it allows one to reduce search space from the whole set of
hypotheses, down to the set of a-priori reasonable ones with respect to the underlying distribution.

A second setting which has been considered for incorporating unlabeled data in the learning process
which has been increasingly popular for the past few years, is Active Learning [86, 94]. Here, the learning
algorithm has both the capability of drawing random unlabeled examples from the underlying distribution,
and that of asking for the labels of any of these examples. The hope is that a good classifier can be learned
with significantly fewer labels by actively directing the queries to informative examples. As opposed to
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the SSL setting, and similarly to the classical supervised learning settings (PAC and Statistical Learning
Theory settings) the only prior belief about the learning problem in the active learning setting is that
the target function (or a good approximation of it) belongs to a given concept class. Luckily, it turns
out that for simple concept classes such as linear separators on the line one can achieve an exponential
improvement (over the usual supervised learning setting) in the labeled data sample complexity, under no
additional assumptions about the learning problem [86, 94]. In general, however, for more complicated
concept classes, the speed-ups achievable in the active learning setting depend on the match between the
distribution over example-label pairs and the hypothesis class. Furthermore, there are simple examples
where active learning does not help at all, not even in the realizable case [94].

In this thesis we study both Active Learning and Semi-Supervised Learning. For the semi-supervised
learning problem, we provide a unified discriminative model (i.e., a PAC or Statistical Learning Theory
style model) that captures many of the ways unlabeled data is typically used, and provides a very general
framework for thinking about this issue. This model provides a unified framework for analyzing when and
why unlabeled data can help, in which one can discuss both sample-complexity and algorithmic issues.
Our model can be viewed as an extension of the standard PAC model, where in addition to a concept class
C, one also proposes a compatibility function (an abstract prior): a type of compatibility that one believes
the target concept should have with the underlying distribution of data. For example, such a belief could
be that the target should cut through a low-density region of space, or that it should be self-consistent
in some way as in co-training. This belief is then explicitly represented in the model. Unlabeled data
is then potentially helpful in this setting because it allows one to estimate compatibility over the space
of hypotheses, and to reduce the size of the search space from the whole set of hypotheses C down
to those that, according to one’s assumptions, are a-priori reasonable with respect to the distribution.
After proposing the model, we analyze fundamental sample-complexity issues in this setting such as
“How much of each type of data one should expect to need in order to learn well?”, and “What are the
basic quantities that these numbers depend on?”. We present a variety of sample-complexity bounds,
both in terms of uniform-convergence results—which apply to any algorithm that is able to find rules
of low error and high compatibility—as well as ε-cover-based bounds that apply to a more restricted
class of algorithms but can be substantially tighter. For instance, we describe several natural cases in
which ε-cover-based bounds can apply even though with high probability there still exist bad hypotheses
in the class consistent with the labeled and unlabeled examples. Finally, we present several PAC-style
algorithmic results in this model. Our main algorithmic result is a new algorithm for Co-Training with
linear separators that, if the distribution satisfies independence given the label, requires only a single
labeled example to learn to any desired error rate ε and is computationally efficient (i.e., achieves PAC
guarantees). This substantially improves on the results of [62] which required enough labeled examples
to produce an initial weak hypothesis. We describe these results in Chapter 2.

For the active learning problem, we prove for the first time, the feasibility of agnostic active learning.
Specifically we propose and analyze the first active learning algorithm that finds an ε-optimal hypothesis
in any hypothesis class, when the underlying distribution has arbitrary forms of noise. We also analyze
margin based active learning of linear separators. We discuss these results in Chapter 5. Finally, we
mention recent work in which we have shown that in an asymptotic model for active learning where one
bounds the number of queries the algorithm makes before it finds a good function (i.e. one of arbitrarily
small error rate), but not the number of queries before it knows it has found a good function, one can
obtain significantly better bounds on the number of label queries required to learn than in the traditional
active learning models.

In addition to being helpful in the semi-supervised Learning and active learning settings, unlabeled
data becomes useful in other settings as well, both in partially supervised learning models and, of course,
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in purely unsupervised learning (e.g., clustering). In this thesis we study the use of unlabeled data in the
context of learning with Kernels and more general similarity functions. We also analyze how to effectively
use unlabeled data for Clustering with non-interactive feedback. We discuss these in turn below.

1.1.2 Similarity Based Learning

Kernel functions have become an extremely popular tool in machine learning, with an attractive theory
as well [133, 139, 187, 190, 203]. They are used in domains ranging from Computer Vision [132] to
Computational Biology [187] to Language and Text Processing [139], with workshops, (e.g. [2, 3, 4, 5]),
books [133, 139, 187, 190] [203], and large portions of major conferences (see, e.g., [1]) devoted to kernel
methods. In this thesis, we strictly generalize and simplify the existing theory of Kernel Methods. Our
approach brings a new perspective as well as a much simpler explanation for the effectiveness of kernel
methods, which can help in the design of good kernel functions for new learning problems.

A kernel is a function that takes in two data objects (which could be images, DNA sequences, or points
in Rn) and outputs a number, with the property that the function is symmetric and positive-semidefinite.
That is, for any kernel K, there must exist an (implicit) mapping φ, such that for all inputs x, x′ we have
K(x, x′) = φ(x) · φ(x′). The kernel is then used inside a “kernelized” learning algorithm such as SVM
or kernel-perceptron as the way in which the algorithm interacts with the data. Typical kernel functions
for structured data include the polynomial kernel K(x, x′) = (1 + x · x′)d and the Gaussian kernel
K(x, x′) = e−||x−x′||2/2σ2

, and a number of special-purpose kernels have been developed for sequence
data, image data, and other types of data as well [88, 89, 157, 173, 193].

The theory behind kernel functions is based on the fact that many standard algorithms for learning
linear separators, such as SVMs and the Perceptron algorithm, can be written so that the only way they
interact with their data is via computing dot-products on pairs of examples. Thus, by replacing each
invocation of x · x′ with a kernel computation K(x, x′), the algorithm behaves exactly as if we had
explicitly performed the mapping φ(x), even though φ may be a mapping into a very high-dimensional
space (dimension nd for the polynomial kernel) or even an infinite-dimensional space (as in the case of the
Gaussian kernel). Furthermore, these algorithms have convergence rates that depend only on the margin
of the best separator, and not on the dimension of the space in which the data resides [18, 191]. Thus,
kernel functions are often viewed as providing much of the power of this implicit high-dimensional space,
without paying for it computationally (because the φ mapping is only implicit) or in terms of sample size
(if the data is indeed well-separated in that space).

While the above theory is quite elegant, it has a few limitations. First, when designing a kernel function
for some learning problem, the intuition typically employed is that a good kernel would be one that serves
as a good similarity function for the given problem [187]. On the other hand, the above theory talks
about margins in an implicit and possibly very high-dimensional space. So, in this sense the theory is not
that helpful for providing intuition when selecting or designing a kernel function. Second, it may be that
the most natural similarity function for a given problem is not positive-semidefinite, and it could require
substantial work, possibly reducing the quality of the function, to coerce it into a legal form. Finally, from
a complexity-theoretic perspective, it is somewhat unsatisfying for the explanation of the effectiveness of
some algorithm to depend on properties of an implicit high-dimensional mapping that one may not even
be able to calculate. In particular, the standard theory at first blush has a “something for nothing” feel to it
(all the power of the implicit high-dimensional space without having to pay for it) and perhaps there is a
more prosaic explanation of what it is that makes a kernel useful for a given learning problem. For these
reasons, it would be helpful to have a theory that involved more tangible quantities.

In this thesis we provide new theories that address these limitations in two ways. First, we show how
Random Projection techniques can be used to convert a given kernel function into an explicit, distribution
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dependent, set of features, which can then be fed into more general (not necessarily kernelizable) learning
algorithms. Conceptually, this result suggests that designing a good kernel function is much like designing
a good feature space. From a practical perspective it provides an alternative to “kernelizing” a learning
algorithm: rather than modifying the algorithm to use kernels, one can instead construct a mapping into a
low-dimensional space using the kernel and the data distribution, and then run an un-kernelized algorithm
over examples drawn from the mapped distribution.

Second, we also show how such methods can be extended to more general pairwise similarity func-
tions and also give a formal theory that matches the standard intuition that a good kernel function is one
that acts as a good measure of similarity. In particular, we define a notion of what it means for a pairwise
function K(x, x′) to be a “good similarity function” for a given learning problem that (a) does not require
the notion of an implicit space and allows for functions that are not positive semi-definite, (b) is provably
sufficient for learning, and (c) is broad, in sense that a good kernel in the standard sense (large margin in
the implicit φ-space) will also satisfy our definition of a good similarity function, though with some loss
in the parameters. This framework provides the first rigorous explanation for why a kernel function that
is good in the large-margin sense can also formally be viewed as a good measure of similarity, thereby
giving formal justification to a common intuition about kernels. We start by analyzing a first notion of a
good similarity function in Section 3.3 and analyze its relationship with the usual notion of a good kernel
function. We then present a slightly different and broader notion that we show it provides even better
kernels to similarity translation. Any large-margin kernel function is a good similarity function under
the new definition, and while we still incur some loss in the parameters, this loss is much smaller than
under the prior definition, especially in terms of the final labeled sample-complexity bounds. In particular,
when using a valid kernel function as a similarity function, a substantial portion of the previous sample-
complexity bound can be transferred over to merely a need for unlabeled examples. We also show our
new notion is strictly more general than the notion of a large margin kernel. We discuss these results in
Section 3.4. In Chapter 6 other random projection results for the case where K is in fact a valid kernel.

1.1.3 Clustering via Similarity Functions

Problems of clustering data from pairwise similarity information are ubiquitous in science [8, 19, 83, 91,
95, 138, 146, 147, 151, 205]. A typical example task is to cluster a set of emails or documents according
to some criterion (say, by topic) by making use of a pairwise similarity measure among data objects. In
this context, a natural example of a similarity measure for document clustering might be to consider the
fraction of important words that two documents have in common.

While the study of clustering is centered around an intuitively compelling goal (and it has been a major
tool in many different fields), it has been difficult to reason about it at a general level in part due to the
lack of a theoretical framework along the lines we have for supervised classification.

In this thesis we develop the first general discriminative framework for Clustering, i.e. a framework for
analyzing clustering accuracy without making strong probabilistic assumptions. In particular, we present
a theoretical approach to the clustering problem that directly addresses the fundamental question of how
good the similarity measure must be in terms of its relationship to the desired ground-truth clustering (e.g.,
clustering by topic) in order to allow an algorithm to cluster well. Very strong properties and assumptions
are needed if the goal is to produce a single approximately-correct clustering; however, we show that if we
relax the objective and allow the algorithm to produce a hierarchical clustering such that desired clustering
is close to some pruning of this tree (which a user could navigate), then we can develop a general theory
of natural properties that are sufficient for clustering via various kinds of algorithms. This framework is
an analogue of the PAC learning model for clustering, where the natural object of study, rather than being
a concept class, is instead a property of the similarity information with respect to the desired ground-truth
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Figure 1.1: Data lies in four regions A,B, C,D (e.g., think of as documents on baseball, football, TCS,
and AI). Suppose that K(x, y) = 1 if x and y belong to the same region, K(x, y) = 1/2 if x ∈ A and
y ∈ B or if x ∈ C and y ∈ D, and K(x, y) = 0 otherwise. Even assuming that all points are more similar
to other points in their own cluster than to any point in any other cluster, there are still multiple consistent
clusterings, including two consistent 3-clusterings ((A ∪ B, C, D) or (A, B, C ∪D)). However, there is
a single hierarchical decomposition such that any consistent clustering is a pruning of this tree.

clustering.
As indicated above, the main difficulty that appears when phrasing the problem in this general way is

that if one defines success as outputting a single clustering that closely approximates the correct clustering,
then one needs to assume very strong conditions on the similarity function. For example, if the function
provided by the domain expert is extremely good, say K(x, y) > 1/2 for all pairs x and y that should be
in the same cluster, and K(x, y) < 1/2 for all pairs x and y that should be in different clusters, then we
could just use it to recover the clusters in a trivial way. However, if we just slightly weaken this condition
to simply require that all points x are more similar to all points y from their own cluster than to any points
y from any other clusters, then this is no longer sufficient to uniquely identify even a good approximation
to the correct answer. For instance, in the example in Figure 1.1, there are multiple clusterings consistent
with this property (one with 1 cluster, one with 2 clusters, two with 3 clusters, and one with 4 clusters).
Even if one is told the correct clustering has 3 clusters, there is no way for an algorithm to tell which of
the two (very different) possible solutions is correct. In fact, results of Kleinberg [151] can be viewed
as effectively ruling out a broad class of scale-invariant properties like this one as being sufficient for
producing the correct answer.

In our work we overcome this problem by considering two relaxations of the clustering objective
that are natural for many clustering applications. The first is to allow the algorithm to produce a small
list of clusterings such that at least one of them has low error2. The second is (as mentioned above) to
allow the clustering algorithm to produce a tree (a hierarchical clustering) such that the correct answer is
approximately some pruning of this tree. For instance, the example in Figure 1.1 has a natural hierarchical
decomposition of this form. Both relaxed objectives make sense for settings in which we imagine the
output being fed to a user who will then decide what she likes best. For example, with the tree relaxation,
we allow the clustering algorithm to effectively say: “I wasn’t sure how specific you wanted to be, so
if any of these clusters are too broad, just click and I will split it for you.” We then show that with
these relaxations, a number of interesting, natural learning-theoretic and game-theoretic properties can be
defined that each are sufficient to allow an algorithm to cluster well.

For concreteness, we shall summarize in the following our main results. First, we consider a family

2So, this is similar in spirit to list-decoding in coding theory.
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of stability-based properties, showing that a natural generalization of the “stable marriage” property is
sufficient to produce a hierarchical clustering. (The property is that no two subsets A ⊂ C, A′ ⊂ C ′ of
clusters C 6= C ′ in the correct clustering are both more similar on average to each other than to the rest of
their own clusters.) Moreover, a significantly weaker notion of stability (which we call “stability of large
subsets”) is also sufficient to produce a hierarchical clustering, but requires a more involved algorithm. We
also show that a weaker “average-attraction” property (which is provably not enough to produce a single
correct hierarchical clustering) is sufficient to produce a small list of clusterings, and give generalizations
to even weaker conditions that are related to the notion of large-margin kernel functions. We develop
a notion of the clustering complexity of a given property (the minimum possible list length that can be
guaranteed by any algorithm) and provide both upper and lower bounds for the properties we consider.
This notion is analogous to notions of capacity in classification [72, 103, 203] and it provides a formal
measure of the inherent usefulness of a given property. We show that properties implicitly assumed by
approximation algorithms for standard graph-based objective functions can be viewed as special cases of
some of the properties considered above.

We also show how our algorithms can be extended to the inductive case, i.e., by using just a constant-
sized sample, as in property testing. While most of our algorithms extend in a natural way, for certain
properties their analysis requires more involved arguments using regularity-type results of [14, 113].

More generally, our framework provides a formal way to analyze what properties of a similarity func-
tion would be sufficient to produce low-error clusterings, as well as what algorithms are suited for a given
property. For some of our properties we are able to show that known algorithms succeed (e.g. variations of
bottom-up hierarchical linkage based algorithms). However, for the most general ones, e.g., the stability
of large subsets property, we need new algorithms that are able to take advantage of them. In fact, the al-
gorithm we develop for the stability of the large subsets property combines learning-theoretic approaches
used in Chapter 3 (and described in Section 1.1.2) with linkage-style methods. We describe these results
in Chapter 4.

1.1.4 Mechanism Design, Machine Learning, and Pricing Problems

In this thesis we also present explicit connections between Machine Learning Theory and certain contem-
porary problems in Economics.

With the Internet developing as the single most important arena for resource sharing among parties
with diverse and selfish interests, traditional algorithmic and distributed systems need to be combined with
the understanding of game-theoretic and economic issues [177]. A fundamental research endeavor in this
new field is the design and analysis of auction mechanisms and pricing algorithm [70, 121, 124, 129, 129].
In this thesis we show how machine learning methods can be used in the design of auctions and other
pricing mechanisms with guarantees on their performance.

In particular, we show how sample complexity techniques from statistical learning theory can be used
to reduce problems of incentive-compatible mechanism design to standard algorithmic questions, for a
wide range of revenue-maximizing problems in an unlimited supply setting. In doing so, we obtain a
unified approach for considering a variety of profit maximizing mechanism design problems, including
many that have been previously considered in the literature. We show how techniques from in machine
learning theory can be used both for analyzing and designing our mechanisms. We apply our reductions
to a diverse set of revenue maximizing pricing problems, such as the problem of auctioning a digital good,
the attribute auction problem, and the problem of item pricing in unlimited supply combinatorial auctions.

For concreteness, in the following paragraphs, we shall give more details on the setting we study in
our work. Consider a seller with multiple digital goods or services for sale, such as movies, software,
or network services, over which buyers may have complicated preferences. In order to sell these items
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through an incentive-compatible auction mechanism, this mechanism should have the property that each
bidder is offered a set of prices that do not depend on the value of her bid. The problem of designing
a revenue-maximizing auction is known in the economics literature as the optimal auction design prob-
lem [171]. The classical model for optimal auction design assumes a Bayesian setting in which players’
valuations (types) are drawn from some probability distribution that furthermore is known to the mech-
anism designer. For example, to sell a single item of fixed marginal cost, one should set the price that
maximizes the profit margin per sale times the probability a random person would be willing to buy at
that price. However, in complex or non-static environments, these assumptions become unrealistic. In
these settings, machine learning can provide a natural approach to the design of near-optimal mechanisms
without such strong assumptions or degree of prior knowledge.

Specifically, notice that while a truthful auction mechanism should have the property that the prices
offered to some bidder i do not depend on the value of her bid, they can depend on the amounts bid by other
bidders j. From a machine learning perspective, this is very similar to thinking of bidders as “examples”
and our objective being to use information from examples j 6= i to produce a good prediction with respect
to example i. Thus, without presuming a known distribution over bidders (or even that bidders come
from any distribution at all) perhaps if the number of bidders is sufficiently large, enough information
can be learned from some of them to perform well on the rest. In this thesis we formalize this idea and
show indeed that sample-complexity techniques from machine learning theory [18, 203] can be adapted
to this setting to give quantitative bounds for this kind of approach. More generally, we show that sample
complexity analysis can be applied to convert incentive-compatible mechanism design problems to more
standard algorithm-design questions, in a wide variety of revenue-maximizing auction settings.

Our reductions imply that for these problems, given an algorithm for the non incentive-compatible
pricing problem, we can convert it into an algorithm for the incentive-compatible mechanism design prob-
lem that is only a factor of (1+ε) worse, as long as the number of bidders is sufficiently large as a function
of an appropriate measure of complexity of the class of allowable pricing functions. We apply these results
to the problem of auctioning a digital good, to the attribute auction problem which includes a wide variety
of discriminatory pricing problems, and to the problem of item-pricing in unlimited-supply combinatorial
auctions.From a machine learning perspective, these settings present several challenges: in particular, the
loss function is discontinuous, is asymmetric, and has a large range.

The high level idea of our most basic reduction is based on the notion of a random sampling auction.
For concreteness, let us imagine we are selling a collection of n goods or services of zero marginal cost
to us, to n bidders who may have complex preference functions over these items, and our objective is to
achieve revenue comparable to the best possible assignment of prices to the various items we are selling.
So, technically speaking, we are in the setting of maximizing revenue in an unlimited supply combinatorial
auction. Then given a set of bids S, we perform the following operations. We first randomly partition S
into two sets S1 and S2. We then consider the purely algorithmic problem of finding the best set of prices
p1 for the set of bids S1 (which may be difficult but is purely algorithmic), and the best set of prices p2

for the set of bids S2. We then use p1 as offer prices for bidders in S2, giving each bidder the bundle
maximizing revealed valuation minus price, and use p2 as offer prices for bidders in S1. We then show
that even if bidders’ preferences are extremely complicated, this mechanism will achieve revenue close to
that of the best fixed assignment of prices to items so long as the number of bidders is sufficiently large
compared to the number of items for sale. For example, if all bidders’ valuations on the grand bundle of
all n items lie in the range [1, h], then O(hn/ε2) bidders are sufficient so that with high probability, we
come within a (1 + ε) factor of the optimal fixed item pricing. Or, if we cannot solve the algorithmic
problem exactly (since many problems of this form are often NP-hard [25, 26, 32, 129]), we lose only a
(1 + ε) factor over whatever approximation our method for solving the algorithmic problem gives us.
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More generally, these methods apply to a wide variety of pricing problems, including those in which
bidders have both public and private information, and also give a formal framework in which one can
address other interesting design issues such as how fine-grained a market segmentation should be. This
framework provides a unified approach to considering a variety of profit maximizing mechanism design
problems including many that have been previously considered in the literature. Furthermore, our re-
sults substantially generalize the previous work on random sampling mechanisms by both broadening the
applicability of such mechanisms and by simplifying the analysis.

Some of our techniques give suggestions for the design of mechanisms and others for their analysis.
In terms of design, these include the use of discretization to produce smaller function classes, and the use
of structural-risk minimization to choose an appropriate level of complexity of the mechanism for a given
set of bidders. In terms of analysis, these include both the use of basic sample-complexity arguments, and
the notion of multiplicative covers for better bounding the true complexity of a given class of offers.

Finally, from a learning perspective, this mechanism-design setting presents a number of technical
challenges when attempting to get good bounds: in particular, the payoff function is discontinuous and
asymmetric, and the payoffs for different offers are non-uniform. For example, we develop bounds based
on a different notion of covering number than typically used in machine learning, in order to obtain results
that are more meaningful for this mechanism design setting. We describe these results in Chapter 7.

1.2 Summary of the Main Results and Bibliographic Information

This thesis is organized as follows.

• In Chapter 2 we present the first general discriminative model for Semi-Supervised learning. In this
model we provide a variety of algorithmic and sample complexity results and we also show how it
can be used to reason about many of the different semi-supervised learning approaches taken over
the past decade in the machine learning community. Much of this chapter is based on work that
appears in [23], [27]. Other related work we have done on Co-training (which we briefly mention)
appears in [28].

• In Chapter 3 we provide a theory of learning with general similarity functions (that is, functions
which are not necessarily legal kernels). This theory provides conditions on the suitability of a
similarity function for a given learning problem in terms of more tangible and more operational
quantities than those used by the standard theory of kernel functions. In addition to being provably
more general than the standard theory, our framework provides the first rigorous explanation for
why a kernel function that is good in the large-margin sense can also formally be viewed as a good
measure of similarity, thereby giving formal justification to a common intuition about kernels. In
this chapter we analyze both algorithmic and sample complexity issues, and this is mostly based on
work that appears in [24], [38], and [39].

• In Chapter 4 we study Clustering and we present the first general framework for analyzing clustering
accuracy without probabilistic assumptions. Again, in this chapter we consider both algorithmic and
information theoretic aspects. This is mainly based on work that appears in [40], but also includes
parts from the recent work in [42].

• In Chapter 5 we analyze Active Learning and present two main results. In Section 5.1, we provide a
generic active learning algorithm that works in the presence of arbitrary forms of noise. This section
is focused mostly on sample complexity aspects and the main contribution here is to provide the
first positive result showing that active learning can provide a significant improvement over passive
learning even in the presence of arbitrary forms of noise. In Section 5.2 we analyze a natural
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margin-based active learning strategy for learning linear separators (which queries points near the
hypothesized decision boundary). We provide a detailed analysis (both sample complexity and
algorithmic) both in the realizable case and in a specific noisy setting related to the Tsybakov noise
condition. This chapter is based on work that appears in [30], [35], and [33]. We also briefly
mention other recent work on the topic [41].

• In Chapter 6 we present additional results on learning with kernel functions. Specifically, we show
how Random Projection techniques can be used to “demystify” kernel functions. We show that
in the presence of a large margin, a kernel can be efficiently converted into a mapping to a low
dimensional space; in particular, we present a computationally efficient procedure that, given black-
box access to the kernel and unlabeled data, generates a small number of features that approximately
preserve both separability and margin. This is mainly based on work that appears in [31].

• In Chapter 7 we show how model selection and sample complexity techniques in machine learning
can be used to convert difficult mechanism design problems to more standard algorithmic questions
for a wide range of pricing problems. We present a unified approach for considering a variety of
profit maximizing mechanism design problems, such as the problem of auctioning a digital good, the
attribute auction problem (which includes many discriminatory pricing problems), and the problem
of item pricing in unlimited supply combinatorial auctions. These results substantially generalize
the previous work on random sampling mechanisms by both broadening the applicability of such
mechanisms (e.g., to multi-parameter settings), and by simplifying and refining the analysis. This
chapter is mainly based on work that appears in [29] and [36] and it is focused on using machine
learning techniques for providing a generic reduction from the incentive-compatible mechanism
design question to more standard algorithmic questions, without also attempting to address the
algorithmic questions as well. In other related work (which for coherence and space limitations is
not included in this thesis) we have also considered various algorithmic problems that arise in this
context [26], [25], [32] and [37].

While we discuss both technical and conceptual connections between the various learning protocols
and paradigms studied throughout the thesis, each chapter can also be read somewhat independently.
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Chapter 2

A Discriminative Framework for
Semi-Supervised Learning

There has recently been substantial interest in semi-supervised learning — a paradigm for incorporating
unlabeled data in the learning process — since any useful information that reduces the amount of labeled
data needed for learning can be a significant benefit. Several techniques have been developed for doing
this, along with experimental results on a variety of different learning problems. Unfortunately, the stan-
dard learning frameworks for reasoning about supervised learning do not capture the key aspects and the
assumptions underlying these semi-supervised learning methods.

In this chapter we describe an augmented version of the PAC model designed for semi-supervised
learning, that can be used to reason about many of the different approaches taken over the past decade in
the Machine Learning community. This model provides a unified framework for analyzing when and why
unlabeled data can help in the semi-supervised learning setting, in which one can analyze both sample-
complexity and algorithmic issues. The model can be viewed as an extension of the standard PAC model
where, in addition to a concept class C, one also proposes a compatibility notion: a type of compatibility
that one believes the target concept should have with the underlying distribution of data. Unlabeled data
is then potentially helpful in this setting because it allows one to estimate compatibility over the space of
hypotheses, and to reduce the size of the search space from the whole set of hypotheses C down to those
that, according to one’s assumptions, are a-priori reasonable with respect to the distribution. As we show,
many of the assumptions underlying existing semi-supervised learning algorithms can be formulated in
this framework.

After proposing the model, we then analyze sample-complexity issues in this setting: that is, how
much of each type of data one should expect to need in order to learn well, and what the key quantities are
that these numbers depend on. Our work is the first to address such important questions in the context of
semi-supervised learning in a unified way. We also consider the algorithmic question of how to efficiently
optimize for natural classes and compatibility notions, and provide several algorithmic results including
an improved bound for Co-Training with linear separators when the distribution satisfies independence
given the label.

2.1 Introduction

As mentioned in Chapter 1, given the easy availability of unlabeled data in many settings, there has been
growing interest in methods that try to use such data together with the (more expensive) labeled data
for learning. In particular, a number of semi-supervised learning techniques have been developed for
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doing this, along with experimental results on a variety of different learning problems. These include
label propagation for word-sense disambiguation [210], co-training for classifying web pages [62] and
improving visual detectors [159], transductive SVM [141] and EM [176] for text classification, graph-
based methods [215], and others. The problem of learning from labeled and unlabeled data has been the
topic of several ICML workshops [15, 117] as well as a recent book [82] and survey article [214].

What makes unlabeled data so useful and what many of these methods exploit, is that for a wide variety
of learning problems, the natural regularities of the problem involve not only the form of the function being
learned by also how this function relates to the distribution of data. For example, in many problems one
might expect the target function should cut through low density regions of the space, a property used by
the transductive SVM algorithm [141]. In other problems one might expect the target to be self-consistent
in some way, a property used by Co-training [62]. Unlabeled data is potentially useful in these settings
because it then allows one to reduce the search space to a set which is a-priori reasonable with respect to
the underlying distribution.

Unfortunately, however, the underlying assumptions of these semi-supervised learning methods are
not captured well by standard theoretical models. The main goal of this chapter is to propose a unified the-
oretical framework for semi-supervised learning, in which one can analyze when and why unlabeled data
can help, and in which one can discuss both sample-complexity and algorithmic issues in a discriminative
(PAC-model style) framework.

One difficulty from a theoretical point of view is that standard discriminative learning models do not
allow one to specify relations that one believes the target should have with the underlying distribution.
In particular, both in the PAC model [69, 149, 201] and the Statistical Learning Theory framework [203]
there is purposefully a complete disconnect between the data distribution D and the target function f
being learned. The only prior belief is that f belongs to some class C: even if the data distribution D is
known fully, any function f ∈ C is still possible. For instance, in the PAC model, it is perfectly natural
(and common) to talk about the problem of learning a concept class such as DNF formulas [162, 206]
or an intersection of halfspaces [47, 61, 153, 204] over the uniform distribution; but clearly in this case
unlabeled data is useless — you can just generate it yourself. For learning over an unknown distribution,
unlabeled data can help somewhat in the standard models (e.g., by allowing one to use distribution-specific
algorithms and sample-complexity bounds [53, 144]), but this does not seem to capture the power of
unlabeled data in practical semi-supervised learning methods.

In generative models, one can easily talk theoretically about the use of unlabeled data, e.g., [76, 77].
However, these results typically make strong assumptions that essentially imply that there is only one
natural distinction to be made for a given (unlabeled) data distribution. For instance, a typical generative
model would be that we assume positive examples are generated by one Gaussian, and negative examples
are generated by another Gaussian. In this case, given enough unlabeled data, we could in principle
recover the Gaussians and would need labeled data only to tell us which Gaussian is the positive one and
which is the negative one.1 However, this is too strong an assumption for most real-world settings. Instead,
we would like our model to allow for a distribution over data (e.g., documents we want to classify) where
there are a number of plausible distinctions we might want to make. In addition, we would like a general
framework that can be used to model many different uses of unlabeled data.

2.1.1 Our Contribution

In this chapter, we present a discriminative (PAC-style framework) that bridges between these positions
and can be used to help think about and analyze many of the ways unlabeled data is typically used. This

1[76, 77] do not assume Gaussians in particular, but they do assume the distributions are distinguishable, which from this
perspective has the same issue.
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framework extends the PAC learning model in a way that allows one to express not only the form of
target function one is considering, but also relationships that one hopes the target function and underlying
distribution will possess. We then analyze both sample-complexity issues—that is, how much of each
type of data one should expect to need in order to learn well—as well as algorithmic results in this model.
We derive bounds for both the realizable (PAC) and agnostic (statistical learning framework) settings.

Specifically, the idea of the proposed model is to augment the PAC notion of a concept class, which
is a set of functions (such as linear separators or decision trees), with a notion of compatibility between
a function and the data distribution that we hope the target function will satisfy. Rather than talking of
“learning a concept class C,” we will talk of “learning a concept class C under compatibility notion χ.”
For example, suppose we believe there should exist a low-error linear separator, and that furthermore, if
the data happens to cluster, then this separator does not slice through the middle of any such clusters. Then
we would want a compatibility notion that penalizes functions that do, in fact, slice through clusters. In
this framework, the ability of unlabeled data to help depends on two quantities: first, the extent to which
the target function indeed satisfies the given assumptions, and second, the extent to which the distribution
allows this assumption to rule out alternative hypotheses. For instance, if the data does not cluster at
all (say the underlying distribution is uniform in a ball), then all functions would equally satisfy this
compatibility notion and the assumption is not useful. From a Bayesian perspective, one can think of this
as a PAC model for a setting in which one’s prior is not just over functions, but also over how the function
and underlying distribution relate to each other.

To make our model formal, we will need to ensure that the degree of compatibility be something that
can be estimated from a finite sample. To do this, we will require that the compatibility notion χ in fact
be a function from C × X to [0, 1], where the compatibility of a hypothesis h with the data distribution
D is then Ex∼D[χ(h, x)]. That is, we require that the degree of incompatibility be a kind of unlabeled
loss function, and the incompatibility of a hypothesis h with a data distribution D is a quantity we can
think of as an “unlabeled error rate” that measures how a-priori unreasonable we believe some proposed
hypothesis to be. For instance, in the example above of a “margin-style” compatibility, we could define
χ(f, x) to be an increasing function of the distance of x to the separator f . In this case, the unlabeled error
rate, 1 − χ(f,D), is a measure of the probability mass close to the proposed separator. In co-training,
where each example x has two “views” (x = 〈x1, x2〉), the underlying belief is that the true target c∗ can
be decomposed into functions 〈c∗1, c∗2〉 over each view such that for most examples, c∗1(x1) = c∗2(x2). In
this case, we can define χ(〈f1, f2〉, 〈x1, x2〉) = 1 if f1(x1) = f2(x2), and 0 if f1(x1) 6= f2(x2). Then the
compatibility of a hypothesis 〈f1, f2〉 with an underlying distribution D is Pr〈x1,x2〉∼D[f1(x1) = f2(x2)].

This framework allows us to analyze the ability of a finite unlabeled sample to reduce our dependence
on labeled examples, as a function of (1) the compatibility of the target function (i.e., how correct we were
in our assumption) and (2) various measures of the “helpfulness” of the distribution. In particular, in our
model, we find that unlabeled data can help in several distinct ways.

• If the target function is highly compatible with D and belongs to C, then if we have enough unla-
beled data to estimate compatibility over all f ∈ C, we can in principle reduce the size of the search
space from C down to just those f ∈ C whose estimated compatibility is high. For instance, if D is
“helpful”, then the set of such functions will be much smaller than the entire set C. In the agnostic
case we can do (unlabeled)-data-dependent structural risk minimization to trade off labeled error
and incompatibility.

• By providing an estimate of D, unlabeled data can allow us to use a more refined distribution-
specific notion of “hypothesis space size” such as Annealed VC-entropy [103], Rademacher com-
plexities [43, 72, 155] or the size of the smallest ε-cover [53], rather than VC-dimension [69, 149].
In fact, for many natural notions of compatibility we find that the sense in which unlabeled data
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reduces the “size” of the search space is best described in these distribution-specific measures.

• Finally, if the distribution is especially helpful, we may find that not only does the set of compatible
f ∈ C have a small ε-cover, but also the elements of the cover are far apart. In that case, if we
assume the target function is fully compatible, we may be able to learn from even fewer labeled
examples than the Ω(1/ε) needed just to verify a good hypothesis. For instance, as one application
of this, we show that under the assumption of independence given the label, one can efficiently
perform Co-Training of linear separators from a single labeled example!

Our framework also allows us to address the issue of how much unlabeled data we should expect to
need. Roughly, the “VCdim/ε2” form of standard sample complexity bounds now becomes a bound on the
number of unlabeled examples we need to uniformly estimate compatibilities. However, technically, the
set whose VC-dimension we now care about is not C but rather a set defined by both C and χ: that is, the
overall complexity depends both on the complexity of C and the complexity of the notion of compatibility
(see Section 2.3.1). One consequence of our model is that if the target function and data distribution are
both well behaved with respect to the compatibility notion, then the sample-size bounds we get for labeled
data can substantially beat what one could hope to achieve through pure labeled-data bounds, and we
illustrate this with a number of examples through the chapter.

2.1.2 Summary of Main Results

The primary contributions of this chapter are the following. First, as described above, we develop a
new discriminative (PAC-style) model for semi-supervised learning, that can be used to analyze when
unlabeled data can help and how much unlabeled data is needed in order to gain its benefits, as well as
the algorithmic problems involved. Second, we present a number of sample-complexity bounds in this
framework, both in terms of uniform-convergence results—which apply to any algorithm that is able to
find rules of low error and high compatibility—as well as ε-cover-based bounds that apply to a more
restricted class of algorithms but can be substantially tighter. For instance, we describe several natural
cases in which ε-cover-based bounds can apply even though with high probability there still exist bad
hypotheses in the class consistent with the labeled and unlabeled examples. Finally, we present several
PAC-style algorithmic results in this model. Our main algorithmic result is a new algorithm for Co-
Training with linear separators that, if the distribution satisfies independence given the label, requires
only a single labeled example to learn to any desired error rate ε and is computationally efficient (i.e.,
achieves PAC guarantees). This substantially improves on the results of [62] which required enough
labeled examples to produce an initial weak hypothesis, and in the process we get a simplification to the
noisy halfspace learning algorithm of [64].

Our framework has helped analyze many of the existing semi-supervised learning methods used in
practice and has guided the development of new semi-supervised learning algorithms and analyses. We
discuss this further in Section 2.6.1.

2.1.3 Structure of this Chapter

We begin by describing the general setting in which our results apply as well as several examples to il-
lustrate our framework in Section 2.2. We then give results both for sample complexity (in principle, how
much data is needed to learn) and efficient algorithms. In terms of sample-complexity, we start by dis-
cussing uniform convergence results in Section 2.3.1. For clarity we begin with the case of finite hypoth-
esis spaces in Section 2.3.1, and then discuss infinite hypothesis spaces in Section 2.3.1. These results
give bounds on the number of examples needed for any learning algorithm that produces a compatible

16



hypothesis of low empirical error. We also show how in the agnostic case we can do (unlabeled)-data-
dependent structural risk minimization to trade off labeled error and incompatibility in Section 2.3.1. To
achieve tighter bounds, in Section 2.3.2 we give results based on the notion of ε-cover size. These bounds
hold only for algorithms of a specific type (that first use the unlabeled data to choose a small set of “repre-
sentative” hypotheses and then choose among the representatives based on the labeled data), but can yield
bounds substantially better than with uniform convergence (e.g., we can learn even though there exist bad
h ∈ C consistent with the labeled and unlabeled examples).

In Section 2.4, we give our algorithmic results. We begin with a particularly simple class C and com-
patibility notion χ for illustration, and then give our main algorithmic result for Co-Training with linear
separators. In Section 2.5 we discuss a transductive analog of our model, connections with generative
models and other ways of using unlabeled data in machine learning, as well as the relationship between
our model and the Luckiness Framework [191] developed in the context of supervised learning. Finally,
in Section 2.6 we discuss some implications of our model and present our conclusions, as well a number
of open problems.

2.2 A Formal Framework

In this section we introduce general notation and terminology we use throughout the chapter, and describe
our model for semi-supervised learning. In particular, we formally define what we mean by a notion of
compatibility and we illustrate it through a number of examples including margins and co-training.

We will focus on binary classification problems. We assume that our data comes according to a
fixed unknown distribution D over an instance space X , and is labeled by some unknown target function
c∗ : X → {0, 1}. A learning algorithm is given a set SL of labeled examples drawn i.i.d. from D and
labeled by c∗ as well as a (usually larger) set SU of unlabeled examples from D. The goal is to perform
some optimization over the samples SL and SU and to output a hypothesis that agrees with the target over
most of the distribution. In particular, the error rate (also called “0-1 loss”) of a given hypothesis f is
defined as err(f) = errD(f) = Prx∼D[f(x) 6= c∗(x)]. For any two hypotheses f1, f2, the distance with
respect to D between f1 and f2 is defined as d(f1, f2) = dD(f1, f2) = Prx∼D[f1(x) 6= f2(x)]. We will
use êrr(f) to denote the empirical error rate of f on a given labeled sample (i.e., the fraction of mistakes
on the sample) and d̂(f1, f2) to denote the empirical distance between f1 and f2 on a given unlabeled
sample (the fraction of the sample on which they disagree). As in the standard PAC model, a concept
class or hypothesis space is a set of functions over the instance space X . In the “realizable case”, we
make the assumption that the target is in a given class C, whereas in the “agnostic case” we do not make
this assumption and instead aim to compete with the best function in the given class C.

We now formally describe what we mean by a notion of compatibility. A notion of compatibility is a
mapping from a hypothesis f and a distribution D to [0, 1] indicating how “compatible” f is with D. In
order for this to be estimable from a finite sample, we require that compatibility be an expectation over
individual examples.2 Specifically, we define:

Definition 2.2.1 A legal notion of compatibility is a function χ : C×X → [0, 1] where we (overloading
notation) define χ(f, D) = Ex∼D[χ(f, x)]. Given a sample S, we define χ(f, S) to be the empirical
average of χ over the sample.

2One could imagine more general notions of compatibility with the property that they can be estimated from a finite sample
and all our results would go through in that case as well. We consider the special case where the compatibility is an expectation
over individual examples for simplicity of notation, and because most existing semi-supervised learning algorithms used in
practice do satisfy it.
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Note 1 One could also allow compatibility functions over k-tuples of examples, in which case our (un-
labeled) sample-complexity bounds would simply increase by a factor of k. For settings in which D is
actually known in advance (e.g., transductive learning, see Section 2.5.1) we can drop this requirement
entirely and allow any notion of compatibility χ(f, D) to be legal.

Definition 2.2.2 Given compatibility notion χ, the incompatibility of f with D is 1 − χ(f,D). We will
also call this its unlabeled error rate, errunl(f), when χ and D are clear from context. For a given
sample S, we use êrrunl(f) = 1− χ(f, S) to denote the empirical average over S.

Finally, we need a notation for the set of functions whose incompatibility (or unlabeled error rate) is
at most some given value τ .
Definition 2.2.3 Given value τ , we define CD,χ(τ) = {f ∈ C : errunl(f) ≤ τ}. So, e.g., CD,χ(1) = C.
Similarly, for a sample S, we define CS,χ(τ) = {f ∈ C : êrrunl(f) ≤ τ}

We now give several examples to illustrate this framework:

Example 1. Suppose examples are points in Rd and C is the class of linear separators. A natural belief
in this setting is that data should be “well-separated”: not only should the target function separate the
positive and negative examples, but it should do so by some reasonable margin γ. This is the assumption
used by Transductive SVM, also called Semi-Supervised SVM (S3VM) [55, 81, 141]. In this case, if we
are given γ up front, we could define χ(f, x) = 1 if x is farther than distance γ from the hyperplane
defined by f , and χ(f, x) = 0 otherwise. So, the incompatibility of f with D is the probability mass
within distance γ of the hyperplane f · x = 0. Alternatively, if we do not want to commit to a specific γ
in advance, we could define χ(f, x) to be a smooth function of the distance of x to the separator, as done
in [81]. Note that in contrast, defining compatibility of a hypothesis based on the largest γ such that D
has probability mass exactly zero within distance γ of the separator would not fit our model: it cannot be
written as an expectation over individual examples and indeed would not be a good definition since one
cannot distinguish “zero” from “exponentially close to zero” from a small sample of unlabeled data.

Example 2. In co-training [62], we assume examples x each contain two “views”: x = 〈x1, x2〉, and
our goal is to learn a pair of functions 〈f1, f2〉, one on each view. For instance, if our goal is to classify web
pages, we might use x1 to represent the words on the page itself and x2 to represent the words attached
to links pointing to this page from other pages. The hope underlying co-training is that the two parts of
the example are generally consistent, which then allows the algorithm to bootstrap from unlabeled data.
For example, iterative co-training uses a small amount of labeled data to learn some initial information
(e.g., if a link with the words “my advisor” points to a page then that page is probably a faculty member’s
home page). Then, when it finds an unlabeled example where one side is confident (e.g., the link says “my
advisor”), it uses that to label the example for training over the other view. In regularized co-training,
one attempts to directly optimize a weighted combination of accuracy on labeled data and agreement over
unlabeled data. These approaches have been used for a variety of learning problems, including named
entity classification [87], text classification [116, 175], natural language processing [182], large scale
document classification [180], and visual detectors [159]. As mentioned in Section 2.1, the assumptions
underlying this method fit naturally into our framework. In particular, we can define the incompatibility of
some hypothesis 〈f1, f2〉 with distribution D as Pr〈x1,x2〉∼D[f1(x1) 6= f2(x2)]. Similar notions are given
in subsequent work of [184, 196] for other types of learning problems (e.g. regression) and for other loss
functions.

Example 3. In transductive graph-based methods, we are given a set of unlabeled examples connected
in a graph g, where the interpretation of an edge is that we believe the two endpoints of the edge should
have the same label. Given a few labeled vertices, various graph-based methods then attempt to use
them to infer labels for the remaining points. If we are willing to view D as a distribution over edges

18



(a uniform distribution if g is unweighted), then as in co-training we can define the incompatibility of
some hypothesis f as the probability mass of edges that are cut by f , which then motivates various cut-
based algorithms. For instance, if we require f to be boolean, then the mincut method of [59] finds the
most-compatible hypothesis consistent with the labeled data; if we allow f to be fractional and define
1− χ(f, 〈x1, x2〉) = (f(x1)− f(x2))2, then the algorithm of [215] finds the most-compatible consistent
hypothesis. If we do not wish to view D as a distribution over edges, we could have D be a distribution
over vertices and broaden Definition 2.2.1 to allow for χ to be a function over pairs of examples. In fact, as
mentioned in Note 1, since we have perfect knowledge of D in this setting we can allow any compatibility
function χ(f,D) to be legal. We discuss more connections with graph-based methods in Section 2.5.1.

Example 4. As a special case of co-training, suppose examples are pairs of points in Rd, C is the
class of linear separators, and we believe the two points in each pair should both be on the same side of
the target function. (So, this is a version of co-training where we require f1 = f2.) The motivation is that
we want to use pairwise information as in Example 3, but we also want to use the features of each data
point. For instance, in the word-sense disambiguation problem studied by [210], the goal is to determine
which of several dictionary definitions is intended for some target word in a piece of text (e.g., is “plant”
being used to indicate a tree or a factory?). The local context around each word can be viewed as placing
it into Rd, but the edges correspond to a completely different type of information: the belief that if a word
appears twice in the same document, it is probably being used in the same sense both times. In this setting,
we could use the same compatibility function as in Example 3, but rather than having the concept class C
be all possible functions, we restrict C to just linear separators.

Example 5. In a related setting to co-training considered by [158], examples are single points in X
but we have a pair of hypothesis spaces 〈C1, C2〉 (or more generally a k-tuple 〈C1, . . . , Ck〉), and the goal
is to find a pair of hypotheses 〈f1, f2〉 ∈ C1 ×C2 with low error over labeled data and that agree over the
distribution. For instance, if data is sufficiently “well-separated”, one might expect there to exist both a
good linear separator and a good decision tree, and one would like to use this assumption to reduce the need
for labeled data. In this case one could define compatibility of 〈f1, f2〉 with D as Prx∼D[f1(x) = f2(x)],
or the similar notions given in [158, 189].

2.3 Sample Complexity Results

We now present several sample-complexity bounds that can be derived in this framework, showing how
unlabeled data, together with a suitable compatibility notion, can reduce the need for labeled examples. We
do not focus on giving the tightest possible bounds, but instead on the types of bounds and the quantities
on which they depend, in order to better understand what it is about the learning problem one can hope to
leverage from with unlabeled data.

The high-level structure of all of these results is as follows. First, given enough unlabeled data (where
“enough” will be a function of some measure of the complexity of C and possibly of χ as well), we can
uniformly estimate the true compatibilities of all functions in C using their empirical compatibilities over
the sample. Then, by using this quantity to give a preference ordering over the functions in C, in the
realizable case we can reduce “C” down to “the set of functions in C whose compatibility is not much
larger than the true target function” in bounds for the number of labeled examples needed for learning. In
the agnostic case we can do (unlabeled)-data-dependent structural risk minimization to trade off labeled
error and incompatibility. The specific bounds differ in terms of the exact complexity measures used (and a
few other issues) and we provide examples illustrating when and how certain complexity measures can be
significantly more powerful than others. Moreover, one can prove fallback properties of these procedures
— the number of labeled examples required is never much worse than the number of labeled examples
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required by a standard supervised learning algorithm. However, if the assumptions happen to be right, one
can significantly benefit by using the unlabeled data.

2.3.1 Uniform Convergence Bounds

We begin with uniform convergence bounds (later in Section 2.3.2 we give tighter ε-cover bounds that
apply to algorithms of a particular form). For clarity, we begin with the case of finite hypothesis spaces
where we measure the “size” of a set of functions by just the number of functions in the set. We then
discuss several issues that arise when considering infinite hypothesis spaces, such as what is an appropriate
measure for the “size” of the set of compatible functions, and the need to account for the complexity of the
compatibility notion itself. Note that in the standard PAC model, one typically talks of either the realizable
case, where we assume that the target function c∗ belongs to C, or the agnostic case where we allow any
target function c∗ [149]. In our setting, we have the additional issue of unlabeled error rate, and can either
make an a-priori assumption that the target function’s unlabeled error is low, or else provide a bound in
which our sample size (or error rate) depends on whatever its unlabeled error happens to be. We begin in
Sections 2.3.1 and 2.3.1 with bounds for the the setting in which we assume c∗ ∈ C, and then in Section
2.3.1 we consider the agnostic case where we remove this assumption.

Finite hypothesis spaces

We first give a bound for the “doubly realizable” case where we assume c∗ ∈ C and errunl(c∗) = 0.

Theorem 2.3.1 If c∗ ∈ C and errunl(c∗) = 0, then mu unlabeled examples and ml labeled examples are
sufficient to learn to error ε with probability 1− δ, where

mu =
1
ε

[
ln |C|+ ln

2
δ

]
and ml =

1
ε

[
ln |CD,χ(ε)|+ ln

2
δ

]
.

In particular, with probability at least 1 − δ, all f ∈ C with êrr(f) = 0 and êrrunl(f) = 0 have
err(f) ≤ ε.

Proof: The probability that a given hypothesis f with errunl(f) > ε has êrrunl(f) = 0 is at most
(1 − ε)mu < δ

2|C| for the given value of mu. Therefore, by the union bound, the number of unlabeled

examples is sufficient to ensure that with probability 1− δ
2 , only hypotheses in CD,χ(ε) have êrrunl(f) =

0. The number of labeled examples then similarly ensures that with probability 1− δ
2 , none of those whose

true error is at least ε have an empirical error of 0, yielding the theorem.

Interpretation: If the target function indeed is perfectly correct and compatible, then Theorem 2.3.1
gives sufficient conditions on the number of examples needed to ensure that an algorithm that optimizes
both quantities over the observed data will, in fact, achieve a PAC guarantee. To emphasize this, we will
say that an algorithm efficiently PACunl-learns the pair (C, χ) if it is able to achieve a PAC guarantee
using time and sample sizes polynomial in the bounds of Theorem 2.3.1. For a formal definition see
Definition 2.3.1 at the end of this section.

We can think of Theorem 2.3.1 as bounding the number of labeled examples we need as a function of
the “helpfulness” of the distribution D with respect to our notion of compatibility. That is, in our context,
a helpful distribution is one in which CD,χ(ε) is small, and so we do not need much labeled data to identify
a good function among them. We can get a similar bound in the situation when the target function is not
fully compatible:
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Theorem 2.3.2 If c∗ ∈ C and errunl(c∗) = t, then mu unlabeled examples and ml labeled examples are
sufficient to learn to error ε with probability 1− δ, for

mu =
2
ε2

[
ln |C|+ ln

4
δ

]
and ml =

1
ε

[
ln |CD,χ(t + 2ε)|+ ln

2
δ

]
.

In particular, with probability at least 1 − δ, the f ∈ C that optimizes êrrunl(f) subject to êrr(f) = 0
has err(f) ≤ ε.

Alternatively, given the above number of unlabeled examples mu, for any number of labeled examples
ml, with probability at least 1− δ, the f ∈ C that optimizes êrrunl(f) subject to êrr(f) = 0 has

err(f) ≤ 1
ml

[
ln |CD,χ(errunl(c∗) + 2ε)|+ ln

2
δ

]
. (2.1)

Proof: By Hoeffding bounds, mu is sufficiently large so that with probability at least 1 − δ/2, all f ∈ C
have |êrrunl(f) − errunl(f)| ≤ ε. Thus, {f ∈ C : êrrunl(f) ≤ t + ε} ⊆ CD,χ(t + 2ε). For the first
implication, the given bound on ml is sufficient so that with probability at least 1 − δ, all f ∈ C with
êrr(f) = 0 and êrrunl(f) ≤ t+ε have err(f) ≤ ε; furthermore, êrrunl(c∗) ≤ t+ε, so such a function f
exists. Therefore, with probability at least 1−δ, the f ∈ C that optimizes êrrunl(f) subject to êrr(f) = 0
has err(f) ≤ ε, as desired. For second implication, inequality (2.1) follows immediately by solving for
the labeled estimation-error as a function of ml.

Interpretation: Theorem 2.3.2 has several implications. Specifically:

1. If we can optimize the (empirical) unlabeled error rate subject to having zero empirical labeled
error, then to achieve low true error it suffices to draw a number of labeled examples that depends
logarithmically on the number of functions in C whose unlabeled error rate is at most 2ε greater
than that of the target c∗.

2. Alternatively, for any given number of labeled examples ml, we can provide a bound (given in
equation 2.1) on our error rate that again depends logarithmically on the number of such functions,
i.e., with high probability the function f ∈ C that optimizes êrrunl(f) subject to êrr(f) = 0 has
err(f) ≤ 1

ml

[
ln |CD,χ(errunl(c∗) + 2ε)|+ ln 2

δ

]
.

3. If we have a desired maximum error rate ε and do not know the value of errunl(c∗) but have the
ability to draw additional labeled examples as needed, then we can simply do a standard “doubling
trick” on ml. On each round, we check if the hypothesis f found indeed has sufficiently low
empirical unlabeled error rate, and we spread the “δ” parameter across the different runs. See, e.g.,
Corollary 2.3.6 in Section 2.3.1.

Finally, before going to infinite hypothesis spaces, we give a simple Occam-style version of the above
bounds for this setting. Given a sample S, let us define descS(f) = ln |CS,χ(êrrunl(f))|. That is,
descS(f) is the description length of f (in “nats”) if we sort hypotheses by their empirical compatibility
and output the index of f in this ordering. Similarly, define ε-descD(f) = ln |CD,χ(errunl(f) + ε)|. This
is an upper-bound on the description length of f if we sort hypotheses by an ε-approximation to the their
true compatibility. Then we immediately get a bound as follows:

Corollary 2.3.3 For any set S of unlabeled data, given ml labeled examples, with probability at least
1− δ, all f ∈ C satisfying êrr(f) = 0 and descS(f) ≤ εml − ln(1/δ) have err(f) ≤ ε. Furthermore, if
|S| ≥ 2

ε2
[ln |C|+ ln 2

δ ], then with probability at least 1− δ, all f ∈ C satisfy descS(f) ≤ ε-descD(f).

Interpretation: The point of this bound is that an algorithm can use observable quantities (the “empirical
description length” of the hypothesis produced) to determine if it can be confident that its true error rate
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is low (I.e., if we can find a hypothesis with descS(f) ≤ εml − ln(1/δ) and êrr(f) = 0, we can be
confident that it has error rate at most ε). Furthermore, if we have enough unlabeled data, the observable
quantities will be no worse than if we were learning a slightly less compatible function using an infinite-
size unlabeled sample.

Note that if we begin with a non-distribution-dependent ordering of hypotheses, inducing some de-
scription length desc(f), and our compatibility assumptions turn out to be wrong, then it could well be that
descD(c∗) > desc(c∗). In this case our use of unlabeled data would end up hurting rather than helping.
However, notice that by merely interleaving the initial ordering and the ordering produced by S, we get a
new description length descnew(f) such that

descnew(f) ≤ 1 + min(desc(f), descS(f)).

Thus, up to an additive constant, we can get the best of both orderings.
Also, if we have the ability to purchase additional labeled examples until the function produced is

sufficiently “short” compared to the amount of data, then we can perform the usual stratification and be
confident whenever we find a consistent function f such that descS(f) ≤ εml − ln(ml(ml+1)

δ ), where ml

is the number of labeled examples seen so far.

Efficient algorithms in our model Finally, we end this section with a definition describing our goals for
efficient learning algorithms, based on the above sample bounds.

Definition 2.3.1 Given a class C and compatibility notion χ, we say that an algorithm efficiently PACunl-
learns the pair (C,χ) if, for any distribution D, for any target function c∗ ∈ C with errunl(c∗) =
0, for any given ε > 0, δ > 0, with probability at least 1 − δ it achieves error at most ε using
poly(log |C|, 1/ε, 1/δ) unlabeled examples and poly(log |CD,χ(ε)|, 1/ε, 1/δ) labeled examples, and with
time which is poly(log |C|, 1/ε, 1/δ).

We say that an algorithm semi-agnostically PACunl-learns (C,χ) if it is able to achieve this guarantee
for any c∗ ∈ C even if errunl(c∗) 6= 0, using labeled examples poly(log |CD,χ(errunl(c∗)+ε)|, 1/ε, 1/δ).

Infinite hypothesis spaces

To reduce notation, we will assume in the rest of this chapter that χ(f, x) ∈ {0, 1} so that χ(f, D) =
Prx∼D[χ(f, x) = 1]. However, all our sample complexity results can be easily extended to the general
case.

For infinite hypothesis spaces, the first issue that arises is that in order to achieve uniform convergence
of unlabeled error rates, the set whose complexity we care about is not C but rather χ(C) = {χf : f ∈ C}
where χf : X → {0, 1} and χf (x) = χ(f, x). For instance, suppose examples are just points on the line,
and C = {fa(x) : fa(x) = 1 iff x ≤ a}. In this case, VCdim(C) = 1. However, we could imagine
a compatibility function such that χ(fa, x) depends on some complicated relationship between the real
numbers a and x. In this case, VCdim(χ(C)) is much larger, and indeed we would need many more
unlabeled examples to estimate compatibility over all of C.

A second issue is that we need an appropriate measure for the “size” of the set of surviving functions.
VC-dimension tends not to be a good choice: for instance, if we consider the case of Example 1 (margins),
then even if data is concentrated in two well-separated “blobs”, the set of compatible separators still has as
large a VC-dimension as the entire class even though they are all very similar with respect to D (see, e.g.,
Figure 2.1 after Theorem 2.3.5 below). Instead, it is better to consider distribution dependent complexity
measures such as annealed VC-entropy [103] or Rademacher averages [43, 72, 155]. For this we introduce
some notation. Specifically, for any C, we denote by C[m,D] the expected number of splits of m points
(drawn i.i.d.) from D using concepts in C. Also, for a given (fixed) S ⊆ X , we will denote by S the
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uniform distribution over S, and by C[m, S] the expected number of splits of m points from S using
concepts in C. The following is the analog of Theorem 2.3.2 for the infinite case.

Theorem 2.3.4 If c∗ ∈ C and errunl(c∗) = t, then mu unlabeled examples and ml labeled examples are
sufficient to learn to error ε with probability 1− δ, for

mu = O

(
V Cdim (χ(C))

ε2
ln

1
ε

+
1
ε2

ln
2
δ

)

and

ml =
2
ε

[
ln

(
2CD,χ(t + 2ε)[2ml, D]

)
+ ln

4
δ

]
,

where recall CD,χ(t + 2ε)[2ml, D] is the expected number of splits of 2ml points drawn from D using
concepts in C of unlabeled error rate ≤ t + 2ε. In particular, with probability at least 1 − δ, the f ∈ C
that optimizes êrrunl(f) subject to êrr(f) = 0 has err(f) ≤ ε.

Proof: Let S be the set of mu unlabeled examples. By standard VC-dimension bounds (e.g., see
Theorem A.1.1 in Appendix A.1.1) the number of unlabeled examples given is sufficient to ensure that
with probability at least 1− δ

2 we have |Prx∼S [χf (x) = 1]−Prx∼D[χf (x) = 1]| ≤ ε for all χf ∈ χ(C).
Since χf (x) = χ(f, x), this implies that we have |êrrunl(f) − errunl(f)| ≤ ε for all f ∈ C. So, the set
of hypotheses with êrrunl(f) ≤ t + ε is contained in CD,χ(t + 2ε).

The bound on the number of labeled examples now follows directly from known concentration results
using the expected number of partitions instead of the maximum in the standard VC-dimension bounds
(e.g., see Theorem A.1.2 in Appendix A.1.1 ). This bound ensures that with probability 1− δ

2 , none of the
functions f ∈ CD,χ(t + 2ε) with err(f) ≥ ε have êrr(f) = 0.

The above two arguments together imply that with probability 1− δ, all f ∈ C with êrr(f) = 0 and
êrrunl(f) ≤ t + ε have err(f) ≤ ε, and furthermore c∗ has êrrunl(c∗) ≤ t + ε. This in turn implies that
with probability at least 1− δ, the f ∈ C that optimizes êrrunl(f) subject to êrr(f) = 0 has err(f) ≤ ε
as desired.

We can also give a bound where we specify the number of labeled examples as a function of the unla-
beled sample; this is useful because we can imagine our learning algorithm performing some calculations
over the unlabeled data and then deciding how many labeled examples to purchase.

Theorem 2.3.5 If c∗ ∈ C and errunl(c∗) = t, then an unlabeled sample S of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ε2
ln

1
ε

+
1
ε2

ln
2
δ

)

is sufficient so that if we label ml examples drawn uniformly at random from S, where

ml >
4
ε

[
ln(2CS,χ(t + ε)

[
2ml, S

]
) + ln

4
δ

]

then with probability at least 1 − δ, the f ∈ C that optimizes êrrunl(f) subject to êrr(f) = 0 has
err(f) ≤ ε.

Proof: Standard VC-bounds (in the same form as for Theorem 2.3.4) imply that the number of labeled
examples ml is sufficient to guarantee the conclusion of the theorem with “err(f)” replaced by “errS(f)”
(the error with respect to S) and “ε” replaced with “ε/2”. The number of unlabeled examples is enough
to ensure that, with probability ≥ 1− δ

2 , for all f ∈ C, |err(f)− errS(f)| ≤ ε/2. Combining these two
statements yields the theorem.
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Note that if we assume errunl(c∗) = 0, then we can use the set CS,χ(0) instead of CS,χ(t + ε) in the
formula giving the number of labeled examples in Theorem 2.3.5.
Note: Notice that for the setting of Example 1, in the worst case (over distributions D) this will essentially
recover the standard margin sample-complexity bounds for the number of labeled examples. In particular,
CS,χ(0) contains only those separators that split S with margin≥ γ, and therefore, s =

∣∣CS,χ(0)[2ml, S]
∣∣

is no greater than the maximum number of ways of splitting 2ml points with margin γ. However, if the
distribution is helpful, then the bounds can be much better because there may be many fewer ways of
splitting S with margin γ. For instance, in the case of two well-separated “blobs” illustrated in Figure 2.1,
if S is large enough, we would have just s = 4.

Figure 2.1: Linear separators with a margin-based notion of compatibility. If the distribution is uniform
over two well-separated “blobs” and the unlabeled set S is sufficiently large, the set CS,χ(0) contains only
four different partitions of S, shown in the figure as f1, f2, f3, and f4. Therefore, Theorem 2.3.5 implies
that we only need O(1/ε) labeled examples to learn well.

Theorem 2.3.5 immediately implies the following stratified version, which applies to the case in which
one repeatedly draws labeled examples until that number is sufficient to justify the most-compatible hy-
pothesis found.

Corollary 2.3.6 An unlabeled sample S of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ε2
ln

1
ε

+
1
ε2

ln
2
δ

)

is sufficient so that with probability ≥ 1− δ we have that simultaneously for every k ≥ 0 the following is
true: if we label mk examples drawn uniformly at random from S, where

mk >
4
ε

[
ln

(
2CS,χ((k + 1)ε)

[
2mk, S

])
+ ln

4(k + 1)(k + 2)
δ

]

then all f ∈ C with êrr(f) = 0 and êrrunl(f) ≤ (k + 1)ε have err(f) ≤ ε.

Interpretation: This corollary is an analog of Theorem 2.3.3 and it justifies a stratification based on
the estimated unlabeled error rates. That is, beginning with k = 0, one draws the specified number
of examples and checks to see if a sufficiently compatible hypothesis can be found. If so, one halts with
success, and if not, one increments k and tries again. Since k ≤ 1

ε , we clearly have a fallback property: the
number of labeled examples required is never much worse than the number of labeled examples required
by a standard supervised learning algorithm.

If one does not have the ability to draw additional labeled examples, then we can fix ml and instead
stratify over estimation error as in [45]. We discuss this further in our agnostic bounds in Section 2.3.1
below.
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The agnostic case

The bounds given so far have been based on the assumption that the target function belongs to C (so
that we can assume there will exist f ∈ C with êrr(f) = 0). One can also derive analogous results for
the agnostic (unrealizable) case, where we do not make that assumption. We first present one immediate
bound of this form, and then show how we can use it in order to trade off labeled and unlabeled error
in a near-optimal way. We also discuss the relation of this to a common “regularization” technique used
in semi-supervised learning. As we will see, the differences between these two point to certain potential
pitfalls in the standard regularization approach.

Theorem 2.3.7 Let f∗t = argminf∈C [err(f)|errunl(f) ≤ t]. Then an unlabeled sample S of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ε2
log

1
ε

+
1
ε2

log
2
δ

)

and a labeled sample of size

ml ≥ 8
ε2

[
log

(
2CD,χ(t + 2ε)[2ml, D]

)
+ log

4
δ

]

is sufficient so that with probability≥ 1− δ, the f ∈ C that optimizes êrr(f) subject to êrrunl(f) ≤ t+ ε
has err(f) ≤ err(f∗t ) + ε +

√
log(4/δ)/(2ml) ≤ err(f∗t ) + 2ε.

Proof: The given unlabeled sample size implies that with probability 1 − δ/2, all f ∈ C have
|êrrunl(f) − errunl(f)| ≤ ε, which also implies that êrrunl(f∗t ) ≤ t + ε. The labeled sample size,
using standard VC bounds (e.g, Theorem A.1.3 in the Appendix A.1.2) imply that with probability at least
1−δ/4, all f ∈ CD,χ(t+2ε) have |êrr(f)−err(f)| ≤ ε. Finally, by Hoeffding bounds, with probability
at least 1− δ/4 we have

êrr(f∗t ) ≤ err(f∗t ) +
√

log(4/δ)/(2ml).

