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ABSTRACT

The Human Genome Project has extended the reach of modern genetics by providing an
infrastructure of high-resolution genetic maps. Scientists can now find genes using these
maps by genotyping — experimentally assaying the genome at mapped genetic markers.
To track the inheritance patterns of a genetic disorder, individual genomes are genotyped at
high resolution using densely distributed genetic markers, such as the microsatellites.
However, because of the complexity associated with the inheritance patterns of most
common human genetic diseases, hundreds of thousands of genotyping experiments are
typically required to genetically localize even one disorder on the genome.

The full automation of microsatellite-based genotyping is currently limited by the human
scoring bottleneck: every experiment must be viewed by a human eye. The intricate
genotyping data, densely multiplexed for throughput, is confounded with intrinsic data
artifacts such as PCR stuttering. Human experts are required to visually decipher the
highly complex data patterns that resulted. It is estimated that over half the cost of
microsatel lite-based genotyping is due to this human scoring effort.

We have developed and implemented novel computer-based analysis methods that
computationally solve the various problems associated with the microsatellite scoring
bottleneck. Our system, FAST-MAP, is a platform-independent fully automated
genotyping system that accurately calls alleles from quantitative microsatellite data. FAST-
MAP has been extensively tested and used by scientists worldwide to generate genotypes
with high accuracy from real data generated in high throughput genetic laboratories. With
FAST-MAP, we have shown that by appropriately modeling and representing genotype
data, powerful computational strategies can overcome key molecular biology bottlenecks
and significantly advance the rapid localization of genes across the whole human genome.
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1. Introduction

Current progress of the Human Genome Project (Hoffman, 1994; Jordan, 1992; Watson,
1990) has resulted in the construction of highly useful genetic and physical maps (Gyapay
et al., 1994; Matise et al., 1994; NIH/CEPH Collaborative Mapping Group, 1992) which,
for the first time, enabled the routine isolation of the human genes. Using the genetic
maps, geneticists can systematically isolate the causative genes for genetic diseases (Davies
et al., 1994; Lander and Schork, 1994) and (eventually) develop effective strategies for
diagnosis, treatment, and prevention of the diseases by understanding the disease
biochemistry from the causative genes.

Key to the construction and use of the genetic mapsis the ability to rapidly and accurately
sample points of interest on achromosome, i.e., "genotype”. The geneticist uses these
genomic sample points, or "genetic markers', to assess the inheritance patterns of
chromosomal segments between related individuals to discover possible disease gene
locations on the genome. For complex genetic diseases (e.g. diabetes), the associated
complicated inheritance patterns must be disambiguated by sampling the genome at very
high resolution. Currently, to map a complex disease, 300 to 500 genetic markers such as
microsatellite markers (Weber and May, 1989) are sampled along the chromosomes for
every individual in the study (Hyder et al., 1991; Todd, 1994). This number of markersis
expected to increase ten-fold to 3,000 markers or more as the resolution of genetic maps
improves. The number of individualsin a disease study, currently ranging between 500
and 5,000, will also increase as more complex (but common) genetic diseases are being
studied. Thus, to study just one disease, millions of genotyping experiments must be
performed and assayed rapidly. Itistherefore critical to fully automate the genotyping
process, as there are thousands of common complex genetic diseases in humans that must
be studied.

1.1. Problem

There are two major steps in the genotyping process:

1. Generation: Thefirst step is data generation, which involves setting up and running the
genotyping experiments in the laboratories. For each experiment, DNA samples from



individualsin the study areisolated, purified, and then PCR-amplified (Mulliset al.,
1986)with dye-labeled primers. By choosing the appropriate primers for PCR, a
specific region of the DNA, which usually corresponds to a genetic marker, can be
selectively amplified to create millions of copies of the specified (marker) DNA region
for experimental analysis. The resulting PCR mixture is then loaded onto
polyacrylamide gels, on which a process called electrophoresis separates out the DNA
fragments by size. For signa detection, the primers were tagged with radioactive
elements or fluorescent dye molecules so that data can be captured by exposure to afilm
or by laser sensors. To generate huge amounts of data rapidly, hundreds to thousands
of genotyping experiments are typically multiplexed onto asingle gel for maximal
throughput.

