
Compact Data Structures with Fast Queries

Daniel K. Blandford

CMU-CS-05-196

February 2006

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Guy E. Blelloch, chair

Christos Faloutsos
Danny Sleator

Ian Munro, Waterloo

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

This work was supported in part by the National Science Foundation as part of the Aladdin Center (www.aladdin.cmu.edu)
and Sangria Project (www.cs.cmu.edu/˜sangria) under grants ACI-0086093, CCR-0085982, and CCR-0122581.

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of the National Science Foundation.

Keywords: Data compression, text indexing, meshing

Abstract

Many applications dealing with large data structures can benefit from keeping them in com-
pressed form. Compression has many benefits: it can allow a representation to fit in main mem-
ory rather than swapping out to disk, and it improves cache performance since it allows more
data to fit into the cache. However, a data structure is only useful if it allows the application to
perform fast queries (and updates) to the data.

This thesis describes compact representations of several types of data structures includ-
ing variable-bit-length arrays and dictionaries, separable graphs, ordered sets, text indices, and
meshes. All of the representations support fast queries; most support fast updates as well. Sev-
eral structures come with strong theoretical results. All of the structures come with experimental
results showing good compression results. The compressed data structures are usually close to
as fast as their uncompressed counterparts, and sometimes are faster due to caching effects.

Acknowledgments

Thanks to my advisor, for being awesome. Thanks to my thesis committee. Thanks to
people who helped proofread, including Ann Blandford, Benoit Hudson, Rebecca Lambert,
William Lovas, Tom Murphy VII, and Allison Naaktgeboren.

Thanks to my parents.

vi

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Terminology 7

2.2 Processor Model 7

2.3 Variable-Length Coding 8

2.4 Difference Coding 10

2.5 Decoding Multiple Gamma Codes 10

2.6 Rank and Select 11

2.7 Graph Separators 12

3 Compact Dictionaries With Variable-Length Keys and Data 13

3.1 Introduction 13

3.2 Arrays 14

3.3 Dictionaries 16

3.4 Cardinal Trees 19

3.5 Experimentation 20

3.6 Discussion 22

4 Compact Representations of Ordered Sets 23

4.1 Introduction 23

4.2 Representation With Dictionaries 24

4.3 Supported Operations 26

4.4 Block structure 28

4.5 Representation 30

vii

4.6 Applications 32

4.7 Experimentation 33

5 Compact Representations of Graphs 37

5.1 Introduction 37

5.1.1 Real-world graphs have good separators 41

5.2 Static Representation 41

5.3 Semidynamic Representation 48

5.4 Semidynamic Representation with Adjacency Queries 48

5.5 Implementation 49

5.6 Experimental Setup 52

5.7 Experimental Results 54

5.7.1 Separator Algorithms. 54

5.7.2 Indexing structures 56

5.7.3 Static representations 58

5.7.4 Dynamic representations 59

5.7.5 Timing Summary. 62

5.7.6 Randomized Graphs 62

5.8 Algorithms 63

5.9 Discussion 64

6 Index Compression through Document Reordering 67

6.1 Introduction 67

6.2 Definitions 69

6.3 Our Algorithm 69

6.4 Experimentation 72

7 Compact Representations of Simplicial Meshes in Two and Three Dimensions 77

7.1 Introduction 77

7.2 Standard Mesh Data Structures 78

7.3 Representation Based On Edges 79

7.4 Representation Based On Vertices 82

7.5 Implementation 84

viii

7.6 Experimentation 89

7.7 Discussion 94

8 Compact Parallel Delaunay Tetrahedralization 97

8.1 Introduction 97

8.2 The Algorithm 99

8.2.1 Parallel version. 100

8.3 Data Structure 102

8.4 Experimentation 104

8.5 Future Work 108

9 Bibliography 111

ix

x

Chapter 1

Introduction

Many applications dealing with large data structures can benefit from keeping them in compressed form.
Compression has many benefits: it can allow a representationto fit in main memory rather than swapping
out to disk, and it improves cache performance since it allows more data to fit into the cache. However, a
data structure is only useful if it allows the application toperform fast queries (and updates) to the data.

There has been considerable previous work on compact data structures [68, 91, 29, 46]. However, most
of the previous work has been exclusively theoretical, in that the structures are too complex to implement
or suffer from very high associated constant factors. Further, the compression techniques used in previous
work have been ad-hoc and are usually specific to the data structure being compressed. This work uses a
unified approach based on difference coding to achieve practical compact representations for a wide variety
of structures.

This thesis describes compact representations of several types of data structures including variable-bit-
length arrays and dictionaries, separable graphs, orderedsets, text indices, and meshes. All of the rep-
resentations support fast queries; most support fast updates as well. Several structures come with strong
theoretical results:

• The variable-bit-length dictionaries generalize recent work on dynamic dictionaries [29, 103] to variable-
length bit-strings.

• The ordered set structure supports a wider range of operations than previous compact structures for
sets [29, 96].

• The graph structures represent a generalization of previous work [46, 65, 68, 91, 40] and are the first
dynamic compact structures known.

All of the structures come with experimental results showing good compression results. The compact data
structures are usually close to as fast as their uncompressed counterparts, and sometimes are faster due to
caching effects.

These data structures are united by a common theme: the use ofdifference coding(see Section 2.4)
to represent data by its difference from other, previously known, data. For example, a compact graph

1

Structure Chp Space (in bits) Operations
Arrays{s1 . . . sn} 3.2 O(

∑

i |si|) O(1) lookup
O(1) exp amortinsert

Dictionaries 3.3 O(
∑

i max(|si| − log n, 1) + |ti|) O(1) lookup
{(s1, t1) . . . (sn, tn)} O(1) exp amortmap
Cardinal Trees 3.4 O(

∑

v 1 + log(1 + c(parent(v)))) O(1) parent /child
(cardinality ofv is c(v)) (semidynamic) O(1) exp amortinsert /delete

Ordered Sets 4 O(
∑

i log(si+1 − si)) O(k log |S1|+|S2|
k) union /intersect

{s1 . . . sn} (k is Block Metric [31])
many more

Graphs (vtx separable) 5.2 O(n) (static) O(1) getDegree
O(1) adjacent

O(1) per neighborlistNeighbors
Graphs (edge separable)5.3 O(n) (semidynamic) as above, plus

O(1) exp amortinsert /delete
Text Indices 6 14.4% additional compression same as original index
2D Simplicial Meshes 7.3 O(n) (semidynamic) O(1) findTriangle (v1, v2)
(well shaped) O(1) exp amortinsert /delete
3D Simplicial Meshes 7.3 O(n) (semidynamic) O(1) findTetrahedron (v1, v2, v3)
(well shaped) O(1) exp amortinsert /delete

Table 1.1: Space bounds and operations supported for our data structures. Structures that are marked as
semidynamichave space bounds that depend on the locality of a vertex labeling (see Section 5.2 for details).

structure represents the neighbors of a vertex by the difference between the neighbor label and the original
vertex label. For many structures this is combined with a relabeling scheme which ensures that most of
the differences encoded are small. (This relabeling effectis shown visually in Figure 1.1.) The variable-
bit-length arrays and dictionaries represent a general framework for creating compressed queryable data
structures. This represents an improvement for many structures, which would otherwise need to be built
ad-hoc.

We describe our data structures ascompact, meaning that they use a number of bits that is within a
constant factor of the optimal bound. The structures, and the bounds corresponding to those structures, are
summarized in Table 1.1.

Arrays and Dictionaries (Chapter 3). In the design of compact data structures, two useful building
blocks are the variable-bit-length “array” and dictionarystructures. The “array” structure maintains a set of
bit strings numbered0 . . . (n− 1), permitting constant-timelookup and expected amortized constant-time
update operations. The dictionary structure permits constant-time lookup and expected constant-time
mapoperations in which both keys and data are variable-length bit strings. In each case the space usage is
within a constant factor of optimal. This represents a generalization of recent work on dynamic dictionaries
[29, 103] to variable-length bit strings (although it does not match the optimal constant on the high-order

2

term of its space usage).

Using these variable-bit-length data structures it is possible to implement a wide variety of compressed
data structures with fast queries. One example is a compressed representation of cardinal trees in which
the degree can vary per node (described in Section 3.4). Finding the parent or thekth child of a node
takes constant time, and the space usage is within a constantfactor of optimal. Other applications appear
throughout this thesis.

Section 3.5 presents experimental results from using the dictionary to store variable-bit-length data de-
scribing edges in a tetrahedral mesh (see Chapter 7 for more details). The dictionary can be implemented
using various types of difference codes representing different tradeoffs between compression and speed.
Using thebyte code(described in Section 2.3), the dictionary is a factor of6.5 more space-efficient than a
naive hashtable structure. For small input sizes the dictionary is a factor of1.7 slower than the hashtable;
for larger input sizes, the two are nearly equivalent in speed. The difference is due to caching effects, in that
the dictionary can fit into cache much better than the hashtable.

Ordered Sets (Chapter 4). One important application for data compression is in the compact representa-
tion of ordered sets. Chapter 4 presents a compact representation for sets of integers from some fixed range
U = {0 . . . m − 1}. The representation supports a wide range of operations while maintaining the data in
a compressed form. This is based on a technique for modifyingexisting ordered-set data structures (such
as balanced trees) to maintain the data in compressed form while still supporting all operations in the same
time bounds.

For example, applying this technique to a functional implementation of treaps produces a compressed
data structure which supports rapid set union and intersection operations. The time required to compute
the union or intersection of two setsS1, S2 is optimalO(k log |S1|+|S2|

k) wherek is the Block Metric of

Carlsson, Levcopoulos, and Petersson [31]. The space required per setS is O(|S| log |U |+|S|
|S|) bits, which

matches the information-theoretic lower bound. This is an improvement over the dynamic compressed-set
structures of Brodnik and Munro [29] and Pagh [96], which arebased on hashing and thus do not support
fast union and intersection.

Representations of ordered sets are useful for many applications. In particular, search engines maintain
posting listswhich describe, for each possible search term, the set of documents containing that term. These
posting lists are represented as ordered sets of document numbers. The compact functional treaps described
above provide a means to maintain posting lists in compressed form while still permitting fast union and
intersection operations.

Section 4.7 contains experimentation describing the performance of compressed red-black trees (using
the C STL implementation) and functional treaps. For the largest problem size tested (insertion and deletion
of 218 elements fromU = {0 . . . 230 − 1}), the compressed red-black trees took twice as long but used
only 1/3 as much space as the uncompressed trees. The quality of compression is better for denser sets (as
predicted by the space bound given above).

Separable Graphs (Chapter 5). Recently there has been a great deal of interest in compact representa-
tions of graphs [125, 72, 65, 82, 64, 105, 92, 68, 91, 40, 46, 65, 28, 1, 119, 22]. Using difference coding

3

it is possible to create several different compact representations for separable graphs. (A graph is defined
to beseparableif it and all its subgraphs can be partitioned into two approximately equally sized parts by
removing a relatively small number of vertices.)

The representations are based on relabeling the vertices using graph separators (as shown in Figure 1.1),
then encoding a vertex’s neighbors by their difference fromthe original vertex. The first representation
given is a simple static structure based on edge separators;the second is a more general structure based on
vertex separators. The third representation is a dynamization of the first representation, supporting adding
and removing edges(v1, v2) in expected amortizedO(|v1| + |v2|) time (where|v| is the degree ofv). It
makes use of the variable-bit-length array structure from Chapter 3. The fourth representation is a dynamic
structure that supports adding and removing edges in expected amortizedO(1) time using the variable-bit-
length dictionary structure from Chapter 3. The static representations useO(n) bits for separable graphs.
The dynamic representations useO(n) bits as well, but the space bound is “semidynamic” in that it depends
on the labeling of the vertices remaining good as the graph isupdated.

The static representations described here are an improvement over the work of Deo and Litow [46] and
He, Kao and Lu [65], who use separators for graph compressionbut do not support queries. They are a
generalization of the work of Jacobson [68], Munro and Raman[91], and Chuang et. al. [40], who support
queries on compressed planar graphs (but not the more general case of separable graphs). The dynamic
representations we describe are the first compressed dynamic graph representations we know of.

Section 5.7 contains detailed experimentation for the firstand third representations. Using the byte
code, the static representation is less than10% slower than a standard neighbor-array representation, but
uses a factor of3 less space. The dynamic representation uses a factor of4 less space than a linked-list
representation. The time performance of a linked-list representation is strongly dependent on the locality of
the linked-list pointers. The compressed dynamic representation is usually faster than a linked-list, and is
within 20% of the linked-list’s speed even when the linked-list is laidout in order.

Text Indices (Chapter 6). The idea of separator-based reordering (from Chapter 5) canalso be applied
to the problem of index compression. This gives a heuristic technique which uses document relabeling to
reduce the space used when representing posting lists as ordered sets (as described in Chapter 4).

Posting lists are kept compressed using difference coding.Difference coding produces the best com-
pression when the data to be compressed has high locality: when the numbers to be stored in the lists are
clustered rather than randomly distributed over the interval {0, . . . , n−1}. (In fact, the Binary-Interpolative
code of Moffat and Stuiver [88] was designed to take advantage of such locality.) Locality is produced when
similar documents are close together in the numbering. The reordering technique renumbers the documents
to accomplish this.

Section 6.4 contains experimentation involving compressing an index of disks 4 and 5 of the TREC
database. The reordering algorithm runs in a matter of minutes and improves the compression quality by
over14%.

When this material was first published, there had been no previous work on the subject. Since then,
several authors [113, 115, 11] have addressed the topic. Their contributions are discussed in Section 6.1.

4

1
8

7

5

2 6

34 1

2 3

4
5

6

7

8

Before reordering
Vtx Neighbors Differences
1 4,5,7,8 3,1,2,1
2 7,8 5,1
3 5,6 2,1
4 1,7 -3,6
5 1,3,8 -4,2,5
6 3,8 -3,5
7 1,2,4 -6,1,2
8 1,2,5,6 -7,1,3,1

After reordering
Vtx Neighbors Differences
1 2,4 1,2
2 1,3,4 -1,2,1
3 2,5 -1,3
4 1,2,5,6 -3,1,3,1
5 3,4,6,7 -2,1,2,1
6 4,5,8 -2,1,3
7 5,8 -2,3
8 6,7 -2,1

Figure 1.1: Several of our compression techniques use a relabeling step to ensure that the vertex labels of a
graph have good locality. This decreases the cost of difference coding the edges.

Meshes (Chapter 7). Difference coding can also be used in compact representations for triangular and
tetrahedral meshes. Standard mesh representations use a minimum of 6 pointers (at least24 bytes) per
triangle in 2D or8 pointers (32 bytes) per tetrahedron in 3D. The compact representations described here
use as little as5 bytes per triangle or7.5 bytes per tetrahedron. This is important for many applications since
meshes are often limited by the amount of RAM available.

Chapter 7 describes two mesh representations. One is based on storing difference-encoded triangles (or
tetrahedra) in a variable-bit-length dictionary structure (as described in Chapter 3) and has constant expected
amortized time for insertion and deletion of simplices. Theother representation is based on difference coding
and storing the cycle of neighbors around a vertex in 2D or thecycle of vertices around an edge in 3D. That
representation takesO(|v|) expected time for dealing with a vertex of degree|v|, but the compression has a
more favorable constant.

This is the first work we know of dealing with dynamic compressed meshes.

Section 7.6 contains experimentation involving the representation that compresses based on cycles. The
representation is used to construct 2D and 3D Delaunay meshes. The 2D representation is about10%
slower than Shewchuk’s Triangle code [110]; the 3D representation is slightly faster than our beta version
of Shewchuk’s Pyramid code [109].

A Parallel Meshing Algorithm (Chapter 8). The Delaunay meshing algorithm from Chapter 7 can be
parallelized. The variable-bit-length dictionary structure is modified to support locks to prevent concurrent

5

access. Experimentation shows that the resulting algorithm can rapidly generate a mesh of over10 billion
tetrahedra (using1.51 billion vertices randomly chosen from the unit cube). The algorithm took6036
seconds for64 processors on an HP GS 1280 SMP machine; this was a speedup of34.25 compared to its
performance on one processor. All data (including vertex coordinates, mesh connectivity data, and the work
queue) fit within a memory footprint of197GB of RAM.

6

Chapter 2

Preliminaries

This chapter discusses some concepts which will be useful throughout this document.

2.1 Terminology

Throughout this thesis, when dealing with a graphG we let n denote the number of vertices ofG andm
denote the number of edges ofG. The degree of a vertexv is written |v|. Without loss of generality we
assume all vertices have degree at least1.

Given a bitstrings we let |s| denote the number of bits in the string.

We denote a dictionary entry mapping keyk to datad by ((k), (d)). For some applications either the
key or data may be a tuple:((k1, k2), (d1, d2)).

All logarithms are base2.

2.2 Processor Model

Throughout all of our work we assume the processor word length is w bits, for somew > log |C|, where
|C| is the total number of bits consumed by our data structure. That is, we assume that we can use aw-bit
word to point to any memory we allocate. We assume the processor supports operations including bit-shifts
(multiplication or division by powers of2) as well as bitwise AND, OR, and XOR.

For some theoretical bounds we make use oftable-lookupoperations. A table-lookup operation makes
use of alookup tableof size2εw entries. Each entry in the table contains the result of the operation on the
bitstring corresponding to the entry. Examples of table-lookup operations are given in Section 2.3 and 2.5.

If each entry containsO(εw) bits, then the total space used by the lookup table isO(2εwεw) bits. By
simulating a word size ofΘ(log |C|) this can often be reduced to less than|C|, and thus made a low order
term, while running in constant time. Note that it is always possible to simulate smaller words with larger
words with constant overhead by packing multiple small words into a larger one.

7

Unary Binary Gamma Nibble
1 1 1 1 0000
2 01 10 010 0001
3 001 11 011 0010
4 0001 100 00100 0011
5 00001 101 00101 0100
6 . . . 110 00110 0101
7 . . . 111 00111 0110
8 . . . 1000 0001000 0111
9 . . . 1001 0001001 10000000
10 . . . 1010 0001010 10010000
11 . . . 1011 0001011 10100000
12 . . . 1100 0001100 10110000
13 . . . 1101 0001101 11000000
14 . . . 1110 0001110 11010000
15 . . . 1111 0001111 11100000
16 . . . 10000 000010000 11110000
17 . . . 10001 000010001 10000001

DECODE-GAMMA (B)
`← 0
do

b← B[` . . . ` + εw − 1]
`← `+first-one [b]

loop while(first-one [b] = εw)
γ ← B[0 . . . 2`]
return ((int) γ, 2` + 1)

Figure 2.1: Left: The Unary, Binary, Gamma and Nibble codes.Right: Pseudocode for theDECODE-
GAMMA algorithm.

2.3 Variable-Length Coding

A variable-length coderepresents a positive integerv using a variable number of bits. An example of a
variable-length code is theunary code, which representsv usingv − 1 zeroes followed by a one. Another
example is thebinary code, which representsv using the(blg(v)c + 1)-bit binary representation ofv.
Examples of these codes are shown in Figure 2.1.

When using variable-length codes for compression, it is useful to concatenate large numbers of codes
together for storage. For this it is convenient to useprefix-free codes. A prefix-free code is a variable-length
code for which there do not exist positive integersv 6= v′ such that the code forv is a prefix of the code for
v′. Prefix-free codes have the property that, when the codes formany integers are concatenated, the resulting
string has a unique decoding.

As an example, the binary code is not a prefix-free code: the string 10110 can be read as the concate-
nation of the codes for5 and2, the concatenation of the codes for2 and6, the single code for22, et cetera.
It is possible to convert the binary code into a prefix-free code by prepending to each codeword a number
of zeroes equal to that codeword’s length minus one. This code is thegamma code[50]. The gamma code
is only one of a wide class of prefix-free codes (see [136] for many others). For theoretical work this thesis
will use gamma codes as they are easy to describe and conceptually easy to encode and decode.

8

Decoding gamma codes. Using a lookup table of sizeO(2εw log(εw)) it is possible to decode gamma
codes inO(|s|

εw + 1) time, where|s| is the length of the code (andε is a parameter). Given a bitstringB
which is the concatenation of several gamma codes, the algorithm DECODE-GAMMA finds the size of the
first code and the value it represents.

The first step is to compute the location of the first1 in B. For this the algorithm makes use of a pre-
computed lookup tablefirst-one , defined as follows: Ifb is a bitstring of sizeεw, thenfirst-one (b)
gives the location of the first1 in b (or εw if b contains no1s). The algorithm examinesεw-bit chunks ofB
until it finds a chunk containing at least one1. The algorithm uses the table to find the bit-position of the
first 1, and from this deduces the total bit-length of the gamma code. The algorithm extracts the code from
B using shifts. Once the code is extracted, decoding it is equivalent to reinterpreting it as a binary integer.
Pesudocode for this algorithm is shown in Figure 2.1.

For many of the applications we will examine, all values encoded in our data structures will beO(|C|)
(where|C| is the number of bits used by the structure). For these applications we use a table word size of
log |C|

2 , giving a space usage ofO(|C|.5 log |C|), which iso(|C|). The time required forDECODE-GAMMA is

O(|s|
log |C|), which isO(1).

Byte-aligned codes. Gamma codes are easy to describe in theory; however, for implementation the use of
large lookup tables is undesirable. It is more convenient towork with a class ofbyte-aligned codes. These
codes have sizes that fall along byte boundaries, making them easy to manipulate.

These codes are special 2-, 4-, and 8-bit versions of a more generalk-bit code which encodes integers
as a sequence ofk-bit blocks. We describe thek-bit version. Each block starts with acontinue bitwhich
specifies whether there is another block in the code. An integer i is encoded by checking whether it is less
than or equal to2k−1. If so, a single block is created with a 0 in the continue bit and the binary representation
for i − 1 in the otherk − 1 bits. If not, the first block is created with a 1 in the continue-bit and the binary
representation for(i− 1) mod 2k−1 in the remaining bits (themod is implemented with a bitwise and).
This block is then followed by the code for

⌊

(i− 1)/2k−1
⌋

(the/ is implemented with a bitwise shift).

The 8-bit version of this code is particularly fast to encodeand decode since all its memory accesses
are byte-aligned (and since it makes use of fewer continue bits). The 4-bit version (nibble code) and 2-
bit version (snip code) are often more space-efficient, but are somewhat slower since they require more
bit-manipulation during encoding and decoding.

As an optimization, to further improve the time-performance of the 8-bit code, for that code we do
not subtract one fromi at each iteration. Thus we store the binary representation of (i mod 2k−1) in each
block, followed if necessary by a code for

⌊

i/2k−1
⌋

. This can sometimes use more space, but it permits faster
encoding and decoding since those operations require only bit-shifts (rather than addition and subtraction).
We refer to this variant as thebyte code. Performance of these codes is compared in detail in Section5.7.

Throughout the rest of this thesis we will assume that all variable-length codes used are prefix-free
codes.

9

2.4 Difference Coding

Variable-length codes are a way to compactly represent values which are “on average” small. For many
applications, the data to be represented are not small values; however, it is often possible to represent a
value by its difference from previously known values. The resulting difference is more likely to be small.
This is known asdifference coding.

One common form of difference coding is in the encoding of a set of n integers from the set{1 . . . n}.
An information-theoretic lower bound on the space needed torepresentn elements fromm possibilities is
Ω(log

(m
n

)

) bits; assumingn ≤ m/2, this isΩ(n log m
n).

Let x1 . . . xn be the integers to be stored, in sorted order such thatxi < xi+1. x1 is stored directly, but
the remaining values are represented by their difference from the previous value:x1, x2−x1, x3−x2, x4−
x3, . . . , xn − xn−1. The codes are concatenated into a single bitstring for storage.

Gamma codes require2blg(v)c + 1 bits to represent a valuev. If the differences above are represented
by gamma codes, then the total space required is2blg(x1)c+ 1 +

∑

(2blg(xi− xi−1)c+ 1) bits. The worst
case (greatest space usage) for this expression occurs whenthexis are equally spaced (that is,xi '

im
n).

The space usage is thenO(n log m
n) bits, which is within a constant factor of the optimal bound given by

information theory.

In fact it is not necessary to use gamma codes to achieve this performance; any code usingO(log v) bits
to store a valuev will suffice. We call such a code alogarithmic code.

In our example here the goal was to encode a set of values from{1 . . . m}. In subsequent chapters we
will explore many more applications for difference coding.

2.5 Decoding Multiple Gamma Codes

Suppose that a set of integersx1 . . . xk are difference coded and concatenated into a bitstringB. This section
describes how to quickly access the encoded data. In particular, we consider the problem: givenB and a
valuev, find the greatesti such thatxi < v. To do this it is necessary to decode and sum the gamma codes
for x1, x2 − x1, x3 − x2, . . . until, after summingi + 1 codes, the total reachesv. Our algorithm will return
the valuexi and the bit-position of the gamma code forxi+1 − xi.

One method for solving this problem would use theDECODE-GAMMA operation from Section 2.3, which
can decode a gamma code of length|s| in O(|s|

εw +1) time. To decodei codes of total length|S|would require

O(|S|εw + i) time. This section will describe theSUM-GAMMA -FAST operation, which uses a more powerful

table-lookup step to decodei codes of total length|S| in O(|S|εw + 1) time.

To decode multiple gamma codes at once, theSUM-GAMMA -FAST algorithm makes use of two lookup
tablessum-of-codes andend-of-codes , defined as follows: given a bitstringb of sizeεw, sum-of-codes (b)
gives the sum of all the full gamma codes inb andend-of-codes (b) gives the bit-position of the end of
the last full gamma code inb. Using these tables theSUM-GAMMA -FAST algorithm can decode and sum up
to εw gamma codes at once. If the algorithm encounters a gamma codeof size greater thanεw (that is, if
end-of-codes (b) evaluates to zero), it applies theDECODE-GAMMA algorithm as a subroutine.

10

SUM-GAMMA -FAST(B, v)
`← 0
t← 0
do

b← B[` . . . ` + εw − 1]
s←sum-of-codes [b]
e←end-of-codes [b]
if (s = 0) then

(s, e)←DECODE-GAMMA (B[` . . . |B| − 1])
if (t + s ≥ v) then

(s, e)← (sum-up-to- (v − t)[b],end-up-to- (v − t)[b])
return (t + s, ` + e)

t← t + s
`← ` + e

loop while(` < |B|)
return (t, `)

Figure 2.2: Pseudocode for theSUM-GAMMA -FAST algorithm.

TheSUM-GAMMA -FAST algorithm always decodes at leastεw bits of code per two lookup steps. (The
first lookup step decodes all but the last code inb, and the second lookup step decodes at least the last code.)
Thus the time needed to decode|s| bits usingSUM-GAMMA -FAST is O(|s|

εw).

The algorithm decodes chunks of bits until the sum of all gamma codes decoded reaches or exceeds
v. At this point the algorithm requires an array of additionaltablessum-up-to- v andend-up-to- v.
These give the sum and ending bit-position, respectively, of the maximal number of (consecutive) gamma
codes inb whose sum is less thanv. The algorithm uses separate tables for each value ofv from 2 to 2εw.
Using the appropriate tables the algorithm computes and returns the result inO(1) time. Pseudocode for
this algorithm is shown in Figure 2.2.

It remains to bound the space used by these lookup tables. Each of the lookup tables described above
stores, for each of2εw entries, a value between0 and2εw. There areO(2εw) tables allocated, so the total
cost isO(22εwεw) bits. As in Section 2.3, for applications in which the largest values stored areO(|C|),
this expression can be made a low order term while still running in constant time.

2.6 Rank and Select

It is quite straightforward to store a group of prefix-free codes if access time is not a concern. The codes
can be concatenated into one large bitstringB; since the codes are prefix-free, they can be uniquely decoded
one-by-one. However, for some applications it is necessaryto access individual codes—in particular, to
access theith code stored inO(1) time.

This problem has been studied extensively [68, 90] and is usually called theSELECT problem. Given a
bitstringS of sizen bits, SELECT(S, i) is a query which returns the position of theith 1 in S. These queries

11

can be resolved using aselect data structurecreated by preprocessingS. Munro [90] presented an algorithm
which usedO(1) time to answerSELECT queries using an auxiliary data structure ofo(n) bits.

The SELECT data structure permits access to individual codes as follows. Let the bitstringS have size
equal toB. If any codei begins at positionj in B, then letS[j] = 1. All other locations inS are set to0.
The location of theith code inB is given bySELECT(S, i).

The inverse of theSELECToperation is calledRANK. Given a bitstringS of sizen bits, RANK(j) returns
the number of1s that occur before positionj in S. Jacobson [68] showed thatRANK queries can be resolved
in O(1) time using ano(n)-bit RANK data structure.

In practice we find that theo(n)-bit data structures have high associated constants—and, regardless, the
need to maintain then-bit bitstring S makes theo(n) bound on the auxiliary data structure moot. For our
experiments we generally useO(n)-bit data structures of our own devising.

2.7 Graph Separators

Let S be a class of graphs that is closed under the subgraph relation. S is defined to satisfy af(n)-separator
theoremif there are constantsα < 1 andβ > 0 such that every graph inS with n vertices has a cut set with
at mostβf(n) vertices that separates the graph into components with at mostαn vertices each [81].

In this thesis we are particularly interested in the compression of classes of graphs for whichf(n) is

nc for somec < 1. One such class is the class of planar graphs, which satisfiesa n
1

2 -separator theorem.
The results will apply to other classes as well: for example,Miller et al. [85] demonstrated that every well-
shaped mesh inRd has a separator of sizeO(n1−1/d). We define a graph to beseparableif it is a member
of a class that satisfies annc-separator theorem.

A class of graphs hasbounded densityif every n-vertex member hasO(n) edges. Lipton, Rose, and
Tarjan [80] prove that any class of graphs that satisfies an/(log n)1+ε-separator theorem withε > 0 has
bounded density. Hence separable graphs have bounded density.

Another type of graph separator is anedge separator. A class of graphsS satisfies af(n)-edge separator
theoremif there are constantsα < 1 andβ > 0 such that every graph inS with n vertices has a set of at
mostβf(n) edges whose removal separates the graph into components with at mostαn vertices each. Edge
separators are less general than vertex separators: every graph with an edge separator of sizes also has a
vertex separator of size at mosts, but no similar bounds hold for the converse. This thesis will mostly deal
with edge separators, but will show theoretical results forgraphs with vertex separators.

For theoretical purposes we will assume the existence of a graph separator algorithm that returns a
separator within theO(nc) bound. For experimental purposes we find that the Metis [71] heuristic graph
separator library works well.

12

Chapter 3

Compact Dictionaries With
Variable-Length Keys and Data

3.1 Introduction

The dictionary problem is to maintain ann-element set of keyssi with associated data (“satellite data”)ti.1

A dictionary isdynamicif it supports insertion and deletion as well as the lookup operation. In this paper
we are interested in dynamic dictionaries in which both the keys and data are variable-length bitstrings.
Our main motivation is to use such dictionaries as building blocks for various other applications. As an
example application we present a representation of cardinal trees with nodes of varying cardinality. Other
applications of our variable-bit array and dictionary structure appear in Sections 4.2, 5.3, 5.4, and 7.3.

We assume the machine has a word lengthw > log |C|, where|C| is the number of bits used to represent
the collection. We assume the size of each string|si| ≥ 1, |ti| ≥ 1 for all bitstringssi andti.

There has been significant recent work involving data structures that use near optimal space while sup-
porting fast access [68, 91, 40, 29, 96, 57, 102, 51, 15, 103].The dictionary problem in particular has been
well-studied in the case of fixed-length keys. The information-theoretic lower bound for representingn
elements from a universeU is B = logd

(

|U |
n

)

e = n(log |U | − log n) + O(n). Cleary [42] showed how to
achieve(1 + ε)B + O(n) bits withO(1/ε2) expected time for lookup and insertion while allowing satellite
data. His structure used the technique ofquotienting[74], which involves storing only part of each key in a
hash bucket; the part not stored can be reconstructed using the index of the bucket containing the key. Brod-
nik and Munro [29] described a static structure usingB + o(B) bits and requiringO(1) time for lookup; the
structure can be dynamized, increasing the space cost toO(B) bits. That structure does not support satellite
data. Pagh [96] showed a static dictionary usingB + o(B) bits andO(1) query time that supported satellite
data, using ideas similar to Cleary’s, but that structure could not be easily dynamized.

Recently Raman and Rao [103] described a dynamic dictionarystructure usingB + o(B) bits that
supports lookup inO(1) time and insertion and deletion inO(1) expected amortized time. The structure
allows attaching fixed-length (|t|-bit) satellite data to elements; in that case the space bound is B + n|t| +

1This chapter is based on work with Guy Blelloch [17].

13

o(B + n|t|) bits. None of this considers variable-bit keys or data.

Our variable-bit dictionary structure can store pairs((si), (ti)) usingO(m) space wherem =
∑

i(max(1, |si|−
log n) + |ti|). Note that if|si| is constant and|ti| is zero thenO(m) simplifies toO(B). Our dictionary
supports lookup inO(1) time and insertion and deletion inO(1) expected amortized time.

Our dictionary makes use of a simpler structure: an “array” structure that supports an array ofn locations
(1, . . . , n) with lookup and update operations. We denote theith element of an arrayA asai. In our case each
location will store a bitstring. We present a data structurethat usesO(m + w) space wherem =

∑n
i=1 |ai|

andw is the machine word length. The structure supports lookups in O(1) worst-case time and updates in
O(1) expected amortized time. Note that if all bitstrings were the same length then this would be trivial.

Cardinal Trees. As an example application we present a representation of cardinal trees (aka tries) in
which each node can have a different cardinality. Queries can request thekth child, or the parent of any
vertex. We can attach satellite bitstrings to each vertex. Updates can add or delete thekth child. For an
integer labeled tree the space bound isO(m) wherem =

∑

v∈V (log c(p(v)) + log |v − p(v)|), andp(v)
andc(v) are the parent and cardinality ofv, respectively. Using an appropriate labeling of the verticesm
reduces to

∑

v∈V log c(p(v)), which is asymptotically optimal. This generalizes previous results on cardinal
trees [10, 102] to varying cardinality. We do not match the optimal constant in the first order term.

Experimentation. We present experimental results for our dictionary structure on a trace of operations
performed by a simplicial meshing algorithm [14]. We analyze the structure’s performance using difference
codes that are optimized for speed and for compression. We compare the structure to a naive hashtable; the
hashtable is slightly more time-efficient than our structure but uses a factor of6.5− 8.5 more space.

3.2 Arrays

We define avariable-bit-length array structureto be one that maintains bitstringsa1 . . . an, supporting
update and lookup operations. (Anupdate changes one of the bitstrings, potentially changing its
length as well as the data. Alookup returns one of the bitstrings to the user.) Our array representation
supports strings of size1 ≤ |ai| ≤ w; it performs lookups inO(1) time and updates inO(1) expected
amortized time. Strings of size more thanw must be allocated separately, andw-bit pointers to them can be
stored in our structure. The memory allocation system used for this must be capable of allocating or freeing
|s| bits of memory in timeO(|s|/w), and may useO(|s|) space to keep track of each allocation. It is well
known how to do this (e.g., [8]).

Overview. We begin with an overview of our array structure. We partition the stringsai into blocksof
contiguous elements, containing on averageΘ(w) bits of data per block. We maintain the blocks in a
conventional data structure (such as a hashtable) usingO(w) bits per block. We keep an auxiliary bit-array
that allows us to determine which block contains a given element in constant time. We keep auxiliary
data with each block that allows us to locate any element within the block in constant time. Using these
operations we can supportupdate andlookup in constant time.

