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Abstract

In recent years, Bayesian networks have become highly successful tool for diagnosis, analysis, and decision
making in real-world domains. We present an e�cient algorithm for learning Bayesian networks from data.
Our approach constructs Bayesian networks by �rst identifying each node's Markov blankets, then connecting
nodes in a consistent way. In contrast to the majority of work, which typically uses hill-climbing approaches
that may produce dense nets and incorrect structure, our approach typically yields consistent structure and
compact networks by heeding independencies in the data. Compact networks facilitate fast inference and are
also easier to understand. We prove that under mild assumptions, our approach requires time polynomial in
the size of the data and the number of nodes. A Monte Carlo variant, also presented here, is more robust
and yields comparable results at much higher speeds.
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1 Introduction

A great number of scienti�c �elds today bene�t from being able to automatically estimate the probability
of certain quantities of interest that may be di�cult or expensive to observe directly. For example, a doctor
may be interested in estimating the probability of heart disease from indications of high blood pressure and
other directly measurable quantities. A computer vision system may bene�t from a probability distribution
of buildings based on indicators of horizontal and vertical straight lines. Probability densities proliferate the
sciences today and advances in its estimation are likely to have a wide impact on many di�erent �elds.

Bayesian networks are a succinct and e�cient way to represent a joint probability distribution among a set
of variables. As such, they have been applied to �elds such as those mentioned [HC91, Ago90]. Besides their
ability for density estimation, their semantics lend them to what is sometimes loosely referred to as causal
discovery, namely directional relationships among quantities involved. It has been widely accepted that the
most parsimonious representation for a Bayesian net is one that closely represents the causal independence
relationships that may exist. For these reasons, there has been great interest in automatically inducing the
structure of Bayesian nets automatically from data, preferably also preserving the independence relationships
in the process.

Two research approaches have emerged. The �rst employs independence properties of the underlying network
that produced the data in order to discover parts of its structure. This approach is mainly exempli�ed by
the SGS and PC algorithms [SGS93] as well as for restricted classes such as trees [CL68] and polytrees
[RP89]. The second approach is concerned more with data prediction, disregarding independencies in the
data. It is typically identi�ed with a hill-climbing or best-�rst beam search in the space of possible structures,
employing data likelihood as a scoring function. The result is a local maximum likelihood network structure
for representing the data, and is one of the more popular techniques used today.

This paper presents an approach that belongs in the �rst category. It addresses the two main shortcomings
of the prior work which, we believe, are preventing its use from becoming more widespread. These two
disadvantages are: exponential execution times, and proneness to errors in dependence tests used. The
former problem is addressed in this paper in two ways. One is by identifying the local neighborhood of each
variable in the Bayesian net as a preprocessing step, in order to facilitate the recovery of the local structure
around each variable in polynomial time under the assumption of bounded neighborhood size. The Monte
Carlo version of the algorithm goes one step further, employing a constant number of randomized tests in
order to ascertain the same result with high probability. The second disadvantage of this research approach,
namely proneness to errors, is also addressed by the randomized version, by using multiple data sets (if
available) and Bayesian accumulation of evidence.

2 Preliminaries

In the following, regular variables are in capitals while capital bold-faced letters indicate sets. V is the
set of variables under consideration, which coincides with the set of nodes in the corresponding Bayesian
net. The set of edges is denoted by E. Letters n and m denote the set sizes jVj and jEj, respectively.
All variables are assumed to be visible (i.e. observable). The notation X $S Y denotes that variables X
and Y are dependent upon conditioning on the variables in the set S, while X 6$S Y indicates conditional
independence.

In the following, we also assume that the reader is familiar with the concept of d-separation in the Bayesian
net framework. For a description of this, see [Pea88].
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Figure 1: Example of a Markov blanket of variable X. The members of the blanket are shown shaded.

1. S ;.

2. While 9Y 2 V � fXg such that Y $S X, do S S [ fY g. [Growing phase]

3. While 9Y 2 S such that Y 6$S�fY g X, do S S� fY g. [Shrinking phase]

4. B(X) S.

Table 1: The Markov Blanket Algorithm.

3 The Grow-Shrink Markov Blanket Algorithm

The concept of the Markov blanket of a variable or a set of variables is central to this paper. The idea itself
is not new (for example, see [Pea88]). It is surprising, however, how little attention it has attracted in the
context of Bayesian net structure learning for all its being a fundamental property of a Bayesian net. The
de�nition of a Markov blanket is as follows: for any variable X 2 V, the Markov blanket BL(X) � V is any
set of variables such that for any Y 2 V�BL(X)�fXg, X 6$BL(X) Y . In other words, BL(X) completely
shields variable X from any other variable outside BL(X) [ fXg. The notion of a minimal Markov blanket,
called a Markov boundary, is also introduced in [Pea88] and its uniqueness shown under certain conditions.
The Markov boundary is not unique in certain pathological situations, such as the equality of two variables.
In our following discussion we will assume that the conditions necessary for its existence and uniqueness
are satis�ed and we will identify the Markov blanket with the Markov boundary, using the notation B(X)
for the blanket of variable X from now on. It is also illuminating to mention that, in the Bayesian net
framework, the Markov blanket of a node X is easily identi�able from the graph: it consists of all parents,
children and parents of children of X. An example Markov blanket is shown in Fig. 1. Note that any of the
blanket nodes, say Y , is dependent with X given B(X) � fY g.

In Table 1 we present an algorithm for the recovery of the Markov blanket of X based on pairwise indepen-
dence tests. It consists of two phases, a growing and a shrinking one. The growing phase adds variables to
a growing set S as long as they are dependent with X given the current contents of S. The idea behind
this is simple: as long as the Markov blanket property of X is violated (i.e. there exists a variable in V
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that is dependent on X), we add it to the current set S until there are no more such variables. In this
process however, there may be some variables that were added to S that were really outside the blanket.
Such variables are those that have been rendered independent from X at a later point when \intermediate"
nodes of the underlying Bayesian net were added to S. This observation motivates the shrinking phase,
which identi�es and removes these variables.