2. Anaysis. The second step isdataanalysis. Thisinvolves (i) searching the scanned gel
images for regions containing data for each genotyping experiments multiplexed on the
gdl, (ii) calibrating the genotyping data using known size standardsto label the datain
molecular units, and (iii) parsing the complex data patterns for each experiment to
extract the underlying genotypes. Because of the high degree of data multiplexing and
the inherent data artifacts, analysis of genotyping datais alabor-intensive process that
has precluded automation. This data analysis step, which we will refer to asthe
"genotyping problem", is the problem that we will solve in this dissertation. We will
use the phrase "genotyping process' to refer to both running the PCR and gel
electrophoresis experiments ("generation”) and analyzing the data generated
("analysis").

To find disease genes, athird step follows the genotyping process:

3. Discovery: Once thousands to millions of genotypes of individualsin a population
become available, we can trace the chromosomal inheritance patterns among
individuals. Together with the inheritance patterns of aphysical trait (e.g. the
affectation of a genetic disease), we can statistically localize regions on the
chromosomes that contain the candidate genes for the trait. The more genotyping data
used in tracing inheritance, the higher the resolution of the candidate chromosomal
segments that narrow down the disease gene search.



Tremendous efforts have already been expended in automating the data generation step

(step 2):

* machinery: robot armsare used to handle DNA samples with high precision; PCR
machines are employed to purify and amplify the DNA samples with great efficiency;
sophisticated DNA sequencing machines are used to run the genotyping gels to directly
generate digitized data for computer analysis; and

* molecular biology: experimental methods and reagents specially enhanced for high
throughput automated genotyping are used. For example, AmpliTag Gold, an enzyme
for PCR amplification, isinactive at room temperature so that amplification reaction
mixes may be assembled and pipetted in advance without fear of contamination for high
throughput set-up. Experimental methods such as the reverse primer modification
method (Magnuson et al., 1996) that usestailed reverse primers to eliminate the "plus-
A" artifacts from the data, greatly improves automatic alele caling by generating allele
patterns that can be easily called.

The gene discovery problem (step 3) has a so been well-studied: there are many well-
established computer programs such as LINKAGE (Ott, 1991; Terwilliger, 1994),
MENDEL (Langeet al., 1988), SIBPAL (S.A.G.E., 1997) , and GENEHUNTER
(Kruglyak et al., 1996) that are already widely used for automating the gene discovery (at
least for simple or Mendelian diseases). The key bottleneck that remainsis the step
between data generation and gene discovery: the analysis of the genotyping data (step 2),
which has yet to be fully automated. Nearly all genetic laboratories require at least an
experienced human technician to visually inspect and analyze the gel data. Thisrequisite
manual labor attributes to roughly half of the cost (about $2-3 total per genotype), while
increasing the error, time, and tedium.

Attempts to solve the genotyping problem have been unsuccessful because of the high
degree of data multiplexing and the various confounding data artifacts. To automate the
analysis of genotyping data, we have to overcome the following key difficulties:

» Datatracking. Because of the large quantities of genotypes necessary for genetic
studies, high throughput data generation has been the main focus in genotyping.
Thermocyclers (e.g. PE 9600 and MJ tetrad) which perform high throughput PCR and
integrated catalyst machines (ABI/877) which handle both the liquid handling and
thermal cycling process have greatly increased the number of genotyping experiments
that can be prepared in alaboratory daily. Advancesin genotyping technology enable



hundreds to thousands of these genotyping experiments to be multiplexed onto asingle
gel. The PCR products are loaded onto different lanes on asingle gel, conducted in
multiple non-overlapping windows on asingle lane, and even run in parallel in the
same lane and window by tagging the DNA for different experiments with
distinguishing fluorescent labels. It isanontrivia task to automatically localize and
extract the data for each of the highly multiplexed experiments from agel for analysis.
Even state-of-the-art genotyping systems currently rely on human techniciansto
manually track the lanes on the gels and identify the molecular weight standards used
for caibrating the lanes into molecular size units ("base pairs’, or bps). Thisisonly a
temporary measure, as the total number of experiments that can be packed onto asingle
gel will continue to increase (e.g. from 48 to 96) such that even manual tracking may
soon become infeasible.

