
Incremental Pattern Discovery on Streams,
Graphs and Tensors

Jimeng Sun

CMU-CS-07-149

December 10, 2007

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christos Faloutsos, Chair

Tom Mitchell
Hui Zhang

David Steier, PWC
Philip Yu, IBM

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2007 Jimeng Sun

This material is based upon work supported by the National Science Foundation under Grants No. IIS-
0326322 IIS-0534205 and under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. This work is also partially supported by the
Pennsylvania Infrastructure Technology Alliance (PITA), an IBM Faculty Award, a Yahoo Research Alliance
Gift, with additional funding from Intel, NTT and Hewlett-Packard. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation, or other funding parties.

Any opinions findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation, DARPA, or other
funding parties.

Keywords: Data mining, Stream mining, Incremental learning, Clustering, Tensor

To my parents, Lanru Zhang and Qingguo Sun, who brought me to life.
To my wife, Huiming Qu who brings me to joy.

vi

Abstract

Incremental pattern discovery targets streaming applications where the
data continuously arrive incrementally. The questions are how to find pat-
terns (main trends) incrementally; or how to efficiently update the old patterns
when new data arrive; or how to utilize the patterns to solve other problems
such as anomaly detection?

As examples, 1) a sensor network monitors a large number of distributed
streams (such as temperature and humidity); 2) network forensics monitor the
Internet communication patterns to identify attacks; 3) cluster monitoring ex-
amines the system behaviors of a number of machines for potential failures; 4)
social network analysis monitors a dynamic graph for communities and abnor-
mal individuals; 5) financial fraud detection tries to find fraudulent activities
from a large number of transactions.

We first investigate a powerful data model, tensor stream (TS), where
there is one tensor per timestamp. To capture diverse data formats, we have
a zero-order TS for a single time-series (e.g., the stock price for Google over
time), a first-order TS for multiple time-series (sensor measurement streams),
a second-order TS for a matrix (graphs), and a high-order TS for a multi-
array (Internet communication network, source-destination-port). Second, we
develop different online algorithms on TS: 1) the centralized and distributed
SPIRIT for mining a 1st-order TS, as well as its extensions for local correla-
tion function and privacy preservation; 2) the compact matrix decomposition
(CMD) and GraphScope for a 2nd-order TS; 3) the dynamic tensor analysis
(DTA), streaming tensor analysis (STA) and window-based tensor analysis
(WTA) for a high-order TS. All the techniques are extensively evaluated for
real applications such as network forensics, cluster monitoring.

In particular, this CMD achieves orders of magnitude improvements in
space and time over the previous state of the art, and identifies interesting
anomalies. GraphScope detects interesting communities and change-points on
several time-evolving graphs such as Enron email graph and another network
traffic flow graph. DTA, STA and WTA are all online methods for higher-
order data that scale well with time, provide fundamental tradeoffs with each
other, which have also been applied to a number of applications, such as social
network community tracking, anomaly detection in data centers and network
traffic monitoring.

viii

Acknowledgments

I am extremely grateful to my adviser, Christos Faloutsos. Throughout my entire PhD
journey, Christos has been a great role model as a researcher, a mentor, a friend and a
human being. As a researcher, his enthusiasm and dedication has been of great inspiration
to me. As a mentor, he was always there to listen and to share his genuine and thoughtful
advice on all things that matter. For all of us who had the privilege to work with Christos,
his charisma and warmth always gave us the great strength to move forward.

I would also like to thank all my outstanding committee members, Tom Mitchell,
David Steier, Philip Yu and Hui Zhang: It was Tom who taught me about machine learn-
ing. David and Philip gave me extremely valuable industrial perspective on real-world data
mining problems. Several inspiring conversations with Hui also helped me tremendously
towards the end of my PhD studies.

I thank all my collaborators, Spiros Papadimitriou, Dacheng Tao, Feifei Li, Yinglian
Xie, Deepay Chakrabarti, Tamara Kolda, Michael Mahoney, Petros Drineas, Evan Hoke,
John Strunk, Greg Ganger. Without their invaluable discussion and feedback, my journey
would not have been completed.

Thanks to all the people who shared my life in Pittsburgh: Jiaxin Fu, Juchang Hua,
Yanhua Hu, Zhenzhen Kou, Yan Li, Min Luo, Minglong Shao, Sichen Sun, Chenyu Wu,
Hong Yan, Hua Zhong. I remember all the joy and pain in every Steelers’ game we
watched together. I also want to thank my office mates Yinglian Xie and Joseph Gon-
zalez (Wean 5117 is the best!). Finally, my special gratitude to the School of Computer
Science at Carnegie Mellon, I feel extremely fortunate to have studied at such a distin-
guished place.

I would also like to thank Dimitris Papadias at the Hong Kong University of Science
and Technology. It was Dimitris who brought me into the research world and beyond. His
unique character has had a significant impact on my life.

Most of all, I am grateful to my parents, Lanru Zhang and Qingguo Sun, and my wife,

ix

Huiming Qu, without whose love and support none of this would be possible.

x

Contents

1 Introduction 1

1.1 Data Model . 2

1.2 Incremental Pattern Discovery . 2

1.3 Contributions and Outline . 5

2 Stream mining 7

2.1 Stream related work . 10

2.1.1 Singular value decomposition 10

2.1.2 Principal component analysis 10

2.1.3 Covariance and auto-covariance 12

2.1.4 Stream mining . 13

2.1.5 Privacy preservation . 14

2.2 SPIRIT: Multiple Stream Mining . 15

2.2.1 Tracking Correlations . 16

2.2.2 Applications . 21

2.2.3 Experimental case-study . 23

2.2.4 Performance and accuracy . 29

2.2.5 Summary . 32

2.3 Distributed Stream Mining . 32

2.3.1 Problem Formulation . 34

2.3.2 Distributed mining framework 35

xi

2.3.3 Local pattern monitoring . 35

2.3.4 Global pattern detection . 37

2.3.5 Experiments and case studies . 37

2.3.6 Summary . 39

2.4 Local Correlation Tracking of a pair of streams 40

2.4.1 Localizing correlation estimates 41

2.4.2 Correlation tracking through local auto-covariance 43

2.4.3 Complexity . 47

2.4.4 Experiments . 48

2.4.5 Summary . 53

2.5 Privacy Preservation on streams . 53

2.5.1 Problem Formulation . 54

2.5.2 Privacy with Dynamic Correlations 56

2.5.3 Privacy with Dynamic Autocorrelations 59

2.5.4 Experiments . 63

2.5.5 Summary . 67

2.6 Chapter summary: stream mining . 67

3 Graph Mining 69

3.1 Graph related work . 71

3.1.1 Low rank approximation . 71

3.1.2 Parameter-free mining . 72

3.1.3 Biclustering . 72

3.1.4 Time-evolving Graph mining . 73

3.2 Compact Matrix Decomposition . 73

3.2.1 Problem definition . 75

3.2.2 Compact matrix Decomposition 75

3.2.3 CMD in practice . 81

3.2.4 Experiments . 85

xii

3.2.5 Applications and Mining Case Study 94

3.2.6 Summary . 98

3.3 GraphScope: Parameter-Free Mining of Large Time-Evolving Graphs . . 99

3.3.1 Problem definition . 101

3.3.2 GraphScope encoding . 103

3.3.3 GraphScope . 108

3.3.4 Experiments . 114

3.3.5 Summary . 122

3.4 Chapter summary: graph mining . 123

4 Tensor Mining 127

4.1 Tensor background and related work . 129

4.1.1 Matrix Operators . 129

4.1.2 Tensor Operators . 131

4.1.3 Tensor Decomposition . 133

4.1.4 Other tensor related work . 136

4.2 Incremental Tensor Analysis Framework 137

4.2.1 Data model . 137

4.2.2 Offline Tensor Analysis . 138

4.2.3 Incremental Tensor Analysis . 139

4.2.4 Dynamic Tensor Analysis . 140

4.2.5 Streaming Tensor Analysis . 142

4.2.6 Window-based tensor analysis 144

4.3 Experiments . 148

4.3.1 Evaluation on DTA and STA . 148

4.3.2 Evaluation on WTA . 152

4.4 Case studies . 155

4.4.1 Applications of DTA and STA 155

4.4.2 Applications of WTA . 159

xiii

4.5 Chapter summary: tensor mining . 161

5 Conclusions 165

Bibliography 169

xiv

List of Figures

1.1 Tensor examples . 2

1.2 Tensor Stream examples . 3

1.3 Pattern discovery on a 3rd order tensor 4

2.1 Singular value decomposition (SVD) . 11

2.2 PCA projects the N -D vectors xi|ni=1 into R-D vectors yi|ni=1 and U is the
projection matrix. 11

2.3 Illustration of updating w1 when a new point xt+1 arrives. 18

2.4 Chlorine dataset: (a) the network layout. (b) actual measurements and
reconstruction at four junctions (highlighted in (a)). We plot only 500
consecutive timestamps (the patterns repeat after that). (c) shows SPIRIT’s
hidden variables. 25

2.5 Mote reconstruction on two highlighted sensors 25

2.6 Mote dataset, hidden variables: The third and fourth hidden variables are
intermittent and indicate “anomalous behavior.” Note that the axes limits
are different in each plot. 26

2.7 Reconstructions x̃t for Critter. 27

2.8 (a) Actual Critter data and SPIRIT output, (b) hidden variables. 28

xv

2.9 Missing value imputation: Detail of the forecasts on Critterwith blanked
values. The second row shows that the correlations picked by the sin-
gle hidden variable successfully capture the missing values in that region
(consisting of 270 consecutive ticks). In the first row (300 consecutive
blanked values), the upward trend in the blanked region is also picked up
by the correlations to other streams. Even though the trend is slightly mis-
estimated, as soon as the values are observed again SPIRIT quickly gets
back to near-perfect tracking. 29

2.10 Wall-clock times (including time to update forecasting models). The start-
ing values are: (a) 1000 time ticks, (b) 50 streams, and (c) 2 hidden vari-
ables (the other two held constant for each graph). It is clear that SPIRIT
scales linearly. 30

2.11 original measurements (blue) and reconstruction (red) are very close. . . . 37

2.12 Local patterns . 38

2.13 Global patterns . 39

2.14 Error increases slowly . 39

2.15 Local auto-covariance; shading corresponds to weight. 44

2.16 Illustration of LoCo definition. 46

2.17 Local correlation scores, machine cluster. 48

2.18 Local correlation scores, ExRates. 50

2.19 Score vs. window size; LoCo is robust with respect to both time and
scale, accurately tracking correlations at any scale, while Pearson per-
forms poorly at all scales. 52

2.20 Impact of Correlation on Perturbing the Data 56

2.21 Dynamic correlations in Data Streams 57

2.22 Dynamic Autocorrelation . 61

2.23 Privacy Preservation for Streams with Dynamic Correlations 64

2.24 Online Random Noise for Stream with Autocorrelation 66

2.25 Privacy vs. Discrepancy: Online Reconstruction using Autocorrelation . . 66

3.1 Illustration of CUR and CMD . 77

3.2 A flowchart for mining large graphs with low rank approximations 81

xvi

3.3 Compared to SVD and CUR, CMD achieves lower space and time requirement as
well as fast estimation latency. Note that every thing is normalized by the largest
cost in that category when achieving 90% accuracy. e.g., The space requirement
of CMD is 1.5% of SVD, while that of CUR is 70%. 85

3.4 Network: CMD takes the least amount of space and time to decompose the
source-destination matrix; the space and time required by CUR increases fast
as the accuracy increases due to the duplicated columns and rows. 88

3.5 DBLP: CMD uses the least amount of space and time. Notice the huge space
and time that SVD requires. The gap between CUR and CMD is smaller because
the underlying distribution of data is less skewed, which implies fewer duplicate
samples are required. 89

3.6 Enron: CMD uses the least amount of space and time. Notice the huge space
and time that SVD requires. The gap between CUR and CMD is smaller because
the underlying distribution of data is less skewed, which implies fewer duplicate
samples are required. The overall accuracy is higher than DBLP and Network
because Enron data exhibits a low-rank structure that can be summarized well
using a few basis vectors. 90

3.7 Transaction: CMD uses the least amount of space and time. The space and time
required by CUR increases fast as the accuracy increases due to the duplicated
columns and rows. 91

3.8 Accuracy Estimation: (a) The estimated accuracy are very close to the true accu-
racy; (b) Accuracy estimation performs much faster for CMD than CUR 93

3.9 Sparsification: it incurs small performance penalties, for all methods. 94

3.10 Network flow over time: we can detect anomalies by monitoring the approxima-
tion accuracy (b), while traditional method based on traffic volume cannot do (a).

. 98

3.11 DBLP over time: The approximation accuracy drops slowly as the graphs grow
denser. 98

3.12 Notation illustration: A graph stream with 3 graphs in 2 segments. First graph
segment consisting of G(1) and G(2) has two source partitions I

(1)
1 = {1, 2},

I
(1)
2 = {3, 4}; two destination partitions J

(1)
1 = {1}, J

(1)
2 = {2, 3}. Second graph

segment consisting of G(3) has three source partitions I
(2)
1 = {1}, I

(2)
2 = {2, 3},

I
(2)
3 = {4}; three destination partitions J

(2)
1 = {1}, J

(2)
2 = {2}, J

(2)
2 = {3}. . . . 104

xvii

3.13 Alternating partition on source and destination nodes on a graph with 2 commu-
nities with size 150 and 50 plus 1% noise. For k = ` = 2, the correct partitions
are identified after one pass. 109

3.14 Search for best k and ` for a graph with 3 communities with size 100, 80, 20 plus
1 noise. The algorithm progressively improves the partition quality (reduces the
encoding cost) by changing the k and `. 111

3.15 A graph stream with three graphs: The same communities appear in graph G(1)

and G(2), therefore, they are grouped into the same graph segment. However, G(3)

has different community structure, therefore, a new segment starts from G(3). . . 114

3.16 ENRON dataset (Best viewed in color). Relative compression cost versus time.
Large cost indicates change points, which coincide with the key events. E.g., at
time-tick 140 (Feb 2002), CEO Ken Lay was implicated in fraud. 115

3.17 NETWORK before and after GraphScope for the graph segment between Jan 7
1:00, 2005 and Jan 7 19:00, 2005. GraphScope successfully rearrange the sources
and destinations such that the sub-matrices are much more homogeneous. 117

3.18 ENRON before and after GraphScope for the graph segment of week 35, 2001 to
week 38, 2001. GraphScope can achieve significant compression by partitioning
senders and recipients into homogeneous groups 118

3.19 CELLPHONE before and after GraphScope, for the period of week 38 to 42 in 2004119

3.20 DEVICE before and after GraphScope for the time segment between week 38,
2004 and week 42, 2004. Interesting communities are identified 120

3.21 NETWORK zoom-in (log-log plot): (a) Source nodes are grouped into active hosts
and security scanning program; Destination nodes are grouped into active hosts,
clusters, web servers and mail servers. (b) on a different time segment, a group
of unusual scanners appears, in addition to the earlier groups. 121

3.22 CELLPHONE: a) Two calling groups appear during the fall semester; b) Call
groups changed in the winter break. The change point corresponds to the win-
ter break. 122

3.23 DEVICE: (a) two groups are prominent. Users in U1 are all from the same school
with similar schedule possibly taking the same class; Users in U2 are all working
in the same lab. (b) U1 disappears in the next time segment, while U2 remains
unchanged. 123

xviii

3.24 Relative Encoding Cost: Both resume and fresh-start methods give over an order
of magnitude space saving compared to the raw data and are much better than
global compression on the raw data. 124

3.25 CPU cost: (a) the CPU costs for both resume and fresh-start GraphScope are sta-
ble over time; (b) resume GraphScope is much faster than fresh-start GraphScope
on the same datasets (the error bars give 25% and 75% quantiles); 124

3.26 TRANSACTION before and after GraphScope for a time segment of 5 months.
GraphScope is able to group accounts into partitions based on their types. Darker
color indicates multiple edges over time. 125

4.1 3rd order tensor X[n1,n2,n3] ×1 U results in a new tensor in Rr×n2×n3 131

4.2 3rd order tensor X ∈ Rn1×n2×n3 is matricized along mode-1 to a matrix X(1) ∈
R(n2×n3)×n1 . The shaded area is the slice of the 3rd mode along the 2nd dimension.132

4.3 3rd order tensor X ∈ RI×J×K ≈ Y ×1 U ×2 V ×3 W where Y ∈ RR×S×T is
the core tensor, U,V,W the projection matrices. 133

4.4 3rd order tensor X ∈ RI×J×K ≈
∑R

i=1 λiu(i) ◦ v(i) ◦w(i) 135

4.5 OTA projects n large 2nd order tensors Xi into n smaller 2nd order tensors Yi

with two projection matrices U1 and U2 (one for each mode). 138

4.6 New tensor X is matricized along the dth mode. Then covariance matrix Cd is
updated by XT

(d)X(d). The projection matrix Ud is computed by diagonalizing Cd. 141

4.7 New tensor X is matricized along the dth mode. For every row of Xd, we update
the projection matrix Ud. And Sd helps determine the update size. 143

4.8 IW computes the core tensors and projection matrices for every tensor
window separately, despite that fact there can be overlaps between tensor
windows. 146

4.9 The key of MW is to initialize the projection matrices U(d)|Md=1 by di-
agonalizing the covariance matrices C(d), which are incrementally main-
tained. Note that U(0) for the time mode is not initialized, since it is dif-
ferent from the other modes. 147

4.10 Three datasets . 149

4.11 Both DTA and STA use much less time than OTA over time across different datasets150

4.12 STA uses much less CPU time than DTA across different datasets 150

4.13 Reconstruction error over time . 151

xix

4.14 Dataset summary . 152

4.15 MACHINE measurements are bursty and correlated but without any clear
periodicity. 153

4.16 CPU cost over time: both IW and MW give a constant trend over time but
MW runs 30% faster overall. 154

4.17 Number of iterations is perfectly correlated with CPU time. MW con-
verges using much fewer iterations and CPU time than IW. 155

4.18 CPU cost vs. window size: The CPU time (log-scale) shows the big dif-
ference between IW and MW for all W and for both datasets. 156

4.19 CPU cost vs. step size: MW consistently outperforms IW for all step sizes,
which indicates the importance of a good initialization for the iterative
process. 157

4.20 CPU time vs. core tensor size: CPU time increases linearly with respect
to the core tensor size on time mode. 158

4.21 U(A) and U(K) capture the DB (stars) and DM (circles) concepts in authors and
keywords, respectively; initially, only DB is activated in Y1; later on both DB and
DM are in Yn. 159

4.22 WTA on environmental data, daily window 160

4.23 WTA on environmental data, weekly window 163

xx

List of Tables

2.1 Description of datasets . 23

2.2 Reconstruction accuracy (mean squared error rate). 31

2.3 Main symbols used in Section 2.4 . 42

2.4 Time and space complexity. 48

2.5 Relative stability (total variation) . 51

2.6 Sliding vs. exponential score. 52

2.7 Three Real Data Sets . 63

2.8 Perturbation/Reconstruction Method . 64

3.1 Matrix Definition: ei is a column vector with all zeros except a one as its
i-th element . 78

3.2 Dataset summary . 86

3.3 Network anomaly detection: precision is high for all sparsification ratios (the
detection false positive rate = 1− precision). 95

3.4 Definitions of symbols . 102

3.5 Dataset summary . 116

4.1 Example clusters: first two lines databases groups, last line data mining
group. 157

5.1 Algorithm classification . 167

xxi

xxii

Chapter 1

Introduction

Incremental pattern discovery targets at streaming applications where data continuously
arrive incrementally. In this thesis, we want to answer the following questions: How to
find patterns (main trends) incrementally? How to efficiently update the old patterns when
new data arrive? How to utilize the patterns to solve other problems such as anomaly
detection and clustering?

Some examples include:

• Sensor Networks [115] monitor different measurements (such as temperature and
humidity) from a large number of distributed sensors. The task is to monitor corre-
lations among different sensors over time and identify anomalies.

• Cluster Management [73] monitors the many metrics (such as CPU and memory
utilization, disk space, number of processes, etc) of a group of machines. The task is
to find main trends, to identify anomalies or potential failures as well as to compress
the signals for storage.

• Social Network Analysis [119] observes an evolving network of social activities
(such as citation, telecommunication and corporate email networks). The task is
to find communities and anomalies, and to monitor them over time.

• Network Forensics [119] monitors Internet communication in the form of source,
destination, port, time, number of packets, etc. Again, the task is to summarize the
communication patterns and to identify the potential attacks and anomalies.

• Financial Fraud Detection [18] examines transactional activities of a company over
time and tries to identify the abnormal/fraudulent behaviors.

1

1.1 Data Model

To deal with the diversity of data, we introduce an expressive data model tensor from
multi-linear analysis [43]. For the Sensor Networks example, we have one measurement
(e.g., temperature) from each sensor every timestamp, which forms a high dimensional
vector (first order tensor) as shown in Figure 1.1(a). For the Social Network Analysis, we
have authors publishing papers, which forms graphs represented by matrices (second order
tensors). For the network forensics example, the 3rd order tensor for a given time period
has three modes: source, destination and port, which can be viewed as a 3D data cube (see
Figure 1.1(c)). An entry (i, j, k) in that tensor (like the small blue cube in Figure 1.1(c))
has the number of packets from the corresponding source i to the destination j through
port k, during the given time period. Figure 1.1 illustrates three tensor examples where the
blue region indicates a single element in the tensor such as a measurement from a single
sensor in (a), the number of papers that an author wrote on a given keyword in (b), the
number of packets sent from a source IP to a destination IP through a certain port in (c).

Sensors

A
ut

ho
rs

Keywords

Sources

D
e

st
in

a
tio

n
s

P
or

ts

(a) 1st-order (b) 2nd-order (c) 3rd-order

Figure 1.1: Tensor examples

Focusing on incremental applications, we propose the tensor stream (TS) which is
an unbounded sequence of tensors. The streaming aspect comes from the fact that new
tensors are arriving continuously. Figure 1.2 illustrates the corresponding examples of
tensor streams.

1.2 Incremental Pattern Discovery

Incremental Pattern discovery is an online summarization process. In this thesis, we focus
on incrementally identifying low-rank structures of the data as the patterns and monitor
them over time. In another words, we consider the incremental pattern discovery as an

2

(a) 1st-order (b) 2nd-order (c) 3rd-order

Figure 1.2: Tensor Stream examples

incremental dimensionality reduction process. In this sense, the following terms are inter-
changeable: summaries, patterns, hidden variables, low-dimensional representations, core
tensors.

Let us illustrate the main idea through the network forensics application. In this ex-
ample, the hourly communication data are represented by high dimensional (3rd order)
tensors, which are summarized as low dimensional (3rd order) core tensors in a different
space specified by the projection matrices (see Figure 1.3).

Moreover, the projection matrices capture the overall correlations or hidden variables
along three aspects (modes): source, destination and port. For example, the Source projec-
tion characterizes the client correlations; the Destination projection summarizes the server
correlations; the Port projection monitors the port traffic correlations. The projection ma-
trices are dynamically monitored over time.

Furthermore, the core tensor indicates the association across different aspects. More
specifically, if there are 3 source hidden variables, 5 destination hidden variables and 6 port
hidden variables, the core tensor is a 3-by-5-by-6 3D array, in which the values correspond
to the level of association across three different aspects active at different time. More
details are covered in Section 4.2.4

The notation of projection matrices can be very general. In particular, we explore three
different subspace construction strategies of the projection matrices:

1. orthonormal projection, which forms orthogonal matrices based on the data such
as SPIRIT described in Section 2.2 [108, 116] and Dynamic and Streaming Tensor
Analysis (DTA/STA) in Section 4 [119];

2. example-based projection, which judiciously select examples from data to form the
subspace in Section 3.2 [120];

3

Sources

D
e

st
in

a
ti
o
n

s
P

or
ts

Source
Projection

D
e
s
ti
n
a

ti
o
n

P

ro
je

c
tio

n

Port
Projection

Core Tensor

Figure 1.3: Pattern discovery on a 3rd order tensor

3. clustering based projection, which are indicator variable vectors based on cluster
assignments in Section 3.3 [118].

The incremental aspect of the algorithms arrives from the fact that model needs to be
constantly updated. More specifically, the problems we study are as the follows: Given
a stream of tensors X1 . . .Xn, how to compress them incrementally and efficiently? How
to find patterns and anomalies? We plan to address two aspects of incremental pattern
discovery:

• Incremental update: We want to update the old model efficiently, when a new tensor
arrives. The key is to avoid redundant computation and storage.

• Model efficiency: We want an efficient method in terms of computational cost and
storage consumption. The goal is to achieve linear computation and storage require-
ment to the update size.

Why is it useful?:

The results from incremental pattern discovery can be used for many important tasks:

• Compression: The core tensor captures most of the information of the original data
but in a much lower dimension.

• Anomaly detection: From the core tensor, we can approximate the original tensor
and compute the reconstruction error. A large reconstruction error often indicates
an anomaly.

• Clustering: We can often cluster the original data based the projection (see Sec-
tion 3.3 and Section 4.2.4 for details). The idea is closely related to co-clustering [47]
and latent semantic indexing (LSI) [44].

4

More importantly, all these tasks can be done incrementally which is essential to many
monitoring applications as listed in the beginning of this section.

1.3 Contributions and Outline

Thesis statement Incremental and efficient summarization of streaming data through a
general and concise presentation enables many real applications in diverse domains.

Following this philosophy, we present a suite of tools for summarizing complex stream-
ing data incrementally.

In Chapter 2, we present SPIRIT, a stream mining algorithm for first order tensor
streams. The main contribution is that SPIRIT provides an efficient and fully automatic
approach to summarize high dimensional streams (first order tensor streams) using a vari-
ant of incremental PCA. Several applications immediately follow such as the InteMon sys-
tem [73](see Section 2.2), which does compression and anomaly detection on performance
sensors of a data center. Using SPIRIT as a building block, several other techniques are
introduced such as the distributed stream monitoring in Section 2.3 [116], local correlation
tracking in Section 2.4 [109] and privacy preservation on streams in Section 2.5 [92].

Chapter 3 presents two different techniques for analyzing large graphs (i.e., second-
order tensors) and time-evolving graphs (second-order tensor streams). Section 3.2 presents
Compact Matrix Decomposition (CMD) [120] and its application on network forensics.
The key contribution of CMD is to efficiently summarize a matrix (i.e., a graph or a
second-order tensor) as a linear combination of judiciously sampled columns and rows,
i.e., the projection matrix is the actual “example” columns and rows of the original data.
Unlike SVD/PCA, CMD preserves the data sparsity (therefore, fast and space efficient)
and provides easy interpretation based on the original data. Finally, we illustrate how to
apply CMD on time-evolving graphs. Section 3.3 presents Graphscope, a parameter-free
approach on summarizing and clustering time-evolving graphs (i.e., multiple graphs in-
dexed by time, a second-order tensor stream). Graphscope frames the graph mining prob-
lem as a compression problem, and therefore, utilizes the Minimal Description Length
(MDL) principle to automatically determine all the parameters. More specifically, Graph-
scope involves two online procedures to summarize all graphs. 1) It automatically groups
the consecutive graphs/matrices into time segments which minimizes the compression ob-
jective (code length). 2) Within a time segment, it partitions the matrices into homoge-
neous sub-matrices and determines the correct number of clusters which minimizes the
code length. Graphscope successfully identifies interesting groups and time segments on
several large social networks such as Enron email dataset.

5

Chapter 4 focuses on analyzing general tensor streams, under which three techniques
are presented, namely, Dynamic Tensor Analysis (DTA), Streaming Tensor Analysis (STA) [119]
and Window-based Tensor Analysis (WTA) [117]. The main contribution is the design
and applications of several high-order streaming algorithms. In particular, DTA and WTA
utilizes the incremental construction of covariance matrices, while STA generalizes the
SPIRIT algorithm to high-order. The applications include Multi-way latent semantic in-
dexing (high-order clustering) and anomaly detection. We also present several case studies
such as environmental sensor monitoring, data center monitoring and network forensics.

In summary, this thesis concerns two aspects of the incremental pattern discovery:
First, tensor order varies from one (Section 2 [108, 116]), two (Section 3 [120, 118]) to
higher order (Section 4 [119, 117]). The complexity increases as we are going to higher
order tensors. We studied the fundamental trade-off in designing mining algorithms on
tensors through both theoretical analysis and empirical evaluation. Second, we exploit dif-
ferent subspace formation strategies under the tensor stream framework. In particular, we
studied orthogonal projection, example-based projection and clustering based projection.

6

Chapter 2

Stream mining

“How to summarize a set of numeric streams efficiently? How does the sum-
marization enable other applications such as anomaly detection, similarity
search and privacy preservation?”

Data streams or first-order tensor stream have received tremendous attention in vari-
ous communities such as theory, databases, data mining, network systems, due to many
important applications:

• Network forensics: As the Internet becomes most prevalent media affecting peo-
ple’s daily life, network security has also been a key problem for both the research
community and the IT industry. Especially, as the network traffic grows with new
technology such as P2P file sharing, Voice over IP, and IPTV, it becomes a grand
challenge to monitor network traffic flows for intrusion and other abnormal behav-
iors in a streaming fashion.

• Environmental sensor monitoring: In the water distribution system, chemical sen-
sors can be deployed to monitor various substances in the water such as Chlorine
concentration level. All the sensor measurements need to be analyzed in real time
in order to identify possible pollution, attacks and pipe leaks in the system.

• Data center monitoring: Modern data centers are awash in monitoring data. Nearly
every application, host, and network device exports statistics that could (and should)
be monitored. Additionally, many of the infrastructure components such as UPSes,
power distribution units, and computer room air conditioners (CRACs) provide data
about the status of the computing environment. Being able to monitor and respond
to abnormal conditions is critical for maintaining a high availability installation.

7

• Financial applications: Various financial systems process billions of transactions
every day including stock trades, PoS transactions, online shopping and banking
information. Huge flows of financial data are streamed into the systems and require
real-time validation and monitoring.

Most of the streams are numeric in nature. In particular, a single stream can be viewed
as a sequence of numbers (scalars) with an increasing size, i.e., a zero-order tensor stream.
Similarly, multiple streams are represented as a sequence of vectors with an increasing
size, i.e., a first-order tensor stream.

How to efficiently summarize data streams incrementally?(Section 2.2 and [108]) This
is a fundamental problem for stream mining. Note that due to the streaming nature, the
two important requirements are posed as the follows: 1) Efficient: the process should
incur small (bounded) computation and storage requirement over time; 2) Incremental:
the process should reflect the time order in the data, i.e., time-dependency on the models.

We address this fundamental problem with our SPIRIT algorithm in Section 2.2. SPIRIT
can incrementally find correlations and hidden variables, which summarize the key trends
in multiple streams. It can do this quickly, with no buffering of stream values and without
comparing pairs of streams. The discovered trends can also be used to immediately spot
potential anomalies and to do efficient forecasting. Our experimental evaluation and case
studies show that SPIRIT can incrementally capture correlations and discover trends, effi-
ciently and effectively. We also developed InteMon system [73] which utilizes the SPIRIT
algorithm to monitor multiple performance sensor measurements (e.g., CPU and memory
utilization) and look for anomalies in a data center.

Following SPIRIT, several important problems can be answered:

How to perform stream mining in a distributed environment?(Section 2.3 and [116]) This
is a difficult but very practical problem that needs to be solved in order to deploy SPIRIT
into large scale systems.

We developed the distributed SPIRIT algorithm [116] for doing distributed system
monitoring. More specifically, given several distributed groups of streams, we want to:
(1) incrementally find local patterns within a single group, (2) efficiently obtain global
patterns across groups, and more importantly, (3) efficiently do that in real time while lim-
iting shared information across groups. Distributed SPIRIT adopts a hierarchical method
addressing these problems. It first monitors local patterns within each group using SPIRIT
and further summarizes all local patterns from different groups into global patterns. The
global patterns are leveraged to improve and refine the local patterns, in a simple and el-
egant way. Moreover, it requires only a single pass over the data, without any buffering,
and limits information sharing and communication across groups. The experimental case

8

studies and evaluation confirm that distributed SPIRIT can perform hierarchical correla-
tion detection efficiently and effectively.

How to define and compute correlations for streams? (Section 2.4 and [109]) The notion
of correlation (or, similarity) is important, since it allows us to discover groups of objects
with similar behavior and, consequently, discover potential anomalies which may be re-
vealed by a change in correlation. Unlike static time series, finding correlation between
a pair of streams is a non-trivial problem for two reasons: First, data characteristics may
change over time. In this case, a single, static correlation score for the entire streams is
less useful. Instead, it is desirable to have a notion of correlation that also evolves with
time and tracks the changing relationships. Second, the correlation of data streams often
exhibit strong but fairly complex, non-linear correlations. Traditional measures, such as
the widely used cross-correlation coefficient (or, Pearson coefficient), are less effective in
capturing these complex relationships.

To approach this problem, we compare the local auto-covariance of each stream which
generalizes the notion of linear cross-correlation. In this way, it is possible to concisely
capture a wide variety of local patterns or trends. Our method produces a general similarity
score, which evolves over time, and accurately reflects the changing relationships. Finally,
it can also be estimated incrementally using the SPIRIT algorithm. We demonstrate its
usefulness, robustness and efficiency on a wide range of real datasets.

How to preserve privacy in data streams?(Section 2.5 and [92]) There has been an in-
creasing concern regarding privacy breaches, especially those involving sensitive personal
data of individuals. Meanwhile, unprecedented massive data from various sources are pro-
viding us with a great opportunity for data mining. Unfortunately, the privacy requirement
and data mining pose conflicting expectations from data publishing. How to balance data
utility and privacy guarantee becomes a key problem. Prior works on privacy preservation
are discussed in subsection 2.1.5. Guaranteeing data privacy is especially challenging in
the case of data streams for two reasons: 1) Performance requirement: The continuous
arrival of new data prohibits storage of the entire stream for analysis, rendering the current
offline algorithms inapplicable. 2) Time evolution: Data streams are usually evolving, and
correlations and autocorrelations can change over time. These characteristics make most
offline algorithms for static data inappropriate,

In Section 2.5 , we show that it is possible to leverage the SPIRIT algorithm to track the
correlation and autocorrelation and add noise which maximally preserves privacy, in the
sense that it is very hard to remove. Our techniques achieve much better results than pre-
vious static, global approaches, while requiring limited processing time and memory. We
provide both a mathematical analysis and experimental evaluation on real data to validate
the correctness, efficiency, and effectiveness of our algorithms.

9

We first present some background and related work in section 2.1. We then present
SPIRIT, an online algorithm for summarizing multiple numeric streams in section 2.2.
After that, we show how to extend the centralized SPIRIT algorithm to work in the dis-
tributed environment in section 2.3. Finally, we illustrate two applications of SPIRIT on
local correlation computation and privacy preservation in section 2.4 and 2.5.

2.1 Stream related work

In the following, we use lowercase bold letters for column vectors (u,v, . . .) and uppercase
bold for matrices (U,V, . . .). For a general matrix A ∈ Rm×n, m and n are the number of
rows and columns, respectively. The inner product of two vectors is denoted by xTy and
the outer product by x ◦ y ≡ xyT. The Euclidean norm of x is ‖x‖.

2.1.1 Singular value decomposition

Theorem 2.1 (Singular Value Decomposition (SVD)). If A is a m-by-n matrix with rank
r, then there exist orthogonal matrices U = [u1, . . . ,ur] ∈ Rm×r and V = [v1, . . . ,vr] ∈
Rn×r such that UTAV = diag(σ1, . . . , σr) ∈ Rr×r where σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0.

Proof. See [64] for the proof.

The columns of U and V are called left and right singular vectors, respectively;
σ1, . . . , σr are singular values as shown in Figure 2.1. In addition to represent SVD as
a matrix decomposition as A = UΣVT, it can also be viewed as the sum of a number of
rank-one matrices. This is called “Spectral decomposition”, i.e., A =

∑
i σiuivi

T where
uivi

T is a rank-one matrix.

SVD reveals latent connections in the data through singular vectors. Example appli-
cations of SVD include latent semantic indexing (LSI) [44] in information retrieval and
HITS algorithm for web ranking [85].

2.1.2 Principal component analysis

PCA, as shown in Figure 2.2, finds the best linear projections of a set of high dimensional
points to minimize least-squares cost. More formally, given n points represented as vectors
xi|ni=1 ∈ RN in an N dimensional space, PCA computes n points yi|ni=1 ∈ RR (R� N) in

10

Figure 2.1: Singular value decomposition (SVD)

a lower dimensional space and the projection matrix U ∈ RN×R such that the least-squares
cost e =

∑n
i=1 ‖xi −Uyi‖22 is minimized.

Figure 2.2: PCA projects the N -D vectors xi|ni=1 into R-D vectors yi|ni=1 and U is the
projection matrix.

The solution of PCA can be computed efficiently by diagonalizing the covariance ma-
trix of xi|ni=1. Alternatively, if the rows are zero mean, then PCA is computed by the
Singular Value Decomposition (SVD): if the SVD of X is X = UsvdΣsvdVsvd

T , then our
U = Usvd and Y = ΣsvdVsvd

T. See [80] for more details on PCA.

11

2.1.3 Covariance and auto-covariance

The covariance of two random variables X , Y is defined as Cov[X, Y] = E[(X−E[X])(Y−
E[Y])]. If X1, X2, . . . , Xm is a group of m random variables, their covariance matrix
C ∈ Rm×m is the symmetric matrix defined by cij := Cov[Xi, Xj], for 1 ≤ i, j ≤ m. If
x1,x2, . . . ,xn is a collection of n observations xi ≡ [xi,1, xi,2, . . . , xi,m]T of all m vari-
ables, the sample covariance estimate1 is defined as

Ĉ :=
1

n

n∑
i=1

xi ◦ xi.

where xi ◦ xi is the outer product of the i-th observation.

In the context of a time series process {Xt}t∈N, we are interested in the relationship
between values at different times. To that end, the auto-covariance is defined as γt,t′ :=
Cov[Xt, Xt′] = E[XtXt′], where the last equality follows from the zero-mean assumption.
By definition, γt,t′ = γt′,t.

Spectral decomposition Any real symmetric matrix is always equivalent to a diagonal
matrix, in the following sense.

Theorem 2.2 (Diagonalization). If A ∈ Rn×n is a symmetric, real matrix, then it is always
possible to find a column-orthonormal matrix U ∈ Rn×n and a diagonal matrix Λ ∈
Rn×n, such that A = UΛUT.

Proof. See [64].

Thus, given any vector x, we can write UT(Ax) = Λ(UTx), where pre-multiplication
by UT amounts to a change of coordinates. Intuitively, if we use the coordinate system
defined by U, then Ax can be calculated by simply scaling each coordinate independently
of all the rest (i.e., multiplying by the diagonal matrix Λ).

Given any symmetric matrix A ∈ Rn×n, we will denote its eigenvectors by ui(A) and
the corresponding eigenvalues by λi(A), in order of decreasing magnitude, where 1 ≤ i ≤
n. The matrix Uk(A) has the first k eigenvectors as its columns, where 1 ≤ k ≤ n.

1The unbiased estimator uses n− 1 instead of n, but this constant factor does not affect the eigen-
decomposition.

12

2.1.4 Stream mining

There is a large body of work on streams, which we loosely classify in two groups.

Data stream management systems (DSMS). We include this very broad category for
completeness. DSMS include Aurora [4], Stream [101], Telegraph [30] and Gigascope [40].
The common hypothesis is that (i) massive data streams come into the system at a very
fast rate, and (ii) near real-time monitoring and analysis of incoming data streams is re-
quired. The new challenges have made researchers re-think many parts of traditional
DBMS design in the streaming context, especially on query processing using correlated at-
tributes [46], scheduling [16, 23], load shedding [124, 41] and memory requirements [14].

In addition to system-building efforts, a number of approximation techniques have
been studied in the context of streams, such as sampling [21], sketches [50, 38, 61], expo-
nential histograms [42], and wavelets [68]. The main goal of these methods is to estimate
a global aggregate (e.g. sum, count, average) over a window of size w on the recent data.
The methods usually have resource requirements that are sublinear with respect to w. Most
focus on a single stream.

The emphasis in this line of work is to support traditional SQL queries on streams.
None of them tries to find patterns, nor to do forecasting.

Data mining on streams. Researchers have started to redesign traditional data mining
algorithms for data streams. Much of the work has focused on finding interesting patterns
in a single stream, but multiple streams have also attracted significant interest. Ganti
et al. [62] propose a generic framework for stream mining. Guha et al. [69] propose a
one-pass k-median clustering algorithm. Domingos and Hulten [51] construct a decision
tree online, by passing over the data only once. Recently, [75, 129] address the problem
of finding patterns over concept drifting streams. Papadimitriou et al. [106] proposed a
method to find patterns in a single stream, using wavelets. More recently, Palpanas et
al. [104] consider approximation of time-series with amnesic functions. They propose
novel techniques suitable for streaming, and applicable to a wide range of user-specified
approximating functions.

Keogh et al. [83] propose parameter-free methods for classic data mining tasks (i.e.,
clustering, anomaly detection, classification), based on compression. Lin et al. [93] per-
form clustering on different levels of wavelet coefficients of multiple time series. Both
approaches require having all the data in advance.

CluStream [7] is a flexible clustering framework with online and offline components.
The online component extends micro-cluster information [137] by incorporating exponentially-

13

sized sliding windows while coalescing micro-cluster summaries. Actual clusters are
found by the offline component. StatStream [140] uses the DFT to summarize streams
within a finite window and then compute the highest pairwise correlations among all pairs
of streams, at each timestamp. BRAID [112] addresses the problem of discovering lag
correlations among multiple streams. The focus is on time and space efficient methods for
finding the earliest and highest peak in the cross-correlation functions between all pairs
of streams. Neither CluStream, StatStream nor BRAID explicitly focus on discovering
hidden variables.