Below we prove the correctness of the algorithm and present a timing analysis. By \correctness" we mean
the property of the algorithm to produce the correct (original) Bayesian net if all independence tests done
during its course are assumed to be correct. A related issue is stability, which investigates the e�ect (small
or large) of errors in those tests to the resulting net structure.

Proof of correctness

We assume that all dependence tests are correct in the following proof.

There does not exist any variable Y 2 B(X) at the end of the growing phase that is not in S. The proof
is by contradiction: take Y 2 V such that Y 2 B(X) but Y =2 S. Then either Y is a direct neighbor of X
(direct ancestor or direct descendant), or it is a direct ancestor of a direct descendant of X. In the former
case Y $T X for any T � V. Therefore necessarily Y 2 S at the end of the growing phase. In the latter
case, either the common child of X and Y , say Z, is in S or is not. If Z 2 S then Y must also be in S,
since X $S Y . If Z =2 S then we have a contradiction by the same argument as above since Z is a direct
descendant of X.

For the shrinking phase, we have to prove two things: that we never remove any variable Y from S if
Y 2 B(X); and that all variables W =2 B(X) are removed.

For the former, suppose Y is the �rst variable in B(X) that we are attempting to remove. Then Y is either
a direct neighbor of X or the direct ancestor of a direct descendant of X, say Z. In the former case, since
Y $T X for any T � V, Y cannot be removed, leading to a contradiction. In the latter case, since Y is
the �rst variable in B(X) to be removed, then Z must be in S and therefore, since Y $S X, Y cannot be
removed.

Finally we need to show that there is no variable W in S at the end of the thinning phase such that
W =2 B(X). Suppose the opposite. Then since B(X) � S as shown above, then W 6$S X, and W will
necessarily be removed by the algorithm during this phase.

Timing Analysis

Each dependence test takes O(n jDj) time, where D is the set of examples input to the algorithm. We make
the assumption that combinations of variable values that do not appear in the data are improbable and their
probability is approximated by 0 in the absence of other information. This assumption makes the test linear
in the number of examples (and not exponential in the number of variables as would be the case if examples
existed for all possible value combinations of V). Each dependence test uses O(jDj) space at worst to store
the counters for each variable value combination of the conditioning set that appears in the data.

Frequently the number of dependence tests is reported as a measure of the performance of Bayesian net
reconstruction algorithms, e.g. [SGS93, CBL97]. To determine the number of tests in this algorithm, we
assume that the loops in steps 2 and 3 go through eligible variables in an unspeci�ed but �xed order. In step
2, one complete pass through all variables will add at least the parents and children of X. A second pass
will add all parents of all children of X, thus including all members of B(X). A possible third pass will not
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add any other members and step 2 will terminate. Thus, step 2 conducts O(n) tests at worst. In step 3, a
single pass through the variables in S will remove all members not in B(X) since S already contains B(X).

Therefore the entire algorithm is O(n) in the number of dependence tests.

Discussion

Although the algorithm is already e�cient, it may bene�t from certain optimizations. One may attempt to
use a heuristic in order to add all members of B(X) in the �rst pass of step 2, thus eliminating one of the
two remaining passes. Using mutual information in the choice of the next variable to examine in step 2,
for example, may help improve the performance of the algorithm. The idea is to try to add to S �rst these
variables for which the mutual information with X is highest. Unfortunately no guarantees can be made
of completely eliminating a pass this way because of certain cases where the highest mutual information
variables are not members of the blanket. These cases are admittedly not very common.

An opportunity for computational amortization follows from the (easily proven) fact that Y 2 B(X) ,
X 2 B(Y ): Using this property, if we are interested in more than one variable's blanket and we obtain them
in a sequential manner (as in the GS algorithm described below), we can initialize a variable's blanket, say
X, with those variables Y for which we have computed the blanket in previous steps, by checking that they
already include X in their blankets.

4 Grow-Shrink (GS) Algorithm for Bayesian Net Induction

The recovery of the local structure around each node is greatly facilitated by the knowledge of the nodes'
Markov blankets. What would normally be a daunting task of employing dependence tests conditioned on
an exponential number of subsets of large sets of variables|even though most of their members may be
irrelevant|can now be focused on the Markov blankets of the nodes involved, making structure discovery
much faster and more reliable. We present below the plain version of the GS algorithm that utilizes blanket
information for inducing the structure of a Bayesian net. At a later point of this paper, we will present a
robust, randomized version that has the potential of being faster and more reliable, as well as being able to
operate in an \anytime" manner.

In the following N(X) represents the direct neighbors of X:

1. [ Compute Markov Blankets ]

For all X 2 V; compute the Markov blanket B(X):

2. [ Compute Graph Structure ]

For all X 2 V and Y 2 B(X), determine Y to be a direct neighbor of X if X and Y are dependent
given S for all S � T, where T is the smaller of B(X) � fY g and B(Y )� fXg.

3. [ Orient Edges ]

For all X 2 V and Y 2N(X), orient Y ! X if there exists a variable Z 2 N(X) �N(Y )� fY g such
that Y and Z are dependent given S [ fXg for all S � U, where U is the smaller of B(Y ) � fX;Zg
and B(Z) � fX;Y g.

4. [ Remove Cycles ]

Do the following while there exist cycles in the graph:
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� Compute the set of edges C = fX ! Y such that X ! Y is part of a cycleg.

� Remove from the current graph the edge in C that is part of the greatest number of cycles, and
put it in R.

5. [ Reverse Edges ]

Insert each edge from R in the graph, reversed.

