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Abstract

One of the major challenges of building software systems is to ensure that the
various components fit together in a well-defined manner. This problem is exac-
erbated by the recent advent of software components whose origin is unknown
or inherently untrusted, such as mobile code or user extensions for operating-
system kernels or database servers. Such extensions are useful for implementing
an efficient interaction model between a client and a server because several data
exchanges between them can be saved at the cost of a single code exchange.

In this dissertation, I propose to tackle such system integrity and security prob-
lems with techniques from mathematical logic and programming-language se-
mantics. I propose a framework, called proof-carrying code, in which the exten-
sion provider sends along with the extension code a representation of a formal
proof that the code meets certain safety and correctness requirements. Then,
the code receiver can ensure the safety of executing the extension by validating
the attached proof. The major advantages of proof-carrying code are that it
requires a simple trusted infrastructure and that it does not impose run-time
penalties for the purpose of ensuring safety.

In addition to the concept of proof-carrying code, this dissertation contributes
the idea of certifying compilation. A certifying compiler emits, in addition to
optimized target code, function specifications and loop invariants that enable a
theorem-proving agent to prove non-trivial properties of the target code, such as
type safety. Such a certifying compiler, along with a proof-generating theorem
prover, is not only a convenient producer of proof-carrying code but also a
powerful software-engineering tool. The certifier also acts as an effective referee
for the correctness of each compilation, thus simplifying considerably compiler
testing and maintenance.

A complete system for proof-carrying code must also contain a proof-generating
theorem prover for the purpose of producing the attached proofs of safety. This
dissertation shows how standard decision procedures can be adapted so that
they can produce detailed proofs of the proved predicates and also how these
proofs can be encoded compactly and checked efficiently. Just like for the
certifying compiler, a proof-generating theorem prover has significant software-
engineering advantages over a traditional prover. In this case, a simple proof
checker can ensure the soundness of each successful proving task and indirectly
assist in testing and maintenance of the theorem prover.
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I am grateful to Dorina Margineanţu who showed me a computer for the first time and
who encouraged and helped my mother to buy a ZX Spectrum for me. To tip the balance
in favor of computer science and away from physics was another charismatic teacher at my
high school, Radu Sima. Since then, Radu has become a very close friend, a mentor and the
best man at my wedding.

Among the college teachers that have played a significant role in my education are Irina
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Chapter 1

Introduction

To provide access to its internal data and resources, a server traditionally exports a static
collection of basic operations on the corresponding data, such as the set of system-call entries
exported by an operating system kernel. In order to use such a static interface, a client
must decompose its computation into a sequence of operations mapping directly to those
exported by the server. A more flexible and more efficient interaction model is based on
active interfaces. Under the active interface paradigm, the client creates and uploads a
program—also referred to as an agent or mobile code—that the server installs and executes
in its own environment with direct access to data and resources. In such a situation, it is
convenient to refer to the client as the code producer and to the server as the code receiver.

The major advantage of the active interface paradigm is that it can reduce the amount
of communication between the client and the server. To illustrate this point, consider the
case when the server is a spacecraft that is gathering large amounts of data in a remote part
of the Universe. The latency of the communication with the Earth can be on the order of
hours, and is limited by the speed of light; the available bandwidth also seems to be limited
at present to a few kilobytes per second. It seems therefore obvious that the data must be
processed onboard and only select results should be sent to Earth. Furthermore, we cannot
afford to fix the set of data-analysis programs for the entire duration of the trip. The natural
solution to these constraints is to use an active interface, so that the Earth station can update
or even replace the set of data-analysis programs that is executed executed onboard. Also,
this particular example illustrates a situation when it is necessary for the agent to execute
as efficiently as possible, in order to make best use of the scarce supply of power. This
suggests that whatever technique we use to implement active interfaces, it must not penalize
the performance of the uploaded agents over resident programs.

A more subtle advantage of the active interface model of interaction is that it allows the
server to export safely a more flexible lower-level interface to the agents and indirectly to
the code producers. In the traditional client-server interaction model, the server does not
have advance knowledge of the agent program (residing on the client in this case) and thus
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2 CHAPTER 1. INTRODUCTION

does not know it uses the data and services provided. This means that a traditional server
must not export secret data or give access to low-level services that could be used to subvert
the system. In the active interface model, on the other hand, the code receiver can examine
the agent program before running it and can ensure that even though it has access to secret
data it does not leak it to untrusted parties, or that it uses properly the provided low-level
services. Consider for example, an agent that prepares a tax return based on the financial
data provided by the code receiver. Because the code receiver controls the agent program it
can ensure that the financial data is not leaked. Similarly, a code receiver might allow an
agent to temporarily disable the interrupts if, by inspecting the agent program, it can verify
that the agent will keep the interrupts disabled for a short period of time.

Given the flexibility and efficiency advantages of active interfaces, we might ask ourselves
why do scenarios like those described above sound more like science fiction than reality today?
I think it is mostly because of that security and complexity concerns that are raised by active
interfaces. The major difficulty in deploying an active interface is to ensure the security of
the code-receiver system and its data in the presence of untrusted agents. This involves not
only protection against malicious agents, but also protection against erroneous code that
might be supplied by known and otherwise trusted code producers. The latter scenario
is worth considering when the potential damages due to an error are high, such as in the
spacecraft example.

Furthermore, one might be reasonably concerned that the mechanisms that must be used
to enforce the security aspect of active interfaces lead to agent execution overhead and to a
larger and less trustworthy receiver-side infrastructure.

My Thesis. My thesis is that ideas from logic and programming languages can and should
be used to ensure the safety of executing software agents by means of static checking, with-
out sacrificing performance and without relying on personal authority. Furthermore, this
can be achieved with a small trusted infrastructure on the receiver-side. In order to mini-
mize the complexity of the static checking, and therefore of the required infrastructure, the
code receiver can rely on easily checkable producer-provided evidence attesting to the safety
properties of the code. This technique is called proof-carrying code.

Furthermore, my thesis is that the safety evidence required for proof-carrying code can be
produced automatically, for a large class of safety properties, as part of the same compilation
process that generates the agent executable. This variant of compilation is called certified
compilation. As we shall see, in addition to constituting a front-end to proof-carrying code,
certified compilation provides a simple and effective method for testing that a compiler
produces only code that matches a safety specification, namely by verifying the evidence
that the compiler produces with the code.

In this dissertation I describe a particular instance of the above ideas, in which the
evidence to the safety of the code takes the form of a formal proof that the code satisfies a
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safety specification. Both the proof and the specification are expressed in a mathematical
logic, which in this case is an extension of first-order predicate logic.

Before I outline in more detail the techniques of proof-carrying code and certifying com-
pilation in Section 1.2, I discuss some of the more traditional solutions for protecting code
receivers from misbehaving agents. I will argue why these traditional solutions are some-
times inadequate, and show that a natural way to address their drawbacks is to allow for
the static checking of safety. Then, the rest of the ideas expressed in this dissertation are
merely ways to overcome the inherent complexity of static analyses and the undecidability
of many interesting code properties.

1.1 Traditional Solutions to Agent Security

The techniques currently used in systems that interact through mobile code can be classified
into three main categories. First, there are techniques that judge the safety of the code by
the identity of the agent creator. Then, there are techniques where the agent is executed
in a “sandbox”, so that it cannot access critical data and resources directly. Finally, there
are the techniques that rely on interpreters or receiver-side compilers to enforce safe agent
behavior. These three classes of techniques, with their advantages and disadvantages, are
discussed next.

1.1.1 Safety through Personal Authority

The aim of this class of techniques is not to prevent unsafe code from being executed, but
to create accountability and thus a deterrent to the distribution of harmful agents. For this
purpose, the agent producers are required to sign digitally the code they produce. This
allows the code receiver to verify not only the identity of the producer but also that the
code integrity was maintained from the code producer to the receiver. The most commonly
used technology for this purpose is that of public key cryptography, as used for example in
Microsoft’s Authenticode [Mic96].

While this approach has its practical merits, it also has a number of disadvantages, the
most important of which being that it does not prevent trusted producers from creating and
uploading erroneous agents. The fact that the error can be traced to a concrete producer is
of little consolation when a large amount of damage has already occurred due to the mistake.

The personal authority approach to safety penalizes unfairly the small individual agent
producers in favor of larger and better-known producers. A code receiver is unlikely to
grant the benefit of doubt to an agent that is received from an unknown or a lesser-known
producer. While this might not be a problem in small enclaves where the interacting entities
know each other, it is definitely a drawback in environments where large anonymous masses
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of programmers interact through active agents, as is likely to be the case for many active
interfaces exported to the Internet.

Because of the above reasons, personal authority alone is not a good way to ensure safety.
Instead, we must look to approaches that consider the intrinsic properties of the agent code,
independently of who produced it or how it was produced. However, personal authority
might be an important component of a safety policy for execution of mobile code and, in
such cases, personal authority can be used in combination with one or more of the techniques
discussed next.

1.1.2 Safety through Hardware-Based Address Spaces

One of the simplest methods to ensure the safe execution of untrusted code is to isolate it
in an hardware-enforced address space so that all accesses to non-private data and resources
can be intercepted and monitored by the code receiver infrastructure. This is also the main
technique that operating system kernels use to protect themselves from misbehaving user-
level applications.

The most important component of such a scheme for protection is the design of a secure
system-call interface, which consists of server-provided functions that the agent code may
invoke for accessing system data and resources. A proper implementation of the system-
call interface must check that the invoking agent has the necessary rights to perform the
requested operation and that the provided arguments are valid. Extra care is required in a
multiprocessing environment to ensure the atomicity of the argument checking procedure.
Usually, this is accomplished by first copying the arguments into a memory area inaccessible
to user applications.

The main advantage of the hardware-based solution is that it is relatively simple, thus
easy to implement and to trust. The disadvantage is the high cost associated with switching
between the protection domain of the agent and the code receiver, and back, along with the
cost of copying the arguments and the results between address spaces. While this might not
be a problem for those agents that have a high ratio of data processing to system calls, it is
likely to hurt the performance of the majority of agents.

Another, sometimes overlooked, disadvantage of enforcing safety through memory pro-
tection is that it imposes constraints on the design of the client interface. First, in order to
be able to enforce what amounts to abstract data types, the server must often introduce a
level of indirection between its actual data structures and the agent. For example, a typical
operating system enforces the abstract type of file descriptors through the use of file handles,
which are small positive integers whose identity can be verified at run time; this verification
could not be easily performed if the clients were referring to files by using actual pointers
to kernel data structures. Second, the system must consider the possibility of having to ter-
minate the agent prematurely, maybe after the agent has had the chance to acquire critical
resources or alter the state of the system in a significant manner. To prevent this, the server
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must either disallow significant side-effects as part of the agent interface, or else employ a
costly transaction mechanism that is able to undo such effects. It is interesting to remark
that both the data abstraction and the side-effect problems are due in fact to the exclusive
use of run-time checking for implementing safety.

Furthermore, it is often necessary for the agent code to have a more intimate coupling with
the code receiver than that provided by a fixed Application Programmer’s Interface (API)
and separate address spaces. Consider for example an agent that requires some simple but
time-critical processing to be done at every interrupt. The simplest way to achieve this is to
allow the agent to install an interrupt handler to be run in privileged mode, in which case
the hardware-based protection mechanisms are not usable.

Finally, another disadvantage of hardware-based techniques for safety is that they require
special hardware and relatively complicated operating system support, features that might
not be available in “lean” environments such as smart cards or embedded systems.

1.1.3 Safety through Programming-Language Semantics

A number of approaches for enforcing the safe execution of agents proceed by selecting an
agent programming language together with a semantics for it so that all valid agent programs
are guaranteed to conform to the safety policy. An important characteristic of the approaches
based on programming language semantics is that the complexity of the safety policies that
can be enforced is strongly dependent on the expressiveness of the programming language
considered. To illustrate this point, consider the so-called type safety approaches, where a
type system is used to distinguish among all syntactically correct programs those that share
certain desired safety properties. In this case, the type checker can be thought of as the
decision procedure for the subset of programs that are well-behaved with respect to a safety
policy.

Type-safe languages have been used for safe operating-system extensibility at least since
Burroughs B-5000 [Lev84] and are still employed in research operating systems such as
SPIN [BSP+95]. Examples of general-purpose type-safe languages that are currently used
for writing untrusted agents and system extensions are Java [GJS96], the Java Virtual Ma-
chine bytecode language [LY97] and Modula-3 [Nel91]. In these cases, type safety usually
means memory safety and data abstraction. This level of safety is significant; it rivals hard-
ware memory protection but with finer granularity and lower costs and, by careful use of
abstraction, it can surpass approaches based purely on run-time checking.

Type safety can mean more than just memory protection or data abstraction if we
enrich the type system. Consider, for example, a type system that includes parametric
polymorphism—such as the type system of Standard ML [MTH90]—and a function foo

with the polymorphic type “foo : ∀α.vector(α) → α”. It is possible to prove within the
type system that any well-typed implementation of foo selects and returns one of the ele-
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ments of the vector given as argument.1 In general, there are very interesting code properties
that can be proved about functions typed in a polymorphic type system [ACC93, Wad89].

Unfortunately, the level of type safety provided by general-purpose languages is not
enough to prevent agents from subverting the code receiver. For example, none of the type
systems mentioned above can enforce resource usage bounds or revocation of capabilities.
There are fundamental reasons why this is so; for languages that are expressive enough,
many interesting dynamic properties can be reduced to the halting problem for a Turing
Machine and are thus undecidable. Hence, such properties cannot be enforced as “type
safety” for any practical type system, unless we are willing to restrict the language to one
that is strictly less expressive that a Turing machine. This path is taken by approaches
using domain-specific languages (DSL), in effect restricting the syntactically valid programs
to a small subset that is of interest to a particular application domain. One example of
a DSL used in system extensions is the Berkeley Packet Filter [MJ93] language for which
termination is easily decidable because no looping constructs are allowed.

In general, a code receiver using a language-based technique enforces the safe semantics in
two stages. First, during the static checking stage, the receiver performs a detailed inspection
of the agent’s code to ensure that it is a valid program in the selected language. This stage
includes syntax checking and also type checking for typed languages. The second stage takes
place while the agent is executing. In this second stage, the receiver ensures that those
operations that are potentially harmful and whose safety cannot be ascertained by the static
checking pass, are preceded by run-time checks for safety. I shall refer to this stage as the
dynamic checking stage.

The purpose of the static checking phase is to catch early many of the common program-
ming errors and sources of harmful behavior. The amount and kind of static checking that
can be performed ranges from simple control-flow checking to complicated type checking.
For example, in the Berkeley Packet Filter (BPF) [MJ93] architecture, the untrusted code
is scanned to verify that all instructions belong to a restricted bytecode language, that all
branches are forward, and that their targets are within the code boundaries. In contrast, for
approaches based on type-safe languages, a full-fledged type checking pass is made over the
agent’s code.

After the static checking stage, the receiver must execute the agent in such a way that
potentially harmful operations are guarded by run-time checks for safety, such as array
bounds checking or null-pointer checking. The more complicated the static checking, the
fewer run-time checks are required. In the case when static checking consists of type checking
in an expressive type system, code properties such as memory safety and data abstraction
are guaranteed with few or no run-time checks.

The easiest way to implement the dynamic checking stage is through interpretation.
Basically, this means that the untrusted agent code is interpreted by a safe and trusted

1In most such languages, the function foo might also diverge.
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interpreter that performs all of the required dynamic checks mandated by the safety policy.
For example, in order to enforce memory safety, an interpreter can verify, before each memory
access, that the agent accesses only memory areas that are permitted by the safety policy.
Two examples of safe interpreters are the Berkeley Packet Filter interpreter [MJ93] for
operating system extensions and the Java Virtual Machine interpreter [LY97] for mobile
code.

The major drawback of the interpreter-based approach is the reduced execution speed; it
is not unusual to observe an order of magnitude slowdown due to interpretation. A natural
solution to the interpretation overhead problem is to replace the interpreter with a trusted
just-in-time compiler that, while compiling the agent code, inserts run-time checks similar
to those that an interpreter would perform. Note that I use the generic term “compiler” for
such a tool even in cases when the source and target language are the same. For example, a
compiler can edit machine code agents by inserting bounds checks before memory operations.
This approach, called Software Fault Isolation (SFI) [WLAG93], is used to enforce memory
safety in the extensible operating system VINO [SESS96].

The SFI compiler mentioned above analyzes and modifies machine code agents so as
to enforce memory safety. However, it is easier to analyze agents written in high-level or
intermediate-level languages, meaning that more complex safety properties can be enforced
with fewer safety checks at the cost of a more complicated compiler. For example, a compiler
for Java Virtual Machine bytecode produces machine code augmented with array bounds
checks. The higher-level language allows a type checker to enforce statically properties like
data abstraction, and it restricts the run-time checking for memory safety only to those
memory operations that access arrays.

A compiler-based approach to safety leads to agents that are significantly faster than
the interpreted versions. However, this advantage comes at a high price. A compiler is
significantly more complex than an interpreter and this means that a code receiver must rely
on the correctness of a larger and more complicated body of code. This drawback is getting
more pronounced as more optimizations are incorporated in the compiler, in an attempt to
maximize the performance benefit of interaction by mobile code.

1.2 Outline of the Dissertation

The discussion of traditional techniques for ensuring the safety of untrusted agents suggests
that an ideal enforcement method should be based as much as possible on static checking.
This way we avoid both the overhead of run-time checking and the complications associated
with forcefully terminating agents. With static checking, the execution of the agent code is
not even started unless it is guaranteed to be safe.

As my thesis statement indicates, I propose to use static checking for verifying the safety
of untrusted code. For this to be possible in general I propose also that the agent producer
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creates a formal proof of safety for the agent. This enables the code receiver to verify even
complex safety properties by using a small and easy-to-trust infrastructure consisting of a
proof checker.

The second part of my thesis is that, for a large class of safety properties, the formal proof
can be produced automatically by a certifying compiler. The particular safety properties that
I have in mind are those that could also be enforced by the safe interpreter or just-in-time
compiler approaches discussed in the previous section. The major difference is that the
certifying compilation process takes place at the code producer’s site, and the code receiver
does not have to incur the cost of compilation or interpretation and it does not have to trust
the compiler or the interpreter.

For a gentle introduction to the concepts of proof-carrying code and certifying compila-
tion, I discuss in Chapter 2—at a high level—the steps that are taken by a code producer that
uses certifying compilation to interact with a code receiver through proof-carrying code. As
part of this process, I identify the main software components involved, and I summarize the
design and implementation requirements they must meet. The actual details of the design
and implementations of these components are described in subsequent chapters.

Following the overview chapter, the main body of this document is divided into three
parts, dealing respectively with the PCC infrastructure residing at the code-receiving end,
the tools used by the code producer and the experimental evaluation of the entire system.
In each part, the interested reader can find detailed discussions of the technical barriers
that must be surmounted by a successful implementation, along with a presentation of my
own design and implementation. In some cases, these barriers are practical implementation
issues; in other cases, they are theoretical issues whose solution is important beyond their
occurrence in a proof-carrying code system.

Finally, in Chapter 9, I summarize the contributions of this dissertation and suggest some
future directions for research.



Chapter 2

Overview

This chapter is an informal high-level overview of the two techniques of proof-carrying code
and certifying compilation. The presentation is structured as a step-by-step description of
the interaction between a server (code receiver) and a client (code producer) that use proof-
carrying code produced by certifying compilation. For each interaction step I describe the
software components that are involved, focusing on their functional behavior and ignoring
for the time being the actual implementation details. For illustration purposes, I use a simple
running example and I show fragments of the proofs and code that are transferred between
the code producer and the code receiver at each step.

Although the structure of this chapter and of the running example are intended to illus-
trate an integrated system using both proof-carrying code and certifying compilation, it is
important to realize that these techniques, when taken individually, have different strengths
and characteristics. Proof-carrying code is general and powerful in the sense that it can
handle complex safety properties. In contrast, certifying compilation as presented in this
dissertation handles only type safety, thus only a relatively small subset of the class of safety
policies enforceable with proof-carrying code. Another differentiating characteristic is that
only the system components implementing proof-carrying code—also referred to as the PCC
infrastructure—must be trusted in order to ensure that only safe agents are executed, while
those implementing the certifying compiler need not be trusted. These trust relationships
imply that the infrastructure must be executed on the trusted code-receiver, while the tools
may be executed even on untrusted systems, such as the code producers. The certifying com-
piler is one particular way of producing the proof attachments required for proof-carrying
code. In general, the proofs can be produced using a variety of methods, all of which are
referred collectively as the PCC tools.

Because of the lack of detail, this chapter is necessarily informal. It is the purpose of
the rest of this dissertation to provide the missing details and to formalize the methodology
completely. Nevertheless, with just the information contained in this chapter the reader can
proceed to read Part III devoted to the experimental evaluation of the PCC infrastructure

9
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and of the PCC tools, namely the theorem prover and the certifying compiler.
Proof-carrying code has many applications, and each such application may entail some

variations on the precise details of the approach. I will have more to say about some of these
variations in Section 2.2. First, I describe in Section 2.1 a canonical implementation of PCC,
which is general enough that any of the variations can be seen as optimizations or special
cases. This chapter ends with a summary of the benefits and costs of proof-carrying code
and certifying compilation (Section 2.3) and a short question-and-answer section addressing
the limitations of the design presented here along with issues that arose most frequently
during the various public presentations of this material.

2.1 The Basic Proof-Carrying Code Protocol

For a more general presentation of the proof-carrying code idea, it is useful to introduce in
the system a third party, the proof producer, in addition to the code producer and the code
receiver. In practice, it often turns out that the code producer and proof producer are the
same system, though in general they may be separate entities.

Figure 2.1 shows graphically the steps involved in a typical PCC session. In this figure,
we have the code producer and the proof producer (the untrusted entities) on the left-hand
side and the code receiver (the trusted entity) on the right-hand side. The wavy boxes
represent code and data that is manipulated by the rectangular boxes, which represent PCC
software components. Finally, the white boxes are trusted entities while the grey ones are
untrusted.

Before a code receiver can accept PCC agents, it must establish a safety policy, which
defines the actions that agents are allowed to perform and also the circumstances when these
actions are allowed. The concrete embodiment of the safety policy in a PCC system consists,
as shown in Figure 2.1, of several components that are described in Section 2.1.1.

Let us now assume that a code producer wishes to use certifying compilation to interact
with the PCC-enabled code receiver. In this case, a PCC session starts with the code
producer compiling the agent source code to target code annotated with loop invariants.
For this purpose the code producer uses a certifying compiler, which is discussed briefly
in Section 2.1.2 and in detail in Chapter 6. Then the code producer sends the annotated
agent code to the code receiver, requesting its execution. The receiver first inspects the
code using the VCGen component of the safety policy, and returns a verification-condition
predicate whose validity is sufficient to guarantee the safety of executing the agent. This step
is described in Section 2.1.3. The receiver does not attempt itself the potentially difficult
task of verifying the validity of the verification condition. Instead, the verification condition
is sent to the proof producer who returns a proof of it, as discussed in Section 2.1.4. If
the proof passes the proof-checking process (described in Section 2.1.5), the receiver can
safely install and run the agent code. In the following sections, each of the above steps are
described in more detail.
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Figure 2.1: The basic proof-carrying code protocol. The wavy boxes represent data and code
and the rectangular boxes represent system components. The white elements elements are
trusted, while the grey elements are not trusted.

2.1.1 Preliminary Step 1: Defining the Safety Policy

The central component of any PCC implementation is the safety policy, which represents
the set of rules that define unambiguously whether a given agent program is safe to execute.
The safety policy is defined in advance by the administrator of the code-receiver system and
is a trusted component of the infrastructure. The variant of proof-carrying code described in
this dissertation is targeted towards safety polices that focus on the actions that the agent
code is allowed to execute and in what situations each action can be executed. Informally,
we can view the safety policy as a set of action preconditions. A more precise description of
the covered set of policies can be found in the introduction of Chapter 3.

A safety policy is defined in the context of a given agent language. Proof-carrying code
does not restrict the languages in which agents can be programmed. PCC can be adapted
both to high-level languages to improve portability of agent programs, and to low-level
languages, even hand-optimized machine code, to maximize the performance of the agent
while minimizing the size of the trusted infrastructure. Also, a given code receiver might
accept agents written in multiple programming languages, in which case the safety policy
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must be adapted to each language.

The safety policy, viewed as a set of action preconditions for a given agent language, is
not directly usable by the code receiver. Instead, the safety policy is embodied in the PCC
infrastructure as three distinct components, as follows:

• A mathematical logic that is able to describe the preconditions under which a given
agent action is allowed. The logic is the language used in a PCC system to describe
and verify the action preconditions. The same logic is also the language used to encode
the code annotations, the verification conditions and the proofs. In the variant of PCC
described here, I use first-order predicate logic extended with predicate symbols as
required by the safety properties to be proved, although in principle any program logic
can be used.

The concrete form of the logic is a set of syntactic predicate constructors along with
a set of axioms and inference rules that define provability of predicates. As shown in
Figure 2.1, this representation of the logic is made available to proof producers.

• A safety policy must specify all the functions that an agent is obligated to provide and
all the receiver-provided functions that an agent is allowed to invoke. This is done by
means of specifications for all such functions. Each function specification is given as
a pair of a precondition and a postcondition, expressed as predicates in the selected
logic.

A function precondition describes the state of the variables and actual arguments at the
moment when the function is invoked. The precondition must be established prior to
invoking the function. This enables the callee to assume that it holds without verifying
it first.

A function postcondition describes relationships between variables, actual arguments
and the result values. The postcondition predicate must be established prior to re-
turning from a function, and thus acts as a precondition for the function return action.
This enables the caller to assume that it holds upon return.

• Finally, the safety policy contains a method for inspecting the agent code and for
discovering the actions that an agent might perform and under which circumstances.
This is accomplished by the verification-condition generator (VCGen), which scans
the agent code and collects the set of all the actions that might be performed during
execution, along with a partial description of the program state when such actions
would be attempted. This information is expressed as a predicate in the logic (the
verification condition). VCGen is designed such that the verification condition for a
given agent is provable within the selected logic only when the agent code is considered
safe to execute with respect to the current safety policy.
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The operation of VCGen is described in Section 2.1.3 as part of the Step 3 of the PCC
protocol. The other aspects and components of the safety policy are described next in the
context of a simple example. For a detailed and formal discussion of the safety policy and
of the relationships between its various components, see Chapter 3.

To illustrate the concepts discussed in this overview chapter, consider the case of a
code receiver that wishes to enforce type safety and memory safety for agents written in a
generic assembly language. For this purpose, the administrator or the code-receiver system
establishes a safety policy consisting of a logic, a set of specifications and a verification-
condition generator. The agent language was chosen to be a generic assembly language to
avoid the need of a receiver-side compiler or interpreter.

The actions handled by the safety policy at hand are the function calls and returns along
with memory reads and writes. In fact, a very large number of safety policies can be described
with reference to this small class of agent actions. The safety of a function call or return is
defined in this case as a set of type restrictions on the value of variables. For this example,
the safety policy considers only simple types, such as, integers, booleans and array types.
An array type encodes both the array-element type and also the array length. Furthermore,
the code receiver wants to retain full control over the representation of booleans and thus,
the safety policy discloses only that the bitwise “and” and “or” operations on boolean values
produce valid boolean values.1 The memory safety aspect of the safety policy requires that
only addresses that fall within the bounds of arrays can be dereferenced and only values of
the appropriate element type can be written to an array.

In order to express the precondition for function calls and returns and for memory op-
erations, the administrator of the code receiver defines the logic whose syntax is shown at
the top of Figure 2.2. The logic is an extension of first-order predicate logic with a typing
predicate that is written in infix notation as “e : τ”, where e is an expression and τ is a
type. Also, in order to express memory safety in a generic manner and without reference to
arrays, the logic contains the predicate “saferd(e)” denoting that it is safe to read from the
memory address denoted by the expression e.

Other extensions to first-order logic are needed to represent the effect of memory op-
erations. The memory state is modeled in our logic explicitly using expressions. If m is
an expression that denotes the current memory state then the expression sel(m, a) denotes
the 8-bit contents of the memory location whose address is denoted by a.2 To express the
new memory state after a store of the value v at address a in memory state m, we write
upd(m, a, v).

1This is a non-frivolous requirement on the part of the code receiver because, for example, a code receiver
that is implemented using Standard ML of New Jersey reserves the least-significant bit to distinguish pointer
values. On such a system boolean values are represented as the integers values 1 and 3 for false and true
respectively.

2To simplify the presentation, I assume in this chapter that all memory operations operate at byte level.
This assumption can be easily relaxed to deal with other memory-word sizes.
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Expressions: e ::= x | e1 + e2 | e1 & e2 | e1 | e2 | sel(m, e)
Memory: m ::= x | upd(m, e1, e2)
Types: τ ::= int | bool | array(τ, e)
Predicates: P ::= P1 ∧ P2 | P1 ⊃ P2 | ∀x.Px

| e1 ≥ 0 | e : τ | saferd(e)
Rules:

e1 : bool e2 : bool
e1 & e2 : bool

e1 : bool e2 : bool
e1 | e2 : bool sizeof(bool) = 1

a : array(τ, len) i ≥ 0 i < len ∗ sizeof(τ)

saferd(a+ i)

a : array(τ, len) sizeof(τ) = 1 i ≥ 0 i < len

sel(m, a+ i) : τ

Figure 2.2: Fragment of a logic used for type safety. Note how memory safety is enforced
through array bounds checking and how booleans are specified as values of an abstract type.

In addition to the description of the syntax, the logic contains a set of inference rules
that can be used by the proof producer to prove the verification condition. A fragment of the
set of inference rules are shown at the bottom of Figure 2.2. Because the agents are written
in a low-level language they must manipulate concrete representations of the source-level
abstract types. It is by means of the logic that the code receiver discloses the necessary
representation information to the producers. For example, the last two rules of Figure 2.2
say that the concrete representation of an array is the memory address of a sequence of
consecutive memory locations holding values of an appropriate type. In addition, these rules
establish the meaning of memory safety for our example: the only memory locations that
can be safely read are those within the boundaries of an array.

While the array rules reveal the concrete representation of arrays, the first three inference
rules manage to preserve an abstract view of booleans. From these rules, the agent-designer
knows only that a boolean value occupies one byte and that the bitwise “and” and “or”
operations on boolean values produce valid boolean values. As a consequence, a type-safe
agent cannot forge boolean values; it can only transform them by using the two bit operations
mentioned in the rules. If the agent code would attempt to create a boolean value using any
other method, it would not be able to prove that the result is a boolean. Note that this is so
even when the agent producer has prior knowledge of the actual representation of booleans.
Following the same recipe, other, more complex, abstract data types can be specified in
the logic so that the code receiver can enforce their abstraction boundaries. The interested



2.1. THE BASIC PROOF-CARRYING CODE PROTOCOL 15

reader can find in Section 6.2 a more detailed discussion of enforcing data abstraction using
proof-carrying code.

With the logic component of the safety policy in place, the code receiver proceeds with
identifying the functions that will act as the interface with the agent. To simplify the
example, I assume that the receiver does not export any functions for the agent and that
the agent’s only entry point is called main, which is a function that given a boolean value
and an array of booleans along with its length will return a boolean value. This specification
is formulated in logic as shown in Figure 2.3. Note that the specification also reveals the
receiver’s calling convention: registers rA, rB and rL are used for actual arguments, and
register rR is used for the return value. Note that even though main is implemented by the
agent, its specification is given by the code receiver, as part of the safety policy. I ignore in
this dissertation the process by which a code producer and a code receiver agree on which
functions must be exported by the agent and which functions are provided by the code
receiver.

Premain = rB : bool ∧ rA : array(bool, rL)
Postmain = rR : bool

Figure 2.3: Sample specification for type safety

Each function specification entails certain obligations for both the code receiver and the
agent, depending on how the function is defined and used, as follows:

• For functions that are exported by the agent, the receiver infrastructure must establish
the precondition before invoking the function. This means, in our example, that the
receiver must invoke main with rB containing a valid boolean value and rA containing
the address of a properly allocated array filled with valid boolean values; the length of
the array must also be passed in rL. Upon return, the agent must establish the post-
condition, which in this case requires returning a well-formed boolean. The verification
condition for the agent will contain a part verifying this.

• For functions that are exported by the receiver and used by the agent, the agent must
ensure that the function precondition holds prior to invocation. This obligation will
be stated in the verification condition. In return, the code receiver has the obligation
to establish the postcondition prior to returning control to the agent.

• For functions that are defined by the agent for its internal use, the receiver has no
obligations. The agent can define the specification for this function as it sees fit, but
it must use the functions in a way that is consistent with their specification. The
specification for these internal functions is part of the annotations that accompany the
agent code.



16 CHAPTER 2. OVERVIEW

Note that in the above list of obligations the code receiver can use proof-carrying code
to ensure that the agent satisfies its obligations. On the other hand, the code receiver is a
trusted component of the system, which means that the designer and implementor of the
receiver must ensure that its interface obligations are met.

The last component of the safety policy is the verification-condition generator, which is
discussed in Section 2.1.3 in the context of a concrete agent and the example safety policy
introduced above. Note that the safety policy is established only once for a given service,
before any agent is processed. After that, the steps 2 to 5 described below are taken by the
code receiver and the code producer for each individual agent.

2.1.2 Step 2: Generating the Annotated Agent Code

The first action the code producer takes to initiate the interaction with the code receiver
through PCC is to prepare the agent code as requested by the safety policy or, more specifi-
cally, by the VCGen component of the safety policy. VCGen requires that the agent code is
syntactically well formed in the selected language. Also, VCGen requires that all functions
defined and used internally by the agent code be annotated with a precondition and a post-
condition, and also that each loop have an associated loop invariant. The loop invariants
and the specifications for the internal functions are referred to as annotations.

From the point of view of VCGen it suffices that the annotations be well-formed predicates
in the selected logic. This alone will ensure that VCGen does not reject the code, but it is
not sufficient to guarantee that the code will ultimately make it through all of the steps of
the PCC protocol. For this to happen, the annotations must also be correct and sufficiently
strong, as described formally in Chapter 3. These requirements will become clearer once we
discuss the rest of the steps in the PCC protocol. Intuitively, a loop invariant is a correct
annotation if it is indeed a valid predicate every time the execution reaches the beginning of
the loop. Similarly, a function specification is correct if the precondition holds every time the
function is invoked, and if the postcondition holds every time the function returns. Note that
the weaker the annotation the easier it is to ensure its correctness. For example, the weakest
loop invariant “true” is evidently a correct invariant. The notion of sufficiently-strong
annotations is more difficult to explain informally. A function precondition is sufficiently
strong if, by assuming that it holds at the beginning of the function, one can prove that the
body of the function is safe to execute. The stronger the annotation the easier it is to satisfy
the sufficiency requirement. We see, thus, that annotations must be not too strong and not
too weak. This is what makes the task of annotating the code a delicate one. In fact, this
is just another aspect of the fact that designing a program is difficult because it must be
general enough to be useful yet specific enough to be correctly and efficiently implemented.

Fortunately, for a large class of safety properties, it is possible to create the annotations
automatically by using a modified compilation technique, which I call certifying compilation.
The idea borrows from the approaches to safety based on programming-language semantics,
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in that a high-level language is selected for the agents and a semantics is defined such that
no violations of the safety policy can occur. This semantics can be enforced through a
combination of static checks (performed by the compiler) and run-time checks (inserted by
the compiler in the agent code). So far, this is not different from what a traditional compiler
for a safe high-level language performs. The difference is that a certifying compiler not only
produces safe target code, but also emits typing information and supporting annotations for
the optimizations that were performed. This information is easy to produce by the compiler
and it enables an external system (the PCC code receiver in conjunction with the proof
producer in this case) to verify that the result of compilation is indeed type safe. This is
explained in more detail next and is formalized completely in Chapter 6.

As a proof of the certifying compilation concept I have implemented a certifying compiler,
called Touchstone, for a type-safe subset of the C programming language. The implementa-
tion details of Touchstone are described in Chapter 6. In the rest of this section I show how
Touchstone operates in the context of a simple agent, whose source is shown in Figure 2.4.
Note that in the dialect of C compiled by Touchstone, arrays have both a base address and
a length, which is accessed using the built-in operation “length”. This is in contrast with
the common programming practice where the length of the array is manipulated directly by
the programmer.

bool main(bool A[], bool B) {
int I ;
bool R = B ;
for(I = 0; I < length(A); I++)
R = R && A[i];

return R;
}

Figure 2.4: Sample source code for a type-safe agent

The function main computes the conjunction of all the boolean values in the array A and
the boolean value B received on input. Touchstone parses the program and then translates
it to an intermediate form that is then optimized. To simplify the presentation, I will use
the same generic assembly language as the intermediate form and the target language.

Touchstone behaves mostly as a traditional optimizing compiler for a type-safe language.
The distinguishing aspect of compilation is the generation of annotations. In this section
I describe informally the generation of loop invariants for the agent of Figure 2.4. In the
context of the type-safety policy, there is only one kind of loop invariants that must be
produced, namely, typing loop invariants. A typing loop invariant is the conjunction of the
typing predicates for all variables that are live at the beginning of a loop and are modified
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within the body of the loop. In our example, this includes the registers that are used in the
target program to hold the values of I and R, which we call respectively rI and rR. Thus the
typing loop invariant for our example is as follows:

rI : int ∧ rR : bool

This typing loop invariant would in fact be sufficient if the compiler did not perform
certain optimizations. But, in an attempt to maximize the performance of the target code,
Touchstone implements several optimizations, of which the most significant are the array
bounds-checking optimization, global common-subexpression elimination and loop-invariant
optimizations. An interesting lesson that emerged from the Touchstone project is that only
few optimizations actually complicate the certification aspect of compilation. One such
interesting optimization is the array bounds-checking optimization, which is discussed next.

Array bounds-checking optimization is required in Touchstone, as opposed to a traditional
C compiler, because the type-safe semantics of the source language mandates bounds checks,
either at compile time or at run time. The purpose of the optimization is to perform as many
of the checks statically in order to reduce their run-time overhead. To get an intuition of
how Touchstone succeeds to certify even code whose bounds checks were optimized, consider
again the agent of Figure 2.4. First, Touchstone translates this agent in the intermediate
form shown in Figure 2.5. The register rT is used to store temporarily the value of the array
cell. Just as a traditional compiler, Touchstone starts by inserting code to perform bounds
checking for all array operations.

rI = 0

rR = rB
L0: INV rI ≥ 0 ∧ rI : int ∧ rR : bool

if rI ≥ rL goto Lend

if rI < 0 goto Lerr

if rI ≥ rL goto Lerr

rT = ∗(rA + rI)
rR = rR & rT
goto L0

Lend: return rR
Lerr: raise Subscript

Figure 2.5: The intermediate form of the agent of Figure 2.4. The boxed fragments are
introduced by the compiler to perform array bounds checking.

Note that the loop invariant shown in Figure 2.5 extends the typing loop invariant dis-
cussed before with a conjunct saying that the variable I is always non-negative. This is
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indeed a correct invariant because I is initialized to 0 before the loop and is incremented
by 1 in every loop iteration. We will see in a moment the significance of this invariant for
array bounds-checking elimination; consider now how Touchstone discovers it. Of all of the
possible arithmetic invariants, Touchstone attempts to discover when an integer variable
is monotonically increasing or decreasing. In our example, I is monotonically increasing
because I + 1 ≥ I. To prove simple arithmetic facts like this, Touchstone uses a decision
procedure for linear arithmetic. The rest is simple; because I is a monotonically increasing
variable whose initial value is 0 Touchstone emits the invariant I ≥ 0.3

Returning to the intermediate code of Figure 2.5, the array bounds-checking optimization
is implemented as a more general conditional optimization that tries to eliminate conditionals
or to collapse several conditionals into fewer ones. In the case of our example, Touchstone
successfully eliminates the boxed conditionals because their guarding boolean expressions
are statically proved false; the expression “rI < 0” is falsified by the loop invariant and
the expression “rI ≥ rL” is falsified by the loop termination condition. Consequently, the
exception-raising operation at the end of the code becomes unreachable and is eliminated as
well. The resulting optimized code is shown in Figure 2.6.

rI = 0

rR = rB
L0: INV rI ≥ 0 ∧ rI : int ∧ rR : bool

if rI ≥ rL goto Lend

rT = ∗(rA + rI)
rR = rR & rT
goto L0

Lend: return rR

Figure 2.6: The agent code after bounds-checking optimization.

Even though Touchstone differs from other compilers in that it outputs invariants, I claim
that it does not do more work than other optimizing compilers for the purpose of discovering
the invariants. Take, for example, the typing invariants. The typing information is known
in the compiler front end; all Touchstone has to do is to preserve it from the front end of the
compiler all that way through the code generation phase. The same is true for the invariant
annotations. Any optimizing compiler that removes array bounds checks from a loop body
employs some static analysis to discover code properties that amount to loop invariants. On
top of that, Touchstone records these invariants and emits them together with the code.

3The Touchstone compiler described in this dissertation does not handle correctly arithmetic overflow.
While it is quite easy to arrange the logic inference rules for correct handling of arithmetic overflow (and thus
to plug the safety hole in the PCC infrastructure) it is significantly more difficult to modify the certifying
compiler and the theorem prover to use the correct inference rules.
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Before we continue the journey of our example agent through the proof-carrying code
protocol, I want to remark a couple of interesting aspects of certifying compilation. First,
it is worth taking some time at this point to think of other implications of the certifying
compiler design, besides its use as a PCC front end. Note that the code receiver does not
have to trust the certifying compiler because it has other means to verify that the emitted
code has the desired properties (type safety in this case). Note also that a correct compiler
must necessarily emit code that has the desired properties. This immediately suggests that
it is possible to test partially the correctness of the certifying compiler by attaching it to the
PCC infrastructure and verifying the proof for each compilation result. This procedure does
not verify the complete correctness of the compiler, but only that it emits code with certain
properties, such as type safety. In practice, many compiler bugs will, sooner or later, result
in target code that “crashes”. It is exactly this class of unsafe target programs that the
PCC infrastructure catches. And not that it does it without requiring the compiler tester to
run the target programs with several input data sets hoping to exhibit the bug. During the
development of Touchstone, numerous bugs have been reported this way. But since this is
not guaranteed to reveal all bugs, it was not surprising when traditional testing discovered
one more bug in the compiler. This suggests that the certifying compiler technique is useful
as a compiler development strategy, independent of whether mobile code interaction by PCC
is of interest or not.

The second remark is that the certifying compiler is only one of the many ways to produce
proof-carrying code. From the point of view of the PCC infrastructure it does not matter
how the code producer generates the annotations. The only thing that matters is that the
code be annotated properly. In fact, one could write the code of Figure 2.6 by hand or
by using interactive tools. This is an important aspect because it opens the proof-carrying
code technology to safety properties for which there are no fully automatic ways of creating
annotations. I shall have more to say about this important property of proof-carrying code
in Section 2.3.

Having discussed techniques for generating the annotations, we now return to the se-
quence of steps in the basic PCC protocol. Once the code producer generates the annotated
code, by using a certifying compiler or by any other means, it sends the code to the code
receiver, requesting it to be executed. This action initiates Step 3 in the proof-carrying code
protocol.

2.1.3 Step 3: Generating the Verification Condition

Upon receiving the annotated code, the code receiver performs a fast, detailed and auto-
matic inspection of the code. This is accomplished using a program, called the verification-
condition generator (VCGen), which is one component of the receiver-defined safety policy.
The purpose of VCGen is twofold: to perform simple syntactic checks on the agent code,



2.1. THE BASIC PROOF-CARRYING CODE PROTOCOL 21

and to emit a verification-condition predicate for all agent instructions that might violate
the safety policy. For a complete discussion of the verification-condition generator see Sec-
tion 4.2.

The syntactic checks that VCGen performs depend on the particular safety policy. For
example, a syntactic property commonly checked directly by VCGen is that all branch targets
are within the code boundary and that only functions that are allowed by the code receiver are
invoked. In addition, VCGen can enforce restrictions on the set of instructions or operations
that might occur in the agent code.

In some cases, the safety policy designer elects to restrict the syntax of the language
such that desired safety properties can be enforced syntactically. For example, VCGen could
enforce termination if the safety policy disallows function calls and backward branches. This
approach, while simple, could not be extended without crippling the expressiveness of the
language. For this reason most safety policies do allow potentially dangerous actions but
impose restrictions on their use. For example, the safety policy might admit memory read
operations provided the target address lies within the boundaries of a properly allocated
array. Compare this to a syntactically checkable memory-safety policy that disallows memory
read operations entirely.

The specific conditions under which an action is considered safe, expressed as a predicate
in the selected logic, is called the action precondition. In practice, most action preconditions
denote properties that are difficult or even impossible to verify directly. This is why VCGen
does not attempt to verify the action preconditions itself. Instead, it collects them all and
combines them with control flow information and with the specification part of the safety
policy to create the verification condition for the entire agent code.

VCGen is a constituent part of the safety policy and as such it must be designed in con-
junction with the other components: the logic and the specification. The ultimate criterion
that should guide this design process is to preserve the validity of the soundness theorem
stated informally below:

Theorem 2.1 (Soundness of the Safety Policy—Informal Statement) If the verifi-
cation condition corresponding to an agent and a specification is provable within the logic,
then the agent’s execution does not violate the safety policy, or equivalently, all action pre-
conditions are met during execution.

There is one implementation detail of VCGen that ought to be discussed here because it
imposes serious restrictions on other components of a PCC system. In order to detect the
potentially hazardous instructions in the agent code and to construct meaningful verification
conditions for them, VCGen must understand the semantics of the agent code in considerable
detail. To simplify this task of VCGen, and consequently to simplify VCGen itself, we adopt
the general design rule that whenever some information about the behavior of the agent
is difficult to discover, the code producer must provide it in the form of code annotations.
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However, to prevent erroneous annotations to mislead the verification process, VCGen must
take special care when using them.

One important class of annotations are the loop invariants. An invariant is a predicate
that the code producer claims to hold every time the execution reaches a given point in
the code. One constraint that VCGen imposes on the code is that each loop has at least
one loop invariant associated with it. Because of this constraint, VCGen can be simplified
considerably by not having to perform expensive program analysis for programs with loops.
The first obligation of VCGen when dealing with invariant annotations is to verify that
they are indeed invariant, and thus correct. Again, VCGen does not verify the invariance
itself, but emits as part of the verification condition a predicate stating that the invariant
must hold at the start of the loop and another predicate that states the preservation of the
invariant property for one arbitrary iteration. A second required class of annotations are the
preconditions and postconditions for the functions defined and used internally by the agent.
In fact, a specification is required for every function, but the external ones are provided by
the safety policy.

To illustrate the operation of VCGen, consider again the agent code shown in Figure 2.6
with the specification of Figure 2.3. The verification condition for this code and specification
is the closed predicate shown in Figure 2.7. Note in line 2 the occurrence of the function
precondition, and in line 3 the statement that the loop invariant holds initially when rI has
value 0 and rR is set to the initial value of rB. Then, in lines 4–6 we have the statement that
the loop invariant is preserved through one iteration of the loop. Note in line 5 the invariant
before the loop and, in line 6, the looping condition followed by the invariant at the end of
the loop with the new values for rI and rR. So far, the verification condition was concerned
with verifying the invariance of the claimed invariant. In line 7 we see the first (and unique,
in this example) instance of an action precondition for a potentially dangerous operation:
the memory read from address rA + rI . Note that VCGen in isolation does not enforce a
particular memory safety policy; it just marks the memory read and the target address by
means of a “saferd” predicate. It is up to the logic to define the meaning of this predicate
and hence of the memory safety. This way, the same VCGen can be used for a variety of
memory safety policies just by changing the logic. Finally, the last part of the verification
condition enforces the postcondition (line 8) in the event the loop actually terminates.

To initiate the next step of the PCC protocol, the code receiver sends the verification
condition predicate to the proof producer and then waits for a proof to be returned. If such
a proof exists within the logic, the soundness theorem for VCGen ensures that the agent is
safe to run.

2.1.4 Step 4: Proving the Verification Condition

Upon receiving the verification condition, the proof producer attempts to prove it according
to the logic that the administrator of the code receiver specifies as part of the safety policy.
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1 ∀rA.∀rB.∀rL.∀m.
2 rB : bool ∧ rA : array(bool, rL) ⊃
3 (0 ≥ 0 ∧ 0 : int ∧ rB : bool) ∧
4 ∀rI .∀rR.
5 rI ≥ 0 ∧ rI : int ∧ rR : bool ⊃
6 (rI < rL ⊃ rI + 1 : int ∧ rR & sel(m, rA + rI) : bool ∧
7 saferd(rA + rI)) ∧
8 (rI ≥ rL ⊃ rR : bool)

Figure 2.7: The verification condition for the agent of Figure 2.6. The scope of universal
quantification and implication operators extends to the end of the predicate or to a closing
parenthesis.

Because the code receiver does not have to trust the proof producer, any system can be the
proof producer; in particular the code producer can also act as a proof producer. For the
most part, the proof generator is a general-purpose theorem prover for first-order predicate
logic extended with special-purpose axioms, such as those presented in Figure 2.2.

. rI ≥ 0 ∧ rR : bool
v

. rR : bool D
. rR & sel(m, rA + rI) : bool

D =
. rA : array(bool, rL)

u
. sizeof(bool) = 1

. rI ≥ 0 ∧ rR : bool
v

. rI ≥ 0 . rI < rL
w

. sel(m, rA + rI) : bool

Figure 2.8: Fragment of the proof of the verification condition of Figure 2.7. For typographic
reasons, the subproof D is shown separately. In this proof, the following assumptions are
used: “rA : array(bool, rL)” (from line 2, referred to as u), “rI ≥ 0 ∧ rR : bool” (from line
5, referred to as v), and “rI < rL” (from line 6, referred to as w).

For first-order logic, many theorem-proving systems have been implemented, most of
which are able to prove typical verification conditions, sometimes with the help of additional
tactics. To be usable as a PCC proof producer, a theorem prover must not only be able to
prove verification conditions but must be also capable of generating detailed proofs of them.
Furthermore these proofs must be expressed using the axioms and inference rules specified
as part of the safety policy. The major difficulty here is to make the theorem prover output
the proof in any convenient format, because once we have all the proof details, it is generally
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easy to transform them into the format expected by the proof checker on the code receiver.
The theorem prover described in Chapter 7 of this dissertation follows the modular design

first suggested by Nelson and Oppen [NO79]. The theorem prover uses several decision
procedures, the most notable ones being Simplex, for deciding linear inequalities, and the
congruence closure, for deciding equalities. In addition, the theorem prover can be easily
customized to a particular safety policy by extending it with special-purpose axioms such as
those of Figure 2.2.

It is not possible, in general, to guarantee that a given theorem prover can prove the
verification condition for an arbitrary safe agent. However, it is possible to achieve automatic
proving of verification conditions when using a certifying compiler. Consider for example the
output of the Touchstone certifying compiler in the absence of any optimizations. The target
code is in this case a sequence of code patterns, each corresponding directly to a source level
construct. Thus, the type-checking algorithm that is used at source level to ensure that the
agent is type safe and memory safe can be easily modified to be able to prove the same
properties for the result of the compilation. This modified type-checking algorithm would in
fact be the required theorem prover. Now consider the more realistic case when the output
is optimized. Even in this case, there is only a finite number of code transformation patterns
that a given compiler can perform. All we need is a theorem prover that is able to discover
which transformation pattern was used at each step. In fact, the theorem prover does not
need to be as powerful as the compiler because a large amount of the information that the
compiler discovers through complex static analyses can be communicated to the prover as
part of the loop invariants.

Returning to our example verification condition of Figure 2.7, consider how the proof
would proceed, given the axioms in our logic. A fragment of the proof is shown in Figure 2.8,
namely the proof of the predicate “rR & sel(m, rA + ri) : bool” that occurs on line 6 of
the verification condition. When this proof is attempted, the following assumptions are
available: “rA : array(bool, rL)” (from line 2, referred to as u), “rI ≥ 0 ∧ rR : bool” (from
line 5, referred to as v), and “rI < rL” (from line 6, referred to as w). This proof fragment
uses the rule of “bitwise and” and the rule for typing an array element. The proof of the
memory-safety verification condition from line 7 proceeds in a similar manner.

The details of how the theorem prover discovers which rules to use and in what order are
presented in Chapter 7. I only remark here that the theorem prover is a complicated system,
involving complex interactions between decision procedures that are themselves complex.
Therefore, it is essential that the theorem prover not be included in the trusted infrastruc-
ture or else the assurance argument for PCC is weakened considerably. In fact, the theorem
prover and the system that hosts it need not be trusted because we can easily verify the
resulting proof using a simple proof checker, as described in the next section. This immedi-
ately suggests a simple method to test a theorem prover: after each successful run, verify the
emitted proof using the proof checker; a proof checking failure signals a soundness error in
the theorem prover. My practical experience shows that this testing procedure is extremely
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effective at discovering subtle bugs, while having only a very small run-time cost. This pro-
cedure does not guarantee that all latent theorem prover bugs are found. But it guarantees
to find them as soon as they manifest themselves.

While the proof checker can be used for testing the soundness of theorem provers, it does
not help to discover completeness errors. A completeness error is when the theorem prover
fails to prove a predicate that, by design of the prover and its decision procedures, should be
provable. Completeness bugs are even more difficult to spot than soundness bugs, because it
is difficult to distinguish them from the instances when the decision procedures themselves
are incomplete. Fortunately, because we use the theorem prover in conjunction with the
certifying compiler and VCGen, we can also discover many completeness errors. Recall that
the certifying compiler for a type-safe language is supposed to produce only type-safe target
code that, together with the loop invariants, must lead to guaranteed provable verification
conditions. If the theorem prover cannot prove such a verification condition, then we are
facing either a compiler bug (manifested as unsafe target code) or a prover incompleteness
bug. In effect, the ensemble of the certifying compiler and VCGen provides a method for
automatically producing very large predicates that are guaranteed to be provable. In this
fashion, I have discovered very subtle errors both in individual decision procedures and in the
interaction among them, errors which would have been extremely difficult to spot otherwise.

Because of the major software engineering advantages of designing the theorem prover to
emit easily checkable proofs, and because such a design is not much more complex than the
one used traditionally, my experience suggests that all theorem provers should be certifying,
independent of whether they are used for proof-carrying code or not.

2.1.5 Step 5: Verifying the Proof

The last step in a PCC session is the proof validation step performed by the code receiver to
verify the correctness of the proof returned by the proof producer. This phase is performed
using a proof checker that verifies that each inference step in the proof is a valid instance
of one of the axioms or inference rules specified as part of the logic. In addition, the proof
checker verifies that the proof proves the same verification condition that was generated in
Step 3 and not another predicate.

So far, we have ignored the details of the actual representation of verification conditions
and proofs as they are produced and sent back and forth. We cannot ignore this aspect any
longer because the algorithm used for proof checking depends intimately on the method used
for representing predicates and their proofs. In this section, I describe only the basic princi-
ples that are behind proof representation and validation, and defer the complete formalism
and implementation details to Chapter 5.

A good technique for representing and validating proofs must have the following desirable
attributes:
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• The representation of proofs and the proof checking algorithm should be logic inde-
pendent so that the implementation can be reused for multiple applications of proof-
carrying code. Even the details of proof checking that must necessarily depend on the
particular logic must be isolated in a high-level logic description file. This property
also leads to an increased level of confidence in the PCC infrastructure.

• The proof checking algorithm must be simple so that it can be trusted easily.

• Proof checking must be relatively fast so that its cost is amortized quickly.

• Proofs and predicates must be represented in a compact form in order to minimize the
cost of communication between the code receiver and the proof producer.

Fortunately, most of the above desiderata can be attained by using techniques developed
as part of basic type-theory research. The Edinburgh Logical Framework (also referred to
as LF) has been introduced by Harper, Honsell and Plotkin [HHP93] as a metalanguage for
high-level specification of logics. LF provides natural support for the management of binding
operators and of hypothetical and schematic judgments through LF bound variables. This
is a crucial factor for the succinct formalization of proofs.

For the purposes of this section, we can view LF as a typed λ-calculus, with variables,
constants, applications and abstractions. To represent predicates in LF we first declare a
set of LF constants standing for the predicate constructors. Proofs are represented similarly
by using a set of constants standing for the axioms and inference rules of the logic. The
ensemble of the constants denoting predicate constructors and inference rules is called an
LF signature and constitutes the concrete encoding of the logic in LF.

A fragment of the LF signature that defines the first-order predicate logic extended with
the rules of Figure 2.2, is shown in Figure 2.9. The top section of the figure contains decla-
rations of the type constructors exp, tp and pred corresponding respectively to expressions,
types and predicates, and of the type family pf indexed by predicates. In the middle section
of Figure 2.9 there are the declarations of a few syntactic constructors. For example, the
LF constant true is declared to have type pred, meaning that it is a nullary predicate con-
structor, and the constant array is declared as a binary type constructor whose arguments
must be a type (representing the type of the elements) and an expression (representing the
length) respectively.

In the bottom section of Figure 2.9 there are the declarations of a few inference rules as
proof constructors. To understand these declarations, note that if P is the representation of
a predicate, then “pf P” is the LF type of all valid proofs of P . For example, the constructor
truei is the representation of the axiom stating the truth of the predicate “true”. In the
next line we have the declaration corresponding to the conjunction introduction rule, that
can be used to create a proof of a conjunction from the proofs of the conjuncts. If we ignore
the Π binding operators, we see that the “andi” proof constructor must be applied to a
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exp : Type

tp : Type

pred : Type

pf : pred→ Type

true : pred

and : pred→ pred→ pred

imp : pred→ pred→ pred

int : tp

array : tp→ exp→ tp

of : exp→ tp→ pred

saferd : exp→ exp→ pred

truei : pf true

andi : ΠP :pred.ΠR :pred.pf P → pf R→ pf (and P R)
andel : ΠP :pred.ΠR :pred.pf (and P R)→ pf P
szbool : pf (= (sizeof bool) 1)
rdarray : ΠM :exp.ΠA :exp.ΠI :exp.ΠL :exp.ΠT :tp.

pf (of A (array T L))→
pf (= (sizeof T ) 1)→
pf (>= I 0)→
pf (< I L)→
pf (of (selM (plus A I)) T )

Figure 2.9: Fragment of the LF signature corresponding to the logic of Figure 2.2.

proof of some predicate P and a proof of R to obtain an LF expression that represents a
valid proof of “P ∧ R”. Similarly, the last declaration shown in Figure 2.9 encodes the last
inference rule shown in Figure 2.2.

To illustrate the LF encoding of proofs, consider the subproof D from Figure 2.8. The
LF encoding of this fragment is shown in Figure 2.10. If we ignore the boxed components,
then the LF representation is a straightforward expression of the proof tree structure: use
the “rdarray” inference rule with the assumption u as the first hypothesis, followed by the
axiom “szbool”, then by the conjunction-elimination-left rule applied to the assumption v,
and finally by the assumption w. Furthermore, by using the declarations of Figure 2.9 and
appropriate types for the assumptions (i.e., u has type “pf (of A (array bool L)”, v has
type “pf (and (>= I 0) (of R bool))”, and w has type “pf (< I L)”) then we can verify
that the whole term of Figure 2.10 has type “pf (of (selM (plus A I)) bool)”.

So far we considered the proof representation problem in isolation from the proof valida-
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D = rdarray M A I L bool u szbool (andel (>= I 0) (of R bool) v) w

Figure 2.10: The LF representation of the proof fragment of Figure 2.8. The boxed parts
are redundant as explained in the text.

tion problem. Nevertheless, it is suggested by the representation example discussed above
that the LF type system can be used to check proof validity. Specifically, if D is an LF
expression of type “pf P”, for some predicate P , then D is a representation of a valid proof
of P hence such a proof exists meaning that P is a valid predicate. More precisely, in or-
der for the code receiver to be satisfied that a verification condition is provable within the
logic, it must receive from the proof producer an LF expression D that can be checked to
have the type ”pf VC ”, where VC is the LF representation of the verification condition.
Formal statements of the adequacy of LF type checking for proof checking are proved both
in [HHP93] and in Chapter 5.

Although I do not show here the precise definition of the LF type system and the LF type-
checking algorithm, I remark only that, because of the simplicity of the LF language, the
type-checking algorithm is also simple and can be easily turned into simple and trustworthy
proof checkers. Furthermore, the LF type-checking algorithm is independent of a particular
signature, and therefore independent of a particular logic. The only dependency on the logic
is the LF signature, which is a straightforward encoding of the axioms and inference rules.
In conclusion, LF attains three of the four desirable properties listed at the beginning of this
section. The only missing property is the compactness of proof representations.

LF representation of proofs are not compact because of a large amount of redundancy
in the representation. There are two main forms of redundant terms that occur in the LF
representation of a proof. First, there are terms that can be recovered from the proved
predicate. These are called inherited terms. Then, there are terms that can be recovered
from the context in which they occur in the proof. These are called synthesized terms.

To illustrate informally the redundancy of LF representation, consider the LF proof of
Figure 2.10 which has type “pf (of (selM (plus A I)) bool)”. From this type, considering
the declared type of the top-level constant “rdarray”, we can inherit the first, second, third
and fifth arguments of “rdarray”. The fourth argument of “rdarray” can be synthesized
from the type of “u” or “w”. Then, the first argument of “andel” can be inherited from the
type of the entire application of “andel” and the second argument can be synthesized from
the type of “v”.

It seems natural to try to avoid representing redundant subterms of proofs. In Chapter 5
I show how this can be done in a systematic manner by extending the LF framework to
deal with missing subterms that can be either inherited or synthesized by using a suitably
modified type-checking algorithm. The resulting framework is called implicit LF or LFi.

To illustrate the effect of representing proofs implicitly, I show in Figure 2.11 the LFi
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Di = rdarray u szbool (andel v) w

Figure 2.11: The LFi representation of the proof fragment of Figure 2.8. The boxed compo-
nents are redundant.

version of the representation from Figure 2.10. Note that now the representation contains
the entire structure of the proof tree and nothing more. In practice, the effects of implicit
representation are more drastic than what is suggested in this simple example. Experimental
measurements show that the size of the implicit representations of a proofs is approximately
equal to the square root of the size of LF representation, so that the benefits of LFi become
larger as the proofs are larger. Furthermore, similar benefits are observed for the time
required for proof checking, because the synthesized and inherited subterms do not require
type checking. In a few of the larger experiments with PCC, the implicit representation
can make the difference between completely impractical proofs of tens of megabytes and
manageable proofs of tens of kilobytes.

By solving the proof compactness problem at the abstract level of LF, I am able to obtain
a general and logic-independent solution and also to prove formally the adequacy of the LFi
type-checking algorithm for proof reconstruction and checking.

This concludes the overview of the basic proof-carrying code protocol, as shown in Fig-
ure 2.1. The rest of this dissertation is concerned both with the formal and implementation
details of the components and steps described in this overview. Before that, however, it is
worth considering several variations from the basic PCC protocol.

2.2 Variants of Proof-Carrying Code

Figure 2.1 and the five-step process described in Section 2.1 present a canonical view of
proof-carrying code. However, this approach to PCC is not the only one possible. By
redistributing the tasks between the entities involved we can adapt PCC to special practical
circumstances while maintaining the same safety guarantees.

For example, in one variant of PCC the code producer runs VCGen itself and then
submits the resulting predicate to the proof producer directly. Then the code and the proof
are sent together to the code receiver that runs VCGen again and verifies that the incoming
proof proves the right verification condition. This arrangement is possible because there is
nothing secret about VCGen and it can therefore be given to untrusted code producers to
use. To retain the safety guarantees of original PCC, it is necessary that the code receiver
repeats the VCGen step in order to produce a trustworthy verification condition. Because
this version saves a communication step in generating the safety predicate, it is preferred
over the interactive version when the latency of the verification must be minimized.
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In another variant of PCC the code receiver does itself the proof generation. For this
to be possible it must be the case that the verification condition be relatively easy to prove
automatically without extra knowledge about the program. This variant of PCC is useful
in situations when the generated proof would be too large to send over the communication
channel between the proof producer and the code receiver. Even though the receiver does
more work in this variant of PCC, the safety-critical infrastructure, consisting of VCGen and
the proof checker, remains the same. One could be tempted to save the cost of generating,
storing and verifying the proof altogether by trusting the theorem prover on the receiver
side. But this savings is at the expense of greatly increasing the size and complexity of the
safety-critical infrastructure, and practical experience suggests that relying on the soundness
of a complex theorem prover is a dangerous game.