Therefore, with probability at least 1 − δ, the f ∈ C that optimizes êrr(f) subject to êrrunl(f) ≤ t + ε
has

err(f) ≤ êrr(f) + ε ≤ êrr(f∗t ) + ε ≤ err(f∗t ) + ε +
√

log(4/δ)/(2ml) ≤ err(f∗t ) + 2ε,

as desired.

Interpretation: Given a value t, Theorem 2.3.7 bounds the number of labeled examples needed to achieve
error at most ε larger than that of the best function f∗t of unlabeled error rate at most t. Alternatively, one
can also state Theorem 2.3.7 in the form more commonly used in statistical learning theory: given any
number of labeled examples ml and given t > 0, Theorem 2.3.7 implies that with high probability, the
function f that optimizes êrr(f) subject to êrrunl(f) ≤ t + ε satisfies

err(f) ≤ êrr(f) + εt ≤ err(f∗t ) + εt +

√
log(4/δ)

2ml

where

εt =
√

8
ml

log
(
8CD,χ(t + 2ε)[2ml, D]/δ

)
.

Note that as usual, there is an inherent tradeoff here between the quality of the comparison function f∗t ,
which improves as t increases, and the estimation error εt, which gets worse as t increases. Ideally, one
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would like to achieve a bound of mint[err(f∗t ) + εt] +
√

log(4/δ)/(2ml); i.e., as if the optimal value of
t were known in advance. We can perform nearly as well as this bound by (1) performing a stratification
over t (so that the bound holds simultaneously for all values of t) and (2) using an estimate ε̂t of εt that
we can calculate from the unlabeled sample and therefore use in the optimization. In particular, letting
ft = argminf ′∈C [êrr(f ′) : êrrunl(f ′) ≤ t], we will output f = argminft

[êrr(ft) + ε̂t].
Specifically, given a set S of unlabeled examples and ml labeled examples, let

ε̂t = ε̂t(S,ml) =
√

24
ml

log (8CS,χ(t)[ml, S]),

where we define CS,χ(t)[ml, S] to be the number of different partitions of the first ml points in S using
functions in CS,χ(t), i.e., using functions of empirical unlabeled error at most t (we assume |S| ≥ ml).
Then we have the following theorem.

Theorem 2.3.8 Let f∗t = argminf ′∈C [err(f ′)|errunl(f ′) ≤ t] and define ε̂(f ′) = ε̂t′ for t′ = êrrunl(f ′).
Then, given ml labeled examples, with probability at least 1− δ, the function

f = argminf ′ [êrr(f
′) + ε̂(f ′)]

satisfies the guarantee that

err(f) ≤ min
t

[err(f∗t ) + ε̂(f∗t )] + 5

√
log(8/δ)

ml

Proof: First we argue that with probability at least 1− δ/2, for all f ′ ∈ C we have

err(f ′) ≤ êrr(f ′) + ε̂(f ′) + 4

√
log(8/δ)

ml
.

In particular, define C0 = CS,χ(0) and inductively for k > 0 define Ck = CS,χ(tk) for tk such that
Ck[ml, S] = 8Ck−1[ml, S]. (If necessary, arbitrarily order the functions with empirical unlabeled error
exactly tk and choose a prefix such that the size condition holds.) Also, we may assume without loss of
generality that C0[ml, S] ≥ 1. Then, using bounds of [71] (see also Appendix A), we have that with
probability at least 1− δ/2k+2, all f ′ ∈ Ck \ Ck−1 satisfy:

err(f ′) ≤ êrr(f ′) +
√

6
ml

log(Ck[ml, S]) + 4
√

1
ml

log(2k+3/δ)

≤ êrr(f ′) +
√

6
ml

log(Ck[ml, S]) + 4
√

1
ml

log(2k) + 4
√

1
ml

log(8/δ)

≤ êrr(f ′) +
√

6
ml

log(Ck[ml, S]) +
√

6
ml

log(8k) + 4
√

1
ml

log(8/δ)

≤ êrr(f ′) + 2
√

6
ml

log(Ck[ml, S]) + 4
√

1
ml

log(8/δ)

≤ êrr(f ′) + ε̂(f ′) + 4
√

1
ml

log(8/δ).

Now, let f∗ = argminf∗t [err(f∗t )+ε̂(f∗t )]. By Hoeffding bounds, with probability at least 1−δ/2 we have
êrr(f∗) ≤ err(f∗)+

√
log(2/δ)/(2ml). Also, by construction we have êrr(f)+ε̂(f) ≤ êrr(f∗)+ε̂(f∗).

26



Therefore with probability at least 1− δ we have:

err(f) ≤ êrr(f) + ε̂(f) + 4
√

log(8/δ)/ml

≤ êrr(f∗) + ε̂(f∗) + 4
√

log(8/δ)/ml

≤ err(f∗) + ε̂(f∗) + 5
√

log(8/δ)/ml

as desired.

The above result bounds the error of the function f produced in terms of the quantity ε̂(f∗) which de-
pends on the empirical unlabeled error rate of f∗. If our unlabeled sample S is sufficiently large to estimate
all unlabeled error rates to ±ε, then with high probability we have êrr(f∗t ) ≤ t + ε, so ε̂(f∗t ) ≤ ε̂t+ε, and

moreover CS,χ(t+ε) ⊆ CD,χ(t+2ε). So, our error term ε̂(f∗t ) is at most
√

24
ml

log (8CD,χ(t + 2ε)[ml, S]).
Recall that our ideal error term εt for the case that t was given to the algorithm in advance, factoring out the

dependence on δ, was
√

8
ml

log
(
8CD,χ(t + 2ε)[2ml, D]

)
. [71] show that for any class C, the quantity

log(C[m,S]) is tightly concentrated about log(C[m,D]) (see also Theorem A.1.6 in the Appendix A.1.2),
so up to multiplicative constants, these two bounds are quite close.
Interpretation and use of unlabeled error rate as a regularizer: The above theorem suggests to op-
timize the sum of the empirical labeled error rate and an estimation-error bound based on the unlabeled
error rate. A common related approach used in practice in machine learning (e.g., [82]) is to just di-
rectly optimize the sum of the two kinds of error: i.e., to find argminf [êrr(f) + êrrunl(f)]. However,
this is not generically justified in our framework, because the labeled and unlabeled error rates are really
of different “types”. In particular, depending on the concept class and notion of compatibility, a small
change in unlabeled error rate could substantially change the size of the compatible set.3 For example,
suppose all functions in C have unlabeled error rate 0.6, except for two: function f0 has unlabeled er-
ror rate 0 and labeled error rate 1/2, and function f0.5 has unlabeled error rate 0.5 and labeled error
rate 1/10. Suppose also that C is sufficiently large that with high probability it contains some func-
tions f that drastically overfit, giving êrr(f) = 0 even though their true error is close to 1/2. In this
case, we would like our algorithm to pick out f0.5 (since its labeled error rate is fairly low, and we
cannot trust the functions of unlabeled error 0.6). However, even if we use a regularization parame-
ter λ, there is no way to make f0.5 = argminf [êrr(f) + λerrunl(f)]: in particular, one cannot have
1/10+0.5λ ≤ min[1/2+0λ, 0+0.6λ]. So, in this case, this approach will not have the desired behavior.
Note: One could further derive tighter bounds, both in terms of labeled and unlabeled examples, that are
based on other distribution dependent complexity measures and using stronger concentration results (see
e.g. [72]).

2.3.2 ε-Cover-based Bounds

The results in the previous section are uniform convergence bounds: they provide guarantees for any
algorithm that optimizes over the observed data. In this section, we consider stronger bounds based on
ε-covers that apply to algorithms that behave in a specific way: they first use the unlabeled examples to
choose a “representative” set of compatible hypotheses, and then use the labeled sample to choose among
these. Bounds based on ε-covers exist in the classical PAC setting, but in our framework these bounds
and algorithms of this type are especially natural, and the bounds are often much lower than what can be
achieved via uniform convergence. For simplicity, we restrict ourselves in this section to the realizable

3On the other hand, for certain compatibility notions and under certain natural assumptions, one can use unlabeled error rate
directly, e.g., see e.g., [196].
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case. However one can combine ideas in Section 2.3.1 with ideas in this section in order to derive bounds
in the agnostic case as well. We first present our generic bounds. In Section 2.3.2 we discuss natural
settings in which they can be especially useful, and in then Section 2.3.2 we present even tighter bounds
for co-training.

Recall that a set Cε ⊆ 2X is an ε-cover for C with respect to D if for every f ∈ C there is a f ′ ∈ Cε

which is ε-close to f . That is, Prx∼D(f(x) 6= f ′(x)) ≤ ε.
We start with a theorem that relies on knowing a good upper bound on the unlabeled error rate of the

target function errunl(c∗).

Theorem 2.3.9 Assume c∗ ∈ C and let p be the size of a minimum ε-cover for CD,χ(errunl(c∗) + 2ε).
Then using mu unlabeled examples and ml labeled examples for

mu = O

(
max[V Cdim(C), V Cdim(χ(C))]

ε2
log

1
ε

+
1
ε2

log
2
δ

)
and ml = O

(
1
ε

ln
p

δ

)
,

we can with probability 1− δ identify a hypothesis f ∈ C with err(f) ≤ 6ε.

Proof: Let t = errunl(c∗). Now, given the unlabeled sample SU , define C ′ ⊆ C as follows: for
every labeling of SU that is consistent with some f in C, choose a hypothesis in C for which êrrunl(f) is
smallest among all the hypotheses corresponding to that labeling. Next, we obtain Cε by eliminating from
C ′ those hypotheses f with the property that êrrunl(f) > t + ε. We then apply a greedy procedure on Cε

to obtain Gε = {g1, · · · , gs}, as follows:
Initialize C1

ε = Cε and i = 1.
1. Let gi = argmin

f∈Ci
ε

êrrunl(f).

2. Using the unlabeled sample SU , determine Ci+1
ε by deleting from Ci

ε those hypotheses f with the
property that d̂(gi, f) < 3ε.

3. If Ci+1
ε = ∅ then set s = i and stop; else, increase i by 1 and goto 1.

We now show that with high probability, Gε is a 5ε-cover of CD,χ(t) with respect to D and has size
at most p. First, our bound on mu is sufficient to ensure that with probability ≥ 1 − δ

2 , we have (a)
|d̂(f, g)− d(f, g)| ≤ ε for all f, g ∈ C and (b) |êrrunl(f)− errunl(f)| ≤ ε for all f ∈ C. Let us assume
in the remainder that this (a) and (b) are indeed satisfied. Now, (a) implies that any two functions in C that
agree on SU have distance at most ε, and therefore C ′ is an ε-cover of C. Using (b), this in turn implies
that Cε is an ε-cover for CD,χ(t). By construction, Gε is a 3ε-cover of Cε with respect to distribution
SU , and thus (using (a)) Gε is a 4ε-cover of Cε with respect to D, which implies that Gε is a 5ε-cover of
CD,χ(t) with respect to D.

We now argue that Gε has size at most p. Fix some optimal ε-cover {f1, . . . , fp} of CD,χ(errunl(c∗)+
2ε). Consider function gi and suppose that gi is covered by fσ(i). Then the set of functions deleted in
step (2) of the procedure include those functions f satisfying d(gi, f) < 2ε which by triangle inequality
includes those satisfying d(fσ(i), f) ≤ ε. Therefore, the set of functions deleted include those covered by
fσ(i) and so for all j > i, σ(j) 6= σ(i); in particular, σ is 1-1. This implies that Gε has size at most p.

Finally, to learn c∗ we simply output the function f ∈ Gε of lowest empirical error over the labeled
sample. By Chernoff bounds, the number of labeled examples is enough to ensure that with probability
≥ 1− δ

2 the empirical optimum hypothesis in Gε has true error at most 6ε. This implies that overall, with
probability ≥ 1− δ, we find a hypothesis of error at most 6ε.

Note that Theorem 2.3.9 relies on knowing a good upper bound on errunl(c∗). If we do not have
such an upper bound, then one can perform a stratification as in Sections 2.3.1 and 2.3.1. For example,
if we have a desired maximum error rate ε and we do not know a good upper bound for errunl(c∗) but
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we have the ability to draw additional labeled examples as needed, then we can simply run the procedure
in Theorem 2.3.9 for various value of p, testing on each round to see if the hypothesis f found indeed
has zero empirical labeled error rate. One can show that ml = O

(
1
ε ln p

δ

)
labeled examples are sufficient

in total for all the “validation” steps.4 If the number of labeled examples ml is fixed, then one can also
perform a stratification over the target error ε.

Some illustrative examples

To illustrate the power of ε-cover bounds, we now present two examples where these bounds allow for
learning from significantly fewer labeled examples than is possible using uniform convergence.

Graph-based learning: Consider the setting of graph-based algorithms (e.g., Example 3). In particular,
the input is a graph g where each node is an example and C is the class of all boolean functions over the
nodes of g. Let us define the incompatibility of a hypothesis to be the fraction of edges in g cut by it.
Suppose now that the graph g consists of two cliques of n/2 vertices, connected together by εn2/4 edges.
Suppose the target function c∗ labels one of the cliques as positive and one as negative, so the target func-
tion indeed has unlabeled error rate less than ε. Now, given any set SL of ml < εn/4 labeled examples,
there is always a highly-compatible hypothesis consistent with SL that just separates the positive points
in SL from the entire rest of the graph: the number of edges cut will be at most nml < εn2/4. However,
such a hypothesis has true error nearly 1/2 since it has less than εn/4 positive examples. So, we do not
yet have uniform convergence over the space of highly compatible hypotheses, since this hypothesis has
zero empirical error but high true error. Indeed, this illustrates an overfitting problem that can occur with
a direct minimum-cut approach to learning [59, 67, 140]. On the other hand, the set of functions of unla-
beled error rate less than ε has a small ε-cover: in particular, any partition of g that cuts less than εn2/4
edges must be ε-close to (a) the all-positive function, (b) the all-negative function, (c) the target function
c∗, or (d) the complement of the target function 1− c∗. So, ε-cover bounds act as if the concept class had
only 4 functions and so by Theorem 2.3.9 we need only O(1

ε log 1
δ ) labeled examples to learn well.5 (In

fact, since the functions in the cover are all far from each other, we really need only O(log 1
δ ) examples.

This issue is explored further in Theorem 2.3.11).

Simple co-training: For another case where ε-cover bounds can beat uniform-convergence bounds, imag-
ine examples are pairs of points in {0, 1}d, C is the class of linear separators, and compatibility is deter-
mined by whether both points are on the same side of the separator (i.e., the case of Example 4). Now
suppose for simplicity that the target function just splits the hypercube on the first coordinate, and the
distribution is uniform over pairs having the same first coordinate (so the target is fully compatible). We
then have the following.

Theorem 2.3.10 Given poly(d) unlabeled examples SU and 1
4 log d labeled examples SL, with high prob-

ability there will exist functions of true error 1/2 − 2−
1
2

√
d that are consistent with SL and compatible

with SU .

Proof: Let V be the set of all variables (not including x1) that (a) appear in every positive example
of SL and (b) appear in no negative example of SL. In other words, these are variables xi such that

4Specifically, note that as we increase t (our current estimate for the unlabeled error rate of the target function), the associated
p (which is an integer) increases in discrete jumps, p1, p2, . . .. We can then simply spread the “δ” parameter across the different
runs, in particular run i would use δ/i(i + 1). Since pi ≥ i, this implies that ml = O

�
1
ε
ln p

δ

�
labeled examples are sufficient

for all the “validation” steps.
5Effectively, ε-cover bounds allow one to rule out a hypothesis that, say, just separates the positive points in SL from the rest

of the graph by noting that this hypothesis is very close (with respect to D) to the all-negative hypothesis, and that hypothesis
has a high labeled-error rate.
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the function f(x) = xi correctly classifies all examples in SL. Over the draw of SL, each variable has a
(1/2)2|SL| = 1/

√
d chance of belonging to V , so the expected size of V is (d−1)/

√
d and so by Chernoff

bounds, with high probability V has size at least 1
2

√
d. Now, consider the hypothesis corresponding to

the conjunction of all variables in V . This correctly classifies the examples in SL, and with probability
at least 1 − 2|SU |2−|V | it classifies every other example in SU negative because each example in SU has
only a 1/2|V | chance of satisfying every variable in V . Since |SU | = poly(d), this means that with high
probability this conjunction is compatible with SU and consistent with SL, even though its true error is at
least 1/2− 2−

1
2

√
d.

So, given only a set SU of poly(d) unlabeled examples and a set SL of 1
4 log d labeled examples

we would not want to use a uniform convergence based algorithm since we do not yet have uniform
convergence. In contrast, the cover-size of the set of functions compatible with SU is constant, so ε-cover
based bounds again allow learning from just only O(1

ε log 1
δ ) labeled examples (Theorem 2.3.9). In fact

as we show in Theorem 2.3.11 we only need O
(
log 1

ε

1
δ

)
labeled examples in this case.

Learning from even fewer labeled examples

In some cases, unlabeled data can allow us to learn from even fewer labeled examples than given by The-
orem 2.3.9. In particular, consider a co-training setting where the target c∗ is fully compatible and D sat-
isfies the property that the two views x1 and x2 are conditionally independent given the label c∗(〈x1, x2〉).
As shown by [62], one can boost any weak hypothesis from unlabeled data in this setting (assuming one
has enough labeled data to produce a weak hypothesis). Related sample complexity results are given
in [97]. In fact, we can use the notion of ε-covers to show that we can learn from just a single labeled
example. Specifically, for any concept classes C1 and C2, we have:

Theorem 2.3.11 Assume that err(c∗) = errunl(c∗) = 0 and D satisfies independence given the label.
Then for any τ ≤ ε/4, using mu unlabeled examples and ml labeled examples we can find a hypothesis
that with probability 1− δ has error at most ε, for

mu = O

(
1
τ

[
(V Cdim(C1) + V Cdim(C2)) ln

1
τ

+ ln
2
δ

])
and ml = O

(
log 1

τ

1
δ

)
.

Proof: We will assume for simplicity the setting of Example 3, where c∗ = c∗1 = c∗2 and also D1 =
D2 = D̃ (the general case is handled similarly, but just requires more notation).

We start by characterizing the hypotheses with low unlabeled error rate. Recall that χ(f, D) =
Pr〈x1,x2〉∼D[f(x1) = f(x2)], and for concreteness assume f predicts using x1 if f(x1) 6= f(x2). Con-
sider f ∈ C with errunl(f) ≤ τ and let’s define p− = Prx∈D̃ [c∗(x) = 0], p+ = Prx∈D̃ [c∗(x) = 1] and
for i, j ∈ {0, 1} define pij = Prx∈D̃ [f(x) = i, c∗(x) = j]. We clearly have err (f) = p10 + p01. From
errunl(f) = Pr(x1,x2)∼D [f (x1) 6= f (x2)] ≤ τ , using the independence given the label of D, we get

2p10p00

p10 + p00
+

2p01p11

p01 + p11
≤ τ.

In particular, the fact that 2p10p00

p10+p00
≤ τ implies that we cannot have both p10 > τ and p00 > τ , and the

fact that 2p01p11

p01+p11
≤ τ implies that we cannot have both p01 > τ and p11 > τ . Therefore, any hypothesis

f with errunl(f) ≤ τ falls in one of the following categories:
1. f is “close to c∗”: p10 ≤ τ and p01 ≤ τ ; so err(f) ≤ 2τ .

2. f is “close to c∗”: p00 ≤ τ and p11 ≤ τ ; so err(f) ≥ 1− 2τ .
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3. f “almost always predicts negative”: for p10 ≤ τ and p11 ≤ τ ; so Pr[f(x) = 0] ≥ 1− 2τ .

4. f “almost always predicts positive”: for p00 ≤ τ and p01 ≤ τ ; so Pr[f(x) = 0] ≤ 2τ .
Let f1 be the constant positive function and f0 be the constant negative function. Now note that our

bound on mu is sufficient to ensure that with probability ≥ 1 − δ
2 , we have (a) |d̂(f, g) − d(f, g)| ≤ τ

for all f, g ∈ C and (b) all f ∈ C with êrrunl(f) = 0 satisfy errunl(f) ≤ τ . Let us assume in the
remainder that this (a) and (b) are indeed satisfied. By our previous analysis, there are at most four kinds
of hypotheses consistent with unlabeled data: those close to c∗, those close to its complement c∗, those
close to f0, and those close to f1. Furthermore, c∗, c∗, f0, and f1 are compatible with the unlabeled data.

So, algorithmically, we first check to see if there exists a hypothesis g ∈ C with êrrunl(g) = 0 such
that d̂(f1, g) ≥ 3τ and d̂(f0, g) ≥ 3τ . If such a hypothesis g exists, then it must satisfy either case (1)
or (2) above. Therefore, we know that one of {g, g} is 2τ -close to c∗. If not, we must have p+ ≤ 4τ or
p− ≤ 4τ , in which case we know that one of {f0, f1} is 4τ -close to c∗. So, either way we have a set of two
functions, opposite to each other, one of which is at least 4τ -close to c∗. We finally use O(log 1

τ

1
δ ) labeled

examples to pick one of these to output, namely the one with lowest empirical labeled error. Lemma 2.3.12
below then implies that with probability 1− δ the function we output has error at most 4τ ≤ ε.

Lemma 2.3.12 Consider τ < 1
8 . Let Cτ =

{
f, f

}
be a subset of C containing two opposite hypotheses

with the property that one of them is τ -close to c∗. Then, ml > 6 log( 1
τ )

(
1
δ

)
labeled examples are sufficient

so that with probability ≥ 1− δ, the concept in Cτ that is τ -close to c∗ in fact has lower empirical error.

Proof: We need to show that if ml > 6 log 1
τ

(
1
δ

)
, then

bml
2
c∑

k=0

(
ml
k

)
τ (ml−k) (1− τ)k ≤ δ.

Since τ < 1
8 we have:

bml
2
c∑

k=0

(
ml

k

)
τ (ml−k) (1− τ)k ≤

bml
2
c∑

k=0

(
ml

k

)
τ (ml−k) = τ b

ml
2
c
bml

2
c∑

k=0

(
ml

k

)
τ d

ml
2
e−k

and so S ≤ (
√

τ · 2)ml . For τ < 1
8 and ml > 6

log2 ( 1
δ )

log2 ( 1
τ ) = 6 log( 1

τ )
(

1
δ

)
it’s easy to see that (

√
τ · 2)ml <

δ, which implies the desired result.

In particular, by reducing τ to poly(δ) in Theorem 2.3.11, we can reduce the number of labeled
examples needed ml to one. Note however that we will need polynomially more unlabeled examples.

In fact, the result in Theorem 2.3.11 can be extended to the case that D+ and D− merely satisfy
constant expansion rather than full independence given the label, see [28].

Note: Theorem 2.3.11 illustrates that if data is especially well behaved with respect to the compatibility
notion, then our bounds on labeled data can be extremely good. In Section 2.4.2, we show for the case of
linear separators and independence given the label, we can give efficient algorithms, achieving the bounds
in Theorem 2.3.11 in terms of labeled examples by a polynomial time algorithm. Note, however, that
both these bounds rely heavily on the assumption that the target is fully compatible. If the assumption is
more of a “hope” than a belief, then one would need an additional sample of 1/ε labeled examples just to
validate the hypothesis produced.
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2.4 Algorithmic Results

In this section we give several examples of efficient algorithms in our model that are able to learn using
sample sizes comparable to those described in Section 2.3. Note that our focus is on achieving a low-error
hypothesis (also called minimizing 0-1 loss). Another common practice in machine learning (both in the
context of supervised and semi-supervised learning) is to instead try to minimize a surrogate convex loss
that is easier to optimize [82]. While this does simplify the computational problem, it does not in general
solve the true goal of achieving low error.

2.4.1 A simple case

We give here a simple example to illustrate the bounds in Section 2.3.1, and for which we can give a
polynomial-time algorithm that takes advantage of them. Let the instance space X = {0, 1}d, and for
x ∈ X , let vars(x) be the set of variables set to 1 in the feature vector x. Let C be the class of monotone
disjunctions (e.g., x1 ∨ x3 ∨ x6), and for f ∈ C, let vars(f) be the set of variables disjoined by f .
Now, suppose we say an example x is compatible with function f if either vars(x) ⊆ vars(f) or else
vars(x) ∩ vars(f) = φ. This is a very strong notion of “margin”: it says, in essence, that every variable
is either a positive indicator or a negative indicator, and no example should contain both positive and
negative indicators.

Given this setup, we can give a simple PACunl-learning algorithm for this pair (C, χ): that is, an
algorithm with sample size bounds that are polynomial (or in this case, matching) those in Theorem 2.3.1.
Specifically, we can prove the following:

Theorem 2.4.1 The class C of monotone disjunctions is PACunl-learnable under the compatibility notion
defined above.

Proof: We begin by using our unlabeled data to construct a graph on d vertices (one per variable),
putting an edge between two vertices i and j if there is any example x in our unlabeled sample with
i, j ∈ vars(x). We now use our labeled data to label the components. If the target function is fully
compatible, then no component will get multiple labels (if some component does get multiple labels, we
halt with failure). Finally, we produce the hypothesis f such that vars(f) is the union of the positively-
labeled components. This is fully compatible with the unlabeled data and has zero error on the labeled
data, so by Theorem 2.3.1, if the sizes of the data sets are as given in the bounds, with high probability the
hypothesis produced will have error at most ε.

Notice that if we want to view the algorithm as “purchasing” labeled data, then we can simply ex-
amine the graph, count the number of connected components k, and then request 1

ε [k ln 2 + ln 2
δ ] labeled

examples. (Here, 2k = |CS,χ(0)|.) By the proof of Theorem 2.3.1, with high probability 2k ≤ |CD,χ(ε)|,
so we are purchasing no more than the number of labeled examples in the theorem statement.

Also, it is interesting to see the difference between a “helpful” and “non-helpful” distribution for this
problem. An especially non-helpful distribution would be the uniform distribution over all examples x
with |vars(x)| = 1, in which there are d components. In this case, unlabeled data does not help at all, and
one still needs Ω(d) labeled examples (or, even Ω

(
d
ε

)
if the distribution is non-uniform as in the lower

bounds of [105]). On the other hand, a helpful distribution is one such that with high probability the
number of components is small, such as the case of features appearing independently given the label.

2.4.2 Co-training with linear separators

We now consider the case of co-training where the hypothesis class C is the class of linear separators. For
simplicity we focus first on the case of Example 4: the target function is a linear separator in Rd and each
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example is a pair of points, both of which are assumed to be on the same side of the separator (i.e., an
example is a line-segment that does not cross the target hyperplane). We then show how our results can
be extended to the more general setting.

As in the previous example, a natural approach is to try to solve the “consistency” problem: given a set
of labeled and unlabeled data, our goal is to find a separator that is consistent with the labeled examples
and compatible with the unlabeled ones (i.e., it gets the labeled data correct and doesn’t cut too many
edges). Unfortunately, this consistency problem is NP-hard: given a graph g embedded in Rd with two
distinguished points s and t, it is NP-hard to find the linear separator with s on one side and t on the
other that cuts the minimum number of edges, even if the minimum is zero [108]. For this reason, we will
make an additional assumption, that the two points in an example are each drawn independently given
the label. That is, there is a single distribution D̃ over Rd, and with some probability p+, two points
are drawn i.i.d. from D̃+ (D̃ restricted to the positive side of the target function) and with probability
1 − p+, the two are drawn i.i.d from D̃− (D̃ restricted to the negative side of the target function). Note
that our sample complexity results in Section 2.3.2 extend to weaker assumptions such as distributional
expansion introduced by [28], but we need true independence for our algorithmic results. [62] also give
positive algorithmic results for co-training when (a) the two views of an example are drawn independently
given the label (which we are assuming now), (b) the underlying function is learnable via Statistical
Query algorithms6 (which is true for linear separators [64]), and (c) we have enough labeled data to
produce a weakly-useful hypothesis (defined below) on one of the views to begin with. We give here an
improvement over that result by showing how we can run the algorithm in [62] with only a single labeled
example, thus obtaining an efficient algorithm in our model. It is worth noticing that in the process, we
also somewhat simplify the results of [64] on efficiently learning linear separators with noise without a
margin assumption.

For the analysis below, we need the following definition. A weakly-useful predictor is a function f
such that for some β that is at least inverse polynomial in the input size we have:

Pr[f(x) = 1|c∗(x) = 1] > Pr[f(x) = 1|c∗(x) = 0] + β. (2.2)

It is equivalent to the usual notion of a “weak hypothesis” [149] when the target function is balanced,
but requires the hypothesis give more information when the target function is unbalanced [62]. Also,
we will assume for convenience that the target separator passes through the origin, and let us denote the
separator by c∗ · x = 0.

We now describe an efficient algorithm to learn to any desired error rate ε in this setting from just
a single labeled example. For clarity, we first describe an algorithm whose running time depends poly-
nomially on both the dimension d and 1/γ, where γ is a soft margin of separation between positive and
negative examples. Formally, in this case we assume that at least some non-negligible probability mass of
examples x satisfy |x·c∗|

|x||c∗| ≥ γ; i.e., they have distance at least γ to the separating hyperplane x · c∗ = 0
after normalization. This is a common type of assumption in machine learning (in fact, often one makes
the much stronger assumption that nearly all probability mass is on examples x satisfying this condition).
We then show how one can replace the dependence on 1/γ with instead a polynomial dependence on the
number of bits of precision b in the data, using the Outlier Removal Lemma of [64] and [104].

Theorem 2.4.2 Assume that at least an α probability mass of examples x have margin |x·c∗|
|x||c∗| ≥ γ with

respect to the target separator c∗. There is a polynomial-time algorithm (polynomial in d, 1/γ, 1/α, 1/ε,
and 1/δ) to learn a linear separator under the above assumptions, from a polynomial number of unlabeled
examples and a single labeled example.

6For a detailed description of the Statistical Query model see [148] and [149].
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Algorithm 1 Co-training with Linear Separators. The Soft Margin Case.

Input: ε, δ, T a set SL of ml labeled examples drawn i.i.d from D, a set SU of mu unlabeled
examples drawn i.i.d from D.

Output: Hypothesis of low error.

Let hp be the all-positive function. Let hn be the all-negative function. Let τ = ε/6, ε1 = τ/4.

(1) For i = 1, . . . ,T do

- Choose a random halfspace fi going through the origin.

- Feed fi, SU and error parameters ε1 and confidence parameter δ/6 into the bootstrapping
procedure of [62] to produce hi.

(2) Let h be argminhi

{
êrrunl(hi)|d̂(h, hp) ≥ 3τ, d̂(h, hn) ≥ 3τ

}
.

If êrrunl(hi) ≥ 3ε1, then let h = hp.

(3) Use SL to output either h or h̄: output the hypothesis with lowest empirical error on the set SL.

Proof: Let ε and δ be the desired accuracy and confidence parameters. Let T = O
(

1
α·γ log

(
1
δ

))
, mu =

poly(1/γ, 1/α, 1/ε, 1/δ, d), and ml = 1. We run Algorithm 1 with the inputs ε, δ, T SL, SU , and ml = 1.
Let τ = ε/6, ε1 = τ/4.

In order to prove the desired result, we start with a few facts.
We first note that our bound on mu is sufficient to ensure that with probability ≥ 1 − δ

3 , we have (a)
|d̂(f, g)− d(f, g)| ≤ τ for all f, g ∈ C and (b) all f ∈ C have |êrrunl(f)− errunl(f)| ≤ ε1.

We now argue that if at least an α probability mass of examples x have margin |x·c∗|
|x||c∗| ≥ γ with

respect to the target separator c∗, then a random halfspace has at least a poly(α, γ) probability of being
a weakly-useful predictor. (Note that [64] uses the Perceptron algorithm to get weak learning; here, we
need something simpler since we need to save our labeled example to the very end.) Specifically, consider
a point x of margin γx ≥ γ. By definition, the margin is the cosine of the angle between x and c∗, and
therefore the angle between x and c∗ is π/2 − cos−1(γx) ≤ π/2 − γ. Now, imagine that we draw f at
random subject to f · c∗ ≥ 0 (half of the f ’s will have this property) and define f(x) = sign(f · x). Then,

Pr
f

(f(x) 6= c∗(x)|f · c∗ ≥ 0) ≤ (π/2− γ)/π = 1/2− γ/π.

Moreover, if x does not have margin γ then at the very least we have Prf (f(x) 6= c∗(x)|f ·c∗ ≥ 0) ≤ 1/2.
Now define distribution D∗ = 1

2D+ + 1
2D−; that is D∗ is the distribution D but balanced to 50%

positive and 50% negative. With respect to D∗ at least an α/2 probability mass of the examples have
margin at least γ, and therefore:

Ef [errD∗(f)|f · c∗ ≥ 0] ≤ 1/2− (α/2)(γ/π).

Since err(f) is a bounded quantity, by Markov inequality this means that at least an Ω(αγ) probability
mass of functions f must satisfy errD∗(f) ≤ 1

2− αγ
4π which in turn implies that they must be useful weakly

predictors with respect to D as defined in Equation (2.2) with β = αγ
4π .

The second part of the argument is as follows. Note that in Step(1) of our algorithm we repeat the
following process for T iterations: pick a random fi, and plug it into the bootstrapping theorem of [62]
(which, given a distribution over unlabeled pairs 〈xj

1, x
j
2〉, will use fi(x

j
1) as a noisy label of xj

2, feeding the

result into a Statistical Query algorithm). Since T = O
(

1
α·γ log

(
1
δ

))
, using the above observation about
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random halfspaces being weak predictors, we obtain that with high probability at least 1−δ/6, at least one
of the random hypothesis fi was a weakly-useful predictor; and since mu = poly(1/γ, 1/α, 1/ε, 1/δ, d)
we also have the associated hypothesis hi output by the bootstrapping procedure of [62] will with prob-
ability at least 1 − δ/6 satisfy err(hi) ≤ ε1. This implies that with high probability at least 1 − 2δ/3,
at least one of the hypothesis hi we find in Step 1 has true labeled error at most ε1. For the rest of the
hypotheses we find in Step 1, we have no guarantees.

We now observe the following. First of all, any function f with small err(f) must have small
errunl(f); in particular,

errunl(f) = Pr(f(x1) 6= f(x2)) ≤ 2err(f).

This implies that with high probability at least 1− 2δ/3, at least one of the hypothesis hi we find in Step
1 has true unlabeled error at most 2ε1, and therefore empirical unlabeled error at most 3ε1. Secondly,
because of the assumption of independence given the label, as shown in Theorem 2.3.11, with high prob-
ability the only functions with unlabeled error at most τ are functions 2τ -close to c∗, 2τ -close to ¬c∗,
2τ -close to the “all positive” function, or 2τ -close to the “all negative” function.

In Step (2) we first examine all the hypotheses produced in Step 1, and we pick the hypothesis h
with the smallest empirical unlabeled error rate subject to being empirically at least 3τ -far from the “all-
positive” or “all-negative” functions. If the the empirical error rate of this hypothesis h is at most 3ε1 we
know that its true unlabeled error rate is at most 4ε1 ≤ τ , which further implies that either h or ¬h is 2τ
close to c∗. However, if the empirical unlabeled error rate of h is greater than 3ε1, then we know that the
target must be 4τ -close to the all-positive or all-negative function so we simply choose h = “all positive”
(this is true since the unlabeled sample was large enough so that |d̂(f, g)− d(f, g)| ≤ τ ).

So, we have argued that with probability at least 1 − 2δ/3 either h or ¬h is 4τ -close to c∗. We can
now just use O

(
log( 1

τ )
(

1
δ

))
labeled examples to determine which case is which (Lemma 2.3.12). This

quantity is at most 1 and our error rate is at most ε if we set τ ≤ ε/4 and τ sufficiently small compared to
δ. This completes the proof.

The above algorithm assumes one can efficiently pick a random unit-length vector in Rd, but the
argument easily goes through even if we do this to only O(log 1/γ) bits of precision.

We now extend the result to the case that we make no margin assumption.

Theorem 2.4.3 There is a polynomial-time algorithm (in d, b, 1/ε, and 1/δ, where d is the dimension of
the space and b is the number of bits per example) to learn a linear separator under the above assumptions,
from a polynomial number of unlabeled examples and a single labeled example. Thus, we efficiently
PACunl-learn the class of linear separators over {−2b, . . . , 2b − 1, 2b}d under the agreement notion of
compatibility if the distribution D satisfies independence given the label.

Proof: We begin by drawing a large unlabeled sample S (of size polynomial in d and b). We then
compute a linear transformation T that when applied to S has the property that for any hyperplane w ·
x = 0, at least a 1/poly(d, b) fraction of T (S) has margin at least 1/poly(d, b). We can do this via the
Outlier Removal Lemma of [64] and [104]. Specifically, the Outlier Removal Lemma states that given
a set of points S, one can algorithmically remove an ε′ fraction of S and ensure that for the remaining
set S′, for any vector w, maxx∈S′(w · x)2 ≤ poly(d, b, 1/ε′)Ex∈S′ [(w · x)2], where b is the number
of bits needed to describe the input points. Given such a set S′, one can then use its eigenvectors to
compute a standard linear transformation (also described in [64]) T : Rd → Rd′ , where d′ ≤ d is the
dimension of the subspace spanned by S′, such that in the transformed space, for all unit-length w, we
have Ex∈T (S′)[(w · x)2] = 1. In particular, since the maximum of (w · x)2 is bounded, this implies that
for any vector w ∈ Rd′ , at least an α fraction of points x ∈ T (S′) have margin at least α for some
α ≥ 1/poly(b, d, 1/ε′).
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Now, choose ε′ = ε/4, and let D′ be the distribution D̃ restricted to the space spanned by S′. By
VC-dimension bounds, |S| = Õ(d/α) is sufficient so that with high probability, (a) D′ has probability
mass at least 1 − ε/2, and (b) the vector T (c∗) has at least an α/2 probability mass of T (D′) at margin
≥ α. Thus, the linear transformation T converts the distribution D′ into one satisfying the conditions
needed for Theorem 2.4.2, and any hypothesis produced with error ≤ ε/2 on D′ will have error at most ε
on D. So, we simply apply T to D′ and run the algorithm for Theorem 2.4.2 to produce a low-error linear
separator.

Note: We can easily extend our algorithm to the standard co-training setting (where c∗1 can be different
from c∗2) as follows: we repeat the procedure in a symmetric fashion, and then just try all combinations
of pairs of functions returned to find one of small unlabeled error rate, not close to “all positive”, or “all
negative”. Finally we use O

(
log( 1

ε )
(

1
δ

))
labeled examples to produce a low error hypothesis (and here

we use only one part of the example and only one of the functions in the pair).

2.5 Related Models

In this section we discuss a transductive analog of our model, some connections with generative models
and other ways of using unlabeled data in Machine Learning, and the relationship between our model and
the luckiness framework of [191].

2.5.1 A Transductive Analog of our Model

In transductive learning, one is given a fixed set S of examples, of which some small random subset is
labeled, and the goal is to predict well on the rest of S. That is, we know which examples we will be tested
on up front, and in a sense this a case of learning from a known distribution (the uniform distribution over
S). We can also talk about a transductive analog of our inductive model, that incorporates many of the
transductive learning methods that have been developed. In order to make use of unlabeled examples, we
will again express the relationship we hope the target function has with the data through a compatibility
notion χ. However, since in this case the compatibility of a given hypothesis is completely determined
by S (which is known), we will not need to require that compatibility be an expectation over unlabeled
examples. From the sample complexity point of view we only care about how much labeled data we need,
and algorithmically we need to find a highly compatible hypothesis with low error on the labeled data.

Rather than presenting general theorems, we instead focus on the modeling question, and show how
a number of existing transductive graph-based learning algorithms can be modeled in our framework. In
these methods one usually assumes that there is weighted graph g defined over S, which is given a-priori
and encodes the prior knowledge. In the following we denote by W the weighted adjacency matrix of g
and by CS the set of all binary functions over S.

Minimum cut Suppose for f ∈ CS we define the incompatibility of f to be the weight of the cut in g
determined by f . This is the implicit notion of compatibility considered in [59], and algorithmically
the goal is to find the most compatible hypothesis that is correct on the labeled data, which can be
solved efficiently using network flow. From a sample-complexity point of view, the number of
labeled examples we need is proportional to the VC-dimension of the class of hypotheses that are
at least as compatible as the target function. This is known to be O

(
k
λ

)
[150, 152], where k is the

number of edges cut by c∗ and λ is the size of the global minimum cut in the graph. Also note that
the Randomized Mincut algorithm (considered by [67]), which is an extension of the basic mincut
approach, can be viewed as motivated by a PAC-Bayes sample complexity analysis of the problem.
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Normalized Cut For f ∈ CS define size(f) to be the weight of the cut in g determined by f , and let
neg(f) and pos(f) be the number of points in S on which f predicts negative and positive, re-
spectively. For the normalized cut setting of [140] we can define the incompatibility of f ∈ CS

to be size(f)
neg(f)·pos(f) . This is the penalty function used in [140], and again, algorithmically the goal

would be to find a highly compatible hypothesis that is correct on the labeled data. Unfortunately,
the corresponding optimization problem is in this case is NP-hard. Still, several approximate solu-
tions have been considered, leading to different semi-supervised learning algorithms. For instance,
Joachims [140] considers a spectral relaxation that leads to the “SGT algorithm”; another relaxation
based on semidefinite programming is considered in [56].

Harmonic Function We can also model the algorithms introduced in [215] as follows. If we consider f
to be a probabilistic prediction function defined over S, then we can define the incompatibility of f
to be ∑

i,j

wi,j (f(i)− f(j))2 = fT Lf,

where L is the un-normalized Laplacian of g. Similarly we can model the algorithm introduced
by Zhao et al. [213] by using an incompatibility of f given by fTLf where L is the normalized
Laplacian of g. More generally, all the Graph Kernel methods can be viewed in our framework if
we consider that the incompatibility of f is given by ||f ||K = fT Kf where K is a kernel derived
from the graph (see for instance [216]).

2.5.2 Connections to Generative Models

It is also interesting to consider how generative models can be fit into our model. As mentioned in Section
2.1, a typical assumption in a generative setting is that D is a mixture with the probability density function
p(x|θ) = p0 · p0(x|θ0) + p1 · p1(x|θ1) (see for instance [76, 77, 183]). In other words, the labeled
examples are generated according to the following mechanism: a label y ∈ {0, 1} is drawn according to
the distribution of classes {p0, p1} and then a corresponding random feature vector is drawn according
to the class-conditional density py. The assumption typically used is that the mixture is identifiable.
Identifiability ensures that the Bayes optimal decision border {x : p0 · p0(x|θ0) = p1 · p1(x|θ1)} can
be deduced if p(x|θ) is known, and therefore one can construct an estimate of the Bayes border by using
p(x|θ̂) instead of p(x|θ). Essentially once the decision border is estimated, a small labeled sample suffices
to learn (with high confidence and small error) the appropriate class labels associated with the two disjoint
regions generated by the estimate of the Bayes decision border. To see how we can incorporate this setting
in our model, consider for illustration the setting in [183]; there they assume that p0 = p1, and that the
class conditional densities are d-dimensional Gaussians with unit covariance and unknown mean vectors
θi ∈ Rd. The algorithm used is the following: the unknown parameter vector θ = (θ0, θ1) is estimated
from unlabeled data using a maximum likelihood estimate; this determines a hypothesis which is a linear
separator that passes through the point (θ̂0 + θ̂1)/2 and is orthogonal to the vector θ̂1 − θ̂0; finally each
of the two decision regions separated by the hyperplane is labeled according to the majority of the labeled
examples in the region. Given this setting, a natural notion of compatibility we can consider is the expected
log-likelihood function (where the expectation is taken with respect to the unknown distribution specified
by θ). Specifically, we can identify a legal hypothesis fθ with the set of parameters θ = (θ0, θ1) that
determine it, and then we can define χ(fθ, D) = Ex∈D[log(p(x|θ))]. [183] show that if the unlabeled
sample is large enough, then all hypotheses specified by parameters θ which are close enough to θ, will
have the property that their empirical compatibilities will be close enough to their true compatibilities.
This then implies (together with other observations about Gaussian mixtures) that the maximum likelihood
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estimate will be close enough to θ, up to permutations. (This actually motivates χ as a good compatibility
function in our model.)

More generally, we can deal with other parametric families using the same compatibility notion; how-
ever, we will need to impose constraints on the distributions allowed in order to ensure that the compati-
bility is actually well defined (the expected log-likelihood is bounded).

As mentioned in Section 2.1, this kind of generative setting is really at the extreme of our model.
The assumption that the distribution that generates the data is truly a mixture implies that if we knew the
distribution, then there are only two possible concepts left (and this makes the unlabeled data extremely
useful).

2.5.3 Connections to the Luckiness Framework

It is worth noticing that there is a strong connection between our approach and the luckiness frame-
work [170, 191]. In both cases, the idea is to define an ordering of hypotheses that depends on the data,
in the hope that we will be “lucky” and find that the target function appears early in the ordering. There
are two main differences, however. The first is that the luckiness framework (because it was designed for
supervised learning only) uses labeled data both for estimating compatibility and for learning: this is a
more difficult task, and as a result our bounds on labeled data can be significantly better. For instance,
in Example 4 described in Section 2.2, for any non-degenerate distribution, a dataset of d

2 pairs can with
probability 1 be completely shattered by fully-compatible hypotheses, so the luckiness framework does
not help. In contrast, with a larger (unlabeled) sample, one can potentially reduce the space of compatible
functions quite significantly, and learn from o(d) or even O(1) labeled examples depending on the distri-
bution – see Section 2.3.2 and Section 2.4. Secondly, the luckiness framework talks about compatibility
between a hypothesis and a sample, whereas we define compatibility with respect to a distribution. This
allows us to talk about the amount of unlabeled data needed to estimate true compatibility. There are also
a number of differences at the technical level of the definitions.

2.5.4 Relationship to Other Ways of Using Unlabeled Data for Learning

It is well known that when learning under an unknown distribution, unlabeled data might help some-
what even in the standard discriminative models by allowing one to use both distribution-specific algo-
rithms [53], [144], [194] and/or tighter data dependent sample-complexity bounds [43, 155]. However in
all these methods one chooses a class of functions or a prior over functions before performing the infer-
ence. This does not capture the power of unlabeled data in many of the practical semi-supervised learning
methods, where typically one has some idea about what structure of the data tells about the target function,
and where the choice of prior can be made more precise after seeing the unlabeled data [62, 141, 158, 184].
Our focus in this chapter has been to provide a unified discriminative framework for reasoning about use-
fulness of unlabeled data in such settings in which one can analyze both sample complexity and algorith-
mic results.

Another learning setting where unlabeled data is useful and which has been increasingly popular for
the past few years is Active Learning [30, 33, 34, 41, 86, 94]. Here, the learning algorithm has both the
capability of drawing random unlabeled examples from the underlying distribution and that of asking for
the labels of any of these examples, and the hope is that a good classifier can be learned with significantly
fewer labels by actively directing the queries to informative examples. Note though that as opposed
to the Semi-supervised learning setting, and similarly to the classical supervised learning settings (PAC
and Statistical Learning Theory settings) the only prior belief about the learning problem in the Active
Learning setting is that the target function (or a good approximation of it) belongs to a given concept
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class. Luckily, it turns out that for simple concept classes such as linear separators on the line one can
achieve an exponential improvement (over the usual supervised learning setting) in the labeled data sample
complexity, under no additional assumptions about the learning problem [30, 86].7 In general, however,
for more complicated concept classes, the speed-ups achievable in the active learning setting depend on
the match between the distribution over example-label pairs and the hypothesis class, and therefore on
the target hypothesis in the class. We discuss all these further as well as our contribution on the topic in
Chapter 5.

Finally, in this thesis, we present in the context of learning with kernels and more general similarity
functions one other interesting use of unlabeled data in the learning process. While the approach of
using unlabeled data in that context does have a similar flavor to the approach in this chapter, the final
guarantees and learning procedures are somewhat different from those presented here. In that case the
hypothesis space has an infinite capacity before performing the inference. In the training process, in a
first stage, we first use unlabeled in order to extract a much smaller set of functions with the property that
with high probability the target is well approximated by one the functions in the smaller class. In a second
stage we then use labeled examples to learn well. We present this in more details Chapter 3 in Section 3.5.

2.6 Conclusions

Given the easy availability of unlabeled data in many settings, there has been growing interest in meth-
ods that try to use such data together with the (more expensive) labeled data for learning. Nonetheless,
there has been substantial disagreement and no clear consensus about when unlabeled data helps and by
how much. In our work, we have provided a PAC-style model for semi-supervised learning that captures
many of the ways unlabeled data is typically used, and provides a very general framework for thinking
about this issue. The high level implication of our analysis is that unlabeled data is useful if (a) we have
a good notion of compatibility so that the target function indeed has a low unlabeled error rate, (b) the
distribution D is helpful in the sense that not too many other hypotheses also have a low unlabeled error
rate, and (c) we have enough unlabeled data to estimate unlabeled error rates well. We then make these
statements precise through a series of sample-complexity results, giving bounds as well as identifying the
key quantities of interest. In addition, we give several efficient algorithms for learning in this framework.
One consequence of our model is that if the target function and data distribution are both well behaved
with respect to the compatibility notion, then the sample-size bounds we get can substantially beat what
one could hope to achieve using labeled data alone, and we have illustrated this with a number of examples
throughout the chapter.

2.6.1 Subsequent Work

Following the initial publication of this work, several authors have used our framework for reasoning
about semi-supervised learning, as well as for developing new algorithms and analyses of semi-supervised
learning. For example [114, 184, 189] use it in the context of agreement-based multi-view learning for
either classification with specific convex loss functions (e.g., hinge loss) or for regression. Sridharan and
Kakade [196] use our framework in order to provide a general analysis multi-view learning for a variety
of loss functions and learning tasks (classification and regression) along with characterizations of suitable
notions of compatibility functions. Parts of this work appear as a book chapter in [82] and as stated in the

7For this simple concept class one can achieve a pure exponential improvement [86] in the realizable case, while in the
agnostic case the improvement depends upon the noise rate [30].
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introduction of that book, our framework can be used to obtain bounds for a number of the semi-supervised
learning methods used in the other chapters.

2.6.2 Discussion

Our work brings up a number of open questions, both specific and high-level. One broad category of such
questions is for what natural classes C and compatibility notions χ can one provide an efficient algorithm
that PACunl-learns the pair (C, χ): i.e., an algorithm whose running time and sample sizes are polynomial
in the bounds of Theorem 2.3.1? For example, a natural question of this form is: can one generalize the
algorithm of Section 2.4.1 to allow for irrelevant variables that are neither positive nor negative indicators?
That is, suppose we define a “two-sided disjunction” h to be a pair of disjunctions (h+, h−) where h is
compatible with D iff for all examples x, h+(x) = −h−(x) (and let us define h(x) = h+(x)). Can we
efficiently learn the class of two-sided disjunctions under this notion of compatibility?

Alternatively, as a different generalization of the problem analyzed in Section 2.4.1, suppose that again
every variable is either a positive or negative indicator, but we relax the “margin” condition. In particular,
suppose we require that every example x either contain at least 60% of the positive indicators and at
most 40% of the negative indicators (for positive examples) or vice versa (for negative examples). Can
this class be learned efficiently with bounds comparable to those from Theorem 2.3.1? Along somewhat
different lines, can one generalize the algorithm given for Co-Training with linear separators, to assume
some condition weaker than independence given the label, while maintaining computational efficiency?
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Chapter 3

A General Theory of Learning with
Similarity Functions

3.1 Learning with Kernel Functions. Introduction

Kernel functions have become an extremely popular tool in machine learning, with an attractive theory
as well [1, 133, 139, 187, 190, 203]. A kernel is a function that takes in two data objects (which could
be images, DNA sequences, or points in Rn) and outputs a number, with the property that the function
is symmetric and positive-semidefinite. That is, for any kernel K, there must exist an (implicit) mapping
φ, such that for all inputs x, x′ we have K(x, x′) = 〈φ(x), φ(x′)〉. The kernel is then used inside a
“kernelized” learning algorithm such as SVM or kernel-perceptron in place of direct access to the data.
Typical kernel functions for structured data include the polynomial kernel K(x, x′) = (1+x ·x′)d and the
Gaussian kernel K(x, x′) = e−||x−x′||2/2σ2

, and a number of special-purpose kernels have been developed
for sequence data, image data, and other types of data as well [88, 89, 157, 173, 193].

The theory behind kernel functions is based on the fact that many standard algorithms for learning
linear separators, such as SVMs [203] and the Perceptron [110] algorithm, can be written so that the only
way they interact with their data is via computing dot-products on pairs of examples. Thus, by replacing
each invocation of 〈x, x′〉 with a kernel computation K(x, x′), the algorithm behaves exactly as if we had
explicitly performed the mapping φ(x), even though φ may be a mapping into a very high-dimensional
space. Furthermore, these algorithms have learning guarantees that depend only on the margin of the best
separator, and not on the dimension of the space in which the data resides [18, 191]. Thus, kernel functions
are often viewed as providing much of the power of this implicit high-dimensional space, without paying
for it either computationally (because the φ mapping is only implicit) or in terms of sample size (if data is
indeed well-separated in that space).

While the above theory is quite elegant, it has a few limitations. When designing a kernel function
for some learning problem, the intuition employed typically does not involve implicit high-dimensional
spaces but rather that a good kernel would be one that serves as a good measure of similarity for the given
problem [187]. So, in this sense the theory is not always helpful in providing intuition when selecting or
designing a kernel function for a particular learning problem. Additionally, it may be that the most natural
similarity function for a given problem is not positive-semidefinite1, and it could require substantial work,
possibly reducing the quality of the function, to coerce it into a “legal” form. Finally, it is a bit unsatisfying
for the explanation of the effectiveness of some algorithm to depend on properties of an implicit high-

1This is very common in the context of Computational Biology where the most natural measures of alignment between
sequences are not legal kernels. For more examples see Section 3.2.
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dimensional mapping that one may not even be able to calculate. In particular, the standard theory at
first blush has a “something for nothing” feel to it (all the power of the implicit high-dimensional space
without having to pay for it) and perhaps there is a more prosaic explanation of what it is that makes a
kernel useful for a given learning problem. For these reasons, it would be helpful to have a theory that
was in terms of more tangible quantities.

In this chapter, we develop a theory of learning with similarity functions that addresses a number of
these issues. In particular, we define a notion of what it means for a pairwise function K(x, x′) to be a
“good similarity function” for a given learning problem that (a) does not require the notion of an implicit
space and allows for functions that are not positive semi-definite, (b) we can show is sufficient to be used
for learning, and (c) strictly generalizes the standard theory in that a good kernel in the usual sense (large
margin in the implicit φ-space) will also satisfy our definition of a good similarity function. In this way,
we provide the first theory that describes the effectiveness of a given kernel (or more general similarity
function) in terms of natural similarity-based properties.

More generally, our framework provides a formal way to analyze properties of a similarity function
that make it sufficient for learning, as well as what algorithms are suited for a given property. Note that
while our work is motivated by extending the standard large-margin notion of a good kernel function,
we expect one can use this framework to analyze other, not necessarily comparable, properties that are
sufficient for learning as well. In fact, recent work along these lines is given in [208].

Structure of this chapter: We start with background and notation in Section 3.2. We the present a first
notion of a good similarity function in Section 3.3 and analyze its relationship with the usual notion of a
good kernel function. (These results appear in [24] and [38].) In section 3.4 we present a slightly different
and broader notion that we show provides even better kernels to similarity translation; in Section 3.4.3 we
give a separation result, showing that this new notion is strictly more general than the notion of a large
margin kernel. (These results appear in [39].)

3.2 Background and Notation

We consider a learning problem specified as follows. We are given access to labeled examples (x, y)
drawn from some distribution P over X × {−1, 1}, where X is an abstract instance space. The objec-
tive of a learning algorithm is to produce a classification function g : X → {−1, 1} whose error rate
Pr(x,y)∼P [g(x) 6= y] is low. We will consider learning algorithms that only access the points x through a
pairwise similarity function K(x, x′) mapping pairs of points to numbers in the range [−1, 1]. Specifically,

Definition 3.2.1 A similarity function over X is any pairwise function K : X × X → [−1, 1]. We say
that K is a symmetric similarity function if K(x, x′) = K(x′, x) for all x, x′.

A similarity function K is a valid (or legal) kernel function if it is positive-semidefinite, i.e. there
exists a function φ from the instance space X into some (implicit) Hilbert “φ-space” such that

K(x, x′) =
〈
φ(x), φ(x′)

〉
.

See, e.g., Smola and Schölkopf [186] for a discussion on conditions for a mapping being a kernel function.
Throughout this chapter, and without loss of generality, we will only consider kernels such that K(x, x) ≤
1 for all x ∈ X . Any kernel K can be converted into this form by, for instance, defining

K̃(x, x′) = K(x, x′)/
√

K(x, x)K(x′, x′).
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We say that K is (ε, γ)-kernel good for a given learning problem P if there exists a vector β in the φ-space
that has error ε at margin γ; for simplicity we consider only separators through the origin. Specifically:2

Definition 3.2.2 K is (ε, γ)-kernel good if there exists a vector β, ||β|| ≤ 1 such that

Pr
(x,y)∼P

[y〈φ(x), β〉 ≥ γ] ≥ 1− ε.

We say that K is γ-kernel good if it is (ε, γ)-kernel good for ε = 0; i.e., it has zero error at margin γ.
Given a kernel that is (ε, γ)-kernel-good for some learning problem P , a predictor with error rate at

most ε + εacc can be learned (with high probability) from a sample of3 Õ(
(ε + εacc)/(γ2ε2acc)

)
examples

(drawn independently from the source distribution) by minimizing the number of margin γ violations
on the sample [168]. However, minimizing the number of margin violations on the sample is a difficult
optimization problem [18, 20]. Instead, it is common to minimize the so-called hinge loss relative to a
margin.
Definition 3.2.3 We say that K is (ε, γ)-kernel good in hinge-loss if there exists a vector β, ||β|| ≤ 1 such
that

E(x,y)∼P [[1− y〈β, φ(x)〉/γ]+] ≤ ε,

where [1− z]+ = max(1− z, 0) is the hinge loss.
Given a kernel that is (ε, γ)-kernel-good in hinge-loss, a predictor with error rate at most ε + εacc can

be efficiently learned (with high probability) from a sample of O(
1/(γ2ε2acc)

)
examples by minimizing

the average hinge loss relative to margin γ on the sample [43].
We end this section by noting that a general similarity function might not be a legal (valid) kernel. To

illustrate this we provide a few examples in the following.

Examples of similarity functions which are not legal kernel functions. As a simple example, let
us consider a document classification task and let us assume we have a similarity function K such that
two documents have similarity 1 if they have either an author in common or a keyword in common, and
similarity 0 otherwise. Then we could have three documents A, B, and C, such that K(A,B) = 1 because
A and B have an author in common, K(B, C) = 1 because B and C have a keyword in common, but
K(A,C) = 0 because A and C have neither an author nor a keyword in common (and K(A,A) =
K(B, B) = K(C, C) = 1). On the other hand, a kernel requires that if φ(A) and φ(B) are of unit length
and 〈φ(A), φ(B)〉 = 1, then φ(A) = φ(B), so this could not happen if K was a valid kernel.

Similarity functions that are not legal kernels are common in the context of computational biol-
ogy [160]; standard examples include various measures of alignment between sequences such as BLAST
scores for protein sequences or for DNA. Finally, one other natural example of a similarity function that
might not be a legal kernel (and which might not be even symmetric) is the following: consider a trans-
ductive setting (where we have all the points we want to classify in advance) and assume we have a
base distance function d(x, x′). Let us define K(x, x′) as the percentile rank of x′ in distance to x (i.e.,
K(x, x′) = Pr [d(x, x′) ≤ d(x, x′′)]; then clearly K might not be a legal kernel since in fact it might not
even be a symmetric similarity function.

Of course, one could modify such a function to be positive semidefinite, e.g., by blowing up the
diagonal or by using other related methods suggested in the literature [166], but none of these methods
have a formal guarantee on the final generalization bound (and these methods might significantly decrease
the “dynamic range” of K and yield a very small margin).

2 Note that we are distinguishing between what is needed for a similarity function to be a valid or legal kernel function
(symmetric and positive semidefinite) and what is needed to be a good kernel function for a learning problem (large margin).

3The Õ(·) notations hide logarithmic factors in the arguments, and in the failure probability.
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3.3 Learning with More General Similarity Functions: A First Attempt

Our goal is to describe “goodness” properties that are sufficient for a similarity function to allow one to
learn well that ideally are intuitive and subsume the usual notion of good kernel function. Note that as
with the theory of kernel functions [186], “goodness” is with respect to a given learning problem P , and
not with respect to a class of target functions as in the PAC framework [149, 201].

We start by presenting here the notion of good similarity functions introduced in [24] and further ana-
lyzed in [195] and [38], which throughout the chapter we call the Balcan - Blum’06 definition. We begin
with a definition (Definition 3.3.1) that is especially intuitive and allows for learning via a very simple
algorithm, but is not broad enough to include all kernel functions that induce large-margin separators. We
then broaden this notion to the main definition in [24] (Definition 3.3.5) that requires a more involved
algorithm to learn, but is now able to capture all functions satisfying the usual notion of a good kernel
function. Specifically, we show that if K is a similarity function satisfying Definition 3.3.5 then one
can algorithmically perform a simple, explicit transformation of the data under which there is a low-error
large-margin separator. We also consider variations on this definition (e.g., Definition 3.3.6) that produce
better guarantees on the quality of the final hypothesis when combined with existing learning algorithms.

A similarity function K satisfying the Balcan - Blum’06 definition, but that is not positive semi-
definite, is not necessarily guaranteed to work well when used directly in standard learning algorithms
such as SVM or the Perceptron algorithm4. Instead, what we show is that such a similarity function
can be employed in the following two-stage algorithm. First, re-represent that data by performing what
might be called an “empirical similarity map”: selecting a subset of data points as landmarks, and then
representing each data point using the similarities to those landmarks. Then, use standard methods to find
a large-margin linear separator in the new space. One property of this approach is that it allows for the use
of a broader class of learning algorithms since one does not need the algorithm used in the second step to
be “kernalizable”. In fact, the work in this chapter is motivated by work on a re-representation method that
algorithmically transforms a kernel-based learning problem (with a valid positive-semidefinite kernel) to
an explicit low-dimensional learning problem [31]. (We present this Chapter 6.)

Deterministic Labels: For simplicity in presentation, for most of this section we will consider only
learning problems where the label y is a deterministic function of x. For such learning problems, we can
use y(x) to denote the label of point x, and we will use x ∼ P as shorthand for (x, y(x)) ∼ P . We will
return to learning problems where the label y may be a probabilistic function of x in Section 3.3.5.

3.3.1 Sufficient Conditions for Learning with Similarity Functions

We now provide a series of sufficient conditions for a similarity function to be useful for learning, leading
to the notions given in Definitions 3.3.5 and 3.3.6.

3.3.2 Simple Sufficient Conditions

We begin with our first and simplest notion of “good similarity function” that is intuitive and yields
an immediate learning algorithm, but which is not broad enough to capture all good kernel functions.
Nonetheless, it provides a convenient starting point. This definition says that K is a good similarity
function for a learning problem P if most examples x (at least a 1− ε probability mass) are on average at
least γ more similar to random examples x′ of the same label than they are to random examples x′ of the
opposite label. Formally,

4However, as we will see in Section 3.3.5, if the function is positive semi-definite and if it is good in the Balcan -
Blum’06 sense [24, 38], or in the Balcan - Blum - Srebro’08 sense [39], then we can show it is good as a kernel as well.
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Definition 3.3.1 K is a strongly (ε, γ)-good similarity function for a learning problem P if at least a
1− ε probability mass of examples x satisfy:

Ex′∼P [K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [K(x, x′)|y(x) 6= y(x′)] + γ. (3.1)

For example, suppose all positive examples have similarity at least 0.2 with each other, and all negative
examples have similarity at least 0.2 with each other, but positive and negative examples have similarities
distributed uniformly at random in [−1, 1]. Then, this would satisfy Definition 3.3.1 for γ = 0.2 and
ε = 0. Note that with high probability this would not be positive semidefinite.5

Definition 3.3.1 captures an intuitive notion of what one might want in a similarity function. In ad-
dition, if a similarity function K satisfies Definition 3.3.1 then it suggests a simple, natural learning
algorithm: draw a sufficiently large set S+ of positive examples and set S− of negative examples, and
then output the prediction rule that classifies a new example x as positive if it is on average more similar
to points in S+ than to points in S−, and negative otherwise. Formally:
Theorem 3.3.1 If K is strongly (ε, γ)-good, then a set S+ of (16/γ2) ln(2/δ) positive examples and a
set S− of (16/γ2) ln(2/δ) negative examples are sufficient so that with probability ≥ 1 − δ, the above
algorithm produces a classifier with error at most ε + δ.

Proof: Let Good be the set of x satisfying

Ex′∼P [K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [K(x, x′)|y(x) 6= y(x′)] + γ.