14

We now present the structure in more detail.

Our structure consists of two parts: a set of blocksB and an indexI. The bitstrings in the array are
stored in the blocks. The index allows us to quickly locate the block containing a given array element.

Blocks. A block Bi is an encoding of a series of bitstrings (in increasing order) ai, ai+1, . . ., ai+k. The
block stores the concatenation of the stringsbi = aiai+1 . . . ai+k, together with information from which the
start location of each string can be found. It suffices to store a second bitstringb′i such thatb′i contains a1 at
positionj if and only if some bitstringak ends at positionj in bi.

A block Bi consists of the pair(bi, b
′
i). We define the size of a block to be|bi| =

∑k
j=0 |ai+j |. We

maintain the strings of our array in blocks of size at mostw. We maintain the invariant that, if two blocks in
our structure are adjacent (meaning, for somei, one block containsai and the other containsai+1), then the
sum of their sizes is greater thanw.

Index structure. The indexI for our array structure consists of a bit arrayA[1 . . . n] and a hashtableH.
(In practice we use an optimized, space efficient variant of ahashtable.) The arrayA is maintained such that
A[i] = 1 if and only if the stringai is the first string in some blockBi in our structure. In that case, the
hashtableH mapsi to Bi.

The hashtableH must useO(w) bits (that is,O(1) words) per block maintained in the hashtable. It
must support insertion and deletion in expected amortizedO(1) time, and lookup in worst-caseO(1) time.
Cuckoo hashing [97] or the dynamic version of the FKS perfecthashing scheme [47] have these properties.
If expected rather than worst-case lookup bounds are acceptable, then a standard implementation of chained
hashing will work as well.

Bit-Select and Bit-Rank. We assume that the processor supports two special operations, BIT-SELECT and
BIT-RANK, defined as follows. Given a bitstrings of length w bits, BIT-SELECT(s, i) returns the least
positionj such that there arei ones in the ranges[0] . . . s[j]. BIT-RANK(s, j) returns the number of ones
in the ranges[0] . . . s[j]. These operations mimic the function of therank andselect data structures, as
described in Section 2.6.

If the processor does not support these operations, we can implement them using constant-time table-
lookup, similar to the table-lookup described in Section 2.5.

Operations. We begin by observing that no block can contain more thanw bitstrings (since blocks have
maximum sizew and each bitstring contains at least one bit). Thus, from anypositionA[k], the distance
to the nearest one in either direction is at mostw. To find the nearest one on the left, we lets = A[k −
w] . . . A[k − 1] and computeBIT-SELECT(s, BIT-RANK(s,w − 1)). To find the nearest one on the right, we
let s = A[k + 1] . . . A[k + w] and computeBIT-SELECT(s, 1). These operations take constant time.

To access a stringak, our structure first searchesI for the blockBi containingak. This is simply a
search onA for the nearest one on the left ofk. The structure performs a hashtable lookup to access the

15

target blockBi. Once the block is located, the structure scans the index string b′i to find the location ofak.
This can be done usingBIT-SELECT(b′i , k − i + 1).

If ak is updated, its blockBi is rewritten. IfBi becomes smaller as a result of an update, it may need to
be merged with its left neighbor or its right neighbor (or both). In either case this takes constant time.

If Bi becomes too large as a result of an update toak, it is split into at most three blocks. The structure
may create a new block at positionk, at positionk+1, or (if the new|ak| is large) both. To maintain the size
invariant, it may then be necessary to joinBi with the block on its left, or to join the rightmost new block
with the block on its right.

All of the operations on blocks and onA takeO(1) time since shifting and copying can be donew bits
at a time. Access operations onH takeO(1) worst-case time; updates takeO(1) expected amortized time.

We define the total length of the bitstrings in the structure to bem = O(
∑n

i=1 |ai|). The structure
containsn bits in A plus O(w) bits per block; there areO(m/w + 1) blocks, so the total space usage is
O(m + w). This gives us the following theorem:

Theorem 3.2.1 Our variable-bit-length array representation can store bitstrings of length1 ≤ ai ≤ w in
O(w +

∑n
i=1 |ai|) bits while allowing accesses inO(1) worst-case time and updates inO(1) amortized

expected time.

3.3 Dictionaries

Using our variable-bit-length array structure we can implement space-efficient variable-bit-length dictio-
naries. In this section we describe dictionary structures that can store a set of bitstringss1 . . . sn, for
1 ≤ |si| ≤ w + log n. (We can handle strings of length greater thanw + log n by allocating mem-
ory separately and storing aw-bit pointer in our structure.) Our structures use spaceO(m) bits where
m =

∑

(max(|si| − log n, 1) + |ti|).

We will first discuss a straightforward implementation based on chained hashing that permitsO(1)
expected query time andO(1) expected amortized update time. We will then present an implementation
based on the dynamic version [47] of the FKS perfect hashing scheme [52] that improves the query time to
O(1) worst-case time.

Quotienting. For representing sets of fixed length elements a space bound is already known [96]: to
representn elements, each of size|s| bits, requiresO(n(|s| − log n)) bits. A method used to achieve this
bound isquotienting: every elements ∈ U is uniquely hashed into two bitstringss′, s′′ such thats′ is a
log n-bit index into a hash bucket ands′′ contains|s|− log n bits. Together,s′ ands′′ contain enough bits to
describes; however, to adds to the data structure, it is only necessary to stores′′ in the bucket specified by
s′. The idea of quotienting was first described by Knuth [74, Section 6.4, exercise 13] and has been used in
several contexts [42, 29, 103, 51]. Previous quotienting schemes, however, were not concerned with variable
length keys, and so thes′′ strings they produce do not have the length properties we need.

In this chapter we develop our own variable-bit-length quotienting scheme. For this scheme to work, we
will need the number of hash buckets to be a power of two. We will let q be the number of bits quotiented,

16

and assume there are2q hash buckets in the structure. As the number of entries growsor shrinks, we will
resize the structure using a standard doubling or halving scheme so that2q ≈ n.

Hashing. For purposes of hashing it will be convenient to treat the bitstringssi as integers. Accordingly
we reinterpret, when necessary, each bitstring as the binary representation of a number. To distinguish
strings with different lengths we prepend a1 to eachsi before interpreting it as a number. We denote this
padded numerical representation ofsi by xi.

We say a familyH of hash functions onto2q elements isk-universalif for randomh ∈ H, Pr(h(x1) =
h(x2)) ≤ k/2q [32], and isk-pairwise independentif for randomh ∈ H, Pr(h(x1) = y1 ∧ h(x2) = y2) ≤
k/22q for anyx1 6= x2 in the domain, andy1, y2 in the range.

We wish to construct hash functionsh′, h′′. The functionh′ must be a hash functionh′ : {0, 1}w+q+1 →
{0, 1}q . The binary representation ofh′′(xi) must containq fewer bits than the binary representation ofxi.
Finally, it must be possible to reconstructxi givenh′(xi) andh′′(xi).

For clarity we breakxi into two words, one containing the low-orderq bits of xi, the other containing
the remaining high-order bits. The hash functions we use are:

xi = xi div 2q xi = xi mod 2q

h′′(xi) = xi h′(xi) = (h0(xi))⊕ xi

whereh0 is any 2-pairwise independent hash function with range2q. For example, we can use:

h0(xi) = ((axi + b) mod p) mod 2q

wherep > 2q is prime anda, b are randomly chosen from1 . . . p. Givenh′ andh′′, these functions can be
inverted in a straightforward manner:

xi = h′′ xi = h0(h
′′)⊕ h′

We can show that the family from whichh′ are drawn is 2-universal as follows. Givenx1 6= x2, we have

Pr(h′(x1) = h′(x2)) = Pr(h0(x1)⊕ x1 = h0(x2)⊕ x2)

= Pr(h0(x1)⊕ h0(x2) = x1 ⊕ x2)

The probability is zero ifx1 = x2, and otherwise it is< 2/22q (by the 2-pairwise independence ofh0).
ThusPr(h′(x1) = h′(x2)) ≤ 2/22q.

Note also that selecting a function fromH requiresO(log n) random bits.

Dictionaries. Our dictionary data structure is a hash table consisting of avariable-bit-length arrayA and
a hash functionh′, h′′. To insert((si), (ti)) into the structure, we computes′i ands′′i and inserts′′i andti into
buckets′i.

17

It is necessary to handle the possibility that multiple strings hash to the same bucket. To handle this
we prepend to each strings′′i or ti a gamma code (as described in Section 2.3) indicating its length. (This
increases the length of the strings by at most a constant factor.) We concatenate together all the strings in a
bucket and store the result in the appropriate array slot.

If the concatenation of all the strings in a bucket is of size greater thanw, we allocate that memory
separately and store aw-bit pointer in the array slot instead.

The gamma code for the length of an element can be read in constant time with the use of a lookup
table, as described in Section 2.3. The length of any elementis O(|C|) (where|C| is the total size of the
data structure), so using a lookup table word of size(log |C|)/2 makes the table sizeO(2(log |C|)/2 log |C|) =
o(|C|) while still allowing O(1) time decoding.

Thus it takesO(1) time to decode any element in the bucket (reading the gamma code for the length, then
extracting the element using shifts). Each bucket has expected sizeO(1) elements (since our hash function
is universal), so lookups for any element can be accomplished in expectedO(1) time, and insertions and
deletions can be accomplished in expected amortizedO(1) time.

The bitstring stored for eachsi has sizeO(max(|si| − q, 1)); the bitstring forti has sizeO(|ti|). Our
variable-bit-length array increases the space by at most a constant factor, so the total space used by our
variable dictionary structure isO(m) for m =

∑

(max(|si| − log n, 1) + |ti|).

Perfect Hashing. We can also use our variable-bit-length arrays to implementa dynamized version of
the FKS perfect hashing scheme. We use the same hash functions h′, h′′ as above, except thath′ maps to
{0, 1}log n+1 rather than{0, 1}log n. We maintain a variable-bit-length array of2n buckets, and as before we
store each pair(s′′i , ti) in the bucket indicated bys′i.

If multiple strings collide within a bucket, and their totallength isw bits or less, then we store the
concatenation of the strings in the bucket, as we did with chained hashing above. However, if the length
is greater thanw bits, we allocate a separate variable-bit-length array to store the elements. If the bucket
containedk items then the new array has aboutk2 slots—we maintain the size and hash function of that
array as described by Dietzfelbinger et. al. [47].

In the primary array we store aw-bit pointer to the secondary array for that bucket. We charge the cost
of this pointer, and theO(w)-bit overhead for the array and hash function, to the cost of the w bits that
were stored in that bucket. The space bounds for our structure follow from the bounds proved in [47]: the
structure allocates onlyO(n) array slots, and our structure requires onlyO(1) bits per unused slot. Thus the
space requirement of our structure is dominated by theO(m) bits required to store the elements of the set.

Access to elements stored in secondary arrays takes worst-case constant time. Access to elements stored
in the primary array is more problematic, as the potentiallyw bits stored in a bucket might containO(w)
strings, and to meet a worst-case bound it is necessary to findthe correct string in constant time.

We can solve this problem using table lookup (similar to thatdescribed in Section 2.5). The table needed
would range over{0, 1}εw ∗ {0, 1}εw, and would allow searching in a stringa of gamma codes for a target
codeb. Each entry would contain the index ina of b, or the index of the last gamma code ina if b was not
present. The total space used would be22εw log(εw); the time needed for a query would beO(1/ε). By
simulatingw = log |C| and choosingε = 1/4, the table usage can be made a lower order term while still

18

running inO(1) time.

This gives us the following theorem:

Theorem 3.3.1 Our variable-bit-length dictionary representation can store bitstrings of any size using
O(m) bits wherem =

∑

(max(|si| − log n, 1) + ti) while allowing updates inO(1) amortized expected
time and accesses inO(1) worst-case time.

3.4 Cardinal Trees

A cardinal tree (aka trie) is a rooted tree in which every nodehasc slots for children any of which can be
filled. We generalize the standard definition of cardinal trees to allow each nodev to have a differentc,
denoted asc(v). For a nodev we want to support returning the parentp(v) and theith child v[i], if any. We
also want to support deleting or inserting a leaf node.

We consider these operations “semidynamic”: the time bounds will hold for any sequence of opera-
tions, but the compression achieved will depend on the labeling of the vertices. If the tree changes shape
significantly, the vertices may need to be relabeled to maintain the space bounds.

We begin with a dictionary-based representation for cardinal trees. For each vertexv we store a dictio-
nary entry((v), (c(v), p(v) − v))—that is, the dictionary mapsv to the pair(c(v), p(v) − v). (To encode
a pair of values, we gamma code each value and concatenate them to form a bitstring.) For each child ofv
we store an entry((v, i), (v[i] − v)). Given this representation we can support cardinality queries, parent
queries, and child queries.

Lemma 3.4.1 The representation we describe supports parent and child queries inO(1) time and insertion
and deletion of leaves inO(1) expected amortized time. With a variable-bit-length dictionary the space used
is O(m) bits wherem =

∑

v∈V (log c(p(v)) + log |p(v)− v|).

Proof. The space usage of our variable-bit-length dictionary structure ism =
∑

(s,t)∈D(|t|+ max(1, |s| −
log |D|)). The first type of dictionary entry we store is((v, i), (v[i] − v)). The cost of storingv is absorbed
by thelog |D|. The cost of storingi for each vertex is thelog c(p(v)) above. The cost of storing(v[i] − v)
for each child is the same as the cost of storingp(v)−v for each vertex, so it is handled by thelog |p(v)−v|
given above.

The second type of entry we store is((v), (c(v), p(v) − v)). As before, thev is absorbed by thelog |D|.
The cost of storingp(v)− v for each vertex is thelog |p(v)− v| given above. The cost ofc(v) is charged to
the first child of the vertex ifc(v) > 0; otherwise the cost isO(1) bits and is charged to thelog |p(v)− v|.

Any treeT can be separated into a set of trees of size at most1/2n by removing a single node. Recur-
sively applying such a separator on the cardinal tree definesa separator treeTs over the nodes. An integer
labeling can then be given to the nodes ofT based on the inorder traversal ofTs. We call such a labeling a
tree-separator labeling.

Lemma 3.4.2 For all tree-separator labelings of treesT = (V,E) of sizen,
∑

(u,v)∈E(log |u − v|) <
O(n) + 2

∑

(u,v)∈E log(max(d(u), d(v))).

19

Proof. Consider the separator treeTs = (V,Es) on which the labeling is based. For each nodev we denote
the degree ofv by d(v). We letTs(v) denote the subtree ofTs that is rooted atv. Thus|Ts(v)| is the size of
the piece ofT for whichv was chosen as a separator.

There is a one-to-one correspondence between the edgesE and edgesEs. In particular consider an
edge(v, v′) ∈ Es between a vertexv and a childv′. This corresponds to an edge(v, v′′) ∈ T , such that
v′′ ∈ Ts(v

′). We need to account for the log-differencelog |v − v′′|. We have|v − v′′| < |Ts(v)| since all
labels in any subtree are given sequentially. We partition the edges into two classes and calculate the cost
for edges in each class.

First, if d(v) >
√

|Ts(v)| we have for each edge(v, v′′), log |v − v′′| < log |Ts(v)| < 2 log d(v) <
2 log max(d(v), d(v′′)).

Second, ifd(v) ≤
√

|Ts(v)|we charge each edge(v, v′′) to the nodev. The most that can be charged to a
node is

√

|Ts(v)| log |Ts(v)| (one pointer to each child). Note that for any tree in which for every nodev, (A)
|Ts(v)| < 1/2|Ts(p(v))|, and (B) cost(v) ∈ O(|Ts(v)|c) for somec < 1, we have

∑

v∈V cost(v) ∈ O(n).
Therefore the total charge isO(n).

Summing the two classes of edges givesO(|T |) + 2
∑

(u,v)∈E log(max(d(u), d(v))).

Theorem 3.4.1 Cardinal trees with a tree-separator labeling can be storedin O(m) bits, wherem =
∑

v∈V (1 + log(1 + c(p(v)))).

Proof. We are interested in the edge costEc(T) =
∑

v∈V (log |v − p(v)|). Substitutingp(v) for u in
Lemma 3.4.2 gives:

Ec(T) < O(n) + 2
∑

v∈V

log(max(d(v), d(p(v))))

< O(n) + 2
∑

v∈V

d(v) + log d(p(v))

= O(n) + 4n + 2
∑

v∈V

log d(p(v))

< O(n) + 2
∑

v∈V

log(1 + c(p(v)))

With Lemma 3.4.1 this gives the required bounds.

3.5 Experimentation

To understand the time- and space-efficiency of our dictionary structure we tested it using a real-world
application: an algorithm to perform 3D Delaunay tetrahedralization (described more fully in Chapter 7).
For that structure it was necessary to map edges(va, vb) to blocks of data. Edges could be inserted or deleted,
and the data could be updated. We used a variant of our dictionary structure to support these operations.

For our tests we captured traces of the updates and lookups involved in constructing a mesh of between
215 and220 vertices. We used these traces to test our variable-bit-length dictionary structure implemented

20

VarArray(Nibble) VarArray(Byte) Hashtable
vtxs Updates Lookups Time Space Time Space Time Space
215 1019320 1498357 0.795 11.12 0.632 14.46 0.382 96.17
216 2043269 3006491 1.59 11.10 1.27 14.56 0.883 96.23
217 4108355 6052525 3.34 11.32 2.63 14.65 2.07 96.40
218 8267102 12180810 6.96 11.43 5.54 14.82 4.56 96.70
219 16590922 24442256 14.3 11.34 11.5 14.83 12.6 96.81
220 33217081 48919922 29.6 11.56 23.7 14.87 22.3 96.71

Table 3.1: Time (in seconds) and space (in bytes per vertex) to store and update data for each edge in a
tetrahedral Delaunay mesh.

using two coding techniques: thebyte-alignedandnibble-alignedcodes, as described in Section 2.3. (The
byte-aligned code is optimized for good time performance, while the nibble-aligned code is preferred for
a high compression ratio.) For each test we ran all of the lookups from the trace, using one byte of data
(rather than the larger amount of data from the original application). We compared the results to those for a
standard bucketed hash table. The bucketed hashtable is initially faster but loses its advantage for large sizes;
we suspect this is because it requires too much memory to fit inthe cache. The results from our experiments
are shown in Table 3.1; further implementation details are given below.

Dictionary Structure. The data structure we use to represent this information is a modification of our
variable-bit-length dictionary structure. Every edge(va, vb) is mapped to a bucket from an array of|V |
buckets. We use quotienting to savelog |V | bits from the cost of storing each key, as described in Section
3.3: we let

K = vb − va B = va ⊕ h0(K)

and store keyK in bucket numberB. For the base hash functionh0 we use a random number table of size
256: h0(K) = table[K & 255].

Additionally, we note that our 3D meshing algorithm shows considerable locality of access, in that fre-
quently it performs many accesses to vertices with similar labels. Accordingly we restrict the hash function
h0 to a smaller range,[0..G − 1]. This effectively partitions the buckets in the array into groups of sizeG,
to be determined later. We keep some information associatedwith each group (to be discussed later).

The description of our dictionary structure in Section 3.3 specifies that the buckets should be elements of
a variable-bit-length array structure, so that underfull buckets should not cause a space penalty. The variable-
bit-length array structure has a significant constant overhead, though; for our application we instead keep
the buckets sufficiently full that underfull buckets do not cause problems.

Initially each bucket is allocated a fixed number of bytes. Ifmore space is required, the bucket is
allocated additional blocks of memory from a secondary poolof blocks, as required. The last byte in a block
stores a one-byte pointer to the next block, if there is one. (This makes use of a hashing trick—see Section
5.5 for details.) To preserve memory locality, the secondary pool of blocks and allocation structures are kept

21

separately for each bucket group. The space cost of the allocation structure is amortized over the cost of the
buckets in the group.

The original meshing application contains a great deal of data per bucket (in the form of vertex lists for
each data item); accordingly it uses a bucket group sizeG = 16. This application uses less data per bucket,
so we amortize the allocation structure over a larger group sizeG = 64.

The byte-aligned code is less space-efficient (but more time-efficient) than the nibble code. Accordingly
we allocate more space for the dictionary using the byte-aligned code.

After some experimentation we chose to allocate10 bytes for each bucket initially when using the byte-
aligned code, and to allocate additional memory in blocks of4 bytes. We allocate0.7 secondary blocks for
each bucket, and can expand the secondary block pool if necessary.

The nibble code is more space-efficient than the byte code, sothe dictionary does not require as much
space when using it. Using the nibble code we initially allocate7 bytes per bucket rather than10, and0.65
secondary blocks per bucket rather than0.7.

In each case the sizes are chosen such that about25% of bucket groups require additional blocks to be
allocated from the secondary block pool.

Hashtable. We compare our structure to a naive hashtable. Each(key, data) pair in the structure uses
one listnode containing a4-byte word each forva, vb, and the data, and an8-byte pointer to the next node.
On our64-bit architecture the listnodes are rounded up to the nearest word size, making them24 bytes each.
(On a32-bit architecture the listnodes would be only16 bytes each.) Each bucket uses one8-byte pointer
as well. As in the variable-bit-length dictionary structure, we keep|V | buckets in the hashtable.

3.6 Discussion

We have presented two data structures, the variable-bit-length array and dictionary structure, which can serve
as useful building blocks for other structures. The structures have strong theoretical bounds:O(1) lookup
and amortized expectedO(1) update operations. Our experimentation here, and further experimentation in
Chapters 5, 7, and 8, shows that (variants of) the structuresare useful in practice as well.

For practical applications we modify the structure as discussed in Section 3.5 above. We divide the
structure into groups, each with its own subhashtable, to improve locality of access. For the variable-bit-
length dictionary structure we do not use an underlying variable-bit-length array structure; instead we choose
settings that keep the buckets of the dictionary close to full. Finally, we use our own memory allocator to
assign blocks to store difference codes.

Further details of our implementation of the dictionary structure can be found in Chapter 7.

22

Chapter 4

Compact Representations of Ordered Sets

4.1 Introduction

In this chapter we describe a data structure to compactly represent an ordered setS = {s1, s2, . . . , sn}, si <
si+1, from a universeU = {0, . . . ,m − 1}.1 This data structure supports a wide variety of operations and
can operate in a purely functional setting [69]. (In a purelyfunctional setting data cannot be overwritten.
This means that all data is fully persistent.)

This data structure has many applications, especially in the design of search engines. Memory consid-
erations are a serious concern for search engines. Some web search engines index billions of documents,
and even this is only a fraction of the total number of pages onthe Internet. Most of the space used by a
search engine is in the representation of aninverted index, a data structure that maps search terms to lists of
documents containing those terms. Each entry (orposting list) in an inverted index is a list of the document
numbers of documents containing a specific term. When a queryon multiple terms is entered, the search
engine retrieves the corresponding posting lists from memory, performs some set operations to combine
them into a result, and reports them to the user. It may be desirable to maintain the documents ordered,
for example, by a ranking of the pages based on importance [95]. Using difference coding (as described in
Section 2.4) these lists can be compressed into an array of bits using5 or 6 bits per edge [136, 88, 12], but
such representations are not well suited for merging lists of different sizes.

The data structure we describe can be used to represent a posting list from a search engine. The struc-
ture supports dynamic operations including set union and intersection while maintaining the data within a
constant factor of the information-theoretic bound. Also,since it operates in a purely functional setting, the
search engine can perform set operations on posting lists without spending time and memory to make copies
of the sets.

There has been significant research on compact representation of sets taken fromU . An information-
theoretic bound shows that representing a set of sizen (for n ≤ m

2) requiresΩ(log
(

m
n

)

) = Ω(n log m+n
n)

bits. Brodnik and Munro [29] demonstrate a structure that isoptimal in the high-order term of its space
usage, and supports lookup inO(1) worst-case time and insert and delete inO(1) expected amortized time.

1This chapter is based on work with Guy Blelloch [13].

23

Pagh [96] simplifies the structure and improves the space bounds slightly. These structures, however, are
based on hashing and do not support ordered access to the data: for example, they support searching for a
precise key, but not searching for the next key greater (or less) than the search key. Pagh’s structure does
support theRank operation (as described in Section 2.6) but only statically, i.e., without allowing insertions
and deletions. As with our work they assume the unit cost RAM model with word sizeΩ(log |U |).

The set union and intersection problems are directly related to the list merging problem, which has
received significant study. Carlsson, Levcopoulos, and Petersson [31] considered a block metrick =
Block(S1, S2) which represents the minimum number of blocks that two ordered listsS1, S2 need to be
broken into before being recombined into one ordered list. Using this metric, they show an information-
theoretic lower bound ofΩ(k log |S1|+|S2|

k) on the time complexity of list merging in the comparison model.

Moffat, Petersson, and Wormald [86] show that the list merging problem can be solved inO(k log |S1|+|S2|
k)

time by any structure that supportsfast split and joinoperations. A split operation is one that, given an or-
dered setS and a valuev, splits the set into setsS1 containing values less thanv andS2 containing values
greater thanv. A join operation is one that, given setsS1 andS2, with all values inS1 less then the least value
in S2, joins them into one set. These operations are said to befastif they run inO(log(min(|S1|, |S2|))) time.
In fact, the actual list merging algorithm requires only that the split and join operations run inO(log |S1|)
time.

In this chapter we present two representations for ordered sets. The first, in Section 4.2, is a simple
representation using the variable-bit-length dictionaryfrom Section 3.3. It is simple to describe but does not
support the full range of operations that we need for a posting-list data structure.

Our second representation, described in Section 4.4 and Section 4.5, is a compression technique which
improves the space efficiency of structures for ordered setstaken fromU . Given a base structure supporting
a few basic operations, our technique can improve the structure’s space bound toO(n log m+n

n) bits. Our
technique allows a wide range of operations as long as they are supported by the base structure.

Section 4.6 gives experimental results for the second representation. To show the versatility of the
compression technique, we applied it to two separate data structures: red-black trees [60] and functional
treaps [6].

4.2 Representation With Dictionaries

Here we describe a representation for ordered sets based on our variable-bit-length dictionary from Section
3.3.

We would like to represent ordered setsS of integers in the range(0, . . . ,m− 1). In addition to lookup
operations, an ordered set needs to efficiently support queries that depend on the order. Here we consider
findNext and finger searching.findNexton a keyk1 findsmin{k2 ∈ S|k2 > k1}; fingerSearchon a finger
key k1 ∈ S and a keyk2 findsmin{k3 ∈ S|k3 > k2}, and returns a finger tok3. Finger searching takes
O(log l) time, wherel = |{k ∈ S|k1 ≤ k ≤ k2}|.

To represent the set we use a red-black tree on the elements. We will refer to vertices of the tree by the
value of the element stored at the vertex, usen to refer to the size of the set, and without loss of generality

24

we assumen < m/2. For each elementv we denote the parent, left child, right child, and red-blackflag as
p(v), l(v), r(v), andq(v) respectively.

We represent the tree as a dictionary containing entries of the form ((v), (l(v) − v, r(v) − v, q(v))).
(We could also add parent pointersp(v) − v without violating the space bound, but in this case they are
unnecessary.) It is straightforward to traverse the tree from top to bottom in the standard way. It is also
straightforward to implement a rotation by inserting and deleting a constant number of dictionary elements.
Assuming dictionary queries takeO(1) time,findNextcan be implemented inO(log n) time. Using a hand
data structure [20], finger searching can be implemented inO(log l) time with an additionalO(log2 n)
space. Membership takesO(1) time. Insertion and deletion takeO(log n) expected amortized time. We call
this data structure adictionary red-black tree.

It remains to show the space bound for the structure.

Lemma 4.2.1 If a set of integersS ⊂ {0, . . . ,m − 1} of sizen is arranged in-order in a red-black treeT
then

∑

v∈T (log |p(v)− v|) ∈ O(n log(m/n)).

Proof. Consider the elements of a setS ⊂ {0, . . . ,m−1} organized in a set of levelsL(S) = {L1, . . . , Ll},
Li ⊂ S. If |Li| ≤ α|Li+1|, 1 ≤ i < l, α > 1, we say such an organization is aproper level coveringof the
set.

We first consider the sum of the log-differences of cross pointers within each level, and then count
the pointers in the red-black trees against these pointers.For any setS ⊂ {0, . . . ,m − 1} we define
next(e, S) = min{e′ ∈ S ∪ {m}|e′ > e}, andM(S) =

∑

j∈S log(next(j, S) − j). Since logarithms are
concave, the sum is maximized when the elements are evenly spaced. ThusM(S) ≤ |S| log(m/|S|). For
any proper level coveringL of a setS this gives:

∑

Li∈L(S)

M(Li) ≤
∑

Li∈L

|Li| log(m/|Li|)

≤
i<l
∑

i=0

α−i|S| log(αim/|S|))

≤ 2 +
α

(α − 1)
|S| log(m/|S|)

∈ O(|S| log(m/|S|))

This represents the total log-difference when summed across all “next” pointers. The same analysis bounds
similarly defined “previous” pointers. Together we call thesecross pointers.

We now account for each pointer in the red-black tree againstone of the cross pointers. First partition
the red-black tree into levels based on the number of black nodes in the path from the root to the node. This
gives a proper level covering withα = 2. Now for each nodei, the distance to each of its two children is at
most the distance to the previous or next element in its level. Therefore we can account for the cost of the left
child against the previous pointer and the right child against next pointer. The sum of the log-differences of
the child pointers is therefore at most the sum of the log-differences of the next and previous cross pointers.
This gives the desired bound.

25

Theorem 4.2.1 A set of integersS ⊂ {0, . . . ,m−1} of sizen represented as a dictionary red-black tree and
using a compressed dictionary usesO(n log((n + m)/n)) bits, and supports find-next queries inO(log n)
time, finger-search queries inO(log l) time, and insertion and deletion inO(log n) expected amortized time.

Proof. (outline) Recall that the space for a compressed dictionaryis bounded byO(m) wherem =
∑

(s,t)∈D(max(1, |s|−
log |D|) + |t|). The keys uselog |D| bits each, and the size of the data stored in the dictionary isbounded
by Lemma 4.2.1. This gives the desired bounds.

The representation described here is powerful, but it supports only the operations allowed by a red-black
tree. (Also, it cannot be easily made purely functional.) The next representation we describe will support a
greater range of operations.

4.3 Supported Operations

Our ordered-set structures can support the following operations:

• Search − (Search +): Given x, return the greatest (least) element ofS that is less than or equal
(greater than or equal) tox.

• Insert : Givenx, return the setS′ = S ∪ {x}.

• Delete : Givenx, return the setS′ = S \ {x}.

• FingerSearch −(FingerSearch +): Given a handle (or “finger”) for an elementy in S, perform
Search − (Search +) for x in O(log d) time whered = |{s ∈ S | y < s < x ∨ x < s < y}|.

• First , Last : Return the least (or greatest) element inS.

• Split : Given an elementx, return two setsS′ : {y ∈ S | y < x} andS′′ : {y ∈ S | y > x}, plusx
if it was in S.

• Join : Given setsS′, S′′ such that∀x ∈ S′,∀y ∈ S′′, x < y, returnS = S′ ∪ S′′.

• (Weighted)Rank : This operation assumes that a weightw(x) is provided with every elementx as
it is inserted. Given an elementy, this operation findsr = Σ

x∈S,x<yw(x). In the unweighted variant,
all weights are considered to be1.

• (Weighted)Select : This operation assumes that a weightw(x) is provided with every element
x as it is inserted. Givenr, this operation finds the greatesty such that Σ

x∈S,x<yw(x) ≤ r. It returns
bothy and the associated sum. In the unweighted variant, all weights are considered to be1.

Given any ordered dictionary structureD usingO(n log m) bits to storen values fromU = {0, . . . ,m−
1}, the blocking technique we demonstrate produces an orderedset structure usingO(n log m+n

n) bits. This
is within a constant factor of the information-theoretic lower bound. Our technique requires that the target

26

machine have a word size ofΩ(log m). This is reasonable sincelog m bits are required to distinguish the
elements ofU . Our technique also makes use of a lookup table of sizeO(m2α log m) for a parameterα > 0.
(For most of the applications in this thesis we could use a table of sizeO(2εw) entries; we could simulate
w = log |C| and chooseε to make the table size a low-order term. Here, though, we do not assumem is
related to|C|. We must decode gamma codes of sizelog m in constant time, so we must explicitly count the
costO(m2α log2 m) against our space usage.)

Our data structure works as follows. Elements in the structure aredifference coded(as described in
Section 2.4) and stored in fixed-length blocks of sizeΘ(log m). The first element of every block is kept
uncompressed. The blocks are kept in a dictionary structure(with the first element as the key). The data
structure needs to know nothing about the actual implementation of the dictionary. A query consists of first
searching for the appropriate block in the dictionary, and then searching within that block. We provide a
framework for dynamically updating blocks as inserts and deletes are made to ensure that no block becomes
too full or too empty. For example, inserting into a block might overflow the block. This requires it to be
split and a new block to be inserted into the dictionary. The operations we use on blocks correspond almost
directly to the operations on the tree as a whole. We use table-lookup to implement the block operations
efficiently.

Our structure can support a wide range of operations, depending on the operations the dictionaryD
supports. In all cases the cost of our operations isO(1) instructions andO(1) operations onD.

If the input structureD supports theSearch −, Search +, Insert , andDelete operations, then our
structure supports those operations.

If D supportsFingerSearch and supportsInsert and Delete at a finger, then our structure
supports those operations.

If D supportsFirst , Last , Split , andJoin , then our structure supports those operations. If the
bounds forSplit and Join on D are O(log min(|D1|, |D2|)), then our structure meets these bounds
(despite theO(1) calls to other operations).

If D supportsWeightedRank , then our structure supportsRank. If D supportsWeightedSelect ,
then our structure supportsSelect . Our algorithms need the weighted versions so that they can use the
number of entries in a block as the weight.

The catenable-list structure of Kaplan and Tarjan [69] can be adapted to support all of these operations.
The time bounds (all worst-case) areO(log n) for Search −, Search +, Insert , andDelete ; O(log d)
for FingerSearch , whered is as defined above;O(1) for First andLast ; andO(log min(|D1|, |D2|))
for Split andJoin . Our structure meets the same bounds. As another example, our representation based
on a simpler dictionary structure based on Treaps [108] supports all these operations in the time listed in the
expected case. Both of these can be made purely functional. As a third example, our representation using a
skip-list dictionary structure [100] supports these operations in the same time bounds (expected case) but is
not purely functional.

27

011 011 010 1 001000100110010

3 3 2 1 4306

{306, 309, 312, 314, 315, 319}

Figure 4.1: The encoding of a block of size15. In this case the universe has size1024, so the head is
encoded with10 bits.

4.4 Block structure

Our representation consists of two structures, nested using a form of structural bootstrapping [30]. The base
structure is theblock. In this section we describe our block structure and the operations supported on blocks.
Then, in Section 4.5, we describe how blocks are kept in an ordered-dictionary structure to support efficient
operations.

The block structure, the given dictionary structure and ourcombined structure all implement the same
operations except that the block structure has an additional BMidSplit operation, and only the given
dictionary supports the weighted versions ofRank and Select . For clarity, we refer to operations on
blocks with the prefixB (e.g., BSplit), operations on the given dictionary structure with the prefix D
(e.g., DSplit), and operations on our combined structure with no prefix.