Yet another scheme for employing PCC is to use one of the variants above to establish
the safety of the code on a firewall machine, and then forward the code to any actual receiver
within the enclave, possible accompanied by a digital signature. Note that in this case it is
the proof checker and not a fallible human agent who signs the code.

No matter which of these or other variants are chosen, they all share the same charac-
teristic of requiring supporting information in addition to the code so that it is possible to
rely only on a small and well-defined safety-critical infrastructure, given by a simple proof
checker and VCGen.

2.3 Benefits and Costs of Proof-Carrying Code

Proof-carrying code has several key characteristics that, in combination, give it an advantage
over previous approaches to safe execution of foreign untrusted code. In addition, there are
costs associated with using PCC. I state these advantages and costs here up front to provide
a logical completion of the overview chapter, even though the supporting data and examples
are presented later in this dissertation.

For proof-carrying code several advantages can be claimed:

1. PCC is general. PCC can be used to enforce more than memory safety, more even than
type safety. At an extreme, PCC can be used to verify any code property for which
there exists a logic capable of expressing it. This includes many code properties that
would otherwise be undecidable to infer from the code alone. PCC has been tested with
safety properties ranging from memory and type safety to bounded resource usage.

2. PCC receiver infrastructure is low-risk and automatic. The proof-checking process
used by the code receiver to determine agent safety is completely automatic, and can
be implemented by a program that is relatively simple and easy to trust. Thus, the
safety-critical infrastructure that the code receiver must rely upon is reduced to a
minimum.
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3. PCC is efficient. In practice, the proof-checking process runs quickly. Furthermore, in
contrast to previous approaches, the code receiver does not modify the code in order to
insert costly run-time safety checks, nor does the receiver perform any other checking
or interpretation once the proof itself has been validated and the code installed.

4. PCC does not require trust relationships. The code receiver does not need to trust the
code producer or the proof producer. In other words, the receiver does not have to
know the identity of the producer, nor does it have to know anything about the process
by which the agent code was produced. All of the information needed for determining
the safety of the code is included in the annotated agent code and its proof.

5. PCC is flexible. The proof-checker does not require that agents be programmed in a
particular programming language. PCC can be used for a wide range of languages,
even machine languages, after appropriate adaptation of the VCGen component. Fur-
thermore, a code receiver can support multiple agent languages and safety policies with
a minimal duplication of the infrastructure components.

6. PCC generation can be automated in special cases. If the safety properties can be
decided statically or enforced through systematic run-time checks, a certifying compiler
together with a matching theorem prover can be used on the producer side to automate
the process of producing the annotations and proofs.

Once the safety policy is defined, PCC involves a two-stage interaction process. In the
first stage, the code receiver inspects the agent code and replies with a challenge, a predicate
that is provable only if the code is safe to execute. In the second stage, the code receiver
checks the validity of the proof using a simple and fast proof checker. If the proof is found
to be a valid proof of the verification condition, then the untrusted code is installed and
executed.

This two-stage verification process is a key design element contributing to the advantages
claimed above. In particular, this is the reason why PCC can be used to certify code
properties that would be very difficult, or even impossible to infer from the code directly.
Also, by staging the verification into a difficult phase (proof generation) and a simple phase
(proof checking) I am able to minimize the complexity of the safety-critical infrastructure.
This greatly reduces the risk that a bug in the system can lead to the failure to detect unsafe
programs. In fact, I have made it a design goal of PCC that any task whose result can be
more easily checked than generated should be performed by an untrusted entity (the code
producer or the proof producer) and then checked by the code receiver.

In addition to the PCC benefits for untrusted code execution, the prototype PCC system
that I have built demonstrates that ideas from PCC have software-engineering advantages
for building more robust theorem provers and compilers. The soundness of a theorem prover
does not have to be trusted; instead the prover should emit proofs that can be easily checked.
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Similarly, the correctness of a compiler does not have to be trusted completely; instead the
compiler should annotate the code so that a simple VCGen in conjunction with a theorem
prover can verify key properties of the result of each compilation. Finally, the combination of
a certifying compiler and a theorem prover can be used to discover unintended incompleteness
in a theorem prover. Because of these advantages, and because adapting a theorem prover
or a compiler to fit in the PCC framework is not difficult, all compilers and theorem provers
ought to be certifying!

The benefits of PCC and certifying compilation discussed above in this section do not
come for free. The costs of using PCC for active client-server interaction are:

1. Because PCC is a cooperative process, the code producer must be involved in estab-
lishing the safety of the agent code, in contrast with other approaches where the safety
enforcement is completely transparent for the code producer. This poses difficulty
in deploying PCC, as the potentially more numerous code producers need to be made
PCC-aware, not only the code receivers. In addition, wide deployment of PCC requires
establishing a standard logic and set of axioms, or libraries of logics and axioms.

2. Proof-carrying code prescribes a precise method by which code producers must cooper-
ate with code receivers to assist in the verification of agent properties. Less well-defined
is the method by which producers can cooperate with receivers for the purpose of es-
tablishing a mutually convenient safety policy.

3. A difficult problem on the producer side is the generation of code annotations. This
is even more difficult when the safety properties are complicated, or when the agent
code is heavily optimized. The certifying compiler can do this automatically for certain
classes of safety properties. When the certifying compiler approach fails, interactive
program verification techniques must be used.

4. Finally, proving the verification conditions is a difficult task. The theorem prover that
is part of the current PCC system is powerful, but not complete. It is also modular,
so new decision procedures can be easily added, but in the difficult cases, the prover
must be guided by the user. Theorem proving can be automated when the code and
the annotations are compiler-generated, by extending the prover to handle the finite
number of patterns of verification conditions that are possible. This is how automation
is achieved for the Touchstone certifying compiler.

The costs enumerated above are important, but fortunately they are incurred only by the
code producers. By comparing the list of benefits and the list of costs, it becomes apparent
the intentional design strategy for PCC: the burden of safety should lie on the producer and
not on the receiver of the code. This enables PCC to work with a very small, easy-to-trust
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and automatic infrastructure, so that the difficult work is done by the code producer, who is
in a better position to understand the agent code or to use interactive tools for that purpose.

A final difficulty of using PCC is establishing the safety policy. However, this cost does
not belong in the list above because it is a cost incurred by any method for enforcing the
safety of untrusted code. What is special in the case of PCC is that the safety policy must be
expressed in a concrete manner so that it can be exported to producers. This is in contrast
with other approaches where the safety policy is implicit in the implementation of a large
interpreter or compiler or a system-call interface. In fact, because PCC requires the safety
policy to be expressed in a very precise and concise manner it becomes easier for the designer
to avoid errors or even to prove formally the correctness of the safety policy.

To conclude this section I note that the relative balance of advantages and limitations
of proof-carrying code demonstrate that this is a promising way to deal with the safety of
untrusted code without having to pay the costs of high run-time overhead or of a complex
trusted computing base. In the next section, I continue the discussion of the advantages and
limitations of proof-carrying code in general and of my implementation in particular.

2.4 Frequently-Asked Questions

The purpose of this chapter is to give only a high-level overview of the techniques of proof-
carrying code and certifying compilation. Thus, many details have been necessarily deferred
to the main body of the dissertation. My experience with public presentations of this mate-
rial shows that, at this superficial level of detail, it is quite difficult to grasp the fundamental
characteristics and limitations of the proposed techniques. Matters are complicated even
more by the running example that I use to make the presentation more concrete and easy
to follow. This example can mislead the reader by blurring the distinction between the fun-
damental capabilities of proof-carrying code and certifying compilation and the limitations
of a given implementation.

In this section I make an attempt to address such misunderstandings by answering some of
the most common questions that arose during various presentations of this material. Unlike
the main body of this overview chapter that focuses on what the proposed techniques can
do, this section, just like some of my past audiences, focuses on what the techniques or their
implementation cannot do, at least not yet. This section should be of interest both to users
trying to understand if my thesis work solves their problems and to researchers who would
like to extend this work.

Q: What is the relationship between proof-carrying code and certifying compilation?

A: Proof-carrying code is concerned with verifying that a fragment of code meets a safety
specification. For that purpose, proof-carrying code requires code annotations and a proof of
safety constructed according to precise rules. Proof-carrying code is general in the sense that
it can be used with any safety property for which there exists a formalism for distinguishing
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safe programs from the unsafe ones. Furthermore, proof-carrying code is indifferent to how
the code annotations and the proofs are generated.

Certifying compilation is one particular way of producing the code annotations and the
proofs required by proof-carrying code, for a restricted class of safety properties, namely
type safety. However, to compensate for the lack of generality, certifying compilation is
completely automatic, provided the agents are written in the specified source language.

Q: How does PCC manage to verify statically even undecidable code properties?

A: It is true that for most interesting safety properties there is no decision procedure. The
distinctive advantage of proof-carrying code is that it sidesteps undecidability by requiring
a proof that the code has the desired property. This reduces the problem to proof check-
ing, which is not only decidable but also relatively simple for most logics. Of course, this
moves the burden of deciding whether the property holds to the code producer. This is
appropriate because, while the code receiver must be prepared to handle agents produced by
various means and thus safe for different reasons, a given code producer usually has specific
information as to why its agents are safe. Touchstone is a notable example of such a code
producer.

Q: Is verification condition generation a required component of proof-carrying code?

A: No, proof-carrying code can be implemented without a verification condition generator.
Consider, for example, the situation when the agent code is written in a typed language, the
safety property to be verified is well-typedness, the code annotations are variable declarations
and the proof is a typing derivation. The PCC infrastructure in this case is a type checker.
In general, any PCC infrastructure must contain a parser and a proof checker. In the case
of a type checker these two functionalities are blended together. The advantage of using
a verification condition generator is that it separates the two functionalities, resulting in
increased portability and flexibility. The verification condition generator parses the code
and performs syntax checking. All the relevant information about the code is encapsulated
in a predicate from an architecture-independent logic. This predicate can then be processed
with standard tools like theorem provers and proof checkers. However, there are situations
when using a verification condition generator limits the enforceable safety properties, as we
shall see below.

Q: Why isn’t it possible for a malicious code producer to pack a trivially-valid proof with an
unsafe agent code?

A: Because the proof is checked not only to be valid but also to correspond to the actual agent
code. This is done indirectly by verifying that the proof proves the particular verification
condition obtained from the agent code.

Q: What happens if the code or the proof components of a PCC binary are modified while in
transit from the code producer to the code receiver?

A: There are three possible scenarios. First, if the code is modified such that its verification
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condition does not change, the proof and hence the code are accepted. (Section 6.5 shows
that many common optimizations transform the code in exactly this manner.) Second, if
the proof is unchanged but the code is modified such that its verification condition changes,
the proof checker rejects the code independently of whether it is safe or not. Finally, if
both the code and the proof are modified so that the new proof is a valid proof of the
verification condition extracted from the new code, the PCC infrastructure accepts the code
independently of whether it has the same functionality as originally programmed by the code
producer. Note, however, that in the latter case the code must still be safe for it to have a
proof of safety. Thus, PCC is guaranteed to enforce safety but not authenticity.

Q: Can the certifying compiler technique be used to generate proofs of other safety properties,
beyond type safety?

A: The crucial detail that makes automatic certifying compilation possible is that the code
properties that must be proved for the target programs are statically checkable for the source
programs. Thus, certifying compilation can be applied to any code property for which
there exists a conservative decision procedure for a suitably restricted source language. The
language restrictions are almost always necessary to avoid the inherent undecidability of
many interesting properties for programs written without restrictions. For example, if we
want our certifying compiler to emit proofs of termination we can restrict the language to
disallow general looping and recursion. We can still allow structural recursion and iteration
when they can be proved statically to correspond to well-founded induction.

Q: What are the source-level constructs of the C programming language that Touchstone does
not handle?

A: Touchstone does not support those constructs of C that can be used to generate unchecked
run-time errors. These are: pointer arithmetic, the address-of operator, arbitrary casts,
union types, stack-allocated arrays, and memory deallocation. None of these restrictions
limits drastically the utility of the language. For example, pointer arithmetic can be replaced
with array-index arithmetic, most uses of the address-of operator are unnecessary if the
language supports call-by-reference, and memory deallocation can be replaced with garbage
collection. In addition to the unsafe features of C, the implementation described in this
dissertation does not support floating point and function pointers even though they could
be supported.

Q: Can proof-carrying code be used for programs that use dynamic allocation? What about
Touchstone?

A: Both proof-carrying code and the Touchstone compiler can handle dynamic memory
allocation. The trick is to introduce an additional element to the machine state, namely the
allocation state, that is changed only by the allocation function. Then, the accessibility of
memory locations (i.e., the saferd and safewr) predicates are changed to depend on the
allocation state.
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Q: Can proof-carrying code be used with explicit deallocation or garbage collection? What
about Touchstone?

A: Explicit deallocation can be misused to generate dangling pointers and for that reason
the Touchstone compiler does not support it. However, Touchstone does not prevent the
use of a conservative garbage collector. Proof-carrying code can, in principle, handle explicit
deallocation, just because it is possible to formalize the notion of a safe memory deallocation
operation. However, all such formalisms are difficult to use and there has been only little
progress in automating the proof generation problem.

Q: How does proof-carrying code handle the run-time stack?

A: There are at least two ways in which the run-time stack could be handled. First, accesses
to the stack could be handled as arbitrary accesses to memory, in which case the safety
policy must specify the details of the dynamic allocation and deallocation of stack frames. To
simplify the safety policy and to reduce the size of the proofs, the current implementation of
VCGen views the stack frame as a local addition to the register file. This is possible because
the program cannot create aliases to stack locations. The drawback of this approach is
that it complicates the trusted infrastructure to handle a specific programming paradigm.
However, in this particular case I felt that handling the stack directly would be useful to a
large number of applications and would result in large reductions in the size of the proofs.

Q: How does proof-carrying code handle arithmetic overflow? What about Touchstone?

A: Proof-carrying code can handle arithmetic overflow correctly by carefully selecting the
axioms and inference rules of arithmetic (see Section 3.3 for an example). The drawback
is that many decision procedures that work well for linear arithmetic do not work anymore
for the modular arithmetic involved in handling overflow. Because of this reason, my imple-
mentation of the Touchstone compiler and of the proof generator do not handle arithmetic
overflow. This also means that the implementation of the compiler and theorem prover de-
scribed here leaves a loophole open for malicious programs to generate unchecked memory
errors.

Q: Can proof-carrying code handle sum types?

A: Yes, there are no difficulties in handling sum types. An example of a simple sum type is
the pointer option type described in Section 6.2. Touchstone does not handle the union types
of the C language but it could handle sum types as in Standard ML, where tag checking
is under the control of the compiler to ensure that a value of a sum type is always used
correctly.

Q: Can proof-carrying code handle closures and objects, and more generally, pointers from
data structures to code? What about Touchstone?

A: The implementation of VCGen, and thus of PCC, described in this dissertation does
not handle first-class functions. The reason is that at each function-call site VCGen must
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know what precondition and what postcondition to use. In the current implementation this
is achieved by requiring the function address in all function calls to be a literal value. This
limitation can be removed in those cases when all of the actual functions that might be
invoked by a given call instruction share a common precondition and postcondition. This
is the case, for example, in a higher-order typed language when the specifications contain
only types. Another example in this category is an object-oriented language with dynamic
method lookup.

Q: Can proof-carrying code handle run-time code generation?

A: The implementation of proof-carrying code described in this dissertation cannot handle
run-time code generation. This is because VCGen must be able to perform a static inspection
of the entire code that is reachable from the agent entry point. It seems that, in order to
handle dynamically-generated code, the VCGen approach must be changed drastically or
perhaps even abandoned.

Q: Can proof-carrying code handle properties that are not safety properties, such as termi-
nation or information flow?

A: Proof-carrying code could handle properties that are not safety properties because it has
access to the entire agent code. However, once we have settled on using VCGen as the basis
for the PCC infrastructure we are limited to handling only safety properties. This means
that PCC can verify that certain run-time events defined as unsafe do not happen but it
cannot enforce that certain events (e.g., termination) must happen. A limited, although
practical, variant of the latter class of events can still be handled by VCGen-based proof-
carrying code if we impose deadlines for various events. Thus, termination is not a safety
property but termination within a given number of instructions is a safety property and can
be handled by the proof-carrying code infrastructure described in this thesis.

Q: There are processors that will malfunction when less than a specified number of machine
cycles intervene between certain instructions. Is this a safety property enforceable with proof-
carrying code?

A: Yes, this is a safety property. The unsafe event that must be prevented is “instruction
B is attempted after less than K cycles since instruction A was executed”. Although not
described in this dissertation, VCGen can be extended with instruction counting to enforce
this kind of safety properties. Using such an extension, I experimented successfully with
enforcing resource-usage bounds (e.g., bounded termination, bounded memory allocation,
bounded bandwidth use) for agents. Such an experiment is described in [NL98c].

Q: Can proof-carrying code handle aliasing? What about Touchstone?

A: Yes, proof-carrying code can handle aliasing because VCGen captures all of the informa-
tion required to account for the effects of aliasing. VCGen does not attempt to predict the
effect of a memory write. Instead, VCGen just records the write with a symbolic address and
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it is up to the proof producer to discover what locations could have been affected. Aliasing
is not an issue for Touchstone because it does not affect type safety. Touchstone does not
care about the contents of memory locations that could be aliased. It only cares about the
type of the contents.

Q: What is the relative size of proofs, annotations and executable code?

A: It depends on the safety property that is being verified. For type safety, the experimental
results from Section 8.2 show that the proofs are about 2.5 times the size of the executable
code, while the annotations are 30% of the size of the code. In a few experiments with
more complex safety properties such as bounded use or resources I have observed proofs that
are even 10 times larger than the code. As a rule of thumb, if the safety property is more
complex the proof is longer.

This list of questions cannot be comprehensive. If you cannot find the answer to your
question here, or if the answer is still too imprecise for your taste, you have just found a
reason to read the rest of this dissertation and, for the ultimate detail, even the appendices.



Part I

The Proof-Carrying Code
Infrastructure

In this first part, which consists of three chapters, I discuss the technique of
proof-carrying code from the point of view of the system that receives the code
and verifies the associated safety proof. The details of how the proofs are
actually produced are the subject of Part II.
Chapter 3 gives the formal requirements of a safety policy, that is, the set of con-
ditions that define when particular actions (e.g., function calls, memory reads)
can be safely performed by the agent. Then, Chapter 4 describes a verification-
condition generator that, when given a program, produces a predicate that is
provable in a given logic only when the program adheres to the safety policy.
This part ends with Chapter 5 that describes the proof checker that can be used
by a code receiver to verify that a proof object is a valid proof of the verification
condition.





Chapter 3

The Safety Policy

Following Schneider [Sch98], a security policy is a predicate on sets of agent executions. A
program for an agent is a static encoding of the set of all possible executions of the agent.
A program is said to satisfy a security policy if the security policy predicate holds for the
set of all possible executions of the program.

An important class of security policies are the security properties, which are defined
in [AS85] as those security policies that can be specified by means of a predicate on individual
executions, or equivalently by imposing constraints on each individual execution as opposed
to constraints on the set of all possible executions. There are interesting security policies that
are not properties. For example, an information flow security policy prohibits correlations
between the values of state components with different secrecy status, so that principals
cannot infer things about a state component considered classified by observing the values of
other unclassified state components. It is obvious that information flow is not a property,
because the very notion of correlation involves more than one execution. If we only look at a
single execution or even at at subset of the possible executions we might notice correlations
that do not exist when all executions are considered.

A further subclass of security properties are the safety properties, which stipulate that no
“bad thing” happens during the execution [Lam77]. The safety properties are characterized
by the fact that they hold for an execution only if they hold for all finite prefixes of the
execution. This means that if a safety property fails, the point of failure is identifiable,
which makes it possible to check safety properties at run time [Sch98]. Not all security
properties are safety properties. There are also liveness properties that stipulate that certain
“good things” (e.g., termination, release of a resource) must happen [Lam77]. In fact, it can
be proven that any security property can be expressed as a combination of a safety and a
liveness property [AS85].

For the purposes of this dissertation, I will concentrate on security properties and fur-
thermore on safety properties only. This subset of security policies covers many practical
needs. Note that omitting liveness is not such a serious restriction as it might seem. In
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many practical applications, we require not only that the “good thing” happens, but that it
happens quickly. By limiting the time until the “good thing” must happen (e.g., timeouts
on termination or resource release) we are suddenly dealing with safety properties. However,
because dealing with the notion of time is tricky and requires special machinery, the safety
polices discussed in this dissertation do not involve timing properties.

Although not demonstrated in this dissertation, proof-carrying code can in fact certify
more than just safety properties. It can deal even with general security properties because
the code receiver has access to the code of the agent and not just to single execution traces.

More concretely, assume that an execution is represented as a sequence of state/action
pairs, where the state is a mapping from registers and memory locations to values and the
actions are events relevant to the safety policy (the potentially “bad things” that might
happen). Each pair in the execution sequence says that an action is attempted for a given
value of the state. One way to characterize a safety policy in this setup is by means of action
preconditions, which are predicates on states. An execution is safe only if in each state/action
pair, the action precondition holds for the state component of the pair. The distinguishing
feature of this definition of safety is that it examines only the current state for the purpose
of deciding whether an action is allowed. However, this does not diminish the generality of
the definition, because we can arrange for the state to contain enough history information
about the execution so that we can implement an arbitrary predicate on execution prefixes
as a predicate on the current state only. One way to do this is by extending the register set
with a history pseudo-register, whose value is the sequence of previous execution states.

The set of actions that I am going to consider in this thesis are (1) the execution of indi-
vidual instructions, (2) the invocation of receiver-provided functions and (3) the termination
of the agent execution. Correspondingly, this enables the safety policy to enforce various
kinds of restrictions, as follows:

1. Restrictions on what instructions can be executed and in what conditions. This part
of the safety policy is referred to as instruction safety.

2. Restrictions on what runtime functions (system calls) can be invoked, under what
conditions they can be invoked and what can be assumed upon their return. This part
of the safety policy is referred to as system-call safety.

3. Restrictions on the input/output behavior of agent entry points. This part of the safety
policy is customarily referred to as partial correctness.

The syntax of the language (described in Section 3.1) effectively restricts the kind of
instructions that an agent can execute. The other aspects of the safety policy are introduced
as part of a safe interpreter for the language (described in Section 3.2). The distinguishing
feature of the interpreter is that it fails whenever the safety policy is violated. Note that
this interpreter serves only as a definition of the safety policy with respect to which the PCC
infrastructure is proved correct. There is no need to implement such an interpreter.
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3.1 SAL: A Generic Assembly Language for Safe Agents

For the code receiver to be able to execute the agent and to make an informed choice of
whether the agent meets the safety policy or not, it must require that agents be written in
a specific language. One of the main advantages of proof-carrying code is that it can be
applied to a variety of languages, ranging from high-level languages all the way to machine
languages. I am focusing in this thesis on applications involving low-level languages mainly
because they require a smaller execution infrastructure at the code-receiver end and because
they give the code producer more freedom in optimizing the code. On the other hand,
describing proof-carrying code in the context of a concrete machine language is certainly
too specific. Instead, I choose to introduce a generic RISC-like assembly language, which
I call SAL, as the basis for the description of proof-carrying code. I designed SAL so that
most instructions in typical machine languages(either RISC or CISC) have direct and simple
translations into sequences of SAL instructions. SAL is generic in the sense that it can be
extended with operators that model various features of a target machine. SAL is safe in the
sense that there is a simple technique that enables a code receiver to ascertain that a given
program meets a certain safety policy.

The proof-carrying code infrastructure, and more concretely the VCGen, is defined in
this thesis as operating on SAL programs. There are two ways in which the infrastructure
described in this dissertation can be ported to a specific language. The easy way is to
implement VCGen only once for SAL, and to write translators from each agent language
of interest to SAL. As an example of how this is done, I describe in Section 3.3 translators
for the DEC Alpha and Intel x86 assembly languages. If the performance of the VCGen is
more important than its simplicity, one can integrate the translator into VCGen, effectively
obtaining a VCGen for a specific architecture.

The syntax of SAL instructions is shown in Figure 3.1. SAL is a load/store RISC architec-
ture, with a register set composed of general purpose registers, referred to as ri (i = 1, . . . , R),
and a distinguished register “ra” used to hold the return address from the current function.
The SAL machine also has a stack-pointer register that is manipulated using dedicated in-
structions. The number of general-purpose registers is not specified as it might depend on
the target architecture. In the rest of this section I describe informally the purpose of each
SAL instruction. The formal semantics of SAL is presented in Section 3.2.

In order to preserve the generality of SAL, I keep the set of arithmetic and conditional
operators generic. Thus, I consider that SAL has one generic binary expression operator
“EOP” and one generic unary conditional operator “COP” (for comparisons with zero). Note
that the operands of both kinds of operators are registers. The conditional-branch instruction
specifies also an immediate integer that is the relative offset of the target instruction in the
case of a successful comparison. The execution continues with the next instruction if the
comparison fails. The jump instruction is also relative.
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Registers: r ::= ri | ra i = 1, . . . , R
Instructions: I ::= r ← r′ Move

| r ← n Initialize
| r ← r′ EOP r′′ Arithmetic/Logical operations
| jump n Jump
| cond COP(r), n Conditional branch
| ra← pc + n Compute return address
| call F Function call F ∈ Func
| ret Function return
| r ←M [r′] Memory read
| M [r′]← r Memory write
| sp← sp + n Advance the stack pointer
| r ←M [sp + n] Stack read
| M [sp + n]← r Stack write
| Annot Annotations (defined in Section 4.2)

Numerals: n ∈ Z

Figure 3.1: The syntax of SAL.

The function invocation and return instructions are, just as in a typical RISC architecture,
simple control instructions. The return instruction uses the contents of the ra register as
its destination. The call instruction does not, as in many CISC architectures, obtain and
save the return address directly. For that purpose, SAL contains a dedicated instruction
that references the current value of the program counter. Note that with this definition of
SAL, the destination of a call must be a literal and cannot be a computed address. This
restriction simplifies considerably the PCC infrastructure but it has the drawback that it
does not permit the direct implementation of higher-order languages or dynamic method
lookup in object-oriented languages. We shall see in Section 4.2 that in many cases we can
relax these restrictions.

The memory operations in SAL have only the register-index addressing mode. This way
we are able to isolate in only one place (the generic expression operations) the various
computations that might be required to implement more complicated addressing modes.
In addition to the regular memory operations, SAL contains distinguished instructions for
accessing the stack, in which case only the index/offset addressing mode is supported. There
is also an instruction for incrementing/decrementing the stack pointer by a constant amount.
This effectively prevents the allocation on the stack of data whose size is not known statically.

Finally, SAL can be extended with annotations whose only purpose is to communicate
extra information about the program to VCGen. Semantically, the annotations have no effect
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on the machine state during the execution. In fact, in a practical implementation of PCC
the annotations are segregated in a special segment and are not part of the code. Examples
of annotations are discussed in Section 4.2 together with the definition of the VCGen.

3.2 The Operational Semantics of SAL

In the previous section I defined the syntax of SAL, and implicitly I specified the part of
instruction safety that limits the kinds of instructions that an agent may execute. In this
section, I specify the conditions under which each instruction can be executed (thus com-
pleting the discussion of instruction safety), as well as the system-call safety and the partial
correctness. I introduce these safety aspects by means of a SAL interpreter that is intended
to model a typical physical machine, except that it fails with an error whenever the safety
policy is violated. But first, I must discuss in more detail the notion of execution state of
the SAL interpreter.

Just as for a typical machine, the state of the execution consists of the value of the
program counter, the values of the registers and the state of the memory. Let U b be the
universe of base values, that is, the set of possible values for a machine register. In a
typical machine using two’s-complement representation on W bytes, we have that U b =
{x ∈ Z| − 28W−1 ≤ x ≤ 28W−1 − 1}. The state of the memory is encoded as a function from
a finite set of addresses to values. To simplify the presentation I am considering that the
addresses are also represented on W bytes, thus the universe of store values is U s = U b → U b.

For the purposes of recording the state of the execution it is convenient to store the state
of the memory as the value of a dedicated pseudo register “mem”. Similarly, it is convenient
to store the state of the stack pointer as part of the register state. Thus the evaluator records
a state for the set of registers Regs = {r1, . . . , rR, ra, sp, mem}.

For technical reasons having to do with various correctness proofs, I extend the state of
the SAL interpreter with a history H of register states, which contains the register states
at the moment of function invocations. The length of the history sequence is equal to the
depth of the function invocation chain from the initial activation of the agent program by
the code receiver. Therefore, let the state Σ be a triple of values <i, ρ,H>, where i ∈ U b is
the value of the program counter, ρ ∈ Regs → U b (except that ρ(mem) ∈ Us) is the state of
the registers and H is the call history represented as a sequence of register states.

The agent code consists of function definitions, whose bodies are sequences of SAL in-
structions. The functions implemented by the agent (whose set is denoted by ΦA) are of
two kinds. First there are the functions that are exported to the receiver (the entry points),
whose set is denoted by ΦE. Then there are the functions that the agent is using internally
for the purpose of implementing the functionality of the entry functions. The latter set of
functions is denoted by ΦI . In addition to these functions, a complete execution environment
also contains the code for the runtime functions (system calls) ΦS, which are provided by the
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receiver and made available to the agent code. The set of external functions in the system is
ΦX = ΦS∪ΦE. Thus, the set of all functions in the system is Φ = (ΦE∪ΦI)∪ΦS = ΦA∪ΦS.
It is important to distinguish between the agent-provided functions, which are untrusted,
and receiver-provided functions, which are trusted to have a safe behavior and to obey their
specification.

In order to preserve the generality of SAL, I am making only few assumptions about
the layout of instructions in the agent code and in the memory while they execute. I will
assume that all function bodies are loaded in disjoint areas of the code segment. Because
of this assumption, there is an isomorphism between valid instruction addresses i and pairs
consisting of a function name and an offset of the instruction within the function body
<F, j>. For example, the notation <F, 0> refers to the address of the first instruction of
function F . Each SAL instruction can occupy more than one memory word, and therefore
not all offsets or instruction addresses point to a valid instruction. I write i ∈ Dom(F ) to
denote that i is an instruction address that marks the beginning of a valid SAL instruction
(denoted by Fi) within the body of the function F . I assume that the size of an instruction is
a function only of the instruction itself, and I write “i++” to refer to the address immediately
following the instruction starting at i. Note that “i++” is not necessarily equal to “i + 1”
even if i + 1 ∈ Dom(F ). To accommodate relative jumps and branches I use the notation
“i+ n” to denote the usual arithmetic operation on instruction addresses.

Over the course of the next few pages I describe in detail the operation of the safe
interpreter shown in Figure 3.2 and at the same time I introduce notation and concepts that
arise during the discussion. The operation of the interpreter in a generic state <i, ρ,H>
consists of decoding the current instruction (shown in the first column of Figure 3.2) and to
choose a resulting state (shown in the second column), possibly depending on the outcome of
control flow checks shown in the third column. The interpreter as defined by the first three
columns of Figure 3.2 is meant to model a physical machine. What makes this interpreter
a formalization of a safety policy is the fourth column that contains the safety checks to be
performed at each step. An execution for which a safety check fails is considered to violate
the safety policy. Implicitly, the interpreter defines the safety policy.

For the register move, the initialization with a literal, the jump instruction and the
annotations there are no safety restrictions. The instruction safety component of the safety
policy for the generic expression operator “EOP” is described as a predicate SafeEOP defined
on U b × U b. Intuitively, the predicate SafeEOP(v′, v′′) holds only if the safety policy allows
the execution of “r ← r′ EOP r′′” in a state in which the values of the registers r′ and r′′

are v′ and v′′ respectively. In a similar manner we describe the instruction safety for the
conditional branches and memory operations.

The notation ρ[r ← v] denotes the state obtained by setting the value of the register r to
v in the current state ρ. The notation EOP denotes the function implemented by the machine
for the expression operator with the mnemonic “EOP”.
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Fi Σ′ Control flow test Safety requirement
r ← r′ <i++, ρ[r ← ρ(r′)],H>
r ← n <i++, ρ[r ← n],H>
Annot <i++, ρ,H>
r ← r′ EOP r′′ <i++, ρ[r ← EOP(ρ(r′), ρ(r′′))],H> SafeEOP(ρ(r′), ρ(r′′))
jump n <n+ i++, ρ,H>
cond COP(r), n <n+ i++, ρ,H> COP(ρ(r)) SafeCOP(ρ(r))
cond COP(r), n <i++, ρ,H> ¬COP(ρ(r)) SafeCOP(ρ(r))
r ←M [r′] <i++, ρ[r ← ρ(mem)(ρ(r′))],H> SafeRd(ρ(mem), ρ(r′))
M [r′]← r <i++, ρ[mem←

ρ(mem)[ρ(r′)← ρ(r)]],H>
SafeWr(ρ(mem),

ρ(r′), ρ(r))
sp← sp + n <i++, ρ[sp← ρ(sp) + n],H> Stack(n+ ρ(sp))
r ←M [sp + n] <i++, ρ[r ← ρ(mem)(ρ(sp) + n)],H> Stack(n+ ρ(sp))
M [sp + n]← r <i++, ρ[mem←

ρ(mem)[ρ(sp) + n← ρ(r)]],H>
Stack(n+ ρ(sp))

ra← pc + n <i++, ρ[ra← n+ i++],H> n+ i++ ∈ Dom(F )
call G <<G, 0>, ρ,H+ ρ> Stack(ρ(sp)−Max ) G ∈ Φ and

G ∈ ΦX ⊃ PreG(ρ)
call G <i, ρ,H> ¬Stack(ρ(sp)−Max ) G ∈ Φ
ret <ρ(ra), ρ,H′> H ≡ H′ + ρ′ and

F ∈ΦX ⊃
SafeRET F (ρ′, ρ)

Figure 3.2: The operational semantics of SAL, giving the state Σ′ obtained from <i, ρ,H>
in the case when i ∈ Dom(F ).

For certain instructions the resulting state depends on the outcome of control flow tests
(shown in the third column of the definition) that the interpreter performs. For such instruc-
tions there are two separate lines in the definition of the interpreter, one for the case when
the tests succeeds and one for the case when it fails. An obvious case of such conditional
behavior is the conditional branch instruction. In this case the interpreter tests whether the
current value of the tested register is in the unary relation COP, which is the relation that
our target architecture implements for the conditional operator with the mnemonic “COP”.

For a memory read operation “r ←M [r′], the instruction safety is described by a relation
SafeRd(ρ(mem), ρ(r′)). Note that this form of the relation allows the readability property of
a memory location to change as the memory contents is changed. Similarly, for memory
writes, the safety policy can restrict the set of values that can be written at various memory
addresses in various memory states, by defining appropriately the ternary relation SafeWr.
The notation µ[a ← v] denotes the memory state obtained from µ after writing v to the
address a.

Normally, the runtime stack used by most programming language implementations can
be modeled as a portion of the memory, without any special additions to the SAL language.
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0xFF..FF
...

... }
ArgF

sp −→ Max

0x00..00
...

...

Figure 3.3: The stack frame for a SAL function F . At the moment of invocation the addresses
{sp, . . . , sp+ArgF−1} contain the function’s arguments. The frame can be further extended
towards lower addresses with up to Max local arguments.

Previous experience with PCC shows that this approach, while feasible, is unnecessarily
costly. The reason is that in most cases the stack accesses follow a predictable pattern
making it possible to verify their safety without using the heavyweight machinery designed
for arbitrary memory operations.

To benefit from the known stack access patterns, the interpreter imposes restrictions on
how SAL programs use the stack. First, there are two dedicated memory operations that
must be used for accessing the stack. Then, the stack pointer can be changed only by a
dedicated increment instruction. Finally, the interpreter imposes a stack usage discipline
by restricting each function’s access to the stack to a very limited area called the current
invocation’s stack frame, as shown in Figure 3.3. For each function F let ArgF be the number
of arguments that it expects on the stack. Then the stack frame of an invocation of F spans
the addresses {sp−Max , . . . , sp + ArgF − 1}, where Max is the maximum number of stack
locations that a function is allowed to use in excess of its arguments. A further requirement
is that the stack grows towards lower addresses.

The safety policy is extended correspondingly with a unary relation Stack that holds for
those addresses that have been reserved by the receiver for the runtime stack. To maximize
the benefit of having preferential treatment of the stack, we need to prevent all aliasing
between regular memory accesses and the stack accesses. Thus for SAL to be adequate for a
safety policy we need that the stack aliasing condition of Property 3.1 holds. This condition
is attained in practice by setting disjoint stack and data segments. Furthermore the code,
data and stack segments must all be disjoint.1

∀a ∈ U b.Stack(a) ⊃ ∀µ ∈ Us.∀v ∈ U b.(¬SafeRd(µ, a) ∧ ¬SafeWr(µ, a, v)) (3.1)

1This implies that run-time code generation is not implementable in SAL and therefore not verifiable with
the variant of proof-carrying code described here.
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Space on the stack is allocated usually upon entering a function or a local declaration
block by decrementing the stack pointer. The safety condition for the stack pointer advance
instruction is that the resulting value of the stack pointer is a valid stack address. This
check exists mostly to simplify the formal proofs from Chapter 4. In particular, a successful
outcome of this check means that there is not a danger of overflow when performing the
addition.

It is possible that an agent attempts to use more stack space than was allocated by the
safety policy by means of the Stack relation. To prevent such stack overflow, the instruction
safety for all instructions involving the stack prescribes that the address involved be part of
the Stack predicate.

The remaining instructions are the function call and return instructions, together with
the return address computation instruction. The latter is the simplest, noting that safety
requires the resulting address to be within the current function’s body. Again, this check
exists mostly for technical reasons.

There are two complications with the function call instruction. One is that this is where
the system-call safety part of the safety policy is enforced. The other is that the function
call is defined in Figure 3.2 to have an unexpected conditional behavior. The motivation for
this behavior is mostly technical, having to do with modeling the stack overflow exception.
Anticipating the difficulty of proving statically the lack of stack overflow, I designed the
SAL interpreter so that it performs one stack-overflow check for each function invocation.
The check itself verifies that the stack pointer can be decreased by Max without overflowing
the stack. A successful outcome for this check guarantees that the entire stack frame for a
function that needs less than Max stack slots in addition to the arguments, fits in the stack
segment. For this to be true we require that the stack be allocated to a continuous area of
memory:

a ≤ a′ ∧ Stack(a) ∧ Stack(a′) ⊃ ∀x.a ≤ x ≤ a′ ⊃ Stack(x) (3.2)

The interesting question is what to do if the stack-overflow check fails. Technically, this
situation constitutes an exception and should be treated as a non-local transfer of control
to an exception handler. To simplify the formal correctness proofs, I model the exception as
non-termination. The intuition is that the safety policy considers the stack overflow exception
as a safe outcome of the program, for which the partial correctness aspect is not important.
Because we only consider safety properties and not liveness properties, we can treat benign
exceptions such as the stack overflow as infinite looping, as defined in the semantics of the
call instruction in Figure 3.2.

The system-call safety and the partial correctness safety aspects of the safety policy are
similar in the sense that they constrain the state of the execution at function invocation
boundaries. Both of these cases can be dealt with in a uniform way by means of function
preconditions, postconditions and sets of preserved registers. The precondition of a function



50 CHAPTER 3. THE SAFETY POLICY

F is a predicate PreF on the state of the memory and registers, specifying what may be
assumed when the execution of F starts. If F is a system call then the precondition must
be established by the agent code prior to the call. If F is an agent entry point then the
precondition can be assumed to have been established by the receiver prior to invoking the
agent. In a sense, the precondition establishes the calling convention for each function.

The postcondition of a function F is a predicate PostF on the state of the memory and
registers, denoting what may be assumed when (and if) the execution of F ends. If F is a
system call then the postcondition may be assumed to have been established by the code
receiver prior to resuming the execution of the agent. If F is an agent entry point then the
postcondition must be established by the agent code prior to returning.

The callee-save register set is the set of registers CSF that the function F must preserve.
Although each function must preserve the stack pointer register, “sp” does not need to
appear in the callee-save set because its preservation is enforced by the SAL interpreter.
However, because the “ra” register is not under the complete control of the interpreter we
must require that:

ra ∈ CSF (3.3)

While performing a function return, the interpreter must verify that the postcondition
holds, that all registers that are declared callee-save have been preserved and also that the
contents of the stack was not changed outside the frame. It is convenient to denote these
checks collectively by a relation SafeRETF between the initial and final states, as defined
below:

SafeRETF (ρ0, ρ) iff


PostF (ρ), and
∀r ∈ CSF .ρ0(r) = ρ(r), and
ρ(sp) = ρ0(sp), and
∀a.Stack(a) ∧ a ≥ ρ0(sp) + ArgF ⊃ ρ0(mem)(a) = ρ(mem)(a)

(3.4)

where ρ0 is the state when the current function’s invocation was started and ρ is the state
at the time of the return.

Note that the invocation history component of the state is changed only by the call and
return instructions. In the case of a call, the current register state is added to the history.
In the case of a return instruction, the interpreter first verifies that the current call history
is not empty, and removes the top element from the history. Finally, note that the execution
of an annotation does not change the state of the execution, except for the program counter.

The purpose of the SAL interpreter presented in this chapter is twofold. First, it serves
as a semantics for the SAL language and thus indirectly as a guide for mapping concrete
machine languages to SAL. The interpreter also constitutes the formalization of the safety
policy. The interpreter is set up in such a way that it cannot make progress from a state
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that does not point to a valid instruction or that does not satisfy the safety requirements
mandated by the safety policy. I write Σ→ Σ′ to say that the interpreter executes one step
from the state Σ resulting in the new state Σ′, and implicitly to say that there is no violation
of the safety policy in state Σ. With this notation we can state formally what it means for
a SAL program to match the safety policy, as follows:

Definition 3.5 (Safety Policy) A function F ∈ Φ is safe—written Safe(F )—if for any
initial register state ρ0 and history H0 such that PreF (ρ0) and such that Stack(a) holds for
all addresses “a” such that ρ0(sp) −Max ≤ a ≤ ρ0(sp) + ArgF − 1 then for any state Σ =
<i, ρ,H> reachable by the SAL interpreter from the initial state Σ0 = <<F, 0>, ρ0,H0 +ρ0>,
we have that either:

1. |H| = |H0|, in which case i = ρ0(ra) and H = H0 and SafeRETF (ρ0, ρ), or

2. |H| > |H0|, in which case there exists Σ′ such that Σ → Σ′ (the interpreter can make
progress, or equivalently there is no safety violation in Σ).

The notation |H| is used to denote the size of the call history. Note that in the above safety
definition the termination of an invocation is denoted by the size of the history decreasing
by one. Before that happens, the history might be increased temporarily as the current
function invokes other functions.

The safe interpreter is defined in terms of the generic assembly language SAL while, in
practice, agents are expressed in concrete languages. In the next section, I describe a general
strategy for adapting the safety policy to a particular assembly language and I demonstrate
the strategy for the DEC Alpha and the Intel x86 assembly languages. Then, in Section 3.4,
I discuss further the role of the safe interpreter defined here in the whole proof-carrying code
scheme, and show how it fits with the rest of the infrastructure.
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3.3 Porting Proof-Carrying Code to Concrete Archi-

tectures

In this section I describe briefly the general strategy for porting the safety policy and the
PCC infrastructure to a concrete architecture. This is accomplished by designing a translator
from machine instructions of the target architecture to a variant of SAL. The generic SAL

language discussed in this chapter can be instantiated as needed for a particular architecture
by:

1. Choosing an appropriate set of SAL registers. These are usually the target machine
registers extended with SAL temporary registers.

2. Choosing instantiations of the generic expression operators “EOP” and conditional op-
erators “COP”. In some cases, the concrete operators might need to have different arities
than the one presented in the generic SAL. For each added expression operator, we must
also specify the mathematical functions implemented by the target machine (i.e., the
“EOP” and “COP” functions) and the instruction safety conditions (i.e., the SafeEOP
and SafeCOP relations), if any.

3. Defining the size of instructions and the function “i++”.

In the rest of this chapter I will show how the outlined strategy can be applied in the
concrete cases of a RISC architecture (DEC Alpha) and a CISC architecture (Intel x86).

3.3.1 Porting to the DEC Alpha Architecture

The DEC Alpha architecture [Sit92] is a load/store 64-bit RISC architecture. Because the
DEC Alpha and SAL are both RISC architectures, the translation is particularly easy. This
instantiation of SAL has 29 general purpose registers mapped to DEC Alpha registers. In
addition to these r26 is mapped to SAL register ra and the register r30 is the stack pointer
register sp and there are two more temporary registers t1 and t2 that are used to compute
temporary results during the translation. In this 64-bit instance of SAL the base universe is
U b = {x ∈ Z| − 263 ≤ x ≤ 263 − 1}.

Figure 3.4 shows the translation to SAL of a small but practical 64-bit subset of the
DEC Alpha instruction set. For the added expression and conditional operators here are the
mathematical functions implemented by the DEC Alpha.

αADDQ(v1, v2) = (v1 + v2 + 263) mod 264 − 263

αSUBQ(v1, v2) = (v1 − v2 + 263) mod 264 − 263

αEQ(v) = v = 0
αGE(v) = v ≥ 0
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DEC Alpha SAL

lda r, n(zero) r ← n
mov r, r′ r′ ← r
addq r1, r2, r3 r3 ← r1 αADDQ r2

subq r1, r2, r3 r3 ← r1 αSUBQ r2

jmp n jump n
beq r, n cond αEQ(r), n
bge r, n cond αGE(r), n
jsr ra, F ra ← pc + 1

call F
jsr zero, (ra) ret

ldq r, n(r′) t1 ← n
t2 ← r′ αADDQ t1
r ←M [t2]

stq r, n(r′) t1 ← n
t2 ← r′ αADDQ t1
M [t2]← r

lda sp, n(sp) sp← sp + n
ldq r, n(sp) r ←M [sp + n]
stq r, n(sp) M [sp + n]← r

Figure 3.4: The translation table for the DEC Alpha architecture.

The agent entry points must obey the standard DEC Alpha calling convention and pre-
serve the registers r9, . . . , r15 and the return address register. Therefore we must have the
condition:

∀F ∈ ΦE.{r9, r10, r11, r12, r13, r14, r15, ra} ⊆ CSF

The DEC Alpha architecture requires that all memory accesses be aligned on a 64-bit
boundary. Therefore a correct safety policy must require the following alignment conditions:

SafeRd(µ, a) ⊃ a mod 8 = 0

SafeWr(µ, a, v) ⊃ a mod 8 = 0

Stack(a) ⊃ a mod 8 = 0
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3.3.2 Porting to the Intel x86 Architecture

The Intel x86 architecture [Int97] is a CISC architecture, and therefore the translator to SAL

is more complex. Here are the issues that must be dealt with when translating x86 programs
to SAL:

1. Many of the x86 instructions have complex definitions and thus map to sequences of
SAL instructions. For example, the x86 architecture has several addressing modes that
require separate SAL code for computing the operands.

2. The x86 architecture allows instructions to access fragments of a register. This register
aliasing must be modeled using special expression operands.

3. The x86 architecture uses a segmented memory model with addresses specified as a
pair of a segment descriptor and an offset within the segment.

4. The x86 architecture has several condition flags that are set implicitly by many arith-
metic instructions. To model this behavior we need to extend SAL with arithmetic
instructions having multiple results.

5. Instructions in the x86 architecture are not all of the same length and therefore the
definition of the “i++” function is not trivial.

In the rest of this section I will describe sample solutions to the above issues. The focus
here is on simplicity and not on efficiency. Many of the solutions that I propose here can
be implemented more efficiently at the expense of some complexity in the translator or the
VCGen.

The SAL register set for the x86 architecture contains the return address register and
most of the standard x86 registers: EAX, EBX, ECX,EDX, ESI, EDI,EBP, DS, ES, FS and GS. In
addition it contains a number of temporary registers denoted by ti. The ESP register of the
x86 architecture is not part of the SAL registers because all uses involving it are translated
to instructions manipulating the SAL stack pointer. Each of the x86 condition flags is a SAL

register that contains either zero or one. For simplicity I consider here only the “zero flag”
(ZF), the “sign flag” (SF) and the “overflow flag” (OF), which are set to one when the result
of an arithmetic operation is respectively zero, negative or has resulted in an overflow.

The calling convention of the x86 architecture requires that the segment registers and
the base pointer be preserved across function calls. Thus,

∀F ∈ ΦE.{ra, EBP, DS, ES, FS, GS} ⊆ CSF

In the x86 architecture the memory is segmented and a memory address is expressed
as a pair segment-selector/offset. The segment selector must reside in one of the segment
registers. Consequently, we must change the syntax of the memory operation in SAL to allow
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Intel x86 SAL
SUB EAX, EBX EAX← EAX x86SUB EBX

ZF← EAX x86SUB.ZF EBX
SF← EAX x86SUB.SF EBX
OF← EAX x86SUB.OF EBX

MOV EAX, n EAX← n

MOV EAX, EBX EAX← EBX
MOV EAX, DS : [EBX] EAX←M [DS, EBX]
MOV DS : [EBX], EAX M [DS, EBX]← EAX
MOV EAX, SS : [ESP + n] r ←M [SS, sp + n]
MOV SS : [ESP + n], EAX M [SS, sp + n]← r

JE n cond x86EQ(ZF), n
JGE n cond x86GE(SF, OF), n
JMP n jump n
CALL F ra← pc + 3

sp← sp− 4
M [SS, sp + 0]← ra
call F

RET n ra←M [SS, sp + 0]
sp← sp + (4 + 4 ∗ n)
ret

ADD ESP, n sp← sp + n
t1 ← n
ZF← sp x86ADD.ZF t1
SF← sp x86ADD.SF t1
OF← sp x86ADD.OF t1

PUSH EAX sp← sp− 4
M [SS, sp + 0]← EAX

POP EAX EAX←M [SS, sp + 0]
sp← sp + 4

Figure 3.5: The translation table for Intel x86.

for a composite address. Thus, M [DS, EAX] refers to the memory address that is at offset EAX
from the segment whose selector is in DS. Similarly, the SafeRd, SafeWr and Stack relations
are extended with an extra segment argument. An additional restriction is that the stack
addresses must be aligned on a 32-bit boundary:

Stack(a) ⊃ a mod 4 = 0

A fragment of the translation table for the Intel x86 architecture is shown in Figure 3.5.
The translation of the subtraction function contains code to also set the flag registers that
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are implicitly affected by the instruction. For this purpose I introduce not only the operator
x86SUB that denotes the main result of the subtraction but also the operators x86SUB.ZF,
x86SUB.SF and x86SUB.OF that denote the side-effects of the subtraction on the flag registers.
In the x86 architecture the conditional jump operations examine the flag registers. For the
purpose of the “jump greater or equal” instruction JGE I had to introduce binary conditional
operators.

Of particular interest in the x86 translation are the function call and the stack manip-
ulation functions. In the case of a function call the return address is computed to point
immediately after the SAL call instruction, and then it is saved on the top of the stack. The
stack is also advanced by four bytes (the size of a stack element on x86 is 32-bits). The
return function on x86 extracts its return address from the top of the stack and also pops
from the stack a specified number of arguments. Adding a constant to the stack pointer is
translated to SAL as a stack pointer advance instruction followed by instructions meant to
model the potential effects of the addition on the flag registers. In most disciplined programs,
the resulting values of the flags would not be used but we need to have these instructions to
prevent malicious programs to make assumptions about the contents of the flags. Finally,
the PUSH and POP instructions access the stack and have side-effects on the stack pointer but
not on the flag registers.

In the x86 architecture each instruction has many variants, depending on how the
operands are identified. Figure 3.5 shows only the simplest variant of each instruction,
when the operand is a 32-bit register. The x86 architecture allows certain instructions to
access 8-bit and 16-bit fragments of registers, using the names shown in Figure 3.6. In ad-
dition, most x86 instructions allow operands that reside in memory. For each such operand
addressing mode, there is a standard sequence of SAL instructions that obtains the operand
in a register t. These sequences of instructions are shown in Figure 3.7. In these definitions,
I assume that the operand is a source of the computation. If it is a destination then the
memory reads are changed to memory writes and the “GET” extraction operators are changed
to “SET” updating operators. For example, to denote the updating of the register AX with

31 16 15 8 7 0 16-bit 32-bit
AH AL AX EAX
BH BL BX EBX
CH CL CX ECX
DH DL DX EDX

BP EBP
SI ESI
DI EDI

Figure 3.6: Register aliasing in the Intel x86 architecture.
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Addressing mode Example SAL translation
Register EAX t← EAX
Register (X) AX t← x86GETX EAX
Register (L) AL t← x86GETL EAX
Register (H) AH t← x86GETH EAX
Immediate n t← n

Index DS : [EBX] t←M [DS, EBX]
Index + Displacement ES : [EBX + n] t1 ← n

t1 ← t1 x86ADD EBX
t←M [ES, t1]

Base + Index DS : [EBX + ESI] t1 ← EBX x86ADD ESI
t←M [DS, t1]

Base + Index + Displacement DS : [EBX + ESI + n] t1 ← EBX x86ADD ESI
t2 ← n
t1 ← t1 x86ADD t2
t←M [DS, t1]

Figure 3.7: Addressing modes in the Intel x86 architecture, shown as the sequence of SAL
instructions required to compute the operand in a temporary register t. These translation
schemes assume that the operand is a source for the computation.

x86ADD(v1, v2) = (v1 + v2 + 231) mod 232 − 231

x86SUB(v1, v2) = (v1 − v2 + 231) mod 232 − 231

x86SUB.ZF(v1, v2) = if (v1 − v2 + 231) mod 232 = 231 then 1 else 0

x86SUB.SF(v1, v2) = if (v1 − v2 + 231) mod 232 < 231 then 1 else 0

x86SUB.OF(v1, v2) = if (v1 − v2 + 231) mod 232 6= v1 − v2 + 231 then 1 else 0

x86EQ(f) iff f = 1

x86GE(sf , of ) iff sf = of

x86GETX(v) = v mod 216

x86GETL(v) = v mod 28

x86GETH(v) = (v div 28) mod 28

x86SETX(v, x) = (v − v mod 216) + (x mod 216)

x86SETL(v, x) = (v − v mod 28) + (x mod 28)

x86SETH(v, x) = (v − (v div 28) mod 28) + (x mod 28) ∗ 28

Figure 3.8: The definitions of a few SAL operators introduced during the translation to SAL.
In these definitions the range of the functions is U b = {x ∈ Z| − 231 ≤ x ≤ 231 − 1} and the
division and modular operations have their usual meanings for integers.



58 CHAPTER 3. THE SAFETY POLICY

the contents of register t1, we write “EAX← SETX(EAX, t1)”.
To model the extraction and updating of register fragments I introduce a set of unary

and binary operators. The mathematical definitions for these operators together with those
of operators introduced in Figure 3.5 are shown in Figure 3.8.

3.4 Discussion

A safety policy can be viewed as consisting of a set of conditions restricting the actions
that an agent might perform. Examples of actions that might be restricted are the function
calls and returns and the executions of certain instructions such as the memory referencing
instructions. Such a safety policy can be formalized by defining an interpreter that, as it
executes the agent code, checks that the required conditions are met when a relevant action
is executed. Section 3.2 defines just such an interpreter for a generic assembly language and
Section 3.3 show how the definition can be adapted to deal with real assembly languages.

If we examine carefully the definition of the interpreter shown in Figure 3.2 we notice
that it might not serve well its main purpose, which is to provide a realistic execution
model for a generic machine language. The reason is that most of the safety checks are
not practical to implement. Take for example the relation SafeWr ; even for a finite U b of
cardinality |U b|, the cardinality of the relation could be as high as |U b|2+|Ub|. Note, however,
that if memory accessibility does not change with the state of the memory, and if data that
must be accessible to the agent is arranged in contiguous areas of memory, then it becomes
feasible to implement the memory safety checks as simple range checks. The stack checks
are always implementable this way because the stack is one contiguous area of memory. If
we also ignore all checks related to the expression operators and the system-call safety and
partial correctness, then it is quite feasible to implement the safe SAL interpreter for this
very restricted safety policy. In fact, this is exactly what the technique called Software Fault
Isolation (SFI) [WLAG93] does.

However, in general it is not feasible or practical to implement the safety checks. It is
thus useful to use static checking to verify that the safety checks are not necessary to be
performed at run time for a given program. If we succeed to verify statically that during
the execution of the agent all of the safety checks succeed, then we can run the agent on
a simplified SAL machine that does not implement the checks shown in the last column of
Figure 3.2. If we examine the first three columns of the definition of the SAL machine we
notice also that the call history component of the state can be eliminated. What remains is
the description of a realistic machine similar in behavior to many physical machines.2

Without proof-carrying code it is quite unlikely that the code receiver has a static analysis

2The exception is the stack-overflow check that is required for the call instruction. However, in many
physical machines this check can be performed by the hardware memory protection unit if we set Max to be
smaller than a virtual memory page.
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that is able to prove that all of the static checks are redundant. Even if it has one, it must
be necessarily conservative in the sense that it fails for some perfectly safe programs. The
purpose of the proofs in proof-carrying code is to allow the code producer to use arbitrarily
powerful and precise static analyses to prove the safety of the code and to communicate the
result of the analyses in a convincing way to the receiver. Thus the code receiver does not
fix the static analysis but only the way in which its results are communicated by the code
producer, as shown in the next two chapters.





Chapter 4

Enforcing Safety by Proof-Carrying
Code

Proof-carrying code enables a code receiver to verify statically that the agent code satisfies
a security policy without having to perform complex static analyses. Instead, it is the code
producer who performs the static analysis and proves that the code is safe. This proof is
then sent to the code receiver as evidence that the code is indeed safe.

A key decision in a concrete implementation of proof-carrying code is what kind of proofs
are required to ascertain that a given security policy is met. This depends of course on the
security policy. If we want to ensure that there is no undesired information flow, then we can
probably reduce the problem to a type-checking problem [HR98, ML97, VS97] and then the
proof is a typing derivation for the agent program in the appropriate type system. For the
variant of proof-carrying code described in this thesis, the security policy has only a safety
component and is expressed by means of a series of safety checks that a fictitious interpreter
for SAL would perform. The proofs accompanying the code in this instance of PCC guarantee
that a SAL translation of the agent, executed on the safe SAL interpreter of Section 3.2 does
not fail any of the safety checks. The existence of such a proof guarantees that the agent
can be executed just as safely without performing the safety checks.

For the purpose of verifying that the safety checks of the SAL interpreter are always
satisfied for a given agent, I introduce another evaluator for SAL whose purpose is to execute
the SAL program symbolically and to collect a symbolic representation of all of the safety
checks that would have to be performed. The resulting collection is called the verification
condition and this kind of interpreter is a verification-condition generator, or VCGen [Kin71].
The language in which the safety checks are expressed in the verification condition is that
of predicate logic, so that the proofs accompanying the code are derivations in the logic.
Previous experience with PCC suggests that a good starting choice for a logic is an extension
of first-order predicate logic with equality and array variables. In this setup, the whole
verification condition is a formula (predicate) in this logic.

61
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Agent
Program

Safety Policy //

Verification
Condition
Generator
(VCGen)

  AAAAAAAAAAAAAAAAAAAAAAAAA
Safe/Unsafe

Verification
Condition

(VC)

Validity of
VC
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Provability
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HH

Figure 4.1: The relationship between the safety policy, the verification-condition generator,
validity of verification conditions and provability of verification conditions.

The suggested setup for proof-carrying code is depicted in Figure 4.1. At the top of
the picture we have the reference criterion for safety, that is, the safety policy or, more
concretely, the safe SAL interpreter. At the bottom, we have the proof-carrying code method
for enforcing safety, consisting of a verification-condition generator followed by a verification
of validity of the verification condition produced. The main benefit that we get from proof-
carrying code in this setup is that we can run the code safely without having to implement
the safe SAL interpreter. This is a serious concern because, as discussed in the previous
chapter, it is not always possible to implement at run time all of the checks that a safety
policy might require. Furthermore, note that the safety policy defined by means of a safe
interpreter can tell that a program is unsafe only after executing it and discovering a safety
violation. The PCC method, on the other hand can tell statically whether a program is
safe. However, the PCC method is conservative, meaning that it might reject perfectly safe
programs.

In the next section I describe the syntax of the logic and the precise relationship between
logical formulas and the various safety checks that the SAL interpreter performs. Then, in
Section 4.2 I describe the verification-condition generator that extracts a logical formula
(the verification condition) from the body of a function. VCGen is only interesting if it
captures all of the safety checks that the SAL interpreter would perform. Technically, this
means that the diagram of Figure 4.1 commutes through the “validity” path, which is stated
formally in at the end of Section 4.2 and proved in Appendix A. Checking validity of the
verification condition directly is not practical. Instead, PCC uses an indirect method for
checking validity by means of provability. For this purpose I introduce in Section 4.3 a set
of axioms and inference rules that can be used to prove formulas and then I show that this
set of rules is sound, meaning that provability guarantees validity.
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4.1 The Logic

The logic is the symbolic language that is used for expressing the safety checks in a symbolic
form as part of the verification conditions, and thus is the bridge between the semantics of
the agent program and the symbolic proofs of safety. The general ideas of proof-carrying
code can be applied in the context of any logic that is adequate for expressing the required
safety policy. I have found that first-order predicate logic with equality and array variables is
sufficiently powerful for many practical safety policies. For the purposes of this dissertation,
I will describe the implementation of PCC in the context of this restricted logic. However,
during the presentation, and mainly within the various correctness proofs, I will point out
the generic properties that are required of any PCC logic. This way, the correctness proofs
serve not only as an assurance argument for the present instantiation of PCC but also as
a guide for the designer who wants to extend the logic to accommodate more demanding
safety policies.

4.1.1 Syntax

The logic, as a symbolic language, is defined here by means of syntactic rules for the formation
of formulas and a validity function that gives meaning to the logical formulas as relations in
the universe of values used for the target machine. It is through this validity function that
the logical formulas that are produced by VCGen assume the same meaning as the safety
checks performed by the SAL interpreter.

The syntactic rules for our fragment of first-order logic with equality and array variables
are shown in Figure 4.2. The main syntactic components are the predicates, the base ex-
pressions and the store expressions. The base expressions are meant to denote values of the
base universe U b, that is, values that fit in a register or in a memory word. The role of the
store expressions is to denote values from the universe of stores U s, or equivalently the states
of the memory in the target machine. Associated with the store expressions we have two
constructors, one corresponding to reading from the memory and the other corresponding to
writing to the memory. If Es is an expression that denotes the current memory state then
the expression “sel(Es, Eb)” denotes the contents of the memory location whose address
is denoted by Eb. To express the new memory state after storing the value denoted by Eb

v

to the address Eb
a in memory state Es, we write “upd(Es, Eb

a, E
b
v)”. The base constants

(cb ∈ U b) and the store constants (cs ∈ Us) are required only for technical reasons.
Note that implicit in Figure 4.2 are the typing rules for base expressions, store expressions

and predicates. Because of the two kinds of expressions, I introduce two versions of universal
quantification, equality and disequality. However, to simplify the presentation I will drop the
typing superscripts whenever there is no possibility of confusion. For example, I write “E1 =
E2” to denote a comparison of a base expression with a base expression or a comparison of
a store expression with a store expression.
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Generic fragment:
Predicates: P ::= true | P1 ∧ P2 | P1 ⊃ P2 | ∀xb.P | ∀xs.P

| Eb
1 = Eb

2 | Eb
1 6= Eb

2 | Es
1 = Es

2 | Es
1 6= Es

2

Base expressions: Eb ::= xb | cb | sel(Es, Eb)
Store expressions: Es ::= xs | cs | upd(Es, Eb

1, E
b
2)

Extensions:
Predicates: P ::= . . . | safeeop(Eb

1, E
b
2) | safecop(Eb) | cop(Eb)

| notcop(Eb) | saferd(Es, Eb) | safewr(Es, Eb
1, E

b
2)

Base expressions: Eb ::= . . . | eop(Eb
1, E

b
2) | offset(Eb

1, E
b
2)

Figure 4.2: The syntax of the first-order predicate logic with equality and array variables.
The generic fragment is extended with predicate and expression constructors to fit the safety
policy and the target architecture.

In addition to the generic constructs of first-order predicate logic with array variables, a
typical PCC logic contains predicate and expression constructors to denote symbolically the
run-time entities of the SAL interpreter. For example, the predicate constructors “safeeop”
and “safecop” are meant to denote the relations that define instruction safety for the “EOP”
and “COP” operators respectively. The “saferd” and “safewr” constructors are meant to
denote the memory safety predicates, and “cop” along with “notcop” denote the comparison
operation implemented by the target machine for the conditional operator “COP”. On the
expression side, the constructor eop stands for the mathematical function implemented by
the target machine for the operator “EOP”. The expression constructor “offset(E1, E2)” is
used by VCGen to denote the instruction address that is at offset E2 in the function whose
body starts at E1.