So, by assumption, Prx∼P [x ∈ Good] ≥ 1 − ε. Now, fix x ∈ Good. Since K(x, x′) ∈ [−1, 1], by
Hoeffding bounds we have that over the random draw of the sample S+,

Pr
(∣∣Ex′∈S+ [K(x, x′)]−Ex′∼P [K(x, x′)|y(x′) = 1]

∣∣ ≥ γ/2
) ≤ 2e−2|S+|γ2/16,

and similarly for S−. By our choice of |S+| and |S−|, each of these probabilities is at most δ2/2.
So, for any given x ∈ Good, there is at most a δ2 probability of error over the draw of S+ and S−.

Since this is true for any x ∈ Good, it implies that the expected error of this procedure, over x ∈ Good,
is at most δ2, which by Markov’s inequality implies that there is at most a δ probability that the error rate
over Good is more than δ. Adding in the ε probability mass of points not in Good yields the theorem.

Before going to our main notion note that Definition 3.3.1 requires that almost all of the points (at
least a 1− ε fraction) be on average more similar to random points of the same label than to random points
of the other label. A weaker notion would be simply to require that two random points of the same label
be on average more similar than two random points of different labels. For instance, one could consider
the following generalization of Definition 3.3.1:

Definition 3.3.2 K is a weakly γ-good similarity function for a learning problem P if:

Ex,x′∼P [K(x, x′)|y(x) = y(x′)] ≥ Ex,x′∼P [K(x, x′)|y(x) 6= y(x′)] + γ. (3.2)

While Definition 3.3.2 still captures a natural intuitive notion of what one might want in a similarity
function, it is not powerful enough to imply strong learning unless γ is quite large. For example, suppose
the instance space is R2 and that the similarity measure K we are considering is just the product of the first
coordinates (i.e., dot-product but ignoring the second coordinate). Assume the distribution is half positive

5In particular, if the domain is large enough, then with high probability there would exist negative example A and positive
examples B, C such that K(A, B) is close to 1 (so they are nearly identical as vectors), K(A, C) is close to −1 (so they are
nearly opposite as vectors), and yet K(B, C) ≥ 0.2 (their vectors form an acute angle).
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and half negative, and that 75% of the positive examples are at position (1, 1) and 25% are at position
(−1, 1), and 75% of the negative examples are at position (−1,−1) and 25% are at position (1,−1).
Then K is a weakly γ-good similarity function for γ = 1/2, but the best accuracy one can hope for using
K is 75% because that is the accuracy of the Bayes-optimal predictor given only the first coordinate.

We can however show that for any γ > 0, Definition 3.3.2 is enough to imply weak learning [188]. In
particular, the following simple algorithm is sufficient to weak learn. First, determine if the distribution is
noticeably skewed towards positive or negative examples: if so, weak-learning is immediate (output all-
positive or all-negative respectively). Otherwise, draw a sufficiently large set S+ of positive examples and
set S− of negative examples. Then, for each x, consider γ̃(x) = 1

2 [Ex′∈S+ [K(x, x′)]−Ex′∈S− [K(x, x′)]].
Finally, to classify x, use the following probabilistic prediction rule: classify x as positive with probability
1+γ̃(x)

2 and as negative with probability 1−γ̃(x)
2 . (Notice that γ̃(x) ∈ [−1, 1] and so our algorithm is well

defined.) We can then prove the following result:

Theorem 3.3.2 If K is a weakly γ-good similarity function, then with probability at least 1−δ, the above
algorithm using sets S+, S− of size 64

γ2 ln ( 64
γδ ) yields a classifier with error at most 1

2 − 3γ
128 .

Proof: First, we assume the algorithm initially draws a sufficiently large sample such that if the distri-
bution is skewed with probability mass greater than 1

2 + α on positives or negatives for α = γ
32 , then

with probability at least 1 − δ/2 the algorithm notices the bias and weak-learns immediately (and if the
distribution is less skewed than 1

2 ± 3γ
128 , with probability 1− δ/2 it does not incorrectly halt in this step).

In the following, then, we may assume the distribution P is less than (1
2 + α)-skewed, and let us define

P ′ to be P reweighted to have probability mass exactly 1/2 on positive and negative examples. Thus,
Definition 3.3.2 is satisfied for P ′ with margin at least γ − 4α.

For each x define γ(x) as 1
2Ex′ [K(x, x′)|y(x′) = 1] − 1

2Ex′ [K(x, x′)|y(x′) = −1] and notice that
Definition 3.3.2 implies that Ex∼P ′ [y(x)γ(x)] ≥ γ/2 − 2α. Consider now the probabilistic prediction
function g defined as g(x) = 1 with probability 1+γ(x)

2 and g(x) = −1 with probability 1−γ(x)
2 . We

clearly have that for a fixed x,

Pr
g

(g(x) 6= y(x)) =
y(x)(y(x)− γ(x))

2
,

which then implies that Prx∼P ′,g(g(x) 6= y(x)) ≤ 1
2 − 1

4γ − α. Now notice that in our algorithm we
do not use γ(x) but an estimate of it γ̃(x), and so the last step of the proof is to argue that this is good
enough. To see this, notice first that d is large enough so that for any fixed x we have

Pr
S+,S−

(
|γ(x)− γ̃(x)| ≥ γ

4
− 2α

)
≤ γδ

32
.

This implies

Pr
x∼P ′

(
Pr

S+,S−

(
|γ(x)− γ̃(x)| ≥ γ

4
− 2α

))
≤ γδ

32
,

so

Pr
S+,S−

(
Pr

x∼P

(
|γ(x)− γ̃(x)| ≥ γ

4
− 2α

)
≥ γ

16

)
≤ δ/2.

This further implies that with probability at least 1−δ/2 we have Ex∼P ′ [y(x)γ̃(x)] ≥ (
1− γ

16

) γ
4−2 γ

16 ≥
7γ
64 . Finally using a reasoning similar to the one above (concerning the probabilistic prediction function
based on γ(x)), we obtain that with probability at least 1 − δ/2 the error of the probabilistic classifier
based on γ̃(x) is at most 1

2 − 7γ
128 on P ′, which implies the error over P is at most 1

2 − 7γ
128 +α = 1

2 − 3γ
128 .
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Figure 3.1: Positives are split equally among upper-left and upper-right. Negatives are all in the lower-
right. For α = 30o (so γ = 1/2) a large fraction of the positive examples (namely the 50% in the
upper-right) have a higher dot-product with negative examples (1

2) than with a random positive example
(1
2 · 1 + 1

2(−1
2) = 1

4). However, if we assign the positives in the upper-left a weight of 0, those in the
upper-right a weight of 1, and assign negatives a weight of 1

2 , then all examples have higher average
weighted similarity to those of the same label than to those of the opposite label, by a gap of 1

4 .

Returning to Definition 3.3.1, Theorem 3.3.1 implies that if K is a strongly (ε, γ)-good similarity
function for small ε and not-too-small γ, then it can be used in a natural way for learning. However,
Definition 3.3.1 is not sufficient to capture all good kernel functions. In particular, Figure 3.1 gives a
simple example in R2 where the standard kernel K(x, x′) = 〈x, x′〉 has a large margin separator (margin
of 1/2) and yet does not satisfy Definition 3.3.1, even for γ = 0 and ε = 0.24.

Notice, however, that if in Figure 3.1 we simply ignored the positive examples in the upper-left when
choosing x′, and down-weighted the negative examples a bit, then we would be fine. This then motivates
the following intermediate notion of a similarity function K being good under a weighting function w
over the input space that can downweight certain portions of that space.

Definition 3.3.3 A similarity function K together with a bounded weighting function w over X (specifi-
cally, w(x′) ∈ [0, 1] for all x′ ∈ X) is a strongly (ε, γ)-good weighted similarity function for a learning
problem P if at least a 1− ε probability mass of examples x satisfy:

Ex′∼P [w(x′)K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|y(x) 6= y(x′)] + γ. (3.3)

We can view Definition 3.3.3 intuitively as saying that we only require most examples be substantially
more similar on average to representative points of the same class than to representative points of the
opposite class, where “representativeness” is a score in [0, 1] given by the weighting function w. A pair
(K, w) satisfying Definition 3.3.3 can be used in exactly the same way as a similarity function K satisfying
Definition 3.3.1, with the exact same proof used in Theorem 3.3.1 (except now we view w(y)K(x, x′) as
the bounded random variable we plug into Hoeffding bounds).

3.3.3 Main Balcan - Blum’06 Conditions

Unfortunately, Definition 3.3.3 requires the designer to construct both K and w, rather than just K. We
now weaken the requirement to ask only that such a w exist, in Definition 3.3.4 below:

Definition 3.3.4 (Main Balcan - Blum’06 Definition, Balanced Version) A similarity function K is an
(ε, γ)-good similarity function for a learning problem P if there exists a bounded weighting function w
over X (w(x′) ∈ [0, 1] for all x′ ∈ X) such that at least a 1− ε probability mass of examples x satisfy:

Ex′∼P [w(x′)K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|y(x) 6= y(x′)] + γ. (3.4)
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As mentioned above, the key difference is that whereas in Definition 3.3.3 one needs the designer
to construct both the similarity function K and the weighting function w, in Definition 3.3.4 we only
require that such a w exist, but it need not be known a-priori. That is, we ask only that there exist a
large probability mass of “representative” points (a weighting scheme) satisfying Definition 3.3.3, but the
designer need not know in advance what that weighting scheme should be.

Definition 3.3.4 can also be stated as requiring that, for at least 1−ε of the examples, the classification
margin

Ex′∼P

[
w(x′)K(x, x′)|y(x) = y(x′)

]− Ex′∼P

[
w(x′)K(x, x′)|y(x) 6= y(x′)

]

= y(x)Ex′∼P

[
w(x′)y(x′)K(x, x′)/P (y(x′))

] (3.5)

be at least γ, where P (y(x′)) is the marginal probability under P , i.e. the prior, of the label associated
with x′. We will find it more convenient in the following to analyze instead a slight variant, dropping the
factor 1/P (y(x′)) from the classification margin (3.5)—see Definition 3.3.5 in the next Section. Any sim-
ilarity function satisfying Definition 3.3.5 also satisfies Definition 3.3.4 (by simply multiplying w(x′) by
P (y(x′))). However, the learning algorithm using Definition 3.3.5 is slightly simpler, and the connection
to kernels is a bit more direct.

We are now ready to present the main sufficient condition for learning with similarity functions in [24].
This is essentially a restatement of Definition 3.3.4, dropping the normalization by the label “priors” as
discussed at the end of the preceding Section.

Definition 3.3.5 (Main Balcan - Blum’06 Definition, Margin Violations) A similarity function K is an
(ε, γ)-good similarity function for a learning problem P if there exists a bounded weighting function w
over X (w(x′) ∈ [0, 1] for all x′ ∈ X) such that at least a 1− ε probability mass of examples x satisfy:

Ex′∼P [y(x)y(x′)w(x′)K(x, x′)] ≥ γ. (3.6)

We would like to establish that the above condition is indeed sufficient for learning. I.e. that given an
(ε, γ)-good similarity function K for some learning problem P , and a sufficiently large labeled sample
drawn from P , one can obtain (with high probability) a predictor with error rate arbitrarily close to ε. To
do so, we will show how to use an (ε, γ)-good similarity function K, and a sample S drawn from P , in
order to construct (with high probability) an explicit mapping φS : X → Rd for all points in X (not only
points in the sample S), such that the mapped data (φS(x), y(x)), where x ∼ P , is separated with error
close to ε (and in fact also with large margin) in the low-dimensional linear space Rd (Theorem 3.3.3
below). We thereby convert the learning problem into a standard problem of learning a linear separator,
and can use standard results on learnability of linear separators to establish learnability of our original
learning problem, and even provide learning guarantees.

What we are doing is actually showing how to use a good similarity function K (that is not necessarily
a valid kernel) and a sample S drawn from P to construct a valid kernel K̃S , given by K̃S(x, x′) =〈
φS(x), φS(x′)

〉
, that is kernel-good and can thus be used for learning (In Section 3.3.5 we show that if

K is already a valid kernel, a transformation is not necessary as K itself is kernel-good). We are therefore
leveraging here the established theory of linear, or kernel, learning in order to obtain learning guarantees
for similarity measures that are not valid kernels.

Interestingly, in Section 3.3.5 we also show that any kernel that is kernel-good is also a good similar-
ity function (though with some degradation of parameters). The suggested notion of “goodness” (Defini-
tion 3.3.5) thus encompasses the standard notion of kernel-goodness, and extends it also to non-positive-
definite similarity functions.

Theorem 3.3.3 Let K be an (ε, γ)-good similarity function for a learning problem P . For any δ > 0,
let S = {x̃1, x̃2, . . . , x̃d} be a sample of size d = 8 log(1/δ)/γ2 drawn from P . Consider the mapping
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φS : X → Rd defined as follows: φS
i(x) = K(x,x̃i)√

d
, i ∈ {1, . . . , d}. With probability at least 1 − δ

over the random sample S, the induced distribution φS(P ) in Rd has a separator of error at most ε + δ
at margin at least γ/2.

Proof: Let w : X → [0, 1] be the weighting function achieving (3.6) of Definition 3.3.5. Consider the
linear separator β ∈ Rd, given by βi = y(x̃i)w(x̃i)√

d
; note that ||β|| ≤ 1. We have, for any x, y(x):

y(x)
〈
β, φS(x)

〉
=

1
d

d∑

i=1

y(x)y(x̃i)w(x̃i)K(x, x̃i) (3.7)

The right hand side of the (3.7) is an empirical average of −1 ≤ y(x)y(x′)w(x′)K(x, x′) ≤ 1, and so by
Hoeffding’s inequality, for any x, and with probability at least 1− δ2 over the choice of S, we have:

1
d

d∑

i=1

y(x)y(x̃i)w(x̃i)K(x, x̃i) ≥ Ex′∼P

[
y(x)y(x′)w(x′)K(x, x′)

]−
√

2 log( 1
δ2 )

d
(3.8)

Since the above holds for any x with probability at least 1 − δ2 over the choice of S, it also holds with
probability at least 1− δ2 over the choice of x and S. We can write this as:

ES∼P d

[
Pr

x∼P
( violation )

]
≤ δ2 (3.9)

where “violation” refers to violating (3.8). Applying Markov’s inequality we get that with probability at
least 1 − δ over the choice of S, at most δ fraction of points violate (3.8). Recalling Definition 3.3.5, at
most an additional ε fraction of the points violate (3.6). But for the remaining 1 − ε − δ fraction of the

points, for which both (3.8) and (3.6) hold, we have: y(x)
〈
β, φS(x)

〉 ≥ γ −
√

2 log( 1
δ2

)

d = γ/2, where to
get the last inequality we use d = 8 log(1/δ)/γ2.

We can learn a predictor with error rate at most ε + εacc using an (ε, γ)-good similarity function K
as follows. We first draw from P a sample S = {x̃1, x̃2, . . . , x̃d} of size d = (4/γ)2 ln(4/δεacc) and
construct the mapping φS : X → Rd defined as follows: φS

i(x) = K(x,x̃i)√
d

, i ∈ {1, . . . , d}. The
guarantee we have is that with probability at least 1 − δ over the random sample S, the induced dis-
tribution φS(P ) in Rd, has a separator of error at most ε + εacc/2 at margin at least γ/2. So, to learn
well, we then draw a new, fresh sample, map it into the transformed space using φS , and then learn
a linear separator in transformed space using φS , the new space. The number of landmarks is domi-
nated by the Õ(

(ε + εacc)d/ε2acc)
)

= Õ(
(ε + εacc)/(γ2ε2acc)

)
sample complexity of the linear learning,

yielding the same order sample complexity as in the kernel-case for achieving error at most ε + εacc:
Õ(

(ε + εacc)/(γ2ε2acc)
)
.

Unfortunately, the above sample complexity refers to learning by finding a linear separator minimizing
the error over the training sample. This minimization problem is NP-hard [18], and even NP-hard to
approximate [20]. In certain special cases, such as if the induced distribution φS(P ) happens to be log-
concave, efficient learning algorithms exist [145]. However, as discussed earlier, in the more typical case,
one minimizes the hinge-loss instead of the number of errors. We therefore consider also a modification
of Definition 3.3.5 that captures the notion of good similarity functions for the SVM and Perceptron
algorithms as follows:
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Definition 3.3.6 (Main Balcan - Blum’06 Definition, Hinge Loss) A similarity function K is an (ε, γ)-
good similarity function in hinge loss for a learning problem P if there exists a weighting function
w(x′) ∈ [0, 1] for all x′ ∈ X such that

Ex

[
[1− y(x)g(x)/γ]+

]
≤ ε, (3.10)

where g(x) = Ex′∼P [y(x′)w(x′)K(x, x′)] is the similarity-based prediction made using w(), and recall
that [1− z]+ = max(0, 1− z) is the hinge-loss.

In other words, we are asking: on average, by how much, in units of γ, would a random example x fail
to satisfy the desired γ separation between the weighted similarity to examples of its own label and the
weighted similarity to examples of the other label.

Similarly to Theorem 3.3.3, we have:

Theorem 3.3.4 Let K be an (ε, γ)-good similarity function in hinge loss for a learning problem P . For
any ε1 > 0 and 0 < δ < γε1/4 let S = {x̃1, x̃2, . . . , x̃d} be a sample of size d = 16 log(1/δ)/(ε1γ)2

drawn from P . With probability at least 1− δ over the random sample S, the induced distribution φS(P )
in Rd, for φS as defined in Theorem 3.3.3, has a separator achieving hinge-loss at most ε + ε1 at margin
at least γ.

Proof: Let w : X → [0, 1] be the weighting function achieving an expected hinge loss of at most ε at
margin γ, and denote g(x) = Ex′∼P [y(x′)w(x′)K(x, x′)]. Defining β as in Theorem 3.3.3 and following
the same arguments we have that with probability at least 1− δ over the choice of S, at most δ fraction of
the points x violate 3.8. We will only consider such samples S. For those points that do not violate (3.8)
we have:

[1− y(x)
〈
β, φS(x)

〉
/γ]+ ≤ [1− y(x)g(x)/γ]+

1
γ

√
2 log( 1

δ2 )
d

≤ [1− y(x)g(x)/γ]+ + ε1/2 (3.11)

For points that do violate (3.8), we will just bound the hinge loss by the maximum possible hinge-loss:

[1− y(x)
〈
β, φS(x)

〉
/γ]+ ≤ 1 + max

x

∣∣y(x)||β||||φS(x)||∣∣ /γ ≤ 1 + 1/γ ≤ 2/γ (3.12)

Combining these two cases we can bound the expected hinge-loss at margin γ:

Ex∼P

[
[1− y(x)

〈
β, φS(x)

〉
/γ]+

] ≤ Ex∼P [[1− y(x)g(x)/γ]+] + ε1/2 + Pr(violation ) · (2/γ)
≤ Ex∼P [[1− y(x)g(x)/γ]+] + ε1/2 + 2δ/γ

≤ Ex∼P [[1− y(x)g(x)/γ]+] + ε1, (3.13)

where the last inequality follows from δ < ε1γ/4.

We can learn a predictor with error rate at most ε + εacc using an (ε, γ)-good similarity function K
as follows. We first draw from P a sample S = {x̃1, x̃2, . . . , x̃d} of size d = 16 log(2/δ)/(εaccγ)2 and
construct the mapping φS : X → Rd defined as follows: φS

i(x) = K(x,x̃i)√
d

, i ∈ {1, . . . , d}. The guarantee

we have is that with probability at least 1− δ over the random sample S, the induced distribution φS(P )
in Rd, has a separator achieving hinge-loss at most ε + εacc/2 at margin γ. So, to learn well, we can then
use an SVM solver in the φS-space to obtain (with probability at least 1 − 2δ) a predictor with error rate
ε + εacc using Õ(

1/(γ2ε2acc)
)

examples, and time polynomial in 1/γ,1/εacc and log(1/δ).
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3.3.4 Extensions

We present here a few extensions of our basic setting in Section 3.3.3. For simplicity, we only consider
the margin-violation version of our definitions, but all the results here can be easily extended to the hinge
loss case as well.

Combining Multiple Similarity Functions

Suppose that rather than having a single similarity function, we were instead given n functions K1, . . . , Kn,
and our hope is that some convex combination of them will satisfy Definition 3.3.5. Is this sufficient to
be able to learn well? (Note that a convex combination of similarity functions is guaranteed to have range
[−1, 1] and so be a legal similarity function.) The following generalization of Theorem 3.3.3 shows that
this is indeed the case, though the margin parameter drops by a factor of

√
n. This result can be viewed

as analogous to the idea of learning a kernel matrix studied by [157] except that rather than explicitly
learning the best convex combination, we are simply folding the learning process into the second stage of
the algorithm.

Theorem 3.3.5 Suppose K1, . . . , Kn are similarity functions such that some (unknown) convex combina-
tion of them is (ε, γ)-good. If one draws a set S = {x̃1, x̃2, . . . , x̃d} from P containing d = 8 log(1/δ)/γ2

examples, then with probability at least 1− δ, the mapping φS : X → Rnd defined as φS(x) = ρS(x)√
nd

,

ρS(x) = (K1(x, x̃1), . . . , K1(x, x̃d), ..., Kn(x, x̃1), . . . ,Kn(x, yd))

has the property that the induced distribution φS(P ) in Rnd has a separator of error at most ε + δ at
margin at least γ/(2

√
n).

Proof: Let K = α1K1 + . . .+αnKn be an (ε, γ)-good convex-combination of the Ki. By Theorem 3.3.3,
had we instead performed the mapping: φ̂S : X → Rd defined as φ̂S(x) = ρ̂S(x)√

d
,

ρ̂S(x) = (K(x, x̃1), . . . , K(x, x̃d))

then with probability 1− δ, the induced distribution φ̂S(P ) in Rd would have a separator of error at most
ε + δ at margin at least γ/2. Let β̂ be the vector corresponding to such a separator in that space. Now,
let us convert β̂ into a vector in Rnd by replacing each coordinate β̂j with the n values (α1β̂j , . . . , αnβ̂j).

Call the resulting vector β̃. Notice that by design, for any x we have
〈
β̃, φS(x)

〉
= 1√

n

〈
β̂, φ̂S(x)

〉
.

Furthermore, ||β̃|| ≤ ||β̂|| ≤ 1 (the worst case is when exactly one of the αi is equal to 1 and the rest are
0). Thus, the vector β̃ under distribution φS(P ) has the similar properties as the vector β̂ under φ̂S(P );
so, using the proof of Theorem 3.3.3 we obtain that that the induced distribution φS(P ) in Rnd has a
separator of error at most ε + δ at margin at least γ/(2

√
n).

Note that the above argument actually shows something a bit stronger than Theorem 3.3.5. In partic-
ular, if we define α = (α1, . . . , αn) to be the mixture vector for the optimal K, then we can replace the
margin bound γ/(2

√
n) with γ/(2||α||√n). For example, if α is the uniform mixture, then we just get

the bound in Theorem 3.3.3 of γ/2.
Also note that if we are in fact using an L1-based learning algorithm then we could do much better —

for details on such an approach see Section 3.4.6.
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Multi-class Classification

We can naturally extend all our results to multi-class classification. Assume for concreteness that there
are r possible labels, and denote the space of possible labels by Y = {1, · · · , r}; thus, by a multi-class
learning problem we mean a distribution P over labeled examples (x, y(x)), where x ∈ X and y(x) ∈ Y .

For this multi-class setting, Definition 3.3.4 seems most natural to extend. Specifically:
Definition 3.3.7 (main, multi-class) A similarity function K is an (ε, γ)-good similarity function for a
multi-class learning problem P if there exists a bounded weighting function w over X (w(x′) ∈ [0, 1] for
all x′ ∈ X) such that at least a 1− ε probability mass of examples x satisfy:

Ex′∼P [w(x′)K(x, x′)|y(x) = y(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|y(x) = i] + γ for all i ∈ Y, i 6= y(x)

We can then extend the argument in Theorem 3.3.3 and learn using standard adaptations of linear-separator
algorithms to the multiclass case (e.g., see [110]).

3.3.5 Relationship Between Good Kernels and Good Similarity Measures

As discussed earlier, the similarity-based theory of learning is more general than the traditional kernel-
based theory, since a good similarity function need not be a valid kernel. However, for a similarity function
K that is a valid kernel, it is interesting to understand the relationship between the learning results guar-
anteed by the two theories. Similar learning guarantees and sample complexity bounds can be obtained
if K is either an (ε, γ)-good similarity function, or a valid kernel and (ε, γ)-kernel-good. In fact, as we
saw in Section 3.3.3, the similarity-based guarantees are obtained by transforming (using a sample) the
problem of learning with an (ε, γ)-good similarity function to learning with a kernel with essentially the
same goodness parameters. This is made more explicit in Corollary 3.3.11.

In this section we study the relationship between a kernel function being good in the similarity sense
of Definitions 3.3.5 and 3.3.6 and good in the kernel sense. We show that a valid kernel function that is
good for one notion, is in fact good also for the other notion. The qualitative notions of being “good”
are therefore equivalent for valid kernels, and so in this sense the more general similarity-based notion
subsumes the familiar kernel-based notion.

However, as we will see, the similarity-based margin of a valid kernel might be lower than the kernel-
based margin, yielding a possible increase in the sample complexity guarantees if a kernel is used as
a similarity measure. We also show that for a valid kernel, the kernel-based margin is never smaller
than the similarity-based margin. We provide a tight bound on this possible deterioration of the margin
when switching to the similarity-based notion given by definitions 3.3.5 and 3.3.6. (Note also that in the
following section 3.4 we provide an even better notion of a good similarity function that provides a better
kernels to similarity translations.)

Specifically, we show that if a valid kernel function is good in the similarity sense, it is also good in
the standard kernel sense, both for the margin violation error rate and for the hinge loss:

Theorem 3.3.6 (A kernel good as a similarity function is also good as a kernel) If K is a valid kernel
function, and is (ε, γ)-good similarity for some learning problem, then it is also (ε, γ)-kernel-good for the
learning problem. If K is (ε, γ)-good similarity in hinge loss, then it is also (ε, γ)-kernel-good in hinge
loss.

We also show the converse—If a kernel function is good in the kernel sense, it is also good in the
similarity sense, though with some degradation of the margin:
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Theorem 3.3.7 (A good kernel is also a good similarity function—Margin violations) If K is (ε0, γ)-
kernel-good for some learning problem (with deterministic labels), then it is also (ε0 +ε1,

1
2(1−ε0)ε1γ2)-

good similarity for the learning problem, for any ε1 > 0.

Note that in any useful situation ε0 < 1
2 , and so the guaranteed margin is at least 1

4ε1γ
2. A similar

guarantee holds also for the hinge loss:

Theorem 3.3.8 (A good kernel is also a good similarity function—Hinge loss) If K is (ε0, γ)-kernel-
good in hinge loss for learning problem (with deterministic labels), then it is also (ε0 + ε1, 2ε1γ

2)-good
similarity in hinge loss for the learning problem, for any ε1 > 0.

These results establish that treating a kernel as a similarity function would still enable learning, al-
though with a somewhat increased sample complexity. As we show, the deterioration of the margin in the
above results, which yields an increase in the sample complexity guarantees, is unavoidable:

Theorem 3.3.9 (Tightness, Margin Violations) For any 0 < γ <
√

1
2 and any 0 < ε1 < 1

2 , there exists
a learning problem and a kernel function K, which is (0, γ)-kernel-good for the learning problem, but
which is only (ε1, 4ε1γ

2)-good similarity. That is, it is not (ε1, γ′)-good similarity for any γ′ > 4ε1γ
2.

Theorem 3.3.10 (Tightness, Hinge Loss) For any 0 < γ <
√

1
2 and any 0 < ε1 < 1

2 , there exists
a learning problem and a kernel function K, which is (0, γ)-kernel-good in hinge loss for the learning
problem, but which is only (ε1, 32ε1γ2)-good similarity in hinge loss.

To prove Theorem 3.3.6 we will show, for any weight function, an explicit low-norm linear predictor
β (in the implied Hilbert space), with equivalent behavior. To prove Theorems 3.3.7 and 3.3.8, we will
consider a kernel function that is (ε0, γ)-kernel-good and show that it is also good as a similarity function.
We will first treat goodness in hinge-loss and prove Theorem 3.3.8, which can be viewed as a more general
result. This will be done using the representation of the optimal SVM solution in terms of the dual optimal
solution. We then prove Theorem 3.3.7 in terms of the margin violation error rate, by using the hinge-loss
as a bound on the error rate. To prove Theorems 3.3.9 and 3.3.10, we present an explicit learning problem
and kernel.

Transforming a Good Similarity Function to a Good Kernel

Before proving the above Theorems, we briefly return to the mapping of Theorem 3.3.3 and explicitly
present it as a mapping between a good similarity function and a good kernel:

Corollary 3.3.11 (A good similarity function can be transformed to a good kernel) If K is an (ε, γ)-
good similarity function for some learning problem P , then for any 0 < δ < 1, given a sample of S size
(8/γ2) log(1/δ) drawn from P , we can construct, with probability at least 1 − δ over the draw of S, a
valid kernel K̃S that is (ε + δ, γ/2)-kernel good for P .

If K is a (ε, γ)-good similarity function in hinge-loss for some learning problem P , then for any
ε1 > 0 and 0 < δ < γε1/4, given a sample of S size 16 log(1/δ)/(ε1γ)2 drawn from P , we can construct,
with probability at least 1− δ over the draw of S, a valid kernel K̃S that is (ε + ε1, γ)-kernel good for P .

Proof: Let K̃S(x, x′) =
〈
φS(x), φS(x′)

〉
where φS is the transformation of Theorems 3.3.3 and 3.3.4.

From this statement, it is clear that kernel-based learning guarantees apply also to learning with a good
similarity function, essentially with the same parameters.
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It is important to understand that the result of Corollary 3.3.11 is of a very different nature than the
results of Theorems 3.3.6– 3.3.10. The claim here is not that a good similarity function is a good kernel
— it can’t be if it is not positive semi-definite. But, given a good similarity function we can create a good
kernel. This transformation is distribution-dependent, and can be calculated using a sample S.

Proof of Theorem 3.3.6

Consider a similarity function K that is a valid kernel, i.e. K(x, x′) = 〈φ(x), φ(x′)〉 for some mapping
φ of x to a Hilbert space H. For any input distribution and any valid weighting w(x) of the inputs (i.e.
0 ≤ w(x) ≤ 1), we will construct a linear predictor βw ∈ H, with ||βw|| ≤ 1, such that similarity-based
predictions using w are the same as the linear predictions made with βw

Define the following linear predictor βw ∈ H:

βw = Ex′
[
y(x′)w(x′)φ(x′)

]
.

The predictor βw has norm at most:

||βw|| = ||Ex′
[
y(x′)w(x′)φ(x′)

]|| ≤ max
x′

||y(x′)w(x′)φ(x′)||

≤ max ||φ(x′)|| = max
√

K(x′, x′) ≤ 1

where the second inequality follows from |w(x′)|, |y(x′)| ≤ 1.
The predictions made by βw are:

〈βw, φ(x)〉 =
〈
Ex′

[
y(x′)w(x′)φ(x′)

]
, φ(x)

〉

= Ex′
[
y(x′)w(x′)

〈
φ(x′), φ(x)

〉]
= Ex′

[
y(x′)w(x′)K(x, x′)

]

That is, using βw is the same as using similarity-based prediction with w. In particular, if the margin
violation rate, as well as the hinge loss, with respect to any margin γ, is the same for predictions made
using either w or βw. This is enough to establish Theorem 3.3.6: If K is (ε, γ)-good (perhaps for to the
hinge-loss), there exists some valid weighting w the yields margin violation error rate (resp. hinge loss)
at most ε with respect to margin γ, and so βw yields the same margin violation (resp. hinge loss) with
respect to the same margin, establishing K is (ε, γ)-kernel-good (resp. for the hinge loss).

Proof of Theorem 3.3.8: Guarantee on the Hinge Loss

Recall that we are considering only learning problems where the label y is a deterministic function of x.
For simplicity of presentation, we first consider finite discrete distributions, where:

Pr(xi, yi ) = pi (3.14)

for i = 1 . . . n, with
∑n

i=1 pi = 1 and xi 6= xj for i 6= j.
Let K be any kernel function that is (ε0, γ)-kernel good in hinge loss.Let φ be the implied feature

mapping and denote φi = φ(xi). Consider the following weighted-SVM quadratic optimization problem
with regularization parameter C:

minimize
1
2
||β||2 + C

n∑

i=1

pi[1− yi〈β, φi〉]+ (3.15)
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The dual of this problem, with dual variables αi, is:

maximize
∑

i

αi − 1
2

∑

ij

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤ Cpi

(3.16)

There is no duality gap, and furthermore the primal optimum β∗ can be expressed in terms of the dual
optimum α∗: β∗ =

∑
i α

∗
i yiφi.

Since K is (ε0, γ)-kernel-good in hinge-loss, there exists a predictor ||β0|| = 1 with average-hinge
loss ε0 relative to margin γ. The primal optimum β∗ of (3.15), being the optimum solution, then satisfies:

1
2
||β∗||2 + C

∑

i

pi[1− yi〈β∗, φi〉]+ ≤ 1
2
||1
γ

β0||2 + C
∑

i

pi[1− yi

〈
1
γ

β0, φi

〉
]+

=
1

2γ2
+ CE

[
[1− y

〈
1
γ

β0, φ(x)
〉

]+

]
=

1
2γ2

+ Cε0 (3.17)

Since both terms on the left hand side are non-negative, each of them is bounded by the right hand side,
and in particular:

C
∑

i

pi[1− yi〈β∗, φi〉]+ ≤ 1
2γ2

+ Cε0 (3.18)

Dividing by C we get a bound on the average hinge-loss of the predictor β∗, relative to a margin of one:

E[[1− y〈β∗, φ(x)〉]+] ≤ 1
2Cγ2

+ ε0 (3.19)

We now use the fact that β∗ can be written as β∗ =
∑

i α
∗
i yiφi with 0 ≤ α∗i ≤ Cpi. Using the weights

wi = w(xi) = α∗i /(Cpi) ≤ 1 (3.20)

we have for every x, y:

yEx′,y′
[
w(x′)y′K(x, x′)

]
= y

∑

i

piw(xi)yiK(x, xi) (3.21)

= y
∑

i

piα
∗
i yiK(x, xi)/(Cpi)

= y
∑

i

α∗i yi〈φi, φ(x)〉/C = y〈β∗, φ(x)〉/C

Multiplying by C and using (3.19):

Ex,y

[
[ 1− CyEx′,y′

[
w(x′)y′K(x, x′)

]
]+

]
= Ex,y[ [ 1− y〈β∗, φ(x)〉 ]+ ] ≤ 1

2Cγ2
+ ε0 (3.22)

This holds for any C, and describes the average hinge-loss relative to margin 1/C. To get an average
hinge-loss of ε0 + ε1, we set C = 1/(2ε1γ2) and get:

Ex,y

[
[ 1− yEx′,y′

[
w(x′)y′K(x, x′)

]
/(2ε1γ2) ]+

] ≤ ε0 + ε1 (3.23)

This establishes that K is (ε0 + ε1, 2ε1γ
2)-good similarity in hinge-loss.

55



Non-discrete distributions

The same arguments apply also in the general (not necessarily discrete) case, except that this time, instead
of a fairly standard (weighted) SVM problem, we must deal with a variational optimization problem,
where the optimization variable is a random variable (a function from the sample space to the reals). We
will present the dualization in detail.

We consider the primal objective

minimize
1
2
||β||2 + CEy,φ[[1− y〈β, φ〉]+] (3.24)

where the expectation is w.r.t. the distribution P , with φ = φ(x) here and throughout the rest of this
section. We will rewrite this objective using explicit slack, in the form of a random variable ξ, which will
be a variational optimization variable:

minimize
1
2
||β||2 + CE[ξ]

subject to Pr( 1− y〈β, φ〉 − ξ ≤ 0 ) = 1
Pr( ξ ≥ 0 ) = 1

(3.25)

In the rest of this section all our constraints will implicitly be required to hold with probability one. We
will now introduce the dual variational optimization variable α, also a random variable over the same
sample space, and write the problem as a saddle problem:

minβ,ξ maxα
1
2
||β||2 + CE[ξ] + E[α(1− y〈β, φ〉 − ξ)]

subject to ξ ≥ 0 α ≥ 0
(3.26)

Note that this choice of Lagrangian is a bit different than the more standard Lagrangian leading to (3.16).
Convexity and the existence of a feasible point in the dual interior allows us to change the order of max-
imization and minimization without changing the value of the problem, even in the infinite case [134].
Rearranging terms we obtaining the equivalent problem:

maxα minβ,ξ
1
2
||β||2 − 〈E[αyφ], β〉+ E[ξ(C − α)] + E[α]

subject to ξ ≥ 0, α ≥ 0
(3.27)

Similarly to the finite case, we see that the minimum of the minimization problem is obtained when
β = E[αyφ] and that it is finite when α ≤ C almost surely, yielding the dual:

maximize E[α]− 1
2

E
[
αyα′yK(x, x′)

]

subject to 0 ≤ α ≤ C
(3.28)

where (x, y, α) and (x′, y′, α′) are two independent draws from the same distribution. The primal optimum
can be expressed as β∗ = E[α∗yφ], where α∗ is the dual optimum. We can now apply the same arguments
as in (3.17),(3.18) to get (3.19). Using the weight mapping

w(x) = E[α∗|x] /C ≤ 1 (3.29)

we have for every x, y:

yEx′,y′
[
w(x′)y′K(x, x′)

]
= y

〈
Ex′,y′,α′

[
α′y′x′

]
, x

〉
/C = y〈β∗, φ(x)〉/C. (3.30)

From here we can already get (3.22) and setting C = 1/(2ε1γ2) we get (3.23), which establishes Theorem
3.3.8 for any learning problem (with deterministic labels).
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Proof of Theorem 3.3.7: Guarantee on Margin Violations

We will now turn to guarantees on similarity-goodness with respect to the margin violation error-rate.
We base these on the results for goodness in hinge loss, using the hinge loss as a bound on the margin
violation error-rate. In particular, a violation of margin γ/2 implies a hinge-loss at margin γ of at least 1

2 .
Therefore, twice the average hinge-loss at margin γ is an upper bound on the margin violation error rate
at margin γ/2.

The kernel-separable case, i.e. ε0 = 0, is simpler, and we consider it first. Having no margin violations
implies zero hinge loss. And so if a kernel K is (0, γ)-kernel-good, it is also (0, γ)-kernel-good in hinge
loss, and by Theorem 3.3.8 it is (ε1/2, 2(ε1/2)γ2)-good similarity in hinge loss. Now, for any ε1 > 0, by
bounding the margin 1

2ε1γ
2 error-rate by the ε1γ

2 average hinge loss, K is (ε1, 1
2ε1γ

2)-good similarity,
establishing Theorem 3.3.7 for the case ε0 = 0.

We now return to the non-separable case, and consider a kernel K that is (ε0, γ)-kernel-good, with
some non-zero error-rate ε0. Since we cannot bound the hinge loss in terms of the margin-violations, we
will instead consider a modified distribution where the margin-violations are removed.

Let β∗ be the linear classifier achieving ε0 margin violation error-rate with respect to margin γ, i.e.
such that Pr( y〈β∗, x〉 ≥ γ ) > 1− ε0. We will consider a distribution which is conditioned on y〈β∗, x〉 ≥
γ. We denote this event as OK(x) (recall that y is a deterministic function of x). The kernel K is obviously
(0, γ)-kernel-good, and so by the arguments above also (ε1, 1

2ε1γ
2)-good similarity, on the conditional

distribution. Let w be the weight mapping achieving

Pr
x,y

(
yEx′,y′

[
w(x′)y′K(x, x′)|OK(x′)

]
< γ1|OK(x)

) ≤ ε1, (3.31)

where γ1 = 1
2ε1γ

2, and set w(x) = 0 when OK(x) does not hold. We have:

Pr
x,y

(
yEx′,y′

[
w(x′)y′K(x, x′)

]
< (1− ε0)γ1

)

≤ Pr( not OK(x) ) + Pr( OK(x) )Pr
x,y

(
yEx′,y′

[
w(x′)y′K(x, x′)

]
< (1− ε0)γ1 | OK(x)

)

= ε0 + (1−ε0)Pr
x,y

(
y(1−ε0)Ex′,y′

[
w(x′)y′K(x, x′)|OK(x)

]
< (1−ε0)γ1|OK(x)

)

= ε0 + (1− ε0)Pr
x,y

(
yEx′,y′

[
w(x′)y′K(x, x′)|OK(x)

]
< γ1|OK(x)

)

≤ ε0 + (1− ε0)ε1 ≤ ε0 + ε1 (3.32)

establishing that K is (ε0 + ε1, γ1)-good similarity for the original (unconditioned) distribution, thus
yielding Theorem 3.3.7.

Tightness

We now turn to proving of Theorems 3.3.9 and 3.3.10. This is done by presenting a specific distribution
P and kernel in which the guarantees hold tightly.

Consider the standard Euclidean inner-product and a distribution on four labeled points in R3, given
by:

x1 = (γ, γ,
√

1− 2γ2), y1 = 1, p1 =
1
2
− ε

x2 = (γ,−γ,
√

1− 2γ2), y2 = 1, p2 = ε

x3 = (−γ, γ,
√

1− 2γ2), y3 = −1, p3 = ε

x4 = (−γ,−γ,
√

1− 2γ2), y4 = −1, p4 =
1
2
− ε

57



for some (small) 0 < γ <
√

1
2 and (small) probability 0 < ε < 1

2 . The four points are all on the unit
sphere (i.e. ||xi|| = 1 and so K(xi, xj) = 〈xi, xj〉 ≤ 1), and are clearly separated by β = (1, 0, 0) with a
margin of γ. The standard inner-product kernel is therefore (0, γ)-kernel-good on this distribution.

Proof of Theorem 3.3.9: Tightness for Margin-Violations

We will show that when this kernel (the standard inner product kernel in R3) is used as a similarity
function, the best margin that can be obtained on all four points, i.e. on at least 1− ε probability mass of
examples, is 8εγ2.

Consider the classification margin on point x2 with weights w (denote wi = w(xi)):

E[w(x)yK(x2, x)]

= (
1
2
− ε)w1(γ2 − γ2 + (1− 2γ2)) + εw2(2γ2 + (1− 2γ2))

−εw3(−2γ2 + (1− 2γ2))− (
1
2
− ε)w4(−γ2 + γ2 + (1− 2γ2))

=
(

(
1
2
− ε)(w1 − w4) + ε(w2 − w3)

)
(1− 2γ2) + 2ε(w2 + w3)γ2 (3.33)

If the first term is positive, we can consider the symmetric calculation

−E[w(x)yK(x3, x)] = −
(

(
1
2
− ε)(w1 − w4) + ε(w2 − w3)

)
(1− 2γ2) + 2ε(w2 + w3)γ2

in which the first term is negated. One of the above margins must therefore be at most

2ε(w2 + w3)γ2 ≤ 4εγ2 (3.34)

This establishes Theorem 3.3.9.

Proof of Theorem 3.3.10: Tightness for the Hinge Loss

In the above example, suppose we would like to get an average hinge-loss relative to margin γ1 of at most
ε1:

Ex,y

[
[ 1− yEx′,y′

[
w(x′)y′K(x, x′)

]
/γ1 ]+

] ≤ ε1 (3.35)

Following the arguments above, equation (3.34) can be used to bound the hinge-loss on at least one of the
points x2 or x3, which, multiplied by the probability ε of the point, is a bound on the average hinge loss:

Ex,y

[
[ 1− yEx′,y′

[
w(x′)y′K(x, x′)

]
/γ1 ]+

] ≥ ε(1− 4εγ2/γ1) (3.36)

and so to get an an average hinge-loss of at most ε1 we must have:

γ1 ≤ 4εγ2

1− ε1/ε
(3.37)

For any target hinge-loss ε1, consider a distribution with ε = 2ε1, in which case we get that the maximum
margin attaining average hinge-loss ε1 is γ1 = 16ε1γ

2, even though we can get a hinge loss of zero at
margin γ using a kernel. This establishes Theorem 3.3.10.
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Note: One might object that the example used in Theorems 3.3.9 and 3.3.10 is a bit artificial, since K has
margin O(γ2) in the similarity sense just because 1 − 4γ2 ≤ K(xi, xj) ≤ 1. Normalizing K to [−1, 1]
we would obtain a similarity function that has margin O(1). However, this “problem” can be simply fixed
by adding the symmetric points on the lower semi-sphere:

x5 = (γ, γ,−
√

1− 2γ2), y5 = 1, p5 =
1
4
− ε

x6 = (γ,−γ,−
√

1− 2γ2), y6 = 1, p6 = ε

x7 = (−γ, γ,−
√

1− 2γ2), y7 = −1, p7 = ε

x8 = (−γ,−γ,−
√

1− 2γ2), y8 = −1, p8 =
1
4
− ε

and by changing p1 = 1
4 − ε and p4 = 1

4 − ε. The classification margins on x2 and x3 are now (compare
with (3.33)):

E[w(x)yK(x2, x)] =
(

(
1
4
− ε)(w1 − w4 − w5 + w8) + ε(w2 − w3 − w6 + w7)

)
(1− 2γ2)

+ 2ε(w2 + w3 + w6 + w7)γ2

−E[w(x)yK(x3, x)] = −
(

(
1
4
− ε)(w1 − w4 − w5 + w8) + ε(w2 − w3 − w6 + w7)

)
(1− 2γ2)

+ 2ε(w2 + w3 + w6 + w7)γ2

One of the above classification margins must therefore be at most 2ε(w2 + w3 + w6 + w7)γ2 ≤ 8εγ2.
And so, even though the similarity is “normalized”, and is (0, γ)-kernel-good, it is only (ε, 8εγ2)-good as
a similarity function. Proceeding as in the proof of Theorem 3.3.10 establishes the modified example is
also only (ε, 64εγ2)-good in hinge loss.

Probabilistic Labels

So far, we have considered only learning problems where the label y is a deterministic function of x. Here,
we discuss the necessary modifications to extend our theory also to noisy learning problems, where the
same point x might be associated with both positive and negative labels with positive probabilities.

Although the learning guarantees are valid also for noisy learning problems, a kernel that is kernel-
good for a noisy learning problem might not be good as a similarity function for this learning problem. To
amend this, the definition of a good similarity function must be corrected, allowing the weights to depend
not only on the point x but also on the label y:
Definition 3.3.8 (Main, Margin Violations, Corrected for Noisy Problems) A similarity function K is
an (ε, γ)-good similarity function for a learning problem P if there exists a bounded weighting function
w over X × {−1, +1} (w(x′, y′) ∈ [0, 1] for all x′ ∈ X, y′ ∈ {−1,+1}) such that at least a 1 − ε
probability mass of examples x, y satisfy:

Ex′,y′∼P [yy′w(x′, y′)K(x, x′)] ≥ γ. (3.38)

It is easy to verify that Theorem 3.3.3 can be extended also to this corrected definition. The same mapping
φS can be used, with βi = ỹiw(x̃i, ỹi), where ỹi is the training label of example i. Definition 3.3.6 and
Theorem 3.3.4 can be extended in a similar way.

With these modified definitions, Theorems 3.3.7 and 3.3.8 extend also to noisy learning problems. In
the proof of Theorem 3.3.8, two of the points xi, xj might be identical, but have different labels yi =
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1, yj = −1 associated with them. This might lead to two different weights wi, wj for the same point. But
since w is now allowed to depend also on the label, this does not pose a problem. In the non-discrete case,
this corresponds to defining the weight as:

w(x, y) = E[α∗|x, y] /C. (3.39)

3.4 Learning with More General Similarity Functions: A Better Definition

We develop here a new notion of a good similarity function that broadens the Balcan - Blum’06 notion [24]
presented in Section 3.3 while still guaranteeing learnability. As with the Balcan - Blum’06 notion, this
new definition talks in terms of natural similarity-based properties and does not require positive semi-
definiteness or reference to implicit spaces. However, this new notion improves on the previous Balcan -
Blum’06 definition in two important respects.

First, this new notion provides a better kernel-to-similarity translation. Any large-margin kernel func-
tion is a good similarity function under the new definition, and while we still incur some loss in the
parameters, this loss is much smaller than under the prior definition, especially in terms of the final la-
beled sample-complexity bounds. In particular, when using a valid kernel function as a similarity function,
a substantial portion of the previous sample-complexity bound can be transferred over to merely a need
for unlabeled examples.

Second, we show that the new definition allows for good similarity functions to exist for concept
classes for which there is no good kernel. In particular, for any concept class C and sufficiently uncon-
centrated distribution D, we show there exists a similarity function under our definition with parameters
yielding a labeled sample complexity bound of O(1

ε log |C|) to achieve error ε, matching the ideal sample
complexity for a generic hypothesis class. In fact, we also extend this result to classes of finite VC-
dimension rather than finite cardinality. In contrast, we show there exist classes C such that under the
uniform distribution over the instance space, there is no kernel with margin 8/

√
|C| for all f ∈ C even if

one allows 0.5 average hinge-loss. Thus, the margin-based guarantee on sample complexity for learning
such classes with kernels is Ω(|C|). This extends work of [50] and [109] who give hardness results with
comparable margin bounds, but at much lower error rates. [209] provide lower bounds for kernels with
similar error rates, but their results hold only for regression (not hinge loss). Note that given access to
unlabeled data, any similarity function under the Balcan - Blum’06 definition [24] can be converted to
a kernel function with approximately the same parameters. Thus, our lower bound for kernel functions
applies to that definition as well. These results establish a gap in the representational power of similarity
functions under our new definition relative to the representational power of either kernels or similarity
functions under the old definition.

Both this new definition and the Balcan - Blum’06 definition are based on the idea of a similarity
function being good for a learning problem if there exists a non-negligible subset R of “representative
points” such that most examples x are on average more similar to the representative points of their own
label than to the representative points of the other label. (Formally, the “representativeness” of an example
may be given by a weight between 0 and 1 and viewed as probabilistic or fractional.) However, the
previous Balcan - Blum’06 definition combined the two quantities of interest—the probability mass of
representative points and the gap in average similarity to representative points of each label—into a single
margin parameter. The new notion keeps these quantities distinct, which turns out to make a substantial
difference both in terms of broadness of applicability and in terms of the labeled sample complexity
bounds that result.

Note that we distinguish between labeled and unlabeled sample complexities: while the total num-
ber of examples needed depends polynomially on the two quantities of interest, the number of labeled
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examples will turn out to depend only logarithmically on the probability mass of the representative set
and therefore may be much smaller under the new definition. This is especially beneficial in situations as
described in Chapter 2 in which unlabeled data is plentiful but labeled data is scarce, or the distribution
is known and so unlabeled data is free. We discuss in detail the relation to the model in Chapter 2 in
Section 3.5.

Another way to view the distinction between the two notions of similarity is that we now require
good predictions using a weight function with expectation bounded by 1, rather than supremum bounded
by 1: compare the old Definition 3.3.5 and the variant of the new definition given as Definition 3.4.4.
(We do in fact still have a bound on the supremum which is much larger, but this bound only affects the
labeled sampled complexity logarithmically.) In Theorem 3.4.13 we make the connection between the
two versions of the new definition explicit.

Conditioning on a subset of representative points, or equivalently bounding the expectation of the
weight function, allows us to base our learnability results on L1-regularized linear learning. The actual
learning rule we get, given in Equation (3.49), is very similar, and even identical, to learning rules sug-
gested by various authors and commonly used in practice as an alternative to Support Vector Machines
[54, 127, 185, 192, 198]. Here we give a firm theoretical basis to this learning rule, with explicit learning
guarantees, and relate it to simple and intuitive properties of the similarity function or kernel used (see the
discussion at the end of Section 3.4.2).

3.4.1 New Notions of Good Similarity Functions

In this section we provide new notions of good similarity functions generalizing the main definitions
in Section 3.3 (Definitions 3.3.5 and 3.3.6) that we prove have a number of important advantages. For
simplicity in presentation, for most of this section we will consider only learning problems where the
label y is a deterministic function of x. For such learning problems, we can use y(x) to denote the label
of point x.

In the Definitions 3.3.5 and 3.3.6 in section 3.3, a weight w(x′) ∈ [0, 1] was used in defining the
quantity of interest, namely E(x′,y′)∼P [y′w(x′)K(x, x′)]. Here, it will instead be more convenient to
think of w(x) as the expected value of an indicator random variable R(x) ∈ {0, 1} where we will view
the (probabilistic) set {x : R(x) = 1} as a set of “representative points”. Formally, for each x ∈ X , R(x)
is a discrete random variable over {0, 1} and we will then be sampling from the joint distribution of the
form

Pr(x, y, r) = Pr(x, y) Pr(R(x) = r) (3.40)

in the discrete case or
p(x, y, r) = p(x, y) Pr(R(x) = r) (3.41)

in the continuous case, where p is a probability density function of P .
Our new definition is now as follows.

Definition 3.4.1 (Main, Margin Violations) A similarity function K is an (ε, γ, τ)-good similarity func-
tion for a learning problem P if there exists an extended distribution P (x, y, r) defined as in 3.40 or 3.41
such that the following conditions hold:

1. A 1− ε probability mass of examples (x, y) ∼ P satisfy

E(x′,y′,r′)∼P [yy′K(x, x′) | r′ = 1] ≥ γ (3.42)

2. Pr(x′,y′,r′) [r′ = 1] ≥ τ .
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If the representative set R is 50/50 positive and negative (i.e., Pr(x′,y′,r′)[y′ = 1|r′ = 1] = 1/2), we
can interpret the condition as stating that most examples x are on average 2γ more similar to random
representative examples x′ of their own label than to random representative examples x′ of the other label.
The second condition is that at least a τ fraction of the points should be representative.

We also consider a hinge-loss version of the definition:

Definition 3.4.2 (Main, Hinge Loss) A similarity function K is an (ε, γ, τ)-good similarity function in
hinge loss for a learning problem P if there exists an extended distribution P (x, y, r) defined as in 3.40
or 3.41 such that the following conditions hold:

1. We have
E(x,y)∼P

[
[1− yg(x)/γ]+

]
≤ ε, (3.43)

where g(x) = E(x′,y′,r′)[y′K(x, x′) | r′ = 1].
2. Pr(x′,y′,r′) [r′ = 1] ≥ τ .

It is not hard to see that an (ε, γ)-good similarity function under Definitions 3.3.5 and 3.3.6 is also
an (ε, γ, γ)-good similarity function under Definitions 3.4.1 and 3.4.2, respectively. In the reverse direc-
tion, an (ε, γ, τ)-good similarity function under Definitions 3.4.1 and 3.4.2 is an (ε, γτ)-good similarity
function under Definitions 3.3.5 and 3.3.6 (respectively). Specifically:

Theorem 3.4.1 If K is an (ε, γ)-good similarity function under Definitions 3.3.5 and 3.3.6, then K is
also an (ε, γ, γ)-good similarity function under Definitions 3.4.1 and 3.4.2, respectively.

Proof: If we set Pr(x′,y′,r′)(r′ = 1 | x′) = w(x′), we get that in order for any point x to fulfill equation
(3.6), we must have

Pr(x′,y′,r′)(r
′ = 1) = Ex′ [w(x′)] ≥ E(x′,y′)[yy′w(x′)K(x, x′)] ≥ γ.

Furthermore, for any x, y for which (3.6) is satisfied, we have

E(x′,y′,r′)[yy′K(x, x′)|r′ = 1] = E(x′,y′)[yy′K(x, x′)w(x′)]/Pr(x′,y′,r′) (r′ = 1)
≥ E(x′,y′)[yy′K(x, x′)w(x′)] ≥ γ.

Theorem 3.4.2 If K is an (ε, γ, τ)-good similarity function under Definitions 3.4.1 and 3.4.2, then K is
an (ε, γτ)-good similarity function under Definitions 3.3.5 and 3.3.6 (respectively).

Proof: Setting w(x′) = Pr(x′,y′,r′)(r′ = 1 | x′) we have for any x, y satisfying (3.42) that

E(x′,y′)[yy′K(x, x′)w(x′)] = E(x′,y′,r′)[yy′K(x, x′)r′ = 1]
= E(x′,y′,r′s)[yy′K(x, x′)|r′ = 1]Pr(x′,y′,r′)(r

′ = 1) ≥ γτ.

A similar calculation establishes the correspondence for the hinge loss.

As we will see, under both old and new definitions, the number of labeled samples required for learn-
ing grows as 1/γ2. The key distinction between them is that we introduce a new parameter, τ , that
primarily affects the number of unlabeled examples required. This decoupling of the number of labeled
and unlabeled examples enables us to handle a wider variety of situations with an improved labeled sam-
ple complexity. In particular, in translating from a kernel to a similarity function, we will find that much
of the loss can now be placed into the τ parameter.
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In the following we prove three types of results about this new notion of similarity. The first is
that similarity functions satisfying these conditions are sufficient for learning (in polynomial time in the
case of Definition 3.4.2), with a sample size of O( 1

γ2 ln( 1
γτ )) labeled examples and O( 1

τγ2 ) unlabeled
examples. This is particularly useful in settings where unlabeled data is plentiful and cheap—such settings
are increasingly common in learning applications [82, 172]—or for distribution-specific learning where
unlabeled data may be viewed as free.

The second main theorem we prove is that any class C, over a sufficiently unconcentrated distribu-
tion on examples, has a (0, 1, 1/(2|C|))-good similarity function (under either definition 3.4.1 or 3.4.2),
whereas there exist classes C that have no (0.5, 8/

√
|C|)-good kernel functions in hinge loss. This pro-

vides a clear separation between the similarity and kernel notions in terms of the parameters controlling
labeled sample complexity. The final main theorem we prove is that any large-margin kernel function
also satisfies our similarity definitions, with substantially less loss in the parameters controlling labeled
sample complexity compared to the Balcan - Blum’06 definitions. For example, if K is a (0, γ)-good
kernel, then it is an (ε′, ε′γ2)-good similarity function under Definitions 3.3.5 and 3.3.6, and this is tight
[195], resulting in a sample complexity of Õ(

1/(γ4ε3)
)

to achieve error ε. However, we can show K is
an (ε′, γ2, ε′)-good similarity function under the new definition,6 resulting in a sample complexity of only
Õ(

1/(γ4ε)
)
.

3.4.2 Good Similarity Functions Allow Learning

The basic approach proposed for learning using a similarity function is similar to that in Section 3.3 and in
[24]. First, a feature space is constructed, consisting of similarities to randomly chosen landmarks. Then,
a linear predictor is sought in this feature space. However, for the previous Balcan - Blum’06 definitions
(Definitions 3.3.5 and 3.3.6 in Section 3.3), we used guarantees for large L2-margin in this feature space,
whereas under the new definitions we will be using guarantees about large L1-margin in the feature space.7

After recalling the notion of an L1-margin and its associated learning guarantee, we first establish
that, for an (ε, γ, τ)-good similarity function, the feature map constructed using Õ(

1/(τγ2)
)

landmarks
indeed has (with high probability) a large L1-margin separator. Using this result, we then obtain a learning
guarantee by following the strategy outlined above.

In speaking of L1-margin γ, we refer to separation with a margin γ by a unit-L1-norm linear separator,
in a unit-L∞-bounded feature space. Formally, let φ : x 7→ φ(x), φ(x) ∈ Rd, with ||φ(x)||∞ ≤ 1 be a
mapping of the data to a d-dimensional feature space. We say that a linear predictor α ∈ Rd, achieves
error ε relative to L1-margin γ if Pr(x,y(x))(y(x)〈α, φ(x)〉 ≥ γ) ≥ 1 − ε (this is the standard margin
constraint) and ||α||1 = 1.

Given a d-dimensional feature map under which there exists some (unknown) zero-error linear sepa-
rator with L1-margin γ, we can with high probability 1− δ efficiently learn a predictor with error at most
εacc using O

(
log(d/δ)
εaccγ2

)
examples. This can be done using the Winnow algorithm with a standard online-

to-batch conversion [163]. If we can only guarantee the existence of a separator with error ε > 0 relative
to L1-margin γ, then a predictor with error ε + εacc can be theoretically learned (with high probability
1 − δ) from a sample of Õ(

(log(d/δ))/(γ2ε2acc)
)

examples by minimizing the number of L1-margin γ
violations on the sample [211].

We are now ready to state the main result enabling learning using good similarity functions:

6Formally, the translation produces an (ε′, γ2/c, ε′c)-good similarity function for some c ≤ 1. However, smaller values of c
only improve the bounds.

7 Note that in fact even for the previous Balcan - Blum’06 definitions we could have used guarantees for large L1-margin
in this feature space; however for the new definitions we cannot necessarily use guarantees about large L2-margin in the feature
space.
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Theorem 3.4.3 Let K be an (ε, γ, τ)-good similarity function for a learning problem P . Let S =
{x′1, x′2, . . . , x′d} be a (potentially unlabeled) sample of

d =
2
τ

(
log(2/δ) + 8

log(2/δ)
γ2

)

landmarks drawn from P . Consider the mapping φS : X → Rd defined as follows: φS
i(x) = K(x, x′i),

i ∈ {1, . . . , d}. Then, with probability at least 1− δ over the random sample S, the induced distribution
φS(P ) in Rd has a separator of error at most ε + δ relative to L1 margin at least γ/2.

Proof: First, note that since |K(x, x)| ≤ 1 for all x, we have ||φS(x)||∞ ≤ 1.
For each landmark x′i, let r′i be a draw from the distribution given by R(x′i). Consider the linear

separator α ∈ Rd, given by αi = y(x′i)r
′
i/d1 where d1 =

∑
i r
′
i is the number of landmarks with

R(x̃) = 1. This normalization ensures ||α||1 = 1.
We have, for any x, y(x):

y(x)
〈
α, φS(x)

〉
=

∑d
i=1 y(x)y(x′i)r

′
iK(x, x′i)

d1
(3.44)

This is an empirical average of d1 terms

−1 ≤ y(x)y(x′)K(x, x′) ≤ 1

for which R(x′) = 1. For any x we can apply Hoeffding’s inequality, and obtain that with probability at
least 1− δ2/2 over the choice of S, we have:

y(x)
〈
α, φS(x)

〉 ≥ Ex′ [K(x, x′)y(x′)y(x)|R(x′)]−
√

2 log( 2
δ2 )

d1
(3.45)

Since the above holds for any x with probability at least 1−δ2/2 over S, it also holds with probability
at least 1− δ2/2 over the choice of x and S. We can write this as:

ES∼P d

[
Pr

x∼P
( violation )

]
≤ δ2/2 (3.46)

where “violation” refers to violating (3.45). Applying Markov’s inequality we get that with probability at
least 1 − δ/2 over the choice of S, at most δ fraction of points violate (3.45). Recalling Definition 3.4.1,
at most an additional ε fraction of the points violate (3.42). But for the remaining 1− ε− δ fraction of the
points, for which both (3.45) and (3.42) hold, we have:

y(x)
〈
α, φS(x)

〉 ≥ γ −
√

2 log( 1
δ2 )

d1
. (3.47)

To bound the second term we need an upper bound on d1, the number of representative landmarks. The
probability of each of the d landmarks being representative is at least τ and so the number of representative
landmarks follows a Binomial distribution, ensuring d1 ≥ 8 log(1/δ)/γ2 with probability at least 1−δ/2.

When this happens, we have

√
2 log( 1

δ2
)

d1
≤ γ/2. We get then, that with probability at least 1 − δ, for at

least 1− ε− δ of the points:
y(x)

〈
α, φS(x)

〉 ≥ γ/2. (3.48)

For the realizable (ε = 0) case, we obtain:
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Corollary 3.4.4 If K is a (0, γ, τ)-good similarity function then with high probability we can efficiently
find a predictor with error at most εacc from an unlabeled sample of size du = Õ

(
1

γ2τ

)
and from a labeled

sample of size dl = Õ
(

log du

γ2εacc

)
.

Proof: We have proved in Theorem 3.4.3 that if K is(0, γ, τ)-good similarity function, then with high
probability there exists a low-error large-margin (at least γ

2 ) separator in the transformed space under
mapping φS . Thus, all we need now to learn well is to draw a new fresh sample S̃, map it into the
transformed space using φS , and then apply a good algorithm for learning linear separators in the new
space that produces a hypothesis of error at most εacc with high probability. In particular, remember that
the vector α has error at most δ at L1 margin γ/2 over φS(P ), where the mapping φS produces examples
of L∞ norm at most 1. In order to enjoy the better learning guarantees of the separable case, we will set
δu small enough so that no bad points appear in the sample. Specifically, if we draw

du = d(γ, δu, τ) =
2
τ

(
log(2/δu) + 8

log(2/δu)
γ2

)

unlabeled examples then with probability at least 1−δu over the random sample S, the induced distribution
φS(P ) in Rdu has a separator of error at most δu relative to L1 margin at least γ/2. So, if we draw
O

(
1

γ2εacc
ln (du/δ)

)
new labeled examples then with high probability 1 − δfinal these points are linearly

separable at margin γ/2, where δfinal = c1δu
1

εaccγ2 ln (du/δ), where c1 is a constant.
Setting δu = εaccγ

2τδ/(c2 ln (1/(εaccγτδ))) (where c2 is a constant) we get that high probability
1 − δ/2 these points are linearly separable at margin γ/2 in the new feature space. The Corollary now
follows from the L1-margin learning guarantee in the separable case, discussed earlier in the section.