Block encoding. A blockBi is an encoding of a series of values (in increasing order)v1, v2, . . ., vk. The
block is encoded as alog m-bit representation ofv1 (called the “head”) followed by difference codes (as in
Section 2.4) forv2 − v1, v3 − v2, . . ., vk − vk−1. (See Figure 4.1 for an example.) We say that thesize
of a blocksize (B) is the total length of the difference codes contained in that block. In particular we are
interested in blocks of sizeO(log m) bits.

It is important for our time bounds that the operations on blocks are fast—they cannot take time pro-
portional to the number of values in the block. We make use of table lookup for fast decoding, as de-
scribed in Section 2.5, using a table word size ofα log m for some parameterα. Since blocks have size
O(log m), thesum-gamma-fast algorithm from that section allows access to any value in theblock in
O(log m

α log m) = O(1/α) time. The cost of the lookup tables forsum-gamma-fast is O(m2α log m) bits.

We useM to denote the maximum possible length of a difference code. In the case of gamma codes,
M = 2blog mc+ 1 bits. Throughout Sections 4.4 and 4.5 we will assume the use of gamma codes.

We define the following operations on blocks. All operationsrequire constant time assuming constant
α and that the blocks have sizeO(log m). Some operations increase the size of the blocks; we describe in
Section 4.5 how the block sizes are bounded.

BSearch − (BSearch +): Given a valuev and a blockB, these operations return the greatest (least)
value inB that is less than or equal (greater than or equal) tov. This is an application of thesum-gamma-fast rou-
tine.

28

BInsert : Given a valuev and a blockB, this operation insertsv into B. If v is less than the head for
B, then our algorithm encodes that head by its difference fromv and adds that code to the block. Otherwise,
our algorithm searchesB for the valuevj that should precedev. The gamma code forvj+1 − vj is deleted
and replaced with the gamma codes forv− vj andvj+1− v. (Some shift operations may be needed to make
room for the new codes. Since each shift affectsO(log m) bits, this requires constant time.)

BDelete : Given a blockB and a valuevj contained inB, this operation deletesvj from B. If vj is
the head forB, then its successor is decoded and made into the new head forB. Otherwise, our algorithm
searchesB for vj . It deletes the gamma codes forvj − vj−1 and forvj+1 − vj and replaces them with the
gamma code forvj+1 − vj−1. (Part of the block may need to be shifted. As in the Insert case, this requires
a constant number of shifts.)

BMidSplit : Given a blockB of sizeb bits (whereb > 2M), this operation splits off a new blockB′

such thatB andB′ each have size at leastb/2−M . It searchesB for the first codec that starts after position
b/2 −M (using the second array stored with each table entry). Thenc is decoded and made into the head
for B′. The codes afterc are placed inB′, andc and its successors are deleted fromB. B now contains at
mostb/2 bits of codes, andc contained at mostM bits, soB′ contains at leastb/2 −M bits. This takes
constant time since codes can be copiedΩ(log m) bits at a time.

BFirst : Given a blockB, this operation returns the head forB.

BLast : Given a blockB, this operation scans to the end ofB and returns the final value.

BSplit : Given a blockB and a valuev, this operation splits a new blockB′ off of B such that all
values inB′ are greater thanv and all values inB are less thanv. This is the same asBMidSplit except
thatc is chosen by a search rather than by its position inB. This operation returnsv if it was in B.

BJoin : The join operation takes two blocksB andB′ such that all values inB′ are greater than the
greatest value fromB. It concatenatesB′ onto B. To do this it first finds the greatest valuev in B. It
represents the headv′ from B′ with a gamma code forv′ − v and appends this code to the end ofB. It
appends the remaining codes fromB′ to B. This takes constant time since codes can be copiedΩ(log m)
bits at a time.

BRank: To support theBRank operation thesum-gamma-fast lookup tables need to be augmented:
along with the sum of the gamma codes in a chunk, the table needs to contain information on the number of
codes decoded. To find the rank of an elementv within a blockB, our algorithm searches for the element
while keeping track of the number of elements in each chunk skipped over.

BSelect : To support theBSelect operation thesum-gamma-fast lookup tables need to be aug-
mented: in addition to the information needed forBRank, each chunk needs to have an array containing
the decoded values. (The table needed for this hasmα entries of(α log m)2α log m bits each; the total is
O(m2α log m) bits, which does not alter the tables’ asymptotic space complexity.) To find the element with
a given rank, our algorithm searches for the chunk containing that element, then accesses the appropriate
index of the array.

29

4.5 Representation

To represent an ordered setS = {s1, s2, . . . , sn}, si < si+1, our approach maintainsS as a set of blocks
Bi whereBi = {sbi

, sbi+1, . . . , sbi+1−1}. The valuesb1 . . . bk are maintained such that the size of each
block is betweenM and4M . The first block and the last block are permitted to be smallerthanM . (Recall
that M = 2blog mc + 1 is the maximum possible length of a gamma code.) This property is maintained
throughout all operations performed onS.

Lemma 4.5.1 Given any setS from U = {0, . . . ,m − 1}, let |S| = n. Given any assignment ofbi such
that∀Bi,M ≤ size(Bi) ≤ 4M , the total space used for the blocks isO(n log n+m

n).

Proof. We begin by bounding the space used for the gamma codes. The cost to gamma code the differences
between every pair of consecutive elements inS is

n
∑

i=2

(2blog(si − si−1)c+ 1).

This sum is maximized when the values are evenly spaced in theinterval 1 . . . m; at that point the sum is
∑n

i=2(2 log m
n + 1), which isO(n log m

n + n) = O(n log m+n
n).

The gamma codes contained in the blocks are a subset of the ones considered above (since the head of
each block is not gamma coded). For everylog m bits used by a head there are at leastM bits used by
gamma codes; sinceM > 2 log m the amount of additional space used by heads is at most half that used by
gamma codes.

The blocksBi are maintained in an ordered-dictionary structureD. The key for each block is its head.
We refer to operations onD with a prefixD to differentiate them from operations on blocks and from the
interface to our representation as a whole.D may useO(log m) bits to store each value. Since each value
stored inD containsΘ(log m) bits already, this increases our space bound by at most a constant factor.
Our representation, as a whole, supports the following operations. They are not described as functional but
can easily be made so: rather than change a block, our algorithm could delete it from the structure, copy it,
modify the copy, and reinsert it into the structure.

Search −: First, our algorithm callsDSearch −(k), returning the greatest blockB with headk′ ≤ k.
If k′ = k, returnk′. Otherwise, callBSearch −(k) onB and return the result.

Search +: First, our algorithm callsDSearch −(k), returning the greatest blockB with headk′ ≤ k.
If k′ = k, returnk′. Otherwise, callBSearch +(k) on B. If this produces a value, return that value;
otherwise, callDSearch +(k + 1) and return the head of the result.

Insert : First, our algorithm callsDSearch −(k), returning the blockB that should containk. (If
there is no block with head less thank, our algorithm usesDSearch +(k) to find a block instead.) Our
algorithm then callsBInsert (k) on B. If size(B) > 4M , our algorithm callsBMidSplit on B and
usesDInsert to insert the new block.

30

Delete : First, our algorithm callsDSearch −(k), returning the blockB that contains the target ele-
mentk. Then our algorithm callsBDelete (k) on B. If size(B) < M , our algorithm usesDDelete to
deleteB from D. It usesDSearch − to find the predecessor ofB andBJoin to join the two blocks. This
in turn may produce a block which is larger in size than4M , in which case aBMidSplit operation and a
DInsert operation are needed as in theInsert case.

(Under rare circumstances, deleting a gamma-coded elementfrom a block may cause it to grow in size
by one bit. If this causes the block to exceed4M in size, this is handled as in theInsert case.)

We define a “finger” to an elementv to consist of a finger to the blockB containingv in D.

FingerSearch : Our algorithm callsDFingerSearch (k) for the blockB′ which containsk. It then
callsBSearch −(k) and returns the result.

First : Our algorithm callsDFirst and thenBFirst and returns the result.

Last : Our algorithm callsDLast and thenBLast and returns the result.

Join : Given two structuresD1 andD2, our algorithm first checks the size ofB1 = DLast(D1) and
B2 = DFirst(D2). If size(B1) < M , our algorithm usesDSplit to removeB1 and its predecessor,
BJoin to join them, andBMidSplit if the resulting block is oversized. It usesDJoin to join the resulting
block(s) back ontoD1. If size(B2) < M , our algorithm joinsB2 onto its successor using a similar method.
Then our algorithm usesDJoin to join the two structures.

Split : Given an elementk, our algorithm first callsDSplit (k), producing structuresD1 andD2.
If the split operation returns a blockB, then our algorithm usesBDelete on B to delete the head, uses
DJoin to join B to D2, and returns(D1, k,D2). Otherwise, our algorithm callsBSplit (k) on the last
block DLast (D1). If this produces an additional block, this block is joinedontoD2.

Rank: The weighted rank of a block is defined to be the number of elements it contains. Our algorithm
callsDSearch −(k) to find the blockB that should containk. It callsDWeightedRank (B) andBRank(k)
and returns the sum.

Select : The size of a block is defined to be the number of elements it contains. Our algorithm uses
DWeightedSelect (r) to find the blockB containing the target, then usesBSelect with the appropriate
offset onB to find the target.

Lemma 4.5.2 For an ordered universeU = {0, . . . ,m − 1}, given an ordered dictionary structure (or
comparison-based ordered set structure)D that usesO(n log m) bits to storen values, our blocking tech-
nique produces a structure that usesO(n log n+m

n) bits.

1. If D supportsDSearch −, DSearch +, DInsert , andDDelete , the blocked set structure supports
those operations usingO(1) instructions andO(1) calls to operations ofD.

2. If D supportsDFingerSearch , the blocked set structure supportsFingerSearch in O(1) in-
structions and one call toDFingerSearch . If D supportsDInsert and DDelete at a finger,

31

union (S1,S2)
if S1 = null then

return S2

if S2 = null then
return S1

(S2A,v,S2B)← DSplit (S2,DFirst (S1))
SB ← union (S2B,S1)
return DJoin (S2A,SB)

Figure 4.2: Pseudocode for aunion operation.

then the blocked set structure supports those operations using O(1) instructions andO(1) calls to
DInsert andDDelete at a finger.

3. If D supports theDFirst , DLast , DSplit , andDJoin operations, then the blocked set structure
supports those operations usingO(1) instructions andO(1) calls to operations ofD.

4. If D supports theDWeightedRank operation, then the blocked set structure supports theRank op-
eration inO(1) instructions and one call toDWeightedRank . If D supports theDWeightedSelect op-
eration, then the blocked set structure supports theSelect operation usingO(1) instructions and
one call toDWeightedSelect .

The proof follows from the descriptions above.

4.6 Applications

By combining theSplit andJoin operations it is possible to implement efficient set union, intersection,
and difference algorithms. An example implementation ofunion is shown in Figure 4.2. IfSplit and
Join run inO(log |D1|) time, then these set operation algorithms run inO(k log |D1|+|D2|

k +k) time, where
k is the least possible number of blocks that we can break the two lists into before reforming them into one
list. (This is the Block Metric of Carlsson et al. [31].)

As described in the introduction, the catenable ordered list structure of Kaplan and Tarjan [69] can be
modified to support all of the operations described here in worst-case time. (To do this, we useSplit as
our search routine; to supportFingerSearch we define a finger fork to be the result when the structure
is split onk. To support weighted Rank and Select, we let each node in the structure store the weight of its
subtree.) Thus our representation using their structure supports those operations in worst-case time using
O(n log n+m

n) bits. This structure may be somewhat unwieldy in practice, however.

If expected-case rather than worst-case bounds are acceptable, Treaps [108] are an efficient alternative.
Treaps can be made to support the Split and Join operations byflipping the pointers along the left spine of
the trees—each node along the left spine points to its parentinstead of its left child. To split such a treap on
a keyk, an algorithm first travels up the left spine until it reachesa key greater thank, then splits the treap

32

|U | |S| Insert Times Delete Times Space Needed
Standard Blocked Standard Blocked Standard Blocked

220 210 0.001 0.004 0.001 0.003 12 4.62
220 212 0.010 0.016 0.012 0.013 12 3.80
220 214 0.061 0.067 0.058 0.076 12 3.02
220 216 0.363 0.348 0.343 0.369 12 2.28
220 218 2.007 1.790 1.920 1.901 12 1.64
225 210 0.004 0.001 0.000 0.006 12 6.37
225 212 0.009 0.013 0.010 0.017 12 5.67
225 214 0.062 0.073 0.058 0.087 12 4.96
225 216 0.351 0.393 0.347 0.465 12 4.18
225 218 1.875 2.071 1.828 2.365 12 3.42
230 210 0.001 0.005 0.002 0.003 12 8.15
230 212 0.012 0.013 0.011 0.019 12 7.43
230 214 0.061 0.078 0.062 0.093 12 6.68
230 216 0.357 0.424 0.346 0.515 12 5.89
230 218 1.865 2.283 1.798 2.745 12 5.33

Table 4.1: Performance of a standard treap implementation versus our blocked treap implementation, aver-
aged over ten runs. Time is in seconds; space is in bytes per value.

as normal. Seidel and Aragon showed that the expected path length of such a traversal isO(log |T1|). By
copying the path traversed this can be made purely functional.

4.7 Experimentation

We implemented our blocking technique in C using both treapsand red-black trees. Rather than the gamma
code, we use the nibble code, as described in Section 2.3. We decode blocks nibble-by-nibble rather than
with a lookup table as described above. For very large problems, using such a table might improve perfor-
mance.

We use a maximum block size of 46 nibbles (23 bytes) and a minimum size of 16 nibbles (8 bytes). We
use one byte to store the number of nibbles in the block, for a total of 24 bytes per block.

We combined our blocking structure with two separate tree structures. The first is our own (purely
functional) implementation of treaps [6]. Priorities are generated using a hash function on the keys. Each
treap node maintains an integer key, a left pointer, and a right pointer, for a total of12 bytes per node. In our
blocked structure each node also keeps a pointer to its block. Since each block is24 bytes, the total space
usage is40 bytes per treap node.

The second tree structure is the implementation of red-black trees [60] provided by the RedHat Linux im-
plementation of the C++ Standard Template Library [114]. Weused themap<int, unsigned char*>
template for our blocked structure and theset<int> template for the unblocked equivalent. A red-black

33

|U | |S| Insert Times Delete Times Space Needed
Standard Blocked Standard Blocked Standard Blocked

220 210 0.001 0.002 0.000 0.003 20 5.49
220 212 0.004 0.006 0.003 0.014 20 4.55
220 214 0.013 0.033 0.023 0.054 20 3.62
220 216 0.064 0.136 0.100 0.230 20 2.74
220 218 0.357 0.559 0.538 0.972 20 1.97
225 210 0.001 0.003 0.000 0.000 20 7.66
225 212 0.004 0.008 0.004 0.015 20 6.80
225 214 0.012 0.037 0.022 0.056 20 5.96
225 216 0.064 0.152 0.098 0.247 20 5.02
225 218 0.384 0.634 0.583 1.066 20 4.10
230 210 0.000 0.003 0.002 0.003 20 9.79
230 212 0.003 0.010 0.005 0.015 20 8.91
230 214 0.013 0.040 0.020 0.060 20 8.01
230 216 0.066 0.170 0.100 0.262 20 7.08
230 218 0.385 0.714 0.589 1.143 20 6.39

Table 4.2: Performance of a standard red-black tree implementation versus our blocked red-black tree im-
plementation, averaged over ten runs. Time is in seconds; space is in bytes per value.

tree node includes a key, three pointers (left, right, and parent), and a byte indicating the color of the node.
Since a C compiler allocates memory to data structures in multiples of4, this requires a total of20 bytes per
node for the unblocked implementation, and48 bytes for our blocked implementation.

We ran our simulations on a 1GHz processor with 1GB of RAM.

For each of our tree structures we tested the time needed to insert and delete elements. We used universe
sizes of220, 225, and230, with varying numbers of elements. Elements were chosen uniformly from U . All
elements in the set were inserted, then deleted in the same order. We calculated the time needed for insertion
and deletion and the space required by each implementation,and computed the average over ten runs.

Results for the treap implementations are shown in Table 4.1. Our blocked version uses considerably
less space than the non-blocked version; the improvement isbetween a factor of1.45 and7.3, depending
on the density of the set. The slowdown caused by blocking varies but is usually less than50%. (In fact,
sometimes the blocked variant runs faster. We suspect this is because of caching and memory issues.)

Results for the red-black tree implementations are shown inTable 4.2. Here the space improvement is
between a factor of2 and10. However the slowdown is sometimes as much as150%.

Note that the STL red-black tree implementation is significantly faster than our treap implementation. In
part this is because our treap structure is purely functional (and thus persistent). The red-black tree structure
is not persistent.

For our treap data structure we also implemented the serial merge algorithm described in Section 4.6.
We computed the time needed to merge sets of varying sizes in auniverse of size220. Results are shown in

34

|A| |B| Union Time
Standard Blocked

214 210 0.003 0.011
214 212 0.015 0.036
214 214 0.036 0.086
216 210 0.005 0.014
216 212 0.028 0.048
216 214 0.067 0.157
216 216 0.151 0.370
218 210 0.006 0.015
218 212 0.043 0.059
218 214 0.119 0.208
218 216 0.293 0.703
218 218 0.616 1.540

Table 4.3: Performance of our serial merge algorithm implemented using standard treaps and blocked treaps.
All values are averaged over ten runs. The universe size is220. Time is in seconds.

Figure 4.3. The slowdown caused by blocking was at most150%.

35

36

Chapter 5

Compact Representations of Graphs

5.1 Introduction

We are interested in representing graphs compactly while supporting queries and updates efficiently.1 The
goal is to store large graphs in core memory for use with standard algorithms requiring random access. Our
representations have applications to computation on largegraphs (e.g., the link graph of the web, telephone
call graphs, or graphs representing large meshes), and in addition can be used for medium-size graphs on
devices with limited memory (e.g. map graphs on a hand-held device). Furthermore even if the application
is not limited by physical memory, the compact representations can be faster than standard representations
because they have better cache characteristics. Our experiments confirm that this is the case on many real-
world graphs.

For random graphs the space that can be saved by graph compression is quite limited—the information-
theoretic lower bound for representing a random graph isΘ(m log n2

m), wheren is the number of vertices,
andm is the minimum of the number of edges, or the number of edges inthe complement. This bound can
be matched by using difference encoded adjacency lists [136], and for sparse graphs the approach only saves
a small constant factor over standard adjacency lists. Fortunately most graphs in practice are not random,
and considerable savings can be achieved by taking advantage of structural properties.

Probably the most common structural property that real-world graphs have is that they have small sep-
arators. As described in Section 2.7, a graph has small separators if it and its subgraphs can be partitioned
into two approximately equally sized parts by removing a relatively small number of vertices. The expected
separator size of a random graph isΘ(m), for m ≥ 2n. Planar graphs haveO(n1/2) separators [81] and play
an important role in any partitioning of 2-dimensional space, such as 2-dimensional triangulated meshes. In
fact there has been considerable work on compressing planargraphs (see related work below). Even graphs
that are not strictly planar because of crossings, such as telephone and power networks, tend to have small
separators. More generally, nearly all graphs that are usedto represent connections in low dimensional
spaces have small separators. For example most 3-dimensional meshes haveO(n2/3) separators [85], as do
most nearest-neighbor graphs in 3-dimensions. Furthermore many graphs without pre-defined embeddings

1This chapter is based on work done with Guy Blelloch and Ian Kash [15, 16].

37

in low dimensional spaces have small separators [132]. For example, the link structure of the web has small
separators, as our experiments show.

In this chapter we are interested in compact representations of separable graphs (as described in Section
2.7). We describe four possible representations, each using O(n) bits and supporting constant-time degree
queries and listing of the neighbors in constant time per neighbor. Three of the four representations support
constant-time adjacency queries as well. We assume the graphs are unlabeled—we are free to number the
vertices. Even if a graph is not strictly separable (e.g., some component cannot be effectively separated),
our representations are likely to do well since they will compress the components that are separable. Our
computational model is a Random-Access-Machine with constant-time operations onO(log n)-bit words.
We take advantage of theO(log n)-bit parallelism in our algorithms.

Related Work. There has been considerable work on compressing unlabeled graphs. Turan [125] first
showed thatn-vertex planar graphs can be compressed intoO(n) bits. The constant in front of the high order
term was improved by Keeler and Westbrook [72], and He, Kao and Lu [65] later describe a technique that
is optimal in the first order term. These results generalize to any graph with constant genus [82]. There have
also been many results for sub-classes of planar graphs suchas trees, triangulated meshes or triconnected
planar graphs [72, 64, 105]. For dense graphs, Naor [92] describes a representation that reduces a lower
order term over what is required by an adjacency matrix.

None of this work considers implementing fast queries. Jacobson [68] first showed how planar graphs
can be represented usingO(n) bits while permitting adjacency queries inO(log n) time. Munro and Ra-
man [91] improved the time for adjacency queries toO(1) time. Chuang et. al. [40] improved the constant
on the high order term for the space bound. All of these techniques were based on using representations for
balanced parentheses. It seems unlikely the techniques will extend to the general case of graphs with small
separators.

Using separators to compress graphs has been considered before. Deo and Litow [46] showed that
separators can be used to compress graphs with bounded genusto O(n) bits. He, Kao and Lu [65] use
planar-graph separators to compress planar graphs to the optimal number of bits within a low-order term.
Chakrabarti et al. [33] describe an experimental approach for compressing graphs that are represented as
sparse matrices. None of these techniques, however, support queries.

There has been additional related work for the special case of representing the link structure of the
Web [28, 1, 119, 22]. For this case, authors have taken advantage of the high degree of similarity between
individual web pages. Authors have developed techniques for representing the outlinks of one page by its
difference from the outlinks of another page. Exploiting this similarity allows strong compression: Boldi and
Vigna [22] get3 to 5 bits per link on a webgraph of118 million pages, not counting the indexing structure.
However, the references between compressed nodes mean thatmultiple nodes must be decompressed per
query. Also, it is not clear that general separable graphs would have the similarity property they exploit.

Chakrabarti et al. [34] consider graph compression from theperspective of data mining: by examining
the compressed representation of a graph, they seek to gain insight into its underlying structure. They make
use of the graph-separator technique described here.

38

Our Structures. All of our data structures are based on recursively separating a graph and using the
separators to renumber the vertices (first numbering one subgraph, then the other). Because of the properties
of small separators, most edges will connect vertices that are close in this numbering. We take advantage of
this property in encoding the edges.

The time to construct our representation depends on the timeneeded to recursively separate the graph
(all other aspects take linear time). A polylogarithmic approximation of the separator size is sufficient for
our bounds so the Leighton-Rao separator [78] gives a polynomial time separator for graphs satisfying an
O(nc), c < 1 edge-separator theorem. For special graphs more efficient solutions are known,e.g., for planar
graphs [81] and well shaped meshes [85]. In practice fast heuristics work well for most graphs [71].

Our static graph representations are based on a difference-coded adjacency list (as described in Section
2.4). We sort the neighbor indices for each vertex, and storethe differencesd between adjacent pairs of
neighbors using a logarithmic code. The vertex encodings are concatenated and indexed using aselect
structure (see Section 2.6) for fast access.

For graphs which allow edge separators, we show how to relabel the vertices using a recursive edge-
separator decomposition (anedge separator tree). We show that this relabeling, combined with difference
coding, reduces the cost of an adjacency table toO(n) bits. This permits degree queries inO(1) time and
neighbor queries inO(1) time per neighbor. To support constant time adjacency queries, we describe a
separate structure based on directing the graph such that all vertices have bounded outdegree, then storing
only the out-edges from each vertex.

For graphs which require vertex separators, we use avertex separator treeto relabel the graph. A vertex
of degreed is assignedd “shadow labels,” and each adjacency list that refers to it uses a different label. An
auxiliary data structure (making use of table lookup) can map the shadow labels to a unique label for each
vertex inO(1) time. We show that the space required for this isO(n) bits. Adjacency queries are handled
as in the edge-separator case.

Both of the representations described above are static. Thethird graph representation we present is a
semidynamicversion of the first representation using the variable-bit-length array structure of Section 3. It
permits dynamic updates to vertices: the neighbors of a vertex can be rewritten in expectedO(|v|) time,
where|v| is the degree of the vertex. We say the representation is semidynamic since, although edges can be
inserted and deleted at will, the space usage of the representation depends on the locality of the new edges
with respect to the initial ordering.

The fourth representation we present is a semidynamic representation which permits dynamic updates to
individual edges in expectedO(1) time. It is based on the variable-bit-length dictionary structure of Section
3. Edges are compressed and stored in the dictionary using a linked-list-like structure which allows access
to individual elements inO(1) time.

We implemented the first and third data structures describedabove and present results from extensive
experimentation. We compare several methods for finding separators and for indexing the structure. We
present results from several different prefix codes. We compare the performance of our representations on
two machines with different cache characteristics. We compare our code to an array representation and to
several variants of a linked-list representation. Finally, we present experimental results from two algorithms
making use of the application. Our experiments show that ourrepresentations mostly dominate standard
representations in terms of both space and query times. Our dynamic representation is slower than adjacency

39

lists for updates.

In Section 5.2 we discuss our two static graph representations. In Section 5.3 and 5.4 we discuss our
dynamic representations. In Section 5.5 we describe details specific to our implementation. In Sections 5.6
and 5.7 we report on experiments analyzing time and space forboth the static and dynamic graphs. Our
comparisons are made over a wide variety of graphs includinggraphs taken from finite-element meshes,
VLSI circuits, map graphs, graphs of router connectivity, and link graphs of the web. All the graphs are
sparse. To analyze query times we measure the time for a depth-first search (DFS) over the graph. We
picked this measure since it requires visiting every edge exactly once (in each direction) and since it is a
common subroutine in many algorithms.

For static graphs we compare our static representation to adjacency arrays. An adjacency array stores
for each vertex an array of pointers to its neighbors. These arrays are concatenated into one large array
with each vertex pointing to the beginning of its block. Thisrepresentation takes about a factor of two less
space than adjacency lists (requiring only one word for eachdirected edge and each vertex). For our static
representation we compare four codes for encoding differences: gamma codes, snip codes, nibble codes,
and byte codes. The different codes represent a tradeoff between time and space.

Averaged over our test graphs, the static representation with byte codes uses 12.5 bits per edge, and the
snip code uses 9 bits per edge. This compares with 38 bits per edge for adjacency arrays. Due to caching
effects, the time performance of adjacency arrays depends significantly on the ordering of the vertices. If
the vertices are ordered randomly, then our static representation with byte codes is between 2.2 and 3.5
times faster than adjacency arrays for a DFS (depending on the machine). If the vertices are ordered using
the separator order we use for compression, then the byte code is between .95 and 1.3 times faster than
adjacency arrays.

For dynamic graphs we compare our dynamic representation toan optimized implementation of adja-
cency lists. The performance of the dynamic separator-based representation depends on the size of blocks
used for storing the data. We present results for two settings, one optimized for space and the other for time.
The representation optimized for space uses 11.6 bits per edge and the one optimized for time uses 18.8 bits
per edge (averaged over all graphs). This compares with 76 bits per edge for adjacency lists.

As with adjacency arrays, the time performance of adjacencylists depends significantly on the ordering
of the vertices. Furthermore, for adjacency lists the performance also depends significantly on the order in
which edges are inserted (i.e., whether adjacent edges end up on the same cache line). The runtime of the
separator-based representation does not depend on insertion order. It is hard to summarize the time results
other than to say that the performance of our time-optimizedrepresentation ranges from .9 to 8 times faster
than adjacency lists for a DFS. The .9 is for separator ordering, linear insertion, and on the machine with
a large cache-line size. The 8 is for random ordering and random insertion. The time for insertion on the
separator-based representation is up to 4 times slower thanadjacency lists.

In Section 5.8 we describe experimental results analyzing the performance of two algorithms. The first is
a maximum-bipartite-matching algorithm and the second is an implementation of the Page et al. page-rank
algorithm [95]. In both algorithms the graph is used many times over so it pays to use a static representation.
We compare our static representation (using nibble codes) with both adjacency arrays and adjacency lists.
For both algorithms our representation runs about as fast orfaster, and saves a factor of between 3 and 4 in
space.

40

All experiments run within physical memory so our speedup has nothing to do with disk access.

5.1.1 Real-world graphs have good separators

An edge-separator is a set of edges that, when removed, partitions a graph into two almost equal sized parts
(see [104] for various definitions of “almost equal”). Similarly a vertex separator is a set of vertices that
when removed (along with its incident edges) partitions a graph into two almost equal parts. The minimum
edge (vertex) separator for a graph is the separator that minimizes the number of edges (vertices) removed.
Informally we say that a graph has good separators if it and its subgraphs have minimum separators that are
significantly better than expected for a random graph of its size. Having good separators indicates that the
graph has some form of locality—edges are more likely to attach “near” vertices than far vertices.

Along with sparsity, having good separators is probably themost universal property of real-world graphs.
The separator property of graphs has been used for many purposes, including VLSI layout [4], nested dis-
section for solving linear systems [80], partitioning graphs on to parallel processors [116], clustering [118],
and computer vision [112]. Although finding a minimum separator for a graph is NP-hard, there are many
algorithms that find good approximations [104]. Here we briefly review why graphs have good separators.

One reason that many graphs have good separators is because they are based on communities and hence
have a local structure to them. Link graphs for the web have good separators since most links are either
within a local domain or within some other form of community (e.g. computer science researchers, infor-
mation on gardening, ...). This is not just true at one level (i.e., either local or not), but is true hierarchically.
Most graphs based on social networks have similar properties. Such graphs include citation graphs, phone-
call graphs, and graphs based on friendship-relations. In fact Watts and Strogatz [132] conjecture that
locality is one of the main properties of graphs based on social networks.

Another reason many graphs have good separators is that theyare embedded in a low dimensional space.
Most meshes that are used for various forms of simulation (e.g. finite element meshes) are embedded in two-
or three-dimensional space. 2D meshes are often planar (although not always) and hence satisfy anO(n1/2)
vertex-separator theorem [81]. Well shaped 3D meshes are known to satisfy anO(n2/3) vertex-separator
theorem [85]. Graphs representing maps (roads, power-lines, pipes, the Internet) are embedded in a little
more than two dimensions. Road maps are very close to planar,except in Pittsburgh. Power-line graphs
and Internet graphs can have many crossings, but still have very good separators. Graphs representing the
connectivity of VLSI circuits also have a lot of locality since ultimately they have to be laid out in two
dimensions with only a small constant number of layers of connections. It is well understood that the size
of the layout depends critically on the separator sizes [126].

Clearly certain graphs do not have good separators. Expander graphs by their very definition cannot
have small separators.

5.2 Static Representation

We will consider three kinds of queries: degree queries, neighborhood queries, and adjacency queries. A
degree query returns the degree of a vertex. A neighborhood query lists all the neighbors of a given vertex.

41

An adjacency query tests whether two vertices are adjacent.

Our primary data structure is adifference coded adjacency list, represented as an ordered set and encoded
as described in Section 2.4. We assume the vertices have integer labels. If a vertexv has neighborsv1, v2,
v3, . . ., vd in sorted order, then the data structure encodes the differencesv1 − v, v2 − v1, v3 − v2, . . .,
vd − vd−1 contiguously in memory. The differences are encoded using any logarithmic code (as described
in Section 2.3). The valuev1− v might be negative, so we store a sign bit for that value. At thestart of each
encoded list we also store a code for the number of entries in the list.

We form anadjacency tableby concatenating the adjacency lists together in the order of the vertex
labels. To access the adjacency list for a particular vertexwe need to know its starting location. If we
haven vertices and a total ofO(n) bits in the lists, keeping anO(log(n))-bit pointer for each vertex would
exceed our space bound; instead, we use aselectdata structure (as described in Section 2.6) to store the start
locations usingO(n) bits.

Lemma 5.2.1 An adjacency table supports degree queries inO(1) time, and neighborhood queries in
O(|v|) time, where|v| is the degree of the vertex being queried.

Proof. Theselectoperation allows access to the adjacency list for any vertexin constant time. AnyO(log(n))-
bit valuev can be decoded in constant time (using thedecode-gamma routine from Section 2.3), so it takes
O(d) time to decode the contents of the list.

Edge Separators. We begin by discussing the case of graphs that admit edge separators. Our data structure
for this case is highly practical and is used as the basis for our experimentation. We will later describe an
extension to vertex separators. We note that, in practice, we found that all the real-world graphs we tested
were edge-separable.

Our algorithm builds an edge-separator tree for the target graph by recursively computing an edge sep-
arator for each subgraph. The resulting separator tree contains one leaf for each vertex in the graph. The
vertices are labeled in order from left to right using a traversal of the separator tree.

Lemma 5.2.2 Suppose that the edges in a graphG are encoded in such a way that each edge(v1, v2) uses
O(log |v1 − v2|) bits. If G is a member of a class of edge-separable graphs, and its vertices are labeled
using an edge-separator tree, then the total space used to encode all the edges isO(n) bits.

Proof. If a node of the separator tree containsn vertices, then its separator containsO(nc) edges. Each of
those edges connects a pair of vertices which are at mostn apart in the labeling, so the cost of the edges in
that separator isO(nc log n). Because the graph is edge-separable, it has anO(nc) separator that guarantees
each side of the partition will contain at mostαn vertices. LetS(n) be an upper bound on the the number
of bits used to encode the edges of a graph withn vertices. If we letα < a < 1 − α, S(n) satisfies the
recurrence:

S(n) ≤ S(an) + S(n− an) + O(nc log n)

This recurrence solves toS(n) = O(n) (e.g., using induction assumingS(n) ≤ k1n− k2n
c′ , c < c′ < 1).

42

Consider an adjacency table representation which represents the neighbors ofv by their direct differ-
ences fromv: v1 − v, v2 − v, v3 − v, v4 − v, By Lemma 5.2.2 the space usage of that representation
would beO(n) bits. Our adjacency table representation instead sorts thevertices and represents the differ-
encesv1− v, v2− v1, v3− v2, v4− v3, This representation is an improvement over the direct-difference
representation; it also usesO(n) bits.

If, for a given labeling of the vertices, the sum of the edge costs has the property

∑

(v1,v2)∈E

log |v1 − v2| < kn,

we call the labelingk-compact. We have shown that an edge separator tree produces a k-compact labeling
for classes of graphs which are edge-separable. This property will be useful for discussions of dynamic
graphs.

Adjacency Queries. Using the difference-coded adjacency table described above, we can find all the
neighbors of a vertex in optimalO(d) time. However, resolving adjacency queries also takesO(d) time,
since it requires decoding the adjacency list of eitheru or v to see if it contains the other vertex. To answer
adjacency queries in constant time, we first convert the target graph to a directed graph with bounded in-
degree.

Lemma 5.2.3 If a class of undirected graphs satisfies annc-separator theorem, then it is possible to direct
the edges of any graph in that class so that the resulting graph has bounded in- (or out-) degree.

Proof. We make use of the fact from Section 2.7 that any class of graphs satisfying such a theorem must
have bounded density. We present an algorithm that directs the edges of such a graph so as to ensure that
the result has bounded in-degree.

Given a graphG and a density boundb, our algorithm first selects the setV of vertices inG that have
degree at most2b. At least half of the vertices inG must have this property. Our algorithm greedily directs
all edges that have vertices inV such that those edges point toward vertices inV . This cannot cause vertices
in V to exceed their in-edge bound, and it does not add in-edges tovertices that are not inV . Our algorithm
then subtractsV from G and repeats the process on the remaining graph. When all vertices are eliminated,
the process is complete, and no vertex has an in-degree greater than2b.