6. [ Propagate Directions ]

For all X 2 V and Y 2 N(X) such that neither Y ! X nor X ! Y , execute the following rule until
it no longer applies: If there exists a directed path from X to Y , orient X ! Y .

In the algorithm description above, step 2 determines which of the members of the blanket of each node are
actually direct neighbors (parents and children). The way it does that is by a series of dependence tests
between X and Y conditioned on all subsets of the smaller of B(X) � fY g and B(Y ) � fXg. Assuming,
without loss of generality, that B(X)�fY g is the smaller set, if any of these tests are successful in separating
(rendering independent) X from Y , the algorithmdetermines that there is no direct connection between them.
That would happen when the conditioning set S includes all parents of X and no common children of X
and Y . It is interesting to note the two motivations behind selecting the smaller set to condition on: the
�rst, of course, is speed, but the second stems from reliability; a conditioning set S causes the data set to
be split into 2jSj partitions, so smaller conditioning sets cause the data set to be split into larger partitions
and make dependence tests more reliable.

Step 3 of the algorithm exploits the fact that two variables that have a commondescendant become dependent
when conditioning on a set that includes any such descendant. Since the direct neighbors of X and Y are
known from step 2, we can determine whether a direct neighbor Y is a parent of X if there exists another
node Z (which would also be a parent) such that any attempt to separate Y and Z by conditioning on a
subset of the blanket of Y that includes X, fails (assuming here that B(Y ) is smaller than B(Z)). If the
directionality is indeed Y ! X  Z, there should be no such subset since, by conditioning on X, there
exists a permanent dependency path between Y and Z. This would not be the case if Y were a child of X.

It is possible that an edge direction will be wrongly determined during step 3 due to non-representative
or noisy data. This may lead to directed cycles in the resulting graph, which are illegal. It is therefore
necessary to remove those cycles by identifying the minimum set of edges than need to be reversed for all
cycles to disappear. This problem is closely related to the Minimum Feedback Arc Set problem (MFAS ),
which is concerned with identifying a minimum set of edges that need to be removed from a graph that
possibly contains directed cycles, in order for all such cycles to disappear. Here instead of removing those
edges we want to reverse them. Unfortunately, the MFAS problem is NP-complete in its generality [J�85]
and the weighted edges instance as it applies here is also NP-complete (see theorem in Appendix B). In the
algorithm above we introduce a heuristic for its solution that is based on the number of cycles that an edge
that is part of a cycle is involved in.

Not all edge directions can be determined during the last two steps. For example, nodes with a single parent
or multi-parent nodes (called colliders) whose parents are directly connected do not apply to step 3, and
steps 4 and 5 are only concerned with already directed edges. Step 6 attempts to ameliorate that. This is
done through orienting edges in a way that does not introduce a cycle, if the reverse direction necessarily
does. It is not obvious that, for example, if the direction X ! Y produces a cycle in an otherwise acyclic
graph, the opposite direction Y ! X will not also be involved in some other cycle. However, this is the case.
The proof of this is simple is presented below in the proof of correctness.
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Proof of correctness

The proof is straightforward. To show that the Bayesian net resulting from the above procedure is equivalent
to the original one by which the data was created, we need to show two things:

1. All nodes in the resulting net have the same neighbors as the original Bayesian net, and

2. All colliders in the resulting net have the same parents as the original net.

These requirements stem from a theorem (see [VP90]) that states that two Bayesian nets are equivalent if
and only if each node has the same neighbors and the two nets have the same \V-structures," i.e. colliders
with the same parents (and, by requirement 1, the same children as well).

In the following proof of correctness of step 2, we assume that jB(X)j � jB(Y )j, without loss of generality.
Thus tests will involve conditioning on all subsets of B(X) � fY g. To show that the net resulting from the
above algorithm satis�es the �rst requirement, we observe that any two nodes X and Y in the original net
that are directly connected remain dependent upon conditioning on any set S � B(X) � fY g. Therefore
all tests of step 2 will be positive and the algorithm will (correctly) include Y in N(X). In the case that
X is not directly connected to Y , that means that Y is the parent of a number of children of X, say set T,
since it is a member of B(X). Therefore conditioning on a set that includes all parents of X and excludes
T would block all paths from X to Y .

The proof of the second requirement is similar. The only di�erence is that instead of direct connectedness of
two direct neighbors of X, say Y and Z, we are trying to ascertain connectedness through conditioning on
any subset of B(Y ) that necessarily includes X (without loss of generality we assume that jB(Y )j � jB(Z)j).
If Y and Z are both parents of X, they would be dependent upon conditioning on any such set via the open
path through X. If Y is a child of X, then conditioning on X blocks one of the paths to Z, and any other
paths to Z are blocked by conditioning on the remaining parents of Y .

If the tests in step 3 are correct, step 4 will not attempt to eliminate any cycles. Otherwise it will remove
a number of edges until there are no remaining remaining cycles. These edges can then be added in reverse
direction without introducing cycles. The correctness of this relies on the same observation that that the
last step does. We need to show that the incremental addition of edges for which the reverse direction
necessarily imposes a cycle in the graph, does not itself introduce any cycles. The proof is by contradiction.
The original graph, as the result of step 4, is acyclic. Assume that both X ! Y and Y ! X will produce a
cycle when added to the set of edges (each individually) in an otherwise acyclic graph. Assume that adding
X ! Y will create cycle X ! Y ! A1 ! A2 ! � � � ! Al ! X and adding Y ! X will create cycle
Y ! X ! B1 ! B2 ! � � � ! Bk ! Y; as shown in the �gure below.

Y

X

B1

B2

B
k-1

A
l-1

Al

A1

A2

Bk

However, that arrangement necessarily implies that the original graph already contained a cycle, namely
X ! B1 ! � � � ! Bk ! Y ! A1 ! � � � ! Al ! X, which is a contradiction. Therefore exactly one
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of X ! Y and Y ! X can be added to the graph without introducing a cycle and the next iteration still
satis�es the inductive assumption that the graph is acyclic.