Guha et al. [67] improve on discovering correlations, by first doing dimensionality
reduction with random projections, and then periodically computing the SVD. However,
the method incurs high overhead because of the SVD re-computation and it can not easily
handle missing values. MUSCLES [136] is exactly designed to do forecasting (thus it
could handle missing values). However, it can not find hidden variables and it scales
poorly for a large number of streams n, since it requires at least quadratic space and time,
or expensive reorganizations (selective MUSCLES).

Finally, a number of the above methods usually require choosing a sliding window size,
which typically translates to buffer space requirements. Our approach does not require any
sliding windows and does not need to buffer any of the stream data.

In conclusion, none of the above methods simultaneously satisfy the requirements in the
introduction: “any-time” streaming operation, scalability on the number of streams, adap-
tivity, and full automation.

Distributed data mining. Most works on distributed data mining focus on extending clas-
sic (centralized) data mining algorithms into distributed environment, such as association
rules mining [34], frequent item sets [98]. Web is a popular distributed environment. Sev-
eral techniques are proposed specifically for that, for example, distributed top-k query [17]
and Bayes-net mining on web [32]. But our focus is on finding numeric patterns, which is
different.

2.1.5 Privacy preservation

Privacy preserving data mining was first proposed in [10] and [9]. This work paved the
road for an expanding field, and various privacy preservation techniques have been pro-
posed since. These methods apply to the traditional relational data model, and can be
classified as data perturbation [10, 9, 96, 31, 59, 11], k-anonymity [84, 121, 8, 99, 131]
and secure multi-party computation [94, 126]. Our work focuses on privacy preservation in
the context of the randomized data perturbation approach and we will focus on discussing

14

related work in this area.

Data perturbation can be further classified in two groups: retention replacement per-
turbation [11, 59] and data value perturbation [10, 96, 31]. For each element in a column
j, the retention replacement perturbation retains this element with probability pj and with
probability 1−pj replaces it with an item generated from the replacing pdf on this column.
This approach works for categorical data as well, and it has been applied to privacy pre-
serving association mining [59]. Our work focuses on numerical data value perturbation.
Initial solutions in this category, [10, 9], proposed adding random i.i.d. noise to the origi-
nal data and showed that, with knowledge of the noise distribution, the distribution of the
original data can be estimated from the perturbed data, and aggregate values are preserved.
In [81, 74] the authors pointed out that adding random i.i.d. noise is not optimal for privacy
preservation. They showed how to reconstruct the original data (individual data values)
using Spectral Filtering (SF) or the equivalent PCA method. The main conclusion is that
random noise should be distributed along the principal components of the original data, so
that linear reconstruction methods cannot separate the noise from the original data. Moti-
vated by this observation and in similar spirit, [31] proposed the random rotation technique
for privacy preserving classification and [96] proposed data perturbation based on random
projection. The work of [58] discussed a method to quantify the privacy breach for pri-
vacy preserving algorithms, namely α − β analysis or γ-amplification. The basic idea
is that, on the perturbed data, the adversaries’ knowledge measured by their confidence
about a given property of the original data should not be increased by more than a certain
amount. The work in [13] considered the problem of setting the perturbation parameters
while maintaining γ-amplification.

All these techniques have been developed for the traditional relational data model.
There is no prior work on privacy preservation on data streams, except the work on private
search over data streams [103, 20]. However, the goal there is to protect the privacy of
the query over the data stream, not of the data stream itself. Finally, our data perturbation
techniques rely on PCA for data streams with respect to both correlations and autocorre-
lations. Streaming PCA and eigen-space tracking of correlations (but not autocorrelation)
among multiple data streams has been studied in [108, 67].

2.2 SPIRIT: Multiple Stream Mining

How to efficiently summarize data streams incrementally? To address this question, we
introduce SPIRIT - Streaming Pattern dIscoveRy in multIple sTreams and its applications.
In short, SPIRIT satisfies the following requirements:

15

• It is streaming, i.e., it is incremental, scalable. It requires very little memory and
processing time per time tick. In fact, both are independent of the stream length t.

• It scales linearly with the number of streams n, not quadratically. This may seem
counter-intuitive, because the naı̈ve method to spot correlations across n streams
examines all O(n2) pairs.

• It is adaptive, and fully automatic. It dynamically detects changes (both gradual, as
well as sudden) in the input streams, and automatically determines the number k of
hidden variables.

The correlations and hidden variables we discover have multiple uses. They provide a
succinct summary to the user, they can help to do fast forecasting and detect outliers, and
they facilitate interpolations and handling of missing values, as we discuss later.

2.2.1 Tracking Correlations

In summary, SPIRIT does the following:

• Given n streams, it produces a value xt,j , for every stream 1 ≤ j ≤ n and for every
time-tick t = 1, 2,

• It adapts the number k of hidden variables necessary to explain/summarize the main
trends in the collection.

• It adapts the participation weights wi,j of the j-th stream on the i-th hidden variable
(1 ≤ j ≤ n and 1 ≤ i ≤ k), so as to produce an accurate summary of the stream
collection.

• It monitors the hidden variables yt,i, for 1 ≤ i ≤ k.

• It keeps updating all the above efficiently.

More precisely, SPIRIT operates on the column-vectors of observed stream values xt ≡
[xt,1, . . . , xt,n]T ∈ Rn and continually updates the participation weights wi,j . The partic-
ipation weight vector wi for the i-th stream is wi := [wi,1 · · · wi,n]T ∈ Rn. The hidden
variables yt ≡ [yt,1, . . . , yt,k]

T ∈ Rk are the projections of xt onto each wi, over time, i.e.,

yt,i := wi,1xt,1 + wi,2xt,2 + · · ·+ wi,nxt,n,

16

Or in matrix form,
yt := WTxt

SPIRIT also adapts the number k of hidden variables necessary to capture most of the
information. The adaptation is performed so that the approximation achieves a desired
mean-square error. In particular, let x̃t = [x̃t,1 · · · x̃t,n]T ∈ Rn be the reconstruction of xt,
based on the weights and hidden variables, defined by

x̃t,j := w1,jyt,1 + w2,jyt,2 + · · ·+ wk,jyt,k,

or in matrix form,
x̃t = Wyt

Definition 2.1 (SPIRIT tracking). SPIRIT updates the participation weights wi,j so as to
guarantee that the reconstruction error ‖x̃t − xt‖2 over time is predictably small.

If we assume that the xt are drawn according to some distribution that does not change
over time (i.e., under stationarity assumptions), then the weight vectors wi converge to the
principal directions. However, even if there are non-stationarities in the data (i.e., gradual
drift), in practice we can deal with these very effectively, as we explain later.

An additional complication is that we often have missing values, for several reasons:
either failure of the system, or delayed arrival of some measurements. For example, the
sensor network may get overloaded and fail to report some of the chlorine measurements
in time or some sensor may temporarily black-out. At the very least, we want to continue
processing the rest of the measurements.

Tracking the hidden variables

The first step is, for a given k, to incrementally update the k participation weight vectors
wi, 1 ≤ i ≤ k, so as to summarize the original streams with only a few numbers (the
hidden variables). In Section 2.2.1, we describe the complete method, which also adapts
k.

For the moment, assume that the number of hidden variables k is given. Furthermore,
our goal is to minimize the average reconstruction error

∑
t ‖x̃t − xt‖2. In this case, the

desired weight vectors wi, 1 ≤ i ≤ k are the principal directions and it turns out that we
can estimate them incrementally.

We use an algorithm based on adaptive filtering techniques [133, 71], which have
been tried and tested in practice, performing well in a variety of settings and applications
(e.g., image compression and signal tracking for antenna arrays). We experimented with

17

(a) Original w1 (b) Update process (c) Resulting w1

Figure 2.3: Illustration of updating w1 when a new point xt+1 arrives.

several alternatives [102, 48] and found this particular method to have the best properties
for our setting: it is very efficient in terms of computational and memory requirements,
while converging quickly, with no special parameters to tune. The main idea behind the
algorithm is to read in the new values xt+1 ≡ [x(t+1),1, . . . , x(t+1),n]T from the n streams
at time t + 1, and perform three steps:

1. Compute the hidden variables y′t+1,i, 1 ≤ i ≤ k, based on the current weights wi, 1 ≤ i ≤ k,
by projecting xt+1 onto these.

2. Estimate the reconstruction error (ei below) and the energy, based on the y′t+1,i val-
ues.

3. Update the estimates of wi, 1 ≤ i ≤ k and output the actual hidden variables yt+1,i

for time t + 1.

To illustrate this, Figure 2.3(b) shows the e1 and y1 when the new data xt+1 enter the
system. Intuitively, the goal is to adaptively update wi so that it quickly converges to the
“truth.” In particular, we want to update wi more when ei is large. However, the magnitude
of the update should also take into account the past data currently “captured” by wi. For
this reason, the update is inversely proportional to the current energy Et,i of the i-th hidden
variable, which is Et,i := 1

t

∑t
τ=1 y2

τ,i. Figure 2.3(c) shows w1 after the update for xt+1.

The forgetting factor λ will be discussed in Section 2.2.1 (for now, assume λ = 1). For
each i, di = tEt,i and x́i is the component of xt+1 in the orthogonal complement of the
space spanned by the updated estimates wi′ , 1 ≤ i′ < i of the participation weights. The
vectors wi, 1 ≤ i ≤ k are in order of importance (more precisely, in order of decreasing
eigenvalue or energy). It can be shown that, under stationarity assumptions, these wi in
these equations converge to the true principal directions[133].

18

Algorithm 2.1: TRACKW
Initialize the k participation weight vector wi to unit vectors w1 = [10 · · · 0]T ,1

w2 = [010 · · · 0]T , etc.
Initialize di (i = 1, ...k) to a small positive value.2

foreach new vector xt+1 do3

Initialize x́1 := xt+14

for 1 ≤ i ≤ k do5

yi := wT
i x́i /* yt+1,i = projection onto wi */6

di ← λdi + y2
i /* energy ∝ i-th eigenval. of XT

t Xt */7

ei := x́i − yiwi /* error, ei ⊥ wi */8

wi ← wi + 1
di

yiei /* update PC estimate */9

x́i+1 := x́i − yiwi /* repeat with remainder of xt */10

orthogonalize wi, 1 ≤ i ≤ k by fixing w111

Line 11 of the algorithm TrackW is to maintain the orthogonality of all the participa-
tion weight vectors wi, 1 ≤ i ≤ k.

Complexity. We only need to keep the k weight vectors wi (1 ≤ i ≤ k), each n-
dimensional. Thus the total cost is O(nk), both in terms of time and of space. The update
cost does not depend on t. This is a tremendous gain, compared to the usual PCA compu-
tation cost of O(tn2).

Detecting the number of hidden variables

In practice, we do not know the number k of hidden variables. We propose to estimate k on
the fly, so that we maintain a high percentage fE of the energy Et. Energy thresholding is a
common method to determine how many principal components are needed [80]. Formally,
the energy Et (at time t) of the sequence of xt is defined as

Et := 1
t

∑t
τ=1 ‖xτ‖2 = 1

t

∑t
τ=1

∑n
i=1 x2

τ,i.

Similarly, the energy Ẽt of the reconstruction x̃ is defined as

Ẽt := 1
t

∑t
τ=1 ‖x̃τ‖2.

Lemma 2.1. Assuming the wi, 1 ≤ i ≤ k are orthonormal, we have

Ẽt = 1
t

∑t
τ=1 ‖yτ‖2 = t−1

t
Ẽt−1 + 1

t
‖yt‖2.

19

Proof. If the wi, 1 ≤ i ≤ k are orthonormal, then it follows easily that ‖x̃τ‖2 = ‖yτ,1w1 +
· · ·+ yτ,kwk‖2 = y2

τ,1‖w1‖2 + · · ·+ y2
τ,k‖wk‖2 = y2

τ,1 + · · ·+ y2
τ,k = ‖yτ‖2 (Pythagorean

theorem and normality). The result follows by summing over τ .

.

From the user’s perspective, we have a low-energy and a high-energy threshold, fE and
FE , respectively. We keep enough hidden variables k, so the retained energy is within the
range [fE · Et, FE · Et]. Whenever we get outside these bounds, we increase or decrease
k. In more detail, the steps are:

1. Estimate the full energy Et+1, incrementally, from the sum of squares of xτ,i.

2. Estimate the energy Ẽ(k) of the k hidden variables.

3. Possibly, adjust k. We introduce a new hidden variable (update k ← k + 1) if
the current hidden variables maintain too little energy, i.e., Ẽ(k) < fEE. We drop
a hidden variable (update k ← k − 1), if the maintained energy is too high, i.e.,
Ẽ(k) > FEE.

The energy thresholds fE and FE are chosen according to recommendations in the liter-
ature [80]. We use a lower energy threshold fE = 0.95 and an upper energy threshold
FE = 0.98. Thus, the reconstruction x̃t retains between 95% and 98% of the energy of xt.

The following lemma proves that the above algorithm guarantees the relative reconstruc-
tion error is within the specified interval [fE, FE].

Lemma 2.2. The relative squared error of the reconstruction satisfies

1− FE ≤
∑t

τ=1 ‖x̃τ − xτ‖2∑
t ‖xτ‖2

≤ 1− fE.

Proof. From the orthogonality of xτ and the complement x̃τ − xτ we have ‖x̃τ − xτ‖2 =
‖xτ‖2 − ‖x̃τ‖2 = ‖xτ‖2 − ‖yτ‖2 (by Lemma 2.1). The result follows by summing over τ
and from the definitions of E and Ẽ.

Finally, in Section 2.2.4 we demonstrate that the incremental weight estimates are
extremely close to the principal directions computed with offline PCA.

20

Algorithm 2.2: SPIRIT
Initialize k ← 1 and the total energy estimates of xt and x̃t per time tick to E ← 01

and Ẽ1 ← 0.
foreach new vector xt+1 do2

Update wi, for 1 ≤ i ≤ k (step 1, TRACKW)3

Update the estimates (for 1 ≤ i ≤ k)4

E ← (t− 1)E + ‖xt‖2

t
and Ẽi ←

(t− 1)Ẽi + y2
t,i

t
.

Let the estimate of retained energy be5

Ẽ(k) :=
∑k

i=1 Ẽi.

if Ẽ(k) < fEE then Start estimating wk+1 (initializing as in TRACKW)6

if Ẽ(k) > FEE then Discard wk and Ẽk and decrease k ← k − 17

Exponential forgetting

We can adapt to more recent behavior by using an exponential forgetting factor 0 < λ < 1.
This allows us to follow trend drifts over time. We use the same λ for the estimation of
both wi as well as the AR models (see Section 2.2.2). However, we also have to properly
keep track of the energy, discounting it with the same rate, i.e., the update at each step is:

E ← λ(t− 1)E + ‖xt‖2

t
and Ẽi ←

λ(t− 1)Ẽi + y2
t,i

t
.

Typical choices are 0.96 ≤ λ ≤ 0.98 [71]. As long as the values of xt do not vary wildly,
the exact value of λ is not crucial. We use λ = 0.96 throughout. A value of λ = 1
makes sense when we know that the sequence is stationary (rarely true in practice, as most
sequences gradually drift). Note that the value of λ does not affect the computation cost of
our method. In this sense, an exponential forgetting factor is more appealing than a sliding
window, as the latter has explicit buffering requirements.

2.2.2 Applications

We show how we can exploit the correlations and hidden variables discovered by SPIRIT
to do (a) forecasting, (b) missing value estimation, (c) summarization of the large number
of streams into a small, manageable number of hidden variables, and (d) outlier detection.

21

Forecasting and missing values

The hidden variables yt give us a much more compact representation of the “raw” variables
xt, with guarantees of high reconstruction accuracy (in terms of relative squared error,
which is less than 1 − fE). When our streams exhibit correlations, as we often expect
to be the case, the number k of the hidden variables is much smaller than the number n
of streams. Therefore, we can apply any forecasting algorithm to the vector of hidden
variables yt, instead of the raw data vector xt. This reduces the time and space complexity
by orders of magnitude, because typical forecasting methods are quadratic or worse on the
number of variables.

In particular, we fit the forecasting model on the yt instead of xt. The model provides
an estimate ŷt+1 = f(yt) and we can use this to get an estimate for

x̂t+1 := ŷt+1,1w1[t] + · · ·+ ŷt+1,1wk[t],

using the weight estimates wi[t] from the previous time tick t. We chose auto-regression
for its intuitiveness and simplicity, but any online method can be used.

Correlations. Since the principal directions are orthogonal (wi ⊥ wj, i 6= j), the compo-
nents of yt are by construction uncorrelated—the correlations have already been captured
by the wi, 1 ≤ i ≤ k. We can take advantage of this de-correlation to reduce forecasting
complexity. In particular for auto-regression, we found that one AR model per hidden
variable provides results comparable to multivariate AR but much better in speed.

Auto-regression. Space complexity for multivariate AR (e.g., MUSCLES [136]) is O(n3`2),
where ` is the auto-regression window length. For AR per stream (ignoring correlations), it
is O(n`2). However, for SPIRIT, we need O(kn) space for the wi and, with one AR model
per yi, the total space complexity is O(kn+k`2). As published, MUSCLES requires space
that grows cubically with respect to the number of streams n. We believe it can be made
to work with quadratic space, but this is still prohibitive. Both AR per stream and SPIRIT
require space that grows linearly with respect to n, but in SPIRIT k is typically very small
(k � n) and, in practice, SPIRIT requires less memory and time per update than AR
per stream. More importantly, a single, independent AR model per stream cannot capture
any correlations, whereas SPIRIT indirectly exploits the correlations present within a time
tick.

Missing values. When we have a forecasting model, we can use the forecast based on xt−1

to estimate missing values in xt. We then use these estimated missing values to update the
weight estimates, as well as the forecasting models. Forecast-based estimation of missing
values is the most time-efficient choice and gives very good results.

22

Dataset n k Description
Chlorine 166 2 Chlorine concentrations from EPANET.
Critter 8 1–2 Temperature sensor measurements.
Motes 54 2–4 Light sensor measurements.

Table 2.1: Description of datasets

2.2.3 Experimental case-study

In this section we present case studies on real and realistic datasets to demonstrate the
effectiveness of our approach in discovering the underlying correlations among streams.
In particular, we show that:

• We capture the appropriate number of hidden variables. As the streams evolve, we
capture these changes in real-time [115] and adapt the number of hidden variables k
and the weights wi.

• We capture the essential behavior with very few hidden variables and small recon-
struction error.

• We successfully deal with missing values.

• We can use the discovered correlations to perform good forecasting, with much
fewer resources.

• We can easily spot outliers.

• Processing time per stream is constant.

Section 2.2.4 elaborates on performance and accuracy. Next we describe each of the
datasets and the mining results.

Chlorine concentrations

The Chlorine dataset was generated by EPANET 2.02 that accurately simulates the
hydraulic and chemical phenomena within drinking water distribution systems. Given
a network as the input, EPANET tracks the flow of water in each pipe, the pressure at
each node, the height of water in each tank, and the concentration of a chemical species
throughout the network, during a simulation period comprised of multiple timestamps. We

2http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html

23

http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html

monitor the chlorine concentration level at all the 166 junctions in the network shown in
Figure 2.4(a), for 4310 timestamps during 15 days (one time tick every five minutes). The
data was generated by using the input network with the demand patterns, pressures, flows
specified at each node.

Data characteristics. The two key features are:

• A clear global periodic pattern (daily cycle, dominating residential demand pattern).
Chlorine concentrations reflect this, with few exceptions.

• A slight time shift across different junctions, which is due to the time it takes for
fresh water to flow down the pipes from the reservoirs.

Thus, most streams exhibit the same sinusoidal-like pattern, except with gradual phase
shifts as we go further away from the reservoir.

Results of SPIRIT. SPIRIT can successfully summarize the data using just two numbers
(hidden variables) per time tick, as opposed to the original 166 numbers. Figure 2.4(a)
shows the reconstruction for four of the sensors (out of 166). Only two hidden variables
give very good reconstruction.

Interpretation. The two hidden variables (Figure 2.4(b)) reflect the two key dataset char-
acteristics:

• The first hidden variable captures the global, periodic pattern.

• The second one also follows a very similar periodic pattern, but with a slight “phase
shift.” It turns out that the two hidden variables together are sufficient to express
(via a linear combination) any other time series with an arbitrary “phase shift.”

Light measurements

Description. The Motes dataset consists of light intensity measurements collected using
Berkeley Mote sensors, at several different locations in a lab (see Figure 2.5), over a period
of a month.

Data characteristics. The main characteristics are:
• A clear global periodic pattern (daily cycle).

24

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Original measurements

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reconstruction

0 500 1000 1500 2000

−1
0

1
2

3
4

time

hid
de

n
va

rs

(a) Network map (b) Measurements and reconstruction (c) Hidden variables
Figure 2.4: Chlorine dataset: (a) the network layout. (b) actual measurements and
reconstruction at four junctions (highlighted in (a)). We plot only 500 consecutive times-
tamps (the patterns repeat after that). (c) shows SPIRIT’s hidden variables.

0 500 1000 1500 2000

0
50

0
10

00
15

00

measurements + reconstruction of sensor 31

0
50

0
10

00
15

00

measurements + reconstruction of sensor 32

(a) Lab map (b) Original measurements vs. reconstruction

Figure 2.5: Mote reconstruction on two highlighted sensors

• Occasional big spikes from some sensors (outliers).

Results of SPIRIT. SPIRIT detects four hidden variables (see Figure 2.6). Two of these
are intermittent and correspond to outliers, or changes in the correlated trends. We show
the reconstructions for some of the observed variables in Figure 2.5(b).

Interpretation. In summary, the first two hidden variables (see Figure 2.6) correspond to
the global trend and the last two, which are intermittently present, correspond to outliers.
In particular:

• The first hidden variable captures the global periodic pattern.

• The interpretation of the second one is again similar to the Chlorine dataset. The

25

0 500 1000 1500 2000

0
20

00
40

00
60

00
80

00

hid
de

n v
ar

1
0 500 1000 1500 2000

−3
00

0
−1

00
0

0
10

00
20

00

hid
de

n v
ar

2

0
10

00
20

00
30

00

hid
de

n v
ar

3

0
50

0
10

00
15

00
20

00
25

00

hid
de

n v
ar

4

Figure 2.6: Mote dataset, hidden variables: The third and fourth hidden variables are
intermittent and indicate “anomalous behavior.” Note that the axes limits are different in
each plot.

first two hidden variables together are sufficient to express arbitrary phase shifts.

• The third and fourth hidden variables indicate some of the potential outliers in the
data. For example, there is a big spike in the 4th hidden variable at time t = 1033,
as shown in Figure 2.6. Examining the participation weights w4 at that timestamp,
we can find the corresponding sensors “responsible” for this anomaly, i.e., those
sensors whose participation weights have very high magnitude. Among these, the
most prominent are sensors 31 and 32. Looking at the actual measurements from
these sensors, we see that before time t = 1033 they are almost 0. Then, very large
increases occur around t = 1033, which bring an additional hidden variable into the
system.

Room temperatures

Description. The Critter dataset consists of 8 streams (see Figure 2.8). Each stream
comes from a small sensor3 (aka. Critter) that connects to the joystick port and measures
temperature. The sensors were placed in 5 neighboring rooms. Each time tick represents
the average temperature during one minute.

3http://www.ices.cmu.edu/sensornets/

26

http://www.ices.cmu.edu/sensornets/

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
18

23

28
Critter − SPIRIT vs. Repeated PCA (reconstruction)

S
e

n
so

r 1
 (

o
C

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
18

23

28

S
e

n
so

r 2
(o

C
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

23

28

S
e

n
so

r 5
(o

C
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

23

28

time

S
e

n
so

r 8
(o

C
)

Repeated PCA
SPIRIT

Figure 2.7: Reconstructions x̃t for Critter.

Furthermore, to demonstrate how the correlations capture information about missing
values, we repeated the experiment after blanking 1.5% of the values (five blocks of con-
secutive timestamps; see Figure 2.9).

Data characteristics. Overall, the dataset does not seem to exhibit a clear trend. Upon
closer examination, all sensors fluctuate slightly around a constant temperature (which
ranges from 22–27oC, or 72–81oF, depending on the sensor). Approximately half of the
sensors exhibit a more similar “fluctuation pattern.”

Results of SPIRIT. SPIRIT discovers one hidden variable, which is sufficient to capture
the general behavior. However, if we utilize prior knowledge (such as, e.g., that the pre-set
temperature was 23oC), we can ask SPIRIT to detect trends with respect to that. In that
case, SPIRIT comes up with two hidden variables, which we explain later.

SPIRIT is also able to deal successfully with missing values in the streams. Figure 2.9
shows the results on the blanked version (1.5% of the total values in five blocks of con-
secutive timestamps, starting at a different position for each stream) of Critter. The
correlations captured by SPIRIT’s hidden variable often provide useful information about

27

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

182328

Sensor1(
o
C)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

202326

Sensor2(
o
C)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

212326

Sensor3(
o
C)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

192325

Sensor4(
o
C)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

23

25

28

Sensor5(
o
C)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

232528

Sensor6(
o
C)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

222426

Sensor7(
o
C)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

202427

tim
e

Sensor8(
o
C)

A
ct

ua
l

S
P

IR
IT

C
rit

te
r

−
 S

P
IR

IT

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

0246

C
rit

te
r

−
 H

id
de

n
va

ria
bl

es

Hidden var y1,t
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

024

Hidden var y2,t

(a) SPIRIT reconstruction (b) Hidden variables

Figure 2.8: (a) Actual Critter data and SPIRIT output, (b) hidden variables.

the missing values. In particular, on sensor 8 (second row, Figure 2.9), the correlations
picked by the single hidden variable successfully capture the missing values in that region
(consisting of 270 ticks). On sensor 7, (first row, Figure 2.9; 300 blanked values), the
upward trend in the blanked region is also picked up by the correlations. Even though
the trend is slightly mis-estimated, as soon as the values are observed again, SPIRIT very
quickly gets back to near-perfect tracking.

Interpretation. If we examine the participation vector w1, the largest entries in w1 corre-
spond primarily to streams 5 and 6, and then to stream 8. If we examine the data, sensors
5 and 6 consistently have the highest temperatures, while sensor 8 also has a similar tem-
perature most of the time.

However, if the sensors are calibrated based on the fact that these are building tem-
perature measurements, where we have set the thermostat to 23oC (73oF), then SPIRIT
discovers two hidden variables (see Figure 2.8). More specifically, if we reasonably as-
sume that we have the prior knowledge of what the temperature should be (note that this
has nothing to do with the average temperature in the observed data) and want to dis-
cover what happens around that temperature, we can subtract it from each observation
and SPIRIT will discover patterns and anomalies based on this information. Actually, this
is what a human operator would be interested in discovering: “Does the system work as
I expect it to?” (based on my knowledge of how it should behave) and “If not, what is
wrong?” So, in this case, we indeed discover this information.

28

8200 8400 8600 8800
23

24

25

26

27

S
en

so
r 7 (o C

)

Critter − SPIRIT

8200 8400 8600 8800

23

24

25

26

27
Critter (blanked) − SPIRIT

2000 2100 2200 2300 2400 2500
21.5

22

22.5

time

S
en

so
r 8 (o C

)

2000 2100 2200 2300 2400 2500
21.5

22

22.5

time

Actual
SPIRIT

blanked region

blanked region

Figure 2.9: Missing value imputation: Detail of the forecasts on Critter with blanked
values. The second row shows that the correlations picked by the single hidden variable
successfully capture the missing values in that region (consisting of 270 consecutive ticks).
In the first row (300 consecutive blanked values), the upward trend in the blanked region
is also picked up by the correlations to other streams. Even though the trend is slightly
mis-estimated, as soon as the values are observed again SPIRIT quickly gets back to near-
perfect tracking.

• The interpretation of the first hidden variable is similar to that of the original signal:
sensors 5 and 6 (and, to a lesser extent, 8) deviate from that temperature the most,
for most of the time. Maybe the thermostats are broken or set wrong?

• For w2, the largest weights correspond to sensors 1 and 3, then to 2 and 4. If we
examine the data, we notice that these streams follow a similar, fluctuating trend
(close to the pre-set temperature), the first two varying more violently. The second
hidden variable is added at time t = 2016. If we examine the plots, we see that, at
the beginning, most streams exhibit a slow dip and then ascent (e.g., see 2, 4 and
5 and, to a lesser extent, 3, 7 and 8). However, a number of them start fluctuating
more quickly and violently when the second hidden variable is added.

2.2.4 Performance and accuracy

In this section we discuss performance issues. First, we show that SPIRIT requires very
limited space and time. Next, we elaborate on the accuracy of SPIRIT’s incremental esti-

29

2000 3000 4000 5000 6000 7000 8000 9000 10000

1

2

3

4

5

6

7

tim
e

(s
ec

)

Time vs. stream size

stream size (time ticks)
100 200 300 400 500 600 700 800 900 1000

0.8

0.9

1

1.1

1.2

1.3

tim
e

(s
ec

)

Time vs. #streams

of streams (n)
2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

tim
e

(s
ec

)

eigenvectors (k)

Time vs. k

(a) stream size t (b) streams n (c) hidden variables k

Figure 2.10: Wall-clock times (including time to update forecasting models). The starting
values are: (a) 1000 time ticks, (b) 50 streams, and (c) 2 hidden variables (the other two
held constant for each graph). It is clear that SPIRIT scales linearly.

mates.

Time and space requirements

Figure 2.10 shows that SPIRIT scales linearly with respect to number of streams n and
number of hidden variables k. AR per stream and MUSCLES are essentially off the charts
from the very beginning. Furthermore, SPIRIT scales linearly with stream size (i.e., re-
quires constant processing time per tuple).

The plots were generated using a synthetic dataset that allows us to precisely control
each variable. The datasets were generated as follows:

• Pick the number k of trends and generate sine waves with different frequencies, say
yt,i = sin(2πi/kt), 1 ≤ i ≤ k. Thus, all trends are pairwise linearly independent.

• Generate each of the n streams as random linear combinations of these k trend sig-
nals.

This allows us to vary k, n and the length of the streams at will. For each experiment
shown, one of these parameters is varied and the other two are held fixed. The numbers
in Figure 2.10 are wall-clock times of our Matlab implementation. Both AR-per-stream
as well as MUSCLES (also in Matlab) are several orders of magnitude slower and thus
omitted from the charts.

It is worth mentioning that we have also implemented the SPIRIT algorithms in real

30

Dataset Chlorine Critter Motes
MSE rate - SPIRIT 0.0359 0.0827 0.0669
MSE rate - repeated PCA 0.0401 0.0822 0.0448

Table 2.2: Reconstruction accuracy (mean squared error rate).

systems [115, 73], which can obtain measurements from sensor devices and display hidden
variables and trends in real-time.

Accuracy

In terms of accuracy, everything boils down to the quality of the summary provided by
the hidden variables. To this end, we show the reconstruction x̃t of xt, from the hidden
variables yt in Figure 2.7. One line uses the true principal directions, the other the SPIRIT
estimates (i.e., weight vectors). SPIRIT comes very close to repeated PCA.

We should note that this is an unfair comparison for SPIRIT, since repeated PCA re-
quires (i) storing all stream values, and (ii) performing a very expensive SVD computation
for each time tick. However, the tracking is still very good. This is always the case, pro-
vided the corresponding eigenvalue is large enough and fairly well-separated from the oth-
ers. If the eigenvalue is small, then the corresponding hidden variable is of no importance
and we do not track it anyway.

Reconstruction error. Table 2.2 shows the reconstruction error (mean square error -
MSE),

∑
‖x̃t − xt‖2/

∑
‖xt‖2, achieved by SPIRIT. In every experiment, we set the

energy thresholds to [fE, FE] = [0.95, 0.98]. Also, as pointed out before, we set λ = 0.96
as a reasonable default value to deal with non-stationarities that may be present in the data,
according to recommendations in the literature [71]. Since we want a metric of overall
quality, the MSE rate weighs each observation equally and does not take into account the
forgetting factor λ.

Still, the MSE rate is very close to the bounds we set. In Table 2.2 we also show
the MSE rate achieved by repeated PCA. As pointed out before, this is already an unfair
comparison. In this case, we set the number of principal components k to the maximum
that SPIRIT uses at any point in time. This choice favors repeated PCA even further.
Despite this, the reconstruction errors of SPIRIT are close to the ideal, while using orders
of magnitude less time and space.

31

2.2.5 Summary

We focus on finding patterns, correlations and hidden variables, in multiple streams. SPIRIT
has the following desirable characteristics:

• It discovers underlying correlations among multiple streams, incrementally and in
real-time [115, 73] and provides a very compact representation of the stream collec-
tion, via a few hidden variables.

• It automatically estimates the number k of hidden variables to track, and it can auto-
matically adapt, if k changes (e.g., an air-conditioner switching on, in a temperature
sensor scenario).

• It scales up extremely well, both on database size (i.e., number of time ticks t), and
on the number n of streams. Therefore it is suitable for a large number of sensors /
data sources.

• Its computation demands are low: it only needs O(nk) floating point operations—no
matrix inversions nor SVD (both infeasible in streaming settings). Its space demands
are similarly small.

• It can naturally hook up with any forecasting method, and thus easily do prediction,
as well as handle missing values.

We showed that the output of SPIRIT has a natural interpretation. We evaluated our
method on several datasets, where indeed it discovered the hidden variables. Moreover,
SPIRIT-based forecasting was several times faster than other methods.

2.3 Distributed Stream Mining

How to perform stream mining in a distributed environment? After describing SPIRIT
in a centralized environment, we now extend it to a distributed environment. Multiple co-
evolving streams often arise in a large distributed system, such as computer networks and
sensor networks. Centralized approaches usually will not work in this setting. The reasons
are:

1. Communication constraint; it is too expensive to transfer all data to a central node
for processing and mining.

32

2. Power consumption; in a wireless sensor network, minimizing information ex-
change is crucial because many sensors have very limited power. Moreover, wireless
power consumption between two nodes usually increases quadratically with the dis-
tance, which implies that transmitting all messages to single node is prohibitively
expensive.

3. Robustness concerns; centralized approaches always suffer from single point of
failure.

4. Privacy concerns4; in any network connecting multiple autonomous systems (e.g.,
multiple companies forming a collaborative network), no system is willing to share
all the information, while they all want to know the global patterns.

To sum up, a distributed online algorithm is highly needed to address all the above
concerns.

To address this problem, we propose a hierarchical framework that intuitively works as
follows:1) Each autonomous system first finds its local patterns and shares them with other
groups (details in subsection 2.3.3). 2) Global patterns are discovered based on the shared
local patterns (details in subsection 2.3.4). 3) From the global patterns, each autonomous
system further refines/verifies their local patterns.

Contributions: The problem of pattern discovery in a large number of co-evolving
groups of streams has important applications in many different domains. We introduce
a hierarchical framework to discover local and global patterns effectively and efficiently
across multiple groups of streams. The proposed method satisfies the following require-
ments:

• It is streaming, i.e., it is incremental without any buffering of historical data.

• It scales linearly with the number of streams.

• It runs in a distributed fashion requiring small communication cost.

• It avoids a single point of failure, which all centralized approaches have.

• It utilizes the global patterns to improve and refine the local patterns, in a simple and
elegant way.

• It reduces the information that has to be shared across different groups, thereby
protecting privacy.

4Section 2.5 provides more discussion on this topic

33

The local and global patterns we discover have multiple uses. They provide a succinct
summary to the user. Potentially, users can compare their own local patterns with the
global ones to detect outliers. Finally, they facilitate interpolations and handling of missing
values as shown in Section 2.2.

2.3.1 Problem Formulation

Given m groups of streams which consist of {n1, . . . , nm} co-evolving numeric streams,
respectively, we want to solve the following two problems: (i) incrementally find patterns
within a single group (local pattern monitoring), and (ii) efficiently obtain global patterns
from all the local patterns (global pattern detection).

More specifically, we view original streams as points in a high-dimensional space,
with one point per time tick. Local patterns are then extracted as low-dimensional pro-
jections of the original points. Furthermore, we continuously track the basis of the low-
dimensional spaces for each group in a way that global patterns can be easily constructed.
More formally, the i-th group S(i) consists of a (unbounded) sequence of ni-dimensional
vectors(points) where ni is the number of streams in S(i), 1 ≤ i ≤ m. S(i) can also be
viewed as a matrix with ni rows and an unbounded number of columns. The intersection
s
(i)
t (l) at the l-th row and t-th column of S(i), represents the value of the l-th node/stream

recorded at time t in the i-th group. The t-th column of S(i), denoted as s
(i)
t , is the column

vector of all the values recorded at time t in i-th group. Note that we assume measure-
ments from different nodes within a group are synchronized along the time dimension. We
believe this constraint can be relaxed, but it would probably lead to a more complicated
solution. Local pattern monitoring can be modeled as a function,

FL : (s
(i)
t+1,gt)→ l

(i)
t+1, (2.1)

where the inputs are 1) the new input vector s
(i)
t+1 at time t + 1 and the current global

pattern gt and the output is the local pattern l
(i)
t+1 at time t + 1. Details on constructing

such a function will be explained in subsection 2.3.3. Likewise, global pattern detection
is modeled as another function,

FG : (l
(1)
t+1, . . . , l

(m)
t+1)→ gt+1, (2.2)

where the inputs are local patterns l
(i)
t+1 from all groups at time t + 1 and the output is the

new global pattern Gt+1.

34

Algorithm 2.3: DISTRIBUTEDMINING

(Initialization) At t = 0, set gt ← null1

forall t > 1 do2

// Update local patterns
for i← 1 to m do3

set l(i)t := FL(s
(i)
t ,gt−1)4

// Update global patterns

Set gt := FG(l
(1)
t , . . . , l

(m)
t)5

2.3.2 Distributed mining framework

In this section, we introduce the general framework for distributed mining. More specif-
ically, we present the meta-algorithm to show the overall flow, using FL (local patterns
monitoring) and FG (global patterns detection) as black boxes.

Intuitively, it is natural that global patterns are computed based on all local patterns
from m groups. On the other hand, it might be a surprise that the local patterns of group
i take as input both the stream measurements of group i and the global patterns. Stream
measurements are a natural set of inputs, since local patterns are their summary. However,
we also need global patterns as another input so that local patterns can be represented
consistently across all groups. This is important at the next stage, when constructing
global patterns out of the local patterns; we elaborate on this later. The meta-algorithm is
the following:

2.3.3 Local pattern monitoring

In this section we present the method for discovering patterns within a stream group. More
specifically, we explain the details of function FL (Equation 2.1). We first describe the
intuition behind the algorithm and then present the algorithm formally. Finally we discuss
how to determine the number of local patterns ki.

The goal of FL is to find the low dimensional projection l
(i)
t and the participation weight

matrix W(i,t) ∈ Rni×ki so as to guarantee that the reconstruction error ‖s(i)
t − Ŝ

(i)
t ‖2

over time is predictably small. Note that the reconstruction of s
(i)
t is defined as Ŝ

(i)
t :=

W(i,t)Tl
(i)
t . Weight matrix W(i,t) provides the transformation between original space and

projected low-dimensional space for the i-th stream group at time t.

35

Algorithm 2.4: FL(new vector s
(i)
t+1 ∈ Rni , old global patterns gt)

Output: local patterns (ki-dimensional projection) l
(i)
t+1

Initialize x := s
(i)
t+11

for 1 ≤ j ≤ k do2

yj := w
(i,t)
j

Tx /* yj = projection onto w
(i,t)
j */3

dj ← λdj + y2
j /* local energy, determining update4

magnitude */

e := xj − gt(j)w
(i,t)
j /* error, e ⊥ w

(i,t)
j */5

w
(i,t+1)
j ← w

(i,t)
j + 1

dj
gt(j)e /* update participation weight */6

x := x− gt(j)w
(i,t+1)
j /* repeat with remainder of x */7

Compute the new projection l
(i)
t+1 := W(i,t+1)Ts

(i)
t+18

Tracking local patterns: The first step is, for a given ki, to incrementally update the
ni × ki participation weight matrix W(i,t), which serves as a basis of the low-dimensional
projection for s

(i)
t . In particular, the j-th column of W(i,t) is denoted as w

(i,t)
j . W(i,t) is

orthonormal, i.e., w(i,t)
j ⊥ w

(i,t)
k , j 6= k and ‖w(i,t)

j ‖ = 1. Later in this section, we describe
the method for choosing ki. For the moment, assume that the number of patterns ki is
given.

The main idea behind the algorithm is to read the new values s
(i)
t+1 from the ni streams

of group i at time t + 1, and perform three steps. These are very similar to SPIRIT in
Section 2.2, except that the energy calculation is coordinated across all groups for the ease
of global pattern computation.

1. Compute the low dimensional projection yj, 1 ≤ j ≤ ki, based on the current
weights W(i,t), by projecting s

(i)
t+1 onto these.

2. Estimate the reconstruction error (ej below) and the energy.

3. Compute W(i,t+1) and output the actual local pattern l
(i)
t+1.

Similar to SPIRIT in Section 2.2, we use λ to capture the concept drifting.

Detecting the number of local patterns: For each group, we have a low-energy and a
high-energy threshold, fi,E and Fi,E , respectively. We keep enough local patterns ki, so

36

Algorithm 2.5: FG(all local patterns l
(1)
t , . . . , l

(m)
t)

Output: global patterns gt

Set k := max(ki) for 1 ≤ i ≤ m1

Zero-padding all l(i)t to be of length k2

Set gt :=
∑m

i=1 l
(i)
t3

the retained energy is within the range [fi,E · Ei,t, Fi,E · Ei,t]. This is the same criteria as
in SPIRIT (Section 2.2) but applied to each stream group.