To handle adjacency queries we build anin-edge adjacency tablethat, for any vertexv, lists the label
u corresponding to each in-edge(u, v). To do this we start with a full adjacency table (usingO(n) bits
as described above) and discard the neighbors corresponding to out-edges. To test if verticesu andv are
adjacent, an algorithm examines the adjacency list information for u and forv, and returnstrue if either
vertex appears in the other’s list. This takesO(1) time since the lists are constant length.

It remains to calculate the space usage of the new table. If a neighborvi is discarded from a difference-
encoded list, then the two differencesvi+1 − vi and vi − vi−1 are replaced with the differencevi+1 −
vi−1. Since all the differences are integral, we havelog(vi+1 − vi−1) < log(vi+1 − vi) + log(vi − vi−1);
asymptotically the space usage decreases. (For gamma codes, there exist cases where deleting an entryvi

43

BUILD TREE(V, E)
if |E| = 1 then

return V

(Va, Vsep, Vb)← FINDSEPARATOR(V, E)
Ea ← {(u, v) ∈ E|u ∈ Va ∨ v ∈ Va}
Eb ← E − Ea

Va,sep ← Va ∪ Vsep

Vb,sep ← Vb ∪ Vsep

Ta ← BuildT ree(Va,sep, Ea)
Tb ← BuildT ree(Vb,sep, Eb)
return SeparatorTree(Ta, Vsep, Tb)

Figure 5.1: The BUILD TREE algorithm, and an example of the partition it produces.

from the list may increase the length of the list by one bit. This can contribute at mostO(n) bits to the
table.) The new table is formed by discarding entries from a table of sizeO(n) bits, so the new table has
sizeO(n) bits as well.

This gives us:

Lemma 5.2.4 If class of undirected graphs satisfies annc-separator theorem, then an in-edge adjacency
table for a graph in that class usesO(n) bits and supports adjacency queries inO(1) time.

Vertex Separators. We now deal with the more general case of classes of graphs which allow vertex
separators. As before, our algorithm builds a separator tree from the target graph, then uses it to order the
vertices. The algorithm for building the separator tree is given in Figure 5.1. Without loss of generality, we
assume that the graph separator algorithm always returns a separator with at least one vertex on each side
(unless the target graph is a clique). If the target is a clique, we assume the separator contains all but one of
the vertices, and that the remaining vertex is on the left side of the partition.

The algorithm we describe produces a separator tree in whichthe separator vertices at one level are
included in both of the subgraphs at the next level [80]. Since each call to BUILD TREE partitions the edges,
and the base case contains a single edge, the separator tree will have one leaf per edge. Consider a single
vertex with degreed. Every time it appears in a separator, its edges are partitioned into two sets, and the
vertex is copied to both recursive calls. Since the vertex will appear ind leaves, it must appear ind − 1
separators, so it will appear ind − 1 internal nodes of the separator tree. These2d − 1 total appearances
define their own binary tree for the vertex, which we call theshadow treefor that vertex. An example is
shown in Figure 5.2.

We label the appearance of vertices in the separator tree recursively: first the vertices on the left, then
the vertices in the separator, then the vertices on the right. Note that a vertex of degreed will receive2d− 1
labels: one for each time it appears in the separator tree (i.e. one for each node in its shadow tree). We call
the label assigned to the root of a shadow tree theroot label, and use this label as the representative of the

44

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

���
�
�
�

�� �
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Figure 5.2: The separator tree, and a shadow tree corresponding to a vertex of degree6.

vertex. (The labeling of representatives is sparse, but we can use theselectand rank data structures (see
Section 2.6) to efficiently convert it to a dense representation.) We refer to labels assigned to the leaves of a
shadow tree as theshadow labelsof that vertex. Note that, if a vertex has degree1, then its root label will
be a shadow label.

Property 5.2.1 The separator tree of ann-vertex bounded-density graph is assignedO(n) contiguous la-
bels.

This property holds since a vertex of degreed is assigned2d− 1 labels, giving a total of4m− n labels,
and sincem = O(n) for bounded density graphs. If a graph is separable, then allgraphs in the separator
tree have this property.

We will represent graphs using two data structures. The first, theshadow adjacency table, will map the
root label of each vertex to an adjacency list of shadow labels. The second, theroot-find structure, will map
each shadow label to the label of its root.

The Shadow Adjacency Table. Theshadow adjacency tablecontains a difference coded adjacency list
for each vertex, which is accessed using the root label of thevertex. If verticesu andv have shadow labels
u′ andv′, and a leaf of the separator tree contains(u′, v′), then the adjacency list forv containsu′ and the
adjacency list foru containsv′.

Lemma 5.2.5 For classes of graphs satisfying annc-separator theorem withc < 1, anyn-vertex member
has a shadow adjacency table withO(n) bits.

Proof. Consider the adjacency list and shadow tree for a vertexv of degreed. There is a one-to-one cor-
respondence between thed labels in the adjacency list and thed leaves of the shadow tree, and the corre-
sponding labels differ by±1. We charge the difference between each adjacent pair of adjacency list labels to
the least common ancestor of the corresponding leaves in theshadow tree. If the ancestor is a separator in a
graph withs vertices, then the difference isO(s) (by property 5.2.1), so the difference code usesO(log(s))
bits. We treat the first difference in the list,v1 − v, as a special case, and charge its bits to the root label.
Note that this charges every node in the shadow tree at most twice.

45

We have chargedO(log(s)) bits to every appearance of a vertex in a separator for a graphwith s vertices.
Recall that the target graph has aβnc separator that guarantees that each side of the partition will contain
at mostαn vertices. LetS(n) be an upper bound on the the number of bits used to encode a graph with n
vertices. If we letα < a < 1− α, S(n) satisfies the recurrence:

S(n) ≤ S(an + βnc) + S(n− an) + O(nc log n)

This recurrence solves toS(n) = O(n) (e.g., using induction assumingS(n) ≤ k1n− k2n
c′ , c < c′ < 1).

The number of bits to encode the lengths of each list is bounded byO(n) since the total number of edges is
O(n) and the logarithm is a concave function.

We note that even if the separators are polylogarithmic approximations of the best cut, the recurrence still
solves toO(n).

The Root-Find Structure. The shadow adjacency table can find a set of shadow labels corresponding to
the neighbors of any root label. We now describe a data structure that maps shadow labels to their root
labels. We begin with a structure that allows us to perform lookups inO(min(log(n), d)) time for a vertex
of degreed; we then show how to improve the structure so that we can perform these lookups inO(1) time.

To allow root lookups, we assign to each label a pointer to itsparent, encoded using the difference
between the two labels, and indexed using aselectdata structure. (We use a one-bit token per label to
indicate whether it is the root of its shadow tree.) If the parent of a label is in a separator of a graph with
s vertices, then the pointer useO(log s) bits (by property 5.2.1). We charge the two child pointers tothe
parent, resulting in the same recurrence as in Lemma 5.2.5 and O(n) bits. Using parent pointers, we can
climb the tree from a shadow label to its root. The separator tree isO(log(n)) levels high, and the height of
the shadow tree is less than the number of nodes it contains, so the total time isO(min(log(n), d)).

To achieve a constant-time bound we use a blocking structure. We divide the labels into three categories
based on their location in the separator tree. The category alabel is in will determine the size of the pointer
we allocate to each of its two children.

Labels appearing as separators in graphs containing at least log
1

1−c (n) vertices will be placed in the first
category; we allocate a fullO(log(n))-bit root pointer for each of their children. Labels which appear as

separators in graphs containing betweenlog
1

1−c (n) and log
1

1−c (log
1

1−c (n)) vertices will be placed in the

second category; they cannot have any children with a label that differs by more thanO(log
1

1−c (n)), so

for their children we use anO(log log
1

1−c (n)) = O(log(log(n)))-bit offset pointer. These pointers will
point to the topmost second-category label that is an ancestor of the child label in question; that label is
guaranteed to have a first-category parent (if it has a parentat all). Labels in graphs containing less than

nb = log
1

1−c (log
1

1−c (n)) vertices will be considered “leaf labels” and will be placedin the third category.
Rather than encoding these vertices explicitly, we will encode the graphs in which they appear. We will
consider a maximal block of contiguous leaf labels to be a “leaf block”.

We examine each leaf block and remove from it all of the parentpointers that point to locations outside
of the block; labels that had such pointers are marked as the roots of their shadow trees. We then make a
table that lists all of the distinct leaf blocks in the data structure, and replace the individual leaf blocks with

46

pointers into the table. The leaf blocks (with the parent pointers removed) all have less thannb vertices, so
each individual block requiresO(nb) bits to encode. This means there can be at mostO(2knb) distinct leaf
blocks, so the size of the pointer required per leaf block is also O(nb) bits. There areO(n/nb) pointers, so
this is within our space bound.

We now examine the table, which containsO(2knb) leaf blocks. We provide each shadow label in each
leaf block with anO(log(nb))-bit pointer to its greatest ancestor within that block.

To shrink the number of graphs in the table we had to strip out all parent pointers that pointed out of
the leaf graphs themselves. We include these pointers as an appendix to each leaf table pointer. The space
for these pointers has already been charged to first- and second-category labels in the tree. We index the
pointers using another application of ourselectdata structure. For each leaf block we also store the label of
the first entry modulonb (call thisvL). We charge thislog(nb) space to theO(nb) space of the table pointer.
Each leaf block therefore contains a table pointer, an appendix, andvL.

Given a shadow labels, we use the following procedure to find the root of its shadow tree. We first use
theselectdata structure to find a pointer to the leaf blockL containings. We computes− vL modulonb to
find the index of the entry inL corresponding tos. That entry contains a pointer to the greatest ancestor of
s in L. If this ancestor is not a root, we examine the appendix of theleaf block to find the greatest second-
category ancestors′ of s. We use theselectdata structure again to find the greatest first-category ancestor
s′′ of s′ (if needed). These operations all require constant time.

Lemma 5.2.6 The root-find structure allows constant-time lookup of the root label corresponding to any
shadow label, and usesO(n) bits.

Proof Outline. There areO(n/ log(n)) labels that receivelog(n)-bit pointers and O(n/ log(log(n))) labels
that receiveO(log(log(n)))-bit pointers; the space for these pointers isO(n). There areO(n/nb) leaf table
pointers, each usingO(nb) bits; this space is alsoO(n). The table containsO(2knb) entries, each of which
containsnb pointers ofO(log(nb)) bits each; the total space used isO(2knbnb log(nb)) which is sublinear.

The time bound is described above.

Adjacency queries can be handled using anin-edge shadow adjacency table. As in the edge-separator
case (see Lemma 5.2.4), we begin by directing the graph so that all vertices have constant in-degree. We
then discard from the shadow adjacency table all entries corresponding to out-edges.

Theorem 5.2.1 For a class of graphs satisfying annc-separator theorem, anyn-vertex member can be rep-
resented inO(n) bits while supporting adjacency queries and degree queriesin O(1) time and neighborhood
queries inO(1) time per neighbor.

Proof. To resolve degree queries and neighborhood queries we use a shadow adjacency table. Extracting
the degree from a shadow adjacency table takesO(1) time since it is encoded first; extracting the neighbor-
hood takesO(d) time (Lemmas 5.2.1 and 5.2.6). To resolve adjacency querieswe use an in-edge shadow
adjacency table. For an adjacency query on verticesu andv, we need only examineu andv in the second
table since either(u, v) or (v, u) will be in the table. This takesO(1) time since the lists are constant length.

47

5.3 Semidynamic Representation

Using the variable-bit-length array structure from Section 3.2, we can build a graph representation that
supports insertion (and deletion) of edges in the graph. Although the insertions and deletions are dynamic,
the space bound depends on the vertex labeling remainingk-compact. Thus we describe our representation
as a whole assemidynamic.

In the static data structure, the data for each vertex is concatenated and stored in one chunk of memory,
with a separate index to allow finding the start of each vertex. In the dynamic data structure, the data for
each vertex is simply stored in the variable-bit-length array structure. The new representation, like the old,
supports degree queries inO(1) time and neighbor listing inO(|1|) time per neighbor. In addition, the
new representation allows insertion or deletion of edges byrewriting the data for the associated vertices.
Inserting or deleting an edge(v1, v2) requiresO(|v1|+ |v2|) expected time.

The space bound for the data structure is
∑

(v1,v2)∈E log |v1 − v2| bits. For ak−compact labeling of
the graph this isO(kn) (see Lemma 5.2.2). If the graph to be compressed is edge-separable, then the
initial labeling will bek−compact for constantk; however, the space bound for the structure depends on
the labeling remainingk−compact. Note that, for graphs having a fixed embedding in a low-dimensional
space, any labeling which takes advantage of the embedding will remain k−compact as long as the edges
have locality.

5.4 Semidynamic Representation with Adjacency Queries

Using the variable-bit dictionary structure from Section 3.3, we can build a graph representation supporting
adjacency queries as well as neighbor queries.

Theorem 5.4.1 All n-vertex graphs with ak-compact labeling can be stored inO(k|V |) bits while allowing
updates inO(1) amortized expected time and queries inO(1) worst-case time.

Proof. We begin by describing our graph structure in an uncompressed form, and then describe how it is
compressed.

Our structure represents a graph as a dictionary of edges. The edges incident on each vertex are cross
linked into a doubly linked list. Consider a vertexu and some ordering on its neighboring verticesv1, . . . , vd.
We represent each edge(u, vi), 1 ≤ i ≤ d using the dictionary entry((u, vi), (vi−1, vi+1)). (That is,(u, vi)
is the key, and(vi−1, vi+1) is the associated data.) We definev0 = vd+1 = u and for each vertex we include
an entry((u, u), (vd, v1)).

Given this representation we can support adjacency testing, neighbor listing, and insertion and deletion
of edges, using functions of the dictionary. Pseudocode forthese operations is shown in Figure 5.3.

In its uncompressed form this dictionary consumesd + 1 entries for each vertex of degreed. The total
number of entries is therefore|V |+ |E|. The space used isO((|E| + |V |)w).

48

ADJACENT(u, v)
return (LOOKUP((u, v)) 6= null)

FIRSTEDGE(u)
(vp, vn)←LOOKUP((u, u))
return vn

NEXTEDGE(u, v)
(vp, vn)←LOOKUP((u, v))
return vn

ADDEDGE(u, v)
(vp, vn)←LOOKUP((u, u))
INSERT((u, u), (vp , v))
INSERT((u, v), (u, vn))

DELETEEDGE(u, v)
(vp, vn)←LOOKUP((u, v))
(vpp, v)←LOOKUP((u, vp))
(v, vnn)←LOOKUP((u, vn))
INSERT((u, vp), (vpp, vn))
INSERT((u, vn), (vp, vnn))
DELETE((u, v))

Figure 5.3: Pseudocode to support our graph operations.

Compression. To compress this structure we make use of difference coding:we simply store each dictio-
nary entry using differences with respect tou. That is to say, rather than store an entry((u, vi), (vi−1, vi+1))
in the dictionary, we instead store((u, vi − u), (vi−1 − u, vi+1 − u)).

We use our variable-bit-length dictionary to store the entries. The encoding ofu in each entry requires
log |V | bits; the dictionary absorbs this cost using quotienting. The space used, then, is proportional to the
cost of encodingvi − u, vi−1 − u, andvi+1 − u, for each edge(u, vi) in the dictionary. We compress these
differences by representing them with gamma codes (with sign bits). The cost to encode each edge(v1, v2)
with a logarithmic code isO(log |v1 − v2|). Each edge appearsO(1) times in the structure, so the total cost
to encode all the edges is

∑

(v1,v2)∈E log |v1 − v2|.

For ak-compact labeling,
∑

(v1,v2)∈E log |v1 − v2| is O(kn) (see Lemma 5.2.2).

5.5 Implementation

Separator trees. We implemented three base algorithms for constructing edge-separator trees. Two of
our algorithms are top-down; they begin with a graph and recursively compute its edge-separators. The
remaining algorithm is bottom-up; it collapses edges of thegraph, combining vertices into multivertices.

The first algorithm we considered,bfs, generates separators through breadth-first search (BFS).The
algorithm finds an “extremal” vertexvn by starting a BFS at a random vertex and using the last vertex
encountered. The algorithm starts a second BFS atvn and continues until it has visited half of the vertices
in the graph. This is taken as the partition. We apply the BFS separator recursively to produce a separator
tree.

Our second algorithm,metis, uses the Metis [71] graph partitioning library to construct a separator
tree. Metis uses a multilevel partitioning technique in which the graph is coarsened, the coarse graph is
partitioned, and the result is projected back onto the original graph using Kernighan-Lin refinement. This

49

class of partitioning heuristic is the best known at this time [130]. We apply Metis recursively to produce a
separator tree.

Our third algorithm,bu (for “bottom-up”), begins with the complete graph and repeatedly collapses
edges until a single vertex remains. There are many heuristics that can be used to decide in what order to
collapse the edges. After some experimentation, we settledon the priority metricw(EAB)

s(A)s(B) , wherew(EAB)

is the number of edges between the multiverticesA andB, ands(A) is the number of original vertices
contained in multivertexA. The resulting process of collapsing edges creates a separator tree, in which
every two merged vertices become the children of the resulting multivertex. To improve performance we
also use a variant ofbu, which we callbu-bpq, that uses a bucketed priority queue withO(log n) buckets.

There is a certain degree of freedom in the way we construct a separator tree: when we partition a
graph, we can arbitrarily decide which side of the partitionwill become the left or right child in the tree. To
take advantage of this degree of freedom we can use an optimization calledchild-flipping. A child-flipping
algorithm traverses the separator tree, keeping track of the nodes containing vertices which appear before and
after the current node in the numbering. (These nodes correspond to the left child of the current node’s left
ancestor and the right child of the current node’s right ancestor.) If those nodes areNL andNR, the current
node’s children areN1 andN2, andEAB denotes the number of edges between the vertices in two nodes,
then our child-flipping heuristic rotatesN1 andN2 to ensure thatENLN1

+ EN2NR
≥ ENLN2

+ EN1NR
.

This heuristic can be applied to any separator tree as a postprocessing phase.

Indexing structures. Our algorithms use a select data structure to map the vertex numbers to the bit
position of the start of the appropriate adjacency list. We will henceforth call this theindexing structure. We
implemented four versions, representing different tradeoffs between space required and lookup time.

The simplest indexing structure,direct, stores an array of offset pointers, one for each vertex. Each
pointer usesΘ(log(n)) bits, giving a total ofΘ(n log(n)) bits. Only one memory access is required to
locate the start of any vertex, making this method very fast.

We implemented a structure,indirect, that usesO(n) bits and has constant access time. This is signif-
icantly simpler than theo(n)-bit structure of Munro [90]. To index the vertices, we first divide them into
blocks of log(n) vertices each. We divide the blocks into subblocks, each of which contains a minimal
number of vertices totaling at leastk log(n) bits for some constantk. We store alog(n)-bit pointer to each
block in a global array, and we store anO(log(n))-bit pointer to each subblock at the start of its parent
block. Each block also contains a bit vector with one bit per vertex. A vertex’s bit is set to1 if that vertex is
the first in its subblock. This all requiresO(n) bits. We consider two settings ofk: k = 1 (indirect-1) and
k = 16 (indirect-16).

To find the location of any vertex we first perform an array lookup to find the location of the block
containing the target vertex. We then examine that block’s bit vector to see which subblock the vertex is
in, find the subblock offset using the subblock pointers, anddecode the subblock. This all takes constant
time—determining the subblock and decoding the subblock can both be implemented using table lookup on
Θ(log(n)) bits in constant time.

As a compromise between the two indexing structures we consider a class of structures calledsemidirect,
based on allocating one full pointer for each group ofk vertices, and representing the remainder of the

50

offsets as differences. Thesemidirect-4structure uses a one-word pointer per four vertices and fits three
ten-bit offsets into a second word. If one of the offsets doesn’t fit in ten bits, they are stored elsewhere, and
the second word is a pointer to them.

Thesemidirect-16structure stores the start locations for sixteen vertices in five 32-bit words. The first
word contains the offset to vertex0—that is, the first of the sixteen vertices being represented. The second
word contains three ten-bit offsets from the first vertex to starts of vertices4, 8, and12. The next three words
contain twelve eight-bit offsets to the remaining twelve vertices. Each of the twelve vertices is stored by an
offset relative to one of the four vertices already encoded.For example, the start of vertex14 is encoded by
its offset from the start of vertex12. As before, if at any point the offsets do not fit in the space provided,
they are stored elsewhere, and the table contains a pointer to them.

Codes and Decoding. We considered several logarithmic codes for use in our representations. In addition
to thegamma code[50] we considered thesnip code, nibble code, andbyte code, as described in Section
2.3.

We also implemented a variant Huffman code. Rather than store a frequency table and Huffman tree for
the entire range ofn possible differences, we truncated the table at4096 entries. Any gaps larger than that
were coded using an escape sequence and then stored using a flat log n bits. (In all cases fewer than4% of
gaps were over4096 in length.) To decode the Huffman codes we used a decoding table of width8 bits. At
most thirty leaves of the Huffman tree represented codewords of length8 or less, but those leaves always
represented at least75% of the weight of the tree. If a codeword was longer than8 bits, the decoding table
gave a pointer to the eighth level of the tree, and the remainder of the word was decoded using the tree.

Dynamic Structure. Our dynamic structure manages memory in blocks of fixed size.The data structure
initially contains an array with one memory block for each vertex. If additional memory is needed to store
the data for a vertex, the vertex is assigned additional blocks, allocated from a pool of spare memory blocks.
The blocks are connected into a linked list.

When we allocate an additional block for a vertex, we use partof the previous block to store a pointer
to the new one. We use a hashing technique to reduce the size ofthese pointers to only 8 bits. To work
efficiently the technique requires that a constant fractionof the blocks remain empty. This requires a hash
function that maps (address,i) pairs to addresses in the spare memory pool. Our representation tests values
of i in the range0 to 127 until the result of the hash is an unused block. It then uses that value ofi as the
pointer to the block.

If the hash function is drawn from a uniform family, and the memory pool is at most80% full, then the
probability that this technique will fail is at most.80128 ' 4 ∗ 10−13. In practice we use a hash function
h(a, i) = pa + r[i] mod s wherea is the address,p is a prime,r is a table of128 random numbers, ands is
the size of the memory pool. This is sufficient to fill the pool to slightly more than80%.

To help ensure memory locality, a separate pool of contiguous memory blocks is allocated for each 1024
vertices of the graph. If a given pool runs out of memory, it isresized. Since the pools of memory blocks
are fairly small this resizing is relatively efficient.

For graph operations that have high locality, such as repeated insertions to the same vertex, it may be

51

Max
Graph Vtxs Edges Degree Source
auto 448695 6629222 37 3D mesh [130]
feocean 143437 819186 6 3D mesh [130]
m14b 214765 3358036 40 3D mesh [130]
ibm17 185495 4471432 150 circuit [3]
ibm18 210613 4443720 173 circuit [3]
CA 1971281 5533214 12 street map [127]
PA 1090920 3083796 9 street map [127]
googleI 916428 5105039 6326 web links [56]
googleO 916428 5105039 456 web links [56]
lucent 112969 363278 423 routers [107]
scan 228298 640336 1937 routers [107]

Table 5.1: Properties of the graphs used in our experiments.

inefficient to repeatedly encode and decode the neighbors ofa vertex. We implemented a variant of our
structure that uses caching to improve access times. When a vertex is queried, its neighbors are decoded
and stored in a temporary adjacency list structure. Memory for this structure is drawn from a separate pool
of list nodes of limited size. The pool is managed in first in first out (FIFO) mode. A modified vertex that
is flushed from the pool is written back to the main data structure in compressed form. We maintain the
uncompressed adjacency lists in sorted order (by neighbor label) to facilitate writing them back.

5.6 Experimental Setup

Graphs. We drew test graphs for our experiments from several sources: 3D Mesh graphs from the online
Graph Partitioning Archive [130], street connectivity graphs from the Census Bureau Tiger/Line data [127,
117], graphs of router connectivity from the SCAN project [107], graphs of webpage connectivity from the
Google [56] programming contest data, and circuit graphs from the ISPD98 Circuit Benchmark Suite [3].
The circuit graphs were initially hypergraphs; we converted them to standard graphs by converting each net
into a clique. Properties of these graphs are shown in Table 5.1. For edges we list the number of directed
edges in the graph. For the directed graphs (googleI and googleO) we take the degree of a vertex to be the
number of elements in its adjacency list.

Machines and compiler. The experiments were run on two machines, each with 32-bit processors but
with quite different memory systems. The first uses a .7GHz Pentium III processor with .1GHz frontside
bus and 1GB of RAM. The second uses a 2.4GHz Pentium 4 processor with .8GHz frontside bus and 1GB
of RAM. The Pentium III has a cache-line size of 32 bytes, while the Pentium 4 has an effective cache-line
size of 128 bytes. The Pentium 4 also supports quadruple loads and hardware prefetching, which are very
effective for loading consecutive blocks from memory, but not very useful for random access. The Pentium 4
therefore performs much better on the experiments with strong spatial locality (even more than the factor of

52

3.4 in processor speed would indicate), but not particularly well on the experiments without spatial locality.
All code is written in C and C++ and compiled using g++ (3.2.3)using RedHat Linux 7.1.

Benchmarks. We present times for depth-first-search as well as times for reading and inserting all edges.
We select a DFS since it visits every edge once, and visits thevertices in a non-trivial order exposing caching
issues better than simply reading the edges for each vertex in linear order. Our implementation of DFS uses
a character array of lengthn to mark the visited vertices, and a stack to store the vertices to return to. It
does nothing other than traverse the graph. For reading the edges we present times both for accessing the
vertices in linear order and for accessing them in random order. In both cases the edges within a vertex are
read in linear order. For inserting we insert in three different orders:linear, transpose, andrandom. Linear
insertion inserts all the out-edges for the first vertex, then the second, etc.. Transpose insertion inserts all
the in-edges for the first vertex, then the second, etc.. Notethat an in-edge(i, j) for vertexj goes into the
adjacency list of vertexi not j. Random insertion inserts the edges in random order.

We compare the performance of our data structure to that of standard linked-list and array-based data
structures, and to the LEDA [84] package. Since small differences in the implementation can make signifi-
cant differences in performance, here we describe important details of these implementations.

Adjacency lists. We use a singly linked-list data structure. The data structure uses avertex-arrayof length
n to access the lists. Each array elementi contains the degree of vertexi and a pointer to a linked list of the
out-neighbors of vertexi. Each link in the list contains two words: an integer index for the neighbor and
a pointer for the next link. We use our own memory management for the links using free lists—no space
is wasted for header or tail words. The space required is therefore2n + 2m + O(1) words (32 bits each
for the machines we used). Assuming no deletions, sequential allocation returns consecutive locations in
memory—this is important for understanding spatial locality.

In our experiments we measured DFS runtimes after insertingthe edges in three orders: linear, transpose,
and random. These insertion orders are described above. Theinsertion orders have a major effect on the
runtime for accessing the linked lists—the times for DFS vary by up to a factor of 11 due to the insertion
order. For linear insertion all the links for a given vertex will be in adjacent physical memory locations
giving a high degree of spatial locality. This means when an adjacency list is traversed, most of the links
will be found in the cache—they are likely to reside on the same cache line as the previous link. This is
especially true for our experiments on the Pentium 4 which has 128-byte cache lines (each cache line can fit
16 links). For random insertion, and assuming the graph doesnot fit in cache, accessing every link is likely
to be a cache miss since memory is being accessed in completely random order.

We also measured runtimes with the vertices labeled in two orders: randomizedandseparator. In the
randomized labeling the integer labels are assigned randomly. In the separator labeling we use the labeling
generated by our graph separator—the same as used by our compression technique. The separator labeling
gives better spatial locality in accessing both the vertex-array and the visited-array during a DFS. This is
because loading the data for a vertex will load the data for nearby vertices which are on the same cache-line.
Following an edge to a neighbor is then likely to access a vertex nearby in the ordering and still in cache.
If linear insertion is used, the separator labeling also improves locality on accessing the links during a DFS.
This is because the links for neighboring vertices will often fall on the same cache lines. We were actually

53

surprised at what a strong effect labeling based on separators had on performance. The performance varied
by up to a factor of 7 for the graphs with low degree and the machine with 128-byte cache lines.

Adjacency Array. The adjacency array data structure is a static representation. It stores the out-edges of
each vertex in an edge-array, with one integer per edge (the index of the out neighbor). The edge-arrays for
the vertices are stored one after the other in the order of thevertices. A separate vertex-array points to the
start of the edge-array for each vertex. The number of out-edges of vertexi can be determined by taking the
difference of the pointer to the edge array for vertexi and the edge array for vertexi + 1. The total space
required for an adjacency array isn + m + O(1) words. For static representations it makes no sense to
talk about different insertion orders of the edges. The ordering of the vertex labeling, however, can make a
significant difference in performance. As with the linked-list data-structure we measured runtimes with the
vertices labeled in randomized and separator order. Also aswith linked lists, using the separator ordering
improved performance significantly, again by up to a factor of 7.

LEDA. We also ran all our experiments using LEDA [84] version 4.4.1. Our experiments use the LEDA
graph object and use theforall outedges and forall vertices for the loops over edges and
vertices. All code was compiled with the flagLEDACHECKINGOFF. For analyzing the space for the
LEDA data structure we use the formula from the LEDA book [84,page 281]:52n + 44m + O(1) bytes.
We note that comparing space and time to LEDA is not really fair since LEDA has many more features than
our data structures. For example the directed graph data structure in LEDA stores a linked list of both the
in-edges and out-edges for each vertex. Our data structuresonly store the out-edges. LEDA also stores the
edges in a doubly-linked list allowing traversal in either direction and a simpler deletion of edges.

5.7 Experimental Results

Our experiments measure the tradeoffs of various parameters in our data structures. This includes the type
of prefix code used in both the static and dynamic cases, and the block size used and the use of caching in
the dynamic case. We also study a version that difference encodes out-edges relative to the source vertex
rather than the previous out-edge. This can be used by applications which need control of the ordering of the
out-edges. For example, our compact representation of simplicial meshes (described in Chapter 7) encodes
out-edges relative to the source vertex.

5.7.1 Separator Algorithms.

In analyzing the efficiency of our techniques, there are three parameters of concern: the query times, the
time to create the structures, and the space usage. The spaceusage has two components: the space for the
adjacency lists, and the space for the indexing structure. The time to create the structure is dominated by
time to order the vertices. There is a time/space tradeoff between the time used to order the vertices and
the space needed for the adjacency table (spending more timeon ordering produces better compression of
the encoded lists). There is also a space/time tradeoff between the space used for the indexing structure

54

dfs metis-cf bfs bu-bpq bu-cf Degree
T1 Space T/T1 Space T/T1 Space T/T1 Space T/T1 Space Space

auto 0.79s 9.88 153.11 5.17 27.69 5.96 7.54 5.90 14.59 5.52 0.56
feocean 0.06s 13.88 388.83 7.66 61.00 7.62 17.16 8.45 34.83 7.79 1.15
m14b 0.31s 10.65 181.41 4.81 32.0 5.85 8.16 5.45 15.32 5.13 0.54
ibm17 0.44s 13.01 136.43 6.18 21.38 9.40 11.0 6.79 20.25 6.64 0.36
ibm18 0.48s 11.88 129.22 5.72 22.54 8.29 9.5 6.24 17.29 6.13 0.40
CA 0.76s 8.41 382.67 4.38 88.22 7.05 14.61 4.90 35.21 4.29 1.66
PA 0.43s 8.47 364.06 4.45 79.09 7.03 13.95 4.98 33.02 4.37 1.64
googleI 1.4s 7.44 186.91 4.08 47.12 8.68 12.71 4.18 40.96 4.14 0.82
googleO 1.4s 11.03 186.91 6.78 47.12 13.11 12.71 6.21 40.96 6.05 0.95
lucent 0.04s 7.56 390.75 5.52 55.0 15.24 19.5 5.54 45.75 5.44 1.43
scan 0.12s 8.00 280.25 5.94 38.75 18.05 23.33 5.76 81.75 5.66 1.45

Avg 10.02 252.78 5.52 47.26 9.66 13.65 5.86 34.54 5.56 1.00

Table 5.2: The performance (time used and compression achieved) of several of our ordering algorithms,
compared to a depth-first-search ordering. Space is in bits per edge for encoding the edges;T1 is in seconds
and the other times are normalized to it. The space to encode the degree of each vertex is listed separately
(in bits per edge).

Array Our Structure
Rand Sep Byte Nibble Snip Huffman DiffByte

Graph T1 T/T1 Space T/T1 Space T/T1 Space T/T1 Space T/T1 Space T/T1 Space
auto 0.268s 0.313 34.17 0.294 10.25 0.585 7.42 0.776 6.99 0.828 6.81 0.399 12.33
feocean 0.048s 0.312 37.60 0.312 12.79 0.604 10.86 0.791 11.12 0.813 10.83 0.374 13.28
m14b 0.103s 0.388 34.05 0.349 10.01 0.728 7.10 0.970 6.55 1.078 6.37 0.504 11.97
ibm17 0.095s 0.536 33.33 0.536 10.19 1.115 7.72 1.400 7.58 1.621 6.93 0.747 12.85
ibm18 0.113s 0.398 33.52 0.442 10.24 0.867 7.53 1.070 7.18 1.301 6.44 0.548 12.16
CA 0.920s 0.126 43.40 0.146 14.77 0.243 10.65 0.293 10.55 0.304 11.46 0.167 14.81
PA 0.487s 0.137 43.32 0.156 14.76 0.258 10.65 0.310 10.60 0.314 11.19 0.178 14.80
lucent 0.030s 0.266 41.95 0.3 14.53 0.5 11.05 0.566 10.79 0.600 11.06 0.333 14.96
scan 0.067s 0.208 43.41 0.253 15.46 0.402 11.84 0.477 11.61 0.493 11.67 0.298 16.46
googleI 0.367s 0.226 37.74 0.258 11.93 0.405 8.39 0.452 7.37 0.790 7.01 0.302 13.39
googleO 0.363s 0.250 37.74 0.278 12.59 0.460 9.72 0.556 9.43 0.689 9.03 0.327 13.28
Avg 0.287 38.202 0.302 12.501 0.561 9.357 0.696 9.07 0.803 8.98 0.380 13.662

Table 5.3: Performance of ourstatic algorithms compared to performance of an adjacency array representa-
tion. Space is in bits per edge; time is for a DFS, normalized to the first column, which is given in seconds.

55

List Array Direct semidirect-4 indirect-1 indirect-16
T` T/T` T/T` Space T/T` Space T/T` Space T/T` Space

auto 0.60 0.39 0.83 2.17 0.83 1.08 0.98 1.0 1.33 0.4
feocean 0.08 0.53 1.07 5.6 1.09 2.8 1.46 2.36 2.21 0.79
m14b 0.29 0.38 0.81 2.05 0.82 1.02 0.97 0.94 1.30 0.39
ibm17 0.39 0.38 0.83 1.33 0.85 0.7 0.95 0.68 1.12 0.36
ibm18 0.38 0.36 0.80 1.52 0.82 0.79 0.93 0.78 1.14 0.37
CA 0.56 0.60 0.95 11.4 1.03 5.7 1.95 2.87 4.31 1.13
PA 0.31 0.59 0.96 11.32 1.03 5.66 1.94 2.87 4.26 1.11
googleI 0.49 0.48 0.88 5.74 0.92 2.89 1.43 1.78 2.45 0.67
googleO 0.49 0.47 0.98 5.74 1.02 2.88 1.51 2.05 2.36 0.76
lucent 0.03 0.55 1.22 9.95 1.27 4.98 2.11 3.06 3.83 1.11
scan 0.06 0.55 1.20 11.41 1.28 5.73 2.30 3.41 4.36 1.2
Avg 0.48 0.96 6.20 1.00 3.11 1.50 1.98 2.61 0.75

Figure 5.4: The performance of various direct and indirect indexing schemes on our Pentium III. Space is
measured in bits per edge;T` is in seconds and the other times are normalized to it. Graphswere compressed
using gamma codes.

and the time needed for queries (using more space for the indexing structure gives faster query times). Our
experiments demonstrate these tradeoffs. Timings given here are from the Pentium III.