Sizing precision. Microsatellites, the commonly used genetic markers for genotyping,
have alleles (i.e. molecular values) that vary in sizes of 2-4 bp (i.e. approximately 1%
differencein size). Molecular size standards technologies (e.g. Genescan-500,
Bioventures) for sizing the DNA can currently only provide up to 20-50 bp resol ution.
The exact alele sizes of DNA must be interpolated from molecular weight calibration
curves of inadequate resolution, incurring interpolation errors.

Binning consistency. In microsatellite genotyping, the allele sizes are discrete values
(i.e. each allele must be awhole number in bp), but the measured allele sizes of the
DNAs are real numbers estimated from low-resolution size standards calibration curve.
These real-numbered values must be mapped to unique integral labels or "alele bins'.
The conventional approach of rounding the estimated allele sizesto the nearest integers
can be ambiguous for allele sizes with large rounding errors, and inconsistent allele
binning is costly asit can reduce the power to detect linkage or give rise to inflated map
lengths (Buetow, 1991).

PCR stuttering. A magjor limitation of using microsatellite markers, especiadly the
dinucleotide repeat markers, is the inherent stutter (or shadow) bands associated with
the PCR amplification of the DNA samples. With a genotype containing two closely-
spaced alees, the stutter bands at one alele overlap with those at the other allele,
resulting in a convoluted stutter pattern that is difficult to decipher even to the human
eye. Assuch, many geneticists have resorted to using the less informative trinucleotide



1.2.

and tetranucleotide repeat markersinstead of the dinucleotide repeat markers, primarily
because of the reduced PCR stuttering typically observed with the former.

Pattern specificity. Pattern characteristics such as the shape of the stutter trails, and the

relative amplification of two allelesin a genotype, may vary from one allele classto
another. In huge studies where there are hundreds of markers (thousands of allele

classes) to be genotyped, allele calling can be a highly cognitive and visual task, as
there are many specific patterns that have to be recognized and distinguished.

Machine portability. Each commercial DNA sequencing machine typically comes with
its own highly specific and labor intensive genotyping software (e.g. the GeneScan
AnaysGENOTY PER software for the ABI machines, the Fragment Manager
software for the Pharmacia ALF machines) that takes time and effort for an incoming
laboratory technician to learn. A generalized genotyping system that is portable
between different DNA sequencers and experimental setups (and preferably, also runs
on different computer platforms) would greatly lower the learning cost when different
sequencers or experimental setups are used in alaboratory.

Solution

Most of the difficulties mentioned above are limitations that cannot be eliminated
experimentally by adjusting experiment conditions or trying out different chemical reagents
in the laboratories, which is a reason why the microsatel lite genotyping problem remains
unsolved in molecular genetics. We hope, with the work in thisthesis, to bring to the
genetic laboratories an additional nontraditional problem solving tool: computational
methods. We will show how computational techniques from computer science and
artificial intelligence can be employed to overcome key molecular biology bottlenecks. To
demonstrate this, we have built a fully automated genotyping system for microsatellite
markers that is accurate, robust, and efficient for real world applications. The system has
been tested and used by real molecular geneticistsin real |aboratories to process rea data
from large scale, high throughput genotyping experiments.

The central claims of this dissertation are:



By systematically applying computationa techniques from computer science and
artificial intelligence, we can overcome key molecular biology bottlenecks, such asthe
genotyping problem.

By understanding the science and technology of genotyping, working closely with
molecular biologists, and testing on large amount of real (not ssimulated) data, we can
build a computer system to fully automate microsatellite genotyping.