As mentioned above, the same argument may be used to show the correctness of the last step.

Timing Analysis

Step 1 involves O(n2) conditional independence (CI) tests. If b = maxX (jB(X)j), step 2 does O(nb2b) CI
tests. At worst b = O(n); implying that the set of examples D was produced by a dense original Bayesian
net. If we know that the upwards branching factor is less than or equal to u and the downwards branching
factor less than equal to d; then b � u+ d+ du, which is a constant. Step 3 does O(nb22b) CI tests, and the
exponential factor may be limited similarly in the presence of branching factor information. Steps 4 and 5
do not do any independence tests. Checking for the existence of cycles in step 4 takes O(m(n+m)) time by
employing a standard depth-�rst traversal of the graph for each existing edge. Step 5 is O(m) in time. The
last step can be implemented in a straightforward manner in O(nb(n+m)) time using depth-�rst traversal,
which does not a�ect the asymptotic time of the algorithm.

The total number of CI tests for the entire algorithm is therefore O(n2 + nb22b) or O(m2 + nmb + (n3 +
n2b22b) jDj) time. Under the assumption that b is bounded by a constant, this algorithm is O(n2) in the
number of CI tests or O(m2 + n3 jDj) time.

Discussion

The main advantage of the algorithm comes through the use of Markov blankets to restrict the size of the
conditioning sets. The Markov blankets may be incorrect. The most likely potential error is to include too
many nodes for reasons that are explained below. This emphasizes the importance of the \direct neighbors"
step (step 2) which removes nodes that were incorrectly added during the Markov blanket computation step
due to conditioning on large set of variables. The problem is the following: conditioning on n binary variables
requires in 2n dependency tests. Each such test compares two histograms, the histogram representing the
probability distribution of binary variable X given the conditioning set S and the histogram representing
the distribution of X given S [ fY g. The two variables X and Y are pronounced dependent if for any of
the 2jSj+1 con�gurations of the set S[fY g, the corresponding histograms are \di�erent enough." However,
given a limited number of samples, if we are using the same set of samples for all tests, the probability that
one of these tests will be positive and Y will be added to the blanket of X even if the two variables are not
really dependent is increasing rapidly with increasing conditioning set size jS [ fY gj. The \direct neighbors"
step, which does a number of dependence tests between X and Y and declares them direct neighbors only if
all these tests have high con�dence, helps identify and correct these potential errors in the preceding Markov
blanket phase.

5 Randomized Version of the GS Algorithm

The GS algorithm presented above is appropriate for situations where the maximum size of the Markov
blanket of each variable under consideration is su�ciently small, since it depends on it through an exponential
factor. While it is reasonable to assume that in many real-life problems this may be the case, certain ones,
such as Bayesian image retrieval in computer vision, may employ �ner representations. In these cases the
variables used may depend in a direct manner on many others. For example, one may choose to use variables
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to characterize local texture in di�erent parts of an image. If the resolution of the mapping from textures to
variables is increasingly �ne, direct dependencies among those variables may be plentiful, suggesting a dense
underlying net. In these cases it may be prohibitively expensive to employ the exponential number of tests
such as those done in the plain GS algorithm.

Another problem of the GS algorithm presented above, and one that has plagued independence-test based
algorithms for Bayesian net structure induction in general, is that their decisions are based on a single or a
few tests, making them prone to errors due to possible noise in the data. It would therefore be advantageous
to allow multiple tests to inuence a decision before determining the existence of an edge or its direction in
the resulting net.

The following version of the GS algorithm addresses these two problems. First, by executing a �xed number
of tests during the determination of the existence of an edge, using conditioning sets randomly drawn from the
smallest of the two blankets, the time allocated to each edge may be �nely controlled so that the algorithm is
able to execute even for problems for which blanket sizes are large. An additional advantage of the approach
is that it is now able to operate in an \anytime" manner, which is useful in real-time applications such as
robot vision. Second, using Bayesian evidence accumulation, each structural decision depends only partly
on the outcome of each single test (although the tests have to be appropriately weighted|see the discussion
below).

This version of the algorithm is presented below. The algorithm computes the posterior probabilities that
certain variables X and Y are direct neighbors and whether a possible link between them is directed as
Y ! X or X ! Y after seeing a set of N data sets (denoted here as a vector of data sets)

�!
� N , that are

assumed to be independently drawn. Each data set �i; i = 1; : : : ; N contains a number of examples.

1. [ Compute Markov Blankets ] (same as plain GS)
For all X 2 V; compute the Markov blanket B(X):

2. [ Compute Graph Structure ]

For each X 2 V and Y 2 B(X) do:

� Set p 1
2 .

� Set T to be the smaller of B(X) � fY g and B(Y ) � fXg.

� Let G � G(X;Y ) = 1� (12 )
jTj.

� For each data set �i, i = 1; : : : ; N , execute the following:

{ Set S to be a randomly chosen subset of T.

{ Compute d = P (X $S Y j �i).

{ Update the posterior probability p using the recursive formula

p 
pd

pd+ (1� p)(G+ 1� d)

� Set P (Y 2N(X)) = P (X 2N(Y )) = p.

� Assign Y to be a member of N(X) and X to be in N(Y ) if and only if p > 1
2 .

3. [ Orient Edges ]

For each X 2 V, Y 2N(X) do:

� Set Q 1
2 .
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� Do for each Z 2N(X) �N(Y ) � fY g:

{ Set q  1
2 .

{ Set U to be the smaller of B(Y )� fX;Zg and B(Z)� fX;Y g.

{ Let G � G(Y; Z) = 1� (12 )
jUj.