4.1.2 The Standard Valuation Model

In this section, I define precisely what is the intended meaning of the logical expressions
and predicates whose syntax was introduced in the previous section. The standard model
M for the logic is a quadruple <U b,U s,Vb,Vs>, where U b is the universe of base values,
U s = U b → U b is a universe of store values represented as total functions from U b (addresses)
to U b, and Vb and Vs are the standard valuation functions for closed base expressions and
closed store expressions respectively, defined in Figure 4.3. Recall that EOP is the generic
mathematical function implemented by the target architecture for the generic SAL operator
EOP (the one that is denoted in logic by the constructor eop).

Again, I shall omit the superscript on the universes and valuation functions when there
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Vb(sel(Es, Eb)) = Vs(Es)(Vb(Eb))
Vs(upd(Es, Eb

1, E
b
2)) = Vs(Es)[Vb(Eb

1) 7→ Vb(Eb
2)]

Vb(eop(Eb
1, E

b
2)) = EOP(Vb(Eb

1),Vb(Eb
2))

Vb(offset(Eb
1, E

b
2)) = Vb(Eb

1) + Vb(Eb
2)

where:

(f [v1 7→ v2])(a) =

{
v2 if a = v1

f(a) if v 6= v1

Figure 4.3: The definition of the standard valuation function.

|= true

|= P1 ∧ P2 iff |= P1 and |= P2

|= P1 ⊃ P2 iff |= P2 whenever |= P1

|= ∀x.P iff |= [v�x]P for all v ∈ U
|= E1 = E2 iff V(E1) = V(E2)
|= E1 6= E2 iff V(E1) 6= V(E2)
|= safeeop(E1, E2) iff SafeEOP(V(E1),V(E2))
|= safecop(E) iff SafeCOP(V(E))
|= cop(E) iff COP(V(E))
|= notcop(E) iff ¬COP(V(E))
|= saferd(Es, E1) iff SafeRd(V(Es),V(E1))
|= safewr(Es, E1, E2) iff SafeWr(V(Es),V(E1),V(E2))

Figure 4.4: The definition of the validity of a closed predicate in the standard model. The
equality and disequality symbols are overloaded in this definition. On the left side they
denote predicate constructors in logic. On the right side they denote the equality and
disequality predicates on U × U .

is no possibility of confusion. I shall use the variables u and v (appropriately superscripted
when necessary) to refer to individual values in the universes. It is important to note that
because of the typing rules for expressions and predicates, it is guaranteed that the valuation
functions are total and that Vb(Eb) ∈ U b and that Vs(Es) ∈ Us.

Figure 4.4 contains the formal definition of validity of a predicate, in the form of a
judgment M |= P . Because, the model M is the same standard model throughout this
thesis, I henceforth abbreviate the validity judgment as |= P .
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4.2 The Verification-Condition Generator

The verification-condition generator (VCGen) is presented here as a symbolic evaluator for
SAL programs. The result of the evaluation is the verification condition, which is a formula in
the logic that I described in the previous section. The main components of the verification
condition are the symbolic counterparts of the safety checks that are mandated by the
safety policy. The verification condition also contains information about the control flow in
the program so that it can express precisely, for each safety check, on which computation
paths it is performed. The concept of verification-condition generation was introduced by
Floyd and King [Kin71, KF72] and it appears extensively in work related to formal program
verification for higher-level languages [BM81, Det96, Dij75, Dij76, GLB75, ILL73].

Before we can discuss the definition of the VCGen, I must introduce some notation and
make a series of simplifying assumptions. Following the model of the SAL interpreter, VCGen
requires that each function have a well-defined stack frame within which all stack accesses
must fall. The stack grows towards lower addresses and the reserved register “sp” points to
the word that is on top of the stack. Before invoking a function G, the caller F puts on top
of the stack some or all of the callee’s arguments. Assume that G expects ArgG arguments
passed on the stack. The relative location of G’s stack frame on the runtime stack is defined
by the value of the stack pointer at the moment of its invocation by F , a situation depicted
in Figure 4.5. At this moment the words at addresses {sp, . . . , sp + ArgG − 1} contain the
ArgG arguments of G. Assume furthermore that the stack frame of G has a total length of
LocalG, and thus extends from “sp + ArgG − 1” downwards to “sp + ArgG − LocalG”. The
variable “so” is used to denote the offset of the current stack pointer within the current
function’s stack frame, so that “sp + so − 1” denotes the stack address of the beginning
of the current function’s frame. The following relation must hold between the number of
arguments, the number of locals and the maximum extra stack that can be allocated by any
invocation:

0 ≤ ArgF ≤ LocalF ≤ Max + ArgF

To allow easy reference of the arguments and stack allocated variables, it is convenient
to name the stack slots in the frame of G with local pseudo-registers {l1, . . . , lLocalG}, so that
li is an alias for the memory location at address sp0 + ArgG − i, where sp0 is the value
of the stack pointer on entry to the function G, sometimes called the frame pointer or the
base pointer in some architectures. Note that when using this convention a given stack slot
changes its alias names at the time of a function call as shown in Figure 4.5.

We must take special care so that VCGen terminates for all agent programs. Even though
VCGen evaluates the program symbolically it must not attempt to evaluate the body of loops
iteratively or to follow a recursive function call graph. To address these issues I use loop
invariants and function specifications.
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Name inF Address Stack Name inG

0xFF . . . FF
...

...

↑
...

...
l1 sp+so−1

↑
...

...
lso−ArgG+1 sp+ArgG−1 l1

Frame of F


↑

...
...

sp→ lso sp lArgG
lso+1 sp−1 lArgG+1


Frame of G

↑
...

...
lLocalF sp+so−LocalF

↑
...

...
sp+ArgG−LocalG lLocalG

↑
...

...

0x00 . . . 00
...

...

Figure 4.5: Stack management in SAL. The situation depicted occurs at the time when
function F calls function G. The value of sp at the time of the call (somewhere in the
stack frame of F ) marks the position of the last argument of G, and implicitly defines the
alignment of G’s stack frame relative to F ’s stack frame. Note the implicit renaming of local
pseudo-registers during the call.

The loop invariants are a special case of SAL annotations. They are used to state (by
means of a logical formula) the state properties that can be assumed to hold during an
arbitrary iteration. At run time they are ignored, but VCGen uses them as part of its
operation. The loop invariants are part of the agent program and are therefore untrusted.
However, there is an easy way to ensure that they are indeed invariants. If the VCGen verifies
that the loop invariant holds on the first entry to the loop and also that it is preserved through
one iteration of the loop, then by a simple inductive argument we know that it holds after
any finite number of iterations. However, VCGen does not attempt to verify the correctness
of the invariants itself. It instead extends the verification condition with logical formulas
to the extent that a valid verification condition means that the loop invariants are indeed
correct.

The presence of loop invariants means that VCGen needs to scan the loop body only
once, when building the inductive case argument. On the other hand, VCGen must require
the presence of at least one loop invariant in each loop. An easy and conservative strategy is
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to require that every backward branch target must be a loop invariant annotation. Referring
back to Figure 3.1, we can now define the syntax of the annotations as follows:

Annot ::= . . . | inv P, n,Mod

where P is a predicate denoting the invariant property, n is a natural number that specifies
the value of the stack offset at the beginning of the loop and Mod is the set of registers that
the loop body might change.

In addition to loops, another possible source of non-termination of VCGen are the recur-
sive function calls. To address this issue, and in fact to modularize the safety checking on a
per-function basis, the current implementation of VCGen requires that all functions have a
specification. The function specification for a function F is presented in the form of a tuple
<PreF , PostF ,CSF ,ArgF ,LocalF>, where PreF and PostF are formulas representing the
precondition and postcondition respectively, CSF is the set of registers that the function F
is required to preserve (the callee-save registers), and ArgF and LocalF are natural numbers
representing the number of arguments and the maximum number of local variables allocated
on the stack (including the arguments) that the function F is allowed to have. For the
correct operation of VCGen, no local pseudo-registers besides the arguments can appear as
free variables in the precondition or postcondition or be mentioned as callee-save registers.
This condition makes sense because the values of these variables is not defined outside the
function itself.

{lArgF , . . . , lLocalF } ∩ (CSF ∪ FV (PreF ) ∪ FV (PostF )) = ∅ (4.1)

The specifications of the external functions, either system calls or entry points, must be
provided by the code receiver. The specifications of the internal functions are the responsi-
bility of the code producer and must accompany the agent code. Note that the precondition
and postcondition relations, which are part of the safety policy definition from Section 3.2,
are written using italic characters. To distinguish them from the precondition and post-
condition logical formulas that are part of the function specification, I write the latter ones
using typewriter characters. The correspondence between the specifications and the safety
relations are made precise by the following statements:

Property 4.2 (Correctness of specifications) For any evaluator state ρ and any func-
tion F we must have

• PreF (ρ) iff |= Sρ,ArgF (ρ, PreF ), and

• PostF (ρ) iff |= Sρ,ArgF (ρ, PostF ).

where the notation Sρ0,ArgF (ρ, r) is a generalization of ρ(r) for the case when r is allowed to
range over local pseudo-registers in RegsF , as follows:

Sρ0,ArgF (ρ, r) =

{
ρ(r), if r ∈ {r1, . . . , rR, ra, mem}
ρ(mem)(ρ0(sp) + ArgF − i), if r ≡ li ∈ RegsF

Because in most cases it is clear which values should be used for ρ0 and ArgF , I often
abbreviate Sρ0,ArgF (ρ, r) by S(ρ, r).
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The verification-condition generator is defined as a symbolic evaluator that scans the
SAL code for each function in the agent code and produces the verification condition. The
symbolic evaluator maintains several components of state, the most important of which is a
mapping σ from registers to expressions. The set of registers for a function F contains the
SAL registers, a memory pseudo-register and the local pseudo-registers, as follows:

RegsF = {r1, . . . , rR, ra, mem, l1, . . . , lLocalF }

The stack pointer register is not among the general purpose registers because VCGen
manipulates it directly. Because the set of registers is different for each function, I use
the notation σF to denote a symbolic register state appropriate for function F . The set
of possible symbolic states for function F is StateF = RegsF → E, where E is a symbolic
expression within the logic.

In addition to the symbolic state of registers, the symbolic evaluator keeps track of the
loop invariants that were encountered during the execution. This enables the evaluator to
distinguish between the cases when the loop invariant is seen for the first time during the
evaluation or for subsequent times. This information is maintained as a sequence of pairs
consisting of an instruction address where a loop invariant is encountered and the symbolic
state of the execution immediately after processing the invariant. This sequence is denoted
by the letter L and the operation of adding a new pair to the sequence is written as L+(i, σ).
To say that i occurs in L we write i ∈ Dom(L) and to denote the state mapped to i by L
we write L(i). I write “∅” to denote the empty sequence.

The symbolic evaluator is defined as a state transformation function with seven param-
eters, written as SEF,σF0 ,i

F
0

(i, σF , so,L), where F is the function whose body is evaluated,

σF0 is the symbolic state of registers at the beginning of the execution of function F , iF0 is
a variable standing for the address where the first instruction of F is loaded in memory, i
is the offset of the current instruction from the beginning of the function body, σF is the
current symbolic register state, so is a positive integer (the stack offset) denoting the dif-
ference between the top of the frame and the current value of the stack pointer, and L is
the loop map. Of these parameters, the three that are written as subscripts do not vary
during the evaluation of a given function and will be omitted most of the time to simplify
the presentation. In the same spirit, the superscript F is omitted whenever it can be inferred
from the context.

The definition of the symbolic evaluator function is shown in Figure 4.6 and is explained
in detail in the rest of this section. But first, it is important to discuss how the symbolic
evaluator function is used to produce the verification condition. The verification condition
is a conjunction obtained from the results of the symbolic evaluations of all of the functions
contained in the agent code. The symbolic evaluation of a function F ∈ ΦA is started in
a state obtained by initializing all the registers RegsF with new logical variables. A new
variable iF0 is also created to stand for the unknown address where the body of the function
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F is loaded in memory. The program counter is initialized with zero (the first instruction
within the function body), the stack offset variable is initialized with ArgF (the stack pointer
points to the last argument) and the loop map is initialized to empty. Before adding the
result of the symbolic evaluation to the verification condition for the whole agent, all newly
introduced variables are quantified, making the verification condition a closed predicate. The
formal definition of this operation is shown below:

VC (ΦA) =
∧
F∈ΦA

∀iF0 .∀y1 . . .∀yk.σF0 (PreF ) ⊃ SEF,σF0 ,i
F
0

(0, σF0 ,ArgF , ∅) (4.3)

where:

iF0 , y1, . . . , yk are new variables

RegsF = {r1, . . . , rk}
σF0 = [r1 7→ y1, . . . , rk 7→ yk]

Returning to the description of the symbolic evaluator function shown in Figure 4.6, note
that as it scans the program, VCGen performs simple checks, shown in the second column
of Figure 4.6. The most frequent check is that control does not fall out of a function, shown
as “i++ ∈ Dom(F )” in the definition. If any of the checks performed by VCGen fail, the
program is rejected right away.

The definition of the symbolic evaluator is recursive, and the symbolic evaluator ter-
minates when it reaches the return instruction or when it reaches a loop invariant for the
second time. To ensure that each loop contains at least one invariant, VCGen verifies that
the target of each backward branch or jump is an invariant instruction.

In the case of a simple register move, VCGen verifies that the current instruction is not
the last one in F . Then, it copies the symbolic value of the source register into the target
register and continues the symbolic evaluation with the following instruction.

In the case of a binary operation, the verification condition is extended with the ad-
ditional predicate safeeop(σ(r′), σ(r′′)), the symbolic value of the target register is set to
eop(σ(r′), σ(r′′)), and the symbolic execution continues with the following instruction. The
intuition behind the extended verification condition is that a valid verification condition
must ensure that the actual operands of EOP fall in the safe domain of the operator. This
intuition relies on the known meaning within logic of the constructors “eop” and “safeeop”,
as shown in Figures 4.3 and 4.4.

In the case of a jump instruction the symbolic evaluator verifies that the target instruction
is within the current function’s body. Furthermore, if this is a backward branch the evaluator
verifies that the target is an invariant annotation. Then, the symbolic evaluator continues
with the target instruction.

The case of a conditional branch is similar to that of a jump instruction except that the
safety predicate for the conditional operator is appended to the verification condition just
as for expression operators. Also, because the execution is symbolic, the evaluator cannot,
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Fi Check Verification condition
r ← r′ i++ ∈ Dom(F ) SE (i++, σ[r 7→ σ(r′)], so,L)
r ← n i++ ∈ Dom(F ) SE (i++, σ[r 7→ n], so,L)
r ← r′ EOP r′′ i++ ∈ Dom(F ) safeeop(σ(r′), σ(r′′))

∧ SE (i++, σ[r 7→ eop(σ(r′), σ(r′′))], so,L)
jump n n+ i++ ∈ Dom(F ) SE (n+ i++, σ, so,L)

n < 0 ⊃ Fn+i++ = inv . . .
cond COP(r), n i++ ∈ Dom(F ) safecop(σ(r))

n+ i++ ∈ Dom(F ) ∧ cop(σ(r)) ⊃ SE (n+ i++, σ, so,L)
n < 0 ⊃ Fn+i++ = inv . . . ∧ notcop(σ(r)) ⊃ SE (i++, σ, so,L)

ra← pc + n n+ i++ ∈ Dom(F ) SE (i++, σ[ra 7→ offset(i0, n+ i++)], so,L)
i++ ∈ Dom(F )

call G G ∈ Φ σG
1 (PreG)

σ(ra) ≡ offset(i0, i++) ∧ ∀y1 . . . yk.zso+1 . . . zLocalF .
σG

2 (PostG) ⊃ SE (i++, σF
2 , so,L)

i++ ∈ Dom(F ) where:
so ≥ ArgG σG

1 = CopyInG(σF ,ArgG, so)
{r1, . . . , rk} = RegsG − CSG

y1, . . . , yk, zso+1, . . . , zLocalF are new variables
σG

2 = σG
1 [r1 7→ y1, . . . rk 7→ yk]

σF
2 = CopyOutF (σG

2 , σ
F ,ArgG,

so, {zso+1, . . . , zLocalF })
ret so = ArgF σ(PostF ) ∧ CheckEq(σ, σ0,CSF )
r ←M [r′] i++ ∈ Dom(F ) saferd(σ(mem), σ(r′))

∧ SE (i++, σ[r 7→ sel(σ(mem), σ(r′))], so,L)
M [r′]← r i++ ∈ Dom(F ) safewr(σ(mem), σ(r′), σ(r))

∧ SE (i++, σ[mem 7→ upd(σ(mem), σ(r′), σ(r))], so,L)
sp← sp + n 1 ≤ so− n ≤ LocalF SE (i++, σ, so− n,L)

i++ ∈ Dom(F )
r ←M [sp + n] 1 ≤ so− n ≤ LocalF SE (i++, σ[r 7→ σ(lso−n)], so,L)

i++ ∈ Dom(F )
M [sp + n]← r 1 ≤ so− n ≤ LocalF SE (i++, σ[lso−n 7→ σ(r)], so,L)

i++ ∈ Dom(F )
inv P, n, {r1, . . . rk} i 6∈ Dom(L) σ(P )

n = so ∧ ∀y1 . . . yk.σ
′(P ) ⊃ SE (i++, σ′, so,L+ (i, σ′))

i++ ∈ Dom(F ) where:
y1, . . . , yk are new variables
σ′ = σ[r1 7→ y1, . . . rk 7→ yk]

inv P, n,Mod i ∈ Dom(L) σ(P )
n = so ∧ CheckEq(σ,L(i),RegsF −Mod)
i++ ∈ Dom(F )

Figure 4.6: The definition of the Verification Condition Generator for SAL, in the form of a
symbolic evaluation function SEF,σ0,i0(i, σ, so,L) defined by cases on the instruction Fi.
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in general, discover which branch must be taken. Therefore, it considers both branches
(reflected in the definition by the two recursive calls). To provide more information to the
proof producer as to the precise conditions under which a branch is taken, VCGen builds
two implications whose left sides are predicates that are assumed to hold for each branch.
Again these predicates rely on the meaning of the constructors “cop” and “notcop”.

In the case of a return address computation, the symbolic state of the return address
register is changed to “offset(i0, n + i++)”, where i0 is the variable that was reserved to
stand for the address of the first instruction in the body of F , and “n + i++” is the offset
from the start of F of the target instruction. The expression constructor offset is just the
symbolic counterpart of addition of addresses.

The most complicated case is that of the function call instruction, mostly because of the
register renaming that must take place twice, once when going into the callee and once when
returning. The checks that the symbolic evaluator performs in this case ensure (1) that G is
a function known in the system and thus with a known specification, (2) that the symbolic
value of the return address register points to the instruction immediately following the call,
(3) that this is not the last instruction in F so that when execution resumes it does not
fall out of the body of F , and (4) that there are enough arguments on the stack within the
current stack frame. The latter check ensures that VCGen does not have to keep track of
the contents of more than one stack frame at a time.

If all of these checks succeed, the verification condition is extended with the callee’s pre-
condition PreG, to ensure that it holds on function entry. The symbolic evaluator abstracts
the execution of G and continues the evaluation with the following instruction, while as-
suming that the postcondition PostG holds on return. What is tricky about the case of a
call are the symbolic state manipulations. There are two reasons for these manipulations.
First, the function G might change some of the registers and this has to be modeled by
setting these registers to new variables that are quantified. This ensures that nothing can
be assumed about their values. Second, the local pseudo-register renaming is modeled as
a copy-in/copy-out. This is done with the helper functions CopyInG and CopyOutF , whose
definition is shown in Figure 4.7 and explained below with reference to the stack layout of
Figure 4.5.

The “CopyInG(σF ,ArgG, so)” function creates a symbolic state appropriate for G from
the symbolic state σF of F at the moment when it invokes G. At this moment the stack
offset is “so” and there are ArgG arguments on the top of the stack. CopyInG copies the
arguments from σF (where it refers to them using the local pseudo-registers of F ) to the
new state, where they would be referred using the local pseudo-registers l1, . . . , lArgG of G.
The other local pseudo-registers of G are initialized with an arbitrary value (zero in this
case). However, because of Property 4.1, these registers cannot appear in the precondition
of G nor in the callee-save set CSG and thus, it does not matter what value is chosen for
them. Finally, the SAL registers are copied directly to the new state. It is the state obtained
by the application of CopyIn that is used to instantiate the precondition PreG because the
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CopyInG(σF ,ArgG, so)(r) =

σ
F (lso−ArgG+i) if r ∈ {li|1 ≤ i ≤ ArgG}

0 if r ∈ {li|ArgG < i ≤ LocalG}
σF (r) if r ∈ {r1, . . . , rR, ra, mem}

CopyOutF (σG2 , σF ,ArgG, so,
{zso+1, . . . , zLocalF })(r)

=


σF (r) if r ∈ {li|1 ≤ i < so− ArgG + 1}
σG2 (li−so+ArgG) if r ∈ {li|so− ArgG + 1 ≤ i ≤ so}
zi if r ∈ {li|so < i ≤ LocalF}
σG2 (r) if r ∈ {r1, . . . , rR, ra, mem}

CheckEq(σ, σ′,CS ) =
∧
r∈CS

σ(r) = σ′(r)

Figure 4.7: Additional helper definitions for the symbolic evaluator of Figure 4.6.

precondition is written from the point of view of G.

The next step in the processing of the call to G is to generate new variables for each of
the registers that are not declared as saved by G and thus potentially modified during the
call. These variables stand for the new unknown values of these registers upon return from
G. The resulting state σG2 is used to instantiate the postcondition PostG, again because it
is written from the point of view of G. But the evaluation resumes in the context of F and
thus the state σG2 must be changed to fit the new names of stack slots. This is accomplished
through a call to CopyOutF .

The “CopyOutF (σG2 , σ
F ,ArgG, so, {zso+1, . . . , zLocalF })” function, defined in Figure 4.7,

creates a symbolic state appropriate for the caller F given the state from the point of view of
the callee G and the state of F previous to the call. This state transformation preserves all
SAL registers and those local pseudo-registers of σF that are located on the stack above (at
higher addresses) the frame of G. Then, the local registers of F that were set to contain the
arguments of G are copied back as G might have changed them. Finally, the local registers
of F that are located on the stack below the arguments of G, in an area that G might
have used, are initialized with the new variables zi to model the fact that their contents is
unknown. This completes the discussion of the “call” instruction.

Note that VCGen as described here does not support computer-function call or function
pointers and thus, it limits drastically the implementation of higher-order languages and
object-oriented languages with dynamic method lookup. This restriction can be relaxed by
noting that VCGen does not actually need to know the exact function that is called but just
its specification. Thus, we can still allow function pointers when all of the functions that
could be invoked by a particular computed-function call share the specifications. In this case
we also need to be able to declare a function-pointer variable to have a given specification.
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Next is the case of the function return. In this case the postcondition PostF is asserted in
the current state and a series of equality predicates are generated to verify that all registers
that F is supposed to preserve are indeed preserved. This set of equalities is generated using
the function CheckEq that is passed the current state and the symbolic state of registers on
function entry σ0.

In the case of a memory read or a memory write the appropriate safety predicate is added
to the verification condition, the state is changed appropriately and the execution continues
with the next instruction. In the case of a memory read the target register is changed, while
in the case of a memory write the memory pseudo-register is changed.

In the case of a stack register advance instruction, the stack offset component of the
state is decremented but only if the new value has a legal value within the frame of the
current function F . The instructions for reading from and writing to the stack are modeled
as register moves between the target register and a local pseudo-register.

Finally, there is the case of invariant annotations. First, the symbolic evaluator verifies
that the stack offset is in the position specified by the annotation. Then, the operation of
the evaluator depends on whether the annotation is seen for the first time (i 6∈ Dom(L)) or
it has been seen already. If the invariant is seen for the first time, the invariant predicate is
instantiated according to the current state and is added to the verification condition. The
intuition is that a valid verification condition must guarantee that the invariant holds on
entry to the loop. Then, the registers that the loop is allowed to modify are initialized with
new variables and the execution is resumed using the new state. Note also that the loop map
is extended with the state at the beginning of the execution of the loop body. The purpose
of this operation is to be able to detect that a loop invariant was seen and to verify that
only the registers that are declared as modified were modified. This is shown in the last line
of the definition.

This concludes the definition of the verification-condition generator. VCGen is quite
complex and an error in its implementation could lead to security holes that can be exploited
by malicious code producers to subvert the safety checks. While verifying formally the
correctness of a particular implementation of VCGen is beyond the scope of this work,
it is important to prove that at least the algorithm is correct. The verification-condition
generator is correct if it produces a valid verification condition (for the definition of validity
of Section 4.1.2) only for an agent that satisfies the safety policy (for the definition of the
safety policy from Section 3.2). Because the agent functions might invoke system calls, we
also need to assume that the system calls are safe. This is stated formally as Theorem 4.4,
using the notion of safety as defined in Definition 3.5.

Theorem 4.4 (Soundness of VCGen) If all system calls are safe, i.e., Safe(ΦS), and if
the agent’s verification condition is valid, i.e., |= VC (ΦA), then all functions in the system
are safe, i.e., Safe(Φ).
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This soundness condition is the keystone of the whole proof-carrying code infrastructure
because it bridges the semantics of the agent code with the safety policy and with the logic.
The proof of Theorem 4.4 is rather technical and in order to keep the main body of the thesis
more accessible I give the formal proof in Appendix A. The proof should be of great interest
to the reader desiring a precise understanding of the details of the verification-condition
generator. The proof should also be of interest to those intending to extend the symbolic
evaluator with more features.

Informally, the proof of the soundness theorem is by induction on the length of the execu-
tion. At each step (in any reachable state) we show that the execution is either immediately
after the end of the invocation or else it can make further progress. During the induction we
must collect and propagate the information that the execution was initiated in a state satis-
fying the precondition and that the verification condition is valid. This is customarily done
by means of an induction hypothesis. In our case the induction hypothesis for an execution
state <<F, i>, ρ,H0 + ρ0> is that there exists a related state of the symbolic evaluator at
the same point in function F . Let this state be SEF,σ0,i0(i, σ, so,L). The key property of
the run-time and symbolic states is that they are related, in a complicated sense that is
stated formally later in this section. We need to prove that this relation is an invariant of
the execution, or in other words that we can simulate the execution of the interpreter with
a related symbolic evaluator.

4.3 The Axiomatization of the Logic

I have shown in the previous section that instead of implementing the safe SAL interpreter of
Section 3.2, we can instead check the code statically by first running the verification-condition
generator and then verifying the validity of the resulting verification condition. The major
gain of this alternative strategy is that the whole checking for safety is done statically, without
having to pay run-time penalties. However the potentially prohibitive cost of verifying the
relations SafeRd, SafeWr and others still exists. In fact, it is exacerbated by the universal
quantifications that require the checks to be done for a large number of cases. This is not
surprising given that we want to verify statically that all possible executions are safe.

While it might seem that we have made the problem even worse through the alternative
strategy for checking safety, this is not so because there are other ways to verify the validity
of predicates without having to compute the valuations explicitly. The purpose of this
section is to introduce a framework of symbolic computation on formulas so that the validity
of formulas can be verified symbolically. This framework consists of a set of axioms and
inference rules that allow us to prove formulas from other formulas believed to be valid.

An axiomatic system for a logic is a set of derivation rules that can be used to derive
the validity of a formula from other formulas that are assumed to be valid. A predicate P is
said to have a derivation (written . P ) if it can be derived using the rules shown in a natural
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deduction style in Figure 4.8. Although the rules given here are within the intuitionistic
fragment of the logic, this is not strictly necessary. It can be seen from the valuation model
for the logic presented in Section 4.1.2 that a classical axiomatization is also allowed.

Before we start discussing the individual rules of Figure 4.8, let us note that we have the
obligation to prove that derivability within the logic preserves validity. This is stated below
as the soundness property of the axiomatic system.

Theorem 4.5 (Soundness) For any closed predicate P , if . P then |= P .

Proof: Each derivation . P is a finite sequence of uses of axioms and inference rules. The
proof of the theorem follows by induction on the structure of the derivation . P once we
prove that each inference rule in the logic is valid. This is stated below as Lemma 4.6.

�

Lemma 4.6 (Soundness of an inference rule) An inference rule with conclusion C and
hypotheses Hi (i = 1 . . n) and with parameters aj (j = 1 . .m) is valid if and only if for all
uj ∈ U , whenever |= [u1�a1 , . . . ,

um�am ]Hi (i = 1 . . n) we have |= [u1�a1 , . . . ,
um�am ]C.

The soundness lemma must be proved for every inference rule in the logic, as it is intro-
duced. To simplify the notation in such proofs we shall use the notation τ to stand for the
arbitrary substitution “[u1�a1 , . . . ,

um�am ]” and let τ(E) be the result of that substitution
applied to the expression E.

Returning to the deductive rules of Figure 4.8, they can be classified into four main
categories. Firstly, there are the rules of first-order logic, customarily defined as introduction
and elimination rules for all of the logical connectives. The introduction rule for implication
is hypothetical. In order to prove P1 ⊃ P2, we assume that we have a proof of P1 and
from that we derive a proof of P2. In this case the assumption is named u and there is a
side condition requiring u to be used only locally, for the purpose of proving P2. Similarly,
the introduction rule for universal quantification is parametric, in the sense that the a is
a fresh parameter that can be used only locally. For these rules there is no need to prove
the soundness lemma because that is just the standard argument of soundness for natural
deduction.

The second class of rules refers to equality. Equality is defined using the identity and
congruence rules. From these rules we can derive the rules of symmetry and transitivity. The
rules of case analysis (case) and contradiction (contr) express the properties of disequality
without requiring general purpose negation and disjunction. The proofs of soundness for
these inference rule is also omitted because they are standard.

The third class of deductive rules are the rules referring to the array variables in our logic
(memory variables). The first rule says that the contents of a memory location that was
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First order logic:

. true
truei . P1 . P2

. P1 ∧ P2
andi . P1 ∧ P2

. P1
andel . P1 ∧ P2

. P2
ander

. P1
u

...u

. P2

. P1 ⊃ P2
impiu . P1 ⊃ P2 . P1

. P2
impe

. [a�x]P

. ∀x.P allia . ∀x.P
. [E�x]P

alle

Equality:

. E = E
eqid

. E1 = E2 . [E1�x]P

. [E2�x]P
congr

. Eb
1 = Eb

2

u

...u

. P

. Eb
1 6= Eb

2

v

...v

. P
. P

caseu,v
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1 = Eb
2 . Eb

1 6= Eb
2

. P
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Array variables:

. sel(upd(Es, Eb
1, E

b
2), Eb

1) = Eb
2

mc0
. Eb

1 6= Eb
3

. sel(upd(Es, Eb
1, E

b
2), Eb

3) = sel(Es, Eb
3)

mc1

Figure 4.8: The set of deductive rules for the first-order predicate logic with equality and
array variables.

updated with the value Eb
2 is equal to Eb

2. The second rule says that updating a memory
location does not change the contents of other memory locations. These rules are most often
used in combination with the case analysis rule. These rules are named the McCarthy rules
and they have been first introduced in [MP67]. As a representative case for the proof of
soundness for these rules, consider the rule mc1.

Soundness of the rule mc1. Let m = Vs(τ(Es)), a = Vb(τ(Eb
1)), v = Vb(τ(Eb

2)) and
a′ = Vb(τ(Eb

3)). From the hypothesis we get that a 6= a′. By the definition of V we get that
Vb(sel(upd(τ(Es), τ(Eb

1), τ(Eb
2)), τ(Eb

3))) = (m[a 7→ v])a′ = m(a′) = Vb(sel(τ(Es), τ(Eb
3))),

hence the conclusion is valid.
A fourth class of rules are often present in PCC logics for the purpose of defining prop-

erties of the various custom expression and predicate constructors defined as extensions of
the base logic. In the current version of the logic, I do not show any special rules for the
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αADDQ(E1, 0) = E1
αadd0

E1 ≥ 0 E2 ≥ 0 αGE(αSUBQ(E1, E2), 0)

E1 ≥ E2
αgeq0

x86GE(x86SUB.SF(E1, E2), x86SUB.OF(E1, E2))

E1 ≥ E2
x86geq

Figure 4.9: Deductive rules for custom operators introduced when porting the infrastructure
to the DEC Alpha and Intel x86.

constructors related to the safety checks and rely instead on the congruence rule to derive
predicates involving them. For the operators introduced while porting the infrastructure
to concrete target architecture it is often useful to specify at least partially the meaning
of operators. This can be done through deductive rules, as shown in Figure 4.9. The rule
αadd0 says that adding zero is idempotent on the DEC Alpha. The rule αgeq0 says that if
the αGE comparison with zero of the result of subtracting two positive values using ‘αSUBQ
is true, then the two values are in the ≥ relation. The surprising part of this rule is that the
conclusion is not necessarily true if the two values are not positive. In fact, the conclusion
is true only if the operation “αSUBQ(E1, E2)” does not overflow and a sufficient condition
for this is that both E1 and E2 be non-negative. On the Intel x86 architecture, subtraction
followed by comparison can be used to achieve the expected result even for non-positive
input values, as stated in the x86geq rule.

As usual, we must give proofs of soundness for the newly introduced rules. I show here
only the non-trivial proofs for the αgeq0 and x86geq rules.

Soundness of the αgeq0 rule. Let v1 = V(τ(E1)) and v2 = V(τ(E2)). From the first
two hypotheses we infer that v1 ≥ 0 and v2 ≥ 0. Because both v1 and v2 are in U and we
obtain the inequalities 0 ≤ v1 ≤ 263−1 and −263+1 ≤ −v2 ≤ 0. By adding these inequalities
followed by adding 263 to the result we obtain that 1 ≤ v1− v2 + 263 ≤ 264− 1 and therefore,
from the definition of SUBQ, that V(αSUBQ(τ(E1), τ(E2))) = v1− v2. From here, by using the
last hypothesis, it is easy to verify that v1 ≥ v2. Note that there is nothing magic about v1

and v2 being positive, just that this is a sufficient condition to ensure that the subtraction
does not overflow.

Soundness of the x86geq rule. Let v1 = V(τ(E1)) and v2 = V(τ(E2)) and of =
x86SUB.OF(v1, v2) and sf = x86SUB.SF(v1, v2). From the hypothesis and the valuation of
x86GE we know that sf = of . Finally, let x = v1 − v2 + 231. Because both v1 and v2 are in
U b we have that −231 + 1 ≤ x ≤ 3 ∗ 231 − 1. We need to show that x ≥ 231. We assume the
contrary and we try to derive a contradiction. There are two cases:

• If −231+1 ≤ x < 0 then x mod 232 = x+232. Therefore of = 1 and hence sf = 1 which
means that x+ 232 < 231, which in turn contradicts our assumption that x ≥ −231 + 1.
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• If 0 ≤ x < 231 then x mod 232 = x and of = 0, hence zf is also zero meaning that
x ≥ 231 which contradicts again our assumption.

4.4 Discussion

In Chapter 3 I have described and formalized a generic safety policy that is enforceable with
the described implementation of proof-carrying code. The essence of the formalization is a
the definition of safety (Definition 3.5). Then in Section 4.2 I define a verification-condition
generator that scans the agent code and produces a formula in the logic introduced in
Section 4.1. Theorem 4.4 states that the given algorithm for verification-condition generation
is sound with respect to the definition of safety, in the sense that it produces only valid
verification conditions for safe agents. Then, in Section 4.3 I introduce a symbolic framework
for deciding the validity of formulas, by means of a set of derivation rules. Theorem 4.5 states
that the presented set of derivation rules is guaranteed to derive only valid formulas. Now
we can put all of these results together and state formally that the presented algorithm
for verification-condition generation along with the axiomatization of the logic is a sound
method to verify the safety of agents. This is stated below as the correctness theorem for
proof-carrying code.

Theorem 4.7 (Soundness of proof-carrying code) If all of the system calls are safe,
i.e., Safe(ΦS), and if the verification condition for the agent functions is provable within the
logic, i.e., . VC (ΦA), then all functions in the system are safe.

Proof: Because of the soundness of the axiomatization (Theorem 4.5) we have that |=
VC (ΦA). Then, we use the soundness of VCGen (Theorem 4.4) and we obtain the desired
conclusion.

�

In general, a concrete PCC logic is an extension of the logic that I discussed in this
chapter. Typical extensions do not change the set of logical connectives but introduce new
expression and predicate constructors. In such cases the proof of soundness of the new logic
is a strict extension of the proof shown in this chapter. If a more substantial change to the
logic is attempted then the safety policy designer has the obligation to redo the soundness
proof from scratch. Hopefully, much of the technical development from this chapter can be
reused even in that case.

To help logic designers extend the logic I summarize the general strategy that must be
followed:

1. Extend the syntax with new expression or predicate constructors.
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2. Define the valuation functions for the newly introduced constructors. If the added
constructors are meant to denote machine operations, the valuation functions must
correspond to the behavior of the physical machine. The valuation function must be
total.

3. Add axioms and inference rules involving the new constructors. This step is not manda-
tory but, without it, many predicates that contain the new constructors will not be
provable.

4. For each newly added derivation rule, extend the proof of the soundness lemma, basi-
cally proving that each derivation rule is sound with respect to the standard model.



Chapter 5

Proof Engineering

In Chapter 4 I have shown that verification-condition generation constructs a valid verifica-
tion condition for an agent program only if the agent meets the safety policy. I have then
shown that instead of verifying the validity of the verification condition directly it is enough
to find a derivation (i.e., a proof) of the formula using a given system of axioms and infer-
ence rules. These are the technical facts that proof-carrying code relies upon. In addition,
proof-carrying code exploits the fact that proving a verification condition is more difficult in
general than verifying the validity of a proof. This motivates the PCC requirement that the
code producer generates the proofs so that the code receiver has only to check their validity.
For this to work properly in practice we need a framework for encoding proofs of logical
formulas so that they are relatively compact and easy to check. We need a framework and
not just one proof checker for a given logic because the set of axioms and inference rules
are likely to change frequently, as we adapt PCC to different architectures or safety policies.
We would like that such adaptation require few changes to the system, ideally limited to a
high-level description of the inference rules in a format resembling their mathematical formu-
lation. Based on these desiderata I summarize below the necessary properties of a successful
candidate for a framework for encoding and checking proofs.

• The framework must be able to encode judgments and derivations from a wide variety
of logics, including first-order and higher-order logics.

• The implementation of the proof checker must be parameterized by a high-level de-
scription of the logic. This allows a unique implementation of the proof checker to be
configured easily for all of the logics that can be encoded in the framework.

• The proof checker should perform a directed, one-pass inspection of the proof object,
without having to perform proof search. This leads to a simple implementation of the
proof checker that is easy to trust and install in extensible systems.

81
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• The proof representation must be compact in order to minimize the resources needed
for transmitting, storing and checking proofs.

The above desiderata are important not only for proof-carrying code but for any appli-
cation where proofs are represented and manipulated explicitly. One such application is a
proof-generating theorem prover. A theorem prover that generates an explicit proof object
for each successfully proved predicate enables a distrustful user to verify the validity of the
proved theorem by checking the proof object. This effectively eliminates the need to trust
the soundness of the theorem prover at the relatively small expense of having to trust a
much simpler proof checker. The generated proofs and the proof checker are also of great
software engineering benefit as they can lead to the timely discovery of soundness bugs that
are introduced during development or maintenance of the theorem prover.

The first impulse when designing efficient proof representation and validation algorithms
is to specialize them to a given logic or a class of related logics. For example, we might define
the representation and validation algorithms by cases, with one case for each inference rule
in the logic. This approach has the major disadvantage that a new representation and
validation algorithm has to be designed and implemented for each logic. To make matters
worse, such proof checking algorithms are rather large for realistic logics. We would prefer
instead to use general algorithms that are parameterized by a high-level description of the
particular logic of interest.

Instead of such specialized representation and validation algorithms, I choose the Edin-
burgh Logical Framework (LF) introduced by Harper, Honsell and Plotkin [HHP93] as the
starting point in the quest for efficient proof manipulation algorithms, because it scores very
high on the first three of the four desirable properties listed above. Edinburgh LF is a very
simple variant of λ-calculus with the property that if a predicate is represented as an LF
type then a valid proof of that predicate must necessarily be an LF expression of that type.
Thus, the simple logic-independent LF type-checking algorithm can be used for checking
proofs.

However, LF is not a perfect choice for proof-carrying code because the representation
of proofs is unnecessarily large due to a high degree of redundancy. To address this issue,
I have extended LF to handle proof representations with missing subterms, and I have also
extended the LF type checking algorithm to synthesize the missing parts. In order to keep the
resulting proof reconstruction algorithm simple, and in particular to avoid having to search
while reconstructing, I impose certain syntactic restrictions on which proof subterms can be
missing. Because of these restrictions, it might be the case sometimes that small amounts
of redundant information cannot be eliminated from the representation of proofs. However,
my practical experience shows that this is the case only for the representation of level-two
proofs (proofs of theorems about deductive systems, such as soundness or completeness),
which are anyway beyond the scope of the proof-carrying code variant described in this
dissertation. Experiments with PCC and with a proof-generating theorem prover for first-
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order logic show that by using the resulting logical framework, which I call implicit LF or
LFi, we obtain reductions of more than two orders of magnitude in the size of the proofs
and also in the time required for proof checking. Furthermore, these factors become larger
for larger proofs.

The rest of this chapter is organized as follows. Section 5.1 describes the encoding of
predicates and proofs in the Edinburgh Logical Framework and demonstrates, for a simple ex-
ample, the effects of redundancy in the representation of proofs. Then, Section 5.2 discusses
the LFi type system as an extension of LF. Because the LFi type system, unlike the plain
LF type system, does not suggest a simple deterministic type-checking algorithm, I show in
Section 5.3 an LFi reconstruction algorithm that is proved (in Appendix B) to be adequate
for type checking LFi proof representations. Then, Section 5.4 describes one algorithm that
can be used to convert proofs represented in LF to the more compact LFi representations.
Concluding this chapter is Section 5.5 that shows how to represent efficiently proofs of lin-
ear arithmetic in LFi and Section 5.7 that compares LFi with other related techniques for
representing proofs. The experimental data validating the LFi algorithms described here is
discussed in Section 8.3. An abbreviated form of this chapter appeared before in [NL98b].

5.1 The Edinburgh Logical Framework

The Edinburgh Logical Framework (also referred to as LF) was introduced by Harper, Hon-
sell and Plotkin [HHP93] as a metalanguage for high-level specification of logics. LF provides
natural support for the management of binding operators, hypothetical and schematic judg-
ments. For example it captures the convention that expressions that differ only in the names
of bound variables are considered identical. Similarly, it allows direct expression of contexts
and variable lookup as they arise in a hypothetical and parametric judgment. Consider for
example the usual formulation of the implication introduction rule in first-order logic. This
rule is hypothetical because the proof of the right-hand side of the implication can use the
assumption that the left-hand side holds. However, there is a side condition requiring that
this assumption not be used elsewhere in the proof. As we shall see below, LF can represent
this side condition in a natural way by representing the assumption as a local variable bound
in the proof of the implication. The fact that these techniques are supported directly by the
logical framework is a crucial factor for the succinct formalization of proofs.

The LF representation of a logic consists of two stages. The first stage is the represen-
tation of the abstract syntax of the logic under consideration. For example, I will show how
to represent expressions and predicates of first-order predicate logic in LF. The second stage
is the representation of the axiomatization of the logic, and implicitly of the proofs.

The LF type theory is a language with entities of three levels: objects, types and kinds.
Types are used to qualify objects and similarly, kinds are used to qualify types. The abstract
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Kinds K ::= Type | Πx :A.K
Types A ::= a | A M | Πx :A1.A2

Objects M ::= x | c | M1M2 | λx :A.M

Figure 5.1: The syntax of Edinburgh LF.

syntax of these entities is shown in Figure 5.1, where Πx :A.B is a dependent function type
with x bound in B. In the special case when x does not occur in B, the more familiar
notation A → B can be used. Also, Type is the base kind, a is a type constant and c is an
object constant.

The encoding of a logic in LF consists of an LF signature Σ that contains declarations
for a set of LF type and expression constants corresponding to the syntactic formula con-
structors and to the proof rules. For a more concrete discussion, I describe in this section
the representation of the first-order predicate logic with equality and array variables, whose
syntax is shown in Figure 4.2 and whose axiomatic system was defined in Figure 4.8.

The syntax of the logic is described by the LF signature shown in Figure 5.2. This
signature defines an LF type constant for each kind of syntactic entity within the logic.
Then, there is an LF constant declaration for each syntactic constructor. The LF type of
such a constant describes arity of the constructor, the types of the arguments and the type
of the constructed value. The only interesting case that is not straightforward is that of the
universal quantification, when a bound LF variable is used to represent the variable bound
by the quantification. This higher-order representation trick ensures that predicates that
are equivalent up to renaming of bound logical variables are represented by terms that are
equivalent up to renaming of local LF variables. Furthermore, now we can use substitution
in LF to represent substitution in the object logic.

The LF representation function p · q is defined inductively on the structure of expressions,
types and predicates. For example, we have the following two representations:

pP ⊃ (P ∧ P ) q = imp pP q (and pP q pP q)
p∀xb.safecop x q = allb (λx : exp.safecop x)

The strategy for representing proofs in LF is to define a type family “pf” indexed by
predicates. Then, we represent the proof of “P” as an LF expression having type “pf P”.
This representation strategy is called “judgments as types and derivations as objects” and
was first used in the work of Harper, Honsell and Plotkin [HHP93]. Note that the dependent
types of LF allows us to encode not only that an expression encodes a proof but also whose
proof it is.

One can view the axioms and inference rules as proof constructors. This justifies repre-
senting the axioms and inference rules similarly to the syntactic constructors, by means of
LF constants. The LF signature that constitutes the representation of the axiomatic system



5.1. THE EDINBURGH LOGICAL FRAMEWORK 85

exp : Type

mem : Type

pred : Type

sel : mem→ exp→ exp

upd : mem→ exp→ exp→ mem

eop : exp→ exp→ exp

offset : exp→ exp→ exp

true : pred

and : pred→ pred→ pred

impl : pred→ pred→ pred

allb : (exp→ pred)→ pred

alls : (mem→ pred)→ pred

eqb : exp→ exp→ pred

neqb : exp→ exp→ pred

eqs : mem→ mem→ pred

neqs : mem→ mem→ pred

safeeop : exp→ exp→ pred

safecop : exp→ pred

cop : exp→ pred

notcop : exp→ pred

saferd : mem→ exp→ pred

safewr : mem→ exp→ exp→ pred

(a) (b)

Figure 5.2: The LF signature Σ that constitutes the representation of the syntax first-
order predicate logic with equality and array variables. Both expression (a) and predicate
constructors (b) are shown.

presented in Figure 4.8 is shown in Figure 5.3. Note how the dependent types of LF can de-
fine precisely the meaning of each rule. For example, the declaration of the constant “andi”
says that, in order to construct the proof of a conjunction of two predicates, one can apply
the constant “andi” to four arguments, the first two being the two conjuncts and the other
two being the proofs of the conjuncts, respectively.

The LF representation function p · q is extended to derivations and is defined recursively
on the derivation, as shown in the following examples:

p D1

. P1

D2

. P2

. P1 ∧ P2

q

= andi pP1
q pP2

q pD1
q pD2

q
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pf : pred→ Type

truei : pf true

andi : Πp :pred.Πr :pred.pf p→ pf r → pf (and p r)
andel : Πp :pred.Πr :pred.pf (and p r)→ pf p
ander : Πp :pred.Πr :pred.pf (and p r)→ pf r
impi : Πp :pred.Πr :pred.(pf p→ pf r)→ pf (impl p r)
impe : Πp :pred.Πr :pred.pf (impl p r)→ pf p→ pf r
alli : Πp :exp→ pred.(Πv :exp.pf (p v))→ pf (ball p)
alle : Πp :exp→ pred.Πe :exp.pf (ball p)→ pf (p e)
eqid : Πe :exp.eqb e e
congr : Πe1 :exp.Πe2 :exp.Πp :exp→ pred.pf (eqb e1 e2)→ pf (p e1)→ pf (p e2)
case : Πe1 :exp.Πe2 :exp.Πp :pred.

(pf (eqb e1 e2)→ pf p)→ (pf (neqb e1 e2)→ pf p)→ pf p
contr : Πe1 :exp.Πe2 :exp.Πp :pred.pf (eqb e1 e2)→ pf (neqb e1 e2)→ pf p
mc0 : Πe1 :mem.Πe2 :exp.Πe3 :exp.pf (eqb (sel (upd e1 e2 e3) e2) e3)
mc1 : Πe1 :mem.Πe2 :exp.Πe3 :exp.Πe4 :exp.

pf (neqb e2 e4)→ pf (eqb (sel (upd e1 e2 e3) e4) (sel e1 e4))

Figure 5.3: The LF signature Σ that constitutes the representation of the axiomatization of
first-order predicate logic with equality and array variables.

p

. P1
u

... Du

. P2

. P1 ⊃ P2
u

q

= impi pP1
q pP2

q (λu :pf pP1
q.pDu q)

To conclude the presentation of the LF representation, consider the proof of the simple
predicate “P ⊃ (P ∧ P )”. The LF representation of this proof is shown in Figure 5.4.

5.1.1 The LF Type System

The main advantage of using LF for proof representation is that proof validity can be checked
by a simple type-checking algorithm. That is, to check that the LF object M is the repre-
sentation of a valid proof of the predicate P we use the LF typing rules (to be presented
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M = impi pP q (and pP q pP q)

(λu :pf pP q.andi pP q pP q u u)

Figure 5.4: The LF representation of the proof by implication introduction followed by
conjunction introduction of the predicate P ⊃ (P ∧ P ).

below) to verify that M has type pf pP q in the context of the signature Σ declaring the
valid proof rules.

Type checking in the LF type system is defined by means of four judgments shown and
described below:

Γ `LF M : A M is a valid object of type A
Γ `LF A : K A is a valid type of kind K
A ≡β B A is β-equivalent to B
M ≡β N M is β-equivalent to N

where Γ is a typing context assigning types to LF variables.
The derivation rules for the LF typing judgments are shown in Figure 5.5. For the β-

equivalence judgments I omit the rules that define it to be an equivalence and a congruence.

Types :

Σ(a) = K

Γ `LF a : K

Γ `LF A : Πx :B.K Γ `LF M : B

Γ `LF A M : [M�x]K

Γ `LF A : Type Γ, x : A `LF B : Type

Γ `LF Πx :A.B : Type

Objects :

Σ(c) = A

Γ `LF c : A

Γ(x) = A

Γ `LF x : A

Γ, x : A `LF M : B Γ `LF A : Type

Γ `LF λx :A.M : Πx :A.B

Γ `LF M : Πx :A.B Γ `LF N : A

Γ `LF MN : [N�x]B

Γ `LF M : A A ≡β B

Γ `LF M : B

Equivalence :

(λx :A.M)N ≡β [N�x]M

Figure 5.5: Type checking in the LF type discipline

As an example of how LF type checking is used to perform proof checking, consider
the proof representation M shown in Figure 5.4. It is easy to verify, given the LF typ-
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ing rules and the declaration of the constants involved, that this proof has the LF type
“pf (imp pP q (and pP q pP q))”. The adequacy of LF type checking for proof check-
ing in the logic under consideration is stated formally in the Theorems 5.1 and 5.2 below.
These theorems are proved in [HHP93]. From their proofs it is evident that they continue
to hold if the logic is extended with new expression and predicate constructors or even with
higher-order constructs.

Theorem 5.1 (Adequacy of Syntax Representation.)

1. If Eb is a closed expression, then · `LF pEb q : exp

2. If Es is a closed expression, then · `LF pEs q : mem

3. If P is a closed expression, then · `LF pP q : pred

4. If M is a closed LF object such that · `LF M : exp, then there exists an expression Eb

such that pEb q ≡βη M .

5. If M is a closed LF object such that · `LF M : mem, then there exists an expression Es

such that pEs q ≡βη M .

6. If M is a closed LF object such that · `LF M : pred, then there exists a predicate P such
that pP q ≡βη M .

Theorem 5.2 (Adequacy of Derivation Representation.)

1. If D :: . P is a derivation of P then · `LF pD q : pf pP q.

2. If M is a closed LF object such that · `LF M : pf pP q, then there exists a derivation
D :: . P of P such that pD q ≡βη M .

Note that Theorem 5.2(2) says that if the code producer can exhibit an LF object having

the type “pf pVC (ΦA) q” then we know that there is a derivation of the verification condition
within the logic, which in turn means that the verification condition is valid and the agent
code satisfies the safety policy.

Owing to the simplicity of LF and of the LF type system, the implementation of the
type checker is simple and easy to trust. Furthermore, because all of the dependencies on
the particular object logic are segregated in the signature, the implementation of the type
checker can be reused directly for proof checking in various first-order or higher-order logics.
The only logic-dependent component of the proof checker is the signature, which is usually
easy to verify by visual inspection.
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Unfortunately, the above-mentioned advantages of LF representation of proofs come at a
high price. The typical LF representation of a proof is large, due to a significant amount of
redundancy. This fact can already be seen in the proof representation shown in Figure 5.4,
where there are six copies of P as opposed to only three in the predicate to be proved. The
effect of redundancy observed in practice increases non-linearly with the size of the proofs.
Consider for example, the representation of the proof of the n-way conjunction P ∧ . . . ∧ P .
Depending on how balanced is the binary tree representing this predicate, the number of
copies of P in the proof representation ranges from an expected value of n log n to a worst
case value of n2. The redundancy in the representation is not only a space problem but
also leads to inefficient proof checking, because all of the redundant copies have to be type
checked and then checked for equivalence with instances of P from the predicate to be proved.
The focus of the remainder of this chapter is to modify the LF representation to reduce the
redundancy of the representation.

5.2 The Implicit LF Representation

The LF representation and type-checking algorithm presented in the previous section are ad-
equate for the representation and validation of proofs. However the proof representations are
unnecessarily large. The size of proofs, in general, is an important factor in any application
that manipulates proofs explicitly, but the redundancy of representation in particular, has
important consequences for the efficiency of proof checking. Consider the typical situation
when the code receiver desires to check that an untrusted safety proof (for example, the one
from Figure 5.4) proves a certain predicate. In such a situation every subterm of the proof
representation must be type checked. This means that each of the six occurrences of the
term “P” must be type checked separately. Moreover, following each of the type-checking
operations the term must be compared with the instance of itself contained in the predicate
to be proven, to ensure that every subderivation proves the desired predicate and not another
one. Therefore the redundancy in the representation increases the amount of required checks
and therefore can lead to inefficient proof validation.

The solution to the redundancy problem is to eliminate the redundant subterms from the
proof. In most cases we can eliminate all copies of a given subterm from the proof and rely
instead on the copy that exists within the predicate to be proved, which I am going to assume
is trusted to be well formed. But now the code receiver will be receiving proofs with missing
subterms. One possible strategy is for the code receiver to reconstruct the original form of
the proof and then to use the simple LF type checking algorithm to validate it. But this
would not save proof-checking time and would require significantly more working memory
than the size of the incoming LFi proof. Instead, I propose to modify the LF type-checking
algorithm to reconstruct the missing subterms while it performs type checking. One major
advantage of this strategy is that terms that are reconstructed based on copies from the
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verification condition do not need to be type checked themselves.
Before we plunge into the formal details of the type reconstruction I describe its operation

on a simple example. For that purpose, consider a simple extension of LF syntax with a new
term, called a placeholder, written as ∗ and used to mark a missing LF subterm. Consider
now the proof of the predicate P ⊃ (P ∧ P ) of Figure 5.4. If we replace all copies of “P”
with placeholders we get the following implicit proof:

impi ∗1 ∗2 (λu :∗3.andi ∗4 ∗5 u u) (5.3)

This implicit proof captures the essence of the proof and nothing more. The sub-
terms marked with placeholders can be recovered while verifying that the term has type
“pf (impl pP q (and pP q pP q))”, as described below.

Reconstruction starts by recognizing the top-level constructor impi. The type of the
entire term, “pf (impl pP q (and pP q pP q))”, is “matched” against the result type of the
impi constant, as given by the signature Σ. The result of this matching is an instantiation
for placeholders 1 and 2 and a residual type-checking constraint for the explicit argument of
impi, as follows:

∗1 ≡ pP q

∗2 ≡ and pP q pP q

` (λu :∗3.andi ∗4 ∗5 u u) : pf pP q→ pf (and pP q pP q)

Reconstruction continues with the remaining type-checking constraint. From its type we can
recover the value of placeholder 3 and a typing constraint for the body:

∗3 ≡ pf pP q

u : pf pP q ` andi ∗4 ∗5 u u : pf (and pP q pP q)

Now andi is the top-level constant and by matching its result type as declared in the signature
with the goal type of the constraint we get the instantiation for placeholders 4 and 5 and
two residual typing constraints:

∗4 ≡ pP q

∗5 ≡ pP q

u : pf pP q ` u : pf pP q

u : pf pP q ` u : pf pP q

The remaining two constraints are solved by the variable typing rule, and this concludes the
reconstruction and checking of the entire proof. We reconstructed the full representation
of the proof by instantiating all placeholders with well-typed LF objects. We know that
these instantiations are well-typed because they are ultimately extracted from the original
constraint type, which is assumed to contain only well-typed subterms.
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The formalization of the reconstruction algorithm described informally above is in two
stages. First, I show a variant of the LF type system, called implicit LF or LFi, that extends
LF with placeholders. This type system has the property that all well-typed LFi terms can
be reconstructed to well-typed LF terms. However, unlike the original LF type system, the
LFi type system is not amenable to a direct implementation of deterministic type checking.
Instead, I describe a separate reconstruction algorithm in Section 5.3 that I prove to be
adequate for type checking LFi terms.

Just as in the previous example, I extend the syntax of LF objects with placeholders,
written as ∗. An object M is fully reconstructed, or fully explicit, when it is placeholder free.
I write PF(M) to denote this property. Then I extend this notation to type environments
and I write PF(Γ) to denote that all types assigned in Γ to variables are placeholder-free. I
also introduce the implicitly typed abstraction, written λx.M .

The LFi typing rules are an extension of the LF typing rules with two new typing rules for
dealing with implicit abstraction and placeholders, and one new β-equivalence rule dealing
with implicit abstraction. These additions are shown in Figure 5.6. The LFi typing judgment
is written Γ `i M : A.

Objects :

Σ(c) = A

Γ `i c : A

Γ(x) = A

Γ `i x : A

Γ `i M : A A ≡β B PF(A)

Γ `i M : B

Γ, x : A `i M : B

Γ `i λx.M : Πx :A.B

Γ, x : A `i M : B

Γ `i λx :A.M : Πx :A.B

Γ `i M : Πx :A.B Γ `i N : A PF(A)

Γ `i M N : [N�x]B

Γ `i M : Πx :A.B Γ `i N : A PF(A)

Γ `i M ∗ : [N�x]B

Equivalence :

(λx :A.M)N ≡β [N�x]M (λx.M)N ≡β [N�x]M

Figure 5.6: The LFi type-system as an extension of LF.

Note that according to the LFi type system placeholders cannot occur on a function
position, but only as arguments in an application. This restriction allows us to simplify the
reconstruction algorithm by avoiding higher-order unification. Note also that several LFi
rules require that the types involved do not contain placeholders. This restriction simplifies
greatly the proofs of soundness and does not seem to diminish the effectiveness of the LFi
representation.

A quick analysis of the LFi type-system reveals that it is not very useful for type checking



92 CHAPTER 5. PROOF ENGINEERING

or type inference. The main reason is that type checking an application involves “guessing”
appropriate A and N . The type A can sometimes be recovered from the type of the appli-
cation head, but the term N in an application to a placeholder cannot be found easily in
general. This is not a problem for us because we are going to use the LFi type-system only
as a step in proving the correctness of the type-reconstruction algorithm presented in the
next section, and not as the basis for an implementation of a type-checking algorithm.

The only property of interest of the LFi type system is that once we have a typing
derivation we can reconstruct the object involved and a corresponding LF typing derivation
for it. To make this more precise we introduce the notation M ↗M ′ to denote that M ′ is a
fully-reconstructed version of the implicit object M (i.e., PF(M ′)). This means that M ′ can
be obtained from M by replacing all of its placeholders with fully-explicit LF objects and
similarly all the implicit abstractions with explicit abstractions. Note that the reconstruction
relation is not a function as there might be several reconstructions of a given implicit object
or type.

Theorem 5.4 Soundness of LFi typing If Γ `i M : A and PF(Γ), PF(A), then there
exists M ′ such that M ↗M ′ and Γ `LF M ′ : A.

Theorem 5.4 is restated and proved as Theorem B.2 in Appendix B.

5.3 An Algorithm for LFi Type Reconstruction

The LFi type-system presented in the previous section has the benefit that it allows implicit
LF terms. However this type-system does not immediately suggest a type-checking algo-
rithm, for reasons explained before. I show in this section an algorithm that can be used to
type check LFi terms, or more precisely to reconstruct and type check LFi terms.

Notation

In addition to the placeholder constants introduced in the previous section I introduce a new
brand of variables. These unification variables play a similar role to that of placeholders in
that they stand for missing terms. I shall use the letters x and y to denote traditional LF
variables and the letter u to denote a unification variable. Also, I use ∆ to denote a type
environment containing only type assignments for unification variables. The letter Γ will
denote type environments containing both kinds of variables. In the special case when an
LF object M does not contain unification variables I write UVF(M). Note that unification
variables always occur free. I extend this notation to UVF(Γ(FV (M))) to mean that the
types associated by Γ to the free variables of M do not contain unification variables.
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The main operation on unification variables is substitution with LF terms. I define the
syntactic class of substitutions Ψ as follows:

Ψ ::= · | u 7→M Substitutions

The notation Ψ(M) denotes the term obtained by performing the substitution Ψ on M . I
write Dom(Ψ) to refer to the set of unification variables on which Ψ is defined. I write
PF(Ψ) to mean that all terms substituted by Ψ for unification variables are placeholder
free. The notation Ψ ◦Ψ′ denotes the composition of substitutions Ψ and Ψ′. The resulting
composition has the domain Dom(Ψ′) ∪ Dom(Ψ) and maps u to Ψ(Ψ′(u)). Finally, I write
Ψ|S to denote the substitution obtained from Ψ by restricting it to the set of unification
variables S.

One of the key operations performed by the reconstruction algorithm is to compute
substitutions through unification of terms or types. For a more precise presentation of the
algorithm I use two flavors of unification, shown below in the case of unifying objects. The
atomic flavor of unification is only defined for applications, while the regular flavor is defined
for all kinds of objects. The same notation is used for expressing unification of types.

M ≈a M ′ ⇒ Ψ Atomic Unification
M ≈M ′ ⇒ Ψ Unification

The last syntactic construct that I introduce is a list of type reconstruction constraints
defined as follows:

C ::= · | C,M : A | C,A ≈a B

The reconstruction algorithm is described by the two unification judgments introduced
above and three additional mutually recursive judgments shown below:

Γ `r M : A⇒ Ψ Main reconstruction judgment
Γ `r M ⇒ (∆ ; C ; B) Collect constraints
Γ `r C ⇒ Ψ Solve constraints

In the rest of this section I show the definition of the five judgments introduced above, as
a collection of inference rules. These inference rules can be implemented in a straightforward
manner to produce a type reconstructor for LFi.

Collecting Type-checking Constraints : Γ `r M ⇒ (∆ ; C ; B)

This judgment is used for atomic objects, which are constants or variables applied to zero
or more canonical objects. A canonical object is a sequence of abstractions with an atomic
body, or equivalently a term in β-normal form. The atomic object M is scanned to find the
application head, whose type is read from the signature Σ if it is a constant, or from the
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variable type environment Γ if it is a variable. Then all arguments are collected as typing
constraints in the constraint list C. For each placeholder argument in M , a unification
variable is introduced. These unification variables are collected in ∆ along with their types.
The resulting type B is the type of the whole application and might contain unification
variables from ∆. Similarly, the types in the constraint list C might contain unification
variables from ∆. Note that no placeholders can occur in types because of the side condition
on the rule pertaining to the application to a placeholder.