For the most general (ε > 0) case, Theorem 3.4.3 implies that by following our two-stage approach,
first using du = Õ

(
1

γ2τ

)
unlabeled examples as landmarks in order to construct φS(·), and then using a

fresh sample of size dl = Õ
(

1
γ2ε2acc

ln du

)
to learn a low-error L1-margin γ separator in φS(·), we have:

Corollary 3.4.5 If K is a (ε, γ, τ)-good similarity function then by minimizing L1 margin violations we
can find a predictor with error at most ε + εacc from an unlabeled sample of size du = Õ

(
1

γ2τ

)
and from

a labeled sample of size dl = Õ
(

log du

γ2ε2acc

)
.

The procedure described above, although well defined, involves a difficult optimization problem: min-
imizing the number of L1-margin violations. In order to obtain a computationally tractable procedure, we
consider the hinge-loss instead of the margin error. In a feature space with ||φ(x)||∞ ≤ 1 as above,
we say that a unit-L1-norm predictor α, ||α||1 = 1, has expected hinge-loss E [[1− y(x)〈α, φ(x)〉/γ]+]
relative to L1-margin γ. Now, if we know there is some (unknown) predictor with hinge-loss ε relative
L1-margin γ, than a predictor with error ε + εacc can be learned (with high probability) from a sample of
Õ(

log d/(γ2ε2acc)
)

examples by minimizing the empirical average hinge-loss relative to L1-margin γ on
the sample [211].

Before proceeding to discussing the optimization problem of minimizing the average hinge-loss rela-
tive to a fixed L1-margin, let us establish the analogue of Theorem 3.4.3 for the hinge-loss:

Theorem 3.4.6 Assume that K is an (ε, γ, τ)-good similarity function in hinge-loss for a learning prob-
lem P . For any ε1 > 0 and 0 < λ < γε1/4 let S = {x̃1, x̃2, . . . , x̃d} be a sample of size d =
2
τ

(
log(2/δ) + 16 log(2/δ)/(ε1γ)2

)
drawn from P . With probability at least 1−δ over the random sample

S, the induced distribution φS(P ) in Rd, for φS as defined in Theorem 3.4.3, has a separator achieving
hinge-loss at most ε + ε1 at margin γ.
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Proof: We use the same construction as in Theorem 3.4.3.

Corollary 3.4.7 K is an (ε, γ, τ)-good similarity function in hinge loss then we can efficiently find a
predictor with error at most ε + εacc from an unlabeled sample of size du = Õ

(
1

γ2ε2accτ

)
and from a

labeled sample of size dl = Õ
(

log du

γ2ε2acc

)
.

For the hinge-loss, our two stage procedure boils down to solving the following optimization problem
w.r.t. α:

minimize
dl∑

i=1


1−

du∑

j=1

αjy(xi)K(xi, x̃j)




+

s.t.
du∑

j=1

|αj | ≤ 1/γ

(3.49)

This is a linear program and can thus be solved in polynomial time, establishing the efficiency in Corollary
3.4.7.

We can in fact use results in [115] to extend Corollary 3.4.7 a bit and get a better bound as follows:
Corollary 3.4.8 If K is a (εacc/8, γ, τ)-good similarity function then with high probability we can effi-
ciently find a predictor with error at most εacc from an unlabeled sample of size du = Õ

(
1

γ2τ

)
and from

a labeled sample of size dl = Õ
(

log du

γ2εacc

)
.

An optimization problem similar to (3.49), though usually with the same set of points used both
as landmarks and as training examples, is actually fairly commonly used as a learning rule in practice
[54, 127, 185]. Such a learning rule is typically discussed as an alternative to SVMs. In fact, [198]
suggest the Relevance Vector Machine (RVM) as a Bayesian alternative to SVMs. The MAP estimate
of the RVM is given by an optimization problem similar to (3.49), though with a loss function different
from the hinge loss (the hinge-loss cannot be obtained as a log-likelihood). Similarly, [192] suggests
Norm-Penalized Leveraging Procedures as a boosting-like approach that mimics SVMs. Again, although
the specific loss functions studied by [192] are different from the hinge-loss, the method (with a norm
exponent of 1, as in [192]’s experiments) otherwise corresponds to a coordinate-descent minimization of
(3.49). In both cases, no learning guarantees are provided.

The motivation for using (3.49) as an alternative to SVMs is usually that the L1-regularization on
α leads to sparsity, and hence to “few support vectors” (although [207], who also discuss (3.49), argue
for more direct ways of obtaining such sparsity), and also that the linear program (3.49) might be easier
to solve than the SVM quadratic program. However, we are not aware of a previous discussion on how
learning using (3.49) relates to learning using a SVM, or on learning guarantees using (3.49) in terms of
properties of the similarity function K. Guarantees solely in terms of the feature space in which we seek
low L1-margin (φS in our notation) are problematic, as this feature space is generated randomly from
data.

In fact, in order to enjoy the SVM guarantees while using L1 regularization to obtain sparsity, some
authors suggest regularizing both the L1 norm ||α||1 of the coefficient vector α (as in (3.49)), and the
norm ||β|| of the corresponding predictor β =

∑
j αjφ(x̃j) in the Hilbert space implied by K, where

K(x, x′) = 〈φ(x), φ(x′)〉, as when using a SVM with K as a kernel [128, 179].
Here, we provide a natural condition on the similarity function K (Definition 3.4.2), that justifies

the learning rule (3.49). Furthermore, we show (in Section 3.4.4) than any similarity function that is
good as a kernel, and can ensure SVM learning, is also good as a similarity function and can thus also
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ensure learning using the learning rule (3.49) (though possibly with some deterioration of the learning
guarantees). These arguments can be used to justify (3.49) as an alternative to SVMs.

Before concluding this discussion, we would like to mention that [118] previously established a rather
different connection between regularizing the L1 norm ||α||1 and regularizing the norm of the corre-
sponding predictor β in the implied Hilbert space. [118] considered a hard-margin SVR (Support Vector
Regression Machine, i.e. requiring each prediction to be within (y(x)− ε, y(x)+ ε)), in the noiseless case
where the mapping x 7→ y(x) is in the Hilbert space. In this setting, [118] showed that a hard-margin
SVR is equivalent to minimizing the distance in the implied Hilbert space between the correct mapping
x 7→ y(x) and the predictions x 7→ ∑

j αjK(x, x̃j), with an L1 regularization term ||α||1. However, this
distance between prediction functions is very different than the objective in (3.49), and again refers back
to the implied feature space which we are trying to avoid.

3.4.3 Separation Results

In this Section, we show an example of a finite concept class for which no kernel yields good learning
guarantees when used as a kernel, but for which there does exist a good similarity function yielding the
optimal sample complexity. That is, we show that some concept classes cannot be reasonably represented
by kernels, but can be reasonably represented by similarity functions.

Specifically, we consider a class C of n pairwise uncorrelated functions. This is a finite class of
cardinality |C| = n, and so if the target belongs to C then O(1

ε log n) samples are enough for learning a
predictor with error ε.

Indeed, we show here that for any concept class C, so long as the distribution D is sufficiently uncon-
centrated, there exists a similarity function that is (0, 1, 1

2|C|)-good under our definition for every f ∈ C.
This yields a (labeled) sample complexity O(1

ε log |C|) to achieve error ε, matching the ideal sample com-
plexity. In other words, for distribution-specific learning (where unlabeled data may be viewed as free)
and finite classes, there is no intrinsic loss in sample-complexity incurred by choosing to learn via similar-
ity functions. In fact, we also extend this result to classes of bounded VC-dimension rather than bounded
cardinality.

In contrast, we show that if C is a class of n functions that are pairwise uncorrelated with respect to
distribution D, then no kernel is (ε, γ)-good in hinge-loss for all f ∈ C even for ε = 0.5 and γ = 8/

√
n.

This extends work of [50, 109] who give hardness results with comparable margin bounds, but at a much
lower error rate. Thus, this shows there is an intrinsic loss incurred by using kernels together with margin
bounds, since this results in a sample complexity bound of at least Ω(|C|), rather than the ideal O(log |C|).

We thus demonstrate a gap between the kind of prior knowledge can be represented with kernels
as opposed to general similarity functions and demonstrate that similarity functions are strictly more
expressive (up to the degradation in parameters discussed earlier).

Definition 3.4.3 We say that a distribution D over X is α-unconcentrated if the probability mass on any
given x ∈ X is at most α.

Theorem 3.4.9 For any class finite class of functions C and for any 1/|C|-unconcentrated distribution
D over the instance space X , there exists a similarity function K that is a (0, 1, 1

2|C|)-good similarity
function for all f ∈ C.

Proof: Let C = {f1, . . . , fn}. Now, let us partition X into n regions Ri of at least 1/(2n) probability
mass each, which we can do since D is 1/n-unconcentrated. Finally, define K(x, x′) for x′ in Ri to be
fi(x)fi(x′). We claim that for this similarity function, Ri is a set of “representative points” establishing
margin γ = 1 for target fi. Specifically,

E[K(x, x′)fi(x)fi(x′)|x′ ∈ Ri] = E[fi(x)fi(x′)fi(x)fi(x′)] = 1.
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Since Pr(Ri) ≥ 1
2n , this implies that under distribution D, K is a (0, 1, 1

2n)-good similarity function for
all fi ∈ C.

Note 1: We can extend this argument to any class C of small VC dimension. In particular, for any
distribution D, the class C has an ε-cover Cε of size (1/ε)O(d/ε), where d is the VC-dimension of C [52].
By Theorem 3.4.9, we can have a (0, 1, 1/|Cε|)-good similarity function for the cover Cε, which in turn
implies an (ε, 1, 1/|Cε|)-good similarity function for the original set (even in hinge loss since γ = 1).
Plugging in our bound on |Cε|, we get an (ε, 1, εO(d/ε))-good similarity function for C. Thus, the labeled
sample complexity we get for learning with similarity functions is onlyO((d/ε) log(1/ε)), and again there
is no intrinsic loss in sample complexity bounds due to learning with similarity functions.

Note 2: The need for the underlying distribution to be unconcentrated stems from our use of this distri-
bution for both labeled and unlabeled data. We could further extend our definition of “good similarity
function” to allow for the unlabeled points x′ to come from some other distribution D′ given apriori, such
as the uniform distribution over the instance space X . Now, the expectation over x′ and the probability
mass of R would both be with respect to D′, and the generic learning algorithm would draw points x′i
from D′ rather than D. In this case, we would only need D′ to be unconcentrated, rather than D.

We now prove our lower bound for margin-based learning with kernels.

Theorem 3.4.10 Let C be a class of n pairwise uncorrelated functions over distribution D. Then, there
is no kernel that for all f ∈ C is (ε, γ)-good in hinge-loss even for ε = 0.5 and γ = 8/

√
n.

Proof: Let C = {f1, . . . , fn}. We begin with the basic fourier setup [162, 167]. Given two functions
f and g, define 〈f, g〉 = Ex[f(x)g(x)] to be their correlation with respect to distribution D. (This is their
inner-product if we view f as a vector whose jth coordinate is f(xj)[D(xj)]1/2). Because the functions
fi ∈ C are pairwise uncorrelated, we have 〈fi, fj〉 = 0 for all i 6= j, and because the fi are boolean
functions we have 〈fi, fi〉 = 1 for all i. Thus they form at least part of an orthonormal basis, and for any
hypothesis h (i.e. any mapping X → {±1}) we have

∑

fi∈C

〈h, fi〉2 ≤ 1.

So, this implies ∑

fi∈C

|〈h, fi〉| ≤
√

n.

or equivalently
Efi∈C |〈h, fi〉| ≤ 1/

√
n. (3.50)

In other words, for any hypothesis h, if we pick the target at random from C, the expected magnitude
of the correlation between h and the target is at most 1/

√
n.

We now consider the implications of having a good kernel. Suppose for contradiction that there exists
a kernel K that is (0.5, γ)-good in hinge loss for every fi ∈ C. What we will show is this implies that
for any fi ∈ C, the expected value of |〈h, fi〉| for a random linear separator h in the φ-space is greater
than γ/8. If we can prove this, then we are done because this implies there must exist an h that has
Efi∈C |〈h, f〉| > γ/8, which contradicts equation (3.50) for γ = 8/

√
n.

So, we just have to prove the statement about random linear separators. Let w∗ denote the vector
in the φ-space that has hinge-loss at most 0.5 at margin γ for target function fi. For any example x,
define γx to be the margin of φ(x) with respect to w∗, and define αx = sin−1(γx) to be the angular
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margin of φ(x) with respect to w∗.8 Now, consider choosing a random vector h in the φ-space, where
we associate h(x) = sign(h · φ(x)). Since we only care about the absolute value |〈h, fi〉|, and since
〈−h, fi〉 = −〈h, fi〉, it suffices to show that Eh[〈h, fi〉 | h · w∗ ≥ 0] > γ/8. We do this as follows.

First, for any example x, we claim that:

Pr
h

[(h(x) 6= fi(x)|h · w∗ ≥ 0] = 1/2− αx/π. (3.51)

This is because we look at the 2-dimensional plane defined by φ(x) and w∗, and consider the half-circle
of ||h|| = 1 such that h · w∗ ≥ 0, then (3.51) is the portion of the half-circle that labels φ(x) incorrectly.
Thus, we have:

Eh[err(h)|h · w∗ ≥ 0] = Ex[1/2− αx/π],

and so, using 〈h, fi〉 = 1− 2 err(h), we have:

Eh[〈h, fi〉 | h · w∗ ≥ 0] = 2Ex[αx]/π.

Finally, we just need to relate angular margin and hinge loss: if Lx is the hinge-loss of φ(x), then a
crude bound on αx is

αx ≥ γ(1− (π/2)Lx).

Since we assumed that Ex[Lx] ≤ 0.5, we have:

Ex[αx] ≥ γ(1− π/4).

Putting this together we get expected magnitude of correlation of a random halfspace is at least 2γ(1 −
π/4)/π > γ/8 as desired, proving the theorem.

An example of a class C satisfying the above conditions is the class of parity functions over {0, 1}lg n,
which are pairwise uncorrelated with respect to the uniform distribution. Note that the uniform distrib-
ution is 1/|C|-unconcentrated, and thus there is a good similarity function. (In particular, one could use
K(xi, xj) = fj(xi)fj(xj), where fj is the parity function associated with indicator vector xj .)

We can extend Theorem 3.4.10 to classes of large Statistical Query dimension as well. In particular,
the SQ-dimension of a class C with respect to distribution D is the size d of the largest set of functions
{f1, f2, . . . , fd} ⊆ C such that |〈fi, fj〉| ≤ 1/d3 for all i 6= j [63]. In this case, we just need to adjust
the Fourier analysis part of the argument to handle the fact that the functions may not be completely
uncorrelated.

Theorem 3.4.11 Let C be a class of functions of SQ-dimension d with respect to distribution D. Then,
there is no kernel that for all f ∈ C is (ε, γ)-good in hinge-loss even for ε = 0.5 and γ = 16/

√
d.

Proof: Let f1, . . . , fd be d functions in C such that |〈fi, fj〉| ≤ 1/d3 for all i 6= j. We can define
an orthogonal set of functions f ′1, f

′
2, . . . , f

′
d as follows: let f ′1 = f1, f ′2 = f2 − f1〈f2, f1〉, and in

general let f ′i be the portion of fi orthogonal to the space spanned by f1, . . . , fi−1. (That is, f ′i = fi −
proj(fi, span(f1, . . . , fi−1)), where “proj” is orthogonal projection.) Since the f ′i are orthogonal and have
length at most 1, for any boolean function h we have

∑
i 〈h, f ′i〉2 ≤ 1 and therefore Ei|〈h, f ′i〉| ≤ 1/

√
d.

Finally, since 〈fi, fj〉 ≤ 1/d3 for all i 6= j, one can show this implies that |fi − f ′i | ≤ 1/d for all i. So,
Ei|〈h, fi〉| ≤ 1/

√
d + 1/d ≤ 2/

√
d. The rest of the argument in the proof of Theorem 3.4.10 now applies

with γ = 16/
√

d.

8So, αx is a bit larger in magnitude than γx. This works in our favor when the margin is positive, and we just need to be
careful when the margin in negative.
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For example, the class of size-n decision trees over {0, 1}n has nΩ(log n) pairwise uncorrelated func-
tions over the uniform distribution (in particular, any parity of log n variables can be written as an n-node
decision tree). So, this means we cannot have a kernel with margin 1/poly(n) for all size-n decision trees
over {0, 1}n. However, we can have a similarity function with margin 1, though the τ parameter (which
controls running time) will be exponentially small.

3.4.4 Relation Between Good Kernels and Good Similarity Functions

We start by showing that a kernel good as a similarity function is also good as a kernel. Specifically, if
a similarity function K is indeed a kernel, and it is (ε, γ, τ)-good as a similarity function (possibly in
hinge-loss), than it is also (ε, γ)-good as a kernel (respectively, in hinge loss). That is, although the notion
of a good similarity function is more widely applicable, for those similarity functions that are positive
semidefinite, a good similarity function is also a good kernel.

Theorem 3.4.12 If K is a valid kernel function, and is (ε, γ, τ)-good similarity for some learning prob-
lem, then it is also (ε, γ)-kernel-good for the learning problem. If K is (ε, γ, τ)-good similarity in hinge
loss, then it is also (ε, γ)-kernel-good in hinge loss.

Proof: Consider a similarity function K that is a valid kernel, i.e. K(x, x′) = 〈φ(x), φ(x′)〉 for some
mapping φ of x to a Hilbert spaceH. For any input distribution and any probabilistic set of representative
points R of the input we will construct a linear predictor βR ∈ H, with ||βR|| ≤ 1, such that similarity-
based predictions using R are the same as the linear predictions made with βR.

Define the following linear predictor βR ∈ H:

βR = E
(x′,y′,r′)

[
y′φ(x′)|r′ = 1

]
.

The predictor βR has norm at most:

||βR|| = ||E
(x′,y′,r′)

[
y′φ(x′)|r′ = 1

]|| ≤ max
x′

||y(x′)φ(x′)||

≤ max ||φ(x′)|| = max
√

K(x′, x′) ≤ 1

where the second inequality follows from |y(x′)| ≤ 1.
The predictions made by βR are:

〈βR, φ(x)〉 =
〈
E(x′,y′,r′)

[
y′φ(x′)|r′ = 1

]
, φ(x)

〉

= E(x′,y′,r′)
[
y′

〈
φ(x′), φ(x)

〉|r′ = 1
]

= E(x′,y′,r′)
[
y′K(x, x′)|r′ = 1

]

That is, using βR is the same as using similarity-based prediction with R. In particular, the margin
violation rate, as well as the hinge loss, with respect to any margin γ, is the same for predictions made
using either R or βR. This is enough to establish Theorem 3.4.12: If K is (ε, γ)-good (perhaps for to the
hinge-loss), there exists some valid R that yields margin violation error rate (resp. hinge loss) at most ε
with respect to margin γ, and so βR yields the same margin violation (resp. hinge loss) with respect to the
same margin, establishing K is (ε, γ)-kernel-good (resp. for the hinge loss).

We now show the converse: if a kernel function is good in the kernel sense, it is also good in the
similarity sense, though with some degradation of the margin. This degradation is much smaller than the
one incurred previously by the Balcan - Blum’06 definitions (and the proofs in [24], [195], and [38]).
Specifically, we can show that if K is a (0, γ)-good kernel, then K is (ε, γ2, ε)-good similarity function
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for any ε (formally, it is (ε, γ2/c, εc)-good for some c ≤ 1). The proof is based on the following idea.
Say we have a good kernel in hinge loss. Then we can choose an appropriate regularization parameter
and write a “distributional SVM” such that there exists a solution vector that gets a large fraction of the
distribution correct, and moreover, the fraction of support vectors is large enough. Any support vector
will then be considered a representative point in our similarity view, and the probability that a point is
representative is proportional to αi, where αi is dual variable associated with xi.

To formally prove the desired result, we introduce an intermediate notion of a good similarity function.

Definition 3.4.4 (Intermediate, Margin Violations) A similarity function K is a relaxed (ε, γ, M)-good
similarity function for a learning problem P if there exists a bounded weighting function w over X ,
w(x′) ∈ [0,M ] for all x′ ∈ X , Ex′∼P [w(x′)] ≤ 1 such that at least a 1− ε probability mass of examples
x satisfy:

Ex′∼P [y(x)y(x′)w(x′)K(x, x′)] ≥ γ. (3.52)

Definition 3.4.5 (Intermediate, Hinge Loss) A similarity function K is a relaxed (ε, γ, M)-good simi-
larity function in hinge loss for a learning problem P if there exists a weighting function w(x′) ∈ [0,M ]
for all x′ ∈ X , Ex′∼P [w(x′)] ≤ 1 such that

Ex

[
[1− y(x)g(x)/γ]+

]
≤ ε, (3.53)

where g(x) = Ex′∼P [y(x′)w(x′)K(x, x′)] is the similarity-based prediction made using w(·).
These intermediate definitions are closely related to our main similarity function definitions: in par-

ticular, if K is a relaxed (ε, γ, M)-good similarity function for a learning problem P , then it is also an
(ε, γ/c, c/M)-good similarity function for some γ ≤ c ≤ 1.

Theorem 3.4.13 If K is a relaxed (ε, γ, M)-good similarity function for a learning problem P , then
there exists γ ≤ c ≤ 1 such that K is a (ε, γ/c, c/M)-good similarity function for P . If K is a relaxed
(ε, γ,M)-good similarity function in hinge loss for P , then there exists γ ≤ c ≤ 1 such that K is a
(ε, γ/c, c/M)-good similarity function for P .

Proof: First, divide w(x) by M to scale its range to [0, 1], so E[w] = c/M for some c ≤ 1 and the
margin is now γ/M . Define random indicator R(x′) to equal 1 with probability w(x′) and 0 with proba-
bility 1−w(x′), and let the extended probability P over X × Y × {0, 1} be defined as in Equations 3.40
or 3.41.

We have
τ = Pr(x′,y′,r′)[r

′ = 1] = Ex′ [w(x′)] = c/M,

and we can rewrite (3.52) as

E(x′,y′,r′)[y(x)y′I(r′ = 1)K(x, x′)] ≥ γ/M. (3.54)

Finally, divide both sides of (3.54) by τ = c/M , producing the conditional E(x′,y′,r′)[y(x)y(x′)K(x, x′) |
r′ = 1] on the LHS and a margin of γ/c on the RHS. The case of hinge-loss is identical.

Note that since our guarantees for (ε, γ, τ)-good similarity functions depend on τ only through γ2τ ,
a decrease in τ and a proportional increase in γ (as when c < 1 in Theorem 3.4.13) only improves
the guarantees. However, allowing flexibility in this tradeoff will make the kernel-to-similarity function
translation much easier.

We will now establish that a similarity function K that is good as a kernel, is also good as a similarity
function in this intermediate sense, and hence, by Theorem 3.4.13, also in our original sense. We begin
by considering goodness in hinge-loss, and will return to margin violations at the end of the Section.
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Theorem 3.4.14 If K is (ε0, γ)-good kernel in hinge loss for learning problem (with deterministic labels),
then it is also a relaxed (ε0 + ε1,

γ2

1+ε0/2ε1
, 1

2ε1+ε0
)-good similarity in hinge loss for the learning problem,

for any ε1 > 0.

Proof: We initially only consider finite discrete distributions, where:

Pr(xi, yi ) = pi (3.55)

for i = 1 . . . n, with
∑n

i=1 pi = 1 and xi 6= xj for i 6= j.
Let K be any kernel function that is (ε0, γ)-kernel good in hinge loss. Let φ be the implied feature

mapping and denote φi = φ(xi). Consider the following weighted-SVM quadratic optimization problem
with regularization parameter C:

minimize
1
2
||β||2 + C

n∑

i=1

pi[1− yi〈β, φi〉]+ (3.56)

The dual of this problem, with dual variables αi, is:

maximize
∑

i

αi − 1
2

∑

ij

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤ Cpi

(3.57)

There is no duality gap, and furthermore the primal optimum β∗ can be expressed in terms of the dual
optimum α∗: β∗ =

∑
i α

∗
i yiφi.

Since K is (ε0, γ)-kernel-good in hinge-loss, there exists a predictor ||β0|| = 1 with average-hinge
loss ε0 relative to margin γ. The primal optimum β∗ of (3.56), being the optimum solution, then satisfies:

1
2
||β∗||2 + C

∑

i

pi[1− yi〈β∗, φi〉]+ ≤ 1
2
||1
γ

β0||2 + C
∑

i

pi[1− yi

〈
1
γ

β0, φi

〉
]+

=
1

2γ2
+ CE

[
[1− y

〈
1
γ

β0, φ(x)
〉

]+

]

=
1

2γ2
+ Cε0

Since both terms on the left hand side are non-negative, each of them is bounded by the right hand side,
and in particular:

C
∑

i

pi[1− yi〈β∗, φi〉]+ ≤ 1
2γ2

+ Cε0

Dividing by C we get a bound on the average hinge-loss of the predictor β∗, relative to a margin of one:

E[[1− y〈β∗, φ(x)〉]+] ≤ 1
2Cγ2

+ ε0 (3.58)

We now use the fact that β∗ can be written as β∗ =
∑

i α
∗
i yiφi with 0 ≤ α∗i ≤ Cpi. Let us consider

the weights

wi = w(xi) = α∗i /(Api) (3.59)
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So, wi ≤ C
A and E[w] =

P
i α∗i
A . Furthermore, since we have no duality gap we also have

∑

i

α∗i −
1
2
||β∗||2 =

1
2
||β∗||2 + C

∑

i

pi[1− yi〈β∗, φi〉]+,

so
∑

i α
∗
i ≤ 1

γ2 + Cε0.
So, we have for every x, y:

yEx′,y′
[
w(x′)y′K(x, x′)

]
= y

∑

i

piw(xi)yiK(x, xi)

= y
∑

i

piα
∗
i yiK(x, xi)/(Api)

= y
∑

i

α∗i yi〈φi, φ(x)〉/A

= y〈β∗, φ(x)〉/A

Multiplying by A and using (3.58):

Ex,y

[
[ 1−AyEx′,y′

[
w(x′)y′K(x, x′)

]
]+

]
= Ex,y[ [ 1− y〈β∗, φ(x)〉 ]+ ] ≤ 1

2Cγ2
+ ε0 (3.60)

Since wi ≤ C
A , E[w] =

P
i α∗i
A , and

∑
i α

∗
i ≤ 1

γ2 + Cε0, and we want E[w] ≤ 1, we need to impose

that
(

1
γ2 + Cε0

)
1
A ≤ 1. We also want wi ∈ [0,M ], so we also have the constraint C

A ≤ M . Choosing

M = 1
2ε1+ε0

, A = 1+ε0/2ε1
γ2 , and C = 1/(2ε1γ

2) we get an average hinge-loss of ε0 + ε1 at margin 1/A

Ex,y

[
[ 1− yEx′,y′

[
w(x′)y′K(x, x′)

]
/(1/A) ]+

] ≤ ε0 + ε1 (3.61)

as desired. This establishes that if K is (ε0, γ)-good kernel in hinge loss then it is also a relaxed (ε0 +
ε1,

γ2

1+ε0/2ε1
, 1

2ε1+ε0
)-good similarity in hinge loss, for any ε1 > 0, at least for finite discrete distributions.

To extend the result also to non-discrete distributions, we can consider the variational “infinite SVM”
problem and apply the same arguments, as in [195] and in Section 3.3.

Interpretation The proof of theorem 3.4.14 shows the following. Assume that K is (0, γ)-good kernel.
Assume that τ is our desired error rate. Then we can choose a regularization parameter C = 1/(2γ2 · τ)
for the “distributional SVM” (Eq. 3.56) such that there exists a solution vector that gets a (1− τ) fraction
of the distribution correct, and moreover, the number of support vectors is at least γ2 · τ fraction of the
whole distribution; so, we do end up spread out a bit the support vectors of the SVM in Eq. 3.56. Any
support vector will then be considered a representative point in our similarity view, and the probability
that a point is representative is proportional to αi/pi.

Note however that if the K is a good kernel, then there might exist multiple different good sets of
representative points ; and the argument in theorem 3.4.14 shows the existence of such a set based on an
SVM argument. 9

We can now use the hinge-loss correspondence to get a similar result for the margin-violation defini-
tions:

9In fact, the original proof that a good kernel is a good similarity function in the Balcan - Blum’06 sense which appeared
in [24] was based on a different Perceptron based argument.
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Theorem 3.4.15 If K is (ε0, γ)-good kernel for a learning problem (with deterministic labels), then it is
also a relaxed (ε0 + ε1, γ

2/2, 1
(1−ε0)ε1

)-good similarity function for the learning problem, for any ε1 > 0.

Proof: If K is (0, γ)-good as a kernel, it is also (0, γ) good as a kernel in hinge loss, and we can apply
Theorem 3.4.14 to obtain that K is also (ε0/2, γ1, τ1)-good, where γ1 = γ2 and τ1 = 1/ε1. We can then
bound the number of margin violations at γ2 = γ1/2 by half the hinge loss at margin γ1 to obtain the
desired result.

If K is only (ε, γ)-good as a kernel, we follow a similar procedure to that described in [195] and in
Section 3.3, and consider a distribution conditioned only on those places where there is no error. Returning
to the original distribution, we must scale the weights up by an amount proportional to the probability of
the event we conditioned on (i.e. the probability of no margin violation). This yields the desired bound.

Note: We also note that if we want our Definitions 3.4.1 and Definition 3.4.2 to include the usual notions
of good kernel functions, we do need to allow the set {x : R(x) = 1} to be probabilistic. To see this, let
us consider the following example.

x1 = (
√

1− γ2, γ), y1 = 1, p1 =
1
2
− ε

x2 = (−
√

1− γ2, γ, ), y2 = 1, p2 = ε

x3 = (
√

1− γ2,−γ, ), y3 = −1, p3 = ε

x4 = (−
√

1− γ2,−γ), y4 = −1, p4 =
1
2
− ε

for some (small) 0 < γ <
√

1
2 and (small) probability 0 < ε < 1

2 . The four points are all on the unit
sphere (i.e. ||xi|| = 1 and so K(xi, xj) = 〈xi, xj〉 ≤ 1), and are clearly separated by β = (0, 1) with a
margin of γ. The standard inner-product kernel is therefore (0, γ)-kernel-good on this distribution. Note
however that for any τ , in order to get K to be a (0, γ, τ)-good similarity function we need to allow R
to be probabilistic. This can be easily verified by a case analysis. Clearly we cannot have R contain just
one point. Also, we cannot R be only {x1, x4} since x3 will fail to satisfy the condition. Similarly wrt
{x2, x3}. Other cases can be easily verified as well.

One can use the same example in order to show that we need to consider w(x) ∈ [0, 1] rather than
w ∈ {0, 1} in the context Definitions 3.3.5 and Definitions 3.3.6.

3.4.5 Tighteness

We show here that in fact we need to allow O(γ2) loss in the kernel to similarity translation. Specifically:

Theorem 3.4.16 (Tightness, Margin Violations) For any ε, τ , and γ there exists a learning problem and
a kernel function K, which is (0, γ)-kernel-good for the learning problem, but which cannot be (ε, γ̃, τ)-
good similarity for γ̃ ≥ 2γ2.

Proof: Assume that X ∈ Rd, for d ≥ 1
γ2 . Assume that xi has all coordinates 0 except for coordinates 1

and i which are set to y(xi)γ and
√

1− γ2, respectively. It is easy to verify that the standard inner-product
kernel is a (0, γ)-kernel-good on this distribution – it is separated by β = (1, 0, . . . , 0) with a margin of
γ. We also clearly have |K(xi, xj)| ≤ γ2 for all i 6= j and K(x, x) = 1 for all x, which implies that
E(x′,y′,r′)∼P [yy′K(x, x′) | r′ = 1] ≤ 2γ2 for any extended distribution P (x, y, r). This then implies the
desired conclusion.

74



Theorem 3.4.17 (Tightness, Hinge Loss) For any ε ≤ 1
2 , τ , and γ there exists a learning problem and a

kernel function K, which is (0, γ)-kernel-good in hinge loss for the learning problem, but which cannot
be (ε, γ̃, τ)-good similarity in hinge loss for γ̃ ≥ 4γ2.

Proof: The same example as in Theorem 3.4.16 gives us the desired conclusion.
Let g(x) = E(x′,y′,r′)[y′K(x, x′) | r′ = 1] be defined as in Definition 3.4.2. We clearly have g(x) ∈

[−2γ2, 2γ2]. So, clearly for γ̃ ≥ 4γ2 we have [1− y(x)g(x)/γ̃]+ ≥ [1− y(x)γ2/(2γ2)]+ ≥ 1/2. This
then implies the desired conclusion.

3.4.6 Learning with Multiple Similarity Functions

We consider here as in Section 3.3.4 the case of learning with multiple similarity functions. Suppose that
rather than having a single similarity function, we were instead given n functions K1, ..., Kn, and our
hope is that some convex combination of them will satisfy Definition 3.4.1. Is this sufficient to be able to
learn well? The following generalization of Theorem 3.4.3 shows that this is indeed the case. (The analog
of Theorem 3.4.6 can be derived similarly.)

Theorem 3.4.18 Suppose K1, . . . ,Kn are similarity functions such that some (unknown) convex com-
bination of them is (ε, γ, τ)-good. For any δ > 0, let S = {x′1, x′2, . . . , x′d} be a sample of size
d = 16 log(1/δ)

τγ2 drawn from P . Consider the mapping φS : X → Rnd defined as follows: φS
i(x) =

(K1(x, x′1), . . . , Kn(x, x′1), . . . , K1(x, x′d), . . . , Kn(x, x′d)).
With probability at least 1− δ over the random sample S, the induced distribution φS(P ) in Rnd has

a separator of error at most ε + δ at L1, L∞ margin at least γ/2.

Proof: Let K = α1K1 + . . . + αnKn be an (ε, γ, τ)-good convex-combination of the Ki. By Theorem
3.4.3, had we instead performed the mapping: φ̃S : X → Rd defined as

φ̃S(x) = (K(x, x̃1), . . . ,K(x, x̃d)),

then with probability 1− δ, the induced distribution φ̃S(P ) in Rd would have a separator of error at most
ε+δ at margin at least γ/2. Let β̂ be the vector corresponding to such a separator in that space. Now, let us
convert β̂ into a vector in Rnd by replacing each coordinate β̂j with the n values (α1β̂j , . . . , αnβ̂j). Call

the resulting vector β̃. Notice that by design, for any x we have
〈
β̃, φS(x)

〉
=

〈
β̂, φ̃S(x)

〉
. Furthermore,

||β̃||1 = ||β̂||1. Thus, the vector β̃ under distribution φS(P ) has the same properties as the vector β̂ under
φ̃S(P ). This implies the desired result.

Note that we get significantly better bounds here than in Section 3.3.4 and in [24], since the margin
does not drop by a factor of 1√

n
since we use an L1 based learning algorithm.

3.5 Connection to the Semi-Supervised Learning Setting

We discuss here how we can connect the framework in this chapter with the Semi-Supervised Learning
model in Chapter 2. The approach here does have a similar flavor to the approach in in Chapter 2, however,
at a technical level, the final guarantees and learning procedures are somewhat different.

Given a similarity function K let us define CK as the set of functions of the form

fα =
∑

xi∈X

α(xi)K(·, xi).
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Clearly, in general CK may have infinite capacity.10 Our assumptions on the similarity function, e.g., the
assumption in Definition 3.3.5 can be interpreted as saying that the target function has unlabeled error ε at
margin γ, where the unlabeled error rate of a function fα specified by coefficients α(xi) is defined as

errunl(fα) = 1− χ(fα, P ) = Pr
[∣∣Ex′ [K(x, x′)α(x′)]

∣∣ ≤ γ
]
.

Note that here we can define χ(fα, x) = 1 if |Ex′ [K(x, x′)α(x′)]| ≤ γ and 0 otherwise.
Let us define Pχ = P|x:χ(fα,x)=1 and let dχ(f, g) = Prx∼Pχ [f(x) 6= g(x)]. What we are effectively

doing in Section 3.4 is the following. Given a fixed γ, we extract a (δ, δ/2)-randomized approximate
cover of CK with respect to distance dχ. 11 In particular, the guarantee we get is that for any function
fα with probability at least 1 − δ/2, we can find a function f̃α in the cover such that dχ(fα, f̃α) ≤ δ.
Since K is (ε, γ)-good in the sense of Definition 3.3.5, it follows that there exist a function fα such that
errunl(fα) + errχ(fα) ≤ ε, where

errχ(fα) = Pr
x∼Pχ

[f(x) 6= y(x)] Pr
x

[χ(f, x) = 1].

Since we extract a (δ, δ/2)-randomized approximate cover of CK , it follows that with high probability, at
least 1− δ/2, we can find a function f̃α such that err(f̃α) ≤ errunl(fα) + errχ(fα) + δ . Once we have
constructed the randomized approximate cover, we then in a second stage use labeled examples to learn
well.

So, in the case studied in this chapter, the hypothesis space may have an infinite capacity before
performing the inference. In the training process, in a first stage, we first use unlabeled in order to extract
a much smaller set of functions with the property that with high probability the target is well approximated
by one the functions in the smaller class. In a second stage we then use labeled examples to learn well.
(Note that our compatibility assumption implies an upper bound on the best labeled error we could hope
for.)

For the hinge loss definition 3.3.6, we need to consider a cover according to the distance

dχ(f, g) = E[|f(x)− g(x)|/γ.

3.6 Conclusions

The main contribution of this chapter is to develop a theory of learning with similarity functions—namely,
of when a similarity function is good for a given learning problem—that is more general and in terms of
more tangible quantities than the standard theory of kernel functions. We provide a definition that we show
is both sufficient for learning and satisfied by the usual large-margin notion of a good kernel. Moreover,
the similarity properties we consider do not require reference to implicit high-dimensional spaces nor do
they require that the similarity function be positive semi-definite. In this way, we provide the first rigorous
explanation showing why a kernel function that is good in the large-margin sense can also formally be
viewed as a good similarity function, thereby giving formal justification to the standard intuition about
kernels. We prove that our main notion of a “good similarity function” is strictly more powerful than
the traditional notion of a large-margin kernel. This notion relies upon L1 regularized learning, and our

10By capacity of a set of functions here we mean a distribution independent notion of dimension of the given set of functions,
e.g., VC-dimension.

11Given a class of functions C, we define an (α, β)-cover of C with respect to distance d to be a probability distribution over
sets of functions C̃ such that for any f ∈ C with probability at least 1−α, the randomly chosen C̃ from the distribution contains
f̃ such that d(f, f̃) ≤ β.
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separation result is related to a separation result between what is learnable with L1 vs. L2 regularization.
In a lower bound of independent interest, we show that if C is a class of n pairwise uncorrelated functions,
then no kernel is (ε, γ)-good in hinge-loss for all f ∈ C even for ε = 0.5 and γ = 8/

√
n.

From a practical perspective, the results of Section 3.3 and 3.4 suggest that if K is in fact a valid
kernel, we are probably better off using it as a kernel, e.g. in an SVM or Perceptron algorithm, rather
than going through the transformation of Section 3.3.3. However, faced with a non-positive-semidefinite
similarity function (coming from domain experts), the transformation of Theorem 3.3.3 might well be
useful. In fact, Liao and Noble have used an algorithm similar to the one we propose in the context of
protein classification [160]. Furthermore, a direct implication of our results is that we can indeed think (in
the design process) of the usefulness of a kernel function in terms of more intuitive, direct properties of
the data in the original representation, without need to refer to implicit spaces.

Finally, our algorithms (much like those of [31]) suggest a natural way to use kernels or other similarity
functions in learning problems for which one also wishes to use the native features of the examples. For
instance, consider the problem of classifying a stream of documents arriving one at a time. Rather than
running a kernelized learning algorithm, one can simply take the native features (say the words in the
document) and augment them with additional features representing the similarity of the current example
with each of a pre-selected set of initial documents. One can then feed the augmented example into a
standard unkernelized online learning algorithm. It would be interesting to explore this idea further.

It would be interesting to explore whether the lower bound could be extended to cover margin vio-
lations with a constant error rate ε > 0 rather than only hinge-loss. In addition, it would be particularly
interesting to develop even broader natural notions of good similarity functions, that allow for functions
that are not positive-semidefinite and yet provide even better kernel-to-similarity translations (e.g., not
squaring the margin parameter).

Subsequent Work: Inspired by our work in [24], Wang et. al [208] have recently analyzed different,
alternative sufficient conditions for learning via pairwise functions. In particular, Wang et. al [208]
analyze unbounded dissimilarity functions which are invariant to order preserving transformations. They
provide conditions that they prove are sufficient for learning, though they may not include all good kernel
functions.

On a different line of inquiry, we have used this approach [40] for analyzing similarity functions in
the context of clustering (i.e. learning from purely unlabeled data). Specifically, in [40] we ask what
(stronger) properties would be sufficient to allow one to produce an accurate hypothesis without any
label information at all. We show that if one relaxes the objective (for example, allows the algorithm
to produce a hierarchical clustering such that some pruning is close to the correct answer), then one can
define a number of interesting graph-theoretic and game-theoretic properties of similarity functions that
are sufficient to cluster well. We present this in detail in Chapter 4.
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Chapter 4

A Discriminative Framework for
Clustering via Similarity Functions

Problems of clustering data from pairwise similarity information are ubiquitous in Machine Learning and
Computer Science. Theoretical treatments often view the similarity information as ground-truth and then
design algorithms to (approximately) optimize various graph-based objective functions. However, in most
applications, this similarity information is merely based on some heuristic; the ground truth is really the
unknown correct clustering of the data points and the real goal is to achieve low error on the data. In this
work, we develop a theoretical approach to clustering from this perspective. In particular, motivated by
our work in Chapter 3 that asks “what natural properties of a similarity (or kernel) function are sufficient
to be able to learn well?” we ask “what natural properties of a similarity function are sufficient to be able
to cluster well?”

To study this question we develop a theoretical framework that can be viewed as an analog for clus-
tering of the discriminative models for Supervised classification (i.e., the Statistical Learning Theory
framework and the PAC learning model), where the object of study, rather than being a concept class, is
a class of (concept, similarity function) pairs, or equivalently, a property the similarity function should
satisfy with respect to the ground truth clustering. Our notion of property is similar to the large margin
property for a kernel or the properties given in Definitions 3.3.1, 3.3.5, 3.3.6, 3.4.1 or 3.4.2 for supervised
learning, though we will need to consider stronger conditions since we have no labeled data.

We then analyze both algorithmic and information theoretic issues in our model. While quite strong
properties are needed if the goal is to produce a single approximately-correct clustering, we find that a
number of reasonable properties are sufficient under two natural relaxations: (a) list clustering: analo-
gous to the notion of list-decoding, the algorithm can produce a small list of clusterings (which a user
can select from) and (b) hierarchical clustering: the algorithm’s goal is to produce a hierarchy such that
desired clustering is some pruning of this tree (which a user could navigate). We develop a notion of
the clustering complexity of a given property (analogous to the notion of ε-cover examined in Chapter 2),
that characterizes its information-theoretic usefulness for clustering. We analyze this quantity for several
natural game-theoretic and learning-theoretic properties, as well as design new efficient algorithms that
are able to take advantage of them. Our algorithms for hierarchical clustering combine recent learning-
theoretic approaches with linkage-style methods. We also show how our algorithms can be extended to
the inductive case, i.e., by using just a constant-sized sample, as in property testing. The analysis here
uses regularity-type results of [113] and [14].
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4.1 Introduction

Clustering is an important problem in the analysis and exploration of data. It has a wide range of ap-
plications in data mining, computer vision and graphics, and gene analysis. It has many variants and
formulations and it has been extensively studied in many different communities.

In the Algorithms literature, clustering is typically studied by posing some objective function, such
as k-median, min-sum or k-means, and then developing algorithms for approximately optimizing this
objective given a data set represented as a weighted graph [83, 138, 146]. That is, the graph is viewed as
“ground truth” and then the goal is to design algorithms to optimize various objectives over this graph.
However, for most clustering problems such as clustering documents by topic or clustering web-search
results by category, ground truth is really the unknown true topic or true category of each object. The
construction of the weighted graph is just done using some heuristic: e.g., cosine-similarity for clustering
documents or a Smith-Waterman score in computational biology. In all these settings, the goal is really
to produce a clustering that is as accurate as possible on the data. Alternatively, methods developed both
in the algorithms and in the machine learning literature for learning mixtures of distributions [8, 19, 91,
95, 147, 205] explicitly have a notion of ground-truth clusters which they aim to recover. However, such
methods are based on very strong assumptions: they require an embedding of the objects into Rn such that
the clusters can be viewed as distributions with very specific properties (e.g., Gaussian or log-concave). In
many real-world situations (e.g., clustering web-search results by topic, where different users might have
different notions of what a “topic” is) we can only expect a domain expert to provide a notion of similarity
between objects that is related in some reasonable ways to the desired clustering goal, and not necessarily
an embedding with such strong properties.

In this work, we develop a theoretical study of the clustering problem from this perspective. In
particular, motivated by our work on similarity functions presented in Chapter 3 that asks “what nat-
ural properties of a given kernel (or similarity) function K are sufficient to allow one to learn well?”
[24, 31, 133, 187, 190] we ask the question “what natural properties of a pairwise similarity function are
sufficient to allow one to cluster well?” To study this question we develop a theoretical framework which
can be thought of as a discriminative (PAC style) model for clustering, though the basic object of study,
rather than a concept class, is a property of the similarity function K in relation to the target concept much
like the types of properties stated in Chapter 3.

The main difficulty that appears when phrasing the problem in this general way is that if one defines
success as outputting a single clustering that closely approximates the correct clustering, then one needs
to assume very strong conditions on the similarity function. For example, if the function provided by our
expert is extremely good, say K(x, y) > 1/2 for all pairs x and y that should be in the same cluster, and
K(x, y) < 1/2 for all pairs x and y that should be in different clusters, then we could just use it to recover
the clusters in a trivial way.1 However, if we just slightly weaken this condition to simply require that all
points x are more similar to all points y from their own cluster than to any points y from any other clusters,
then this is no longer sufficient to uniquely identify even a good approximation to the correct answer. For
instance, in the example in Figure 4.1, there are multiple clusterings consistent with this property. Even
if one is told the correct clustering has 3 clusters, there is no way for an algorithm to tell which of the
two (very different) possible solutions is correct. In fact, results of Kleinberg [151] can be viewed as
effectively ruling out a broad class of scale-invariant properties such as this one as being sufficient for
producing the correct answer.

1Correlation Clustering can be viewed as a relaxation that allows some pairs to fail to satisfy this condition, and
the algorithms of [11, 66, 84, 197] show this is sufficient to cluster well if the number of pairs that fail is small.
Planted partition models [13, 92, 169] allow for many failures so long as they occur at random. We will be interested
in much more drastic relaxations, however.
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Figure 4.1: Data lies in four regions A,B, C,D (e.g., think of as documents on baseball, football, TCS,
and AI). Suppose that K(x, y) = 1 if x and y belong to the same region, K(x, y) = 1/2 if x ∈ A and
y ∈ B or if x ∈ C and y ∈ D, and K(x, y) = 0 otherwise. Even assuming that all points are more similar
to other points in their own cluster than to any point in any other cluster, there are still multiple consistent
clusterings, including two consistent 3-clusterings ((A ∪ B, C, D) or (A, B, C ∪D)). However, there is
a single hierarchical decomposition such that any consistent clustering is a pruning of this tree.

In our work we overcome this problem by considering two relaxations of the clustering objective that
are natural for many clustering applications. The first is as in list-decoding to allow the algorithm to
produce a small list of clusterings such that at least one of them has low error. The second is instead to
allow the clustering algorithm to produce a tree (a hierarchical clustering) such that the correct answer is
approximately some pruning of this tree. For instance, the example in Figure 4.1 has a natural hierarchical
decomposition of this form. Both relaxed objectives make sense for settings in which we imagine the
output being fed to a user who will then decide what she likes best. For example, with the tree relaxation,
we allow the clustering algorithm to effectively say: “I wasn’t sure how specific you wanted to be, so
if any of these clusters are too broad, just click and I will split it for you.” We then show that with
these relaxations, a number of interesting, natural learning-theoretic and game-theoretic properties can be
defined that each are sufficient to allow an algorithm to cluster well.

At the high level, our framework has two goals. The first is to provide advice about what type of algo-
rithms to use given certain beliefs about the relation of the similarity function to the clustering task. That
is, if a domain expert handed us a similarity function that they believed satisfied a certain natural property
with respect to the true clustering, what algorithm would be most appropriate to use? The second goal
is providing advice to the designer of a similarity function for a given clustering task (such as clustering
web-pages by topic). That is, if a domain expert is trying up to come up with a similarity measure, what
properties should they aim for?

4.1.1 Perspective

The standard approach in theoretical computer science to clustering is to choose some objective function
(e.g., k-median) and then to develop algorithms that approximately optimize that objective [83, 100, 138,
146]. If the true goal is to achieve low error with respect to an underlying correct clustering (e.g., a user’s
desired clustering of search results by topic), however, then one can view this as implicitly making the
strong assumption that not only does the correct clustering have a good objective value, but also that all
clusterings that approximately optimize the objective must be close to the correct clustering as well. In
this work, we instead explicitly consider the goal of producing a clustering of low error and then ask what
natural properties of the similarity function in relation to the target clustering are sufficient to allow an
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algorithm to do well.
In this respect we are closer to work done in the area of clustering or learning with mixture models [8,

19, 95, 147, 205]. That work, like ours, has an explicit notion of a correct ground-truth clustering of
the data points and to some extent can be viewed as addressing the question of what properties of an
embedding of data into Rn would be sufficient for an algorithm to cluster well. However, unlike our
focus, the types of assumptions made are distributional and in that sense are much more stringent than the
types of properties we will be considering. This is similarly the case with work on planted partitions in
graphs [13, 92, 169]. Abstractly speaking, this view of clustering parallels the generative classification
setting [103], while the framework we propose parallels the discriminative classification setting (i.e. the
PAC model of Valiant [201] and the Statistical Learning Theory framework of Vapnik [203] and the setting
used in Chapters 2, 3, 6 and 5 of this thesis).

In the PAC model for learning [201], the basic object of study is the concept class, and one asks
what natural classes are efficiently learnable and by what algorithms. In our setting, the basic object of
study is property, which can be viewed as a set of (concept, similarity function) pairs, i.e., the pairs for
which the target concept and similarity function satisfy the desired relation. As with the PAC model for
learning, we then ask what natural properties are sufficient to efficiently cluster well (in either the tree or
list models) and by what algorithms. Note that an alternative approach in clustering is to pick some specific
algorithm (e.g., k-means, EM) and analyze conditions for that algorithm to “succeed”. While there is also
work in classification of that type (e.g., when does some heuristic like ID3 work well), another important
aspect is in understanding which classes of functions are learnable and by what algorithms. We study
the analogous questions in the clustering context: what properties are sufficient for clustering, and then
ideally the simplest algorithm to cluster given that property.

4.1.2 Our Results

We provide a PAC-style framework for analyzing what properties of a similarity function are sufficient to
allow one to cluster well under the above two relaxations (list and tree) of the clustering objective. We
analyze both algorithmic and information theoretic questions in our model and provide results for several
natural game-theoretic and learning-theoretic properties. Specifically:

• We consider a family of stability-based properties, showing that a natural generalization of the
“stable marriage” property is sufficient to produce a hierarchical clustering. (The property is that
no two subsets A ⊂ C, A′ ⊂ C ′ of clusters C 6= C ′ in the correct clustering are both more similar
on average to each other than to the rest of their own clusters.) Moreover, a significantly weaker
notion of stability is also sufficient to produce a hierarchical clustering, but requires a more involved
algorithm.

• We show that a weaker “average-attraction” property (which is provably not enough to produce a
single correct hierarchical clustering) is sufficient to produce a small list of clusterings, and give
generalizations to even weaker conditions that generalize the notion of large-margin kernel func-
tions.

• We define the clustering complexity of a given property (the minimum possible list length that can
be guaranteed by any algorithm) and provide both upper and lower bounds for the properties we
consider. This notion is analogous to notions of capacity in classification [72, 103, 203] and it
provides a formal measure of the inherent usefulness of a given property.

• We also show that properties implicitly assumed by approximation algorithms for standard graph-
based objective functions can be viewed as special cases of some of the properties considered above.

• We show how our methods can be extended to the inductive case, i.e., by using just a constant-sized
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sample, as in property testing. While most of our algorithms extend in a natural way, for certain
properties their analysis requires more involved arguments using regularity-type results of [14, 113].

More generally, our framework provides a formal way to analyze what properties of a similarity function
would be sufficient to produce low-error clusterings, as well as what algorithms are suited for a given
property. For some of our properties we are able to show that known algorithms succeed (e.g. variations
of bottom-up hierarchical linkage based algorithms), but for the most general ones we need new algorithms
that are able to take advantage of them.

4.1.3 Connections to other chapters and to other related work

Some of the questions we address can be viewed as a generalization of questions studied in Chapter 3 or in
other work machine learning that asks what properties of similarity functions (especially kernel functions)
are sufficient to allow one to learn well [24, 31, 133, 187, 190]. E.g., the usual statement is that if a kernel
function satisfies the property that the target function is separable by a large margin in the implicit kernel
space, then learning can be done from few labeled examples. The clustering problem is more difficult
because there is no labeled data, and even in the relaxations we consider, the forms of feedback allowed
are much weaker.

We note that as in learning, given an embedding of data into some metric space, the similarity function
K(x, x′) need not be a direct translation of distance like e−d(x,x′), but rather may be a derived function
based on the entire dataset. For example, in the diffusion kernel of [156], the similarity K(x, x′) is related
to the effective resistance between x and x′ in a weighted graph defined from distances in the original
metric. This would be a natural similarity function to use, for instance, if data lies in two well-separated
pancakes.

In the inductive setting, where we imagine our given data is only a small random sample of the entire
data set, our framework is close in spirit to recent work done on sample-based clustering (e.g., [49]) in
the context of clustering algorithms designed to optimize a certain objective. Based on such a sample,
these algorithms have to output a clustering of the full domain set, that is evaluated with respect to the
underlying distribution.

We also note that the assumption that the similarity function satisfies a given property with respect
to the target clustering is analogous to the assumption considered in Chapter 2 that the target satisfies a
certain relation with respect to the underlying distribution. That is, the similarity function plays the role
of the distribution in Chapter 2. At a technical level however the results are not directly comparable. In
particular in Chapter 2 we focus on compatibility notions that can be estimated from a finite sample and
the main angle there is understanding what is a good target for a given distribution given a compatibility
relation and what is a good distribution for a given compatibility notion. Here we imagine fixing the both
the target, and we are trying to understand what is a good similarity function for the given target pair.

4.2 Definitions and Preliminaries

We consider a clustering problem (S, l) specified as follows. Assume we have a data set S of n objects,
where each object is an element of an abstract instance space X . Each x ∈ S has some (unknown)
“ground-truth” label l(x) in Y = {1, . . . , k}, where we will think of k as much smaller than n. The goal
is to produce a hypothesis h : X → Y of low error up to isomorphism of label names. Formally, we define
the error of h to be err(h) = minσ∈Sk

[Prx∈S [σ(h(x)) 6= l(x)]]. We will assume that a target error rate
ε, as well as k, are given as input to the algorithm.
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We will be considering clustering algorithms whose only access to their data is via a pairwise similarity
function K(x, x′) that given two examples outputs a number in the range [−1, 1].2 We will say that K is
a symmetric similarity function if K(x, x′) = K(x′, x) for all x, x′.

Our focus is to analyze natural properties that sufficient for a similarity function K to be good for
a clustering problem (S, l) which (ideally) are intuitive, broad, and imply that such a similarity function
results in the ability to cluster well. Formally, a property P is a relation {(l,K)} and we say that K has
property P with respect to P if (l,K) ∈ P .

As mentioned in the introduction, however, requiring an algorithm to output a single low-error clus-
tering rules out even quite strong properties. Instead we will consider two objectives that are natural if
one assumes the ability to get some limited additional feedback from a user. Specifically, we consider the
following two models:

1. List model: In this model, the goal of the algorithm is to propose a small number of clusterings
such that at least one has error at most ε. As in work on property testing, the list length should
depend on ε and k only, and be independent of n. This list would then go to a domain expert or
some hypothesis-testing portion of the system which would then pick out the best clustering.

2. Tree model: In this model, the goal of the algorithm is to produce a hierarchical clustering: that
is, a tree on subsets such that the root is the set S, and the children of any node S′ in the tree form
a partition of S′. The requirement is that there must exist a pruning h of the tree (not necessarily
using nodes all at the same level) that has error at most ε. In many applications (e.g. document
clustering) this is a significantly more user-friendly output than the list model. Note that any given
tree has at most 22k prunings of size k [154], so this model is at least as strict as the list model.

Transductive vs Inductive. Clustering is typically posed as a “transductive” [203] problem in that we are
asked to cluster a given set of points S. We can also consider an inductive model in which S is merely a
small random subset of points from a much larger abstract instance space X , and our goal is to produce a
hypothesis h : X → Y of low error on X . For a given property of our similarity function (with respect
to X) we can then ask how large a set S we need to see in order for our list or tree produced with respect
to S to induce a good solution with respect to X . For clarity of exposition, for most of this chapter we
will focus on the transductive setting. In Section 4.6 we show how our algorithms can be adapted to the
inductive setting.

Realizable vs Agnostic. For most of the properties we consider here, our assumptions are analogous to
the realizable case in supervised learning and our goal is to get ε-close to the target (in a tree of list) for
any desired ε > 0. For other properties, our assumptions are more like the agnostic in that we will assume
only that 1−ν fraction of the data satisfies a certain condition. In these cases our goal os to get ν +ε-close
to the target.

Notation. We will denote the underlying ground-truth clusters as C1, . . . , Ck (some of which may be
empty). For x ∈ X , we use C(x) to denote the cluster Cl(x) to which point x belongs. For A ⊆
X, B ⊆ X , let K(A,B) = Ex∈A,x′∈B[K(x, x′)]. We call this the average attraction of A to B. Let
Kmax(A,B) = maxx∈A,x′∈B K(x, x′); we call this maximum attraction of A to B. Given two clusterings
g and h we define the distance d(g, h) = minσ∈Sk

[Prx∈S [σ(h(x)) 6= g(x)]], i.e., the fraction of points in
the symmetric difference under the optimal renumbering of the clusters.

We are interested in natural properties that we might ask a similarity function to satisfy with respect
to the ground truth clustering. For example, one (strong) property would be that all points x are more
similar to all points x′ ∈ C(x) than to any x′ 6∈ C(x) – we call this the strict separation property. A

2That is, the input to the clustering algorithm is just a weighted graph. However, we still want to conceptually
view K as a function over abstract objects.
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weaker property would be to just require that points x are on average more similar to their own cluster
than to any other cluster, that is, K(x,C(x)−{x}) > K(x,Ci) for all Ci 6= C(x). We will also consider
intermediate “stability” conditions. For properties such as these we will be interested in the size of the
smallest list any algorithm could hope to output that would guarantee that at least one clustering in the list
has error at most ε. Specifically, we define the clustering complexity of a property as:

Definition 4.2.1 Given a property P and similarity function K, define the (ε, k)-clustering complexity
of the pair (P, K) to be the length of the shortest list of clusterings h1, . . . , ht such that any consistent
k-clustering is ε-close to some clustering in the list.3 That is, at least one hi must have error at most ε.
The (ε, k)-clustering complexity of P is the maximum of this quantity over all similarity functions K.

The clustering complexity notion is analogous to notions of capacity in classification [72, 103, 203]
and it provides a formal measure of the inherent usefulness of a given property.

Computational Complexity. In the transductive case, our goal will be to produce a list or a tree in time
polynomial in n and ideally polynomial in ε and k as well. We will indicate when our running times
involve a non-polynomial dependence on these parameters. In the inductive case, we want the running
time to depend only on k and ε and to be independent of the size of the overall instance space X , under
the assumption that we have an oracle that in constant time can sample a random point from X .

In the following sections we analyze both the clustering complexity and the computational complexity
of several natural properties and provide efficient algorithms to take advantage of such functions. We
start by analyzing the strict separation property as well as a natural relaxation in Section 4.3. We also
give formal relationships between these properties and those considered implicitly by approximation al-
gorithms for standard clustering objectives. We then analyze a much weaker average-attraction property
in Section 4.4 that is similar to Definition 3.3.1 in Chapter 3 (and which, as we have seen, has close con-
nections to large margin properties studied in Learning Theory [24, 31, 133, 187, 190].) This property is
not sufficient to produce a hierarchical clustering, however, so we then turn to the question of how weak
a property can be and still be sufficient for hierarchical clustering, which leads us to analyze properties
motivated by game-theoretic notions of stability in Section 4.5.

Our framework allows one to study computational hardness results as well. While our focus is on
getting positive algorithmic results, we discuss a simple few hardness examples in Section 4.8.1.

4.3 Simple Properties

We begin with the simple strict separation property mentioned above.
Property 1 The similarity function K satisfies the strict separation property for the clustering problem
(S, l) if all x are strictly more similar to any point x′ ∈ C(x) than to every x′ 6∈ C(x).

Given a similarity function satisfying the strict separation property, we can efficiently construct a tree
such that the ground-truth clustering is a pruning of this tree (Theorem 4.3.2). As mentioned above, a
consequence of this fact is a 2O(k) upper bound on the clustering complexity of this property. We begin
by showing a matching 2Ω(k) lower bound.

Theorem 4.3.1 For ε < 1
2k , the strict separation property has (ε, k)-clustering complexity at least 2k/2.

Proof: The similarity function is a generalization of the similarity in the picture in Figure 4.1. Specifically,
partition the n points into k subsets {R1, . . . , Rk} of n/k points each. Group the subsets into pairs
{(R1, R2), (R3, R4), . . .}, and let K(x, x′) = 1 if x and x′ belong to the same Ri, K(x, x′) = 1/2 if
x and x′ belong to two subsets in the same pair, and K(x, x′) = 0 otherwise. Notice that in this setting

3A clustering C is consistent if K has property P with respect to C.
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there are 2
k
2 clusterings (corresponding to whether or not to split each pair Ri ∪Ri+1) that are consistent

with Property 1 and differ from each other on at least n/k points. Since ε < 1
2k , any given hypothesis

clustering can be ε-close to at most one of these and so the clustering complexity is at least 2k/2.

We now present the upper bound.
Theorem 4.3.2 Let K be a similarity function satisfying the strict separation property. Then we can
efficiently construct a tree such that the ground-truth clustering is a pruning of this tree.
Proof: If K is symmetric, then to produce a tree we can simply use bottom up “single linkage” (i.e.,
Kruskal’s algorithm). That is, we begin with n clusters of size 1 and at each step we merge the two clusters
C, C ′ maximizing Kmax(C, C ′). This maintains the invariant that at each step the current clustering is
laminar with respect to the ground-truth: if the algorithm merges two clusters C and C ′, and C is strictly
contained in some cluster Cr of the ground truth, then by the strict separation property we must have
C ′ ⊂ Cr as well. If K is not symmetric, then single linkage may fail.4 However, in this case, the
following “Boruvka-inspired” algorithm can be used. Starting with n clusters of size 1, draw a directed
edge from each cluster C to the cluster C ′ maximizing Kmax(C, C ′). Then pick some cycle produced
(there must be at least one cycle) and collapse it into a single cluster, and repeat. Note that if a cluster
C in the cycle is strictly contained in some ground-truth cluster Cr, then by the strict separation property
its out-neighbor must be as well, and so on around the cycle. So this collapsing maintains laminarity as
desired.

Note: Even though the strict separation property is quite strong, a similarity function satisfying this prop-
erty can still fool a top-down spectral clustering approach. See Figure 4.2 in Section 4.8.4.

We can also consider the agnostic version of the strict separation property, where we require that K
satisfies strict separation for most of the data.

Property 2 The similarity function K satisfies ν-strict separation for the clustering problem (S, l) if for
some S′ ⊆ S of size (1− ν)n, K satisfies strict separation for (S′, l).

We can then show that:

Theorem 4.3.3 If K satisfies ν-strict separation, then so long as the smallest correct cluster has size
greater than 5νn, we can produce a tree such that the ground-truth clustering is ν-close to a pruning of
this tree.

For a proof see Section 4.7, where we also show that properties implicitly assumed by approximation
algorithms for standard graph-based objective functions can be viewed as special cases of the ν-strict
separation property.

4.4 Weaker properties

A much weaker property to ask of a similarity function is just that most points are noticeably more similar
on average to points in their own cluster than to points in any other cluster. This is similar to Defini-
tion 3.3.1 in Chapter 3 (and which, as we have seen, has close connections to large margin properties
studied in Learning Theory [24, 31, 133, 187, 190].)

Specifically, we define:

4Consider 3 points x, y, z whose correct clustering is ({x}, {y, z}). If K(x, y) = 1, K(y, z) = K(z, y) = 1/2,
and K(y, x) = K(z, x) = 0, then this is consistent with strict separation and yet the algorithm will incorrectly
merge x and y in its first step.
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Property 3 A similarity function K satisfies the (ν, γ)-average attraction property for the clustering
problem (S, l) if a 1− ν fraction of examples x satisfy:

K(x,C(x)) ≥ K(x,Ci) + γ for all i ∈ Y, i 6= l(x).

This is a fairly natural property to ask of a similarity function: if a point x is more similar on av-
erage to points in a different cluster than to those in its own, it is hard to expect an algorithm to label
it correctly. The following is a simple clustering algorithm that given a similarity function K satisfying
the average attraction property produces a list of clusterings of size that depends only on ε, k, and γ.
Specifically,

Algorithm 2 Sampling Based Algorithm, List Model

Input: Data set S, similarity function K, parameters γ, ε > 0, k ∈ Z+; N(ε, γ, k), s(ε, γ, k).
• Set L = ∅.