{ For each data set �i, i = 1; : : : ; N , execute the following loop:

� Set S to be a randomly chosen subset of U.

� Compute d = P (Y $S[fXg Z j �i).

� Update the posterior probability q using the recursive formula

q 
qd

qd+ (1� q)(G + 1� d)

{ Update Q Q(1�q)
Q(1�q)+(1�Q)(1�G+q) .

� Set P (Y ! X) = 1� Q.

For each X 2 V, Y 2N(X) do:

� Assign direction Y ! X if P (Y ! X) > P (X ! Y ).

� Assign direction X ! Y if P (Y ! X) < P (X ! Y ).

� Else assign the direction between X and Y randomly.

4. [ Remove Cycles ]

Do the following while there exist cycles in the graph:

� Compute the set of edges C = fX ! Y such that X ! Y is part of a cycleg.

� Remove the edge X ! Y in C that such that P (X 2 N(Y ))P (X ! Y ) is minimum and put it
in R.

5. [ Reverse Edges ] (same as plain GS)
Insert each edge from R in the graph, reversed.

6. [ Propagate Directions ] (same as plain GS)
For all X 2 V and Y 2 N(X) such that neither Y ! X nor X ! Y , execute the following rule until
it no longer applies: If there exists a directed path from X to Y , orient X ! Y .

The derivations for the formula used above to compute the posterior probabilities is presented in the ap-
pendix. The same formula is used in two places in the algorithm, in updating the posterior probability of
the existence of an edge and also for the corresponding probability on the direction of those edges that were
determined to be present. The use of the parameter G, which acts to weigh each test, marks its di�erence
from straightforward posterior application of formulas such as those found in [Pea88]. G roughly charac-
terizes the connectivity of a node in terms of the size of its blanket, ranging from 0 (blanket size 1) to 1
(blanket size very large, tending to in�nity). We can intuitively see its inuence on the posterior probability
by examining limiting cases for the parameters occurring in the formula, which is repeated below for the
reader's convenience:

p 
pd

pd+ (1� p)(G+ 1� d)
:
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We will examine the application of the formula to the existence of a direct link between two nodes X and Y .
The application of the formula to the directionality of a link is similar. For simplicity we will assume that
X has the smaller blanket of the two nodes, and therefore G is computed using jB(X)j. We �rst look at the
case when the dependence test d = P (X $S Y j �i) = 0. In this case, the posterior probability p becomes 0,
as expected, since the hypothesis of a direct link between X and Y cannot possibly support this evidence.
In the case that d = 1, the above formula becomes

p 
p

p+ (1� p)G
:

We look at two limiting cases for G. If G = 0 (i.e. B(X) = fY g), p becomes 1. This is reasonable since
the high con�dence of the dependence between X and Y combined with the absence of any other node in
the blanket of X constitutes a direct indication of an edge between the two nodes. In case G = 1 (i.e.
jB(X)j ! 1), a test indicating the dependence of X and Y conditioned on a random subset of B(X) is
very weak evidence of a link between them, since the likelihood that a common ancestor will be absent or a
common descendant will be present in the conditioning set (note that X is in B(Y ) and vice versa) is high,
and that would explain the evidence without the necessity of a link between the two nodes. Accordingly,
the value of p does not change in this case.

The formulas in step 3 (Orient Edges) are seemingly complicated but they follow the same rationale. The
quantity q that is computed in the loop is the probability that Y and Z; both direct neighbors of X; are
dependent conditioned on a subset that contains X: However, the determination of whether Y ! X or
Y  X is an OR over all other direct neighbors Z. Our iterative formula that is based on multiple tests
computes the probability that all tests are true i.e. an AND of tests. Therefore we have to use DeMorgan's
law to convert the OR of tests into an AND of the negations of these tests. From this observation it is easy
to that Q computes the posterior probability that Y 6! X:

Finally, as a general note, we observe that the robustness of this version of the algorithm is at least as great
as the one of the plain GS algorithm, given the same number of tests. The additional robustness comes from
the use of multiple weighted tests, leaving for the end the \hard" decisions that involve a threshold (i.e.
comparing the posterior probability with a threshold, which in our case is 1

2 ).

6 Experimental Results

In this section we present results that demonstrate two main points. First, that both the plain and ran-
domized GS algorithms perform signi�cantly better than hill-climbing approaches in terms of the number of
neighborhood and directionality errors, while maintaining a similar level of KL-divergence with respect to
the original Bayesian nets from which the input data are drawn. And second, that the randomized version
can execute much faster in cases of large neighborhood sized networks while maintaining good error rates
compared to the plain GS algorithm.

Strictly speaking, the assumption made above and one that is used in the derivation of the formulas in the
randomized version of the algorithm is that a new, independently drawn set of examples �i should be used
with each dependence test conducted. However, given that data is frequently expensive and/or scarce, in
our experiments we use the same data in all tests, in order to demonstrate the performance of the algorithm
under these adverse, but more realistic conditions. In the case that data is plentiful, the procedure would
split the dataset into subsets of examples randomly, and use one subset for each dependence test.

Throughout the algorithms presented in this paper we employ standard chi-square (�2) conditional depen-

dence tests (as is done also in [SGS93]) in order to compare the histograms bP (X) and bP (X j Y ). The �2
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test gives us the probability of error of assuming that the two variables are dependent when in fact they
are not (type II error of a dependence test), from which we can easily derive the probability that X and Y
are dependent. There is an implicit threshold � involved in each dependence test, indicating how certain
we wish to be about the correctness of the test without unduly rejecting dependent pairs, something that is
always possible in reality due to the presence of noise. In our experiments we used 95% con�dence tests, i.e.
� = 0:95.

Reconstruction of an example network using di�erent techniques is shown in Fig. 2.