By modeling the genotyping data with mathematical models based on their biological
elements, and constantly refining the models by testing with real data, we can formulate
exquisite computational solutions for the genotyping problem, and even enable new
functionality (e.g. pooled genotyping).

By using domain knowledge and data to construct refined expectations to intelligently
guide the computations, we can reduce computation-intensive tasks (e.g. 2-D lane
tracking) into tractable problems that are solvable by ssimple algorithms.

By exploiting data redundancy and abundancy, which istypical in experimental genetic
data, we can attain extra consistency and robustness to overcome spurious noise and
errors.

By employing the computer's organizational and computational capability to
simultaneously apply multiple sources of data and knowledge, we can improve the
quality of the results and provide invaluable organizational utilitiesto the human user,
especially when data sets become massive.

Finally, we a so hope that the work in this dissertation will bring us closer to the following
grand objectives:

Computer Science. Although computers are currently present in modern genetic
laboratories, they often play a passive role asthey are typically used as mere data
storage or presentation devices. Although computers are widely used in the genetic
laboratories, very little of computer science isemployed. Asthe Human Genome
Project rapidly reachesits completion, there will be an impending explosion of genetic
information. Computer science has much to offer in handling the information
explosion from this coming era of genetic revolution. As one of the first steps, in this




dissertation we use the computer to solve a major molecular genetics bottleneck. By
doing so, we hope to demonstrate that the great arsenal of computational techniquesin
computer science for problem solving and information processing can be invaluablein
solving the many data-intensive problemsin molecular genetics.

Genetics. With the work in this dissertation, full automation of genotyping becomes
possible. A tremendous amount of useful genetic data that has been too expensive to
acquire will become available to the geneticit, leading to new and challenging avenues
for molecular biology research. In addition, the associated reduction in cost may
eventually make genome scans aroutine test, accessible one day to the general pubic.
Our ultimate god is to increase health and prolong life of the public by genotyping
families, determining their risk profiles, and then moderating the environmental (or
even genetic) component of genetic disease to reduce their greatest risks. By enabling
the full automation of microsatellite genotyping, it isour hope that the work in this
thesiswill bring us one step closer to such afuture.






2. Domain

A common feature of computer science, especidly artificia intelligence, isthat it is multi-
disciplinary. Typicaly, half the battle is waged by learning about the other field. For
example, speech recognition involves the application of advanced signal processing
techniques, natural language understanding requires the awareness of linguistic theories,
and expert system construction depends on the gathering of expertise from the problem
domains. To successfully apply computer science to solve a problem from a different
domain, the versatile computer scientist must first overcome the formidabl e task of learning
an entirely different field quickly, sufficiently, and selectively.

The genotyping problem is particularly chalenging in this aspect as its domain actually

comprisesthree highly technical and inter-related fields:

» Biology: particularly, the study of the structure and organization of cellsand DNAS,

* Genetics. the study of the mechanics of heredity, and

» Biotechnology: the state-of-the-art engineering tools for investigating problemsin
biology and genetics.

In view of the large number of technical termsinvolved in the three fields, a glossary of
common technical terminology is provided at the end of this dissertation.

2.1. Biology

Life beginswith asingle cell (the zygote) which must contain sufficient programmatic
instructionsfor it to develop into a complex multi-cellular organism in due course. Inthis
section, we study how such genetic information is organized and structured in a compact
form, and how this complex information is permuted for diversity and passed on from one
generation to another.

2.1.1. Ce€ls, DNAs, and chromosomes

All living organisms are strikingly similar at the cellular and molecular levels. We are all
built from basic units called cells. Each cell isacomplex automaton capable of generating
new cellular molecules which are self-sustaining and self-replicating. The "brain” in each



cell (with the exception of bacteria) is anucleus which contain DNA (deoxyribobucleic
acid) that encodes the requisite genetic information for life.