Table 5.2 illustrates the tradeoff between the time needed to generate an ordering, and the space needed
by the compressed adjacency lists that use that ordering. For these experiments we use gamma codes for
compression. In addition to the separator schemes discussed in Section 5.5, we include a very simple
ordering based on a depth-first-search post-order numbering of the graphs. In generalbu-cf andmetis-cf
produce the highest quality orderings (cf indicates that it performs child flipping). The bottom up technique
(bu-cf), however, is significantly faster. We include results forbu-bpq(no child flipping, and approximate
priorities) since its ordering is almost as good asbu-cf, but is a factor of three faster. Thebfsalgorithm does
well on regular graphs but badly on highly irregular graphs.

For the rest of our experiments we chose thebu-cf ordering, which gave the best performance on many
of our test graphs while being significantly faster thanmetis-cf.

5.7.2 Indexing structures

Figure 5.4 illustrates the tradeoff between the query time and the space needed for the indexing structure,
and also compares query times to standard uncompressed datastructures. To measure query time we use
the time to execute a depth-first search (DFS). This is a reasonable measure since it requires visiting all
the edges once. We compare the performance of our representations to that of standard linked-list and
array-based graph representations. The linked-list representation uses two 32-bit words per edge, one for
the neighbor label and one for the next pointer in the linked list. The array-based representation stores the
neighbor indices of each vertex contiguously in one large array with the lists for the vertices placed one after

56

Direct semidirect-4 semidirect-16
Graph T Space T Space T Space
auto 0.351 4 0.343 2.00 0.345 1.25
feocean 0.056 4 0.055 2.00 0.056 1.25
m14b 0.158 4 0.155 2.00 0.156 1.25
ibm17 0.219 4 0.216 2.00 0.216 1.25
ibm18 0.208 4 0.204 2.00 0.206 1.26
CA 0.527 4 0.518 2.00 0.529 1.25
PA 0.291 4 0.285 2.00 0.290 1.25
googleI 0.342 4 0.332 2.00 0.333 1.27
googleO 0.378 4 0.370 2.00 0.371 1.25
lucent 0.026 4 0.027 2.00 0.028 1.25
scan 0.051 4 0.050 2.00 0.052 1.25

Figure 5.5: Comparison of the semidirect-16 indexing structure to other structures implemented on our new
codebase on our Pentium III. Space is given in bytes per vertex; time is given in seconds required for a DFS.
Graphs were compressed using nibble codes.

the other. It uses one 32-bit word per edge. Both representations use an array to index the vertices using
an additional 32-bit word per vertex. We note that linked lists are well suited for insertions and deletions,
while, like our representation, arrays are best suited for static graphs. For all versions of DFS we use one
byte (8 bits) per vertex to mark whether it has been visited.

The results show that for the direct and semidirect-4 indexing structure our compressed representation
is slightly faster than the linked-list representation. This is not surprising since although there is overhead
for decoding the adjacency lists, the cache locality is significantly better (loading a single cache line can
decode many edges). Our representation is slower than the array-based representation. This is also not
surprising since the array-based representation also has good spatial locality (the edges of a vertex are
adjacent in memory), but does not have decoding overhead. Wenote that the graph sizes are such that for
all representations the graphs fit into physical memory but do not fit into the cache (except perhaps lucent,
scan and feocean).

The semidirect-4 indexing structure saves a factor of two inspace over the direct structure while re-
quiring little extra time; we conclude that it is the most practical of the indexing structures tested. After
completing these experiments, though, we migrated to a new codebase, supporting a wider variety of cod-
ing techniques. Within this new codebase we developed the semidirect-16 indexing structure. Table 5.5
presents a comparison of the semidirect-16 structure to thedirect and semidirect-4 structures. (Since the
indirect structures were complex and performed poorly, we did not reimplement them for further testing.)
The semidirect-16 structure saved about six bits per vertexover the semidirect-4 structure while causing
virtually no slowdown. Accordingly we use it exclusively infurther experiments.

57

3 4 8 12 16 20
Graph T1 Space T/T1 Space T/T1 Space T/T1 Space T/T1 Space T/T1 Space
auto 0.318s 11.60 0.874 10.51 0.723 9.86 0.613 10.36 0.540 9.35 0.534 11.07
feocean 0.044s 14.66 0.863 13.79 0.704 12.97 0.681 17.25 0.727 22.94 0.750 28.63
m14b 0.146s 11.11 0.876 10.07 0.684 9.41 0.630 10.00 0.554 8.92 0.554 10.46
ibm17 0.285s 12.95 0.849 11.59 0.614 10.44 0.529 10.53 0.491 10.95 0.459 11.39
ibm18 0.236s 12.41 0.847 11.14 0.635 10.12 0.563 10.36 0.521 10.97 0.5 11.64
CA 0.212s 10.62 0.943 12.42 0.952 23.52 1.0 35.10 1.018 46.68 1.066 58.26
PA 0.119s 10.69 0.941 12.41 0.949 23.35 1.0 34.85 1.025 46.35 1.058 57.85
lucent 0.018s 13.67 0.888 14.79 0.833 22.55 0.833 31.64 0.833 41.22 0.888 51.09
scan 0.034s 15.23 0.941 16.86 0.852 26.39 0.852 37.06 0.852 48.08 0.882 59.34
googleI 0.230s 11.91 0.895 12.04 0.752 15.71 0.730 20.53 0.730 25.78 0.726 31.21
googleO 0.278s 13.62 0.863 13.28 0.694 15.65 0.658 19.52 0.640 24.24 0.676 29.66
Avg 12.58 0.889 12.62 0.763 16.36 0.735 21.56 0.721 26.86 0.736 32.78

Table 5.4: Performance of our dynamic algorithm using nibble codes with various block sizes. For each
size we give the space needed in bits per edge (assuming enough blocks to leave the secondary hash table
80% full) and the time needed to perform a DFS. Times are normalized to the first column, which is given
in seconds.

5.7.3 Static representations

Table 5.3 presents results comparing space and DFS times forthe static representations for all the graphs on
the Pentium 4. (Tables 5.6 and 5.7 present summary results for a wider set of operations on both the Pentium
III and Pentium 4.) In Table 5.3 all times are normalized to the first column, which is given in seconds. The
average times in the bottom row are averages of the normalized times, so the large graphs are not weighted
more heavily. All times are for a DFS.

For the adjacency-array representation, times are given for the vertices ordered both randomly (Rand)
and using our separator ordering (Sep). As can be seen, the ordering can affect performance by up to a
factor of 8 for the graphs with low average degree (i.e., PA and CA), and a factor of 3.5 averaged over all the
graphs. This indicates that the ordering generated by graphseparation is not only useful for compression,
but is also critical for performance on standard representations (we will see an even more pronounced effect
with adjacency lists). The advantage of using separator orders to enhance spatial locality has been previously
studied for use in sparse-matrix vector multiply [122, 62],but not well studied for other graph algorithms.
For adjacency arrays the ordering does not affect space.

For our static representation, times and space are given forfour different prefix codes: Byte, Nibble,
Snip and Gamma. The results show that byte codes are significantly faster than the other codes (almost
twice as fast as the next fastest code). This is not surprising given that the byte codes take advantage of
the byte instructions of the machine. The difference is not as large on the Pentium III (a factor of 1.45). It
should be noted that the Gamma codes are almost never better than Snip codes in terms of time or space.

We also include results for the DiffByte code, a version of our byte code that encodes each edge as the
difference between the target and source, rather than the difference between the target and previous target.
This increases the space since the differences are larger and require more bits to encode. Furthermore each
difference requires a sign bit. It increases time both sincethere are more bits to decode, and because the

58

sign bits need to be extracted. Overall these effects worsenthe space bound by an average of10% and the
time bound by an average of25%.

Comparing adjacency arrays with the separator structures we see that the separator-based representation
with byte codes is a factor of 3.3 faster than adjacency arrays with random ordering but about 5% slower
for the separator ordering. On the Pentium III the byte codesare always faster, by factors of 2.2 (.729/.330)
and 1.3 (.429/.330) respectively (see Table 5.7). The compressed format of the byte codes means that they
require less memory throughput than for adjacency arrays. This is what gives the byte codes an advantage on
the Pentium III since more neighbors get loaded on each cacheline requiring fewer main-memory accesses.
On the Pentium 4 the effective cache-line size and memory throughput is large enough that the advantage is
reduced.

Table 5.6, later in the section, describes the time cost of simply reading all the edges in a graph (without
the effect of cache locality).

5.7.4 Dynamic representations

A key parameter for the dynamic representation is selectingthe size of the blocks used to store difference
codes. Large blocks are inefficient since they contain unused space; small blocks can be inefficient since
they require proportionally more space for pointers to other blocks. In addition, there is a time cost for
traversing from one block to the next. This cost includes both the time for computing the hash pointer and
the potential time for a cache miss. Because of this larger blocks are almost always faster.

Table 5.4 presents the time and space for a range of block sizes. The results are based on nibble codes
on the Pentium 4 processor. The results for the other codes and the Pentium III are qualitatively the same,
although the time on the Pentium III is less sensitive to the block size. For all space reported in this section
we size the backup memory so that it is80% full, and include the20% unused memory in the reported space.
As should be expected, for the graphs with high degree the larger block sizes are more efficient while for the
graphs with smaller degree the smaller block sizes are more efficient. It would not be hard to dynamically
decide on a block size based on the average degree of the graph(the size of the backup memory needs to
grow dynamically anyway). Also note that there is a time-space tradeoff and depending on whether time or
space is more important a user might want to use larger blocks(for time) or smaller blocks (for space).

Table 5.5 presents results comparing space and DFS times forthe dynamic representations for all the
graphs on the Pentium 4. It gives six timings for linked listscorresponding to the two labeling orders and
for each labeling, the three insertion orders. The space forall these orders is the same. The table also gives
space and time for two settings of our dynamic data structure: Time Opt and Space Opt. Time Opt uses
byte codes and is based on a block size that optimizes time.2 Space Opt uses the more space-efficient nibble
codes and is based on a block size that optimizes space.

As with the adjacency-array representation, the vertex label ordering can have a large effect on perfor-
mance for adjacency-lists, up to a factor of 7. In addition tothe label ordering, the insertion ordering can
also make a large difference in performance for adjacency-lists. The insertion order can cause up to a factor
of 11 difference in performance for the graphs with high average degree (e.g. auto, ibm17 and ibm18) and

2We actually pick a setting that optimizesT
3
S whereT is time andS is space. This is because the time gains for larger blocks

become vanishingly small and can be at a large cost in regardsto space. For space optimal we optimizeTS
3.

59

Linked List Our Structure
Random Vtx Order Sep Vtx Order Space Opt Time Opt

Rand Trans Lin Rand Trans Lin Block Time Block Time
Graph T1 T/T1 T/T1 T/T1 T/T1 T/T1 Space Size T/T1 Space Size T/T1 Space
auto 1.160s 0.512 0.260 0.862 0.196 0.093 68.33 16 0.148 9.35 20 0.087 13.31
feocean 0.136s 0.617 0.389 0.801 0.176 0.147 75.21 8 0.227 12.97 10 0.117 14.71
m14b 0.565s 0.442 0.215 0.884 0.184 0.090 68.09 16 0.143 8.92 20 0.086 13.53
ibm17 0.735s 0.571 0.152 0.904 0.357 0.091 66.66 12 0.205 10.53 20 0.118 14.52
ibm18 0.730s 0.524 0.179 0.890 0.276 0.080 67.03 10 0.190 10.13 20 0.108 14.97
CA 1.240s 0.770 0.705 0.616 0.107 0.101 86.80 3 0.170 10.62 5 0.108 15.65
PA 0.660s 0.780 0.701 0.625 0.112 0.109 86.64 3 0.180 10.69 5 0.115 15.64
lucent 0.063s 0.634 0.492 0.730 0.190 0.142 83.90 3 0.285 13.67 6 0.174 20.49
scan 0.117s 0.735 0.555 0.700 0.188 0.128 86.82 3 0.290 15.23 8 0.170 28.19
googleI 0.975s 0.615 0.376 0.774 0.164 0.096 75.49 4 0.211 12.04 16 0.125 28.78
googleO 0.960s 0.651 0.398 0.786 0.162 0.108 75.49 5 0.231 13.54 16 0.123 26.61
Avg 0.623 0.402 0.779 0.192 0.108 76.405 0.207 11.608 0.121 18.763

Table 5.5: The performance of ourdynamic algorithms compared to linked lists. For each graph we give
the space- and time-optimal block size. Space is in bits per edge; time is for a DFS, normalized to the first
column, which is given in seconds.

a factor of 7.5 averaged over all the graphs (assuming the vertices are labeled with the separator ordering).
The effect of insertion order has been previously reported (e.g. [84, page 268] and [36]) but the magnitude of
the difference was surprising to us—the largest factor we have previously seen reported is about 4. We note
that the magnitude is significantly less on the Pentium III with its smaller cache-line size (an average factor
of 2.5 instead of 7.5). The actual insertion order will of course depend on the application, but it indicates
that selecting a good insertion order is critical. We note, however, that if users can insert in linear order, then
they are better off using one of the static representations,which allow insertion in linear order.

For our data structure the insertion order does not have any significant effect on performance. This is
because the layout in memory is mostly independent of the insertion order. The only order dependence is
due to hash collisions for the secondary blocks. Since each hash try is pseudo-random within the group, the
location of the backup blocks has little effect on performance. In fact our experiments (not shown) showed
no noticeable effect on DFS times for different insertion orders.

Overall the space optimal dynamic implementation is about afactor of 6.6 more compact than adjacency
lists, while still being significantly faster than linked lists in most cases (up to a factor of 7 faster for randomly
inserted edges). On the Pentium 4 linked lists with linear insertion and separator ordering take about50%
less time than our space-optimal dynamic representation and 10% less time than our time-optimal dynamic
representation. On the Pentium III, linked lists with linear insertion and separator ordering take about a
factor of 1.2 more time than our space optimal dynamic representation and 1.7 more time than our time
optimal dynamic representation.

Times for insertion are reported in Tables 5.6 and 5.7.

60

Read Find Insert
Graph DFS Linear Random Next Linear Random Transpose Space
ListRand 1.000 0.099 0.744 0.121 0.571 28.274 3.589 76.405
ListOrdr 0.322 0.096 0.740 0.119 0.711 28.318 0.864 76.405
LEDARand 2.453 1.855 2.876 2.062 16.802 21.808 16.877 432.636
LEDAOrdr 1.119 0.478 2.268 0.519 7.570 20.780 7.657 432.636
DynSpace 0.633 0.440 0.933 0.324 14.666 23.901 15.538 11.608
DynTime 0.367 0.233 0.650 0.222 9.725 15.607 10.183 18.763
CachedSpace 0.622 0.431 0.935 0.324 2.433 28.660 8.975 13.34
CachedTime 0.368 0.240 0.690 0.246 2.234 19.849 6.600 19.073
ArrayRand 0.945 0.095 0.638 0.092 — — — 38.202
ArrayOrdr 0.263 0.092 0.641 0.092 — — — 38.202
Byte 0.279 0.197 0.693 0.205 — — — 12.501
Nibble 0.513 0.399 0.873 0.340 — — — 9.357
Snip 0.635 0.562 1.044 0.447 — — — 9.07
Gamma 0.825 0.710 1.188 0.521 — — — 9.424

Table 5.6: Summary of space and normalized times for variousoperations on the Pentium 4.

Read Find Insert
Graph DFS Linear Random Next Linear Random Transpose Space
ListRand 1.000 0.631 0.995 0.508 1.609 17.719 3.391 76.405
ListOrdr 0.710 0.626 0.977 0.516 1.551 17.837 1.632 76.405
LEDARand 3.163 2.649 3.038 2.518 17.543 19.342 17.880 432.636
LEDAOrdr 2.751 2.168 2.878 1.726 11.846 19.365 11.783 432.636
DynSpace 0.626 0.503 0.715 0.433 17.791 22.520 18.423 11.608
DynTime 0.422 0.342 0.531 0.335 13.415 16.926 13.866 17.900
CachedSpace 0.614 0.498 0.723 0.429 2.616 25.380 7.788 13.36
CachedTime 0.430 0.355 0.558 0.360 2.597 20.601 6.569 17.150
ArrayRand 0.729 0.319 0.643 0.298 — — — 38.202
ArrayOrdr 0.429 0.319 0.639 0.302 — — — 38.202
Byte 0.330 0.262 0.501 0.280 — — — 12.501
Nibble 0.488 0.411 0.646 0.387 — — — 9.357
Snip 0.684 0.625 0.856 0.538 — — — 9.07
Gamma 0.854 0.764 1.016 0.640 — — — 9.424

Table 5.7: Summary of space and normalized times for variousoperations on the Pentium III.

61

5.7.5 Timing Summary.

Tables 5.6 and 5.7 summarize the time complexity of various operations using the data structures we have
discussed. For each structure we list the time required for aDFS, the time required to read all the neighbors
of each vertex (examining vertices in linear or random order), the time required to search each vertexv for
a neighborv + 1, and the time required to construct the graph by linear, random, or transpose insertion.
All times are normalized to the time required for a DFS on an adjacency list with random labeling, and the
normalized times are averaged over all graphs in our dataset.

List refers to adjacency lists. LEDA refers to the LEDA implementation. For List, LEDA and Array,
Rand uses a randomized ordering of the vertices and Ordr usesthe separator ordering. The times for DFS,
Read, and Find Next reported for List and LEDA are based on linear insertion of the edges (i.e., this is the
best case for them). Dyn refers to a version of our dynamic data structure that does not cache the edges for
vertices in adjacency lists. Cached refers to a version thatdoes. For the “DynSpace” and “CachedSpace”
structures we used a space-efficient block size; for “DynTime” and “CachedTime” we used a time-efficient
one. Array refers to adjacency arrays. Byte, Nibble, Snip and Gamma refer to the corresponding static
representations.

Note that the cached version of our dynamic algorithm is generally slightly slower, but for the linear and
transpose insertions it is much faster than the non-cached version. Those insertions are the operations that
can make use of cache locality. For linear insertion our cached dynamic representations are a factor of 3-4
times slower than adjacency lists on the Pentium 4 and a factor of about 1.5 slower on the Pentium III.

LEDA is significantly slower and less space-efficient than the other representations, but as previously
mentioned LEDA has many features these other representations do not have.

5.7.6 Randomized Graphs

To emphasize the fact that real-world graphs have good separators, we created randomized versions of
several of the graphs in our test set. The randomized versions have the same vertex count, edge count, and
degree distribution as the original graphs, but edges are randomly assigned as follows. Each vertex receives
a number of slots equal to its degree in the previous graph. Every edge is randomly assigned two slots from
the set of all empty slots. Duplicate edges and self-edges are discarded after the process is over; this reduces
the edge count of the randomized graphs slightly.

For several graphs we compared the compression achieved on the original graph to that of the random-
ized graph. We compute the compression achieved with byte codes and snip codes, not counting the cost of
an index. We compare this to the naive rate oflog n bits per edge that could be achieved with a flat code. In
all cases the compression is significantly worse when the graph is randomized.

The “Google” graph is an undirected version of googleI and googleO.

62

Original Random
Graph Byte Snip Byte Snip log n

auto 9.58 6.31 20.37 26.43 18.78
ibm17 9.80 6.30 16.72 22.27 17.50
lucent 11.42 7.71 15.79 15.71 16.79
google 9.93 6.22 19.82 25.22 19.81

Table 5.8: The compression (in bits per edge) achieved with snip codes on various real-world graphs. When
the edges in a graph are randomized to remove locality (but the degree distribution is maintained), the
compression worsens significantly.

5.8 Algorithms

Here we describe results for two algorithms that might have the need for potentially very large graphs:
Google’s PageRank algorithm and a maximum bipartite matching algorithm. They are meant to represent a
somewhat more realistic application of graphs than a simpleDFS.

PageRank. We use the simplified version of the PageRank algorithm [95].The algorithm involves finding
the eigenvector of a sparse matrix(1−ε)A+εU , whereA is the matrix representing the link structure among
pages on the web (normalized),U is the uniform matrix (normalized) andε is a parameter of the algorithm.
This eigenvector can be computed iteratively by maintaining a vector R and computing on each stepRi =
((1 − ε)A + εU)Ri−1. Each step can be implemented by multiplication of a vector by a sparse 0-1 matrix
representing the links inA, followed by adding a uniform vector and normalizing acrossthe resulting vector
to account for the out degrees (sinceA needs to be normalized). The standard representation of a sparse
matrix is the adjacency array as previously described. We compare an adjacency-array implementation with
several other implementations.

We ran this algorithm on the Google out-link graph for50 iterations withε = .15. For each represen-
tation we computed the time and space required. Figure 5.9 lists the results. On the Pentium III, our static
representation with the byte code is the best. On the Pentium4, the array with ordered labeling gives the
fastest results, while the byte code gives good compressionwithout sacrificing too much speed.

Bipartite Matching. The maximum bipartite matching algorithm is based on representing the graph as a
network flow and using depth first search to find augmenting paths. It takes a bipartite graph from vertices
on the left to vertices on the right and assigns a capacity of 1to each edge. For each edge the implementation
maintains a 0 or 1 to indicate the current flow on the edge. It loops through the vertices in the left set using
DFS to find an augmenting path for each vertex. If it finds one itpushes one unit of flow through and updates
the edge weights appropriately. Even though conceptually the graph is directed, the implementation needs to
maintain edges in both directions to implement the depth-first search. To avoid anΩ(n2) best-case runtime,
a stack was used to store the vertices visited by each DFS so that the entire bit array of visited vertices did
not need to be cleared each time. This optimization is suggested in the LEDA book [84, page 372]. We also
implemented an optimization that does one level of BFS before the DFS. This improved performance by

63

Time (sec) Space
Representation PIII P4 (b/e)
Dyn-B4 30.40 11.05 17.54
Dyn-N4 32.96 12.48 13.28
Dyn-B8 26.55 9.23 19.04
Dyn-N8 30.29 11.25 15.65
Gamma 38.56 15.60 9.63
Snip 34.19 13.38 9.43
Nibble 26.38 10.94 9.72
Byte 21.09 8.04 12.59
ArrayOrdr 21.12 6.38 37.74
ArrayRand 33.83 27.59 37.74
ListOrdr 30.96 6.12 75.49
ListRand 44.56 28.33 75.49

Table 5.9: Performance of our PageRank algorithm on different representations.

40%. Finally we used a strided loop through the left vertices, using a prime number (11) as the stride. This
reduced locality, but greatly improved performance since the average depth of the DFS to find an unmatched
pair was reduced signficantly.

Since the graph is static the static representations are sufficient. We ran this algorithm using our byte
code, nibble code, and adjacency array implementations. The bit array for the 0/1 flow flags is accessed
using the same indexing structure (semidirect-16) as used for accessing the adjacency lists. A dynamically
sized stack is used for the DFS and for storing the visited vertices during a DFS. We store 1 bit for every
edge (in each direction) to indicate the the current flow, 1 bit for every vertex to mark visited flags, and 1 bit
for every vertex on the right to mark whether it is matched.

The maximum bipartite matching algorithm was run on a modified version of the Google-out graph.
Two copies were created for each vertex, one on the left and one on the right. The out links in the Google
graph point from the left vertices to the right ones. The results are given in Figure 5.10. The memory listed
is the total memory including the representation of the graph, the index for 0/1 flow flags, the flow flags
themselves, the visited and matched flags and the stacks. Forall three representations we assume the same
layout for this auxiliary data, so the only difference in space is due to the graph representation. The space
needed for the two stacks is small since the largest DFS involves under 10000 vertices.

5.9 Discussion

Here we summarize what we feel are the most important or surprising results of the experiments.

First we note that the simple and fast separator heuristic weused seems to work very well for our pur-
poses. This is likely because the compression is much less sensitive to the quality of the separator than other
applications of separators, such as nested dissection [80]. For nested dissection more sophisticated separa-

64

Time (sec) Space
Representation PIII P4 (b/e)
Nibble 75.8 27.6 13.477
Byte 59.9 19.9 16.363
ArrayOrdr 57.1 18.6 41.678
ArrayRand 83.2 28.0 41.678

Table 5.10: Performance of our bipartite maximum matching algorithm on different static representations.

tors are typically used. It would be interesting to study thetheoretical properties of the simple heuristic. For
our bounds rather sloppy approximations on the separators are sufficient since any separator of sizeknc,
c < 1 will give the required bounds, even if actual separators might be much smaller.

We note that all the “real-world” graphs we were able to find had small separators—much smaller than
would be expected for random graphs. This is a property of real world graphs that is sometimes not properly
noted.

Our experiments indicate that the additional cost needed todecode the compressed representation is
small or insignificant compared to other costs for even an algorithm as simple as depth-first search. As
noted, under most situations the compressed representations are faster than standard representations even
though many more operations are needed for the decoding. This seems to be because the performance
bottleneck is accessing memory and not the bit operations used for decoding. The one place where the
standard representations are slightly faster for DFS is when using separator orderings and linear insertion
on the Pentium 4.

We were somewhat surprised at the large effect that different orderings had on the performance on the
Pentium 4 for both adjacency lists and adjacency arrays. Theperformance differed by up to a factor of
11, apparently purely based on caching effects (the number of edges traversed is identical for any DFS
on a fixed graph). The differences indicate that performancenumbers reported for graph algorithms should
specify the layout of memory and ordering used for the vertices. The differences also indicate that significant
attention needs to be paid to vertex ordering in implementing fast graph algorithms. We note that the same
separator ordering as used for graph compression seems to work very well for improving performance on
adjacency lists and adjacency arrays. This is not surprising since both compression and memory layout can
take advantage of locality in the graphs so that most accesses are close in the ordering.

In our analysis we do not consider applications that have a significant quantity of information that needs
to be stored with the graphs, such as large weights on the edges or labels on vertices. Clearly such data
might diminish the advantages of compressing the graph structure. We note, however, that such data might
also be compressed. In fact the locality of the separator labeling could be useful for such compression. For
example on the web graphs, vertices nearby in the vertex ordering are likely to share a large prefix of their
URL. Similarly, for the finite-element meshes, vertices nearby in the vertex ordering are likely to be nearby
in space, and hence might be difference encoded.

The ideas used in this chapter can clearly be generalized to other structures beyond simple graphs. For
example, the reordering-via-separator idea is used in Chapter 6, and the simplicial mesh data structure of

65

Chapter 7 is also based on difference coded adjacency lists.

Our work could be adapted to an out-of-core setting. The decrease in total memory usage from com-
pression is not so important in an out-of-core setting; however, by compressing the data we can increase the
amount that can fit in cache. The locality provided by our reordering could also be very useful to an out-of-
core algorithm. One complication that could arise involvesthe algorithm to perform the reordering: most
of the reordering algorithms we present assume that the graph structure can be held in RAM. This problem
could be addressed by using a crude partitioning algorithm at the high levels, then a more sophisticated
reordering algorithm the subgraphs reached a manageable size.

66

Chapter 6

Index Compression through Document
Reordering

6.1 Introduction

In this chapter we are interested in the compression ofinverted indices.1 An inverted index is a collection
of posting lists, each of which is a subset of the setU = {1 . . . m}. The compressed posting lists must
be stored individually (since they may need to be accessed individually). However, by using properties of
the index as a whole it is possible to improve the compressionof individual lists. This chapter describes a
heuristic relabeling technique: it uses a permutation to relabel the elements ofU in order to improve the
compression of posting lists.

There are many possible representations for compressed posting lists (some were discussed in Chapter
4). However, in this chapter our focus is on the quality of compression achievable for an index. Accordingly,
in this chapter we consider compression using the difference coded representation discussed in Section 2.4,
which is more compact than those of Chapter 4. The reorderingtechnique we describe would apply to the
structures of Chapter 4 as well.

Compact inverted indices are very important in the design ofsearch engines, where memory consider-
ations are a serious concern. Some web search engines index billions of documents, and even this is only
a fraction of the total number of pages on the Internet. Most of the space used by a search engine is in the
representation of an inverted index which maps search termsto lists of documents containing those terms.
Each posting list in an inverted index is a list of the document numbers of documents containing a specific
term. When a query on multiple terms is entered, the search engine retrieves the corresponding posting lists
from memory, performs some set operations to combine them into a result, sorts the resulting hits based on
some priority measure, and reports them to the user.

A naive posting list data structure would simply list all thedocument numbers corresponding to each
term. This would requiredlog(n)e bits per document number, which would not be efficient. To save space,
the document numbers are sorted and then compressed usingdifference coding(as described in Section

1This chapter is based on work with Guy Blelloch [12].

67

2.4).

In general, a difference-coding algorithm will get the bestcompression ratio if most of the differences are
very small (but one or two of them are very large). Several authors [87, 23] have noted that this is achieved
when the document numbers in each posting list have high locality. These authors have designed methods to
explicitly take advantage of this locality. These methods achieve significantly improved compression when
the documents within each term have high locality. However,all compression methods thus far have been
devoted to passive exploitation of locality that is alreadypresent in inverted indices.

Here, we will study how to improve the compression ratio of difference coding on an inverted index
by permuting the document numbers to actively create locality in the individual posting lists. One way
to accomplish this is to apply a hierarchical clustering technique to the document set as a whole, using
the cosine measure as a basis for document similarity. Our algorithm can then traverse the hierarchical
clustering tree, applying a numbering to the documents as itencounters them. Documents that share many
term lists should be close together in the tree and thereforeclose together in the numbering. This is similar
to the graph-reordering algorithm of Chapter 5.

We have implemented this idea and tested it on indexing data from the TREC-8 ad hoc track [129] (disks
4 and5, excluding the Congressional Record). We tested a variety of codes in combination with difference
coding. Our algorithm was able to improve the performance ofthe best compression technique we found by
fourteen percent simply by reordering the document numbers. The improvement offered by our algorithm
increases with the size of the index, so we believe the improvement on larger real-world indices would be
greater.

Conceptually, ourORDER-INDEX algorithm is divided into three parts. The first part,BUILD -GRAPH,
constructs a document-document similarity graph from an index. The second part,SPLIT-INDEX, makes
calls to the Metis [71] graph partitioning package to recursively partition the graphs produced byBUILD -
GRAPH. It uses these partitions to construct a hierarchical clustering tree for the index. The third part of
our algorithm,ORDER-CLUSTERS, applies rotations to the clustering tree to optimize the ordering. It then
numbers the documents with a simple depth-first traversal ofthe clustering tree. At all levels we apply
optimizations and heuristics to ensure that the time and memory requirements of our algorithm will scale
well.

In practice, constructing the full hierarchical clustering would be infeasible, so the three parts of our
algorithm are combined into a single recursive procedure that makes only one pass through the clustering
tree.

Related Work. When this research was originally published [12], there wasno previous work dealing
with index compression by reordering. Since then several other authors have examined the subject. Shieh
et al. [113] published concurrently, presenting a reassignment method based on the Traveling Salesman
Problem. They achieved15% compression over the original ordering, but the reorderingphase took much
longer: they reorder1.8 documents/second on a collection of130k documents, whereas we achieve300
documents/second and13% compression on a similar collection.

Blanco and Barreiro [11] use heuristics to improve the TSP-based algorithm (most notably, they use
dimensionality reduction through singular value decomposition). They present an algorithm achieving6%

68

to 8% compression on two collections of130k documents, with a speed of about125 documents/second.
It is unclear how their algorithm’s RAM requirements compare to ours. We note, however, that the largest
index they test is130k, whereas Silvestri et al. [115] were able to use our algorithm to reorder over600, 000
documents in1GB of RAM. (Blanco and Barreiro incorrectly claim that the above figure was only60, 000
documents.)

Silvestri et al. [115] presented several algorithms which were much faster and used only two-thirds as
much memory as our algorithm (using our default settings), but their best algorithm achieved only two-
thirds as much compression as ours. We note that their compression quality deteriorates for larger indices
(whereas our algorithm achieves better compression on larger indices).

The remainder of this chapter is organized as follows. Section 6.2 formalizes the problem. Section 6.3
describes our algorithm in detail. Section 6.4 demonstrates the performance of our algorithm when run on
the TREC-8 database.

6.2 Definitions

We describe an inverted indexI as a set of termst1 . . . tm. For every termti there is an associated list of|ti|
document numbersdi,1 . . . di,|ti|. The document numbers are in the range1 ≤ di,j ≤ n. We are interested in
the cost of representing these documents using a differencecode. Thus we define, first,si(di) = si,1 . . . si,|ti|

to be the sequence of documentsdi,j , rearranged so thatsi,j < si,j+1 for all j. That is,si is the sorted version
of the sequence of documentsdi. (For convenience we also definesi,0 = 0 for all i.) Then, if we have an
encoding schemec which requiresc(d) bits to store the positive integerd, we can write the costC of
encoding our index as follows:

C(I) =

n
∑

i=1

|ti|
∑

j=1

c(si,j − si,j−1)

We wish to minimizeC(I) by creating a permutationσ which reorders the document numbers. Since
c is convex for most useful encoding schemes, this means we need to cluster the documents to improve the
locality of the index.

6.3 Our Algorithm

Document Similarity. Up to this point, we have viewed an inverted index as a set of terms, each of which
contains some subset of the documents. Now it will be convenient to consider it as a set of documents, each
of which contains some subset of the terms. Specifically, we can consider a document to be an element of
{0, 1}m, where theith element of a document is1 if and only if the document contains termti. Eventually
our algorithm will need to compute centers of mass of groups of documents, and then it will be convenient
to allow documents to contain fractional amounts of terms—that is, to represent a document as an element
of <m.

69

Our algorithm uses thecosine measureto determine the similarity between a pair of documents:

COS(A,B) =
A � B

((A � A)(B � B))
1

2

Build-Graph. Using this similarity measure ourBUILD -GRAPH algorithm can construct a document-
document similarity graph. For large databases, creating afull graph withn2 edges is not feasible. However,
most of the documents contain only a small fraction of the total set of terms. It seems reasonable that the
graph might be sparse: many of the edges in the similarity graph might actually have a weight of zero. This
is especially true if we remove common “stopwords” from consideration, as described below.

To save space,BUILD -GRAPH uses the following method to generate the graph. Consider the index to be
a bipartite document-term graph from whichBUILD -GRAPH needs to generate a document-document graph.
For each term in the document-term graph, our algorithm eliminates that term and inserts edges (weighted
with the cosine measure) to form a clique among that node’s neighbors. After eliminating all of the terms
in the document-term graph,BUILD -GRAPH has produced a document-document graph which contains an
edge between every pair of documents that shares a common term.

If term ti contains|ti| documents, thenBUILD -GRAPH will compute O(
∑

|ti|
2) cosine measures in

computing the edge graph. Our algorithm can improve this bound slightly by being careful never to com-
pute the same cosine measure more than once, but the worst-case number of cosine measures will still be
O(

∑

|ti|
2).