2.3.4 Global pattern detection

In this section we present the method for obtaining global patterns over all groups. More
specifically, we explain the details of function FG (Equation 2.2).

First of all, what is a global pattern? Similar to local pattern, global pattern is low
dimensional projections of the streams from all groups. Loosely speaking, assume only
one global group exists which consists of all streams, the global patterns are the local
patterns obtained by applying FL on the global group—this is essentially the centralized
approach. In other words, we want to obtain the result of the centralized approach without
centralized computation.

The algorithm exactly follows the lemma above. The j-th global pattern is the sum of
all the j-th local patterns from m groups.

2.3.5 Experiments and case studies

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

re
sc

a
le

d
 L

ig
h
t

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

time

re
sc

a
le

d
 T

e
m

p
e
ra

tu
re

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

time

re
sc

a
le

d
 H

u
m

id
ity

0 500 1000 1500 2000
0

1

2

3

4

5

time

re
sc

a
le

d
 V

o
lta

g
e

(a) Light measurements (b) Temperature (c) Humidity (c) Voltage

Figure 2.11: original measurements (blue) and reconstruction (red) are very close.

37

The Motes dataset consists of 4 groups of sensor measurements (i.e., light intensity,
humidity, temperature, battery voltages) collected using 48 Berkeley Mote sensors at dif-
ferent locations in a lab, over a period of a month. Note that Section 2.2.3 uses the light
measurements in part of the experiment, and here is a more complete data all four types
of sensor measurements. This is an example of heterogeneous streams. All the streams
are scaled to have unit variance, to be comparable across different measures. In particular,
streams from different groups behave very differently. This can be considered as a bad
scenario for our method. The goal is to show that the method can still work well even
when the groups are not related. If we do know the groups are unrelated up front, we can
treat them separately without bothering to find global patterns. However, in practice, such
prior knowledge is not available. Our method is still a sound approach in this case.

The main characteristics (see the blue curves in Figure 2.11) are: (1) Light measure-
ments exhibit a clear global periodic pattern (daily cycle) with occasional big spikes from
some sensors (outliers), (2) Temperature shows a weak daily cycle and a lot of bursts.
(3) Humidity does not have any regular pattern. (4) Voltage is almost flat with a small
downward trend.

The reconstruction is very good (see the red curves in Figure 2.11(a)), with relative
error below 6%. Furthermore, the local patterns from different groups are correlated well
with the original measurements (see Figure 2.12). The global patterns (in Figure 2.13) are
combinations of different patterns from all groups and reveal the overall behavior of all
the groups.

0 500 1000 1500 2000
0

5

10

15

20

time

L
ig

h
t
p
a
tt
e
rn

0 500 1000 1500 2000
0

1

2

3

4

5

6

7

time

T
e
m

p
e
ra

tu
re

 p
a
tt
e
rn

0 500 1000 1500 2000
0

5

10

15

20

25

time

H
u
m

id
it
y
 p

a
tt
e
rn

0 500 1000 1500 2000
0

10

20

30

40

time

V
o
lt
a
g
e
 p

a
tt
e
rn

(a) Light patterns (b) Temperature patterns (c) Humidity patterns (d) Voltage patterns

Figure 2.12: Local patterns

In terms of accuracy, everything boils down to the quality of the summary provided by
the local/global patterns. To this end, we use the relative reconstruction error (‖s−̂s‖2/‖s‖2
where s are the original streams and ŝ are the reconstructions) as the evaluation metric.
The best performance is obtained when accurate global patterns are known to all groups.
But this requires exchanging up-to-date local/global patterns at every timestamp among
all groups, which is prohibitively expensive. One efficient way to deal with this problem

38

0 500 1000 1500 2000
0

20

40

60

80

time

glo
ba

l p
att

er
n

Figure 2.13: Global patterns 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

period

rel
ati

ve
 er

ror

Light
Temp
Humid
Volt

Figure 2.14: Error increases slowly
is to increase the communication period, which is the number of timestamps between suc-
cessive local/global pattern transmissions. For example, we can achieve a 10-fold commu-
nication reduction by changing the period from 10 to 100 timestamps. Figure 2.14 shows
reconstruction error vs. communication period. Overall, the relative error rate increases
very slowly as the communication period increases. This implies that we can dramatically
reduce communication with minimal sacrifice of accuracy.

2.3.6 Summary

We focus on finding patterns in a large number of distributed streams. More specifically,
we first find local patterns within each group, where the number of local patterns is auto-
matically determined based on reconstruction error. Next, global patterns are identified,
based on the local patterns from all groups. Distributed SPIRIT has the following desirable
characteristics:

• It discovers underlying correlations among multiple stream groups incrementally,
via a few patterns.

• It automatically estimates the number ki of local patterns to track, and it can auto-
matically adapt, if ki changes.

• It is distributed, avoiding a single point of failure and reducing communication cost
and power consumption.

• It utilizes the global patterns to improve and refine the local patterns, in a simple and
elegant way.

• It requires limited shared information from different groups, while being able to
successfully monitor global patterns.

• It scales up extremely well, due to its incremental and hierarchical nature.

39

• Its computation demands are low. Its space demands are also limited: no buffering
of any historical data.

We evaluated our method on several datasets, where it indeed discovered the patterns. We
gain significant communication savings, with small accuracy loss.

2.4 Local Correlation Tracking of a pair of streams

How to define and compute correlations for streams The notion of correlation (or, simi-
larity) is important, since it allows us to discover groups of objects with similar behavior
and, consequently, discover potential anomalies which may be revealed by a change in
correlation. In this section we consider correlation among time series which often exhibit
two important properties.

First, their characteristics may change over time. In this case, a single, static correlation
score for the entire time series is less useful. Instead, it is desirable to have a notion of
correlation that also evolves with time and tracks the changing relationships. On the other
hand, a time-evolving correlation score should not be overly sensitive to transients; if the
score changes wildly, then its usefulness is limited.

The second property is that many time series exhibit strong but fairly complex, non-
linear correlations. Traditional measures, such as the widely used cross-correlation coeffi-
cient (or, Pearson coefficient), are less effective in capturing these complex relationships.
Consequently, we seek a concise but powerful model that can capture various trend or
pattern types.

Data with such features arise in several application domains, such as:

• Monitoring of network traffic flows or of system performance metrics (e.g., CPU and
memory utilization, I/O throughput, etc), where changing workload characteristics
may introduce non-stationarity [73].

• Financial applications, where prices may exhibit linear or seasonal trends, as well as
time-varying volatility [18].

• Medical applications, such as EEGs (electroencephalograms) [25].

In this section, we introduce LoCo (LOcal COrrelation), a time-evolving, local sim-
ilarity score for time series, by generalizing the notion of cross-correlation coefficient.
The model upon which our score is based can capture fairly complex relationships and

40

track their evolution. The linear cross-correlation coefficient is included as a special case.
Our approach is also amenable to robust streaming estimation. We illustrate our proposed
method or real data, discussing its qualitative interpretation, comparing it against natural
alternatives and demonstrating its robustness and efficiency.

2.4.1 Localizing correlation estimates

Our goal is to derive a time-evolving correlation scores that tracks the similarity of time-
evolving time series. Thus, our method should have the following properties:

(P1) Adapt to the time-varying nature of the data,

(P2) Employ a simple, yet powerful and expressive joint model to capture correlations,

(P3) The derived score should be robust, reflecting the evolving correlations accurately,
and

(P4) It should be possible to estimate it efficiently.

We will address most of these issues in Section 2.4.2, which describes our proposed
method. In this section, we introduce some basic definitions to facilitate our discussion.
We also introduce localized versions of popular similarity measures for time series.

As a first step to deal with (P1), any correlation score at time instant t ∈ N should be
based on observations in the “neighborhood” of that instant. Therefore, we introduce the
notation xt,w ∈ Rw for the subsequence of the series, starting at t and having length w,

xt,w := [xt, xt+1, . . . , xt+w−1]
T.

Furthermore, any correlation score should satisfy two elementary and intuitive properties.

Definition 2.2 (Local correlation score). Given a pair of time series X and Y , a local cor-
relation score is a sequence ct(X, Y) of real numbers that satisfy the following properties,
for all t ∈ N:

0 ≤ ct(X, Y) ≤ 1 and ct(X, Y) = ct(Y,X).

We denote a time series process as an indexed collection X of random variables Xt, t ∈
N, i.e., X = {X1, X2, . . . , Xt, . . .} ≡ {Xt}t∈N. Without loss of generality, we will assume
zero-mean time series, i.e., E[Xt] = 0 for all t ∈ N. The values of a particular realization
of X are denoted by lower-case letters, xt ∈ R, at time t ∈ N.

41

Symbol Description
U,V Matrix (uppercase bold).
u,v Column vector (lowercase bold).
xt Time series, t ∈ N.
w Window size.
xt,w Window starting at t, xt,w ∈ Rw.
m Number of windows (typically, m = w).
β Exponential decay weight, 0 ≤ β ≤ 1.
Γ̂t Local autocorrelation matrix estimate (w-by-w).
ui(A), Eigenvectors and corresponding
λi(A) eigenvalues of A.
Uk(A) Matrix of k largest eigenvectors of A.
`t LoCo score.
φt Fourier local correlation score.
ρt Pearson local correlation score.

Table 2.3: Main symbols used in Section 2.4

Local Pearson

Before proceeding to describe our approach, we formally define natural extensions of two
methods that have been widely used for global correlation or similarity among “static”
time series.

Pearson coefficient A natural local adaptation of cross-correlation is the following:

Definition 2.3 (Local Pearson correlation). The local Pearson correlation is the linear
cross-correlation coefficient

ρt(X, Y) :=

∣∣Cov[xt,w,yt,w]
∣∣

Var[xt,w] Var[yt,w]
=

|xT
t,wyt,w|

‖xt,w‖·‖yt,w‖
,

where the last equality follows from E[Xt] = E[Yt] = 0.

It follows directly from the definition that ρt satisfies the two requirements, 0 ≤
ρt(X, Y) ≤ 1 and ρt(X, Y) = ρt(Y,X).

42

2.4.2 Correlation tracking through local auto-covariance

In this section we develop our proposed approach, the Local Correlation (LoCo) score.
Returning to properties (P1)–(P4) listed in the beginning of Section 2.4.1, the next sec-
tion addresses primarily (P1) and Section 2.4.2 continues to address (P2) and (P3). Next,
Section 2.4.2 shows how (P4) can also be satisfied and, finally, Section 2.4.3 discusses the
time and space complexity of the various alternatives.

Local auto-covariance

The first step towards tracking local correlations at time t ∈ N is restricting, in some way,
the comparison to the “neighborhood” of t, which is the reason for introducing the notion
of a window xt,w.

If we stop there, we can compare the two windows xt,w and yt,w directly. If, in addi-
tion, the comparison involves capturing any linear relationships between localized values
of X and Y , this leads to the local Pearson correlation score ρt. However, this joint model
of the series it is too simple, leading to two problems: (i) it cannot capture more com-
plex relationships, and (ii) it is too sensitive to transient changes, often leading to widely
fluctuating scores.

Intuitively, we will estimate the full auto-covariance matrix of values “near” t, and
avoid making any assumptions about stationarity5. Any estimate of the local auto-covariance
at time t needs to be based on a “localized” sample set of windows with length w. We will
consider two possibilities:

• Sliding (a.k.a. boxcar) window (see Figure 2.15[a]): We use exactly m windows
around t, specifically xτ,w for t−m + 1 ≤ τ ≤ t, and we weigh them equally. This
takes into account w + m− 1 values in total, around time t.

• Exponential window (see Figure 2.15[b]): We use all windows xτ,w for 1 ≤ τ ≤ t,
but we weigh those close to t more, by multiplying each window by a factor of βt−τ .

These two alternatives are illustrated in Figure 2.15, where the shading corresponds to the
weight. We will explain how to “compare” the local auto-covariance matrices of two series
in Section 2.4.2. Next, we formally define these estimators.

5If γt,′t ≡ γ|t−t′|, then the auto-covariance matrix is circulant, i.e., it has constant diagonals and (up to)
w distinct values.

43

t t+w−1t t+w−1t−m+1

(a) Sliding window (b) Exponential window

Figure 2.15: Local auto-covariance; shading corresponds to weight.

Definition 2.4 (Local autocovariance, sliding window). Given a time series X , the local
auto-covariance matrix estimator Γ̂t using a sliding window is defined at time t ∈ N as

Γ̂t(X, w, m) :=
t∑

τ=t−m+1

xτ,w ◦ xτ,w.

The sample set of m windows is “centered” around time t. We typically fix the number of
windows to m = w, so that Γ̂t(X, w, m) =

∑t
τ=t−w+1 xτ,w ◦ xτ,w. A normalization factor

of 1/m is ignored, since it is irrelevant for the eigenvectors of Γ̂t.

Definition 2.5 (Local autocovariance, exponential window). Given a time series X , the
local auto-covariance matrix estimator Γ̂t at time t ∈ N using an exponential window is

Γ̂t(X, w, β) :=
t∑

τ=1

βt−τxτ,w ◦ xτ,w.

Similar to the previous definition, we ignore the normalization factor (1− β)/(1− βt+1).
In both cases, we may omit some or all of the arguments X , w, m, β, when they are clear
from the context.

Under certain assumptions, the equivalent window corresponding to an exponential
decay factor β is given by m = (1− β)−1 [133]. However, one of the main benefits of the
exponential window is based on the following simple observation.

Property 2.1. The sliding window local auto-covariance follows the equation

Γ̂t = Γ̂t−1 − xt−w,w ◦ xt−w,w + xt,w ◦ xt,w,

whereas for the exponential window it follows the equation

Γ̂t = βΓ̂t−1 + xt,w ◦ xt,w.

44

Updating the sliding window requires buffering multiple windows, while updating the
exponential window only needs the current window, therefore, more desirable.

The next simple lemma will be useful later, to show that ρt is included as a special
case of the LoCo score. Intuitively, if we use an instantaneous estimate of the local auto-
covariance Γ̂t, which is based on just the latest sample window xt,w, its eigenvector is the
window itself.

Lemma 2.3. If m = 1 or, equivalently, β = 0, then

u1(Γ̂t) =
xt,w

‖xt,w‖
and λ1(Γ̂t) = ‖xt,w‖2.

Proof. In this case, Γ̂t = xt,w ◦ xt,w with rank 1. Its row and column space are spanxt,w,
whose orthonormal basis is, trivially, xt,w/‖xt,w‖ ≡ u1(Γ̂t). The fact that λ1(Γ̂t) =
‖xt,w‖2 then follows by straightforward computation, since u1 ◦u1 = xt,w ◦xt,w/‖xt,w‖2,
thus (xt,w ◦ xt,w)u1 = ‖xt,w‖2u1.

Pattern similarity

Given the estimates Γ̂t(X) and Γ̂t(Y) for the two series, the next step is how to “compare”
them and extract a correlation score. Intuitively, we want to extract the “key informa-
tion” contained in the auto-covariance matrices and measure how close they are. This is
precisely where the spectral decomposition helps. The eigenvectors capture the key ape-
riodic and oscillatory trends, even in short, non-stationary series [63, 65]. These trends
explain the largest fraction of the variance. Thus, we will use the subspaces spanned by
the first few (k) eigenvectors of each local auto-covariance matrix to locally characterize
the behavior of each series. The following definition formalizes this notion.

Definition 2.6 (LoCo score). Given two series X and Y , their LoCo score is defined by

`t(X, Y) := 1
2

(
‖UT

XuY ‖+ ‖UT
Y uX‖

)
,

where UX ≡ Uk(Γ̂t(X)) and UY ≡ Uk(Γ̂t(Y)) are the eigenvector matrices of the local
auto-covariance matrices of X and Y , respectively, and uX ≡ u1(Γ̂t(X)) and uY ≡
u1(Γ̂t(Y)) are the corresponding eigenvectors with the largest eigenvalue.

In the above equation, UT
XuY is the projection of uY onto the subspace spanned

by the columns of the orthonormal matrix UX . The absolute cosine of the angle θ ≡

45

X
T u Yθcos =

U X
T u Yprojection:

u Y

θ
UXspan

U

Figure 2.16: Illustration of LoCo definition.

∠(uY , spanUX) = ∠(uY ,UT
XuY) is | cos θ| = ‖UT

XuY ‖/‖uY ‖ = ‖UT
XuY ‖, since

‖uY ‖ = 1 (see Figure 2.16). Thus, `t is the average of the cosines | cos ∠(uY , spanUX)|
and | cos ∠(uX , spanUY)|. From this definition, it follows that 0 ≤ `t(X, Y) ≤ 1 and
`t(X, Y) = `t(Y,X). Furthermore, `t(X, Y) = `t(−X, Y) = `t(Y,−X) = `t(−X,−Y)—
as is also the case with the other two scores, ρt(X, Y) and φt(X, Y).

Intuitively, if the two series X , Y are locally similar, then the principal eigenvector
of each series should lie within the subspace spanned by the principal eigenvectors of the
other series. Hence, the angles will be close to zero and the cosines will be close to one.

The next simple lemma reveals the relationship between ρt and `t.

Lemma 2.4. If window size m = 1 (whence, k = 1 necessarily), then LoCo score `t

equals Pearson local correlation score ρt.

Proof. From Lemma 2.3 it follows that UX = uX = xt,w/‖xt,w‖ and UY = uY =

yt,w/‖yt,w‖. From the definitions of `t and ρt, we have `t = 1
2

(
|xT

t,wyt,w|
‖xt,w‖·‖yt,w‖+

|yT
t,wxt,w|

‖yt,w‖·‖xt,w‖

)
=

|xT
t,wyt,w|

‖xt,w‖·‖yt,w‖ = ρt.

Choosing k As we shall also see in Section 2.4.4, the directions of xt,w and yt,w may
vary significantly, even at neighboring time instants. As a consequence, the Pearson score
ρt (which is essentially based on the instantaneous estimate of the local auto-covariance) is
overly sensitive. However, if we consider the low-dimensional subspace which is (mostly)
occupied by the windows during a short period of time (as LoCo does), this is much
more stable and less susceptible to transients, while still able to track changes in local
correlation.

One approach is to set k based on the fraction of variance to retain (similar to criteria
used in PCA [80], as well as in spectral estimation [113]). A simpler practical choice is to
fix k to a small value; we use k = 4 throughout all experiments.

46

Choosing w Windows are commonly used in stream and signal processing applications.
The size w of each window xt,w (and, consequently, the size w×w of the auto-covariance
matrix Γ̂t) essentially corresponds to the time scale we are interested in.

As we shall also see in Section 2.4.4, the LoCo score `t derived from the local auto-
covariances changes gradually and smoothly with respect to w. Thus, if we set the window
size to any of, say, 55, 60 or 65 seconds, we will qualitatively get the same results, cor-
responding approximately to patterns in the minute scale. Of course, at widely different
time scales, the correlation scores will be different. If desirable, it is possible to track the
correlation score at multiple scales, e.g., hour, day, month and year. If buffer space and
processing time are a concern, either a simple decimated moving average filtering scheme
or a more elaborate hierarchical SVD scheme (such as in [110]) can be employed.

Online estimation

In this section we show how φt can be incrementally updated in a streaming setting. We
also briefly discuss how to update ρt and φt.

LoCo score The eigenvector estimates of the exponential window local auto-covariance
matrix can be updated incrementally using SPIRIT algorithm described in Section 2.2. Re-
call SPIRIT incrementally monitors the top left singular vectors which are the eigenvectors
for symmetric positive definite matrices such as auto-covariance matrix.

Local Pearson score Updating the Pearson score ρt requires an update of the inner prod-
uct and norms. For the former, this can be done using the simple relationship xT

t,wyt,w =
xT

t−1,wyt−1,w−xt−1yt−1 +xt+w−1yt+w−1. Similar simple relationships hold for ‖xt,w‖ and
‖yt,w‖.

2.4.3 Complexity

The time and space complexity of each method is summarized in Table 2.4. Updating
ρt which requires O(1) time (adding xt+w−1yt+w−1 and subtracting xt−1yt−1) and also
buffering w values.

Estimating the LoCo score `t using a sliding window requires O(wmk) = O(w2k)
time (since we set m = w) to compute the largest k eigenvectors of the covariance matrix
for m windows of size w. We also need O(wk) space for these k eigenvectors and O(w +

47

m) space for the series values, for a total of O(wk + m) = O(wk). Using an exponential
window still requires storing the w × k matrix V, so the space is again O(wk). However,
the eigenspace estimate V can be updated in O(wk) time, instead of O(w2k) for sliding
window.

Time Space
Method (per point) (total)
Pearson O(1) O(w)

LoCo sliding O(wmk) O(wk + m)
LoCo exponential O(wk) O(wk)

Table 2.4: Time and space complexity.

2.4.4 Experiments

50 100 150 200 250 300 350

−2

0

2

CPU / Memory

0 50 100 150 200 250 300 350
0

0.5

1
Loco (Sliding)

0 50 100 150 200 250 300 350
0

0.5

1
LoCo (Exponential)

0 50 100 150 200 250 300 350
0

0.5

1
Pearson

Time

50 100 150 200 250 300 350
−2

−1

0

1

CPU / Memory

0 50 100 150 200 250 300 350
0

0.5

1
Loco (Sliding)

0 50 100 150 200 250 300 350
0

0.5

1
LoCo (Exponential)

0 50 100 150 200 250 300 350
0

0.5

1
Pearson

Time

(a) MemCPU1 (b) MemCPU2

Figure 2.17: Local correlation scores, machine cluster.

This section presents our experimental evaluation, with the following main goals:

48

1. Illustration of LoCo on real time series.

2. Comparison to alternatives.

3. Demonstration of LoCo’s robustness.

4. Comparison of exponential and sliding windows for LoCo score estimation.

5. Evaluation of LoCo’s efficiency in a streaming setting.

Datasets The first two datasets, MemCPU1 and MemCPU2 were collected from a set of
Linux machines. They measure total free memory and idle CPU percentages, at 16 second
intervals. Each pair comes from different machines, running different applications, but
the series within each pair are from the same machine. The last dataset, ExRates, was
obtained from the UCR TSDMA [82]. and consists of daily foreign currency exchange
rates, measured on working days (5 measurements per week) for a total period of about
10 years. Although the order is irrelevant for the scores since they are symmetric, the first
series is always in blue and the second in red. For LoCo with sliding window we use
exact, batch SVD on the sample set of windows—we do not explicitly construct Γ̂t. For
exponential window LoCo, we use the incremental eigenspace tracking procedure. The
raw scores are shown, without any smoothing, scaling or post-processing of any kind.

1. Qualitative interpretation We should first point out that, although each score has
one value per time instant t ∈ N, these values should be interpreted as the similarity of a
“neighborhood” or window around t (Figure 2.17 and 2.18). All scores are plotted so that
each neighborhood is centered around t. The window size for MemCPU1 and MemCPU2 is
w = 11 (about 3 minutes) and for ExRates it is w = 20 (4 weeks). Next, we discuss the
LoCo scores for each dataset.

Machine data Figure 2.17[a] shows the first set of machine measurements, MemCPU1.
At time t ≈ 20–50 one series fluctuates (oscillatory patterns for CPU), while the other re-
mains constant after a sharp linear drop (aperiodic patterns for memory). This discrepancy
is captured by `t, which gradually returns to one as both series approach constant-valued
intervals. The situation at t ≈ 185–195 is similar. At t ≈ 100–110, both resources exhibit
large changes (aperiodic trends) that are not perfectly synchronized. This is reflected by
`t, which exhibits three dips, corresponding to the first drop in CPU, followed by a jump
in memory and then a jump in CPU. Toward the end of the series, both resources are fairly

49

500 1000 1500 2000 2500
−2

0

2

Franc / Peseta

0 500 1000 1500 2000 2500
0

0.5

1
LoCo (Sliding)

0 500 1000 1500 2000 2500
0

0.5

1
LoCo (Exponential)

0 500 1000 1500 2000 2500
0

0.5

1
Pearson

Time

EMU Stage 1

Delors report req.
Delors report publ.

Peseta joins ERM

Maastricht treaty Peseta devalued, Franc under siege
"Single Market" begins
Peseta devalued

EMU Stage 2
Bundesbank buys Francs

M
a

y
 9

3

A
p

r
8

9

J
u

n
 8

9J
u

n
 8

8

J
u

l
9

0

F
e

b
 9

2

O
c
t

9
2 J
a

n
 9

3 J
u

l
9

3

J
a

n
 9

4

Figure 2.18: Local correlation scores, ExRates.

constant (but, at times, CPU utilization fluctuates slightly, which affects ρt and φt). In
summary, `t behaves well across a wide range of joint patterns.

The second set of machine measurements, MemCPU2, is shown in Figure 2.17[b]. Un-
like MemCPU1, memory and CPU utilization follow each other, exhibiting a very similar
periodic pattern, with a period of about 30 values or 8 minutes. This is reflected by the
LoCo score, which is mostly one. However, about in the middle of each period, CPU
utilization drops for about 45 seconds, without a corresponding change in memory. At
precisely those instants, the LoCo score also drops (in proportion to the discrepancy),
clearly indicating the break of the otherwise strong correlation.

Exchange rate data Figure 2.18 shows the exchange rate (ExRates) data. The blue
line is the French Franc and the red line is the Spanish Peseta. The plot is annotated with

50

an approximate timeline of major events in the European Monetary Union (EMU). Even
though one should always be very careful in suggesting any causality, it is still remarkable
that most major EMU events are closely accompanied by a break in the correlation as mea-
sured by LoCo, and vice versa. Even in the cases when an accompanying break is absent, it
often turns out that at those events both currencies received similar pressures (thus leading
to similar trends, such as, e.g., in the October 1992 events). It is also interesting to point
out that events related to anticipated regulatory changes are typically preceded by correla-
tion breaks. After regulations are in effect, `t returns to one. Furthermore, after the second
stage of the EMU, both currencies proceed in lockstep, with negligible discrepancies.

In summary, the LoCo score successfully and accurately tracks evolving local correla-
tions, even when the series are widely different in nature.

2. LoCo versus Pearson Figure 2.17 and 2.18 also show the local Pearson score (fourth
row), along with the LoCo score. It is clear that it either fails to capture changes in the
joint patterns among the two series, or exhibit high sensitivity to small transients. We
also tried using a window size of 2w − 1 instead of w for ρt (so as to include the same
number of points as `t in the “comparison” of the two series). The results thus obtained
where slightly different but similar, especially in terms of sensitivity and lack of accurate
tracking of the evolving relationships among the series.

3. Robustness This brings us to the next point in our discussion, the robustness of
LoCo. We measure the “stability” of any score ct, t ∈ N by its smoothness. We employ a
common measure of smoothness, the (discrete) total variation V of ct, defined as V (ct) :=∑

τ |cτ+1 − cτ |, which is the total “vertical length” of the score curve. Table 2.5 (top)
shows the total variation. If we scale the total variations with respect to the range (i.e.,
use V (ct)/R(ct) instead of just V (ct)—which reflects how many times the vertical length
“wraps around” its full vertical range), then Pearson’s variation is consistently about 3
times larger, over all data sets.

Dataset
Method MemCPU1 MemCPU2 ExRates

Pearson 23.75 35.38 39.56
LoCo 5.71 10.53 6.37

Table 2.5: Relative stability (total variation)

51

10

15

20

50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

Window

Time

CPU / Memory

1−
C

or
r

10

15

20

50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

Window

Time

CPU / Memory

1−
C

or
r

(a) LoCo (b) Pearson

Figure 2.19: Score vs. window size; LoCo is robust with respect to both time and scale,
accurately tracking correlations at any scale, while Pearson performs poorly at all scales.

Window size Figure 2.19(a) shows the LoCo scores of MemCPU2 (see Figure 2.17(b)) for
various windows w, in the range of 8–20 values (2–5 minutes). We chose the dataset with
the highest total score variation and, for visual clarity, Figure 2.19 shows 1− `t instead of
`t. As expected, `t varies smoothly with respect to w. Furthermore, it is worth pointing
out that at about a 35-value (10-minute) resolution (or coarser), both series the exhibit
clearly the same behavior (a periodic increase then decrease, with a period of about 10
minutes—see Figure 2.17(b)), hence they are perfectly correlated and their LoCo score
is almost constantly one (but not their Pearson score, which gets closer to one while still
fluctuating noticeably). Only at much coarser resolutions (e.g., an hour or more) do both
scores become one. This convergence to one is not generally the case and some time series
may exhibit interesting relationships at all time scales. However, the LoCo score is robust
and changes gracefully also with respect to resolution/scale, while accurately capturing
any interesting relationship changes that may be present at any scale.

Dataset MemCPU1 MemCPU2 ExRates

Avg. var. 0.051 0.071 0.013
Rel. var. 5.6% 7.8% 1.6%

Table 2.6: Sliding vs. exponential score.

4. Exponential vs. sliding window Figure 2.17 and 2.18 show the LoCo scores based
upon both sliding (second row) and exponential (third row) windows, computed using

52

appropriately chosen equivalent window sizes. Upon inspection, it is clear that both LoCo
score estimates are remarkably close. In order to further quantify this similarity, we show
the average variation V̂ of the two scores, which is defined as V̂ (`t, `

′
t) := 1

t

∑t
τ=1 |`τ−`′τ |,

where `t uses exact, batch SVD on sliding windows and `′t uses eigenspace tracking on
exponential windows. Table 2.6 shows the average score variations for each dataset, which
are remarkably small, even when compared to the mean score ˆ̀ := 1

t

∑t
τ=1 `τ (the bottom

line in the table is V̂/ ˆ̀).

2.4.5 Summary

Time series correlation or similarity scores are useful in several applications. Beyond
global scores, in the context of data streams it is desirable to track a time-evolving cor-
relation score that captures their changing similarity. We propose such a measure, the
Local Correlation (LoCo) score. It is based on a joint model of the series which, natu-
rally, does not make any assumptions about stationarity. The model may be viewed as
a generalization of simple linear cross-correlation (which it includes as a special case).
The score is robust to transients, while accurately tracking the time-varying relationships
among the series. Furthermore, it lends itself to efficient estimation in a streaming setting.
We demonstrate its qualitative interpretation on real datasets, as well as its robustness and
efficiency.

2.5 Privacy Preservation on streams

How to preserve privacy in data streams? There has been an increasing concern re-
garding privacy breaches, especially those involving sensitive personal data of individuals
[58]. Meanwhile, unprecedented massive data from various sources are providing us with
great opportunity for data mining and information integration. Unfortunately, the privacy
requirement and data mining applications pose exactly opposite expectations from data
publishing [58]. The utility of the published data w.r.t the mining application decreases
with increasing levels of privacy guarantees [84].

Guaranteeing data privacy is especially challenging in the case of stream data, mainly
for two reasons:

1. Performance requirement: The continuous arrival of new tuples prohibits storage
of the entire stream for analysis, rendering the current offline algorithms inapplica-
ble.

53

2. Time evolution: Data streams are usually evolving, and correlations and autocor-
relations can change over time. These characteristics make most offline algorithms
for static data inappropriate, as we show later.

Our goal is to insert random perturbation that “mirrors” the original streams’ statistical
properties, in an online fashion. Thus, a number of important mining operations can still
be performed, by controlling perturbation magnitude. However, the original data streams
cannot be reconstructed with high confidence.

Our contributions are: 1) we define the notion of utility and privacy for perturbed
data streams, 2) we explore the effect of evolving correlations and autocorrelation in data
streams, and their implications in designing additive random perturbation techniques, 3)
we design efficient online algorithms under the additive random perturbation framework,
which maximally preserve the privacy of data streams given a fixed utility while, addi-
tionally, better preserving the statistical properties of the data, and 4) we provide both
theoretical arguments and experimental evaluation to validate our ideas.

2.5.1 Problem Formulation

To ensure privacy of streaming data, the values of incoming tuples are modified by adding
noise. We denote the original data as A ∈ RN×T , the random noise as E ∈ RN×T where
each entry ei

t is the noise added to the i-th stream at time t. Therefore, the perturbed
streams are A∗ = A + E. Without loss of generality, we assume the noise has zero mean.

Discrepancy:. To facilitate the discussion on utility and privacy, we define the concept
of discrepancy D between two versions of the data, A and B, as the normalized squared
Frobenius norm6,

D(A,B) :=
1

T
‖A−B‖2F , where A,B ∈ RN×T .

Utility:. Considering the perturbed versus the original data, the larger the amplitude of the
perturbation (i.e., the variance of the added noise), the less useful the data become. There-
fore, we define the utility to be the inverse of this discrepancy. However, throughout the
section, we typically use discrepancy, since the two concepts are essentially interchange-
able.

6The squared Frobenius norm is defined as ‖A‖2F :=
∑

i,j(a
j
i)

2

54

Privacy:. Distorting the original values is only one of the challenges. We also have to
make sure that this distortion cannot be filtered out. Thus, to measure the privacy, we have
to consider the power of an adversary in reconstructing the original data. Specifically,
suppose that Ã are the reconstructed data streams obtained by the adversary, in a way that
will be formalized shortly. Then the privacy is the discrepancy between the original and
the reconstructed streams, i.e., D(A, Ã).

We formulate two problems: data reconstruction and data perturbation. The adversary
wants to recover the original streams from the perturbed data. Conversely, data owners
want to prevent the reconstruction from happening.

Problem 2.1 (Reconstruction). Given the perturbed streams A∗, how to compute the re-
construction streams Ã such that D(A, Ã) is minimized?

We focus on linear reconstruction methods which have been used by many existing
works [81, 74, 96, 31]. Intuitively, the adversary can only use linear transformations on
the perturbed data, such as projections and rotations, in the reconstruction step.

Definition 2.7 (Linear reconstruction). Given the perturbed streams A∗, the linear recon-
struction is Ã = RA∗, such that D(A, Ã) is minimized.

If both the perturbed streams A∗ and the original streams A are available, the solution
Ã can be easily identified using linear regression. However, A is not available. Therefore,
in order to estimate Ã, some additional constraints or assumptions must be imposed to
make the problem solvable. A widely adopted assumption [80] is that the data lie in a
static low dimensional subspace (i.e, global correlation exists). This is reasonable, since
if no correlations are present, then i.i.d. perturbations are already sufficient to effectively
hide the data. However, real data typically exhibit such correlations. As we will formally
show later, we rely on the dynamic (rather than static) correlations among streams, as well
as on dynamic autocorrelations.

Problem 2.2 (Perturbation). Given the original streams A and the desirable discrepancy
threshold σ2, how to obtain the perturbed streams A∗ such that 1) D(A,A∗) = σ2 and 2)
for any linear reconstruction Ã, D(A, Ã) ≥ σ2.

Perturbation has exactly the opposite goal from the reconstruction. However, the cor-
relation and autocorrelation properties of the streams are still the keys to the solution of
both problems.

55

a t

a t*

a t

~

Projection

error

Removed

noise

Remaining

noise

Privacy
Principal

Direction

σ2

(a) noise decomposition

−30 −20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

blue: original data, grean: perturbed data

Stream A
1

S
tr

e
a
m

 A
2

w
1

(b) i.i.d random noise

−30 −20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

Stream A
1

S
tr

e
a
m

 A
2

blue: original data, green: perturbed data

w
1

(c) correlated noise

Figure 2.20: Impact of Correlation on Perturbing the Data

2.5.2 Privacy with Dynamic Correlations

Let us first illustrate how the perturbation and reconstruction work in detail (see Figure
2.20(a) for the visualization). For the perturbation process, the stream measurements at at
time t, represented as an N -dimensional vector, are mapped to the perturbed vector a∗t with
additive Gaussian noise with zero-mean and variance σ2. For any reconstruction effort, the
goal is to transform the perturbed measurements, a∗t onto ãt so that D(at, ãt) is small.

A principled way of reconstruction is to project the data onto the principal component
subspace [74] such that most noise is removed, while the original data are maximally pre-
served, i.e, not much additional error is included. The idea is illustrated in Figure 2.20(a).
When a∗t is projected onto the principal direction, the projection is exactly the reconstruc-
tion ãt. Note that the distance between a∗t and ãt consists of two parts: 1) removed noise,
i.e., the perturbation that is removed by the reconstruction and 2) projection error, i.e, the
new error introduced by the reconstruction. Finally, the distance between at and ãt, i.e.,
the privacy, comes from two sides: 1) remaining noise, i.e, the perturbation noise that has
not been removed, and 2) projection error.

When the noise is added exactly along the principal direction, the removed noise be-
comes zero. However, additional projection error is included. In this case, the perturba-
tion is robust towards this reconstruction attempt, in the sense that D(A, Ã) ≥ D(A,A∗).
In general, a good practice is to add correlated noise following the trends present in the
streams. Consider the example shown in Figure 2.20 where blue points represent the
original data and green points represent the perturbed data with same amount of noise.
Figure 2.20(b) and 2.20(c) show the i.i.d. noise and the correlated noise on the same data,
respectively. Clearly, correlated noise has been successfully “hidden” in the original data,
and therefore, is hard to remove.

Data streams often present strong correlations and these correlations change dynami-

56

0

1000

2000

−40
−20

0
20

−20

−15

−10

−5

0

5

10

15

20

Time tStream A
1

S
tr

e
a
m

 A
2

w
1

w
2

(a) Example one.

0

10

20

30

40

−2

−1

0

1

2

−1

−0.5

0

0.5

1

Time t
A

1
: sin(t)+noise

A
2
:
c
o
s
(t

) w
1

w
2

w
3

(b) Example two.

Figure 2.21: Dynamic correlations in Data Streams

cally. Consider the examples in Figure 2.21, where the principal components can change
over time. In such cases, online PCA is better for characterizing the evolving, local trends.
Global, offline PCA will fail to identify these important properties. Next, we will show
how to dynamically insert noise using SPIRIT.

Algorithm 2.6: STREAMING CORRELATION ADDITIVE NOISE (SCAN)
Input : Original tuple at, utility threshold σ2

Old subspace U ∈ RN×k,Λ ∈ Rk×k

Output: Perturbed tuple a∗t, new subspace U,Λ
Update left-singular vectors U, singular values Λ based on at using SPIRIT1

Initialize δ, η to 0k2

//add noise in top-k principal component subspace3

for 1 ≤ i ≤ k do4

δ(i)=σ2 × Λ(i)2

‖(Λ)‖2
F

where Λ(i) is the i-th singular value5

η(i) = Gaussian noise with mean zero and variance δ(i)6

// rotation back to the original space7

Et=Uη and A∗
t=At+Et8

Streaming Correlated Additive Noise (SCAN). SCAN does two things whenever new
tuples arrive from the N input streams: 1) it updates the estimation of local principal
components; and 2) it distributes the noise along the principal components in proportional
to their singular values dynamically. In short, SCAN tracks the covariance matrix and adds
noise with essentially the same covariance as the data streams.

57

Theorem 2.3. At any time instant T , the perturbed data streams A∗ from SCAN satisfy
D(A,A∗) = σ2.

Proof.

D(A,A∗) =
1

T

T∑
i=1

‖ai − ãi‖2

=
1

T

T∑
i=1

σ2

= σ2

where ai (ãi) is the i-th row in A (A∗).

Streaming correlation online reconstruction (SCOR):. The privacy achieved by SCAN
is determined by the best linear reconstruction an adversary could perform on A∗. For
evolving data streams as illustrated in Figure 2.21, the best choice for the adversary is to
utilize online estimation of local principal components for reconstruction.

Intuitively, SCOR reconstruction removes all the noise orthogonal to the local principal
components and inserts little additional projection error, since local PCA can usually track
the data accurately.

Theorem 2.4. The reconstruction error of SCOR on the perturbation from SCAN is
≈ σ2.

Proof. Formally, given a linear reconstruction Ã = A∗R, the privacy can be decomposed

58

as

D(A, Ã) =
1

T
‖A−RA∗‖2F

=
1

T
‖A−R(A + E)‖2F

=
1

T
‖(I−R)A + RE‖2F .

=
1

T
‖ (I−UUT)A︸ ︷︷ ︸

projection error

+ UUTE︸ ︷︷ ︸
remaining error

‖2F

≈ 1

T
‖UUTE‖2F // projection error is small

=
1

T
‖E‖2F // E is in the subspace spanned by U

= σ2

where R is a projection matrix, i.e., R = UUT with U ∈ RN×k orthonormal. Since the
subspaces tracked by both SCOR and SCAN are the same, the remaining noise is σ2, i.e.,
no noise is removed. Therefore, D(A, Ã) ≈ σ2.

Note that the projection error for SCOR is small, provided that the data are locally
correlated. Therefore, the reconstruction error (i.e., privacy, as defined in Section 2.5.1) of
SCOR is approximately σ2, i.e., equal to the original discrepancy.

Algorithm 2.7: STREAMING CORRELATION ONLINE RECONSTRUCTION

(SCOR)
Input : Perturbed tuple a∗t, utility threshold σ2

Old subspace U ∈ RN×k,Λ ∈ Rk×k

Output: Perturbed tuple ãt, new subspace U,Λ
Update left-singular vectors U, singular values Λ based on at)1

//project to the estimated online principal components ãt=UUTa∗t2

2.5.3 Privacy with Dynamic Autocorrelations

The noise added should mirror the dominant trends in the series. Consider the following
simple examples: If the stream always has a constant value, the right way to hide this

59

value is to add the same noise throughout time. Any other noise can be easily filtered
out by simple averaging. The situation is similar for a linear trend.If the stream is a sine
wave, the right way to hide it is by adding noise with the same frequency (but potentially
a different phase); anything else can be filtered out. Our algorithm is the generalization, in
a principled manner, of these notions.