The cell's nuclear DNAs are called the chromosomes. There are typically not one, but
severa chromosomes in each cell, forming, in effect, adistributed DNA database of genetic
information. In agiven species, the number of chromosomes s the same for al members,
for any aberration (e.g. missing one or having extra chromosomes) can be lethal. In
humans, there are twenty-three pairs of homologous (matching) chromosomes. Each
chromosome pair contains one chromosome from each parent. Collectively, the
chromosomes are known as the genome. They contain all the genetic instructions
necessary for building a complex living organism from asingle cell.

The biochemistry of the DNA has revealed an amazing fact: the complex instructions of life
are actually encoded in a deceptively simple language from an al phabet containing only four
letters: {A, C, G, T}. Each chromosome (DNA) is a macromolecule consisting two
intertwining polynucleotide chains commonly known as the "double helix" (Watson and
Crick, 1953). The nucleotides are distinguished by their bases, which can be from one of
two classes. purine (adenine, guanine) or pyrimidine (cytosine, thymine). On the double
helix, the adenine (A) on one strand is always paired to athymine (T) on the other strand,
and the guanine (G) paired to acytosine (C). Knowing the nucleotide sequence of one
DNA strand implies the sequence of the other. As such, we often refer to DNA
information as a single string containing letters from a four-letter aphabet: A, C, G, and T.

2.1.2. Genes, markers, and microsatellites

The genetic information in the human genome is organized hierarchically, as shownin
Figure 2.1. The massive 3 billion DNA letters of genetic information are partitioned into
23 chromosomes. Each chromosome is alinear sequence of thousands of DNA sentences
called genes, with large amounts of non-gene DNA sequences interspersed between the
genes. These non-gene sequences do not code for any known biological function. They
may be considered as "nonsense” biologically, but can be invaluable to scientists as genetic
markers localizing regions on the chromosomes for tracking genetic inheritance.
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Human Genome
100,000 genes
3,000,000,000 letters

23 chromosomes

------

~ 5,000 genes per chromosome
Gene| ...... Gene
~ 5,000 DNA letters per gene
......

Figure 2.1. The genetic information hierarchy in the human genome. The entire
genomic information is partitioned into 23 chromosomes. Each chromosomeisalinear
sequence of DNA letters, some of which are DNA "sentences' (genes) that encode certain
biological functions, while others are merely "nonsense" or "whitespace” |etters which
have no known biological function.

Genes
Genes are DNA sentences along the chromosomes that encode specific functions. The
"classical" genes are those that encode the recipes for constructing the proteins that the
body needs. Other genes encode functions that determine physical traits such as hair color
or increased susceptibility to heart diseases.

Genes are identically ordered along each linear chromosome for every normal human
individual. The"versions' of the genes, however, may differ from one person to another,
leading to the variationsin traits (e.g. different hair color) that are observed in the
population. These different versions of agene are called itsalleles. Every person has two
alleles at every gene locus (except for some of the genes on the sex chromosomes) in the
chromosomal pairsinherited from the parents. The genetic makeup of a person with
respect to aparticular geneis called the genotype, and it comprises two alleles for every
gene (with the exclusion of some of the genes on the sex chromosomes).

In this dissertation, we will use the term geneto refer to functional DNA. Thisincludesthe
protein-encoding and trait-determining DNA, as well as regulatory sequences such as
promoters and enhancers. Therefore, ageneis defined in this dissertation as any inherited
DNA sequence that encodes some biological function.

11



Markers
Markers are specia classes of DNA sentences that are used by geneticists as distinctive
landmarks aong the chromosomes. Some of the markers are unique DNA sequences
which occur only at a specific chromosomal location in everyone's genome (in the same
species). These unique markers (e.g. sequence tagged sites or STSs) are useful in locating
positions on the genome, and they are used extensively in physical mapping. Another type
of landmark consists of genetic loci that are highly variable (i.e., polymorphic). This
means that not everyone has the same version (alele) at that landmark location. In the
(extreme) case of a completely polymorphic marker, chromosomes originated from
different sources will inherit unique alleles. These aleles can serve as unique tags for
chromosomes sharing a common origin.