• Repeat N(ε, γ, k) times

For k′ = 1, . . . , k do:
- Pick a set Rk′

S of s(ε, γ, k) random points from S.

- Let h be the average-nearest neighbor hypothesis induced by the sets Ri
S , 1 ≤ i ≤ k′. That is,

for any point x ∈ S, define h(x) = argmaxi∈{1,...k′}[K(x,Ri
S)]. Add h to L.

• Output the list L.

Theorem 4.4.1 Let K be a similarity function satisfying the (ν, γ)-average attraction property for the
clustering problem (S, l). Using Algorithm 2 with the parameters s(ε, γ, k) = 4

γ2 ln
(

8k
εδ

)
and N(ε, γ, k) =

(
2k
ε

) 4k
γ2 ln

(
8k
εδ

)
ln(1

δ ) we can produce a list of at most k
O
(

k
γ2 ln

(
1
ε

)
ln

(
k
εδ

))
clusterings such that with prob-

ability 1− δ at least one of them is (ν + ε)-close to the ground-truth.

Proof: We say that a ground-truth cluster is big if it has probability mass at least ε
2k ; otherwise, we say

that the cluster is small. Let k′ be the number of “big” ground-truth clusters. Clearly the probability mass
in all the small clusters is at most ε/2.

Let us arbitrarily number the big clusters C1, . . . , Ck′ . Notice that in each round there is at least a(
ε
2k

)s(ε,γ,k) probability that RS
i ⊆ Ci, and so at least a

(
ε
2k

)ks(ε,γ,k) probability that RS
i ⊆ Ci for all

i ≤ k′. Thus the number of rounds
(

2k
ε

) 4k
γ2 ln

(
8k
εδ

)
ln(1

δ ) is large enough so that with probability at least
1− δ/2, in at least one of the N(ε, γ, k) rounds we have RS

i ⊆ Ci for all i ≤ k′. Let us fix now one such
good round. We argue next that the clustering induced by the sets picked in this round has error at most
ν + ε with probability at least 1− δ.

Let Good be the set of x in the big clusters satisfying

K(x,C(x)) ≥ K(x,Cj) + γ for all j ∈ Y, j 6= l(x).

By assumption and from the previous observations, Prx∼S [x ∈ Good] ≥ 1−ν−ε/2. Now, fix x ∈ Good.
Since K(x, x′) ∈ [−1, 1], by Hoeffding bounds we have that over the random draw of RS

j , conditioned
on RS

j ⊆ Cj ,

Pr
RS

j

(∣∣∣Ex′∼RS
j [K(x, x′)]−K(x,Cj)

∣∣∣ ≥ γ/2
)
≤ 2e−2|RS

j |γ2/4,

for all j ∈ {1, . . . , k′}. By our choice of RS
j , each of these probabilities is at most εδ/4k. So, for any

given x ∈ Good, there is at most a εδ/4 probability of error over the draw of the sets RS
j . Since this is
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true for any x ∈ Good, it implies that the expected error of this procedure, over x ∈ Good, is at most
εδ/4, which by Markov’s inequality implies that there is at most a δ/2 probability that the error rate over
Good is more than ε/2. Adding in the ν + ε/2 probability mass of points not in Good yields the theorem.

Note that Theorem 4.4.1 immediately implies a corresponding upper bound on the (ε, k)-clustering
complexity of the (ε/2, γ)-average attraction property. Note that this bound however is not polynomial in
k and γ. We can also give a lower bound showing that the exponential dependence on γ is necessary, and
furthermore this property is not sufficient to cluster in the tree model:

Theorem 4.4.2 For ε < γ/2, the (ε, k)-clustering complexity of the (0, γ)-average attraction property is

at least max
k′≤k

k
′ 1
γ /k′!, and moreover this property is not sufficient to cluster in the tree model.

Proof: Consider 1
γ regions {R1, . . . , R1/γ} each with γn points. Assume K(x, x′) = 1 if x and x′ belong

to the same region Ri and K(x, x′) = 0, otherwise. Notice that in this setting all the k-way partitions
of the set {R1, . . . , R1/γ} are consistent with Property 3 and they are all pairwise at distance at least γn
from each other. Since ε < γ/2, any given hypothesis clustering can be ε-close to at most one of these
and so the clustering complexity is at least the sum of Stirling numbers of the 2nd kind

∑k
k′=1 S(1/γ, k′)

which is at least max
k′≤k

k′1/γ/k′!.

Note: In fact, the clustering complexity bound immediately implies one cannot cluster in the tree model
since for k = 2 the bound is greater than 1.

We can further extend the lower bound in Theorem 4.4.3 to show the following:

Theorem 4.4.3 For ε < 1/2, the (ε, k)-clustering complexity of the (0, γ)-average attraction property is

at least k
k
8γ .

One can even weaken the above property to ask only that there exists an (unknown) weighting function
over data points (thought of as a “reasonableness score”), such that most points are on average more similar
to the reasonable points of their own cluster than to the reasonable points of any other cluster. This is a
generalization of the notion of K being a kernel function with the large margin property [24, 191, 195, 203]
as shown in Chapter 3.

Property 4 A similarity function K satisfies the (ν, γ)-average weighted attraction property for the
clustering problem (S, l) if there exists a weight function w : X → [0, 1] such that a 1 − ν fraction of
examples x satisfy:

Ex′∈C(x)[w(x′)K(x, x′)] ≥ Kx′∈Cr [w(x′)K(x, x′)] + γ for all r ∈ Y, r 6= l(x).

If we have K a similarity function satisfying the (ν, γ)-average weighted attraction property for the
clustering problem (S, l), then we can again cluster well in the list model, but via a more involved cluster-
ing algorithm. Formally we can show that:

Theorem 4.4.4 If K is a similarity function satisfying the (ν, γ)-average weighted attraction property

for the clustering problem (S, l), we can produce a list of at most k
Õ
(

k
εγ2

)
clusterings such that with

probability 1− δ at least one of them is ε + ν-close to the ground-truth.

We defer the proof of Theorem 4.4.4 to Section 4.10.

A too-weak property: One could imagine further relaxing the average attraction property to simply
require that for all Ci, Cj in the ground truth we have K(Ci, Ci) ≥ K(Ci, Cj) + γ; that is, the average
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intra-cluster similarity is larger than the average inter-cluster similarity. However, even for k = 2 and
γ = 1/4, this is not sufficient to produce clustering complexity independent of (or even polynomial in) n.
In particular, suppose there are two regions A,B of n/2 points each such that K(x, x′) = 1 for x, x′ in
the same region and K(x, x′) = 0 for x, x′ in different regions. However, suppose C1 contains 75% of
A and 25% of B and C2 contains 25% of C1 and 75% of C2. Then this property is satisfied for γ = 1/4
and yet by classic coding results (or Chernoff bounds), clustering complexity is clearly exponential in n
for ε < 1/8. Moreover, this implies there is no hope in the inductive (or property testing) setting.

4.5 Stability-based Properties

The properties in Section 4.4 are fairly general and allow construction of a list whose length depends only
on on ε and k (for constant γ), but are not sufficient to produce a single tree. In this section, we show that
several natural stability-based properties that lie between those considered in Sections 4.3 and 4.4 are in
fact sufficient for hierarchical clustering.

For simplicity, we focus on symmetric similarity functions. We consider the following relaxations of
Property 1 which ask that the ground truth be “stable” in the stable-marriage sense:

Property 5 A similarity function K satisfies the strong stability property for the clustering problem (S, l)
if for all clusters Cr, Cr′ , r 6= r′ in the ground-truth, for all A ⊂ Cr, A′ ⊆ Cr′ we have

K(A,Cr \A) > K(A,A′).

Property 6 A similarity function K satisfies the weak stability property for the clustering problem (S, l)
if for all Cr, Cr′ , r 6= r′, for all A ⊂ Cr, A′ ⊆ Cr′ , we have:

• If A′ ⊂ Cr′ then either K(A,Cr \A) > K(A,A′) or K(A′, Cr′ \A′) > K(A′, A).
• If A′ = Cr′ then K(A,Cr \A) > K(A,A′).
We can interpret weak stability as saying that for any two clusters in the ground truth, there does

not exist a subset A of one and subset A′ of the other that are more attracted to each other than to the
remainder of their true clusters (with technical conditions at the boundary cases) much as in the classic
notion of stable-marriage. Strong stability asks that both be more attracted to their true clusters. To further
motivate these properties, note that if we take the example from Figure 4.1 and set a small random fraction
of the edges inside each dark-shaded region to 0, then with high probability this would still satisfy strong
stability with respect to all the natural clusters even though it no longer satisfies strict separation (or even
ν-strict separation for any ν < 1 if we included at least one edge incident to each vertex). Nonetheless,
we can show that these stability notions are sufficient to produce a hierarchical clustering. We start by
proving this for strong stability here and then in Theorem 4.5.2 we also prove it for the weak stability.

Algorithm 3 Average Linkage, Tree Model

Input: Data set S, similarity function K. Output: A tree on subsets.

• Begin with n singleton clusters.

• Repeat till only one cluster remains: Find clusters C, C ′ in the current list which maximize
K(C, C ′) and merge them into a single cluster.

• Output the tree with single elements as leaves and internal nodes corresponding to all the merges
performed.

Theorem 4.5.1 Let K be a symmetric similarity function satisfying Property 5. Then we can efficiently
construct a binary tree such that the ground-truth clustering is a pruning of this tree.
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Proof: We will show that Algorithm 3 (Average Linkage) will produce the desired result. Note that the al-
gorithm uses K(C,C ′) rather than Kmax(C, C ′) as in single linkage; in fact in Figure 4.3 (In section 4.8.4)
we show an example satisfying this property where single linkage would fail.

We prove correctness by induction. In particular, assume that our current clustering is laminar with
respect to the ground truth clustering (which is true at the start). That is, for each cluster C in our current
clustering and each Cr in the ground truth, we have either C ⊆ Cr, or Cr ⊆ C or C ∩ Cr = ∅. Now,
consider a merge of two clusters C and C ′. The only way that laminarity could fail to be satisfied after the
merge is if one of the two clusters, say, C ′, is strictly contained inside some ground-truth cluster Cr (so,
Cr − C ′ 6= ∅) and yet C is disjoint from Cr. Now, note that by Property 5, K(C ′, Cr − C ′) > K(C ′, x)
for all x 6∈ Cr, and so in particular we have K(C ′, Cr − C ′) > K(C ′, C). Furthermore, K(C ′, Cr − C ′)
is a weighted average of the K(C ′, C ′′) over the sets C ′′ ⊆ Cr − C ′ in our current clustering and so at
least one such C ′′ must satisfy K(C ′, C ′′) > K(C ′, C). However, this contradicts the specification of the
algorithm, since by definition it merges the pair C, C ′ such that K(C ′, C) is greatest.

Theorem 4.5.2 Let K be a symmetric similarity function satisfying the weak stability property. Then we
can efficiently construct a binary tree such that the ground-truth clustering is a pruning of this tree.

Proof: As in the proof of theorem 4.5.1 we show that bottom-up average-linkage will produce the desired
result. Specifically, the algorithm is as follows: we begin with n clusters of size 1, and then at each step
we merge the two clusters C, C ′ such that K(C, C ′) is highest.

We prove correctness by induction. In particular, assume that our current clustering is laminar with
respect to the ground truth clustering (which is true at the start). That is, for each cluster C in our current
clustering and each Cr in the ground truth, we have either C ⊆ Cr, or Cr ⊆ C or C ∩ Cr = ∅. Now,
consider a merge of two clusters C and C ′. The only way that laminarity could fail to be satisfied after the
merge is if one of the two clusters, say, C ′, is strictly contained inside some ground-truth cluster Cr′ and
yet C is disjoint from Cr′ .

We distinguish a few cases. First, assume that C is a cluster Cr of the ground-truth. Then by definition,
K(C ′, Cr′−C ′) > K(C ′, C). Furthermore, K(C ′, Cr′−C ′) is a weighted average of the K(C ′, C ′′) over
the sets C ′′ ⊆ Cr′ − C ′ in our current clustering and so at least one such C ′′ must satisfy K(C ′, C ′′) >
K(C ′, C). However, this contradicts the specification of the algorithm, since by definition it merges the
pair C, C ′ such that K(C ′, C) is greatest.

Second, assume that C is strictly contained in one of the ground-truth clusters Cr. Then, by the
weak stability property, either K(C,Cr − C) > K(C,C ′) or K(C ′, Cr′ − C ′) > K(C,C ′). This again
contradicts the specification of the algorithm as in the previous case.

Finally assume that C is a union of clusters in the ground-truth C1, . . . Ck′ . Then by definition,
K(C ′, Cr′ − C ′) > K(C ′, Ci), for i = 1, . . . k′, and so K(C ′, Cr′ − C ′) > K(C ′, C). This again
leads to a contradiction as argued above.

While natural, Properties 5 and 6 are still somewhat brittle: in the example of Figure 4.1, for instance,
if one adds a small number of edges with similarity 1 between the natural clusters, then the properties are
no longer satisfied for them (because pairs of elements connected by these edges will want to defect). We
can make the properties more robust by requiring that stability hold only for large sets. This will break
the average-linkage algorithm used above, but we can show that a more involved algorithm building on
the approach used in Section 4.4 will nonetheless find an approximately correct tree. For simplicity, we
focus on broadening the strong stability property, as follows (one should view s as small compared to ε/k
in this definition):

Property 7 The similarity function K satisfies the (s, γ)-strong stability of large subsets property for
the clustering problem (S, l) if for all clusters Cr, Cr′ , r 6= r′ in the ground-truth, for all A ⊂ Cr,
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A′ ⊆ Cr′ with |A|+ |A′| ≥ sn we have

K(A,Cr \A) > K(A,A′) + γ.

The idea of how we can use this property is we will first run an algorithm for the list model much like
Algorithm 2, viewing its output as simply a long list of candidate clusters (rather than clusterings). In

particular, we will get a list L of k
O
(

k
γ2 log 1

ε
log k

δf

)
clusters such that with probability at least 1 − δ any

cluster in the ground-truth of size at least ε
4k is close to one of the clusters in the list. We then run a second

“tester” algorithm that is able to throw away candidates that are sufficiently non-laminar with respect to
the correct clustering and assembles the ones that remain into a tree. We present and analyze the tester
algorithm, Algorithm 4, below.

Algorithm 4 Testing Based Algorithm, Tree Model.

Input: Data set S, similarity function K, parameters γ > 0, k ∈ Z+, f, g, s, α > 0. A list of
clusters L with the property that any cluster C in the ground-truth is at least f -close to one of them.
Output: A tree on subsets.

1. Throw out all clusters of size at most αn. For every pair of clusters C, C ′ in our list L of clusters
that are sufficiently “non-laminar” with respect to each other in that |C \ C ′| ≥ gn, |C ′ \ C| ≥ gn
and |C ∩ C ′| ≥ gn, compute K(C ∩ C ′, C \ C ′) and K(C ∩ C ′, C ′ \ C). Throw out whichever
one does worse: i.e., throw out C if the first similarity is smaller, else throw out C ′. Let L′ be the
remaining list of clusters at the end of the process.

2. Greedily sparsify the list L′ so that no two clusters are approximately equal (that is, choose a clus-
ter, throw out all that are approximately equal to it, and repeat). We say two clusters C, C ′ are
approximately equal if |C \ C ′| ≤ gn, |C ′ \ C| ≤ gn and |C ′ ∩ C| ≥ gn. Let L′′ be the list
remaining.

3. Construct a forest on the remaining list L′′. C becomes a child of C ′ in this forest if C ′ approxi-
mately contains C, i.e. |C \ C ′| ≤ gn, |C ′ \ C| ≥ gn and |C ′ ∩ C| ≥ gn.

4. Complete the forest arbitrarily into a tree.

Theorem 4.5.3 Let K be a similarity function satisfying (s, γ)-strong stability of large subsets for the
clustering problem (S, l). Let L be a list of clusters such that any cluster in the ground-truth of size at
least αn is f -close to one of the clusters in the list. Then Algorithm 4 with parameters satisfying s+f ≤ g,
f ≤ gγ/10 and α > 6kg yields a tree such that the ground-truth clustering is 2αk-close to a pruning of
this tree.

Proof: Let k′ be the number of “big” ground-truth clusters: the clusters of size at least αn; without
loss of generality assume that C1, ..., Ck′ are the big clusters.

Let C ′
1, ...,C ′

k′ be clusters inL such that d(Ci, C
′
i) is at most f for all i. By Property 7 and Lemma 4.5.4

(stated below), we know that after Step 1 (the “testing of clusters” step) all the clusters C ′
1, ...,C ′

k′ survive;
furthermore, we have three types of relations between the remaining clusters. Specifically, either:

(a) C and C ′ are approximately equal; that means |C \ C ′| ≤ gn, |C ′ \ C| ≤ gn and |C ′ ∩ C| ≥ gn.

(b) C and C ′ are approximately disjoint; that means |C \ C ′| ≥ gn, |C ′ \ C| ≥ gn and |C ′ ∩ C| ≤ gn.

(c) or C ′ approximately contains C; that means |C \ C ′| ≤ gn, |C ′ \ C| ≥ gn and |C ′ ∩ C| ≥ gn.
LetL′′ be the remaining list of clusters after sparsification. It’s easy to show that there exists C ′′

1 , ..., C ′′
k′

in L′′ such that d(Ci, C
′′
i ) is at most (f + 2g), for all i. Moreover, all the elements in L′′ are either in the

relation “subset” or “disjoint”. Also, since all the clusters C1, ..., Ck′ have size at least αn, we also have
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that C ′′
i , C ′′

j are in the relation “disjoint”, for all i, j, i 6= j. That is, in the forest we construct C ′′
i are not

descendants of one another.
We show C ′′

1 , ..., C ′′
k′ are part of a pruning of small error rate of the final tree. We do so by exhibiting

a small extension to a list of clusters L′′′ that are all approximately disjoint and nothing else in L′′ is
approximately disjoint from any of the clusters in L′′′ (thus L′′′ will be the desired pruning). Specifically
greedily pick a cluster C̃1 in L′′ that is approximately disjoint from C ′′

1 , ..., C ′′
k′ , and in general in step

i > 1 greedily pick a cluster C̃1 in L′′ that is approximately disjoint from C ′′
1 , ..., C ′′

k′ , C̃1, . . . , C̃i−1. Let
C ′′

1 , ..., C ′′
k′ , C̃1, . . . , C̃k̃ be the list L′′′. By design, L′′′ will be a pruning of the final tree and we now claim

its total error is at most 2αkn. In particular, note that the total number of points missing from C ′′
1 , ..., C ′′

k′
is at most k(f +2g)n+kαn ≤ 3

2kαn. Also, by construction, each C̃i must contain at least αn−(k+i)gn

new points, which together with the above implies that k̃ ≤ 2k. Thus, the total error of L′′′ overall is at
most 3

2αkn + 2kk′gn ≤ 2αkn.

Lemma 4.5.4 Let K be a similarity function satisfying the (s, γ)-strong stability of large subsets property
for the clustering problem (S, l). Let C, C ′ be such that |C ∩C ′| ≥ gn, |C \C ′| ≥ gn and |C ′ \C| ≥ gn.
Let C∗ be a cluster in the underlying ground-truth such that |C∗ \ C| ≤ fn and |C \ C∗| ≤ fn. Let
I = C ∩ C ′. If s + f ≤ g and f ≤ gγ/10 , then K(I, C \ I) > K(I, C ′ \ I).

Proof: Let I∗ = I ∩ C∗. So, I∗ = C ∩ C ′ ∩ C∗. We prove first that

K(I, C \ I) > K(I∗, C∗ \ I∗)− γ/2. (4.1)

Since K(x, x′) ≥ −1, we have

K(I, C \ I) ≥ (1− p1)K(I ∩ C∗, (C \ I) ∩ C∗)− p1,

where 1 − p1 = |I∗|
|I| · |(C\I)∩C∗|

|C\I| . By assumption we have |I| ≥ gn, and also |I \ I∗| ≤ fn. That means
|I∗|
|I| = |I|−|I\I∗|

|I| ≥ g−f
g . Similarly, |C \ I| ≥ gn and

∣∣(C \ I) ∩ C̄∗∣∣ ≤ |C \ C∗| ≤ fn. So,

|(C \ I) ∩ C∗|
|C \ I| =

|C \ I| − ∣∣(C \ I) ∩ C̄∗∣∣
|C \ I| ≥ g − f

g
.

Let us denote by 1− p the quantity
(

g−f
g

)2
. We have:

K(I, C \ I) ≥ (1− p)K(I∗, (C \ I) ∩ C∗)− p. (4.2)

Let A = (C∗ \ I∗) ∩ C and B = (C∗ \ I∗) ∩ C̄. We have

K(I∗, C∗ \ I∗) = (1− α)K(I∗, A)− αK(I∗, B), (4.3)

where 1− α = |A|
|C∗\I∗| . Note that

A = (C∗ \ I∗) ∩ C = (C∗ ∩ C) \ (I∗ ∩ C) = (C∗ ∩ C) \ I∗

and
(C \ I) ∩ C∗ = (C ∩ C∗) \ (I ∩ C∗) = (C∗ ∩ C) \ I∗,

so A = (C \ I) ∩ C∗. Furthermore

|(C \ I) ∩ C∗| = |(C\C ′)\(C\(C ′∩C∗))| ≥ |C\C ′|−|C\(C ′∩C∗)| ≥ |C\C ′|−|C\C∗| ≥ gn−fn.
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We also have |B| = |(C∗ \ I∗) ∩ C̄| ≥ |C∗ \ C|. These imply that 1− α = |A|
|A|+|B| = 1

1+|B|/|A| ≥ g−f
g ,

and furthermore α
1−α = −1 + 1

1−α ≤ f
g−f . Equation (4.3) implies

K(I∗, A) =
1

1− α
K(I∗, C∗ \ I∗)− α1

1− α1
α1K(I∗, B)

and since K(x, x′) ≤ 1, we obtain:

K(I∗, A) ≥ K(I∗, C∗ \ I∗)− f

g − f
. (4.4)

Overall, combining (4.2) and (4.4) we obtain: K(I, C \ I) ≥ (1− p)
[
K(I∗, C∗ \ I∗)− f

g−f

]
− p, so

K(I, C \ I) ≥ K(I∗, C∗ \ I∗)− 2p− (1− p)
f

g − f
.

We prove now that 2p+(1−p) f
g−f ≤ γ/2, which finally implies relation (4.1). Since 1−p =

(
g−f

g

)2
, we

have p = 2gf−f2

g2 , so 2p+(1−p) f
g−f = 22gf−f2

g2 + f(g−f)
g2 = 4f

g −2
(

f
g

)2
+ f

g −
(

f
g

)2
= 5f

g −2
(

f
g

)2
≤

γ/2, since by assumption f ≤ gγ/10.
Our assumption that K is a similarity function satisfying the strong stability property with a threshold

sn and a γ-gap for our clustering problem (S, l), together with the assumption s + f ≤ g implies

K(I∗, C∗ \ I∗) ≥ K(I∗, C ′ \ (I∗ ∪ C∗)) + γ. (4.5)

We finally prove that

K(I∗, C ′ \ (I∗ ∪ C∗)) ≥ K(I, C ′ \ I)− γ/2. (4.6)

The proof is similar to the proof of statement (4.1). First note that

K(I, C ′ \ I) ≤ (1− p2)K(I∗, (C ′ \ I) ∩ C̄∗) + p2,

where 1 − p2 = |I∗|
|I| ·

|(C′\I)∩C̄∗|
|C′\I| . We know from above that |I∗|

|I| ≥ g−f
g , and we can also show

|(C′\I)∩C̄∗|
|C′\I| ≥ g−f

g . So 1− p2 ≥
(

g−f
g

)2
, and so p2 ≤ 2 g

f ≤ γ/2, as desired.
To complete the proof note that relations (4.1), (4.5) and (4.6) together imply the desired result, namely

that K(I, C \ I) > K(I, C ′ \ I).

Theorem 4.5.5 Let K be a similarity function satisfying the (s, γ)-strong stability of large subsets prop-
erty for the clustering problem (S, l). Assume that s = O(ε2γ/k2). Then using Algorithm 4 with para-
meters α = O(ε/k), g = O(ε2/k2), f = O(ε2γ/k2), together with Algorithm 2 we can with probability
1− δ produce a tree with the property that the ground-truth is ε-close to a pruning of this tree. Moreover,
the size of this tree is O(k/ε).

Proof: First, we run Algorithm 2 get a list L of clusters such that with probability at least 1 − δ any
cluster in the ground-truth of size at least ε

4k is f -close to one of the clusters in the list. We can ensure

that our list L has size at most k
O
(

k
γ2 log 1

ε
log k

δf

)
. We then run Procedure 4 with parameters α = O(ε/k),

g = O(ε2/k2), f = O(ε2γ/k2). We thus obtain a tree with the guarantee that the ground-truth is ε-close
to a pruning of this tree (see Theorem 4.5.3). To complete the proof we only need to show that this tree
has O(k/ε) leaves. This follows from the fact that all leaves of our tree have at least αn points and the
overlap between any two of them is at most gn (for a formal proof see lemma 4.5.6).
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Lemma 4.5.6 Let P1, ..., Ps be a quasi-partition of S such that |Pi| ≥ nν
k and |Pi ∩ Pj | ≤ gn for all

i, j ∈ {1, . . . , s}, i 6= j. If g = ν2

5k2 , then s ≤ 2k
ν .

Proof: Assume for contradiction that s > L = 2k
ν , and consider the first L parts P1, ..., PL. Then(

nν
k − 2k

ν gn
)
2k

ν is a lower bound on the number of points that belong to exactly one of the parts Pi,
i ∈ {1, . . . , L}. For our choice of g, g = ν2

5k2 , we have
(
nν

k − 2k
ν gn

)
2k

ν = 2n − 4
5n. So 6

5n is a
lower bound on the number of points that belong to exactly one of the parts Pi, i ∈ {1, . . . , L}, which is
impossible since |S| = n. So, we must have s ≤ 2k

ν .

To better illustrate our properties, we present a few interesting examples in Section 4.8.4.

4.6 Inductive Setting

In this section we consider an inductive model in which S is merely a small random subset of points from
a much larger abstract instance space X , and clustering is represented implicitly through a hypothesis
h : X → Y . In the list model our goal is to produce a list of hypotheses, {h1, . . . , ht} such that at least
one of them has error at most ε. In the tree model we assume that each node in the tree induces a cluster
which is implicitly represented as a function f : X → {0, 1}. For a fixed tree t and a point x, we define
t(x) as the subset of nodes in T that contain x (the subset of nodes f ∈ t with f(x) = 1). We say that a
tree T has error at most ε if T (X) has a pruning f1, ..., fk′ of error at most ε.

We analyze in the following, for each of our properties, how large a set S we need to see in order for
our list or tree produced with respect to S to induce a good solution with respect to X .

The average attraction property. Our algorithms for the average attraction property (Property 3) and the
average weighted attraction property are already inherently inductive.

The strict separation property. We can adapt the algorithm in Theorem 4.3.2 to the inductive setting as
follows. We first draw a set S of n = O

(
k
ε ln

(
k
δ

))
unlabeled examples. We run the algorithm described

in Theorem 4.3.2 on this set and obtain a tree t on the subsets of S. Let Q be the set of leaves of this
tree. We associate each node u in t a boolean function fu specified as follows. Consider x ∈ X , and let
q(x) ∈ Q be the leaf given by argmaxq∈QK(x, q); if u appears on the path from q(x) to the root, then set
fu(x) = 1, otherwise set fu(x) = 0.

Note that n is large enough to ensure that with probability at least 1 − δ, S includes at least a point
in each cluster of size at least ε

k . Remember that C = {C1, . . . , Ck} is the correct clustering of the entire
domain. Let CS be the (induced) correct clustering on our sample S of size n. Since our property is
hereditary, Theorem 4.3.2 implies that CS is a pruning of t. It then follows from the specification of our
algorithm and from the definition of the strict separation property that with probability at least 1 − δ the
partition induced over the whole space by this pruning is ε-close to C.

The strong stability of large subsets property. We can also naturally extend the algorithm for Property 7
to the inductive setting. The main difference in the inductive setting is that we have to estimate (rather
than compute) the |Cr \ Cr′ |, |Cr′ \ Cr|, |Cr ∩ Cr′ |, K(Cr ∩ Cr′ , Cr \ Cr′) and K(Cr ∩ Cr′ , Cr′ \ Cr)
for any two clusters Cr, Cr′ in the list L. We can easily do that with only poly(k, 1/ε, 1/γ, 1/δ) log(|L|))
additional points, where L is the input list in Algorithm 4 (whose size depends on 1/ε, 1/γ and k only).
Specifically, using a modification of the proof in Theorem 4.5.5 and standard concentration inequalities
(e.g. the McDiarmid inequality [103]) we can show that:

Theorem 4.6.1 Assume that K is a similarity function satisfying the (s, γ)-strong stability of large subsets
property for (X, l). Assume that s = O(ε2γ/k2). Then using Algorithm 4 with parameters α = O(ε/k),
g = O(ε2/k2), f = O(ε2γ/k2), together with Algorithm 2 we can produce a tree with the property that
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the ground-truth is ε-close to a pruning of this tree. Moreover, the size of this tree is O(k/ε). We use

O
(

k
γ2 ln

(
k
εδ

) · (k
ε

) 4k
γ2 ln

(
k
εδ

)
ln(1

δ )
)

points in the first phase and O
(

1
γ2

1
g2

k
γ2 log 1

ε log k
δf log k

)
points in

the second phase.

Note that each cluster is represented as a nearest neighbor hypothesis over at most k sets.

The strong stability property. We first note that we need to consider a variant of our property that has
a γ-gap. To see why this is necessary consider the following example. Suppose all K(x, x′) values are
equal to 1/2, except for a special single center point xi in each cluster Ci with K(xi, x) = 1 for all x in
Ci. This satisfies strong-stability since for every A ⊂ Ci we have K(A,Ci \A) is strictly larger than 1/2.
Yet it is impossible to cluster in the inductive model because our sample is unlikely to contain the center
points. The variant of our property that is suited to the inductive setting is the following:

Property 8 The similarity function K satisfies the γ-strong stability property for the clustering problem
(X, l) if for all clusters Cr, Cr′ , r 6= r′ in the ground-truth, for all A ⊂ Cr, for all A′ ⊆ Cr′ we have

K(A,Cr \A) > K(A,A′) + γ.

For this property, we could always run the algorithm for Theorem 4.6.1, though running time would
be exponential in k and 1/γ. We show here how we can get polynomial dependence on these parameters
by adapting Algorithm 3 to the inductive setting as in the case of the strict order property. Specifically, we
first draw a set S of n unlabeled examples. We run the average linkage algorithm on this set and obtain a
tree t on the subsets of S. We then attach each new point x to its most similar leaf in this tree as well as
to the set of nodes on the path from that leaf to the root. For a formal description see Algorithm 5. While
this algorithm looks natural, proving its correctness requires more involved arguments.

Algorithm 5 Inductive Average Linkage, Tree Model

Input: Similarity function K, parameters γ, ε > 0, k ∈ Z+; n = n(ε, γ, k, δ);

• Pick a set S = {x1, . . . , xn} of n random examples from X

• Run the average linkage algorithm (Algorithm 3) on the set S and obtain a tree t on the subsets of
S. Let Q be the set of leaves of this tree.

• Associate each node u in t a function fu (which induces a cluster) specified as follows.

Consider x ∈ X , and let q(x) ∈ Q be the leaf given by argmaxq∈QK(x, q); if u appears on the
path from q(x) to the root, then set fu(x) = 1, otherwise set fu(x) = 0.

• Output the tree t.

We show in the following that for n = poly(k, 1/ε, 1/γ, 1/δ) we obtain a tree T which has a pruning
f1, ..., fk′ of error at most ε. Specifically:

Theorem 4.6.2 Let K be a similarity function satisfying the strong stability property for the clustering
problem (X, l). Then using Algorithm 5 with parameters n = poly(k, 1/ε, 1/γ, 1/δ), we can produce a
tree with the property that the ground-truth is ε-close to a pruning of this tree.

Proof: Remember that C = {C1, . . . , Ck} is the ground-truth clustering of the entire domain. Let
CS = {C ′

1, . . . , C
′
k} be the (induced) correct clustering on our sample S of size n. As in the previous

arguments we assume that a cluster is big if it has probability mass at least ε
2k .

First, Theorem 4.6.3 below implies that with high probability the clusters C ′
i corresponding to the large

ground-truth clusters satisfy our property with a gap γ/2. (Just perform a union bound over x ∈ S \ C ′
i.)
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It may be that C ′
i corresponding to the small ground-truth clusters do not satisfy the property. However,

a careful analysis of the argument in Theorem 4.5.1 shows that that with high probability CS is a pruning
of the tree t. Furthermore since n is large enough we also have that with high probability K(x,C(x)) is
within γ/2 of K(x,C ′(x)) for a 1− ε fraction of points x. This ensures that with high probability, for any
such good x the leaf q(x) belongs to C(x). This finally implies that the partition induced over the whole
space by the pruning CS of the tree t is ε-close to C.

Note that each cluster u is implicitly represented by the function fu defined in the description of
Algorithm 5.

We prove in the following that for a sufficiently large value of n sampling preserves stability. Specifi-
cally:

Theorem 4.6.3 Let C1, C2, . . . , Ck be a partition of a set X such that for any A ⊆ Ci and any x 6∈ Ci,

K(A,Ci \A) ≥ K(A, x) + γ.

Let x 6∈ Ci and let C ′
i be a random subset of n′ elements of Ci. Then, n′ = poly(1/γ, log(1/δ)) is

sufficient so that with probability 1− δ, for any A ⊂ C ′
i,

K(A, C ′
i \A) ≥ K(A, x) +

γ

2
.

Proof: First of all, the claim holds for singleton subsets A with high probability using a Chernoff bound.
This implies the condition is also satisfied for every subset A of size at most γn′/2. Thus, it remains
to prove the claim for large subsets. We do this using the cut-decomposition of [113] and the random
sampling analysis of [14].

Let N = |Ci|. By [113], we can decompose the similarity matrix for Ci into a sum of cut-matrices
B1 + B2 + . . . + Bs plus a low cut-norm matrix W with the following properties. First, each Bj is a
cut-matrix, meaning that for some subset Sj1 of the rows and subset Sj2 of the columns and some value
dj , we have: Bj [xy] = dj for x ∈ Sj1, y ∈ Sj2 and all Bj [xy] = 0 otherwise. Second, each dj = O(1).
Finally, s = 1/ε2 cut-matrices are sufficient so that matrix W has cut-norm at most ε2N : that is, for
any partition of the vertices A, A′, we have |∑x∈A,y∈A′ W [xy]| ≤ εN2; moreover, ||W ||∞ ≤ 1/ε and
||W ||F ≤ N .

We now closely follow arguments in [14]. First, let us imagine that we have exact equality Ci = B1 +
. . .+Bs, and we will add in the matrix W later. We are given that for all A, K(A,Ci \A) ≥ K(A, x)+γ.
In particular, this trivially means that for each “profile” of sizes {tjr}, there is no set A satisfying

|A ∩ Sjr| ∈ [tjr − α, tjr + α]N
|A| ≥ (γ/4)N

that violates our given condition. The reason for considering cut-matrices is that the values |A ∩ Sjr|
completely determine the quantity K(A,Ci \ A). We now set α so that the above constraints determine
K(A,Ci \ A) up to ±γ/4. In particular, choosing α = o(γ2/s) suffices. This means that fixing a profile
of values {tjr}, we can replace “violates our given condition” with K(A, x) ≥ c0 for some value c0

depending on the profile, losing only an amount γ/4. We now apply Theorem 9 (random sub-programs of
LPs) of [14]. This theorem states that with probability 1−δ, in the subgraph C ′

i, there is no set A′ satisfying
the above inequalities where the right-hand-sides and objective c0 are reduced by O(

√
log(1/δ)/

√
n).

Choosing n À log(1/δ)/α2 we get that with high probability the induced cut-matrices B′
i have the

property that there is no A′ satisfying

|A′ ∩ S′jr| ∈ [tjr − α/2, tjr + α/2]N
|A′| ≥ (γ/2)n′
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with the objective value c0 reduced by at most γ/4. We now simply do a union-bound over all possible
profiles {tjr} consisting of multiples of α to complete the argument.

Finally, we incorporate the additional matrix W using the following result from [14].

Lemma 4.6.4 [14][Random submatrix] For ε, δ > 0, and any W an N × N real matrix with cut-norm
||W ||C ≤ εN2, ||W ||∞ ≤ 1/ε and ||W ||F ≤ N , let S′ be a random subset of the rows of W with
n′ = |S′| and let W ′ be the n′ × n′ submatrix of W corresponding to W . For n′ > (c1/ε4δ5) log(2/ε),
with probability at least 1− δ,

||W ′||C ≤ c2
ε√
δ
n′2

where c1, c2 are absolute constants.

We want the addition of W ′ to influence the values K(A,C ′
i − A) by o(γ). We now use the fact that we

only care about the case that |A| ≥ γn′/2 and |C ′
i − A| ≥ γn′/2, so that it suffices to affect the sum∑

x∈A,y∈C′i−A K(x, y) by o(γ2n′2). In particular, this means it suffices to have ε = õ(γ2), or equivalently

s = Õ(1/γ4). This in turn implies that it suffices to have α = õ(γ6), which implies that n′ = Õ(1/γ12)
suffices for the theorem.

4.7 Approximation Assumptions

When developing a c-approximation algorithm for some clustering objective function F , if the goal is
to actually get the points correct, then one is implicitly making the assumption (or hope) that any c-
approximation to F must be ε-close in symmetric difference to the target clustering. We show here we
show how assumptions of this kind can be viewed as special cases of the ν-strict separation property.

Property 9 Given objective function F , we say that a metric d over point set S satisfies the (c, ε)-F
property with respect to target C if all clusterings C′ that are within a factor c of optimal in terms of
objective F are ε-close to C.

We now consider in particular the k-median and k-center objective functions.
Theorem 4.7.1 If metric d satisfies the (2, ε)-k-median property for dataset S, then the similarity function
−d satisfies the ν-strict separation property for ν = 4ε.
Proof: Let C = C1, C2, ..., Ck be the target clustering and let OPT = {OPT1, OPT2 ...,OPTk} be the
k-median optimal clustering, where

∑
i |Ci ∩ OPTi| ≥ (1 − ε)n. Let’s mark the all set of points of size

at most εn at most where C and OPT disagree.
If there exists an unmarked xj that is more similar to some unmarked zj in a different cluster than to

some unmarked yj in its own cluster, and if so we mark all three points. If this process halts after ≤ εn
rounds, then we are happy: the unmarked set, which has at least (1−4ε)n points, satisfies strict separation.
We now claim we can get a contradiction if the process lasts longer. Specifically, begin with OPT (not
C) and move each xj to the cluster containing point zj . Call the result OPT′. Note that for all j, the pair
(xj , yj) are in the same cluster in C (because we only chose from unmarked points where C and OPT
agree) but are in different clusters in OPT′. So, d(OPT′, C) > εn. However, OPT′ has cost at most
2OPT; to see this note that moving xi into the cluster of the corresponding zi will increase the k-median
objective by at most cost′(xj) ≤ d(xj , zj) + cost(zj) ≤ d(xj , yj) + cost(zj) ≤ cost(xj) + cost(yj) +
cost(zj). Thus, the k-median objective at most doubles, i.e, cost′(OPT′) ≤ cost(OPT) contradicting
our initial assumption.

We can similarly prove:
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Theorem 4.7.2 If the metric d satisfies the (3, ε)-k-center property, then the similarity function (−d)
satisfies the ν-strict separation property for ν = 4ε.

So if the metric d satisfies the (2, ε)-k-median or the (2, ε)-k-center property for dataset S, then
the similarity function −d satisfies the ν-strict separation property for ν = 4ε. Theorem 4.3.3 (in Sec-
tion 4.7.1) then implies that as long as the smallest cluster in the target has size 20εn we can produce a
tree such that the ground-truth clustering is 4ε-close to a pruning of this tree.

Note: In fact, the both the (2, ε)-k-median property and the (2, ε)-k-means property are quite a bit more
restrictive than ν-strict separation. They imply, for instance, that except for an O(ε) fraction of “bad”
points, there exists d such that all points in the same cluster have distance much less than d and all points
in different clusters have distance much greater than d. In contrast, ν-strict separation would allow for
different distance scales at different parts of the graph.

We have further exploited this in recent work [42]. Specifically in [42] we show that if we assume that
any c-approximation to the k-median objective is ε-close to the target—then we can produce clusterings
that are O(ε)-close to the target, even for values c for which obtaining a c-approximation is NP-hard.

In particular, the main results of [42] for the are the following:

Theorem 4.7.3 If metric d satisfies the (1+α, ε)-k-median property for dataset S and each cluster in the
target clustering has size at least (4+15/α)εn+2, then we can efficiently find a clustering that is ε-close
to the target.

Theorem 4.7.4 If metric d satisfies the (1+α, ε)-k-median property for dataset S, then we can efficiently
find a clustering which is O(ε/α)-close to the target.

These results also highlight a somewhat surprising conceptual difference between assuming that the
optimal solution to the k-median objective is ε-close to the target, and assuming that any approximately
optimal solution is ε-close to the target, even for approximation factor say c = 1.01. In the former case,
the problem of finding a solution that is O(ε)-close to the target remains computationally hard, and yet for
the latter we have an efficient algorithm.

We also prove in [42] similar results for the k-means and min-sum properties.

4.7.1 The ν-strict separation Property

We end this section by proving theorem 4.3.3.
Theorem 4.3.3 If K satisfies ν-strict separation, then so long as the smallest correct cluster has size
greater than 5νn, we can produce a tree such that the ground-truth clustering is ν-close to a pruning of
this tree.

Proof: Let S′ ⊆ S be the set of (1 − ν)n points such that K satisfies strict separation with respect
to S′. Call the points in S′ “good”, and those not in S′ “bad” (of course, goodness is not known to the
algorithm). We first generate a list L of n2 clusters such that, ignoring bad points, any cluster in the
ground-truth is in the list. We can do this by for each point x ∈ S creating a cluster of the t nearest points
to it for each 4νn ≤ t ≤ n.

We next run a procedure that removes points from clusters that are non-laminar with respect to each
other without hurting any of the correct clusters, until the remaining set is fully laminar. Specifically, while
there exist two clusters C and C ′ that are non-laminar with respect to each other, we do the following:

1. If either C or C ′ has size ≤ 4νn, delete it from the list. (By assumption, it cannot be one of the
ground-truth clusters).

2. If C and C ′ are “somewhat disjoint” in that |C \ C ′| > 2νn and |C ′ \ C| > 2νn, each point
x ∈ C∩C ′ chooses one of C or C ′ to belong to based on whichever of C \C ′ or C ′ \C respectively
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has larger median similarity to x. We then remove x from the cluster not chosen. Because each of
C \ C ′ and C ′ \ C has a majority of good points, if one of C or C ′ is a ground-truth cluster (with
respect to S′), all good points x in the intersection will make the correct choice. C and C ′ are now
fully disjoint.

3. If C, C ′ are “somewhat equal” in that |C \ C ′| ≤ 2νn and |C ′ \ C| ≤ 2νn, we make them exactly
equal based on the following related procedure. Each point x in the symmetric difference of C
and C ′ decides in or out based on whether its similarity to the (νn + 1)st most-similar point in
C ∩ C ′ is larger or smaller (respectively) than its similarity to the (νn + 1)st most similar point in
S \ (C ∪C ′). If x is a good point in C \C ′ and C is a ground-truth cluster (with respect to S′), then
x will correctly choose in, whereas if C ′ is a ground-truth cluster then x will correctly choose out.
Thus, we can replace C and C ′ with a single cluster consisting of their intersection plus all points x
that chose in, without affecting the correct clusters.

4. If none of the other cases apply, it may still be there exist C, C ′ such that C “somewhat contains”
C ′ in that |C \C ′| > 2νn and 0 < |C ′ \C| ≤ 2νn. In this case, choose the largest such C and apply
the same procedure as in Step 3, but only over the points x ∈ C ′ \ C. At the end of the procedure,
we have C ⊇ C ′ and the correct clusters have not been affected with respect to the good points.

Since all clusters remaining are laminar, we can now arrange them into a forest, which we then arbitrarily
complete into a tree.

4.8 Other Aspects and Examples

4.8.1 Computational Hardness Results

Our framework also allows us to study computational hardness results as well. We discuss here a simple
example.

Property 10 A similarity function K satisfies the unique best cut property for the clustering problem
(S, l) if r = 2 and

∑
x∈C1,x′∈C2

K(x, x′) <
∑

x∈A,x′∈B

K(x, x′) for all partitions (A,B) 6= (C1, C2) of S.

Clearly, by design the clustering complexity of Property 10 is 1. However, we have the following compu-
tational hardness result.
Theorem 4.8.1 List-clustering under the unique best cut property is NP-hard. That is, there exists ε > 0
such that given a dataset S and a similarity function K satisfying the unique best cut property, it is NP-
hard to produce a polynomial-length list of clusterings such that at least one is ε-close to the ground
truth.

Proof: It is known that the MAX-CUT problem on cubic graphs is APX-hard [12] (i.e. it is hard to
approximate within a constant factor α < 1).

We create a family ((S, l),K) of instances for our clustering property as follows. Let G = (V,E)
be an instance of the MAX-CUT problem on cubic graphs, |V | = n. For each vertex i ∈ V in the
graph we associate a point xi ∈ S; for each edge (i, j) ∈ E we define K(xi, xj) = −1, and we define
K(xi, xj) = 0 for each (i, j) /∈ E. Let SV ′ denote the set {xi : i ∈ V ′}. Clearly for any given cut
(V1, V2) in G = (V, E), the value of the cut is exactly

F (SV1 , SV2) =
∑

x∈SV1
,x′∈SV2

−K(x, x′).

Let us now add tiny perturbations to the K values so that there is a unique partition (C1, C2) =
(SV ∗1 , SV ∗2 ) minimizing the objective function F , and this partition corresponds to some maxcut (V ∗

1 , V ∗
2 )
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of G (e.g., we can do this so that this partition corresponds to the lexicographically first such cut). By
design, K now satisfies the unique best cut property for the clustering problem S with target clustering
(C1, C2).

Define ε such that any clustering which is ε-close to the correct clustering (C1, C2) must be at least
α-close in terms of the max-cut objective. E.g., ε < 1−α

4 suffices because the graph G is cubic. Now,
suppose a polynomial time algorithm produced a polynomial-sized list of clusterings with the guarantee
that at least one clustering in the list has error at most ε in terms of its accuracy with respect to (C1, C2).
In this case, we could then just evaluate the cut value for all the clusterings in the list and pick the best
one. Since at least one clustering is at least ε-close to (C1, C2) by assumption, we are guaranteed that at
least one is within α of the optimum cut value.

Note that we can get a similar results for any clustering objective F that (a) is NP-hard to approximate
within a constant factor, and (b) has the smoothness property that it gives approximately the same value
to any two clusterings that are almost the same.

4.8.2 Other interesting properties

An interesting relaxation of the average attraction property is to ask that there exists a cluster so that most
of the points are noticeably more similar on average to other points in their own cluster than to points
in all the other clusters, and that once we take out the points in that cluster the property becomes true
recursively 5. Formally:

Property 11 A similarity function K satisfies the γ-weak average attraction property for the clustering
problem (S, l) if there exists cluster Cr such that all examples x ∈ Cr satisfy:

K(x,C(x)) ≥ K(x, S \ Cr) + γ,

and moreover the same holds recursively on the set S \ Cr.

We can then adapt Algorithm 2 to get the following result:

Theorem 4.8.2 Let K be a similarity function satisfying γ-weak average attraction for the clustering

problem (S, l). Using Algorithm 2 with s(ε, γ, k) = 4
γ2 ln

(
8k
εδ

)
and N(ε, γ, k) =

(
2k
ε

) 4k
γ2 ln

(
8k
εδ

)
ln(1

δ ) we

can produce a list of at most k
O
(

k
γ2 ln

(
1
ε

)
ln

(
k
εδ

))
clusterings such that with probability 1− δ at least one

of them is ε-close to the ground-truth.

Strong attraction An interesting property that falls in between the weak stability property and the aver-
age attraction property is the following:
Property 12 The similarity function K satisfies the γ-strong attraction property for the clustering prob-
lem (S, l) if for all clusters Cr, Cr′ , r 6= r′ in the ground-truth, for all A ⊂ Cr we have

K(A,Cr \A) > K(A,Cr′) + γ.

We can interpret the strong attraction property as saying that for any two clusters Cr and Cr′ in the
ground truth, for any subset A ⊂ Cr, the subset A is more attracted to the rest of its own cluster than to
Cr′ . It is easy to see that we cannot cluster in the tree model, and moreover we can show an lower bound
on the sample complexity which is exponential. Specifically:

Theorem 4.8.3 For ε ≤ γ/4, the γ-strong attraction property has (ε, 2) clustering complexity as large as
2Ω(1/γ).

5Thanks to Sanjoy Dasgupta for pointing out that this property is satisfied on real datasets, such as the MINST dataset.
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Proof: Consider N = 1
γ blobs of equal probability mass. Let’s consider a special matching of these blobs

{(R1, L1), (R2, L2), . . . , (RN/2, LN/2)} and let’s define K(x, x′) = 0 if x ∈ Ri and x′ ∈ Li for some
i and K(x, x′) = 1 otherwise. Then each partition of these blobs into two pieces of equal size that fully
”respects” our matching (in the sense that for all i Ri, Li are on two different parts) satisfies Property 12
with a gap γ′ = 2γ. The desired result then follows from the fact that the number of such partitions (which
split the set of blobs into two pieces of equal “size” and fully respect our matching) is 2

1
2γ
−1.

It would be interesting to see if one could develop algorithms especially designed for this property
that provides better guarantees than Algorithm 2.

4.8.3 Verification

A natural question is how hard is it (computationally) to determine if a proposed clustering of a given
dataset S satisfies a given property or not. It is important to note, however, that we can always in poly-
nomial time compute the distance between two clusterings (via a weighted matching algorithm). This
then ensures that the user is able to compare in polynomial time the target/built-in clustering with any
proposed clustering. So, even if it is computationally difficulty to determine if a proposed clustering of
a given dataset S satisfies a certain property or not, the property is still reasonable to consider. Note that
computing the distance between two the target clustering and any other clustering is the analogue of com-
puting the empirical error rate of a given hypothesis in the PAC setting [201]; furthermore, there are many
learning problems in the PAC model where the consistency problem is NP-hard (e.g. 3-Term DNF), even
though the corresponding classes are learnable.

4.8.4 Examples

In all the examples below we consider symmetric similarity functions.

Strict separation and Spectral partitioning Figure 4.2 shows that it is possible for a similarity function
to satisfy the strict separation property for a given clustering problem for which Theorem 4.3.2 gives a
good algorithm, but nonetheless to fool a straightforward spectral clustering approach.

Consider 2k blobs B1, B2, . . . , Bk, B′
1, B

′
2, . . . , B

′
k of equal probability mass. Assume that K(x, x′) =

1 if x ∈ Bi and x′ ∈ B′
i, and K(x, x′) = 1 if x, x′ ∈ Bi or x, x′ ∈ B′

i, for all i ∈ {1, . . . , k}. Assume also
K(x, x′) = 0.5 if x ∈ Bi and x′ ∈ Bj or x ∈ B′

i and x′ ∈ B′
j , for i 6= j; let K(x, x′) = 0 otherwise. See

Figure 4.2 (a). Let Ci = Bi ∪B′
i, for all i ∈ {1, . . . , k}. It is easy to verify that the clustering C1, . . . , Ck

(see Figure 4.2 (b)) is consistent with Property 4.2 (a possible value for the unknown threshold is c = 0.7).
However for k large enough the cut of min-conductance is the one shown in Figure 4.2 (c), namely the
cut that splits the graph into parts {B1, B2, . . . , Bk} and {B′

1, B
′
2, . . . , B

′
k}. A direct consequence of this

example is that applying a spectral clustering approach could lead to a hypothesis of high error.

Linkage-based algorithms and strong stability Figure 4.3 (a) gives an example of a similarity func-
tion that does not satisfy the strict separation property, but for large enough m, w.h.p. will satisfy the
strong stability property. (This is because there are at most mk subsets A of size k, and each one has fail-
ure probability only e−O(mk).) However, single-linkage using Kmax(C, C ′) would still work well here.
Figure 4.3 (b) extends this to an example where single-linkage using Kmax(C, C ′) fails. Figure 4.3 (c)
gives an example where strong stability is not satisfied and average linkage would fail too. However notice
that the average attraction property is satisfied and Algorithm 2 will succeed.
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Figure 4.2: Consider 2k blobs B1, B2, . . . , Bk, B′
1, B

′
2, . . . , B

′
k of equal probability mass. Points inside the same

blob have similarity 1. Assume that K(x, x′) = 1 if x ∈ Bi and x′ ∈ B′
i. Assume also K(x, x′) = 0.5 if x ∈ Bi and

x′ ∈ Bj or x ∈ B′
i and x′ ∈ B′

j , for i 6= j; let K(x, x′) = 0 otherwise. Let Ci = Bi ∪B′
i, for all i ∈ {1, . . . , k}. It

is easy to verify that the clustering C1, . . . , Ck is consistent with Property 1 (part (b)). However, for k large enough
the cut of min-conductance is the cut that splits the graph into parts {B1, B2, . . . , Bk} and {B′

1, B
′
2, . . . , B

′
k} (part

(c)).

4.9 Conclusions and Discussion

In this chapter we provide a generic framework for analyzing what properties of a similarity function are
sufficient to allow it to be useful for clustering, under two natural relaxations of the clustering objective.
We propose a measure of the clustering complexity of a given property that characterizes its information-
theoretic usefulness for clustering, and analyze this complexity for a broad class of properties, as well as
develop efficient algorithms that are able to take advantage of them.

Our work can be viewed both in terms of providing formal advice to the designer of a similarity
function for a given clustering task (such as clustering query search results) and in terms of advice about
what algorithms to use given certain beliefs about the relation of the similarity function to the clustering
task. Our model also provides a better understanding of when (in terms of the relation between the
similarity measure and the ground-truth clustering) different hierarchical linkage-based algorithms will
fare better than others. Abstractly speaking, our notion of a property parallels that of a data-dependent
concept class [203] (such as large-margin separators) in the context of classification.

Open questions: Broadly, one would like to analyze other natural properties of similarity functions, as
well as to further explore and formalize other models of interactive feedback. In terms of specific open
questions, for the average attraction property (Property 3) we have an algorithm that for k = 2 produces
a list of size approximately 2O(1/γ2 ln 1/ε) and a lower bound on clustering complexity of 2Ω(1/γ). One
natural open question is whether one can close that gap. A second open question is that for the strong
stability of large subsets property (Property 7), our algorithm produces hierarchy but has larger running
time substantially larger than that for the simpler stability properties. Can an algorithm with running time
polynomial in k and 1/γ be developed? Can one prove stability properties for clustering based on spectral
methods, e.g., the hierarchical clustering algorithm given in [85]? More generally, it would be interesting
to determine whether these stability properties can be further weakened and still admit a hierarchical
clustering. Finally, in this work we have focused on formalizing clustering with non-interactive feedback.
It would be interesting to formalize clustering with other natural forms of feedback.
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Figure 4.3: Part (a): Consider two blobs B1, B2 with m points each. Assume that K(x, x′) = 0.3 if x ∈ B1 and
x′ ∈ B2, K(x, x′) is random in {0, 1} if x, x′ ∈ Bi for all i. Clustering C1, C2 does not satisfy Property 1, but
for large enough m, w.h.p. will satisfy Property 5. Part (b): Consider four blobs B1, B2, B3, B4 of m points each.
Assume K(x, x′) = 1 if x, x′ ∈ Bi, for all i, K(x, x′) = 0.85 if x ∈ B1 and x′ ∈ B2, K(x, x′) = 0.85 if x ∈ B3

and x′ ∈ B4, K(x, x′) = 0 if x ∈ B1 and x′ ∈ B4, K(x, x′) = 0 if x ∈ B2 and x′ ∈ B3. Now K(x, x′) = 0.5 for
all points x ∈ B1 and x′ ∈ B3, except for two special points x1 ∈ B1 and x3 ∈ B3 for which K(x1, x3) = 0.9.
Similarly K(x, x′) = 0.5 for all points x ∈ B2 and x′ ∈ B4, except for two special points x2 ∈ B2 and x4 ∈ B4

for which K(x2, x4) = 0.9. For large enough m, clustering C1, C2 satisfies Property 5. Part (c): Consider two
blobs B1, B2 of m points each, with similarities within a blob all equal to 0.7, and similarities between blobs chosen
uniformly at random from {0, 1}.

Algorithm 6 Sampling Based Algorithm, List Model

Input: Data set S, similarity function K, parameters γ, ε > 0, k ∈ Z+; d1(ε, γ, k, δ), d2(ε, γ, k, δ).

• Set L = ∅.

• Pick a set U = {x1, . . . , xd1} of d1 random examples from S, where d1 = d1(ε, γ, k, δ). Use U to
define the mapping ρU : X → Rd1 , ρU (x) = (K(x, x1),K(x, x2), . . . , K(x, xd1)).

• Pick a set Ũ of d2 = d2(ε, γ, k, δ) random examples from S and consider the induced set ρU (Ũ).

• Consider all the (k + 1)d2 possible labellings of the set ρU (Ũ) where the k + 1st label is used to
throw out points in the ν fraction that do not satisfy the property. For each labelling use the Winnow
algorithm [164, 212] to learn a multiclass linear separator h and add the clustering induced by h to
L.

• Output the list L.

4.10 Other Proofs

Theorem 4.4.4 Let K be a similarity function satisfying the (ν, γ)-average weighted attraction property
for the clustering problem (S, l). Using Algorithm 6 with parameters d1 = O

(
1
ε

(
1
γ2 + 1

)
ln

(
1
δ

))
and

d2 = O
(

1
ε

(
1
γ2 ln d1 + ln 1

δ

) )
we can produce a list of at most k

Õ
(

k
εγ2

)
clusterings such that with proba-

bility 1− δ at least one of them is ε + ν-close to the ground-truth.
Proof:
For simplicity we describe the case k = 2. The generalization to larger k follows the standard multi-

class to binary reduction [203].
For convenience let us assume that the labels of the two clusters are {−1, +1} and without loss of

generality assume that each of the two clusters has at least an ε probability mass. Let U be a random
sample from S of d1 = 1

ε

(
(4/γ)2 + 1

)
ln(4/δ) points. We show first that with probability at least 1− δ,
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the mapping ρU : X → Rd1 defined as

ρU (x) = (K(x, x1),K(x, x2), . . . ,K(x, xd1))

has the property that the induced distribution ρU (S) in Rd1 has a separator of error at most δ (of the 1− ν
fraction of the distribution satisfying the property) at L1 margin at least γ/4.

First notice that d1 is large enough so that with high probability our sample contains at least d =
(4/γ)2 ln(4/δ) points in each cluster. Let U+ be the subset of U consisting of the first d points of true
label +1, and let U− be the subset of U consisting of the first d points of true label −1. Consider the
linear separator β in the ρU space defined as βi = l(xi)w(xi), for xi ∈ U− ∪ U+ and βi = 0 otherwise.
We show that, with probability at least (1 − δ), β has error at most δ at L1 margin γ/4. Consider some
fixed point x ∈ S. We begin by showing that for any such x,

Pr
U

(
l(x)β · ρU (x) ≥ d

γ

4

)
≥ 1− δ2.

To do so, first notice that d is large enough so that with high probability, at least 1− δ2, we have both:

|Ex′∈U+ [w(x′)K(x, x′)]−Ex′∼S [w(x′)K(x, x′)|l(x′) = 1]| ≤ γ

4

and
|Ex′∈U− [w(x′)K(x, x′)]−Ex′∼S [w(x′)K(x, x′)|l(x′) = −1]| ≤ γ

4
.

Let’s consider now the case when l(x) = 1. In this case we have

l(x)β · ρU (x) = d


1

d

∑

xi∈U+

w(xi)K(x, xi)− 1
d

∑

xi∈U−

w(xi)K(x, xi)


 ,

and so combining these facts we have that with probability at least (1− δ2) the following holds:

l(x)β · ρU (x) ≥ d(Ex′∼S [w(x′)K(x, x′)|l(x′) = 1]− γ/4−Ex′∼S [w(x′)K(x, x′)|l(x′) = −1]− γ/4).

This then implies that l(x)β·ρU (x) ≥ dγ/2. Finally, since w(x′) ∈ [−1, 1] for all x′, and since K(x, x′) ∈
[−1, 1] for all pairs x, x′, we have that ||β||1 ≤ d and ||ρU (x)||∞ ≤ 1, which implies

Pr
U

(
l(x)

β · ρU (x)
||β||1||ρU (x)||∞ ≥ γ

4

)
≥ 1− δ2.

The same analysis applies for the case that l(x) = −1.
Lastly, since the above holds for any x, it is also true for random x ∈ S, which implies by Markov’s

inequality that with probability at least 1 − δ, the vector β has error at most δ at L1 margin γ/4 over
ρU (S), where examples have L∞ norm at most 1.

So, we have proved that if K is a similarity function satisfying the (0, γ)-average weighted attraction
property for the clustering problem (S, l), then with high probability there exists a low-error (at most δ)
large-margin (at least γ

4 ) separator in the transformed space under mapping ρU . Thus, all we need now to
cluster well is to draw a new fresh sample Ũ , guess their labels (and which to throw out), map them into
the transformed space using ρU , and then apply a good algorithm for learning linear separators in the new
space that (if our guesses were correct) produces a hypothesis of error at most ε with probability at least
1− δ. Thus we now simply need to calculate the appropriate value of d2.
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The appropriate value of d2 can be determined as follows. Remember that the vector β has error at
most δ at L1 margin γ/4 over ρU (S), where the mapping ρU produces examples of L∞ norm at most
1. This implies that the Mistake bound of the Winnow algorithm on new labeled data (restricted to the
1 − δ good fraction) is O

(
1
γ2 ln d1

)
. Setting δ to be sufficiently small such that with high probability no

bad points appear in the sample, and using standard mistake bound to PAC conversions [163], this then
implies that a sample size of size d2 = O

(
1
ε

(
1
γ2 ln d1 + ln 1

δ

) )
is sufficient.
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Chapter 5

Active Learning

In this chapter we return to the supervised classification setting and present some of our results on Active
Learning. As mentioned in Chapter 1, in the active learning model [86, 94], the learning algorithm is
allowed to draw random unlabeled examples from the underlying distribution and ask for the labels of
any of these examples. The hope is that a good classifier can be learned with significantly fewer labels by
actively directing the queries to informative examples.

As in passive supervised learning, but unlike in semi-supervised learning (which we discussed in
Chapter 2), the only prior belief about the learning problem here is that the target function (or a good
approximation of it) belongs to a given concept class. For some concept classes such as thresholds on
the line, one can achieve an exponential improvement over the usual sample complexity of supervised
learning, under no additional assumptions about the learning problem [86, 94]. In general, the speedups
achievable in active learning depend on the match between the data distribution and the hypothesis class,
and therefore on the target hypothesis in the class. The most noteworthy non-trivial example of improve-
ment is the case of homogeneous (i.e., through the origin) linear separators, when the data is linearly
separable and distributed uniformly over the unit sphere [94, 98, 112]. There are also simple examples
where active learning does not help at all, even in the realizable case [94]. Note that in the active learn-
ing model the goal is to reduce the dependence on 1/ε from linear or quadratic to logarithmic, and that
this is somewhat orthogonal to the goals considered in Chapter 2 where the focus was on reducing the
complexity of the class of functions.

In our work, we provide several new theoretical results for Active Learning. First, we prove for
the first time, the feasibility of agnostic active learning. Specifically we propose and analyze the first
active learning algorithm that finds an ε-optimal hypothesis in any hypothesis class, when the underlying
distribution has arbitrary forms of noise. We also analyze margin based active learning of linear separators.
We discuss these in Sections 5.1 and 5.2 below, and as mentioned in Section 1.2, these results are based
on work appearing in [30, 33, 35]. Finally, in recent work [34, 41], we also show that in an asymptotic
model for Active Learning where one bounds the number of queries the algorithm makes before it finds a
good function (i.e. one of arbitrarily small error rate), but not the number of queries before it knows it has
found a good function, one can obtain significantly better bounds on the number of label queries required
to learn than in the traditional active learning models.

5.1 Agnostic Active Learning

In this section, we provide and analyze the first active learning algorithm that finds an ε-optimal hypothe-
sis in any hypothesis class, when the underlying distribution has arbitrary forms of noise. The algorithm,
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A2 (for Agnostic Active), relies only upon the assumption that it has access to a stream of unlabeled ex-
amples drawn i.i.d. from a fixed distribution. We show that A2 achieves an exponential improvement
(i.e., requires only O

(
ln 1

ε

)
samples to find an ε-optimal classifier) over the usual sample complexity of

supervised learning, for several settings considered before in the realizable case. These include learn-
ing threshold classifiers and learning homogeneous linear separators with respect to an input distribution
which is uniform over the unit sphere.