For example, the green and blue curves in Figure 2.22(b) are the autocorrelated noise
and the original stream, respectively, where the noise follows the same trends as the
streams, over time. In comparison, Figure 2.22(a) shows i.i.d. noise, which can be eas-
ily filtered out. The goal is to find a principled way to automatically determine what is the
“right” noise, which is “most similar” to the stream.

Connection to correlation:. In the previous section, we showed how to track the local
statistical properties of the N -dimensional sequence of the vectors at, indexed over time
t. More specifically, we track the principal subspace of this matrix, thereby focusing on
the most dominant (in a least-squares sense) of these relationships. We subsequently add
noise that “mirrors” those relationships, making it indistinguishable from the original data.

Next, we will show that the same principles used to capture relationships across many
attributes can be used to capture relationships of one attribute across time. In fact, there is
a natural way to move between the original time domain and a high-dimensional sequence
space, which is formalized next. The t-th window of the time series stream a(t) is an
h-dimensional point,

Wt := [a(t), a(t + 1), . . . , a(t + h− 1)]T ∈ Rh.

The window matrix W has the windows Wt as rows. Thus, Wj
i = a((i − 1)h + j) by

construction. The space spanned by the sequence of windows Wt is known as the h-th
order phase space of the series a(t) [63]. Subsequently, we can essentially apply the same
technique as before, using W in place of A. All of the previous discussion and properties
of our algorithm can be directly transferred to the autocorrelation case. An example is
shown in the top of Figure 2.22(c). However, there are some additional properties and
issues that need to be resolved.

Hankel Constraint:. Notice that the window matrix W is a Hankel matrix, i.e., the anti-
diagonals are constants: Wj

i = Wj−1
i−1 . Under the assumption that the series is stationary,

the auto-covariance matrix WTW is, in expectation is circulant, i.e., it is symmetric with
constant diagonals. Additionally, if we perform a batch eigen-analysis on the global win-
dow matrix of a static series, the sample auto-covariance matrix computed from the actual
data (i.e., WTW above) is also circulant. In this case, the eigenvectors of WTW essen-
tially provide the same information as the Fourier coefficients of the series a. In that sense,

60

0 1000 2000 3000 4000 5000 6000 7000 8000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

Data

Noise

(a) iid noise

0 1000 2000 3000 4000 5000 6000 7000 8000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

Data

Noise

(b) Autocorrelated noise

a = [1 2 3 4 5 6]
T 1 2 3

 2 3 4

 3 4 5

 4 5 6

W =
W1

W2

W3

W4

 .1 -.1 .2

 -.1 .2 .3

 .2 .3 .1

 .3 .1 -.2*

E =

W* = W+E

a* = [1.1 1.9 3.2 4.3 5.1 5.8*]
T

el er

(c) Streaming autocorrelation additive noise

Figure 2.22: Dynamic Autocorrelation

our approach includes traditional Fourier analysis. If these assumptions do not hold, the
technique we employ is more robust and effective.

Constraint on autocorrelated noise:. Next, we address the issues that arise from the fact
that W is a Hankel matrix. Similarly, the noise matrix E has to be a Hankel matrix (see
Figure 2.22(c) for an example). Similar to the correspondence between a and W, the noise
matrix E has a corresponding noise sequence e, such that

Et ≡ [e(t), e(t + 1), . . . , e(t + h− 1)]T ∈ Rh.

We will essentially use the same insight, that Et has to lie in the subspace of U, but in a
different way. Formally stated, the residual Et −UUTEt must be zero, or

(I−UUT)Et ≡ QEt = 0, (2.3)

where P = UUT is the projection operator onto the subspace of U and Q = I − P =
I−UUT is the projector onto the orthogonal complement.

Assume that we have chosen the noise values up to time t−k. Based on these and on the
current estimate of U, we will determine the next k noise values (where k is the principal
subspace dimension)—the reason for determining them simultaneously will become clear
soon. Let

Et−h+1≡ [e(t−h+1), . . . , e(t−k)︸ ︷︷ ︸
known values

| e(t−k+1), . . . , e(t)︸ ︷︷ ︸
unknown values

]T

≡ [eT
l | eT

r]T,

where | denotes element-wise concatenation (for example, [1, 2 | 3, 4] results into a vector
[1, 2, 3, 4]. The first block el ∈ Rh−k consists of h− k known values, whereas the second

61

Algorithm 2.8: Streaming Auto-Correlation Additive Noise(SACAN)
Input : Original value a∗(t), utility σ2

Old subspace U ∈ Rh×k,Λ ∈ Rk×k

Output: Perturbed value a∗(t), new subspace U,Λ
Construct window Wt−h+1 = [a(t−h+1), . . . , a(t)]T1

Update U, V using Wt−h+12

every k arriving values do3

Let [wT
l | wT

r]T ≡Wt+h+14

Solve equation 2.4 to obtain er5

Rescale er based on σ26

Perturbed values w∗
r = wr + er7

Publish values a∗(t−k+i) = w∗
r(i), 1 ≤ i ≤ k8

block er ∈ Rk consists of the k unknown noise values we wish to determine. Similarly
decomposing Q ≡ [Ql | Qr] into blocks Ql ∈ Rh×(h−k) and Qr ∈ Rh×k, we can rewrite
equation 2.3 as

Qlel + Qrer = 0 or Qrer = −Qlel. (2.4)

This is a linear equation system with k variables and k unknowns. Since the principal
subspace has dimension k by construction, the linear system is full-rank and can always
be solved. The bottom right of Figure 2.22(c) highlights the known el and unknown er

(with one principle component k = 1).

The above equation cannot be applied for initial values of the noise; we will use i.i.d.
noise for those. Initially, we do not know anything about the patterns present in the signal,
therefore i.i.d. noise is the best choice, since there are no correlations yet. However, the
adversary has also not observed any correlations that can be leveraged to remove that noise.
The important point is that, as soon as correlations become present, our method will learn
them and use them to intelligently add the noise, before the adversary can exploit this
information.

Figure 2.22(b) and 2.24 show that our approach accurately tracks the dominant local
trends, over a wide range of stream characteristics. Algorithm 2.8 shows the pseudocode.
The algorithm for reconstructing the original data is simpler; we only need to project each
window Wt onto the current estimate of U, exactly as we did for the correlation case. The
pseudocode is shown in Algorithm 2.9.

Preserving the autocorrelation properties, in addition to the privacy, is desirable, since
several fundamental mining operations, such as autoregressive modeling and forecasting

62

Algorithm 2.9: Streaming Auto-Correlation Online Reconstruction (SACOR)
Input : Perturbed value a∗(t)

Old subspace U ∈ RN×k,Λ ∈ Rk×k

Output: Reconstruction ã(t), new subspace U,Λ
Construct window Wt−h+1 = [a(t−h+1), . . . , a(t)]T1

Update U, Λ using SPIRIT by Wt−h+12

Project onto est. eigenspace W̃ = UUTWt−h+13

Reconstruction is the last element of W̃, ã(t) = W̃h
t4

as well as periodicity detection [22], rely on them.

2.5.4 Experiments

We have implemented the proposed algorithms and study their performance on real data
streams. Specifically, we show that: 1) in terms of preserving the input streams’ privacy,
SCAN and SACAN outperform both i.i.d. noise as well as noise added based on offline
analysis; 2) SCOR and SACOR achieve smaller reconstruction error than static, offline
algorithms; 3) all proposed algorithms have considerably small computation and memory
overhead.

Data Streams Dimension Description
Chlorine [57] 4310×166 Environmental sensors
Lab [45] 7712×198 Room sensors
Stock [78] 8000×2 Stock price

Table 2.7: Three Real Data Sets

Experiment Setup

The real-world data sets we use are summarized in table 2.7. “Chlorine” measures water
quality in a drinking water distribution system, and “Lab” measures light, humidity, tem-
perature and voltage of sensors in the Intel Research Berkeley lab, which has been used in
Section 2.2 and Section 2.3.

For simplicity, both discrepancy and reconstruction error are always expressed relative
to the energy of the original streams, i.e., D(A,A∗)/‖A‖2F and D(A, Ã)/‖A‖2F , respec-

63

tively. Equivalently, the streams are normalized to zero mean and unit variance, which does
not change their correlation or autocorrelation properties. The random noise distribution is
zero mean Gaussian, with variance determined by the discrepancy parameter. Maximum
discrepancy is 0.3, as large noise will destroy the utility of the perturbed data, making
them practically useless for the mining application. Without loss of generality and to fa-
cilitate presentation, we assume that perturbation and reconstruction use the same number
of principal components. Our prototype is implemented in Matlab and all experiments are
performed on an Intel P4 2.0GHz CPU.

Dynamic Correlation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

i.i.d-N offline-N online-N

R
e
c
o

n
s
tr

u
c
ti

o
n

 E
rr

o
r

SCOR

offline-R

(a) Reconstruction Error:
SCOR vs. offline-R

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of principal components k

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

i.i.d−N

offline−N

online−N

dash: offline−R

solid: online−R

(b) Reconstruction Error:
vary k

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
ri
v
a
c
y

i.i.d−N

offline−N

SCAN

baseline

(c) Privacy vs. Discrep-
ancy, online-R: Lab data
set

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
ri
v
a
c
y

i.i.d−N

offline−N

SCAN

baseline

(d) Privacy vs. Discrep-
ancy, online-R: Chlorine
data set

Figure 2.23: Privacy Preservation for Streams with Dynamic Correlations

The perturbation and reconstruction methods investigated in our experiments are sum-
marized in Table 2.8, where “N” stands for noise and “R” for reconstruction. The offline
algorithms, for both perturbation and reconstruction, are essentially the existing work on
the static, relational data model, using PCA on the entire stream history to identify correla-
tions and add or remove noise accordingly. Except otherwise specified, we set the number
of principal components k to 10. Although the offline algorithms may not be applicable
in a streaming setting due to large storage requirements, they are included for comparison
and we show that, besides high overheads, their performance is sub-optimal due to the

Perturbation i.i.d-N offline-N online-N:SCAN
Reconstruction baseline offline-R online-R:SCOR

Table 2.8: Perturbation/Reconstruction Method

64

time-evolving nature of streams. Finally, baseline reconstruction is simply the perturbed
data themselves (i.e., no attempt to recover the original data).

Reconstruction Error. Figure 2.23(a) shows the reconstruction error of online and of-
fline reconstruction, w.r.t all types of noise. The figure presents results from Lab data with
discrepancy is set to 10%. In all cases, SCOR clearly outperforms the offline method.
The main reason is that offline-R has considerable projection error for streams with dy-
namically evolving correlation, whereas SCOR has almost negligible projection error and
its reconstruction error is dominated by the remaining noise. Similar phenomena were
observed for other discrepancy values. Therefore, online reconstruction should be the
candidate for measuring the privacy of the perturbed data.

Effect of k. The number of principal components k will affect both the projection error
and the remaining noise, which in turn have an impact on the overall reconstruction error.
Figure 2.23(b) studies the effect of k on both offline-R and online-R on the Lab data
with discrepancy fixed at 10%. For both approaches, reconstruction errors decrease as k
increases. There are two interesting observations: First, online-R requires smaller k to
reach a “flat,” stable reconstruction error. This is beneficial since both the computation
and memory cost increase in proportion to k, due to the complexity of the core algorithm
(SPIRIT) described in Section 2.2. Second, online-R achieves smaller reconstruction error
than offline-R, for all types of noise.

Perturbation Performance. Next, we measure the ability of different perturbation meth-
ods to preserve privacy of data streams with dynamic correlations. Results on the Lab and
Chlorine data are presented in Figure 2.23(c) and 2.23(d). Clearly, for both data streams,
SCAN achieves the best privacy over all discrepancy values, i.e., SCAN is the only one
above baseline in the curve meaning no privacy is compromised. Therefore, SCAN effec-
tively achieves the best privacy w.r.t. the allowed discrepancy.

Dynamic Autocorrelation

This section demonstrates the correctness and effectiveness of our algorithms for data
perturbation in streams with autocorrelation. Except otherwise specified, the window size
h is set to 300 and the number of principal components k is 10. We compare our method
against i.i.d. noise and we use the online reconstruction algorithm SACOR, in order to
measure privacy.

Effectiveness of SACAN. Figure 2.24 shows the results on the Chlorine and Stock data
sets. The discrepancy is set to .1 for all experiments. We observe from Figure 2.24(a)

65

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−3

−2

−1

0

1

2

3

4

Time

Data

Noise

(a) Chlorine: SACAN

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−3

−2

−1

0

1

2

3

Time

Data

Noise

(b) Chlorine: i.i.d

0 1000 2000 3000 4000 5000 6000 7000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

Data

Noise

(c) Stock: SACAN

0 1000 2000 3000 4000 5000 6000 7000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

Data

Noise

(d) Stock: i.i.d.

Figure 2.24: Online Random Noise for Stream with Autocorrelation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
ri
v
a
c
y

i.i.d−N

SACAN

baseline

(a) Chlorine

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

Discrepancy

P
ri
v
a
c
y

i.i.d−N

SACAN

baseline

(b) Stock

Figure 2.25: Privacy vs. Discrepancy: Online Reconstruction using Autocorrelation

and 2.24(c) that SACAN initially produces i.i.d. noise but it is quickly able to estimate
and track the autocorrelation of the input stream. Hence, SACAN adds random noise that
closely follows the estimated autocorrelation. Intuitively, the noise generated by SACAN
exhibits: 1) the same frequency as the input data stream; 2.) amplitude that is determined
by the discrepancy. Thus, since the SACAN perturbation follows the same trend as the in-
put stream, it is hardly distinguishable or separable once added. The advantage of SACAN
becomes clear when comparing the results shown in Figure 2.24(b) (SACAN) and 2.24(d)
(i.i.d noise).

Privacy of SACAN and Effectiveness of SACOR. Using SACOR for online reconstruc-
tion, more than 1

3
of the i.i.d. noise added to the Chlorine and Stock streams can be re-

moved. However, the noise produced by SACAN could not be removed at all. Figure 2.25
demonstrates these results, for varying discrepancy. The reconstruction error from SACOR
is used to measure privacy. The baseline is the discrepancy between perturbed and input
streams (i.e., no attempt at reconstruction). Since SACAN produces noise that follows the
same trend as the input data stream, it is hard to remove any such noise from the perturbed
data.

66

2.5.5 Summary

Data streams in the real world typically exhibit both significant correlations as well as
autocorrelation, thereby providing ample opportunities for adversaries to breach privacy.
We develop the basic building blocks for privacy preservation on numerical streams. In
particular, we focus on the fundamental cases of correlation across multiple streams and of
autocorrelation within one stream. We present methods to dynamically track both and sub-
sequently add noise that “mirrors” these statistical properties, making it indistinguishable
from the original data. Thus, our techniques prevent adversaries from leveraging these
properties to remove the noise and thereby breach privacy. We provide both a mathemati-
cal analysis and experimental evaluation on real data to validate the correctness, efficiency,
and effectiveness of our algorithms. Our techniques track the evolving nature of these re-
lationships and achieve much better results than previous static, global approaches.

2.6 Chapter summary: stream mining

Data streams represented in first-order tensor streams have numerous applications in di-
verse domains, such as network forensics, sensor monitoring and financial applications.
The key questions we addressed are the following: How to summarize the data streams?
How to identify patterns in the data? The main challenges are the high dimensionality of
the data and the streaming requirement in both speed and space.

To answer the questions, we first present a powerful technique SPIRIT to incrementally
summarize the high dimensional streams. The SPIRIT algorithm has shown tremendous
improvement in both speed and space to the existing method such as SVD. SPIRIT can
also help find interesting patterns in the data: e.g., trends and anomalies in many different
datasets. Second, we extend SPIRIT to work for distributed environments. We showed
that the distributed SPIRIT performs similarly to the centralized SPIRIT but requires no
centralized communication, therefore, it is more efficient and applicable to real scenarios.
Third, we proposed a correlation function between streams, which can track complex cor-
relation, is robust to transients and supports incremental computation. Finally, we devel-
oped a set of incremental algorithms to preserve the privacy in data streams. The SPIRIT
algorithm is the driving force in many of the proposed algorithms, which confirms its great
potential and applicability.

Next, we will see how to deal with second-order tensor stream, i.e., time-evolving
graphs.

67

68

Chapter 3

Graph Mining

“How to find patterns such as anomalies, clusters in large graphs? How
to summarize time-evolving graphs?”

Graphs arise naturally in a wide range of disciplines and application domains, since they
capture the general notion of an association between two entities. Formally, we denote the
graph as G = (V, E), where V is the set of nodes and E the set of edges. In general, a
graph G = (V, E) can be represented as an adjacency matrix A ∈ Rn×n. Every row and
column in A corresponds to one node in V . The entry-(i, j) of A, denoted as aij , is not 0
if (i, j) is an edge in E. The value of aij indicates the weight of that edge. In general, we
consider the graph G as the data model and A as the data representation. Time-evolving
graphs are a sequence of graphs, one for each timestamp, or formally, {Gt|t = 1, 2, . . .}.
The corresponding representation is a sequence of adjacency matrices indexed by t, i.e.,
{At|t = 1, 2, . . .}, which is a second-order tensor stream.

The aspect of time has begun to receive some attention [91, 119]. Some examples of
the time-evolving graphs include:

• The Internet: Network traffic events indicate ongoing communication between source
and destination hosts;

• World Wide Web: The web can be viewed as a huge connected directed graph in
which nodes are web-pages, and edges are hyperlinks. Both web-pages (nodes) and
hyperlinks (edges) are changing over time.

• Social Networks: Email networks associate senders and recipients over time;

69

• Communication networks: Call detail records in telecommunications networks as-
sociate a caller with a callee. The set of all conversation pairs over each week forms
a graph that evolves over time;

• Financial data: Transaction records in a financial institution, who accessed what
account, and when;

• Access Control: In a database compliance setting [12], we need to record which user
accessed what data item and when.

• Computational Biology: The relation between protein structure, dynamics and func-
tion can be naturally modeled as time-evolving graphs.

In this chapter, we study two fundamental problems on analyzing time-evolving graphs
or second-order tensor streams:

How to efficiently summarize graphs in an effective and intuitive manner? Real graphs
are often very large but sparse. A typical graph often consists of million of nodes and
edges. But the ratio between the number of actual edges and that of all possible edges is
still very small. More formally, given a graph G=(V, E), the number of nodes |V | is big,
so is the number of edges |E|. But the number of edges is much smaller than the number
of all possible edges, i.e., |E|=O(|V |)�O(|V |2). A good summarization scheme should
also respect the sparsity in the data.

Real graphs are often associated with external domain knowledge. Typically the knowl-
edge relates to actual nodes or edges in the graph. For example, in a protein-protein in-
teraction graph, every node is a specific protein, which biologists know a lot about; in
a social network, every node is a person who is associated with external attributes such
as age, gender, location. A good summary of a graph should be presented naturally with
respect to external knowledge.

Finally, the method has to be efficient in terms of computation and storage in order to
process a sequence of large graphs over time.

Inspired by all three reasons, Section 3.2 introduces Compact Matrix Decomposition
(CMD), to compute sparse low-rank approximations. CMD dramatically reduces both the
computation cost and the space requirements over existing decomposition methods (SVD,
CUR). Using CMD as the key building block, we further propose procedures to efficiently
construct and analyze dynamic graphs from real-time application data. We provide theo-
retical guarantee for our methods, and present results on two real, large datasets, one on
network flow data (100GB trace of 22K hosts over one month) and one on DBLP (200MB
over 25 years).

70

We show that CMD is often an order of magnitude more efficient than the state of
the art (SVD and CUR): it is over 10X faster, but requires less than 1/10 of the space,
for the same reconstruction accuracy. Finally, we demonstrate how CMD can be used for
detecting anomalies and monitoring time-evolving graphs, in which it successfully detects
worm-like hierarchical scanning patterns in real network data.

How to monitor the changes of communities over time? Huge amounts of data such as
those in the above examples are continuously collected and patterns are also changing over
time. Therefore, batch methods for pattern discovery are not sufficient. We need tools that
can incrementally find the communities and monitor the changes.

For example, we want to answer questions such as: How do the network hosts interact
with each other? What kind of host groups are there, e.g., inactive/active hosts; servers;
scanners? Who emails whom? Do the email communities in a organization such as ENRON
remain stable, or do they change between workdays (e.g., business-related) and weekends
(e.g., friend and relatives), or during major events (e.g.,the FBI investigation and CEO
resignation)?

Section 3.3 presents GraphScope, that addresses both problems, using information the-
oretic principles. It needs no user-defined parameters. Moreover, it is designed to operate
on large graphs, in a streaming fashion. We demonstrate the efficiency and effectiveness
of GraphScope on real datasets from several diverse domains. In all cases it produces
meaningful time-evolving patterns that agree with human intuition.

We first present some background and related work in section 3.1. We then present
CMD in section 3.2 and GraphScope in section 3.3, respectively.

3.1 Graph related work

In this section, We survey a few related techniques and [27] provides a more comprehen-
sive survey on graph mining.

3.1.1 Low rank approximation

SVD has served as a building block for many important applications, such as PCA [80]
and LSI [105, 44], and has been used as a compression technique [88]. It has also been
applied as a correlation detection routine for streaming settings [67, 108]. However, these
approaches lead to dense matrices as the result.

71

For sparse matrices, the diagonalization and SVD are computed by the iterative meth-
ods such as Lanczos algorithm [64]. However, the results are still dense. Zhang et al [138]
sparsifies the results by zeroing out entries in the singular vectors with small norm. Simi-
larly, Achlioptas and McSherry [5] proposed to randomly zero out the entries in the origi-
nal matrix.

Recently, Drineas et al. proposed Monte-Carlo approximation algorithms for the stan-
dard matrix operations such multiplication [52] and SVD [53], which are two building
blocks in their CUR decomposition [54]. CUR has been applied in recommendation sys-
tem [55], where based on small number of samples about users and products, it can recon-
struct the entire user-product relationship.

The essence of CUR decomposition is to construct the subspace using actual columns
and rows from the original matrix, which has been explored several times in the literature:
Stewart et al. [19] proposed to use top largest columns and rows as the basis for the
subspace, but it does not provide a theoretical guarantee. Goreinov et al. [66] proved
that sets of columns and rows that span the maximum volume, form good subspaces with
relative spectral norm guarantee. However, there are no practical algorithmic construction
for that.

3.1.2 Parameter-free mining

Recently, “parameter-free” as a desirable property has received more and more attention
in many places. Keogh et al. [83] developed a simple and effective scheme for mining
time-series data through compression. Actually, compression or Minimum Description
Language (MDL) have become the workhorse of many parameter-free algorithms: biclus-
tering [29], time-evolving graph clustering [118], and spatial-clustering [107].

3.1.3 Biclustering

Biclustering/co-clustering [100] simultaneously clusters both rows and columns into co-
herent submatrices (biclusters). Cheng and Church [33] proposed a biclustering algorithm
for gene expression data analysis, using a greedy algorithm that identifies one bicluster at
a time by minimizing the sum squared residue. Cho et al. [37] use a similar measure of
coherence but find all the biclusters simultaneously by alternating K-means. Information-
theoretic Co-clustering [47] uses an alternating minimization algorithm for KL-divergence
between the biclusters and the original matrix. The Cross-association method [29] formu-
lates the biclustering problem as a binary matrix compression problem. More recently,

72

several streaming extensions of biclustering has been proposed in [6, 118].

There are two main distinctions between our proposed method and all existing work:
1) All the existing methods, except for cross-associations, require a number of parameters
to be set, such as the number of biclusters and the minimum support. 2) All the existing
methods are context-free approaches, which find biclusters global to the entire dataset,
while our approach is context-specific and finds communities in multiple scales. The most
related one is by Liu et al. [95]. on leveraging the existing ontology for biclustering, which
assumes the hierarchy is given, while our method automatically learns hierarchy from the
data.

3.1.4 Time-evolving Graph mining

Graph mining has been a very active area in data mining community. Because of its impor-
tance and expressiveness, various problems are studied under graph mining. Recently, the
dynamic behavior of networks started to attract attentions due to important applications
such as social networks, Web blogs, online recommendation systems.

From the modeling viewpoint, Faloutsos et al. [60] have shown the power-law distri-
bution on the Internet graph. Kumar et al. [90] studied the model for web graphs. Leskovec
et al. [91] discovered the shrinking diameter phenomena on time-evolving graphs. Wang
et al. [130] proposed an epidemic threshold model for modeling virus propagation in the
network.

From the algorithm viewpoint, Chakrabarti et al. [28] proposed evolutionary settings
for k-means and agglomerative hierarchical clustering. Asur et al. [15] proposed an event-
based characterization of clustering changes over time. Chi et al. [35, 36] proposed two
graph clustering algorithms for blogospheres.

3.2 Compact Matrix Decomposition

How to efficiently summarize graphs in an effective and intuitive manner? Graphs are
used in multiple important applications such as network traffic monitoring, web structure
analysis, social network mining, protein interaction study, and scientific computing. Given
a large graph, we want to discover patterns and anomalies in spite of the high dimension-
ality of data. We refer to this challenge as the static graph mining problem.

An even more challenging problem is finding patterns in graphs that evolve over time.
In this setting, we want to find patterns, summaries, and anomalies for the given time

73

window, as well as across multiple time windows. Specifically for these applications that
generate huge volume of data with high speed, the method has to be fast, so that it can catch
anomalies early on. Closely related questions are how to summarize dynamic graphs, so
that they can be efficiently stored, e.g., for historical analysis. We refer to this challenge
as the dynamic graph mining problem.

The typical way of summarizing and approximating matrices (the representation of
graphs) is through transformations, with SVD/PCA [64, 80] and random projections [77]
being popular choices. Although all these methods are very successful in general, for large
sparse graphs they may require huge amounts of space, exactly because their resulting
matrices are not sparse any more.

Large, real graphs are often very sparse. For example, the web graph [90], Internet
topology graphs [60], who-trusts-whom social networks, along with numerous other real
graphs, are all sparse. Drineas et al. [54] proposed the CUR decomposition method, which
partially addresses the loss-of-sparsity issue.

We propose a new method, called Compact Matrix Decomposition (CMD), for gener-
ating low-rank matrix approximations. CMD provides provably equivalent decomposition
as CUR, but it requires much less space and computation time, and hence is more efficient.

Moreover, we show that CMD can not only analyze static graphs, but it can also be ex-
tended to handle dynamic graphs. Another contribution of our work is exactly a detailed
procedure to put CMD into practice, and especially for high-speed applications like Inter-
net traffic monitoring, where new traffic matrices are streamed-in in real time. Overall,
our method has the following desirable properties:

• Fast: Despite the high dimensionality of large graphs, the entire mining process is
fast, which is especially important for high-volume, streaming applications.

• Space efficient: We preserve the sparsity of graphs so that both the intermediate
results and the final results fit in memory, even for large graphs that are usually too
expensive to mine today.

• Anomaly detection: We show how to spot anomalies, that is, rows, columns or
time-ticks that suffer from high reconstruction error. A vital step here is our pro-
posed fast method to estimate the reconstruction error of our approximations.

74

3.2.1 Problem definition

There are many approaches to extract patterns or structures from a graph given its adja-
cency matrix. In particular, we consider the patterns as a low dimensional summary of the
adjacency matrix. Hence, the goal is to efficiently identify a low dimensional summary
while preserving the sparsity of the graph.

More specifically, we formulate the problem as a matrix decomposition problem. The
basic question is how to approximate A as the product of three smaller matrices C ∈
Rm×c, U ∈ Rc×r, and R ∈ Rr×n, such that: (1) |A−CUR|1 is small, and (2) C,U, and
R can be computed quickly using a small space. More intuitively, we look for a low rank
approximation of A that is both accurate and can be efficiently computed.

With matrix decomposition as our core component, we consider two general classes of
graph mining problems, depending on the input data:

Static graph mining: Given a sparse matrix A ∈ Rm×n, find patterns, outliers, and
summarize it. In this case, the input data is a given static graph represented as its adjacency
matrix.

Dynamic graph mining: Given timestamped pairs (e.g., source-destination pairs from
network traffic, email messages, IM chats), potentially in high volume and high speed,
construct graphs, find patterns, outliers, and summaries as they evolve. In other words, the
input data are raw event records that need to be pre-processed.

The research questions now are how to sample data and construct matrices (graphs)
efficiently? How to leverage the matrix decomposition of the static case, into the mining
process? What are the underlying processing modules, and how do they interact with each
other? These are all practical questions that require a systematic process. Next we first
introduce the computational kernel CMD in Section 3.2.2; then we discuss the mining
process based on CMD in Section 3.2.3.

3.2.2 Compact matrix Decomposition

In this section, we present the Compact Matrix Decomposition (CMD), to decompose large
sparse matrices. Such method approximates the input matrix A ∈ Rm×n as a product of
three small matrices constructed from sampled columns and rows, while preserving the
sparsity of the original A after decomposition. More formally, it approximates the matrix

1The particular norm does not matter. For simplicity, we use squared Frobenius norm, i.e., |A| =∑
i,j A(i, j)2.

75

Algorithm 3.1: INITIAL SUBSPACE CONSTRUCTION(A ∈ Rn×m, sample size c)
Output: Cd ∈ Rm×c

for x = 1 to n do1

P (x) =
∑

i A(i, x)2/
∑

i,j A(i, j)2 // column distribution2

for i = 1 to c do3

Pick j ∈ 1 : n based on distribution P (x) // sample columns4

Compute Cd(:, i) = A(:, j)/
√

cP (j) // rescale columns5

A as Ã = CsURs, where Cs ∈ Rm×c′ (Rs ∈ Rr′×n) contains c(r) scaled columns(rows)
sampled from A, and U ∈ Rc′×r′ is a small dense matrix which can be computed from
Cs and Rs. CMD leverages the prior work of CUR [54], but requires significantly less
memory and computation to achieve the same approximation accuracy in decomposition.
It enables the analysis of large graphs that would not have been practical to analyze today
due to the high memory and computation costs of existing methods.

We first describe how to construct the subspace for a given input matrix. We then
discuss how to compute its low rank approximation.

Subspace Construction

Since the subspace is spanned by the columns of the matrix, we choose to use sampled
columns to represent the subspace.

Biased sampling: The key idea for picking the columns is to sample columns with re-
placement, biased towards those ones with higher norms. In other words, the columns with
higher entry values will have higher chance to be selected multiple times. Such sampling
procedure, used by CUR, is proved to yield an optimal approximation [54]. Algorithm 3.1
lists the detailed steps to construct a low dimensional subspace for further approximation.
Note that, the biased sampling will bring a lot of duplicated samples. Next we discuss how
to remove them without affecting the accuracy.

Duplicate column removal: CMD carefully removes duplicate columns and rows after
sampling, and thus it reduces both the storage space required as well as the computational
effort. Intuitively, the directions of those duplicate columns are more important than the
other columns. Thus a key step of subspace construction is to scale up the columns that
are sampled multiple times while removing the duplicates. Pictorially, we take matrix Cd,
which is the result of Algorithm 3.1 (see Figure 3.1(a)) and turn it into the much narrower
matrix Cs as shown in Figure 3.1(b), with proper scaling. The method for selecting Rd

76

Algorithm 3.2: CMD SUBSPACE CONSTRUCTION(A ∈ Rn×m, sample size c)
Output: Cs ∈ Rm×c′

Compute Cd using the initial subspace construction1

Let C ∈ Rm×c′ be the unique columns of Cd2

for i = 1 to c′ do3

Let u be the number of C(:, i) in Cd4

Compute Cs(:, i)←
√

u ·C(:, i)5

and constructing Rs will be described shortly.

Cd

 RdXd

m

n

r

c

Cs = C Λ1/2
Rs = Λ’ R Cs

Rsx

m

n

r`

c`

(a)with duplicates (b) without duplicates
Figure 3.1: Illustration of CUR and CMD

Algorithm 3.2 shows the algorithm to construct a low dimensional subspace repre-
sented with a set of unique columns. Each column is selected by sampling the input matrix
A, and then scaling it up based on square root of the number of times it being selected.
The resulting subspace also emphasizes the impact of large columns to the same extent as
the result in Algorithm 3.1. Using the notations in Table 3.1, we show by Theorem 3.1
that the top-k subspaces spanned by Cd with duplicates and Cs without duplicates are the
same.

Theorem 3.1 (Duplicate columns). Matrices Cs and Cd, defined in Table 3.1, have the
same singular values and left singular vectors.
Proof. It is easy to see Cd = CDT . Then we have

CdC
T
d = CDT (CDT)T = CDTDCT (3.1)

= CΛCT = CΛ1/2Λ1/2CT (3.2)

= CΛ1/2(CΛ1/2)T = CsC
T
s (3.3)

where D ∈ Rc′×c and Λ ∈ Rk×k are defined in Table 3.1.

77

Definition Size
C = [C1, . . . ,Cc′] m× c′

Cd = [C1, . . . ,C1︸ ︷︷ ︸
d1

, . . . ,Cc′ , . . . ,Cc′︸ ︷︷ ︸
dc′

] m× c, c =
∑

i di

D = [e1, . . . , e1︸ ︷︷ ︸
d1

, . . . , ec′ , . . . , ec′︸ ︷︷ ︸
dc′

] c′ × c, c =
∑

i di

Λ = diag(d1, . . . , dc′) c′ × c′

CS = [
√

d1C1, . . . ,
√

dc′Cc′] = CΛ1/2 m× c′

R = [R1, . . . ,Rr′]T r′ ×m
Rd = [R1, . . . ,R1︸ ︷︷ ︸

d′
1

, . . . ,Rr′ , . . . ,Rr′︸ ︷︷ ︸
d′

r′

] r × n, r =
∑

i d′i

D′ = [e1, . . . , e1︸ ︷︷ ︸
d′
1

, . . . , er′ , . . . , er′︸ ︷︷ ︸
d′

r′

] r′ × r, r =
∑

i d′i

Λ′ = diag(d′1, . . . , d
′
r′) r′ × r′

RS = [d′1R1, . . . , d′r′Rr′] = Λ′R r′ × n

Table 3.1: Matrix Definition: ei is a column vector with all zeros except a one as its i-th
element

Now we can diagonalize either the product CdC
T
d or CsC

T
s to find the same singular

values and left singular vectors for both Cd and Cs.

Low Rank Approximation

The goal is to form an approximation of the original matrix X using the sampled column
Cs. For clarity, we use C for Cs. More specifically, we want to project X onto the space
spanned by Cs, which can be done as follows:

• project X onto the span of Cs;

• reduce the cost by further duplicate row removal.

Column projection: We first construct the orthonormal basis of C using SVD (say C =
UCΣCVT

C), and then projecting the original matrix onto this identified orthonormal basis
UC ∈ Rm×c. Since UC is usually large and dense, we do not compute the projection of
matrix A directly as UCUT

CA ∈ Rm×m. Instead, we compute a low rank approximation
of A based on the observation that Uc = CVCΣ−1

C , where C ∈ Rm×c is large but sparse,
VC ∈ Rc×k is dense but small, and Σ ∈ Rk×k is a small diagonal matrix 2. Therefore, we

2In our experiment, both VC and ΣC have significantly smaller number of entries than A.

78

Algorithm 3.3: APPRMULTIPLICATE(matrix A ∈ Rc×m, B ∈ Rm×n, sample size r

Output: Cs ∈ Rc×r′ and Rs ∈ Rr′×n

for x = 1 to m do1

Q(x) =
∑

i B(x, i)2/
∑

i,j B(i, j)2 // row distribution of B2

for i = 1 to r do3

Pick j ∈ 1 : r based on distribution Q(x)4

Set Rd(i, :) = B(j, :)/
√

rQ(j)5

Set Cd(:, i) = A(:, j)/
√

rQ(j)6

R ∈ Rr′×n are the unique rows of Rd7

C ∈ Rc×r′ are the unique columns of Cd8

for i = 1 to r′ do9

u is the number of R(i, :) in Rd10

Set Rs(i, :)← u ·R(i, :)11

Set Cs(:, i)← C(:, i)12

have the following:

Ã = UcU
T
c A = CVCΣ−1

C (CVCΣ−1
C)TA

= C(VCΣ−2
C VT

CCT)A = CTA

where T = (VCΣ−2
C VT

CCT) ∈ Rc×m. Although C ∈ Rm×c is sparse, T is still dense and
big. we further optimize the low-rank approximation by reducing the multiplication over-
head of two large matrices T and A. Specifically, given two matrices A and B (assume
AB is defined), we can sample both columns of A and rows of B using the biased sam-
pling algorithm (i.e., biased towards the ones with bigger norms)3. The selected rows and
columns are then scaled accordingly for multiplication. This sampling algorithm brings
the same problem as column sampling, i.e., there exist duplicate rows.

Duplicate row removal: CMD removes duplicate rows in multiplication based on Theo-
rem 3.2. In our context, CMD samples and scales r′ unique rows from A and extracts the
corresponding r′ columns from CT (last term of T). Algorithm 12 shows the details. Line
1-2 computes the distribution; line 3-6 performs the biased sampling and scaling; line 7-10
removes duplicates and rescales properly.

Theorem 3.2 proves the correctness of the matrix multiplication results after removing
the duplicated rows. Note it is important that we use different scaling factors for removing

3[52] presents the details about the Monte-Carlo matrix multiplication algorithm.

79

Algorithm 3.4: CMD(matrix A ∈ Rm×n, sample size c and r)
Output: C ∈ Rm×c, U ∈ Rc×r and R ∈ Rr×n

find C from CMD subspace construction1

diagonalize CTC to find ΣC and VC2

find Cs and Rs using ApprMultiplication on CT and A3

U = VCΣ−2
C VT

CCR4

duplicate columns (square root of the number of duplicates) and rows (the exact number
of duplicates). Inaccurate scaling factors will incur a huge approximation error.

Theorem 3.2 (duplicate rows). Let I , J be the set of selected rows (with and without
duplicates, respectively):J = [1, . . . , 1︸ ︷︷ ︸

d′1

, . . . , r′, . . . , r′︸ ︷︷ ︸
d′

r′

] and I = [1, . . . , r′]. Then given

A ∈ Rma×na , B ∈ Rmb×nb and ∀i ∈ I, i ≤ min(na, mb), we have

A(:, J)B(J, :) = A(:, I)Λ′B(I, :)

where Λ′ = diag(d′1, . . . , d
′
r′).

Proof. Denote X = A(:, J)B(J, :) and Y = A(:, I)Λ′B(I, :). Then, we have

X(i, j) =
∑
k∈J

A(i, k)B(k, j)

=
∑
k∈I

dikA(i, k)B(k, j) = Y(i, j)

To summarize, Algorithm 13 lists the steps involved in CMD to perform matrix de-
composition for finding low rank approximations.

Implementation caveat: In practice, C and R might not agree on the same subspace as
the top k column and row subspaces induced by SVD. As a result when the subspaces are
not aligned well, it can lead to a huge numeric error even if both column and row sub-
spaces give good approximation, respectively. More specifically, ‖A−CUR‖ can be big
despite the fact that both ‖A−CC†A‖ (from Algorithm 3.1) and ‖CTA−CRRs‖(from
Algorithm 12) are small. Two implementation tricks are practically very effective in han-
dling this issue: 1) regularize the number of singular values/vectors of C to be small; 2)
re-sampling the C and R when the final error appears to be huge.

80

3.2.3 CMD in practice

In this section, we present several practical techniques for mining dynamic graphs using
CMD, where applications continuously generate data for graph construction and analysis.

Modules

Data

 Current
Matrix

Data source

Sparsification
Matrix

Decomposition
Error

Measure

Mining Framework
Applications

Anomaly
Detection

Historical
Analysis

Storage

Decomposed
Matrices

Figure 3.2: A flowchart for mining large graphs with low rank approximations

Figure 3.2 shows the flowchart of the whole mining process. The process takes as
input data from application, and generates as output mining results represented as low-
rank data summaries and approximation errors. The results can be fed into different mining
applications such as anomaly detection and historical analysis.

The data source is assumed to generate a large volume of real time event records for
constructing large graphs (e.g., network traffic monitoring and analysis). Because it is
often hard to buffer and process all data that are streamed in, we propose one more step,
namely, sparsification, to reduce the incoming data volume by sampling and scaling data
to approximate the original full data (Section 3.2.3).

Given the input data summarized as a current matrix A, the next step is matrix de-
composition (Section 3.2.3), which is the core component of the entire flow to compute a
lower-rank matrix approximation. Finally, the error measure quantifies the quality of the
mining result as an additional output.

Sparsification

Here we present an algorithm to sparsify input data, focusing on applications that continu-
ously generate data to construct sequences of graphs dynamically. For example, consider a
network traffic monitoring system where network flow records are generated in real time.
These records are of the form (source, destination, timestamp, #flows). Such traffic data
can be used to construct communication graphs periodically (e.g., one graph per hour). For
each time window (e.g., 1pm-2pm), we can incrementally build an adjacency matrix A by

81

Algorithm 3.5: SPARSIFICATION(update index (s1, d1), . . . , (sn, dn))
Output: Adjacency matrix A
initialize A = 01

for t = 1 to n do2

// decide whether to sample
if Bernoulli(p)= 1 then3

A(st, dt) = A(st, dt) + ∆v4

A = A/p // scale up A by 1/p5

updating its entries as data records are coming in. Each new record triggers an update on
an entry (i, j) with a value increase of ∆v, i.e., A(i, j) = A(i, j) + ∆v.

The data usually arrive as updates to edges of the graph. More formally, an update u
is a vertex pair (i, j) where i is the source, j the destination. From the matrix prospective,
the update increments the (i, j)-entry of A by one, A(i, j) = A(i, j) + 1. The adjacency
matrix (the graph) is formed based on all updates. In time evolving scenario, such matrices
are built periodically based on the recent updates. For instance, in the experiment we
construct a new network flow matrix every hour.