We test the e�ectiveness of the algorithms through the following procedure: we generate a random rectangular
net of speci�ed dimensions and up/down branching factor. A number of examples are drawn from that net
using logic sampling [Hen88] and are used as input to the algorithm under test. The resulting nets can
be compared with the original ones along dimensions of KL-divergence and percent di�erence in edges and
edge directionality. The de�nition of di�erence in the number of edges that is used is the number of edges
which are not present or are extraneous in the induced net (as compared to the original one) divided by the
total number of edges of the original network. This e�ectively uses a \Hamming distance" between the two
nets, where a bit indicates the presence or absence of an edge from all possible edges. The di�erence in the
directionality between the two nets is de�ned as the fraction of edges in the induced network that have the
correct directionality among those whose presence was correctly determined.

Fig. 3 shows the KL-divergence between the original and the reconstructed net as well as edge omissions/false
additions/reversals as a function of number of samples used. 100 runs (Bayesian networks) were used for each
data point. The �gure demonstrates two main �ndings. First, that typical KL-divergences for both GS and
the hill-climbing algorithm using the BIC criterion are similar and low, which shows good performance for
applications where prediction is of prime concern. Second, the number of incorrect edges and the errors in the
directionality of the edges present is much higher for the hill-climbing algorithms, making them unsuitable
for accurate Bayesian net reconstruction. This may be of concern to certain applications (e.g. Data Mining).
We also note that the KL-divergence of the randomized GS algorithm is the worst, it is still low and we
expect that to become gradually lower as the number of randomized tests increases. As far as the number
of edge and directionality errors it performs better than both hillclimbing algorithms.

Fig. 4 shows the e�ects of increasing the Markov blanket through an increasing branching factor. As expected,
we see a dramatic (exponential) increase in execution time of the plain GS algorithm, though only a mild
increase of the randomized version. The latter uses 100 conditional tests per decision, and its execution time
increase is attributed to the (quadratic) increase in the number of decisions. Note that the edge percentages
between the plain and the randomized version remain relatively close. The number of direction errors for the
GS algorithm actually decreases due to the larger number of parents for each node (more \V" structures),
which allows a greater number of opportunities to recover the directionality of an edge (using an increased
number of tests).

7 Discussion and Related Work

Structural induction for Bayesian networks has been successful in restricted classes of graphs, such as trees
and polytrees (trees with possibly multi-parent nodes). Optimal reconstruction of a Bayesian tree was shown
by Chow and Liu [CL68]. Polytree reconstruction via a straightforward addition to the Chow-Liu method
is presented in [RP89]. There are not many algorithms in the literature for general Bayesian net induction
using independence tests. Two notable ones are the SGS and the PC algorithm, both presented in [SGS93]1.

1Steps that ensure that the resulting net will be legal (i.e. not contain any directed cycles) similar to steps 4 and 5 of the
GSBN algorithm are not present in either the SGS or the PC algorithms, since they are unneccessary due to their assumption
of perfect independence tests.
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Figure 2: An example reconstruction of a Bayesian network of 18 nodes and 25 edges by di�erent structure
induction techniques, from 15000 samples drawn from the distribution represented by the original network
using logic sampling. The plain GS network contains a single directionality error and no neighborhood errors
while the output of the randomized version (using 200 tests per decision) contains one neighborhood and 3
directionality errors. The hill-climbing approach using BIC as the scoring criterion contains 6 neighborhood
and 4 directionality errors, while the data likelihood hill-climbing result contains 25 neighborhood and 5
directionality errors. (The de�nition of edge and directionality errors is in the text.) The KL-divergence of
all four algorithms with respect to the original is approximately of the same order, around 2� 10�5.
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Figure 3: Results for a 5� 5 rectangular net with branching factor 2 (in both directions, blanket size 8) as
a function of the number of samples. On the top, KL-divergence is depicted for the plain GS, Randomized
GS, and hill-climbing algorithms. On the bottom, the percentage of edge and direction errors are shown.
Note that certain edge error rates for the hill-climbing algorithm exceed 100%.
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Figure 4: Results for a 5 �5 rectangular net from which 10000 samples were generated and used for re-
construction, versus increasing branching factor. On the left, errors are slowly increasing (as expected) or
remain relatively constant. On the right, corresponding execution times are shown. While the plain GS
algorithm execution time increases exponentially with branching factor, the randomized version has a much
milder increase in execution time.

The plain version of the GS algorithm presented here has similarities to both of them. It may be viewed as
a version of the SGS algorithm with the conditioning sets restricted to the Markov blanket of each node,
or PC without the linear probing for a separator it employs (see description of the PC algorithm below).
The SGS algorithm proceeds in a fashion similar to the GS algorithm; for example, in order to determine
the existence of an edge between two nodes X and Y , the SGS algorithm employs independence tests
conditioned on every subset of V� fX;Y g. This is clearly wasteful for sparse graphs where many variables
may be irrelevant, and it also places unnecessarily requirements on the size of the data set that is needed for
reliable structure discovery. The GS algorithm circumvents both problems by employing a preliminary step
in which it discovers the local structure around each node. Concerning the recovery of the directionality of
the links, the approach of the SGS algorithm is analogous to a global version of step 3 of the GS algorithm.
It therefore su�ers from the same comparative shortcomings as the ones mentioned above.

It is more fair, performance-wise, to compare the GS algorithm with an algorithm that heeds local structure
such as the the PC algorithm [SGS93]. The PC algorithm is a much more e�cient algorithm than SGS and
it may be employed in practice on problems involving a signi�cantly larger number of variables. In short, its
operation is as follows. Initially a completely connected graph is constructed. This graph is then gradually
\thinned" using conditional independence tests of increasing order (conditioning set size), starting from and
empty set. For two variables X and Y connected with a hypothesized edge, the algorithm makes two tests,
drawing the conditioning set of a certain size from the current set of direct neighbors of X in one test and
the direct neighbors of Y on the other. In a sparsely connected original net, it is expected that many links
will be eliminated early, reducing the sizes of the direct neighbors sets and improving the running times of
subsequent steps. Each conditioning set that successfully separates two variables is recorded and used in a
later phase where the directions of the remaining links are determined in a fashion similar to the SGS (and
GS) algorithm.