Γ `r c⇒ (· ; · ; Σ(c)) Γ `r x⇒ (· ; · ; Γ(x))

Γ `r M ⇒ (∆ ; C ; Πx :A.B)

x ∈ FV (B) ⊃ (PF(N) and UVF(A)

and UVF(Γ(FV (N))))

Γ `r M N ⇒ (∆ ; C,N : A ; [N�x]B)

Γ `r M ⇒ (∆ ; C ; Πx :A.B)

Γ `r M ∗ ⇒ (∆, u : A ; C ; [u�x]B)
u is a new unification variable

The restriction in the explicit-application rule ensures that the resulting type [N�x]B does
not contain placeholders, provided that B does not have placeholders itself. This restriction
simplifies the proof of correctness of the reconstruction and is also required in order to match
the LFi typing judgments, which are defined only on types without placeholders.

Next, I describe how the list of constraints is solved. The main reason I separate the
tasks of collecting constraints and solving them is to allow an implementation to choose an
arbitrary order of solving the constraints. Previous experience with implementations of the
reconstruction algorithm shows that having flexibility in the solving order greatly increases
the effectiveness of the reconstruction algorithm, with the benefit that proofs with more
missing components can be reconstructed.

Solving Residual Constraints: Γ `r C ⇒ Ψ

This judgment, whose rules are shown below, defines the process of solving all of the type-
checking constraints in a list C, in an arbitrary order. To accommodate arbitrary solving
orders I introduce the constraint reordering rule. There are two kinds of constraints, typing
constraints for which the main reconstruction judgment is invoked, and unification con-
straints that are solved by unification.

Γ `r · ⇒ ·
Γ `r C1, C2, C3 ⇒ Ψ

Γ `r C2, C1, C3 ⇒ Ψ
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Γ `r M : A⇒ Ψ Ψ(Γ) `r Ψ(C)⇒ Ψ′

Γ `r C,M : A⇒ Ψ′ ◦Ψ

A ≈a B ⇒ Ψ Ψ(Γ) `r Ψ(C)⇒ Ψ′

Γ `r C,A ≈a B ⇒ Ψ′ ◦Ψ

Type Reconstruction for Objects: Γ `r M : A⇒ Ψ

This is the base judgment of the type-reconstruction algorithm. The term M can contain
variables (but no unification variables) that are declared in Γ and constants that are declared
in Σ. M can also contain placeholders and implicit abstractions. However, the type envi-
ronment Γ and the type A cannot contain placeholders. This is again required in order to
relate the type reconstruction judgment to the LFi typing judgment and has the beneficial
effect of simplifying the proof of correctness.

Recall that a canonical LF object is either an abstraction whose body is itself canonical or
an atomic object. The type-checking judgment deals directly with abstractions and invokes
the constraint collecting and solving judgments for atomic objects.

Γ, x : A `r M : B ⇒ ·
Γ `r λx.M : Πx :A.B ⇒ ·

Note that in the case of the implicit abstraction the argument type is recovered from
the goal type, which must itself be a functional type. Note also that while reconstruction
is allowed for the abstraction body the substitution returned must be empty, meaning that
subterms from the body of the abstraction cannot be used for reconstruction outside the
abstraction. This restriction does not harm in any way the usefulness of the reconstruction
algorithm for level-1 proofs (proof of formulas) but simplifies significantly the correctness
arguments by eliminating the concern that the returned substitution might contain the
bound variable x.

In the case of a constant, a variable or an application the typing judgment first collects
type reconstruction constraints that are then solved in an arbitrary order.

Γ `r M ⇒ (∆ ; C ; B) Γ,∆ `r C,A ≈a B ⇒ Ψ Dom(∆) ⊆ Dom(Ψ)

Γ `r M : A⇒ Ψ
∣∣
Dom(Γ)

In the previous rule it is required that the substitution returned be defined on all unifica-
tion variables introduced by the current collecting operation. This means that the entire list
of constraints can be discarded at this point. In this respect the presented type-reconstruction
algorithm is simpler, and potentially less powerful, than constraint-based algorithms that
allow unsolved reconstruction constraints to persist beyond the place where they were in-
troduced. However, this restriction does not seem to limit the power of the algorithm for
reconstructing implicit representations of level-1 proofs and it does eliminate the need for
the machinery for managing persistent constraints.
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Note that the reconstruction algorithm does not check explicitly that the returned sub-
stitution is well-typed. This is the reason why the reconstruction algorithm runs faster on an
implicit representation of a proof than the LF type checking algorithm on the fully-explicit
form of the proof. The returned substitution is guaranteed to be well typed by the design
of the unification judgment, described next.

Unification: M ≈a M ′ ⇒ Ψ and M ≈M ′ ⇒ Ψ

The purpose of unification is to check the equivalence of two objects or two types. The
result of the unification is a substitution of terms for unification variables. Both terms being
checked might contain implicit abstractions and might not be in canonical form, but they
cannot contain placeholders.

The main limitation of the unification judgment is that it does not try to unify terms
in which the unification variable is at the head of an application. In such a case, the
resulting substitution would not be uniquely defined and thus it is preferable to avoid it
if we can. In order to express this restriction precisely I use two flavors of unification:
atomic and normal. Only the atomic unification can be used for the head of an application.
Consequently, a unification variable cannot be instantiated by an atomic unification. The
unification judgments are presented below.

Atomic Unification

c ≈a c⇒ · x ≈a x⇒ ·

M ≈a M ′ ⇒ Ψ Ψ(N) ≈ Ψ(N ′)⇒ Ψ′

M N ≈a M ′ N ′ ⇒ Ψ′ ◦Ψ

[Nn�xn ] . . . [N1�x1 ]M ≈a M ′ ⇒ Ψ

(λx1. . . . λxn.M) N1 . . . Nn ≈a M ′ ⇒ Ψ

Normal Unification

M ≈M ′ ⇒ ·
λx.M ≈ λx.M ′ ⇒ ·

M ≈a M ′ ⇒ Ψ
M ≈M ′ ⇒ Ψ

u 6∈ FV (M)

u ≈M ⇒ u 7→M

The side condition from the instantiation rule is required for correctness. This check is
sometimes called the “occurs-check”. Checking this condition requires scanning the object
M that is used to replace the placeholder denoted by the unification variable u. We would
very much want to avoid this check. Recall that we had two arguments in favor of the
implicit representation: smaller representation size and faster checking based on the fact
that the reconstructed objects, such as M here, do not require checking. As expressed
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by the unification judgment, the reconstructed fragments do not require checking but they
require scanning. However, in most cases the occurs check is not necessary and can be
eliminated. Such an optimization is discussed in Section 5.6.

Why does type reconstruction work?

The five reconstruction judgments described in the previous sections can be used directly
as a type reconstruction algorithm. To summarize, the process of reconstructing and type
checking an object M proceeds as follows:

• If M is an abstraction then use the abstraction rule and continue with the reconstruc-
tion of the body.

• Otherwise, M must be a variable or a constant applied to zero or more arguments.
Use the collecting judgment to scan the arguments and replace the implicit ones with
unification variables. Also, collect the explicit arguments in a list of type reconstruction
constraints. Add to the list of constraints the unification of the required type for the
application and the type computed based on the type of the application head and the
arguments.

• Solve the list of constraints in a convenient order. As a result, return an instantiation
for some unification variables.

• Verify that all local placeholders have an instantiation.

The derivation rules for the reconstruction judgments are a faithful description of an
effective algorithm for LFi reconstruction. This algorithm constitutes a sound method for
validating proofs because any successful execution implies that there exist an LFi typing
derivation for the input proof representation, which in turn (by Theorem 5.4) means that
there exists a fully explicit and well-typed LF term of the same type, which in turn (by
Theorem 5.2(2)) means that the verification condition is derivable in the logic. The formal
statement of correctness of the reconstruction algorithm is stated below.

Theorem 5.5 (Correctness of proof reconstruction) If M is an LFi object such that
UVF(M) and · `r M : pf pP q⇒ · then · `i M : pf pP q.

Unfortunately, the proof of Theorem 5.5 is nowhere as simple as its statement and there-
fore I devote the entire Appendix B to it.
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5.4 An Algorithm for LFi Representation

The reconstruction judgment presented in Section 5.3 does not accept all implicit forms of a
well-typed LF object. It is therefore useful to define an algorithm that can be used to erase
from an LF representation of a proof as many redundant subterms as possible, while ensuring
that the resulting implicit object will be accepted by the reconstruction. In a proof-carrying
code environment, such a representation algorithm is applied to the proof immediately after
it is produced by the theorem prover, in order to reduce the burden on the communication
network.

There are many possible algorithms for erasing redundant subterms. Of these, I discuss
in this section only one, called bimodal representation, that I determined experimentally to
be a good compromise between complexity and effectiveness. Then, at the end of the section
I briefly discuss other representation algorithms.

Any LFi representation algorithm must depend on the reconstruction algorithm because it
must be able to predict when a given subterm can be reconstructed and when not. Only terms
that can be reconstructed can be omitted from the representation. One relevant detail of the
reconstruction algorithm is the order in which the constraints are solved. We have seen that
the correctness of the algorithm does not depend on the order, but the ability to reconstruct a
given subterm does. As the representation algorithm must be able to predict the behavior of
reconstruction we must either fix the solving order or else, we must allow the representation
algorithm to embed in the representation the order in which the constraints must be solved
for each particular application. I choose the simpler solution for the algorithm presented
here and I require that the reconstruction algorithm solves constraints in the reverse order
in which they were introduced, meaning that the unification constraint is solved first followed
by the typing constraints. Experimental evidence suggests that this is a good solving order.1

Before discussing the precise details of the representation algorithm it is useful to see
how it operates on a simple example. Consider that the representation task at hand is to
remove redundancy from the LF object

add0 E1 E2 M (5.6)

where the declaration of the constant add0 is:

add0 : Πe1 :exp.Πe2 :exp.pf (= e1 0)→ pf (= (+ e1 e2) e2) (5.7)

(The add0 constant might represent, for example, the idempotency of adding zero. How-
ever, the representation algorithms presented in this section, just like the reconstruction

1Fixing the solving order does not necessarily mean that the results of representation must be suboptimal.
We can still analyze each constant in turn and decide, for that particular constant, which is the best constraint
solving order. Then we can usually reorder the arguments of the constant so the fixed solving order matches
the optimal one.



5.4. AN ALGORITHM FOR LFi REPRESENTATION 99

algorithm of Section 5.3 are independent of the significance of signatures. Thus, it is not
relevant here that we are reconstructing proofs in a given logic where a given derivation rule
is represented by the constant “add0”.)

The representation algorithm works by considering the behavior of reconstruction when
faced with the task of reconstructing an implicit representation of the LF object 5.6 with a
given type A, as follows:

· `r add0 E ′1 E ′2 M ′ : A⇒ Ψ (5.8)

In the above equation E ′1 is an implicit representation of E1, possible even ∗, and E ′2 and
M ′ are implicit representations of E2 and M respectively.

From 5.8, the reconstruction algorithm generates the following constraints, ordered in
the order in which they are solved:

A ≈a pf (= (+ E ′1 E
′
2) E ′2)⇒ Ψ1 (5.9)

· `r Ψ1(M ′) : pf (= (Ψ1(E ′1)) 0)⇒ Ψ2 (5.10)

· `r (Ψ2 ◦Ψ1)(E ′2) : exp⇒ Ψ3 (5.11)

· `r (Ψ3 ◦Ψ2 ◦Ψ1)(E ′1) : exp⇒ Ψ4 (5.12)

The most optimistic scenario, from the point of view of reconstruction, is when A is fully
explicit and hence E ′2 and E ′1 need not be specified at all because they can be recovered from
5.9. The case when the type of the application is fully explicit is called the checking case.
In this case Ψ1(E ′1) and Ψ1(E ′2) are also well typed and fully explicit, thus the constraints
5.11 and 5.12 are satisfied automatically.2 Furthermore, the constraint 5.10 will also be in
checking mode. Thus, in the checking mode the representation of 5.6 can be as small as
“add0 ∗ ∗M ′”, where M ′ is the representation in checking mode of M .

The most pessimistic scenario is when A does not contain any structural information
(e.g., A = pf ∗), and thus no information about E1 and E2 can be recovered from 5.9.
To make it even more difficult on the reconstruction, we also require that the type A be
reconstructed in addition to the term. This case is called the inference mode. Even though
reconstruction is not able to infer the structure of E1 and E2 just from the constraint 5.9 it
does not mean that E1 and E2 must appear explicitly in 5.6. Instead we try to see if they can
be recovered from the other constraints. In our example, E1 could be recovered from 5.10 if
that constraint is done in inference mode. In that case the constraint 5.12 is automatically
satisfied. And because in inference mode we must fully reconstruct the type also, E2 must
be fully explicit. Thus the representation of 5.6 in inference mode is “add0 ∗ E2 M

′”, where
M ′ is the representation in inference mode of M .

In addition to the two extreme cases discussed above, we could consider the situations
when the type A is only partially implicit and can be used to recover partially some of the

2There are not even collected, because E′1 and E′2 are implicit arguments.
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arguments. We could also consider the variant of inference when it is not mandatory that the
type be fully recovered after reconstruction. In this section we consider only the two extreme
cases, hence the name of bimodal representation. Then, in Section 5.7 I briefly discuss the
potential benefits of more complex representation algorithms.

The major advantage of the bimodal representation algorithm is that a large part of the
work can be done statically, while the signature is loaded. More precisely, for each constant
we can compute, based on the constant’s declared type, two representation recipes, one for
checking and one for inference. A representation recipe for an n-ary constant c is a sequence
of n representation directives, with one directive corresponding to an argument of c. Each
representation directive specifies whether the corresponding argument can be left implicit or
it must be at least partially explicit. Also, in the latter case the directive says in which mode
should the explicit argument be represented. Hence, the bimodal representation algorithm
uses three representation directives, ∗ to denote an argument that can be omitted, and ec and
ei to denote explicit arguments for which the checking and inference recipes, respectively,
must be used recursively. The two recipes corresponding to the constant c are denoted by
by Rc(c) (the “checking” recipe) and Ri(c) (the “inference recipe”). To refer to both the
checking and inference modes at the same time I shall use the letter m to stand for either c
or i.

There are two components of the representation algorithm. First is the algorithm that
computes the representation recipes for each constant based on the declared type for the
constant. Then, there is the algorithm that scans a fully-explicit LF object and, depending
on the representation recipes, decides which subterms can be omitted. The latter part is the
simplest and I describe it first.

The main representation function is described in Figure 5.7 by the judgments M
m→ M ′

(compute M ′, which is the representation of M in mode m, with m ∈ {c, i}) and the auxiliary
judgment M

m⇒M ′+R (compute M ′, the representation of the application head M in mode
m and compute also the recipe R to be used for the arguments of M). There are two cases
for the main judgment. In the case of an abstraction, the type of the bound variable is left
implicit and the body is represented recursively. In all other cases, the auxiliary judgment
is invoked.

The auxiliary representation judgment first scans the application until it reaches its head.
The head can be a constant, whose representation is the constant itself and the recipe for
the remaining arguments is the constant’s recipe, or it can be a variable, in which case
the representation is the variable itself and the recipe for the remaining arguments is a
sequence of “em” directives as long as the arity of the variable.3 (m is either c or i depending
on whether we are computing the checking or the inference recipe.) On return from an
auxiliary judgment the representation of the application’s argument is done according to the

3This means that the bimodal representation algorithm does not attempt to do a good job on applications
whose head is a variable.
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M
m→M ′

λx :A.M
m→ λx :∗.M ′

M
m⇒M ′ + ·

M
m→M ′ c

m⇒ c+Rm(c) x
m⇒ x+ em . . . em

M1
m⇒M ′

1 + ∗R
M1 M2

m⇒M ′
1 ∗+R

M1
m⇒M ′

1 + em′ R M2
m′→M ′

2

M1 M2
m⇒M ′

1 M
′
2 +R

Figure 5.7: The bimodal representation algorithm.

first directive.
The core of the representation algorithm is the computation of the representation recipes

for each constant based on its declared type. In order to describe precisely the computation
of the representation recipes, I define first the function Unif (A) which computes the set of
free variables of A that are guaranteed to be instantiated during a successful unification with
another fully-explicit type B. The definition of Unif follows that of the unification. The
complement of Unif (A) is denoted by NUnif (A), which normally consists of those variables
that occur in functor position in A. This notation is extended to objects and the rules for
computing the unifiable sets are described below:

Unif (A) =


∅, if A = a
Unif (A′) ∪ (Unif (M)− NUnif (A′)), if A = A′ M
Unif (A′) ∪ (Unif (A′′)− {x}), if A = Πx :A′.A′′

Unif (M) =



∅, if M = c
{x}, if M = x
∅, if M = λx :A.M ′

Unif (M ′) ∪ (Unif (M ′′)− NUnif (M ′)), if M = M ′ M ′′ and the head
of M ′ is a constant

∅, if M = M ′ M ′′ and the head
of M ′ is not a constant

NUnif (A) = FV (A)− Unif (A)

NUnif (M) = FV (M)− Unif (M)

Consider an application of the constant c whose type is Σ(c) = Πx1 :A1. . . .Πxn :An.An+1

such that An+1 is not a type abstraction. Due to the right-to-left order of solving constraints,
the first solving operation unifies An+1 with a given type B. For this unification to succeed
it is necessary that the arguments corresponding to variables in NUnif (An+1) are explicit. If
we are in a checking situation (i.e., B does not contain unification variables) then unification
finds instantiations for the arguments corresponding to variables in Unif (An+1). If we are
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k 1 2 3 4
Ak exp exp pf (= x1 0) pf (= (+ x1 x2) x2)

Unif (Ak) ∅ ∅ {x1} {x1, x2}
NUnif (Ak) ∅ ∅ ∅ ∅

Ick {x1, x2} {x1, x2} {x1, x2} {x1, x2}
Eck ∅ ∅ ∅ ∅
Iik {x1} {x1} {x1} ∅
Eik ∅ ∅ ∅ ∅
rck ∗ ∗ ec
rik ∗ ec ei

Figure 5.8: The computation of the recipe directives in the case of the constant add0 with
the declared type Πx1 :exp.Πx2 :exp.pf (= x1 0) → pf (= (+ x1 x2) x2). The values in the
table are computed from right to left.

in an inference situation then we assume conservatively that unification does not find any
instantiation. Next, the typing constraints for the arguments of c are processed, in reverse
order. Let Imk , with m ∈ {c, i} and k ∈ 1, . . . , n + 1, be the set of the variables among
{x1, . . . , xn} that are guaranteed to be instantiated after processing the constraints corre-
sponding to Ak, . . . , An+1 (the last constraint is a unification constraint and the others are
typing constraints). Similarly, let Em

k be the set of those variables that are required to be
explicit so that unification does not fail when processing the constraints corresponding to
Ak, . . . , An+1. These sets are computed starting with k = n+ 1 as follows:

Icn+1 = Unif (An+1)
I in+1 = ∅
Em
n+1 = NUnif (An+1)

Imk =

{
Imk+1 if xk ∈ Imk+1

Imk+1 ∪ (Unif (Ak)− Em
k+1) otherwise

Em
k =

{
Em
k+1 if xk ∈ Imk+1

Em
k+1 ∪ (NUnif (Ak)− Imk+1) otherwise

(5.13)

With these definitions we can define the representation recipe as Rm(c) = rm1 . . . rmn ,
where the recipe directives are defined as follows:

rmk =

 ∗ if xk ∈ Imk+1

ec if FV (Ak) ⊆ Imk+1 ∪ Em
1

ei otherwise

These definitions say that an argument corresponding to xk can be implicit if it can be
inferred from the constraints corresponding to Ak+1, . . . An+1, and if xk does not appear in
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Constant Rc Ri

and ec ec ec ec
andi ∗ ∗ ec ec ∗ ∗ ei ei
andel ∗ ∗ ei ∗ ∗ ei
impi ∗ ∗ ec ec ec ei
alle ec ec ec ec ec ec
add0 ∗ ∗ ec ∗ ec ei
mc1 ∗ ∗ ∗ ∗ ec ec ∗ ec ∗ ei

Figure 5.9: A fragment of the representation recipes for the signature shown in Figure 5.3.

a functor position in any of the Ak+1, . . . , An+1. (This is because Imk ∩ Em
k = ∅, for all k.)

In this case, the constraint is not even collected and therefore Imk = Imk+1 and Em
k = Em

k+1.
Otherwise, the argument must be explicit and is represented recursively in checking mode
only if all of the variables occurring in its type are either required to be explicit (Em

1 ) or can
be inferred from the constraints solved before (Imk+1).

Consider for example the operation of the recipe computation algorithm in the case of
the “add0” constant declared as in 5.7. First, we compute the unifiable and non-unifiable
sets for A1, . . . , A4, as shown in Figure 5.8. Then, we start computing the Imk and Em

k

sets for k = 4, . . . 1. Finally, we can compute the checking and inference representation
directives. Figure 5.9 shows more examples of representation recipes for constants used in
the representation of first-order logic with equality and array variables. The case of the
constant “alle” is one where there are non-unifiable variables. In this particular case, the
representation algorithm is not particularly effective.

5.5 Representing Arithmetic Proofs

The preceding sections argue formally and informally that the Edinburgh Logical Framework
and especially the LFi variant is an excellent choice for representing and checking derivations
in a variety of logics of interest to proof-carrying code. This is true as long as the logic of
interest is finitely axiomatizable. Only then we can build an LF signature containing a
declaration for each derivation rule.

Unfortunately there is at least one instance when it would be convenient to encode a
logic whose most convenient axiomatization is not finite. This is the case with various forms
of arithmetic. Take for example the commutative group (Z,+) of addition over integers
with the usual commutativity, associativity, identity and inversability axioms. Equality in
this group can be axiomatized with a finite number of derivation rules only if we encode
integers using some sort of unary or binary notation. This is inconvenient because it leads
to complex proofs even for simple facts about addition of integer literals. It would be a lot
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more convenient to be able to encode the literals directly. But then we need at least as many
axioms as there are literals so that we can define them.

In this section I present a simple extension to LF whose purpose is to encode and check
equality proofs in the commutative group (Z,+). Once this is in place, a small number
of axioms are required to handle more complex and more realistic fragments of arithmetic,
such as integer linear programming and modular arithmetic. Both examples are considered
in Chapter 7 in the context of decision procedures that emit LF proof representations.

The extension consists mainly of extending the LF set of objects to include integer literals
that behave as constants but are not required to be declared explicitly in the signature. All
integer literals are assumed to have type “exp”. I also add the declarations or the addition,
negation and equality between integers, as shown in Figure 5.10.

exp : Type

pred : Type

add : exp→ exp→ exp

neg : exp→ exp

aeq : exp→ exp→ pred

arith : Πx1 :exp.Πx2 :exp.pf (aeq x1 x2)

Figure 5.10: The encoding of the additive group of integers in LF.

The special constant “arith” is introduced to encode proofs of arithmetic equality. The
constant “arith” is unusual in the sense that it constructs a proof of equality without any
assumption except that the constituents of the equality are well-typed expressions. It seems
that this signature is not adequate for representing the additive group equality because we
would be able to construct a representation of the equality proof for just about any pair
of expressions. To fix the problem, I extend the LF type checking algorithm so that an
occurrence of “arith” is not just type checked but also analyzed using the algorithm Arith,
described in Figure 5.11, to ensure that it is indeed a valid proof.

The intuition behind the Arith function is that for each expression E involving only
variables Vars = {x1, . . . , xn}, integer literals, addition and unary negation, there exist
integer constants c, a1, . . . , an such that the value of E for a mapping ρ ∈ Vars → Z is
“c +

∑n
i=1 aiρ(xi)”. In other words, such an expression can be equivalently written as a

linear combination of its free variables. The function Arith computes the coefficients for an
arbitrary expression. The function Arith is defined to take an integer factor and a set of
intermediary coefficients C ∈ Z × (Vars → Z) in addition to the expression E. The set of
coefficients consists of a constant c and an integer coefficient for each variable in Vars . The
initial value of the factor is 1 and of the coefficients is 0Vars = (0, λx ∈ Vars .0).
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Arith(E, f, C) =


(c+ f · n,C), if E ≡ n and C ≡ (c, C)
(c, C[x 7→ C(x) + f ]), if E ≡ x and C ≡ (c, C)
Arith(E ′, f,Arith(E ′′, f, C)), if E ≡ add E ′ E ′′

Arith(E ′,−f, C), if E ≡ neg E ′

Figure 5.11: The algorithm Arith for checking equalities in the additive group (Z,+).

To complete the extension of LF, I introduce a special case of the rule used in LFi to
type check an application, for the situation when the head of the application is “arith”, as
follows:

Γ `r arithM1 M2 ⇒ (∆ ; C ; B)

Γ,∆ `r C,A ≈a B ⇒ Ψ

Dom(∆) ⊆ Dom(Ψ)

Ψ
∣∣
Dom(Γ) (A) = pf (aeq E1 E2)

Arith(add E1 (neg E2), 1, 0Dom(Γ)) = 0Dom(Γ)

Γ `r arithM1 M2 : A⇒ Ψ
∣∣
Dom(Γ)

Note that the conclusion and the left side of the hypothesis are copied directly from
the original rule. What is new is the right side of the hypothesis, which ensures that the
coefficients of the expression E1 − E2 as computed by the Arith function are all zero. Now,
we are able to extend the proof of adequacy of representation and of reconstruction even for
objects using the constants “arith”. For this we need the following theorem.

Theorem 5.14 If E1 and E2 are expressions with variables within Vars and such that
Arith(add pE1

q (neg pE2
q), 1, 0Vars) = 0Vars , then in any valuation ρ ∈ Vars → Z

we have that V(ρ(E1)) = V(ρ(E2)).

Proof: The proof is by means of a more general lemma that allows for arbitrary values of
the factor, the expression and the intermediate set of coefficients. The lemma states that
the function Arith computes a correct set of coefficients, when it succeeds. Then we use
that fact that V(E1 + (−E2)) = 0 ⇐⇒ V(E1) = V(E2).

�

Thus, by extending the LF reconstruction algorithm with the simple arithmetic decision
procedure of Figure 5.11 we are able to encode many arithmetic proofs in a very concise
manner. The savings are due to encoding the integer literals explicitly and by avoiding all
trivial but lengthy proofs of equality in the additive group of integers. With this extension
we can now encode in LF other logics without finite axiomatizations such as integer linear
programming, shown in Section 7.3.2.
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5.6 The Implementation of LFi

In the previous sections I describe the LFi reconstruction algorithm, used to validate implicit
representation of proofs, and one LFi representation algorithm, used to compact the proofs
by erasing most of the redundant subterms. Even though these algorithms are described ab-
stractly in terms of inference rules they can be both implemented by a straightforward tran-
scription of the rules into code. However, several implementation details were left unspecified
to provide more freedom to the implementor. My experience with several implementations
shows that some of these details can have a significant impact on the performance of the
algorithms. In this section I discuss some of the implementation choices that I discovered to
be beneficial.

One such detail is the implementation of substitution. For example, the straightfor-

ward implementation of the substitution [M�x]N would introduce as many copies of M as
there are free occurrences of x in N , leading to excessive memory usage [Wad71]. A better
strategy, also employed in the Twelf implementation of LF [PSC], is to use explicit substitu-
tions [ACCL91] so that the substitution is performed lazily when the resulting term is later
examined. Thus, each LF type or object is represented as a pair of a regular LF type or
object with free variables and a substitution of these free variables to pairs of terms and
substitution, as follows:

LF objects ::= (M,Ω)
LF types ::= (A,Ω)
Explicit Substitutions Ω ::= · | Ω, x 7→ (M,Ω′)

The invariant property of an explicit substitution representation is that it is always
closed, i.e., for each pair (M,Ω) we have FV (M) ⊆ Dom(Ω). To maintain this property
and still be able to represent the terms with free occurrences of variables that arise during
reconstruction we make the convention that whenever a binding is removed from a term, a
fresh constant is created and substituted for the bound variable, as in the following modified
rule for reconstruction of abstractions:

Γ, x : (A,ΩA) `r (M, ΩM , x 7→ (cx, ·)) : (B, ΩA, x 7→ (cx, ·))
Γ `r (λx.M,ΩM) : (Πx :A.B,ΩA)

cx is a new
constant

(5.15)

The substitution is now very cheap because all it does is to extend the explicit substitution
of the subject term, as in the following rule for β-reduction:

(λx.N,ΩN)(M,ΩM)
β−→ (N, ΩN , x 7→ (M,ΩM))

The true cost of substitution is paid when an object is traversed and a variable is reached.
In this case, the traversal must continue with the explicit substitution of that variable, as
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suggested by the following identity:

(x,Ω) ≡ (M,Ω′) if x 7→ (M,Ω′) appears in Ω

Storing explicit substitutions requires less memory than the substituted term because
the space required to record the substitution is usually less than the space required to store
several copies of the substituted term. In addition, the explicit-substitution representation
saves processing time because the terms involved in the substitution do not have to be
rewritten to avoid variable name clashes. However, the time required to scan the resulting
term is not changed by using explicit substitutions.

In addition to substitution, another potentially costly operation is the composition of
substitutions during unification. The purpose of composition is to ensure that once an
instantiation is found for a unification variable, that instantiation is applied to all occurrences
of the unification variable. This effect can be achieved at a low cost if all the explicit
substitutions share the mapping corresponding to the same unification variable. Then, when
unification finds an instantiation for a unification variable, it can update the shared cell that
stores the explicit substitution for that variable with the result that the new instantiation
is seen simultaneously by all relevant explicit substitutions. The required sharing can be
established by making sure that in rule 5.15 the two occurrences of the cell (cx, ·) are shared.

Another implementation choice that we must face is the representation of variables.
Given that we are using explicit substitutions, it is natural to represent the bound variables
using deBruijn indices [DeB72]. In this notation, each occurrence of a bound variable is
represented by a positive integer that counts how many lambda abstractions there are in the
abstract syntax tree between this occurrence and the binding abstraction. Thus, λx.λy.a x y
is represented as λλ a 1 0. The advantage of using deBruijn indices is that the explicit
substitutions can be implemented as linked lists of pairs. The explicit substitution of a
variable can be found by skipping a number of list cells equal to the deBruijn index of the
variable occurrence.

Throughout this dissertation, I ignore the details of the external representation of LFi
terms. This is because any reasonable way to linearize an LF term in an architecture-
independent manner is acceptable. My experience suggests that it is a good idea to encode
applications as a head followed by a number of arguments and abstractions as a number
of bindings followed by a body. This encoding is called functor/arguments in [MP93]. An
object in the external representation has a tag denoting whether it is one of the following:

• a variable, in which case the rest of the object is the deBruijn index of the variable, or

• a constant, in which case the rest of the object is an index into a global table of
constants (the current signature), or

• an application, in which case the rest of the object contains the number of arguments,
then the head followed by the encoding of the arguments, or
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• an abstraction, in which case the rest of the object encodes the number of bindings,
followed by the encoding of the types of each binding and the body.

In my implementation, the basic unit of representation is a 16-bit word. In this case,
the tag word can also contain the deBruijn index for a variable, the index of a constant or
the length of an application or abstraction. The integer literals are represented as constants
having indices that are outside the maximum size signature.

To close the implementation section, I describe a couple of opportunities for optimizing
the reconstruction algorithm. One of the most promising opportunities for optimization is
the elimination of the occurs-check in the unification rule. As shown clearly in the correctness
proofs of LFi reconstruction (shown in Appendix B), it is necessary to verify that the variable
to be unified does not occur free in the target of the instantiation. However, in many cases
this can be guaranteed without checking.

For this purpose, assume that we partition the set of unification variables into those that
are guaranteed not to occur twice in any unification goal and the rest. I refer to the former
set of variables and the linear variables. Then, we know that the occurs check does not need
to be performed when unifying a linear variable.

The question is how to discover which variables are linear. A solution is suggested by
considering the place where unification variables are created, that is, the constraint collection
rule shown again below:

Γ `r M ⇒ (∆ ; C ; Πx :A.B)

Γ `r M ∗ ⇒ (∆, u : A ; C ; [u�x]B)
u is a new unification variable

where B is a dependent type of the form B = Πx1 : A1. . . .Πxn : An.An+1. If x occurs at
most once in each of the Ai, then we know that u does not occur more than once in any
constraint, and thus u is a good candidate for a linear unification variable. Note, that the
linearity of u in this case can be precomputed statically in the frequent case when the head
of M is a constant and thus B is a portion of a type declared in the signature.

Note that the linearity property of a unification variable is preserved by a substitution
of another linear variable, but it might not be preserved if the substituted variable is not
linear and occurs multiple times. To account for this case, the implementation of unification
disables the occurs-check optimization while traversing an explicit substitution for a non-
linear variable. The experiments presented in Section 8.3 show that this simple optimization
reduces the time required for proof checking by a factor of 2 or 3, or in some cases even as
high as 8.

Another possible optimization is to reduce the memory usage required for reconstruction.
A close inspection of the reconstruction rules reveals that, in addition to the memory required
to store the original LF object and type, during reconstruction we must allocate space to
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hold the explicit substitution list cells and the constraint list data structure. The constraint
data structure can be allocated on the stack because it can be discarded immediately after
the current reconstruction goal is finished. We can also observe that if during the type
reconstruction of a given subterm there were no instantiations, then it is safe to deallocate
the entire memory that was allocated during type reconstruction for this particular subterm.
To take advantage of this common allocation pattern my implementation of PCC uses a
private heap from which it allocates sequentially and deallocates entire chunks at a time in
a stack-like manner. This way, both the allocation and deallocation are quite inexpensive.

There is however the case when there are instantiations during the reconstruction of
a subterm, and in such cases the implementation refrains to deallocate at all. To detect
such cases on a per-subterm basis, the implementation maintains a counter of the number
of uninstantiated distinct unification variables present. This counter is initialized to zero
at top level, it is incremented when a unification variable is introduced and is decremented
when the unification finds an instantiation. Note that a given unification variable is only
instantiated once. Then, it is safe to deallocate all the memory that was allocated during
the reconstruction of a subterm if the number of uninstantiated unification variables did not
change. The experiments shown in the Section 8.3 show that this optimization can reduce
the memory usage by a factor of over 20 in some cases. However, this optimization might
not be as interesting as it might seem because the memory usage is very small anyway.

5.7 Discussion

The problem of redundancy in the representation of proofs has been addressed before for
the purpose of simplifying the user interface of theorem provers and proof assistants. Miller
suggests in [Mil87] an extreme approach where the proof object records only the substitu-
tions for the quantifiers, relying on the decidability of the tautology of the resulting matrix.
This leads to very compact proof representations at the expense of an NP-complete tautol-
ogy checking problem. Furthermore, in the presence of interpreted function symbols and
arithmetic (as is always the case in the PCC proofs) the tautology checking problem can
easily become undecidable.

The argument synthesis and term reconstruction algorithms implemented in the LEGO
system [Pol90] and in the Coq [DFH+93] proof assistant are less effective than my algorithm,
in the sense that fewer proof subterms can be omitted from the proof representation, and
therefore more redundancy has to be tolerated. This is because they address the more difficult
problem of representing a proof so that the predicate that it proves can be recovered from it.
This is as if the bimodal representation algorithm is reduced to the less effective inference
mode only. For example, an application of the constant “eqid” of type “Πe :exp.pf (= e e)”
must always be explicit even though e could be sometimes recovered from the context.
The algorithm presented in this chapter is able to synthesize more proof subterms by using
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information both from the context and from the predicate that the proof is supposed to
prove.

The implementation of Elf [Pfe94], a logic programming language based on LF, contains
a reconstruction algorithm that is similar to the one presented here in the sense that missing
application arguments can be recovered both from the type of the application (inherited
arguments) and from the other arguments of the same application (synthesized arguments).
In fact, the Elf reconstruction algorithm is more powerful than the one discussed here because
it does not impose any restriction on which terms can be missing from the proof. Elf goes
as far as allowing the entire proof to be implicit, in which case it searches for a proof itself.
To achieve this flexibility, Elf type reconstruction uses an algorithm based on constraint
solving [Pfe91a, Pfe91b], where the constraints can survive the local context where they
were introduced. Sometimes, there might be constraints that remain unsolved, in which
case Elf declare failure to reconstruct the proof. The proof checking algorithm described
here can be characterized as a special and more efficient case of the Elf’s reconstruction
algorithm, where enough of the proof structure is present so that (1) there is not need for
search, (2) higher-order unification is reduced to a simple extension of first-order unification
that respects bound variables, and (3) all constraints that are generated have the simple
rigid-rigid or flex-rigid form that can be solved eagerly and locally.

The design of the language Lλ [Mil91] also relies on syntactic restrictions for the pur-
pose of eliminating the need for higher-order unification during type checking. However,
the restrictions of Lλ are too strict for our purposes because they prevent the free use of
higher-order abstract syntax in the representation of predicates and proofs, requiring instead
costly [MP92] explicit implementations of substitution. In LFi we can still make use of all
of the representation techniques of the full LF language, and thus gain leverage from substi-
tution in the meta-language, because the restrictions are imposed only on which subterms
might be missing from the representation.

Similar ideas to those presented in this chapter appear in [PT98] in the context of a
simple, yet effective type-inference algorithm for a language with subtyping and impredicative
polymorphism. The similarity lies in the fact that both algorithms rely on a combination
of local constraint solving and bidirectional checking. However neither result subsumes the
other because of the different characteristics of the underlying languages: LF has dependent
types and the language considered in [PT98] has subtyping.

Finally, a distinguishing feature of the LFi framework from the related work discussed
above is the representation algorithm, which take a regular LF representation of a proof and
eliminate as many subterms from it as possible, while keeping the resulting proof within the
reconstruction capability of the proof checker. The experimental data supports the claim
that the LFi representation for first-order logic proofs has substantial practical benefits.

The bimodal representation algorithm presented in Section 5.4 has the advantage that
most of the work can be done statically while loading the signature. Then, once the repre-
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sentation recipes have been computed, the actual representation algorithm is just a copy of
the full LF representation with certain subterms dropped. However, the bimodal algorithm
considers only two possible contexts for each application. One direction for improving the
effectiveness of the representation is to consider each LF application in the actual context
where it occurs. To experiment with this case I implemented a global representation algo-
rithm that mimics the reconstruction algorithm to detect which subterms can be omitted.
For each application the global algorithm starts assuming optimistically that all arguments
can be dropped. Then it runs the reconstruction algorithm that might fail when checking
whether all constraints have been checked (i.e, the check Dom(∆) ⊆ Dom(Ψ) in the rule of
type reconstruction for application might fail). Such a failure points to a given set of argu-
ments that must be explicit. The global reconstruction algorithm makes these arguments
explicit are tries again until it succeeds. In a sense, the global representation algorithm is
optimal given a constraint solving order. However, the improvement in the size of proofs
over the bimodal representation is so minimal, that it is not worth to pay the expense of the
trial-and-error global representation algorithm. This also says that the bimodal representa-
tion achieves near-optimal results, at least for the fragments of first-order logic used in the
experiments.

An even more effective reconstruction algorithm would improve on the global representa-
tion algorithm and also search for the best order of solving the constraints for each application
separately. I did not experiment with this feature partly because it would require special
notation to encode in the representation the order in which the constraints should be solved,
and also because the visual inspection of the results of the bimodal algorithm suggests that
there is not much left to be gained from more complex algorithms. If the order of constraint
solving is important for a given constant then we can usually change the order of arguments
in the type of each constant declaration so that it matches the optimal order. This is pos-
sible because, in general, it is not important in which order we mention the hypotheses of a
derivation rule.

The dependency on the context of the bimodal representation algorithm is a disadvantage
if we want to use it in a system that must generate LF terms incrementally, such as a theorem
prover that builds an LF representation of the proof gradually from smaller components.
The bimodal algorithm cannot be used to compact a component until it is known in which
context the component is used. On the other had, it is wasteful to make the theorem prover
emit fully-explicit representation of proofs only to pass them to the bimodal representation
algorithm. What we need in this case is a context independent representation algorithm.

Fortunately, such an algorithm can be obtained with a simple modification of the bimodal
algorithm, by making the restriction that only the “ec” and “∗” representation directives be
used. This can be achieved by changing the rule for computing Em

n+1 in Equation 5.13 to:

Em
n+1 = {x1, . . . , xn} − Imn+1

This will ensure that for all k we have that FV (Ak) ⊆ Ick+1 ∪ Ec
k+1, which in turn



112 CHAPTER 5. PROOF ENGINEERING

guarantees that the directive “ei” will not be used. Thus we obtain a context-independent
representation algorithm with just the checking mode. Each subterm of an object can be
represented independently of the context and that makes it possible to have simple rep-
resentation algorithms for use in programs that must generate LF terms. Note that the
bimodal representation algorithms do not require that the input LF object be fully-explicit.
If the object is missing only subterms that the representation algorithm was going to omit
anyway, then the representation algorithm still works. This makes it possible to implement
the theorem prover so that it emits proof representations using the less-effective context-
independent representation and then run the bimodal representation algorithm to compress
the proof further before sending it to the proof checker.

With this, I conclude Part I dedicated to the proof-carrying code infrastructure. I have
shown, in Chapter 3, how a safety policy can be defined as a fictitious interpreter that verifies
each action performed by the agent. Then, in Chapter 4, I have shown the proof-carrying
code alternative to enforcing the safety policy, by means of a verification-condition generator
that computes a predicate that is valid only if the fictitious interpreter would never fail one
of the run-time checks. This justifies the PCC infrastructure to accept as evidence of safety,
a valid proof of the verification condition predicate. Finally, in this last chapter, I describe
a framework that can be used to encode verification conditions and their proofs such that
they are relatively small and a simple logic-independent proof checker can validate them. In
Part II I show a couple of tools that can be used on the code producer end to generate the
annotations and the proofs that are required to satisfy a PCC code receiver.



Part II

Proof-Carrying Code Tools

In this second part of the dissertation I describe a pair of tools that a code
producer can use to accomplish its share of the attributions in a PCC system.
In Chapter 6 I describe a special class of safety policies based on type systems.
For such type-based safety policies it is possible to generate the required loop
invariants in a completely automatic manner. I describe the design of the
Touchstone certifying compiler that, as it compiles and optimizes programs
written in a type-safe subset of the C programming language, generates the
loop invariants required by VCGen.
Then in Chapter 7 I describe a theorem prover for first-order logic that is both
sufficiently powerful to prove all the verification conditions arising from the
output of the Touchstone compiler and also capable of generating the proofs
of such verification conditions in the LFi format required by the PCC proof
checker described in Chapter 5.





Chapter 6

The Touchstone Certifying Compiler

Part I of this dissertation describes in detail the infrastructure of proof-carrying code, con-
sisting of a safety policy, implemented by means of a verification-condition generator and
code specifications, along with a proof checker. These components are shown with inter-
rupted lines in Figure 6.1. The other components, shown with solid lines, are part of the
code producer.
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Figure 6.1: The interaction between the PCC tools (shown with continuous lines) and the
PCC infrastructure (shown with interrupted lines).

I have shown that a successfully checked proof of the verification condition guarantees
that the verification condition is valid, which in turn guarantees that the code adheres to
the safety policy. The PCC infrastructure is simple, easy-to-trust and automatic. But this
is only because all of the difficult tasks have been delegated to the code and proof producers.
The first difficult task, besides writing code that is indeed safe, is to generate the code
annotations consisting of loop invariants for all loops and of function specifications for all
local functions. The other difficult task is to prove the verification condition produced by
the verification-condition generator. This chapter describes one method for generating the
annotated code, by means of a special compiler. Then, in Chapter 7, I describe a theorem
prover capable of generating proofs of the verification conditions.

115
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Of the two difficult tasks facing a code producer, the most important is the generation
of the code annotations. This chapter starts with a general discussion of loop invariants,
focussing on why it is so difficult in practice to find appropriate invariants. The discussion
then hints that by restricting the safety properties to be checked to type safety, the problem
of generating loop invariants is simplified considerably. Then, in Section 6.2, I discuss in
detail what is type safety and, in particular, what is a type-based safety policy for proof-
carrying code along with a series of examples showing how common safety policies can be
expressed based on types. The actual description of the Touchstone certifying compiler starts
in Section 6.3 with a discussion of the subset of the C programming language compiled by
Touchstone. Then, Section 6.4 revisits the issue of automatic generation of loop invariants,
this time in the concrete case of type safety for the Touchstone subset of C. The main body
of this chapter is Section 6.5 where I discuss in turn several common optimizations and show
how each of them must be adapted for use in a certifying compiler. Finally, the chapter
ends with a discussion (in Section 6.6) of the software engineering benefits of the certifying
compiler approach.

Note that this chapter, unlike the entire Part I of this dissertation, is targeted towards a
rather narrow application of proof-carrying code, in which the safety properties to be checked
is limited to type safety. Thus the numerous restrictions that are imposed in this chapter
for the purpose of achieving automation of proof generation are not to be taken as necessary
limitations of the underlying proof-carrying code infrastructure.

6.1 The Basics of Loop Invariants

The first of the two challenges facing a code producer is the generation of the code anno-
tations. The second is the generation of proof. As we shall see, any systematic method for
discovering annotations that are both valid and sufficient for proving safety must go through
the same reasoning steps that a theorem prover would prove the verification conditions. This
suggests that the task of generating annotations is more difficult than the theorem proving
task. To illustrate this point let us discuss the problems of discovering the loop invariant
and of proving the verification condition for the generic program fragment shown below:

1 i := e0

2 Loop: if C then return i
3 . . .
4 i := e
5 go to Loop

This program fragment contains a single loop with the variable i initialized to the expres-
sion e0 and updated with the value of the expression e. The loop termination condition is a
predicate C. Let us assume that the precondition for this fragment is a predicate Pre and
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the postcondition another predicate Post and that the body of the loop (shown as ellipses
in line 3) has a safety predicate P .

There are two annotations that the code producer is responsible for in this example,
namely the loop invariant Inv and the set of modified registers, both for the loop starting in
line 2. The latter is always trivial to compute. In this case it is the singleton set {i}. Before
we even try to infer a loop invariant it is useful to compute the verification condition using
the symbolic evaluation algorithm shown in Figure 4.6. The result is as follows:

VC = Pre ⊃ [e0�i]Inv ∧
(∀i.Inv ⊃ ((C ⊃ Post) ∧

(¬C ⊃ (P ∧ [e�i]Inv))))

The important points to notice are that the precondition is assumed for the whole pred-
icate, and the invariant is assumed for both the loop body and the code following the loop.
Notice also that the modified variable i is quantified so that no assumption can be made
about its value in the body of the loop, except as specified by Inv. This invariant condition
can be broken into four separate predicates, as shown below:

Pre ∧ Inv ∧ C ⊃ Post (6.1)

Pre ∧ Inv ∧ ¬C ⊃ P (6.2)

Pre ⊃ [e0�i]Inv (6.3)

Pre ∧ Inv ∧ ¬C ⊃ [e�i]Inv (6.4)

The predicates 6.1 and 6.2 require the invariant to be sufficiently strong so that it implies
both the safety of the loop body and the postcondition, and also the safety of the code
following the loop if such code existed. These are the strength conditions on invariants and
can be summarized by the following predicate:

Inv ⊃ ¬Pre ∨ ((C ∨ Post) ∧ (¬C ∨ P )) (6.5)

The invariants must be not only strong, but also correct, as defined by the conditions 6.3
and 6.4. A loop invariant is correct if it holds every time the execution reaches the beginning
of the loop. The predicate 6.3 requires that the invariant holds the first time the execution
reaches the loop body and the predicate 6.4 requires that the invariant be preserved in one
arbitrary iteration through the loop. If these predicates are both valid, then by a simple
inductive argument we can see that the invariant must hold after an arbitrary number of
iterations. Unlike the strength conditions, the correctness predicates cannot be reduced
easily to a simple condition such as 6.5 above.

Note that the strength conditions and the correctness conditions are somewhat antago-
nistic because the invariant occurs on opposite sides of the implication. An illustration of this
fact is that the invariant true satisfies the correctness conditions but not the strength con-
ditions, while the predicate false has the opposite behavior. This means that the “right”
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invariant must be chosen carefully to be not too strong and not too weak. The problem
of discovering the right invariant is undecidable in general. However, in many practical
instances acceptable invariants can be discovered by iterative methods, such as abstract in-
terpretation [CC77], starting from the invariant of 6.5 and strengthening it until it satisfies
the correctness conditions.

It is important to realize that any algorithm for inferring loop invariants must posses
the means to prove implicitly the conditions 6.1 to 6.4. This means that we should be
able to extract from such an algorithm a proof generator capable of proving the resulting
verification conditions. This suggests that it is more difficult and more important to discover
the right loop invariants than it is to prove the verification conditions they determine. In
this chapter I will show how to infer the loop invariants automatically for a restricted class of
safety policies. Then, in the next chapter, I will show how we can derive a proof-generating
decision procedure for the verification conditions.

I have argued informally that it is impossible to give a general algorithm for discovering
the loop invariants. Therefore we must first impose sufficient restrictions on the form of the
predicates Pre, Post and P , and thus on the safety policy, to simplify the invariant inference
problem. There are two simple techniques that we can use. One is to insert run-time checks
in the code and another is to restrict the predicates so that they can be verified in a syntax-
directed manner, so that the substitutions occurring in the invariant correctness conditions
do not pose any problems.

Let us consider the run-time checking method first. For this purpose, assume that the
predicates P and Post are such that they can be implemented in the programming language
used for the agent code, by means of two conditionals T P and T Post. In fact, these condi-
tionals do not even need to be as strong as P and Post respectively, but just strong enough
to make the following predicates provable:

Pre ∧ C ∧ T Post ⊃ Post (6.6)

Pre ∧ ¬C ∧ T P ⊃ P (6.7)

Then, we can rewrite our program with two additional conditionals to prevent the return
or the execution of the loop body in the situations when the postcondition or the safety
predicate of the body do not hold. One variant for the resulting code is shown below:

1 i := e0

2 Loop: if C then go to Done
3 if ¬T P then go to Idle
4 . . .
5 i := e
6 go to Loop
7 Done: if T Post then return i
8 Idle: go to Idle



6.1. THE BASICS OF LOOP INVARIANTS 119

The added conditionals in lines 3 and 7 redirect the unsafe execution to an idling loop.
This is acceptable because, as explained in detail on page 49, non-termination is considered
safe behavior. In an actual implementation, instead of entering an idling loop the program
would raise an exception that is then handled by the runtime system.

The effect of the added run-time checks can be explained formally on the modified veri-
fication condition, shown below:

Pre ⊃ [e0�i]Inv ∧
∀i.Inv ⊃ (C ⊃ ((T Post ⊃ Post) ∧

(¬T Post ⊃ (Invidle ∧ (Invidle ⊃ Invidle)))) ∧
¬C ⊃ ((¬T P ⊃ (Invidle ∧ (Invidle ⊃ Invidle)))

(T P ⊃ (P ∧ [e�i]Inv))))

Due to the conditions 6.6 and 6.7 the verification condition is provable even with the loop
invariants Inv and Invidle set to true. This example shows that by using run-time checking
we can simplify dramatically both the task of inferring loop invariants and that of proving
the verification conditions. If we use run-time checking, then the proof of the verification
condition essentially certifies that the checking is done properly. In our case this means that
the implications 6.6 and 6.7 are provable. But excessive use of run-time checking detracts
from the advantages of proof-carrying code because of the run-time overhead and because, as
discussed in Section 6.2, many code properties can be checked more conveniently statically.

The second technique that we can use to simplify the task of inferring loop invariants is
to restrict the predicates of the safety policy so that the correctness conditions 6.3 and 6.4
can be reduced in a manner similar to the strength conditions. The complications are due to
the substitutions “[e0�i]Inv” and “[e�i]Inv”. We notice that such substitutions arise from
assignments in the agent program and thus, one idea is to restrict the assignments so that
substitutions like these can be simplified. One possible restriction is suggested by typed
high-level languages, where an assignment is allowed only if the type of the variable on the
left-hand side agrees with that of the expression on the right-hand side. If we further restrict
all of the predicates Pre, Post and P to be conjunctions of typing declarations for variables,
then it becomes easier to infer the loop invariants. For example, Inv in our example can
simply be the type declaration for the variable i, written for example as “i : τ”. Because
of the typing rule for assignment, we know that “[e0�i]Inv” and “[e�i]Inv” are both valid
predicates whenever the precondition is valid.

In the next section I introduce a type system adequate for low level languages and I discuss
in detail the implications of using type-based safety policies. Then, in Section 6.3 I show
a type system for a high-level language derived from the C programming language. Then,
the rest of this chapter is concerned with bridging the gap between the high-level language
and its type system and the low-level type-based safety policy by means of a compiler that
generates assembly language annotated with typing loop invariants.
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Base types τ b ::= int | bool | σ∗ | σ? | σ[l] (l > 0)
Structured types σ ::= τ b | σ1 × σ2 | σ[] | µt.σ | t
Memory types τ s ::= Mem

Figure 6.2: A type system for type-based safety policies.

6.2 Type-Based Safety Policies

In this section I describe a distinguished class of proof-carrying code safety policies that
use type systems to classify the values stored in registers and in memory locations. There
are several advantages to using type-based safety policies. First, they are extremely flexible
and easy to configure. Once a type system is selected, many interesting safety policies can
be easily obtained by simply declaring the types of values stored in certain registers and
memory location. Even more safety polices can be obtained by varying the type system
itself. Another major advantage of type-based safety policies is that, for many interesting
type systems, the loop invariants can be generated automatically by a certifying compiler
and the verification conditions can be proved using a simple theorem prover.

Before I proceed with a detailed discussion of type-based safety polices, it is useful to
recall a few terms and notations introduced in Chapter 3. PCC safety policies are described
as a series of safety predicates on the state of the execution of a fictitious interpreter for a
generic assembly language called SAL. For the purposes of this section, I will consider that
the SAL machine words span W bytes, and thus the universe of base values U b consists of
those integer values that can be represented in two’s-complement notation on 8 ∗W bits. I
also consider that addresses are represented on W bytes and each memory access references
a memory word consisting of W consecutive bytes. With these assumptions a memory value
m is a function from positive multiples of W to U b. Let this set of functions be U s. The
superscripts of U b and Us are dropped when it is clear form the context which universe is
meant.

Type-based safety policies are described in terms of a classification of register values
by types in a given type system. To illustrate the concept, consider the types shown in
Figure 6.2. The base types τ b are used to classify the values stored in machine registers or
in individual memory locations. The structured types σ classify the contents of sequences of
memory locations. There is only one memory type, used to distinguish the memory states
whose contents are well-typed, in a sense to be defined later in this section. The next few
paragraphs describe informally the relationship between the various types and source-level
types such as pointers and arrays.

The simplest base types are int and bool. A value is classified using one of these types
if it is a valid integer value or, respectively, a valid boolean value. The class of “σ∗” contains
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those values that are valid memory addresses pointing to a sequence of memory locations
storing a structure of type σ. This type is also called a pointer type and is the assembly-
language counterpart of source-level pointer types. To accommodate languages like Java
and Modula-3, where source-level pointer values include a distinguished value called null, I
introduce the pointer-option type, written as “σ?”. Informally, this class contains all values
of “σ∗” and also the value representing null, which I consider to be the numeral zero. Before
continuing the discussion of the other base types it is useful to examine the structured types.

The structured types are used to classify the contents of sequences of memory words. A
special case is when the sequence contains only one memory word. In this case the contents
of the sequence is a base type τ b. Several consecutive memory words can be classified with
the tuple type “σ1 × σ2”. For example, the tuple type “τ b1 × (τ b2 × τ b3)” is used to classify
a sequence of three memory words storing, in sequence, a value of type τ b1 , then one of τ b2
followed by a value of type τ b3 . The array structured type “σ[]” denotes two memory words,
of which the last one stores the address of an array whose elements are of the structured
type σ and whose length is stored in the first memory word.

The recursive type “µt.σ” is just like σ but is allows recursive references to the entire type
in σ. The bound type variable t marks such recursive references. The usual observations
about bound variables, such as α-equivalence and substitution avoiding variable capture,
apply to type variables introduced by recursive types. To illustrate the use of recursive
types, consider the common representation of lists of boolean values as either null or as a
pointer to a pair containing a boolean and a list of booleans. This type can be written in
our type system as “µt.((bool× t)?)”.

Recursive types are restricted so that type variables occur only within a pointer, pointer
option or array modifier. This means, among other things, that the body of a recursive type
cannot be a type variable. This restriction can be specified precisely by defining the size of
a structured type as the number of memory locations that it requires. The size of a type σ
is written as “|σ|” and is defined as follows:

|τ | = W |σ1 × σ2| = |σ1|+ |σ2| |σ[]| = 2W |µt.σ| = |σ|

Note that the size-of operator is not defined for type variables. Thus if a type variable
occurred outside the scope of any pointer or array modifier the size-of operator would not
be defined and the type itself would be invalid.

Returning to base types, the class of “σ[l]” contains those values that are valid memory
addresses marking the beginning of a sequence of “l” memory locations storing vectors of
structures of type σ. The constraint on the length parameter is that it must be positive and
l must be a multiple of |σ|.

This informal description of the meaning of types is formalized by means of a repre-
sentation function R that associates with each closed base type the subset of values in U
that have that type. Not any such association is a valid representation, but only those that
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a) R(int) = U b

b) R(bool) = {0, 1}

c) R(σ?) = {0} ∪ R(σ∗)

d) 0 6∈ R(σ∗)

e) If v ∈ R(σ∗) then v mod W = 0 and v + |σ| −W ∈ U b

f) If v ∈ R(τ∗) and v ∈ R(τ ′∗) then τ ≡ τ ′

g) R((µt.σ)∗) = R(([µt.σ�t]σ)∗)

h) If v ∈ R(σ[l]) then v + l −W ∈ U b and for all i such that 0 ≤ i < l and i mod |σ| = 0
we have that v + i ∈ R(σ∗)

i) If v ∈ R((σ1 × σ2)∗) then v ∈ R(σ1∗) and v + |σ1| ∈ R(σ2∗)

j) If v ∈ R(σ[]∗) then v 6∈ R(τ∗) for all τ

k) m ∈ R(Mem) if and only if

(1) for all v ∈ R(τ∗) we have that v ∈ Dom(m) and m(v) ∈ R(τ), and

(2) for all v ∈ R(σ[]∗) we have that v ∈ Dom(m) and m(v) > 0 and (m(v)) mod |σ| =
0 and v +W ∈ R(σ[m(v)]∗).

Figure 6.3: The validity conditions for type representations.

satisfy the conditions shown in Figure 6.3. To denote that R is a valid representation we
write Valid(R).

In any valid representation R all of the values in the base universe are valid integers and
a boolean value is either the numeral zero or one. A pointer option value is either zero (the
representation of null) or else a valid pointer value. Condition 6.3(d) ensures that zero is
never among valid pointer values. Condition 6.3(e) ensures that pointer values are multiples
of the word size and are not too close to the end of the memory range. Condition 6.3(f)
ensures that a given value cannot be a valid pointer to two different base types. Note that
this condition is only required for base types and not for structured types. Condition 6.3(h)
says that a value of array type points to a contiguous sequence of values of the element type.
Condition 6.3(i) says that the components of structured types are laid out in consecutive
memory locations. Open arrays are represented in memory as a length field and an base
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address field. Condition 6.3(j) says that values pointing to open arrays cannot be valid
pointers to base types, to ensure that the length field cannot be written except when writing
both fields.

Note that I take extreme care not to involve the contents of the memory in the conditions
discussed so far. Condition 6.3(k) restricts the contents of memory by using two subcon-
ditions. Condition 6.3(k.1) says that any well-typed memory value must be defined at all
addresses that are pointers to base types, and furthermore, the contents of the corresponding
locations must be well-typed. Condition 6.3(k.2) specifies the representation of open arrays.

Note also that the representation function is defined precisely for some types, such as
int and bool, and only partially for others, such as int∗. For example, there is not a rule
saying that “m(v) ∈ R(int) ⊃ v ∈ R(int∗)”. Such a rule would not be sound because it
would allow the writing of any integer value in any accessible memory location. However,
the converse of this rule is sound.

Chapter 3 defines a general PCC safety policy as having three components: instruction
safety (i.e., restrictions on what instructions can be executed and in what conditions), system-
call safety (i.e., restrictions on what receiver-provided functions can be called and in what
conditions), and partial correctness (i.e., restrictions on the input/output behavior of agent
functions specified as preconditions and postconditions). The instruction safety component
is described as a series of safety predicates SafeRd, SafeWr, SafeEOP, and SafeCOP. The
system-call and the partial correctness components of safety are described using a pair of
precondition and postcondition predicates for each function.

According to Chapter 3, the predicate SafeRd(m, a) must hold only if it is safe to read
the memory word at address a in memory state m. Similarly, the predicate SafeWr(m, a, v)
must hold only if it is safe to write the value v at address a in memory state m. A typed-
based safety policy defines a memory address to be accessible for read or write if and only if
it has a pointer type, as follows:

SafeRd(m, a) iff ∃σ such that a ∈ R(σ∗)
SafeWr(m, a, v) iff ∃σ such that a ∈ R(σ∗)

The definition of the SafeWr might be surprising at first because it does not restrict the
type of the value being written. If, instead, we define SafeWr(m, a, v) such that v ∈ R(τ),
whenever a ∈ R(τ∗), then it would be impossible to update safely locations containing
structured types, such as “σ[]”, where there is a dependency between the values of the
components. To reconcile the liberal definition of SafeWr with type safety, each function
postcondition must require that “m ∈ R(Mem)”, where m is the value of the memory at
the end of the function invocation. Informally, this constrains the memory values to be
well-typed only at function boundaries and not after each instruction.

All of the type-based safety policies defined in this section include memory safety. This
fact is stated formally below and it is proved easily from Condition 6.3(k) of validity of
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representations.

Theorem 6.8 (Soundness of type-based memory safety) For any valid representa-
tion R, and v ∈ R(σ∗) then, in any well-typed memory state m ∈ R(Mem) we have that v is
an accessible memory address, i.e., v ∈ Dom(m).

It is obvious at this point that the safety predicates depend on a particular representation
function R. Furthermore, for our type system there are many valid representation functions
and thus multiple safety policies. This property can be turned into a major advantage for
the safety policy designer. By requiring that the agent code behaves safely with respect to all
valid representation functions, the safety policy can effectively hide aspects of the concrete
representation of types and expose just the abstract properties guaranteed to be true for
all valid representations. Section 6.2.2 shows examples of type-based safety policy where
abstraction is used.

Recall from Chapter 3 that an agent function must be proved safe for all input values of
the memory state and registers that satisfy the precondition. This suggests a simple trick
to enforce safety for all possible representation functions. We add a pseudo-register repr to
the set of SAL registers and we consider that the current representation function is passed
as an argument to the agent. The agent code cannot access this register directly and, in the
absence of allocation, the representation function does not change during a given invocation
of the agent. In the presence of allocation, a trusted allocation function will expand the
representation R with the newly allocated value.

Let the set of SAL registers be Regs = {r1, . . . , rR, mem, repr}, where R is the number of
machine registers and mem is a special pseudo-register to hold the values of memory. The
register state of the SAL interpreter is a function ρ ∈ Regs → U , such that ρ(ri) ∈ U b and
ρ(mem) ∈ Us. The state of the repr register is a representation function.

All of the preconditions and postconditions require that the representation be valid,
written as Valid(ρ(repr)), and that the memory be well typed in the current representation,
written as ρ(mem) ∈ ρ(repr)(Mem). Additionally, they might require that the contents of
various registers have certain types in the current representation.

As explained in Chapter 4, the safety predicates that are part of the safety policy are
not used directly in the proof-carrying code infrastructure. They are only useful to define
formally the safety policy and to prove the soundness of the proof-carrying code technique.
Instead, proof-carrying code encodes the safety predicate as symbolic expressions in a logic
and the uses a set of axioms and inference rules to verify symbolically that the safety pred-
icates hold. Next section describes the syntax, the meaning and the axiomatization of the
logic. Then, in Section 6.2.2 I discuss several examples of type-based safety policies.
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Extensions:
Predicates: P ::= . . . | E : Et | sizeOf(Et, Eb)
Type expressions: Et ::= int | bool | Mem | ptr(Et) | ptropt(Et)

| array(Et, Eb) | openarray(Et) | pair(Et
1, E

t
2)

| mu (λt.Et)

Figure 6.4: The extensions required to the first-order logic shown in Figure 4.2 to handle
types and type safety.

6.2.1 A Logic for Type Safety

In order to express symbolically the predicates involved in a type-based safety policy I
extend the fragment of first-order predicate logic shown in Figure 4.2 with a set of type
expressions and a pair of additional predicates, as shown in Figure 6.4. The predicate
“E : Et” is the symbolic notation for “E ∈ R(Et)”, for a given representation R. The
predicate “sizeOf(Et, Eb)” is valid when “|Et| = Eb”. The type expressions mimic the
language of types defined in Figure 6.2. Note that the recursive type uses higher-order
representation techniques to handle the bound type variable.