5.1.1 Introduction

Most of the previous work on active learning has focused on the realizable case. In fact, many of the
existing active learning strategies are noise seeking on natural learning problems, because the process
of actively finding an optimal separation between one class and another often involves label queries for
examples close to the decision boundary, and such examples often have a large conditional noise rate (e.g.,
due to a mismatch between the hypothesis class and the data distribution). Thus the most informative
examples are also the ones that are typically the most noise-prone.

Consider an active learning algorithm which searches for the optimal threshold on an interval using
binary search. This example is often used to demonstrate the potential of active learning in the noise-free
case when there is a perfect threshold separating the classes [86]. Binary search needs O(ln 1

ε ) labeled
examples to learn a threshold with error less than ε, while learning passively requires O

(
1
ε

)
labels. A

fundamental drawback of this algorithm is that a small amount of adversarial noise can force the algorithm
to behave badly. Is this extreme brittleness to small amounts of noise essential? Can an exponential
decrease in sample complexity be achieved? Can assumptions about the mechanism producing noise be
avoided? These are the questions addressed here.

Previous Work on Active Learning There has been substantial work on active learning under additional
assumptions. For example, the Query by Committee analysis [112] assumes realizability (i.e., existence
of a perfect classifier in a known set), and a correct Bayesian prior on the set of hypotheses. Dasgupta [94]
has identified sufficient conditions (which are also necessary against an adversarially chosen distribution)
for active learning given only the additional realizability assumption. There are several other papers that
assume only realizability [93, 98]. If there exists a perfect hypotheses in the concept class, then any infor-
mative querying strategy can direct the learning process without the need to worry about the distribution
it induces—any inconsistent hypothesis can be eliminated based on a single query, regardless of which
distribution this query comes from. In the agnostic case, however, a hypothesis that performs badly on
the query distribution may well be the optimal hypothesis with respect to the input distribution. This is
the main challenge in agnostic active learning that is not present in the non-agnostic case. Burnashev and
Zigangirov [75] allow noise, but require a correct Bayesian prior on threshold functions. Some papers
require specific noise models such as a constant noise rate everywhere [79] or Tsybakov noise condi-
tions [33, 78]. (In fact, in section 5.2 we discuss active learning of linear separators under a certain type
of noise related to the Tsybakov noise conditions [33, 78].)

The membership-query setting [16, 17, 74, 137] is similar to active learning considered here, except
that no unlabeled data is given. Instead, the learning algorithm is allowed to query examples of its own
choice. This is problematic in several applications because natural oracles, such as hired humans, have
difficulty labeling synthetic examples [46]. Ulam’s Problem (quoted in [90]), where the goal is find a
distinguished element in a set by asking subset membership queries, is also related. The quantity of
interest is the smallest number of such queries required to find the element, given a bound on the number
of queries that can be answered incorrectly. But both types of results do not apply here since an active
learning strategy can only buy labels of the examples it observes. For example, a membership query
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algorithm can be used to quickly hone on a separating hyperplane in a high-dimensional space. An active
learning algorithm can not do so when the data distribution does not support queries close to the decision
boundary.1

Our Contributions We present here the first agnostic active learning algorithm, A2. The only neces-
sary assumption is that the algorithm has access to a stream of examples drawn i.i.d. from some fixed
distribution. No additional assumptions are made about the mechanism producing noise (e.g., class/target
misfit, fundamental randomization, adversarial situations). The main contribution of our work is to prove
the feasibility of agnostic active learning.

Two comments are in order:
1. We define the noise rate of a hypothesis class C with respect to a fixed distribution D as the min-

imum error rate of any hypothesis in C on D (see section 2 for a formal definition). Note that for
the special case of so called label noise (where a coin of constant bias is used to determine whether
any particular example is mislabeled with respect to the best hypothesis) these definitions coincide.

2. We regard unlabeled data as being of minimal so as to focus exclusively on the question of whether
or not agnostic active learning is possible at all. Substantial follow-up to the original publication of
our work [30] has successfully optimized unlabeled data usage to be on the same order as passive
learning [99]. 2

A2 is provably correct (for any 0 < ε < 1/2 and 0 < δ < 1/2, it outputs an ε-optimal hypothesis with
probability at least 1 − δ) and it is never harmful (it never requires significantly more labeled examples
than batch learning). A2 provides exponential sample complexity reductions in several settings previously
analyzed without noise or with known noise conditions. This includes learning threshold functions with
small noise with respect to ε and hypothesis classes consisting of homogeneous (through the origin) linear
separators with the data distributed uniformly over the unit sphere in Rd. The last example has been the
most encouraging theoretical result so far in the realizable case [98].

The A2 analysis achieves an almost contradictory property: for some sets of classifiers, an ε-optimal
classifier can be output with fewer labeled examples than are needed to estimate the error rate of the
chosen classifier with precision ε from random examples only.

Lower Bounds It is important to keep in mind that the speedups achievable with active learning depend
on the match between the distribution over example-label pairs and the hypothesis class, and therefore on
the target hypothesis in the class. Thus one should expect the results to be distribution-dependent. There
are simple examples where active learning does not help at all in the model analyzed in this section, even
if there is no noise [94]. These lower bounds essentially result from an “aliasing” effect and they are
unavoidable in the setting we analyze in this section (where we bound the number of queries an algorithm
makes before it can prove it has found a good function).3

In the noisy situation, the target function itself can be very simple (e.g., a threshold function), but
if the error rate is very close to 1/2 in a sizeable interval near the threshold, then no active learning
procedure can significantly outperform passive learning. In particular, in the pure agnostic setting one

1Note also that much of the work on using membership queries [16, 17, 74, 137] has been focused on problems where the it
was not possible to get a polynomial time learning algorithm in the passive learning setting (in a PAC sense) with the hope that
the membership queries will allow learning in polynomial time. In contrast, much of the work in the Active Learning literature
has been focused on reducing the sample complexity.

2One can show we might end up using a factor of 1/ε more unlabeled examples than the number of labeled examples one
would normally need in a passive learning setting.

3In recent work [34, 41], we have shown that in an asymptotic model for Active Learning where one bounds the number of
queries the algorithm makes before it finds a good function (i.e. one of arbitrarily small error rate), but not the number of queries
before it can prove or it knows it has found a good function, one can obtain significantly better bounds on the number of label
queries required to learn.
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cannot hope to achieve speedups when the noise rate ν is large, due to a lower bound of Ω(ν2

ε2
) on the

sample complexity of any active learner [143]. However, under specific noise models (such as a constant
noise rate everywhere [79] or Tsybakov noise conditions [33, 78]) and for specific classes, one can still
show significant improvement over supervised learning.

Structure of this section Preliminaries and notation are covered in Section 5.1.2. A2 is presented in
Section 5.1.3; Section 5.1.3 also proves that A2 is correct and that it is never harmful (i.e., it never requires
significantly more samples than batch learning). Threshold functions such as ft(x) = sign(x − t) and
homogeneous linear separators under the uniform distribution over the unit sphere are analyzed in Sec-
tion 5.1.4. Conclusions, a discussion of subsequent work, and open questions are covered in Section 5.1.6.

5.1.2 Preliminaries

We consider a binary agnostic learning problem specified as follows. Let X be an instance space and
Y = {−1, 1} be the set of possible labels. Let C be the hypothesis class, a set of functions mapping
from X to Y . We assume there is a distribution D over instances in X , and that the instances are labeled
by a possibly randomized oracle O (i.e. the target function). The oracle O can be thought of as taking
an unlabeled example x in, choosing a biased coin based on x, then flipping it to find the label −1 or 1.
We let P denote the induced distribution over X × Y . The error rate of a hypothesis h with respect to a
distribution P̃ over X × Y is defined as errP̃ (h) = Prx,y∼P̃ [h(x) 6= y]. The error rate errP̃ (h) is not
generally known since P̃ is unknown, however the empirical version êrrP̃ (h) = Prx,y∼S [h(x) 6= y] =
1
S

∑
x,y∈S I(h(x) 6= y) is computable based upon an observed sample set S drawn from P̃ .

Let ν = min
h∈C

(errD,O(h)) denote the minimum error rate of any hypothesis in C with respect to the

distribution (D, O) induced by D and the labeling oracle O. The goal is to find an ε-optimal hypothesis,
i.e. a hypothesis h ∈ C with errD,O(h) within ε of ν, where ε is some target error.

The algorithm A2 relies on a subroutine, which computes a lower bound LB(S, h, δ) and an upper
bound UB(S, h, δ) on the true error rate err(h) of h by using a sample S of examples drawn i.i.d. from
P̃ . Each of these bounds must hold for all h simultaneously with probability at least 1−δ. The subroutine
is formally defined below.

Definition 5.1.1 A subroutine for computing LB(S, h, δ) and UB(S, h, δ) is said to be legal if for all
distributions P̃ over X × Y , for all 0 < δ < 1/2 and m ∈ N,

LB(S, h, δ) ≤ errP̃ (h) ≤ UB(S, h, δ)

holds for all h ∈ C simultaneously, with probability 1− δ over the draw of S according to P̃m.

Classic examples of such subroutines are the (distribution independent) VC bound [202] and the
Occam Razor bound [68], or the newer data dependent generalization bounds such as those based on
Rademacher Complexities [72]. For concreteness, we could use the VC bound subroutine stated in Ap-
pendix A.1.1.

As we will see in the following section, a key point in the algorithm we present is that we will not
have to bring the range close to ε (the desired target accuracy), but it will be enough to be constant width
on a series of carefully chosen distributions over X × Y .

5.1.3 The A2 Agnostic Active Learner

At a high level, A2 can be viewed as a robust version of the selective sampling algorithm of [86]. Selective
sampling is a sequential process that keeps track of two spaces—the current version space Ci, defined as
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the set of hypotheses in C consistent with all labels revealed so far, and the current region of uncertainty
Ri, defined as the set of all x ∈ X , for which there exists a pair of hypotheses in Ci that disagrees on
x. In round i, the algorithm picks a random unlabeled example from Ri and queries it, eliminating all
hypotheses in Ci inconsistent with the received label. The algorithm then eliminates those x ∈ Ri on
which all surviving hypotheses agree, and recurses. This process fundamentally relies on the assumption
that there exists a consistent hypothesis in C. In the agnostic case, a hypothesis cannot be eliminated
based on its disagreement with a single example. Any algorithm must be more conservative in order to
avoid risking eliminating the best hypotheses in the class.

A formal specification of A2 is given in Algorithm 7. Let Ci be the set of hypotheses still under
consideration by A2 in round i. If all hypotheses in Ci agree on some region of the instance space, this
region can be safely eliminated. To help us keep track of progress in decreasing the region of uncertainty,
define DISAGREED(Ci) as the probability that there exists a pair of hypotheses in Ci that disagrees on a
random example drawn from D:

DISAGREED(Ci) = Pr
x∼D

[∃h1, h2 ∈ Ci : h1(x) 6= h2(x)].

Hence DISAGREED(Ci) is the volume of the current region of uncertainty with respect to D.
Clearly, the ability to sample from the unlabeled data distribution D implies that ability to compute

DISAGREED(Ci). To see this, note that: DISAGREED(Ci) = Ex∼DI(∃h1, h2 ∈ Ci : h1(x) 6= h2(x)) is
an expectation over unlabeled points drawn from D. Consequently, Chernoff bounds on the empirical
expectation of a {0, 1} random variable imply that DISAGREED(Ci) can be estimated to any desired
precision with any desired confidence using an unlabeled dataset with size limiting to infinity.

Let Di be the distribution D restricted to the current region of uncertainty. Formally, Di = D(x |
∃h1, h2 ∈ Ci : h1(x) 6= h2(x)). In round i, A2 samples a fresh set of examples S from Di, O, and uses
it to compute upper and lower bounds for all hypotheses in Ci. It then eliminates all hypotheses whose
lower bound is greater than the minimum upper bound.

Since A2 doesn’t label examples on which the surviving hypotheses agree, an optimal hypothesis in
Ci with respect to Di remains an optimal hypothesis in Ci+1 with respect to Di+1. Since each round i cuts
DISAGREED(Ci) down by half, the number of rounds is bounded by log 1

ε . Sections 5.1.4 gives examples
of distributions and hypothesis classes for which A2 requires only a small number of labeled examples to
transition between rounds, yielding an exponential improvement in sample complexity.

When evaluating bounds during the course of Algorithm 7, A2 uses a schedule of δ according to the
following rule: the kth bound evaluation has confidence δk = δ

k(k+1) , for k ≥ 1. In Algorithm 7, k keeps
track of the number of bound computations and i of the number of rounds.

Note: It is important to note that A2 does not need to know ν in advance. Similarly, it does not need to
know D in advance.

Correctness

Theorem 5.1.1 (Correctness) For all C, for all (D, O), for all legal subroutines for computing UB and
LB, for all 0 < ε < 1/2 and 0 < δ < 1/2, with probability 1− δ, A2 returns an ε-optimal hypothesis or
does not terminate.

Note 2 For most “reasonable” subroutines for computing UB and LB, A2 terminates with probability
at least 1− δ. For more discussion and a proof of this fact see Section 5.1.3.

Proof: The first claim is that all bound evaluations are valid simultaneously with probability at least
1− δ, and the second is that the procedure produces an ε-optimal hypothesis upon termination.
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Algorithm 7 A2 (allowed error rate ε, sampling oracle for D, labeling oracle O, hypothesis class C)

set i ← 1, Di ← D, Ci ← C, Ci−1 ← C, Si−1 ← ∅, and k ← 1.

(1) while DISAGREED(Ci−1)
[

min
h∈Ci−1

UB(Si−1, h, µk)− min
h∈Ci−1

LB(Si−1, h, µk)
]

> ε

set Si ← ∅, C ′
i ← Ci, k ← k + 1

(2) while DISAGREED(C ′
i) ≥ 1

2 DISAGREED(Ci)

if DISAGREED(Ci) (min
h∈Ci

UB(Si, h, µk)− min
h∈Ci

LB(Si, h, µk)) ≤ ε

(∗) return h = argminh∈Ci UB(Si, h, µk).

else S′i = rejection sample 2|Si|+ 1 samples x from D satisfying

∃h1, h2 ∈ Ci : h1(x) 6= h2(x).

Si ← Si ∪ {(x,O(x)) : x ∈ S′i}, k ← k + 1

(∗∗) C ′
i = {h ∈ Ci : LB(Si, h, µk, ) ≤ min

h′∈Ci

UB(Si, h
′, µk)}, k ← k + 1

end if

end while

Ci+1 ← C ′
i, Di+1 ← Di restricted to {x : ∃h1, h2 ∈ C ′

i : h1(x) 6= h2(x)}

i ← i + 1

end while

return h = argminh∈Ci−1 UB(Si−1, h, µk).

To prove the first claim, notice that the samples on which each bound is evaluated are drawn i.i.d.
from some distribution over X × Y . This can be verified by noting that the distribution Di used in round
i is precisely that given by drawing x from the underlying distribution D conditioned on the disagreement
∃h1, h2 ∈ Ci : h1(x) 6= h2(x), and then labeling according to the oracle O.

The k-th bound evaluation fails with probability at most δ
k(k+1) . By the union bound, the probability

that any bound fails is less then the sum of the probabilities of individual bound failures. This sum is
bounded by

∑∞
k=1

δ
k(k+1) = δ.

To prove the second claim, notice first that since every bound evaluation is correct, step (∗∗) never
eliminates a hypothesis that has minimum error rate with respect (D,O). Let us now introduce the fol-
lowing notation. For a hypothesis h ∈ C and G ⊆ C define:

eD,G,O(h) = Pr
x,y∼D,O|∃h1,h2∈G:h1(x)6=h2(x)

[h(x) 6= y],

fD,G,O(h) = Pr
x,y∼D,O|∀h1,h2∈G:h1(x)=h2(x)

[h(x) 6= y].
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Notice that eD,G,O(h) is in fact errDG,O(h), where DG is D conditioned on the disagreement ∃h1, h2 ∈
G : h1(x) 6= h2(x). Moreover, given any G ⊆ C, the error rate of every hypothesis h decomposes into
two parts as follows:

errD,O(h) = eD,G,O(h) · DISAGREED(G) + fD,G,O(h) · (1− DISAGREED(G))
= errDG,O(h) · DISAGREED(G) + fD,G,O(h) · (1− DISAGREED(G)).

Notice that the only term that varies with h ∈ G in the above decomposition, is eD,G,O(h). Conse-
quently, finding an ε-optimal hypothesis requires only bounding errDG,O(h)·DISAGREED(G) to precision
ε. But this is exactly what the negation of the main while-loop guard does, and this is also the condition
used in the first step of the second while loop of the algorithm. In other words, upon termination A2

satisfies
DISAGREED(Ci)(min

h∈Ci

UB(Si, h, δk)− min
h∈Ci

LB(Si, h, δk)) ≤ ε,

which proves the desired result.

Fall-back Analysis

This section shows that A2 is never much worse than a standard batch, bound-based algorithm in terms
of the number of samples required in order to learn. (A standard example of a bound-based learning
algorithm is Empirical Risk Minimization (ERM) [203].)

The sample complexity m(ε, δ, C) required by a batch algorithm that uses a subroutine for computing
LB(S, h, δ) and UB(S, h, δ) is defined as the minimum number of samples m such that for all S ∈ Xm,
|UB(S, h, δ)− LB(S, h, δ)| ≤ ε for all h ∈ C. For concreteness, this section uses the following bound on
m(ε, δ, C) stated as Theorem A.1.1 in Appendix A.1.1:

m(ε, δ, C) =
64
ε2

(
2VC ln

(
12
ε

)
+ ln

(
4
δ

))

Here VC is the VC-dimension of C. Assume that m(2ε, δ,H) ≤ m(ε,δ,H)
2 , and also that the function m is

monotonically increasing in 1/δ. These conditions are satisfied by many subroutines for computing UB
and LB, including those based on the VC-bound [202] and the Occam’s Razor bound [68].

Theorem 5.1.2 For all C, for all (D,O), for all UB and LB satisfying the assumption above, for all
0 < ε < 1/2 and 0 < δ < 1/2, the algorithm A2 makes at most 2m(ε, δ′,H) calls to the oracle O, where
δ′ = δ

N(ε,δ,C)(N(ε,δ,C)+1) and N(ε, δ, C) satisfies N(ε, δ, C) ≥ ln 1
ε lnm(ε, δ

N(ε,δ,C)(N(ε,δ,C)+1) , C). Here
m(ε, δ,H) is the sample complexity of UB and LB.

Proof: Let δk = δ
k(k+1) be the confidence parameter used in the k-th application of the subroutine for

computing UB and LB. The proof works by finding an upper bound N(ε, δ, C) on the number of bound
evaluations throughout the life of the algorithm. This implies that the confidence parameter δk is always
greater than δ′ = δ

N(ε,δ,C)(N(ε,δ,C)+1) .
Recall that Di is the distribution over x used on the ith iteration of the first while loop. Consider i = 1.

If condition 2 of Algorithm A2 is repeatedly satisfied then after labeling m(ε, δ′, C) examples from D1

for all hypotheses h ∈ C1, ∣∣UB(S1, h, δ′)− LB(S1, h, δ′)
∣∣ ≤ ε

simultaneously. Note that in these conditions A2 safely halts. Notice also that the number of bound
evaluations during this process is at most log2 m(ε, δ′, C).
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On the other hand, if loop (2) ever completes and i increases, then it is enough, if you finish when
i = 2, to have uniformly for all h ∈ C2,

∣∣UB(S2, h, δ′)− LB(S2, h, δ′)
∣∣ ≤ 2ε .

(This follows from the exit conditions in the outer while-loop and the ‘if’ in Step 2 of A2.) Uniformly
bounding the gap between upper and lower bounds over all hypotheses h ∈ C2 to within 2ε, requires
m(2ε, δ′, C) ≤ m(ε,δ′,C)

2 labeled examples from D2 and the number of bound evaluations in round i = 2
is at most log2 m(ε, δ′, C).

In general, in round i it is enough to have uniformly for all h ∈ Ci,

∣∣UB(Si, h, δ′)− LB(Si, h, δ′)
∣∣ ≤ 2i−1ε,

and which requires m(2i−1ε, δ′, C) ≤ m(ε,δ′,C)
2i−1 labeled examples from Di. Also the number of bound

evaluations in round i is at most log2 m(ε, δ′, C).
Since the number of rounds is bounded by log2

1
ε , it follows that the maximum number of bound

evaluations throughout the life of the algorithm is at most log2
1
ε log2 m(ε, δ′, C). This implies that in

order to determine an upper bound N(ε, δ, C) only a solution to the inequality:

N(ε, δ, C) ≥ log2

1
ε

log2 m

(
ε,

δ

N(ε, δ, C)(N(ε, δ, C) + 1)
, C

)

is required.
Finally, adding up the number of calls to the label oracle O in all rounds yields at most 2m(ε, δ′, C)

over the life of the algorithm.

Let VC denote the VC-dimension of C, and let m(ε, δ, C) be the number of examples required by
the ERM algorithm. As stated in Theorem A.1.1 in Appendix A.1.1, a classic bound on m(ε, δ, C) is
m(ε, δ, C) = 64

ε2

(
2VC ln

(
12
ε

)
+ ln

(
4
δ

))
. Using Theorem 5.1.2, the following corollary holds.

Corollary 5.1.3 For all hypothesis classes C of VC-dimension VC , for all distributions (D, O) over X ×
Y , for all 0 < ε < 1/2 and 0 < δ < 1/2, the algorithm A2 requires at most Õ

(
1
ε2

(VC ln 1
ε + ln 1

δ )
)

labeled examples the oracle O.
Proof: The form of m(ε, δ,H) and Theorem 5.1.2 implies an upper bound on N = N(ε, δ,H). It is
enough to find the smallest N satisfying

N ≥ ln
(

1
ε

)
ln

(
64
ε2

(
2VC ln

(
12
ε

)
+ ln

(
4N2

δ

)))
.

Using the inequality ln a ≤ ab − ln b − 1 for all a, b > 0 and some simple algebraic manipulations, the
desired upper bound on N(ε, δ, C) holds. The result then follows from Theorem 5.1.2.

5.1.4 Active Learning Speedups

This section gives examples of exponential sample complexity improvements achieved by A2.
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Learning Threshold Functions

Linear threshold functions are the simplest and easiest to analyze class. It turns out that even for this class,
exponential reductions in sample complexity are not achievable when the noise rate ν is large [143]. We
prove the following three results:

1. An exponential improvement in sample complexity when the noise rate is small (Theorem 5.1.4).

2. A slower improvement when the noise rate is large (Theorem 5.1.5).

3. An exponential improvement when the noise rate is large but due to constant label noise (Theo-
rem 5.1.6). This shows that for some forms of high noise exponential improvement remains possi-
ble.

All results in this subsection assume that subroutines LB and UB in A2 are based on the VC bound.

Theorem 5.1.4 Let C be the set of thresholds on an interval. For all distributions (D,O) where D is a
continuous probability distribution function, for any ε < 1

2 and ε
16 ≥ ν, the algorithm A2 makes

O

(
ln

(
1
ε

)
ln

(
ln

(
1
εδ

)

δ

))

calls to the oracle O on examples drawn i.i.d. from D, with probability 1− δ.

Proof: Consider round i ≥ 1 of the algorithm. For h1, h2 ∈ Ci, let di(h1, h2) be the probability
that h1 and h2 predict differently on a random example drawn according to the distribution Di, i.e.,
di(h1, h2) = Prx∼Di [h1(x) 6= h2(x)].

Let h∗ be any minimum error rate hypothesis in C. Note that for any hypothesis h ∈ Ci, we have
errDi,O(h) ≥ di(h, h∗)−errDi,O(h∗) and errDi,O(h∗) ≤ ν/Zi, where Zi = Prx∼D[x ∈ [loweri, upperi] ]
is a shorthand for DISAGREED(Ci) and [loweri, upperi] denotes the support of Di. Thus errDi,O(h∗) ≤
di(h, h∗)− ν/Zi.

We will show that at least a 1
2 -fraction (measured with respect to Di) of thresholds in Ci satisfy

di(h, h∗) ≥ 1
4 , and these thresholds are located at the ends of the interval [loweri, upperi]. Assume first

that both di(h∗, loweri) ≥ 1
4 and di(h∗, upperi) ≥ 1

4 , then let li and ui be the hypotheses to the left and
to the right of h∗, respectively, that satisfy di(h∗, li) = 1

4 and di(h∗, ui) = 1
4 . All h ∈ [loweri, li] ∪

[ui, upperi] satisfy di(h∗, h) ≥ 1
4 and moreover

Pr
x∼Di

[x ∈ [loweri, li] ∪ [ui, upperi] ] ≥ 1
2
.

Now suppose that di(h∗, loweri) ≤ 1
4 . Let ui be the hypothesis to the right of h∗ with di(h, upperi) = 1

2 .
Then all h ∈ [ui, upperi] satisfy di(h∗, h) ≥ 1

4 and moreover Prx∼Di [x ∈ [ui, upperi] ] ≥ 1
2 . A similar

argument holds for di(h∗, upperi) ≤ 1
4 .

Using the VC bound, with probability 1−δ′, if |Si| = O

(
ln 1

δ′�
1
8
− ν

Zi

�2

)
, then for all hypotheses h ∈ Ci

simultaneously, |UB(Si, h, δ)− LB(Si, h, δ)| ≤ 1
8 − ν

Zi
holds. Note that ν/Zi is always upper bounded

by 1
16 .
Consider a hypothesis h ∈ Ci with di(h, h∗) ≥ 1

4 . For any such h,

errDi,O(h) ≥ di(h, h∗)− ν/Zi ≥ 1
4
− ν

Zi
,

and so
LB(Si, h, δ) ≥ 1

4
− ν

Zi
− (

1
8
− ν

Zi
) =

1
8
.
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On the other hand, errDi,O(h∗) ≤ ν
Zi

, and so

UB(Si, h
∗, δ) ≤ ν

Zi
+

1
8
− ν

Zi
=

1
8
.

Thus A2 eliminates all h ∈ Ci with di(h, h∗) ≥ 1
4 . But that means DISAGREED(C ′

i) ≤ 1
2 DISAGREED(Ci),

thus terminating round i.4

Each exit from while loop (2) decreases DISAGREED(Ci) by at least a factor of 2, implying that the
number of executions is bounded by log 1

ε . The algorithm makes O
(
ln

(
1
δ′

)
ln

(
1
ε

))
calls to the oracle,

where δ′ = δ
N(ε,δ,C)(N(ε,δ,C)+1) and N(ε, δ, C) is an upper bound on the number of bound evaluations

throughout the life of the algorithm.
The number of bound evaluations required in round i is O

(
ln 1

δ′
)
, which implies that N(ε, δ, C) should

satisfy

c ln
(

N(ε, δ, C)(N(ε, δ, C) + 1)
δ

)
ln

(
1
ε

)
≤ N(ε, δ, C),

for some constant c. Solving this inequality completes the proof.

Theorem 5.1.5 below asymptotically matches a lower bound of Kääriäinen [143]. Recall that A2 does
not need to know ν in advance.

Theorem 5.1.5 Let C be the set of thresholds on an interval. Suppose that ε < 1
2 and ν > 16ε. For all

D, with probability 1− δ, the algorithm A2 requires at most Õ
(

ν2 ln 1
δ

ε2

)
labeled samples.

Proof: The proof is similar to the previous proof. Theorem 5.1.4 implies that loop (2) completes
Θ(log 1

ν ) times. At this point, the minimum error rate of the remaining hypotheses conditioned on dis-
agreement becomes sufficient so that the algorithm may only halt via the return step (∗). In this case,

DISAGREED(C) = Θ(ν) implying that the number of samples required is Õ
(

ν2 ln 1
δ

ε2

)
.

The final theorem is for the constant noise case where |Pry∼O|x[h∗(x) 6= y]− 1
2 | = ν for all x ∈ X .

The theorem is similar to earlier work [75], except that we achieve these improvements with a general
purpose active learning algorithm that does not use any prior over the hypothesis space or knowledge of
the noise rate, and is applicable to arbitrary hypothesis spaces.

Theorem 5.1.6 Let C be the set of thresholds on an interval. For all unlabeled data distributions D, for
all labeled data distributions O, for any constant label noise ν < 1/2 and ε < 1

2 , the algorithm A2 makes

O

(
1

(1−2ν)2
ln

(
1
ε

)
ln

(
ln ( 1

εδ )
δ

))
calls to the oracle O on examples drawn i.i.d. from D, with probability

1− δ.

The proof is essentially the same as for Theorem 5.1.4, except that the constant label noise condi-
tion implies that the amount of noise in the remaining actively labeled subset stays bounded through the
recursions.

Proof: Consider round i ≥ 1. For h1, h2 ∈ Ci, let di(h1, h2) = Prx∼Di [h1(x) 6= h2(x)]. Note that
for any hypothesis h ∈ Ci, we have errDi,O(h) = di(h, h∗)(1− 2ν) + ν and errDi,O(h∗) = ν, where h∗

is a minimum error rate threshold.
As in the proof of Theorem 5.1.4, at least a 1

2 -fraction (measured with respect to Di) of thresholds in
Ci satisfy di(h, h∗) ≥ 1

4 , and these thresholds are located at the ends of the support [loweri, upperi] of

4The assumption in the theorem statement can be weakened to ν < ε

(8+∆)
√

d
for any constant ∆ > 0.
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Di. The VC bound implies that for any δ′ > 0 with probability 1− δ′, if |Si| = O
(

ln(1/δ′)
(1−2ν)2

)
, then for all

hypotheses h ∈ Ci simultaneously, |UB(Si, h, δ)− LB(Si, h, δ)| < 1−2ν
8 .

Consider a hypothesis h ∈ Ci with di(h, h∗) ≥ 1
4 . For any such h, errDi,O(h) ≥ 1−2ν

4 + ν = 1
4 + ν

2 ,
and so LB(Si, h, δ) > 1

4 + ν
2 − 1

8(1 − 2ν) = 1
8 + 3ν

4 . On the other hand, errDi,O(h∗) = ν, and so
UB(Si, h

∗, δ) < ν + (1
8 − ν

4 ) = 1
8 + 3ν

4 . Thus A2 eliminates all h ∈ Ci with di(h, h∗) ≥ 1
4 . But this

means that DISAGREED(C ′
i) ≤ 1

2 DISAGREED(Ci), thus terminating round i.
Finally notice that A2 makes O

(
ln

(
1
δ′

)
ln

(
1
ε

))
calls to the oracle, where δ′ = δ

N(ε,δ,C)(N(ε,δ,C)+1)

and N(ε, δ, C) is an upper bound on the number of bound evaluations throughout the life of the algorithm.
The number of bound evaluations required in round i is O(ln(1/δ′)), which implies that the number of
bound evaluations throughout the life of the algorithm N(ε, δ, C) should satisfy

c ln
(

N(ε, δ, C)(N(ε, δ, C) + 1)
δ

)
ln

(
1
ε

)
≤ N(ε, δ, C),

for some constant c. Solving this inequality, completes the proof.

Linear Separators under the Uniform Distribution

A commonly analyzed case for which active learning is known to give exponential savings in the number
of labeled examples is when the data is drawn uniformly from the unit sphere in Rd, and the labels
are consistent with a linear separator going through the origin. Note that even in this seemingly simple
scenario, there exists an Ω

(
1
ε

(
d + log 1

δ

))
lower bound on the PAC passive supervised learning sample

complexity [165]. We will show that A2 provides exponential savings in this case even in the presence of
arbitrary forms of noise.

Let X = {x ∈ Rd : ‖x‖ = 1}, the unit sphere inRd. Assume that D is uniform over X , and let C be
the class of linear separators through the origin. Any h ∈ C is a homogeneous hyperplane represented by
a unit vector w ∈ X with the classification rule h(x) = sign(w ·x). The distance between two hypotheses
u and v in C with respect to a distribution D (i.e., the probability that they predict differently on a random
example drawn from D) is given by dD(u, v) = arccos(u·v)

π . Finally, let θ(u, v) = arccos(u · v). Thus
dD(u, v) = θ(u,v)

π .
In this section we sill use a classic lemma about the uniform distribution. For a proof see, for exam-

ple, [33, 98].

Lemma 5.1.7 For any fixed unit vector w and any 0 < γ ≤ 1,

γ

4
≤ Pr

x

[
|w · x| ≤ γ√

d

]
≤ γ,

where x is drawn uniformly from the unit sphere.

Theorem 5.1.8 Let X , C, and D be as defined above, and let LB and UB be the VC bound. Then for any
0 < ε < 1

2 , 0 < ν < ε
16
√

d
, and δ > 0, with probability 1− δ, A2 requires

O

(
d

(
d ln d + ln

1
δ′

)
ln

1
ε

)

calls to the labeling oracle, where δ′ = δ
N(ε,δ,C)(N(ε,δ,C)+1) and

N(ε, δ, C) = O

(
ln

1
ε

(
d2 ln d + d ln

d ln 1
ε

δ

))
.
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Proof: Let w∗ ∈ C be a hypothesis with the minimum error rate ν. Denote the region of uncertainty
in round i by Ri. Thus Prx∼D[x ∈ Ri] = DISAGREED(Ci). Consider round i of A2. We prove that
the round completes with high probability if a certain threshold on the number of labeled examples is
reached. The round may complete with a smaller number of examples, but this is fine because the metric
of progress DISAGREED(Ci) must halve in order to complete.

Theorem A.1.1 says that it suffices to query the oracle on a set S of O(d2 ln d + d ln 1
δ′ ) examples

from ith distribution Di to guarantee, with probability 1− δ′, that for all w ∈ Ci,

|errDi,O(w)− êrrDi,O(w)| < 1
2

(
1

8
√

d
− ν

ri

)
,

where ri is a shorthand for DISAGREED(Ci). (By assumption, ν < ε
16
√

d
and the loop guard guarantees

that DISAGREED(Ci) ≥ ε. Thus the precision above is at least 1
32
√

d
.)5 This implies that UB(S, w, δ′) −

errDi,O(w) < 1
8
√

d
− ν

ri
, and errDi,O(w) − LB(S,w, δ′) < 1

8
√

d
− ν

ri
. Consider any w ∈ Ci with

dDi(w, w∗) ≥ 1
4
√

d
. For any such w, errDi,O(w) ≥ 1

4
√

d
− ν

ri
, and so

LB(S,w, δ′) >
1

4
√

d
− ν

ri
− 1

8
√

d
+

ν

ri
=

1
8
√

d
.

However, errDi,O(w∗) ≤ ν
ri

, and thus UB(S, w∗, δ′) < ν
ri

+ 1
8
√

d
− ν

ri
= 1

8
√

d
, so A2 eliminates w in step

(∗∗).
Thus round i eliminates all hypotheses w ∈ Ci with dDi(w,w∗) ≥ 1

4
√

d
. Since all hypotheses in Ci

agree on every x 6∈ Ri,

dDi(w, w∗) =
1
ri

dD(w, w∗) =
θ(w, w∗)

πri
.

Thus round i eliminates all hypotheses w ∈ Ci with θ(w,w∗) ≥ πri

4
√

d
. But since 2θ/π ≤ sin θ, for

θ ∈ (0, π
2 ], it certainly eliminates all w with sin θ(w, w∗) ≥ ri

2
√

d
.

Consider any x ∈ Ri+1 and the value |w∗ ·x| = cos θ(w∗, x). There must exist a hypothesis w ∈ Ci+1

that disagrees with w∗ on x; otherwise x would not be in Ri+1. But then cos θ(w∗, x) ≤ cos(π
2 −

θ(w,w∗)) = sin θ(w, w∗) < ri

2
√

d
, where the last inequality is due to the fact that A2 eliminates all

w with sin θ(w, w∗) ≥ ri

2
√

d
. Thus any x ∈ Ri+1 must satisfy |w∗ · x| < ri

2
√

d
. Using the fact that

Pr[A |B] = Pr[AB]
Pr[B] ≤

Pr[A]
Pr[B] for any A and B,

Pr
x∼Di

[x ∈ Ri+1] ≤ Pr
x∼Di

[
|w · x| ≤ ri

2
√

d

]
≤

Prx∼D

[
|w · x| ≤ ri

2
√

d

]

Prx∼D[x ∈ Ri]
≤ ri

2ri
=

1
2
,

where the third inequality follows from Lemma 5.1.7. Thus DISAGREED(Ci+1) ≤ 1
2 DISAGREED(Ci), as

desired.
In order to finish the argument, it suffices to notice that since every round cuts DISAGREED(Ci) at

least in half, the total number of rounds is upper bounded by log 1
ε . Notice also that the A2 algorithm

makes O
(
d2 ln d + d ln 1

δ′
)
ln

(
1
ε

)
calls to the oracle, where δ′ = δ

N(ε,δ,C)(N(ε,δ,C)+1) and N(ε, δ, C) is
an upper bound on the number of bound evaluations throughout the life of the algorithm. The number

5 The assumption in the theorem statement can be weakened to ν < ε

(8+∆)
√

d
for any constant ∆ > 0.
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of bound evaluations required in round i is O
(
d2 ln d + d ln 1

δ′
)
. This implies that the number of bound

evaluations throughout the life of the algorithm N(ε, δ, C) should satisfy

c

(
d2 ln d + d ln

(
N(ε, δ, C)(N(ε, δ, C) + 1)

δ

))
ln

(
1
ε

)
≤ N(ε, δ, C),

for some constant c. Solving this inequality, completes the proof.

Note: For comparison, the query complexity of the Perceptron-based active learning algorithm of [98]
is O(d ln 1

εδ (ln d
δ + ln ln 1

ε )), for the same C, X , and D, but only for the realizable case when ν = 0.6

Similar bounds are obtained in [33] both in the realizable case and for a specific form of noise related to
the Tsybakov small noise condition. (We present these results in Section 5.2.) The cleanest and simplest
argument that exponential improvement is in principle possible in the realizable case for the same C, X ,
and D appears in [94]. Our work provides the first justification of why one can hope to achieve similarly
strong guarantees in the much harder agnostic case, when the noise rate is sufficiently small with respect
to the desired error.

5.1.5 Subsequent Work

Following the initial publication of A2, Hanneke has further analyzed the A2 algorithm [130], deriving a
general upper bound on the number of label requests made by A2. This bound is expressed in terms of
particular quantity called the disagreement coefficient, which roughly quantifies how quickly the region
of disagreement can grow as a function of the radius of the version space. For concreteness this bound is
included below.

In addition, Dasgupta, Hsu, and Monteleoni [99] introduce and analyze a new agnostic active learning
algorithm. While similar to A2, this algorithm simplifies the maintenance of the region of uncertainty with
a reduction to supervised learning, keeping track of the version space implicitly via label constraints.

Subsequent Guarantees for A2

This section describes the disagreement coefficient [130] and the guarantees it provides for the A2 algo-
rithm. We begin with a few additional definitions, in the notation of Section 5.1.2.

Definition 5.1.2 The disagreement rate ∆(V ) of a set V ⊆ C is defined as

∆(V ) = Pr
x∼D

[x ∈ DISAGREED(V )].

Definition 5.1.3 For h ∈ C, r > 0, let B(h, r) = {h′ ∈ C : d(h′, h) ≤ r} and define the disagreement
rate at radius r as

∆r = sup
h∈C

(∆(B(h, r))).

The disagreement coefficient is the infimum value of θ > 0 such that ∀r > ν + ε,

∆r ≤ θr.

We now present the main result of [130].

6Note also that it is not clear if the analysis in [98] is extendable to commonly used types of noise, e.g., Tsybakov noise.
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Theorem 5.1.9 If θ is the disagreement coefficient for C, then with probability at least 1 − δ, given the
inputs ε and δ, A2 outputs an ε-optimal hypothesis h. Moreover, the number of label requests made by A2

is at most:

Õ

(
θ2

(
ν2

ε2
+ 1

)(
VC ln

1
ε

+ ln
1
δ

)
ln

1
ε

)
,

where VC ≥ 1 is the VC-dimension of C.

As shown in [130] for the concept space C of thresholds on an interval the disagreement coefficientsθ =
2. Also X = {x ∈ Rd : ‖x‖ = 1} is the unit sphere in Rd, D is uniform over X , and let C be the class
of linear separators through the origin, then the disagreement coefficient θ satisfies

1
4

min
{

π
√

d,
1

ν + ε

}
≤ θ ≤ min

{
π
√

d,
1

ν + ε

}
.

These clearly match the results in Sections 5.1.4 and 5.1.4.

5.1.6 Conclusions

We present here A2, the first active learning algorithm that finds an ε-optimal hypothesis in any hypothesis
class, when the distribution has arbitrary forms of noise. The algorithm relies only upon the assumption
that the samples are drawn i.i.d. from a fixed (unknown) distribution, and it does not need to know the
error rate of the best classifier in the class in advance. We analyze A2 for several settings considered
before in the realizable case, showing that A2 achieves an exponential improvement over the usual sample
complexity of supervised learning in these settings. We also provide a guarantee that A2 never requires
substantially more labeled examples than passive learning.

A more general open question is what conditions are sufficient and necessary for active learning to
succeed in the agnostic case. What is the right quantity that can characterize the sample complexity of
agnostic active learning? As mentioned already, some progress in this direction has been recently made
in [130] and [99]; however, those results characterize non-aggressive agnostic active learning. Deriving
and analyzing the optimal agnostic active learning strategy is still an open question.

Much of the existing literature on active learning has been focused on binary classification; it would
be interesting to analyze active learning for other loss functions. The key ingredient allowing recursion in
the proof of correctness is a loss that is unvarying with respect to substantial variation over the hypothesis
space. Many losses such as squared error loss do not have this property, so achieving substantial speedups,
if that is possible, requires new insights. For other losses with this property (such as hinge loss or clipped
squared loss), generalizations of A2 appear straightforward.

5.2 Margin Based Active Learning

A common feature of the selective sampling algorithm [86], A2, and others [99] is that they are all non-
aggressive in their choice of query points. Even points on which there is a small amount of uncertainty
are queried, rather than pursuing the maximally uncertain point. We show here that a more aggressive
strategies can generally lead to better bounds. Specifically, we analyze a margin based active learning
algorithm for learning linear separators and instantiate it for a few important cases, some of which have
been previously considered in the literature. The generic procedure we analyze is Algorithm 8. The key
contributions of this section are the following:
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1. We point out that in order to get a labeled data sample complexity which has a logarithmic depen-
dence on 1/ε without increasing the dependence on d (i.e., a truly exponential improvement in the
labeled data sample complexity over the passive learning) we have to use a strategy which is more
aggressive than a version space strategy (the one proposed by Cohen, Atlas and Ladner in [86] and
later analyzed in [30] – which we discussed in Section 5.1). We point out that this is true even
in the special case when the data instances are drawn uniformly from the the unit ball in Rd, and
when the labels are consistent with a linear separator going through the origin. Indeed, in order
to obtain a truly exponential improvement, and to be able to learn with only Õ

(
d log

(
1
ε

))
labeled

examples, we need, in each iteration, to sample our examples from a subregion carefully chosen,
and not from the entire region of uncertainty, which would imply a labeled data sample complexity
of Õ

(
d

3
2 log

(
1
ε

))
. The fact that a truly exponential improvement is possible in this special setting

(through computationally efficient procedures) was proven before both in [98] and [112], but via
more complicated and more specific arguments (and which additionally are not easily generalizable
to deal with various types of noise).

2. We show that our algorithm and argument extend to the non-realizable case. A specific case we
analyze here is again the setting where the data instances are drawn uniformly from the the unit ball
in Rd, and a linear classifier w∗ is the Bayes classifier. We additionally assume that our data satisfies
the popular Tsybakov small noise condition along the decision boundary [200]. We consider both
a simple version which leads to exponential improvement similar to the item 1 above, and a setting
where we get only a polynomial improvement in the sample complexity, and where this is provably
the best we can do [80]. Our analysis here for this specific cases improves significantly the work
presented in Section 5.1 and the previous related work in [80].

Definitions and Notation: In this section, we consider learning linear classifiers, so C is the class of
functions of the form h(x) = sign(w · x). As in section 5.1, we assume that the data points (x, y) are
drawn from an unknown underlying distribution P over X × Y and we focus on the binary classification
case (i.e., Y = {−1, 1}). Our goal is to find a classifier f with small true error where where err(h) =
Prx,y∼P [h(x) 6= y]. We denote by d(h, g) the probability that the two classifiers h and g predict differently
on an example coming at random from P . Furthermore, for α ∈ [0, 1] we denote by B (h, α) the set
{g | d(h, g) ≤ α}. As in section 5.1 we let D denote PX .

In this section we focus on analyzing margin based active learning algorithms, in particular variant
of Algorithm 8. Specific choices for the learning algorithm A, sample sizes mk, and cut-off values bk

depends on various assumptions we will make about the data, which we will investigate in details in
the following sections. We note that margin based active learning algorithms have been widely used in
practical applications (see e.g. [199]).

5.2.1 The Realizable Case under the Uniform Distribution

We assume here that the data instances are drawn uniformly from the the unit ball in Rd, and that the
labels are consistent with a linear separator w∗ going through the origin (that is P (w∗ · xy ≤ 0) = 0).
We assume that ‖w∗‖2 = 1. As mentioned in Section 5.1 even in this seemingly simple looking scenario,
there exists an Ω

(
1
ε

(
d + log 1

δ

))
lower bound on the PAC learning sample complexity [165].

Before presenting our better bounds, we start by informally how it is possible to get a Õ
(
d

3
2 log

(
1
ε

))

labeled sample complexity via a margin based active learning algorithm. (Note that the analysis for the
A2 algorithm in Section 5.1.4 already implies a bound of Õ

(
d2 log

(
1
ε

))
, and as we in fact argue below

that analysis can be improved to Õ
(
d

3
2 log

(
1
ε

))
in the realizable case. We make this clearer in the note
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Algorithm 8 Margin-based Active Learning.

Input: unlabeled data set SU = {x1, x2, . . . , },
a learning algorithm A that learns a weight vector from labeled data,
a sequence of sample sizes 0 < m̃1 < m̃2 < . . . < m̃s = m̃s+1,
a sequence of cut-off values bk > 0 (k = 1, . . . , s)

Output: classifier ŵs

Label data points x1, . . . , xm̃1 using the oracle

iterate k = 1, . . . , s

use A to learn weight vector ŵk from the first m̃k labeled samples.

for j = m̃k + 1, . . . , m̃k+1

if |ŵk · xj | > bk then let yj = sign(ŵk · xj)

else label data point xj using the oracle

end iterate

after Theorem 5.2.1.) Let us consider Algorithm 8, where A is a learning algorithm for finding a linear
classifier consistent with the training data. Assume that in each iteration k, A finds a linear separator ŵk,
‖ŵk‖2 = 1 which is consistent with the first m̃k labeled examples. We want to ensure that err(ŵk) ≤ 1

2k

(with large probability), which (by standard VC bounds) requires a sample of size m̃k = Õ
(
2kd

)
; note

that this implies we need to add in each iteration about nk = m̃k+1−m̃k = Õ
(
2kd

)
new labeled examples.

The desired result will follow if we can show that by choosing appropriate bk, we only need to ask the
oracle to label mk = Õ(d3/2) out of the nk = Õ

(
2kd

)
data points and ensure that all nk data points are

correctly labeled (i.e. the examples labeled automatically are in fact correctly labeled).
Note that given our assumption about the data distribution the error rate of any given separator w is

err(w) = θ(w,w∗)
π , where θ(w, w∗) = arccos(w · w∗). Therefore err(ŵk) ≤ 2−k implies that ‖ŵk −

w∗‖2 ≤ 2−kπ. This implies we can safely label all the points with |ŵk · x| ≥ 2−kπ because w∗ and
ŵk predict the same on those examples. The probability of x such that |ŵk · x| ≤ 2−kπ is Õ(2−k

√
d)

because in high dimensions, the 1-dimensional projection of uniform random variables in the unit ball is
approximately a Gaussian variable with variance 1/d. Therefore if we let bk = 2−kπ in the k-th iteration,
and draw m̃k+1− m̃k = Õ

(
2kd

)
new examples to achieve an error rate of 2−(k+1) for ŵk+1, the expected

number of human labels needed is at most Õ(d
3
2 ). This essentially implies the desired result. For a high

probability statement, we can use Algorithm 9, which is a modification of Algorithm 8.
Note that we can apply our favorite algorithm for finding a consistent linear separator (e.g., SVM for

the realizable case, linear programming, etc.) at each iteration of Algorithm 9, and the overall procedure
is computationally efficient.

Theorem 5.2.1 There exists a constant C, such that for any ε, δ > 0, using Algorithm 9 with

bk =
π

2k−1
and mk = Cd

1
2

(
d ln d + ln

k

δ

)
,

after s = dlog2
1
ε e iterations, we can efficiently find a separator of error at most ε with probability 1− δ.

Proof: The proof is essentially a more a rigorous version of the informal one given earlier. We prove
by induction on k that at the k’th iteration, with probability 1− δ(1− 1/(k + 1)), we have err(ŵ) ≤ 2−k

for all ŵ consistent with data in the set W (k); in particular, err(ŵk) ≤ 2−k.
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Algorithm 9 Margin-based Active Learning (separable case).

Input: allowed error rate ε, probability of failure δ, a sampling oracle for D, and a labeling oracle
a sequence of sample sizes mk > 0, k ∈ Z; a sequence of cut-off values bk > 0, k ∈ Z
Output: weight vector ŵs of error at most ε with probability 1− δ

Draw m1 examples from D, label them and put into a working set W (1).

iterate k = 1, . . . , s

find a hypothesis ŵk (‖ŵk‖2 = 1) consistent with all labeled examples in W (k).

let W (k + 1) = W (k).

until mk+1 additional data points are labeled, draw sample x from D

if |ŵk · x| ≥ bk then reject x

else ask for label of x, and put into W (k + 1)

end iterate

For k = 1, according to Theorem A.2.1 in Appendix A.2, we only need m1 = O(d + ln(1/δ))
examples to obtain the desired result. In particular, we have err(ŵ1) ≤ 1/2 with probability 1 − δ/2.
Assume now the claim is true for k − 1. Then at the k-th iteration, we can let

S1 = {x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}.

Using the notation err(w|S) = Prx((w · x)(w∗ · x) < 0|x ∈ S), for all ŵ we have:

err(ŵ) = err(ŵ|S1) Pr(S1) + err(ŵ|S2) Pr(S2).

Consider an arbitrary ŵ consistent with the data in W (k−1). By induction hypothesis, we know that with
probability at least 1−δ(1−1/k), both ŵk−1 and ŵ have errors at most 21−k (because both are consistent
with W (k−1)). As discussed earlier, this implies that ‖ŵk−1−w∗‖2 ≤ 21−kπ and ‖ŵ−w∗‖2 ≤ 21−kπ.
Therefore ∀x ∈ S2, we have

(ŵk−1 · x)(ŵ · x) > 0 and (ŵk−1 · x)(w∗ · x) > .0

This implies that err(ŵ|S2) = 0. Now using the estimate provided in Lemma A.2.2 with γ1 = bk−1 and
γ2 = 0, we obtain Prx(S1) ≤ bk−1

√
4d/π. Therefore

err(ŵ) ≤ 22−k
√

4πd · err(ŵ|S1),

for all ŵ consistent with W (k − 1). Now, since we are labeling mk data points in S1 at iteration k − 1,
it follows from Theorem A.2.1 that we can find C s. t. with probability 1 − δ/(k2 + k), for all ŵ
consistent with the data in W (k), err(ŵ|S1), the error of ŵ on S1, is no more than 1/(4

√
4πd). That is,

err(ŵ) ≤ 2−k with probability at least 1− δ((1− 1/k) + 1/(k2 + k)) = 1− δ(1− 1/(k + 1)) for all ŵ
consistent with W (k), and in particular err(ŵk) ≤ 2−k, as desired.

The choice of rejection region in Theorem 5.2.1 essentially follows the “sampling from the region
of disagreement idea” idea introduced in [86] for the realizable case. As mentioned in Section 5.1, [86]
suggested that one should not sample from a region (S2 in the proof) in which all classifiers in the current
version space (in our case, classifiers consistent with the labeled examples in W (k)) predict the same
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label. In Section 5.1 and in [30] we have analyzed a more general version of the strategy proposed in [86]
that is correct in the much more difficult agnostic case and we have provided theoretical analysis. Here we
have used a more a refined VC-bound for the realizable case, e.g., Theorem A.2.1, to get a better bound.
However, the strategy of choosing bk in Theorem 5.2.1 (thus the idea of [86]) is not optimal. This can be
seen from the proof, in which we showed err(ŵs|S2) = 0. If we enlarge S2 (using a smaller bk), we can
still ensure that err(ŵs|S2) is small; furthermore, Pr(S1) becomes smaller, which allows us to use fewer
labeled examples to achieve the same reduction in error. Therefore in order to show that we can achieve an
improvement from Õ

(
d
ε

)
to Õ

(
d log

(
1
ε

))
as in [98], we need a more aggressive strategy. Specifically, at

round k we set as margin parameter bk = Õ
(

log (k)

2k
√

d

)
, and in consequence use fewer examples to transition

between rounds. In order to prove correctness we need to refine the analysis as follows:

Theorem 5.2.2 There exists a constant C such that for d ≥ 4, and for any ε, δ > 0, ε < 1/4, using
Algorithm 9 with

mk = C
√

ln(1 + k)
(

d ln(1 + ln k) + ln
k

δ

)
and bk = 21−kπd−1/2

√
5 + ln(1 + k),

after s = dlog2
1
ε e−2 iterations, we efficiently find a separator of error≤ ε with probability at least 1−δ.

Proof: As in Theorem 5.2.1, we prove by induction on k that at the k’s iteration, for k ≤ s, with probability
at least 1− δ(1− 1/(k +1)), we err(ŵ) ≤ 2−k−2 for all choices of ŵ consistent with data in the working
set W (k); in particular err(ŵk) ≤ 2−k−2.

For k = 1, according to Theorem A.2.1, we only need mk = O(d + ln(1/δ)) examples to obtain the
desired result; in particular, we have err(ŵ1) ≤ 2−k−2 with probability 1 − δ/(k + 1). Assume now the
claim is true for k − 1 (k > 1). Then at the k-th iteration, we can let

S1 = {x : |ŵk−1 · x| ≤ bk−1}

and
S2 = {x : |ŵk−1 · x| > bk−1}.

Consider an arbitrary ŵ consistent with the data in W (k − 1). By induction hypothesis, we know that
with probability 1− δ(1− 1/k), both ŵk−1 and ŵ have errors at most 2−k−1, implying that

θ(ŵk−1, w
∗) ≤ 2−k−1π and θ(ŵ, w∗) ≤ 2−k−1π.

Therefore θ(ŵ, ŵk−1) ≤ 2−kπ. Let β̃ = 2−kπ and using cos β̃/ sin β̃ ≤ 1/β̃ and sin β̃ ≤ β̃ it is easy to
verify that the following inequality holds

bk−1 ≥ 2 sin β̃d−1/2

√
5 + ln

(
1 +

√
lnmax(1, cos β̃/ sin β̃)

)
.

By Lemma A.2.5, we have both

Pr
x

[(ŵk−1 · x)(ŵ · x) < 0, x ∈ S2] ≤ sin β̃

e5 cos β̃
≤
√

2β̃

e5
and

Pr
x

[(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤ sin β̃

e5 cos β̃
≤
√

2β̃

e5
.
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Taking the sum, we obtain

Pr
x

[(ŵ · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃

e5
≤ 2−(k+3).

Using now Lemma A.2.2 we get that for all ŵ consistent with the data in W (k − 1) we have:

err(ŵ) ≤ err(ŵ|S1) Pr(S1) + 2−(k+3) ≤ err(ŵk|S1)bk−1

√
4d/π + 2−(k+3)

≤ 2−(k+2)
(
err(ŵ|S1)16

√
4π

√
5 + ln(1 + k) + 1/2

)
.

Since we are labelling mk points in S1 at iteration k − 1, we know from Theorem A.2.1 in Appen-
dix A.2, that ∃C s. t. with probability 1− δ/(k + k2) we have

err(ŵk|S1)16
√

4π
√

5 + ln(1 + k) ≤ 0.5

for all ŵ consistent with W (k); so, with probability 1−δ((1−1/k)+1/(k+k2)) = 1−δ(1−1/(k+1)),
we have err(ŵ) ≤ 2−k−2 for all ŵ consistent with W (k).

The bound in Theorem 5.2.2 is generally better than the one in Theorem 5.2.1 due to the improved
dependency on d in mk. However, mk depends on

√
ln k ln ln k, for k ≤ dlog2

1
ε e − 2. Therefore when

d ¿ ln k(ln ln k)2, Theorem 5.2.1 offers a better bound. Note that the strategy used in Theorem 5.2.2 is
more aggressive than the strategy used in the selective sampling algorithm of [30, 86]. Indeed, we do not
sample from the entire region of uncertainty – but we sample just from a subregion carefully chosen. This
helps us to get rid of the undesired d1/2. Our analysis also holds with very small modifications when the
input distribution comes from a high dimensional Gaussian.

5.2.2 The Non-realizable Case under the Uniform Distribution

We show that a result similar to Theorem 5.2.2 can be obtained even for non-separable problems under a
specific type of noise although not necessarily in a computationally efficient manner. The non-realizable
(noisy) case for active learning in the context of classification was recently explored in [80] and as we
have seen in Section 5.1 in [30, 35] as well. We consider here a model which is related to the simple one-
dimensional problem in [80], which assumes that the data satisfy the increasingly popular Tsybakov small
noise condition along the decision boundary[200]. We first consider a simple version which still leads to
exponential convergence similar to Theorem 5.2.2. Specifically, we still assume that the data instances are
drawn uniformly from the the unit ball in Rd, and a linear classifier w∗ is the Bayes classifier. However,
we do not assume that the Bayes error is zero. We consider the following low noise condition: there exists
a known parameter β > 0 such that:

Px(|P (y = 1|x)− P (y = −1|x)| ≥ 4β) = 1.

It is known that in the passive supervised learning setting this condition can lead to fast convergence
rates. As we will show in this section, the condition can also be used to quantify the effectiveness of
active-learning. The key point is that this assumption implies the stability condition required for active
learning:

β min
(

1,
4θ(w,w∗)

π

)1/(1−α)

≤ err(w)− err(w∗) (5.2.1)
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Algorithm 10 Margin-based Active Learning (non-separable case).

Input: allowed error rate ε, probability of failure δ, a sampling oracle for D, and a labeling oracle
a sequence of sample sizes mk > 0, k ∈ Z; a sequence of cut-off values bk > 0, k ∈ Z
a sequence of hypothesis space radii rk > 0, k ∈ Z;
a sequence of precision values εk > 0, k ∈ Z
Output: weight vector ŵs of excess error at most ε with probability 1− δ

Pick random ŵ0: ‖ŵ0‖2 = 1.

Draw m1 examples from D, label them and put into a working set W .

iterate k = 1, . . . , s

find ŵk ∈ B(ŵk−1, rk) (‖ŵk‖2 = 1) to approximately minimize training error:
∑

(x,y)∈W I(ŵk · xy) ≤ minw∈B(ŵk−1,rk)

∑
(x,y)∈W I(w · xy) + mkεk.

clear the working set W

until mk+1 additional data points are labeled, draw sample x from D

if |ŵk · x| ≥ bk then reject x

else ask for label of x, and put into W

end iterate

with α = 0. We analyze here a more general setting with α ∈ [0, 1). As mentioned already, the one
dimensional setting was examined in [80]. We call err(w)− err(w∗) the excess error of w. In this setting,
the Algorithm 9 needs to be slightly modified, as in Algorithm 10.

Theorem 5.2.3 Let d ≥ 4. Assume there exists a weight vector w∗ s. t. the stability condition5.2.1 holds.
Then there exists a constant C, s. t. for any ε, δ > 0, ε < β/8, using Algorithm 10 with

bk = 2−(1−α)kπd−1/2
√

5 + αk ln 2− ln β + ln(2 + k),

rk = 2−(1−α)k−2π for k > 1, r1 = π,

εk = 2−α(k−1)−4β/
√

5 + αk ln 2− lnβ + ln(1 + k) and

mk = Cε−2
k

(
d + ln

k

δ

)
,

after s = dlog2(β/ε)e iterations, we find a separator with excess error ≤ ε with probability 1− δ.

Proof: The proof is similar to that of Theorem 5.2.2. We prove by induction on k that after k ≤ s
iterations, err(ŵk)− err(w∗) ≤ 2−kβ with probability 1− δ(1− 1/(k + 1)).

For k = 1, according to Theorem A.1.1, we only need mk = β−2O(d + ln(k/δ)) examples to obtain
ŵ1 with excess error 2−kβ with probability 1−δ/(k+1). Assume now the claim is true for k−1 (k ≥ 2).
Then at the k-th iteration, we can let

S1 = {x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}.

By induction hypothesis, we know that with probability at least 1− δ(1− 1/k), ŵk−1 has excess errors at
most 2−k+1β, implying θ(ŵk−1, w

∗) ≤ 2−(1−α)(k−1)π/4. By assumption, θ(ŵk−1, ŵk) ≤ 2−(1−α)k−2π.
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Let β̃ = 2−(1−α)k−2π and using cos β̃/ sin β̃ ≤ 1/β̃ and sin β̃ ≤ β̃, it is easy to verify that the following
inequality holds:

bk−1 ≥ 2 sin β̃d−1/2

√
5 + αk ln 2− ln β + ln

(
1 +

√
ln(cos β̃/ sin β̃)

)
.

From Lemma A.2.5, we have both

Pr
x

[(ŵk−1 · x)(ŵk · x) < 0, x ∈ S2] ≤ sin β̃

e5β−12αk cos β̃
≤
√

2β̃β

2αke5

and

Pr
x

[(ŵk−1 · x)(w∗ · x) < 0, x ∈ S2] ≤ sin β̃

e5β−12αk cos β̃
≤
√

2β̃β

2αke5
.

Taking the sum, we obtain

Pr
x

[(ŵk · x)(w∗ · x) < 0, x ∈ S2] ≤ 2
√

2β̃β

2αke5
≤ 2−(k+1)β.

Therefore we have (using Lemma A.2.2):

err(ŵk)− err(w∗) ≤ (err(ŵk|S1)− err(w∗|S1)) Pr(S1) + 2−(k+1)β

≤ (err(ŵk|S1)− err(w∗|S1))bk−1

√
4d/π + 2−(k+1)β

≤ 2−kβ
(
(err(ŵk|S1)− err(w∗|S1))

√
π/(4εk) + 1/2

)
.

From Theorem A.2.1, we know we can choose C s. t. with mk samples, we obtain

err(ŵk|S1)− err(w∗|S1) ≤ 2εk/
√

π

with probability 1− δ/(k + k2). Therefore err(ŵk) ≤ 2−kβ with probability 1− δ((1− 1/k) + 1/(k +
k2)) = 1− δ(1− 1/(k + 1)).

If α = 0, then we can achieve exponential convergence similar to Theorem 5.2.2, even for noisy
problems. However, for α ∈ (0, 1), we have to label

∑
k mk = O(ε−2α ln(1/ε)(d + ln(s/δ)) examples

to an achieve error rate of ε. That is, we only get a polynomial improvement compared to the batch
learning case (with sample complexity between O(ε−2) and O(ε−1)). In general, one cannot improve
such polynomial behavior – see [80] for some simple one-dimensional examples.

Note: This bounds here improve significantly over the previous work in [30, 80]. [80] studies a similar
model to ours, but for the much simpler one dimensional case. The model studied in [30] and also consid-
ered in Section 5.1 is more general, it applies to the purely agnostic setting and also the algorithm itself
works generically for any concept space; however, for the specific case of learning linear separators the
bounds end up having a worse quadratic rather than linear dependence on d.

Note: Instead of rejecting x when |ŵk · x| ≥ bk, we can add them to W using the automatic labels from
ŵk. We can then remove the requirement ŵk ∈ B(ŵk−1, rk) (thus removing the parameters rk). The
resulting procedure will have the same convergence behavior as Theorem 5.2.3 because the probability of
making error by ŵk when |ŵk · x| ≥ bk is no more than 2−(k+2)β.
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Other Results on Margin Based Active Learning In [33] we also give an analysis of our algorithm
for a case where we have a “good margin distribution”, and we show how active learning can dramatically
improve (the supervised learning) sample complexity in that setting as well; the bounds we obtain for
that do not depend on the dimensionality d. We also provide a generic analysis of our main algorithm,
Algorithm 8.

5.2.3 Discussion

We have shown here that a more aggressive active learning strategies can generally lead to better bounds.
Note however that the analysis in this section (based on [33]) was specific to the realizable case, or done
for a special type of noise. It is an open question to design aggressive agnostic active learning algorithms.

While our algorithm is computationally efficient in the realizable case, it remains an open problem
to make it efficient in the general case. It is conceivable that for some special cases (e.g. the marginal
distribution over the instance space is uniform, as in section 5.2.2) one could use the recent results of
Kalai et. al. for Agnostically Learning Halfspaces [145]. In fact, it would be interesting to derive precise
bounds (both in the realizable and the non-realizable cases) for the more general of class of log-concave
distributions.

5.3 Other Results in Active Learning

In recent work, we also show that in an asymptotic model for active learning where one bounds the number
of queries the algorithm makes before it finds a good function (i.e. one of arbitrarily small error rate), but
not the number of queries before it knows it has found a good function, one can obtain significantly better
bounds on the number of label queries required to learn than in the traditional active learning models.
These results appear in [34, 41].