In practice, the updates are often coming into the system very fast. It is very expensive
even just to keep track of all the updates. For example, the network router has thousands
of packet flows per second, each packet flow can be considered as an update to a corre-
sponding entry in the adjacency matrix A. In general, it is very hard to monitor all the
flows. The Sparsification process exactly aims at this problem by reducing the incoming
update traffic.

The key idea to sparsify input data during the above process is to sample updates with
a certain probability p, and then scale the sampled matrix by a factor 1/p to approximate
the true matrix. Algorithm 14 lists this sparsification algorithm.

We can further simplify the above process by avoiding doing a Bernoulli draw for
every update. Note that the probability of skipping k consecutive updates is (1 − p)kp
(as in the reservoir sampling algorithm [128]). Thus instead of deciding whether to select
the current update, we decide how many updates to skip before selecting the next update.
After sampling, it is important that we scale up all the entries of A by 1/p in order to
approximate the true adjacency matrix (based on all updates).

The approximation error of this sparsification process can be bounded and estimated
as a function of matrix dimensions and the sampling probability p. Specifically, suppose
A∗ is the true matrix that is constructed using all updates. For a random matrix A that

82

approximates A∗ for every of its entries, we can bound the approximation error with a
high probability using the following theorem (see [5] for proof):

Theorem 3.3 (Random matrix). Given a matrix A∗ ∈ Rm×n, let A ∈ Rm×n be a random
matrix such that for all i,j: E(A(i, j)) = A∗(i, j) and Var(A(i, j)) ≤ σ2 and

|A(i, j)−A∗(i, j)| ≤ σ
√

m + n

log3(m + n)

For any m + n ≥ 20, with probability at least 1− 1/(m + n),

‖A−A∗‖2 < 7σ
√

m + n

With our data sparsification algorithm, it is easy to observe that A(i, j) follows a
binomial distribution with expectation A∗(i, j) and variance A∗(i, j)(1 − p). We can
thus apply Theorem 3.3 to estimate the error bound with a maximum variance σ =
(1 − p)maxi,j(A

∗(i, j)). Each application can choose a desirable sampling probability
p based on the estimated error bounds, to trade off between processing overhead and ap-
proximation error.

Matrix Decomposition

Once we construct the adjacency matrix A ∈ Rm×n, the next step is to compactly sum-
marize it. This is the key component of our process, where various matrix decomposition
methods can be applied to the input matrix A for generating a low-rank approximation. As
we mentioned, we consider SVD, CUR and CMD as potential candidates: SVD because it
is the traditional, optimal method for low-rank approximation; CUR because it preserves
the sparsity property; and CMD because, as we show, it achieves significant performances
gains over both previous methods.

Error Measure

The last step of our framework involves measuring the quality of the low rank approx-
imations. An approximation error is useful for certain applications, such as anomaly
detection, where a sudden large error may suggest structural changes in the data. A
common metric to quantify the error is the sum-square-error (SSE), defined as SSE=∑

i,j(A(i, j) − Ã(i, j))2. In many cases, a relative SSE (SSE/
∑

i,j(A(i, j)2), computed

83

Algorithm 3.6: ESTIMATESSE(A ∈ Rn×m,C ∈ Rm×c,U ∈ Rc×r,R ∈ Rr×n)

Output: Approximation error ˜SSE
rset = sr random numbers from 1:m1

cset = sr random numbers from 1:n2

ÃS = C(rset, :) ·U ·R(:, cset)3

AS = A(rset, cset)4

˜SSE = m·n
sr·scSSE(AS , ÃS)5

as a fraction of the original matrix norm, is more informative because it does not depend
on the dataset size.

How to compute SSE usually depends on the matrix decomposition method. For ex-
ample, in SVD, it is easy to compute SSE which is the difference of ‖A‖ and ‖Σ‖. For
CUR and CMD, it is more expensive because computing SSE requires one to evaluate the
product of CUR. Further, U is a dense matrix, the product of CUR is likely to be dense
too, incurring more space overhead. Direct computation of SSE requires us to calculate
the norm of two big matrices, namely, X and X − X̃ which is expensive. We propose an
approximation algorithm to estimate SSE (Algorithm 15) more efficiently. The intuition
is to compute the sum of squared errors using only a subset of the entries. The results are
then scaled to obtain the estimated ˜SSE.

With our approximation, the true SSE and the estimated ˜SSE converge to the same
value on expectation based on the following lemma 4. In our experiments, this algorithm
can achieve small approximation errors with only a small sample size.

Lemma 3.1. Given the matrix A ∈ Rm×n and its estimate Ã ∈ Rm×n such that E(Ã(i, j)) =
A(i, j) and Var(Ã(i, j)) = σ2 and a set S of sample entries, then

E(SSE) = E(˜SSE) = mnσ2

where SSE =
∑

i,j(A(i, j)− Ã(i, j))2 and ˜SSE = mn
|S|

∑
(i,j)∈S(A(i, j)− Ã(i, j))2

Proof.

E(SSE) =
∑
i,j

E(A(i, j)− Ã(i, j))2

= mnE(A(i, j)− Ã(i, j))2

= mnσ2

4The variance of SSE and ˜SSE can also be estimated but requires higher moment of Ã.

84

E(˜SSE) =
mn

|S|
∑

(i,j)∈S

E(A(i, j)− Ã(i, j))2

= mnE(A(i, j)− Ã(i, j))2

= mnσ2

3.2.4 Experiments

In this section, we evaluate both CMD and our mining framework, using two large datasets
with different characteristics. The candidates for comparison include SVD and CUR. The
evaluation focuses on 1) space requirement, 2) CPU time, 3) Accuracy estimation cost as
well as 4) sparsification effect.

Overall, CMD performs much better than both SVD and CUR as shown in Algo-
rithm 3.35.

0%

20%

40%

60%

80%

100%

Space Time Estimation Cost

SVD CUR CMD

Figure 3.3: Compared to SVD and CUR, CMD achieves lower space and time requirement as well
as fast estimation latency. Note that every thing is normalized by the largest cost in that category
when achieving 90% accuracy. e.g., The space requirement of CMD is 1.5% of SVD, while that of
CUR is 70%.

Experimental Setup

In this section, we first describe the two datasets; then we define the performance metrics
used in the experiment.

5These experiments are based on network traffic dataset with accuracy 90%. Note that the estimation
cost is not applicable to SVD.

85

data dimension |E| nonzero entries
Network flow 22K-by-22K 12K 0.0025%
DBLP data 428K-by-3.6K 64K 0.004%
Enron email 34K-by-34K 41K .0003%
Transactional data 9180-by-784 62K 0.87%

Table 3.2: Dataset summary

The Network Flow Dataset. The traffic trace consists of TCP flow records collected at
the backbone router of a class-B university network. Each record in the trace corresponds
to a directional TCP flow between two hosts with timestamps indicating when the flow
started and finished.

With this traffic trace, we study how the communication patterns between hosts evolve
over time, by reading traffic records from the trace, simulating network flows arriving in
real time. We use a window size of ∆t seconds to construct a source-destination matrix
every ∆t seconds, where ∆t = 3600 (one hour). For each matrix, the rows and the
columns correspond to source and destination IP addresses, respectively, with the value of
each entry (i, j) representing the total number of TCP flows (packets) sent from the i-th
source to the j-th destination during the corresponding ∆t seconds. Because we cannot
observe all the flows to or from a non-campus host, we focus on the intranet environment,
and consider only campus hosts and intra-campus traffic. The resulting trace has over 0.8
million flows per hour (i.e., sum of all the entries in a matrix) involving 21,837 unique
campus hosts. The average percentage of nonzero entries for each matrix is 2.5× 10−5.

The distribution of the entry values is very skewed (a power law distribution). Most
of hosts have zero traffic, with only a few of exceptions which were involved with high
volumes of traffic (over 104 flows during that hour). Given such skewed traffic distribution,
we rescale all the non-zero entries by taking the natural logarithm (actually, log(x + 1), to
account for x = 0), so that the matrix decomposition results will not be dominated by a
small number of very large entry values.

Non-linear scaling the values is very important: experiments on the original, bursty
data would actually give excellent compression results, but poor anomaly discovery ca-
pability: the 2-3 most heavy rows (speakers) and columns (listeners) would dominate the
decompositions, and everything else would appear insignificant.

The DBLP Bibliographic Dataset. Based on DBLP data [3], we generate an author-
conference graph for every year from year 1980 to 2004 (one graph per year). An edge
(a, c) in such a graph indicates that author a has published in conference c during that year.
The weight of (a, c) (the entry (a, c) in the matrix A) is the number of papers a published
at conference c during that year. In total, there are 428,398 authors and 3,659 conferences.

86

The average percentage of nonzero entries is 4×10−5. Note that the DBLP matrix is much
denser than the network flow one.

The graph for DBLP is less sparse compared with the source-destination traffic matrix.
However, we observe that the distribution of the entry values is still skewed, although not
as much skewed as the source-destination graph. Intuitively, network traffic is concen-
trated in a few hosts, but publications in DBLP are more likely to spread out across many
different conferences. Most authors, who has one or more paper that year, only publishes
in one conference. A few authors publishes in several (maximum is 25). Compared with
host-by-host flow matrix, the author-conference matrix is less sparse and skewed.

The Enron Emails Dataset. This consists of the email communications in Enron Inc.
from Jan 1999 to July 2002 [2]. We construct sender-to-recipient graphs on a monthly
basis. The graphs have m = n = 34, 280 senders/recipients (the number of nodes) with
average of 4130 distinct sender-recipient pairs (the number of edges) every month.

The Transactional Dataset. The Transactional dataset has 9180 transactions over 784
accounts of a company for one year. 62,922 nonzero transaction-account pairs exist in the
data. The matrix is densest among all four datasets. Furthermore, it does not exhibit a
low-rank structure like the rest.

Performance Metric. We use the following three metrics to quantify the mining perfor-
mance:

• Approximation accuracy: This is the key metric that we use to evaluate the quality
of the low-rank matrix approximation output. It is defined as:

accuracy = 1− relative SSE

• Space ratio: We use this metric to quantify the required space usage. It is defined
as the ratio of the number of output matrix entries to the number of input matrix
entries. So a larger space ratio means more space consumption.

• CPU time: We use the CPU time spent in computing the output matrices as the
metric to quantify the computational expense.

All the experiments are performed on the same dedicated server with four 2.4GHz Xeon
CPUs and 12GB memory. For each experiment, we repeat it 10 times, and report the mean.

87

The Performance of CMD

In this section, we compare CMD with SVD and CUR, using static graphs constructed
from the four datasets. No sparsification process is required for statically constructed
graphs. We vary the target approximation accuracy, and compare the space and CPU time
used by the three methods.

0 0.2 0.4 0.6 0.8 1

10
1

10
2

s
p
a
c
e
 r

a
ti
o

accuracy

SVD
CUR
CMD

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

ti
m

e
(s

e
c
)

accuracy

SVD
CUR
CMD

(a) space vs accuracy (b) time vs accuracy

Figure 3.4: Network: CMD takes the least amount of space and time to decompose the source-
destination matrix; the space and time required by CUR increases fast as the accuracy increases
due to the duplicated columns and rows.

Network Dataset.

• Network-Space: We first evaluate the space consumption for three different meth-
ods to achieve a given approximation accuracy. Figure 3.4(a) shows the space ratio
(to the original matrix) as the function of the approximation accuracy for network
flow data. Note the Y-axis is in log scale. SVD uses the most amount of space (over
100X larger than the original matrix). CUR uses smaller amount of space than SVD,
but it still has huge overhead (over 50X larger than the original space), especially
when high accuracy estimation is needed. Among the three methods, CMD uses
the least amount of space consistently and achieves over orders of magnitudes space
reduction.

The reason that CUR performs much worse for high accuracy estimation is that it
has to keep many duplicate columns and rows in order to reach a high accuracy,
while CMD decides to keep only unique columns and rows and scale them carefully
to retain the accuracy estimation.

88

• Network-Time: In terms of CPU time (see Figure 3.4(b)), CMD achieves much
more savings than SVD and CUR (e.g., CMD uses less 10% CPU-time compared
to SVD and CUR to achieve the same accuracy 90%.). There are two reasons:
first, CMD compressed sampled rows and columns, and second, no expensive SVD
is needed on the entire matrix (graph). CUR is as bad as SVD for high accuracy
estimation due to excessive computation cost on duplicate samples. The majority of
time spent by CUR is in performing SVD on the sampled columns (see the algorithm
in 13)6 . Note that the overtaking point in Figure 3.4(b) (around 0.8 accuracy).This
implies that sometimes (0.8 accuracy in this case) even the space consumption of
CUR becomes more than SVD, but because of the efficient computation steps, CUR
is still faster than SVD. Again, CMD is the winner throughout.

DBLP Dataset.

0 0.2 0.4 0.6 0.8 1

10
1

10
2

s
p
a
c
e
 r

a
ti
o

accuracy

SVD
CUR
CMD

0 0.2 0.4 0.6 0.8 1

10
1

10
2

10
3

ti
m

e
(s

e
c
)

accuracy

SVD
CUR
CMD

(a) space vs accuracy (b) time vs. accuracy

Figure 3.5: DBLP: CMD uses the least amount of space and time. Notice the huge space and time
that SVD requires. The gap between CUR and CMD is smaller because the underlying distribution
of data is less skewed, which implies fewer duplicate samples are required.

• DBLP-Space: We observe similar performance trends using the DBLP dataset.
CMD requires the least amount of space among the three methods (see Figure 3.5(a)).
Notice that we do not show the high-accuracy points for SVD, because of its huge
memory requirements.

6We use LinearTimeCUR algorithm in [54] for all the comparisons. There is another ConstantTimeCUR
algorithm proposed in [54], however, the accuracy approximation of it is too low to be useful in practice,
which is left out of the comparison.

89

Overall, SVD uses more than 2000X more space than the original data, even with
a low accuracy (less than 30%). The huge gap between SVD and the other two
methods is mainly because: (1) the data distribution of DBLP is not as skewed
as that of network flow, therefore the low-rank approximation of SVD needs more
dimensions to reach the same accuracy, and (2) the dimension for DBLP (428,398)
is much bigger than that for network flow (21,837), which implies a much higher
cost to store the result for DBLP than for network flow. These results demonstrates
the importance of preserving sparsity in the result.

On the other hand, the difference between CUR and CMD in DBLP becomes smaller
than that with network flow trace (e.g., CMD is 40% better than CUR for DBLP
instead of an order of magnitude better for network.). The reason is that the data
distribution is less skewed. There are fewer duplicate samples in CUR.

• DBLP-Time: The computational cost of SVD is much higher compared to CMD
and CUR (see Figure 3.5(b)). This is because the underlying matrix is denser and
the dimension of each singular vector is bigger, which explains the high operation
cost on the entire graph. CMD, again, has the best performance in CPU time for
DBLP data.

Enron Dataset.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

accuracy

s
p

a
c
e

 r
a

ti
o

SVD
CUR
CMD

0 0.2 0.4 0.6 0.8 1

10
−1

10
0

accuracy

ti
m

e
(s

e
c
)

SVD
CUR
CMD

(a) space vs accuracy (b) time vs. accuracy

Figure 3.6: Enron: CMD uses the least amount of space and time. Notice the huge space and time
that SVD requires. The gap between CUR and CMD is smaller because the underlying distribution
of data is less skewed, which implies fewer duplicate samples are required. The overall accuracy
is higher than DBLP and Network because Enron data exhibits a low-rank structure that can be
summarized well using a few basis vectors.

90

• Enron-Space: We observe similar performance trends using the DBLP dataset.
CMD requires the least amount of space among the three methods (see Figure 3.6(a)).

Due to the low-rank structure of Enron data, SVD can achieve fairly good approx-
imation with a low dimensionality (90% accuracy with 6 dimensions). However,
SVD still uses more than 10X more space than the original data because the singu-
lar vectors are dense. While CUR and CMD preserves sparsity in the final result,
it, therefore, requires much smaller space. These results again illustrates the impor-
tance of preserving sparsity in the result.

Because of smoother distribution (versus DBLP), the difference between CUR and
CMD in Enron is small than that with network flow trace (e.g., CMD is 2X better
than CUR for Enron instead of an order of magnitude better for network.).

• Enron-Time: The computational cost of SVD is much higher compared to CMD
and CUR (see Figure 3.6(b)). This is because the underlying matrix is denser and
the dimension of each singular vector is bigger, which explains the high operation
cost on the entire graph. CMD, again, has the best performance in CPU time for
Enron data.

Transaction Dataset.

0 0.2 0.4 0.6 0.8 1

10
0

accuracy

s
p

a
c
e

 r
a

ti
o

SVD
CUR
CMD

0 0.2 0.4 0.6 0.8 1

10
0

10
1

accuracy

ti
m

e
(s

e
c
)

SVD
CUR
CMD

(a) space vs accuracy (b) time vs. accuracy

Figure 3.7: Transaction: CMD uses the least amount of space and time. The space and time
required by CUR increases fast as the accuracy increases due to the duplicated columns and rows.

• Transaction-Space: Once again, CMD requires the least amount of space among
the three methods (see Figure 3.7(a)).

91

Unlike the rest of datasets, Transaction data does not have a low-rank structure.
Because of that, a fairly high dimensionality is required for SVD as well as CUR,
CMD in order to achieve relatively high accuracy. In particular, CUR requires about
the same space as SVD, while CMD still performs the best but the gap (about 5X
difference) is smaller that that of the other datasets due to the lack of low rank
structure. The message is that all three methods aim at the datasets with low rank
structure. Without that, simple linear dimensionality reductions such as SVD, CUR
and CMD are often no longer the proper tools.

• Transaction-Time: Overall CMD is still the fastest among the three on Transaction
data, but the gap is small. The reason is that because of the lack of low rank structure,
an almost full SVD has to be performed for all three methods in order to capture
enough energy in the original matrix. As a result, the dominant cost lies in SVD
computation.

Accuracy Estimation

In this section, we evaluate the performance of our accuracy estimation algorithm de-
scribed in Section 3.2.3. Note the estimation of relative SSEs is only required with CUR
and CMD. For SVD, the SSEs can be computed easily using the sum of the singular values.

Unlike SVD, CUR and CMD do not have a shortcut to compute the relative SSE, or the
accuracy (i.e., 1- relative SSE). Fortunately, there is a way to approximate that as described
in Section 3.2.3.

Using the Network dataset, we plot in Figure 3.8 (a) both the estimated accuracy and
the true accuracy by varying the sample size used for error estimation (i.e., number of
columns or rows). Similar trends observed for all the other datasets, therefore, the results
are omitted for brevity.

For every sample size, we repeat the experiment 10 times with both CUR and CMD,
and show all the 20 estimated errors. The targeted low-rank approximation accuracy is set
to 90%.

We observe that the estimated accuracies (i.e., computed based on the estimated error
using 1 − ˜SSE) are close to the true accuracy (unbiased), with the variance dropping
quickly as the sample size increases (small variance).

The time used for estimating the error is linear to the sample size (see Figure 3.8).
We observe that CMD requires much smaller time to compute the estimated error than
CUR (5 times faster). For both methods, the error estimation can finish within several

92

seconds. As a comparison, it takes longer than 1,000 seconds to compute a true accuracy
for the same matrix. Thus for applications that can tolerate a small amount of inaccuracy
in accuracy computation, our estimation method provides a solution to dramatically reduce
the computation latency.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

sample size

CUR
CMD
True Value

0 500 1000 1500 2000
0

1

2

3

4

5

6

tim
e(

se
c)

sample size

CUR
CMD

(a) Estimated accuracy (b) Estimation latency

Figure 3.8: Accuracy Estimation: (a) The estimated accuracy are very close to the true accuracy;
(b) Accuracy estimation performs much faster for CMD than CUR

Robustness to Sparsification

We now proceed to evaluate our framework, beginning with the performance of the sparsi-
fication module. As described in 14, our proposed sparsification constructs an approximate
matrix instead of using the true matrix. Our goal is thus to see how much accuracy we lose
using sparsified matrices, versus using the true matrix constructed from all available data.
We use the Network dataset. Figure 3.9 plots the sparsification ratio p vs. accuracy of
the final approximation output by the entire framework, using the three different methods,
SVD, CUR, and CMD. In other words, the accuracy is computed with respect to the true
adjacency matrix constructed with all updates. We also plot the accuracy of the sparsi-
fied matrices compared with the true matrices. This provides an upper bound as the best
accuracy that could be achieved ideally after sparsification.

Once we get the sparsified matrices, we fix the amount of space to use for the three
different methods. For example, the curve on the top of Figure 3.9 is the accuracy of the
approximate adjacency matrix to the true one, which is also the upper bound of all the
other methods. We observe that the accuracy of CMD is very close to the upper bound
ideal case. The accuracies achieved by all three methods do not drop much as the sparsifi-
cation ratio decreases, suggesting the robustness of these methods to missing data. These

93

results indicate that we can dramatically reduce the number of raw event records to sample
without affecting the accuracy much.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

sparsification ratio

Sparsification
SVD
CUR
CMD

Figure 3.9: Sparsification: it incurs small performance penalties, for all methods.

In summary, CMD consistently outperforms traditional method SVD and the state of
art method CUR on all experiments. Next we will illustrate some applications of CMD in
practice.

3.2.5 Applications and Mining Case Study

In this section, we illustrate how CMD and our framework can be applied in practice using
two example applications: (1) anomaly detection on a single matrix (i.e., a static graph)
and (2) storage, historical analysis, and real-time monitoring of multiple matrices evolving
over time (i.e., dynamic graphs). For each application, we perform case studies using real
data sets.

Anomaly Detection

Given a large static graph, how do we efficiently determine if certain nodes are outliers,
that is, which rows or columns are significantly different than the rest? And how do we
identify them? In this section, we consider anomaly detection on a static graph, with the
goal of finding abnormal rows or columns in the corresponding adjacency matrix. CMD
can be easily applied for mining static graphs. We can detect static graph anomalies using
the SSE along each row or column as the potential indicators after matrix decomposition.

A real world example is to detect abnormal hosts from a static traffic matrix, which
has often been an important but challenging problem for system administrators. Detecting

94

Ratio 20% 40% 60% 80% 100%
Source IP 0.9703 0.9830 0.9727 0.8923 0.8700
Destination IP 0.9326 0.8311 0.8040 0.7220 0.6891

Table 3.3: Network anomaly detection: precision is high for all sparsification ratios (the
detection false positive rate = 1− precision).

abnormal behavior of host communication patterns can help identify malicious network
activities or mis-configuration errors. In this case study, we focus on the static source-
destination matrices constructed from network traffic (every column and row corresponds
to a source and destination, respectively), and use the SSEs on rows and columns to detect
the following two types of anomalies:

• Abnormal source hosts: Hosts that send out abnormal traffic, for example, port-
scanners, or compromised “zombies”. One example of abnormal source hosts are
scanners that send traffic to a large number of different hosts in the system. Scanners
are usually hosts that are already compromised by malicious attacks such as worms.
Their scanning activities are often associated with further propagating the attack by
infecting other hosts. Hence it is important to identify and quarantine these hosts
accurately and quickly. We propose to flag a source host as “abnormal”, if its row
has a high reconstruction error. the corresponding row is significantly larger than
the rest of hosts, i.e., ||A(i,:)− ˜A(i, :)|| > α where A(i,:) is the i-th row of matrix A.

• Abnormal destination hosts: Examples include targets of denial of service attacks
(DoS), or targets of distributed denial of service (DDoS). Hosts that receive ab-
normal traffic. An example abnormal destination host is one that has been under
denial of service attacks by receiving a high volume of traffic from a large number
of source hosts. Similarly, our criterion is the (column) reconstruction error. Simi-
larly, an abnormal destination host can be detected if the reconstruction error of the
corresponding column is large, i.e., ||A(:,j) − ˜A(:,j)|| > α, where A(:,j) is the j-th
column of matrix A.

Experimental setup: We randomly pick an adjacency matrix from normal periods with
no known attacks. Due to the lack of detailed anomaly information, we manually inject
anomalies into the selected matrix using the following method: (1)single entry anomaly:
We randomly select 100 non-zero matrix entries, and increase their values k times, where
k is an experiment parameter defined as the increasing ratio ranging from 1 to 20. (1)Ab-
normal source hosts: We randomly select a source host and then set all the corresponding

95

row entries to 1, simulating a scanner host that sends flows to every other host in the net-
work. (2)Abnormal destination hosts: Similar to scanner injection, we randomly pick a
column and set 90% of the corresponding column entries to 1, assuming the selected host
is under denial of service attack from a large number of hosts.

There are two additional input parameters: sparsification ratio and the number of sam-
pled columns and rows. We vary the sparsification ratio from 20% to 100% and set the
sampled columns (and rows) to 500.

Performance metrics: We use detection precision as our metric. We sort hosts based their
row SSEs and column SSEs, and extract the smallest number of top ranked hosts (say k
hosts) that we need to select as suspicious hosts, in order to detect all injected abnormal
host (i.e., recall = 100% with no false negatives). Precision thus equals 1/k, and the false
positive rate equals 1− precision.

We inject only one abnormal host each time. And we repeat each experiment 100 times
and take the mean.

Results: Table 3.3(a) and (b) show the precision vs. sparsification ratio for detecting ab-
normal source hosts and abnormal destination hosts, respectively. Although the precision
remains high for both types of anomaly detection, we achieve a higher precision in detect-
ing abnormal source hosts than detecting the abnormal destinations. One reason is that
scanners talk to almost all other hosts while not all hosts will launch DOS attacks to a tar-
geted destination. In other words, there are more abnormal entries for a scanner than for
a host under denial of service attack. Most of the false positives are actually from servers
and valid scanning hosts, which can be easily removed based on the prior knowledge of
the network structure.

Our purpose of this case study is not to present the best algorithm for anomaly de-
tection, but to show the great potential of using efficient matrix decomposition as a new
method for anomaly detection. Such approach may achieve similar or better performance
than traditional methods but without expensive analysis overhead.

Time-Evolving Monitoring

In this section, we consider the application of monitoring dynamic graphs. Using our
proposed process, we can dynamically construct and analyze time-evolving graphs from
real-time application data. One usage of the output results is to provide compact storage
for historical analysis. In particular, for every timestamp t, we can store only the sampled
columns and rows as well as the estimated approximation error ˜SSEt in the format of a
tuple (Ct,Rt, ˜SSEt).

96

Furthermore, the approximation error (SSE) is useful for monitoring dynamic graphs,
since it gives an indication of how much the global behavior can be captured using the
samples. In particular, we can fix the sparsification ratio and the CMD sample size, and
then compare the approximation error over time. A timestamp with a large error or a time
interval (multiple timestamps) with a large average error implies structural changes in the
corresponding graph, and is worth additional investigation.

To make our discussion concrete, we illustrate the application of time-evolving moni-
toring using both the network traffic matrices and the DBLP matrices.

Network over time: For network traffic, normal host communication patterns in a net-
work should roughly be similar to each other over time. A sudden change of approxi-
mation accuracy (i.e., 1 − ˜SSE) suggests structural changes of communication patterns
since the same approximation procedure can no longer keep track of the overall patterns.
We can thus monitor dynamic host-by-host matrices to detect the existence of abnormal
communication patterns and alert the administrators.

Figure 3.10(b) shows the approximation accuracy over time, using 500 sampled rows
and columns without duplicates (out of 21K rows/columns). The overall accuracy remains
high. But an unusual accuracy drop occurs during the period from hour 80 to 100. We
manually investigate into the trace further, and indeed find the onset of worm-like hierar-
chical scanning activities. For comparison, we also plot the percentage of non-zero matrix
entries generated each hour over time in Figure 3.10(a), which is a standard method for
network anomaly detection based on traffic volume or distinct number of connections. Al-
though such statistic is relatively easier to collect, the total number of traffic entries is not
always an effective indicator of anomaly. Notice that during the same period of hour 80 to
100, the percentage of non-zero entries is not particularly high. Only when the infectious
activity became more prevalent (after hour 100), we can see an increase of the number of
non-zero entries. Our framework can thus potentially help detect abnormal events at an
earlier stage.

DBLP over time: For the DBLP setting, we monitor the accuracy over the 25 years
by sampling 300 conferences (out of 3,659 conferences) and 10 K authors (out of 428K
authors) each year. Figure 3.11(b) shows that the accuracy is high initially, but slowly
drops over time. The interpretation is that the number of authors and conferences (nonzero
percentage) increases over time (see Figure 3.11(a)), suggesting that we need to sample
more columns and rows to achieve the same high approximation accuracy.

In summary, our exploration of both applications suggest that CMD has great potential
for discovering patterns and anomalies for dynamic graphs too.

97

50 100 150

2

4

6

8
x 10

−5

no
nz

er
o

pe
rc

en
ta

ge

hours
50 100 150

0

0.5

1

hours

A
cc

ur
ac

y

(a) Nonzero entries over time (b) Accuracy over time
Figure 3.10: Network flow over time: we can detect anomalies by monitoring the approximation
accuracy (b), while traditional method based on traffic volume cannot do (a).

1980 1985 1990 1995 2000 2005
0

1

2

3

4

5x 10
−5

no
nz

er
o

pe
rc

en
ta

ge

year
1980 1985 1990 1995 2000 2005
0

0.2

0.4

0.6

0.8

1

Year

A
cc

ur
ac

y

(a) Nonzero entries over time (b) Accuracy over time
Figure 3.11: DBLP over time: The approximation accuracy drops slowly as the graphs grow
denser.

3.2.6 Summary

We studied the problem of efficiently discovering patterns and anomalies from large graphs,
like traffic matrices, both in the static case, as well as when they evolve over time. The
contributions are the following:

• New matrix decomposition method: CMD generates low-rank, sparse matrix ap-
proximations. We proved that CMD gives exactly the same accuracy like CUR, but
in much less space (Theorem 3.1).

• High-rate time evolving graphs: Extension of CMD, with careful sampling, and fast
estimation of the reconstruction error, to spot anomalies.

98

• Speed and space: Experiments on several real datasets, one of which is >100Gb of
real traffic data, show that CMD achieves up to 10 times less space and less time
than the competition.

• Effectiveness: CMD found anomalies that were verified by domain experts, like the
anomaly in Figure 3.10

3.3 GraphScope: Parameter-Free Mining of Large Time-
Evolving Graphs

How to monitor the changes of communities over time? The aspect of time has begun
to receive attention [91, 119]. Some examples of the time-evolving graphs include: (a)
Network traffic events indicate ongoing communication between source and destination
hosts, similar to the NETWORK dataset in our experiments; (b) Email networks associate
a sender and a recipient at a given date, like the ENRON data set [2] in the experiments;
(c) Call detail records in telecommunications networks associate a caller with a callee.
The set of all conversation pairs over each week forms a graph that evolves over time,
like the publicly available ‘CELLPHONE’ dataset of MIT users calling each other [1]; (d)
Transaction data: in a financial institution, who accessed what account, and when [18]; (e)
In a database compliance setting [12], again we need to record which user accessed what
data item and when.

Large amounts of data such as those in the above examples are continuously collected
and patterns are also changing over time. Therefore, batch methods for pattern discovery
are not sufficient. We need tools that can incrementally find the communities and monitor
the changes. In summary, there are two sub-problems involved:

(P1) Community discovery: Which groups or communities of nodes are associated with
each other?

(P2) Change detection: When does the community structure change and how to quantify
the change?

Moreover, we want to answer these questions (a) without requiring any user-defined pa-
rameters, and (b) in a streaming fashion.

For example, we want to answer questions such as: How do the network hosts interact
with each other? What kind of host groups are there, e.g., inactive/active hosts; servers;

99

scanners? Who emails whom? Do the email communities in a organization such as ENRON
remain stable, or do they change between workdays (e.g., business-related) and weekends
(e.g., friend and relatives), or during major events (e.g.,the FBI investigation and CEO
resignation)?

We propose GraphScope, which addresses both of the above problems simultaneously.
More specifically, GraphScope is an efficient, adaptive mining scheme on time-evolving
graphs. Unlike many existing techniques, it requires no user-defined parameters, and it
operates completely automatically, based on the Minimum Description Length (MDL)
principle. Furthermore, it adapts to the dynamic environment by automatically finding the
communities and determining good change-points in time.

In this section we consider bipartite graphs, which treat source and destination nodes
separately (see example in Figure 3.12). As will become clear later, we discover sepa-
rate source and destination partitions, which are desirable in several application domains.
Nonetheless, our methods can be easily modified to deal with unipartite graphs, by con-
straining the source-partitions to be the same as the destination-partitions [26].

The main insight of dealing with such graphs is to group “similar” sources together into
source-groups (or row-groups), and also “similar” destinations together, into destination-
groups (or column-groups). Examples in Section 3.3.4 show how much more orderly (and
easier to compress) the adjacency matrix of a graph is, after we strategically re-order its
rows and columns. The exact definition of “similar” is actually simple, and rigorous: the
most similar source-partition for a given source node is the one that leads to small encoding
cost (see Section 3.3.2 for more details).

Furthermore, if these communities (source and destination partitions) do not change
much over time, consecutive snapshots of the evolving graphs have similar descriptions
and can also be grouped together into a time segment, to achieve better compression.
Whenever a new graph snapshot cannot fit well into the old segment (in terms of compres-
sion), GraphScope introduces a change-point, and starts a new segment at that time-stamp.
Those change points often detect drastic discontinuities in time.

Contributions Our proposed approach, GraphScope, monitors communities and their
changes in a stream of graphs efficiently. It has the following key properties:

• Parameter-free: GraphScope is completely automatic, requiring no parameters from
the user (like number of communities, thresholds to assess community drifts, and
so on). Instead, it is based on sound information-theoretic principles, specifically,
MDL.

100

• Adaptive: It can effectively track communities over time, discovering both commu-
nities as well as change-points in time, that agree with human intuition.

• Streaming: It is fast, incremental and scalable for the streaming environment.

We demonstrate the efficiency and effectiveness of our approach in discovering and track-
ing communities in real graphs from several domains.

3.3.1 Problem definition

In this section, we formally introduce the necessary notations and formulate the problems.

Notation and definition. Calligraphic letters always denote graph streams or graph
stream segments (consisting of one or more graph snapshots), while individual graph snap-
shots are denoted by non-calligraphic, upper-case letters. Superscripts in parentheses de-
note either timestamps t or graph segment indices s, accordingly. Similarly, subscripts
denote either individual nodes i, j or node partitions p, q.

Definition 3.1 (Graph stream). A graph stream G is a sequence of graphs G(t), i.e.,

G := {G(1), G(2), . . . , G(t), . . .},

which grows indefinitely over time. Each of these graphs links m source nodes to n desti-
nation nodes.

For example in Figure 3.12, the first row shows the first three graphs in a graph stream,
where m = 4 and n = 3. Furthermore, the graphs are represented as sparse matrices
in the bottom of Figure 3.12 (a black entry is 1, which indicates an edge between the
corresponding nodes; likewise a white entry is 0).

In general, each graph may be viewed as an m × n binary adjacency matrix, where
rows 1 ≤ i ≤ m correspond to source nodes and columns 1 ≤ j ≤ n correspond to
destination nodes. We use sparse representation of the matrix (i.e., only non-zero entries
are stored) whose space consumption is similar to adjacency list representation. Without
loss of generality, we assume m and n are the same for all graphs in the stream; if not, we
can introduce all-zero rows or columns in the adjacency matrices.

One of our goals is to track how the structure of the graphs G(t), t ≥ 1, evolves over
time. To that end, we will group consecutive timestamps into segments.

101

Sym. Definition
G, G(s) Graph stream, Graph segment
t Timestamp, t ≥ 1.
m, n Number of source(destination) nodes.
G(t) Graph at time t (m× n adjacency matrix).
i, j Node indices, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
G

(t)
i,j Indicator for edge (i, j) at time t.

s Graph segment index, s ≥ 1.
ts Starting time of the s-th segment.
ks,`s Number of source (dest.) partitions for segment s.
p, q Partition indices, 1 ≤ p ≤ ks, 1 ≤ q ≤ `s.
I

(s)
p Set of sources belonging to the p-th partition, during the s-th segment.

J
(s)
q Similar to I

(s)
p , but for destination nodes.

m
(s)
p Source partition size, m

(s)
p ≡ |I(s)

p |, 1 ≤ p ≤ ks.
n

(s)
p Dest. partition size, n

(s)
p ≡ |J (s)

p |, 1 ≤ p ≤ `s.
G(s)

p,q Subgraphs induced by p-th and q-th partitions of segment s, i.e., subgraph
segment

|G(s)
p,q| Size of subgraphs segment, |G(s)

p,q| := m
(s)
p n

(s)
q (ts+1 − ts).

|E|(s)p,q Number of edges in G(s)
p,q

ρ
(s)
p,q Density of G(s)

p,q, |E|(s)p,q

|G(s)
p,q |

H(.) Shannon entropy function

Table 3.4: Definitions of symbols

Definition 3.2 (Graph stream segment). The set of graphs between timestamps ts and
ts+1 − 1 (inclusive) consist the s-th segment G(s), s ≥ 1, which has length ts+1 − ts,

G(s) := {G(ts), G(ts+1), . . . , G(ts+1−1)}.

Intuitively, a “graph stream segment” (or just “graph segment”) is a set of consecutive
graphs in a graph stream. For example in Figure 3.12, G(1) is a graph segment consisting
of two graph G(1) and G(2).

Next, within each segment, we will partition the source and destination nodes into
source partitions and destination partitions, respectively.

Definition 3.3 (Graph segment partitions). For each segment s ≥ 1, we partition source
nodes into ks source partitions and destination nodes into `s destination partitions. The

102

set of source nodes that are assigned into the p-th source partition 1 ≤ p ≤ ks is denoted
by I

(s)
p . Similarly, the set of destination nodes assigned to the q-th destination partition is

denoted by J
(s)
q , for 1 ≤ q ≤ `s.

The sets I
(s)
p (1 ≤ p ≤ ks) partition the source nodes, in the sense that I

(s)
p ∩ I

(s)
p′ = ∅

for p 6= p′, while
⋃

p I
(s)
p = {1, . . . ,m}. Similarly, the sets J

(s)
q (1 ≤ q ≤ ls) partition

the destination nodes. For example in Figure 3.12, the first graph segment G(1) has source
partitions I

(1)
1 = {1, 2}, I

(1)
2 = {3, 4}, and destination partitions J

(1)
1 = {1}, J

(1)
2 = {2, 3}

where k1 = 2, `1 = 2. We can similarly define source and destination partition for the
second graph segment G(2), where k2 = 3, `2 = 3.

Problem formulation. The ultimate goals are to find communities on time-evolving
graphs along with the change-points, if any. Thus, the following two problems need to
be addressed.

Problem 3.1 (Partition Identification). Given a graph stream segment G(s), how to find
good partitions of source and destination nodes, which summarize the fundamental com-
munity structure.

The meaning of “good” will be made precise in the next section, which formulates
our cost objective function. However, to obtain an answer for the above problem, two
important sub-questions need to be answered:

• How to assign the m source and n destination nodes into ks source and `s destination
partitions?

• How to determine ks and `s?

Problem 3.2 (Time Segmentation). Given a graph stream G, how can we incrementally
construct graph segments, by selecting good change points ts.

Section 3.3.3 presents the algorithms and formalizes the notion of “good” for both
problems above. We name the whole analytic process GraphScope.

3.3.2 GraphScope encoding

Our mining framework is based on one form of the Minimum Description Length (MDL)
principle and employs a lossless encoding scheme for a graph stream. Our objective func-
tion estimates the number of bits needed to encode the full graph stream so far. Our

103

Figure 3.12: Notation illustration: A graph stream with 3 graphs in 2 segments. First graph
segment consisting of G(1) and G(2) has two source partitions I

(1)
1 = {1, 2}, I

(1)
2 = {3, 4}; two

destination partitions J
(1)
1 = {1}, J

(1)
2 = {2, 3}. Second graph segment consisting of G(3) has three

source partitions I
(2)
1 = {1}, I

(2)
2 = {2, 3}, I

(2)
3 = {4}; three destination partitions J

(2)
1 = {1},

J
(2)
2 = {2}, J

(2)
2 = {3}.

proposed encoding scheme takes into account both the community structures, as well as
their change points in time, in order to achieve a concise description of the data. The fun-
damental trade-off that decides the “best” answers to problems 1 and 2 in Section 3.3.1 is
between (i) the number of bits needed to describe the communities (or, partitions) and their
change points (or, segments) and (ii) the number of bits needed to describe the individual
edges in the stream, given this information.

We begin by first assuming that the change-points as well the source and destination
partitions for each graph segment are given, and we show how to estimate the bit cost
to describe the individual edges (part (ii) above). Next, we show how to incorporate the
partitions and segments into an encoding of the entire stream (part (i) above).

104

Graph encoding

In this paper, a graph is presented as a m-by-n binary matrix. For example in Figure 3.12,
G(1) is represented as

G(1) =

1 0 0
1 0 0
0 1 1
0 0 1

 (3.4)

Conceptually, we can store a given binary matrix as a binary string with length mn,
along with the two integers m and n. For example, equation 3.4 can be stored as 1100 0010 0011
(in column major order), along with two integers 4 and 3.

To further save space, we can adopt some standard lossless compression scheme (such
as Huffman coding, or arithmetic coding [39]) to encode the binary string, which formally
can be viewed as a sequence of realizations of a binomial random variable X . The code
length for that is accurately estimated as mnH(X) where H(X) is the entropy of variable
X . For notational convenience, we also write that as mnH(G(t)). Additionally, three
integers need to be stored: the matrix sizes m and n, and the number of ones in the matrix
(i.e., the number of edges in the graph) denoted as |E| 7. The cost for storing three integers
is log? |E| + log? m + log? n bits, where log? is the universal code length for an integer8.
Notice that this scheme can be extended to a sequence of graphs in a segment.