Following the model of Section 4.1.2, I set up a valuation function V t mapping type
expressions to types, as follows:

V t(int) = int V t(bool) = bool

V t(ptr(Et)) = (V t(Et))∗ V t(ptropt(Et)) = (V t(Et))?

V t(array(Et, Eb)) = V t(Et)[Vb(Eb)] V t(openarray(Et)) = V t(Et)[]

V t(pair(Et
1, E

t
2)) = V t(Et

1)× V t(Et
2) V t(mu (λt.Et)) = µt.(V t(Et))

V t(t) = t

I also extend the validity relation for predicates as follows:

|= E : Et iff V(E) ∈ R(V t(Et))

Note that the validity of a typing predicate is with respect to a representation functionR.
Technically, the typing predicate should also refer to the representation function. To simplify
the notation I do not change the typing predicate and I assume that in any particular use
of the logic, the representation function is an arbitrary valid representation.

As discussed in Chapter 4, the validity of verification conditions involving types and
typing predicates is not verified directly, but instead it is derived using a set of axioms and
inference rules. These rules consist of the axiomatization of first-order logic with equality
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Pointer Types:

A : ptr(T )

saferd(M,A)
read

A : ptr(T )

safewr(M,A,E)
write

A : ptropt(T ) A 6= 0

A : ptr(T )
ptropt

M : Mem A : ptr(T ) sizeOf(T, W)

sel(M,A) : T
sel

M : Mem A : ptr(openarray(T ))

sel(M,A+ W) : array(T, sel(M,A))
seloa

A : ptr(pair(T1, T2))

A : ptr(T1)
pairl

A : ptr(pair(T1, T2)) sizeOf(T1, S1)

A+ S1 : ptr(T2)
pairr

A : array(T, L) sizeOf(T, S) I ≥ 0 I < L I mod S = 0

A+ I : ptr(T )
array

Other Types:

E : int
inti

0 : bool
true

1 : bool
false E1 : bool E2 : bool

E1 & E2 : bool
boolop

mu (λt.T ) = [mu T�t]T
mu E ′ : T E = E ′

E : T
ofcongr

0 : ptropt(T )
null

A : ptr(T )

A : ptropt(T )
ptropti

Memory updates:

M : Mem A : ptr(T ) sizeOf(T, W) E : T

upd(M,A,E) : Mem
upd

M : Mem A : ptr(openarray(T )) E : array(T, L)

upd(upd(M,A+ W, E), A, L) : Mem
updoa

Auxiliary:

sizeOf(int, W)
szint

sizeOf(bool, W)
szbool

sizeOf(ptr(T ), W)
szptr

sizeOf(array(T, L), W)
szarr

sizeOf(ptropt(T ), W)
szptropt

sizeOf(T1, S1) sizeOf(T2, S2)

sizeOf(pair(T1, T2), S1 + S2)
szpair

sizeOf(openarray(T ), 2 ∗ W)
szoarr

Figure 6.5: The type-safety axioms.
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shown in Figure 4.8 along with the type-specific rules shown in Figure 6.5. In this latter set
of rules, I use the constant W to stand for the machine-word size.

The set of inference rules shown in Figure 6.5 is split into four parts. In the first part there
are the rules concerning pointer types. The rules read and write say that all addresses that
have a pointer type (not necessarily pointer to base types) are safe to use in read and write
operations. The ptropt rule says that non-null pointer options are valid pointers. Then there
are two rules for inferring the types of values read from memory. The rule sel corresponds
to Condition 6.3(k.1) and is used for pointer to base types while the rule seloa corresponds
to Condition 6.3(k.2) and is used for pointers to open arrays. Note that Condition 6.3(j)
and the hypothesis “sizeOf(T, W)” ensures that the two rules do not apply both at the same
time. The next two rules correspond to Condition 6.3(i). The last rule in this section allows
breaking of an array into a series of pointers, as specified by Condition 6.3(h).

In the next section of Figure 6.5 there are the rules concerning the base types. The rule
boolop shows how the type of assembly-language operators can be specified. The rule mu

corresponds directly to Condition 6.3(g) and the last two rules in this section correspond to
Condition 6.3(c).

The third section provides rules for proving that various memory update operations
preserve the well-typedness of the memory as defined by Condition 6.3(k). Finally, the last
section of Figure 6.5 specifies the rules for computing the size of the representation of a type.

Just as in Section 4.3 we have the obligation to verify the soundness of the axiomatization.
This can be done by verifying for each rule that, given arbitrary valid representation and
valuation functions, if the hypotheses of the rule are valid then the conclusion is also valid.
In most cases, this is relatively easy to prove by using the validity conditions shown in
Figure 6.3. Two more delicate cases are for the upd and updoa rules. As an illustration of
how these proofs are done I sketch below the soundness proof for the rule upd.

Theorem 6.9 (Soundness of rule upd from Figure 6.5) If Valid(R) and if m ∈ U s,
and a and e are such that m ∈ R(Mem), a ∈ R(τ∗), and e ∈ R(τ) then m[a 7→ e] ∈ R(Mem).

Proof: We have to prove that m[a 7→ e] = m′ satisfies Condition 6.3(k). We do each part
of the condition in turn:

1. Pick v ∈ R(τ ′∗). We must prove that m′(v) ∈ R(τ ′). If v = a then, from Con-
dition 6.3(f), we have that τ ≡ τ ′ and hence m′(v) = e ∈ R(τ ′). If v 6= a then
m′(v) = m(v) and the desired conclusion follows from m ∈ R(Mem).

2. Pick v ∈ R(σ[]∗). We must prove that m′(v) > 0 and that v+W ∈ R(σ[m′(v)]∗). From
Condition 6.3(j) we infer that v 6= a and hence that m′(v) = m(v). Now the required
conclusions follow from m ∈ R(Mem).



128 CHAPTER 6. THE TOUCHSTONE CERTIFYING COMPILER

�

Theorem 6.9 and similar theorems for the other rules of the axiomatization establish
that it is sound to verify the validity of verification conditions by exhibiting a derivation
of it using the inference rules given in Figure 6.5. In the next section, I describe a few
examples of safety policies that can be described easily using the type system introduced in
this section.

6.2.2 Examples of Type-Based Safety Policies

It is instructive to discuss several type-based safety policies based on the type system intro-
duced above. Keep in mind that a safety policy is determined by the current representation
that in turn is restricted by preconditions. In all of the examples considered here one of
the restrictions is that the current representation is valid. Recall also that the agent must
behave safely for any valid representation that matches the precondition, and in particular
for the most restrictive representation that matches the preconditions. A representation R0

is more restrictive than another representation R if R0(τ) ⊆ R(τ) for all closed types τ .
The most restrictive valid representation has the following properties:

R0(σ∗) = ∅ R0(σ[l]) = ∅ R0(Mem) = U s

It can be seen that there is a unique valid representation with these properties.

No-memory-access policy. This safety policy disallows any memory operation outside
the run-time stack area. To simplify the presentation, assume that the only agent entry point
is the function entry that expects a boolean value in register r1. The “no-memory-access”
safety policy can be established with the following precondition:

Preentry(ρ) if and only if


Valid(ρ(repr))
ρ(mem) ∈ ρ(repr)(Mem)
ρ(r1) ∈ ρ(repr)(bool)

This precondition can be expressed symbolically in logic as “r1 : bool ∧ mem : Mem”. Note
that the fact that the representation must be is valid is left implicit. Any valid representation
matches this precondition. Because the agent function entry must behave safely for all valid
representations it must be also safe for R0 as defined above. But in this case the safety
predicates SafeRd and SafeWr are empty and therefore, the only way the execution of entry
can be safe is if it does not attempt to reference the memory.
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Sandboxing. This safety policy allows read and write memory accesses as long as they
are within a given memory range, say starting at address a (a non-zero multiple of W) and
having length l (a strictly positive multiple of W) such that “a + l −W ∈ U b”. To achieve
this effect, the function entry is being passed in register r1 an array of integers, as specified
by the precondition:

Preentry(ρ) if and only if


Valid(ρ(repr)) and
ρ(mem) ∈ ρ(repr)(Mem)
ρ(r1) ∈ ρ(repr)(int[l]) and
ρ(r2) = l

This precondition can be expressed symbolically in logic as “r1 : array(int, r2) ∧ r2 >
0 ∧ mem : Mem”. The representation function R0, although valid, does not satisfy the above
precondition. One particular representation that satisfies the precondition is R1 defined as
follows:

R1(σ∗) =

{
{x | a ≤ x ≤ a+ l − W and x mod W = 0 } if σ ≡ int

∅ otherwise

R1(σ[x]) =

{
{a} if σ ≡ int and x ≡ l

∅ otherwise

R1(Mem) = {m ∈ Us | R1(int∗) ⊆ Dom(m) }
If the representation is R1 then the precondition is satisfied by any register state such

that ρ(repr) = R1 and ρ(r1) = a and ρ(r2) = l. With this representation we have indeed
that all accessible memory locations x are those inR1(int∗), which is exactly as we intended.

Abstract types. My last example of a type-based safety policy exploits to an even larger
extent the capability of abstracting representation details by considering that the represen-
tation is passed as an argument and by requiring that the execution proceed safely for all
valid representations. To demonstrate the power of abstraction consider a safety policy that
requires each agent function to pass along a given token to all runtime functions that it
invokes. This token is generated by the code receiver and passed to the agent when it starts
executing. The safety policy will ensure by means of abstraction that the agent code passes
the exact token that it has received from the receiver and not a forged one.

For this purpose, the safety policy designer extends the type system and the type expres-
sions in the logic with an abstract base type “token”, without changing the definition of the
validity of representations. This effectively hides from the agent all information about the
concrete representation of a token. The precondition for the entry function is:

Preentry(ρ) if and only if


Valid(ρ(repr)) and
ρ(mem) ∈ ρ(repr)(Mem)
ρ(r1) ∈ ρ(repr)(token)
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This precondition can be expressed symbolically in logic as “r1 : token ∧ mem : Mem”. The
agent code can invoke the runtime function runtime with the same token that it received in
input. The precondition of the runtime function is:

Preruntime(ρ) if and only if


Valid(ρ(repr)) and
ρ(mem) ∈ ρ(repr)(Mem)
ρ(r1) ∈ ρ(repr)(token)

One of the most restrictive representations satisfying the above preconditions can be
obtained by assuming that the representation of tokens is a singleton set containing a value
v. The corresponding representation is R2 defined as follows:

R2(σ∗) = ∅ R2(σ[l]) = ∅ R2(token) = {v} R0(Mem) = U s

If ρ0 is the register state at the start of the agent execution such that ρ0(repr) = R2

and ρ0(r1) = v, then assume that the agent eventually tries to invoke the runtime function
with a state of registers ρ satisfying the precondition of runtime. We know that the agent
function cannot change the value of the repr register. Thus, ρ(repr) = R2, which implies
that ρ(r1) = v because v is the only member of ρ(repr)(token). This shows how type safety
can enforce abstraction.

If we wanted instead to avoid types and use only run-time checking to enforce the same
safety policy, the concrete representation of token must be restricted so that a run-time
check can identify whether a given value is a member of the abstract type. For example, an
implementation of runtime that does not use type safety can use instead costly cryptographic
functions to detect with high probability if the given token is an unforged member of the
abstract type.

The type system described in this section is appropriate for low-level languages but not
for high-level languages. In the next section I describe how a the type system of a type-safe
subset of the C programming language can be translated to typing predicates defined in this
section.

6.3 The Safe-C Source Language

In the first part of this chapter I have suggested that by using safety policies that are
inspired from high-level type systems we can simplify considerably the task of generating
loop invariants. Also, in Section 6.2 I have shown the details of a type-based safety policy
adequate for low-level languages. In the rest of this chapter I will present a typed high-
level language and a method for bridging the abstraction gap between the high-level type
system and the low-level type-based safety policy by means of a certifying compiler called
Touchstone.
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The high-level language considered here is a type-safe subset of the C programming
language. The notable features of C that are missing are memory deallocation and the
address-of operator (&). These features can be misused to generate unchecked run-time
errors. Also, to simplify the implementation I have not implemented source language features
that are type-safe such as floating-point operations and function pointers. The language
compiled by Touchstone has certain features not present in the standard C language such
as exceptions, a length operator for array expressions and built-in array bounds checking
and null-pointer checking. The built-in run-time checks are needed to ensure the type safety
of the compiled code. The purpose of the length operator is to enforce read-only access to
the length component of an array and exceptions are necessary for a clean implementation
of the run-time checks. The core of the Touchstone language is shown in Figure 6.6.

The main goal of the language selection process was to keep it as close as possible to
the C programming language and at the same time to ensure that no execution can lead to
unchecked run-time errors. Checked run-time errors, such as array-bounds violations, are
allowed and a flexible exception mechanism is provided to handle them.

A Touchstone program consists of a series of top-level declarations. These can be func-
tion declarations, global variable declarations and structured type declarations. Note that
global variables must always have an initializer. The declarations simply associate types to
identifiers. Although not shown here the compiler supports more complex forms of declara-
tions allowing initializers and multiple declarations for a single type. At the level of types,
the notable omissions are the function and union types. Also, to simplify the parser type
abbreviations are not allowed except for global structured types.

At the level of expressions a few language constructs require further explanation. The
construct “new (Typ,Exp1,Exp2)” allocates on the heap an array consisting of Exp1 elements
of type Typ, initialized to the value of Exp2. If Typ is a structured type, then an initializer for
each field is required. The predefined exception Subscript is thrown as part of a failed array
bounds check and the Nil exception is thrown as part of a failed null-pointer check. There
is no source-level construct for throwing these exceptions, although they can be handled by
using a try...catch construct. The compiler also supports the derived form try...finally
where the statement after the finally keyword is guaranteed to be executed before the
normal or exceptional termination of the execution of the construct.

In addition to the core constructs for l-values, the compiler also supports several derived
forms. For example, “∗Lval” is a synonym for “Lval [0]” and “Lval → Id” is a synonym for
“(Lval [0]).Id”.

For brevity I will not show the formal type checking and compilation rules for the se-
lected subset of the C programming language. Instead I enumerate below the few aspects of
compilation that are different from a usual complier for the C programming language.

Let us start with the compilation of variable and field declarations. No code is generated
in this case. Instead new intermediate-language variables, henceforth named temporaries,
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Top ::= Typ Id(Decl1, . . . ,Decln) {Decls Stm1; . . . ; Stmn}
| Typ Id = Exp
| typedef struct Id{Decl1; . . . ; Decln}

Decl ::= Typ Id
Typ ::= int | bool | Typ[] | ∗Typ | struct Id
Exp ::= Lval | n | true | false | Exp1 Binop Exp2 | Id(Exp1, . . . ,Expn)

| new(Typ,Exp1,Exp2) | Exp.length
Binop ::= + | − | ∗ | == | 6= | ≥ | > | ≤ | < | & | “|” | && | “||”
Lval ::= Id | Lval [Exp] | Lval .Id
Stm ::= {Decls Stm1; . . . ; Stmn} | return Exp | Lval = Exp

| Id(Exp1, . . . ,Expn) | if(Exp) Stm1 else Stm2 | while (Exp) Stm
| for (Stm1; Exp; Stm2) Stm3 | break | continue

| try Stm1 catch Exn Stm2 | try Stm1 finally Stm2

Exn ::= Subscript | Nil

Figure 6.6: The abstract syntax of the Touchstone subset of C.

are created to hold the values of the source-level variables. The number of temporaries
needed depends on the type of the expression as follows. For an expression of type int or
bool or ∗T for some T , only one temporary is required. For an expression of type T [] two
temporaries are used, one to hold the length of the array and one the base address. Finally,
for a structured type the number of temporaries is the sum of the number of temporaries
required to hold each of the fields. Thus, for example, a declaration “struct foo x”, where
the structured type foo is declared as “typedef struct foo{T1 a;T2 b}”, is equivalent to
the pair of declarations “T1 xa;T2 xb”. The process is repeated recursively until the types
involved in the declaration are base types. The compilation of declarations is discussed in
more detail in the next section.

The compilation of expressions results in code that computes the value of the expression
in one or more temporaries. The return type of a function is not restricted to be a base
type, and thus functions can have multiple return values. This is in fact required in order
to compensate for the absence of the “address-of” operator of the C programming language
that is sometimes used to return multiple values from a function. The compilation of an
expression “E.length” consists of the code to compute E in two temporaries after which
the temporary holding the length is moved to the temporary selected to hold the value of
the whole expression. The result of the new expression is an array and thus there are two
temporaries required to represent it. The result of the compilation in this case consists of a
call to an allocation function provided by the runtime followed by an initialization loop.

The compilation of an Lval is done in two stages. In the first stage Touchstone computes
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a set of temporaries or memory addresses as follows. For a variable, this is the set of
temporaries associated with the variable when its declaration was compiled. If Lval has a
structured type then the form Lval .Id can be used, in which case the set of temporaries or
memory addresses computed for Lval is restricted to those used to hold the field called Id .
Finally, if the Lval has an array or pointer type then the form Lval [Exp] can be used. In this
case the value of the expression Exp is multiplied by a compile-time constant representing
the size of the base type of the array. The result is added to the variable or memory address
representing Lval and the resulting memory address is returned. If the type of Lval [Exp] is
not a base type then several consecutive memory addresses are returned.

The second stage of compilation of Lval depends on whether the Lval is used as an ex-
pression or on the left of an assignment. In the former case, the memory addresses computed
by the first phase are read and the results put in the set of temporaries selected to hold the
value of the expression. In the latter case, the expression to be assigned is compiled and the
resulting temporaries are written to the set of addresses computed for Lval in the first phase.
In either case, the set of memory operations is preceded by two bounds checks, one verifying
that the first array index in the set is greater or equal to zero and the other verifying the the
last index is less than the length of the array. The failure case is set to throw the Subscript

exception using a mechanism discussed below. If the memory addresses are obtained from a
pointer and not from an array then one run-time check is inserted to verify the the pointer
value is non-zero. Otherwise, the exception Nil is raised.

Finally, the compilation of statements results in code. During compilation three labels are
maintained for the destination of a break statement, a continue statement and the current
exception handler. The first two destinations are set to the beginning of the innermost
enclosing loop while the last destination is set to the innermost enclosing catch statement.
The compiler rejects programs with break or continue statements occurring outside the
body of all loops and it wraps the body of all functions with a try...catch statement that
aborts the execution (by calling a special run-time function) if an unhandled exception is
thrown. This simplifies the compiler considerably but it means that exceptions must be
handled in the functions that throw them.

With this superficial discussion of the Touchstone compilation process we are prepared to
consider now the issue of automatic loop-invariant generation. We discuss first the simplest
and most general form of loop invariants and then we consider the additional complications
raised by various optimizations and code generation techniques.

6.4 Automatic Generation of Loop Invariants

The discussion from the beginning of this chapter suggests that, if we limit the function
specifications and safety predicates to typing predicates, then the loop invariants are just
predicates equivalent to type declarations for the modified variables of a loop. It is obviously
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CD(int v) = {v1 : int}
CD(bool v) = {v1 : bool}
CD(T [] v) = {v1 : int, v2 : σ[v1]} where CT (T ) = σ
CD(∗T v) = {v : σ?} where CT (T ) = σ
CD(struct id v) =

⋃
i=1..n CD(Ti vi) where typedef struct id{T1 id1 , . . ., Tn idn}

CT (int) = int

CT (bool) = bool

CT (T []) = CT (T )[]
CT (∗T ) = CT (T )?
CT (struct id) = µt.(σ1 × · · · × σn) where typedef struct id{T1 id1 , . . ., Tn idn}

and CT ([t�struct id ]Ti) = σi

Figure 6.7: The compilation rules for types are variable declarations.

easy to detect at the level of the source language presented in the previous section what
variables are modified inside a loop and furthermore what source-level types they have. On
the other hand, Section 6.2 describes an extension of first-order predicate logic consisting of
typing predicates in a type system similar but not identical to that of the high-level language.

We start this section with a discussion of how high-level types are mapped to low-level
types. For this purpose I define formally a compilation procedure that was discussed in-
formally in the previous section, namely the compilation of declarations and of types. The
former is defined as a function CD(T v) that compiles the declaration of the source-level
variable v to a list of declarations for temporaries. Each element of the returned list is of
the form “vi : τ bi ”, where vi is a fresh temporary and τ bi is a base type as defined precisely in
Section 6.2. The compilation of types is defined as a function CT that given a source-level
type returns a corresponding structured type σ also defined precisely in Section 6.2. These
compilation functions are defined in Figure 6.7.

Notice that source-level pointer types are compiled to pointer-option types in the low-level
language. Notice also that structured types are compiled to recursive types. The resulting
recursive types are valid because the C language restricts the definition of recursive types
in a manner similar the restrictions imposed by the type-based safety policy. To simplify
the presentation in the rest of this chapter I am going to consider that a single temporary is
generated when compiling the declaration of a variable i, and furthermore I am going to use
the same name i for that temporary. This will allow us to say that the source-level declaration
T i is compiled as the predicate “i : τ” in the intermediate language. This notation can be
easily generalized to the case when multiple temporaries correspond to a source-level variable
by replacing the typing predicate with conjunctions of such typing predicates.
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Let us reconsider the simple program shown on page 116. Recall that the strength and
correctness conditions were as shown below, where Pre is the precondition predicate, Post
is the postcondition predicate, P is the safety predicate for the body of the loop, Inv is
the loop invariant and C is the predicate that denotes the loop termination condition. The
subscript i marks the predicates that can depend on i.

Pre ∧ Inv ∧ C ⊃ Post

Pre ∧ Inv ∧ ¬C ⊃ P

Pre ⊃ [e0�i]Inv

Pre ∧ Inv ∧ ¬C ⊃ [e�i]Inv

Now let us further consider that this code fragment is the body of a function foo with
the prototype “T foo(T1 x1, . . . , Tn xn)” and which returns the value of the variable i
immediately following the loop. This function must have declared the local variable i using
a declaration of the form “T i” or otherwise it would not be possible to return the value of
i from the function. From here we obtain the following forms for the predicate Pre, Post
and P , where τk is the low-level counterpart of the high-level type Tk and τ is the low-level
counterpart of T .

Pre = x1 : τ1 ∧ . . . ∧ xn : τn

Post = i : τ

P = i : τ ∧ x′1 : τ ′1 ∧ . . . x′m : τ ′m

The form of the predicate P is such as above because we are restricting the safety policy to
be based only on types. Thus, if i is mentioned in P it must be as part of a predicate “i : τ” or
otherwise the source program would not have passed the type checking phase. Furthermore,
each “x′k : τ ′k” must be one of the typing predicates that constitute the precondition. And
finally, the well-typedness of the source program implies that the following predicates are
provable:

x1 : τ1 ∧ . . . ∧ xn : τn ⊃ e0 : τ

i : τ ∧ x1 : τ1 ∧ . . . ∧ xn : τn ⊃ e : τ

From these facts it is easy to see that the invariant Inv = i : τ satisfies both the strength
and the correctness conditions and it therefore a good invariant. This suggests that it is
sufficient for an invariant to be the conjunction of the typing predicates for the modified
variables of the loop. Both the set of modified variables and their types are known to
the compiler which means that it is very easy for Touchstone to emit the necessary loop
invariants. Furthermore, it is easy to see on the above example that proving the resulting
verification conditions is also going to be easy. This is in fact true even when Touchstone



136 CHAPTER 6. THE TOUCHSTONE CERTIFYING COMPILER

performs simple code transformations. But there are also optimizations that require more
complicated loop invariants. The interaction between the code transformations and the
necessary loop invariants is explored in the next section.

6.5 Touchstone Optimizations and the Invariants

In the absence of optimizations the loop invariants that must be generated by Touchstone
are limited to typing predicates for the modified variables of the loop. Furthermore, this
remains true for many common optimizations and code transformations. In this section, I
examine in turn several code transformations that a compiler might want to perform while
optimizing or during code generation. For each optimization I will discuss whether any
additional invariants must be generated and I will describe techniques that can be used to
infer such additional invariants. This section is intended as a guide for the certifying-compiler
writer interested in finding in a systematic way the loop invariants that must be emitted for
each optimization.

In the rest of this section I will use the notation “...P...” to refer to a sequence of in-
structions whose verification condition is the predicate P . This predicate might depend on
all variables that are live at the entrance of the code sequence. For example, the sequence
“i = e; r = i; return” can be abbreviated using the notation “...[e�r]Post...” where Post is
the postcondition of the current function written in terms of the dedicated variable r that
must hold the return value. Each code transformation discussed in this section is analyzed
from the point of view of the modifications it generates in the verification condition of a
generic fragment of code.

In this section we will need a series of properties of verification conditions, stated below as
Property 6.10 and proved using the definition of the verification conditions from Section 4.2.

Property 6.10

1. The verification condition for the code “i = e; ...P...” is [e�i]P .

2. If we replace the expression e for all occurrences of the variable i up to and including
the first assignment of i in the sequence of instructions “...P...”, then the verification
condition for the resulting sequence of instructions is “[e�i]P”. Hence the resulting
sequence of instructions can be abbreviated as “...[e�i]P...”.

The prevailing argument used throughout this section is that if the verification condition
of the transformed code is identical to that of the original code, then no additional loop
invariants and also no modifications to the theorem prover are necessary. If, however, the
verification condition does change then we explore first if it remains logically equivalent to
the original one, in which case no additional invariants are necessary although the theorem
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prover might require changes to be able to prove the equivalence. The third and more difficult
case is when the resulting verification condition is not even equivalent to the original one.
In this case, we explore what additional invariants are required to preserve the equivalence
and to reduce the problem to the second case mentioned above.

Let us now consider several code transformations, starting first with those that fall within
the case of unchanged verification conditions. Then, starting with Section 6.5.7, I will discuss
a couple of optimizations where additional work is required in the area of loop invariants.

6.5.1 Dead-Code Elimination

Dead-code elimination is a code transformation that removes from the program those in-
structions that are statically not reachable. A common situation is that shown on the left
side of the table below, where the code on line 3 is not reachable.

Before After
Code VC Code VC

1 i = e1

2 go to L
3 i = e2

4 L: ...P...

[e1�i]P
i = e1

L: ...P...
[e1�i]P

One obvious possibility for optimizing this program fragment is to eliminate the dead
code altogether, obtaining the code shown on the right side of the table. The table also
shows the verification condition of the code before and after the optimization. We notice
that the verification condition did not change during the optimization. This means that
if the prover was able to prove it before the optimization, it will be able to prove it after
the optimization as well, without any additional loop invariants or changes to the theorem
prover.

The verification-condition generator is able to “see” beyond syntactic features of the
code such as manifestly unreachable code. Because of this property, the invariance of the
verification condition can serve as an effective criterion for the correctness of many code
transformations.

Dead-code elimination is an important optimization not only for the purpose of elimi-
nating code that was manifestly unreachable in the source program, but also for code that
becomes unreachable during optimizations. In fact, we shall revisit dead-code elimination
when discussing redundant-conditional removal in Section 6.5.8. This optimization removes
conditionals that can be proved statically to always take one of the branches. The removal
of the conditional instruction exposes the untaken branch as dead code.
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6.5.2 Common-Subexpression Elimination

Common-subexpression elimination (CSE) is a program transformation whereby repeated
computation of the same expression is avoided by reusing the results of the first computation.
We ignore here the static analysis that detects which subexpressions can be eliminated. A
simple but representative case of CSE is shown on the left of the table below, where the
static analysis has determined that e1 is a common subexpression. Note that the expression
e1 is common in this example only if the variable i does not occur in e1. In this case we can
eliminate the second computation of e1 as shown at the right of the following table.

Before After
Code VC Code VC

1 i = e1

2 j = e1

3 ...P...
[e1�i,

e1�j ]P
i = e1

j = i
...P...

[e1�i,
e1�j ]P

If i does not occur in the expression e1 then the verification condition of the code before
the optimization is “[e1�i]([

e1�j ]P ) = [e1�i,
e1�j ]P”. The verification condition after the

optimization is “[e1�i][
i
�j ]P = [e1�i,

e1�j ]P”. Again the verification condition is preserved
through the optimization, so CSE is another optimization that does not require anything
special from a certification point of view.

Another optimization is suggested by the code resulting from CSE in our example. The
copy propagation optimization discussed next attempts to eliminate the assignment instruc-
tion “j = i”.

6.5.3 Copy Propagation

Consider the code resulting from the common-subexpression elimination example discussed
in the previous section. Copy propagation is a code transformation where an assignment of a
variable i to another variable j is eliminated and all code following the assignment up to the
next reassignment of j is changed such that all references to j are replaced with references
to i. This optimization is shown in the following table:

Before After
Code VC Code VC

1 i = e1

2 j = i
3 ...P...

[e1�i,
e1�j ]P

i = e1

...[i�j ]P...
[e1�i,

e1�j ]P
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Here the assignment from line 2 can be eliminated and all occurrences of j in the code that

follows are replaced with i. The verification condition of the resulting code is [e1�i]([
i
�j ]P ) =

[e1�i,
e1�j ]P . This means that copy propagation is yet another optimization that does not

require special treatment.

6.5.4 Instruction Scheduling

Instruction scheduling is a code transformation that reorders unrelated instructions in an
attempt to maximize the utilization of a processor’s pipeline. Let us ignore now how the
compiler decides which instructions to reorder because this depends on the characteristics
of the target architecture. Instead we assume that the compiler has determined that it is
beneficial for the lines 1 and 2 in the program shown below to be reordered. This operation
is valid only if there is no dependency between the two instructions, which in this case means
that i 6∈ FV (e2) and that j 6∈ FV (e1).

Before After
Code VC Code VC

1 i = e1

2 j = e2

3 ...P...
[e1�i,

e2�j ]P
j = e2

i = e1

...P...
[e1�i,

e2�j ]P

The verification condition of the code after the transformation is [e2�j ]([e1�i]P ), which

is equal to [e1�i,
e2�j ]P if there is no dependency between the instructions. This means

that instruction scheduling is another code transformation that preserves the verification
conditions.

6.5.5 Register Allocation

Register allocation is a code transformation that is required during the code generation
phase to map temporary names to machine registers. The difficulty lies in the large number of
temporaries that the intermediate-language form of the program uses and the relatively small
number of physical machine registers available. Many of the temporaries are introduced by
the compiler to simplify the implementation of expression evaluation and calling conventions.
In such instances, most of the temporaries are live for a short number of instructions and
can therefore share the same machine registers with other similar temporaries. In the most
fortunate case, the maximum number of live registers at any given instruction is less than the
number of available machine registers. In this case register allocation is simply a renaming
of temporaries with register names.
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Let us consider this simple case first, as shown on the left of the table below:

Before After
Code VC Code VC

1 i = e
2 j = e′

3 ...P...

[
[e�i]e

′
�j

]
P

rj = [ri�i]e
rj = [rj�i]e

′

...[rj�j ]P...
[ri�i](

[
[e�i]e

′
�j

]
P )

Let us further assume that the temporary i occurs in both of the expressions e and e′ and
that i does not occur in the code following line 2. In this case we say that i is a dead register
after line 2. (This also means that i does not occur in the predicate P .) I further assume
that an aggressive register allocator allocates the machine register ri to hold the variable i
before line 1, register rj to hold the variable i from line 1 to line 2 and the same register
rj to hold the value of j in the code following line 2. Note that two different registers have
been allocated to i for the two disjoint live ranges.

The verification condition of the code after the renaming is [[
[ri�i]e�i]e

′
�j ]P . Because i

does not occur in P , this predicate is equal to the one shown on the right side of the table
above. Now it seems that we have finally encountered a code transformation that changes the
verification condition. However, recall that the final step in verification-condition generation
quantifies over all of the free variables in the verification condition. This means that the
resulting verification condition is still identical with the original one, up to renaming of
bound variables, which in turn means that register allocation does not change the final form
of the verification condition.

Most register allocators try to assign the same machine registers to two non-interfering
temporaries (i.e., two temporaries that are never both live at the same instruction) that are
assigned to each other. In this case the resulting program will contain assignments of the
form “ri = ri” that can be coalesced as a simple case of copy propagation.

Sometimes, many practical programs have more temporaries than there are machine
registers. In this case the register allocator must spill some temporaries to the stack frame.
Basically, the register allocator “borrows” from the stack frame enough locations to make
up the difference between the number of machine registers and the maximum number of
temporaries that are live at a given moment. Then, it constructs a mapping from temporaries
to register names or spill slots. The renaming operation is more involved in this case as
each occurrence of the temporary on the left of an assignment must be changed to a write
to the spill slot, while the occurrences on the right must be changed to a memory read.
Fortunately, the verification-condition generator described in Section 4.2 was designed with
spilling in mind and it considers the memory accesses to the stack frame as accesses to
pseudo-registers. The overall effect is that the verification condition is still unchanged even
in the presence of spilling.
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6.5.6 Loop-Invariant Hoisting

Loop-invariant hoisting is a code transformation that eliminates the repeated computation of
a part of a loop body that is not modified in the loop body. The loop invariant is computed
once before the loop starts and the resulted value is used in the loop body. Consider for
example the fragment of code shown on the left in the table below. Consider furthermore
that the only modified variable in the loop is i and that i does not occur in e1. Let I be
the loop invariant. The notation “...P ∧ I...” denotes a code fragment that performs some
operations whose safety predicate is P and then loops back to the beginning of the loop,
hence the presence of the loop invariant I.

Before After
Code VC Code VC

L1: if C go to L2

i = e1

...P ∧ I...
L2: ...P ′...

I ∧
∀i.I⊃((C ⊃ P ′) ∧

(¬C ⊃ [e1�i]I) ∧
(¬C ⊃ [e1�i]P ))

j = e1

L1: if C go to L2

i = j
...P ∧ I...

L2: ...P ′...

I ∧
∀i.I⊃((C ⊃ P ′) ∧

(¬C ⊃ [e1�i]I) ∧
(¬C ⊃ [e1�i]P )

The compiler notices that the expression e1 is a loop invariant and decides to hoist it
outside the loop. For this purpose it introduces a fresh temporary j to hold the value of e1

for the entire duration of the loop. The resulting code is shown at the right of the table.
The verification condition of the transformed loop (without the initialization of j) is just like
that of the code before the loop but with the expression e1 replaced with j. Because j is a
fresh variable that does not occur in I, C or in P , the effect of the initialization of j on the
verification condition is to make it identical with the one before the code transformation.
Thus, loop invariant hoisting does not affect the verification condition and it does not require
special treatment for certification purposes.

6.5.7 Induction-Variable Elimination

Basic induction-variable elimination is another loop invariant optimization whose purpose is
to replace expensive multiplicative operations in the body of the loop with faster additive
operations. Consider for example that a variable i is incremented in the body of the loop
by the loop-invariant expression e1. Then the value of a computation i ∗ e2, where e2 is also
a loop invariant, increases by e1 ∗ e2 every time around the loop. This can be exploited to
replace the multiplicative computation by an increment by e1 ∗ e2. This situation is shown
in the code fragment below.
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Before After
Code VC Code VC

i = e0

L1: if C go to L2

j = i ∗ e2

i = i+ e1

...P ∧ I...
L2: ...P ′...

[e0�i]I ∧
∀i.I ⊃ ((C ⊃ P ′) ∧

(¬C ⊃ I1) ∧
(¬C ⊃ P1))

where :

I1 = [i+ e1�i,
i ∗ e2�j ]I

P1 = [i+ e1�i,
i ∗ e2�j ]P

i = e0

k = e1 ∗ e2

j = e0 ∗ e2 − k
L1: if C go to L2

j = j + k
i = i+ e1

...P ∧ I ′...
L2: ...P ′...

[e0�i,
e0 ∗ e2 − e1 ∗ e2�j ]I ′ ∧

∀i.∀j.I ′ ⊃ ((C ⊃ P ′) ∧
(¬C ⊃ I ′1) ∧
(¬C ⊃ P ′1))

where :

I ′1 = [i+ e1�i,
j + e1 ∗ e2�j ]I ′

P ′1 = [i+ e1�i,
j + e1 ∗ e2�j ]P

Anticipating the need to modify the loop invariant in this case, the verification condition
of the resulting code uses I ′ to denote the new loop invariant for the transformed code. The
verification condition also makes the simplifying assumption that the variable j is not live
at the beginning of the original loop and hence that it does not occur in P ′. Also, in the
transformed code k is a fresh temporary and hence does not need to occur in the invariant
I ′ and it certainly does not occur in the predicates P or P ′.

Let us start by assuming that we do not change the loop invariant, hence that I ′ = I.
In this case j does not occur in I ′ and therefore I ′1 = I1. The only significant difference is
that P1 is replaced by P ′1. Consider for example the case when P = (i− e1) ∗ e2 = j. After
replacements we get that P1 = (i + e1 − e1) ∗ e2 = i ∗ e2, which is certainly provable, while
P ′1 = (i+ e1 − e1) ∗ e2 = j + e1 ∗ e2, which is not provable because there are no assumptions
about j (j does not occur neither in I nor in C.)

Here we have encountered an optimization that changes the code in such a way that the
new verification condition is not provable because of assumptions that are too weak. The
remedy in such a case is to strengthen the loop invariant by adding the missing assumption.
Returning to our example, the difference between the predicates P1 and P ′1 is that the
expression “j+ e1 ∗ e2” occurs in P ′1 where “i∗ e2” occurs in P1. Thus, we attempt to modify
the loop invariant as follows:

I ′ = I ∧ j + e1 ∗ e2 = i ∗ e2

If we replace this invariant in the new verification condition we reduce it to the four
subgoals shown on the right-hand side of the table below. On the left side of the table
we have the same four subgoals in the original verification condition. Assuming that the
original subgoals are provable we can verify that the new ones are also provable. The only
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one that might pose some difficulty to the theorem prover is the fourth one. In this case
the theorem prover must be able to apply the rule of congruence starting from the equality
j + e1 ∗ e2 = i ∗ e2.

Before After
[e0�i]I [e0�i]I ∧ (e0 ∗ e2 − e1 ∗ e2) + e1 ∗ e2 = e0 ∗ e2

I ⊃ C ⊃ P ′ (I ∧ j + e1 ∗ e2 = i ∗ e2) ⊃ C ⊃ P ′

I ⊃ ¬C ⊃ [i+ e1�i]I (I ∧ j + e1 ∗ e2 = i ∗ e2) ⊃ ¬C ⊃
[i+ e1�i]I ∧ (j + e1 ∗ e2) + e1 ∗ e2 = (i+ e1) ∗ e2

I ⊃ ¬C ⊃ [i+ e1�i,
i ∗ e2�j ]P (I ∧ j + e1 ∗ e2 = i ∗ e2) ⊃ ¬C ⊃ [i+ e1�i,

j + e1 ∗ e2�j ]P

In conclusion, induction-variable elimination is an optimization that does require addi-
tional loop invariants and possibly an increased capability of the theorem prover to apply
the congruence rule. However, the form of the required additional invariants is very simple
and it is an easy task to modify the implementation of induction-variable elimination to emit
them.

6.5.8 Redundant-Conditional Elimination

Redundant-conditional elimination is an optimization that removes those conditional bran-
ches whose outcome is statically predictable. This code transformation removes both the re-
dundant conditional branch instruction, thus improving code speed, and also the unreachable
body of the conditional, thus improving code size. As an example of redundant-conditional
elimination consider the code shown below, where we assume that the compiler is able to
infer that if all of Ck hold (for k = 1 . . n) then C also holds. Thus, because of the positioning
of the conditional C after all of Ck have been tested and found true, the conditional C will
always succeed. The compiler removes the conditional instruction and its “false” branch,
shown here as the code “...P ′′...”. Instead it places the loop invariant annotations with the
predicate C and an empty set of modified variables.1 The resulting code is shown on the
right side of the table.

1The invariant annotation is only necessary to simplify the task of the theorem prover. Touchstone does
not actually insert one.
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Before After
Code VC Code VC

if ¬C1 go to L2

if ¬C2 go to L2

...
if ¬Cn go to L2

if C go to L1

...P ′′...
L1: ...P ′...
L2: ...P...

¬C1 ⊃ P ∧
C1⊃(¬C2 ⊃ P ) ∧

(C2 ⊃ ...
Cn⊃(C⊃P ′)∧

(¬C⊃P ′′)

if ¬C1 go to L2

if ¬C2 go to L2

...
if ¬Cn go to L2

inv C, {}
...P ′...

L2: ...P...

¬C1 ⊃ P ∧
C1⊃(¬C2 ⊃ P ) ∧

(C2 ⊃ ...
Cn⊃C ∧

C⊃P ′)

We notice that this time the verification condition is altered in a significant way. However,
when attempting to prove the new verification conditions all of the subgoals are also subgoals
in the proof of the original verification condition, except for the predicate:

C1 ⊃ (C2 ⊃ · · · ⊃ (Cn ⊃ C)

Notice that this predicate expresses the fact that the conditional C is redundant. It was
this predicate that the compiler had to prove in order to figure out that the conditional C
can be removed. We need, therefore, that the theorem prover be at least as powerful as the
compiler in terms of proving such predicates.

Let us now return to the invariant instruction that was introduced in place of the condi-
tional. If this annotation was missing then the resulting verification condition would be as
follows:

¬C1 ⊃ P ∧
C1 ⊃ (¬C2 ⊃ P ) ∧

(C2 ⊃ ...
Cn ⊃ P ′)

This is still a valid precondition if the original one is, but proving it requires a little bit
more power on the part of the theorem prover. Basically, the task is to prove the following
predicate:

C1 ⊃ (C2 ⊃ · · · ⊃ (Cn ⊃ P ′) (6.11)

We know that the theorem prover is able to prove the following predicates:

C1 ⊃ (C2 ⊃ · · · ⊃ (Cn ⊃ (C ⊃ P ′)

C1 ⊃ (C2 ⊃ · · · ⊃ (Cn ⊃ C)
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The first of the above predicates occurs in the original verification condition, which
the theorem prover is able to prove, and the second one is just the redundancy condition.
A complete theorem prover would have no problem handling the predicate 6.11 directly,
without any mention of the subgoal C. But in many practical instances the presence of
the subgoal guides the theorem prover towards a successful proof. Practical experience with
theorem provers suggests that many of the proving tasks fail either because the theorem
is not provable or because the prover is exploring too many non-productive subgoals. In
the latter situation, the prover can be helped by user-provided intermediate subgoals. The
invariant annotations provide a convenient way for the code producer to specify subgoals for
the theorem prover.

Because the theorem prover used with the Touchstone compiler is powerful enough to
prove predicates like 6.11 directly, no invariant annotations are emitted for the eliminated
conditionals.

The conditional elimination optimization presented in this section detects redundant
conditionals based only on the conditionals already existing in the code. The optimization
can be improved if the compiler employs static program analyses to discover properties of
the program that are not as obvious as the user-provided conditionals. In the next section,
I describe the implementation in Touchstone of array bounds-checking elimination first as
a special case of conditional elimination and then in the situation when a static analysis is
used to improve the optimization.

6.5.9 Array Bounds-Checking Elimination

Array bounds-checking elimination is a special case of conditional elimination. It targets the
conditionals introduced by the compiler to check that array accesses fall within the bounds of
the array. In a language like that compiled by Touchstone the compiler has the obligation to
insert bounds-checks or otherwise the code would not be safe. However, many of the inserted
checks can be eliminated by proving statically that the array index is within the bounds of
the array. If we want Touchstone to generate code of comparable performance with that
of plain C compilers it is crucial that we do a good job at discovering and eliminating the
redundant checks. I discuss in this section the approach taken in Touchstone to eliminate
array bounds checks. First, I show a simple-minded optimization that is a special case of
conditional elimination discussed previously. Then, I show a static analysis that improves the
optimization. In either case I will focus on the implications on the required loop invariants
and theorem proving techniques for certification purposes.

Let us consider the simple example of a function that adds all elements of an array of
integers whose indices are a multiple of a given stride parameter. The source code for such
a function is shown on the left side of Figure 6.8, while a stylized form of the target code
is shown on the right-hand side of the same figure. Consistent with the type representation
techniques discussed in Section 6.4, the source-level array argument is represented using the
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int add(int [] a, int stride) {
int s = 0;
if(stride ≤ 0) return 0;
for(i = 0; i < a.length; i = i+ stride)
s = s+ a[i];

return s;
}

1 add: /* r1 : array(int, r2) ∧ r3 : int */
2 s = 0
3 if r3 ≤ 0 go to L2

4 i = 0
5 L1: inv i : int ∧ s : int
6 if i ≥ r2 go to L2

7 if i < 0 go to Err
8 if i ≥ r2 go to Err
9 t = M [r1 + 4 ∗ i]

10 s = s+ t
11 i = i+ r3

12 go to L1

13 L2: r0 = s /* r0 : int */
14 return
15 Err: go to Err

Figure 6.8: Compilation example with array bounds checking

registers r1 to hold the base address and r2 to hold the length. The register r3 holds the
integer stride parameter. Assume also that the calling convention specifies that the return
value be put in the register r0.

Note that the loop invariant for the loop starting on line 5 consists of typing declarations
for only those temporaries that are modified in the loop and live at the beginning of the
loop. This invariant is sufficient because of the array bounds checks from lines 7 and 8. To
see this recall that VCGen emits a saferd predicate for each memory read operation. Thus
the fragment of the verification condition emitted for the lines 7–9 is i ≥ 0 ⊃ i < r2 ⊃
saferd(r1 + 4 ∗ i). Furthermore, this predicate fragment is in the scope of the precondition
that contains the assumption r1 : array(int, r2). This fragment of the verification condition
is provable because of the read proof rule introduced in Section 6.2.1 and reproduced in a
simplified form below:

a : array(int, l) i ≥ 0 i < l

saferd(a+ 4 ∗ i) read

Notice that with the above rule and the run-time checks, the safety predicate for an array
access inside the array a is equivalent to “a : array(T, L)”. This is very important because
it means that even in the presence of arrays the safety predicates consist only of typing
declarations and thus the simplified typing loop invariants are sufficient.

So far we have not attempted to remove the bounds checks. We could attempt to eliminate
them using the redundant-conditional elimination optimization discussed in Section 6.5.8.
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DC′ = DC

if (x, x) 6∈ Dom(DC) then
foreach(u, u) ∈ Dom(DC) do
DC′(x, u) =∞;DC′(u, x) =∞

DC′(x, x) = 0
if (y, y) 6∈ Dom(DC) then

foreach(u, u) ∈ Dom(DC) do
DC′(y, u) =∞;DC′(u, y) =∞

DC′(y, y) = 0
if DC′(x, y) ≤ c then raise True else DC′(x, y) = c
if DC′(y, x) < −c then raise False

foreach(u, v) ∈ Dom(DC′) do
DC′(u, v) = min(DC′(u, v), DC′(u, x) + c+DC′(y, v))

return DC′

Figure 6.9: The loop-residue decision procedure for linear arithmetic shown as a function
to compute DC′ from DC where C ′ is obtained from the set of constraints C by adding the
constraint “x− y + c ≥ 0”.

Before we proceed, it is useful to show how Touchstone infers that the validity of one predicate
follows from the validity of several enclosing conditionals.

Touchstone uses a simple decision procedure for inequalities of the form “x− y+ c ≥ 0”,
where c is an integer numeral and x and y are variables. These variables can in fact stand
for arbitrary expressions but the decision procedure will not be able to benefit from their
internal structure. A decision procedure for this fragment of arithmetic was first given by
Pratt [Pra77] in terms of finding negative-weight cycles in directed graphs. Let C be a
collection of such inequalities and let DC be a function defined on pair of variable names
such that Dc(x, y) is the maximal value of the expression “y − x” for all points in Zn that
satisfy all the equalities in C. If the value of “y− x” is not bounded then we use the special
symbol∞ as the value of DC(x, y). We further consider that∞ behaves like positive infinity
when added and compared with finite values.

The Touchstone implementation of the loop-residue decision procedure computes the
value of DC(x, y), for a set of linear constraints C and for all variables x, y occurring in the
constraints. Then we can easily verify whether the set of constraints C entails the validity
or the falsity of an arbitrary “x− y + c ≥ 0” as follows:

If DC(x, y) ≤ c then C ⊃ x− y + c ≥ 0

If DC(y, x) < −c then C ⊃ x− y + c < 0

The proof of these facts is simple given the definition of DC . Let us now focus on how
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Touchstone computes DC .
If there are no constraints, the function D∅ is undefined at all variable names. The

function in Figure 6.9 can be used to compute DC′ from DC , where the set of constraints C ′

is obtained from C by adding the new constraint “x−y+c ≥ 0”. This function either returns
the new value of DC′ or it raises one of the exceptions True or False when the additional
constraint is provably true or false respectively given the original set of constraints.

Returning to the example of Figure 6.8, let us consider the operation of the loop residue
decision procedure given the sequence of conditionals “r3 > 0”, “i < r2”, and “i ≥ 0” leading
to the execution of line 8. Each of these constraints is first put in the form “x− y + c ≥ 0”.
For this purpose we sometimes need to use a dummy variable zero whose value is fixed
to zero. The third column in the table below shows the transformed constraints. The last
column shows the significant values of DC . The values not shown are those of the form
DC(u, u), which are all zero, and the ∞ values. In this simple example, the only non-
trivial inference that the loop-residue decision procedure makes is shown on the very last
line of the table. Because DC3(r2, i) = −1 and DC3(i, zero) = 0 the decision procedure sets
DC3(r2, zero) = −1. Informally, this means that the decision procedure has inferred that
r2 > 0 when the execution reaches line 8.

i Conditional Constraint DC

1 r3 > 0 r3 − zero + (−1) ≥ 0 DC1(r3, zero) = −1
2 i < r2 r2 − i+ (−1) ≥ 0 DC2(r3, zero) = −1

DC2(r2, i) = −1
3 i ≥ 0 i− zero + 0 ≥ 0 DC3(r3, zero) = −1

DC3(r2, i) = −1
DC3(i, zero) = 0
DC3(r2, zero) = −1

When Touchstone encounters the condition of line 8 it first checks whether its truth or its
falsity is implied by the current function DC3 . Thus it takes the conditional and transforms
it to the canonical form “i − r2 + 0 ≥ 0”. Then, it checks whether “DC3(i, r2) ≤ 0” or if
“DC3(r2, i) < 0”. The latter check succeeds and Touchstone infers that the check of line 8 is
falsified by the enclosing conditionals. Thus, Touchstone removes it and lets the execution
fall through.

So far Touchstone applied only the redundant-conditional elimination which, as we saw
in Section 6.5.8 does not necessitate additional invariants or changes in the theorem prover.
In fact, we shall see in Chapter 7 that the theorem prover uses a more complex and more
powerful decision procedure for arithmetic and can therefore infer for itself everything that
the loop-residue decision procedure can.

After redundant-conditional elimination there is still the bounds check of line 7 that
is redundant because the value of the temporary i starts at zero and is always increasing
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by a positive amount on each iteration. (The increment r3 is guaranteed positive by the
conditional of line 3.) This conditional could be proved redundant if we add to the loop
invariant of line 6 the conjunction “i ≥ 0”. In general, the effectiveness of many code
optimizations can be improved if the compiler uses a static analysis first to infer non-obvious
program properties.

I have observed that a very simple loop invariant analysis is able to supply the additional
loop invariants that are required to eliminate most of the array-bounds checks. The analysis
attempts to discover those variables that are modified in a loop body in such a way that they
are always increasing or always decreasing. Such variables are called monotone variables.
The compiler collects, for each modified variable i and for each path through the loop body,
the expression e that is assigned to i. Then, the compiler attempts to discover using simple
rules of arithmetic whether e can be written as “i + e′”. If not, then i is not a monotone
variable. On the other hand, if such an e′ exists then Touchstone attempts to discover
whether it is greater or equal to zero or less or equal to zero using the loop residue decision
procedure. Note that this is attempted with all of the conditionals in scope, even those
inside the loop body. If all of the expressions assigned to i on all paths through the loop are
of the form i+ e′, with e′ greater or equal to zero the variable i is declared a monotonically
increasing variable. If the symbolic value of i in at the beginning of the loop is e0, then the
predicate i ≥ e0 is added to the loop invariant. Using this procedure Touchstone discovers
that i is a monotone variable and adds the predicate i ≥ 0 to the loop invariant. This step
is performed before the loop body is scanned and therefore the conditional of line 7 will also
be found redundant and eliminated.

Let us now consider whether additional loop invariants must be emitted as part of the
code. Assume for now that the loop invariant of line 5 is I. Then, the interesting part of the
generated verification condition, for the code without array bounds checking, is as follows:

r1 : array(int, r3) ⊃ r3 ≥ 0 ⊃ ([0�i]I ∧
∀i.I ⊃ (i < r2 ⊃ (saferd(r1 + 4 ∗ i)

[i+ r3�i]I)))

We see that the only way we can prove the saferd predicate by using the read rule
shown before is if the invariant I contains the conjunct i ≥ 0. This is in fact exactly the
invariant that Touchstone used in removing the array bounds checks. Note that the last line
in the verification condition verifies that the invariant is a correct invariant. When proving
this part of the predicate the theorem prover must reconstruct the same reasoning that led
Touchstone to infer that i is in fact greater or equal to zero. The advantage for the theorem
prover is that, unlike the compiler, it does not have to consider all possible candidates for
monotone variables.

This concludes the discussion of optimizations in a certifying compiler. The list of possible
optimizations is much longer than the number of optimizations I could possibly discuss in this
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dissertation. Thus, this section should be taken as a recipe for analyzing code transformation
and for determining what additional loop invariants, if any, must be emitted by the certifying
compiler.

6.6 Discussion

One of the goals of the Touchstone project was to demonstrate that a certifying compiler
can also generate code of quality comparable with good non-certifying compilers such as
GNU gcc [Fou93] and Digital cc. Touchstone starts at a disadvantage in this performance
competition because the semantics of the safe subset of C mandates array bounds checks
and null-pointer checks for all memory operations. Touchstone attempts to minimize the
performance cost of these run-time checks by using the redundant-conditional optimizations
described in Sections 6.5.8 and 6.5.9. These optimizations, in conjunction with others such
as global register allocation and caching of global variables in registers allow Touchstone to
generate code whose performance is within 10% of that generated by optimizing C compilers.
A detailed description of the experimental results that I collected for the Touchstone compiler
can be found in Section 8.2.

But of course, performance is not everything. The code emitted by Touchstone is not
only safe-by-design but also provably safe using a theorem prover such as that described
in the next chapter. Thus the optimized code generated by Touchstone can be installed as
untrusted extensions in a variety of environments where type safety is a requirement. One
particular application of the Touchstone compiler could be to generate type-safe native-code
extensions to typed languages such as Java and Standard ML.

The Touchstone project was initiated to explore automatic front-ends to a proof-carrying
code system. However, the usefulness of the certifying compiler concept extends beyond the
environments where the safety of untrusted code is the key issue. Probably the main benefit
of a certifying compiler over a traditional compiler is that the certification stage, consisting
of verification-condition generation and theorem proving, acts as an effective referee for the
correctness of each compilation, thus simplifying compiler testing and development.

In sections 6.5.1 through 6.5.9 I have shown that each optimization in Touchstone has
a precise effect on the verification condition. I have also shown that, assuming that the
verification condition is provable before the optimization, it should remain provable after
the optimization. This is in fact a simple correctness criterion for all compiler optimizations.
For many optimizations, no additional loop invariants are required. For some optimizations
the compiler designer must put some effort into designing appropriate extensions to the loop
invariants to guarantee the provability of the verification conditions. But, in my experience,
the benefits outweigh the cost of this extra effort.

Testing a certifying compiler is easier and more effective than testing a traditional com-
piler. As in the traditional case, the compiler writer must still write and compile test cases.
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But while in the traditional case the compiled output must be executed on various data sets
hoping to trip over a compiler bug, in the certifying compiler case VCGen and then the theo-
rem prover inspect the code and prove that for all possible input values the code is type safe.
Furthermore, if the theorem prover fails to prove type safety it points to a precise place in the
code along with the typing predicate that it cannot prove. This is in contrast to traditional
debugging of compilers where the actual compilation bug must often be scavenged from the
corpse of a failed execution. For example, bugs in the register allocator or in the instruction
scheduler are notoriously difficult to find because they lead to subtle errors in the output
program that tend to surface as sporadic program failures, usually many instructions past
the actual erroneous instruction. Furthermore, the low-level nature of the output and the
fact that such errors are most likely to occur in large programs, makes the visual inspection
of the output quite tedious.

It is true that the Touchstone certifying compiler guarantees only the detection of com-
pilation errors that break type safety. This means that those errors that preserve the type
safety of the code are not detected. For example, the certifier would not detect if a compiler
generates code that always returns the integer zero for any integer source-level function. Nev-
ertheless, my practical experience with compiler debugging suggests that most compilation
errors are such that, sooner or later, they lead to the generation of code that is not memory
safe and thus not type safe. It is exactly this kind of error that the certifier detects. During
the development of Touchstone I have encountered only one error that was not signaled by
the certifier, as opposed to a large number of errors that were caught.

The question of compiler correctness is as old as the first compiler implementations. In a
paper published in 1963, John McCarthy refers to this problem as “one of the most interesting
and useful goals for the mathematical science of computation” [McC63]. However, despite a
large body of work in the area [Dyb85, GRW95, Moo89, Mor73, ORW95, TWW79, You89],
we still lack the technology to prove automatically the correctness of an optimizing compiler.
Even manual proofs are rare, and they tend to verify only the algorithms rather than the
implementations. Plus, the correctness proofs need to be redone after even the slightest
modification or improvement to the compiler.

Proving compiler correctness is just a means towards the actual goal of ensuring that only
correct output is ever produced by the compiler. The certifying compiler is a potentially
more practical approach to the same goal. Instead of verifying the compiler once and for
all, we check aspects of the correctness of every individual compilation. This will not ensure
that the compiler is bug-free, but it will signal most incorrect compiler outputs as soon as
they are produced. To reduce the complexity of the checking process, Touchstone does not
try to check full equivalence of the source and target programs, but instead it verifies only
that the target program has certain key properties that can be verified using a small amount
of information about the source program.

The idea of checking individual compilations instead of verifying the compiler also ap-
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pears in the work of Pnueli [PSS98], though in the simpler instance of a non-optimizing
compiler from the SIGNAL [BGJ91] asynchronous language to the C programming lan-
guage. Similarly, Cimatti et al. [C+97] have implemented a certifying compiler from an
expression language without loops or function calls to an RTL-like language. In this latter
case, and also in recent work of Kozen [Koz98], the certification step is simplified consider-
ably by restricting the optimizations such that each source-level construct is compiled to a
given pattern in the target code. Then the certifier must recognize the patterns and must
only check that adjacent patterns are assembled properly. On the other hand, the limitations
in optimizations and the simplicity of the certifier permit these certifying compilers to be
more ambitious and attempt to verify not just the type safety of the target code but also its
equivalence to the source program.

The approach to a certifying compiler presented in this paper is inspired by the need to
have an automatic front-end to a proof-carrying system. If integration with PCC and the
generality and simplicity of the certifier were not important, I could have chosen from several
alternate implementation approaches.

One alternative is suggested by the fact that the verification conditions emitted by VCGen
from the output of Touchstone are guaranteed to be provable automatically. Thus, one can
incorporate parts of the theorem prover in VCGen and prove the safety predicates as they
are created, without actually generating a verification condition and maybe not even a
proof. This might be particularly practical when optimizations like array bounds-checking
elimination or induction-variable elimination are not allowed and thus only a very simple
type-based theorem prover is necessary. The Java bytecode verifier [LY97] can be viewed as
taking this approach, as can the type-checker in the typed assembly language of Morrisett,
et al. [MWCG98].

To illustrate this point let us compare in more depth a certifying compiler together with
a theorem prover with a Java [GJS96] compiler together with a bytecode verifier [LY97]. The
similarity is that both systems produce code that is annotated for the purpose of enabling
a certification system (the bytecode verifier, in the Java case) to verify type safety. The
difference is that our certifier has a more flexible annotation language that permits the
verification of arbitrarily optimized assembly language while necessitating fewer annotations.
(PCC requires annotations only at the backward-branch targets while Java bytecodes contain
annotations in every single instruction.) The Java bytecode verifier works only on a specially
designed bytecode intermediate language where typing annotations are contained in the
instruction codes themselves. Furthermore, the Java bytecode verifier prevents the compiler
from doing several important optimizations, such as array bounds-checking elimination and
global register allocation.

The compilation approach presented here also resembles in many respects the compilation
strategy of the TIL [TMC+96] compiler for Standard ML, which uses a typed intermediate
language that can be easily type-checked to achieve an independent validation of optimiza-
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tions. However, the TIL type-system does not guarantee memory safety in the presence of
certain optimizations such as array bounds-checking elimination, and furthermore, it can-
not be used after the register allocation phase when some variables (registers) are reused to
hold values of different types in the body of the same function. For this reason, types are
dropped in the TIL compiler before the register allocation phase, and thus no type-checking
is possible at the level of the compiler output. The problems related to register allocation
are solved by Morrisett et al. [MWCG98] by choosing a more expressive type system, but
the issue of memory-safety of TIL programs in the presence of optimizations such as array
bounds-checking elimination still remains a problem.

This chapter presents the class of type-based safety policies and the design of a certifying
compiler that generates the necessary loop invariants for such policies when compiling pro-
grams written in a type-safe subset of the C programming language. This takes care of one of
the challenging tasks facing a code producer that wants to use a proof-carrying code system.
The other difficult task is to generate proofs of the verification conditions that arise from
the code annotated with loop invariants. In the next chapter I describe a theorem prover
that is powerful enough to prove all verification conditions arising from the output of the
Touchstone certifying compiler and is also able to emit their proofs in the format required
by the proof checker described in Chapter 5.





Chapter 7

The Proof-Generating Theorem
Prover

There are two difficult tasks in front of a code producer wishing to use proof-carrying code
to interact by mobile code with a code receiver. The first, and the more difficult one, is to
generate the loop invariants. This is accomplished in the system presented in this dissertation
by the Touchstone compiler described in Chapter 6. The second difficult task is to prove the
verification conditions using the axiomatization provided by the code receiver as part of the
safety policy.

The verification conditions are predicates in an extension of first-order predicate logic
with application-specific function symbols, such as the saferd predicate constructor used to
express memory safety. Therefore, the proof producer can be a theorem prover for first-order
logic, possibly one of the many already implemented and discussed in the literature [BM79,
CAB+86, CH85, Det96, Gor85, ORS92]. To my knowledge, all of these are able to prove
typical verification conditions, sometimes with the help of additional tactics. However, for
some safety properties, automatic decision procedures do not exist or are not effective. In
such cases it is more practical to use a semi-interactive theorem prover guided by a person
with a deep understanding of the reasons underlying the safety of the untrusted code.

To be usable as a PCC proof producer, a theorem prover must not only be able to
prove verification conditions but must be also capable of generating detailed proofs of them.
Furthermore these proofs must be expressed in the particular logic (i.e., using the axioms and
inference rules specified as part of the safety policy) used by the code receiver and encoded
in the LFi framework so that the code receiver can use the LFi type checker to verify them.
The major difficulty here is to make the theorem prover output the detailed proof in any
form, because once we have all the proof details, it is generally easy to transform them in
the LFi format expected by the receiver.

In my implementations of PCC, I have used two different theorem provers so far. The first,
and most primitive, theorem prover that I used was suggested by the decision to represent
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proofs as LF expressions. This theorem prover uses the Elf [Pfe94] implementation of LF.
The powerful type-reconstruction algorithm used in the Elf system makes it able to find LF
expressions having a given LF type with respect to a specified signature. This feature can
be used for theorem proving by loading the signature that encodes the axiomatization of the
logic and then giving to Elf a type of the form pf P , where P is the LF representation of
the predicate to be proved. Given this query, Elf searches for an LF term M of the required
type and shows this term if it can find it. Because of the adequacy of the representation of
proofs in LF (Theorem 5.2) we know that the given term is the encoding of a valid proof of
P . Furthermore, this term is exactly in the form required by the code receiver.

The advantage of the Elf approach to theorem proving is that it is trivial to implement.
We just need the Elf system to which we give the encoding of the logic as an LF signature.
Note that this encoding is provided by the code receiver anyway. Not only does Elf prove
the verification conditions but it also emits the proof in the exact format required by PCC.
However, the major problem with the Elf approach to theorem proving is that Elf uses a
relatively simple depth-first search algorithm that is inappropriate for theorem proving in
many realistic logics. This means that, in order to use this approach, the inference rules
have to be written in such a way and in such an order that the search is goal directed. In
some cases, mostly having to do with integer arithmetic, I had to add redundant inference
rules to the safety policy so that Elf could find a proof.