Specifically, in [34, 41] we point out that traditional analyses [94] have studied the number of label
requests required before an algorithm can both produce an ε-good classifier and prove that the classifier’s
error is no more than ε. These studies have turned up simple examples where this number is no smaller than
the number of random labeled examples required for passive learning. This is the case for learning certain
nonhomogeneous linear separators and intervals on the real line, and generally seems to be a common
problem for many learning scenarios. As such, it has led some to conclude that active learning does not
help for most learning problems. In our work [34, 41] we dispel this misconception. Specifically, we
study the number of labels an algorithm needs to request before it can produce an ε−good classifier, even
if there is no accessible confidence bound available to verify the quality of the classifier. With this type
of analysis, we prove that active learning can essentially always achieve asymptotically superior sample
complexity compared to passive learning when the VC dimension is finite. Furthermore, we find that for
most natural learning problems, including the negative examples given in the previous literature, active
learning can achieve exponential improvements over passive learning with respect to dependence on ε.
Full details of the model and results can be found in [34, 41].
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Chapter 6

Kernels, Margins, and Random Projections

In this chapter we return to study learning with kernel functions. As discussed in Chapter 3, a kernel
is a function that takes in two data objects (which could be images, DNA sequences, or points in Rn)
and outputs a number, with the property that the function is symmetric and positive-semidefinite. That
is, for any kernel K, there must exist an (implicit) mapping φ, such that for all inputs x, x′ we have
K(x, x′) = φ(x) · φ(x′). The kernel is then used inside a “kernelized” learning algorithm such as SVM
or kernel-perceptron as the way in which the algorithm interacts with the data. Furthermore even though
φ may be a mapping into a very high-dimensional space, these algorithms have convergence rates that
depend only on the margin γ of the best separator, and not on the dimension of the φ space [18, 191].
Thus, kernel functions are often viewed as providing much of the power of this implicit high-dimensional
space, without paying for it computationally (because the φ mapping is only implicit) or in terms of sample
size (if data is indeed well-separated in that space).

In this chapter, we point out that the Johnson-Lindenstrauss [96] lemma suggests that in the presence
of a large margin, a kernel function can also be viewed as a mapping to a low-dimensional space, one of
dimension only Õ(1/γ2). We then explore the question of whether one can efficiently produce such low-
dimensional mappings, using only black-box access to a kernel function. That is, given just a program
that computes K(x, y) on inputs x, y of our choosing, can we efficiently construct an explicit (small)
set of features that effectively capture the power of the implicit high-dimensional space? We answer
this question in the affirmative if our method is also allowed black-box access to the underlying data
distribution (i.e., unlabeled examples). We also give a lower bound, showing that if we do not have access
to the distribution, then this is not possible for an arbitrary black-box kernel function.

Our positive result can be viewed as saying that designing a good kernel function is much like de-
signing a good feature space. Given a kernel, by running it in a black-box manner on random unlabeled
examples, we can efficiently generate an explicit set of Õ(1/γ2) features, such that if the data was linearly
separable with margin γ under the kernel, then it is approximately separable in this new feature space.

6.1 Introduction

The starting point for this chapter is the observation that if a learning problem indeed has the large margin
property under some kernel K(x, y) = φ(x) · φ(y), then by the Johnson-Lindenstrauss lemma, a ran-
dom linear projection of the “φ-space” down to a low dimensional space approximately preserves linear
separability [7, 21, 96, 142]. Specifically, suppose data comes from some underlying distribution D over
the input space X and is labeled by some target function c. If D is such that the target function has
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margin γ in the φ-space,1 then a random linear projection of the φ-space down to a space of dimension
d = O

(
1
γ2 log 1

εδ

)
will, with probability at least 1−δ, have a linear separator with error rate at most ε (see

Arriaga and Vempala [21] and also Theorem 6.4.2 in this chapter). This means that for any kernel K and
margin γ, we can, in principle, think of K as mapping the input space X into an Õ(1/γ2)-dimensional
space, in essence serving as a method for representing the data in a new (and not too large) feature space.

The question we consider in this chapter is whether, given kernel K, we can in fact produce such
a mapping efficiently. The problem with the above observation is that it requires explicitly computing
the function φ(x). In particular, the mapping of X into Rd that results from applying the Johnson-
Lindenstrauss lemma is a function F (x) = (r1 ·φ(x), . . . , rd ·φ(x)), where r1, . . . , rd are random vectors
in the φ-space. Since for a given kernel K, the dimensionality of the φ-space might be quite large, this is
not efficient. Instead, what we would like is an efficient procedure that given K(., .) as a black-box pro-
gram, produces a mapping with the desired properties and with running time that depends (polynomially)
only on 1/γ and the time to compute the kernel function K, with no dependence on the dimensionality of
the φ-space.

Our main result is a positive answer to this question, if our procedure for computing the mapping
is also given black-box access to the distribution D (i.e., unlabeled data). Specifically, given black-box
access to a kernel function K(x, y), a margin value γ, access to unlabeled examples from distribution D,
and parameters ε and δ, we can in polynomial time construct a mapping F : X → Rd (i.e., to a set of d

real-valued features) where d = O
(

1
γ2 log 1

εδ

)
with the following property. If the target concept indeed

has margin γ in the φ-space, then with probability 1 − δ (over randomization in our choice of mapping
function), the induced distribution in Rd is separable with error ≤ ε. In fact, not only will the data in
Rd be separable, but it will be separable with margin Ω(γ). Note that the logarithmic dependence on ε
implies that if the learning problem has a perfect separator of margin γ in the φ-space, we can set ε small
enough so that with high probability a set S of O(d log d) labeled examples would be perfectly separable
in the mapped space. This means we could apply an arbitrary zero-noise linear-separator learning algo-
rithm in the mapped space, such as a highly-optimized linear-programming package. However, while the
dimension d has a logarithmic dependence on 1/ε, the number of (unlabeled) examples we use to produce
our mapping is Õ(1/(γ2ε)).

To give a feel of what such a mapping might look like, suppose we are willing to use dimension
d = O(1

ε [ 1
γ2 + ln 1

δ ]) (so this is linear in 1/ε rather than logarithmic) and we are not concerned with
preserving margins and only want approximate separability. Then we show the following simple proce-
dure suffices. Just draw a random sample of d unlabeled points x1, . . . , xd from D and define F (x) =
(K(x, x1), . . . , K(x, xd)). That is, if we think of K not so much as an implicit mapping into a high-
dimensional space but just as a similarity function over examples, what we are doing is drawing d “ref-
erence” points and then defining the ith feature of x to be its similarity with reference point i. We show
(Corollary 6.3.2) that under the assumption that the target function has margin γ in the φ space, with
high probability the data will be approximately separable under this mapping. Thus, this gives a partic-
ularly simple way of using the kernel and unlabeled data for feature generation, and in fact this was the
motivation for the work presented in Chapter 3.

Given the above results, a natural question is whether it might be possible to perform mappings of this
type without access to the underlying distribution. In Section 6.5 we show that this is in general not pos-
sible, given only black-box access (and polynomially-many queries) to an arbitrary kernel K. However,
it may well be possible for specific standard kernels such as the polynomial kernel or the gaussian kernel.

1That is, there exists a linear separator in the φ-space such that any example from D is correctly classified by margin γ. See
Section 6.2 for formal definitions. In Section 6.4.1 we consider the more general case that only a 1−α fraction of the distribution
D is separated by margin γ.
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Relation to Support Vector Machines and Margin Bounds: Given a set S of n training examples, the
kernel matrix defined over S can be viewed as placing S into an n-dimensional space, and the weight-
vector found by an SVM will lie in this space and maximize the margin with respect to the training data.
Our goal is to define a mapping over the entire distribution, with guarantees with respect to the distribution
itself. In addition, the construction of our mapping requires only unlabeled examples, and so could be
performed before seeing any labeled training data if unlabeled examples are freely available. There is,
however, a close relation to margin bounds [44, 191] for SVMs (see the remark after the statement of
Lemma 6.3.1 in Section 6.3), though the dimension of our output space is lower than that produced by
combining SVMs with standard margin bounds.

Our goals are to some extent related to those of Ben-David et al. [48, 50]. They show negative results
giving simple classes of learning problems for which one cannot construct a mapping to a low-dimensional
space under which all functions in the class are linearly separable. We restrict ourselves to situations where
we know that such mappings exist, but our goal is to produce them efficiently.

Interpretation: Kernel functions are often viewed as providing much of the power of an implicit high-
dimensional space without having to pay for it. Our results suggest that an alternative view of kernels is
as a (distribution-dependent) mapping into a low-dimensional space. In this view, designing a good kernel
function is much like designing a good feature space. Given a kernel, by running it in a black-box manner
on random unlabeled examples, one can efficiently generate an explicit set of Õ(1/γ2) features, such that
if the data was linearly separable with margin γ under the kernel, then it is approximately separable using
these new features.

Outline of this chapter: We begin with by giving our formal model and definitions in Section 6.2. We
then in Section 6.3 show that the simple mapping described earlier in this section preserves approximate
separability, and give a modification that approximately preserves both separability and margin. Both of
these map data into a d-dimensional space for d = O(1

ε [ 1
γ2 + ln 1

δ ]). In Section 6.4, we give an improved
mapping, that maps data to a space of dimension only O( 1

γ2 log 1
εδ ). This logarithmic dependence on 1

ε
means we can set ε small enough as a function of the dimension and our input error parameter that we
can then plug in a generic zero-noise linear separator algorithm in the mapped space (assuming the target
function was perfectly separable with margin γ in the φ-space). In Section 6.5 we give a lower bound,
showing that for a black-box kernel, one must have access to the underlying distribution D if one wishes
to produce a good mapping into a low-dimensional space.

6.2 Notation and Definitions

We briefly introduce here the notation needed throughout the chapter. We assume that data is drawn from
some distribution D over an instance space X and labeled by some unknown target function c : X →
{−1,+1}. We use P to denote the combined distribution over labeled examples.

A kernel K is a pairwise function K(x, y) that can be viewed as a “legal” definition of inner product.
Specifically, there must exist a function φ mapping X into a possibly high-dimensional Euclidean space
such that K(x, y) = φ(x)·φ(y). We call the range of φ the “φ-space”, and use φ(D) to denote the induced
distribution in the φ-space produced by choosing random x from D and then applying φ(x).

For simplicity we focus on the 0 − 1 loss for most of this chapter. We say that for a set S of labeled
examples, a vector w in the φ-space has margin γ if:

min
(x,l)∈S

[
l

w · φ(x)
||w|| ||φ(x)||

]
≥ γ.
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That is, w has margin γ if any labeled example in S is correctly classified by the linear separator w·φ(x) ≥
0, and furthermore the cosine of the angle between w and φ(x) has magnitude at least γ.2 If such a vector
w exists, then we say that S is linearly separable with margin γ under the kernel K. For simplicity, we are
only considering separators that pass through the origin, though our results can be adapted to the general
case as well (see Section 6.4.1).

We can similarly talk in terms of the distribution P rather than a sample S. We say that a vector w in
the φ-space has margin γ with respect to P if:

Pr
(x,l)∼P

[
l

w · φ(x)
||w|| ||φ(x)|| < γ

]
= 0.

If such a vector w exists, then we say that P is linearly separable with margin γ under K (or just that P
has margin γ in the φ-space). One can also weaken the notion of perfect separability. We say that a vector
w in the φ-space has error α at margin γ if:

Pr
(x,l)∼P

[
l

w · φ(x)
||w|| ||φ(x)|| < γ

]
≤ α.

Our starting assumption in this chapter will be that P is perfectly separable with margin γ under K,
but we can also weaken the assumption to the existence of a vector w with error α at margin γ, with a
corresponding weakening of the implications (see Section 6.4.1). Our goal is a mapping F : X → Rd

where d is not too large that approximately preserves separability, and, ideally, the margin. We use F (D)
to denote the induced distribution in Rd produced by selecting points in X from D and then applying F ,
and use F (P ) = F (D, c) to denote the induced distribution on labeled examples.

For a set of vectors v1, v2, . . . , vk in Euclidean space, let span(v1, . . . , vk) denote the set of vectors v
that can be written as a linear combination a1v1 + . . . + akvk. Also, for a vector v and a subspace Y , let
proj(v, Y ) be the orthogonal projection of v down to Y . So, for instance, proj(v, span(v1, . . . , vk)) is the
orthogonal projection of v down to the space spanned by v1, . . . , vk. We note that given a set of vectors
v1, . . . , vk and the ability to compute dot-products, this projection can be computed efficiently by solving
a set of linear equalities.

6.3 Two simple mappings

Our goal is a procedure that given black-box access to a kernel function K(., .), unlabeled examples from
distribution D, and a margin value γ, produces a (probability distribution over) mappings F : X → Rd

with the following property: if the target function indeed has margin γ in the φ-space, then with high
probability our mapping will approximately preserve linear separability. In this section, we analyze two
methods that both produce a space of dimension d = O(1

ε [ 1
γ2 + ln 1

δ ]), where ε is our desired bound on
the error rate of the best separator in the mapped space. The second of these mappings in fact satisfies a
stronger condition that its output will be approximately separable at margin γ/2 (rather than just approx-
imately separable). This property will allow us to use this mapping as a first step in a better mapping in
Section 6.4.

The following lemma is key to our analysis.

Lemma 6.3.1 Consider any distribution over labeled examples in Euclidean space such that there exists
a vector w with margin γ. Then if we draw

d ≥ 8
ε

[
1
γ2

+ ln
1
δ

]

2This is equivalent to the notion of margin in Chapter 3 since there we have assumed ||φ(x)|| ≤ 1.
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examples z1, . . . , zd i.i.d. from this distribution, with probability ≥ 1 − δ, there exists a vector w′ in
span(z1, . . . , zd) that has error at most ε at margin γ/2.

Before proving Lemma 6.3.1, we remark that a somewhat weaker bound on d can be derived from the
machinery of margin bounds. Margin bounds [44, 191] tell us that using d = O(1

ε [ 1
γ2 log2( 1

γε) + log 1
δ ])

points, with probability 1 − δ, any separator with margin ≥ γ over the observed data has true error ≤ ε.
Thus, the projection of the target function w into the space spanned by the observed data will have true
error ≤ ε as well. (Projecting w into this space maintains the value of w · zi, while possibly shrinking the
vector w, which can only increase the margin over the observed data.) The only technical issue is that we
want as a conclusion for the separator not only to have a low error rate over the distribution, but also to
have a large margin. However, this can be obtained from the double-sample argument used in [44, 191] by
using a γ/4-cover instead of a γ/2-cover. Margin bounds, however, are a bit of an overkill for our needs,
since we are only asking for an existential statement (the existence of w′) and not a universal statement
about all separators with large empirical margins. For this reason we are able to get a better bound by a
direct argument from first principles.

Proof of Lemma 6.3.1: For any set of points S, let win(S) be the projection of w to span(S), and let
wout(S) be the orthogonal portion of w, so that w = win(S)+wout(S) and win(S) ⊥ wout(S). Also, for
convenience, assume w and all examples z are unit-length vectors (since we have defined margins in terms
of angles, we can do this without loss of generality). Now, let us make the following definitions. Say that
wout(S) is large if Prz(|wout(S) · z| > γ/2) ≥ ε, and otherwise say that wout(S) is small. Notice that if
wout(S) is small, we are done, because

w · z = (win(S) · z) + (wout(S) · z),

which means that win(S) has the properties we want. That is, there is at most an ε probability mass of
points z whose dot-product with w and win(S) differ by more than γ/2. So, we need only to consider
what happens when wout(S) is large.

The crux of the proof now is that if wout(S) is large, this means that a new random point z has at least
an ε chance of significantly improving the set S. Specifically, consider z such that |wout(S) · z| > γ/2.
Let zin(S) be the projection of z to span(S), let zout(S) = z − zin(S) be the portion of z orthogonal to
span(S), and let z′ = zout(S)/||zout(S)||. Now, for S′ = S ∪ {z}, we have

wout(S′) = wout(S)− proj(wout(S), span(S′)) = wout(S)− (wout(S) · z′)z′,

where the last equality holds because wout(S) is orthogonal to span(S) and so its projection onto span(S′)
is the same as its projection onto z′. Finally, since wout(S′) is orthogonal to z′ we have

||wout(S′)||2 = ||wout(S)||2 − |wout(S) · z′|2,

and since
|wout(S) · z′| ≥ |wout(S) · zout(S)| = |wout(S) · z|,

this implies by definition of z that

||wout(S′)||2 < ||wout(S)||2 − (γ/2)2.

So, we have a situation where so long as wout is large, each example has at least an ε chance of
reducing ||wout||2 by at least γ2/4, and since ||w||2 = ||wout(∅)||2 = 1, this can happen at most 4/γ2

times. Chernoff bounds state that a coin of bias ε flipped n = 8
ε

[
1
γ2 + ln 1

δ

]
times will with probability
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1− δ have at least nε/2 ≥ 4/γ2 heads. Together, these imply that with probability at least 1− δ, wout(S)
will be small for |S| ≥ 8

ε

[
1
γ2 + ln 1

δ

]
as desired.

Lemma 6.3.1 implies that if P is linearly separable with margin γ under K, and we draw d = 8
ε [ 1

γ2 +
ln 1

δ ] random unlabeled examples x1, . . . , xd from D, then with probability at least 1−δ there is a separator
w′ in the φ-space with error rate at most ε that can be written as

w′ = α1φ(x1) + . . . + αdφ(xd).

Notice that since w′·φ(x) = α1K(x, x1)+. . .+αdK(x, xd), an immediate implication is that if we simply
think of K(x, xi) as the ith “feature” of x — that is, if we define F1(x) = (K(x, x1), . . . , K(x, xd)) —
then with high probability the vector (α1, . . . , αd) is an approximate linear separator of F1(P ). So, the
kernel and distribution together give us a particularly simple way of performing feature generation that
preserves (approximate) separability. Formally, we have the following.
Corollary 6.3.2 If P has margin γ in the φ-space, then with probability ≥ 1− δ, if x1, . . . , xd are drawn
from D for d = 8

ε

[
1
γ2 + ln 1

δ

]
, the mapping

F1(x) = (K(x, x1), . . . ,K(x, xd))

produces a distribution F1(P ) that is linearly separable with error at most ε.

The above mapping F1 may not preserve margins (within a constant factor) because we do not have
a good bound on the length of the vector (α1, . . . , αd) defining the separator in the new space, or the
length of the examples F1(x). The key problem is that if many of the φ(xi) are very similar, then their
associated features K(x, xi) will be highly correlated. Instead, to preserve margin we want to choose an
orthonormal basis of the space spanned by the φ(xi): i.e., to do an orthogonal projection of φ(x) into
this space. Specifically, let S = {x1, ..., xd} be a set of of 8

ε [ 1
γ2 + ln 1

δ ] unlabeled examples from D.
We can then implement the desired orthogonal projection of φ(x) as follows. Run K(x, y) for all pairs
x, y ∈ S, and let M(S) = (K(xi, xj))xi,xj∈S be the resulting kernel matrix. Now decompose M(S)
into UT U , where U is an upper-triangular matrix. Finally, define the mapping F2 : X → Rd to be
F2(x) = F1(x)U−1, where F1 is the mapping of Corollary 6.3.2. This is equivalent to an orthogonal
projection of φ(x) into span(φ(x1), . . . , φ(xd)). Technically, if U is not full rank then we want to use the
(Moore-Penrose) pseudoinverse [51] of U in place of U−1.

We now claim that by Lemma 6.3.1, this mapping F2 maintains approximate separability at margin
γ/2.

Theorem 6.3.3 If P has margin γ in the φ-space, then with probability ≥ 1− δ, the mapping F2 : X →
Rd for d ≥ 8

ε

[
1
γ2 + ln 1

δ

]
has the property that F2(P ) is linearly separable with error at most ε at margin

γ/2.

Proof: The theorem follows directly from Lemma 6.3.1 and the fact that F2 is an orthogonal projec-
tion. Specifically, since φ(D) is separable at margin γ, Lemma 6.3.1 implies that for d ≥ 8

ε

[
1
γ2 + ln 1

δ

]
,

with probability at least 1−δ, there exists a vector w′ that can be written as w′ = α1φ(x1)+ ...+αdφ(xd),
that has error at most ε at margin γ/2 with respect to φ(P ), i.e.,

Pr
(x,l)∼P

[
l(w′ · φ(x))
||w′|| ||φ(x)|| <

γ

2

]
≤ ε.

Now consider w = α1F2(x1) + . . . + αdF2(xd). Since F2 is an orthogonal projection and the φ(xi) are
clearly already in the space spanned by the φ(xi), w can be viewed as the same as w′ but just written in
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a different basis. In particular, we have ||w|| = ||w′||, and w′ · φ(x) = w · F2(x) for all x ∈ X . Since
||F2(x)|| ≤ ||φ(x)|| for every x ∈ X , we get that w has error at most ε at margin γ/2 with respect to
F2(P ), i.e.,

Pr
(x,l)∼P

[
l(w · F2(x))
||w|| ||F2(x)|| <

γ

2

]
≤ ε.

Therefore, for our choice of d, with probability at least 1 − δ (over randomization in our choice of F2),
there exists a vector w ∈ Rd that has error at most ε at margin γ/2 with respect to F2(P ).

Notice that the running time to compute F2(x) is polynomial in 1/γ, 1/ε, 1/δ and the time to compute
the kernel function K.

6.4 An improved mapping

We now describe an improved mapping, in which the dimension d has only a logarithmic, rather than
linear, dependence on 1/ε. The idea is to perform a two-stage process, composing the mapping from
the previous section with a random linear projection from the range of that mapping down to the desired
space. Thus, this mapping can be thought of as combining two types of random projection: a projection
based on points chosen at random from D, and a projection based on choosing points uniformly at random
in the intermediate space.

We begin by stating a result from [7, 21, 96, 136, 142] that we will use. Here N(0, 1) is the standard
Normal distribution with mean 0 and variance 1 and U(−1, 1) is the distribution that has probability 1/2
on −1 and probability 1/2 on 1. Here we present the specific form given in [21].
Theorem 6.4.1 (Neuronal RP [21]) Let u, v ∈ Rn. Let u′ = 1√

k
uA and v′ = 1√

k
vA where A is a n× k

random matrix whose entries are chosen independently from either N(0, 1) or U(−1, 1). Then,

Pr
A

[
(1− ε)||u− v||2 ≤ ||u′ − v′||2 ≤ (1 + ε)||u− v||2] ≥ 1− 2e−(ε2−ε3) k

4 .

Let F2 : X → Rd2 be the mapping from Section 6.3 using ε/2 and δ/2 as its error and confidence
parameters respectively. Let F̂ : Rd2 → Rd3 be a random projection as in Theorem 6.4.1. Specifically,
we pick A to be a random d2 × d3 matrix whose entries are chosen i.i.d. N(0, 1) or U(−1, 1). We then
set F̂ (x) = 1√

d3
xA. We finally consider our overall mapping F3 : X → Rd3 to be F3(x) = F̂ (F2(x)).

We now claim that for d2 = O(1
ε [ 1

γ2 + ln 1
δ ]) and d3 = O( 1

γ2 log( 1
εδ )), with high probability, this

mapping has the desired properties. The basic argument is that the initial mapping F2 maintains approxi-
mate separability at margin γ/2 by Lemma 6.3.1, and then the second mapping approximately preserves
this property by Theorem 6.4.1.

Theorem 6.4.2 If P has margin γ in the φ-space, then with probability at least 1 − δ, the mapping
F3 = F̂ ◦ F2 : X → Rd3 , for values d2 = O

(
1
ε

[
1
γ2 + ln 1

δ

])
and d3 = O

(
1
γ2 log( 1

εδ )
)

, has the
property that F3(P ) is linearly separable with error at most ε at margin γ/4.

Proof:
By Lemma 6.3.1, with probability at least 1− δ/2 there exists a separator w in the intermediate space

Rd2 with error at most ε/2 at margin γ/2. Let us assume this in fact occurs. Now, consider some point
x ∈ Rd2 . Theorem 6.4.1 implies that a choice of d3 = O( 1

γ2 log( 1
εδ )) is sufficient so that under the random

projection F̂ , with probability at least 1− εδ/4, the squared-lengths of w, x, and w − x are all preserved
up to multiplicative factors of 1 ± γ/16. This then implies that the cosine of the angle between w and x

135



(i.e., the margin of x with respect to w) is preserved up to an additive factor of ±γ/4. Specifically, using

x̂ = x
||x|| and ŵ = w

||w|| , which implies F̂ (w)·F̂ (x)

||F̂ (w)|| ||F̂ (x)|| = F̂ (ŵ)·F̂ (x̂)

||F̂ (ŵ)|| ||F̂ (x̂)|| , we have:

F̂ (ŵ) · F̂ (x̂)
||F̂ (ŵ)|| ||F̂ (x̂)|| =

1
2(||F̂ (ŵ)||2 + ||F̂ (x̂)||2 − ||F̂ (ŵ)− F̂ (x̂)||2)

||F̂ (ŵ)|| ||F̂ (x̂)||
∈ [ŵ · x̂− γ/4, ŵ · x̂ + γ/4].

In other words, we have shown the following:

For all x, Pr
A

[∣∣∣∣∣
w · x

||w|| ||x|| −
F̂ (w) · F̂ (x)

||F̂ (w)|| ||F̂ (x)||

∣∣∣∣∣ ≥ γ/4

]
≤ εδ/4.

Since the above is true for all x, it is clearly true for random x from F2(D). So,

Pr
x∼F2(D),A

[∣∣∣∣∣
w · x

||w|| ||x|| −
F̂ (w) · F̂ (x)

||F̂ (w)|| ||F̂ (x)||

∣∣∣∣∣ ≥ γ/4

]
≤ εδ/4,

which implies that:

Pr
A

[
Pr

x∼F2(D)

(∣∣∣∣∣
w · x

||w|| ||x|| −
F̂ (w) · F̂ (x)

||F̂ (w)|| ||F̂ (x)||

∣∣∣∣∣ ≥ γ/4

)
≥ ε/2

]
≤ δ/2.

Since w has error at most ε/2 at margin γ/2, this then implies that the probability that F̂ (w) has error
more than ε over F̂ (F2(D)) at margin γ/4 is at most δ/2. Combining this with the δ/2 failure probability
of F2 completes the proof.

As before, the running time to compute our mappings is polynomial in 1/γ, 1/ε, 1/δ and the time to
compute the kernel function K.

Since the dimension d3 of the mapping in Theorem 6.4.2 is only logarithmic in 1/ε, this means we can
set ε to be small enough so that with high probability, a sample of size O(d3 log d3) would be perfectly
separable. This means we could use any noise-free linear-separator learning algorithm in Rd3 to learn
the target concept. However, this requires using d2 = Õ(1/γ4) (i.e., Õ(1/γ4) unlabeled examples to
construct the mapping).
Corollary 6.4.3 Given ε′, δ, γ < 1, if P has margin γ in the φ-space, then Õ( 1

ε′γ4 ) unlabeled examples
are sufficient so that with probability 1 − δ, mapping F3 : X → Rd3 has the property that F3(P ) is
linearly separable with error o(ε′/(d3 log d3)), where d3 = O( 1

γ2 log 1
ε′γδ ).

Proof: Just plug in the desired error rate into the bounds of Theorem 6.4.2.

6.4.1 A few extensions

So far, we have assumed that the distribution P is perfectly separable with margin γ in the φ-space.
Suppose, however, that P is only separable with error α at margin γ. That is, there exists a vector w in
the φ-space that correctly classifies a 1 − α probability mass of examples by margin at least γ, but the
remaining α probability mass may be either within the margin or incorrectly classified. In that case, we
can apply all the previous results to the 1 − α portion of the distribution that is correctly separated by
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margin γ, and the remaining α probability mass of examples may or may not behave as desired. Thus all
preceding results (Lemma 6.3.1, Corollary 6.3.2, Theorem 6.3.3, and Theorem 6.4.2) still hold, but with
ε replaced by (1− α)ε + α in the error rate of the resulting mapping.

Another extension is to the case that the target separator does not pass through the origin: that is, it is
of the form w · φ(x) ≥ β for some value β. If φ is normalized, so that ||φ(x)|| = 1 for all x ∈ X , then
all results carry over directly. In particular, all our results follow from arguments showing that the cosine
of the angle between w and φ(x) changes by at most ε due to the reduction in dimension. If φ(x) is not
normalized, then all results carry over with γ replaced by γ/R, where R is an upper bound on ||φ(x)||, as
is done with standard margin bounds [44, 111, 191].

6.5 On the necessity of access to D

Our algorithms construct mappings F : X → Rd using black-box access to the kernel function K(x, y)
together with unlabeled examples from the input distribution D. It is natural to ask whether it might
be possible to remove the need for access to D. In particular, notice that the mapping resulting from
the Johnson-Lindenstrauss lemma has nothing to do with the input distribution: if we have access to the
φ-space, then no matter what the distribution is, a random projection down to Rd will approximately
preserve the existence of a large-margin separator with high probability.3 So perhaps such a mapping
F can be produced by just computing K on some polynomial number of cleverly-chosen (or uniform
random) points in X . (Let us assume X is a “nice” space such as the unit ball or {0, 1}n that can be
randomly sampled.) In this section, we show this is not possible in general for an arbitrary black-box
kernel. This leaves open, however, the case of specific natural kernels.

One way to view the result of this section is as follows. If we define a feature space based on uniform
binary (Rademacher) or gaussian-random points in the φ-space, then we know this will work by the
Johnson-Lindenstrauss lemma. If we define features based on points in φ(X) (the image of X under φ)
chosen according to φ(D), then this will work by Corollary 6.3.2. However, if we define features based on
points in φ(X) chosen according to some method that does not depend on D, then there will exist kernels
for which this does not work.

In particular, we demonstrate the necessity of access to D as follows. Consider X = {0, 1}n, let X ′

be a random subset of 2n/2 elements of X , and let D be the uniform distribution on X ′. For a given target
function c, we will define a special φ-function φc such that c is a large margin separator in the φ-space
under distribution D, but that only the points in X ′ behave nicely, and points not in X ′ provide no useful
information. Specifically, consider φc : X → R2 defined as:

φc(x) =





(1, 0) if x 6∈ X ′

(−1/2,
√

3/2) if x ∈ X ′ and c(x) = 1
(−1/2,−√3/2) if x ∈ X ′ and c(x) = −1

See figure 6.5.1. This then induces the kernel:

Kc(x, y) =
{

1 if x, y 6∈ X ′ or [x, y ∈ X ′ and c(x) = c(y)]
−1/2 otherwise

Notice that the distribution P = (D, c) over labeled examples has margin γ =
√

3/2 in the φ-space.
3To be clear about the order of quantification, the statement is that for any distribution, a random projection will work with

high probability. However, for any given projection, there may exist bad distributions. So, even if we could define a mapping of
the sort desired, we might still expect the algorithm to be randomized.
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x in X’

x in X’
c(x)=−1

c(x)=1

x not in X’

Figure 6.5.1: Function φc used in lower bound.

Theorem 6.5.1 Suppose an algorithm makes polynomially many calls to a black-box kernel function over
input space {0, 1}n and produces a mapping F : X → Rd where d is polynomial in n. Then for random
X ′ and random c in the above construction, with high probability F (P ) will not even be weakly-separable
(even though P has margin γ =

√
3/2 in the φ-space).

Proof: Consider any algorithm with black-box access to K attempting to create a mapping F : X → Rd.
Since X ′ is a random exponentially-small fraction of X , with high probability all calls made to K when
constructing the function F are on inputs not in X ′. Let us assume this indeed is the case. This implies
that (a) all calls made to K when constructing the function F return the value 1, and (b) at “runtime” when
x chosen from D (i.e., when F is used to map training data), even though the function F (x) may itself
call K(x, y) for different previously-seen points y, these will all give K(x, y) = −1/2. In particular, this
means that F (x) is independent of the target function c. Finally, since X ′ has size 2n/2 and d is only
polynomial in n, we have by simply counting the number of possible partitions of F (X ′) by halfspaces
that with high probability F (P ) will not even be weakly separable for a random function c over X ′.
Specifically, for any given halfspace, the probability over choice of c that it has error less than 1/2 − ε
is exponentially small in |X ′| (by Hoeffding bounds), which is doubly-exponentially small in n, whereas
there are “only” 2O(dn) possible partitions by halfspaces.

Notice that the kernel in the above argument is positive semidefinite. If we wish to have a positive
definite kernel, we can simply change “1” to “1 − α” and “−1/2” to “−1

2(1 − α)” in the definition of
K(x, y), except for y = x in which case we keep K(x, y) = 1. This corresponds to a function φ in which
rather that mapping points exactly into R2, we map into R2+2n

giving each example a
√

α-component in
its own dimension, and we scale the first two components by

√
1− α to keep φc(x) a unit vector. The

margin now becomes
√

3
2 (1−α). Since the modifications provide no real change (an algorithm with access

to the original kernel can simulate this one), the above arguments apply to this kernel as well.
One might complain that the kernels used in the above argument are not efficiently computable. How-

ever, this can be rectified (assuming the existence of one-way functions) by defining X ′ to be a crypto-
graphically pseudorandom subset of X and c to be a pseudorandom function [125]. In this case, except
for the very last step, the above argument still holds for polynomial-time algorithms. The only issue,
which arises in the last step, is that we do not know any polynomial-time algorithm to test if F (P ) is
weakly-separable in Rd (which would distinguish c from a truly-random function and provide the needed
contradiction). Thus, we would need to change the conclusion of the theorem to be that “F (P ) is not even
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weakly-learnable by a polynomial time algorithm”.
Of course, these kernels are extremely unnatural, each with its own hidden target function built in.

It seems quite conceivable that positive results independent of the distribution D can be achieved for
standard, natural kernels.

6.6 Conclusions and Discussion

We show how given black-box access to a kernel function K and a distribution D (i.e., unlabeled exam-
ples) we can use K and D together to efficiently construct a new low-dimensional feature space in which
to place the data that approximately preserves the desired properties of the kernel. Our procedure uses
two types of “random” mappings. The first is a mapping based on random examples drawn from D that
is used to construct the intermediate space, and the second is a mapping based on Rademacher/binary (or
Gaussian) random vectors in the intermediate space as in the Johnson-Lindenstrauss lemma.

Our analysis suggests that designing a good kernel function is much like designing a good feature
space. It also provides an alternative to “kernelizing” a learning algorithm: rather than modifying the
algorithm to use kernels, one can instead construct a mapping into a low-dimensional space using the
kernel and the data distribution, and then run an un-kernelized algorithm over examples drawn from the
mapped distribution.

Our main concrete open question is whether, for natural standard kernel functions, one can produce
mappings F : X → Rd in an oblivious manner, without using examples from the data distribution. The
Johnson-Lindenstrauss lemma tells us that such mappings exist, but the goal is to produce them without
explicitly computing the φ-function. Barring that, perhaps one can at least reduce the unlabeled sample-
complexity of our approach.

On the practical side, it would be interesting to explore the alternatives that these (or other) mappings
provide to widely used algorithms such as SVM, or Kernel Perceptron.
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Chapter 7

Mechanism Design, Machine Learning,
and Pricing Problems

In this chapter we make an explicit connection between machine learning and mechanism design. In
particular, we show how Sample Complexity techniques in Statistical Learning Theory can be used to
reduce problems of incentive-compatible mechanism design to standard algorithmic questions, for a wide
range of revenue-maximizing problems in an unlimited (or unrestricted) supply setting.

7.1 Introduction, Problem Formulation

In recent years there has been substantial work on problems of algorithmic mechanism design. These
problems typically take a form similar to classic algorithm design or approximation-algorithm questions,
except that the inputs are each given by selfish agents who have their own interest in the outcome of the
computation. As a result it is desirable that the mechanisms (the algorithms and protocol) be incentive
compatible — meaning that it is in each agent’s best interest to report its true value — so that agents do
not try to game the system. This requirement can greatly complicate the design problem.

In this work we consider the design of mechanisms for one of the most fundamental economic objec-
tives: profit maximization. Agents participating in such a mechanism may choose to falsely report their
preferences if it might benefit them. What we show, however, is that so long as the number of agents is
sufficiently large as a function of a measure of the complexity of the mechanism design problem, we can
apply sample-complexity techniques from learning theory to reduce this problem to standard algorithmic
questions in a broad class of settings. It is useful to think of the techniques we develop in the context of
designing an auction to sell some goods or services, though they also apply in more general scenarios.

In a seminal paper Myerson [171] derives the optimal auction for selling a single item given that
the bidders’ true valuations for the item come from some known prior distribution. Following a trend
in the recent computer science literature on optimal auction design, we consider the prior-free setting in
which there is no underlying distribution on valuations and we wish to perform well for any (sufficiently
large) set of bidders. In absence of a known prior distribution we will use machine learning techniques
to estimate properties of the bidders’ valuations. We consider the unlimited supply setting in which this
problem is conceptually simpler because there are no infeasible allocations; though, it is often possible
to obtain results for limited supply or with cost functions on the outcome via reduction to the unlimited
supply case [9, 106, 124]. Research in optimal prior-free auction design is important for optimal auction
design because it directly links inaccurate distributional knowledge typical of small markets with loss in
performance.
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Implicit in mechanism design problems is the fact that the selfish agents that will be participating in the
mechanism have private information that is known only to them. Often this private information is simply
the agent’s valuation over the possible outcomes the mechanism could produce. For example, when selling
a single item (with the standard assumption that an agent only cares if they get the item or not and not
whether another agent gets it) this valuation is simply how much they are willing to pay for the item. There
may also be public information associated with each agent. This information is assumed to be available
to the mechanism. Such information is present in structured optimization problems such as the knapsack
auction problem [9] and multicast auction problem [106] and is the natural way to generalize optimal
auction design for independent but non-identically distributed prior distributions (which are considered by
Myerson [171]) to the prior-free setting. There are many standard economic settings where such public
information is available, e.g., in the college tuition mechanism, in-state or out-of-state residential status is
public; for acquiring a loan, a consumer’s credit report is public information; for automobile insurance,
driving records, credit reports, and the make and color of the vehicle are public information.

A fundamental building block of an incentive compatible mechanism is an offer. For full generality an
offer can be viewed as an incentive compatible mechanism for one agent. As an example, if we are selling
multiple units of a single item, an offer could be a take-it-or-leave-it price per unit. A rational agent would
accept such an offer if it is lower than the agent’s valuation for the item and reject if it is greater. Notice
that if all agents are given the same take-it-or-leave-it price then the outcome is non-discriminatory and
the same price is paid by all winners. Prior-free auctions based on this type of non-discriminatory pricing
have been considered previously (see, e.g., [124]).

One of the main motivations of this work is to explore discriminatory pricing in optimal auction
design. There are two standard means to achieve discriminatory pricing. The first, is to discriminate based
on the public information of the consumer. Naturally, loans are more costly for individuals with poor
credit scores, car insurance is more expensive for drivers with points on their driving record, and college
tuition at state run universities is cheaper for students that are in-state residents. In this setting a reasonable
offer might be a mapping from the public information of the agents to a take-it-or-leave-it price. We refer
to these types of offers as pricing functions. The second standard means for discriminatory pricing is to
introduce similar products of different qualities and price them differently. Consumers who cannot afford
the expensive high-quality version may still purchase an inexpensive low-quality version. This practice
is common, for example, in software sales, electronics sales, and airline ticket sales. An offer for the
multiple good setting could be a take-it-or-leave it price for each good. An agent would then be free to
select the good (or bundle of goods) with the (total) price that they most prefer. We refer to these types of
offers as item pricings.

Notice that allowing offers in the form of pricing functions and item pricings, as described above,
provides richness to both algorithmic and mechanism design questions. This richness; however, is not
without cost. Our performance bounds are parameterized by a suitable notion of the complexity of the
class of allowable offers. It is natural that this kind of complexity should affect the ability of a mechanism
to optimize. It is easier to approximate the optimal offer from a simple classes of offers, such as take-
it-or-leave-it prices for a single item, than it is for a more complex class of offers, such as take-it-or-
leave-it prices for multiple items. Our prior-free analysis makes the relationship between a mechanism’s
performance and the complexity of allowed offers precise.

We phrase our auction problem generically as: given some class of reasonable offers, can we construct
an incentive-compatible auction that obtains profit close to the profit obtained by the optimal offer from
this class? The auctions we discuss are generalizations of the random sampling auction of Goldberg et
al. [121]. These auctions make use of a (non-incentive-compatible) algorithm for computing a best (or
approximately best) offer from a given class for any set of consumers. Thus, we can view this construction
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as reducing the optimal mechanism design problem to the optimal algorithm design problem.
The idea of the reduction is as follows. Let A be an algorithm (exact or approximate) for the purely

algorithmic problem of finding the optimal offer in some class G for any given set of consumers S with
known valuations. Our auction, which does not know the valuations a priori, asks the agents to report
their valuations (as bids), splits agents randomly into two sets S1 and S2, runs the algorithm A separately
on each set (perhaps adding an additional penalty term to the objective to penalize solutions that are too
“complex” according to some measure), and then applies the offer found for S1 to S2 and the offer found
on S2 to S1. The incentive compatibility of this auction allows us to assume that the agents will indeed
report their true valuations. Sample-complexity techniques adapted from machine learning theory can
then give a guarantee on the quality of the results if the market size is sufficiently large compared to a
measure of complexity of the class of possible solutions. From an economics perspective, this can be
viewed as replacing the Bayesian assumption that bidders come from a known prior distribution (e.g., as
in Myerson’s work [171]) with the use of learning, over a random subset S1 of an arbitrary set of bidders
S, to get enough information to apply to S2 (and vice versa).

It is easy to see that as the size of the market grows, the law of large numbers indicates that the above
approach is asymptotically optimal. This is not surprising as conventional economic wisdom suggests that
even the approach of market analysis followed by the Bayesian optimal mechanism would incur negligibly
small loss compared to the Bayesian optimal mechanism which was endowed with foreknowledge of the
distribution. In contrast, the main contribution of this work is to give a mechanism with upper bounds on
the convergence rate, i.e., the relationship between the size of the market, the approximation factor, and
the complexity of the class of reasonable offers.

Our contributions: We present a general framework for reducing problems of incentive-compatible
mechanism design to standard algorithmic questions, for a broad class of revenue-maximizing pricing
problems. To obtain our bounds we use and extend sample-complexity techniques from machine learn-
ing theory (see [18, 69, 149, 203]) and to design our mechanisms we employ machine learning methods
such as structural risk minimization. In general we show that an algorithm (or β-approximation) can be
converted into a (1 + ε)-approximation (or β(1 + ε)-approximation) for the optimal mechanism design
problem when the market size is at least O(βε−2) times a reasonable notion of the complexity of the class
of offers considered. Our formulas relating the size of the market to the approximation factor give upper
bounds on the performance loss due to unknown market conditions and we view these as bounds on the
convergence rate of our mechanism. From a learning perspective, the mechanism-design setting presents
a number of technical challenges when attempting to get good bounds: in particular, the payoff function
is discontinuous and asymmetric, and the payoffs for different offers are non-uniform. For example, in
Section 7.3.3 we develop bounds based on a different notion of covering number than typically used in
machine learning, in order to obtain results that are more meaningful for our setting.

We instantiate our framework for a variety of problems, some of which have been previously consid-
ered in the literature, including:

Digital Good Auction Problem: The digital good auction problem considers the sale of an unlimited
number of units of an item to indistinguishable consumers, and has been considered by Goldberg et
al. [121] and a number of subsequent papers. As argued in [121] the only reasonable offers for this
setting are take-it-or-leave-it prices.

The analysis techniques developed in our work give a simple proof that the random sampling auction
(related to that of [121]) obtains a (1− ε) fraction of the optimal offer as long as the market size is
at least O( h

ε2
log 1

ε ) (where h is an upper bound on the valuation of any agent).

Attribute Auction Problem: The attribute auction problem is an abstraction of the problem using dis-
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criminatory prices based on public information (a.k.a., attributes) of the agents. A seller can often
increase its profit by using discriminatory pricing: for example, the motion picture industry uses
region encodings so that they can charge different prices for DVDs sold in different markets. Fur-
ther, in many generalizations of the digital good auction problem, the agents are distinguishable via
public information so the techniques exposed in the study of attribute auctions are fundamental to
the study of profit maximization in general settings.

Here a reasonable class of offers to consider are mappings from the agents’ attributes to take-it-
or-leave-it prices. As such, we refer to these offers as pricing functions. For example, for one-
dimensional attributes, a natural class of pricing functions might be piece-wise constant functions
with k prices, as studied in [60]. In our work we give a general treatment that can be applied
to arbitrary classes of pricing functions. For example, if attributes are multi-dimensional, pricing
functions might involve partitioning agents into markets defined by coordinate values or by some
natural clustering, and then offering a constant price or a price that is some other simple function of
the attributes within each market. Our bounds give a (1 + ε)-approximation when the market size
is large in comparison to ε−2 scaled by a suitable notion of the complexity of the class of offers.

Combinatorial Auction Problem: We also consider the goal of profit maximization in an unlimited-
supply combinatorial auction. This generalizes the digital good auction and exemplifies the problem
of discriminatory pricing through the sale of multiple products. The setting here is the following. We
have m different items, each in unlimited supply (like a supermarket), and bidders have valuations
over subsets of items. Our goal is to achieve revenue nearly as large as the best revenue that uses
take-it-or-leave-it prices for each item individually, i.e., the best item-pricing.

For arbitrary item pricings we show that our reduction has a convergence rate of Ω̃
(

hm2

ε2

)
no

matter how complicated those bidders’ valuations are (where the Ω̃ hides terms logarithmic in n, the
number of agents; m, the number of items; and h, the highest valuation). If instead the specification
of the problem constrains the item prices to be integral (e.g., in pennies) or the consumers to be unit-
demand (desiring only one of several items) or single-minded (desiring only a particular bundle of
items) then our bound improves to Ω̃

(
hm
ε2

)
. This improves on the bounds given by [119] for the

unit-demand case by roughly a factor of m.

A special case of this setting is the problem of auctioning the right to traverse paths in a network.
When the network is a tree and each user wants to reach the root (like drivers commuting into
a city or a multicast tree in the Internet), Guruswami et al. [129] give an exact algorithm for the
algorithmic problem to which our reduction applies as noted above.

Related Work: Several papers [60, 65] have applied machine learning techniques to mechanism design in
the context of maximizing revenue in online auctions. The online setting is more difficult than the “batch”
setting we consider, but the flip-side is that as a result, that work only applies to quite simple mechanism
design settings where the class G of allowable offers has small size and can be easily listed. Also, in
a similar spirit to the goals of our work, Awerbuch et al. [22] give reductions from online mechanism
design to online optimization for a broad class of revenue maximization problems. Their work compares
performance to the sum of bidders’ valuations, a quite demanding measure. As a result, however, their
approximation factors are necessarily logarithmic rather than (1 + ε) as in our results.

Structure of this chapter: The structure of the chapter is as follows. We describe the general setting in
which our results apply in Section 7.2 and give our generic reduction and bounds Section 7.3. We then
apply our techniques to the digital good auction problem (Section 7.4), attribute auction problems (Sec-
tion 7.5), the problem of item-pricing in combinatorial auctions (Section 7.6). We present our conclusions
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in Section 7.7.

7.2 Model, Notation, and Definitions

7.2.1 Abstract Model

We assume a set S = {1, . . . , n} of agents. At the heart of our approach to mechanism design is the
idea that the interaction between a mechanism and an agent results from the combination of an agent’s
preference with an offer made by the mechanism. The precise notion of what preferences and offers are
will depend on the setting and is defined in Section 7.2.2. However, fixing the preference of agent i and
an offer g we let g(i) represent the payment made to the mechanism when agent i’s preference is applied
to the offer g. Essentially, we are letting the structure of an agent’s preference and the structure of the
offer be represented solely by g(i). We extend our notation to allow g(S) to be the total profit when
offering g to all agents in S, and we assume that g(S) =

∑
i∈S g(i). This effectively corresponds to an

unlimited-supply assumption in the auction setting.
In our setting we have a class G of allowable offers. Our problem will be to find offers in G to make to

the agents to maximize our profit. For this abstract setting we propose an algorithmic optimization problem
and a mechanism design problem, the difference being that in the former we constrain the algorithm to
make the same offer to all agents, and in the latter the mechanism is constrained by lack of prior knowledge
of the agents’ true preferences and must be incentive compatible.

Given the true preferences of S and a class of offers G, the algorithmic optimization problem is to
find the g ∈ G with maximum profit, i.e., optG(S) = argmaxg∈G g(S). Let OPTG(S) = maxg∈G g(S)
be this maximum profit. This computational problem is interesting in its own right, especially when the
structure of agent preferences and the allowable offers results in a concise formula for g(i) for all g ∈ G
and all i ∈ S. All of the techniques we develop assume that such an algorithm (or an approximation to it)
exists, and some require existence of an algorithm that optimizes over the profit of an offer minus some
penalty term that is related to the complexity of the offer, i.e., maxg∈G

[
g(S)− peng(S)

]
.

We now define an abstract mechanism-design-like problem that is modelled after the standard charac-
terization of single-round sealed-bid direct-revelation incentive-compatible mechanisms (see below). For
the class of offers G, each agent has a payoff profile which lists the payment they would make for each
possible offer, i.e., [g(i)]g∈G for agent i (notice that this represents all of the relevant information in agent
i’s preference). Our abstract mechanism chooses an offer gi for each agent i in a way that is independent
of that agent’s payoff profile, but can be a function of the agent’s identity and the payoff profiles of other
agents. That is, for some function f , gi = f(i, [g(j)]g∈G,j 6=i). The mechanism then selects the outcome
for agent i determined by their preference and gi, which nets a profit of gi(i). The total profit of such
a mechanism is

∑
i gi(i). We define an abstract deterministic mechanism to be completely specified by

such a function f and an abstract randomized mechanism is a randomization over abstract deterministic
mechanisms. The main design problem considered in our work is to come up with a mechanism (e.g., an
f or randomization over functions f ) to maximize our (expected) profit.

Our approach is through a reduction from the mechanism design problem to the algorithm design
problem that is applicable at this level of generality (both design and analysis), though tighter analysis is
possible when we expose more structure in the agent preferences and class of offers (as described next).
Our bounds make use of a parameter h which upper bounds on the value of g(i) for all i ∈ S and g ∈ G;
that is, no individual agent can influence the total profit by more than h. The auctions we describe that
make use of the technique of structural risk minimization will need to know h in advance.
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7.2.2 Offers, Preferences, and Incentives

To describe how the framework above allows us to consider a large class of mechanism design problems,
we formally discuss the details of offers, agent preferences, and the constraints imposed by incentive
compatibility. To do this we develop some notation; however, the main results in our work will be given
using the general framework above.

Formally, a market consists of a set of n agents, S, and a space of possible outcomes, O. We consider
unlimited supply allocation problems where Oi is set of possible outcomes (allocations) to agent i and
O = O1 × · · · × On (i.e., all possible combinations of allocations are feasible). Except where noted, we
assume there is no cost to the mechanism for producing any outcome.

As is standard in the mechanism design literature [177], an agent i’s preference is fully specified by
its private type, which we denote vi. We assume no externalities, which means that vi can be viewed as a
preference ordering, ºvi , over (outcome, payment) pairs in Oi ×R. That is, each agent cares only about
what outcome it receives and pays, and not about what other agents get. A bid, bi, is a reporting of one’s
type, i.e., it is also a preference ordering over (outcome, payment) pairs, and we say a bidder is bidding
truthfully if the preference ordering under bi matches that given by its true type, vi.

A deterministic mechanism is incentive compatible if for all agents i and all actions of the other
agents, bidding truthfully is at least as good as bidding non-truthfully. If oi(bi,b−i) and pi(bi,b−i) are
the outcome and payment when agent i bids bi and the other agents bid b−i, then incentive compatibility
requires for all vi, bi, and b−i,

(oi(vi,b−i), pi(vi,b−i)) ºvi (oi(bi,b−i), pi(bi,b−i)).

A randomized mechanism is incentive compatible if it is a randomization over deterministic incentive
compatible mechanisms.

An offer, as described abstractly in the preceding section, need not be anonymous. This allows the
freedom to charge different agents different prices for the same outcome. In particular, for a fixed offer
g, the payment to two agents, g(i) and g(i′), may be different even if bi = bi′ . We consider a structured
approach to this sort of discriminatory pricing by associating to each agent i some publicly observable
attribute value pubi. An offer then is a mapping from a bidder’s public information to a collection of
(outcome, payment) pairs which the agent’s preference ranks. We interpret making an offer to an agent
as choosing the outcome and payment that they most prefer according to their reported preference. For
an incentive compatible mechanism, where we can assume that vi = bi, g(i) is the payment component
of this (outcome, payment) pair. Clearly, the mechanism that always makes every agent a fixed offer is
by definition incentive-compatible. In fact the following more general result, which motivates the above
definition of an abstract mechanism, is easy to show:

Fact 7.2.1 A mechanism is incentive compatible if the choice of which offer to make to any agent does not
depend on the agent’s reported preference.

Because all our mechanisms are incentive compatible, the established notation of g(i) as the profit of
offer g on agent i will be sufficient for most discussions and we will omit explicit reference to vi and bi

where possible.

7.2.3 Quasi-linear Preferences

We will apply our general framework and analysis to a number of special cases where the agents’ pref-
erences are to maximize their quasi-linear utility. This is the most studied case in mechanism design
literature. The type, vi, of a quasi-linear utility maximizing agent i specifies its valuation for each out-
come. We denote the valuation of agent i for outcome oi ∈ Oi as vi(oi). This agent’s utility is the
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difference between its valuation and the price it is required to pay. I.e., for outcome oi and payment pi,
agent i’s utility is ui = vi(oi)− pi. An agent prefers the outcome and payment that maximizes its utility.
I.e., vi(oi)− pi ≥ vi(o′i)− p′i if and only if (oi, pi) ºvi (o′i, p

′
i).

For the quasi-linear case, the incentive compatibility constraints imply for all vi, bi, and b−i that,

vi(oi(vi,b−i))− pi(vi,b−i) ≥ vi(oi(bi,b−i))− pi(bi,b−i).

Notice that in the quasi-linear setting our constraint that g(i) ≤ h would be implied by the condition
that vi(oi) ≤ h for all oi ∈ Oi.

7.2.4 Examples

The following examples illustrate the relationship between the outcome of the mechanism, offers, valua-
tions, and attributes. (The first three examples are quasi-linear, the fourth is not.)

Digital Good Auction: The digital good auction models an auction of a single item in unlimited supply
to indistinguishable bidders. Here the set of possible outcomes for bidder i is Oi = {0, 1} where
oi = 1 represents bidder i receiving a copy of the good and oi = 0 otherwise. We normalize their
valuation function vi(0) = 0 and use a simple shorthand notation of vi = vi(1) as the bidders
privately known valuation for receiving the good. As described in the introduction, in this setting
the bidders have no public information. Here, a natural class of offers, G, is the class of all take-it-
or-leave-it prices. For bidder i with valuation vi and offer gp = “take the good for $p, or leave it”
the profit is

gp(i) =

{
p if p ≤ vi

0 otherwise.

We consider the digital good auction problem in detail in Section 7.4.

Attribute Auctions: This is the same as the digital good setting except now each bidder i is associated
a public attribute, pubi ∈ X , where X is the attribute space. We view X as an abstract space, but
one can envision it as Rd, for example. Let P be a class of pricing functions from X to R+, such
as all linear functions, or all functions that partition X into k markets in some natural way (say,
based on distance to k cluster centers) and offer a different price in each. Let G be the class of
take-it-or-leave-it offers induced by P . That is, if p ∈ P is a pricing function, then the offer gp ∈ G
induced by p is: “for bidder i, take the good for $p(pubi), or leave it”. The profit to the mechanism
from bidder i with valuation vi and public information pubi is

gp(i) =

{
p(pubi) if p(pubi) ≤ vi,
0 otherwise.

We will give analyses for several interesting classes of pricing functions in Section 7.5.

Combinatorial Auctions: Here we have a set J of m distinct items, each in unlimited supply. Each
consumer has a private valuation vi(J ′) for each bundle J ′ ⊆ J of items, which measures how much
receiving bundle J ′ would be worth to the consumer i (again we normalize such that vi(∅) = 0). For
simplicity, we assume bidders are indistinguishable, i.e., there is no public information. A natural
class of offers G (studied in [129]) is the class of functions that assign a separate price to each item,
such that the price of a bundle is just the sum of the prices of the items in it (called item pricing).
For price vector p = (p1, . . . , pm) let the offer gp = “for bundle J ′, pay

∑
j∈J ′ pj”. The profit for
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bidder i on offer gp is

gp(i) =
∑{

pj : j ∈ argmaxJ ′⊂J

[
vi(J ′)−

∑
j′∈J ′

pj′
]}

.

(If the bundle J ′ maximizing the bidder’s utility is not unique, we define the mechanism to select
the utility-maximizing bundle of greatest profit.) We discuss combinatorial auctions in Section 7.6.

Marginal Cost Auctions with Budgets: To illustrate an interesting model with agents in a non-quasi-
linear setting consider the case each bidder i’s preference is given tuple (Bi, vi) where Bi is their
budget and vi is their value-per-unit received. Possible allocations for bidder i,Oi, are non-negative
real numbers corresponding to the number of units they receive. Assuming their total payment is
less than their budget, bidder i’s utility is simply vioi minus their payment; a bidder’s utility when
payments exceed their budget is negative infinity.

We assume that the seller has a fixed marginal cost c for producing a unit of the good. Consider the
class of offers G with gp = “pay $p per unit received”. A bidder i faced with offer gp with p < vi

will maximize their utility by buying enough units to exactly exhaust their budget. The payoff to
the auctioneer for this bidder i is therefor Bi less c times the number of units the bidder demands.
I.e.,

gp(i) =

{
Bi − cBi/p if p ≤ vi,
0 otherwise.

This model is quite similar to one considered by Borgs et al. [70]. Though we do not explicitly
analyze this setting, it is simple to apply our generic analysis to get reasonable bounds.

7.3 Generic Reductions

We are interested in reducing incentive-compatible mechanism design to the (non-incentive-compatible)
algorithmic optimization problem. Our reductions will be based on random sampling. Let A be an algo-
rithm (exact or approximate) for the algorithmic optimization problem over G. The simplest mechanism
that we consider, which we call RSO(G,A) (Random Sampling Optimal offer), is the following generaliza-
tion of the random sampling digital-goods auction from [121]:

0. Bidders commit to their preferences by submitting their bids.

1. Randomly split the bidders into two groups S1 and S2 by flipping a fair coin for each bidder to
determine its group.

2. Run A to determine the best (or approximately best) offer g1 ∈ G over S1, and similarly the best
(or approximately best) g2 ∈ G over S2.

3. Finally, apply g1 to all bidders in S2 and g2 to all bidders in S1 using their reported bids.

We will also consider various more refined versions of RSO(G,A) that discretize G or perform some type of
structural risk minimization (in which case we will need to assumeA can optimize over the modifications
made to G).

Note 1: One might think that the “leave-one-out” mechanism, where the offer made to a given bidder i
is the best offer for all other bidders, i.e., optG(S \ {i}), would be a better mechanism than the random
sampling mechanism above. However, as pointed out in [121, 124], such a mechanism (and indeed,
any symmetric deterministic mechanism) has poor worst-case revenue. Furthermore, even if bidders’
valuations are independently drawn from some distribution, the leave-one-out revenue can be much less
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stable than RSO(G,A) in that it may have a non-negligable probability of achieving revenue that is far from
optimal, whereas such an event is exponentially small for RSO(G,A).1

Note 2: The reader will notice that in converting an algorithm for finding the best offer in G into an
incentive-compatible mechanism, we produce a mechanism whose outcome is not simply that of a single
offer applied to all consumers. For example, even in the simplest case of auctioning a digital good to
indistinguishable bidders, we compare our performance to the best take-it-or-leave-it price, and yet the
auction itself does not in fact offer each bidder the same price (all bidders in S1 get the same price, and
all bidders in S2 get the same price, but those two prices may be different). In fact, Goldberg and Hartline
[120] show that this sort of behavior is necessary: it is not possible for an incentive-compatible auction to
approximately maximize profit and offer all the bidders the same price.

7.3.1 Generic Analyses

The following theorem shows that the random sampling auction incurs only a small loss in performance
if the profit of the optimal offer is large in comparison to the logarithm of the number of offers we are
choosing from. Later sections of this chapter will focus on techniques for bounding the effective size (or
complexity) of G that can yield even stronger guarantees.

Theorem 7.3.1 Given the offer class G and a β-approximation algorithm A for optimizing over G, then
with probability at least 1− δ the profit of RSO(G,A) is at least (1− ε)OPTG/β as long as

OPTG ≥ β 18h
ε2

ln
(

2|G|
δ

)
.

Notice that this bound holds for all ε and δ simultaniously as these are not parameters of the mecha-
nism. In particular, this bound and those given by the two immediate corollaries, below, show how the
approximation factor improves as a function of market size.

Corollary 7.3.2 Given the offer class G and a β-approximation algorithm A for optimizing over G, then
with probability at least 1 − δ, the profit of RSO(G,A) is at least (1 − ε)OPTG/β, when OPTG ≥ n and
the number of bidders n satisfies

n ≥ 18hβ
ε2

ln
(

2|G|
δ

)
.

Corollary 7.3.3 Given the offer class G and a β-approximation algorithm A for optimizing over G then
with probability at least 1− δ, the profit of RSO(G,A) is at least

(1− ε)OPTG/β − 18hβ
ε2

ln
(

2|G|
δ

)
.

If bidders’ valuations are in the interval [1, h] and the take-it-or-leave-it offer of $1 is in G, then the
condition OPTG ≥ n is trivially satisfied and Corollary 7.3.2 can be interpreted as giving a bound on the
convergence rate of the random sampling auction. Corollary 7.3.3 is a useful form of our bound when
considering structural risk minimization and it also matches the form of bounds given in prior work (e.g.,
[60]).

For example, in the digital good auction with the class of offers Gε consisting of all take-it-or-leave-it
offers in the interval [1, h] discretized to powers of 1 + ε, we have OPTGε ≥ n (since each bidder’s

1For example, say we are selling just one item and the distribution over valuations is 50% probability of valuation 1 and 50%
probability of valuation 2. If we have n bidders, then there is a nontrivial chance (about 1/

√
n) that there will be the exact same

number of each type (n/2 bidders with valuation 1 and n/2 bidders with valuation 2), and the mechanism will make the wrong
decision on everybody. The RSO(G,A) mechanism on the other hand has only an exponentially small probability of doing this
poorly.

149



valuation is at least 1), β = 1 (since the algorithmic problem is easy), and |Gε| = dlog1+ε he. So,
Corollary 7.3.2 states that O( h

ε2
log log1+ε h) bidders are sufficient to perform nearly as well as optimal

(we derive better bounds for this problem in Section 7.4).
In general we will give our bounds in a similar form as Theorem 7.3.1, knowing that bounds of

the form of Corollary 7.3.2 and 7.3.3 can be easily derived. The only exceptions are the structural risk
minimization results which we give in the same form as Corollary 7.3.3.

In the remainder of this section we prove Theorem 7.3.1. We start with a lemma that is key to our
analysis.

Lemma 7.3.4 Given S, an offer g satisfying 0 ≤ g(i) ≤ h for all i ∈ S, and a profit level p, if we
randomly partition S into S1 and S2, then the probability that |g(S1) − g(S2)| ≥ εmax [g(S), p] is at

most 2e

�
− ε2p

2h

�

.

Proof: Let Y1, . . . , Yn be i.i.d. random variables that define the partition of S into S1 and S2: that is, Yi

is 1 with probability 1
2 and Yi is 2 with probability 1

2 . Let t(Y1, ..., Yn) =
∑

i:Yi=1 g(i). So, as a random

variable, g(S1) = t(Y1, ..., Yn) and clearly E[t(Y1, ..., Yn)] = g(S)
2 . Assume first that g(S) ≥ p. From the

McDiarmid concentration inequality (see Theorem A.3.1 in Appendix A.3), by plugging in ci = g(i), we
get:

Pr
{∣∣∣∣g(S1)− g(S)

2

∣∣∣∣ ≥
ε

2
g(S)

}
≤ 2e

− 1
2
ε2g(S)2/

nP
i=1

g(i)2

.

Since
n∑

i=1

g(i)2 ≤ max
i
{g(i)}

n∑

i=1

g(i) ≤ hg(S),

we obtain:

Pr
{∣∣∣∣g(S1)− g(S)

2

∣∣∣∣ ≥
ε

2
g(S)

}
≤ 2e

−
�

ε2g(S)
2h

�

.

Moreover, since g(S1) + g(S2) = g(S) and g(S) ≥ p, we obtain:

Pr{|g(S1)− g(S2)| ≥ εg(S)} ≤ 2e−ε2p/(2h),

as desired. Consider now the case that g(S) < p. Again, using the McDiarmid inequality we have

Pr{|g(S1)− g(S2)| ≥ εp} ≤ 2e
− 1

2
ε2p2/

nP
i=1

g(i)2

.

Since
∑n

i=1 g(i)2 ≤ hg(S) ≤ ph we obtain again that

Pr{|g(S1)− g(S2)| ≥ εp} ≤ 2e

�
− ε2p

2h

�

,

which gives us the desired bound.

It is worth noting that using tail inequalities that depend on the maximum range of the random vari-
ables rather than the sum of their squares in the proof of Lemma 7.3.4 would increase the h to an h2 in the
exponent. Note also that if g(i) = g′(i) for all i ∈ S then they are equivalent from the point of view of the
auction; we will use |G| to denote the number of different such offers in G.2 Lemma 7.3.4 implies that:

2Notice that in our generic reduction, |G| only appears in the analysis and we do not actually have to know whether two offers
are equivalent with respect to S when running the auction.
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Corollary 7.3.5 For a random partition of S into S1 and S2, with probability at least 1 − δ, all offers g

in G such that g(S) ≥ 2h
ε2

ln
(

2|G|
δ

)
satisfy |g(S1)− g(S2)| ≤ εg(S).