More generally, if the random variable X can take values from the set M , with size
|M | (a multinomial distribution), the entropy of X is

H(X) = −
∑

x∈M p(x) log p(x).

where p(x) is the probability that X = x. Moreover, the maximum of H(X) is log |M |
when p(x)= 1

|M | for all x ∈M (pure random, most difficult to compress); the minimum is
0 when p(x) = 1 for a particular x ∈M (deterministic and constant, easiest to compress).
For the binomial case, if all symbols are all 0 or all 1 in the string, we do not have to store
anything because by knowing the number of ones in the string and the sizes of matrix, the
receiver is already able to decode the data completely.

With this observation in mind, the goal is to organize the matrix (graph) into some
homogeneous sub-matrices with low entropy and compress them separately, as we will
describe next.

7|E| is needed for computing the probability of ones or zeros, which is required for several encoding
scheme such as Huffman coding

8To encode a positive integer x, we need log? x ≈ log2 x + log2 log2 x + . . ., where only the positive
terms are retained and this is the optimal length, if the range of x is unknown [111]

105

Graph Segment encoding

Given a graph stream segment G(s) and its partition assignments, we can precisely compute
the cost for transmitting the segment as two parts: 1) Partition encoding cost: the model
complexity for partition assignments, 2) Graph encoding cost: the actual code for the
graph segment.

Partition encoding cost. The description complexity for transmitting the partition assign-
ments for graph segment G(s) consists of the following terms:

First, we need to send the number of source and destination nodes m and n using
log? m + log? n bits. Note that, this term is constant, which has no effect on the choice of
final partitions.

Second, we shall send the number of source and destination partitions which is log? ks+
log? `s.

Third, we shall send the source and destination partition assignments. To exploit the
non-uniformity across partitions, the encoding cost is mH(P) + nH(Q) where P is a

multinomial random variable with the probability pi =
m

(s)
i

m
and m

(s)
i is the size of i-th

source partition 1 ≤ i ≤ ks). Similarly, Q is another multinomial random variable with

qi =
n

(s)
i

n
and n

(s)
i is the size of i-th destination partition, 1 ≤ i ≤ `s.

For example in Figure 3.12, the partition sizes for first segment G(1) are m
(1)
1 = m

(1)
2 = 2,

n
(1)
1 = 1, and n

(1)
2 = 2; the partition assignments for G(1) costs −4(2

4
log(2

4
) + 2

4
log(2

4
)) −

3(1
3
log(1

3
) + 2

3
log(2

3
)) bits.

In summary, the partition encoding cost for graph segment G(s) is

C(s)
p := log? m + log? n + log? ks + log? `s + (3.5)

mH(P) + nH(Q)

where P and Q are multinomial random variables for source and destination partitions,
respectively.

Graph encoding cost. After transmitting the partition encoding, the actual graph segment
G(s) is transmitted as ks`s subgraph segments. To facilitate the discussion, we define the
entropy term for a subgraph segment G(s)

p,q as

H(G(s)
p,q) = −

(
ρ(s)

p,q log ρ(s)
p,q + (1− ρ(s)

p,q) log(1− ρ(s)
p,q)

)
(3.6)

where ρ
(s)
p,q =

|E|(s)p,q

|G(s)
p,q |

is the density of subgraph segment G(s)
p,q. Intuitively, H(G(s)

p,q) quantifies

106

how difficult it is to compress the subgraph segment G(s)
p,q. In particular, if the entire sub-

graph segment is all 0 or all 1 (the density is exactly 0 or 1), the entropy term becomes
0.

With this, the graph encoding cost is

C(s)
g :=

ks∑
p=1

`s∑
q=1

(
log? |E|(s)p,q + |G(s)

p,q| ·H(G(s)
p,q)

)
. (3.7)

where |E|(s)p,q is the number of edges in the (p, q) sub-graphs of segment s; |G(s)
p,q| is the size

of sub-graph segment, i.e, m
(s)
p n

(s)
q (ts+1 − ts), and H(G(s)

p,q) is the entropy of the subgraph
segment defined in equation 3.6.

In the sub-graph segment G(1)
2,2 of Figure 3.12, the number of edges |E|(1)2,2 =3+4, G(1)

2,2 has
the size |G(1)

2,2|=2×2×2, the density ρ
(1)
2,2 = 7

8
, and the entropy H(G(1)

2,2)=−(7
8
log 7

8
+1

8
log 1

8
).

Putting everything together, we obtain the segment encoding cost as the follows:

Definition 3.4 (Segment encoding cost).

C(s) := log?(ts+1 − ts) + C(s)
p + C(s)

g . (3.8)

where ts+1−ts is the segment length, C
(s)
p is the partition encoding cost, C

(s)
g is the graph

encoding cost.

Graph stream encoding

Given a graph stream G, we partition it into a number of graph segments G(s)(s ≥ 1) and
compress each segment separately such that the total encoding cost is small.

Definition 3.5 (Total cost). The total encoding cost is

C :=
∑

s C(s). (3.9)

where C(s) is the encoding cost for the s-th graph stream segment.

For example in Figure 3.12, the encoding cost C up to timestamp 3 is the sum of the
costs of two graph stream segments G(1) and G(2).

Intuition. Intuitively, our encoding cost objective tries to decompose the graph into
subgraphs that are homogeneous, i.e., close to either fully-connected (cliques) or fully-
disconnected. Additionally, if such cliques are stable over time, then it places subsequent

107

graphs into the same segment. The encoding cost penalizes a large number of cliques or
lack of homogeneity. Hence, our model selection criterion favors simple enough decom-
positions that adequately capture the essential structure of the graph over time.

Having defined the objective precisely in equation 3.6 and equation 3.7, the next step
is to search for optimal partition and time segmentation. However, finding the optimal so-
lution is NP-hard9. Next, in Section 3.3.3, we present an alternating minimization method
coupled with an incremental segmentation process to perform the overall search.

3.3.3 GraphScope

In this section we describe our method, GraphScope by solving the two problems proposed
in Section 3.3.1. The goal is to find the appropriate number and position of change-points,
and the number and membership of source and destination partitions so that the cost of
(3.9) is minimized. Exhaustive enumeration is prohibitive, and thus we resort to alternating
minimization. Note that we drop the subscript s on ks and `s whenever it is clear from the
context.

Specifically, we have two steps: (a) how to find good communities (source and desti-
nation partitions), for a given set of graph snapshots that belong to the same segment. (b)
when to declare a time-tick as a change point and start a new graph segment. We describe
each next.

Partition Identification

Here we explain how to find source and destination partitions for a given graph segment
G(s). In order to do that, we need to answer the following two questions:

• How to find the best partitioning given the number of source and destination parti-
tions?

• How to search for the appropriate number of source and destination partitions?

Next, we present the solution for each step.

Finding the best partitioning. Given the number of the best source and destination parti-
tions k and `, we want to re-group sources and destinations into the better partitions. Typi-
cally this regrouping procedure alternates between source and destination nodes. Namely,

9It is NP-hard since, even allowing only column re-ordering, a reduction to the TSP problem can be
found [79].

108

Algorithm 3.7: REGROUP(Graph Segment G(s); partition size k,`; initial partitions
I(s), J (s))

Compute density ρ
(s)
p,q for all p, q based on I(s), J (s). repeat1

forall source s in G(s) do2

// assign s to the most similar partition

s is split in ` parts3

compute source density pi for each part4

assign s to source partition with the minimal encoding cost (Equation 3.11).5

Update destination partitions similarly6

until no change;7

we update the source partitions with respect to the current destination partitions, and vice
versa. More specifically, we alternate the following two steps until it converges:

• Update source partitions: for each source (a row of the graph matrix), consider
assigning it to the source partition that incurs the smallest encoding cost

• Update destination partitions: Similarly, for each destination (column), consider
assigning it to the destination partition that yields smaller encoding cost.

The cost of assigning a row to a row-group is discussed later (see (3.11)). The pseudo-code
is listed in Algorithm 3.7. The initialization of Algorithm 3.7 is discussed separately in
Section 3.3.3.

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

original graph destination partition source partition

Figure 3.13: Alternating partition on source and destination nodes on a graph with 2 communities
with size 150 and 50 plus 1% noise. For k = ` = 2, the correct partitions are identified after one
pass.

109

Determining the number of partitions. Given different values for k and `, we can easily
run Algorithm 3.7 and choose those leading to a smaller encoding cost. However, the
search space for k and ` is still too large to perform exhaustive tests. Fortunately for
the time-evolving graphs, the best k and ` are closely related to the ks−1 and `s−1. We
experimented with a number of different heuristics for quickly adjusting k and `, and
obtained good results with Algorithm 3.8. The central idea is to do local search around
some initial partition assignments, and adjust the number of partitions k and ` as well as
the partition assignments based on the encoding cost. Figure 3.14 illustrates the search
process in action. Starting the search with k = ` = 1, it successfully, finds the correct
number of partitions for this graph with 3 sub-matrices with size 100, 80 and 20.

Algorithm 3.8: SEARCHKL(Graph Segment G(s); initial partition size k,`; initial
partitions I(s), J (s))

repeat1

// try to merge source partitions

repeat2

Find the source partition pair (x, y) s.t. merging x and y gives smallest3

encoding cost for G(s).
if total encoding decrease then merge x,y4

until no more merge;5

// try to split source partition

repeat6

Find source partition x with largest average entropy per node.7

foreach source s in x do8

if average entropy reduces without s then9

assign s to the new partition10

ReGroup(G(s), updated partitions)11

until no decrease in encoding cost;12

Search destination partitions similarly13

until no changes;14

Cost computation for partition assignments. Here we present the details of how to
compute the encoding cost of assigning a node to a particular partition. Our discussion
focuses on assigning a source node to a source partition. The assignment for a destination
node is symmetric.

110

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

original k = 2, ` = 2 k = 2, ` = 3 k = 3, ` = 3

Figure 3.14: Search for best k and ` for a graph with 3 communities with size 100, 80, 20 plus
1 noise. The algorithm progressively improves the partition quality (reduces the encoding cost) by
changing the k and `.

Recall a graph segment G(s) consists of (ts+1 − ts) graphs, G(ts), . . . , G(ts+1−1). For
example in Figure 3.12, G(1) consists of 2 graphs, G(1) and G(2). Likewise, every source
node in a graph segment G(s) is associated with (ts+1− ts) sets of edges in these (ts+1− ts)
graphs. Therefore, the total number of possible edges out of one source node in G(s) is
(ts+1 − ts)n.

Furthermore, the destination partitions J
(s)
i divide the destination nodes into ` disjoint

sets with size n
(s)
i (1 ≤ i ≤ `,

∑
i n

(s)
i = n). For example, G(1) of Figure 3.12 has two

destination partitions (` = 2), where the first destination partition J
(1)
1 = {1}, and the

second destination partition J
(1)
2 = {2, 3}.

Similarly, all the edges from a single source node in graph segment G(s) are also split
into these ` sets. In G(1) of Figure 3.12, the edges from the 4-th source node are split into
two sets, where the first set J

(1)
1 has 0 edges and the second set J

(1)
2 3 edges10.

More formally, the edge pattern out of a source node is generated from ` binomial
distributions pi(1 ≤ i ≤ `) with respect to ` destination partitions. Note that pi(1) is the
density of the edges from that source node to the destination partition J

(s)
i , and pi(0) =

1 − pi(1). In G(1) of Figure 3.12, the 4-th source node has p1(1) = 0 since there are 0
edges from 4 to J

(1)
1 = {1}, and p1(1) = 3

4
since 3 out of 4 possible edges from 4 to

J
(2)
1 = {2, 3}.

One possible way of encoding the edges of one source node is based on precisely these
distributions pi, but as we shall see later, this is not very practical. More specifically,

10One edge from 4 to 3 in G(1), two edges from 4 to 2 and 3 in G(2) in Figure 3.12.

111

using the “true” distributions pi, the encoding cost of the source node’s edges in the graph
segment G(s) would be

C(p) = (ts+1 − ts)
∑`

i=1 niH(pi) (3.10)

where (ts+1−ts) is the number of graphs in the graph segment, n is the number of possible
edges out of a source node for each graph11, H(pi) =

∑
x={0,1} pi(x) log pi(x) is the

entropy for the each source node’s partition.

In G(1) of Figure 3.12, the number of graphs is ts+1− ts = 3−1 = 2; the number of
possible edges out of the 4-th source node n = 3; therefore, the 4-th source node costs
2×3×(0 + 3

4
log 3

4
+ 1

4
log 1

4
) = 2.25. Unfortunately, this is not practical to do so for every

source node, because the model complexity is too high. More specifically, we have to store
additional m` integers in order to decode all source nodes.

The practical option is to group them into a handful of source partitions and to en-
code/decode one partition at a time instead of one node at a time. Similar to a source node,
the edge pattern out of a source partition is also generated from ` binomial distributions
qi (1 ≤ i ≤ `). Now we encode the i-th source node based on the distribution qi for a
partition instead of the “true” distribution pi for the node. The encoding cost is

C(p,q) = (ts+1 − ts)
∑`

i=1 niH(pi,qi) (3.11)

where H(pi,qi) =
∑

x={0,1} pi(x) log qi(x) is the cross-entropy. Intuitively, the cross-
entropy is the encoding cost when using the distribution qi instead of the “true” distribution
pi. In G(1) of Figure 3.12, the cost of assigning the 4-th node to second source partition
I

(1)
2 is 2×3× (0+ 3

4
log 7

8
+ 1

4
log 1

8
) = 2.48 which is slightly higher than using the true

distribution that we just computed (2.25). However, the model complexity is much lower,
i.e., k` integers are needed instead of m`.

Time Segmentation

So far, we have discussed how to partition the source and destination nodes given a graph
segment G(s). Now we present the algorithm to construct the graph segments incrementally
when new graph snapshots at arrive every time-tick. Intuitively, we want to group “similar”
graphs from consecutive timestamps into one graph segment and encode them all together.
For example, in Figure 3.12, graphs G(1) and G(2) are similar (only one different edge),
and therefore we group them into one graph segment, G(1). On the other hand, G(3) is
quite different from the previous graphs, and hence we start a new segment G(2) whose first
member is G(3).

11 (ts+1 − ts)n is the total number of possible edges of a source node in the graph segment

112

The guiding principle here is still the encoding cost. More specifically, the algorithm
will combine the incoming graph with the current graph segment if there is a storage
benefit, otherwise we start a new segment with that graph. The meta-algorithm is listed in
Algorithm 3.9. Figure 3.15 illustrates the algorithm in action. A graph stream consists of
three graphs, where G(1) and G(2) have two groups of size 150 and 50, G(3) three groups of
size 100, 80 and 20, and every graph contains 1% noise. The algorithm decides to group
G(1), G(2) into the first graph segment, and put G(3) into another. During this process, the
correct partitions are also identified as show in the bottom of Figure 3.15. Furthermore,
within each segment, the correct partition assignments are identified.

Algorithm 3.9: GRAPHSCOPE(Graph Segment G(s); Encoding cost co; New Graph
G(t)

output: updated graph segment, new partition assignment I(s), J (s)

Compute new encoding cn of G(s)
⋃
{G(t)}1

Compute encoding cost c for just G(t)2

// check if there is any encoding benefit

if cn − co < c then3

// add G(t) in G(s)

G(s) ← G(s)
⋃
{G(t)}4

SearchKL for updated G(s)5

else6

// start a new segment from G(t)

G(s+1) := {G(t)}7

SearchKL for new G(s+1)8

Initialization

Once we decide to start a new segment, how should we initialize the number and mem-
bership of its partitions? There are several ways to do the initialization. Trading-off
convergence speed versus compression quality, we propose and study two alternatives:
Fresh-start. One option is to start from a small k and `, typically k = 1 and ` = 1, and

progressively increase them (see Algorithm 3.8) as well as re-group sources and destina-
tions (see Algorithm 3.7). From our experiments, this scheme is very effective in leading
to a good result. In terms of computational cost, it is relatively fast, since we start with
small k and `.

113

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

G(1) before G(2) before G(3) before

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

G(1) after G(2) after G(3) after

Figure 3.15: A graph stream with three graphs: The same communities appear in graph G(1)

and G(2), therefore, they are grouped into the same graph segment. However, G(3) has different
community structure, therefore, a new segment starts from G(3).

Resume. For time evolving graphs, consecutive graphs often have a strong similarity. We
can leverage this similarity in the search process by starting from old partitions. More
specifically, we initialize ks+1 and `s+1 to ks and `s, respectively. Additionally, we initial-
ize I(s+1) and J (s+1) to I(s) and J (s). We study the relative CPU performance of fresh-start
and resume in Section 3.3.4.

3.3.4 Experiments

In this section, we will evaluate the result on both community discovery and change detec-
tion of GraphScope using several real, large graph datasets. We first describe the datasets
in Section 3.3.4. Then we present our experiments, which are designed to answer the
following two questions:

• Mining Quality: How good is our method in terms of finding meaningful communi-
ties and change points (Section 3.3.4).

• Speed: How fast is it, and how does it scale up (Section 3.3.4).

114

Finally, we present some additional mining observations that our method automatically
identifies. To the best of our knowledge, no other parameter-free and incremental method
for time-evolving graphs has been proposed to date. Our goal is to automatically determine
the best change-points in time, as well as the best node partitioning, which concisely reveal
the basic structure of both communities as well as their change over time. It is not clear
how parameters of other methods (e.g., number of partitions, graph similarity thresholds,
etc) should be set for these methods to attain this goal. GraphScope is fully automatic and,
as we will show, still able to find meaningful communities and change points.

Enron timeline

19 Nov 2001: Enron restates 3rd quarter earnings
29 Nov 2001: Dynegy deal collapses

Nov 1999: Enron launched

14 Aug 2001: Kenneth Lay takes over as CEO

10 Jan 2002: DOJ confirms criminal investigation begun

23 Jan 2002: Kenneth Lay resigns from CEO
23 Jan 2002: FBI begins investigation of document shredding

30 Jan 2002: Enron names Stephen F. Cooper new CEO
4 Feb 2002: Lay implicated in plot to inflate profits and hide losses

24 Apr 2002: House passes accounting reform package
In

te
ns

ity

0 20 40 60 80 100 120 140 160

−5K

0

5K

10K

15K

20K

C
os

t s
av

in
gs

 (s
pl

it)

Feb 2001: Jeffrey Skilling takes over as CEO

Jun 2001: Rove divests his stocks in energy

Figure 3.16: ENRON dataset (Best viewed in color). Relative compression cost versus time. Large
cost indicates change points, which coincide with the key events. E.g., at time-tick 140 (Feb 2002),
CEO Ken Lay was implicated in fraud.

Datasets

In this section, we describe the datasets in our experiments.

The NETWORK Dataset. The traffic trace consists of TCP flow records collected at the
backbone router of a class-B university network. Each record in the trace corresponds to a

115

name m-by-n avg.|E| time T
NETWORK 29K-by-29K 12K 1, 222
ENRON 34k-by-34k 15K 165
CELLPHONE 97-by-3764 430 46
DEVICE 97-by-97 689 46
TRANSACTION 28-by-28 132 51

Table 3.5: Dataset summary

directional TCP flow between two hosts, with timestamps indicating when the flow started
and finished. With this traffic trace, we use a window size of one hour to construct the
source-destination graph stream. Each graph is represented by a sparse adjacency matrix
with the rows and the columns corresponding to source and destination IP addresses, re-
spectively. An edge in a graph G(t) means that there exist TCP flows (packets) sent from the
i-th source to the j-th destination during the t-th hour. The graphs involve m=n=21,837
unique campus hosts (the number of source and destination nodes) with a per-timestamp
average of over 12K distinct connections (the number of edges). The total number of
timestamps T is 1,222. Figure 3.17(a) shows an example of superimposing12 all source-
destination graphs in one time segment of 18 hours. Every row/column corresponds to a
source/destination; the dot there indicates there is at least a packet from the source to the
destination during that time segment. The graphs are correlated, with most of the traffic to
or from a small set of server-like hosts.

GraphScope automatically exploits the sparsity and correlation by organizing the sources
and destinations into homogeneous groups as shown in Figure 3.17(b).

The ENRON Dataset. This consists of the email communications in Enron Inc. from Jan
1999 to July 2002 [2]. We construct sender-to-recipient graphs on a weekly basis. The
graphs have m = n = 34, 275 senders/recipients (the number of nodes) with an average
of 1,479 distinct sender-receiver pairs (the number of edges) every week.

Like the NETWORK dataset, the graphs in ENRON are also correlated. GraphScope
can reorganize the graph into homogeneous partitions (see the visual comparison in Fig-
ure 3.18).

The CELLPHONE Dataset. The CELLPHONE dataset records the cellphone activity for
m=n=97 users from two different labs in MIT [1]. Each graph snapshot corresponds to
a week, from Jan 2004 to May 2005. We thus have T=46 graphs, one for each week,

12 Two graphs are superimposed together by taking the union of their edges.

116

(a) before (b) after

Figure 3.17: NETWORK before and after GraphScope for the graph segment between Jan 7 1:00,
2005 and Jan 7 19:00, 2005. GraphScope successfully rearrange the sources and destinations such
that the sub-matrices are much more homogeneous.

excluding weeks with no activity.

We plot the superimposed graphs of weeks 38 to 42 in 2004 at Figure 3.19(a), which
looks much more random than NETWORK and ENRON. However, GraphScope is still able
to extract the hidden structure from the graph as shown in Figure 3.19(b), which looks
much more homogeneous (more details in Section 3.3.4).

The DEVICE dataset. DEVICE dataset is constructed on the same 97 users whose cell-
phones periodically scan for nearby phones and computers over Bluetooth. The goal is
to understand people’s behavior from their proximity to others. Figure 3.20(a) plots the
superimposed user-to-user graphs for one time segment where every dot indicates that
the two corresponding users are physically near each other. Note that the first row repre-
sents all the devices that do not belong to any of the 97 individual users (mainly laptop
computers, PDAs and other peoples’ cellphones). Figure 3.20(b) shows the resulting user
partitions for that time segment, where cluster structure is revealed (see Section 3.3.4 for
details).

The Transaction Dataset. The TRANSACTION dataset has m=n=28 accounts of a
company, over 2,200 days. An edge indicates that the source account had funds trans-
fered to the destination account. Each graph snapshot covers transaction activities over a

117

(a) before (b) after

Figure 3.18: ENRON before and after GraphScope for the graph segment of week 35, 2001 to week
38, 2001. GraphScope can achieve significant compression by partitioning senders and recipients
into homogeneous groups

window of 40 days, resulting in T=51 time-ticks for our dataset.

Figure 3.26(a) shows the transaction graph for one timestamp. Every black square
at the (i, j) entry in Figure 3.26(a) indicates there is at least one transaction debiting the
ith account and crediting the jth account. After applying GraphScope on that timestamp
(see Figure 3.26(b)), the accounts are organized into very homogeneous groups with a few
exceptions.

Mining Case-studies

Now we qualitatively present the mining observation on all the datasets. More specifically,
we illustrate that (1) source and destination groups correspond to semantically meaningful
clusters; (2) the groups evolve over time; (3) time segments indicate interesting change-
points.

NETWORK: Interpretable groups. Despite the bursty nature of network traffic, Graph-
Scope can successfully cluster the source and destination hosts into meaningful groups.
Figure 3.21(a) and (b) show the active source and destination nodes organized by groups
for two different time segments. Note that Figure 3.21 is in log-log scale to visualize those
small partitions. For example, source nodes are grouped into (1) active hosts which talk to

118

0 500 1000 1500 2000 2500 3000 3500

0

10

20

30

40

50

60

70

80

90

nz = 1582

0 500 1000 1500 2000 2500 3000 3500

0

10

20

30

40

50

60

70

80

90

nz = 1582

(a) before (b) after

Figure 3.19: CELLPHONE before and after GraphScope, for the period of week 38 to 42 in 2004

a small number of hosts, (2) P2P hosts that scan a number of hosts, and (3) administrative
scanning hosts13 which scan many hosts. Similarly, destination hosts are grouped into (1)
active hosts, (2) cluster servers at which many students login remotely to work on different
tasks, (3) web servers which hosts the websites of different schools, and (4) mail servers
that have the most incoming connections. The main difference between Figure 3.21(a)
and (b) is that a source group of unusual scanners emerges in the latter. GraphScope can
automatically identify the change and decide to split into two time segments.

CELLPHONE: Evolving groups. As in NETWORK, we also observe meaningful groups in
CELLPHONE. Figure 3.22 (a) illustrate the calling patterns in the fall semester of 2004,
where two strong user partitions (G1 and G2) exist. The dense small partition G3 is the
service call in campus, which has a lot of incoming calls from everyone. Figure 3.22 (b)
illustrates that the calling patterns changed during the winter break which follows the fall
semester.

DEVICE: Evolving groups. The evolving group behavior is also observed in the DEVICE
dataset. In particular, two dense partitions appear in Figure 3.23(a): after inspecting the
user ids and their attributes, we found that the users in group U1 are all from the same
school with similar schedule, probably taking the same class; the users in U2 all work in

13The campus network is constantly running some port-scanning program to identify potential vulnera-
bilities of the in-network hosts.

119

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 1766

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 1766

(a) before (b) after

Figure 3.20: DEVICE before and after GraphScope for the time segment between week 38, 2004
and week 42, 2004. Interesting communities are identified

the same lab. In a later time segment (see Figure 3.23(b)), the partition U1 disappeared,
while the partition U2 is unchanged.

TRANSACTION. As shown in Figure 3.26(b), GraphScope successfully organizes the 28
accounts into three partitions. Upon closer inspection, these groups correspond to the
different functional groups of the accounts (e.g., ‘marketing’, ‘sales’)14. In Figure 3.26(b),
the interaction between first source partition (from the top) and second destination partition
(from the left) correspond to mainly the transactions from assets accounts to liability and
revenue accounts, which obeys common business practice.

ENRON: Change-point detection. The source and destination partitions usually corre-
spond to meaningful clusters for the given time segment. Moreover, the time segments
themselves usually encode important information about changes. Figure 3.16 plots the en-
coding cost difference between incorporating the new graph into the current time segment
vs. starting a new segment. The vertical lines on Figure 3.16 are the top 10 splits with
largest cost savings when starting a new segment, which actually correspond to the key
events related to Enron Inc. Moreover, the intensity in terms of magnitude and frequency
dramatically increases around Jan 2002 which coincides with several key incidents such
as the investigation on document shredding, and the CEO resignation.

14 Due to anonymity requirements, the account types are obfuscated.

120

Figure 3.21: NETWORK zoom-in (log-log plot): (a) Source nodes are grouped into active hosts and
security scanning program; Destination nodes are grouped into active hosts, clusters, web servers
and mail servers. (b) on a different time segment, a group of unusual scanners appears, in addition
to the earlier groups.

Quality and Scalability

We compare fresh-start and resume (see Section 3.3.3) in terms of compression benefit,
against the global compression estimate and the space requirement for the original graphs,
stored as sparse matrices (adjacency list representation). Figure 3.24 shows that both fresh-
start and resume GraphScope achieve high compression gain (less than 4% of the original
space), which is even better than the global compression on the graphs (the 3rd bar for
each dataset). Our two variations require about the same space.

Now we illustrate the CPU cost (scalability) of fresh-start and resume. As shown in
Figure 3.25(a) for NETWORK (similar result are achieved for the other datasets, hence omit-
ted), the CPU cost per timestamp/graph is stable over time for both fresh-start and resume,
which suggests that both proposed methods are scalable to streaming environments.

Furthermore, resume is much faster than fresh-start as shown in Figure 3.25(b), espe-
cially for large graphs such as in NETWORK. There, resume only uses 10% of CPU time
compared to fresh-start.

121

0 500 1000 1500 2000 2500 3000 3500

0

10

20

30

40

50

60

70

80

90

nz = 1582

G3

G2

G1

0 500 1000 1500 2000 2500 3000 3500

0

10

20

30

40

50

60

70

80

90

nz = 1713

G1’

G2’

(a) fall semester (b) winter break

Figure 3.22: CELLPHONE: a) Two calling groups appear during the fall semester; b) Call groups
changed in the winter break. The change point corresponds to the winter break.

3.3.5 Summary

We propose GraphScope, a parameter-free scheme to mine streams of graphs. Our method
has all of the following desired properties: 1) It is rigorous and automatic, with no need
for user-defined parameters. Instead, it uses the Minimum Description Language (MDL)
principle, to decide how to form communities, and when to modify them. 2) It is fast and
scalable, carefully designed to work in a streaming setting. 3) It is effective, discovering
meaningful communities and meaningful transition points.

We also present experiments on several real datasets, spanning 500 Gigabytes. The
datasets were from widely diverse applications (university network traffic, email from the
Enron company, cellphone call logs and Bluetooth connections). Because of its generality
and its information theoretic underpinnings, GraphScope is able to find meaningful groups
and patterns in all the above settings, without any specific fine-tuning on our side.

Future research directions include extensions to create hierarchical groupings, both of
the communities, as well as of the time segments.

122

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 1766

U2

U1

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

nz = 2109

U2

(a) two groups (b) one group disappeared

Figure 3.23: DEVICE: (a) two groups are prominent. Users in U1 are all from the same school
with similar schedule possibly taking the same class; Users in U2 are all working in the same lab.
(b) U1 disappears in the next time segment, while U2 remains unchanged.

3.4 Chapter summary: graph mining

Time-evolving graphs or second-order tensor streams have a variety of applications in
social network analysis, Internet monitoring, financial auditing and computational biology.
The key questions are the following: How to summarize time-evolving graphs? How to
find communities and track them over time? How to identify anomalies in the graphs? The
challenges are the huge size, sparse property and dynamic nature in the graphs.

We introduced two scalable techniques that exploit two different aspects of the real
graphs. First, we presented Compact Matrix Decomposition (CMD) which summarizes
the graphs as low-rank approximations similar to SVD but preserving the sparsity in the
process. In particular, CMD achieves orders of magnitudes improvement on both speed
and space compared to the state of arts. Also we illustrated the success of CMD on the
anomaly detection in network forensic application. Second, we developed GraphScope, an
online algorithm that incrementally clusters the time-evolving graphs in a parameter-free
fashion. GraphScope can track the community structure over time and identify the change
points. We applied GraphScope successfully on several real, large datasets including En-
ron email communication graphs. In particular, the change points on the Enron dataset
coincide with many real events such as FBI investigation on the document shredding.

Next, we will present general techniques to handle higher-order tensor streams.

123

NETWORK ENRON CELLPHONE DEVICE TRANSACTION
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ra
tio

 to
 o

rig
in

al
 d

at
a

resume

fresh−start

Compression

Figure 3.24: Relative Encoding Cost: Both resume and fresh-start methods give over an order of
magnitude space saving compared to the raw data and are much better than global compression on
the raw data.

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

18

timestamp (hour)

C
P

U
 c

os
t (

se
c)

resume

fresh−start

NETWORK ENRON CELLPHONE DEVICE TRANSACTION
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
s
u

m
/f

re
s
h

−
s
ta

rt
 r

a
ti
o

Ratio between resume and fresh−start CPU cost

(a) CPU cost (NETWORK) (b) Relative CPU

Figure 3.25: CPU cost: (a) the CPU costs for both resume and fresh-start GraphScope are stable
over time; (b) resume GraphScope is much faster than fresh-start GraphScope on the same datasets
(the error bars give 25% and 75% quantiles);

124

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

(a) before (b) after

Figure 3.26: TRANSACTION before and after GraphScope for a time segment of 5 months.
GraphScope is able to group accounts into partitions based on their types. Darker color indicates
multiple edges over time.

125

126

Chapter 4

Tensor Mining

“How to summarize high-order data cubes (tensor)? How to incremen-
tally update those patterns over time?”

Given a keyword-author-timestamp-conference bibliography, how can we find patterns and
latent concepts? Given Internet traffic data (who sends packets to whom, on what port, and
when), how can we find anomalies, patterns and summaries? Anomalies could be, e.g.,
port-scanners, patterns could be of the form “workstations are down on weekends, while
servers spike at Fridays for backups”. Summaries like the one above are useful to give us
an idea what is the past (which is probably the norm), so that we can spot deviations from
it in the future.

Powerful as they may be, matrix-based tools such as PCA and SVD can handle neither
of the two problems we stated in the beginning. The crux is that matrices have only two
“dimensions” (e.g., “customers” and “products”), while we may often need more, like
“authors”, “keywords”, “timestamps”, “conferences”. This is exactly what a tensor is,
and of course, a tensor is a generalization of a matrix (and of a vector, and of a scalar).
We propose to envision all such problems as tensor problems, to use the vast literature of
tensors to our benefit, and to introduce new tensor analysis tools, tailored for streaming
applications.

Using tensors, we can attack an even wider range of problems, that matrices can not
even touch. For example, 1) Rich, time-evolving network traffic data, as mentioned earlier:
we have tensors of order M= 3, with modes “source-IP”, “destination-IP” and “port” over
time. 2) Labeled graphs and social networks: suppose that we have different types of edges
in a social network (eg., who-called-whom, who-likes-whom, who-emailed-whom, who-
borrowed-money-from-whom). In that case, we have a 3rd order tensor, with edge-type

127

being the 3rd mode. Over time, we have multiple 3rd order tensors, which are still within
the reach of our upcoming tools. 3) Microarray data, with gene expressions evolving over
time [139]. Here we have genes-proteins over time, and we record the expression level: a
series of 2nd order tensors. 4) All OLAP and DataCube applications: customer-product-
branch sales data is a 3rd order tensor; and so is patient-diagnoses-drug treatment data.

Motivating example:. Let us consider the network monitoring example as shown in Fig-
ure 1.3. Here we have network flows arriving very fast and continuously through routers,
where each flow consists of source IP, destination IP, port number and the number of pack-
ets. How to monitor the dynamic traffic behavior? How to identify anomalies which can
signify a potential intrusion, or worm propagation, or an attack? What are the correlations
across the various sources, destinations and ports?

Therefore, from the data model aspect in this chapter, we focus on a more general and
expressive model tensor stream. For the network flow example, the 3rd order tensor for
a given time period has three modes: source, destination and port, which can be viewed
as a 3D data cube (see Figure 1.3(a)). An entry (i, j, k) in that tensor (like the small blue
cube in Figure 1.3(a)) has the number of packets from the corresponding source (i) to the
destination j through port k, during the given time period. The dynamic aspect comes
from the fact that new tensors are arriving continuously over time.

In this chapter, we present a general framework, Incremental Tensor Analysis (ITA)
for summarizing tensor streams. ITA incrementally summarizes input tensors in the tensor
stream as core tensors associated with projection matrices, one for each mode as shown in
Figure 1.3(b). The core tensor can be viewed as a low dimensional summary of an input
tensor; The projection matrices specify the transformation between the input tensor and
the core tensor. The projection matrices can be updated incrementally over time when a
new tensor arrives, and contain valuable information about which, eg., source IP addresses
are correlated with which destination IP addresses and destination ports, over time.

From the algorithmic aspect, we introduce three different variants of ITA:

• Dynamic Tensor Analysis (DTA) incrementally maintains covariance matrices for
all modes and uses the leading eigen-vectors of covariance matrices as projection
matrices.

• Streaming Tensor Analysis (STA) directly updates the leading eigen-vectors of co-
variance matrices using SPIRIT algorithm.

• Window-based Tensor Analysis (WTA) uses similar updates as DTA but perform
alternating iteration to further improve the results.

128

Finally, from the application aspect, we illustrate the anomaly detection and multi-way
LSI through DTA/STA and WTA. For anomaly detection, our method found suspicious
Internet activity in a real trace, and it also found the vast majority of injected anomalies
(see Section 4.3). For multi-way LSI, we found natural groups in a DBLP bibliography
dataset and in an environmental monitoring dataset.

4.1 Tensor background and related work

As mentioned, a tensor of order M closely resembles a Data Cube with M dimensions.
Formally, we write an M th order tensor X ∈ Rn1×···×nM as X[n1,...,nM], where ni (1 ≤
i ≤ M) is the dimensionality of the ith mode (“dimension” in OLAP terminology). For
brevity, we often omit the subscript [n1, . . . , nM].

We will also follow the typical conventions, and denote matrices with upper case bold
letters (e.g., U) column vectors with lower-case bold letters (e.g., x, scalars with lower-
case normal font (e.g., n), and tensors with calligraphic font (e.g., X). From the tensor
literature we need the following definitions.

4.1.1 Matrix Operators

The Kronecker product (or the tensor product), Khatri-Rao product and Hadamard product
are important matrix operators related to tensors.

Definition 4.1 (Kronecker Product). The Kronecker product of matrices A ∈ Rm×n and
B ∈ Rp×q is denoted as matrix A⊗B ∈ Rmp×nq:

A⊗B =

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

am1B am2B · · · amnB

The Kronecker product A ⊗ B creates many copies of matrix B and scales each one

by the corresponding entry of A. Kronecker product has the following properties (see [97]
for more complete discussion).

Property 4.1 (Kronecker Product). Let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×o and D ∈ Rq×r

129

then

(A⊗B)T = BT ⊗AT

(A⊗B)† = B† ⊗A†

(A⊗B)(C⊗D) = AC⊗BD

(A⊗B)⊗C = A⊗ (B⊗C)

where AT and A† are the transpose and pseudo-inverse of matrix A, respectively.

Definition 4.2 (Khatri-Rao Product). The Khatri-Rao product of matrices A ∈ Rm×n and
B ∈ Rp×n is denoted as A�B ∈ Rmp×n:

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn

]
The Khatri-Rao product requires the two matrices with the same number of columns.

The Khatri-Rao product can be viewed as a column-wise Kronecker product. Note that the
Khatri-Rao product of two vectors is identical to the Kronecker product of two vectors.

Definition 4.3 (Hadamard Product). The Hadamard product of matrices A ∈ Rm×n and
B ∈ Rm×n is denoted as A ∗B ∈ Rn×m:

A ∗B =

a11b11 a12b12 · · · a1nb1n

a21b21 a22b22 · · · a2nb2n
...

...
am1bm1 am2bm2 · · · amnbmn

Hadamard product performs element-wise multiplication between two matrices of the

same size.

Property 4.2 (Khatri-Rao Product). Let A ∈ Rm×n, B ∈ Rp×n and C ∈ Rq×n then

1. A�B�C = (A�B)�C = A� (B�C)

2. (A�B)T(A�B) = (ATA) ∗ (BTB)

3. (A�B)† = ((ATA) ∗ (BTB))†(A�B)T

The properties of Khatri-Rao product are important for reducing the computation cost
of tensor decomposition, especially PARAFAC.

Definition 4.4 (Outer product). The outer product of M vectors a(i)|Mi=1 ∈ Rni is denoted
as a(1) ◦ a(2) ◦ · · · ◦ a(M):

(a(1)◦a(2)◦· · ·◦a(M))i1i2...iM = a(1)(i1)a
(2)(i2) · · · a(M)(iM) for 1 ≤ ij ≤ nj, 1 ≤ j ≤M

130

4.1.2 Tensor Operators

Definition 4.5 (Mode Product). The d-mode product of a tensor X ∈ Rn1×n2×···×nM with
a matrix A ∈ Rr×nd is denoted as X×d A which is defined element-wise as

(X×d A)i1...id−1jid+1...iM =

nd∑
id=1

xi1×i2×···×iM ajid

Figure 4.1 shows an example of 3rd order tensor X mode-1 multiplies a matrix U. The
process is equivalent to first matricizing X along mode-1, then to doing matrix multiplica-
tion of U and X(1), finally folding the result back as a tensor.

Figure 4.1: 3rd order tensor X[n1,n2,n3] ×1 U results in a new tensor in Rr×n2×n3

In general, a tensor Y ∈ Rr1×···×rM can multiply a sequence of matrices U(i)|Mi=1 ∈

Rni×Ri as: Y ×1 U1 · · · ×M UM ∈ Rn1×···×nM ,which can be written as Y
M∏
i=1

×i
Ui for

clarity. Furthermore, the notation for Y ×1 U1 · · · ×i−1 Ui−1 ×i+1 Ui+1 · · · ×M UM (i.e.
multiplication of all Ujs except the i-th) is simplified as Y

∏
j 6=i

×j
Uj .

Property 4.3 (Mode Product). Let Y ∈ Rn1×n2×···×nM , then

1. Given A ∈ Rp×ni and B ∈ Rq×nj , Y×i A×j B = (Y×i A)×j B = (Y×j B)×i A

2. Given A ∈ Rp×ni and B ∈ Rq×p, then Y×i A×i B = Y×i (BA)

3. Given A ∈ Rp×ni with full column rank, then X = Y×i A⇒ Y = X×i A
†

4. A special case of above, if A ∈ Rp×ni is orthonormal with full column rank, then
X = Y×i A⇒ Y = X×i A

T

131

Definition 4.6 (Mode-n Matricization). The mode-d matricization or matrix unfolding of
an M th order tensor X ∈ Rn1×···×nM are vectors in Rnd obtained by keeping index d fixed
and varying the other indices. Therefore, the mode-d matricization X(d) is in R(nd×

Q
i6=d ni).

The mode-d matricization X is denoted as unfold(X ,d)= X(d). Similarly, the inverse
operation is denoted as fold(X(d)). In particular, we have X = fold(unfold(X , d)). Fig-
ure 4.2 shows an example of mode-1 matricizing of a 3rd order tensor X ∈ Rn1×n2×n3 to
the (n2 × n3)× n1-matrix X(1). Note that the shaded area of X(1) in Figure 4.2 the slice
of the 3rd mode along the 2nd dimension. A more general case of matricization forms a
matrix by partitioning all the modes into row and column groups [86].