In thisthesis, we are concerned with this second type of marker for tracking inheritance.
Such amarker must express a measurable form of polymorphism so that its inheritance can
be traced in apedigree. It should also be stable, with each allele inherited intact (that is, no
mutation occurs) from parents to offspring. An ideal marker isone that is both stable and
highly polymorphic, so that its alelesreliably indicate the origin of its chromosomal
segment asiit replicatesin afamily or population through multiple generations.

A marker can be any polymorphic segment of DNA, functional or nonfunctional.
However, genes (functional DNA) are typically not very polymorphic, since any variation
can be alethal aberration eliminating the survival of the carrier. Therefore, genesare
typicaly not very useful as markers for tracking complex inheritance patterns.

Much of the DNA text, however, consists of "nonsense” sequences which do not code for
any known biological function. Long stretches of non-coding "fillers’ called introns are
found interspersed within the DNA sentences of the genes. Repetitive DNA, or repeats,
also occurs abundantly and randomly throughout the genome. The Alu sequences (Schmid
and Jelinek, 1982), VNTRs (Nakamuraet al., 1987), minisatellite arrays (Jeffreys et al .,
1985), and microsatellites (Gyapay et al., 1994; Litt and Luty, 1989; Weber and May,
1989), are some examples of repetitive DNA. The non-encoding nature of these repetitive
DNA elements leads to their relatively high degree of polymorphism; together with their
abundant occurrence in the genome, these repetitive elements are extremely useful as
genetic markers. In particular, the microsatellites, a class of repeats that are highly
polymorphic, abundant, and easily assayed (Weber and May, 1989), have been used
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routinely by the geneticists to track inheritance of genetic traitsin humans (Hearne et al .,
1992).

Microsatellites
The microsatellite family includes di-, tri-, and tetra-nucleotide repeats that are DNA words
of theform "PR*S", where Pis afixed prefix string, Sis afixed suffix string, R isthe
nucleotide unit of the repetitive sequence R* with the length of R small (e.q., 2, 3, or 4),
and """ denotes Kleene star (Hopcroft and Ullman, 1979). Microsatellite markers have
been found to occur abundantly in the human genome. For example, there are an estimated
100,000 CA-repeats (i.e., amicrosatellite with R = "CA™), which are sufficient to cover the
entire genome at high resolution.

Within the last decade, microsatellite markers such as the CA repeats (Weber and May,
1989) have become the polymorphic markers of choice for constructing high-resolution
genetic maps (Gyapay et al., 1994; Matise et al., 1994) . These repeats are abundant and
easy to find, occurring, on average, every 30,000 bp throughout the genome. They can be
amplified in vitro using polymerase chain reaction, or PCR (Mullis et al., 1986), thereby
consuming little genomic DNA and requiring less time and effort than Southern blotting?.
They also show avery high PIC (polymorphic information content) and can be informative
for genetic linkage. Most importantly, because of their regular structures, the microsatellite
markers are length polymorphisms, with each allele corresponding directly to the number
of the repeated unit (n, in PRMS). This means that geneticists do not need to sequence each
and every DNA letter of the marker to determinethe dleles. Instead, the alleles can be
determined (i.e., genotyped) by simply sizing the amplified PCR products on a standard
electrophoretic sequencing gel. These characteristics make microsatellites ideal for large
scale, high throughput genetic studies, making most older markers obsolete.

With the discovery of the microsatellite markers, the older genetic markers (e.g., restriction
fragment length polymorphisms, or RFLPs) have all but disappeared as markers for
tracking inheritance. The PCR-based microsatellites are more informative and relatively
easier and less expensive to genotype than the less informative bi-allelic markers or the
RFL Ps which require Southern blotting. The minisatellite arrays, their larger counterparts
inthe VNTR (variable number of tandem repeat) family, have larger sequence motifs (i.e.
the repetitive unit R in "PR*S' ranges from 10 to 60 bp long), making minisatellites less

1Southern blotting involves size-separating DNA on agel, then transferring the gel DNA to afilter
("blotting"), and then probing the blot with a second DNA by hybridization.