[SGS93] present an informal worst-case analysis of the PC algorithm, which indicates that the number of
independence tests used are O(nk+1), where k is the maximum degree of a node of the original Bayesian
net (in our notation, k = u+ d, the sum of the maximum number of parents u and children d of any node).
While both algorithms have a factor that is also exponential in k, which most likely is unavoidable, the factor
in GS is 2b, where b = k + u in the worst case. However, although the PC algorithm is indeed e�cient (i.e.
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polynomial) under the assumption of a bounded neighborhood (k bounded by a constant), unfortunately
the order of the polynomial depends on k, while the GS algorithm does not. For a given k (and therefore
b), the GS algorithm has an asymptotic behavior with respect to n of O(n2), superior to the one achieved
by PC algorithm. This is likely to make a di�erence in large graphs that are sparsely connected.

Other algorithms exist in the literature that do not make use of independence tests but take into account
d-separation in order to discover structure from data. [CBL97] for example uses mutual information instead
of conditional independence tests. The algorithm requires the ordering of the variables to be input to the
algorithm.

There is another family of algorithms for structure recovery, as mentioned in the introduction. These
algorithms typically employing heuristic search methods in the space of possible structures, using a number
of scoring functions as the objective function to be optimized. Such scoring functions may be the Bayesian
information criterion (BIC), mutual entropy [HC91], or the minimum description length [Suz96] (which is
equivalent to the BIC [Hec95]). We will not expand on them here since they are not directly related to
the algorithms proposed in this paper. However we will say that they are not guaranteed to construct a
network that is faithful in terms of independence relations, nor one whose structure is \close" to the original
one. Their guarantee is to return a network for which the scoring function, which is often related to the
likelihood of the input data, is at a local maximum. (Such networks may be usefully employed to compute
the probability of future data.) Therefore it is conceivable that an application of one of these algorithms be
used to \�ne-tune" the network returned by the GS algorithm, possibly producing a structure similar to the
original one that is also close to the global maximum of the data likelihood.

8 Conclusion

In this paper we presented an e�cient algorithm for computing the Markov blanket of a node and used it in
two versions of the GS algorithm (plain and Monte Carlo) by exploiting the properties of the Markov blanket
to facilitate fast reconstruction of the local neighborhood around each node, under assumptions of bounded
neighborhood size. We also presented a Monte Carlo version that has the advantages of potentially faster
execution speeds and added reconstruction robustness due to multiple tests and Bayesian accumulation of
evidence. Simulation results demonstrate the reconstruction accuracy advantages of the algorithms presented
here over hill-climbing methods. Additional results also show that the Monte Carlo version has a dramatical
execution speed bene�t over the plain one in cases where the assumption of bounded neighborhood may not
hold, without signi�cantly a�ecting the generalization error rate.
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Appendix A: Computation of the probability P (L j
�!
� n)

The following derivation applies to the formulas in both steps 2 and 3 of the randomized version of the GS
algorithm. In the derivation below the following symbols are used:
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� L(X;Y ) represents the event that variables X and Y are permanently linked either through a direct
connection (GS step 2) or by conditioning on a common descendant (step 3).

� Di(X;Y ) for i = 1; : : : ; N are events that X and Y are dependent conditioned on a set of variables Si,
a subset of B(X) � fY g (that includes a possible common descendant in step 3).

�
�!
� i = h�1; �2; : : : ; �ii is the �rst i data sets, represented as a vector of data sets.

In our notation we will omit the dependency on X and Y of the variables listed above for reasons of brevity.
We assume that X 2 B(Y ) and Y 2 B(X), as the probabilities that are referred to below are computed
only for such variables in the randomized GS algorithm.

We are interested in computing the probability P (L j
�!
� i) in terms of P (Di j �i); i = 1; : : : ; N , the only

direct evidence we may elicit from each data set �i. In other words, the results of the tests Di are the only
information we use from �i, making them in e�ect the su�cient statistics of the data set vector

�!
� i. This is

one of our assumptions (a su�ciency assumption).

We will formulate P (L j
�!
� i) in terms of P (L j �i), the probability of L given a single test only, and

P (L j
�!
� i�1); the accumulated probability from previous data. We have

P (L j
�!
� i) = P (L j �i

�!
� i�1) =

P (�ijL
�!
�

i�1
)P (Lj
�!
�

i�1
)

P (�ij
�!
�

i�1
)

P (L j
�!
� i) = P (L j �i

�!
� i�1) =

P (�ijL
�!
�

i�1
)P (Lj

�!
�

i�1
)

P (�ij
�!
�

i�1
)

From the two equations above, and using the Markov assumption P (�i j L
�!
� i�1) = P (�i j L) and P (�i j

L
�!
� i�1) = P (�i j L), we get

P (Lj
�!
�

i
)

1�P (Lj
�!
�

i
)

= P (�ijL)

P (�ijL)

P (Lj
�!
�

i�1
)

1�P (Lj
�!
�

i�1
)

=
P (Lj�i)P (�i)

P (L)

P (Lj�i)P (�i)

P (L)

P (Lj
�!
�

i�1
)

1�P (Lj
�!
�

i�1
)

= P (Lj�i)
1�P (Lj�i)

1�P (L)
P (L)

P (Lj
�!
�

i�1
)

1�P (Lj
�!
�

i�1
)

(1)

In the absence of any information, we assume that the probability that two variables are directly linked is
equal to the probability that they are not. This implies P (L) = 1

2 . The only remaining term is P (L j �i):