Proof: Follows from Lemma 7.3.4 by plugging in p = 2h
ε2

ln
(

2|G|
δ

)
and then using the union bound over

all g ∈ G.

We complete this section with the proof of the main theorem.
Proof of Theorem 7.3.1: Let g1 be the offer in G produced byA over S1 and g2 be the offer in G produced
by A over S2. Let gOPT be the optimal offer in G over S; so gOPT(S) = OPTG . Since the optimal
offer over S1 is at least as good as gOPT on S1 (and likewise for S2), the fact that A is a β-approximation
implies that g1(S1) ≥ gOPT(S1)

β and g2(S2) ≥ gOPT(S2)
β .

Let p = 18h
ε2

ln
(

2|G|
δ

)
. Using Lemma 7.3.4 (applying the union bound over all g ∈ G), we have

that with probability 1 − δ, every g ∈ G satisfies |g(S1) − g(S2)| ≤ ε
3 max [g(S), p]. In particular,

g1(S2) ≥ g1(S1)− ε
3 max[g1(S), p], and g2(S1) ≥ g2(S2)− ε

3 max[g2(S), p].
Since the theorem assumes that OPTG ≥ βp, summing the above two inequalities and performing a

case analysis3 we get that the profit of RSO(G,A), namely the sum g1(S2)+g2(S1), is at least (1−ε)OPTG
β .

More specifically, assume first that g1(S) ≥ p and g2(S) ≥ p. This implies that

g1(S2) ≥ g1(S1)− ε

3
g1(S) and g2(S1) ≥ g2(S2)− ε

3
g2(S),

and therefore

(1 +
ε

3
)g1(S2) ≥ (1− ε

3
)g1(S1) and (1 +

ε

3
)g2(S1) ≥ (1− ε

3
)g2(S2).

So, the profit of RSO(G,A) in this case is at least

1− ε
3

1 + ε
3

(g1(S1) + g2(S2)) ≥
1− ε

3

1 + ε
3

OPTG
β

≥ (1− ε)
OPTG

β
.

If both g1(S) < p and g2(S) < p, then g1(S2) ≥ g1(S1) − ε
3p and g2(S1) ≥ g2(S2) − ε

3p, and so the
profit of RSO(G,A) in this case is at least OPTG

β − 2ε
3 p which is at least (1 − ε)OPTG

β by our assumption
that OPTG ≥ βp.

Finally, assume without loss of generality that g1(S) ≥ p and g2(S) < p. This implies that

g1(S2) ≥ g1(S1)− ε

3
g1(S) and g2(S1) ≥ g2(S2)− ε

3
p.

The former inequality implies that (1 + ε
3)g1(S2) ≥ (1 − ε

3)g1(S1), and so g1(S2) ≥
(
1− 2ε

3

)
g1(S1),

and the latter inequality implies that g2(S1) ≥ g2(S2)− ε
3

OPTG
β . Together we have that

g1(S2) + g2(S1) ≥
(

1− 2ε

3

)
gOPT(S1)

β
+

gOPT(S2)
β

− ε

3
OPTG

β
≥ (1− ε)

OPTG
β

,

as desired.

3Note that if β = 1, then the conclusion follows easily. The case analysis is only need to deal with the case β > 1.
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7.3.2 Structural Risk Minimization

In many natural cases, G consists of offers at different “levels of complexity” k. In the case of attribute
auctions, for instance, G could be an offer class induced by pricing functions that partition bidders into
k markets and offer a constant price in each market, for different values of k. The larger k is the more
complex the offer is. One natural approach to such a setting is to perform structural risk minimization
(SRM): that is, to assign a penalty term to offers based on their complexity and then to run a version
of RSO(G,A) in which A optimizes profit minus penalty. Specifically, let Ḡ be a series of offers classes
G1,G2, . . ., and let pen be a penalty function defined over these classes. We then define the procedure
RSO-SRM(Ḡ,pen) as follows:

1. Randomly partition the bidders into two sets, S1 and S2, by flipping fair coin for each bidder.

2. Compute g1 to maximize maxk maxg∈Gk
[g(S1)− pen(Gk)] and similarly compute g2 from S2.

3. Use the offer g1 for bidders in S2 and the offer g2 for bidders in S1.

We can now derive a guarantee for the RSO-SRM(Ḡ,pen) mechanism as follows:

Theorem 7.3.6 Assuming that we have an algorithm for solving the optimization problem required by
RSO-SRM(Ḡ,pen), then for any given value of n, ε, and δ, with probability at least 1 − δ, the revenue of

RSO-SRM(Ḡ,pen) for pen(Gk) = 8hk
ε2

ln
(

8k2|Gk|
δ

)
is at least

max
k

([(1− ε)OPTk−2pen(Gk)]),

where hk is the maximum payoff from Gk and OPTk = OPTGk
.

Proof: Using Corollary 7.3.5 and a union bound over the values δk = δ/(4k2), we obtain that with proba-
bility at least 1−δ, simultaneously for all k and for all offers g in Gk such that g(S) ≥ 8hk

ε2
ln(8k2|Gk|/δ) =

pen(Gk), we have |g(S1)− g(S2)| ≤ ε
2g(S). Let k∗ be the optimal index, namely let k∗ be the index such

that
(1− ε)OPTk∗ −2pen(Gk∗) = max

k
((1− ε)OPTk−2pen(Gk)),

and let ki be the index of the best offer (according to our criterion) over Si, for i = 1, 2. By our assumption
that g1 and g2 were chosen by an optimal algorithm, we have

gi(Si)− pen(Gki) ≥ gOPTk∗ (Si)− pen(Gk∗), for i = 1, 2.

We will argue next that g1(S2) ≥ 1− ε
2

1+ ε
2

(
gOPTk∗ (S1)− pen(Gk∗)

)
. First, if g1(S1) < pen(Gk1), then

the conclusion is clear since we have

0 > g1(S1)− pen(Gk1) ≥ gOPTk∗ (S1)− pen(Gk∗).

If g1(S1) ≥ pen(Gk1), then as argued above we have |g1(S1)− g1(S2)| ≤ ε
2g1(S) and so

g1(S2) ≥
1− ε

2

1 + ε
2

g1(S1) ≥
1− ε

2

1 + ε
2

(
gOPTk∗ (S1)− pen(Gk∗)

)
.

Similarly, we can prove that we have g2(S1) ≥ 1− ε
2

1+ ε
2

(
gOPTk∗ (S2)− pen(Gk∗)

)
. All these together imply

that the profit of the mechanism RSO-SRM(Ḡ,pen), namely g1(S2) + g2(S1), is at least

1− ε
2

1 + ε
2

(
gOPTk∗ (S)− 2pen(Gk∗)

) ≥ ((1− ε)OPTk∗ −2pen(Gk∗)) ,

as desired.
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7.3.3 Improving the Bounds

The results above say, in essence, that if we have enough bidders so that the optimal profit is large com-
pared to h

ε2
log(|G|), then our mechanism will perform nearly as well as the best offer in G. In these

bounds, one should think of log(|G|) as a measure of the complexity of the offer class G; for instance,
it can be thought of as the number of bits needed to describe a typical offer in that class. However, in
many cases one can achieve a better bound by adapting techniques developed for analyzing generaliza-
tion performance in machine learning theory. In this section, we discuss a number of such methods that
can produce better bounds. These include both analysis techniques (such as using appropriate forms of
covering numbers), where we do not change the mechanism but instead provide a stronger guarantee, and
design techniques (like discretizing), where we modify the mechanism to produce a better bound.

Discretizing

Notation: Given a class of offers G, define Gα to be the set of offers induced by rounding all prices down
to the nearest power of (1 + α).

In many cases, we can greatly reduce |G| without much affecting OPTG by performing some type of
discretization. For instance, for auctioning a digital good, there are infinitely many offers induced by all
take-it-or-leave-it prices but only log1+α h ≈ 1

α ln h offers induced by the discretized prices at powers of
1 + α. Also, since rounding down the optimal price to the nearest power of 1 + α can reduce revenue
for this auction by at most a factor of 1 + α, the optimal offer in the discretized class must be close, in
terms of total profit, to the optimal offer in the original class. More generally, if we can find a smaller
offer class G′ such that OPTG′ is guaranteed to be close to OPTG , then we can instruct our algorithm
A to optimize over G′ instead of G to get better bounds. We consider the discretization Gα in our refined
analysis of the digital good auction problem (Section 7.4) and in our consideration of attribute auctions
(Section 7.5). Further, in Section 7.6 we discuss an interesting alternative discretization for item-pricing
in combinatorial auctions.

Counting Possible Outputs

Suppose we can argue that our algorithm A, run on a subset of S, will only ever output offers from a
restricted set GA ⊆ G. For example, for the problem of auctioning a digital good, if A picks the offer
based on the optimal take-it-or-leave-it price over its input then this price must be one of the bids, so
|GA| ≤ n. Then, we can simply replace |G| with |GA| (or |GA|+ 1 if the optimal offer is not in GA) in all
the above arguments. Formally we can say that:

Observation 7.3.7 If algorithmA, run on any subset of S, only output offers from a restricted set GA ⊆ G,
then all the bounds in Sections 7.3.1 and 7.3.2 hold with |G| replaced by |GA|+ 1.

Using Covering Numbers

The main idea of these arguments is the following. Suppose G has the property that there exists a much
smaller class G′ such that every g ∈ G is “close” to some g′ ∈ G′, with respect to the given set of bidders
S. Then one can show that if all offers in G′ perform similarly on S1 as they do on S2, then this will
be true for all offers in G as well. These kind of arguments are quite often used in machine learning
(see for instance [18, 72, 103, 203]), but the main challenge is to define the right notion of “close” for
our mechanism design setting to get good and meaningful bounds. Specifically, we will consider L1

multiplicative γ-covers which we define as follows:
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Definition 7.3.1 G′ is an L1 multiplicative γ-cover of G with respect to S if for every g ∈ G there exists
g′ ∈ G′ such that ∑

i∈S

|g(i)− g′(i)| ≤ γg(S).

In the following we present bounds based on L1 multiplicative γ-covers. We start by proving the
following structural lemma characterizing these L1 covers.

Lemma 7.3.8 If
∑
i∈S

|g(i)− g′(i)| ≤ γg(S) and |g′(S1)− g′(S2)| ≤ ε′max [g′(S), p] then we have

|g(S1)− g(S2)| ≤ ε′max[g′(S), p] + γg(S).

This further implies that

|g(S1)− g(S2)| ≤
(
γ + ε′(1 + γ)

)
max[g(S), p].

Proof: We will first prove that g(S1) ≥ g(S2)− ε′max[g′(S), p]− γg(S). Note that this clearly implies

g(S1) ≥ g(S2)−
(
γ + ε′(1 + γ)

)
max[g(S), p],

since the first assumption in the lemma implies that |g(S)− g′(S)| ≤ γg(S) . Let us define

~∆g1g2(S) =
∑

i∈S

max(g1(i)− g2(i), 0)

and consider
∆gg′(S) = ~∆gg′(S) + ~∆g′g(S) =

∑

i∈S

|g(i)− g′(i)|.

Clearly, for any S′ ⊆ S we have ~∆gg′(S) ≥ ~∆gg′(S′) and likewise ∆gg′(S) ≥ ∆gg′(S′). Also, for
any subset S′ ⊆ S we have g(S′) − g′(S′) ≤ ~∆gg′(S) and g′(S′) − g(S′) ≤ ~∆g′g(S). Now, from
g′(S1) ≥ g′(S2)− ε′max[g′(S), p] we obtain that

g(S1) + ~∆g′g(S) ≥ g′(S2)− ε′max[g′(S), p] ≥ g(S2)− ~∆gg′(S)− ε′max[g′(S), p].

Therefore we have
g(S1) ≥ g(S2)−∆gg′(S)− ε′max[g′(S), p],

which implies
g(S1) ≥ g(S2)− ε′max[g′(S), p]− γg(S),

as desired. Using the same argument with S1 replaced by S2 yields the theorem.

Using Lemma 7.3.8, we can now get the following bound:

Theorem 7.3.9 Given the offer class G and a β-approximation algorithm A for optimizing over G, then
with probability at least 1− δ, the profit of RSO(G,A) is at least (1− ε)OPTG/β so long as

OPTG ≥ β 72h
ε2

ln
(

2|G′|
δ

)
,

for some L1 multiplicative ε
12 -cover G′ of G with respect to S.
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Proof: Let p = 72h
ε2

ln
(

2|G′|
δ

)
. By Lemma 7.3.4, applying the union bound, we have that with probability

1−δ, every g′ ∈ G′ satisfies |g′(S1)−g′(S2)| ≤ ε
6 max [g′(S), p]. Using Lemma 7.3.8, with ε′ set to ε

6 and
γ set to ε

12 , we obtain that with probability 1−δ, every g ∈ G satisfies |g(S1)−g(S2)| ≤ ε
3 max [g(S), p].

Finally, proceeding as in the proof of Theorem 7.3.1 we obtain the desired result.

Notice that Theorem 7.3.9 implies that:

Corollary 7.3.10 Given the offer class G and a β-approximation algorithmA for optimizing over G, then
with probability at least 1− δ, the profit of RSO(G,A) is at least (1− ε)OPTG/β, so long as OPTG ≥ n
and the number of bidders satisfies

n ≥ 72hβ
ε2

ln
(

2|G′|
δ

)

for some L1 multiplicative ε
12 -cover G′ of G with respect to S.

We will demonstrate the utility of L1 multiplicative covers in Section 7.4 by showing the existence
of L1 covers of size o(n) for the digital good auction. It is worth noting that a straightforward appli-
cation of analogous ε-cover results in learning theory [18] (which would require an additive, rather than
multiplicative gap of ε for every bidder) would add an extra factor of h into our sample-size bounds.

7.4 The Digital Good Auction

We now consider applying the results in Section 7.3 to the problem of auctioning a digital good to indis-
tinguishable bidders. In this section we define G to be the natural class of offers induced by the set of all
take-it-or-leave-it prices (see for instance [124]). Clearly in this case, it is trivial to solve the underlying
optimization problem optimally: given a set of bidders, just output the offer induced by the constant price
that maximizes the price times the number of bidders with bids at least as high as the price. Also, it is
easy to see that this price will be one of the bid values. Thus, applying Theorem 7.3.7 with the bound on
|GA| = n, we get an approximately optimal auction with convergence rate O(h log n).

We can obtain better results using L1 multiplicative-cover arguments and Theorem 7.3.9 as follows.
Let b1, . . . , bn be the bids of the n bidders sorted from highest to lowest. Define G′ as the offer class
induced by {bi : i =

⌊
(1 + γ)j

⌋
for some j ∈ Z} ∪ {(1 + γ)i : i ∈ {1, . . . , log1+γ h}}. Consider

g ∈ G and find the g′ ∈ G′ that offers the largest price less than the offer price of g. Notice first that
all the winners in S on g also win in g′. Second, the offer price of g′ is within a factor of 1 + γ of the
offer price of g. Third, g′ has at most a factor of 1 + γ more winners than g. The first two facts above
imply that ~∆gg′(S) ≤ γg(S). The third fact implies that ~∆g′g(S) ≤ γg(S). Thus, ∆gg′ ≤ 2γg(S) and
therefore, G′ is a 2γ-cover of G (see the proof of Lemma 7.3.8 for definitions of ∆gg′ and ~∆gg′). Since
|G′| is O(log hn), the additive loss of RSO(G,A) is O(h log log nh).4

We can also apply the discretization technique by defining Gα to be the set of offers induced by the
set of all constant-price functions whose price v ∈ [1, h] is a power of (1 + α) and α = ε

2 . Clearly, if we
can get revenue at least (1 − ε

2) times the optimal in this class, we will be within (1 − ε) of the optimal
fixed price overall. For example, Corollary 7.3.2 (A can trivially find the best offer in G′ by simply trying
all of them) shows that with probability 1 − δ we get at least 1 − ε times the revenue of the optimal
take-it-or-leave-it offer so long as the number of bidders n is at least 72h

ε2
ln(4 ln h

εδ ) = O(h log log h).

4It is interesting to contrast these results with that of [121] which showed that RSO over the set of constant-price functions is
near 6-competitive with the promise that n À h.
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7.4.1 Data Dependent Bounds

We can use the high level idea of our structural risk minimization reduction in order to get a better data
dependent bound for the digital good auction. In particular, we can replace the “h” term in the additive
loss with the actual sale price used by the optimal take-it-or-leave-it offer (in fact, even better, the lowest
sales price needed to generate near-optimal revenue), yielding a much better bound when most of the
profit to be made is from the low bids. The idea is that rather than penalizing the “complexity” of the offer
in the usual sense, we instead penalize the use of higher prices.

Let qi = (1 + α)i and offer gi be the take-it-or-leave-it price of qi. Define Ḡ = {g1}, {g2}, . . . and
consider the auction RSO-SRMḠ,pen with pen({gi}) specified from Section 7.3.2 to be 8qi

ε2
ln

(
8i2

δ

)
. The

following is an a corollary of of Theorem 7.3.6.

Corollary 7.4.1 For any given value of n, ε, and δ, with probability 1−δ, the revenue of RSO-SRM(Ḡ,pen)

is at least maxi [(1− ε)gi(S)− 2pen({gi})], where pen({gi}) = 8qi

ε2
ln

(
8i2

δ

)
.

In other words, if the optimal take-it-or-leave-it offer has a sale price of p, then RSO-SRM(Ḡ,pen) has
convergence rate bounded by O(p log log h) instead of O(h log log h) as provided by our generic analysis
of RSO(G,A).

7.4.2 A Special Purpose Analysis for the Digital Good Auction

In this section we present a refined data independent analysis for the digital good auction. Specifically, we
can show for an optimal algorithm A, that:

Theorem 7.4.2 For δ < 1
2 , with probability 1− δ, RSO(Gα,A) obtains profit at least

OPTGα −8
√

hOPTGα log
(

1
αδ

)
.

Corollary 7.4.3 For δ < 1
2 and α = ε

2 , so long as OPTGα ≥ (16
ε )2h log

(
2
εδ

)
, then with probability at

least 1− δ, the profit of RSO(Gα,A) is at least (1− ε)OPTG .

The above corollary improves over our basic discretization results using Theorem 7.3.1 by an O(log log h)
factor in the convergence rate.

To prove Theorem 7.4.2, let us introduce some notation. For the offer gv induced by the take-it-or-
leave-it offer of price v, let nv denote the number of winners (bidders whose value is at least v), and let
rv = v · nv denote the profit of gv on S. Denote by r̂v the observed profit of gv on S1 (and so r̂v = v · n̂v,
where n̂v is the number of winners in S1 for gv). So, we have E[r̂v] = rv

2 . We now begin with the
following lemma.

Lemma 7.4.4 Let ε < 1 and δ < 1
2 . With probability at least 1 − δ we have that, for every gv ∈ Gα the

observed profit on S1 satisfies:

∣∣∣r̂v − rv

2

∣∣∣ ≤ max

(
h log

(
1
αδ

)

ε
, εrv

)
.

Proof: First for a given price v let an,v be |n̂v − nv
2 |. To prove our lemma we will use the consequence

of Chernoff bound we present in Appendix A.3, Theorem A.3.2. For any v and j ≥ 1 we consider

n′ =
(1+α)j log ( 1

αδ )
ε2

, and so we get

Pr

{
an,v ≥ ε max

(
nv,

(1 + α)j log
(

1
αδ

)

ε2

)}
≤ 2e−2(1+α)j log ( 1

αδ ).
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This further implies that we have an,v ≥ εmax
(

nv,
(1+α)j log ( 1

αδ )
ε2

)
with probability at most 2(αδ)2(1+α)j

.

Therefore for v = h
(1+α)j we have

Pr

{∣∣∣r̂v − rv

2

∣∣∣ ≥ max

(
h log

(
1
αδ

)

ε
, εrv

)}
≤ 2(αδ)2(1+α)j

,

and so the probability that there exists a gv ∈ Gα such that
∣∣r̂v − rv

2

∣∣ ≥ max
(

h
ε , εrv

)
is at most

2
∑

j(αδ)2(1+α)j ≤ 2
∑

j′
1
α(αδ)2·2j′ ≤ δ. This implies that with high probability, at least 1 − δ, we

have that simultaneously, for every gv ∈ Gα the observed revenue on S1 satisfies:

∣∣∣r̂v − rv

2

∣∣∣ ≤ max

(
h log

(
1
αδ

)

ε
, εrv

)
,

as desired.

Proof of Theorem 7.4.2: Assume now that it is the case that for every gv ∈ Gα we have

∣∣∣r̂v − rv

2

∣∣∣ ≤ max
(

H

ε
, εrv

)
,

where H = h log
(

1
αδ

)
. Let v∗ be the optimal price level among prices in Gα, and let ṽ∗ be the price that

looks best on S1. Obviously, our gain on S2 is rṽ∗ − r̂ṽ∗ . We have

r̂v∗ ≥ r∗v
2
− H

ε
− εrv∗ = rv∗

1− 2ε

2
− H

ε
,

r̂ṽ∗ ≥ r̂v∗ , and r̂ṽ∗ ≤ rṽ∗

2
+

H

ε
+ εrṽ∗ ≤ rṽ∗

2
+

H

ε
+ εrv∗ ,

and therefore rṽ∗ − r̂ṽ∗ ≥ r̂ṽ∗ − H
ε − εrv∗ , which finally implies that

rṽ∗ − r̂ṽ∗ ≥ rv∗

(
1
2
− 2ε

)
− 2

H

ε
.

This implies that with probability at least 1− δ
2 our gain on S2 is at least rv∗

(
1
2 − 2ε

)−2H
ε , and similarly

our gain on S1 is at least rv∗
(

1
2 − 2ε

)− 2H
ε . Therefore, with probability 1− δ, our revenue is

OPTGα(1− 4ε)− 4
h log

(
1
αδ

)

ε
.

Optimizing the bound we set ε =

√
h log ( 1

αδ )
OPTGα

and get a revenue of

OPTGα − 8

√
h OPTGα log

(
1
αδ

)
,

which completes the proof.
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7.5 Attribute Auctions

We now consider applying our general bounds (Section 7.3) to attribute auctions. For attribute auctions an
offer is a function from the publicly observable attribute of an agent to a take-it-or-leave-it price. As such,
we identify such an offer with its pricing function. We begin by instantiating the results in Section 7.3
for market pricing auctions, in which we consider pricing functions that partition the attribute space into
market segments and offer a fixed price in each. We show how one can use standard combinatorial
dimensions in learning theory, e.g. the Vapnik-Chervonenkis (VC) dimension [18, 69, 103, 149, 203], in
order to bound the complexity of these classes of offers. We then give an analysis for very general offer
classes induced by general pricing functions over the attribute space that uses the notion of covers defined
in Section 7.3.3.

7.5.1 Market Pricing

For attribute auctions, one natural class of pricing functions are those that segment bidders into markets
in some simple way and then offer a single sale price in each market segment. For example, suppose we
definePk to be the set of functions that choose k bidders b1, . . . , bk; use these as cluster centers to partition
S into k markets based on distance to the nearest center in attribute space; and then offer a single price in
each market. In that case, if we discretize prices to powers of (1+ ε), then clearly the number of functions
in the offer class Gk induced by the pricing class Pk, is at most nk(log1+ε h)k, so Corollary 7.3.2 implies
that so long as n ≥ 18h

ε2

[
ln

(
2
δ

)
+ k lnn + k ln

(
log1+ε h

)]
and assuming we can solve the optimization

problem, then with probability at least 1− δ, we can get profit at least (1− ε)OPTGk
.

We can also consider more general ways of defining markets. Let C be any class of subsets of X ,
which we will call feasible markets. For k a positive integer, we consider Fk+1(C) to be the set of all
pricing functions of the following form: pick k disjoint subsets X1,...,Xk ⊆ X from C, and k + 1 prices
p0,...,pk discretized to powers of 1 + ε. Assign price pi to bidders in Xi, and price p0 to bidders not in
any of X1,...,Xk. For example, if X = Rd a natural C might be the set of axis-parallel rectangles in Rd.
The specific case of d = 1 was studied in [60]. One can envision more complex partitions, using the
membership of a bidder in Xi as a basic predicate, and constructing any function over it (e.g., a decision
list).

We can apply the results in Section 7.3 by using the machinery of VC-dimension to count the number
of distinct such functions over any given set of bidders S. In particular, let D = VCdim(C) be the VC-
dimension of C and assume D < ∞. Define C[S] to be the number of distinct subsets of S induced by
C. Then, from Sauer’s Lemma C[S] ≤ (

en
D

)D, and therefore the number of different pricing functions in

Fk(C) over S is at most
(
log1+ε h

)k (
en
D

)kD. Thus applying Corollary 7.3.2 here we get:

Corollary 7.5.1 Given a β-approximation algorithm A for optimizing over the offer class Gk induced by
the class of pricing functions Fk(C), then so long as OPTGk

≥ n and the number of bidders n satisfies

n ≥ 18hβ

ε2

[
ln

(
2
δ

)
+ k ln

(
1
ε

lnh

)
+ kD ln

(ne

D

)]
,

then with probability at least 1− δ, the profit of RSOGk,A is at least (1− ε)
OPTGk

β .

The above lemma has “n” on both sides of the inequality. Simple algebra yields:

Corollary 7.5.2 Given a β-approximation algorithm A for optimizing over the offer class Gk induced by
the class of pricing functions Fk(C), then so long as OPTGk

≥ n and the number of bidders n satisfies

n ≥ 36hβ

ε2

[
ln

(
2
δ

)
+ k ln

(
1
ε

lnh

)
+ kD ln

(
36khβ

ε2

)]
,
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then with probability at least 1− δ, the profit of RSOGk,A is at least (1− ε)
OPTGk

β .

Proof: Since ln a ≤ ab − ln b − 1 for all a, b > 0, we obtain: 18kDhβ
ε2

ln n ≤ n
2 + 18kDhβ

ε2
ln

(
36kDhβ

eε2

)
.

Therefore, it suffices to have:

n ≥ n

2
+

18hβ

ε2

[
ln

(
2
δ

)
+ k ln

(
1
ε

ln h

)
+ kD ln

(
36khβ

ε2

)]
,

so

n ≥ 36hβ

ε2

[
ln

(
2
δ

)
+ k ln

(
1
ε

ln h

)
+ kD ln

(
36khβ

ε2

)]

suffices.

For certain classes C we can get better bounds. In the following, denote by Ck the concept class
of unions of at most k sets from C, and let L be dlog1+ε he. If C is the class of intervals on the line,
then the VC-dimension of Ck is 2k, and so the number of different pricing functions in Fk(C) over S

is at most Lk
(

en
2k

)2k; also, if C is the class of all axis parallel rectangles in d dimensions, then the VC-
dimension of Ck is O(kd) [107]. In these cases we can remove the log k term in our bounds, which is nice
because it means we can interpret our results (e.g., Corollary 7.5.2) as charging OPT a penalty for each
market it creates. However, we do not know how to remove this log k term in general, since in general the
VC-dimension of Ck can be as large as 2Dk log(2Dk) (see [57, 102]).

Corollary 7.5.2 gives a guarantee in the revenue of RSOGk,A so long as we have enough bidders. In
the following, for k ≥ 0 let OPTk = OPTGk

. We can also use Corollaries 7.3.5 and 7.5.2 to show a
bound that holds for all n, but with an additive loss term.

Theorem 7.5.3 For any given value of n, k, ε, and δ, with probability at least 1 − δ, the revenue of
RSOGk,A is

1
β [(1− ε)OPTk−h · rF (k, D, h, ε, δ)] ,

where rF (k, D, h, ε, δ) = O
(

kD
ε2

ln
(

kDh
εδ

))
.

Proof: For simplicity, we show the proof for β = 1, the general case is similar. We prove the bound with
the “(1 − ε)” term replaced by the term min

(
(1−ε′)2
1+ε′ , 1− 2ε′

)
, which then implies our desired result by

simply using ε′ = ε
3 . If

n ≥ 36h
ε′2

[
ln

(
2
δ

)
+ k ln

(
1
ε′

ln h

)
+ kD ln

(
36kh

ε′2

)]
,

then the desired statement follows directly from Corollary 7.5.2. Otherwise, consider first the case when
we have

OPTk ≥ 4h

ε′2(1− ε′)

[
ln

(
2
δ

)
+ k ln

(
1
ε′

ln h

)
+ kD ln

(ne

D

)]
.

Let gi be the optimal offer in Gk over Si, for i = 1, 2, and let gOPT be the optimal offer in Gk over S (and
so gi(Si) ≥ gOPT(Si)). From Corollary 7.3.5, we have

gOPT(Si) ≥ 2h

ε′2

[
ln

(
2
δ

)
+ k ln

(
1
ε′

lnh

)
+ kD ln

(ne

D

)]
for i = 1, 2.

So,

gi(Si) ≥ 2h

ε′2

[
ln

(
2
δ

)
+ k ln

(
1
ε′

ln h

)
+ kD ln

(ne

D

)]
.
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Using again Corollary 7.3.5, we obtain gi(Sj) ≥ 1−ε′
1+ε′ gi(Si) for j 6= i, which then implies the desired

result. To complete the proof notice that if both

OPTk ≤ 4h

ε′2(1− ε′)

[
ln

(
2
δ

)
+ k ln

(
1
ε′

ln h

)
+ kD ln

(ne

D

)]

and

n ≤ 4h

ε′2

[
ln

(
2
δ

)
+ k ln

(
2
ε′

ln h

)
+ kD ln

(
4kh

ε′2

)]
,

then we easily get the desired statement.

Finally, as in Theorem 7.3.6 we can extend our results to use structural risk minimization, where we
want the algorithm to optimize over k, by viewing the additive loss term, h · rF (·), as a penalty function.

Theorem 7.5.4 Let Ḡ be the sequence G1,G2, . . . ,Gn of offer classes induced by the sequence of classes
of pricing functions F1(C), F2(C), . . . , Fn(C). Then for any value of n, ε and δ with probability 1 − δ
the revenue of RSO-SRMḠ,pen is

max
k

((1− ε)OPTk−h · rF (k, D, h, ε, δ)),

where pen(Fk(C)) = h
2 · rF (k,D, h, ε, δ) = O

(
kD
ε2

ln
(

kDh
εδ

))
.

To illustrate the tightness of Theorem 7.5.3, notice that even for the special case of pricing using
interval functions (the case of d = 1 studied in [60]), the following lower bound holds.

Theorem 7.5.5 Let X = R and let Ck be the class of k intervals over X . Then there is no incentive
compatible mechanism whose expected revenue is at least 3

4 OPTk−o(kh).

That is, an additive loss linear in kh is necessary in order to achieve a multiplicative ratio of at least 3/4.
Proof: Consider kh

2 bidders with distinct attributes (for instance, say bidder i has attribute i), each of
whom independently has a 1

h probability of having valuation h and a 1− 1
h probability of having valuation

1. Then, any incentive-compatible mechanism has expected profit at most kh
2 because for any given bidder

and any given proposed price, the expected profit (over randomization in the bidder’s valuation) is at most
1. However, there is at least a 50% chance we will have at least k

2 bidders of valuation h, and in that
case OPTk can give k

2 − 1 of those bidders a price of h and the rest a price of 1 for an expected profit
of

(
k
2 − 1

)
h +

(
kh
2 − k

2 + 1
)
1 = kh − h − k

2 + 1. On the other hand even if that does not occur, we
always have OPTk ≥ kh

2 . So, the expected profit of OPTk is at least 3kh
4 − h

2 − k
4 . Thus, the profit of the

incentive-compatible mechanism is at most 3
4 OPTk−kh

16 + o(kh).

We note that a similar lower bound holds for most base classes. Also for the case of intervals on the
line, both our auction and the auction in [60] match this lower bound up to constant factors.

7.5.2 General Pricing Functions over the Attribute Space

In this section we generalize the results in Section 7.5.1 in two ways: we consider general classes of
pricing functions (not just piecewise-constant functions defined over markets), and we remove the need to
discretize by instead using the covering arguments discussed in Section 7.3.3. This allows us to consider
offers based on linear or quadratic functions of the attributes, or perhaps functions that divide the attribute
space into markets and use pricing functions are linear in the attributes (rather than constant) in each
market. The key point of this section is that we can bound the size of the L1 multiplicative cover in an
attribute auction in terms of natural quantities.
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Assume in the following that X ⊆ Rd, let P be a fixed class of pricing functions over the attribute
space X and let G be the induced class of offers. Let Pd be the class of decision surfaces (in Rd+1)
induced by P: that is, to each q ∈ P we associate the set of all (x, v) ∈ X × [1, h] such that q(x) ≤ v.
Also, let us denote by D the VC-dimension of class Pd. We can then show that:

Theorem 7.5.6 Given the offer class G and a β-approximation algorithm A for optimizing over G, then
so long as OPTG ≥ n and the number of bidders n satisfies

n ≥ 154hβ

ε2

[
ln

(
2
δ

)
+ D ln

(
154hβ

ε2

(
12
ε

lnh + 1
))]

,

then with probability at least 1− δ, the profit of RSO(G,A) is at least (1− ε)OPTG
β .

The key to the proof is to exhibit an L1 multiplicative cover of G whose size is exponential in D only, and
then to apply Corollary 7.3.10.
Proof: Let α = ε

12 . For each bidder (x, v) we conceptually introduce O( 1
α ln h) “phantom bidders”

having the same attribute value x and bid values 1, (1 + α), (1 + α)2, · · · , h. Let S∗ be the set S together
with the set of all phantom bidders; let n∗ = |S∗|. Let Split be the set of possible splittings of S∗ with
surfaces from Pd. We clearly have |Split| ≤ Pd[S∗]. For each element s ∈ Split consider a representative
function in G that induces splitting s in terms of its winning bidders, and let SplitG be the set of these
representative functions. Let G′ be the offer class induced by the pricing class SplitG . Notice that G′ is
actually an L1 multiplicative α-cover for G with respect to S, since for every offer in G there is a offer in
G′ that extracts nearly the same profit from every bidder; i.e., for every offer in g ∈ G, there exists g′ ∈ G′
such that for every (x, v) ∈ S, we have both

g′((x, v)) ≤ (1 + α)g((x, v)) and g((x, v)) ≤ (1 + α)g′((x, v)).

From Sauer’s lemma we know |SplitG | ≤
(

n∗e
D

)D
, and applying Corollary 7.3.10, we finally get the

desired statement by using simple algebra as in Corollary 7.5.2.

The above theorem is the analog of Corollary 7.3.2. Using it and Theorem 7.3.9, it is easy to derive a
bound that holds for all n (i.e., the analog of Theorem 7.5.3). One can further easily extend these results
to get bounds for the corresponding SRM auction (as done in Theorem 7.5.4).

7.5.3 Algorithms for Optimal Pricing Functions

There has been relatively little work on the algorithmic question of computing optimal pricing functions in
general attribute spaces. However, for single-dimentional attributes and piece-wise constant pricing func-
tions [60] discusses an optimal polynomial time dynamic program. For single-dimentional attributes and
monotone pricing functions, [9] gives a polynomial time dynamic program. The problem of computing the
optimal of linear pricing function over m-dimentional attributes generalizes the problem of item-pricing
(m distinct items) for single-minded combinatorial consumers (see Section 7.6.4) that has been shown to
be hard to approximate to better than a logδ(m) factor for some δ > 0 [101].

7.6 Combinatorial Auctions

Combinatorial auctions have received much attention in recent years because of the difficulty of merging
the algorithmic issue of computing an optimal outcome with the game-theoretic issue of incentive com-
patibility. To date, the focus primarily has been on the problem of optimizing social welfare: partitioning
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a limited supply of items among bidders to maximize the sum of their valuations. We consider instead the
goal of profit maximization for the seller in the case that the items for sale are available in unlimited sup-
ply.5 We consider the general version of the combinatorial auction problem as well as the special cases of
unit-demand bidders (each bidder desires only singleton bundles) and single-minded bidders (each bidder
has a single desired bundle).

It is interesting to restrict our attention to the case of item-pricing, where the auctioneer intuitively is
attempting to set a price for each of the distinct items and bidders then choose their favorite bundle given
these prices. Item-pricing is without loss of generality for the unit-demand case, and general bundle-
pricing can be realized with an auction with m′ = 2m “items”, one for each of possible bundle of the
original m items.6

First notice that if the set of allowable item pricings are constrained to be integral, GZ, then clearly
there are at most |GZ| = (h + 1)m possible item pricings. By Corollary 7.3.2 we get that Õ

(
hm
ε2

)
bidders

are sufficient to achieve profit close to OPTGZ . Generally it is possible to do much better if non-integral
item-pricings are allowed, i.e., OPTG(S) À OPTGZ(S). In these settings we can still get good bounds
following the guidelines established in Section 7.3.3, by either considering an offer class G′ induced
by discretization (see Section 7.6.1), or from counting possible outcomes in GA (see Section 7.6.2). A
summary of our results is given in Table 7.6.

Table 7.1: Size of offer classes for combinatorial auctions.
general unit-demand single-minded

|G′| O(logm
1+ε2

nm
ε ) O(logm

1+ε2
n
ε ) O(logm

1+ε
nm
ε )

|GA| nm22m2 nm(m + 1)2m (n + m)m

We can apply Theorem 7.3.1 and Corollary 7.3.2 to the sizes of the offer classes in Table 7.6 to get
bounds on the profit of random sampling auctions for combinatorial item pricing. In particular, using
Corollary 7.3.2 we get that Õ

(
hm2

ε2

)
bidders are sufficient to achieve revenue close to the optimum item-

pricing in the general case, and Õ
(

hm
ε2

)
bidders are sufficient for the unit-demand case. Also, by using

Theorem 7.3.1 instead of Corollary 7.3.2 we can replace the condition on the number of bidders with a
condition on OPTG , which gives a factor of m improvement on the bound given by [119].

As before we let h = maxg∈G,i∈S g(i). In particular, this implies that OPTG ≥ h which will be
important later in this section.

7.6.1 Bounds via Discretization

As shown in Section 7.3.3, we can obtain good bounds if we are willing to optimize over a set G′ of
offers induced by a small set of discretized prices satisfying that OPTG′ is close to OPTG . Prior to
this work, [131] shows how to construct discretized classes G′ with OPTG′ ≥ 1

1+ε OPTG and size
O(mm logm

1+ε
n
ε ) for the unit-demand case and size O(logm

1+ε
nm
ε ) for the single-minded case. Nisan [178]

gives the basic argument necessary to generalize these results to obtain the result in Theorem 7.6.1 which
applies to combinatorial auctions in general. We note in passing that Theorem 7.6.1 allows for general-
ization and improvement of the computational results of [131]. The discretization results we obtain are

5Other work focusing on profit maximization in combinatorial auctions include Goldberg and Hartline [119], Hartline and
Koltun [131], Guruswami et al. [129], Likhodedov and Sandholm [161], and Balcan et al. [37].

6We make the assumption that all desired bundles contain at most one of each item. This assumption can be easily relaxed
and our results apply given any bound on the number of copies of each item that are desired by any one consumer. Of course,
this reduction produces an exponential blowup in the number of items.
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summarized in the first row of Table 7.6.
Let p = (p1, . . . , pm) be an item-pricing of the m items. Let gp correspond to the offering pricing p.

The following is the main result of this section.

Theorem 7.6.1 Let k be the size of the maximum desired bundle. Let p′ be the optimal discretized price
vector that uses item prices equal to 0 or powers of (1 + ε) in the range

[
hε
nk , h

]
and let p∗ be the optimal

price vector. Then we have:

gp′(S) ≥ (1− 2
√

ε)gp∗(S).

Proof: Let δ =
√

ε. For the optimal price vector p∗ with item j priced at p∗j (i.e., gp∗(S) = OPTG),

consider a price vector p with pj in [(1 − δ)p∗j , (1 − δ + δ2)p∗j ] if p∗j ≥ hδ2

nk and 0 otherwise, where
pj = (1 + ε)k for some integer k (note that such a price vector always exists). We show now that
gp(S) ≥ (1− 2

√
ε)gp∗(S), which clearly implies the desired result.

Let J be a multi-set of items and Profit(J) =
∑

j∈J p∗j be the payment necessary to purchase bundle
J under pricing p∗. Define Rj = p∗j − pj . Thus we have:

(δ − δ2)p∗j ≤ Rj ≤ max{δp∗j , δ2h
nk } ≤ δp∗j + δ2h

nk .

This implies that for any multiset J with |J | ≤ k, we have the following upper and lower bounds:

∑

j∈J

Rj ≥ (δ − δ2)Profit(J) , (7.6.1)

∑

j∈J ′
Rj ≤ δProfit(J ′) + hδ2

n . (7.6.2)

Let J∗i and Ji be the bundles that bidder i prefers under pricing p∗ and p, respectively. Consider
bidder i who switches from bundle J∗i to bundle Ji when the item prices are decreased from p∗ to p. This
implies that:

∑

j∈J∗i

Rj ≤
∑

j∈Ji

Rj .

Combining this with equations (7.6.1) and (7.6.2) and canceling a common factor of δ we see that:

(1− δ)Profit(J∗i ) ≤ Profit(Ji) + hδ
n .

Summing over all bidders i, we see that the total profit under our new pricing p is at least (1 −
δ)OPTG −hδ. Since OPTG ≥ h, we finally obtain that the profit under p is at least (1− 2δ)OPTG .

Note that we can now apply Theorem 7.6.1 by letting G′ be the offer class induced by the class of
item prices equal to 0 or powers of (1 + ε) in the range

[
hε
nk , h

]
(where k bounds the maximum size of a

bundle). Using Theorem 7.3.1 we obtain the following guarantee:

Corollary 7.6.2 Given a β-approximation algorithm A optimizing over G′, then with probability at least
1− δ, the profit of RSOG′,A is at least (1− 3ε)OPTG/β so long as

OPTG′ ≥ 18hβ
ε2

(
m ln(log1+ε2 nk) + ln

(
2
δ

))
.
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7.6.2 Bounds via Counting

We now show how to use the technique of counting possible outcomes (See Section 7.3.3) to get a bound
on the performance of the random sampling auction with an algorithm A for item-pricing. This approach
calls for bounding |GA|, the number of different pricing schemes RSO(G,A) can possibly output. Our
results for this approach are summarized in the second row of Table 7.6.

Recall that bidder i’s utility for a bundle J given pricing p is ui(J,p) = vi(J)−∑
j∈J pj . We now

make the following claim about the regions of the space of possible pricings, Rm
+ , in which bidder i’s

most desired bundle is fixed.

Claim 1 Let Pi(J) = {p | ∀J ′, ui(J,p) ≥ ui(J ′,p)}. The set Pi(J,p) is a polytope.

Proof: This follows immediately from the observation that the region Pi(J) is convex and the only way
to pack convex regions into space is if they are polytopes.

To show that Pi(J) is convex, suppose the allocation to a particular bidder for p and p′ are the same,
J . Then for any other bundle J ′ we have:

vi(J)−
∑

j∈J

pj ≥ vi(J ′)−
∑

j∈J ′
pj

and
vi(J)−

∑

j∈J

p′j ≥ vi(J ′)−
∑

j∈J ′
p′j .

If we now consider any price vector αp + (1− α)p′, for α ∈ [0, 1], these imply:

vi(J)−
∑

j∈J

(αpj + (1− α)p′j) ≥ vi(J ′)−
∑

j∈J ′
(αpj + (1− α)p′j).

This clearly implies that this agent prefers allocation J on any convex combination of p and p′. Hence
the region of prices for which the agent prefers bundle J is convex.

The above claim shows that we can divide the space of pricings into polytopes based on an agent’s most
desirable bundle. Consider fixing an outcome, i.e., the bundles J1, . . . , Jn, obtained by agents 1, . . . , n,
respectively. This outcome occurs for pricings in the intersection

⋂
i∈S Pi(Ji).

Definition 7.6.1 For a set of agents S, let VertsS denote the set of vertices of the polytopes that partition
the space of prices by the allocation produced. I.e., VertsS = {p such that p is a vertex of the polytope
containing

⋂
i∈S′ Pi(Ji) for some i ∈ S′ ⊂ S and bundles Ji}.

Claim 2 For S′ ⊆ S we have VertsS′ ⊆ VertsS .

Proof: Follows immediately from the definition of VertsS and basic properties of polytopes.

Now we consider optimal pricings. Note that when fixing an allocation J1, . . . , Jn we are looking
for an optimal price point within the polytope that gives this allocation. Our objective function for this
optimization is linear. Let nj be the number of copies of item j allocated by the allocation. The seller’s
payoff for prices p = (p1, . . . , pm) is

∑
j pjnj . Thus, all optimal pricings of this allocation lie on facets

of the polytope and in particular there is an optimal pricing that is at a vertex of the polytope. Over the
space of all possible allocations, all optimal pricings are on facets of the allocation defining polytopes and
there exists an optimal pricing that is at a vertex of one of the polytopes.

Lemma 7.6.3 Given an algorithm A that always outputs a vertex of the polytope then GA ⊆ VertsS .
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Proof: This follows from the fact that RSO(G,A) runs A on a subset S′ of S which has VertsS′ ⊆ VertsS .
A must pick a price vector from VertsS′ . By Claim 2 this price vector must also be in VertsS . This gives
the lemma.

We now discuss getting a bound on VertsS for n agents, m distinct items, and various types of pref-
erences.

Theorem 7.6.4 We have the following upper bounds on |VertsS |:
1. (n + m)m for single-minded preferences.
2. nm(m + 1)2m for unit-demand preferences.
3. nm22m2

for arbitrary preferences.

Proof: We consider how many possible bundles, M , an agent might obtain as a function of the pricing.
An agent with single-minded preferences will always obtain one of Ms = 2 bundles: either their desired
bundle or nothing (the empty bundle). An agent with unit-demand preferences receives one of the m items
or nothing for a total of Mu = m + 1 possible bundles. An agent with general preferences receives one
of the Mg = 2m possible bundles.7

We now bound the number of hyperplanes necessary to partition the pricing space into M convex
regions (e.g., that specify which bundle the agent receives). For convex regions, each pair of regions can
meet in at most one hyperplane. Thus, the total number of hyperplanes necessary to partition the pricing
space into regions is at most

(
M
2

)
. Of course we wish to restrict our pricings to be non-negative, so we

must add m additional hyperplanes at pj = 0 for all j.
For all n agents, we simply intersect the regions of all agents. This does not add any new hyperplanes.

Furthermore, we only need to count the m hyperplanes that restrict to non-negative pricings once. Thus,
the total number of hyperplanes necessary for specifying the regions of allocation for n agents with M
convex regions each, is K = n

(
M
2

)
+ m. Thus, Ks = n + m, Ku ≤ n

(
m+1

2

)
+ m ≤ n(m + 1)2, and

Kg ≤ n
(
2m

2

)
+ m ≤ n22m (for m ≥ 2).

Of course, K hyperplanes in m dimensional space intersect in at most
(
K
m

) ≤ Km vertices. Not all
of these intersections are vertices of polytopes defining our allocation, still Km is an upper bound on the
size of VertsS . Plugging this in gives us the desired bounds of (n + m)m, nm(m + 1)2m, and nm22m2

respectively for single-minded, unit-demand, and general preferences.

We note that are above arguments apply to approximation algorithms that always output a price corre-
sponding to the vertex of a polytope as well. Though we do not consider this direction here, it is entirely
possible that it is not computationally difficult to post-process the solution of an algorithm that is not a
vertex of a polytope to get a solution that is on a vertex of a polytope.8 This would further motivate the
analysis above. If for some reason, restricting to algorithms that return vertices is undesirable, it is possible
to use cover arguments on the set of vertices we obtain when we add additional hyperplanes corresponding
to the discretization of the preceding section.

7.6.3 Combinatorial Auctions: Lower Bounds

We show in the following an interesting lower bound for combinatorial auctions.9 Notice that our upper
bounds and this lower bound are quite close.

7Here we make the assumption that desired bundles are simple sets. If they are actually multi-sets with bounded multiplicity
k, then the agent could receive one of at most Mg = (k + 1)m bundles.

8Notice that this is not immediate because of the complexity of representing an agent’s combinatorial valuation.
9This proof follows the standard approach for lower bounds for revenue maximizing auctions that was first given by Goldberg

et al. in [123].
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Theorem 7.6.5 Fix m and h. There exists a probability distribution on unit-demand single-minded agents
such that the expected revenue of any incentive compatible mechanism is at most mh

2 whereas the expected
revenue of OPT is at least 0.7mh.
Thus, this theorem states that in order to achieve a close multiplicative ratio with respect to OPT, one
must have additive loss Ω(mh).

Proof: Consider the following probability distribution over valuations of agents preferences. Assume
we have n = mh

2 agents in total, and h
2 agents desire item j only, j ∈ {1, · · ·m}.10 Each of these agents

has valuation h with probability 1
h and valuation 1 with probability 1− 1

h .
Notice now any incentive-compatible mechanism has expected profit at most n. To see this, note that

for each bidder, any proposed price has expected profit (over the randomization in the selection of his
valuation) of at most 1. Moreover, the expected profit of OPTG is at least n + mh

8 . For each item j, there
is a 1 − (1 − 1

h)h/2 ≈ 0.4 probability that some bidder has valuation h. For those items, OPTG gets at
least a profit of h. For the rest, OPTG gets a profit of h

2 . So, overall, OPTG gets an expected profit of at
least 0.4mh + 0.6m(h/2) = 0.7h. All these together imply the desired result.

7.6.4 Algorithms for Item-pricing

Given standard complexity assumptions, most item-pricing problems are not polynomial time solvable,
even for simple special cases. We review these results here. We focus our attention to the unlimited
supply special case, though some of the work we mention also considers limited supply item-pricing.
Algorithmic pricing problems in this form were first posed by Guruswami et al. [129] though item-pricing
for unit-demand consumers with several alternative payment rules (i.e., rules that do not represent quasi-
linear utility maximization) were independently considered by Aggarwal et al. [10].

For consumers with single-minded preferences, [129] gives a simple O(log mn) approximation algo-
rithm. Demaine et al. [101] show the problem to be hard to approximate to better than a logδ(m) factor for
some δ > 0. Both Briest and Krysta [73] and Grigoriev et al. [126] proved that optimal pricing is weakly
NP-hard for the special case known as “the highway problem” where there is a linear order on the items
and all desired bundles are for sets of consecutive items (actually this hardness result follows for the more
specific case where the desired bundles for any two agents, Si and Si′ , satisfy one of: Si ⊆ Si′ , Si′ ⊆ Si,
or Si ∪ Si′ = ∅). In the case when the cardinality of the desired bundles are bounded by k, Briest and
Krysta [73] give an O(k2) approximation algorithm. In our work [24] we have improved this, by giving a
simpler and better O(k) approximation. Finally, when the number of distinct items for sale, m, is constant,
Hartline and Koltun [131] show that it is possible to improve on the trivial O(nm) algorithm by giving
a near-linear time approximation scheme. Their approximation algorithm is actually an exact algorithm
for the problem of optimizing over a discretized set of item prices G′ which is directly applicable to our
auction RSO(G′,A), discussed above.

For consumers with unit-demand preferences, [129] (and [10] essentially) give a trivial logarithmic
approximation algorithm and show that the optimization problem is APX-hard (meaning that standard
complexity assumptions imply that there does not exist a polynomial time approximation scheme (PTAS)
for the problem). Again, Hartline and Koltun [131] show how to improve on the trivial O(nm) algo-
rithm in the case where the number of distinct items for sale, m, is constant. They give a near-linear time
approximation scheme that is based on considering a discretized set of item prices; however, the discretiza-
tion of Nisan [178] that we discussed above gives a significant improvement on their algorithm and also
generalizes it to be applicable to the problem of item-pricing for consumers with general combinatorial
preferences.

10Notice that these preferences are both unit-demand and single-minded.
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7.7 Conclusions and Discussion

In this work we have made an explicit connection between machine learning and mechanism design. In
doing so, we obtain a unified approach to considering a variety of profit maximizing mechanism design
problems including many that have been previously considered in the literature.

Some of our techniques give suggestions for the design of mechanisms and others for their analysis.
In terms of design, these include the use of discretization to produce smaller function classes, and the use
of structural-risk-minimization to choose an appropriate level of complexity of the mechanism for a given
set of bidders. In terms of analysis, these include both the use of basic sample-complexity arguments, and
the notion of multiplicative covers for better bounding the true complexity of a given class of offers.

Our results substantially generalize the previous work on random sampling mechanisms by both
broadening the applicability of such mechanisms and by simplifying the analysis. Our bounds on ran-
dom sampling auctions for digital goods not only show how the auction profit approaches the optimal
profit, but also weaken the required assumptions of [121] by a constant factor. Similarly, for random sam-
pling auctions for multiple digital goods, our unified analysis gives a bound that weakens the assumptions
of [119] by a factor of more than m, the number of distinct items. This multiple digital good auction prob-
lem is a special case of the a more general unlimited supply combinatorial auction problem for which we
obtain the first positive worst-case results by showing that it is possible to approximate the optimal profit
with an incentive-compatible mechanism. Furthermore, unlike the case for combinatorial auctions for
social welfare maximization, our incentive-compatible mechanisms can be easily based on approximation
algorithms instead of exact ones.

We have also explored the attribute auction problem that was proposed in [60] for 1-dimensional
attributes in a much more general setting: the attribute values can be multi-dimensional and the target
pricing functions considered can be arbitrarily complex. We bound the performance of random sampling
auctions as a function of the complexity of the target pricing functions.

Our random sampling auctions assume the existence of exact or approximate pricing algorithms. So-
lutions to these pricing problem have been proposed for several of our settings. In particular, optimal
item-pricings for combinatorial auctions in the single-minded and unit-demand special cases have been
considered in [24, 73, 129, 131]. On the other hand for attribute auctions, many of the clustering and
market-segmenting pricing algorithms have yet to be considered at all.
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Appendix A

Additional Proof and Known Results

A.1 Appendix for Chapter 2

A.1.1 Standard Results
We state in the following a few known generalization bounds and concentration results used in our proofs. We start
with a classic result from [103].

Theorem A.1.1 Suppose that C is a set of functions from X to {−1, 1} with finite VC-dimension D ≥ 1. Let D be
an arbitrary, but fixed probability distribution over X × {−1, 1}. For any ε, δ > 0, if we draw a sample from D of
size

m(ε, δ,D) =
64
ε2

(
2D ln

(
12
ε

)
+ ln

(
4
δ

))
,

then with probability at least 1− δ, we have
∣∣∣err(h)− L̂(h)

∣∣∣ ≤ ε for all f ∈ C.

We present now another classic results from [103].

Theorem A.1.2 Suppose that C is a set of functions from X to {−1, 1} with finite VC-dimension D ≥ 1. Let D be
an arbitrary, but fixed probability distribution over X × {−1, 1}. Then

Pr
S

[
sup

f∈C,L̂(f)=0

∣∣∣err(f)− L̂(f)
∣∣∣ ≥ ε

]
≤ 2C[2m,D]e−mε/2.

So, for any ε, δ > 0, if we draw a sample from D of size

m ≥ 2
ε

(
2 ln (C[2m,D]) + ln

(
2
δ

))
,

then with probability at least 1− δ, we have that all functions with L̂(f) = 0 satisfy err(f) ≤ ε.

We present now another classic results from [103].

Theorem A.1.3 Suppose that C is a set of functions from X to {−1, 1} with finite VC-dimension D ≥ 1. Let D be
an arbitrary, but fixed probability distribution over X × {−1, 1}. Then

Pr
S

[
sup
f∈C

∣∣∣err(f)− L̂(f)
∣∣∣ ≥ ε

]
≤ 8C[2m,D]e−mε2/8.

So, for any ε, δ > 0, if we draw from D a sample satisfying

m ≥ 8
ε2

(
ln (C[m,D]) + ln

(
8
δ

))
,

then with probability at least 1− δ all functions f satisfy
∣∣∣err(f)− L̂(f)

∣∣∣ ≥ ε.
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We now state a result from [71].

Theorem A.1.4 Suppose that C is a set of functions from X to {−1, 1}. Let D be an arbitrary, but fixed probability
distribution over X ×{−1, 1}. Then for any target f ∈ C and for any i.i.d. sample of S of size m from D, let fm be
the function that minimizes the empirical error over S. Then for any δ > 0, the probability that

err(fm) ≤ L̂(fm) +

√
6 ln C[S]

m
+ 4

√
ln(2/δ)

m

is greater than 1− δ.

Note that in fact the above statement is true even if in the right handside we use C[S′] instead of C[S] where S′

is another i.i.d sample of size m drawn from D.

Theorem A.1.5 For any class of functions we have:

Pr
S

[log2(C[S]) ≥ E[log2(C[S])] + α] ≤ exp
[
− α2

2E[log2(C[S])] + 2α/3

]
. (A.1.1)

Also,

E[log2 C[S]] ≤ log2 E[C[S]] ≤ 1
ln 2

E[log2 C[S]]. (A.1.2)

A.1.2 Additional Proofs

Theorem A.1.6 For any class of functions we have:

Pr
S

[log2(C[S]) ≥ 2 log E[C[S]] + α] ≤ e−2α. (A.1.3)

Proof: Inequality (A.1.1) implies that:

Pr
S

[log2(C[S]) ≥ 2E[log2(C[S])] + α] ≤ exp
[
− (α + E[log2(C[S])])2

2E[log2(C[S])] + 2(E[log2(C[S])] + α)/3

]
.

Since (α+a)2

2a+2(a+α)/3 ≥ α
2 for any a ≥ 0 we get

Pr
S

[log2(C[S]) ≥ 2E[log2(C[S])] + α] ≤ e−α/2.

Combining this together with the following fact (implied by Inequality (A.1.2))

Pr
S

[log2(C[S]) ≥ 2 log E[C[S]] + α] ≤ Pr
S

[log2(C[S]) ≥ 2E[log2(C[S])] + α],

we get the desired result.

A.2 Appendix for Chapter 5

Theorem A.2.1 Let C be a set of functions from X to {−1, 1} with finite VC-dimension D ≥ 1. Let P be an
arbitrary, but fixed probability distribution over X × {−1, 1}. For any ε, δ > 0, if we draw a sample from P of size
N(ε, δ) = 1

ε

(
4D log

(
1
ε

)
+ 2 log

(
2
δ

))
, then with probability 1 − δ, all hypotheses with error ≥ ε are inconsistent

with the data.
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A.2.1 Probability estimation in high dimensional ball
Consider x = [x1, . . . , xd] ∼ Px uniformly distributed on unit ball in Rd. Let A be an arbitrary set in R2; we are
interested in estimating the probability Prx((x1, x2) ∈ A). Let Vd be the volume of d-dimensional ball; we know

Vd = πd/2/Γ(1 + d/2),

where Γ is the Gamma-function. In particular Vd−2/Vd = d/(2π). It follows that

Pr
x

((x1, x2) ∈ A) =
Vd−2

Vd

∫

(x1,x2)∈A

(1− x2
1 − x2

2)
(d−2)/2dx1dx2

=
d

2π

∫

(x1,x2)∈A

(1− x2
1 − x2

2)
(d−2)/2dx1dx2 ≤ d

2π

∫

(x1,x2)∈A

e−(d−2)(x2
1+x2

2)/2dx1dx2,

where we use the inequality (1− z) ≤ e−z .

Lemma A.2.2 Let d ≥ 2 and let x = [x1, . . . , xd] be uniformly distributed in the d-dimensional unit ball. Given
γ1 ∈ [0, 1], γ2 ∈ [0, 1], we have

Pr
x

((x1, x2) ∈ [0, γ1]× [γ2, 1]) ≤ γ1

√
d

2
√

π
e−(d−2)γ2

2/2.

Proof: Let A = [0, γ1]× [γ2, 1]. We have

Pr
x

((x1, x2) ∈ A) ≤ d

2π

∫

(x1,x2)∈A

e−(d−2)(x2
1+x2

2)/2dx1dx2 ≤ γ1d

2π

∫

x2∈[γ2,1]

e−(d−2)x2
2/2dx2

≤ γ1d

2π
e−(d−2)γ2

2/2

∫

x∈[0,1−γ2)

e−(d−2)x2/2dx ≤ γ1d

2π
e−(d−2)γ2

2/2 min
[
1− γ2,

√
π

2(d− 2)

]
.

Note that when d ≥ 2, min(1,
√

π/(2(d− 2))) ≤
√

π/d.

Lemma A.2.3 Assume x = [x1, . . . , xd] is uniformly distributed in the d-dimensional unit ball. Given γ1 ∈ [0, 1],
we have

Pr
x

(x1 ≥ γ1) ≤ 1
2
e−dγ2

1/2.

Proof: Let A = [γ1, 1]× [−1, 1]. Using a polar coordinate transform, we have:

Pr
x

((x1, x2) ∈ A) =
d

2π

∫

(x1,x2)∈A

(1− x2
1 − x2

2)
d−2
2 dx1dx2

=
d

2π

∫

(r,r cos θ)∈[0,1]×[γ1,1]

(1− r2)
d−2
2 rdrdθ =

1
2π

∫

(r,r cos θ)∈[0,1]×[γ1,1]

dθd(1− r2)
d
2

≤ 1
2π

∫

(r,θ)∈[γ1,1]×[−π/2,π/2]

dθd(1− r2)
d
2 = 0.5(1− γ2

1)
d
2 .

Using inequality (1− z) ≤ e−z , we obtain the desired bound.

Lemma A.2.4 Let d ≥ 4 and let x = [x1, . . . , xd] be uniformly distributed in the d-dimensional unit ball. Given
γ, β > 0, we have:

Pr
x

(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ β

2
(1 +

√
− lnmin(1, β))e−dγ2/(4β2).
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Proof: Let α = β
√
−2d−1 lnmin(1, β), we have

Pr
x

(x1 ≤ 0, x1 + βx2 ≥ γ) ≤ Pr
x

(x1 ≤ −α, x1 + βx2 ≥ γ) + Pr
x

(x1 ∈ [−α, 0], x1 + βx2 ≥ γ)

≤ Pr
x

(x1 ≤ −α, x2 ≥ (α + γ)/β) + Pr
x

(x1 ∈ [−α, 0], x2 ≥ γ/β)

≤ 1
2

Pr
x

(x2 ≥ (α + γ)/β) + Pr
x

(x1 ∈ [0, α], x2 ≥ γ/β)

≤ 1
4
e−d(α+γ)2/(2β2) +

α
√

d

2
√

π
e−dγ2/(4β2) ≤

≤
[

1
4
e
− dα2

2β2 +
α
√

d

2
√

π

]
e
− dγ2

4β2 =

[
min(1, β)

4
+

β
√
−2 lnmin(1, β)

2
√

π

]
e
− dγ2

4β2 .

Lemma A.2.5 Let u and v be two unit vectors in Rd, and assume that θ(u, v) ≤ β̃ < π/2. Let d ≥ 4 and let
x = [x1, . . . , xd] be uniformly distributed in the d-dimensional unit ball. Consider C > 0 arbitrary, let

γ =
2 sin β̃√

d

√
ln C + ln

(
1 +

√
lnmax(1, cos β̃/ sin β̃)

)
.

Then

Pr
x

[(u · x)(w · x) < 0, |w · x| ≥ γ] ≤ sin β̃

C cos β̃
.

Proof: We rewrite the desired probability as

2Pr
x

[w · x ≥ γ, u · x < 0] .

W.l.g., let u = (1, 0, 0, ..., 0) and w = (cos(θ), sin(θ), 0, 0, ..., 0). For x = [x1, x2, ..., xd] we have u · x = x1 and
w · x = cos(θ)x1 + sin(θ)x2. Using this representation and Lemma A.2.4, we obtain

Pr
x

[w · x ≥ γ, u · x < 0] = Pr
x

[cos(θ)x1 + sin(θ)x2 ≥ γ, x1 < 0]

≤ Pr
x

[
x1 +

sin(β̃)
cos(β̃)

x2 ≥ γ

cos(β̃)
, x1 < 0

]

≤ sin β̃

2 cos β̃


1 +

√
lnmax(1,

cos β̃

sin β̃


 e

− dγ2

4 sin2 β̃

=
sin β̃

2 cos β̃
C−1,

as desired.

A.3 Appendix for Chapter 7

A.3.1 Concentration Inequalities
Here is the McDiarmid inequality (see [103]) we use in our proofs:
Theorem A.3.1 Let Y1, ..., Yn be independent random variables taking values in some set A, and assume that
t : An → R satisfies:

sup
y1,...,yn∈A,yi∈A

|t(y1, ..., yn)− t(y1, ..., yi−1, yi, yi+1, yn)| ≤ ci,
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for all i, 1 ≤ i ≤ n. Then for all γ > 0 we have:

Pr {|t(Y1, ..., Yn)−E[t(Y1, ..., Yn)]| ≥ γ} ≤ 2e
−2γ2/

nP
i=1

c2
i

Here is also a consequence of the Chernoff bound that we used in Lemma 7.4.4.
Theorem A.3.2 Let X1, ..., Xn be independent Poisson trials such that, for 1 ≤ i ≤ n, Pr [Xi = 1] = 1

2 and let
X =

∑n
i=1 Xi. Then any n′ we have:

Pr
{∣∣∣X − n

2

∣∣∣ ≥ εmax{n, n′}
}
≤ 2e−2n′ε2
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