However,BUILD -GRAPH does not actually need all this information in order to represent the structure
of the similarity graph. In particular, a lot of the documents in the index are likely to be “trivially” similar
because they share terms such as “a”, “and”, or “the”. The most frequently occurring terms in the index
are also the least important to the similarity measure. Removing the edges corresponding to those terms
should not have much of an impact on the quality of the ordering (as demonstrated in Section 6.4), while it
should decrease the work required forBUILD -GRAPH considerably. Thus, when generating the graph, our
algorithm creates cliques among the neighbors of only thoseterms with less than a threshold number of
neighborsτ . All other terms are simply deleted from the graph. (This technique is similar to that used by
Broder et al. [27] for identifying near-duplicate web pages.) Pseudocode for this part of our algorithm is
shown in Figure 6.1.

Split-Index. OnceBUILD -GRAPH has produced a similarity graph, the next step is to derive a hierarchical
clustering of that graph. There are a large number of hierarchical clustering techniques that we could choose
from (for example, those of [24, 135], and additional references from those papers), but most of those
techniques are not designed for data sets as large as the oneswe are dealing with. Many of them, in fact,
require as input anO(n2) similarity matrix. We do not have enough space or time to evenconstruct a
matrix of that size, much less run a clustering algorithm on it. Furthermore, this problem has certain special
features which are not captured by any general clustering algorithms. Therefore we have created our own
hierarchical clustering algorithm based on graph partitioning.

A naive hierarchical clustering algorithm would work as follows. Given an index, compute a similarity
graph from that index. Partition the graph into two pieces. Continue partitioning on the subgraphs until all

70

SPLIT-INDEX(I):
I ′ ← SUBSAMPLE(I, |I|ρ)
G← BUILD -GRAPH(I ′)
(G1, G2)← PARTITION(G)
d1 ← G1.centerofmass
d2 ← G2.centerofmass
I1, I2 ← empty indices
foreachd in I

if COS(d, d1) > COS(d, d2) then
addd to I1

else
addd to I2

return (I1, I2)

BUILD -GRAPH(I):
G← new Graph
foreachd1 in I

foreach t in d1

if |t| ≤ τ then
foreachd2 in DOCL IST(t)

e← new Edge(d1, d2, COS(d1, d2))
adde to G

return G

Figure 6.1: OurBUILD -GRAPH andSPLIT-INDEX algorithms.

pieces are of size one. Use the resulting partition tree as the clustering hierarchy.

Unfortunately, this algorithm uses too much memory. OurBUILD -GRAPH algorithm requires less than
the full O(n2) memory, but it is still infeasible to apply it to the full index. Instead,SPLIT-INDEX uses a
sampling technique on the index: at each recursive step, it subsamples some fraction of the documents from
the original index. It runsBUILD -GRAPH on this subindex and partitions the result. Once it has done this,
SPLIT-INDEX uses the subgraph partition to partition the original index. To do this, it computes the centers
of mass of the two subgraph partitions. It then partitions the documents from the original index based on
which of the centers of mass they are nearest to. Pseudocode for SPLIT-INDEX is shown in Figure 6.1.

An interesting point to note is thatSPLIT-INDEX recreates the document similarity graph at each node of
the recursion tree. This offers ourBUILD -GRAPH algorithm significantly more flexibility when creating the
similarity graph:BUILD -GRAPH only needs to create the graph in such a way that thefirst partition made
on it will be a good one. This allowsBUILD -GRAPH to use a very small value ofτ : if a term occurs more
than, say,10 times at a given partition level, it is likely that any partition SPLIT-INDEX computes will have
documents containing this term on both sides anyway. ThusBUILD -GRAPH ignores that term until later
iterations.

Order-Clusters. OnceSPLIT-INDEX has produced a hierarchical clustering,ORDER-INDEX uses that clus-
tering to create a numbering of the leaves. To do this it performs an inorder traversal of the tree. At each
step, however, it needs to decide which of the two available partitions to traverse first. In essence, our
ORDER-CLUSTERSalgorithm looks at every node in the hierarchy and decides whether or not to swap its
children.

Within any given subtreeS, there are four variables to consider. We denote the children of S by I1 and
I2. We also defineIL andIR to be the documents that will appear to the immediate left andright of S in the
final ordering. (At the first recursion we initializeIL andIR to place equal weight on each term. This causes
infrequently-occurring terms to be pulled away from the middle of the ordering.) SinceORDER-CLUSTERS

operates with a depth-first traversal, we takeIL to be the left child ofS’s left ancestor, andIR to be the right
child of S’s right ancestor.ORDER-CLUSTERS tracks the centers of mass of each of these clusters, and it

71

ORDER-CLUSTERS(IL, I1, I2, IR):
mL ← IL.centerofmass
m1 ← I1.centerofmass
m2 ← I2.centerofmass
mR ← IR.centerofmass
s1 ← COS(mL, m1) * COS(mR, m2)
s2 ← COS(mL, m2) * COS(mR, m1)
if s2 > s1 then

return (I2, I1)
else

return (I1, I2)

\\ Assigns the numbers between` andh
\\ to the documents of an indexI,
\\ which must have exactly(h− ` + 1)
\\ documents.
ORDER-INDEX(I, `, h, IL, IR):

if ` = h then
I.v|0|.number← `

else
(I1, I2)← SPLIT-INDEX(I)
(I1, I2)← ORDER-CLUSTERS(IL, I1, I2, IR)
ORDER-INDEX(I1, `, m− 1, IL, I2)
ORDER-INDEX(I2, m, h, I1, IR)

Figure 6.2: OurORDER-CLUSTERSandORDER-INDEX algorithms.

rotatesI1 andI2 so as to place similar clusters closer together.

Pseudocode forORDER-CLUSTERSand for the main body of our algorithm is shown in Figure 6.2.

6.4 Experimentation

Compression Techniques. We tested several common difference codes to see how much improvement
our algorithm could provide. The codes we tested include thedelta code, Golomb code [54], and arithmetic
code. These codes are described in more detail by Witten, Moffat, and Bell in [136]. We also tested the
binary interpolative compression method of Moffat and Stuiver [87]. This code was explicitly designed to
exploit locality in inverted indices, so it gained the most from our algorithm.

We did not count the cost of storing the sizes of each term since that cost would be invariant across
all orderings. We did count the cost of storing an arithmetictable for arithmetic coding, but this cost was
negligible compared to the cost of storing the bulk of the data.

Testing. To test our algorithm we used the ad-hoc TREC indexing data, disks4 and5 (excluding the Con-
gressional Record). This data contained527094 documents and747990 distinct words, and occupied about
one gigabyte of space when uncompressed. We tested three different orderings of the data in combination
with the difference codes described above. First, we testeda random permutation of the document numbers
as a baseline for comparison. Second, we tested the default ordering from the TREC database. We noted
that this was already a significant improvement over a randomordering, indicating that there is considerable
locality inherent in the TREC database. Third, we tested theordering produced by our algorithm. Results
are shown in Figure 6.3.

Analysis. The Golomb code is near-optimal for the encoding of randomlydistributed data, and in fact it
was the best code for the Random ordering. However, the Golomb code is not convex, so it does not benefit
from locality.

72

Random Identity Ordered

Binary 20.0 20.0 20.0
Delta 7.52 6.46 5.45
Golomb 5.79 5.77 5.78
Arith 6.82 6.03 5.19
Interp 5.89 5.29 4.53

Figure 6.3: The improvement (in bits per edge) our algorithmoffers for different coding schemes using
disks4 and5 of the TREC database.

Index Random Identity Ordered Improvement Improvement
Size over Random over Identity

32943 5.73 5.44 4.87 14.9% 10.4%
65886 5.75 5.43 4.78 16.9% 12.0%
131773 5.77 5.41 4.71 18.4% 13.0%
263547 5.78 5.36 4.63 19.9% 13.7%
527094 5.79 5.29 4.53 21.8% 14.4%

Figure 6.4: The improvement offered by our algorithm increases as the size of the index (measured in
documents) increases.

The locality inherent in the TREC database made the interpolative code the most efficient code for the
identity ordering. Interpolative coding used5.29 bits per edge, an improvement of about8.6% over the best
encoding with a random document ordering.

Using the ordering produced by our algorithm, however, the interpolative code needed an average of only
4.53 bits per edge to encode the data - a21.8% improvement over the best coding of a random ordering, and
a14.4% improvement over the best coding of an identity ordering.

Index size. To measure the effect of index size on our algorithm, we tested our algorithm on various
subsets of the full index. These subsets were formed by evenly subsampling documents from the full dataset.
For each subset we evaluated the best compression using a random, identity, or ordered permutation of
the documents. The random permutation was best coded with a Golomb code; the identity and ordered
permutations were coded with interpolative codes. Figure 6.4 shows the results of our tests. Interestingly,
the improvement offered by our algorithm increases as the size of the index increases.

Parameter Tuning. Our algorithm uses two parameters. The first parameter,τ , is a threshold which
determines how sensitive ourBUILD -GRAPH algorithm is to term size. If a termti has|ti| > τ , our algorithm
will still consider it when calculating cosine measures, but will not add any edges to the similarity graph
because of it.

Table 6.5 shows the performance of our algorithm (on a subsetof the full dataset containing one-

73

τ

Rand 1 2 5 10 15 20 40

Time(s) 51.81 81.62 120.7 163.7 196.4 225.0 304.8
Delta 7.44 6.56 6.04 5.95 5.94 5.90 5.89 5.88
Arith 6.73 6.11 5.69 5.62 5.61 5.58 5.57 5.56
Interp 5.81 5.29 4.97 4.89 4.87 4.86 4.86 4.85

Figure 6.5: The performance (in bits per edge) of different values ofτ on one-sixteenth of the TREC
indexing data.

ρ

Rand .75 .5 .25 .1 0

Time(s) 70.07 60.59 163.7 454.8 518.9
Delta 7.44 6.27 6.05 5.94 5.83 5.83
Arith 6.73 5.88 5.70 5.61 5.52 5.52
Interp 5.81 5.07 4.95 4.87 4.83 4.84

Figure 6.6: The performance (in bits per edge) of different values ofρ on one-sixteenth of the TREC
indexing data. Note that our algorithm’s running time is greater withρ = .75 than withρ = .5. This is
because the aggressive subsampling results in unbalanced partitions, increasing the recursion depth of the
algorithm.

sixteenth as many documents) with different values ofτ . Choosingτ to be less than5 causes too few
edges to be included in the similarity graph, but increasingτ beyond that was not beneficial on the index we
studied. We choseτ = 10 to be safe.

The second parameter,ρ, determines how aggressively our algorithm subsamples thedata. On an index
of sizen, the algorithm extracts one out of everybnρc elements to build a subindex. Table 6.6 shows the
performance of our algorithm with different values ofρ. Our algorithm does not perform too badly even
with a very largeρ, but there is still a clear tradeoff between time, space and quality. We choseρ = .25 in
our experiments as a suitable balance between these concerns.

Graph Compression. Our algorithm can also be used to enhance the performance of difference coding in
graph compression. (Chapter 5 discussed separator algorithms for graphs which can be manipulated within
main memory. This algorithm, with its subsampling techniques, can be applied to graphs which are much
larger; however, the compression produced is weaker.) In graph compression, for each vertex of the graph,
an algorithm stores an adjacency list of the vertices that share an edge with that vertex. The vertices are
numbered, so it is only natural to apply a difference code to compress each list. If we view the vertices as
terms and the adjacency lists as posting lists, we can apply our clustering technique to renumber the vertices
of the graph.

To test our clustering technique on graph data we used another TREC dataset: the TREC-8 WT2g web

74

Code Random Identity Clustered Ordered

Binary 18.0 18.0 18.0 18.0
Delta 17.5 4.92 4.58 4.52
Golomb 13.3 12.7 12.4 12.6
Arith 14.4 4.32 3.82 3.75
Interp 13.4 5.83 5.66 5.58

Figure 6.7: The performance of our algorithm on the TREC-8 WT2g web track. The “Clustered” column
describes the performance of our algorithm without the finalrotation step.

data track. That track can be represented as a directed graphon 247428 web pages, where hyperlinks
are edges. For best compression, we stored the in-edges (rather than the out-edges) of each vertex in our
adjacency lists. The number of in-edges for each vertex was more variable than the number of out-edges,
meaning that some adjacency lists were very dense and thus compressed very well. The performance of our
algorithm on the in-link representation is shown in Table 6.7.

75

76

Chapter 7

Compact Representations of Simplicial
Meshes in Two and Three Dimensions

7.1 Introduction

In this chapter we are interested in compressed representations of meshes that permit dynamic queries and
updates to the mesh.1 The goal is to solve larger problems while using standard random-access main-
memory algorithms. We present data structures for representing two and three dimensional simplicial
meshes. (By ad simplicial mesh we mean a pure simplicial complex of dimension d, which is a mani-
fold, possibly with boundary [49].) The data structures support standard operations on meshes including
traversing among neighboring simplices, inserting and deleting simplices, and the ability to store data on
simplices. For a class of well shaped meshes [85] with bounded degree, these operations each take constant
time. Although our data structures are not as compact as those designed for disk storage, they still save a
factor of between 5 and 10 over standard representations.

Compressed meshes are very important: For many applications the space required to represent large
unstructured meshes in memory can be the limiting factor in the size of a mesh. Standard representations of
tetrahedral meshes, for example, can require 300-500 bytesper vertex. There has been previous work which
deals with larger meshes by maintaining the mesh in externalmemory. To avoid thrashing, this requires
designing algorithms for which the access to the mesh is carefully orchestrated. Although several such
external memory algorithms have been designed [55, 45, 43, 83, 128, 7, 124, 5], these algorithms can be
much more complicated than their main-memory counterparts, and can be significantly slower.

The field of compressed meshes has received considerable attention [44, 61, 121, 98, 105, 120, 70, 66,
53]. In three dimensions, for example, these methods can compress a tetrahedral mesh to less than a byte
per tetrahedron [120]—about 6 bytes/vertex (not includingvertex coordinates). These techniques, however,
are designed for storing meshes on disk or for reducing transmission time, not for representing a mesh in
main memory. They therefore do not support dynamic queries or updates to the mesh while in compressed
form.

1This chapter is based on work with Guy Blelloch, David Cardoze and Clemens Kadow [14].

77

Our data structures are described in Section 7.3 and 7.4. They take advantage of the separator properties
of well-shaped meshes [85] and make use of our results in graph compression (see Chapter 5). In particular
our technique uses separators to relabel the vertices so that vertices that share a simplex are likely to have
labels that are close in value. Pointers are then differenceencoded using variable length codes. For the
2D case we present two mesh representations. One representation is based on storing, for each edge, the
triangles that contain that edge. This is described in Section 7.3. The other representation is based on
radially storing the neighboring vertices around each vertex. This is described in Section 7.4. Both of our
representations generalize readily to 3D and greater dimensions.

Section 7.5 describes an implementation of our data structure using the representation that stores the
neighboring vertices for each vertex. Section 7.6 presentsexperimental results. The implementation uses
about 5 bytes per triangle in 2D and about 7.5 bytes per tetrahedron in 3D when measured over a range
of mesh sizes and point distributions. We present experiments based on using our representation as part
of incremental Delaunay algorithms in both 2D and 3D. We use avariant of the standard Bowyer-Watson
algorithm [25, 131] and the exact arithmetic predicates of Shewchuk [111] for all geometric tests. We also
present experiments based on a Delaunay refinement algorithm that removes triangles with small angles by
adding new points at their circumcenters. All space is reported in terms of the total space including the space
for the vertex coordinates and all other data structures required by the algorithm. The results for 1 Gbyte of
memory are summarized as follows.

• We can generate a 2D Delaunay mesh with 110 million triangles(.47 Gbytes for the mesh, .44 Gbytes
for the vertex coordinates, and about .1 Gbytes for auxiliary data used by the algorithm). Compared
to the Triangle code [110] (the most efficient we know of) our algorithm uses a factor of 3 less
memory. It is about 10% slower than Triangle’s divide-and-conquer algorithm and much faster than
its incremental algorithm.

• We can generate a 3D Delaunay mesh with 100 million tetrahedra (.75 Gbytes for the mesh, .17 Gbytes
for the vertex coordinates, and .08 Gbytes for auxiliary data). Compared to the Pyramid code [109],
our algorithm uses a factor of 3.5 less memory, and is about 30% faster.

• We can generate a refined 2D Delaunay mesh with 80 million triangles with no angle less than 26%.
This version dynamically generates new labels, and uses an extra level of indirection in our data-
structure.

Our data structure can be used in conjunction with external memory algorithms. Also, although we
describe our implementation only for 2D and 3D simplicial meshes, the ideas extend to higher dimensions.
These topics are discussed, briefly, in Section 7.7.

7.2 Standard Mesh Data Structures

There have been numerous approaches for representing unstructured meshes in 2 and 3 dimensions. Some
are specialized to simplicial meshes and others can be used for more general polytope meshes. For the
purpose of comparing space usage, we review the most common of these data structures here. A more
complete comparison for 2D structures can be found in a paperby Kettner [73].

78

In two dimensions most approaches are based on either triangles or edges. The simplest data structure
is based on triangles. Each triangle has three pointers to the neighboring triangles, and three pointers to its
vertices. Assuming no data needs to be stored on triangles oredges, this data structure uses 6 pointers per
triangle. Storing data requires extra pointers. Shewchuk’s Triangle code [110] and the CGAL 2D triangula-
tion data structure [21] both use a triangle-based data structure. To distinguish the three neighbors/vertices
of a triangle, a handle to a triangle typically needs to include an index from 1 to 3. The data structure used
by Triangle, for example, includes such an index in the pointer to each neighbor (in the low 2 bits) so that a
neighbor query not only returns the neighbor triangle, but returns in which of three orders it is held.

There are many closely related data structures based on edges, including the doubly connected edge
list [89], winged-edge [9], half-edge [133], and quad-edge[59] structures. In addition to triangulated
meshes, these data structures can all be used for polygonal meshes. In these data structures each edge
maintains pointers to its two neighboring vertices and to neighboring edges cyclically around the neighbor-
ing faces and vertices. Each edge might also maintain pointers to the neighboring faces and to edge data.
The most space efficient of these data structures can maintain for each edge a pointer to the two neighboring
vertices and to just two neighboring edges, one around each face and vertex. Assuming no data needs to be
stored on a face or edge, this requires 4 pointers per edge, which for a manifold triangulation is equivalent to
the 6 pointers per triangle used by the triangle structure (|E| = 3/2|T |). The half-edge data structure [133],
used by CGAL [73], LEDA [84] and HGAM [58], maintains two structures per edge, one in each direc-
tion. These half-edges are cross referenced, requiring an extra two pointers per edge. The winged-edge and
quad-edge structures maintain pointers to all four neighboring edges, requiring 6 pointers per edge (9 per
triangle).

In three dimensions there are analogous data structures based either on tetrahedra or on faces and edges.
Again the simplest data structure is to use a structure per tetrahedron. Each tetrahedron has 4 pointers to
adjacent tetrahedra, and 4 to its corner vertices. Assumingno data this requires 8 pointers per tetrahedron.
This data structure is used by Pyramid [109] and CGAL [21]. The face and edge data structures are often
called boundary representations (b-reps). Such boundary representations are more general than the tetra-
hedron data structures, allowing the representation of polytope meshes, but tend to take significantly more
space. Dobkin and Laszlo [48] suggest a data structure basedon edge-face pairs, which in general requires
6 pointers per edge-face. For tetrahedral meshes this data structure can be optimized to 9 pointers per face
(6 to the adjacent faces rotating around its 3 edges, and 3 to the corner vertices). This corresponds to 18
pointers per tetrahedron. Weiler’s radial-edge representation [134], Brisson’s cell-tuple representation [26],
and Lienhardt’s G-map representation [79] all take more space.

In summary, the most efficient standard data structures of simplicial meshes use 6 pointers per triangle
in 2D and 8 pointers per tetrahedron in 3D. At least one extra pointer is required to store data on triangles in
2D or tetrahedra in 3D.

7.3 Representation Based On Edges

In this section we discuss our 2D representation based on edges. The representation is very similar to the
graph representation from Section 5.4, although its 3D generalization is somewhat different. We begin with
an uncompressed representation, and then describe how to compress it.

79

Each edge(a, b) in a 2D meshM can be a part of at most two faces (triangles). If the faces are(a, b, c)
and(b, a, d), then our representation stores the (key, data) pair((a, b), (c, d)) in a dictionary structure. (This
is similar to the winged-edge structure of Baumgart [9], except that all references are to vertex labels rather
than pointers.) If the orientation of the mesh needs to be maintained, then the verticesc, d are kept in a
consistent order; otherwise the order does not matter. If one of the faces is missing, the vertex for that face
is replaced with a special token0: ((a, b), (c, 0)).

To save space, edges are kept in a consistent direction: if the dictionary stores(a, b), then it does not
also store(b, a). The proper direction for an edge is determined by some simple test (for example, all edges
are stored as(a, b) wherea < b).

Our structure supports the operationssearch , insert , anddelete , as follows:

search (a, b): finds all verticesc such that(a, b, c) form a face inM . This is a single dictionary lookup.

insert (a, b, c): adds the face(a, b, c) to M . This requires updating the dictionary entries for(a, b), (b, c),
and(c, a). If an entry is already in the dictionary, its0 token is replaced with the appropriate vertex;
otherwise, the entry is created with a0 token.

delete (a, b, c): deletes the face(a, b, c) from M . This requires updating the dictionary entries for(a, b),
(b, c), and(c, a) by replacing the appropriate vertices with0 tokens. If an entry has0 tokens in both
its data slots, it is deleted.

This interface supports traversing the mesh by repeated invocations ofsearch . The variable-bit-length
dictionary structure allows us to supportsearch in O(1) time andinsert anddelete in O(1) expected
amortized time. Data can be stored on the mesh by including itin the dictionary entries.

To compress this data structure we use difference coding to encodeb, c, andd relative toa. That is, in
our dictionary we store tuples of the form((a, b−a), (c−a, d−a)). The differencesb−a, c−a, andd−a
are gamma coded (as described in Section 2.3); a sign bit indicates whether each difference is negative.

We use a variable-bit-length dictionary to store the encoded entries, as described in Section 3.3. The
dictionary absorbs theO(log |V |)-bit cost of representinga. It remains to account for the gamma coded
differencesb − a, c − a, d − a. We charge the cost of storinga − b to the edge(a, b), the cost of storing
a− c to the edge(a, c), and the cost of storinga− d to the edge(a, d). Each edge(a, b) is charged at most
five times, and the cost in each case isO(log |a− b|). This gives us:

Theorem 7.3.1 Our 2D simplicial mesh representation using our variable-bit dictionary usesO(
∑

(a,b)∈E log |a−
b|) bits whereE is the1−skeleton (that is, the set of edges) of the mesh.

If the vertices of the mesh are given ak-compact labeling (as described in Section 5.2), then the rep-
resentation of the mesh will useO(|V |) bits. We note that well-shaped meshes (of fixed dimension) with
bounded degree have small separators [85], and so the separator-tree algorithm from Section 5.2 is guaran-
teed to find ak-compact labeling. Further, 2D meshes are planar and thus have small vertex separators [81];
2D meshes with bounded degree have small edge separators as well.

80

Although the representation permits dynamic insertions and deletions, theO(|V |)-bit space bound de-
pends on the labeling remaining k-compact. For this reason we describe our representation assemidynamic,
similar to our graph representations from Sections 5.3 and 5.4.

In practice for well-shaped meshes, it is possible to find a good labeling by taking advantage of the
spatial embedding of the vertices. Rather than edge separators, our algorithms make use ofx − y cuts to
partition the vertices for relabeling. Since edges in most meshes have high locality, this gives a labeling
which is very good in practice. More details are given in Section 7.5.

Generalization to 3D. Our representation has a natural generalization to 3D basedon storing faces (tri-
angles) of the mesh. Each face(a, b, c) in M can be a part of at most two tetrahedra. If the tetrahedra are
(a, b, c, d) and(a, c, b, e), then our representation stores the tuple ((a,b,c), (d,e))in a dictionary structure.
To save space, each face(a, b, c) is stored using only one ordering—for example, the orderingin which
a < b < c.

The operationssearch , insert , anddelete are supported just as in the 2D case. The data structure
is compressed by difference coding: rather than ((a,b,c), (d,e)), the structure stores ((a,b-a,c-a), (d-a,e-a)) in
a variable-bit-length dictionary.

We now examine the space usage of our 3D representation. The dictionary absorbs thelog |V |-bit cost of
representinga using quotienting. We charge the cost of storingb−a andc−a to the face(a, b, c); we charge
the cost ofd− a to the face(a, b, d) and ofe− a to the face(a, b, e). Each face is chargedO(1) times, and
each time the charge isO(max(log |a−b|, log |a−c|, log |b−c|)) = O(log |a−b|+log |a−c|+log |b−c|).
This gives a bound ofO(

∑

(a,b,c)∈F log |a− b|+ log |a− c| + log |b− c|), whereF is the2-skeleton (that
is, the set of faces) of the mesh.

In fact we can prove a stronger bound on the space usage:

Lemma 7.3.1 LetF be the2−skeleton (the set of faces) of a 3D simplicial mesh. LetE be the1−skeleton
(the set of edges) of the mesh. Then any mesh representation with space usageO(

∑

(a,b,c)∈F log |a − b| +
log |a− c|+ log |b− c|) bits also has space usageO(

∑

(a,b)∈E log |a− b|) bits.

Proof. We wish to charge the cost of each face(a, b, c) ∈ F to one of its adjoining edges. An edge(a, b)
can be assigned a charge oflog |a− b|. We define thestrongest edgesof a face(a, b, c) to be the two edges
with the greatest difference between their vertices. For example, ifa < b < c and|a − b| > |b − c|, then
(a, b) and(a, c) are the strongest edges. Note thatlog |a− b| > log |b− c| andlog |a− b| ' log |a− c|, so
we can charge theO(log |b− a|+ log |c − a|+ log |c − b|) cost of the face to either of its strongest edges.
However, we must ensure that no edge is charged more thanO(1) times.

Let thestar of a vertexS(vi) be the set of simplices (edges, faces, and tetrahedra) containing vi. Let the
closureof the starC(S(vi)) be the set of simplices inS(vi) together with the lower-dimensional simplices
contained in them. Then we define thelink of the vertexL(vi) = C(S(vi)) − S(vi) to be the set of faces,
edges, and vertices that share tetrahedra withvi but do not containvi.

Let V (L(vi)) andE(L(vi)) be the vertices and edges in the link ofvi (these correspond to the set of
edges and faces containingvi in the mesh).L(vi) is a two-dimensional surface, so Euler’s rule applies: we
know that|E(L(vi))| < 3|V (L(vi))|.

81

We will now direct all of the edges inE(L(vi)) in such a way as to ensure that no vertex ofL(vi) has
indegree greater than5. This can be done iteratively: At each step, find a vertexv ∈ V (L(vi)) of degree5
or less. (Euler’s rule guarantees that this is possible.) Direct all edges containingv into v, and then delete
v and all its edges fromL(vi). At termination, all edges have been directed, and no vertexhas received
indegree greater than5.

Now, recall that vertices inV (L(vi)) correspond to edges containingvi in the 3D mesh, and that edges
in E(L(vi)) correspond to faces. For each face(vi, vj , vk), if the face’s strongest edges are(vi, vj) and
(vi, vk), then examine the corresponding edge(vj , vk) ∈ E(L(vi)). If the edge is directed towardsvj,
charge the cost of the face to the edge(vi, vj); otherwise, charge it to the edge(vi, vk).

Each edge is charged at most five times at each of its endpoints, so each edge is charged byO(1) faces.
The charge in each case islog |a−b| for an edge(a, b). Thus the total space used isO(

∑

(a,b)∈E(log |a−b|))
bits.

As in the 2D case, if the1-skeleton of the mesh has ak-compact labeling, then the representation of the
mesh will useO(|V |) bits.

7.4 Representation Based On Vertices

In this section we discuss our 2D mesh representation based on vertices. Our representation is based on
storing the cycle of neighbors, in order, around each vertexin the mesh. (The cycle of neighbors of a vertex
is also known as itslink.) This is similar to the half-edge structure of Weiler [133]. We note, however,
that all references are to vertex labels instead of pointersto other higher-dimensional simplex structures,
allowing us to compress based on vertex labels. We begin withan uncompressed representation, and then
describe how to compress it.

For each vertex in a 2D meshM our representation stores the cycle of neighboring vertices. The cycle
is ordered radially around the vertex in the orientation of the complex,e.g., clockwise.

If there are holes in the mesh, then the cycle for vertexa may be split into multiple “paths” of connected
vertices. Each path is stored separately.

The entry for each vertexa begins with a gamma code for|a|, the degree of that vertex.

Our structure supports the operationssearch , insert , anddelete , as follows:

search (a, b): finds all verticesc such that(a, b, c) form a face inM . This requires searching the cycle of
neighbors ofa for the predecessor and successor ofb.

insert (a, b, c): adds the face(a, b, c) to M . This requires updating the entry for each vertex. For exam-
ple, the entry for vertexa is searched for the pathPb ending withb and the pathPc beginning withc.
If no Pb or Pc are found, then new paths of length1 are created to contain the missing vertices. The
pathsPb andPc are concatenated. The same process is applied to the cycle ofneighbors for vertices
b andc.

82

6 3 5 −2 −8 −5 1

314

317

306

319

315

309

312

Figure 7.1: The neighborhood and corresponding differencecode data for vertex 314. The first entry, 6, is
the degree of the vertex. Other entries are the offsets of theneighbors.

delete (a, b, c): deletes the face(a, b, c) from M . This requires updating the entry for each vertex. For
example, the entry for vertexa is searched for the path containingb andc. The path is split in two
betweenb andc. If either of the resulting paths has length1, it is deleted. The same process is applied
to the cycle of neighbors for verticesb andc.

This interface supports traversing the mesh by repeated invocations ofsearch . The time required for
an operation ona is O(|a|); in bounded-degree meshes this isO(1).

We compress this data structure using difference coding: rather than storeb, c, d, e, . . . in the entry for
a, we storeb− a, c − a, d− a, e− a, . . ., as shown in Figure 7.1. The differences are gamma coded (using
a sign bit) and concatenated. If the entry for a vertex contains multiple paths, the paths are concatenated in
the entry; each gamma code is followed by a flag to indicate when one path ends and the next begins. The
entry for each vertex is stored in a variable-bit-length array structure, as described in Section 3.2.

To analyze the space usage of this representation, observe that each edge(a, b) is stored twice: once in
the entry fora and once in the entry forb. In each case the cost of the gamma code isO(log |a − b|). The
cost of storing a gamma code for the degree of each vertex is less than two bits per edge. Thus the total
space used isO(

∑

(a,b)∈E log |a− b|) bits.

As in Section 7.3, if the vertices of the mesh are given ak-compact labeling (as described in Section
5.2), then the representation of the mesh will useO(n) bits.

Generalization to 3D. In 2D our representation mapped each vertex to the cycle of neighbors around that
vertex. In 3D our representation maps each edge to the cycle of neighbors around that edge. In other words,
for each edge(a, b) in the mesh, the representation stores the set of vertices that share a face with botha and
b. (This is known as thelink of the edge.) The cycle is ordered radially around the edge inthe orientation of
the complex,e.g., clockwise. This is similar to the Dobkin and Laszlo [48] mesh structure.

To save space, edges are kept in a consistent direction: if the dictionary stores(a, b), then it does not

83

also store(b, a). The proper direction for an edge is determined by some simple test (for example, all edges
are stored as(a, b) wherea < b).

The operationssearch (a, b, c), insert (a, b, c, d), anddelete (a, b, c, d) are implemented as in the
2D case, except that searches and updates are now performed on edges rather than vertices. For example,
when inserting(a, b, c, d) into the mesh, the entries for the edges(a, b), (a, c), (a, d), (b, c), (b, d), and(c, d)
need to be updated. The updates themselves are still just a matter of joining paths (for inserts) or splitting
paths (for deletes).

Note that there is considerable redundancy in the storage wehave described. To resolve a search for
(a, b, c), our structure could query the edge for(a, b), (b, c), or (c, a), and get the same result in any case.
We can decrease the space requirement of our structure with asimple optimization: our structure stores only
a representative subsetof the edges in the mesh. Specifically, it stores only those edges(a, b) for which the
labelsa andb are either both odd, or both even. (These edges are called “representative edges”.) This still
permits the structure to resolve queries since any triangle(a, b, c) must contain vertices with either two even
or two odd labels.

As in the 2D case, we compress the structure using differencecoding. For each representative edge(a, b)
with associated cycle ofk verticesc, d, e, f, . . ., we store the table entry((a, b − a), (k, c − a, d − a, e −
a, f−a, . . .)) in a variable-bit-length dictionary structure (as described in Section 3.3). Thea is stored using
a log |V |-bit representation; the other values are gamma coded and concatenated. The dictionary absorbs
the cost of storinga; it remains to account for the other differences.

Every face(a, b, c) in M contributes at most three gamma coded values to the representation: an entry
for c in the cycle of the edge(a, b), an entry forb in the cycle of(a, c), and an entry fora in the cycle of
(b, c). Each of those gamma coded values has sizeO(log |a − b| + log |b − c| + log |a − c|). The space
used for the cycles of vertex labels is thusO(

∑

(a,b,c)∈F log |a − b| + log |a − c| + log |b − c|) bits, which
by Lemma 7.3.1 isO(

∑

(a,b)∈E log |a − b|) bits. The table entry for each edge(a, b) stores an additional
b − a term which requires anotherlog |a − b| bits, which is within our space bound. Storing a gamma
code fork, the number of vertices in the cycle, requiresO(1) bits per edge. Thus the total space usage is
O(

∑

(a,b)∈E log |a− b|) bits. Again, using ak-compact vertex labeling this reduces toO(n) bits.

Data can be added to the mesh by including it in the dictionaryentries. For example, if data is associated
with a tetrahedron(a, b, c, d), the data is stored between the verticesc andd in the table entry for the edge
(a, b). Each tetrahedron will have multiple representative edgeswith which to associate data; the data needs
to be stored only with one of the representative edges (chosen in a fixed manner to make lookup easy). We
make use of this in the compressed data structure. Specifically, if data is to be stored on(a, b, c, d) where
a < b < c < d, then at least one of the edges(a, b), (a, c), or (b, c) must be a representative edge; our
structure stores the data on one of those edges, in that orderof preference.

7.5 Implementation

To decide which of our structures to implement we examined the space usage of each structure. We assume
that the average cost of a difference code is the same in either structure, and count the number of difference
codes used by each structure.

84

In 2D our representation based on edges uses a table entry((a, b−a), (c−a, d−a)) per edge. Encoding
a is free (because of quotienting), but there are three codes stored per edge. The 3D generalization of that
structure uses a table entry((a, b − a, c − a), (d − a, e − a)) per face. Again thea is free, and the cost is
four codes stored per face.

In 2D our representation based on vertices uses two codes foreach edge(a, b): it storesb in the entry
for a anda in the entry forb. The 3D generalization potentially stores each face(a, b, c) three times (once
each in the entries for(a, b), (b, c), and(c, a)), but each edge has a50% chance of not being stored, so the
expected space usage is1.5 codes stored per face. (There is some small overhead per edgestored, but this is
negligible compared to the expense per face.)

Our representation based on edges has stronger time bounds (it runs inO(1) time rather thanO(|a|) time
where|a| is the degree of the vertex being examined) but uses more space, particularly for 3D. Accordingly
we chose to implement the representation based on vertices.