13



amenable to PCR amplification than the microsatellites. The minisatellites are aso less
common and not as evenly distributed along the human genome as are the microsatellites.

Among the microsatellites, the dinucleotide repeats such as the CA-repeats are the most
widely used. The dinucleotides are aso the best candidates for fine-mapping, because they
are generally more polymorphic and densely spaced than the larger repeats, and they are
also genetically stable, with an average mutation rate of about 10-4 per generation
(Weissenbach et al., 1992). The dinucleotides are also found in abundance in other
mammalian species (Moore et al., 1991), and are widely used in agricultural applications.

2.1.3. Meiosis, recombinations, and genetic variations

In sexually reproducing organisms, a special type of cell division called meiosis produces
the sexual cells (eggs and sperms). During meiosis, the chromosomes are duplicated,
followed by two consecutive divisions. Inthe male, thisresultsin four haploid (cells with
half the number of chromosomes) sperms, and in the female, one ovum and three polar
bodies. With the number of chromosomes halved in meiosis, the sperm and the ovum can
then merge during fertilization to form a zygote which contains the correct number of
chromosomes.

3 ':_-_' X X a a
X a X X a a
y b - y y b b — - Yy Yy b b
VA C Z C
Z C Z Z C C
(i) (ii) (iv)

Figure 2.2. Crossing-over. (i) Each parent's chromosomal pairs may contain different
allelesfor the various genes on the chromosome. The example shown here has alleles x, v,
and z on one chromosome, and alleles a, b, and ¢ on the other for the three genes on this
chromosome. (ii) During meiosis, the chromosome pairs double, resulting in two pairs of
each chromosome in each parent. The exact copies are paired together, and the two pairs of
homol ogous chromosomes line up side by side. (iii) Here, crossing-over takes place
between two of the four homologous chromosomes. (iv) A total of four homologous
chromosomes with different allele compositions are produced in each parent. The
offspring may inherit any one of these four chromosomes from this parent.
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If each parent smply passes on a half of the chromosome pairs to the offspring intact, there
would be very limited genetic variation in the progeny. To further ensure genetic variation
(acrucial factor for the species survival), the parental chromosome pairs "cross over”
during meiosis and exchange homol ogous segments before they split into halves (Figure
2.2). Thus, each of the chromosomes in the resulting haploid cellsis actually a mixture of
the two halves of the original parenta pairs.

Meiotic recombinations can make it difficult for the geneticist to determine the origins of
inherited chromosomal segments. When tracing complex inheritance patterns, the
chromosomal segments must be sampled (genotyped) at a high enough resolution to
resolve any ambiguities due to meiotic recombination. The discovery of microsatellite
markers has made it possible to sample the genome at a high resolution of 10-20 cM.
However, the current cost associated with microsatellite genotyping has precluded such
dense genotyping, except at well-funded genotyping centers. By fully automating
microsatel lite genotyping, the associated cost can be lowered tremendoudly, making high
throughput microsatellite genotyping more accessible.

2.2. Genetics

Thousands of common diseases in humans are known to have genetic causes. Discovering
the causative genes for these diseases is essentia for early detection and prevention, and for
finding eventual cures. However, many common diseases (e.g. cancer, diabetes, heart
diseases) are complex genetic diseases. To discover the causative genes for these diseases,
we need to genotype large populations at a high genomic resolution in order to trace the
associated complex inheritance patterns of the diseases. The number of genotypes needed
can number near the millions, requiring full automation of genotyping.

2.2.1. The genetics of common diseases

Human genetic disorders can be grouped into two major classes: smple Mendelian
diseases, and complex non-Mendelian diseases. A Mendelian disease is caused by a
defective genotype at asingle gene locus. Usually, only one disease mechanismis
operating in agiven family, and possession of the high-risk genotype is necessary for
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disease expression. Examples of simple Mendelian disease include cystic fibrosis,
Duchenne's muscular dystrophy and Huntington's disease.