While the Elf approach to theorem proving was of extreme importance for the early
validation of the proof-carrying code technique, there was a need for a real theorem prover
using state-of-the-art decision procedures for theories such as equality and arithmetic. In
order to be able to experiment more easily with different decision procedures and different
proof-generating strategies, I chose to implement my own version of a theorem prover based
on the Nelson-Oppen architecture for cooperating decision procedures [NO79], also imple-
mented in the Stanford Pascal Verifier [LGvH+79] and the Extended Static Checking [Det96]
systems. I believe however, that the proof-generating techniques presented in this chapter
can be adapted to other theorem prover architectures and can even be retrofitted to existing
theorem provers.

Before we start discussing the technical details, I want to point out that the ability to
generate proof representations in a theorem prover is beneficial even when the theorem prover
is not intended as a front end to proof-carrying code. A theorem prover that generates an
explicit proof object for each successfully proved predicate enables a distrustful user to verify
the validity of the subject theorem by checking the proof object. This effectively eliminates
the need to trust the soundness of the theorem prover at the relatively small expense of
having to trust a much simpler proof checker. The theorem prover is a complicated system
implementing complex algorithms, so it is of great practical importance that we do not
have to rely on its soundness. The generated proofs and the proof checker are also of great
software engineering benefit as they can lead to the timely discovery of soundness bugs that
are introduced during the development or maintenance of the theorem prover.
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The rest of this chapter is structured as follows. In Section 7.1 I review the Nelson-
Oppen architecture for a theorem prover and I show how my implementation adheres to
it. Then in Section 7.2 I describe using pseudo-code algorithms the control part of the
theorem prover responsible for handling the first-order logical connectives, the backtracking
and the integration of the individual decision procedures. Then, in Section 7.3 I describe
the general interface that a decision procedure must implement. In the same section I show
how standard decision procedures such as congruence closure and Simplex can be adapted
to the given interface. For illustration purposes, I show in Section 7.3.3 the operation of the
theorem prover when proving a simple theorem involving linear inequalities and equalities.
Also, as another example of a proof-generating decision procedure, I show in Section 7.3.4
a simple decision procedure for proving the typing predicates arising from the output of
the Touchstone compiler. This chapter is concluded with a discussion of the many possible
improvements to the algorithms for producing proofs.

7.1 The Nelson-Oppen Prover Architecture

In this section I describe, at a high level, the general strategy for combining decision proce-
dures for several theories into a decision procedure for the combined theory. This strategy,
first proposed by Nelson and Oppen [NO79], is at the basis of the proof-generating theorem
prover described in this chapter. It is this architecture that makes the theorem prover easily
extensible with new theories such as the Touchstone typing theory.

Informally, a theory consists of a set of function symbols, which are called the free func-
tions of the theory, together with a set of axioms constraining the interpretation of the
function symbols. The axioms are written in the first-order predicate calculus with function
symbols and equality; thus every theory gets equality automatically, without having to define
the congruence rules for its free functions.

To illustrate these concepts consider the theory of arrays, first introduced in Section 4.3,
with the free functions “sel” and “upd” and the following two axioms:

∀m.∀e.∀v. sel(upd(m, e, v), e) = v

∀m.∀e.∀e′.∀v. e 6= e′ ⊃ sel(upd(m, e, v), e′) = sel(m, e′)

A literal or an atomic formula in a theory is a formula that contains only free functions
from the corresponding theory and the equality symbol. A formula is valid in the theory if it
is satisfied by every interpretation of the function symbols in F that satisfies all the axioms
A. A set of literals (called the hypotheses) entails another literal (called the goal) if the
goal literal is satisfied by all interpretations that satisfy both the axioms of the theory and
the hypotheses literals. A set of literals is satisfiable if there exists an interpretation that
satisfies all the axioms and all the literals. A decision procedure for a theory is an algorithm
that attempts to discover whether the conjunction of a set of literals entails another literal.
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In many cases, a decision procedure can be implemented using a satisfiability procedure that
discovers whether a set of literals is satisfiable or not. This is because the set of literals H
entails the literal A if and only if the set “H ∪ {A}” is not satisfiable, where A is a literal
that is the negation of A.

Consider the theory Q of rational numbers with the free symbols +, −, ≥ and the
numerals with the usual axioms of rational arithmetic. Consider also the theory E with
one uninterpreted unary function symbol “f” (the function symbol is uninterpreted because
there are no axioms pertaining to it, except for the congruence axiom). The satisfiability
problems for each of these theories considered separately were solved long ago by Fourier
for Q and by Ackermann for E [Ack54]. Although necessary, it is not sufficient to have
decision procedures for these isolated theories because most theorem proving goals combine
literals from multiple theories. We need therefore a method to combine multiple satisfiability
procedures into one for the combined theory. This is not as straightforward as it might seem
because of unexpected interactions between theories that, at the first sight, have nothing in
common.

To illustrate the difficulties and to provide an example for presenting the Nelson and
Oppen solution, consider the following set of four literals1 from the combined theory Q+E:

f(f(x)− f(y)) 6= f(z) ∧ y ≥ x ∧ x ≥ y + z ∧ z ≥ 0 (7.1)

Informally, to demonstrate that the above set of literals is not satisfiable, we would
first use the two literals in the middle to infer that “0 ≥ z” and then the last literal to
demonstrate that “z = 0” and then also that “x = y”. Note that these inference steps
were entirely within Q. Then, we use the congruence rule of E to infer that “f(x) = f(y)”.
Then we move again in Q to prove that “f(x) − f(y) = z” and then back to E to prove
that “f(f(x)− f(y)) = f(z)”. This allows E to detect the contradiction with the first literal
and to declare that the set of literals is not satisfiable. This example demonstrates that, in
general, the decision procedures must interact in a non-obvious way to detect unsatisfiability.
Nelson [Nel81] defines the exact way in which decision procedures must cooperate, as follows:

Definition 7.2 In order to detect the unsatisfiability of a set F of literals with free functions
from two theories S and T , with satisfiability procedures S and T respectively, we must first
rewrite F into an equivalent pair of sets FS and FT such that each set contains only literals
from the corresponding theory. Then, each satisfiability procedure must detect unsatisfiability
in its own set of literals and must also propagate to the other procedure all equalities
between variables that it detects. If the two theories are convex then this cooperation
procedure is complete for the theory S∪T provided that S is complete for S and T is complete
for T .

1This example is taken from [Nel81].
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As an example, consider how the Nelson-Oppen strategy behaves for the set of literals
shown in 7.1. First, we introduce the variables g1, g2 and g3 to stand for ‘f(x), f(y) and
“f(x)− f(y)” respectively. With these auxiliary variables we can separate the set of literals
into FQ and FE shown below:

FQ FE
y ≥ x f(g3) 6= f(z)
x ≥ y + z f(x) = g1

z ≥ 0 f(y) = g2

g3 = g1 − g2

Neither of FQ or FE are unsatisfiable in isolation but FQ entails the equality “x = y”. (It
also entails the equality “z = 0” but this one is not propagated because it is not an equality
between variables only. In fact, it would not be correct to propagate this equality because
the free function “0” does not belong to the theory E.) The addition of “x = y” to FE makes
this set to be able to infer and propagate the equality “g1 = g2”. This in turn, when added
to FQ, entails “g3 = z”, which added to FE makes the set FE unsatisfiable. This example,
complete with the proof-generating part, is revisited in detail in Section 7.3.3.

The Nelson-Oppen strategy is complete only for convex theories. A theory T is not
convex if there exists a formula F and 2n variables x1, . . . , xn, y1, . . . , yn with n ≥ 2 such
that F implies the disjunction: ∨

1≤i≤n

(xi = yi)

The theories Q and E considered in our example are convex. But the theory of arrays and
the theory Z of integer linear arithmetic are not convex, as demonstrated by the example
below:

y = z + 1 ∧ y ≥ x ∧ x ≥ z entails x = y ∨ x = z (7.3)

The Nelson-Oppen architecture can be adapted to deal with non-convex theories by
performing a case-split whenever a conjunction of literals entails a disjunction. Informally,
the prover tries to guess which one of the disjuncts holds and asserts it to all decision
procedures. If this does not lead to unsatisfiability then the next disjunct is tried. For this
procedure to be correct there are additional technical requirements that the theories must
satisfy. I do not mention these requirements here but note that any theory that we are likely
to use satisfies them. These requirements along with a formal proof of soundness of the
algorithm is given by Nelson in [Nel81].

The structure of the theorem prover is shown in Figure 7.1. At the top level we have
a module that knows how to break predicates of first-order logic into literals. This module



160 CHAPTER 7. THE PROOF-GENERATING THEOREM PROVER

Pred

��

Proof

OO

Control core
Logical

connectives

Assertion

��

Contradiction

OO

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Dispatch

Command

yyssssssssssssssssssssss

Response

99ssssssssssssssssssssss

Command

%%KKKKKKKKKKKKKKKKKKKKKK

Response

eeKKKKKKKKKKKKKKKKKKKKKK

Split

Next casekkVVVVVVVVVVVVVVVVVVVVVV

Add split

OO

Command

33hhhhhhhhhhhhhhhhhhhhhhh

Convex
decision

procedure
· · ·· · ·· · ·

Non-convex
decision

procedure

Figure 7.1: The overall structure of the theorem prover.

receives in input a predicate and returns a proof or an indication of failure. The “Logical
Connectives” module is also responsible for implementing the backtracking necessary for
proof search. The result of breaking a predicate into literals is a set of hypothesis literals
(typically obtained from the left-hand side of implications) and a goal literal. If the predicate
contains multiple goals, they are proved separately. These literals are given to the “Dispatch”
module, which is responsible for propagating them to all the decision procedures. Just as
in the example discussed above, the decision procedures try to find contradictions, in which
case they return a contradiction. Or, a decision procedure might discover new equalities
between variables, in which case it gives it to the “Dispatch”, who in turn broadcasts it to
all decision procedures. Additionally, a non-convex decision procedure might also discover
a case split, which must be given to a special module dealing with case splits. This latter
module is queried by the “Logical Connectives” module when the current goal is about to
fail. If there are case splits, they are tried in order by the “Logical Connectives” module.
Each of these modules and several decision procedures are discussed in the following sections.
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7.2 The Control Core of the Theorem Prover

The control core of the theorem prover consists of the “Logical Connectives” module together
with the “Dispatch” and the “Split” modules. This is the part that decides when and how
the individual decision procedures must be invoked. In this section I describe and give
pseudo-code algorithms for each of these modules.

7.2.1 Handling the Logical Connectives

In order to make proof search more efficient I restrict the combination of logical connectives
that the prover must deal with to those described by the grammar of Figure 7.2. In addition
to the absence of the existential quantifier, the other major restriction in this fragment of
first-order logic is that the left-hand side of the implication can only contain conjunctions
of literals, universal quantifications and a restricted form of implication. The set of literals
contains at least equalities and disequalities between variables or, in general, between ex-
pressions. The language of expressions and other possible literals are determined by the free
functions of the theories implemented by the decision procedures. Even though this might
seem a very restrictive fragment of logic, note that the verification-condition generator emits
only predicates from within this subset, provided the function specifications and the loop
invariants are themselves from P a. This is, in fact, true for all annotations emitted by the
Touchstone compiler.

Goals P g ::= true | false | P g
1 ∧ P

g
2 | L | P g

1 ∨ P
g
2

| P a
1 ⊃ P g

2 | ∀x.P g

Assumptions P a ::= true | false | L | P a
1 ∧ P a

2 | P g
1 ⊃ P a

2 | ∀x.P a

Literals L ::= e1 = e2 | e1 6= e2 | . . .

Figure 7.2: The fragment of first-order logic handled by the that the theorem prover. For
this fragment proving can be goal directed and thus more efficient.

The fragment of first-order logic presented here is a subset of the first-order hereditary
Harrop formulas and is an extension of Horn logic. These fragments of first-order logic
admit a complete sequent-style goal-directed proof system where the declarative meaning
of logical connectors coincides with their search-related reading [MNPS91]. The resulting
proofs are called uniform. The implementation of uniform-proof search for this logic is shown
in Figure 7.3, as a pair of recursive functions. The function fol is the main entry point. It
takes a predicate and produces either an LFi representation of a proof of the input predicate
or raises the exception Failure to signal that it cannot find a proof. The function assert

is a helper function and it provides the interface with the “Dispatch” module.
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fol(true) = truei
fol(false) = raise Failure

fol(P1 ∧ P2) = andi(fol(P1), fol(P2))
fol(P1 ∨ P2) = try

oril(fol(P1))
handle Failure

orir(fol(P2))

fol(∀x.P ) = alli(x, fol(P )) x is a new variable
fol(P1 ⊃ P2) = try

snapshot()
try

assert(P1, u ) u is a new variable
impi(u, fol(P2))

handle Contradiction( prf )

impi(u, falsee(prf))
finally

undo()
fol(L) = try

snapshot()
try

assert(¬L, u ) u is a new variable
tryAllSplits()
raise Failure

handle Contradiction( prf )
contra(u, prf)

finally
undo()

assert(true, D ) = return
assert(true, D ) = raise Contradiction(D )
assert(P1 ∧ P2, D ) = assert(P1, andel(D) )

assert(P2, ander(D) )

assert(true, D ) = dispatch(L, D )

tryAllSplits() = while(¬Split.isEmpty()) do
(sg, ptrans) = Split.next()
try

raise Contradiction(ptrans(fol(sg)))
handle Failure

continue

Figure 7.3: The definition of the functions responsible for the handling of the logical con-
nectives of first-order logic. The boxed components contain LFi terms representing proofs.
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Before we get to the details of these two functions, let me say a few words about proof
representations. As described in detail in Chapter 5, proofs are represented in LFi as expres-
sions in a language whose constructors correspond directly to the axioms and inference rules
of the logic. For example, a proof by conjunction introduction is denoted by the expression
“andi(D1, D2)”, where D1 and D2 are the expressions that represent the proofs of the two con-
juncts respectively. The axiomatization for the fragment of logic considered here is shown in
Figure 4.8. As a general rule, we consider that for each inference rule having n hypotheses we
have an n-ary proof constructor having the same name as the rule. Exceptions are made for
the hypothetical and parametric judgments, where the representation also contains a fresh
variable whose uses in the hypothetical judgment denote the uses of the hypothesis. For
example, a given use of the implication introduction rule can be represented as “impi(x, D)”,
where x is considered bound in D and it marks the places where the left-hand side of the
implication is assumed true. To distinguish the proof objects in the pseudo-code presented
in this section, they are enclosed in boxes.

The algorithms used by the theorem prover are described in a pseudo-language with
exceptions. An exception is raised using a “raise” statement and can be handled using a
“try S1 handle e S2”, where, in the event that the statement S1 raises the exception e,
the exception is consumed and statement S2 is executed. There is also a statement “try S1

finally S2” that guarantees to run S2 no matter how the statement S1 terminates, normally
or exceptionally. The exception is not consumed in the latter case. There are two exceptions
used by the theorem prover. The exception Failure can only be raised by the fol function
to signal a failed proving attempt. The other exception, Contradiction, can be raised by
the decision procedures and by the tryAllSplits function, which implements case splitting,
to signal that a contradiction was found. This exception carries a proof of false. Such a
proof can be constructed, for example, from a proof of equality and a proof of disequality of
the same pair of expressions. From a proof of false any predicate can be proved using the
false-elimination rules. These rules are shown below:

e1 = e2 e1 6= e2

false
falsei false

P
falsee

Back to Figure 7.3, the function fol returns a proof of its input predicate. If the input
predicate is false, no proof exists and the exception Failure is raised. In the case of a
conjunction, both conjuncts are proved separately and the resulting proof is constructed
using andi. Note that if any of the two recursive invocations of fol raises the exception
Failure, then the whole proof fails. In the case of a disjunction, the proof of the first disjunct
is attempted first. If it succeeds, the resulting proof is build using the or-introduction-left
rule. Otherwise, the second disjunct is tried. Note that this case fails only if both proofs
fail.

In the case of an implication, the left-hand side must be asserted. For this purpose
a new variable u is created to stand for the assumed proof of the left-hand side and the
helper function assert is called. This function is passed both the assumption to be asserted
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and its proof. Then, the proof of the right-hand side is attempted and the whole proof is
constructed using impi. However, we must account for the case when the left-hand side of
the implication is a contradiction. In such a case, the invocation of the assert function
will raise the Contradiction exception with the proof of false. The innermost exception
handler takes care of this case by generating a proof of the implication using the false-
elimination rule. Before the execution continues we must retract all the assertions that were
made for the purpose of proving the implication. This is done implicitly by a pair of calls to
snapshot, which instructs all decision procedures to save their current state, and to undo,
which instructs all decision procedures to revert to the state corresponding to the most
recent undone snapshot. The try-finally statement is used to ensure that the assertions
are retracted even if the call to assert or to fol raise exceptions.

In the case of a literal, its negation is asserted and a contradiction is expected. If the
assertion does not generate a contradiction, then the case splits are tried also expecting a
contradiction. Otherwise the proof fails and the Failure exception is raised. The negation
operation can be implemented either by changing the top-level literal constructor, such
as changing the equality in a disequality, or simply by having a unary-negation predicate
constructor.

The function assert takes a predicate and its proof and asserts it. It does not return a re-
sult, except that it might raise (or propagate from a decision procedure) the Contradiction

exception. In the case of a conjunction, both conjuncts are processed in order. In the case of
a literal the dispatcher is called. The cases when the assertion is a universal quantification
or an implication are not discussed here because they require a moderate amount of extra
machinery.

The last function of this module is tryAllSplits that is invoked when the proof of a
given goal is about to fail. In such a case, the “Split” module is queried and if there are
subgoals they are tried in order. Each subgoal is accompanied by a function, called a proof
transformer, that given a proof of the subgoal produces a proof of false. Section 7.2.3
discusses in more detail case splits and proof transformers.

If the proof of a subgoal succeeds, then the proof transformer is applied to it to produce
a proof of false and a Contradiction exception is raised. If, however, the proof fails, the
exception is consumed and the next case is tried. If none of the cases is successful, the
function terminates normally. The set of current subgoals can be viewed as a disjunction
that must be proved.

Although the functions discussed here are described in a language that supports excep-
tions, they can be adapted to a language without exceptions by making each function return
two results: an indication of whether the return is normal or exceptional and the return value.
Also, the same functions can be implemented quite elegantly in a continuation-passing style
using a success and a failure continuation. Finally, the only reason we need the functions
snapshot and undo is because the dispatch function can have side effects on the state of
the decision procedures. A more elegant implementation can use purely-functional decision
procedures whose state is passed around explicitly by the fol and assert functions.
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dispatch(L,D) = al = {(L,D)}
while(al 6= ∅) do

accum = ∅
foreach (L,D) ∈ al do

foreach i ∈ DecisionProcedures do
accum = accum ∪ decproci(L,D)

al = accum

snapshot() = Split.snapshot()
foreach i ∈ DecisionProcedures do

snapshoti()

undo() = Split.undo()
foreach i ∈ DecisionProcedures do

undoi()

Figure 7.4: The definition of the dispatcher functions. The functions snapshot and undo

are dispatched to all the decision procedures to instruct them to save or undo their internal
state. The function fixpoint invokes the all the decision procedures until no new assertions
are produced.

7.2.2 The Dispatcher Module

The implementation of the “Dispatch” module is quite simple. It needs only to ensure
that assertions along with their proofs are broadcast to all decision procedures. Also, while
processing an assertion, a decision procedure might return a set of new equality assertions
together with their proofs. Such assertions must also be propagated back to all decision pro-
cedures. The process must continue until no new assertion is generated. Thus the dispatch

function, whose implementation is shown in Figure 7.4, is essentially a fixpoint computation.

In addition to the dispatch function, the “Dispatch” module also implements the system-
wide snapshot and undo functions. Their implementations simply forward the messages to
the “Split” module and to all decision procedures. Thus, the “Dispatch” module is the only
module that needs to know which decision procedures are present in the system.

7.2.3 Handling Case Splits

As discussed in Section 7.1 and illustrated in the example 7.3, for certain decision procedures
a conjunction of literals does not entail any new equalities between variables but it does entail
a disjunction of such equalities. To allow such decision procedures in the theorem prover
I introduce the “Split” module. In fact, the “Split” module can perform a more general
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form of case split. Whenever a decision procedure cannot prove a contradiction and cannot
generate any new equalities between variables, it should look for subgoals that, if proved,
would entail a contradiction. Such subgoals can be arbitrary predicates from the class P g.
These subgoals, together with a function that, when given a proof of the subgoal, produces
a proof of false, must be given to the “Split” module using the function Split.add. The
proof transformer function can be viewed as a proof with a hole inside that can be later filled
with the proof of the subgoal when it is proved.

To illustrate how this more general approach to case splits can deal with the disjunction
of equalities entailed by non-convex decision procedures, consider again the disjunction x =
y ∨ x = z from the example 7.3. The decision procedure that discovers this disjunction
has implicitly discovered that its negation, x 6= y ∧ x 6= z, is a subgoal that, if proved, can
lead to a contradiction. The proof transformer for this case is shown below. The outermost
rule used is the disjunction elimination rule, containing two hypothetical judgments, marked
here with u and v, for the two disjuncts. The box stands for the hole where a proof of the
subgoal must be plugged in.

x = y ∨ x = z
x = y

u
x 6= y

false

x = z
v

x 6= z
false

false

The “Split” module exports several functions to all other modules. We have seen already
that the “Logical Connectives” module uses isEmpty and next to extract all of the splits one
by one. Also, the “Dispatch” module invokes the functions snapshot and undo. In addition
to these, there is also the add function that is used by the non-convex decision procedures
that wish to add case splits.

Figure 7.5 shows a possible implementation of the storage and manipulation of splits.
The main data structure is a stack of sets of splits. The purpose of the stack is to record
the state at the time of a snapshot. For a clearer presentation, both the Stack and the Set

manipulation functions are fully functional. This stack data structure is held in a variable,
called splits, that is initialized to a one-element stack containing an empty set. Non-
convex decision procedures can add new subgoals by calling the function Split.add with
a subgoal and a proof transformer. When this happens, the pair of the subgoal and the
proof transformer are added to the set that is on top of the stack. Note that the function
Stack.top just returns the set that is on the top of the stack without removing it.

The implementation of snapshot just makes a copy of the current set of splits (the one
on top of the stack) and pushes it on top of the stack. The undo function just pops and
discards the element that is on top of the stack. Finally, the next function returns one
arbitrary element from the current set of splits and removes it from the set. For this purpose
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var splits : Stack of (Set of (pred ∗ (proof → proof)))
= Stack.push (Stack.empty, Set.empty)

add(sg, ptrans) = splits = Stack.replaceTop(splits, Set.add(Stack.top(splits),
(sg, ptrans)))

snapshot() = splits = Stack.push(splits, Stack.top(splits))
undo() = splits = Stack.pop(splits)
isEmpty() = Set.isEmpty(Stack.top(splits)
next() = ((sg, ptrans), rest) = Set.pickOne(Stack.top(splits))

splits = Stack.replaceTop(splits, rest)
return (sg, ptrans)

Figure 7.5: The definition of the functions implementing the Split module of the theorem
prover.

it uses the function Set.pickOne that returns both an element of the set and the rest of the
set. In my implementation Set.pickOne returns the most recently added split.

This completes the description of the modules responsible with the control of the decision
procedures. In the next section, I describe the general requirements of a proof-generating de-
cision procedure and then several particular decision procedures used in the theorem prover.

7.3 The Decision Procedures

The control core of the theorem prover decomposes predicates into literals and passes them
to the decision procedures, by means of the “Dispatch” module. The decision procedures
must analyze the literals passed to them and must discover either a contradiction or new
equalities between variables or a case split. The major advantage of this architecture is that
it is easily extensible. To add a new theory all we must do is to write a cooperating decision
procedure for the theory and plug it in the system.

In this section I describe first in general terms what are the requirements on the decision
procedures. Then, in separate subsections, I discuss several examples of decision procedures
used in realistic theorem provers. The major innovation with respect to the Nelson and
Oppen approach is that the decision procedures and the control core are adapted to emit
natural deduction proofs of all predicates that are proved.

All of the decision procedures in the theorem prover use the same internal representation
of the literals, namely a global expression directed acyclic graph, which I refer to as the
E-DAG. In the E-DAG, there is a node corresponding to each expression or subexpression
in the predicate to be proved. Each node is labeled with an expression constructor and it
has as many descendants as the arity of the constructor. When building the E-DAG care
must be taken to ensure that all common subexpressions are shared. Then, the E-DAG
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procedure snapshot()

procedure undo()

function decproc(a : pred, d : proof) : Set of (pred * proof)

raises Contradiction (proof)

Figure 7.6: The interface that all decision procedures must implement.

node corresponding to an expression can be used throughout the system to refer to that
expression.

The first thing that must be done with an assertion coming from the “Logical Connec-
tives” module is to internalize all of its constituent expressions in the E-DAG. Only then
can the assertion be rephrased in terms of E-DAG nodes and propagated to the decision
procedures. The internalization is done by the “Dispatch” module in my implementation,
right before the fixpoint operation is initiated.

In addition to the global E-DAG, each decision procedure is free to maintain its own
internal data structures. Each decision procedure is required to implement the interface
shown in Figure 7.6. These functions are discussed next.

The control core of the theorem prover ensures that for each snapshot there is a match-
ing undo, although there might be several properly nested pairs of snapshot and undo in
between. The intended semantics of the undo operation is that all decision procedures should
adjust their internal data structures so that they do not reflect assertions that were made
chronologically after the matching snapshot operation. This ensures that assertions are
properly retracted from the system at the time of the undo.

There are several ways to implement the snapshot and undo operations. A decision pro-
cedure can maintain a stack of assertions. Each time a new assertion arrives it is considered
with respect to the assertions memorized on the stack. Each snapshot places a marker on
the stack and each undo pops the stack up to the nearest marker. This simple strategy is
appropriate for those decision procedures that do not require the maintenance of separate
data structures, except the undo stack. An example of such a decision procedure is described
in Section 7.3.4 for dealing with the Touchstone typing rules.

Another decision procedure style uses an internal data structure where it records rela-
tionships between the current assertions. In such a case, however, the implementation of
snapshot and undo is more involved. One possibility is for snapshot to make a complete
copy of the state of the internal data structures, so that undo can recreate an identical state.
This is not only too expensive but, in most cases, unnecessary. The undo operation needs
only to recreate an equivalent state, not an identical one. This can usually be accomplished
with minor changes to the current state, if the choice of the internal data structures is made
wisely. An indication of the particular changes that must be performed at each undo is
stored by snapshot in an undo stack. A decision procedure that is implemented in this
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style is called incremental and undoable. Such a decision procedure is more efficient than a
non-incremental one but it requires considerably more care from the implementor. Exam-
ples of such decision procedures are the congruence closure decision procedure (described in
Section 7.3.1) for dealing with equalities and uninterpreted function symbols, and Simplex
(described in Section 7.3.2) for dealing with linear arithmetic.

The main operation exported by a decision procedure is the decproc function, whose
type is shown in Figure 7.6. This is the function that processes each new assertion. First,
it must scan the assertion predicate for occurrences of the free functions of the theory that
the decision procedure is implementing. Because the assertion predicate is internalized, the
E-DAG nodes serve as convenient names for subexpressions. According to Definition 7.2,
the decision procedure must either detect a contradiction, in which case it must raise the
Contradiction exception with a proof of false, or it must detect new equalities between
E-DAG nodes. A set of such equality assertions, together with their proofs, is returned in
case of normal return.

In addition to detecting a contradiction or returning a set of equality assertions, a decision
procedure can also generate case splits. It can create subgoals that, when proven, would allow
the decision procedure to generate a contradiction. Each such subgoal is passed, together
with a function that when given a proof of the subgoal creates a proof of false, to the
Split.add function. Even though it is the decision procedure who identifies the subgoals, it
is up to the “Logical Connectives” and “Split” modules to decide when to try the subgoals.
In fact, the subgoals are tried only if a goal is about to fail.

In the next few sections I will describe the main decision procedures present in my
implementation of the proof-generating theorem prover.

7.3.1 Handling Equality with Congruence Closures

A central theory in any implementation of the Nelson-Oppen architecture is the theory of
equality. This is because each decision procedure in the system must be able to discover
and manipulate equality predicates. The free functions of the theory E are “=” and “6=”
along with any uninterpreted function symbols. The axioms of the theory are those shown
in Figure 7.7. There is one inference rule for each function symbol in the system.

The theory E was first shown decidable by Ackermann [Ack54]. The problem of finding
whether an equality is a consequence of other equalities can be tackled from several points of
view. Downey, Sethi and Tarjan [DST80] view it as a variation of the common subexpression
problem and Kozen [Koz77] as a word problem in finitely presented algebras. Decision
procedures for E are also given by Shostak [Sho78] and by Nelson and Oppen [NO80].

All of these problems can be reduced to the problem of constructing the congruence
closure of a relation on a graph. If R is an equivalence relation over a set of terms, we say
that two terms f(t1, . . . , tn) and f(t′1, . . . , t

′
n) are congruent if ti is related to t′i by R for all

i = 1, . . . , n. R is closed under congruences if all congruent terms are also related in R.
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e = e
eqid e2 = e1

e1 = e2
eqsym e1 = e2 e2 = e3

e1 = e3
eqtr

e1 = e2 e1 6= e2

false
falsei

e1 = e′1 · · · en = e′n
f(e1, . . . , en) = f(e′1, . . . , e

′
n)

congr

Figure 7.7: The axioms of the theory E of equality. There are congruence inference rules for
each function symbol in the system.

The congruence closure of a relation R is the smallest extension of R that is an equivalence
relation closed under congruences.

To see if a given equality “t = u” follows from a set of equalities R, we first construct the
congruence closure R′ of R and then check to see if t = u ∈ R′. This is the sense in which
an algorithm for computing the congruence closure of a set of equalities can be at the base
of a decision procedure for E.

In this section I describe an implementation of the congruence closure algorithm adapted
to work as a proof-generating decision procedure in a Nelson-Oppen theorem prover. This
implementation is inspired by that shown by Nelson [Nel81] although the emphasis here is
not on efficiency but on simplicity and on the proof generation aspect of proving.

In addition to the E-DAG, the congruence closure algorithm uses its own internal data
structures described here as functions defined on nodes. For each node e in the E-DAG,
the decision procedure maintains the root of its equivalence class root(e). The equivalence
class of e, denoted by class(e), is defined as the set of nodes having the same root as e.
Then, parents(e) is a set of nodes that have arguments within the equivalence class of e.
Finally, forbid(e) is the set of nodes that are specified to be not equal to e, by means of
disequality assertions. In addition to these functions, the decision procedure maintains also a
stack of assertions, either equalities or disequalities, along with their proofs. The latter data
structure is called the undoStack and it plays two roles. First, it stores enough information
to enable the decision procedure to undo the changes to the internal state when requested
by the “Dispatch” module. Second, the assertions on the undoStack are used to produce the
proofs of equalities propagated by the congruence closure decision procedure or the proofs
required for contradictions.

Figure 7.8 describes the main invariants that must be maintained by the implementation
of the congruence closure. The invariant CC1 just says that the root of an equivalence class
belongs to the class itself. (Remember that the equivalence class is defined indirectly as the
set of elements with the same value of root.) The invariant CC2 says that each entry in
the undoStack is either an equality or a disequality assertion along with its proof.2 The

2Actually, an implementation might store additional information on the undoStack for the purpose of
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CC1. root(root(e)) = root(e)

CC2. for all (p, d) ∈ undoStack, d is the representation of a proof of p, where p can be either
an equality or a disequality between E-DAG nodes

CC3. root(a) = root(b) if and only if a = b or there exist a1, . . . , an+1 such that

• a = a1, and

• b = an+1, and

• (ai = ai+1, pfi) ∈ undoStack or (ai+1 = ai, pfi) ∈ undoStack for all i = 1, . . . , n

CC4. a ∈ parents(root(b)) if and only if there exist e ∈ class(b) and i such that e = argi(a)

CC5. class(a) ∩ forbid(root(b)) 6= ∅ if and only if there exist a′ ∈ class(a) and b′ ∈ class(b)
such that (a′ 6= b′, neqab) ∈ undoStack.

Figure 7.8: The invariants maintained by the congruence closure decision procedure, where
class(a) is a shorthand notation for the set {e | root(e) = root(a)}.

invariant CC3 says that two nodes are in the same equivalence class if and only if they are
in the equivalence relation induced by the equality assertions from the undoStack. The “if”
part of the invariant ensures the completeness of the representation and the “only if” part
ensures soundness. The invariant CC4 says that the parents of a root node are exactly those
elements that have an argument within the equivalence class of the node. Note that the
parents function is only specified for the root nodes. The parents set is used to speed-
up the search for node pairs that might become congruent due to changes in equivalence
classes. Finally, the invariant CC5 specifies that the forbid function of an equivalence class
contains a member of another class if and only if the two classes are specified not-equal in
the undoStack. Just like parents, the forbid function is specified only for the root nodes
because it is a property of a class rather than of an individual node.

Figure 7.9 shows the core of the implementation of congruence closure. This core consists
of two main entry points: merge that is used to merge two equivalence classes in response
to an external equality assertion or when a congruence is discovered, and forbidMerge that
is used to forbid the equality of two equivalence classes in response to an external disequal-
ity assertion. Then there is the helper function checkCongr that detects and propagates
congruences and two functions, prfEq and mkEqContra, used to generate proofs.

The function merge is called with two nodes and a proof of their equality for the purpose
of combining their equivalence classes. The root of the combined class will be the root of

implementing the undo operation.
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the second input class. But first, the function checks whether either class is forbidden to be
merged with the other. If it is, then a contradiction is raised with a proof of false produced
by the helper function mkEqContra. Note how the symmetry of equality is used in the second
invocation to convert a proof of “a = b” into a proof of “b = a”. If the contradiction checks
are unsuccessful then a series of changes must be made to the internal data structures and
an entry in the undoStack is made to record the changes. First, the forbid set for the new
class is updated, then the parents set of the new class is computed. Finally, the first input
class is re-rooted to the new root. The result of the merge function is a set of assertions with
their proofs. One of these assertions is that the recently combined classes are equal. To this
assertion we add all congruences discovered by the checkCongr function.

The checkCongr function receives two sets of nodes and must find a pair of congruent
nodes among them. When two nodes are found congruent, a proof of equality is constructed
using the congr rule and the merge function is called recursively to combine the equivalence
classes. Note that only merge is changing the internal data structures.

When an external disequality assertion is encountered, the function forbidMerge is in-
voked with the two nodes that must not be equal along with a proof of their disequality. This
time a contradiction is found when the two nodes are in the same equivalence class. In this
case a contradiction is raised with a proof of false constructed using the false-introduction
rule along with a proof of equality and disequality of the same two nodes.

The proof of equality of two nodes from the same equivalence class is constructed using the
helper function prfEq. It is here where the invariant CC3 becomes significant. It guarantees
that for any two nodes in the same equivalence graph there is a path in the undirected
graph defined by the equality assertions in the undoStack. This path leads immediately
to a proof of equality build using transitivity from the proof of equality of the individual
hops. Occasionally, the symmetry rule must be used to adjust the order of the variables in
individual hops.

Finally, the function mkEqContra creates a proof of false from a proof of equality of
nodes that are also forbidden to be equal. Here we rely on the invariant CC5 to find the
disequality assertion from the undoStack that is responsible for the contradiction. Then a
series of equalities are constructed to contradict the disequality from undoStack.

Note that congruence closure is a convex decision procedure and thus, it does not need
to create case splits. Also, as proven in [NO80] and [Nel81] for similar implementations, the
congruence closure algorithm is a sound and complete decision procedure for E.

In addition to the functions shown in Figure 7.9, the decision procedure must also imple-
ment the snapshot and undo function. A typical implementation of snapshot is to place a
special marker on the undoStack so that undo knows how many operations to undo. There
are two places where the internal state is changed. One is in the merge function, for which
an equality assertion is put in the undoStack, and the other is in the forbidMerge function,
where a disequality assertion is pushed on the undoStack. As a general rule, each of these
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merge(a : node, b : node, eqab : proof) = /*eqab is a proof of a = b */
if root(a) 6= root(b) then

if class(a) ∩ forbid(root(b)) 6= ∅ then
raise Contradiction(mkEqContra(a, b, eqab))

else if class(b) ∩ forbid(root(a)) 6= ∅ then
raise Contradiction(mkEqContra(b, a, eqsym(eqab)))

else
undoStack = Stack.push(undoStack, (a = b, eqab))
forbid(root(b)) = forbid(root(b)) ∪ forbid(root(a)))
pa = parents(root(a))
pb = parents(root(b))
parents(root(b)) = pa ∪ pb
foreach a′ ∈ class(a)

root(a′) = root(b)
return {(a = b, eqab)} ∪ checkCongr(pa, pb)

checkCongr(pa : node set, pb : node set) : (pred ∗ proof) set =
accum = ∅
foreach a ∈ pa, b ∈ pb

if head(a) = head(b) ∧ nrarg(a) = nrarg(b) = n ∧ root(argi(a)) = root(argi(b))
eqab = congr(head(a), prfEq(arg1(a), arg1(b)), . . . , prfEq(argn(a), argn(b)))
accum = accum ∪ merge(a, b, eqab)

return accum

forbidMerge(a : node, b : node,neqab : proof) =
if root(a) = root(b) then

raise Contradiction(falsei(prfEq(a, b),neqab))
else

undoStack = Stack.push(undoStack, (a 6= b,neqab))
forbid(root(b)) = forbid(root(b)) ∪ {a}

prfEq(a : node, b : node) =
let a1, . . . , an+1 as in the invariant CC3

pf ′i =

{
pf i if (ai = ai+1, pf i) ∈ undoStack

eqsym(pf i) if (ai+1 = ai, pf i) ∈ undoStack

return eqtr(pf ′1, eqtr(pf ′2, . . . , eqtr(pf ′n−1, pf
′
n) . . . ))

mkEqContra(a, b, eqab) = /* class(a) ∩ forbid(root(b)) 6= ∅ */
let a′ ∈ class(a), b′ ∈ class(b) such that (a′ 6= b′,neqab) ∈ undoStack
return falsei(eqtr(prfEq(a′, a), eqtr(eqab, prfEq(b, b′))),neqab)

Figure 7.9: The main algorithms defining the congruence closure decision procedure.
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Figure 7.10: An easily undoable implementation of set union can be obtained by representing
sets as circular lists and then swapping the contents of two cdr cells. This operation can be
undone by swapping again the contents of the same cdr cells.

kinds of entries in the undoStack can be enriched with additional information for use by
the undo operation. For illustration purposes, in Section 7.3.3 I show the behavior of the
congruence closure decision procedure in the case of a concrete example.

Nelson [Nel81] shows a complete implementation of congruence closure, complete with
the undo operation. The basic trick they recommend is to implement sets as circular lists.
This representation supports well the scanning required for the forbid and parents sets and
has the advantage that the union operation can be done by simply swapping the contents of
two cdr cells, as shown in Figure 7.10. This operation, called splicing, can be easily undone
by swapping again the same cdr cells, which incidentally are exactly those corresponding to
the nodes mentioned in the undoStack assertion.

To complete the section on the congruence closure algorithm I mention that its complexity
is determined by the method used to discover the congruent pairs of nodes. The function
checkCongr shown in Figure 7.9 uses a nested iteration over the two predecessor lists, yielding
an algorithm of complexity O(n2), where n is the number of nodes in the E-DAG. If the
parents lists are maintained sorted lexicographically then we can obtain an algorithm of
complexity O(n log n).
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7.3.2 Handling Linear Arithmetic with Simplex

Let Z be the theory of integers with the free functions containing the integer numerals and the
usual arithmetic and comparison operators {+,−,≥, >,≤, <}. As a notational convenience
we also allow multiplication by integer numerals. The decision problem for Z is essentially
the problem of deciding whether one linear inequality is a consequence of several other
inequalities. This is equivalent to the general linear programming problem but, because the
instances of the problem that arise in program verification differ significantly from those
arising in operations research, verification researchers have devised special new methods and
have modified traditional linear programming methods to handle the cases they encountered
in practice.

For example, Pratt [Pra77] reports that most inequalities encountered in program ver-
ification are of the simple form “x ≤ y + k”, where k is an integer numeral while x and
y are variables. A decision procedure for this fragment can be obtained by detecting neg-
ative cycles in weighted directed graphs, as we did for example in Section 6.5.9 as part of
the Touchstone optimizer. Shostak [Sho81] generalizes this method to inequalities of the
form “ax + by ≤ k”, where a and b are integer numerals. Decision procedures for the same
fragment are also described by Nelson [Nel78] and by Aspvall and Shiloach [AS80]. There
is also a variety of decision procedures for the general case of linear inequalities. Some
theorem provers have used the Fourier-Motzkin elimination method, some have used the
Sup-Inf method due to Bledsoe [Ble74] and others have used variations of the Simplex linear
programming algorithm [Nel81].3

In this section I describe the use of a variant of the Simplex linear programming algo-
rithm as a proof-generating decision procedure for linear arithmetic. The emphasis in this
presentation is on how the proofs are generated and not so much on the internals of the al-
gorithm. The same variant of Simplex, although without the proof-generating component, is
described in detail by Nelson [Nel81]. The curious reader can find there the implementation
details that are missing here.

As any decision procedure in a Nelson-Oppen theorem prover, the linear arithmetic
decision procedure first isolates from the incoming assertions the subexpressions that in-
volve only the free functions of Z, namely the integers and any of the integer operators
{+,−,≥, >,≤, <}. I will use the letter e to denote expressions built using only variables,
numerals and the additive operators + and −. In addition, the notation n · e is a shorthand
for the n-way addition e+ · · ·+ e.

If ρ is a mapping of variables to integer numerals, then I write ρ(e) to denote the integer
value obtained by evaluating e after all variables have been replaced with their value in ρ. I

3All of these decision procedures, except for Pratt’s loop residue, are actually decision procedures for Q
and not for Z. However, given the kinds of inequalities arising in the practice of program verification, the
integer case can be handled quite satisfactorily by a combination of a decision procedure for rationals along
with heuristics.
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write e1 ' e2 when, for any mapping ρ of variables to integers, we have that ρ(e1) = ρ(e2).
The internal data structure used by the Simplex algorithm is the tableau, which can be

depicted in the form of a matrix, as shown below:

C(1) · · · C(j) · · · C(c)
R(1) T10 T11 · · · T1j · · · T1c

...
...

...
...

...
R(i) Ti0 Ti1 · · · Tij · · · Tic

...
...

...
...

...
R(r) Tr0 Tr1 · · · Trj · · · Trc

All of the entries Tij are rational numbers. Except for column 0, all other rows and
columns are owned by expressions. The expression that owns the row i is denoted by R(i)
and the expression that owns the column j is denoted by C(j).

The Simplex tableau as described so far encodes only the linear relationships between the
owning expressions. The actual encoding of the input assertions is by means of restrictions
on the values that the owning expressions can take. There are two kinds of restrictions that
Simplex must maintain. A row or a column can be either +-restricted, which means that
the owning expression can take only values greater or equal to zero, or ∗-restricted, in which
case the owning expression can only be equal to zero. As explained in [Nel81], the reason
the ∗-restricted rows and columns are not simply deleted from the tableau is to support an
inexpensive implementation of the undo operation. Also, it turns out that maintaining the
∗-restricted rows and columns is useful for proof generation.

I will describe the operation of the Simplex algorithm indirectly, by means of a set of
invariants stated below as Invariant 7.5. To understand this invariant, consider that the
tableau encodes a set of inequality constraints, one “≥ 0” inequality for each restricted
owner. In fact, Invariant 7.5c says that each restricted owner has a proof that it is positive.
The actual tableau entries encode only the linear relationships between the owners involved.
If n is the number of variables among the owners of rows and columns (and by Invariant 7.5a,
the set of variables in the current set of literals), then it is well known that the set of points
in Rn that satisfy a set of linear inequations is a convex polyhedron, also called the solution
set. As long and the polyhedron is non-empty, the set of inequations is satisfiable in R, and
also in Q if the coefficients are rational numbers. This does not necessarily mean that it
is also satisfiable in Z, but an empty polyhedron in Rn means that the inequations are not
satisfiable in Z. This means that the Simplex method is sound but not complete for integer
inequalities.

We make the convention, following [Nel81], that the current state of the tableau represents
a unique point, called the sample point, in Qn where all expressions that own columns have
value zero. This means that the expression that owns the row i has value Ti0 at the sample
point. Invariant 7.5 and the operation of the Simplex decision procedure relies on the fact
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that at any given moment the sample point of the tableau is in the solution set. This is
the motivation behind Invariant 7.5d. A ∗-restricted row is one whose owner expression has
value zero in all solution points. Such rows and columns are detected using the notion of a
maximized row, defined below.

Definition 7.4 A tableau row i is said to be manifestly maximized at Ti0 if and only if
its non-zero entries are either in ∗-restricted columns or are negative and in +-restricted
columns.

The intuition behind Definition 7.4 is that a linear combination of restricted expressions,
such that those that are +-restricted have negative factors, is guaranteed to be at most zero.
The owner of row i in Definition 7.4 is such an expression. Taking into account the constant
entry in row i, we see that the maximal value that R(i) can take in the solution set is Ti0.

Now, if a +-restricted row is maximized at zero, it means that it can only take the value
zero, and it is thus safe to make it a ∗-restricted row. When we do that we can also make
∗-restricted all of the +-restricted columns that have non-zero entries in row i. This is
the mechanism by which rows and columns become ∗-restricted, hence the Invariants 7.5e
and 7.5f.

Invariant 7.5

(a) All variables occurring in the current set of literals own either exactly one row or, if
not, exactly one column.

(b) For any row i = 1, . . . , r in a Simplex tableau, there is a positive integer constant mi

such that miTij is an integer for all j = 0, . . . , c and such that:

mi ·R(i) ' miTi0 +
c∑
j=1

(miTij) · C(j)

(c) If row i is restricted (either +-restricted or ∗-restricted) then there is a proof of R(i) ≥
0. We refer to this proof as Proof (R(i)). A similar fact holds for restricted columns.

(d) If row i is +-restricted then Ti0 ≥ 0

(e) If row i is ∗-restricted then Ti0 = 0 and all non-zero Tij are in columns that are ∗-
restricted

(f) If column j is ∗-restricted then there exists a ∗-restricted row i such that Tij < 0 and
Tik ≤ 0 for all k > j. Such a row i is called the restrictor of column j.
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The main operation performed on the Simplex tableau is pivoting, or Gaussian elimi-
nation. To pivot row u and column v (where Tuv 6= 0) means to rewrite the contents of
the tableau so that the expressions that own the row u and column v are swapped. The
invariant Invariant 7.5b for row u is used to extract the value of C(v) in terms of R(u) and
the other columns. Then, the other rows are rewritten by replacing C(v) with the computed
expression and carrying out the required algebraic simplifications. The new values for the
tableau entries are shown below. Note that the owners of row u and column v have been
swapped.

column v
↓

· · · C(j) · · · R(u) · · ·
...

...
...

...

R(i) Ti0 − Tu0 · Tiv
Tuv

· · · Tij −
Tuj · Tiv
Tuv

· · · Tiv
Tuv

· · ·
...

...
...

...

row u→ C(v) −Tu0
Tuv

· · · −TujTuv
· · · 1

Tuv
· · ·

...
...

...
...

The core of the Simplex decision procedure is concerned with choosing the pivots. Not
all combinations of rows and columns are valid pivots and some of them lead to better
performance. The definition of validity of pivots is given below. The algorithm used for
choosing valid pivots is described in detail in [Nel81].

Definition 7.6 A pivot (u, v) is valid if and only if

1. Tuv 6= 0, and

2. both row u and column v are not ∗-restricted, and

3. the tableau after pivoting satisfies Invariant 7.5d.

The main significance of a valid pivot operation is that it preserves the Invariant 7.5. The
7.5a part is preserved trivially because the set of row and column owners does not change
through pivoting. The preservation of Invariant 7.5b can be verified through some simple
but tedious algebraic manipulation. This is not surprising given that this is the criterion
behind the definition of the pivoting operation. Invariant 7.5d holds trivially because of the
definition of valid pivots and the parts 7.5e and 7.5f of Invariant 7.5 are true because all
∗-restricted rows i are left untouched by pivoting, because v is not a restricted column and by
Invariant 7.5e we know that Tiv is zero. Another operation that does preserve Invariant 7.5
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e1 = e2
arith(e1, e2) if e1 ' e2

n ≥ 0
geqct(n) if n is a constant greater or equal to 0

Figure 7.11: The kernel rules for arithmetic introduced in Section 5.5.

is a permutation of columns such that the ∗-restricted columns do not change their relative
order.

Before we proceed to discuss the implementation of the Simplex decision procedure, we
have to establish the set of axioms and inference rules that Simplex can use to build proofs.
As described in detail in Section 5.5, it is convenient to deal with integer numerals directly
and not by means of a unary or binary encoding. But this means that the theory is not finitely
axiomatizable and hence, not directly implementable in LFi. To overcome this problem, I
have shown in Section 5.5 how to extend LFi type reconstruction so that it can check proofs
involving two special proof constructors arith and geqct shown in Figure 7.11. Recall that
when the proof checker encounters the proof object “arith(e1, e2)” it checks that e1−e2 can
be reduced to 0 by using simple algebraic simplification rules, or equivalently that e1 ' e2.
If this is the case then the proof term is considered to be a valid representation of a proof
of the predicate e1 = e2. Similarly, the proof object “geqct(n)” is considered to be a valid
representation of a proof of “n ≥ 0”, if the integer numeral n is indeed greater or equal to
zero.

In addition to these kernel proof rules, we define the set of axioms shown in Figure 7.12.
At this point in the presentation, it might not be obvious how Simplex is using these rules.
So, for the time being, we should only be concerned with their soundness. The first four rules
shown in the top row are used to convert the various inequality literals to the canonical form
“e ≥ 0”. Similarly, the rule “eqgeq” is used to convert an equality to an inequality. The
rules “geqadd” along with “geq0” are used to construct a proof that a linear combination of
positive expressions with positive factors is also positive. For this purpose, we can use the
“geqadd” rule as many times as is the length of the linear combination and then use “geq0”
to terminate the chain. The two remaining rules are the top level rules used by Simplex
to produce the proofs of false in case of a contradiction and the proof of equality of two
variables. Although both rules are sound, their form is somewhat strange. This is because
they were carefully formulated to fit precisely the situations when Simplex needs them. To
verify that rule “falsei” is indeed sound, notice that we have the sequence of inequalities
“m · e1 = n − e2 ≤ n ≤ −1”. This contradicts the first hypothesis “e1 ≥ 0”. Finally, note
that in the rule eqi the first group of hypotheses proves that “e2 ≥ e1” while the second
that “e1 ≥ e2”, thus it is valid to infer that “e1 = e2”. Having settled the axiomatization of
the theory Z, I proceed with the description of the Simplex algorithm.



180 CHAPTER 7. THE PROOF-GENERATING THEOREM PROVER

e1 ≥ e2

e1 − e2 ≥ 0
geqgeq e1 > e2

e1 − e2 − 1 ≥ 0
gtgeq e1 ≤ e2

e2 − e1 ≥ 0
leqgeq e1 < e2

e2 − e1 − 1 ≥ 0
ltgeq

e1 = e2

e1 ≥ e2
eqgeq e1 ≥ 0 e2 ≥ 0 n ≥ 0

e1 + n · e2 ≥ 0
geqadd

0 ≥ 0
geq0 e1 ≥ 0 e2 ≥ 0 m · e1 = n− e2 m ≥ 0 −1− n ≥ 0

false
falsei

m1 · (e1 − e2) = −e′1
e′1 ≥ 0

m1 ≥ 0

m2 · (e2 − e1) = −e′2
e′2 ≥ 0

m2 ≥ 0
e1 = e2

eqi

Figure 7.12: The proof rules that the Simplex decision procedure uses to construct proofs.

Figure 7.13 shows the skeleton of the Simplex decision procedure. The entry point
decproc processes a literal along with its proof and returns a set of equality assertions
together with their proofs. Also, if it finds a contradiction it raises the Contradiction

exception with a proof of false. The first step performed by the decision procedure is
to convert the literal to the canonical form “e ≥ 0”. Note how the proof is also adjusted
accordingly so that Invariant 7.7 always holds when simplex is invoked.

Invariant 7.7 (of function simplex) Any invocation “simplex(e, prf )” is such that prf
is a proof of e ≥ 0. The result of such an invocation is a set of equalities along with their
proofs, or the Contradiction exception is raised with a proof of false.

The execution of the function simplex starts by adding a new row to the tableau owned
by the expression e. The row entries are computed so that Invariant 7.5b holds. If the
expression e is a variable that owns a column, then the value 1 is added to that column in
the added row. If it is a variable that owns a row then the owned row is added to the added
row. If e is the sum of two expressions, the added row will contain the sum of the entries in
two rows corresponding to the two expressions. Before execution proceeds, simplex checks
whether the added row is identical with some other existing row i or if it is zero except for
an entry equal to one in one column j. In the former situation, the added row is deleted and
the row i is considered to be owned by e. In the latter situation, the column j is pivoted
into a row position i and we continue as in the case of equal rows.

The next step in the execution of simplex is to represent the assertion that e is greater
or equal to zero. As I explained before, this must be done by making the row that owns e
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(i in this case) to be +-restricted. If the row i is already restricted then nothing else must
be done. If not, then Invariant 7.5d allows a restriction only if Ti0 is at least zero. Thus,
Simplex tries through a series of valid pivoting operations to increase the value of Tr0 to
more than zero. Choosing the pivots so that they are valid and achieve the required effect
in fewer steps is the most delicate issue in the implementation of Simplex. One possible
algorithm for choosing pivots is shown in [Nel81].

The only situation when the value of Ti0 cannot be made positive through pivoting is
when row i is maximized at a value less than zero. According to the earlier discussion of
maximization this means that R(i), that is e, is always less than zero, which contradicts the
proof that e is greater or equal to zero. In this case the Contradiction exception is raised.
A proof of false is generated using the function mkContraProof whose definition, shown in
Figure 7.14, is discussed later in this section.

If, in fact, the sample value of row i can be increased to be at least zero, then the
implementation of simplex proceeds by making it a +-restricted row and by setting the
corresponding proof. Next, simplex detects which new rows and columns are maximized
at zero and must be made ∗-restricted. The reordering step is necessary to preserve Invari-
ant 7.5f, which in turn is necessary to prove easily that certain proof-generating procedures
terminate.

The last step in the execution of simplex is concerned with discovering new equalities
between owner expressions. The owners of rows i1 and i2 are equal if the entries in the
two rows are equal except possibly for those in ∗-restricted columns. A similar situation
involves the owners of a row i and a column j such that all entries in row i are zero except
for a 1 in column j and possibly other non-zero entries in ∗-restricted columns. In both
of these situations, the equality of the two expressions follows from Invariant 7.5b. For
reasons explained in detail in [Nel81], if the algorithm ensures that all owners that are zero
throughout the solution set are ∗-restricted, then these two situations and the only ones
when owners can be equal. This guarantees that Simplex discovers all equalities that must
be propagated. In both of these situations the proof of equality is obtained using the auxiliary
function mkEqProof, described later.

This concludes the description of that part of the Simplex decision procedure that is
concerned with discovering new equalities or contradictions. Now, we turn to the novel
proof-generating aspect of the decision procedure. The defining property of proof generation
in Simplex is that all the required information exists in the tableau, except for the mapping
Proof from restricted owners to their proofs. The proof generating components of Simplex
are shown in Figure 7.14. I describe these functions by means of their input-output invariants.

The function mkContraProof is used to create a proof of false from a proof that the
owner of a maximized row is greater or equal to zero, when the row is maximized to a
negative value.
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decproc(e1 ≥ e2, prf) = simplex(e1 − e2, geqgeq(prf))
decproc(e1 > e2, prf) = simplex(e1 − e2 − 1, gtgeq(prf))
decproc(e1 ≤ e2, prf) = simplex(e2 − e1, leqgeq(prf))
decproc(e1 < e2, prf) = simplex(e2 − e1 − 1, ltgeq(prf))
decproc(e1 = e2, prf) = decproc(e1 ≥ e2, eqgeq(prf))

decproc(e2 ≥ e1, eqgeq(eqsym(prf)))

simplex(e, prf) =
r = r + 1
fill row r such that m · e ' mTr0 +

∑
mTrj · C(j)

if row r is identical to row i then
r = r − 1

else if row r is zero except for Trj = 1 then
r = r − 1
pivot column j with some row i

else
i = r

if row i is already restricted then
return {}

try to increase the value of Ti0 to more than 0 through valid pivoting
if row i is maximized and Ti0 < 0 then

raise Contradiction(mkContraProof(i, prf))
else

make i a +-restricted row with Proof (R(i)) = prf
foreach l a +-restricted row maximized at 0 do

make l a ∗-restricted row
reorder columns so that those with Tlj > 0 come before those with Tlj < 0,

without changing the relative order of ∗-restricted columns
foreach k a +-restricted column such that Tlk 6= 0 do

make k a ∗-restricted column (l is the restrictor)
accum = ∅
foreach rows i1, i2 differing only in ∗-restricted columns do

accum = accum ∪ {(R(i1) = R(i2), mkEqProof(R(i1), R(i2)))}
foreach i, j such that row i is non-zero only in ∗-restricted columns and in column j,

and either j is ∗-restricted or Tij = 1 do
accum = accum ∪ {(R(i) = C(j), mkEqProof(R(i), C(j)))}

return accum

Figure 7.13: The core of the Simplex decision procedure.
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Invariant 7.8 (of function mkContraProof) Any invocation “mkContraProof(i , prf )” is
such that i is a row that is maximized at a negative value (Ti0 < 0) and prf is a proof that
R(i) ≥ 0.

The function mkContraProof is implemented in terms of the helper function maxProof,
described below, and the proof rule falsei. Note that the numeral n from the falsei

inference rule schema is instantiated with mTi0 and m with the positive integer constant
returned by maxProof.

The function maxProof is called to produce a proof that the owner of a maximized row i
is at most equal to Ti0. More precisely, the behavior of maxProof is described by Invariant 7.9
below.

Invariant 7.9 (of function maxProof) Any invocation “maxProof(i)” is such that i is a
row maximized at value Ti0. The return of such an invocation is a triple “(m, e, prf )”, such
that m is a positive integer numeral such that mTi0 is an integer and “m ·R(i) ' mTi0− e”.
Also, prf is a proof that “e ≥ 0”.

Before I discuss in more detail how maxProof is implemented, consider the implementa-
tion, also in terms of maxProof, of the function mkEqProof that produces a proof that two
row owners are equal when their entries differ only in ∗-restricted columns. Invariant 7.10
describes the input state to this function.

Invariant 7.10 (of function mkRowEqProof) Any invocation “mkEqProof(e1, e2)” is such
that the expressions e1− e2 and e2− e1, when represented in the tableau, correspond to rows
that are zero except possibly in ∗-restricted columns.

The trick used in this case is to create a new temporary row whose owner to be “e1−e2”.
Because of Invariant 7.10, this new row is maximized at zero and maxProof can be safely
invoked. The same row is then rewritten to own “e2 − e1” and for similar reasons maxProof
can be invoked again. Then, the results of the two invocations to maxProof are used to
construct the hypotheses needed for the rule eqi.

To complete the discussion of proof generation in Simplex we need to discuss the imple-
mentation of maxProof satisfying Invariant 7.9. For this purpose I introduce the notion of
a map Ψ from expressions to rational numbers. It is convenient to view such a map as a
sequence of pairs, as described by the BNF form below:

Ψ ::= · | Ψ; e 7→ f

where “·” is the empty map. For convenience I also define the operation “Ψ(e) += f” on
maps to be equivalent to Ψ:=Ψ[e 7→ Ψ(e) + f], where Ψ[e 7→ f ] is like Ψ but with the
expression e mapping to f . If e was already mapped in Ψ, the old mapping is overridden.
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mkContraProof(i, geqe1) =
(m, e2, geqe2) = maxProof(i)
return falsei(geqe1, geqe2, arith(m ·R(i),mTi0 − e2),

geqct(m), geqct(−1−mTi0))

mkEqProof(e1, e2) =
r = r + 1
fill row r with coefficients for e1 − e2

(m1, e
′
1, prf 1) = maxProof(r)

fill row r with coefficients for e2 − e1

(m2, e
′
2, prf 2) = maxProof(r)

r = r − 1
return eqi(arith(m1 · (e1 − e2),−e′1), prf 1, geqct(m1),

arith(m2 · (e2 − e1),−e′2), prf 2, geqct(m2))

maxProof(i) =
Ψ = ·
foreach k = 1 . . c such that Tik < 0 do

Ψ(C(k)) += Tik
foreach k = 1 . . c such that Tik > 0 do

Ψ = computeCol(k, Tik,Ψ)
m = SCM(Ψ, Ti0)
return (m, mapProof(Ψ,m)

computeCol(j, f,Ψ) =
let row i be the restictor of j as in Invariant 7.5f:

− i is ∗-restricted, and
− Tij < 0, and
− Tik ≤ 0 for all k > j, and
− Tik 6= 0 only if k is ∗-restricted

Ψ(R(i)) += f/Tij
foreach k 6= j such that Tik < 0 do

Ψ(C(k)) += −f · Tik/Tij
foreach k such that Tik > 0 do

Ψ = computeCol(k,−f · Tik/Tij,Ψ)
return Ψ

mapProof(·,m) = return (0, geq0)
mapProof(Ψ; e 7→ f,m) =

(e1, d) = mapProof(Ψ,m)
return (e1 + (−mf) · e, geqadd(d,Proof (e), geqct(−mf)))

Figure 7.14: The proof-generating components of the Simplex decision procedure.
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Definition 7.11 A map Ψ is valid if all of the following conditions holds:

1. All e ∈ Dom(Ψ) are restricted expressions for which there is a proof that e ≥ 0. This
proof is referred to as Proof (e), and

2. For all e ∈ Dom(Ψ) we have that Ψ(e) ≤ 0.

The intuition behind the implementation of maxProof is that a maximized row can always
be written as a linear combination, with only negative coefficients, of restricted expressions.
The function maxProof computes these coefficients as a valid map Ψ such that there exists
an integer m that makes all of the products mTi0 and mΨ(e) for all e ∈ Dom(Ψ) integers
and such that

m ·R(i) ' mTi0 +
∑

e∈Dom(Ψ)

(mΨ(e)) · e

Note that row i is maximized, thus its only non-zero entries are in restricted columns.
Those columns whose entries are negative can be added directly to the map. Those whose
entries are positive must be ∗-restricted entries and are added to the map by means of the
helper function computeCol. Then, the function SCM (not shown here) is called to compute
the smallest positive common multiple of all denominators of entries in Ψ and of Ti0 and
finally, the function mapProof is called to construct the actual proof.

Invariant 7.12 (of function computeCol) Any invocation “computeCol(j, f,Ψ)” is for a
∗-restricted column j and a positive rational factor f . If we denote by Ψ′ the resulting valid
map then there exists an integer m such that

mf · C(j) +
∑

e∈Dom(Ψ)

mΨ(e) · e '
∑

e′∈Dom(Ψ′)

mΨ′(e′) · e′

The idea behind the implementation of computeCol is that each ∗-restricted column can
be written as a linear combination, with only negative factors, of restricted expressions. To
find this linear combination we search first for the restrictor row and express the value of the
column using Invariant 7.5b for this row. Note that the recursive invocation of computecol
is guaranteed to terminate because k < j as stated by Invariant 7.5f.

Finally, the function mapProof simply builds a proof that the negation of a linear com-
bination, with only negative coefficients, of restricted expressions is greater or equal to zero.
It returns both this proof and the negated expression.