Figure 4.2: 3rd order tensor X ∈ Rn1×n2×n3 is matricized along mode-1 to a matrix X(1) ∈
R(n2×n3)×n1 . The shaded area is the slice of the 3rd mode along the 2nd dimension.

Property 4.4 (Matricization). Given Y ∈ Rn1×n2×···×nM

1. If A ∈ Rk×nd , then X = Y×d A⇒ X(d) = AY(d)

2. If A(d) ∈ Rkd×nd |Md=1, then X = Y ×1 A(1) ×2 A(2) · · · ×M A(M) ⇔ X(d) =
A(d)Y(d)(A

(M) ⊗ · · · ⊗A(n+1)A(n−1) ⊗ · · · ⊗A(1))T

Definition 4.7 (Inner Product). The inner product of two tensors X, Y ∈ Rn1×···×nM is
denoted as 〈X, Y 〉:

〈X, Y 〉 = vec(X)Tvec(Y)

where vec(X) is the vectorized version of X.

Therefore, the norm of a tensor X ∈ Rn1×···×nM is defined as

‖X ‖2 = 〈X, X 〉

132

Property 4.5 (Inner Product). Assume all the sizes match,

1. 〈X, Y×d A 〉 = 〈X×d AT, Y 〉

2. If Q is an orthonormal matrix, then ‖X ‖ = ‖X×d Q ‖.

4.1.3 Tensor Decomposition

We introduce two popular tensor decompositions, namely the Tucker decomposition, and
the PARAllel FACtor Analysis (PARAFAC).

Tucker Decomposition

The main objectives of Tucker decomposition [125] is to approximate a large tensor using
a small tensor through a change of basis.

Definition 4.8 (Tucker Decomposition). Given an input tensor X ∈ Rn1×n2×···×nM and
core tensor sizes {r1, . . . , rM}, find a core tensor Y ∈ Rr1×r2×···×rM and a sequence of
projection matrices U(d)|Md=1 ∈ Rnd×rd such that

∥∥X− Y×1 U(1) × · · · ×M U(M)
∥∥ is

small, i.e., X ≈ Y×1 U(1) · · · ×M U(M).

The approximation can be exact if rd = nd, U(d) is full rank for 1 ≤ d ≤ M . Es-
sentially, Tucker decomposition changes the bases for every mode through the projection
matrix U(d)|Md=1.

Figure 4.3: 3rd order tensor X ∈ RI×J×K ≈ Y ×1 U ×2 V ×3 W where Y ∈ RR×S×T is the
core tensor, U,V,W the projection matrices.

133

Algorithm 4.1: HOSVD(tensor X ∈ Rn1×n2×···×nM , core sizes rd|Md=1)

Output: projection matrices U(d)|Md=1 and core tensor Y ∈ Rr1×r2×···×rM

for d = 1 to M do1

// Find the covariance matrix of mode-d matricization
C = X(d)X(d)

T2

Set U(d) to be the rd leading left eigenvectors of C3

Y = X×1 U(1)T · · · ×M U(M)T // Compute the core tensor4

Property 4.6 (Tucker Decomposition). The following presentations are equivalent:

1. Mode-n multiplication: X ≈ Y×1 U(1) · · · ×M U(M)

2. Matricization: X(d) ≈ U(d)Y(d)(U
(M) ⊗ · · · ⊗U(d+1) ⊗U(d−1) ⊗ · · · ⊗U(1))T

3. Outer product: X ≈
∑n1

i1=1

∑n2

i2=1 · · ·
∑nM

iM=1 yi1,i2,...,iM u
(1)
i1
◦ u

(2)
i2
◦ · · · ◦ u

(M)
iM

In general, the Tucker decomposition is not unique. In particular, any r-by-r orthonor-
mal transformation can be included without affecting the fit. e.g., Y ×1 U(1) ×2 U(2) =
(Y×B)×1 U(1)BT ×2 U(2)

High-Order SVD (HOSVD) and High-Order Orthogonal Iteration (HOOI) are two
popular algorithms to find the Tucker decomposition. HOSVD treats all the modes in-
dependently and performs matrix SVD on every matricization of the tensor; while HOOI
performs alternating optimization to find better projection matrices iteratively. In general,
HOSVD can be considered as a special case of HOOI with one iteration only.

PARAFAC

A special case of the Tucker decomposition is the case where the core tensor is super-
diagonal, also known as PARAFAC.

Definition 4.9 (PARAFAC). Given an input tensor X ∈ Rn1×n2×···×nM and the core size r,
find r rank-one tensors in the form of λiu

(1)
i ◦· · ·◦u

(M)
i where u

(d)
i |Md=1 ∈ Rnd for 1 ≤ i ≤ r

such that
∥∥∥X−

∑r
i=1 λiu

(1)
i ◦ · · · ◦ u

(M)
i

∥∥∥ is small, i.e., X ≈
∑r

i=1 λiu
(1)
i ◦ · · · ◦ u

(M)
i

Note that the projection matrix U(i) = [u
(i)
1 , . . . ,u

(i)
r] ∈ Rni×r is in general not or-

thonormal.

134

Algorithm 4.2: HOOI(tensor X ∈ Rn1×n2×···×nM , core sizes rd|Md=1)

Output: projection matrices U(d)|Md=1 and core tensor Y ∈ Rr1×r2×···×rM

Initialize projection matrices U(d)|Md=1 using HOSVD(Algorithm 4.1)1

while not converged do2

for d = 1 to M do3

// Project onto all but the d-th projection
matrices

Z = X×1 U(1)T · · · ×d−1 U(d−1)T ×d+1 U(d+1)T · · · ×M U(M)T4

Set U(d) to be the rd leading left eigenvectors of Z(d)Z(d)
T5

Y = X×1 U(1)T · · · ×M U(M)T // Compute the core tensor6

Property 4.7 (PARAFAC). The following presentations are equivalent,

1. Mode-n multiplication: X ≈ Y ×1 U(1) · · · ×M U(M) where is a super-diagonal
tensor with the diagonal entries λ1 . . . λr.

2. Matricization: X(d) ≈ U(d)Λ(U(M) � · · · �U(d+1) �U(d−1) � · · · �U(1))T where
Λ is a diagonal matrix with diagonal entries λ1 . . . λr.

3. Outer product: X ≈
∑r

i=1 λiu
(1)
i ◦ · · · ◦ u

(M)
i

Figure 4.4: 3rd order tensor X ∈ RI×J×K ≈
∑R

i=1 λiu(i) ◦ v(i) ◦w(i)

Solving the PARAFAC involves a similar alternating optimization procedure. In partic-
ular, it searches for the d-th projection matrix by fixing the rest, or more formally, the prod-
uct of U(d)Λ equals arg minB∈Rnd×R

∥∥X(n) −B(U(M) � · · · �U(d+1) �U(d−1) � · · · �U(1))T
∥∥

135

Algorithm 4.3: PARAFAC(tensor X ∈ Rn1×n2×···×nM , core size r)
Output: projection matrices U(d)|Md=1 and scaling factors λi|ri=1

Initialize projection matrices U(d)|Md=1 using HOSVD1

S is an r × r all-one matrix2

for d = 1 to M do3

C(d) = U(d)TU(d)4

S = S ∗C(d)5

while not converged do6

for d = 1 to M do7

// Element-wise division to remove old C(d), ε for
handling divided-by-0 exception

S = S./(C(d) + ε)8

BT = S†(U(M) � · · · �U(d+1) �U(d−1) � · · · �U(1))TX(d)
T9

U(d) equals the column-normalized B10

λ1 . . . λr are the scaling factors11

S = S ∗C(d) // update S12

which can be solved using Least square with one trick based on the property 4.2. I.e,

B∗T = (U(M) � · · · �U(d+1) �U(d−1) � · · · �U(1))†X(d)
T

= S†(U(M) � · · · �U(d+1) �U(d−1) � · · · �U(1))TX(d)
T

where S = (U(M)TU(M))∗ · · · ∗ (U(d+1)TU(d+1))∗ (U(d−1)TU(d−1))∗ · · · ∗ (U(1)TU(1)) ∈
Rr×r

Once the optimal B∗ is obtained, U(d) is the column normalized B∗ and Λ is a diagonal
matrix with the diagonal entries the normalized constants. The pseudocode is listed in
Algorithm 4.3.

4.1.4 Other tensor related work

Supervised tensor learning: Shashua and Levin [114] first applied the rank-one tensor
decomposition in linear image coding for image representation and classification. Mo-
tivated by the successes of the rank-one tensor decomposition in image analysis, Tao et
al. [122] extended it for classification. Ye et al. [135] used the tensor representation to

136

reduce the small samples size problem in linear discriminant analysis for 2nd order ten-
sors. Tao et al. [123] developed a general tensor discriminant analysis, which incorporated
the tensor analysis and a generalized linear discriminant analysis. All these methods are
offline methods and assume labeled data, which are not available for many applications.
Therefore, we focus on online unsupervised setting.

Unsupervised tensor learning: Vasilescu and Terzopoulos [127] introduced the tensor
singular value decomposition for face recognition. Ye [134] presented the generalized low
rank approximations which extends PCA from the vectors (1st-order tensors) into matri-
ces (2nd order tensors). Ding and Ye [49] proposed an approximation of [134]. Similar
approach is also proposed in [72]. Xu et al. [132] formally presented the tensor repre-
sentation for principal component analysis and applied it for face recognition. Drineas
and Mahoney [56] present an algorithm that approximates the tensor SVD using biased
sampling. Kolda et al. [87] apply PARAFAC on web graphs to generalize the hub and
authority scores for web ranking through anchor text information.

4.2 Incremental Tensor Analysis Framework

In this section, we first formally define the notations of tensor sequence and tensor stream
for streaming data. Then we introduce the Incremental Tensor Analysis (ITA) framework.

4.2.1 Data model

Definition 4.10 (Tensor Sequence). A sequence of M th order tensors X1 . . . XT , where
each Xt ∈ Rn1×···×nM (1 ≤ t ≤ T), is called tensor sequence. And T is the cardinality of
the tensor sequence.

In fact, we can view an M th order tensor sequence X1 . . . XT as a single (M+1)th
order tensor with the dimensionality T on the additional mode.

Definition 4.11 (Tensor Stream). A sequence of M th order tensor X1 . . . XT , where each
Xt ∈ Rn1×···×nM (1 ≤ t ≤ T), is called a tensor stream if T is the maximum index that
increases with time.

Intuitively, we can consider a tensor stream is growing incrementally over time. And
XT is the latest tensor in the stream. In the network monitoring example, a new 3rd order
tensor arrives every hour. For the simplicity of presentation, all the tensors are of the same
size, which can be relaxed in practice by zero-padding.

137

4.2.2 Offline Tensor Analysis

After defining the data models, now we introduce the core mining operations. First, we
introduce Offline Tensor Analysis for tensor sequences which is a generalization of PCA
for higher order tensors1. Unlike PCA, which requires the input to be vectors (1st-order
tensors), OTA can accept general M th order tensors for dimensionality reduction.

Definition 4.12 (Offline Tensor Analysis (OTA)). Given a sequence of tensors X1 . . . XT ,
where each Xt|Tt=1 ∈ Rn1×···×nM , find the projection matrices U(i)|Mi=1 ∈ Rni×ri and a
sequence of core tensors Yt|Tt=1 ∈ Rr1×···×rM , such that the reconstruction error e is mini-

mized: e =
∑T

t=1 ‖Xt − Yt

M∏
i=1

×i
U(i)‖

Figure 4.5 shows an example of OTA over n 2nd order tensors.

1N

2N

2N

1N

1U

Original Tensors

Core Tensors

R1

R2

n

R1

R2

U2
T

i

Figure 4.5: OTA projects n large 2nd order tensors Xi into n smaller 2nd order tensors Yi with
two projection matrices U1 and U2 (one for each mode).

Unfortunately, the closed form solution for OTA does not exist. An alternating pro-
jection is used to approach to the optimal projection matrices U(d)|Md=1. The iterative al-
gorithm converges in finite number of steps because each sub-optimization problem is
convex. The detailed algorithm is given in Algorithm 4.4. Intuitively, it projects and ma-
tricizes along each mode; and it performs PCA to find the projection matrix for that mode.
This process potentially needs more than one iteration.

In practice, this algorithm converges in a small number of iterations. In fact, Ding and
Ye [49] show the near-optimality of a similar algorithm for 2nd order tensors. Therefore,

1Similar ideas have been proposed for 2nd- or 3rd order tensors [89, 132, 72].

138

Algorithm 4.4: OTA(tensor Xt|Tt=1 ∈ Rn1×n2×···×nM , core sizes rd|Md=1)

Output: projection matrices U(d)|Md=1 ∈ Rnd×rd and core tensor
Yt|Tt=1 ∈ Rr1×r2×···×rM

Initialize projection matrix U(d)|Md=1 to be nd-by-rd truncated identity1

while not converged do2

for d = 1 to M do3

C(d) = nd-by-nd all zeros matrix4

for t = 1 to T do5

// Project onto all but d-th projection matrices
Z = Xt ×1 U(1)T · · · ×d−1 U(d−1)T ×d+1 U(d+1)T · · · ×M U(M)T6

// Update the variance matrix
C(d) = C(d) + Z(d)Z(d)

T7

Set U(d) be the top rd eigenvectors of C(d).8

for t = 1 to T do9

Yn = Xn ×1 U(1)T · · · ×M U(M)T // Compute the core tensors10

for time-critical applications, a single iteration is usually sufficient to obtain the near-
optimal projection matrices Ud|Md=1. In that case, the algorithm essentially unfolds the
tensor along each mode and applies PCA on those unfolded matrices separately.

Note that OTA requires all tensors available up front, which is not possible for dy-
namic environments (i.e., new tensors keep coming). Even if we want to apply OTA every
time that a new tensor arrives, it is prohibitively expensive or merely impossible since the
computation and space requirement are unbounded. Next we present an algorithm for the
dynamic setting.

4.2.3 Incremental Tensor Analysis

For tensor streams, it is not feasible to find the optimal projection matrices because new
tensors keep arriving. Furthermore, it is not sensible to have the same projection matrices
all the time because the characteristics of the data are likely to change over time. Instead,
Incremental Tensor Analysis (ITA) assumes the continuity over time.

Definition 4.13 (Incremental Tensor Analysis (ITA)). Given a new tensor Xt ∈ Rn1×···×nM

and old projection matrices, find the new projection matrices U(i) ∈ Rni×ri|Mi=1 and the

139

core tensor Yt such that the reconstruction error et is small: et = ‖Xt − Yt

M∏
i=1

×i
U(i)‖

ITA continuously updates the model as new input tensors arrive. Compared to OTA,
the differences are the following:

• Computational efficiency: ITA only processes each tensor once, while OTA may
process input tensors multiple times. In particular, OTA performs alternating opti-
mization over all data. ITA updates the model only based on the current data, which
is more efficient.

• Time dependency: The model of ITA (projection matrices in particular) is changing
over time while OTA computes a fixed model for all input tensors. Hence, the model
of ITA is time dependent.

In terms of computational efficiency, we adopt two different techniques to efficiently
update the model, namely, 1) incremental update of the covariance matrices as used in
DTA(Section 4.2.4) and WTA(Section 4.2.6); 2) incremental update of projection matrices
as used in STA(Section 4.2.5). In terms of time dependency, we adopt two schemes: 1)
exponential forgetting in DTA and STA and 2) sliding window in WTA.

4.2.4 Dynamic Tensor Analysis

Here we present the dynamic tensor analysis (DTA), an incremental algorithm for tensor
dimensionality reduction.

Intuition: The idea behind the incremental algorithm is to exploit two facts:

1. In general OTA can be computed relatively quickly once the covariance matrices2are
available;

2. Covariance matrices can be incrementally updated without storing any historical
tensor.

The algorithm processes each mode of the tensor at a time. In particular, the covariance
matrix of the dth mode is updated as:

Cd ← Cd + XT
(d)X(d)

2Recall the covariance matrix of X(d) ∈ R(
Q

i6=d ni)×nd is defined as C = XT
(d)X(d) ∈ Rnd×nd .

140

Algorithm 4.5: DTA(new tensor X ∈ Rn1×n2×···×nM , old projection matrices
U(d)|Md=1, energy matrices S(d)|Md=1, forgetting factor λ)

Output: projection matrices U(d)|Md=1 ∈ Rnd×rd and core tensor
Yt|Tt=1 ∈ Rr1×r2×···×rM

for d = 1 to M do1

// Reconstruct the old covariance
C(d) ← U(d)S(d)U(d)T2

// Update the covariance matrix
C(d) = λC(d) + X(d)X(d)

T3

Set U(d) be the top rd eigenvectors of C(d).4

Y = X×1 U(1)T · · · ×M U(M)T // Compute the core tensor5

where X(d) ∈ R(
Q

i6=d ni)×nd is the mode-d matricizing of the tensor X . The updated pro-
jection matrices can be computed by diagonalization: Cd = UdSdU

T
d , where Ud is an

orthogonal matrix and Sd is a diagonal matrix. The pseudo-code is listed in Algorithm 4.5.
The process is also visualized in Figure 4.6.

dU

T
dU

=

Reconstruct Variance Matrix

dC

× =

()dX()
T
dX

() ()
T
d dX X

M
a
tr

ic
iz

e
,

T
ra

n
sp

o
se

Construct Variance Matrix of
Incremental Tensor

dC

Update Variance Matrix

Diagonalize
Variance Matrix

dS

dU

T
dU

dS

Matricize

Figure 4.6: New tensorX is matricized along the dth mode. Then covariance matrix Cd is updated
by XT

(d)X(d). The projection matrix Ud is computed by diagonalizing Cd.
Forgetting factor: Dealing with time dependent models, we usually do not treat all the
timestamps equally. Often the recent timestamps are more important than the ones far
away from the past 3. More specifically, we introduce a forgetting factor into the model.

3Unless there is a seasonality in the data, which is not discussed in the paper.

141

In terms of implementation, the only change to Algorithm 4.5 is

Cd ← λCd + XT
(d)X(d)

where λ is the forgetting factor between 0 and 1. Herein λ = 0 when no historical tensors
are considered, while λ = 1 when historical tensors have the same weights as the new
tensor X . Note that the forgetting factor is a well-known trick in signal processing and
adaptive filtering [71].

Update Rank: One thing missing from Algorithm 4.5 is how to update the rank ri. In
general the rank can be different on each mode or can change over time. The idea is to
keep the smallest rank ri such that the energy ratio ‖Si‖F

/
‖X‖2F , is above the threshold

[80]. In all experiments, we set the threshold as 0.9 unless mentioned otherwise.

Complexity: The space consumption for incremental algorithm is
∏M

i=1 ni +
∑M

i=1 ni× ri

+
∑M

i=1 ri. The dominant factor is from the first term O(
∏M

i=1 ni). However, standard OTA
requires O(n

∏M
i=1 ni) for storing all tensors up to time n, which is unbounded.

The computation cost is
∑M

i=1 rin
2
i +

∑M
i=1 ni

∏M
j=1 nj +

∑M
i=1 r′in

2
i . Note that for a

medium or low order tensor (i.e., order M ≤ 5), the diagonalization is the main cost.
Section 4.2.5 introduces a faster approximation of DTA that avoids diagonalization.

For high order tensors (i.e., order M > 5), the dominant cost becomes O(
∑M

i=1 ni

∏M
j=1 nj)

from updating the covariance matrix (line 3). Nevertheless, the improvement of DTA is
still tremendous compared to OTA O(T

∏M
i=1 ni) where T is the number of all tensors up

to the current time.

4.2.5 Streaming Tensor Analysis

In this section, we present the streaming tensor analysis (STA), a fast algorithm to approx-
imate DTA without diagonalization. We first introduce the key component of tracking a
projection matrix. Then a complete algorithm is presented for STA.

Tracking a projection matrix: For most of time-critical applications, the diagonalization
process in DTA for every new tensor can be expensive. Specifically, when the change
of the covariance matrix is small, we can avoid the cost of diagonalization. The idea
is to continuously track the changes of projection matrices using the SPIRIT algorithm
described in Section 2.2.

Streaming tensor analysis: The goal of STA is to adjust the projection matrices smoothly
as the new tensor comes in. Note that the tracking process has to be run on all modes of
the new tensor. For a given mode, we first matricize the tensor X into a matrix X(d) (line

142

Algorithm 4.6: STA(new tensor X ∈ Rn1×n2×···×nM , old projection matrices
U(d)|Md=1, forgetting factor λ)

Output: projection matrices U(d)|Md=1 ∈ Rnd×rd and core tensor
Yt|Tt=1 ∈ Rr1×r2×···×rM

for d = 1 to M do1

foreach column vector x in X(d) do2

Update U(d) using Algorithm 2.1 by x with forgetting factor λ3

Y = X×1U
(1)T · · · ×M U(M) // Compute the core tensor4

2 of Algorithm 4.6), then adjust the projection matrix Ud by applying SPIRIT over the
columns of X(d). The full algorithm is in Algorithm 4.6. And the process is depicted in
Figure 4.7.

To further reduce the time complexity, we can select only a subset of the vectors in
X(d). For example, we can sample vectors with high norms, because those potentially give
higher impact to the projection matrix.

Complexity: The space complexity of STA is the same as DTA, which is only the size
of the new tensor. The computational complexity is O((

∑
i Ri)

∏
i Ni) which is smaller

than DTA (when Ri � Ni). The STA can be further improved with a random sampling
technique, i.e., by using only a subset of rows of X(d) for updating.

()
T
dX

Matricizing

dU

dS

x

iu

is

Pop out

Pop out Update

Update

Pop out

dS

dU

Figure 4.7: New tensor X is matricized along the dth mode. For every row of Xd, we update the
projection matrix Ud. And Sd helps determine the update size.

143

4.2.6 Window-based tensor analysis

Unlike DTA or STA that use the exponential forgetting factor, WTA handles time depen-
dency through a sliding window. Compared to the exponential forgetting scheme, the
sliding window method gives the same weight to all timestamps in the window. Now we
present WTA that incrementally maintains a sliding window model.

Definition 4.14 (Tensor window). A tensor window D(n, W) consists of a subset of a
tensor stream ending at time n with size W . Formally D(n, w) ∈ RW×n1×...×nM =
{Xn−w+1, . . . ,Xn} where each Xi ∈ Rn1×···×nM .

A tensor window localizes the tensor stream into a (smaller) tensor sequence with
cardinality W and at particular time n. The current tensor window refers to the window
ending at the current time.

After introducing the basic definitions, we now formalize the core problem, window-
based tensor analysis (WTA). The goal of WTA is to incrementally extract patterns from
tensor streams. Two versions of WTA are presented as follows:

Problem 4.1 (Independent-window tensor analysis). Given a tensor window D ∈ RW×n1×···×nM ,
find the projection matrices U(0) ∈ RW×r0 and U(i)|Mi=1 ∈ Rni×ri such that the reconstruc-

tion error is minimized: e = ‖D−D
M∏
i=0

×i
(U(i)TU(i))‖2F

The intuition of problem IW is illustrated in Figure 4.8 where a tensor window is
summarized into a core tensor associated with projection matrices. The core tensor Y is

defined as D
M∏
i=0

×i
U(i)T.

Essentially, this formulation treats the tensor windows independently. Next we relax
this independence assumption and propose the Moving Window problem which uses the
time dependence structure on the tensor windows.

Problem 4.2 (Moving-window tensor analysis). Given the current tensor window D(n, W) ∈
RW×n1×···×nM and the old result for D(n−1, W), find the new projection matrices U(0) ∈
RW×r0 and U(i) ∈ Rni×ri |Mi=1 such that the reconstruction error is minimized: e =

‖D(n, W)−D(n, W)
M∏
i=0

×i
(U(i)TU(i))‖2F

144

Iterative Optimization on tensor windows

Recall that the goal of tensor analysis is to find the set of projection matrices U(i)|Mi=0

that minimize the reconstruction error d(D, D̃), where d(·, ·) is a divergence function
between two tensors; D is the input tensor; D̃ is the approximation tensor defined as

D
M∏
i=0

×i
(U(i)TU(i)).

These types of problems can usually be solved through iterative optimization tech-
niques, such as Tucker and PARAFAC. The principle is to optimize parameters one at a
time by fixing all the rest. The benefit comes from the simplicity and robustness of the
algorithms. To develop a concrete algorithm for WTA, three things have to be specified:

Initialization condition: This turns out to be a crucial component for data streams. Two
different schemes for this are presented in this section, namely the Independent Window
(IW) and the Moving Window (MW) schemes.

Optimization strategy: This is closely related to the divergence function d(·, ·). Gradient
descent type of methods can be developed in most of cases. However, in this paper, we
use the square Frobenius norm ‖ · ‖2F as the divergence function, which naturally leads to
a simpler iterated method, alternating least squares:

1. Project on all but mode-d: Z = D(
∏
i6=d

×i
U(i)T) ∈ Rr0×···×nd×···×rM

2. Matricize Z along mode-d as Z(d) ∈ Rnd×(
Q

k 6=d rk)

3. Construct the covariance matrix Cd = Z(d)Z(d)
T

4. Set U(d) as the leading rd eigenvectors of Cd

Convergence checking: We use the standard approach of monitoring the change of the
projection matrices until it is sufficiently small.

In a streaming setting, WTA requires quick updates when a new tensor window arrives.
Ultimately, this reduces to quickly setting a good initial condition for the iterative algo-
rithm. In this section, we first introduce the independent-window tensor analysis (IW) as
the baseline algorithm. Then the moving-window tensor analysis (MW) is presented that
exploits the time dependence structure to quickly set a good initial condition, thereby sig-
nificantly reducing the computational cost. Finally, we provide some practical guidelines
on how to choose the size of the core tensors.

In general, any scheme has to balance the quality of the initial condition with the cost
of obtaining it. A simple initialization can be fast, but it may require a large number of

145

…...W…...

D(n-2,W) D(n-1,W) D(n,W)

Core n-2 Core n-1 Core n

n

Time
Tensor
stream

Tensor
window

Tensor
analysis

Figure 4.8: IW computes the core tensors and projection matrices for every tensor window
separately, despite that fact there can be overlaps between tensor windows.

iterations until convergence. On the other hand, a complex scheme can give a good initial
condition leading to much fewer iterations, but the overall benefit can still be diminished
due to the time-consuming initialization.

Independent window tensor analysis (IW)

IW is a simple way to deal with tensor windows by fitting the model independently. At
every timestamp a tensor window D(n, W) is formed, which includes the current tensor
Dn and W −1 old tensors. Then we can apply the alternating least squares method (Algo-
rithm 4.3) on D(n, W) to compute the projection matrices Ui|Mi=0. The idea is illustrated
in Figure 4.8. The projection matrices U(i) can, in theory, be any orthonormal matrices.
For instance, we initialize U(i) to be a ni × ri truncated identity matrix in the experi-
ment, which leads to extremely fast initialization of the projection matrices. However, the
number of iterations until convergence can be large.

Moving-window tensor analysis (MW)

MW explicitly utilizes the overlapping information of the two consecutive tensor win-
dows to update the covariance matrices Cd|Md=1. More specifically, given a tensor window
D(n, W) ∈ RW×n1×···×nM , we have M+1 covariance matrices Ci|Mi=0, one for each mode.
Note that the current window D(n, W) removes an old tensor Dn−W and includes a new
tensor Dn, compared to the previous window D(n−1, W) (see Figure 4.9).

Update modes 1 to M:. For all but the time mode, the update can be easily achieved as

146

D(n-1,W)

D(n,W)

DnDn-W

Cd Cd
old new

…... …...

Time

Update variance matrix

Initialize U

dU

T
dU

T
e
n

s
o

r
S

tr
e
a

m
s

Λd

Figure 4.9: The key of MW is to initialize the projection matrices U(d)|Md=1 by diagonaliz-
ing the covariance matrices C(d), which are incrementally maintained. Note that U(0) for
the time mode is not initialized, since it is different from the other modes.

follows:
C(d) ← C(d) −Xn−W,(d)Xn−W,(d)

T + Xn,(d)Dn,(d)
T

where Xn−W,(d)(Xn,(d)) is the mode-d unfolding matrix of tensor Xn−W (Xn): see Fig-
ure 4.9. Intuitively, the covariance matrix can be updated easily when adding or deleting
rows from an unfolded matrix, since all computation only involves the added and deleted
rows.

Update mode 0:. For the time mode, the analogous update does not exist. Fortunately,
the iterative algorithm actually only needs initialization for all but one mode in order to
start. Therefore, after initialization of the other modes, the iterated update starts from the
time mode and proceeds until convergence. This gives both quick convergence and fast
initialization. The pseudo-code is listed in Algorithm 4.7.

Batch update:. Often the updates for window-based tensor analysis consist of more than
one tensors. Either the input tensors are coming in batches, or the processing unit waits
until enough new tensors appear and then triggers the updates. In terms of the algorithm,
the only difference is that the update to covariance matrices involves more than two tensors
(line 4 of Algorithm 4.7).

Choosing R:

The sizes of the core tensor r0 × . . . × rM are system parameters. In practice, there are
usually two mechanisms for setting them:

147

Algorithm 4.7: WTA(new tensor Dn ∈ Rn1×n2×···×nM , old tensor Dn−W ∈
Rn1×n2×···×nM , old covariance matrices C(d)|Md=1, Rr0×···×rM)

Output: new covariance matrix C(d)|Md=1, Rr0×···×rM , projection matrices
U(d)|Md=1 ∈ Rnd×rd and core tensor Yt|Tt=1 ∈ Rr1×r2×···×rM

// Initialize every mode except time
for d = 1 to M do1

Mode-d matricize Dn−W (Dn) as Dn−W,(d)(Dn,(d))2

Update C(d) ← C(d) −DT
n−W,(d)Dn−W,(d) + DT

n,(d)Dn,(d)3

Diagonalization C(d) = U(d)ΛdU
(d)T4

Truncate U(d) to first rd columns5

Apply the iterative algorithm with the new initialization6

• Reconstruction-guided: The larger ris are, the better approximation we can get.
But the computational and storage cost will increase accordingly (see Figure 4.20
for detailed discussion). Therefore, users can set a desirable threshold for the error,
then the proper sizes of ri can be chosen accordingly.

• Resource-guided: If the user has a resource constraint on the computation cost,
memory or storage limit, the core tensors can also be adjusted based on that.

In the former case, the size of the core tensors may change depending on the streams’
characteristics, while in the latter case, the reconstruction error may vary over time.

4.3 Experiments

In this section, we first evaluate DTA and STA in Section 4.3.1; then study WTA in Sec-
tion 4.3.2.

4.3.1 Evaluation on DTA and STA

Datasets

The Network Datasets: IP2D, IP3D
The traffic trace consists of TCP flow records collected at the backbone router of a

class-B university network. Each record in the trace corresponds to a directional TCP flow

148

name description dimension timestamps
IP2D Network 2D 500-by-500 1200
IP3D Network 3D 500-by-500-by-100 1200
DBLP DBLP data 4584-by-3741 11

Figure 4.10: Three datasets

between two hosts through a server port with timestamps indicating when the flow started
and finished.

With this traffic trace, we study how the communication patterns between hosts and
ports evolve over time, by reading traffic records from the trace, simulating network flows
arriving in real time. We use a window size of an hour to construct a source-destination
2nd order tensors and source-destination-port 3rd order tensor. For each 2nd order tensor,
the modes correspond to source and destination IP addresses, respectively, with the value
of each entry (i, j) representing the total number of TCP flows (packets) sent from the
i-th source to the j-th destination during an hour. Similarly, the modes for each 3rd order
tensor corresponds to the source-IP address, the destination-IP address and the server port
number, respectively.

Because the tensors are very sparse and the traffic flows are skewed towards a small
number of dimensions on each mode, we select only n1=n2=500 sources and destinations
and n3=100 port numbers with high traffic. Moreover, since the values are very skewed,
we scaled them by taking the logarithm (and actually, log(x + 1), to account for x = 0),
so that our tensor analysis is not dominated by a few very large entries. All figures are
constructed over a time interval of 1,200 timestamps(hours).

DBLP Bibliographic Data Set:
Based on the DBLP data [3], we generate author-keyword 2nd order tensors of the

KDD and VLDB conferences from year 1994 to 2004 (one tensor per year). The entry
(a, k) in such a tensor is the number of papers that author a has published using keyword
k during that year. In total, there are 4,584 authors and 3,741 keywords. Note that the key-
words are generated from the paper title after proper stemming and stop-word removal.

All the experiments are performed on the same dedicated server with four 2.4GHz
Xeon CPUs and 12GB memory. For each experiment, we repeat it 10 times, and report
the mean.

149

Computational cost

We first compare three different methods, namely, offline tensor analysis (OTA), dynamic
tensor analysis (DTA), streaming tensor analysis (STA), in terms of computation time for
different datasets. Figure 4.11 shows the CPU time in logarithm as a function of elapse
time. Since the new tensors keep coming, the cost of OTA increases linearly4; while
DTA and STA remains more or less constant. Note that DBLP in Figure 4.11(c) shows
lightly increasing trend on DTA and STA because the tensors become denser over time
(i.e., the number of published paper per year are increasing over time), which affects the
computation cost slightly.

0 20 40 60 80 100

10
0

10
1

10
2

time

C
PU

 ti
m

e(
se

c)

OTA
DTA
STA

0 20 40 60 80 100

10
1

10
2

10
3

time

C
PU

 ti
m

e(
se

c)

OTA
DTA
STA

1994 1996 1998 2000 2002 2004

10
2

year

C
PU

 ti
m

e(
se

c)

OTA
DTA
STA

(a)IP2D (b) IP3D (c) DBLP

Figure 4.11: Both DTA and STA use much less time than OTA over time across different datasets

We show that STA provides an efficient way to approximate DTA over time, especially
with sampling. More specifically, after matricizing, we sample the vectors with high norms
to update the projection matrices. Figure 4.12 shows the CPU time vs. sampling rate,
where STA runs much faster compared to DTA.

100% 75% 50% 25%
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

sampling percentage

tim
e(

se
c)

DTA
STA

100% 75% 50% 25%
0

2

4

6

8

10

12

sampling percentage

tim
e(

se
c)

DTA
STA

100% 75% 50% 25%
0

5

10

15

20

25

30

35

40

45

sampling percentage

tim
e(

se
c)

DTA
STA

(a) IP2D (b) IP3D (c) DBLP

Figure 4.12: STA uses much less CPU time than DTA across different datasets

4We estimate CPU time by extrapolation because OTA runs out of the memory after a few timestamps.

150

Accuracy comparison

Now we evaluate the approximation accuracy of DTA and STA compared to OTA.

Performance metric: Intuitively, the goal is to be able to compare how accurate each
tensor decomposition is to the original tensors. Therefore, reconstruction error provides a
natural way to quantify the accuracy. Error can always be reduced when more eigenvectors
are included (more columns in the projection matrices). Therefore, we fix the number of
eigenvectors in the projection matrices for all three methods such that the reconstruction
error for OTA is 20%. And we use the error ratios between DTA/STA to OTA as the
performance indices.

Evaluation results: Overall the reconstruction error of DTA and STA are close to the
expensive OTA method (see Figure 4.13(d)). Note that the cost for doing OTA is high
in both space and time complexity. That is why only a few timestamps are shown in
Figure 4.13 since after that point OTA runs out of the memory.

In more details, Figure 4.13(a)-(c) plot the error ratios over time for three datasets.
There we also plot the one that never updates the original projection matrices as a lower-
bound baseline.

DTA performs very close to OTA, besides much lower computational cost of DTA. An
even cheaper method, STA, usually gives a good approximation to DTA (see Figure 4.13(a)
and (b) for IP2D and IP3D). But note that STA performs considerably worse in DBLP in
Figure 4.13(c) because an adaptive subspace tracking technique as STA cannot keep up
the big changes of the DBLP tensors over consecutive timestamps. Therefore, STA is only
recommended for the fast incoming with significant time-dependency (i.e., the changes
over consecutive timestamps should not be too big).

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

hours

e
rr

o
r

ra
tio

DTA
STA
no update

1 2 3 4 5 6
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

hours

e
rr

o
r

ra
tio

DTA
STA
no update

2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

Years

e
rr

o
r

ra
tio

DTA
STA
no update

DTA STD No Update
0

0.5

1

1.5

2

2.5

3

3.5

4

a
ve

ra
g
e
 e

rr
o
r

ra
tio

IP2D
IP3D
DBLP

(a) IP2D (b) IP3D (c) DBLP (d) Average

Figure 4.13: Reconstruction error over time

151

4.3.2 Evaluation on WTA

Name Aspects Dimensionality
SENSOR (time, node, type) (65534, 52, 4)
MACHINE (time, machine, type) (5102, 9, 21)

Figure 4.14: Dataset summary

Environmental sensor data (SENSOR):

Description: The sensor data are collected from 52 MICA2 Mote sensors placed in a lab,
over a period of a month. Every 30 seconds each Mote sensor sends to the central collector
via wireless radio four types of measurements: light intensity, humidity, temperature, and
battery voltage. In order to compare different types, we scale each type of measurement
into zero mean and unit variance. This calibration process can actually be done online
since mean and variance can be easily updated incrementally. Note that we place equal
weight on all measurements across all nodes. However, other weighting schemes can be
easily applied, based on the application.

Characteristics: The data are very bursty but still correlated across locations and time.
For example, the measurements of same type behave similarly, since all the nodes are
deployed in the same lab.

Tensor construction: By scanning through the data once, the tensor windows are incre-
mentally constructed and processed/decomposed. More specifically, every tensor window
is a 3-mode tensor with dimensions (W , 52, 4) where W varies from 100 to 5000 in the
experiments.

Server monitoring data (MACHINE):

Description: The data are collected from 9 hosts in the same cluster, all of them running a
large distributed simulation program during the collection period of three days. In partic-
ular, we monitor 21 different metrics for each machine. Four example metrics on machine
1 are plotted in Figure 4.15.

Characteristics: The MACHINE data are even more bursty than SENSOR, with no clear
periodicity. However, the data are still correlated locally.

152

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

x 10
4

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.5 1 1.5 2 2.5 3

x 10
4

0

200

400

600

800

1000

1200

(a) Load (b) Number of tasks (c) User CPU (d) Byte received

Figure 4.15: MACHINE measurements are bursty and correlated but without any clear
periodicity.

Tensor construction: Similar to SENSOR, every tensor window is a 3-mode tensor with
dimensionality (W , 9, 21), where W varies from 100 to 5000 in the experiments.

Computational efficiency

In this section we compare two different methods, independent-window tensor analysis
(IW) and moving-window tensor analysis (MW), in terms of computation time and of
number of iterations to convergence, for both SENSOR and MACHINE datasets.

Parameters: This experiment has three parameters:

• Window size W: the number of timestamps included in each tensor window.

• Step ratio S: the number of newly arrived tensors in the new tensor windows divided
by window size W (a ratio between 0 and 1).

• Core tensor size: (r0, r1, r2) where r0 is the size of the time mode.

IW and MW reach the same error level5 across all the experiments, since we use the same
termination criterion for the iterative algorithm in both cases.

Stability over time.: Figure 4.16 shows the CPU time as a function of elapsed time, where
we set W = 1000, S = .2 (i.e. 20% new tensors). Overall, CPU time for both IW and
MW exhibits a constant trend. MW achieves about 30% overall improvement compared
to IW, on both datasets.

5Reconstruction error is e(D) = ||D−D̃||2F
||D||2F

, where the tensor reconstruction is D̃ = D
∏

×i(UiUT
i)

153

1 2 3 4 5 6

x 10
4

0

2

4

6

8

10

12

elapse time (min)

C
P

U
−

tim
e(

se
c)

IW
MW

1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35

elapse time (min)

C
P

U
−

tim
e(

se
c)

IW
MW

SENSOR MACHINE

Figure 4.16: CPU cost over time: both IW and MW give a constant trend over time but
MW runs 30% faster overall.

The performance gain of MW comes from its incremental initialization scheme. As
shown in Figure 4.17, the CPU time is strongly correlated with the number of iterations. As
a result of the clever initialization scheme of MW, which reduces the number of iterations
needed, MW is much faster than IW.

Consistent across different parameter settings.:

• Window size: Figure 4.18 shows CPU time (in log-scale) vs. window size W . As
expected, CPU time is increasing with window size. Note that the MW method
achieves large computational saving across all sizes, compared to IW.

• Step size: Figure 4.19 presents step size vs. CPU time. MW is much faster than IW
across all settings, even when there is no overlap between two consecutive tensor
windows (i.e., step size equals 1). This clearly shows that the importance of a good
initialization for the iterative algorithm.

• Core tensor size: We vary the core tensor size along the time-mode and show the
CPU time as a function of this size (see Figure 4.20). Again, MW performs much
faster than IW, over all sizes. Similar results are achieved when varying the sizes of
the other modes.

154

2 4 6 8 10 12
0

2

4

6

8

10

12

14

Iterations

C
P

U
 ti

m
e

IW
MW

0 5 10 15 20
5

10

15

20

25

30

35

40

Iterations

C
P

U
 ti

m
e

IW
MW

SENSOR MACHINE

Figure 4.17: Number of iterations is perfectly correlated with CPU time. MW converges
using much fewer iterations and CPU time than IW.

4.4 Case studies

In this section, we first illustrate the applications of DTA, STA in Section 4.4.1, then
present the applications of WTA on Section 4.4.2.

4.4.1 Applications of DTA and STA

We now illustrate two practical applications of DTA or STA: 1) Anomaly detection, which
tries to identify abnormal behavior across different tensors as well as within a tensor; 2)
Multi-way latent semantic indexing (LSI), which finds the correlated dimensions in the
same mode and across different modes.