P (L j �i) = P (L j Di�i)P (Di j �i) + P (L j Di�i)P (Di j �i) (2)

Since P (L j Di�i) = 0 (if X and Y are not dependent they cannot possibly be linked), the second term at
the sum above vanishes. For P (L j Di�i), we use the su�ciency assumption stating that knowledge of the
dependency between X and Y is all that we use to inuence the probability of L. This allows us to infer
P (L j Di�i) = P (L j Di). Therefore,

P (L j Di�i) = P (L j Di) =
P (DijL)P (L)

P (Di)

P (L j Di�i) = 1� P (L j Di) =
P (DijL)P (L)

L(Di)

)
) P (L j Di) =

P (Di j L)

P (Di j L) + P (Di j L)
(3)
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If we know there is a direct link between X and Y , the probability they are dependent is 1:

P (Di j L) = 1 (4)

If however we know that they are not directly linked, and given that each belongs to the blanket of the
other, this probability depends on whether we include all parents and no children of one of them in the
conditioning set Si. For that purpose we introduce two new events, assuming (without loss of generality)
that jB(X)j � jB(Y )j:

� Ai(X) is the event that all parents ofX are included in Si. We will abbreviate this as A in the formulas
below.

� Ci(X) is the event that at least one child of X is included in Si. This is abbreviated as C.

P (Di j L) = P (Di j ACL)P (AC j L)+
P (Di j ACL)P (AC j L)+
P (Di j ACL)P (AC j L)+
P (Di j ACL)P (AC j L)

(5)

Given that there is no direct link between X and Y (L = 1), the two variables are independent only in the
case all parents and no children of X are included in the conditioning set, namely if ACL is true. Therefore

P (Di j ACL) = 1
P (Di j ACL) = 0
P (Di j ACL) = 1
P (Di j ACL) = 1

(6)

Since the algorithm picks the members of the conditioning set entirely randomly we have

P (AC j L) = P (A)P (C) = 1
2� (1�

1
2� )

P (AC j L) = P (A)P (C) = 1
2�

1
2�

P (AC j L) = P (A)P (C) = (1� 1
2� )(1�

1
2� )

P (AC j L) = P (A)P (C) = (1� 1
2� )

1
2�

(7)

where �(X) � � is the number of parents and �(X) � � the number of children of X and Y . Combining
Eq. (5) with Eqs. (6) and (7) we get

P (Di j L) = 1�
1

2�+�
(8)

Since � and � are not known in advance, we can approximate (overestimate) their sum with jB(X)j � 1 �
jBj � 1 (we subtract 1 because Y is also a member of B):

P (Di j L) � 1�
1

2jBj�1
� G (9)

17



G is a measure of how connected a node (in this case, X) is to the remaining variables. Its value ranges
from 0 to 1 as jBj takes values from 1 to1. Combining Eqs. (2), (3), (4) and (9) (where we assume equality
from now on), we get

P (L j �i) =
P (Di j �i)

1 + G
(10)

This equation has an easily seen and intuitive appealing interpretation: when jBj is large (G = 1), the
evidence of a test indicating dependence between X and Y conditioned on a randomly drawn subset Si of
the blanket of X bears little evidence of a direct link between them, since the probability that it includes all
parents and no children of X is small and therefore the posterior probability of L is close to 1

2 . When jBj is
1 (G = 0), however, the evidence for L is strong and the above probability becomes 1, since, in the absence
of any common parents or children of X (or Y ), any test indicating dependence is direct evidence of a link
between X and Y .

Combining Eq. (1) with Eq. (10) and solving for P (L j
�!
� i), we obtain the �nal recursive formula:

P (L j
�!
� i) =

P (Lj
�!
�

i�1
) P (Dij�i)

P (Lj
�!
�

i�1
) P (Dij�i)+(1�P (Lj

�!
�

i�1
) (G+1�P (Dij�i))

Appendix B: MaxLikelihoodDAG is NP-complete

Theorem Given a directed graph G(V;E; w) such that 8X;Y 2 V; if (X;Y ) 2 E then (Y;X) 2 E, where
w(� ! �) is a weight function for each edge direction, the problem of determining the acyclic graph of the
maximum product of edge weights (call it MaxLikelihoodDAG) is NP-complete.

Proof We reduce from the minimum feedback arc set problem (MFAS ). The MFAS problem is about
�nding the smallest set of edges in a directed graph GMFAS(VMFAS ;EMFAS) whose removal will make the
resulting graph undirected. To reduce it to MaxLikelihoodDAG we de�ne G(V;E; w) as follows

V = VMFAS

E = EMFAS [ f(Y;X) j (X;Y ) 2 EMFASg

w(X ! Y ) =

�
2 if (X;Y ) 2 EMFAS

1 if (X;Y ) =2 EMFAS

Calling MaxLikelihoodDAG will return a subgraph such that
Q

(X;Y )2Ew(X ! Y ) is maximum or, equiv-

alently,
P

(X;Y )2E log2w(X ! Y ) is maximum. Removing the edges that have log2w(X ! Y ) = 0 gives
us a solution to the MFAS problem. This is because of two reasons. Firstly, since removing edges cannot
introduce a cycle and since all remaining edges in the solution are members of EMFAS , it is a legal solution
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to the feedback arc problem. Secondly, because it contains a maximum number of edges it is a solution to
the minimum feedback arc problem. We prove this claim by contradiction: suppose that there exists an
acyclic subgraph of GMFAS that has a greater number of edges. Then by using the edge weight assignment
described above, we can produce a better solution (greater weight product) to MaxLikelihoodDAG, which is
a contradiction.

This proves NP-hardness of MaxLikelihoodDAG. NP-completeness is due to the polynomial-time conversion
(in the size of the graph) from the MaxLikelihoodDAG solution to a MFAS one, which simply involves the
omission of the edge weights.
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