This completes the description of the implementation of the proof-generating decision
procedure for linear arithmetic using Simplex. In this case, unlike for congruence closure,
the proof-generating component of the decision procedure is about as complicated as the
contradiction-generating component. In the actual implementation, the proof-generating
part is about one third of the whole decision procedure. For a better understanding of the
congruence closure and the Simplex decision procedures, the interested reader is encourage
to read the next section, where I revisit these decision procedures showing their operation
in the context of a simple theorem proving task.
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7.3.3 An Example with Congruence Closure and Simplex

To illustrate the cooperation of the congruence closure and Simplex decision procedures
consider again the example introduced at the beginning of this chapter. The predicate that
must be proved in this case is:

P ≡ (f(f(y)− f(x)) 6= f(z) ∧ y ≥ x ∧ x ≥ y + z) ⊃ z < 0

To simplify the presentation, I use the following abbreviations

t1 for f(y)

t2 for f(x)

t3 for t1 − t2
s4 for y − x
s6 for x− y − z

The prover is invoked as fol(P). (The definition of fol is given in Figure 7.3.) Because P
is an implication, a new variable u is created, to stand for the assumed proof of the left-hand
side of the implication, as follows:

u : pf ((f(t3) 6= f(z) ∧ y ≥ x) ∧ x ≥ y + z)

Then the function assert is invoked on the left-hand side. (The definition of assert
is also shown in Figure 7.3.) This leads to three invocations of the dispatch function, as
follows:

dispatch(f(t3) 6= f(z), andel(andel(u))) (7.13)

dispatch(y ≥ x, ander(andel(u))) (7.14)

dispatch(x ≥ y + z, ander(u)) (7.15)

I assume in what follows that the “Dispatch” modules invokes first the congruence clo-
sure decision procedure and then the Simplex decision procedure. While responding to the
invocation 7.13, the “Dispatch” modules creates nodes in the E-DAG corresponding to all
subexpressions in the literal involved. Then the congruence closure forbids the merge of
the class of “f(t3)” and the class of “f(z)”. The resulting state is shown in Figure 7.15(1),
where the nodes and the solid lines belong to the E-DAG and the interrupted lines mark
either equivalence relations or forbid relations belonging to the congruence closure. Also, the
current value of the congruence closure undoStack is “{(f(t3) 6= f(z), andel(andel(u)))}”.

The same first literal is then asserted to Simplex, which introduces in the tableau the
expression t3 = t1 − t2. The resulting Simplex tableau is shown in Figure 7.15(2). The
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simplex function itself is not yet invoked because the free function 6= does not belong to the
theory Z.

Because no contradiction was detected, the invocation 7.14 is initiated. First, the dis-
patcher adds to the E-DAG the node labeled s4 in Figure 7.15(3). Then it passes the assertion
to the congruence closure algorithm with no effect on the state of algorithm. Then, Simplex
receives the assertion, recognizes the constructor ≥, and invokes

simplex(y − x, geqgeq(ander(andel(u)))) (7.16)

Let s4 be the name associated with the expression “y − x”. After Simplex adds this
expression to the tableau, the tableau is like that shown in Figure 7.15(4). Simplex tries to
increase the sample value of s4 but it cannot because it would have to pivot the row s4 itself.
Thus, Simplex makes s4 a +-restricted state as shown in Figure 7.15(4) and it sets

Proof (s4) = geqgeq(ander(andel(u)))

Finally, Simplex tries without success to ∗-restrict rows and columns and to propagate equal-
ities.

Now the invocation 7.15 is started and the dispatcher adds the necessary nodes to the E-
DAG, as shown in Figure 7.15(5). The congruence closure does not find any new congruences
and leaves this state unchanged. When Simplex encounters this new literal it first adds the
variable z to an empty column (so that all variables own either a row or a column) and then
processes the expression x− y − z, which we are going to call s6 using the invocation:

simplex(x− y − z, geqgeq(ander(u))) (7.17)

After adding the row corresponding to s6 the tableau is as shown in Figure 7.15(6).
Simplex tries now to increase the sample value of s6 past zero and for that purpose it pivots
on (s+

4 , x), with the resulting tableau shown in Figure 7.16(7). The sample value of s6 is still
zero but it cannot be pivoted anymore without cycling through already encountered states,
so Simplex makes s6 a +-restricted row with

Proof (s6) = geqgeq(ander(u))

All three literals from the left-hand side of the implications have been asserted and no
contradiction was found. The “Logical connectives” modules continues the evaluation of
the function fol for the top-level implication by trying to prove the right-hand side. Thus
“fol(z < 0)” is invoked, which results in a new proof variable v being created for the
negation of the goal literal and the dispatcher being invoked as follows:

dispatch(z ≥ 0, v)

where:

v : pf (z ≥ 0)
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Figure 7.15: State history of the congruence closure and Simplex decision procedures (I).
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Figure 7.16: State history of the congruence closure and Simplex decision procedures (II).
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Figure 7.17: State history of the congruence closure and Simplex decision procedures (III).

The dispatcher expands the E-DAG, as shown in Figure 7.16(8), as passes the assertion
along to congruence closure. The congruence closure is once more inactive. The Simplex
decision procedure is then invoked as

simplex(z, v) (7.18)

Simplex tries to add the expression “z” to the tableau and discovers immediately that
this expression owns a column. Thus it brings z into a row by pivoting on (s6+, z). The
resulting tableau is shown in Figure 7.16(9) (the ∗-restrictions on s4, s6 and z, which are
explained next). Note that in this state the sample value of z cannot be increased anymore
and it is thus +-restricted with

Proof (z) = v

Then, Simplex discovers that z is both +-restricted and maximized at zero and thus it
makes it ∗-restricted together with the columns s4 and s6. The state of the Simplex tableau is
now as shown in Figure 7.16(9). These restrictions enable Simplex to discover the equalities
“x = y” (because row x is zero everywhere except in ∗-restricted columns and in the column
of y, where it has a one), and “z = s4 = s6”. Only the first equality is interesting because
the others involve expressions (“y − x” and “x − y − z”) that do not exist in the original
predicate but were introduced by Simplex for its own purposes.

To produce a proof of “x = y”, Simplex invokes “mkEqProof(x, y)”. (The definition of
mkEqProof is shown in Figure 7.14.) This results in a new temporary row being created
to represent “x − y”. Given the current columns, this row will be zero except for a −1 in
the column corresponding to s4. The function maxProof builds the map “Ψ = ·; s4 7→ −1”,
without needing to call computeCol because there are no positive coefficients in the new
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row. From this map, mapProof returns

m1 = 1

e′1 = 0 + 1 · s4 = 0 + 1 · (y − x)

prf 1 = geqadd(geq0, geqgeq(ander(andel(u))), geqct(1)) = Dx−y

Then, the same row is rewritten to encode “y−x”, meaning that there will be a coefficient
1 in the column corresponding to s4 and zero everywhere else. Now maxProof invokes
computeCol to compute the map Ψ for the column s4. The restrictor of s4 is z, and the
result of “computeCol(s4, 1, ·)” is “Ψ = ·; z 7→ −1; s6 7→ −1”. This makes mapProof to
return the following values:

m2 = 1

e′2 = (0 + 1 · z) + 1 · s6 = (0 + 1 · z) + 1 · (x− y − z)

prf 2 = geqadd(geqadd(geq0, v, geqct(1)), geqgeq(ander(u)), geqct(1)) = Dy−x

Thus the final proof of x = y constructed by mkEqProof is:

Dx=y = eqi(arith(1 · (x− y),−e′1),Dx−y, geqct(1), arith(1 · (y − x),−e′2),Dy−x, geqct(1))

Now, the equality “x = y” discovered by Simplex is propagated to the congruence closure
decision procedure and the function “merge(x, y,Dx=y)” is called. The undoStack becomes
“{(f(t3) 6= f(z), andel(andel(u))), (x = y,Dx=y)}. The singleton classes of x and of y are
merged and the procedure checkCongr discovers a congruence between “f(x)” and “f(y)”.
To produce a proof of the congruence, we need a proof of x = y for which purpose the function
prfEq (defined in Figure 7.9) is called. This is a simple case when the equality exists in an
identical form in the undoStack. The function checkCongr terminates by calling recursively
“merge(f(x), f(y), congr(f,Dx=y))”. This latter call does not discover any new equalities
and the final state of the congruence closure decision procedure is shown in Figure 7.16(10).
The result of the congruence closure decision procedure is the new equality “t1 = t2” and
the value of the undoStack at this point is:

{(f(t3) 6= f(z), andel(andel(u))), (x = y,Dx=y), (t1 = t2, congr(f,Dx=y))}

Next, the equality “t1 = t2” is propagated to Simplex, which leads to two calls to simplex

as follows

simplex(t1 − t2, geqgeq(eqgeq(congr(f,Dx=y))))

simplex(t2 − t1, geqgeq(eqgeq(eqsym(congr(f,Dx=y)))))
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Let Dt1−t2 and Dt2−t1 be the two proofs with which simplex is invoked. As Simplex tries
to add the expression “t1 − t2” to the tableau it discovers that it is already there, owning
the row of t3. Thus, it tries to +-restrict the row t3. This row cannot be pivoted further
and Simplex goes ahead and makes t3 a +-restricted row, as shown in Figure 7.16(11). The
Proof map is modified such that:

Proof (t3) = Dt1−t2 = geqgeq(eqgeq(congr(f,Dx=y)

Then, Simplex asserts “t2 − t1 ≥ 0” and, for that purpose, adds to the tableau a new
row representing “s8 = t2 − t1”. The state of the tableau after adding the row s8 is shown
in Figure 7.16(12). Simplex tries to increase the sample value of s8 and pivots on (t+3 , t2).
The resulting tableau is shown in Figure 7.17(13). Because s8 cannot be pivoted further,
Simplex makes it +-restricted with:

Proof (s8) = Dt2−t1 = geqgeq(eqgeq(eqsym(congr(f,Dx=y))

The Simplex discovers that s8 is maximized at zero and makes both s8 and t3 ∗-restricted.
At this point Simplex discovers the new equalities “z = t3 = s4 = s6 = s8” (all ∗-restricted).
Of these equalities only “z = t3” is of interest to other decision procedure and it is thus
propagated.

In order to produce the proof of “z = t3”, the function mkEqProof is called, which in
turn calls maxProof to calculate “z− t3” and “t3− z” as a linear combination with negative
coefficients of restricted expressions. The results are:

z − t3 = −t3 − s4 − s6

t3 − z = t3 + s4 + s6 = −s8 − z

From here the following proof of “z = t3” is produced:

Dz=t3 = eqi(arith(1 · (z − t3),−(((0 + 1 · t3) + 1 · s4) + 1 · s6)),
geqadd(geqadd(geqadd(geq0,Proof(t3), geqct(1)),

Proof(s4), geqct(1)),
Proof(s6), geqct(1)),

geqct(1),
arith(1 · (t3 − z),−((0 + 1 · s8) + 1 · z)),
geqadd(geqadd(geq0,Proof(s8), geqct(1)),

Proof(z), geqct(1)),
geqct(1))

When the equality “z = t3” is propagated to the congruence closure it results in the
merging of the singleton classes of z and t3, which in turn leads to the discovery of the con-
gruence “f(z) = f(t3)”, with the resulting state shown in Figure 7.17(14). The congruence
closure undoStack at this point is:
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undoStack = {(f(t3) 6= f(z), andel(andel(u))),

(x = y,Dx=y),

(t1 = t2, congr(f,Dx=y)),

(z = t3,Dz=t3),
(f(z) = f(t3), congr(f,Dz=t3))}

When trying to merge the equivalence classes of f(z) and f(t3), the congruence closure
algorithm detects a contradiction and invokes the function mkEqContra to build a proof of
false.

It searches the undoStack to find the disequality that is responsible for the contradiction,
and it finds the assertion “f(t3) 6= f(z)” with the proof “andel(andel(u))”. Thus is builds
the proof

Dfalse = falsei(eqtr(eqid, eqtr(eqsym(congr(f,Dz=t3)), eqid)), andel(andel(u)))

The function merge raises the exception Contradiction with the proof Dfalse. This
exception is caught by the fol function that was trying to prove the right-hand side of the
implication. Thus, the complete proof of the predicate P is

DP = impi(u, contra(v,Dfalse))

This concludes the step-by-step example of the operation of the congruence closure and
the Simplex decision procedures. Even for the simple example discussed here, the global
operation of the theorem prover is quite complicated. This only demonstrates how difficult
it would be to write a single decision procedure to handle the combination of the theories of
interest. Instead, we rely on the clean separation between the decision procedures provided
by the Nelson-Oppen architecture, to develop and reason about one decision procedure at
a time. In the next section, I describe one more decision procedure, this time for handling
the typing predicate that arise in the verification conditions of programs generated with the
Touchstone compiler described in Chapter 6.

7.3.4 Handling the Touchstone Typing Rules

If we want to use the theorem prover to be able to prove type safety for the output of
the Touchstone certifying compiler then we must have a module that handles the inference
rules shown in Figure 6.5. This typing module must prove predicates of the forms “E : T”,
“saferd(M,A)”, and “safewr(M,A, V )”. In this section I will sketch a proof-generating
decision procedure for these typing predicates. Unlike the convex decision procedures con-
sidered before, the typing decision procedure makes extensive use of the case-split capability
of the theorem prover.
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The only internal data structure used by the typing decision procedure is a stack of typing
assertions. This stack is pushed whenever a typing assertion is dispatched and is popped
during the execution of the undo operation. In addition, the typing decision procedure has
access to the EDAG data structure.

The typing decision procedure simply collects on its stack the typing assertions that are
dispatched to it. This is until it encounters the negation of one of the three forms of predicates
that it can prove. In that case, it tries to prove the direct form of the asserted literal based
on the accumulated typing assertions and if it succeeds it generates a contradiction using
the asserted negation. All of the proofs discussed in this section refer to the axiomatization
shown in Figure 6.5.

When trying to prove memory-safety predicates of the form “saferd(M,A)” or of the
form “safewr(M,A, V )”, the decision procedure will use the rules read and write and will
attempt to find a type T and a proof that “A : ptr(T )”. This subgoal is proved using a
helper function findPtrTypes which is discussed later in this section. The other form of
assertion that can be proved is “E : T”. If the type T is any base type except a ptr type, it
is handled in a straightforward manner using the syntax-directed rules shown in the “Other
Types” section of Figure 6.5. To simplify the typing decision procedure, whenever a recursive

type “mu λt.T” is encountered it is replaced with “[mu λt.T�t]T”, according to the rule mu of
Figure 6.5.

In order to handle the rules related to the sizeOf predicate constructor, the typing
decision procedure contains a procedure “sizeOf(T, S) → D” that given a structured type
T , computes the integer constant S and the proof D of the predicate sizeOf(T, S). Two
other helper functions are “E −E ′ → E ′′” and “E ÷N → (E ′, N ′)” that succeed whenever,
using only trivial arithmetic rules, the expression E can be rewritten as “E ′ + E ′′” or,
respectively, as “E ′ ∗N +N ′” where N ′ is a constant such that “0 ≤ N ′ < N”. If this is not
possible then the functions abort and their result is interpreted as falsehood when they are
used in a conditional context. These two helper functions are implemented by scanning the
EDAG node corresponding to E.

In order to handle the rules shown in the “Memory Updates” section of Figure 6.5, the
typing decision procedure uses the function proveMem shown at the top of Figure 7.18. This
function tries to use the rules upd or updoa to prove that a modified memory state is still
well-typed. For this purpose, it first finds all types T such that the last update address A
can be proved to have type “ptr(T )”. This is done with the helper function findPtrTypes,
whose return value is a list of elements of the form “<A : ptr(T );G,D>”, where G is a list
of subgoals and D is a proof of “A : ptr(T )” possibly referring to the proofs of the not-yet-
proved subgoals. The list of subgoals and the proof D are as required by the Split.add

function described on page 167. Each element in the returned list is scanned and if it is a
base type (as verified by “sizeOf(T,W )”) then the rule upd is tried. Otherwise, if T is an
open-array type then the rule updoa is tried. There rules are tried by registering with the
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“Split” module of the theorem prover a list of goals named g1 and g2 along with a proof of
upd(M,A,E) : Mem.

The only remaining detail is the handling of the rules shown in the section labeled
“PointerTypes” in Figure 6.5. Most of these rules are handled using the helper function
findPtrTypes whose pseudo-code description is shown in Figure 7.18. When trying to find
types T such that “A : ptr(T )”, findPtrTypes first tries all expressions E such that A can
be rewritten as “E + E ′” for some E ′. Then, using the helper function findSelAssTypes,
it collects all types T such that “E : T” is among the assumptions or, in the case when E is
of the form “sel(M,A)”, by using the rules sel or seloa. The pseudo-code for the helper
function findSelAssTypes is also shown in Figure 7.18.

Returning to findPtrTypes, if the type of E is an array type and if E ′ can be rewritten
as “E ′′ ∗ S + I” where “sizeOf(T1, S)” then the array rule is tried. First, the getField

helper function is called with the index I and a proof of “E +E ′′ ∗ S : ptr(T1)”. This proof
is constructed with the array rule and the proofs of the subgoals g1 . E ′′ ∗ S ≥ 0 and
g2 . E

′′ ∗S ≤ L. The result from a successful execution of getField is the type T ′1 that is at
offset I in the structured type T1 and a proof that (E +E ′′ ∗ S) + I : ptr(T ′1). The pseudo-
code for the function getField is shown at the bottom of Figure 7.18. Upon return from
getField, the function findPtrTypes adds to the result list the assertion “A : ptr(T ′1)”,
with the original list of goals G and the proof obtained from D′ by congruence of the typing
predicate.

The other cases analyzed by findPtrTypes are when the type of E is either a pointer
option or a pointer type itself. In these cases the getField is called again to find the base
type or the open array type that A points to.

There are several important observations related to the typing decision procedure. The
first is that the decision procedure is not complete. There are instances when it cannot
prove predicates for which there is a derivation in the logic. Take for example the following
predicate:

a : array(int, l) ∧ e ≥ 0 ∧ e ≤ l ∧ e mod W = 0 ⊃ sel(upd(m, a, a+ e), a) : ptr(int)

This predicate arises when the compiler generates code that does the bounds checking
for index e and then stores the address of the indexed array element in the first location of
the array. Then, it loads back the pointer and tries to use it as a pointer to integers. This
predicate is provable using the McCarthy axiom of our logic saying that “sel(upd(m, a, a+
e), a) = a + e”. This predicate cannot be proved by the decision procedure outlined in this
section because it tries to rewrite the term “sel(upd(m, a, a+ e), a)” to “a+ e′” using only
trivial axioms of arithmetic. One solution to this completeness problem would be to ensure
that the helper function “A− E → E ′” succeeds whenever A = E + E ′ is provable, for any
E and E ′. Although this is possible it is significantly more expensive.

Fortunately, the above predicate cannot arise from an agent produced by the Touchstone
compiler because it would be against the typing rules to use the contents of an element of
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proveMem(upd(M,A,E)) =
foreach 〈A : ptr(T );G,DA〉 ∈ findPtrTypes(A) do

if sizeOf(T,W )→ DS then
Split.add(G, g1 . M : Mem, g2 . E : T ; upd(g1, DA, DS, g2))

if T ≡ openarray(T ′) ∧M ≡ upd(M ′, A+W,V ) then
Split.add(G, g1 . M ′ : Mem, g2 . V : array(T ′, E); updoa(g1, DA, g2))

findPtrTypes(A) =
foreach E such that A− E → E ′ do

foreach 〈E : T ;G,DE〉 ∈ findSelAssTypes(E) do
if T ≡ array(T1, L) ∧ sizeOf(T1, S)→ DS ∧ E ′ ÷ S → (E ′′, I) ∧

getField(T1, I, array(DE, DS, g1, g2, mod0))→ (T ′1, D
′) then

add 〈A : ptr(T ′1);G, g1 . E ′′ ∗ S ≥ 0, g2 . E ′′ ∗ S ≤ L,
g3 . A = (E + E ′′ ∗ S) + I; ofcongr(D′, g3)〉

if T ≡ ptropt(T1) ∧ E ′ is a constant ∧
getField(T1, E

′, ptropt(DE, g1))→ (T ′, D′) then
add 〈A : ptr(T ′1);G, g1 . E 6= 0, g2 . A = E + E ′; ofcongr(D′, g2)〉

if T ≡ ptr(T1) ∧ E ′ is a constant ∧ getField(T1, E
′, DE)→ (T ′, D′) then

add 〈A : ptr(T ′1);G, g1 . A = E + E ′; ofcongr(D′, g1)〉

findSelAssTypes(E) =
foreach assumption u . E : T do

add 〈E : T ; ·;u〉
if E ≡ sel(M,A) then

foreach 〈A : ptr(T );G,DA〉 ∈ findPtrTypes(A) do
if sizeOf(T,W )→ DS then

add 〈E : T ;G, g1 . M : Mem; sel(g1, DA, DS)〉
foreach 〈A′ : ptr(T );G,DA〉 ∈ findPtrTypes(A−W ) do

if T ≡ openarray(T ′) then
add 〈E : array(T ′, sel(M,A−W ));G, g1 . M : Mem; seloa(g1, DA)〉

getField(T, I,D) =
if I = 0 ∧ sizeOf(T,W )→ DS then return (T,D)
if T ≡ pair(T1, T2) ∧ sizeOf(T1, S1)→ DS then

if I < S1 then return getField(T1, I, pairl(D))
else return getField(T2, I − S1, pairr(D,DS))

return false

Figure 7.18: Functions for proving Touchstone typing predicates.
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an array of integers as a pointer. In addition, the Touchstone optimizer would not eliminate
the bounds checks for an index value loaded from memory. If such an optimization is ever
added to the compiler, then we must improve the theorem prover to recognize those cases
and prove the verification conditions that can arise.

7.4 Discussion

In this chapter I have shown how known decision procedures can be modified to produce
proofs in a natural deduction style that can be verified using a simple proof checker. I have
also shown that the proof-generating decision procedures can be integrated in a modified
Nelson-Oppen architecture for a modular theorem prover. This allows easy extension of the
theorem prover with decision procedures for various logics.

To simplify the presentation in this chapter I have given low priority to various perfor-
mance aspects of the proof generation process. In the rest of this section I discuss briefly
some optimizations that I have determined to be effective at reducing either the running
time of the theorem prover or the size of the generated proofs.

One possibility for improving the running time of the theorem prover is to modify the
“Split” module discussed in Section 7.2.3 so that a case split is never tried more than once.
Note that the definition of Split.snapshot shown in Figure 7.5 copies the current set
of splits. This is not necessary if the next function was already invoked on the current set
because the backtracking mechanism built in the tryAllSplits function shown in Figure 7.3
ensures that the entire set will be tried if needed. This means that we can use a marker
for each set of splits to record if next was invoked and copy only those sets that were not
invoked.

Another mechanism that I have implemented relies on the fact that many subgoals that
are proved are not used in the final proof. Consider the case when, during a case split, the
last subgoal fails. Then the proofs generated for the preceding subgoals are not needed.
This suggests that it is worth generating proofs lazily, only when they are needed. In my
implementation, instead of generating a proof I generate a closure that when invoked will
produce the proof. The closure structure records minimal amount of information, such as
what module is responsible for generating the proof, and is much easier to construct than
the proof itself. This is especially true for decision procedures where proof generation is a
non-trivial task, such as Simplex. Note, that the internal data structures of various decision
procedures might change from the moment the subgoal is proved and the closure is created to
the moment when the closure is invoked and the proof is generated. However, provided that
no undo operation was invoked meanwhile all of the information needed for proof generation
is still present.

Next I discuss a couple of optimizations meant to reduce the size of the proofs generated
by the theorem prover. The most obvious opportunity for proof optimization is the elimina-
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tion of trivial uses of the contradiction rule. This is beneficial because the theorem prover
proves a literal by assuming its negation and generating a contradiction. I have implemented
a proof optimization that scans the proof and eliminates all uses of contradictions. The effect
is that the size of proofs is reduced by 20%. Another opportunity for easy optimization is the
elimination of trivial uses of the ofcongr rule in the typing decision procedure. These uses
arise because the typing decision procedure indiscriminately wraps each typing derivation
in a congruence rule. This optimization can be implemented either as a post pass or by
changing the typing decision procedure.

Consider for example the two proof transformations shown below:

D
L ¬Lu

false
falsei

L
contrau ≡ D

D
E : T E = E

eqid

E : T
ofcongr ≡ D

On the left-hand size we have an instance of a trivial use of contradiction. In order to
prover the literal L, the theorem prover asserts its negation u. In this case the contradiction is
generated by obtaining a proof D of L and thus the whole contradiction proof can be replaced
with D. The typing decision procedure always generates proofs of this form because it tries
to contradict the negation of a goal by proving the goal itself. Even when the assumption u is
used deeper within the proof of false it is a simple exercise to write the proof transformation
that eliminates the contradiction with a direct proof. On the right-hand side we see the
elimination of a trivial use of the ofcongr rule.

This concludes Part II of this dissertation. I have discussed two useful tools for use by
proof-carrying code producers. One is the Touchstone compiler that can be used to translate
agents written in a type-safe subset of the C programming language to optimized machine
code annotated with loop invariants and function specifications. This otherwise undecidable
task is possible in this case because the specifications are restricted to typing predicates and
because the source language is itself typed. The second tool that I described is a theorem
prover that is both powerful enough to prove many verification conditions and is also capable
of generating proofs of them. The theorem prover, when used with the Touchstone compiler,
acts as an effective referee signaling all compilation errors manifested as unsafe assembly
language output. This use of the theorem prover has proved invaluable when debugging and
maintaining the compiler.

In the third and final part of this dissertation I discuss various experiments that I have
designed and performed to gain experience with proof-carrying code.



Part III

Evaluation of Proof-Carrying Code

In this last part of the dissertation, I present the experiments that I have done
with proof-carrying code for the purpose of gaining experience with using the
technique and of understanding its significant practical. I discuss three sets
of experiments. One is designed to compare proof-carrying code with other
techniques that can be used for ensuring the safety of untrusted code. Another
set of experiments is designed to reveal the practical significance of various costs
of using proof-carrying code, starting from the cost of certifying compilation and
theorem proving and ending with the cost of storing and checking proofs. The
purpose of the final set of experiments is to validate the effectiveness of the
proof optimizations discussed in Chapter 5.





Chapter 8

Experimental Validation of
Proof-Carrying Code

This chapter presents experimental evidence attesting that proof-carrying code is a practi-
cal approach to safe execution of untrusted code. In order to gain more experience with
PCC and to compare it with other approaches to code safety, I have performed a series of
experiments with safe network packet filters. These experiments, discussed in detail in Sec-
tion 8.1, demonstrate that the run-time performance of PCC agents can be up to an order
of magnitude better than that obtained with other techniques.

Then, in Section 8.2, I discuss a set of experiments using the Touchstone certifying
compiler to produce proof-carrying code for a type-based safety policy. As part of these
experiments, I measure the various costs of using proof-carrying code, starting from the
cost of certifying compilation and theorem proving and ending with the cost of storing and
checking the proofs.

The final set of experiments, discussed in Section 8.3, is designed to gauge the practical
benefits that could be gained from using the implicit representation of proofs and the various
proof optimizations discussed in Chapter 5. These experiments show that the savings due to
LFi representation of proofs over the plain LF representation can be as high as two orders of
magnitude, sometimes making the difference between impractical proofs of several megabytes
and manageable proofs of tens of kilobytes. Also in Section 8.3 I share my observations of
the correlation between the size of the proofs and the time required to validate them using
LFi type checking.

8.1 Proof-Carrying Code for Packet Filters

A network packet filter is an application-provided subroutine that scans each incoming net-
work packet and decides whether the user application is interested in receiving it or not. The
packet filter is executed in the kernel-address space for each incoming packet. The overall
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effect is that only a small number of accepted packets have to be copied to the user address
space. Packet filters are supported by most of today’s workstation operating systems. Since
their first introduction in [MRA87], packet filters have been used successfully in network
monitoring and diagnosis.

Malicious or buggy packet filters can exploit the high-level of privilege they are exe-
cuted at and corrupt the kernel’s internal data structures. To prevent this, various safety
techniques, including proof-carrying code, can be used. In this section, after describing
the safety policy and the overall implementation of packet filters with proof-carrying code,
I show quantitative comparisons with other techniques that can achieve a similar level of
safety. Another description of these experiments has appeared in the “Second Symposium
on Operating System Design and Implementation”[NL96].

8.1.1 The Safety Policy

Following the standard procedure for using proof-carrying code, the kernel administrator
must establish first a safety policy for packet filters. To simplify the comparisons with
alternative techniques, the chosen safety policy models that enforced by the Berkeley Packet
Filter architecture (BPF) [MJ93] implemented in many Unix operating system kernels. The
BPF safety policy allows the filter to examine the current network packet and to write to a
kernel-provided scratch memory area. Informally, the safety policy requires that: (1) memory
reads are restricted to the packet and the scratch memory; (2) memory writes are limited to
the scratch memory; (3) all branches are forward; and (4) reserved and callee-saves registers
are not modified. These rules establish memory safety and termination assuming that the
kernel calls the packet filter with valid packet and scratch memory addresses.

The BPF safety policy can be obtained easily as a type-based safety policy, as described
in Section 6.2. Each filter agent has three input arguments, passed in registers as follows.
The registers r1 and r2 contain the start address of the current packet along with the index of
the last valid word, and r3 contains the address of a 16-byte scratch memory area. The filter
must return its boolean result in register r0. Furthermore, the safety policy designer specifies
that, since the network packets are all Ethernet packets, they are are at least 64-bytes long.

Unfortunately, the type-based safety policies introduced in Section 6.2 are not quite suffi-
cient to encode the BPF safety policy. We also need to extend the type system to distinguish
between read-only arrays (used to represent the inspected packet) and regular read-write ar-
rays (used to represent the scratch memory). Let us say that the notation “τ [l]ro” denotes a
read-only array and that the axiomatization of type-based safety is extended appropriately.
To be fully compliant with the BPF safety policy we modify VCGen to disallow backward-
branches. With these changes, the specification part of the safety policy can be expressed as
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follows (recall that the length component of an array type denotes the last accessible index):

Prepf = r1 : int[r2]ro ∧ r3 : int[12] ∧ r2 ≥ 60

Prepf = r0 : bool

8.1.2 Performance Comparisons with Other Techniques

In order to experiment with proof-carrying code packet filters, I have implemented four
typical packet filters in the DEC Alpha assembly language. To illustrate a simple case of
packet filter programming, I show below the equivalent SAL code for Filter 1.

1 r1 ←M [r1 + 12] # Load bytes at offset 12–15
2 r1 ← extr(r1, 0, 2) # Extract 2 bytes at offset 12–13
3 r0 ← 0 # Failure code
4 cond r1 6= 8,L0 # Compare to ETHER IP

5 r0 ← 1
6 L0: return

The “extr(e, i, l)” expression operator, which is supported directly in the DEC Alpha
instruction set, is used to extract a sequence of l bytes starting at index i in the 4-byte
expression e. A typical packet filter accepts or rejects network packets by examining the
contents of various fields in the packet header. The location and the valid values of these
fields are defined by the network protocol standards. For example, in an Ethernet packet the
bytes located at offset 12 and 13 in the packet must contain the values 8 and 0 respectively
if the packet belongs to the IP protocol. Filter 1 shown above accepts exactly the IP
packets, assuming that the host machine (a DEC Alpha in the experiments) is a “little-
endian” machine, where memory words are stored in memory in the least-significant-first
order. Note that the array bounds checks are not necessary for safety because the packets
are at least 64-bytes long.

Filter 2 accepts IP packets originating from a given network (with number 128.2.206).
This involves checking a 24-bit value (starting at offset 26 in the packet) in addition to the
work done by Filter 1.

Filter 3 accepts IP or ARP packets exchanged between two given networks (128.2.206
and 128.2.209). This is the filter with the most complex control-flow among those considered
in my experiments because the source and destination fields are located at different offsets
in an IP and an ARP packet and also because these fields sometimes spread across word
boundaries. This filter first branches depending on whether the packet is an IP packet or an
ARP packet (the packet is rejected if neither is true). Then the originating network address
(3 bytes starting at offset 26 for IP packets and at offset 28 for ARP packets) is compared
to 128.2.206 and then to 128.2.209. If this test succeeds, it is repeated for the destination
address (3 bytes starting at offset 30 for IP packets and at offset 38 for ARP packets).
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Packet Filter 1 2 3 4
Instructions 8 15 47 28
Proof Size (bytes) 132 260 1008 688
Validation Time (µs) 93 234 891 593

Cost Space (kilobytes) 1.1 1.4 2.1 3.8

Figure 8.1: Proof size and validation cost for PCC packet filters.

Finally, filter 4 accepts all TCP packets with a given destination port. This filter has
to check that the Ethernet packet is an IP packet, then that it is a TCP packet, then that
this is the first packet in a sequence and lastly, that the destination port matches a given
value. The interesting feature of this filter over the others is that the offset of the TCP
destination-port field is computed based on the value of a header field (the length of the IP
header). Because it is not guaranteed that this computation yields an offset less than the
minimum packet size (64 bytes), filter 4 contains a run-time bounds check. Furthermore the
possible lack of alignment of the TCP port byte requires a few extra instructions.

As a matter of procedure, I wrote the packet filters by hand in DEC Alpha assembly
language. Because, they do not contain loops or helper functions, there was no need for
additional annotations. For the same reasons, a simpler verification-condition generator can
be used in a PCC system dedicated to packet filters. The verification conditions are then
proved using the theorem prover discussed in Chapter 7 and the proofs are checked using
the LFi proof-checker, as discussed in Chapter 5.

Let us start with a discussion of the proof-related costs of proof-carrying code for packet
filters. The other costs, such as theorem proving cost, are discussed for a similar but larger
set of agents in the next section. Figure 8.1 shows, for each of the four packet filters, the
size of the proof and the time required for checking it on a 175-MHz DEC Alpha processor.
The last line in the figure shows that the memory requirements during proof validation are
relatively modest. We shall see in Section 8.3 that the scratch memory used during type
checking increases very slowly with the size of the proof.

Let us focus next on the benefit of PCC packet filters, namely the high run-time perfor-
mance characteristic of hand-optimized assembly-language programs. To gauge the signifi-
cance of this benefit, I have implemented the same four filters using three other techniques
that can be used to enforce the same safety policy. These alternative techniques are described
next.

The standard way to ensure safe execution of packet filters is to interpret the filter
program and to perform extensive run-time checks. This approach is best exemplified by
the BSD Packet Filter architecture [MJ93], commonly referred to as BPF, that was also the
inspiration source for this set of experiments. In the BPF approach the filter is encoded
in a restricted accumulator-based language. According to the BPF semantics, a filter that
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Figure 8.2: Comparison of average per-packet run time.

attempts to read outside the packet or the scratch memory, or to write outside the scratch
memory, is terminated and the packet rejected.

The BPF interpreter makes a simple static check of the packet filter code to verify that all
instruction codes are valid and all branches are forward and within code limits. I measured
this one-time overhead to be a few microseconds, which is negligible. BPF packet filters,
however, are about 10 times slower than the PCC filters. In the PCC approach all checks
are moved to the validation stage, allowing for much faster execution.

In order to collect data for the BPF packet filters, I extracted the BPF interpreter as
implemented by the OSF/1 kernel and compiled it as a user library.

Another approach to safe code execution is Software Fault Isolation (SFI) [WLAG93]. SFI
is an inexpensive method for parsing binaries and inserting run-time checks before memory
operations. There are many flavors of SFI depending on the desired level of memory safety.
If the entire code runs in a single protection domain whose size is a power of two, and if
only memory stores are checked, then the run-time cost of SFI is relatively small. If, on the
other hand, the untrusted code interacts frequently with the code receiver or other untrusted
components residing in different protection domains and the read operations must be checked
also, the overhead of the run-time checks can amount to 20% [WLAG93]. A more serious
disadvantage of SFI is that it can only ensure memory safety. In order to better accommodate
SFI for packet filters, the safety policy must be relaxed slightly. For example, I assumed that
each packet is aligned on a 2048-byte boundary and the entire 2048-byte block is accessible
to the filter.

Usually, SFI is performed by a trusted component of the code receiver. But SFI can also
be performed at the code-producer site, possibly as part of the code-generation phase of a
modified compiler. In such a case, the code receiver must still inspect the code and verify
that all run-time checks are present. Such a validator is reportedly simple if it does not try
to eliminate redundant checks [WLAG93]. On the other hand, a relatively more complex
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Figure 8.3: Startup cost amortization for Filter 3.

and slower validator is required if we want the validator to optimize the placement of the
run-time checks. To my knowledge, such an SFI validator does not presently exist.

In order to collect data for SFI packet filters, I have inserted run-time checks for all
the memory operations in the assembly language filters. The cost of these checks is a 25%
slowdown of the filtering process. As part of the SFI experiment, I have also produced
safety proofs attesting that the resulting SFI packet filters adhere to the safety policy. These
proofs can also be viewed as proofs that SFI was performed correctly with the effect that
proof-checking replaces a SFI validator as that described above.

The last alternative technique examined here is to write the filters in a type-safe language
and to rely on the correctness of the compiler to ensure that the execution is type safe. This
approach to untrusted-code safety, using the Modula-3 language [Nel91], is taken in the SPIN
extensible operating system [BSP+95]. In an attempt to maximize the run-time performance
of the resulting packet filters, I use the VIEW language extension [SSP+96] developed for
the purpose of the SPIN project to allow efficient manipulation of multi-byte fields in arrays
of bytes. Unfortunately, there is no way to communicate to the Modula-3 compiler that
most bounds checks can be eliminated because the packets are at least 64-bytes long. This,
coupled with a moderate amount of register shuffling and spilling introduced by the compiler,
makes the packet filters obtained through compilation from Modula-3 source code a factor
of two slower than the hand-optimized packet filters.

Figure 8.2 shows a comparison of the per-packet running time of the four filters discussed
above implemented using BPF, Modula-3, SFI and PCC. All performance measurements
were done on a DEC Alpha 3000/600 with a 175-MHz processor, a 2-MByte secondary cache
and 64-MByte main memory, running OSF/1. All measurements were performed off-line
using a 200,000-packet trace from a busy Ethernet network at Carnegie Mellon University.
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From a per-packet latency point of view, the PCC packet filters outperform filters developed
using any other considered approach. They are ten times faster than interpreted BPF filters,
two times faster than filters compiled from Modula-3 and 25% faster than filters using SFI.

The PCC method has a one-time startup cost consisting of the proof-validation cost.
Despite this relatively high validation cost, the run-time benefits of PCC packet filters are
large enough to amortize the startup cost after processing a reasonable number of packets.
Figure 8.3 shows the overall running time, including the startup cost, as a function of the
number of packets processed, for Filter 3 (the filter with the largest proof-validation cost). In
this particular case, the cost of proof validation is amortized after 800 packets when compared
to the BPF version of the filter, after 10,000 packets when compared to the Modula-3 version
and after 19,000 packets when compared to the SFI packet filter. Note that I counted about
1000 Ethernet packets per second at the time when I collected the packet trace used for the
experiments.

8.2 Experiments with the Touchstone Compiler

The next set of experiments I am discussing here attempts to present a global quantitative
picture of a proof-carrying code system using the Touchstone certifying compiler as a front-
end. These experiments exercise all the parts of the system discussed in this dissertation. I
have measured several quantitative aspects of the system. First, as a follow-up to the exper-
iments using packet filters, I show what are the relative sizes of executable code, loop invari-
ants and proofs, in PCC binaries obtained with the Touchstone compiler. Then, I show the
distribution of time in a typical PCC session consisting of compilation, verification-condition
generation, proving and proof checking. Finally, to support the claim that certification can
coexist with optimizations, I show that the code produced by the Touchstone compiler is
competitive with code produced with optimizing traditional compilers for C, such as DEC
cc and GNU gcc [Fou93]. To complete the comparison with the traditional C compilers I
also compare the code sizes and the compilation times.

The benchmark programs used for the experiments contain only those language features
that are currently implemented in the Touchstone certifying compiler (this rules out floating-
point benchmarks, for example) with a bias towards programs for which array bounds-
checking elimination could make a significant difference in the running time. I furthermore
preferred programs that might be useful as native-code components in a safe mobile-code
system, in order to evaluate the certifying compiler as a front-end to a system for safe
execution of Proof-Carrying Code.

These considerations led to eight benchmarks. Three of them, blur, sharpen, and edge

are bidimensional convolutions used as image processing filters in the XV image-manipulation
program [Bra97]. qsort is an implementation of the quicksort algorithm for an array of in-
tegers. simplex is the linear programming algorithm implemented for rational numbers.
kmp (an implementation of the KMP search algorithm) and unpack (one of the gzip de-
compression algorithms and the core of the Unix utility with the same name) were chosen
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as examples of cases where array bounds-checking elimination is not effective. The bcopy

program is an implementation of string copy for non-overlapping strings. It is worth noting
that some of these C programs are fairly realistic in both size and complexity, and none
required anything more than minor syntactic modifications to conform to the safe C dialect
compiled by Touchstone. The main changes involved replacing the use of pointer arithmetic
with array indexing. All results are the average of at least 1000 runs on a DEC Alpha 21064
running at 175MHz.

Figure 8.4 shows the size of the safety proofs and of the annotations as compared to the
size of the machine code for each benchmark. The annotations are only 30% of the size of the
code, on the average. The average ratio of proof size to code size is 2.5, which is consistent
with observations in experiments with PCC using hand-written assembly language. Similar
results are shown in Section 8.3 for a similar but larger set of experiments.

Figure 8.5 displays graphically the distribution of the time spent for compilation and
certification. On the average, 72% of the time is spent compiling, 22% is used for theorem
proving and the rest of 6% is split evenly between VC generation and proof checking. Based
on these results we can make two observations. First, the cost of certification is only about a
third of the cost of compilation, meaning that it is reasonable to use the certifier throughout
the life of the compiler, and not just during compiler development. Second, not only are
VCGen and the proof checker much simpler than the compiler and the theorem prover, but
they are also much faster. Hence, the safety-critical PCC infrastructure is both small and
fast. This is important in situations when the infrastructure is executed on systems with
limited computational power, such as smart cards.

Figure 8.6 shows the effect of optimizations on the running time of the benchmark pro-
grams for the GNU gcc compiler, the DEC cc compiler, and the Touchstone certifying
compiler. The C compilers were invoked with all optimizations enabled (-O4). The running
times are reported as speedups over the running time of the unoptimized code as compiled
with gcc -O0. The last set of bars in Figure 8.6 is the geometric mean of the speedups for
each compiler. On the average, the Touchstone compiler performs slightly better than gcc

(by about 10%) and not quite as well as cc (the difference being about 12%). The programs
for which Touchstone is not quite as good as the C compilers are kmp and unpack, due to the
bounds checks that cannot be eliminated, and bcopy, because of the lack of loop-unrolling In
addition to array bounds-checking elimination, the inter-procedural register allocation and
the common-subexpression elimination played a major role in making the quality of code
generated by Touchstone comparable to that produced by the other C compilers.

In my experiments, the C compilers compile the programs unsafely (that is, without
any bounds checking), while Touchstone has the handicap of having to implement (and then
hopefully remove) the array bounds checks. The array bounds-checking elimination described
in Section 6.5.9 is able to eliminate most of those checks whose proof of redundancy is local
to the current function, but is ineffective when the elimination requires global information.
This weakness is a problem in all of our benchmarks except for blur, edge and bcopy. To
alleviate the cost of array bounds checking in these cases, I have added to each of these
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Figure 8.6: The effect of optimizations in the certifying compiler, expressed as the ratio
between the running time of the optimized code to the running time of the same code
compiled with “GNU gcc -O0”. For comparison, we also show for each benchmark the effect
of the optimizations in the GNU C compiler (“GNU gcc -O4”) and the vendor C compiler
(“DEC cc -O4”). The last column is the geometric mean over all the benchmarks.

benchmarks assert conditionals that enable Touchstone to eliminate all bounds checking
inside loop bodies. Two other benchmarks, kmp and unpack, compute array indices based
on the contents of some auxiliary data structures. The formal safety argument for these
array operations involves the proof of complicated global program invariants, and thus it is
probably not reasonable to expect a compiler to be able to eliminate these bounds checks
automatically.

Due to the fact that Touchstone is an early prototype, the compilation time is significantly
larger than that of the C compilers used in the performance comparisons. Figure 8.7 shows
the compilation times (not including the time for VC generation, proof generation or proof
checking) of Touchstone and of the C compilers (with all optimizations enabled) for our set
of benchmarks. On the average, Touchstone is 20% slower than GNU gcc and 72% slower
than DEC cc. Figure 8.8 shows the comparison of the machine-code sizes of programs
compiled with Touchstone and the C compilers. Unlike the compilation times, the sizes of
machine code emitted by Touchstone are within 5% of that emitted by the C compilers. Note,
however, that there is no fundamental reason why a certifying compiler should emit code
that is larger than that emitted by a traditional compiler. With respect to the compilation
time, the certifying compiler must incur the extra cost of emitting the loop invariants and
type specifications. This cost, however, should negligible when compared to the rest of the
compilation effort.
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8.3 Experimental Validation of LFi

In this section I describe a set of experiments whose purpose is to quantify the advantages
of implicit representation of proofs and the benefits of the various optimizations discussed in
Section 5.6. The experimental data was collected for a set of 85 proofs of memory safety and
type safety produced using the theorem prover described in Chapter 7 and the Touchstone
compiler described in Chapter 6. I measured for all these programs, the sizes of the fully
explicit and bimodal representations of proofs and the time and memory required for proof
reconstruction of the fully explicit form and of the bimodal representations. All measure-
ments are done on a Pentium II machine running at 300MHz. In all cases, except for a few
fully explicit representations, the proofs fit in the first-level cache whose size is 512Kbytes.

But before I even start with analyzing the optimizations, I show the typical proof sizes,
proof reconstruction time and the memory usage during proof reconstruction, for the proof
representation and the set of proof optimizations that are presently used in the proof-carrying
code system. Figure 8.9 shows the proof reconstruction time as a function of the proof repre-
sentation size. In the worst case, the complexity of reconstruction can be expected to be non-
elementary by similarity with the problem of normalizing terms in typed λ-calculus [Sta79].
The correlation that I observed experimentally is almost linear and the reason is that all
of the experiments presented here are with variants of first-order logic, where the use of
quantification and higher-order syntax is very limited. Furthermore, the proofs considered
in this experiment state type safety in a type system whose type checking is syntax directed.

Figure 8.10 shows the scratch memory usage during proof reconstruction. In the largest
example, it uses 13 kilobytes of working memory when reconstructing a proof whose bimodal
representation is 12.7 kilobytes and whose explicit representation is 1.6 megabytes. We
observe from this graph that the reconstruction algorithm not only does not need to recreate
the full proof before checking it, but it uses even less memory than the implicit proof itself.

A common characteristic of the experimental results is that the optimizations perform
better for larger problem sizes, meaning that they are more effective just when we need
them more. Because of this characteristic it is misleading to try to capture the effect of an
optimization as an average improvement percentage. Instead, I show scatter plots of the
improvement due to the optimization as a function of the problem size.

Figure 8.11 shows the ratio of the size of bimodal LFi representations and the fully-
explicit LF representations, as a function of the size of the LF representation. The size
of a representation is measured in bytes of the external form of LFi terms, as discussed in
Section 5.6. Note that the improvement ranges from 4 to over 100 for the larger problems. For
the biggest problem size the size of the fully explicit LF representation is over 1.6 megabytes
while the LFi representation is just 12.7 kilobytes, a reduction that has a huge impact on
the practicality of proof-carrying code.

Figure 8.12 shows the improvement in the time required for the reconstruction of the
bimodal representation with respect to the time required for type checking fully-explicit LF
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Figure 8.11: The ratio between the size of the explicit representation and the size of the
bimodal representation as a function of the original size.
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terms, on a logarithmic scale. These results demonstrate that, indeed, by using LFi we can
save not only in terms of proof size but also in terms of proof-checking time. In the largest
experiment, the reduction factor is over 70, from an LF type-checking time of over 2 seconds
to an LFi reconstruction time of just 70 milliseconds.

Finally, both the occurs-check optimization and the memory usage optimization, although
simple, have a major impact on the reconstruction time and the memory usage, as shown
in Figure 8.13 and Figure 8.14. The occurs-check optimization eliminates more than 90% of
the occurs checks with an overall reduction in the reconstruction time ranging from 50% for
the smaller problems to over 10 times in the larger cases. Similarly, the reduction in memory
usage ranges from 30% to over 20 times. In both of these cases the optimizations are more
effective for the larger problem sizes.

8.4 Discussion

The experiments presented in this chapter demonstrate that there are practical instances
where the proof-carrying code technique can be more efficient that other techniques based
on interpretation or run-time checking. The performance benefit is due in large part to the
static checking of safety and also to involved proof engineering targeted at maintaining a low
cost for storing and validating the proofs of safety.



Chapter 9

Conclusions and Future Work

In this final chapter I summarize the main technical contributions of this dissertation and I
discuss several promising directions for extending this research.

9.1 Contributions

One of the major challenges of building software systems is to ensure that the various com-
ponents fit together in a well-defined manner. This problem is exacerbated by the recent
advent of software components whose origin is unknown or inherently untrusted, such as
mobile code or user extensions for operating-system kernels or database servers. Such ex-
tensions are useful for implementing an efficient interaction model between a client and a
server because several data exchanges between them can be saved at the expense of a single
code exchange.

In this dissertation, I propose to tackle such system integrity and security problems with
techniques from mathematical logic and programming language semantics, in the framework
provided by proof-carrying code. Proof-carrying code requires the extension provider to
send along with the extension code a representation of a formal proof that the code meets
certain safety and correctness requirements. Then, all the code receiver has to do to ensure
the safety of executing the extension, is to validate the attached proof.

Proof-carrying code has several key characteristics that, in combination, give it an ad-
vantage over previous approaches to safe execution of foreign untrusted code. The following
advantages can be claimed:

1. PCC is general. PCC can be used to enforce more than memory safety, more even than
type safety. At an extreme, PCC can be used to verify any code property for which
there exists a logic capable of expressing it. This includes many code properties that
would otherwise be undecidable to infer from the code alone. PCC has been tested with
safety properties ranging from memory and type safety to bounded resource usage.
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2. PCC receiver infrastructure is low-risk and automatic. The proof-checking process
used by the code receiver to determine code safety is completely automatic, and can
be implemented by a program that is relatively simple and easy to trust. Thus, the
safety-critical infrastructure that the code receiver must rely upon is reduced to a
minimum.

3. PCC is efficient. In practice, the proof-checking process runs quickly. Furthermore,
in contrast to previous approaches, the code receiver does not modify the code in
order to insert costly run-time safety checks, nor does the code receiver perform any
other checking or interpretation once the proof itself has been validated and the code
installed.

4. PCC does not require trust relationships. The code receiver does not need to trust the
producer. In other words, the receiver does not have to know the identity of the code
producer, nor does it have to know anything about the process by which the agent
code was produced. All of the information needed for determining the safety of the
code is included in the annotated agent code and its proof.

5. PCC is flexible. The proof-checker does not require that a particular programming
language be used. PCC can be used for a wide range of languages, even machine
languages. Furthermore, a code receiver can support multiple agent languages and
safety policies with a minimal duplication of the infrastructure components.

6. PCC producer can be automated in special cases. If the safety properties can be de-
cided statically or enforced through systematic run-time checks, a certifying compiler
together with a matching theorem prover can be used on the code-receiver side to
automate the process of producing the annotations and proofs.

Many of the advantages of PCC are due to the imbalance between the difficulty of the
tasks assigned to the code producer (the generation of annotations and proving of verification
conditions) and the code receiver (the generation of verification conditions and the validation
of proofs). This dissertation also contributes the concept of a certifying compiler and the
design of proof-generating decision procedures, whose purpose is to assist code producers
with their attributions in a proof-carrying code system.

A certifying compiler is a compiler that emits, in addition to target code, function
specifications and loop invariants that enable a theorem proving agent to prove non-trivial
properties of the target code, such as type safety. Such a certifying compiler, along with a
proof-generating theorem prover, is not only a convenient producer of proof-carrying code
but also a powerful software-engineering tool. The certifier acts as an effective referee for the
correctness of each compilation simplifying considerably compiler testing and maintenance.
The following advantages can be claimed for a certifying compiler:
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1. Certifying compilation, when used in conjunction with proof-generating theorem prov-
ing, is a practical method for producing, in an automatic manner, the loop invariants
and the proofs required in a proof-carrying code system for type safety.

2. Certifying compilation is significantly easier to employ than a formal verification of the
compiler, even if the formal verification is restricted to proving only that the target
code is type safe. This is because it is easier in general to verify the correctness of
the result of a computation than to prove the correctness of the computation itself.
Furthermore, with this approach, most compiler revisions and improvements do not
require any change to the certifier.

3. This method can be applied to optimizing compilers, because the design of the certi-
fier does not restrict the optimizations that the compiler is allowed to perform. The
Touchstone optimizing compiler generates code that, for many programs, matches or
is within 15% of the performance of both gcc and cc with all optimizations enabled.

4. The presence of the certifier drastically improves the effectiveness of compiler testing
because, for each test case, it statically signals compilation errors that might otherwise
require many executions to detect. Even though this approach does not ensure full
compiler correctness, in my experience the vast majority of compiler bugs lead the
compiler to generate unsafe target programs for at least one of the test cases.

5. This method is applicable to the compilation of any type-safe language, as well as
for certifying other properties of the target programs beyond type safety. Also, a
significant benefit of the design is that it requires relatively few modifications to a
traditional compiler, and hence it should be possible to adapt existing compilers to
this technique.

A complete system for proof-carrying code must also contain a proof-generating the-
orem prover for the purpose of producing the attached proofs of safety. This dissertation
shows how standard decision procedures can be adapted so that they can produce detailed
proofs of the proved predicates. Just like in the case of the certifying compiler, a proof-
generating theorem prover has significant software-engineering advantages over a traditional
prover. In this case, a simple proof checker can ensure the soundness of each successful
proving task and indirectly assist in testing and maintenance of the theorem prover.

9.2 Future Work

The concepts presented in this thesis are broad and general even though, for feasibility
reasons, the actual implementations that I describe covers only a small part of the design
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space. In this section, I discuss a few of the most promising directions for extending the
ideas discussed in this dissertation.

One of the most notable limitations of the implementation of proof-carrying code de-
scribed here is that it cannot handle liveness properties and general security policies. Recall
from Chapter 3, that the general security policies are those that can be expressed as pred-
icates on the set of all possible executions of a program. Information flow is an example of
such a security property. Then there are the security properties that can be expressed as
predicates on individual executions. Among the security properties we have the safety prop-
erties that disallow certain “bad things” to happen during the execution, and the liveness
properties stipulating that certain “good things” must happen. As explained in detail in
Chapter 3, the VCGen implementation of the proof-carrying code is targeted to enforcing
safety properties.

However, as we have already seen in the case of type-based safety policies, described
in Section 6.2, the VCGen-based approach can be used to enforce data abstraction. Data
abstraction is not a safety property, not even a security property. Data abstraction is a
security policy according to the definition of Schneider [Sch98]. This is because we cannot tell
that a program violates the abstraction boundaries by looking only at one of its executions.
We have to look at the source code or, equivalently, at the set of all possible executions, to
be able to distinguish between programs truly respecting abstraction and those that violate
the abstraction boundaries by “guessing” the concrete representations.

The experience with type-based safety policies suggests that a promising technique for
extending proof-carrying code to new flavors of security properties is to use non-standard
type systems as the basis for the security policy and to adapt VCGen and theorem proving
to act as a type-checking system. What makes this strategy of special interest is that it
would position proof-carrying code to gain leverage from a large body of work in the area
of type-based static analyses. For example, several research groups have developed non-
traditional type systems for expressing and checking information flow [HR98, ML97, VS97]
or non-interference [VS97], and for performing control-flow analysis [Hei95, PS95, PO95],
strictness analysis [KM89], or binding-time analysis [Hen91].

One of the main advantages of using VCGen in a proof-carrying code system is that it is
insensitive to many code transformations such as variable renaming, common-subexpression
elimination and dead-code elimination. While this is a feature in most cases, it can also
prevent the use of VCGen for certain safety policies. For example, the new generation of
EPIC processors allow even non-valid memory addresses to be read as long as the result
of the read operation is not used in the subsequent computation [HHG+95]. There is no
natural way to capture such behavior with a VCGen, because the property of a value being
used in the subsequent computation is not a property of the current state of the memory
and the registers. In order to handle such code properties, we must either extend the notion
of the state of execution in creative ways or else, use a more conventional syntax-based type
checking approach.
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More opportunities for future research are suggested by the limitations that I have im-
posed on the source language compiled by the Touchstone compiler. Many of these limi-
tations are imposed by VCGen. Currently, VCGen cannot handle programming paradigms
that result in the target code being enriched with runtime data structures that affect its
behavior. Examples of such problematic data structures are the function closures for imple-
menting higher-order functions, dynamic-dispatch tables for implementing object-oriented
languages, exception-dispatch tables for implementing exceptions and root tables for as-
sisting a garbage collector. In fact, VCGen does currently support one such runtime data
structure, namely the stack. Other data structures can be supported in a similar manner,
although at the cost of a more complicated VCGen.

A last direction for future research that I mention here is in the area of proof optimiza-
tions. Recall from Chapter 5, that when transitioning from the LF representation of proofs
to the implicit LFi representations, the proof sizes and validation times are decreased due
to the elimination of redundant components. However, there are still significant common
sub-proofs that are not shared in the LFi representation. Such common sub-proofs cannot
be considered redundant, because it is not always possible to reconstruct them if they are
missing.

Consider, for example, the situation where the same subgoal occurs several times in a
verification condition. Then, it is very likely that the same proof of the common subgoal will
appear multiple times in the proof. In such situations it might be beneficial to apply the
same strategy that humans use for handling large proofs: state and prove lemmas that are
then used in proofs as building blocks. Lemma extraction is the process by which a proof
is scanned and common sub-proofs are identified and factored out, in a manner similar to
common-subexpression elimination. Lemma extraction can also be used to scan the safety
proofs of multiple agents for the same safety policy. The lemmas detected in this case can
be added as derived proofs rules to the axiomatization of the safety policy. Then, all proofs
can be simplified by simply referring to these lemmas instead of proving them each time they
arise.

To conclude this dissertation, I note that the research described here demonstrates that
ideas from logic and programming languages can and should be used for solving problems
posed by real software systems. The design and implementation of proof-carrying code shows
how, once we identify a practical problem to address, it is helpful to focus on the underlying
abstract phenomenon and to analyze and understand thoroughly the supporting theory. By
working at a higher level of abstraction, we can propose solutions that are elegant, rigorous
and general so that they can outlast the particular artifacts that initially motivated them.
Finally, to complete the research, it is important to implement the abstract-level solutions
in the concrete practical setting in order to validate them through experimentation.
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Appendix A

Soundness of Verification Condition
Generation

The main result of this appendix is that a valid verification condition for an agent guarantees
the safety of all invocations of the agent functions. Because the agent functions might invoke
system calls, we also need to assume that the system calls are safe. This is stated formally
as the soundness Theorem 4.4 and restated below:

Theorem A.1 (Soundness of VCGen) If all system calls are safe, i.e., Safe(ΦS), and if
the agent’s verification condition is valid, i.e., |= VC (ΦA), then all functions in the system
are safe, i.e., Safe(Φ).

The proof of the soundness theorem is by induction on the length of the execution. At
each step (in any reachable state) we show that the execution has either returned from the
current invocation or else it can make further progress. During the induction we must prop-
agate the information that the execution was initiated in a state satisfying the precondition
and that the verification condition is valid. This is customarily done by means of an induction
hypothesis. In our case the induction hypothesis for an execution state <<F, i>, ρ,H0 +ρ0>
is that there exists a related state of the symbolic evaluator at the same point in function F .
Let this state be SEF,σ0,i0(i, σ, so,L). The key property of the run-time and symbolic states
is that they are related, in a complicated sense that is stated formally later in this section.
One of the defining issues of the relation is that there exists a substitution τ of the variables
occurring in the symbolic execution state σ with values, such that τ ◦ σ = ρ. Without
disclosing yet the formal definition of the invariant let us just say that it is a relation among
eleven parameters written as IH F,σ0,i0,H0,ρ0(i, σ, so,L, τ, ρ). Just as for the symbolic evalu-
ation function, the subscripts are constant within a given function’s body and are omitted
most of the time.

231
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Lemma A.2 (Soundness) If all system calls are safe, i.e., Safe(ΦS), and if the agent’s
verification condition is valid, i.e., |= VC (ΦA), then for any function F and initial state
<<F, 0>, ρ0,H0 + ρ0> that satisfies the precondition, i.e., PreF (ρ0) and whose entire frame
fits on the runtime stack, then assuming that all invoked agent functions are safe we have
that the execution does not get stuck and for any reachable state Σ = <<F, i>, ρ,H0 + ρ0>
within the current invocation of F , there exists σ0, i0, σ, so, L and τ such that the induction
hypothesis holds, i.e., IH F,σ0,i0,H0,ρ0(i, σ, so,L, τ, ρ) and either

1. Fi = ret and SafeRETF (ρ0, ρ), or

2. Fi = call G and the execution is safe by assumption, or

3. There exists Σ′ = <<F, i′>, ρ′,H0+ρ0> such that Σ→ Σ′ and the induction hypothesis
holds in the new state.

The proof of Theorem 4.4 is by means of the Lemma A.2. Note that the soundness lemma
considers only the reachable states that are within the current invocation. If the current
invocation makes function calls then the safety property follows from the assumption that
system calls are safe and that all invoked agent functions are also safe. There seems to be a
problem here in the case of recursive agent functions because the soundness lemma assumes
that its own conclusion holds. This can be fixed with a technical trick. We introduce an
additional definition of safety involving a parameter k such that only executions that do not
lead to more than k nested function calls are considered. The other executions are treated
as non-terminating and are thus considered safe. Then, we also change the statement of the
soundness lemma to assume that all agent functions are safe up to k nested executions and
to conclude that all agent functions are safe up to k + 1 nested executions. The base case
is for invocations that do not invoke other functions. Thus the modified soundness lemma
constitutes both the base case and the inductive case of an inductive argument on k. Thus,
the soundness lemma is true for all values of k, which is the kind of safety that we desire.
Having argued informally that it is possible to fix the apparent bug in the statement of the
soundness lemma, I proceed with it in the simpler form.

The termination part of the soundness theorem follows from the soundness lemma because
of Property 3.3 that requires that “ra” is a preserved register.

We are now left with proving the Lemma A.2. This lemma is proved by using four other
lemmas: one stating that the induction hypothesis is established upon invocation of an agent
function (Lemma A.3), one stating that if the induction hypothesis holds and the current
instruction is neither a function call nor a return, then the execution can make progress
to a state that also satisfies the induction hypothesis (Lemma A.4), one to deal with the
function call case stating that executing a function call (for a safe function) to its (potential)
completion preserves the induction invariant (Lemma A.5) , and one to deal with the function
return case (Lemma A.6). The four lemmas are stated below.
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Lemma A.3 (Invocation) If function F has a valid verification condition, i.e., |= VC (F )
and if ρ0 is a safe invocation state for F , i.e., PreF (ρ0) and Stack(a) for all “a” such that
ρ0(sp) + ArgF − LocalF ≤ a ≤ ρ0(sp) + ArgF − 1, then for any call history H0 there exist
σ0, τ0 such that IH F,σ0,i0,H0,ρ0(0, σ0,ArgF , ∅, τ0, ρ0), where i0 is a new variable.

Lemma A.4 (Progress) If |= IH F,σ0,i0,H0,ρ0(i, σ, so,L, τ, ρ) and the current instruction is
neither a call nor a return instruction then the interpreter can make progress, i.e., there
exist i′,σ′,so′, L′,τ ′,ρ′ such that <<F, i>, ρ,H0 + ρ0> → <<F, i′>, ρ′,H0 + ρ0> and also
|= IH F,σ0,i0,H0,ρ0(i

′, σ′, so′,L′, τ ′, ρ′).

Lemma A.5 (Function call) If |= IH F,σ0,i0,H0,ρ0(i, σ, so,L, τ, ρ) and the current instruc-
tion is a function call, i.e., Fi = call G, such that Safe(G), then the execution can make
progress until possibly returning to the state <i++, ρ′,H0 + ρ0>. In this case there exist σ′

and τ ′ such that |= IH F,σ0,i0,H0,ρ0(i++, σ′, so,L, τ ′, ρ′).

Lemma A.6 (Function return) If |= IH F,σ0,i0,H0,ρ0(i, σ, so,L, τ, ρ) and the current in-
struction is a return then the return is safe, i.e., SafeRETF (ρ0, ρ).

Before we can attempt to prove the four lemmas we have to state formally the definition
of the induction hypothesis. This is given in Figure A.1. In the definition of the induction
hypothesis and the proofs to follows I use the letter τ to denote substitutions of values in U
for logical variables. The notation τ + τ ′ is used when the domains of the substitutions τ
and τ ′ are disjoint and denotes the extension of the substitution τ with the substitution τ ′.
Also, during the course of the proof it will be often necessary to use the congruence lemma
stated below.

Lemma A.7 (Congruence) If P is a predicate whose free variables are within RegsF , and
ρ and ρ0 are evaluator states and τ is a mapping from symbolic registers RegsF to values
such that |= τ(r) = Sρ0,ArgF (ρ, r) for all r ∈ RegsF ∩ FV (P ), then we have that |= τ(P ) if
and only if |= Sρ0,ArgF (ρ, P ).