Generating Labels. Our space bounds for our compressed structure areO(
∑

(a,b)∈E log |a − b|) bits.
Achieving good compression with this structure relies on having a k-compact ordering, as described in
Section 5.2. To achieve this, our algorithm relabels the vertices using a technique based onx-y cuts. Given
a set of points, the technique first finds which of thex andy axes has the greatest diameter. It finds the
approximate median in that coordinate and partitions the points on either side of that median. The points on
one side are labeled first, then the points on the other side. This is done recursively to produce a labeling in
which points that are near each other have similar labels. This is similar to the separator-tree based labeling
scheme from Section 5.2 except that it is based on the coordinates of the vertices rather than on the edges.

If not all vertices are known before the algorithm begins, our algorithm can assign a sparse labeling
to the initial vertices. When a new vertex is added, it is assigned a label that is close to the labels of its
neighbors.

2D Triangulation. Our 2D compressed data structure is implemented as follows.

For difference encoding our structure uses thenibble codeto store values, as described in Section 2.3.

It is sometimes necessary to store an extra bitb with a valuev. This is accomplished with a shift
operation:v′ ← 2v + b. In particular, if any value might be negative, our difference coder stores its absolute
value plus a sign bit:v′ ← 2|v| + sign(v).

A vertex is represented with a nibble code for the degree of the vertex, followed by nibble codes for the
differences to each of the vertex’s neighbors. Our implementation stores two additional “special-case” bits
with each neighbor to provide information about the triangle that precedes it in the link. One bit is set to
indicate a gap in the link; it indicates that there is no triangle preceding that neighbor in the mesh. The other
bit is set when data is associated with the triangle preceding that neighbor. In this case, the code for that
neighbor is followed with a nibble code representation of the data.

As an optimization, note that for many vertices none of the special-case bits will be set. Our implemen-
tation stores a bit with the degree of each vertex to indicateif none of its special-case bits are set; if this is
so, those bits are omitted in the encoding of that vertex.

85

Block Blocks Total
Size Needed Space
5 745,151 10,086,381
6 475,263 9,998,531
7 283,559 9,920,446
8 164,660 10,101,104
9 94,105 10,537,195
10 53,399 11,179,987
11 30,496 11,974,072

Figure 7.2: The number of extra blocks needed for220 vertices on a uniform distribution in 2D, and the total
space required if we allocate30% more blocks than are needed.

The variable-bit-length array used in our implementation is somewhat different from that described in
Section 3.2. The version of Section 3.2 was developed for extremely short bitstrings, and it is able to pack
multiple bitstrings into one array slot to avoid wasted space due to underfull buckets. For our application,
each bitstring represents a vertex, and underfull blocks are not a problem. Instead, the concern is efficiently
allocating additional storage for overfull buckets.

Our array implementation stores the nibble codes for each vertex in an array containing one seven-byte
block per vertex. If a block overflows (that is, if the storageneeded is greater than seven bytes), additional
space is allocated from a separate pool of seven-byte blocks. The last byte of the block stores a pointer to the
next block in the sequence. Our implementation uses a hashing technique to ensure that the pointer never
needs to be larger than one byte. This requires a hash function that maps (address,i) pairs to addresses in
the spare memory pool. Our implementation tests values ofi in the range0 to 127 until the result of the
hash is an unused block. It then uses that value ofi as the pointer to the block. Under certain assumptions
about the hash function, if the memory pool is at most75% full, the probability that this technique will fail
to find ani ≤ 127 is at most.75128 ' 10−16.

If the vertices are labeled sparsely (so that new labels can be generated dynamically), our implementation
also makes use of a hash mapping between labels and vertex data blocks. One byte of memory is allocated
per label; if the label is in use, this byte contains a hash pointer to the first data block for that vertex.

One bit is stored with each block to indicate whether the current block is the last in the sequence. For
the first block this bit is stored with the degree of the vertex; for subsequent blocks it is stored as the eighth
bit of the one-byte pointer to that block.

There is a tradeoff in the sizes of the blocks used. Large blocks are inefficient since they contain unused
space; small blocks are inefficient since they require spacefor pointers to other blocks. In addition, there
is a cost associated with computing hash pointers by searching for unused blocks in the memory pool.
Figure 7.2 shows the tradeoff between these factors for our Delaunay triangulation algorithm run on220

uniformly distributed points in the unit square. We chose a block size of7 since it gives the most efficient
use of space.

To improve the efficiency of lookups our implementation usesa caching system. When a query or update

86

Block Blocks Blocks Used
Size Allocated 210 215 220

2 0.55n 59% 67% 70%
4 1.3n 90% 90% 88%
6 1.55n 90% 90% 87%
8 1.3n 78% 73% 75%
10 1.8n 30% 51% 63%

Figure 7.3: The number of blocks of each size that are allocated for ann-vertex 3D mesh, and the percentage
of blocks that were used forn = 210, 215, and220.

is made, the blocks associated with the appropriate vertex are decoded. The information is represented in
uncompressed form as a list with one vertex in the link per element of the list. The lists are kept in a FIFO
cache with a maximum capacity of 2000 nodes. Update operations may affect the lists while they are in the
cache. The lists are encoded back into blocks when they are flushed from the cache.

3D Tetrahedralization. The main difference between our 3D structure and our 2D structure is the need
to keep track of edges rather than vertices. For the 2D structure it sufficed to keep an array slot for each
vertex; for the 3D structure we need to allocate space for each edge stored by the representation. We do
not use a true hashing-based dictionary structure to keep track of the edges. Instead our 3D data structure
keeps a map from each vertexa to all of its representative out-edges. This is stored as a difference coded
list of the corresponding neighbors. The code for each neighbor v′ is followed by a code for the number
of nibbles in the encoding of the representative edge(v, v′), and a pointer to the first block containing the
data for that edge. (The pointer is stored using the same hashtrick as above to keep pointer sizes small.)
Every representative edge has its own block allocated from the memory pool, with the capability to allocate
additional blocks if needed.

When an edge is queried, our implementation loads only the list for one vertex and for the edge itself
into the cache. It does not need to decompress the other edgesadjoining that vertex.

Since the number of nibbles needed per representative edge is quite variable, our data structure allocates
from pools of2, 4, 6, 8, or 10-byte blocks to reduce wasted space. The number of blocks in each pool was
determined experimentally and is shown in Figure 7.3. The data structure ensures that each pool always has
at least10% free space; if a block cannot be allocated from a given pool, the data structure looks for a larger
one. The initial block for each vertex comes from a separate array containing blocks of size7.

Dynamic point generation. To support dynamic point generation we use an expanded labelspace. If a
total of n vertices are to be generated, we allow for2n possible labels. Each label receives a one-byte hash
pointer which, if the label is in use, points to the initial data block for the corresponding vertex. The initial
vertices are spread evenly across the label space.

87

Incremental Delaunay Algorithm. We implemented a Delaunay triangulation algorithm in two and three
dimensions using our compressed data structure. We employ the well-known Bowyer-Watson kernel [25,
131] to incrementally generate the mesh. During the course of the algorithm a Delaunay triangulation of the
current pointset is maintained. An incremental step inserts a new vertex into the mesh by determining the
faces (or, in 3D, tetrahedra) that violate the Delaunay condition. Those faces form the Delaunaycavity. The
edges (or, in 3D, faces) that bound the cavity are called thehorizon. The mesh is modified by removing the
faces in the cavity and connecting the new vertex to the horizon.

The cavity is connected, so it can be found by a local search onthe current mesh. When a pointp is
inserted, the cavity is determined by a search starting fromthe face that containedp. To achieve optimal
runtime bounds we use the idea of Clarkson and Shor [41] and maintain an association of every pointp not
yet inserted into the mesh with the facetp that containsp. The search for the cavity ofp will start attp. Their
algorithm keeps the history of the mesh and uses that historyto locate thetp for eachp as it is inserted. In
contrast we do not keep the mesh history but maintain the association of noninserted pointsp to containing
facestp on the current mesh.

At each incremental step all points on faces that were in the cavity have to be reassociated with new
faces using lineside tests (or, in 3D, planeside tests); this accounts for the dominant cost of the algorithm.
We have carefully implemented thebulldozingidea described in [18] and extended it to three dimensions.

Our implementation does not require extra memory for the lists of points since at any time a point is
either a vertex in the mesh or in one such list. The memory thatwill be used to store the vertex in the mesh
can first be used as a list node.

The algorithm maintains a work queue of faces whose interiors contain points. When no faces contain
points (i.e., all have been added to the mesh), the algorithm terminates.

In this scenario all points are known at the beginning. We generate labels for the input points using
cuts along coordinate directions as described earlier. Theruntimes reported in the next section include this
preprocessing step.

Delaunay Refinement. To test our implementation’s performance for the case when new points are dy-
namically generated at runtime, we implemented a 2D Delaunay refinement code in the style of Rup-
pert [106]. We augment a Delaunay triangulation by adding circumcenters of badly shaped triangles while
maintaining the Delaunay property. When the initial triangulation is built we walk through the mesh once
and check the quality of each face, queuing the ones not satisfying a preset minimum angle bound. The
same work queue used in the triangulation phase of the algorithm is used to store the list of triangles to be
split.

Whenever a new pointp is generated the algorithm assigns a new label by considering the horizon
verticesH of the cavity created byp and calculating the valuev that minimizes the sum of thelog norms to
H. It then finds the closest label tov that is not yet used.

In the pure triangulation code, all vertices are known at thebeginning, so we can store the point coor-
dinates and the first level vertex arrays densely. In the refinement code we can only fill these arrays up to
about85% before the open address hashing takes prohibitively long. We also require extra memory for the
additional map from the label space to the vertices.

88

Distribution # Pts # Extra Blocks Time(s)
uniform 218 70, 823 3.16
normal 218 72, 239 3.52
kuzmin 218 72, 917 4.36
line 218 66, 297 3.64

uniform 220 288, 255 13.25
normal 220 292, 580 14.41
kuzmin 220 292, 709 21.34
line 220 276, 124 15.86

Figure 7.4: The number of extra7-byte blocks needed to store triangular Delaunay meshes forvarious point
distributions using our structure and the runtime of our 2D implementation.

7.6 Experimentation

We report experiments on a Pentium 4, 2.4GHz system, runningRedHat Linux Kernel 2.4.18, GNU C/C++
compiler version 3.0.1. For all geometric operations (lineside, planeside, incircle, and insphere tests) we use
Shewchuk’s adaptive precision geometric predicates [111]. We use single-precision floating-point numbers
to represent the coordinates. For every problem setting andsize the results of our experiments were very
consistent over multiple runs. Therefore we do not report ranges of results for identical runs.

2D Delaunay. We tested our 2D implementation on data drawn from several distributions to assess its
memory needs for non-uniform data sets. We ran tests on the following distributions: Uniformly random,
normal, kuzmin, and a line singularity. Details on these distributions can be found in [19]. In Figure 7.4
we report the number of extra (overflow) 7-byte blocks used tostore Delaunay meshes of various point
distributions and the runtime of our implementation. It canbe seen that the runtime varies by about 40%
while the number of extra blocks varies by about 10%. Furthermore the number of extra blocks used comes
to only about 28% of the number of default blocks needed, which is one per vertex. In our experiments
we set the number of extra blocks available to 35% of the number of default blocks. The extra blocks
therefore fill to about 80% of capacity. Given this setting, the total space we require for the mesh is1.35× 7
bytes/vertex, which is 4.725 bytes/triangle.

Next, we compare runtime and memory usage of our implementation to Shewchuk’s Triangle [110] code
which is the most efficient code reported by Boissonnat et. al. [21]. In Figure 7.5 we report the runtime of
our (incremental) code vs. Triangle’s divide-and-conquerand its incremental implementation. We report the
total memory use of both codes in Figure 7.6 and break down ourmemory use for the simplicial mesh, point
coordinates and the work queue in Figure 7.7. While using just about a third of the memory our code runs
about10% slower than Triangle’s divide-and-conquer implementation and is about an order of magnitude
faster than Triangle’s incremental implementation. In ourcode50% of the memory is used to represent the
mesh,40% to store the coordinates, and10% for the work queue.

89

0 2 4 6 8 10 12

x 10
7

0

500

1000

1500

Problem size: # elements

R
un

tim
e

(s
ec

)

triangle divide−conquer
triangle incremental
our incremental code

Figure 7.5: Runtime in 2D, uniformly random points

0 2 4 6 8 10 12

x 10
7

0

200

400

600

800

1000

Problem size: # elements

P
ea

k
m

em
or

y
us

e
(M

B
yt

e)

triangle
our code

Figure 7.6: Memory use in 2D, uniformly random points

0 2 4 6 8 10 12

x 10
7

0

200

400

600

800

1000

Problem size: # elements

M
em

or
y

us
e

(M
B

yt
e)

total
simplicial complex
point coordinates
work queue

Figure 7.7: Breakdown of memory use in 2D, uniformly random points

90

Distribution # Pts # Bytes used Time(s)
uniform 216 2, 525, 309 9.26
normal 216 2, 572, 659 9.38
kuzmin 216 2, 571, 769 11.23
line 216 2, 264, 465 8.77

uniform 218 10, 135, 321 39.59
normal 218 10, 463, 761 41.89
kuzmin 218 10, 444, 195 45.04
line 218 9, 372, 669 38.97

Figure 7.8: The number of bytes needed for occupied blocks tostore tetrahedral Delaunay meshes for
various point distributions and the runtime of our 3D implementation.

3D Delaunay. As in 2D we tested our 3D implementation on the same four pointdistributions. In our
3D structure we allocate memory blocks of different size. Tocompare the memory needs for various point
distribution, we report the number of bytes used to store occupied blocks in Figure 7.8. As in 2D the
runtimes differ, but the memory needed is nearly independent of the distribution.

For the distributions we tested we found that our meshes contained roughly6.5 tetrahedra per vertex.

We compare our 3D implementation with uniform random data toShewchuk’s Pyramid code [109]2.
Figures 7.9 and 7.10 show the runtime and the memory usage. Figure 7.11 breaks down the memory usage
of our code.

In comparison our implementation runs slightly faster and uses only about one third of the memory. In
3D the representation of the mesh uses about75% of the total memory (about7.5 bytes per tetrahedron,
which is slightly under50 bytes per vertex for the distribution we tested); point coordinates and work queue
account for18% and7%, respectively.

2D Delaunay refinement. For our 2D Delaunay refinement code we compare runtime and memory use
to our pure 2D Delaunay code, as shown in Figures 7.12 and 7.13. The figures show problem size in terms
of the final number of faces in the mesh. In the pure Delaunay code, alln points are known initially; in the
refinement code, onlyn/2 points are known initially and the othern/2 are generated and labeled on the fly
as described in Section 7.5. We refine the mesh up to a minimum angle of26.85◦.

The runtimes for the two versions are almost identical. We need about30% more memory in the re-
finement code. Additional memory is needed for the map from labels to vertices and for slack in the point
coordinate array and the first level vertex array needed for our hashing technique.

2We note that the version of Pyramid we are using is a Beta release.

91

0 2 4 6 8 10

x 10
7

0

500

1000

1500

2000

2500

3000

Problem size: # of elements

R
un

tim
e

(s
ec

)

pyramid
our code

Figure 7.9: Runtime in 3D, uniformly random points

0 2 4 6 8 10

x 10
7

0

200

400

600

800

1000

Problem size: # elements

P
ea

k
m

em
or

y
us

e
(M

B
yt

e)

pyramid
our code

Figure 7.10: Memory use in 3D, uniformly random points

0 2 4 6 8 10

x 10
7

0

200

400

600

800

1000

Problem size: # elements

M
em

or
y

us
e

(M
B

yt
e)

total
simplicial complex
point coordinates
work queue

Figure 7.11: Breakdown of memory use in 3D, uniformly randompoints

92

0 2 4 6 8 10 12

x 10
7

0

100

200

300

400

500

600

700

800

900

Problem size: final # elements

R
un

tim
e

(s
ec

)
pure delaunay
delaunay refinement

Figure 7.12: Runtime in 2D, pure Delaunay vs. Delaunay refinement

0 2 4 6 8 10 12

x 10
7

0

200

400

600

800

1000

1200

1400

Problem size: final # elements

P
ea

k
m

em
or

y
us

e
(M

B
yt

e)

pure delaunay
delaunay refinement

Figure 7.13: Memory use in 2D, pure Delaunay vs. Delaunay refinement

93

7.7 Discussion

The representation we described can be used as an alternative to external memory (out-of-core) representa-
tions, when the mesh is within a factor of five or so of fitting inmemory relative to a standard representation.
Our representation has the advantage that it allows random access to the mesh without significant penalty,
and can therefore be used as part of standard in-memory algorithms (or even code) by just exchanging the
mesh interface.

In conjunction with external-memory techniques. For very large problems our representation can be
used in conjunction with external-memory techniques. Since in our representation the ordering of the ver-
tices is designed to be local (it is based on the quad/oct treedecomposition), and the blocks of memory for
vertices are laid out in this ordering, nearby vertices in the mesh will most likely appear on the same page.
(One problem is that, if the data for a vertex overflows, our dictionary structure assigns a new block for the
overflow data using a hash, which has no locality. In Chapter 8we correct this by, essentially, breaking the
large dictionary over|V | vertices into an array of smaller ones for16 vertices each.) Using this representa-
tion, algorithms that have a strong bias to accessing the mesh locally (e.g., see the recent work of Amenta,
Choi and Rote [5]) will tend to have good spatial locality andwork well with virtual memory when it does
not fit into physical memory.

Generalizations tod-dimensions. The idea of storing the link of everyd − 2 dimensional simplex gen-
eralizes to arbitrary dimension. The compression technique also generalizes to arbitrary dimension, but is
likely to be ineffective for large dimensions. This is because the size of the difference codes depends on
the separator sizes [15], which in turn depends on the dimension. Choosing an effective way to select the
representative subset of thed − 2 dimensional simplices will depend on the dimension and would need to
be considered to use our representation on dimensions greater than three. We have not done any experimen-
tation to analyze the effectiveness of our techniques on dimensions greater than three, or to compare our
representations to other representations.

Vertex Relabeling Schemes. Our system ofx- y- z cuts for relabeling vertices is effective, but crude. It
could be improved using achild-flipping optimization as discussed in Chapter 5. Essentially, when making
a cut, the relabeling algorithm can use information from past cuts to decide which side of the cut should
receive the higher part of the label space.

A further improvement might involve labeling the vertices using a Hilbert curve. We experimented
briefly with using a Hilbert curve library to relabel the vertices, but found that the relabeling time required
was too great compared to the increase in compression provided. Other authors, such as Papadomanolakis
et al. [99], have been able to successfully use a Hilbert curve to relabel the vertices of a tetrahedral mesh for
locality.

Point Location. In addition to the use of Hilbert curves, Papadomanolakis etal. describe a technique for
rapid point location based on locality of vertex labels. To find the tetrahedron containing a vertex, they locate
the nearest point in Hilbert space and walk through the mesh to the destination. Since our mesh structure

94

has locality of vertex labels as well, it might be possible tocombine this technique with our work to produce
a savings in both time (in bulldozing the points to allow for our point location) and space (since the work
queue could be replaced with a more compact structure).

Acknowledgements

We are grateful to Jonathan Shewchuk for commenting on the paper and letting us use a pre-release version
of Pyramid. This work was done as part of the Sangria [67] project, and several project members have
contributed ideas.

95

96

Chapter 8

Compact Parallel Delaunay
Tetrahedralization

8.1 Introduction

In Chapter 7 we presented a compact data structure for representing 2D and 3D meshes, accompanied
by a sequential algorithm using the structure for Delaunay triangulation. In this chapter we show how to
parallelize the algorithm. We describe changes that were made to the algorithm and data structure.

For the 3D case we present experimental results. When we increase the problem size and number of
processors by a factor of64, the vertex insertion rate increases by a factor of37.17. However, we cannot
call this a “speedup” measurement since the runs are on different job sizes and the algorithm performs
O(n log n) work for the distributions we test. The amount of work performed by the64-processor run
is more than64 times greater than the amount performed by the one-processor run, so the ratio37.17
underestimates somewhat the actual speedup of the algorithm.

These results could be useful for many applications dealingwith large 3D meshes. As an example, the
Quake project [123] makes use of hexahedral meshes of size upto 1.37 billion grid points. That application
uses an out-of-core algorithm to generate the mesh, and useshexahedra to decrease the number of elements
in the mesh. Our structure can manipulate tetrahedral meshes of that size in main memory: with64 proces-
sors it generated a mesh containing1.51 billion vertices and10 billion tetrahedra using5512 seconds and
197GB of RAM. The vertices were chosen uniformly at random from the unit cube.

The compactness of our data structure is preserved: where the structure of Chapter 7 used50 bytes
per vertex for3D mesh data, our structure here uses77.5 bytes per vertex counting overhead for faster
decoding and for synchronization. With the addition of space for vertex coordinates (24 bytes per vertex)
and temporary storage for the meshing algorithm (28 bytes per vertex), the total memory footprint of our
algorithm is130 bytes per vertex. This is a significant improvement over standard representations, which
can require300 to 500 bytes per vertex just for meshing data.

The algorithm as presented is only used to construct a Delaunay mesh over a given set of points; however,
the generalization to Delaunay refinement described for thesequential version would also apply in the

97

parallel case.

We have tested our algorithm on the uniform, gaussian, kuzmin, and line singularity distributions (see
[19] for details). For those distributions its time and space usage are nearly independent of the distribution
used. We also tested our algorithm on real-world data: a set of 133 million grid points from the Quake
project [123]. The fact that the vertices were at grid pointsposed some challenges to our application, but we
were able to overcome this using small random perturbations.

Our algorithm is a shared-memory parallel version of the incremental insertion algorithm from Chapter
7. To review, during the course of the algorithm a Delaunay triangulation of the current pointset is main-
tained. An incremental step inserts a new vertex into the mesh by determining the elements that violate
the Delaunay condition. We use the idea of Clarkson and Shor [41] and maintain an association between
uninserted vertices and the tetrahedra containing those vertices. We keep a work queue of tetrahedra whose
interiors contain points; threads draw tetrahedra at random from the queue for processing. Threads lock
pieces of the mesh as they prepare to insert a vertex; if a thread is unable to obtain a lock, it aborts the
insertion and draws a different job from the queue instead.

We have implemented several optimizations to improve the parallel performance of the algorithm. In
particular, we bootstrap the algorithm by growing the mesh sequentially (using the Pyramid algorithm of
Shewchuk [109]) until it is sufficiently large to avoid excessive contention between threads. We then run
parallel point-location to associate all uninserted vertices with simplices in the mesh. The main incremental
algorithm begins once this point-location step is complete.

Information in our data structure is stored by vertex label,using difference coding for compression. To
improve the quality of difference coding, we preprocess theinput vertices, relabeling them usingx- y- z cuts
so that vertices that are close spatially have similar labels.

Our basic data structure is a variant on the 3D representation from Section 7.4. The structure is modified
to improve data locality: it is divided into groups ofG vertices, and hashing is only performed within each
group. (That is, an edge(v, v′) is stored in the hashtable corresponding to the group containing v.) Groups
can be locked individually to prevent concurrent access by multiple threads.

In this chapter we describe the changes made to parallelize our algorithm. We discuss our locking
mechanism and several means of decreasing contention between threads for locks. In our experimental
results section we present results from running the algorithm with varying queueing disciplines and varying
point distributions. We analyze the speedup and the time andspace efficiency of the algorithm for up to64
processors.

Related Work. There has been significant previous work on parallel Delaunay algorithms, using three
main approaches to avoid conflicts between threads.

The first approach is that of divide-and-conquer: The mesh is(recursively) partitioned in two regions,
with each partition built by a separate processor. The border between the regions must be constructed
separately. Aggarwal [2] described an algorithm which constructed the border by joining the regions after
they were built. Chen et al. [35] described an algorithm which assigned certain points to both regions;
this resulted in some duplicate work but meant that joining the regions involved only discarding duplicate
triangles. Hardwick [63], Blelloch et al. [19], and Lee et al. [77] describe an algorithm that projects the 2D

98

points to a paraboloid in 3D, compute the lower convex hull, and use that to derive a border before building
the regions. These algorithms only work in two dimensions.

The second technique for parallel Delaunay meshes involvesincremental insertion (using the Bowyer-
Watson kernel [25, 131]). Most algorithms for incremental insertion avoid collisions by assigning a region
of the mesh to each processor. Operations involving multiple regions of the mesh are handled by message-
passing between processors. For this technique it is necessary to perform load-balancing between regions
while still ensuring that each region’s border is small. In 2D this was done by Okusanya and Peraire [93] and
Chrisochoides and Sukup [39].

The region-per-processor technique was also used by Chrisochoides and Nave [37, 38] to produce a 3D
parallel algorithm for a message-passing architecture. Much of the detail in that work involved minimizing
the latency from interprocessor communication, a problem which we can avoid since our concern is with a
shared-memory machine. Also, our work is on a greater scale:our largest mesh is5000 times larger than
theirs.

Kohout et al. [76, 75] describe a 2D incremental insertion algorithm which does not assign a region to
each processor; instead, all processors draw from a global queue, similar to our own work. They report a
speedup of up to5.84 on eight processors. Their algorithm uses a DAG data structure for point location
(whereas our algorithm associates points with tetrahedra to save memory). Kohout et al. also give a good
survey of related work.

None of these consider space-efficiency of their representations. The only compact dynamic mesh rep-
resentation we know of is our own, described in Chapter 7.

Compressed Meshes. There has been considerable work involving compressed meshes [44, 61, 121, 98,
105, 120, 70, 66, 53]. In three dimensions these methods can compress a tetrahedral mesh to less than a byte
per tetrahedron [120]—about 6 bytes/vertex (not includingvertex coordinates). These techniques, however,
are designed for storing meshes on disk or for reducing transmission time, not for representing a mesh in
main memory. They therefore do not support dynamic queries or updates to the mesh while in compressed
form.

Another option for handling larger meshes is to maintain themesh in external memory. To avoid thrash-
ing, this requires designing algorithms for which the access to the mesh is carefully orchestrated. Several
such external memory algorithms have been designed [55, 45,43, 83, 128, 7, 124]. Of particular note is
the bucketed randomized insertion order scheme of Amenta etal. [5], which improves the memory locality
of an out-of-core tetrahedralization algorithm by altering the insertion order of the vertices. This insertion
order might combine with our own work to form an improved out-of-core algorithm using compressed data
structures with very strong memory locality. We discuss this further in Section 8.5.

8.2 The Algorithm

The sequential version of our algorithm is described in detail in Chapter 7; we will summarize it here.

99

Locality. For several purposes, involving both compression quality and locality of memory access, we
found it important to ensure that vertices that were close spatially (eg, those likely to share edges in the
mesh) had similar labels. To ensure this, as a preprocessingstep we relabeled the vertices usingx- y- z cuts.

Given a set of points, our algorithm first finds which of thex, y, andz axes has the greatest diameter. It
finds the approximate median of that diameter and partitionsthe points using that median. The points on one
side are labeled first, then the points on the other side. Thisis done recursively (and in parallel) to produce
a labeling in which points that are near each other have similar labels. This is similar to the separator-based
technique for graph relabeling from Section 5.2 except thatit occurs before any edges have been added to
the graph.

If not all vertices are known before the algorithm begins, our algorithm can assign a sparse labeling
to the initial vertices. When a new vertex is added, it is assigned a label that is close to the labels of its
neighbors. In previous work [14] we presented results for a Delaunay refinement algorithm that made use
of this technique; this algorithm could be made parallel in astraightforward fashion.

Sequential Insertion. We employ the well-known Bowyer-Watson kernel [25, 131] to incrementally gen-
erate the mesh. The algorithm maintains a Delaunay triangulation of the current pointset at all times. An
incremental step inserts a new vertex into the mesh by determining the elements that violate the Delaunay
condition. Those elements form the Delaunaycavity. The faces that bound the cavity are called thehorizon.
The mesh is modified by removing the elements in the cavity andconnecting the new vertex to the horizon.

To achieve optimal runtime bounds we use the idea of Clarksonand Shor [41] and maintain an associa-
tion of every pointp not yet inserted into the mesh with the tetrahedrontp that containsp. The search for the
cavity ofp starts attp. With each tetrahedron we keep data indicating which uninserted points are contained
in it. We maintain a work queue of tetrahedra which contain points.

At each step, the algorithm draws a tetrahedron from the front of the queue. The algorithm checks that
the tetrahedron is still in the mesh (that is, that an update has not deleted that tetrahedron since it was added
to the queue). If so, the algorithm extracts a pointp from the tetrahedron and performs the insertion. It uses
the bulldozingidea described in [18] to reassociate points from the cavitywith new tetrahedra. Any new
tetrahedra that contain points are added to the back of the work queue.

This algorithm has an expectedO(n log n) runtime if the elements for insertion are picked at random.

8.2.1 Parallel version.

The parallel version of the algorithm is the same as the sequential version except that every thread draws
work from the queue. To avoid overlapping reads and writes between threads we use data locks in two ways:
on the mesh and on the work queue. All data locks are “test-locks” rather than “wait-locks”: if a thread fails
to acquire a lock, it aborts the operation rather than waiting for the lock to become free.

The meshing data structure stores edges in a variable-bit-length dictionary structure, as described in
Section 7.4. To improve memory locality, vertices are divided into groups of sizeG, and each vertex group
has its own hashtable in which to store edge data. (In our experiments we useG = 16.) With each vertex
group we store a lock, so that only one thread may access that group at a time. The space cost of the lock is

100

amortized over theG vertices in the group.

As a thread explores the cavity for a pointp, it secures the lock on each vertex it encounters. (Recall that
the vertices have been relabeled so that vertices with similar labels are close together; it is likely that many
of the vertices for a cavity may share the same few locks.) If athread encounters a vertex that is locked
by another thread, it aborts the insertion: it releases all of its locks and returns the tetrahedron to the work
queue. Otherwise, once the thread has secured the locks on all of the cavity, it performs the insertion as
normal and releases the locks when finished.

The work queue is also secured by locks to prevent concurrentaccess. In the parallel version forp
processors the work queue contains10p subqueues. (We experimented with several queue configurations—
see Section 8.4 for details.) Each subqueue has its own separate lock; when a thread accesses the work
queue, it probes the subqueues at random until it acquires the lock on one. The thread operates on the queue
(adding a number of tetrahedra to be processed, or randomly extracting a tetrahedron for processing) and
then releases the lock.

In rare cases it may be necessary for a thread to allocate morememory using calls tomalloc . (For
example, this is needed if a hashtable overflows.) To do this athread must wait until it acquires a global
lock. This is the only time in our algorithm when a thread waits to acquire a lock.

Contention. When the mesh is very small compared to the number of threads operating on it, there is
danger of contention: multiple threads may all compete for the same few vertices, such that for a long time,
no thread is able to acquire enough vertex locks to perform aninsertion in a certain area of the mesh. This
may result in a few very large tetrahedra remaining untouched, with many uninserted vertices on them,
while other areas of the mesh are tetrahedralized to a fine resolution. When a thread finally acquires enough
locks to handle the tetrahedron, the associated cavity is very large. In addition to the obvious inefficiencies,
the space required to hold the full cavity in the cache is considerable; this places strain on the caching and
memory allocation structures, which is undesirable.

An easy solution to the contention problem is to hold some threads back at the start of the algorithm.
Experimentally we find that restricting the density of threads to one per214 vertices in the mesh is sufficient
to eliminate contention almost entirely. Unfortunately, this causes other types of slowdown: for the initial
214 vertex insertions, only one thread is active in the mesh.

To see why this is a problem, consider the time complexity of avertex insertion. We assume that finding
the cavity for a vertex requires constant time per insertion. (This is the case for bounded-degree meshes in
the absence of contention. With random data, for example, each cavity contains an average of26 tetrahedra).
However, our algorithm must also perform planeside tests for the uninserted vertices that lay in the deleted
tetrahedra. Ifk of then vertices have been inserted, then there are an expectedΩ(n/k) vertices per insertion
that require planeside tests. (In particular, the first insertion performed requiresΩ(n) planeside tests for the
uninserted vertices.) Performing all of these tests with one thread is inefficient.

Bootstrapping via Pyramid. To run our algorithm in parallel, we need to build the mesh sufficiently large
that all threads can use it at once. To do this we make use of a separate tetrahedralization algorithm—the
serial Pyramid algorithm of Shewchuk. That algorithm is different from ours in that it does not associate

101

uninserted vertices with tetrahedra; instead, to insert a vertexv, it walks through the mesh using plane-side
tests to locate the tetrahedron that should containv.

Our bootstrapping algorithm works as follows. Givenn vertices andp processors, we first relabel the
vertices usingx- y- z cuts, as in the standard algorithm. We then samplek vertices for insertion via Pyramid.
(We could perform the sampling at random; however, since thelabels are assigned usingx- y- z cuts, we
instead sample at evenly spaced intervals. This produces a more evenly spaced distribution.) Once the
Pyramid mesh data structure is built, we perform point location on the remaining vertices to associate them
with tetrahedra in the mesh.

Each processor performs point location on a contiguous block of vertices. Since this does not involve
modifying the mesh it produces no conflicts between threads.Shewchuk’s point location routine allows us
to begin the walk from any tetrahedron in the mesh. Since the vertices have high spatial locality (due to our
reordering viax- y- z cuts), we begin the walk for each vertexv from the tetrahedron that contained vertex
v − 1. The cost for this point location is thus quite low.

When all the vertices have been mapped to tetrahedra, the Pyramid mesh structure is deallocated. The
work queue is allocated, and the tetrahedra are inserted into it. (The space used for Pyramid is reused for the
work queue, so that it does not add to the total space cost of the algorithm.) Our parallel insertion algorithm
then begins as normal.

There is a tradeoff between insertion of vertices using Shewchuk’s mesh-walking code and our bulldoz-
ing code. If there aren total points, andk points have been inserted into the mesh, then inserting a vertex
using our code requiresΘ(n/k) work (spent using planeside tests to reassociate the pointsin the cavity with
new tetrahedra). The cost of the same insertion using Pyramid is Θ(k

1

4) serial time, which is equivalent to

Θ(pk
1

4) work.

To optimize performance we must select ak such that these costs are balanced. Solving the expression
n
k = pk

1

4 yields k = (n
p)

4

5 . For our experimental setup, however, we always usen = 224.5p: the samek

should be valid throughout. Experimentally we find thatk should be between219 and220 for best perfor-
mance. With64 processors, our initial mesh needs roughly220 vertices to avoid contention. Accordingly
we use bootstrapping of220 vertices for all of our tests.

Cleanup. As the algorithm nears termination, it may occur that only one region of the mesh still contains
uninserted vertices. In this case, the algorithm may encounter contention. To prevent this, threads leave
the mesh as the number of remaining uninserted vertices decreases: threadk leaves the mesh when fewer
than2048k uninserted vertices remain. Since the last insertions are quite rapid (as they involve almost no
planeside tests), this does not cause significant slowdown.

8.3 Data Structure

Here we summarize the data structure we use to represent our 3D meshes. The structure is adapted from
that of Chapter 7. We have made several modifications. First,we hash the edges of our structure explicitly.
The previous implementation stored a pointer to each edge from the bucket corresponding to its first vertex.

102

Our new data structure hashes on the full edge as described inSection 7.4. Second, we divide the hashtable
into groupscontaining data forG = 16 vertices each, and assign a data lock to each group. Third, weuse
a simplified memory-allocation system. Our representationfrom Chapter 7 used a system that allocated
memory blocks of size2, 4, 6, 8, or 10 bytes, depending on the space required. Our new representation
allocates only fixed-length blocks of size six bytes. Fourth, we take special care to avoid thread contention
for memory pages by allocating all data for a vertex group in contiguous memory.