Anomaly Detection

We envision the abnormal detection as a multi-level screening process, where we try to
find the anomaly from the broadest level and gradually narrow down to the specifics. In
particular, it can be considered as a three-level process for tensor streams: 1) given a
sequence of tensors, identify the abnormal ones; 2) on those suspicious tensors, we locate
the abnormal modes; 3) and then find the abnormal dimensions of the given mode. In

155

100 500 1000 2000 5000
10

0

10
1

window size

C
P

U
−

tim
e

(s
e

c)

IW
MW

100 500 1000 2000 5000

10
1

10
2

window size

C
P

U
−

tim
e(

se
c)

IW
MW

SENSOR MACHINE

Figure 4.18: CPU cost vs. window size: The CPU time (log-scale) shows the big differ-
ence between IW and MW for all W and for both datasets.

the network monitoring example, the system first tries to determine when the anomaly
occurs; then it tries to find why it occurs by looking at the traffic patterns from sources,
destinations and ports, respectively; finally, it narrows down the problem on specific hosts
or ports.

For level one (tensor level), we model the abnormality of a tensor X by its reconstruc-
tion error:

ei = ‖Xi − Yi

M∏
l=1

×l
U(l)‖F = ‖Xi −Xi

M∏
l=1

×l
U(l)TU(l)‖2F .

For level two (mode level), the reconstruction error of the l-th mode only involves one
projection matrix U(l) for a given tensor X :

ed = ‖X−X×l U
(l)TU(l)‖2F .

For level three (dimension level), the error of dimension d on the l-th mode is just the
reconstruction of the tensor slice of dimension d along the lth mode.

How much error is too much? We answer this question in the typical way: If the error
at time T is a few (say, 2) standard deviations away from the mean error so far, we declare
the tensor XT as abnormal. Formally, the condition is as follows:

eT+1 ≥ mean
(
ei|T+1

i=1

)
+ α · std

(
ei|T+1

i=1

)
.

156

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

stepsize size

C
P

U
−t

im
e(

se
c)

IW
MW

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

stepsize size

C
P

U
−

tim
e(

se
c)

IW
MW

SENSOR MACHINE

Figure 4.19: CPU cost vs. step size: MW consistently outperforms IW for all step sizes,
which indicates the importance of a good initialization for the iterative process.

Authors Keywords Year
michael carey,michael stonebraker, queri,parallel,optimization, 1995

h. jagadish,hector garcia-molina concurr,objectorient
surajit chaudhuri,mitch cherniack,michael distribut,systems,view,storag, 2004

stonebraker,ugur etintemel servic,process,cach
jiawei han,jian pei,philip s. yu, streams,pattern,support,cluster, 2004

jianyong wang,charu c. aggarwal index,gener,queri

Table 4.1: Example clusters: first two lines databases groups, last line data mining group.

Multi-way Latent Semantic Indexing

The goal of the multi-way LSI is to find high correlated dimensions within the same mode
and across different modes, and monitor them over time. Consider the DBLP example,
author-keyword over time, Figure 4.21 shows that initially (in X1) there is only one group,
DB, in which all authors and keywords are related to databases; later on (inXn) two groups
appear, namely, databases (DB) and data mining (DM).

Correlation within a mode: A projection matrix gives the correlation information among
dimensions for a given mode. More specifically, the dimensions of the lth mode can be
grouped based on their values in the columns of U(l). The entries with high absolute values

157

0 20 40 60 80 100
0

20

40

60

80

100

R on time−mode

C
P

U
−

tim
e(

se
c)

IW
MW

0 20 40 60 80 100
0

20

40

60

80

100

120

140

R on time−mode

C
P

U
−

tim
e(

se
c)

IW
MW

SENSOR MACHINE

Figure 4.20: CPU time vs. core tensor size: CPU time increases linearly with respect to
the core tensor size on time mode.

in a column of U(l) correspond to the important dimensions in the same “concept”.

In the DBLP example shown in Figure 4.21, U(K) corresponds to the keyword con-
cepts. First and second columns are the DB and DM concepts, respectively. The circles of
U(A) and U(K) indicate the influential authors and keywords in DM concept, respectively.
Similarly, the stars are for the DB concept. An example of actual keywords and authors is
in Table 4.1.

Correlations across modes: The interesting aspect of DTA is that the core tensor Y
provides indications on the correlations of different dimensions across different modes.
More specifically, a large entry in Y means a high correlation between the corresponding
columns in all modes. For example in Figure 4.21, the large values of Yi (in the shaded
region) activate the corresponding concepts of the tensor Xi. For simplicity, we described
a non-overlapping example, however, groups may overlap which actually happens often in
real datasets.

Correlations across time: And the core tensor Yis also capture the temporal evolution of
concepts. In particular, Y1 only activates the DB concept; while Yn activates both DB and
DM concepts.

Note that DTA monitors the projection matrices over time. In this case, the concept
space captured by projection matrix U(i)s are also changing over time.

158

Figure 4.21: U(A) and U(K) capture the DB (stars) and DM (circles) concepts in authors and
keywords, respectively; initially, only DB is activated in Y1; later on both DB and DM are in Yn.

4.4.2 Applications of WTA

In this section, we introduce a mining application of window-based tensor analysis on the
SENSOR dataset. The goal is to find high correlated dimensions within the same mode
(aspect) and across different modes (aspects) of a tensor window. Consider the SENSOR
example for environmental monitoring. It can not only identify the cluster behaviors (cor-
relation) on the time, location and type modes, but also detect the cross-mode association,
i.e., answering the question of “how do the three aspects interact with each other?”

Correlation within a mode/aspect: A projection matrix gives the correlation information
among dimensions of a given mode. More specifically, the dimensions of the i-th mode
can be grouped based on their values in the columns of U(i). The entries with high absolute
values in a column of U(i) correspond to the important dimensions of the same “concept.”

In the SENSOR data, Figure 4.22 shows the first and second columns of U(i) for all
three modes. Along the time mode, Figure 4.22(a1) gives the daily periodic pattern where
high values correspond to daytime and low values to nighttime. Figure 4.22(a2) captures
the residual “noise” in the data. Along the sensor mode, Figure 4.22(b1) indicates the main
variation of different sensors, i.e., the relative magnitude of each sensor’s “participation”
in this pattern. Figure 4.22(b2) shows just three participating abnormal sensors 18, 20,
and 47. Along the type mode, Figure 4.22(c1) shows that Light, Temperature and Volt-
age are positively correlated with each other and negatively correlated with Humidity6.
Figure 4.22(c2) shows another pattern focusing on Voltage.

6Voltage is indeed correlated with temperature due to the physical design of MICA2 sensors.

159

1st factor 2nd factor
scaling constant 238 scaling constant -154

0 500 1000

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time (min)

va
lu

e

0 500 1000

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time (min)

va
lu

e

(a1) daily pattern (a2) abnormal residual

va
lu

e

0 20 40 60

0

0.05

0.1

0.15

0.2

0.25

0.3

location

va
lu

e

0 20 40 60
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

location

va
lu

e

(b1) main pattern (b2) three abnormal sensors

Volt Humid Temp Light
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

type

va
lu

e

Volt Humid Temp Light
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

type

va
lu

e

(c1) Main correlation (c2) Voltage anomaly

Figure 4.22: WTA on environmental data, daily window

Correlations across modes/aspects: The core tensor Y can give indications on the cor-
relations across different modes. More specifically, a large entry in Y in absolute value
means a high correlation between the corresponding dimensions of different modes.

160

For the SENSOR example, Y(1, 1, 1) has the highest value (238), which means that the
first columns of U(i)|2i=0 (first factor in Figure 4.22) act together closely to characterize the
original data. More specifically, the tensor product of those first columns should be scaled
by 238 in order to approximate the tensor window. Intuitively, the daily periodicity, sensor
variation, and type correlation are all positively associated together.

The core tensor weight Y(2, 2, 2) for the second factor is -154, which means that the
tensor product of all second factors should be scaled by -154. Essentially, it means that sen-
sor 18 and 47 have lower voltage level while sensor 20 has higher voltage level compared
to the rest, because after negative scaling sensor 18 and 47 have negative values while
sensor 20 has a big positive value (see Figure 4.22(b2)), whereas the type concentration
is mainly on Voltage (see Figure 4.22(c2)). Combining the information in (a2,b2,c2), we
can conclude that sensor 18,20 and 47 have extreme values on voltage across all time.

In summary, the first factor describe the main patterns in the data, while the second
factor capture the abnormal behaviors.

Correlations across time: Over time, as the window moves forward, the correlations are
also drifting. In particular, the projection matrices along different modes are adjusting over
time. For SENSOR data, the time aspect are periodic with variation, while the location and
type aspect are more or less stable over time, which is indeed identified by running WTA
over time as shown in Figure 4.23.

4.5 Chapter summary: tensor mining

Numerous mining applications can be handled by matrices, the powerful SVD/PCA, and
its variants and extensions. However, they all fall short when we want to study multi-
ple modes, for example, time-evolving traffic matrices, time-evolving dataCubes, social
networks with labeled edges, to name a few.

We show how to solve these higher order problems, by introducing the concept and
vast machinery of tensors. Our contributions are the following:

We introduce tensors and specifically tensor streams to solve even more general stream-
ing problems than those in the past. Our approach is applicable to all time-evolving set-
tings, including co-evolving time series, data streams and sensor networks, time-evolving
graphs (even labeled ones), time-evolving social networks.

We propose three new tools, the dynamic, the streaming and the window-based tensor
analysis (DTA, STA and WTA) which incrementally mine and summarize large tensors,
saving space and detecting patterns. DTA, STA and WTA are fast, nimble (since they avoid

161

storing old tensors), and fully automatic, without requiring any user-defined parameters.

We provide experiments on several real, large datasets. With respect to efficiency,
all methods give significant performance gain compared to offline tensor analysis. With
respect to effectiveness, we applied our methods to anomaly detection and “multi-way
LSI”; in both settings our tools found interesting and explainable patterns.

162

1st factor 2nd factor

0 2000 4000 6000 8000 10000

−0.01

−0.005

0

0.005

0.01

0.015

0.02

time (min)

va
lu

e

0 2000 4000 6000 8000 10000

−0.01

−0.005

0

0.005

0.01

0.015

0.02

time (min)

va
lu

e

(a1) daily pattern (a2) abnormal residual

va
lu

e

0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

location

va
lu

e

0 20 40 60
−0.4

−0.2

0

0.2

0.4

0.6

location

va
lu

e

(b1) main pattern (b2) three abnormal sensors

Volt Humid Temp Light
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

type

va
lu

e

Volt Humid Temp Light
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

type

va
lu

e

(c1) Main correlation (c2) Voltage anomaly

Figure 4.23: WTA on environmental data, weekly window

163

164

Chapter 5

Conclusions

Modern applications often face huge amounts of data that arrive in real-time. A big chal-
lenge in the IT industry is to manage, utilize and understand this data in real-time. The
data is of high dimensionality, contains multiple aspects and arrives in high speed. The
data patterns change over time, e.g., the workload is different depending on the time of the
week. To deal with such dynamic and highly complex data, we propose the Incremental
Tensor Analysis (ITA) framework to find patterns and anomalies incrementally.

For example, in data centers, nearly every measurement needs to be monitored such as
power consumption, temperature and humidity (in the room), and workload and network
flow (in every machine). It is physically and economically impossible to have human ad-
ministrators monitoring everything. In order to monitor all the data streams in the data
center, smart monitoring programs need to be developed. They should be able to summa-
rize the data on the fly without using too many resources and require few tuning parameters
or even none. These kinds of applications require efficient and effective data mining algo-
rithms. The challenges for incremental pattern discovery concerns (a) high dimensionality
and multiple orders of the data, (b) space and computational requirements, (c) how to
minimize or even eliminate the need for parameter tuning.

To address these challenges, we first propose the tensor stream as a general dynamic
data model for diverse applications. Under this model, data streams and time-evolving
graphs become the 1st- and 2nd-order special cases, respectively.

Second, within the tensor stream perspective, we envision Incremental Pattern Dis-
covery as an online dimensionality reduction process. We developed an array of min-
ing tools including the incremental PCA (SPIRIT); and its high-order generalizations
(DTA/STA/WTA); sparsity preserving decompositions, CMD; and incremental commu-

165

nity detection based on the MDL principle, GraphScope.

Third, we demonstrate the effectiveness and efficiency of our methods on large, real
datasets. Specifically. for 1st order tensor streams, we develop the monitoring system
InteMon using SPIRIT, which is deployed to monitor 100 machines with petabyte storage.
For 2nd order tensor stream, we apply CMD on 500Gb of network traffic data, achieving
10X less space and time requirements compared to the previous state of the arts; we also
apply GraphScope on Enron email graphs to identify important patterns. For 3rd order
tensor streams, we apply DTA/STA/WTA on environmental sensors and discover cross-
mode correlations, which confirmed important patterns in the data.

This thesis focuses on mining different orders of tensor streams. The mining results are
presented as core tensors along with projection matrices. To realize these results, the de-
sign choices include 1) the order of the data, 2) the computational and storage requirement,
3) the parameter setting and 4) the properties of the projection matrices.

For stream mining (or first-order tensor streams), we developed the SPIRIT algorithm
which has the following characteristics: 1) It works with first-order tensor streams. 2)
It performs in an incremental fashion without the need to buffer any historical data. Its
computational cost per timestamp increases linearly with the dimensionality (independent
of the duration). 3) Only two parameters are needed, i.e., the min and max of the approxi-
mation accuracy thresholds. 4) It maintains a single orthogonal projection matrix.

SPIRIT has been applied to a variety of datasets, including the environmental sensor
data such as temperature, humidity, light intensity and chlorine levels in water distribution
systems. Also, the InteMon system [73] utilizes SPIRIT for compression and anomaly
detection on a data center. More specifically, it successfully identifies the abnormal be-
havior in the A/C unit and is able to achieve 10-to-1 compression ratio on the monitoring
data. We also extend SPIRIT to work in a distributed environment and apply it as a under-
lying computational kernel for two applications: local correlation measures and privacy
preservation. All of them provide streaming capability for various application domains.

For graph mining (second-order tensor streams), we introduced two techniques: Com-
pact Matrix Decomposition (CMD) and GraphScope. They concern two different charac-
teristics of real time-evolving graphs, i.e., the sparsity and time-dependency.

CMD deals with sparse graphs and has the following characteristics. 1) It works with
graphs (second tensors); 2) It requires only scanning a single graph/matrix twice, and
buffering a small number of columns and rows. Its computational cost increases linearly
on the dimensionality (the number of columns and rows of the original matrix). 3) Only
two parameters need to be set, namely the number of sampled columns and rows. 4) The
projection matrices are actual columns and rows from original matrix.

166

Furthermore, CMD provides a concise and intuitive summary of the original graphs.
In particular, CMD achieves orders of magnitude improvements on space and speed com-
pared to the previous state of the arts (on several real large datasets). Furthermore, the
results of CMD can also help with anomaly detection. e.g., CMD has successfully been
applied to network traffic flows. As a result, a worm-like hierarchical scanning behavior
is identified using CMD.

GraphScope is another proposed technique with the following characteristics: 1) It
clusters time-evolving graphs (second-order tensor streams) and identifies change points
in time. 2) It only requires buffering the current graph. Its computational cost increases
linearly on the number of edges. 3) No parameter is required thanks to the compression
objective. 4) The clustering assignments can be viewed as orthogonal matrices in which
the (i,j)-entry is an indicator variable showing whether the i-th node belongs to the j-th
cluster.

GraphScope has been successfully applied to a number of time-evolving graphs includ-
ing Enron email graphs, network traffic graphs, and financial transaction graphs. In Enron
email graphs, for example, the change points identified by GraphScope match well with
the key events associated with Enron such as the FBI investigation and CEO resignation.

For tensor mining (high-order tensor streams), we present the Incremental Tensor
Analysis (ITA) framework. Under the ITA framework, three variants are proposed with
different updating algorithms, specifically, Dynamic Tensor Analysis (DTA), Streaming
Tensor Analysis (STA), and Window-based Tensor Analysis (WTA). 1) They also work
with general high-order tensor streams. 2) The computational and storage costs of all
three variants are independent of the duration. 3) The only parameters are the sizes of the
core tensors. 4) They all maintain multiple orthogonal projection matrices (one for each
mode).

DTA, STA and WTA differ from each other in how they exploit the fundamental design
trade-offs for speed, space and accuracy. They have been successfully applied to many dif-
ferent applications such as community tracking on social networks, and anomaly detection
on network traffic flows. A summary of all the methods is shown in Table 5.1.

Orthogonal Non-orthogonal
1st order SPIRIT(2.2), PCA [76]
2nd order SVD CMD(3.2), GraphScope(3.3), [54, 47, 29]
M th order DTA,STA(4.2.4), [125] WTA(4.2.6), [70, 24]

Table 5.1: Algorithm classification

167

In conclusion, Incremental Pattern Discovery provides an unified view of several fun-
damental problems from the data mining perspective. A set of related tools are presented
all embodying the same approach, i.e., the pursuit of efficient and effective algorithms for
analyzing data streams automatically. Its success on diverse applications has confirmed
the significance of all the algorithms. This incremental data comprehension and decision
making is beyond the field of data mining. Incremental Pattern Discovery has far reaching
impact on many different disciplines: business management, natural science and engineer-
ing. Ultimately, we need an interdisciplinary solution to tackle these problems. In this
thesis, we addressed the problem from a data mining perspective, which emphasizes an
algorithmic perspective and also provides a few system prototypes. In the future, all these
techniques can be leveraged with a more system-oriented approach, such as deployment
to de-centralized clusters and integration with existing monitoring systems.

168

Bibliography

[1] http://reality.media.mit.edu/download.php. 3.3, 3.3.4

[2] http://www.cs.cmu.edu/ enron/. 3.2.4, 3.3, 3.3.4

[3] http://www.informatik.uni-trier.de/ ley/db/. 3.2.4, 4.3.1

[4] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Con-
vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora:
a new model and architecture for data stream management. The VLDB Journal,
12(2):120–139, 2003. 2.1.4

[5] Dimitris Achlioptas and Frank McSherry. Fast computation of low rank matrix
approximations. In STOC, 2001. 3.1.1, 3.2.3

[6] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework for
projected clustering of high dimensional data streams. In VLDB, pages 852–863,
2004. 3.1.3

[7] Charu C. Aggarwal, Jiawei Han, and Philip S. Yu. A framework for clustering
evolving data streams. In VLDB, 2003. 2.1.4

[8] Charu C. Aggarwal and Philip S. Yu. A condensation approach to privacy preserv-
ing data mining. In EDBT, 2004. 2.1.5

[9] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy pre-
serving data mining algorithms. In PODS, 2001. 2.1.5

[10] R. Agrawal and R. Srikant. Privacy preserving data mining. In SIGMOD, 2000.
2.1.5

[11] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving olap. In SIGMOD,
2005. 2.1.5

169

[12] Rakesh Agrawal, Roberto Bayardo, Christos Faloutsos, Jerry Kiernan, Ralf
Rantzau, and Ramakrishnan Srikant. Auditing compliance with a hippocratic
database. VLDB, 2004. 3, 3.3

[13] S. Agrawal and J. R. Haritsa. A framework for high-accuracy privacy-preserving
mining. In ICDE, 2005. 2.1.5

[14] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, and Jennifer Widom.
Characterizing memory requirements for queries over continuous data streams. In
PODS, 2002. 2.1.4

[15] Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. An event-based frame-
work for characterizing the evolutionary behavior of interaction graphs. In KDD,
2007. 3.1.4

[16] Brian Babcock, Shivnath Babu, Mayur Datar, and Rajeev Motwani. Chain : Op-
erator scheduling for memory minimization in data stream systems. In SIGMOD,
2003. 2.1.4

[17] Brian Babcock and Chris Olston. Distributed Top-K Monitoring. In SIGMOD,
2003. 2.1.4

[18] Stephen Bay, Krishna Kumaraswamy, Markus G. Anderle, Rohit Kumar, and
David M. Steier. Large scale detection of irregularities in accounting data. In
ICDM, pages 75–86, 2006. 1, 2.4, 3.3

[19] Michael W. Berry, Shakhina A. Pulatova, and G. W. Stewart. Computing sparse
reduced-rank approximations to sparse matrices. ACM Transactions on Mathemat-
ical Software, 31:252–269, 2005. 3.1.1

[20] J. Bethencourt, D. Song, and B. Waters. Constructions and practical applications
for private stream searching. In IEEE Symposium on Security and Privacy, 2006.
2.1.5

[21] Rajeev Motwani Brian Babcock, Mayur Datar. Sampling from a moving window
over streaming data. In SODA, 2002. 2.1.4

[22] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Forecas-
ing. Springer, 2nd edition, 2003. 2.5.3

[23] Donald Carney, Ugur Cetintemel, Alex Rasin, Stanley B. Zdonik, Mitch Cherniack,
and Michael Stonebraker. Operator scheduling in a data stream manager. In VLDB,
2003. 2.1.4

170

[24] J. D. Carroll and J. J. Chang. Analysis of individual differences in multidimensional
scaling via an N-way generalization of ‘Eckart-Young’ decomposition. Psychome-
trika, 35:283–319, 1970. 5

[25] Patrick Celka and Paul Colditz. A computer-aided detection of eeg seizures in
infants: A singular-spectrum approach and performance comparison. IEEE Trans.
Biomed. Eng, 49(5), 2002. 2.4

[26] Deepayan Chakrabarti. Autopart: Parameter-free graph partitioning and outlier de-
tection. In PKDD, pages 112–124, 2004. 3.3

[27] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators,
and algorithms. ACM Comput. Surv., 38(1):2, 2006. 3.1

[28] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary clustering.
In KDD, 2006. 3.1.4

[29] Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra S. Modha, and Christos
Faloutsos. Fully automatic cross-associations. In KDD, pages 79–88, 2004. 3.1.2,
3.1.3, 5

[30] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vi-
jayshankar Raman, Fred Reiss, and Mehul A. Shah. Telegraphcq: Continuous
dataflow processing for an uncertain world. In CIDR, 2003. 2.1.4

[31] K. Chen and L. Liu. Privacy preserving data classification with rotation perturba-
tion. In ICDM, 2005. 2.1.5, 2.5.1

[32] R. Chen, S. Krishnamoorthy, and H. Kargupta. Distributed Web Mining using
Bayesian Networks from Multiple Data Streams. In ICDM, pages 281–288, 2001.
2.1.4

[33] Yizong Cheng and George M. Church. Biclustering of expression data. In ISMB,
pages 93–10, 2000. 3.1.3

[34] D. W. Cheung, V. T. Ng, A. W. Fu, and Y. Fu. Efficient Mining of Association Rules
in Distributed Databases. TKDE, 8:911–922, 1996. 2.1.4

[35] Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L. Tseng. Evolu-
tionary spectral clustering by incorporating temporal smoothness. In KDD, 2007.
3.1.4

171

[36] Yun Chi, Shenghuo Zhu, Xiaodan Song, Junichi Tatemura, and Belle L. Tseng.
Structural and temporal analysis of the blogosphere through community factoriza-
tion. In KDD, 2007. 3.1.4

[37] Hyuk Cho, Inderjit S. Dhillon, Yuqiang Guan, and Suvrit Sra. Minimum sum
squared residue co-clustering of gene expression data. In SDM, 2004. 3.1.3

[38] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing
data streams using hamming norms (how to zero in). In VLDB, 2002. 2.1.4

[39] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-
Interscience, 1991. 3.3.2

[40] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.
Gigascope: a stream database for network applications. In SIGMOD, 2003. 2.1.4

[41] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate join pro-
cessing over data streams. In SIGMOD, 2003. 2.1.4

[42] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining
stream statistics over sliding windows. In SODA, 2002. 2.1.4

[43] L. de Lathauwer. Signal Processing Based on Multilinear Algebra. PhD thesis,
Katholieke, University of Leuven, Belgium, 1997. 1.1

[44] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6):391–407, 1990. 1.2, 2.1.1, 3.1.1

[45] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven
data acquisition in sensor networks. In VLDB, 2005. 2.5.4

[46] Amol Deshpande, Carlos Guestrin, Samuel Madden, and Wei Hong. Exploiting
correlated attributes in acqusitional query processing. In ICDE, 2005. 2.1.4

[47] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha.
Information-theoretic co-clustering. In KDD, pages 89–98, 2003. 1.2, 3.1.3, 5

[48] Kostas I. Diamantaras and Sun-Yuan Kung. Principal Component Neural Net-
works: Theory and Applications. John Wiley, 1996. 2.2.1

[49] Chris Ding and Jieping Ye. Two-dimensional singular value decomposition (2dsvd)
for 2d maps and images. In SDM, 2005. 4.1.4, 4.2.2

172

[50] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Processing
complex aggregate queries over data streams. In SIGMOD, 2002. 2.1.4

[51] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In KDD,
2000. 2.1.4

[52] P. Drineas, R. Kannan, and M.W. Mahoney. Fast monte carlo algorithms for ma-
trices i: Approximating matrix multiplication. SIAM Journal of Computing, 2005.
3.1.1, 3

[53] P. Drineas, R. Kannan, and M.W. Mahoney. Fast monte carlo algorithms for matri-
ces ii: Computing a low rank approximation to a matrix. SIAM Journal of Comput-
ing, 2005. 3.1.1

[54] P. Drineas, R. Kannan, and M.W. Mahoney. Fast monte carlo algorithms for matri-
ces iii: Computing a compressed approximate matrix decomposition. SIAM Journal
of Computing, 2005. 3.1.1, 3.2, 3.2.2, 3.2.2, 6, 5

[55] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Competitive recom-
mendation systems. In STOC, pages 82–90, 2002. 3.1.1

[56] Petros Drineas and Michael W. Mahoney. A randomized algorithm for a tensor-
based generalization of the svd. Technical Report YALEU/DCS/TR-1327, Yale
Univ., 2005. 4.1.4

[57] EPA. Epanet 2.0. http://www.epa.gov/ORD/NRMRL/wswrd/epanet.
html. 2.5.4

[58] A. Evfimevski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy
preserving data mining. In PODS, 2003. 2.1.5, 2.5

[59] A. Evfimievski, R. Srikant, R. Agarwal, and J. Gehrke. Privacy preserving mining
of association rules. In SIGKDD, 2002. 2.1.5

[60] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law re-
lationships of the internet topology. In SIGCOMM, pages 251–262, 1999. 3.1.4,
3.2

[61] Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. Processing set expressions
over continuous update streams. In SIGMOD, 2003. 2.1.4

[62] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. Mining data streams
under block evolution. SIGKDD Explorations, 3(2):1–10, 2002. 2.1.4

173

http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html
http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html

[63] M. Ghil, M.R. Allen, M.D. Dettinger, K. Ide, D. Kondrashov, M.E. Mann, A.W.
Robertson, A. Saunders, Y. Tian, F. Varadi, and P. Yiou. Advanced spectral methods
for climatic time series. Rev. Geophys., 40(1), 2002. 2.4.2, 2.5.3

[64] Gene H. Golub and Charles F. Van Loan. Matrix Computation. Johns Hopkins, 3rd
edition, 1996. 2.1.1, 2.1.3, 3.1.1, 3.2

[65] Nina Golyandina, Vladimir Nekrutkin, and Anatoly Zhigljavsky. Analysis of Time
Series Structure: SSA and Related Techniques. CRC Press, 2001. 2.4.2

[66] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of pseu-
doskeleton approximations. Journal of Linear Algebra Application, 261, August
1997. 3.1.1

[67] Sudipto Guha, Dimitrios Gunopulos, and Nick Koudas. Correlating synchronous
and asynchronous data streams. In KDD, 2003. 2.1.4, 2.1.5, 3.1.1

[68] Sudipto Guha, Chulyun Kim, and Kyuseok Shim. XWAVE: Optimal and approxi-
mate extended wavelets for streaming data. In VLDB, 2004. 2.1.4

[69] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE TKDE,
15(3):515–528, 2003. 2.1.4

[70] Richard A. Harshman. Foundations of the PARAFAC procedure: models and con-
ditions for an “explanatory” multi-modal factor analysis. UCLA working papers in
phonetics, 16:1–84, 1970. 5

[71] Simon Haykin. Adaptive Filter Theory. Prentice Hall, 2nd ed. edition, 1992. 2.2.1,
2.2.1, 2.2.4, 4.2.4

[72] Xiaofei He, Deng Cai, and Partha Niyogi. Tensor subspace analysis. In NIPS, 2005.
4.1.4, 1

[73] Evan Hoke, Jimeng Sun, John D. Strunk, Gregory R. Ganger, and Christos Falout-
sos. Intemon: Continuous mining of sensor data in large-scale self-* infrastructures.
ACM SIGOPS Operating Systems Review, 40(3), 2003. 1, 1.3, 2, 2.2.4, 2.2.5, 2.4, 5

[74] Z. Huang, W. Du, and B. Chen. Deriving private information from randomized data.
In SIGMOD, 2005. 2.1.5, 2.5.1, 2.5.2

[75] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data
streams. In KDD, 2001. 2.1.4

174

[76] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis.
Wiley-Interscience, 2001. 5

[77] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data
stream computation. In FOCS, 2000. 3.2

[78] INET ATS, Inc. http://www.inetats.com/. 2.5.4

[79] David S. Johnson, Shankar Krishnan, Jatin Chhugani, Subodh Kumar, and Suresh
Venkatasubramanian. Compressing large boolean matrices using reordering tech-
niques. In VLDB, pages 13–23, 2004. 9

[80] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 2002. 2.1.2, 2.2.1,
2.2.1, 2.4.2, 2.5.1, 3.1.1, 3.2, 4.2.4

[81] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving
properties of random data perturbation techniques. In ICDM, 2003. 2.1.5, 2.5.1

[82] Eammon Keogh and T. Folias. Ucr time series data mining archive. http://
www.cs.ucr.edu/˜eamonn/TSDMA/. 2.4.4

[83] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. Towards
parameter-free data mining. In KDD, 2004. 2.1.4, 3.1.2

[84] D. Kifer and J. Gehrke. Injecting utility into anonymized datasets. In SIGMOD,
2006. 2.1.5, 2.5

[85] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46(5):604–632, 1999. 2.1.1

[86] Tamara G. Kolda. Multilinear operators for higher-order decompositions. Technical
Report SAND2006-2081, Sandia National Lab, April 2006. 4.1.2

[87] Tamara G. Kolda, Brett W. Bader, and Joseph P. Kenny. Higher-order web link
analysis using multilinear algebra. In ICDM, 2005. 4.1.4

[88] Flip Korn, H. V. Jagadish, and Christos Faloutsos. Efficiently supporting ad hoc
queries in large datasets of time sequences. In SIGMOD, pages 289–300, 1997.
3.1.1

[89] P. Kroonenberg and J. D. Leeuw. Principal component analysis of three-mode data
by means of alternating least square algorithms. Psychometrika, 45, 1980. 1

175

http://www.cs.ucr.edu/~eamonn/TSDMA/
http://www.cs.ucr.edu/~eamonn/TSDMA/

[90] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Ex-
tracting large-scale knowledge bases from the web. In VLDB, 1999. 3.1.4, 3.2

[91] Jurij Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densifi-
cation laws, shrinking diameters and possible explanations. In SIGKDD, 2005. 3,
3.1.4, 3.3

[92] Feifei Li, Jimeng Sun, Spiros Papadimitriou, George A. Mihaila, and Ioana Stanoi.
Hiding in the crowd: Privacy preservation on evolving streams through correlation
tracking. In ICDE, 2007. 1.3, 2

[93] Jessica Lin, Michail Vlachos, Eamonn Keogh, and Dimitrios Gunopulos. Iterative
incremental clustering of time series. In EDBT, 2004. 2.1.4

[94] Y. Lindell and B. Pinkas. Privacy preserving data mining. In CRYTO, 2000. 2.1.5

[95] Jinze Liu, Wei Wang, and Jiong Yang. A framework for ontology-driven subspace
clustering. In KDD, 2004. 3.1.3

[96] K. Liu, H. Kargupta, and J. Ryan. Random Projection-Based Multiplicative Data
Perturbation for Privacy Preserving Distributed Data Mining. IEEE TKDE, 18(1),
2006. 2.1.5, 2.5.1

[97] Charles F. Van Loan. The ubiquitous kronecker product. Journal of Computational
and Applied Mathematics, 123:85–100, 2000. 4.1.1

[98] K. K. Loo, I. Tong, B. Kao, and D. Cheung. Online Algorithms for Mining Inter-
Stream Associations From Large Sensor Networks. In PAKDD, 2005. 2.1.4

[99] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. In ICDE, 2006. 2.1.5

[100] Sara C. Madeira and Arlindo L. Oliveira. Biclustering algorithms for biological
data analysis: a survey. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 1:24–45, 2004. 3.1.3

[101] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.
Query processing, resource management, and approximation in a data stream man-
agement system. In CIDR, 2003. 2.1.4

[102] Erkki Oja. Neural networks, principal components, and subspaces. Intl. J. Neural
Syst., 1:61–68, 1989. 2.2.1

176

[103] R. Ostrovsky and W. Skeith. Private searching on streaming data. In CRYPTO,
2005. 2.1.5

[104] Themistoklis Palpanas, Michail Vlachos, Eamonn Keogh, Dimitrios Gunopulos,
and Wagner Truppel. Online amnesic approximation of streaming time series. In
ICDE, 2004. 2.1.4

[105] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh Vem-
pala. Latent semantic indexing: A probabilistic analysis. In PODS, pages 159–168,
1998. 3.1.1

[106] Spiros Papadimitriou, Anthony Brockwell, and Christos Faloutsos. Adaptive,
hands-off stream mining. In VLDB, 2003. 2.1.4

[107] Spiros Papadimitriou, Aristides Gionis, Panayiotis Tsaparas, Risto A. Väisänen,
Christos Faloutsos, and Heikki Mannila. Parameter-free spatial data mining using
mdl. In ICDM, 2005. 3.1.2

[108] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern dis-
covery in multiple time-series. In VLDB, pages 697–708, 2005. 1, 1.3, 2, 2.1.5,
3.1.1

[109] Spiros Papadimitriou, Jimeng Sun, and Philip Yu. Local correlation tracking in time
series. In Proceedings of the International Conference on Data Mining (ICDM),
2006. 1.3, 2

[110] Spiros Papadimitriou and Philip S. Yu. Optimal multi-scale patterns in time series
streams. In SIGMOD, 2006. 2.4.2

[111] Jorma Rissanen. A universal prior for integers and estimation by minimum descrip-
tion length. Annals of Statistics, 11(2):416–431, 1983. 8

[112] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. Braid: Stream min-
ing through group lag correlations. In SIGMOD, pages 599–610, 2005. 2.1.4

[113] Ralph O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE
Trans. Ant. Prop., 34(3), 1986. 2.4.2

[114] Amnon Shashua and Anat Levin. Linear image coding for regression and classifi-
cation using the tensor-rank principle. In CVPR, 2001. 4.1.4

177

[115] Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Online latent variable
detection in sensor networks. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE), 2005. 1, 2.2.3, 2.2.4, 2.2.5

[116] Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Distributed pattern
discovery in multiple streams. In Proceedings of the Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), 2006. 1, 1.3, 2

[117] Jimeng Sun, Spiros Papadimitriou, and Philip Yu. Window-based tensor analysis
on high-dimensional and multi-aspect streams. In Proceedings of the International
Conference on Data Mining (ICDM), 2006. 1.3

[118] Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos. Graph-
scope: Parameter-free mining of large time-evolving graphs. In KDD 2007, 2007.
3, 1.3, 3.1.2, 3.1.3

[119] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs:
Dynamic tensor analysis. In Proceedings of the Twelfth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (SIGKDD), 2006. 1,
1, 1.3, 3, 3.3

[120] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is more: Com-
pact matrix decomposition for large sparse graphs. In Proceedings of the 2007
SIAM International Conference on Data Mining (SDM), 2007. 2, 1.3

[121] L. Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst., 10(5), 2002. 2.1.5

[122] Dacheng Tao, Xuelong Li, Xindong Wu, and Stevephen J. Maybank. Elapsed time
in human gait recognition: A new approach. In ICASSP, 2006. 4.1.4

[123] Dacheng Tao, Xuelong Li, Xindong Wu, and Stevephen J. Maybank. Human car-
rying status in visual surveillance. In CVPR, 2006. 4.1.4

[124] Nesime Tatbul, Ugur Cetintemel, Stanley B. Zdonik, Mitch Cherniack, and Michael
Stonebraker. Load shedding in a data stream manager. In VLDB, 2003. 2.1.4

[125] Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31:279–311, 1966. 4.1.3, 5

[126] J. Vaidya and C. W. Clifton. Privacy prserving association rule mining in vertically
partitionaed data. In SIGKDD, 2002. 2.1.5

178

[127] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles:
Tensorfaces. In ECCV, 2002. 4.1.4

[128] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Software,
11(1):37–57, 1985. 3.2.3

[129] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting data
streams using ensemble classifiers. In Proc.ACM SIGKDD, 2003. 2.1.4

[130] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. Epi-
demic spreading in real networks: An eigenvalue viewpoint. In Symposium on
Reliable Distributed Systems, 2003. 3.1.4

[131] K. Xiao and Y. Tao. Personalized privacy preservation. In SIGMOD, 2006. 2.1.5

[132] Dong Xu, Shuicheng Yan, Lei Zhang, Hong-Jiang Zhang, Zhengkai Liu, and
Heung-Yeung Shum. Concurrent subspaces analysis. In CVPR, 2005. 4.1.4, 1

[133] Bin Yang. Projection approximation subspace tracking. IEEE Trans. Sig. Proc.,
43(1):95–107, 1995. 2.2.1, 2.2.1, 2.4.2

[134] Jieping Ye. Generalized low rank approximations of matrices. Machine Learning,
61, 2004. 4.1.4

[135] Jieping Ye, Ravi Janardan, and Qi Li. Two-dimensional linear discriminant analysis.
In NIPS, 2004. 4.1.4

[136] Byoung-Kee Yi, N.D. Sidiropoulos, Theodore Johnson, H.V. Jagadish, Christos
Faloutsos, and Alexandros Biliris. Online data mining for co-evolving time se-
quences. In ICDE, 2000. 2.1.4, 2.2.2

[137] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient data
clustering method for very large databases. In SIGMOD, 1996. 2.1.4

[138] Zhenyue Zhang, Hongyuan Zha, and Horst Simon. Low-rank approximations with
sparse factors i: Basic algorithms and error analysis. Journal of Matrix Analysis
and Applications, 23:706–727, 2002. 3.1.1

[139] Lizhuang Zhao and Mohammed J. Zaki. Tricluster: An effective algorithm for
mining coherent clusters in 3d microarray data. In SIGMOD, 2005. 4

[140] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of
data streams in real time. In VLDB, 2002. 2.1.4

179

	1 Introduction
	1.1 Data Model
	1.2 Incremental Pattern Discovery
	1.3 Contributions and Outline

	2 Stream mining
	2.1 Stream related work
	2.1.1 Singular value decomposition
	2.1.2 Principal component analysis
	2.1.3 Covariance and auto-covariance
	2.1.4 Stream mining
	2.1.5 Privacy preservation

	2.2 SPIRIT: Multiple Stream Mining
	2.2.1 Tracking Correlations
	2.2.2 Applications
	2.2.3 Experimental case-study
	2.2.4 Performance and accuracy
	2.2.5 Summary

	2.3 Distributed Stream Mining
	2.3.1 Problem Formulation
	2.3.2 Distributed mining framework
	2.3.3 Local pattern monitoring
	2.3.4 Global pattern detection
	2.3.5 Experiments and case studies
	2.3.6 Summary

	2.4 Local Correlation Tracking of a pair of streams
	2.4.1 Localizing correlation estimates
	2.4.2 Correlation tracking through local auto-covariance
	2.4.3 Complexity
	2.4.4 Experiments
	2.4.5 Summary

	2.5 Privacy Preservation on streams
	2.5.1 Problem Formulation
	2.5.2 Privacy with Dynamic Correlations
	2.5.3 Privacy with Dynamic Autocorrelations
	2.5.4 Experiments
	2.5.5 Summary

	2.6 Chapter summary: stream mining

	3 Graph Mining
	3.1 Graph related work
	3.1.1 Low rank approximation
	3.1.2 Parameter-free mining
	3.1.3 Biclustering
	3.1.4 Time-evolving Graph mining

	3.2 Compact Matrix Decomposition
	3.2.1 Problem definition
	3.2.2 Compact matrix Decomposition
	3.2.3 CMD in practice
	3.2.4 Experiments
	3.2.5 Applications and Mining Case Study
	3.2.6 Summary

	3.3 GraphScope: Parameter-Free Mining of Large Time-Evolving Graphs
	3.3.1 Problem definition
	3.3.2 GraphScope encoding
	3.3.3 GraphScope
	3.3.4 Experiments
	3.3.5 Summary

	3.4 Chapter summary: graph mining

	4 Tensor Mining
	4.1 Tensor background and related work
	4.1.1 Matrix Operators
	4.1.2 Tensor Operators
	4.1.3 Tensor Decomposition
	4.1.4 Other tensor related work

	4.2 Incremental Tensor Analysis Framework
	4.2.1 Data model
	4.2.2 Offline Tensor Analysis
	4.2.3 Incremental Tensor Analysis
	4.2.4 Dynamic Tensor Analysis
	4.2.5 Streaming Tensor Analysis
	4.2.6 Window-based tensor analysis

	4.3 Experiments
	4.3.1 Evaluation on DTA and STA
	4.3.2 Evaluation on WTA

	4.4 Case studies
	4.4.1 Applications of DTA and STA
	4.4.2 Applications of WTA

	4.5 Chapter summary: tensor mining

	5 Conclusions
	Bibliography