Proof of the congruence Lemma A.7: The proof of the congruence lemma is an easy
induction on the structure of the judgment of the predicate P.

�

Now I proceed with the formal proofs of the lemmas A.3–A.6.

Proof of invocation Lemma A.3: Because the verification condition is valid for F we
have from Definition 4.3 that |= ∀i0.y1 . . . yk.σ0(PreF ) ⊃ SEF,σ0,i0(0, σ0,ArgF , ∅), where k
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Definition A.8 (Induction Hypothesis) Consider a simultaneous execution of the SAL

interpreter in the state <<F, i>, ρ,H0+ρ0> and of the VCGen symbolic evaluator in the state
SEF,σ0,i0(i, σ, so,L). Consider that the current instantiation of logic variables is τ . We say
that the induction hypothesis holds in this situation, written |= IH F,σ0,i0,H0,ρ0(i, σ, so,L, τ, ρ),
when all of the following conditions hold:

IH1. The verification condition is valid, i.e., |= τ(SEF,σ0,i0(i, σ, so,L)), and

IH2. so is correct, i.e., 0 ≤ so ≤ LocalF and ρ(sp) + so = ρ0(sp) + ArgF , and

IH3. i0 is correct, i.e., <F, 0> = τ(i0), and

IH4. σ and σ0 are correct, i.e., for all r ∈ RegsF we have |= τ(σ(r)) = Sρ0,ArgF (ρ, r), and
also that |= τ(σ0(r)) = Sρ0,ArgF (ρ0, r), and

IH5. The stack is preserved, i.e., for all a such that Stack(a) and a ≥ ρ0(sp) + ArgF we
have ρ0(mem)(a) = ρ(mem)(a), and

IH6. The frame fits in the stack, i.e., Stack(a) holds for all addresses “a” that satisfy the
inequalities ρ0(sp) + ArgF − LocalF ≤ a ≤ ρ0(sp) + ArgF − 1, and

IH7. τ is correct with respect to L, i.e., either

IH7.1. L is empty and for all r ∈ RegsF , we have

IH7.1.1. σ0(r) ∈ Dom(τ), and

IH7.1.2. |= τ(σ0(r)) = Sρ0,ArgF (ρ0, r).

IH7.2. or if L = L1 + (i, σ′1) with σ′1 = σ1[r1 7→ y1, . . . rk 7→ yk], then

IH7.2.1. Fi = inv P, n, {r1, . . . , rk}, and

IH7.2.2. yj are new variables, i.e., yj 6∈ (Dom(τ1) ∪ FV (L1) ∪ FV (σ1)), and

IH7.2.3. τ = τ1 + [y1 7→ v1, . . . , yk 7→ vk], and

IH7.2.4. |= τ1(σ1(P )), and

IH7.2.5. |= τ1(∀y1 . . . yk.σ
′
1(P ) ⊃ SEF,σ0,i0(i++, σ′, n,L), and

IH7.2.6. τ1 is correct with respect to L1, as defined by IH7.

Figure A.1: The inductive invariant that is used for proving the soundness of verification-
condition generation.
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is the number of registers in RegsF = {r1, . . . , rk}, i0 and y1, . . . , yk are new variables and
the initial symbolic state is σ0 = [r1 7→ y1, . . . , rk 7→ yk]. From the definition of validity for
universal quantification we further have that |= τ0(σ0(PreF ) ⊃ SEF,σ0,i0(0, σ0,ArgF , ∅)),
where τ0 = [i0 7→ <F, 0>, y1 7→ Sρ0,ArgF (ρ0, r1), . . . , yk 7→ Sρ0,ArgF (ρ0, rk)]. We want to
prove that |= IH F,σ0,i0,H0,ρ0(0, σ0,ArgF , ∅, τ0, ρ0). Of all of the clauses of the induction
hypothesis the only one that is not trivial is IH1. This clause is proved by first inferring
that |= (τ0 ◦ σ0)(PreF ), which holds because of clause IH4 and of the correctness of
preconditions (Property 4.2) together with the congruence lemma. Note that clause IH7
is proved in this case using option IH7.1.

�

Proof of the progress Lemma A.4: The proof is by case analysis on the current
instruction, or more precisely on the last case used for symbolic evaluation. We start with
the most difficult cases, those for the loop invariants.

Case: The last rule used during the symbolic evaluation is the rule for a loop invariant
“inv P, n, {r1, . . . rk}” that is encountered for the first time. This is an annotation and
hence there are no safety checks and progress is guaranteed to the state <i++, ρ,H0+ρ0>.
We have to prove the invariant:

IH F,σ0,i0,H0,ρ0(i++, σ′, so,L+ (i, σ′), τ ′, ρ) (A.9)

where :

y1 . . . yk are new variables

τ ′ = τ + [y1 7→ S(ρ, r1), . . . , yk 7→ S(ρ, rk)]

σ′ = σ[r1 7→ y1, . . . rk 7→ yk]

The clauses IH2, IH5 and IH6 follow immediately from their induction hypothesis coun-
terparts because the state of the registers does not change. Clause IH3 also follows from
the induction hypothesis because τ ′(i0) = τ(i0).

Because of the way τ ′ is defined and because of clause IH4 of the induction hypothesis we
can verify that the clause IH4 of Equation A.9 holds:

|= τ ′(σ′(r)) = S(ρ, r) for all r ∈ RegsF (A.10)

In order to prove IH1 we notice that from clause IH1 of the induction hypothesis we have:

|= τ(σ(P )) (A.11)

|= τ ′(σ′(P )) ⊃ τ ′(SE (i++, σ′, so,L+ (i, σ′))) (A.12)

From Equation A.11 and clause IH4 of the induction hypothesis, by using the congruence
lemma we deduce that |= S(ρ, P ). Using again the congruence lemma but this time with
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Equation A.10 we deduce that |= τ ′(σ′(P )) and hence from the definition of validity for
implication we conclude that clause IH1 holds.

The last step in the proof of this case is to prove clause IH7.2. The subclauses IH7.2.1–
IH7.2.3 are true by construction, and IH7.2.6 follows from clause IH7.2.6 of the induction
hypothesis. Clause IH7.2.5 follows from clause IH1 of the induction hypothesis with the
observation that n = so as verified by VCGen. Finally, clause IH7.2.4 is Equation A.11.

Case: The next case that we consider is that of a loop invariant “inv P, n, {r1, . . . , rk}”
that has been encountered before (i ∈ Dom(L)). In this case progress is guaranteed and
the next execution state is <i++, ρ,H0 +ρ0>. The trick is to find the corresponding state
for the symbolic evaluator. It is here where we need the clause IH7.2 of the induction
hypothesis. Because of that clause and because i ∈ Dom(L) we know that L = L1 +
(i, σ′)+· · · and τ = τ1+[y1 7→ v1, . . . , yk 7→ vk]+· · · , where σ′ = σ1[r1 7→ y1, . . . , rk 7→ yk],
and yj are variables that do not occur in L1 or in σ1. We also know from clause IH7.2 of
the induction hypothesis that

|= τ1(σ1(P )) (A.13)

|= τ1(∀y1 . . . yk.σ
′(P ) ⊃ SEF,σ0,i0(i++, σ′, n,L1 + (i, σ′)) (A.14)

This suggests that we should prove the induction hypothesis stated as follows:

IH F,σ0,i0,H0,ρ0(i++, σ′, so,L+ (i, σ′), τ ′, ρ) (A.15)

where τ ′ = τ1 +[y1 7→ S(ρ, r1), . . . , yk 7→ S(ρ, rk)]. We first notice that τ ′ was chosen such
that |= τ ′(σ′(r) = S(ρ, r) for all r ∈ {r1, . . . , rk}. For the registers that are not modified by
the loop, we know from clause IH1 of the induction hypothesis that |= τ(σ(r)) = τ(σ′(r).
(This is because of the CheckEq part of the verification condition with L(i) = σ′.) Then,
because of the clause IH4 of the induction hypothesis we know that |= τ(σ′(r)) = S(ρ, r).
Because r is not modified by the loop and because τ is an extension of τ1 we have the
sequence of equalities τ ′(σ′(r)) = τ ′(σ1(r)) = τ1(σ1(r)) = τ(σ1(r)) = τ(σ′(r), which
concludes the proof of clause IH4 of Equation A.15:

|= τ ′(σ′(r) = S(ρ, r) for all r ∈ RegsF (A.16)

From clause IH1 of the induction hypothesis we know that |= τ(σ(P )). From Equa-
tion A.16 and clause IH4 of the induction hypothesis, we get by using the congruence
lemma that |= τ ′(σ′(P )). This, used in conjunction with the definition of the validity for
implication and universal quantification in Equation A.14, leads to the conclusion that
clause IH1 of the Equation A.15 holds. Clauses IH2, IH3, IH5 and IH6 hold because the
register state has not changed. Finally, note that clause IH7.2 holds because of clause
IH7.2 of the induction hypothesis.
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This concludes the case of loop invariants. Note that in the other cases the loop map
does not change and in fact it is not used at all. This implies that the substitution τ does
not change. Because of this the clauses IH3, IH6 and IH7 are trivial to prove from the
induction hypothesis directly.

Case: If the last rule used for symbolic evaluation is the register move rule then we must
prove that IH (i++, σ[r 7→ σ(r′)], so,L, τ, ρ[r 7→ ρ(r′)]). The only clause of interest in this
case is IH4, in which case we have to prove that |= τ(σ(r′)) = ρ(r′), which follows from
clause IH4 of the induction hypothesis. The case of register initialization is similar.

Case: If the last rule used for symbolic evaluation is the expression operand rule then
we must first prove that SafeEOP(ρ(r′), ρ(r′′)) so that we know that the execution makes
progress. But from clause IH1 of the induction hypothesis and the definition of validity
for conjunction we have that |= safeeop(τ(σ(r′)), τ(σ(r′′))). Because of clause IH4 we
can use the congruence lemma to infer that |= safeeop(ρ(r′), ρ(r′′)) and hence, because
of the definition of validity for “safeeop” we know that SafeEOP(ρ(r′), ρ(r′′)).

To conclude this case of the proof we must prove that the induction invariant holds in
the new state IH (i++, σ[r 7→ eop(σ(r′), σ(r′′))], so,L, τ, ρ[r 7→ EOP(ρ(r′), ρ(r′′))]). Clause
IH1 follows from clause IH1 of the induction hypothesis. The only other interesting
clause in this case is IH4, in which case we must prove that |= eop(τ(σ(r′)), τ(σ(r′′))) =
EOP(ρ(r′), ρ(r′′)). This follows from the definition of valuation for the expression con-
structor “eop” and from clause IH4 of the induction hypothesis by using the congruence
lemma.

Case: If the last rule used for symbolic evaluation is the conditional branch rule then
progress is guaranteed if SafeCOP(ρ(r)) holds. This is proved as in the case of expression
operators from the clauses IH1 and IH4 of the induction hypothesis, the congruence lemma
and the definition of validity for the predicate constructor “safecop”. Once we know that
the execution can make progress we have to consider two cases, depending on the outcome
of the comparison.

If the comparison is successful then the next state is <n+ i++, ρ,H0 + ρ0> and thus the
invariant to prove is IH (i++, σ, so,L, τ, ρ). Only clause IH1 is interesting because so few
parameters of the induction hypothesis are changed. Clause IH1 follows from clause IH1
of the induction hypothesis if we can prove that |= cop(τ(σ(r))). This follows immediately
from the definition of validity of “cop” and clause IH4 of the induction hypothesis, because
we know that the control flow test “COP(ρ(r))” succeeds. The fall-through case of the
branch is similar.

Case: In the case of a memory write instruction “M [r′] 7→ r” we have to verify first that
the safety condition SafeWr(ρ(mem), ρ(r′), ρ(r)) holds so that the execution can make
progress. This follows from the clauses IH1 and IH4 of the induction hypothesis by
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using the congruence lemma and the definition of validity for the “safewr” predicate
constructor. Next we have to prove that the following form of the induction hypothesis
holds IH (i++, σ[mem 7→ upd(σ(mem), σ(r′), σ(r))], so,L, τ, ρ[mem 7→ ρ(mem)[ρ(r′) 7→ ρ(r)]]).
Clause IH1 follows from clause IH1 of the induction hypothesis. In this case the memory
changes so we must verify clause IH5. Because of Property 3.1 we know that ¬Stack(ρ(r′))
and hence clause IH5 follows directly from clause IH5 of the hypothesis.

To prove clause IH4 we must prove that the following equality holds

|= upd(τ(σ(mem)), τ(σ(r′)), τ(σ(r))) = ρ(mem)[ρ(r′) 7→ ρ(r)]

This follows directly from the definition of valuation from the “upd” constructor. To finish
the proof of clause IH4 we must also verify that the memory that contains the values of
the local pseudo-registers has not change. This follows from the fact that all such memory
locations are on the stack (clause IH6 of the induction hypothesis) and the stack is not
changed by generic memory writes. The case of memory reads is very similar to that of
expression operators.

Case: In the case of a stack pointer advance instruction we must prove that Stack(n +
ρ(sp)). We know from clause IH2 that ρ(sp) + n = ρ0(sp) + ArgF − so + n and we also
know from the check performed by VCGen that the following inequalities hold ρ0(sp) +
ArgF −LocalF ≤ ρ(sp)+n ≤ ρ0(sp)+ArgF −1. Now we can see that the safety condition
follows from clause IH6 of the induction hypothesis. Once progress is established we have
to verify that the induction hypothesis holds IH (i++, σ, so− n,L, τ, ρ[sp 7→ ρ(sp) + n]).
All of the clauses follow directly from the induction hypothesis, except for IH2, in which
case simple arithmetic is sufficient.

Case: In the case of a read from the stack, we argue the progress just as for the stack
pointer advance instruction. Then, we have to prove that the induction hypothesis holds
IH (i++, σ[r 7→ σ(lso−n)], so,L, τ, ρ[r 7→ ρ(mem)(ρ(sp) + n)]). The only clause that does
not follow directly from the induction hypothesis is IH4, in which case we have to prove
that |= τ(σ(lso−n)) = ρ(mem)(ρ(sp) + n). Note that ρ(mem)(ρ(sp) + n) = ρ(mem)(ρ0(sp) +
ArgF − (so− n)) = Sρ0,ArgF (ρ, lso−n) and thus the desired conclusion follows from clause
IH4 of the induction hypothesis. The check that VCGen performs ensures that lso−n is a
valid local pseudo-register in the frame of F .

Case: In the case of a write to the stack, progress and clause IH4 are argued in a manner
similar to the case of reads from the stack. In this case we have the extra obligation to
verify clause IH5. This is easy to verify because the address written to is smaller than
ρ0(sp) + ArgF due to the checks performed by VCGen and because of clause IH2 of the
induction hypothesis.

This concludes the proof of the progress lemma.
�
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Proof of the function call Lemma A.5: From the induction hypothesis in the case
of a function call to G we have that |= τ(σG1 (PreG)). The safety requirement for the call
instruction is PreG(ρ). This is proved easily by using Property 4.2 and the congruence
lemma once we prove that |= τ(σG1 (r)) = Sρ,ArgG(ρ, r) for all r ∈ RegsG ∩ FV (PreG). To
prove this property I am doing a case analysis on the register r, as follows:

|= τ(σG1 (r)) = Sρ,ArgG(ρ, r) if r ∈ {r1, . . . , rR, ra, mem} (A.17)

In this case σG1 (r) = σF (r) (see Figure 4.7 for the definition of CopyIn) and Sρ,ArgG(ρ, r) =
ρ(r) and Equation A.17 follows from clause IH4 of the induction hypothesis. The other
possible case for r is:

|= τ(σG1 (r)) = Sρ,ArgG(ρ, r) if r ≡ li ∈ {l1, . . . , lArgG} (A.18)

In this case σG1 (r) = σF (lso−ArgG+i) and we have from clause IH4 of the induction hy-
pothesis that the sequence of equalities |= τ(σF (lso−ArgG+i)) = Sρ0,ArgF (ρ, lso−ArgG+i) =
Sρ,ArgG(ρ, li) holds. (The latter equality follows from the definition of substitution and
clause IH2). Note that lso−ArgG+i is a valid local registers in RegsF because of clause IH2
and of the check on “so” that VCGen performs for a function call.

Once we proved that PreG(ρ) holds, we are guaranteed that the execution of the interpreter
makes progress. If the stack overflow check fails then the execution never returns, which is
one of the possible benign outcomes in this lemma. If, however, the stack overflow check
succeeds, then we know from the continuity of the stack (Property 3.2) that the entire
stack frame of G fits on the stack. Hence from the assumption that G is safe (as stated
in Definition 3.5) we know that the execution makes progress and if it returns the current
state is <ρ(ra), ρ′,H0 + ρ0> such that:

SafeRETF (ρ, ρ′) (A.19)

We know from clause IH4 that |= τ(σF (ra)) = ρ(ra). Because VCGen checks the value
of the return address register at the time of the call (see Figure 4.6) we know that
τ(σF (ra)) = offset(τ(i0), i++) hence by clause IH3 we know that the return point is the
instruction following the call ρ(ra) = <F, i++>.

To complete the proof of this lemma we need to show that the induction hypothesis
holds in the state following the return from the function for some symbolic state and
some substitution of variables with values. Let the symbolic state be σF2 as defined
in Figure 4.6 and let τ2 = τ + [y1 7→ Sρ,ArgG(ρ′, r1), . . . , yk 7→ Sρ,ArgG(ρ′, rk), zso+1 7→
Sρ0,ArgF (ρ′, lso+1), . . . zLocalF 7→ Sρ0,ArgF (ρ′, lLocalF )]. We have to prove that:

IH F,σ0,i0,H0,ρ0(i++, σF2 , so,L, τ2, ρ
′) (A.20)
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I start with proving the clause IH4. We have to show that |= τ2(σF2 (r)) = Sρ0,ArgF (ρ′, r)
and also that |= τ2(σ0(r)) = Sρ0,ArgF (ρ0, r) for all registers r ∈ RegsF . The second part
of the clause follows immediately from clause IH4 of the induction hypothesis once we
realize that for all such registers τ2(σ0(r)) = τ(σ0(r). This is because all variables yi and
zj are new. The first part of the clause is proved by a case analysis on the register r. We
distinguish four cases labelled below as A.21–A.24, as follows:

|= τ2(σF2 (r)) = Sρ0,ArgF (ρ′, r) if r ∈ {r1, . . . , rR, ra, mem} (A.21)

In this case σF2 (r) = σG2 (r) (by definition of CopyOut from Figure 4.7). We now consider
two subcases, depending on whether r ∈ CSG or not. If r is saved by G, then σG2 (r) =
σG1 (r) = σF (r) and from Equation A.19 we get that Sρ0,ArgF (ρ′, r) = ρ(r). The desired
conclusion follows from clause IH4 if we note that τ2(σF (r)) = τ(σF (r)) because τ2 is an
extension of τ . In the case when r is not saved then τ2(σF2 (r)) = τ2(σG2 (r)) = τ2(yj) =
Sρ,ArgG(ρ′, r) = Sρ0,ArgF (ρ′, r).

The next case is when r is a local register that sits above G’s stack frame:

|= τ2(σF2 (r)) = Sρ0,ArgF (ρ′, r) if r ≡ li ∈ {l1, . . . , lso−ArgG} (A.22)

In this case |= τ2(σF2 (r)) = τ(σF (r)) = Sρ0,ArgF (ρ, r) by the definition of CopyOut and
clause IH4. By definition of substitution Sρ0,ArgF (ρ, r) = ρ(mem)(a) where a = ρ0(sp) +
ArgF − i. Note that a ≥ ρ(sp) + ArgG and therefore by Equation A.19 we have that
Sρ0,ArgF (ρ, r) = Sρ0,ArgF (ρ′, r), which concludes this case of the proof.

The next case is when r is a local register that is an argument of G:

|= τ2(σF2 (r)) = Sρ0,ArgF (ρ′, r) if r ≡ li ∈ {lso−ArgG+1, . . . , lso} (A.23)

In this case we have that σF2 (r) = σG2 (li−so+ArgG) and we have to consider again two
subcases depending whether li−so+ArgG is a callee-save of G or not. If it is saved then
σG2 (li−so+ArgG) = σG1 (li−so+ArgG) = σF (li) (by definition of CopyIn). Also, Sρ0,ArgF (ρ′, li) =
Sρ,ArgG(ρ′, li−so+ArgG) = Sρ,ArgG(ρ, li−so+ArgG) = Sρ0,ArgF (ρ, li). (We used two times clause
IH2 of the induction hypothesis and the callee-save condition of Equation A.19.) From
here we get the desired conclusion by using clause IH4 of the induction hypothesis if we
observe that τ2(σF (li)) = τ(σF (li)). The second subcase is when li−so+ArgG is not saved
by G. Then τ2(σG2 (li−so+ArgG)) = τ2(yj) = Sρ,ArgG(ρ′, li−so+ArgG) = Sρ0,ArgF (ρ′, li), which
concludes this case.

The last case in the proof of clause IH4 is when r is a local register sitting below the
arguments of G:

|= τ2(σF2 (r)) = Sρ0,ArgF (ρ′, r) if r ≡ li ∈ {lso+1, . . . , lLocalF } (A.24)
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In this case τ2(σF2 (li)) = τ2(zi) = Sρ0,ArgF (ρ′, li), which concludes this case and the whole
proof of clause IH4.

Next we prove clause IH1 of Equation A.20. From clause IH1 of the induction hypothesis
we have that |= τ2(σG2 (PostG) ⊃ SEF,σ0,i0(i++, σF2 , so,L)) and we need to prove that
|= τ2(SEF,σ0,i0(i++, σF2 , so,L)). For this it is sufficient to prove that |= τ2(σG2 (PostG)).
From Equation A.19 we have that PostG(ρ′) and we could get our conclusion by using
Property 4.2 if we knew that |= τ2(σG2 (r)) = Sρ,ArgG(ρ′, r) for all r ∈ RegsG ∩FV (PostG).
We distinguish two cases, as follows:

|= τ2(σG2 (r)) = Sρ,ArgG(ρ′, r) if r ∈ {r1, . . . , rR, ra, mem}

In this case σG2 (r) = σF2 (r) and Sρ,ArgG(ρ′, r) = Sρ0,ArgF (ρ′, r) and hence we can reuse the
proof of Equation A.21. The other case is when r is a argument local register (there are
no other cases because of Property 4.1).

|= τ2(σG2 (r)) = Sρ,ArgG(rho′, r) if r ≡ li ∈ {l1, . . . , lArgG}

In this case we can reuse the proof of Equation A.23 after we convert the local names
from the frame of G to that of F . This concludes the proof of clause IH1.

The proof of clause IH2 follows directly from Equation A.19 and clause IH2 of the induc-
tion hypothesis.

The proof of clause IH3 follows directly from clause IH3 of the induction hypothesis.

The proof of clause IH5 follows from Equation A.19 and the clause IH5 of the induction
hypothesis because everything that is above the frame of F is also above the frame of G
and thus could not have been modified by the call to G. This is ensured by the check of
“so” performed by VCGen.

The proof of clause IH6 follows directly from clause IH6 of the induction hypothesis.

The proof of clause IH7 follows from clause IH7 of the induction hypothesis by noticing
that the substitution τ2 is an extension of τ with only new variables and the loop map
does not change. This concludes the proof of the function call lemma.

�

Proof of the function return Lemma A.6: Note that Figure 3.2 defines a return
to be safe if the history is not empty and if SafeRETF (ρ0, ρ). The former condition is
trivially true because of the induction hypothesis. The proof of the latter safety condition
has four parts as requested by the Definition 3.4, as follows:

1. From clause IH1 of the induction hypothesis we deduce that τ(σ(PostF )). From this
and from clause IH4 of the induction hypothesis it follows that |= S(ρ, PostF ). Hence



242 APPENDIX A. SOUNDNESS OF VERIFICATION CONDITION GENERATION

from the correctness of postcondition specifications we have that PostF (ρ), which is
what we need to prove.

2. From clause IH1 of the induction hypothesis we deduce that |= τ(σ0(r)) = τ(σ(r)) for
all r ∈ CSF . Now we can use clause IH4 for σ and σ0 to deduce that S(ρ0, r) = S(ρ0, r)
for all callee-save registers.

3. ρ(sp) = ρ0(sp) follows immediately from the IH2 clause of the induction hypothesis
given that so = ArgF (as checked by the verification-condition generator).

4. The preservation of the stack follows immediately from the IH5 clause of the induction
hypothesis.

�



Appendix B

Soundness of LFi Proof Checking

In this appendix I prove that the reconstruction algorithm presented in Section 5.3 is ade-
quate for checking the validity of proofs. This proof of correctness is not just an exercise in
type-theoretic proofs. Besides the obvious purpose of ensuring the correctness of the type
reconstruction algorithm—which is not obvious by inspection only—the correctness proof
also constitutes a thorough analysis of the strengths and limitations of the algorithm.

The limitations of the algorithm are imposed mostly by the side-conditions present in
some of the rules, most notably the collection of explicit parameters, the typing of abstrac-
tions and the instantiation rules. The correctness proof can serve as a reference documenting
why each of these side-conditions is needed. In many practical cases the reconstruction algo-
rithm is used in circumstances when some of the side-conditions do not need to be enforced.
These circumstances can be discovered only after a deep understanding of the purpose of
the side conditions in the correctness proof.

The proof is given in two stages. In the first stage I prove that the reconstruction succeeds
only when there is a LFi typing derivation of the subject implicit proof. This is stated as
Theorem 5.5 and restated below:

Theorem B.1 (Correctness of proof reconstruction) If M is an LFi object such that
UVF(M) and · `r M : pf pP q⇒ · then · `i M : pf pP q.

The second stage of the proof is to show that whenever there is a LFi typing for an
implicit proof, then there exists a fully-explicit well-typed reconstruction of the proof. This
is Theorem 5.4 restated below:

Theorem B.2 Soundness of LFi typing If Γ `i M : A and PF(Γ), PF(A), then there
exists M ′ such that M ↗M ′ and Γ `LF M ′ : A.

I start with the proof of Theorem B.1 and then continue on 257 with the proof of Theo-
rem B.2. But first, I must introduce additional notation to the notation that is introduced
in Section 5.3.

243
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Notation and Conventions

I write Ψ(Γ) to denote the result of applying the substitution Ψ to a type environment Γ.
The resulting type environment is defined on Dom(Ψ(Γ)) = Dom(Γ)\Dom(Ψ), as follows:

Ψ(Γ)(x) = Ψ(Γ(x)) ∀x ∈ Dom(Γ)\Dom(Ψ)

I write Γ ` Ψ to denote that the substitution Ψ is well-typed according to a type envi-
ronment Γ, using the LFi typing rules, as follows:

Γ ` Ψ iff ∀u ∈ Dom(Ψ) then u ∈ Dom(Γ) and Ψ(Γ) `i Ψ(u) : Ψ(Γ(u))

In order to simplify the presentation of the correctness proofs in this section I make the
convention that all of the types involved are placeholder-free. This applies to types given as
part of the theorem hypotheses or types mentioned in the conclusion of helper lemmas and
theorems. Whenever new types are created, the proof shall verify this property even though
it is not expressed explicitly in the statements of the theorems. Because of this convention,
it is not necessary to check the PF side-conditions in the LFi typing judgments involved in
the following proofs. In order to keep the presentation focused I have separated a number
of helper lemmas in Section B.3 at the end of this appendix.

B.1 Correctness of LFi Type Reconstruction

The type reconstruction algorithm is expressed as five mutually recursive judgments. Not
surprisingly the correctness proof of the reconstruction algorithm consists of five mutually
dependent correctness proofs for the constituent judgments. These proofs are each by in-
duction on the structure of the corresponding judgment. Occasionally, a proof invokes the
theorem for a related judgment, in the same way as the corresponding judgment invokes a
related judgment. For the five proofs at hand the chain of theorem invocations is circular
but the derivations involved are structurally smaller, therefore the induction is well-founded.

Correctness of the Type Reconstruction Judgment

First is the correctness theorem for the main reconstruction judgment. We cannot prove the
Theorem B.1 directly. Instead we have to strengthen the statement of the theorem so that
the induction succeeds. In particular we have to allow for arbitrary typing environments Γ
and types A, possibly containing unification variables but no placeholders. The correctness
theorem is stated formally bellow:

Theorem B.3 (Correctness of the Type Reconstruction) If Γ and A are a type en-
vironment and a type respectively such that PF(Γ) and PF(A) and Γ `i A : Type and M is a
term such that UVF(M) and if Γ `r M : A⇒ Ψ then

• Γ ` Ψ, and
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• PF(Ψ), and

• Ψ(Γ) `i M : Ψ(A).

From the Theorem B.3 we can immediately prove Theorem B.1 for the empty type
environment and the empty substitution, if we note that PF(pf pP q) by the definition of
the representation function.

Proof of Theorem B.3: The proof is by induction on the structure of the derivation
D :: Γ `r M : A⇒ Ψ. There are two cases, depending on the last rule used in D.

Case: If M is an abstraction:

D =

D1

Γ, x : A `r M : B ⇒ ·
Γ `r λx.M : Πx :A.B ⇒ ·

It is obvious that the empty substitution is well-typed and placeholder-free. Because
PF(Γ) and PF(Πx : A.B), it follows that we can apply the induction hypothesis on D1

and infer that Γ, x : A `i M : B. Therefore we can also infer that Γ `i λx.M : Πx :A.B,
which is the desired conclusion.

Case: If M is not an abstraction:

D =

D1

Γ `r M ⇒ (∆ ; C ; B)

D2

Γ,∆ `r C,A ≈a B ⇒ Ψ Dom(∆) ⊆ Dom(Ψ)

Γ `r M : A⇒ Ψ

We follow the sequence of deduction steps shown below:

1. Γ `i A : Type (hypothesis),

2. PF(Γ) and PF(A) and UVF(M) (hypothesis),

3. Using Theorem B.6 on D2 we infer that

4. For all N : A′ from C there exist Ψ1 and Ψ2 such that Ψ1(Γ,∆) `i Ψ1(N) : Ψ1(A′)⇒ Ψ2

5. With 2, 4 we apply Theorem B.7 on D1 (with ∆′ = ∅) and infer that

6. Γ,∆ `i B : Type, and

7. PF(∆), and

8. PF(B), and

9. For all N : A′ in C we have PF(A′) and UVF(N) and Γ,∆ `i A′ : Type
10. From 1 we infer that Γ,∆ `i A : Type.
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11. With 2, 6, 7, 8, 9 and 10 we apply Theorem B.8 on D2 and infer that

12. Γ,∆ ` Ψ, and

13. Ψ(A) ≡β Ψ(B), and

14. PF(Ψ), and

15. For all N : A′ in C we have Ψ(Γ,∆) `i N : Ψ(A′). Also using Lemma B.22 with
Dom(∆) ⊆ Dom(Ψ) we infer that Ψ(Γ) `i N : Ψ(A′).

16. With 9, 12, 14, 15 we apply Theorem B.9 and infer that

17. Ψ(Γ) `i M : Ψ(B)

18. Because all unification variables from ∆ are new, they cannot occur in Γ or in B.
Therefore Ψ(Dom(Γ)) = Ψ

∣∣
Dom(Γ) (Γ) and Ψ(B) = Ψ

∣∣
Dom(Γ) (B). Therefore we get

one of the desired conclusions.

19. With 12 and using Lemma B.22 we prove that Γ ` Ψ
∣∣
Dom(Γ) . Also from 14 we can

easily prove that PF(Ψ
∣∣
Dom(Γ) ).

�

Correctness of Unification

The most important judgments of the type reconstruction algorithm presented in the previous
section are the unification judgments. Their properties are crucial for the correctness of the
reconstruction and their implementation determine the performance of the reconstruction.
The key property of the unification judgments is that the resulting substitution preserves
the types of the unification variables, and as a consequence, the algorithm does not need to
type check the resulting substitution.

The properties of interest of the unification judgments are expressed in Theorem B.4. The
first two parts of the theorem deal with atomic unification of types and objects respectively.
The last part deals with normal unification of objects.

Theorem B.4 (Correctness of Unification) All of the types mentioned in the statement
below are assumed to be placeholder-free.

(a) If A1 ≈a A2 ⇒ Ψ such that Γ `i A1 : K1 and Γ `i A2 : K2 then

• Γ ` Ψ, and

• PF(Ψ), and

• Ψ(A1) ≡β Ψ(A2), and

• Ψ(K1) ≡β Ψ(K2)
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(b) If M1 ≈a M2 ⇒ Ψ and PF(M1) and PF(M2) such that Γ `i M1 : A1 and Γ `i M2 : A2

then

• Γ ` Ψ, and

• PF(Ψ), and

• Ψ(M1) ≡β Ψ(M2), and

• Ψ(A1) ≡β Ψ(A2)

(c) If M1 ≈M2 ⇒ Ψ and PF(M1) and PF(M2) such that Γ `i M1 : A and Γ `i M2 : A then

• Γ ` Ψ, and

• PF(Ψ), and

• Ψ(M1) ≡β Ψ(M2)

Such a complicated statement is required in order to prove the theorem by induction.
All of the actual uses of the Theorem B.4 are in the form of a much simpler corollary
shown below. The corollary follows immediately from the case (a) of Theorem B.4 by taking
K1 = K2 = Type.

Corollary B.5 If A1 ≈a A2 ⇒ Ψ such that Γ `i A1 : Type and Γ `i A2 : Type then

1. Γ ` Ψ, and

2. PF(Ψ), and

3. Ψ(A1) ≡β Ψ(A2).

Proof of Theorem B.4: The proof is by induction on the structure of the unification
derivations. We only show here the cases for the unification of objects (cases b and c).
The proof for atomic unification of types follows the same patterns.

Case:

D =
c ≈a c⇒ ·

The empty substitution is well-typed in any environment and is also placeholder-free. By
hypothesis we know that Γ `i c : A1 and Γ `i c : A2. From Lemma B.16 (stated on
page 258) we conclude that A1 ≡β A2. The rest of the conclusion follows immediately.

Case:

D =
x ≈a x⇒ ·

Again, the typing condition on the resulting substitution is vacuously true. By hypothesis
we know that Γ `i x : A1 and Γ `i x : A2. From Lemma B.16 we infer that A1 ≡β A2,
which concludes the proof of this case.
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Case:

D =

D1

[N�x]M ≈a M ′ ⇒ Ψ

(λx.M) N ≈a M ′ ⇒ Ψ

For the purpose of the correctness proof we only consider the β-reduction case with only
one argument (n = 1). The general case is proved in a similar way. By hypothesis we
have that Γ `i (λx.M) N : A1. From Lemma B.16 we infer that Γ `i λx.M : Πx : A.B

and Γ `i N : A and [N�x]B ≡β A1. Because PF((λx.M) N) we infer that PF(λx.M)

and PF(N). Therefore PF([N�x]M). Now we can use the Lemma B.17 to infer that

Γ `i [N�x]M : [N�x]B and therefore Γ `i [N�x]M : A1. Now we apply the induction
hypothesis on D1 and infer that Γ ` Ψ and Ψ(A1) ≡β Ψ(A2) and that PF(Ψ). We

also conclude from the induction hypothesis that Ψ([N�x]M) ≡β Ψ(M ′). But we have

Ψ([N�x]M) = [Ψ(N)
�x]Ψ(M) ≡β Ψ((λx.M)N), which completes the proof of this case.

Case:

D =

D1

M ≈a M ′ ⇒ Ψ

D2

Ψ(N) ≈ Ψ(N ′)⇒ Ψ′

M N ≈a M ′ N ′ ⇒ Ψ′ ◦Ψ

We follow the following sequence of deductions:

1. From Γ `i M N : A1 (hypothesis) and Lemma B.16 we get

2. Γ `i M : Πx :A.B, and

3. Γ `i N : A, and

4. [N�x]B ≡β A1.

5. From Γ `i M ′ N ′ : A2 (hypothesis) and Lemma B.16 we get

6. Γ `i M ′ : Πx :A′.B′, and

7. Γ `i N ′ : A′, and

8. [N
′
�x]B′ ≡β A2.

9. Using 2 and 6 we apply the induction hypothesis on D1. We conclude:

10. Γ ` Ψ, and

11. PF(Ψ), and

12. Ψ(Πx :A.B) ≡β Ψ(Πx :A′.B′), and

13. Ψ(M) ≡β Ψ(M ′).

14. With 3, 10 and 11 we use Corollary B.19 and deduce that Ψ(Γ) `i Ψ(N) : Ψ(A).
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15. With 7, 10 and 11 we use Corollary B.19 and deduce that Ψ(Γ) `i Ψ(N ′) : Ψ(A′), and
using 12 we also deduce that Ψ(Γ) `i Ψ(N ′) : Ψ(A).

16. From 11 we infer that PF(Ψ(N)) and PF(Ψ(N ′)). This together with 14 and 15 let us
apply the induction hypothesis on D2. We deduce that:

17. Ψ(Γ) ` Ψ′, and

18. PF(Ψ′), and

19. Ψ′(Ψ(N)) ≡β Ψ′(Ψ(N ′)).

20. From 10, 11, 17 and 18 with Lemma B.21 we get the first part of the conclusion:
Γ ` Ψ′ ◦Ψ and PF(Ψ′ ◦Ψ).

21. From 13 and using Lemma B.23 we deduce that Ψ′ ◦ Ψ(M) ≡β Ψ′ ◦ Ψ(M ′). This and
19 allow us to prove more of the conclusion: Ψ′ ◦Ψ(M N) ≡β Ψ′ ◦Ψ(M ′ N ′).

22. From 4 and using Lemma B.23 we deduce that Ψ′ ◦Ψ(A1) ≡β [Ψ
′ ◦Ψ(N)

�x]Ψ′ ◦Ψ(B).

Similarly from 8 we get that Ψ′ ◦ Ψ(A2) ≡β [Ψ
′ ◦Ψ(N ′)

�x]Ψ′ ◦ Ψ(B′). Now we can
use Lemma B.24 with 12 and 19 to get the last part of the conclusion: Ψ′ ◦Ψ(A1) ≡β

Ψ′ ◦Ψ(A2).

This concludes all of the cases regarding the atomic unification. The rest of the cases are
for normal unification. The only interesting cases here are the abstraction and instantia-
tion cases shown below.

Case:

D =

D1

M ≈M ′ ⇒ ·
λx.M ≈ λx.M ′ ⇒ ·

The empty substitution is well-typed and also placeholder-free. By hypothesis Γ `i λx.M :
A and Γ `i λx.M ′ : A. From Lemma B.16 we have that A = Πx :A1.A2 and Γ, x : A1 `i
M : A2 and also Γ, x : A1 `i M ′ : A2. Now we can use the induction hypothesis on D1 and
infer the required conclusion: M ≡β M

′.

Case:

D =
u 6∈ FV (M)

u ≈M ⇒ u 7→M

Let Ψ = u 7→M . By hypothesis we have that Γ `i u : A and Γ `i M : A and PF(M). From
Corollary B.20 we deduce that Γ ` Ψ. Because PF(M) we can also infer that PF(Ψ).
The rest of the conclusion is trivial: Ψ(u) ≡β Ψ(M) because Ψ(M) = M .

�
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Correctness of Constraint Collection and Solving

Due to the presence of dependent types there is a close relationship between constraint
collection and constraint solving, and thus we cannot consider them separately. Intuitively,
the constraint solving judgment makes sense only if all typing constraints contain well-typed
types since, due to the dependent types, the constaint types might contain objects that are
reconstructed while solving other constraints.

Things are further complicated by not being able to assume that the constraints are
solved in the order in which they were produced. If we could assume this, then by the time a
constraint is about to be solved we could prove that the type involved is well-formed of kind
Type. We want to prove correctness for an arbitrary order of solving the constraints because
much of the power of the reconstruction originates in the ability to solve the constraints
out-of-order.

This circular dependency of the judgments complicates the correctness proof substan-
tially. Instead of being able to prove one correctness theorem for each of the two judgments,
I must state correctness as a sequence of four theorems, where each theorem establishes the
assumptions for the next. In this sequence the first (Theorem B.6) and third theorem (The-
orem B.8) refer to constraint solving and the other two (Theorem B.7 and Theorem B.9) to
constraint collection.

The first theorem says that during constraint list solving each typing constraint is eventu-
ally solved. However, depending on the particular order of solving some unification variables
may be already instantiated, hence the Ψ1.

Theorem B.6 If Γ `r C ⇒ Ψ then for each N : A′ from C there exist Ψ1 and Ψ2 such that
Ψ1(Γ) `r Ψ1(N) : Ψ1(A′)⇒ Ψ2.

Proof of Theorem B.6: The proof is by induction on the structure of the derivation
D :: Γ `r C ⇒ Ψ. The conclusion is vacuously true if C is empty. Also, if the last rule
in D is the reordering rule, the induction hypothesis proves the conclusion directly. The
other two cases are similar so I only show here the case when the last rule in D is solving
a typing constraint.

Case:

D =

D1

Γ `r M : A⇒ Ψ

D2

Ψ(Γ) `r Ψ(C)⇒ Ψ′

Γ `r C,M : A⇒ Ψ′ ◦Ψ

I show the conclusion separately for M : A and then for all of the other typing constraints
N : A′ from C. If M : A is the considered constraint in C,M : A then the conclusion
follows immediately with Ψ1 = · and Ψ2 = Ψ. Otherwise let N : A′ be a typing constraint
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in C. Then Ψ(N) : Ψ(A′) is a constraint in Ψ(C). By induction hypothesis on D2 we get
that there exists Ψ′1 and Ψ′2 such that Ψ′1(Ψ(Γ)) `r Ψ′1(Ψ(N)) : Ψ′1(Ψ(A′)) ⇒ Ψ′2. This
proves our conclusion with the required substitutions Ψ1 = Ψ′1 ◦Ψ and Ψ2 = Ψ′2.

�

I continue now with a theorem about the constraint collection judgment. Using the
result of the previous theorem I show that all of the types in the resulting constraint list are
well-formed and of kind Type.

Theorem B.7 If Γ `r M ⇒ (∆ ; C ; B) with PF(Γ) and UVF(M) and for all N : A′ in C
there exist Ψ1, Ψ2 and ∆′ such that Ψ1(Γ,∆,∆′) `r Ψ1(N) : Ψ1(A′)⇒ Ψ2 then

• Γ,∆ `i B : Type, and

• PF(∆), and

• PF(B), and

• For all N : A′ in C we have

– PF(A′), and

– UVF(N), and

– Γ,∆ `i A′ : Type.

This theorem establishes crucial properties required by the unification invoked from the
constraint solving judgment. It is here that side-condition on the application to explicit
parameter is used. The main purpose of the side-condition is to allow us to infer that
the type of an explicit parameter that becomes part of dependent type makes that type
well-formed.

Proof of Theorem B.7: The proof is by induction on the structure of the derivation
D : Γ `r M ⇒ (∆ ; C ; B). There are 4 cases depending on the last rule used in
D. The cases for constants and variables follow immediately as the ∆ and the list of
constraints are empty and because PF(Γ). The only interesting cases are those that deal
with application. In the case of an explicit application, we need the helper Theorem B.10
that states the reconstruction is reduced to LFi typing if the objects and types involved
are fully explicit.

Case:

D =

D1

Γ `r M ⇒ (∆ ; C ; Πx :A.B)

Γ `r M ∗ ⇒ (∆, u : A ; C ; [u�x]B)
u is a new unification variable

We can immediately apply the induction hypothesis on D1 and follows the sequence of
steps shown below:
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1. Γ,∆ `i Πx :A.B : Type, and

2. PF(∆), and

3. PF(Πx :A.B), and

4. For all N : A′ in C we have Γ,∆ `i A′ : Type, and PF(A) and UVF(N).

5. Because u is new we can transform 4 in Γ,∆, u : A `i A′ : Type, which proves part of
the conclusion.

6. Similarly, from 1 we deduce that Γ,∆, u : A `i [u�x]B : Type, which is another part of
the conclusion.

7. From 2 and 3 we can show that PF(∆, u : A)

8. From 3 we show that PF([u�x]B), which concludes the proof of this case.

Case:

D =

D1

Γ `r M ⇒ (∆ ; C ; Πx :A.B)
x ∈ FV (B) ⊃ (PF(N) and UVF(A)

and UVF(Γ(FV (N))))

Γ `r M N ⇒ (∆ ; C,N : A ; [N�x]B)

From the induction hypothesis on D1 we infer the following:

1. Γ,∆ `i Πx :A.B : Type, and

2. PF(∆) (part of the conclusion), and

3. PF(Πx :A.B), and

4. For all N ′ : A′ in C we have Γ,∆ `i A′ : Type and PF(A′) and UVF(N ′) (part of the
conclusion).

5. From 3 we can deduce that PF([N�x]B) (part of the conclusion). Note that we have
used the fact that if x ∈ FV (B) then PF(N).

6. The only part of the conclusion that remains to be proved is that Γ,∆ `i [N�x]B : Type.
If x 6∈ FV (B) then this follows immediately from 1. Otherwise is suffices to prove that
Γ `i N : A.

7. By hypothesis we have that there exist Ψ1, Ψ2 and ∆′ such that Ψ1(Γ,∆,∆′) `r Ψ1(N) :
Ψ1(A)⇒ Ψ2.

8. But UVF(A) therefore we get Ψ1(A) = A.

9. Because UVF(M N) (hypothesis) we know that UVF(N).

10. From 9 we conclude that Ψ1(N) = N .
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11. With 8 and 10 we transform 7 to Ψ1(Γ,∆,∆′) `r N : A⇒ Ψ2

12. But because UVF(N) then none of the unification variables from ∆ and ∆′ occur in
N . Therefore we can transform 11 to Ψ1(Γ) `r N : A⇒ Ψ2.

13. We know that UVF(Γ(FV (N))) therefore we can transform 12 to Γ `r N : A⇒ Ψ2.

14. With 3 we apply Theorem B.10 on 13 and deduce that Γ `i N : A. As motivated at 6
this concludes the proof of this case.

�

Next is the theorem that shows that the constraint solving judgment, when presented with
constraints whose types are well-formed, produces a well-typed substitution that satisfies the
constraints.

Theorem B.8 If Γ `r C ⇒ Ψ with

• PF(Γ), and

• For A ≈a B in C we have PF(A), PF(B) and Γ `i A : Type and Γ `i B : Type, and

• For all N : A′ in C we have UVF(N) and PF(A′) and Γ `i A′ : Type, and

then the following are true:

• Γ ` Ψ, and

• PF(Ψ), and

• For A ≈a B in C we have Ψ(A) ≡β Ψ(B), and

• For all N : A′ in C we have Ψ(Γ) `i N : Ψ(A′)

Proof of Theorem B.8: The proof is by induction on the structure of the derivation
D : Γ `r C,A ≈a B ⇒ Ψ.

The case when the last rule in D is the reordering rule poses no problems. Similarly the
case of an empty constraint list is trivial. I show next the case when the last rule in D is
solving a typing constraint.

Case:

D =

D1

Γ `r M : A⇒ Ψ

D2

Ψ(Γ) `r Ψ(C)⇒ Ψ′

Γ `r C,M : A⇒ Ψ′ ◦Ψ

Because PF(Γ), PF(A) and UVF(M) and Γ `i A : Type we can apply Theorem B.3 on D1

and infer that Γ ` Ψ, PF(Ψ) and Ψ(Γ) `i M : Ψ(A).
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Because the substitution Ψ is without placeholders and is well-typed, the constraint list
Ψ(C) satisfies all of the conditions for applying the induction hypothesis on D2 with
respect to the type environment Ψ(Γ). We deduce from the induction hypothesis that
Ψ(Γ) ` Ψ′ and PF(Ψ′) and for all N : A′ in C that Ψ′ ◦Ψ(Γ) `i N : Ψ′ ◦Ψ. The final step
is to use Lemma B.21 to conclude the proof of this case.

The case when a unification constraint is solved is very similar with the difference that
Theorem B.4 is invoked to show that the unification returns a well-typed substitution.

�

The last theorem in the correctness proof of the reconstruction algorithm shows why the
existence of a well-typed substitution defined on all locally introduced unification variables
is enough to guarantee the well-typedness of the original term.

Theorem B.9 If Γ `r M ⇒ (∆ ; C ; B) and

• Γ,∆ ` Ψ, and

• PF(Ψ), and

• Dom(∆) ⊆ Dom(Ψ), and

• For all N : A′ in C we have UVF(N) and Ψ(Γ) `i N : Ψ(A′)

then Ψ(Γ) `i M : Ψ(B).

Proof of Theorem B.9: The proof is by induction on the structure of the derivation
D :: Γ `r M ⇒ (∆ ; C ; B). The cases of a constant or a variable follow immediately
from the hypothesis. I consider next the cases of application to explicit terms and to
placeholders.

Case:

D =

D1

Γ `r M ⇒ (∆ ; C ; Πx :A.B)
x ∈ FV (B) ⊃ (PF(N) and UVF(A)

and UVF(Γ(FV (N))))

Γ `r M N ⇒ (∆ ; C,N : A ; [N�x]B)

We apply the induction hypothesis on D1 and conclude that Ψ(Γ) `i M : Ψ(Πx :A.B).
From the hypothesis we have that UVF(N) and Ψ(Γ) `i N : Ψ(A). From the application

rule in LFi, and because UVF(N) we deduce that Ψ(Γ) `i M N : Ψ([N�x]B). Note that

the newly introduced type [N�x]B is without placeholders because if x occurs in B then
PF(N).



B.1. CORRECTNESS OF LFi TYPE RECONSTRUCTION 255

Case:

D =

D1

Γ `r M ⇒ (∆ ; C ; Πx :A.B)

Γ `r M ∗ ⇒ (∆, u : A ; C ; [u�x]B)
u is a new unification variable

Let Ψ′ = Ψ|Γ,∆ . We follow a sequence of deductions as follows:

1. From Γ,∆, u : A ` Ψ (hypothesis) and Dom(∆, u : A) ⊆ Dom(Ψ) (hypothesis) we
deduce:

2. Ψ(Γ,∆, u : A) `i Ψ(u) : Ψ(A), and

3. Dom(∆) ⊆ Dom(Ψ′).

4. Because Dom(∆, u : A) ⊆ Dom(Ψ) we have that Ψ(Γ,∆, u : A) = Ψ(Γ).

5. From 2 and 4 we infer that Ψ(Γ) `i Ψ(u) : Ψ(A).

6. From Lemma B.22 and 1 we have that Γ,∆ ` Ψ′. Also because u is new it cannot
appear in C or in Γ. Therefore we can deduce that for all N : A′ in C we have
Ψ′(Γ) `i N : Ψ′(A′). Thus we can apply the induction hypothesis on D1 and conclude
that

7. Ψ′(Γ) `i M : Πx :Ψ′(A).Ψ′(B).

8. Again, because u is new it cannot appear in Γ, M , A or B. Therefore, from 7 we
deduce that Ψ(Γ) `i M : Πx :Ψ(A).Ψ(B).

9. Recall that we assume that all types involved are without placeholders. Thus, we have
PF(Ψ′(A)) and therefore PF(Ψ(A)).

10. Now we can use the implicit application rule of LFi with 5, 8 and 9 and with the

placeholder replacement being Ψ(u). The resulting type is [Ψ(u)
�x]Ψ(B) = Ψ([u�x]B).

11. This case is not complete until we verify that the newly introduced type Ψ([u�x]B) is
without placeholders. This follows immediately from the PF(Ψ(Πx :A.B)) and PF(Ψ).

Note that this is the place where we require the property that Ψ be well-typed and defined
for all variables in ∆.

�

This concludes the skeleton of the correctness proof for the reconstruction algorithm.
Next are the proofs of the helper lemmas used above in the correctness proofs. I start with
a family of theorems mirroring the correctness proof but in the special case when the terms
involved are fully-reconstructed.



256 APPENDIX B. SOUNDNESS OF LFi PROOF CHECKING

Correctness in the Fully-Explicit Case

The correctness of the reconstruction algorithm use the fact that reconstruction is correct
in the special case when both the LF term and type involved do not contain placeholders
or unification variables. This is stated below as Theorem B.10. The correctness proof in
the fully-explicit form follows the same pattern as the proof in the general case, with some
simplifications. We do not show here a complete proof of this case. We just state the lemmas
involved.

Theorem B.10 If Γ `r M : A ⇒ Ψ and PF(Γ), PF(M), PF(A), UVF(M), UVF(A) and
UVF(Γ(FV (M))) then Ψ = · and Γ `i M : A.

Proof: The proof of this theorem is done similarly to that of Theorem B.1 by induction on
the derivation D : Γ `r M : A ⇒ Ψ. The abstraction case is simple. For the application
case we need a series of auxiliary lemmas about the constraint collection and solving
judgments in the case of fully-explicit terms and types. These lemmas are stated without
proof below.

�

Lemma B.11 If Γ `r M ⇒ (∆ ; C ; B) such that PF(Γ), PF(M), UVF(M) and also
UVF(Γ(FV (M))) then

• ∆ = ·, and

• PF(B) and UVF(B), and

• For all N : A′ in C we have that PF(N), UVF(N), PF(A′) and UVF(A′) and also that
UVF(Γ(FV (N))).

The intuition behind Lemma B.11 is that because M does not have placeholders, no
unification variables are introduced, hence ∆ = ·. Also the terms in C are subterms of
M and therefore do not contain placeholders or unification variables and also all their free
variables have types that do not contain unification variables. The types in C and B are
constructed from fully-explicit types (because PF(Γ) and UVF(Γ(FV (M)))) with subterms
of M , hence the lack of a condition on types.

Lemma B.12 If A ≈a B ⇒ Ψ and UVF(A) and UVF(B) then

• Ψ = ·, and

• A ≡β B
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The proof of Lemma B.12 is induction on the structure of the unification judgment. The
intuition behind this lemma is that if the terms to be unified do not contain unification
variables then the resulting substitution must be empty. In this case the two terms are
β-equivalent.

Lemma B.13 If Γ `r C,A ≈a B ⇒ Ψ and PF(Γ), PF(A), UVF(A), PF(B), UVF(B) and
for all N : A′ in C we have PF(N), UVF(N), PF(A′), UVF(A′) and UVF(Γ(FV (N))) then

• Ψ = ·, and

• A ≡β B, and

• Γ `i N : A′ for all N : A′ in C

The proof of Lemma B.13 is by induction on the structure of the derivation Γ `r C,A ≈a
B ⇒ Ψ. When a unification is solved we use Lemma B.12 to conclude that the resulting
substitution is empty and that the unified types are β-equivalent. When a typing constraint is
solved then the hypothesis provides all of the conditions necessary to apply Theorem B.10 and
conclude again that the substitution is empty and that the typing constraints are satisfied.

Lemma B.14 If Γ `r M ⇒ (· ; C ; B) and A ≡β B with PF(A) and for all N : A′ in C we
have Γ `i N : A′ and PF(A′) then Γ `i M : A.

The proof of Lemma B.14 is by induction on the structure of the collection derivation.
Again, placeholders are disallowed and because the typing constraints from C are satisfied
we can immediately prove the conclusion using the typing rules of LFi.

B.2 Soundness of LFi typing

In addition to proving that the reconstruction algorithm only succeeds when there is an LFi
typing derivation for the presented proof, we also need to show that the existence of an
LFi typing derivation guarantees the existence of a well-typed fully-explicit LF form for the
proof. Only then we can use the adequacy of LF representation theorems that guarantee
the provability of the verification condition. This theorem is first stated on page 92 as
Theorem 5.4 and is proved in this section. For clarity I restate the theorem below:

Theorem B.15 Soundness of LFi typing If Γ `i M : A and PF(Γ), PF(A), then there
exists M ′ such that M ↗M ′ and Γ `LF M ′ : A.
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Proof: The proof is by induction on the structure of the derivation D : Γ `i M : A. The
case of constants or variables are trivial. In the case of the β-equivalence rule we use the
induction hypothesis with the assumption that PF(A). Then we use the LF β-equivalence
rule. In the case of an abstraction we use the assumption PF (Πx :A.B) to ensure that
we can apply the induction hypothesis. The remaining cases deal with the application to
a term or a placeholder.

Case:

D =
Γ `i M : Πx :A.B Γ `i N : A PF(A)

Γ `i M ∗ : [N�x]B

Because of the hypothesis PF(A) we can apply the induction hypothesis on D2 and deduce
that there exists N ′ such that N ↗ N ′ and Γ `LF N ′ : A.

From the theorem assumption we have that PF([N�x]B). From here we infer that PF(B)
and then that PF(Πx :A.B). This justifies applying the induction hypothesis to D1 and
inferring that there exists M ′ such that M ↗M ′ and Γ `LF M ′ : Πx :A.B. Now using the

LF application rule we infer that Γ `LF M ′ N ′ : [N
′
�x]B. It is evident that M ∗ ↗M ′ N ′.

What remains to be proved is that [N
′
�x]B ≡β [N�x]B. This is that case if x 6∈ FV (B).

Otherwise, we know from the hypothesis that PF([N�x]B) which implies that PF(N) and
then that N = N ′.

The case when the last rule in D is an application to a term is very similar to the case
presented above.

�

B.3 Auxiliary Lemmas

The following lemmas are used in the correctness proof of the type reconstruction algorithm
in Section B.1. Most of them are trivial to prove and therefore we omit their proof. Recall
also that we made the convention that all of the types involved in the statements of the
theorems and lemmas are placeholder-free.

The first lemma establishes canonical forms of types in LFi judgments.

Lemma B.16 If Γ `i M : A then the following are true:

• If M = x then Γ(x) ≡β A

• If M = c then Σ(c) ≡β A

• If M = M1 M2 then Γ `i M1 : Πx :A1.A2 and Γ `i M2 : A1 and [M2�x]A2 ≡β A

• If M = λx.N then A = Πx :A1.A2 and Γ, x : A1 `i M : A2.
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Next there is a lemma saying that β-reduction “preserves” the type of the expression.

Lemma B.17 If Γ `i λx.M : Πx : A.B and Γ `i N : A with PF(N) then Γ `i [N�x]M :

[N�x]B.

We continue with a crucial lemma used throughout the proof of correctness. This lemma
says that if a substitution is well-typed on certain unification variables then it preserves the
typing relation.

Lemma B.18 Let D = Dom(Ψ) ∩ FV (M) if PF(M) and Dom(Ψ) otherwise. If PF(Ψ)
and Ψ(Γ) `i Ψ(u) : Ψ(Γ(u)) for all u ∈ D and if Γ `i M : A then Ψ(Γ) `i Ψ(M) : Ψ(A).

Proof of Lemma B.18: The proof is by induction on the structure of the derivation
D :: Γ `i M : A. The case of a constant is trivial because the constant and its type do not
change by substitution.

More interesting cases are those when M is a variable or a unification variable. In the
case of a normal variable, or a unification variable outside Dom(Ψ), the conclusion follows
immediately from the definition of Ψ(Γ). In the case of a unification variable that is in
Dom(Ψ) the conclusion follows from the hypothesis because that variable is also in FV (M)
and therefore in D.

We consider the other cases below: Case:

D =

D1

Γ `i M : A A ≡β B PF(A)

Γ `i M : B

In this case we can apply the induction hypothesis on D1 and infer that Ψ(Γ) `i Ψ(M) :
Ψ(A). Note that we have used the hypothesis PF(A) to ensure that our implicit convention
about types is preserved. By Lemma B.23 we get that Ψ(A) ≡β Ψ(B). Because PF(Ψ) and
PF(A) we deduce that PF(Ψ(A)). We can therefore use the LFi rule for beta-equivalence
and infer that Ψ(Γ) `i Ψ(M) : Ψ(B).

Case:

D =
Γ, x : A `i M : B

Γ `i λx.M : Πx :A.B

The set of unification variables D is the same for λx.M and M . We know that for all
u ∈ D we have Ψ(Γ) `i Ψ(u) : Ψ(Γ(u)). Because x cannot occur in Ψ we deduce that
Ψ(Γ, x : A) `i Ψ(u) : Ψ((Γ, x : A)(u)) for all u ∈ D. We can therefore apply the induction
hypothesis and conclude that Ψ(Γ, x : A) `i Ψ(M) : Ψ(B). From here we can use the
abstraction rule of LFi and deduce the desired conclusion Ψ(Γ) `i Ψ(λx.M) : Ψ(Πx :A.B).
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Case:

D =

D1

Γ `i M : Πx :A.B

D2

Γ `i N : A PF(A)

Γ `i M N : [N�x]B

We know that PF(M N) iff PF(M) and PF(N). We can use the induction hypotheses
both on D1 and D2 because the free variables of M and N are among those of M N .
Because PF(A) and PF(Ψ) we have that PF(Ψ(A) which can be used together with the

induction hypotheses to infer the desired conclusion Ψ(Γ) `i Ψ(M N) : Ψ([N�x]B). Note

that by our implicit convention on types we have that PF([N�x]B) which implies that
PF(B) and also that PF(Πx :A.B).

Case:

D =

D1

Γ `i M : Πx :A.B

D2

Γ `i N : A PF(A)

Γ `i M ∗ : [N�x]B

Note that in this case we do not have PF(M ∗) and therefore we must have Γ ` Ψ.
We can therefore apply the induction hypothesis for the derivation D1 and infer that
Ψ(Γ) `i Ψ(M) : Πx : Ψ(A).Ψ(B). From the induction hypothesis on D2 we infer that
Ψ(Γ) `i Ψ(N) : Ψ(A). From here we follow the same steps as in the previous case. Note
that Ψ(M ∗) = Ψ(M) ∗.

�

The Lemma B.18 is not actually used in that form. All its uses are in the form of two
corollaries stated and proved below.

Corollary B.19 If Γ `i M : A and Γ ` Ψ with PF(Ψ) then Ψ(Γ) `i Ψ(M) : Ψ(A).

Proof of Corollary B.19: The corollary follows immediately from Lemma B.18 if we
note that D ⊆ Dom(Ψ) and that Γ ` Ψ implies that for all u ∈ Dom(Ψ) we have
Ψ(Γ) `i Ψ(u) : Ψ(Γ(u)).

�

Corollary B.20 If Γ `i u : A and Γ `i M : A with PF(M) and u 6∈ FV (M) then Γ `i u 7→M .

Proof of Corollary B.20: Let Ψ = u 7→M . Because PF(M) we can apply Lemma B.18
with D = Dom(Ψ) ∩ FV (M) = ∅ and we infer that Ψ(Γ) `i Ψ(M) : Ψ(A). But because
u 6∈ FV (M) we have that Ψ(M) = M = Ψ(u). Therefore Γ ` Ψ.

�
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We continue with two lemmas dealing with typing substitution. The first is concerned
with the well-typedness of a composition of two substitutions. The second one deals with
restricted substitutions.

Lemma B.21 If Γ ` Ψ and Ψ(Γ) ` Ψ′ with PF(Ψ) and PF(Ψ′) then Γ ` Ψ′ ◦ Ψ and
PF(Ψ′ ◦Ψ).

Proof of Lemma B.21: It is obvious that PF(Ψ′ ◦ Ψ). To prove that Γ ` Ψ′ ◦ Ψ
consider a unification variable u ∈ Dom(Ψ′ ◦ Ψ). Then either u ∈ Dom(Ψ), in which
case Ψ(Gamma) `i Ψ(u) : Ψ(Γ(u)) and by Lemma B.18 we get the desired conclusion, or
u ∈ Dom(Ψ′)\Dom(Ψ), in which case Ψ′(Ψ(Γ)) `i Ψ′(u) : Ψ′(Ψ(Γ(u))).

�

Lemma B.22 If Γ,∆ ` Ψ and Dom(∆) ⊆ Dom(Ψ) then Ψ(Γ,∆) = Ψ(Γ) = Ψ
∣∣
Dom(Γ) (Γ)

and Γ ` Ψ
∣∣
Dom(Γ) .

Proof of Lemma B.22: It is easy to prove that Ψ(Γ,∆) = Ψ(Γ) using the definition
of substitution applied to type environments. Also it must be the case that Γ does not
contain any unification variable contained in ∆, thus we get Ψ(Γ) = Ψ

∣∣
Dom(Γ) (Γ).

For the second part, let u ∈ Dom(Ψ) ∩ Dom(Γ). We have that Ψ(Γ) `i Ψ(u) : Ψ(Γ(u)).
Because nothing in ∆ can occur in Γ we conclude that Γ ` Ψ

∣∣
Dom(Γ) .

�

The last lemmas required are concerned with β-equivalence. Their proof is trivial so I
state them here without proof.

Lemma B.23 If M ≡β N then Ψ(M) ≡β Ψ(N).

Lemma B.24 If M ≡β N and M ′ ≡β N
′ then [M�x]M ′ ≡β [N�x]N ′.
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