The data structure supports the following operations:

• add (v1, v2, v3, v4, d) adds the (oriented) tetrahedron(v1, v2, v3, v4) to the mesh, with associated data
d. For our applicationd is the label of an uninserted point contained within the tetrahedron.

• find (v1, v2, v3) searches the mesh for the tetrahedron containing the (oriented) triangle(v1, v2, v3).
It returnsv4 and the associatedd.

• delete (v1, v2, v3, v4) deletes the tetrahedron from the mesh.

• lock (v) attempts to lock the vertexv and returns a boolean indicating success or failure.

• unlock () releases all locks owned by the calling thread.

As in the sequential version of our algorithm, our structurestores thelink for a set of edges (1-simplices).
The link of an edge is the oriented cycle of vertices that connect to both endpoints of the edge (see Figure
8.1 for an example). Not all edges are stored: only edges between vertices having the same even-odd parity
are kept in the dictionary structure. This still permits us to resolvefind queries since any triangle must
contain at least one such edge. Also, edges are only stored inone direction, determined according to a hash
function.

All vertices in the link for an edge(v, v′) are stored by vertex label, and compressed viadifference
coding[136] with respect tov. The difference code we use is thebyte-aligned codefrom Section 2.3. We
chose this code because it is rapid to encode and decode (as described in Section 5.7). The datad for a
tetrahedron is stored as described in Section 7.5. For our application, this data is the label of an uninserted
point that is contained in the tetrahedron. This data is alsodifference encoded with respect tov.

The codes for all of the data and vertices in an edge’s link areconcatenated. The resulting bit-string is
stored in a variable-bit dictionary structure as describedin Section 7.4.

Uninserted Points. It may occur that a tetrahedron contains more than one uninserted point. We represent
these points using a linked list. We keep an arraynext [0..N − 1] such that, if pointp is contained within
a tetrahedron, thennext [p] is the index of another point within the same tetrahedron (or−1 if there is no
such point). The first point in the list is stored with the tetrahedron in the mesh data structure.

Memory Locality. In an environment in which multiple threads are accessing a data structure, it is im-
portant to ensure that memory accesses involved in a query goto a small set of cache lines. Hashtables
have notoriously poor memory locality; to address this, we divide the vertices into vertex groups of size
G. (We usedG = 16 in our experiments.) Each vertex group is allocated with itsown hashtable (i.e., its

103

314

311

5 319 312 306 309 315

5 5 −2 −8 −5 1

306

319

309

312

315

Figure 8.1: The neighborhood and corresponding differencecode data for the edge314 → 311. The first
entry,5, is the degree of the vertex. Other entries are the offsets ofthe neighbors from314.

own variable-bit-length dictionary); all data associatedwith the hashtable is kept in the same contiguous
block. (In rare cases the hashtable may require resizing, inwhich case the additional memory must be al-
located elsewhere. For the settings we chose this happens roughly 15% of the time.) Edges are stored in
the hashtable corresponding to their first vertex. Along with the hashtable data we keep a data lock, shared
by theG vertices of the vertex group; a thread must acquire the lock in order to read from or write to the
hashtable.

Caching. To improve the efficiency of lookups our implementation usesa caching system. When a query
or update is made, the codes associated with the appropriateedge are decoded. The information is repre-
sented in uncompressed form as a linked list with one listnode per vertex in the link of the edge. The lists are
kept in a cache which is specific to the thread performing the query or update. Update operations may affect
the lists while they are in the cache. As part of an update, theapplication may delete simplices, producing
holes in the mesh; however, we maintain the invariant that edge links that are written out of the cache must
be full cycles. Thus the cache is only flushed after a new vertex insertion is complete.

8.4 Experimentation

Experimental Setup. We ran our experiments onrachel.psc.edu [101], a pair of HP GS 1280 SMP
machines with 64 1.15-Ghz EV67 processors each. The operating system was Tru64 Unix. We used the
OpenMP [94] library to provide parallel functionality. Ourcode was written in C and C++; we compiled
using the commandcxx -O -fast -arch ev7 -tune ev7 -omp .

There were 4 Gbytes of RAM available per processor. Given ourspace usage (discussed below) this was
sufficient to build a mesh of about224.5 (about23 million) vertices per processor.

104

processors: 1 2 4 8 16 32 64
Total runtime 3202s 3769s 4352s 4435s 4686s 5090s 5512s
Parallel loop 2995s 3553s 4063s 4159s 4416s 4725s 5064s
s0, vtxs/p/sec 7130 5388 4221 3990 3454 3170 2853
s10, vtxs/p/sec 7768 6809 6183 6043 5779 5439 5101
s15, vtxs/p/sec 7678 7152 6596 6510 6263 5935 5712
Init Fails 0 3.8M 5.4M 6.2M 6.5M 6.7M 6.7M
Dig Fails 0 40K 65K 80K 90K 99K 106K
Rep Fails 0 1.1M 2.2M 2.9M 3.1M 3.3M 3.2M

Table 8.1: Performance measurements per processor for our algorithm. We inserted224.5 (about 23 million)
vertices per processor.

We used the exact arithmetic predicates of Shewchuk [111] for all geometric tests. Additionally we used
the beta version of Shewchuk’s Pyramid code [109] to bootstrap our main parallel algorithm.

Main Results. We ran our algorithm on points with the uniform distributionusing between1 and 64
processors. In all cases we used224.5 (about 23 million) points per processor. We used a fixed amount of
bootstrapping (220 vertices) for each run. In the one-processor case our algorithm took3202 seconds, for an
average of7410 vertices/second. In the64-processor case our algorithm averaged4305 vertices/second per
processor. The vertex insertion rate increased by a factor of 37.17. This ratio actually underestimates the
speedup of our algorithm since the amount of work per vertex inserted isΘ(log n) (for the distributions we
test). After accounting for this discrepancy we get a speedup of 46.27.

We decompose the runtime of our algorithm into several factors (see Table 8.1). The total runtime listed
includes all steps of the algorithm fromx- y- z reordering to termination. The next time measurement given
includes only the parallel loop (that is, without the bootstrapping, reordering, or initialization phases). For
convenience of analysis we divide the parallel loop intostagess0 . . . s15, each of which involves inserting
1/16 of the total pointset. (Note thats0 involves slightly fewer insertions than the others since itdoes not
include the220 vertices used in bootstrapping.) For each ofs0, s10, ands15 we give the number of vertices
inserted per processor per second. The higher cost of earlier steps is due to the large amount of point-location
work performed during these steps.

Finally, we give three measures of contention. A lock failure is classed as aninitialization failure if the
thread fails to obtain the lock on one of the vertices in the initial tetrahedron, or adig failure if the thread fails
to obtain the lock on a subsequent vertex while performing the insertion. If the failure occurs immediately
after a previous failure, it is instead classed as arepeat failure. We give the average number of each type of
failure per processor.

The64-processor run inserted1, 518, 041, 200 points, producing10, 274, 246, 916 tetrahedra. As far as
we know this is the largest tetrahedral Delaunay mesh that has been generated.

105

Init Rep Maximum Runtime
Discipline Fails Fails Queue Size (main loop)
FIFO (2p) 113M 234M 181M 4620s
FIFO (10p) 51M 23M 160M 4321s
QR (2p) 68M 19K 257M 4165s
QR (10p) 37M 11K 200M 4234s
RAND (2p) 32K 107 595M 4249s
RAND (10p) 32K 47 589M 4300s

Table 8.2: Impact of various queueing disciplines on our algorithm using227.5 (about190M) vertices and8
processors.

Queueing Disciplines. In our algorithm there is a central work queue from which all threads draw tetra-
hedra for processing. To avoid concurrency issues, the queue is divided into a number of subqueues; when
a thread wishes to access the queue, it chooses randomly fromthe subqueues until it finds one that is not in
use. Here we discuss the issues involved in design of the workqueue.

We considered three possible queueing disciplines for our work queue. The first we considered was the
standard FIFO queueing discipline. A concern with this algorithm is that, on completion of an insertion, our
threads may add to the queue a large number of tetrahedra thatall share the same vertex (the newly inserted
point). If two or more threads attempt to handle the tetrahedra resulting from a single push, then most (or
all) of the threads will encounter locked vertices and abandon the job.

A second discipline we considered was the random queue (RAND): tetrahedra are added to the tail of
the queue but extracted at random from any point within the queue. This ensured that our threads’ access
patterns were random. Unfortunately we found experimentally that it led to larger queue sizes than the
FIFO queue: large numbers of “garbage” tetrahedra (those that no longer existed in the mesh) collected in
the queue and were not removed until near the end of the algorithm.

The third option we considered was the “queue-random” discipline (QR), a compromise between the
first two disciplines. A thread would initially attempt to draw a tetrahedron from the front of the queue; if
work on that tetrahedron failed due to contention, the thread would next draw from a random point within
the queue.

In addition to experimenting with various queueing disciplines, we performed experiments with vary-
ing the numbers of subqueues in the work queue. The FIFO queueing discipline problem occurred when
multiple threads accessed the same subqueue within a short amount of time; by increasing the number of
subqueues we hoped to make this event less likely. Forp processors we experimented with using2p and
10p subqueues.

The results of our experiments are shown in Table 8.2. We classify lock failures asinitial failures or as
repeat failuresdepending on whether the thread had encountered a lock failure just prior to the current one.
The increase in failures for the FIFO queueing discipline isquite dramatic, and the increase in queue size for
the random disciplines equally so. However, the corresponding increase in runtime was fairly small since
most of the failures occurred before significant work was performed. Thus, we chose to minimize the space

106

One processor,224.5 vertices
Additional

Distribution Time Bytes/Vtx
uniform 3136s 4.30
normal 3164s 4.67
kuzmin 3182s 4.56
line 3147s 2.80

Eight processors,227.5 vertices
Additional

Distribution Time Bytes/Vtx
uniform 4296s 4.69
normal 4301s 4.79
kuzmin 4478s 4.80
line 4301s 3.67

Table 8.3: Space used and time required by our algorithm for various distributions.

used by the work queue: for our experiments we use the FIFO queueing discipline with10p subqueues.

Space usage. Our algorithm allocates space for several purposes. The vertex coordinates use24 bytes
per vertex (three eight-byte floating-point values). The array next [p], used to link together vertices in the
same tetrahedron, uses4 bytes per vertex. For the work queue we allocate two entries per vertex, each
containing three integersa, b, c, for a total of24 bytes per vertex. (To find the fourth vertex of a tetrahedron,
the algorithm performs a lookup on(a, b, c).)

The mesh structure divides vertices into groups ofG = 16; for each group it allocates a structure of
1160 bytes, or72.5 bytes per vertex. This includes blocks of memory for storingdifference codes (one
7-byte block and ten 6-byte blocks per vertex, as described in Section 7.5), structures to handle allocation
of the memory, and a pointer to an additional block of memory if necessary. It also includes a data lock.

When the hashtable for a group overflows, additional memory is allocated from the heap. We chose
settings such that this occurs on13.8% − 15.4% of groups in the tests for Table 8.1, with the overflow
becoming more likely for larger input sizes. The cost is4.30 − 4.77 additional bytes per vertex.

The algorithm allocates some fixed-size structures as well (caches and pools of linked list nodes), but
the memory for these is negligible. The total space cost for our algorithm, then, is less than130 bytes per
vertex, meaning that our10-billion-tetrahedron computation used197GB of RAM.

Point Distributions. We tested our algorithm on several different distributionsof data, including uniform,
Gaussian, kuzmin, and line-singularity distributions. Details on these distributions can be found in [19]. For
each distribution we ran224.5 vertices on one processor and227.5 vertices on eight processors. We computed
the total runtime required and the number of additional bytes of memory per vertex allocated. (The numbers
given are in addition to the124.5 bytes per vertex required in all cases.) Results are shown inTable 8.3.

We also ran tests on real-world data: a set of grid points based on an octree decomposition generated by
the Quake project [123]. The problem of computing a tetrahedral mesh over grid points proved difficult, as
our algorithm was not designed to handle the perfectly flat tetrahedra that result when four vertices lie at the
vertices of a square. To handle this we introduced small random perturbations: we added a small random
value to each coordinate of each vertex.

Even after doing this, though, we encountered some difficulty with the tetrahedralization. Our insertion

107

Random Boundary Contention Time
Perturbation Size (Rep Fails) (sec)
(fully random) 9K 16M 3132
0—1 99K 20M 3054
0—.5 138K 62M 3230
0—.2 203K 316M 3895
0—.1 274K 836M 3954
0—.05 370K 2207M 7397
0—.02 525K 7976M 16544
0—.01 (too much contention, aborted)

Table 8.4: Performance of our algorithm on227 fully random points (from the unit cube) versus227 points
derived from the Quake project [123]. The points provided have a very large boundary, resulting in con-
tention for the lock on the four bounding vertices. Adding randomness to the point locations makes less of
the boundary “visible” to the boundary vertices, making theproblem more tractable.

algorithm begins with a single tetrahedron on four artificial “boundary” verticesv1 . . . v4, chosen such that
the tetrahedron contains all of the points to be inserted. Asthe points are inserted, the verticesv1 . . . v4

connect to the boundary of the mesh. For the random distributions we tested this did not pose a problem:
the boundary of the mesh was no more than a few thousand vertices at most. For our octree-decomposition
data, however, the boundary of the mesh was much larger. The degree of the verticesv1 . . . v4 grew large
enough that there was significant contention between processors attempting to perform insertions near the
boundary of the mesh. This decreased the performance of our algorithm considerably.

We were able to solve the problem by adding more randomness tothe points. The smallest distance
between any two points in our octree-decomposition data was6 units; we added a random value between0
and1 to every vertex coordinate. By doing this we decreased the boundary of the mesh to a reasonable size.
Results are shown in Table 8.4.

One interesting feature of our octree-decomposition data was its labeling. For random data, as a pre-
processing step our algorithm relabels the points usingx- y- z cuts (as described in Section 8.2). For our
octree-decomposition data we found this step was unnecessary: the points came preordered, with a label-
ing that produced compression superior to what our relabeling algorithm provided. (For uniformly-random
points with our reordering, the mesh data for227 vertices required1.13G blocks for edge data. For the octree
points with our reordering, mesh data required1.09G blocks for edge data. For the octree points without
reordering, mesh data required0.97G blocks, which left the hashtables somewhat underfull.) Accordingly,
the results in Table 8.4 use the labeling provided by the data.

8.5 Future Work

Out-Of-Core Algorithms. Our algorithm and data structure could be extended to work inan out-of-core
setting: because the vertices are relabeled for locality, most of the memory accesses for an insertion should

108

be very close together. Keeping the representation compressed means that more of it could fit in RAM
at once. Unfortunately, our algorithm as described performs insertions in a random order. This could be
improved by using a BRIO (“biased randomized insertion order”) [5] to provide some locality between
insertions. The work queues of our algorithm would need to bereplaced with a series ofO(log n) groups of
work queues, one for each level of the BRIO.

High-Degree Meshes. We have shown that the algorithm behaves well on several distributions as long as
the maximum degree of a vertex is bounded. When the mesh contains vertices of high degree (as for the
octree-decomposition data, as discussed in Section 8.4), the competing threads suffer from contention for
the high-degree vertices. Experimentally it seems that ourcode is tolerant of four vertices with total degree
138K (out of a total of128M vertices shared among8 processors), but performance suffers when the degree
grows larger.

Part of this problem is from our coarse-grained locking mechanism: we divide our data structure into
hashtables, and force threads to lock each hashtable they access. We allocate one hashtable perG = 16
vertices, and store the data for each edge in a hashtable corresponding to one of its vertices. We require
that a thread acquire the lock on all of the vertices adjoining the cavity before performing an update. For
correctness it is only necessary to lock theedgesadjoining the cavity, not the vertices. A more conservative
locking mechanism might be able to exploit this to tolerate high-degree vertices. However, to do this it
would be necessary to distribute the edges of a high-degree vertex evenly among many hashtables, which
might sacrifice the good memory-locality properties of the representation.

Also, even with this improvement, there exist 3D meshes in which all vertices have high degree. It is
not clear how any parallel incremental-insertion algorithm could handle such meshes efficiently.

109

110

Chapter 9

Bibliography

References

[1] M. Adler and M. Mitzenmacher. Torwards compressing web graphs. InData Compression Conference (DCC),
pages 203–212, 2001.

[2] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaig, and C.Yap. Parallel computational geometry.Algorithmica,
3:293–327, 1998.

[3] C. J. Alpert. The ISPD circuit benchmark suite. InACM International Symposium on Physical Design, pages
80–85, Apr. 1998.

[4] C. J. Alpert and A. Kahng. Recent directions in netlist partitioning: A survey. VLSI Journal, 19(1–2):1–81,
1995.

[5] N. Amenta, S. Choi, and G. Rote. Incremental constructions con BRIO. InProc. ACM Symposium on Compu-
tational Geometry, June 2003.

[6] C. R. Aragon and R. G. Seidel. Randomized search trees. InProceedings of the 30th Annual Symposium on
Foundations of Computer Science, pages 540–545, 1989.

[7] L. Arge. External memory data structures. InProc. European Symposium on Algorithms, pages 1–29, 2001.
[8] H. G. Baker. List processing in real-time on a serial computer. Communications of the ACM, 21(4):280–94,

1978.
[9] B. Baumgart. A polyhedron representation for computer vision. InProc. National Computer Conference, pages

589–596, 1975.
[10] D. Benoit, E. D. Demaine, J. I. Munro, and V. Raman. Representing trees of higher degree. InWADS, pages

169–180, 1999.
[11] R. Blanco and A. Barreiro. Document identifier reassignment through dimensionality reduction. InECIR, pages

375–387, 2005.
[12] D. Blandford and G. Blelloch. Index compression through document reordering. InData Compression Confer-

ence (DCC), pages 342–351, 2002.
[13] D. Blandford and G. Blelloch. Compact representationsof ordered sets. InSODA, pages 11–19, 2004.
[14] D. Blandford, G. Blelloch, D. Cardoze, and C. Kadow. Compact representations of simplicial meshes in two and

three dimensions. InInternational Meshing Roundtable (IMR), pages 135–146, Sept. 2003.
[15] D. Blandford, G. Blelloch, and I. Kash. Compact representations of separable graphs. InProceedings of the

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 342–351, 2003.
[16] D. Blandford, G. Blelloch, and I. Kash. An experimentalanalysis of a compact graph representation. In

ALENEX04, 2004.

111

[17] D. K. Blandford and G. E. Blelloch. Dictionaries using variable-length keys and data, with applications. In
Symposium on Discrete Algorithms, 2005.

[18] G. Blelloch, H. Burch, K. Crary, R. Harper, G. Miller, and N. Walkington. Persistent triangulations.Journal of
Functional Programming (JFP), 11(5), Sept. 2001.

[19] G. Blelloch, J. Hardwick, G. L. Miller, and D. Talmor. Design and implementation of a practical parallel delau-
nay algorithm.Algorithmica, 24(3/4):243–269, 1999.

[20] G. E. Blelloch, B. Maggs, and M. Woo. Space-efficient finger search on degree-balanced search trees. InSODA,
pages 374–383, 2003.

[21] J.-D. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec. Triangulations in CGAL.Computational
Geometry, 22(1–3):5–19, 2002.

[22] P. Boldi and S. Vigna. The webgraph framework I: Compression techniques, 2003.
[23] A. Bookstein, S. Klein, and T. Raita. Modeling word occurrences for the compression of concordances. InProc.

IEEE Data Compression Conference, page 462, Mar. 1995.
[24] A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation algorithms for clustering problems in

high dimensional spaces. InACM Symposium on Theory of Computing, pages 435–444, July 1999.
[25] A. Bowyer. Computing Dirichlet tessellations.The Computer Journal, 24:162–166, 1981.
[26] E. Brisson. Representing geometric structures in d dimensions: Topology and order. InProc. ACM Symposium

on Computational Geometry, pages 218–227, 1989.
[27] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the web. InSixth Int’l. World Wide

Web Conference, pages 391–404, Cambridge, July 1997.
[28] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph

structure in the web.WWW9 / Computer Networks, 33(1–6):309–320, 2000.
[29] A. Brodnik and J. Munro. Membership in constant time andalmost-minimum space.SIAM Journal on Comput-

ing, 28(5):1627–1640, 1999.
[30] A. L. Buchsbaum, R. Sundar, and R. E. Tarjan. Data structural bootstrapping, linear path compression, and

catenable heap ordered double ended queues. InProc. 33rd IEEE Symp. on Foundations of Computer Science,
pages 40–49, 1992.

[31] S. Carlsson, C. Levcopoulos, and O. Petersson. Sublinear merging and natural merge sort. InProceedings of the
International Symposium on Algorithms SIGAL’90, pages 251–260, Tokyo, Japan, Aug. 1990.

[32] L. Carter and M. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences,
pages 143–154, 1979.

[33] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-associations. InPro-
ceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004.

[34] D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos, and G. Blelloch. NetMine: New mining tools for large
graphs. Inthe SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy.

[35] M. Chen, T. Chuang, and J. Wu. Efficient parallel implementations of 2D Delaunay triangulation with high
performance fortran. InProceedings of 10th SIAM Conference on Parallel Processingfor Scientific Computing,
2001.

[36] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure layout. InProceedings of the ACM
SIGPLAN 1999 conference on Programming language design andimplementation, pages 1–12, 1999.

[37] N. Chrisochoides and D. Nave. Simultaneous mesh generation and partitioning for Delaunay meshes. InPro-
ceedings of the Eighth International Meshing Roundtable, pages 55–66, 1999.

[38] N. Chrisochoides and D. Nave. Parallel Delaunay mesh generation kernel.International Journal for Numerical
Methods in Engineering, 58:161–176, 2003.

[39] N. Chrisochoides and F. Sukup. Task parallel implementation of the Bowyer-Watson algorithm. InProceed-
ings of the Fifth International Conference on Numerical Grid Generation in Computational Fluid Dynamic and
Related Fields, 1996.

[40] R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I. Lu. Compact encodings of planar graphs via canonical
orderings and multiple parentheses.Lecture Notes in Computer Science, 1443:118–129, 1998.

112

[41] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.Discrete &
Computational Geometry, 4(1):387–421, 1989.

[42] J. G. Cleary. Compact hash tables using bidirectional linear probing.IEEE Trans. Comput, 9:828–834, 1984.
[43] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized external-memory algorithms for

some geometric problems. InProc. ACM Symposium on Computational Geometry, pages 259–268, June 1998.
[44] M. Deering. Geometry compression. InProc. SIGGRAPH, pages 13–20, 1995.
[45] F. K. H. A. Dehne, D. Hutchinson, A. Maheshwari, and W. Dittrich. Reducing I/O complexity by simulating

coarse grained parallel algorithms. InProc. IPPS/SPDP, pages 14–20, 1999.
[46] Deo and Litow. A structural approach to graph compression. InMFCS Workshop on Communications, 1998.
[47] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic

perfect hashing: Upper and lower bounds.SIAM J. Comput., 23(4):738–761, 1994.
[48] D. Dobkin and M. Laszlo. Primitives for the manipulation of three-dimensional subdivisions.Algorithmica,

4(1):3–32, 1989.
[49] H. Edelsbrunner.Geometry and Topology of Mesh Generation. Cambridge Univ. Press, England, 2001.
[50] P. Elias. Universal codeword sets and representationsof the integers.IEEE Transactions on Information Theory,

IT-21(2):194–203, March 1975.
[51] D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis. Space efficient hash tables with worst case constant access

time. InSTACS, 2003.
[52] M. L. Fredman, J. Komlos, and E. Szemerdi. Storing a sparse table with 0(1) worst case access time.JACM,

31(3):538–544, 1984.
[53] P.-M. Gandoin and O. Devillers. Progressive and lossless compression of arbitrary simplicial complexes. In

Proc. SIGGRAPH, 2002.
[54] S. Golomb. Run-length encodings.IEEE Transactions on Information Theory, IT, 12:399–401, July 1966.
[55] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational geometry. InProc.

IEEE Symposium on Foundations of Computer Science, pages 714–723, Nov. 1993.
[56] Google. Google programming contest web data.http://www.google.com/programming-contest/ ,

2002.
[57] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string

matching. InFOCS, pages 397–406, 2000.
[58] X. Gu. Harvard graphics archive—mesh library.http://www.cs.deas.harvard.edu/˜xgu/mesh/ .
[59] L. Guibas and J. Stolfi. Primitives for the manipulationof general subdivisions and the computation of Voronoi

diagrams.ACM Transactions on Graphics, 4(2):74–123, 1985.
[60] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. InProc. 19th IEEE Symposium on

Foundations of Computer Science, pages 8–21, 1978.
[61] S. Gumhold and W. Strasser. Real time compression of triangle mesh connectivity. InProc. SIGGRAPH, pages

133–140, 1998.
[62] H. Han and C.-W. Tseng. A comparison of locality transformations for irregular codes. InProc. Languages,

Compilers, and Run-Time Systems for Scalable Computers, pages 70–84, 2000.
[63] J. Hardwick. Implementation and evaluation of an efficient parallel Delaunay triangulation algorithm. InPro-

ceedings of Ninth Annual Symposium on Parallel Algorithm and Architectures, 1997.
[64] X. He, M.-Y. Kao, and H.-I. Lu. Linear-time succinct encodings of planar graphs via canonical orderings.SIAM

J. on Discrete Mathematics, 12(3):317–325, 1999.
[65] X. He, M.-Y. Kao, and H.-I. Lu. A fast general methodology for information-theoretically optimal encodings of

graphs.SIAM J. Computing, 30(3):838–846, 2000.
[66] M. Isenburg and J. Snoeyink. Face fixer: Compressing polygon meshes with properties. InProc. SIGGRAPH,

pages 263–270, 2000.
[67] J. F. Antaki et. al. Sangria project.http://www.cs.cmu.edu/˜sangria , 2002.
[68] G. Jacobson. Space-efficient static trees and graphs. In 30th FOCS, pages 549–554, 1989.
[69] H. Kaplan and R. Tarjan. Purely functional representations of catenable sorted lists. InProc. of the 28th Annual

113

ACM Symposium on the Theory of Computing, pages 202–211, May 1996.
[70] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. InProc. SIGGRAPH, pages 279–286, 2000.
[71] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. Technical

Report TR 95-035, International Computer Science Institute, 1995.
[72] K. Keeler and J. Westbrook. Short encodings of planar graphs and maps.Discrete Applied Mathematics, 58:239–

252, 1995.
[73] L. Kettner. Using generic programming for designing a data structure for polyhedral surfaces.Computational

Geometry – Theory and Applications, 13:65–90, 1999.
[74] D. E. Knuth.Sorting and Searching, volume 3 ofThe Art of Computer Programming. Addison-Wesley Publish-

ing Company, Reading, MA, 1973.
[75] J. Kohout, I. Kolingerov, and J. Zara. Practically oriented parallel delaunay triangulation in E2 for computers

with shared memory.Computers and Graphics, 28:703–718, 2004.
[76] I. Kolingerova and J. Kohout. Optimistic parallel Delaunay triangulation.The Visual Computer, 18(8):511–5,

2002.
[77] S. Lee, C. Park, and C. Park. An improved parallel algorithm for delaunay triangulation on distributed memory

parallel computers.Parallel Processing Letters, 11:341–352, 2001.
[78] F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow prob-

lems, with applications to approximation algorithms. InFOCS, pages 422–431, 1988.
[79] P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-manifolds.International Jour-

nal of Computational Geometry and Applications, 4(3):275–324, 1994.
[80] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.SIAM Journal on Numerical Analysis,

16:346–358, 1979.
[81] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.SIAM J. Applied Mathematics, 36:177–189,

1979.
[82] H.-I. Lu. Linear-time compression of bounded-genus graphs into information-theoretically optimal number of

bits. InSODA, pages 223–224, 2002.
[83] S. McMains, J. M. Hellerstein, and C. H. Squin. Out-of-core build of a topological data structure from polygon

soup. InProc. Symposium on Solid Modeling and Applications, pages 171–182, June 2001.
[84] K. Mehlhorn and S. Naher.LEDA: A platform for Combinatorial and Geometric Computing. Cambridge Uni-

versity Press, 1999.
[85] G. L. Miller, S.-H. Teng, W. P. Thurston, and S. A. Vavasis. Separators for sphere-packings and nearest neighbor

graphs.Journal of the ACM, 44:1–29, 1997.
[86] A. Moffat, O. Petersson, and N. C. Wormald. A tree-basedmergesort.Acta Informatica, 35(9):775–793, 1998.
[87] A. Moffat and L. Stuiver. Exploiting clustering in inverted file compression. InProc. Data Compression Con-

ference, pages 82–91, Mar. 1996.
[88] A. Moffat and L. Stuiver. Binary interpolative coding for effective index compression.Information Retrieval,

3(1):25–47, July 2000.
[89] D. Muller and F. Preparata. Finding the intersection oftwo convex polyhedra.Theoretical Computer Science,

7:217–236, 1978.
[90] J. I. Munro. Tables. In16th FST & TCS, volume 1180 of LNCS, pages 37–42. Springer-Verlag, 1996.
[91] J. I. Munro and V. Raman. Succinct representation of balanced parentheses, static trees and planar graphs. In

38th FOCS, pages 118–126, 1997.
[92] M. Naor. Succinct representation for general unlabeled graphs. Discrete Applied Mathematics, 28:303–308,

1990.
[93] T. Okusanya and J. Peraire. 3D parallel unstructured mesh generation.AMD, 220:109–115, 1997.
[94] OpenMP.http://www.openmp.org/ .
[95] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the web.

Technical report, Stanford Digital Library Technologies Project, 1998.
[96] R. Pagh. Low redundancy in static dictionaries with constant query time. Siam Journal of Computing,

114

31(2):353–363, 2001.
[97] R. Pagh and F. F. Rodler. Cuckoo hashing. InESA, 2001.
[98] R. Pajarola, J. Rossignac, and A. Szymczak. Implant sprays: Compression of progressive tetrahedral mesh

connectivity. InProc. Visualization 99, pages 299–306, 1999.
[99] S. Papadomanolakis, A. Ailamaki, J. C. Lopez, T. Tu, D. R. O’Hallaron, and G. Heber. Efficient query processing

on unstructured tetrahedral meshes, 2006.
[100] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. InWorkshop on Algorithms and Data

Structures, pages 437–449, 1989.
[101] rachel.psc.edu . http://http://www.psc.edu/machines/marvel/rachel.ht ml/ .
[102] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to encoding k-ary trees

and multisets. InSODA, 2002.
[103] R. Raman and S. S. Rao. Succinct dynamic dictionaries and trees. InICALP, pages 357–36, 2003.
[104] A. L. Rosenberg and L. S. Heath.Graph Separators, with Applications. Kluwer Academic/Plenum Publishers,

2001.
[105] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes.IEEE Transactions on Visualization

and Computer Graphics, 5(1):47–61, /1999.
[106] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.J. Algorithms,

18(3):548–585, 1993.
[107] SCAN project. Internet maps.http://www.isi.edu/ scan/mercator/maps.html , 2000.
[108] R. Seidel and C. R. Aragon. Randomized search trees.Algorithmica, 16(4/5):464–497, 1996.
[109] J. Shewchuk. Pyramid mesh generator software. (http://www.cs.berkeley.edu/˜jrs/). Personal

Communication.
[110] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. InProc. First

Workshop on Applied Computational Geometry, pages 124–133, Philadelphia, PA, May 1996.
[111] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates.Discrete

and Computational Geometry, 18(3):305–368, 1997.
[112] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(8):888–905, 2000.
[113] W.-Y. Shieh, T.-F. Chen, J. J.-J. Shann, and C.-P. Chung. Inverted file compression through document identifier

reassignment.Inf. Process. Manage., 39(1):117–131, 2003.
[114] I. Silicon Graphics. The C++ standard template library. http://www.sgi.com/tech/stl/index.html .
[115] F. Silvestri, R. Perego, and S. Orlando. Assigning document identifiers to enhance compressibility of web

search engines indexes. InSAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, pages
600–605, New York, NY, USA, 2004. ACM Press.

[116] H. D. Simon. Partitioning of unstructured problems for parallel processing.Computing Systems in Engineering,
2:135–148, 1991.

[117] J. Sperling. Development and maintenance of the TIGERdatabase: Experiences in spatial data sharing at the
U.S. Bureau of the Census. InSharing Geographic Information, pages 377–396, 1995.

[118] A. Strehl and J. Ghosh. A scalable approach to balanced, high-dimensional clustering of market-baskets. In
HiPC ’00: Proceedings of the 7th International Conference on High Performance Computing, pages 525–536,
London, UK, 2000. Springer-Verlag.

[119] T. Suel and J. Yuan. Compressing the graph structure ofthe web. InData Compression Conference (DCC),
pages 213–222, 2001.

[120] A. Szymczaka and J. Rossignac. Grow & Fold: compressing the connectivity of tetrahedral meshes.Computer-
Aided Design, 32:527–537, 2000.

[121] G. Taubin and J. Rossignac. Geometric compression through topological surgery.ACM Transactions on Graph-
ics, 17(2):84–115, 1998.

[122] S. Toledo. Improving the memory-system performance of sparse-matrix vector multiplication.IBM Journal of
Research and Development, 41(6):711–726, 1997.

115

[123] T. Tu and D. R. O’Hallaron. A computational database system for generating unstructured hexahedral meshes
with billions of elements. InProceedings of SC2004, 2004.

[124] T. Tu, D. R. O’Hallaron, and J. C. Lopez. ETREE - a database-oriented method for generating large octree
meshes. InProc. International Meshing Roundtable, pages 127–138, Sept. 2002.

[125] G. Turán. Succinct representations of graphs.Discrete Applied Mathematics, 8:289–294, 1984.
[126] J. D. Ullman.Computational Aspects of VLSI. Computer Science Press, Rockville, MD, 1984.
[127] U.S. Census Bureau. UA Census 2000 TIGER/Line file download page. http://www.census.gov/

geo/www/tiger/tigerua/ua_tgr2k.html , 2000.
[128] J. S. Vitter. External memory algorithms and data structures: dealing with massive data.ACM Computing

Surveys, 33(2):209–271, June 2001.
[129] E. Voorhees and e. D.K. Harman. Overview of the eighth text retrieval conference (TREC-8). InProceedings

of the Eighth Text REtrieval Conference (TREC-8), pages 1–24, 1999.
[130] C. Walshaw. Graph partitioning archive.http://www.gre.ac.uk/˜c.walshaw/partition/ ,2002.
[131] D. F. Watson. Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes.The

Computer Journal, 24:167–172, 1981.
[132] D. Watts and S. Strogatz. Collective dynamics of small-world networks.Nature, 363:202–204, 1998.
[133] K. Weiler. Edge based data structures for solid modeling in a curved surface environment.IEEE Computer

Graphics and Applications, 5(1):21–40, Jan. 1985.
[134] K. Weiler. The radial edge structure: A topological representation for non-manifold geometric boundary mod-

eling. InGeometric Modeling for CAD Applications, pages 3–36. North-Holland, 1988.
[135] D. Wishart. Efficient hierarchical cluster analysis for data mining and knowledge discovery.Computer Science

and Statistics, 30:257–263, July 1998.
[136] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing Documents and

Images (Second Edition). Morgan Kaufmann Publishing, San Francisco, 1999.

116