A non-Mendelian (complex) disease, on the other hand, is multifactorial and results from a
complex interaction of multiple genetic and non-genetic (environmental ) factors. Most
common genetic disordersin humans (e.g. diabetes, colon or breast cancer, coronary heart
disease, obesity, alcoholism and schizophrenia) are complex non-Mendelian disease. We
can model acomplex disease as one that is not entirely genetic; its genetic component
merely imparts a certain predisposition toward the disease. This predisposition istriggered
when an individual inherits defective alleles of some small set of the controlling genes.
There may be several sets of controlling genes, such that individuals who have the same
genetic predisposition may carry different sets of defective aleles. Whether each of these
individualswill eventually develop the disease depends on the combined effects from the
genetic and non-genetic environmental factors (e.g. diet, exposure).

There are many other factors that complicate the genetics of common diseases further. For
example, false-negative cases can be caused by reduced penetrance or late age-of-onset of
the disease, while false-positive cases can be caused by the presence of phenocopies or
non-genetic cases. Etiologic heterogeneity and genetic interaction are a so not uncommon
in complex diseases. To begin to unravel all the confounding factors associated with
complex diseases, it is necessary to have alarge amount of genetic data. Geneticists have
had great success with simple Mendelian diseases (Ott, 1991); they are now beginning to
study and dissect complex genetic traits (Lander and Schork, 1994; Risch, 1990; Risch,
1991).

2.2.2. Finding disease genes. positional cloning

Our ability to understand, diagnose, and (eventualy) find atreatment for human genetic
diseases depends largely on our ability to locate and clone genes. By cloning the genes, the
disease-related biochemica malfunctions can be studied extensively. Cloningisa
technique in molecular biology to obtain an interesting piece of DNA (e.g. agene) in alarge
guantity that is convenient for detailed analysis and further experiments. The DNA

segment to be studied isisolated and then inserted into acloning vector (e.g. yeast artificial
chromosomes, plasmids, or cosmids) that is capable of integrating the foreign DNA into
itself without losing its capacity for self-replication. Through these cloning vectors,
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foreign DNA can be introduced into host cells where it can be reproduced and studied at
length.

To clone agene, we must first know where it is on the chromosomes. However, locating
disease genesis aHerculean task. Consider the following scenario: adisease is known to
run in families, following, say, assmple Mendelian pattern of inheritance. The disease
geneisasmall DNA word or sentence that lies somewhere among the one hundred
thousand genes on the twenty-three pairs of human chromosomes containing atext of three
billion DNA letters. Because the biochemical pathways of the disease are not yet known,
thereisno biological clueto help uslocate the defective gene. In fact, we do not even
know where most of the genes are on the chromosomes. How do we proceed to isolate
and clone the defective gene without even knowing what it is?

Thisisaclassic search problem — a problem that is also paradigmatic in computer science,
in particular, artificial intelligence (Rich and Knight, 1991). The search spaceisvast: a
prohibitive three billion characters of text, the content of whichislargely incomprehensible
to the humans (for now). To read thistext character by character (bottom-up) would take
an astronomical amount of time, effort, and money. It ismore feasible to adopt atop-down
search strategy in which we incrementally prune the global search space (~ 3 gigabase, or
Gb) to the resolution level of a single chromosome (~ 100 to 300 megabase, or Mb), and
then to chromosomal regions that are small enough (e.g. ~ 100 kilobase, or kb, to 1 Mb)
labor-intensive local searches. The geneticists can then use physical maps of cloned DNA
fragments to identify candidate genes within the chromosomal regions. The candidate
genes can then be meticuloudly sequenced and tested until the true disease geneis found.

This top-down disease gene discovery approach is known as positional cloning (Collins,
1992; Collins, 1995), a process that is at the heart of the current genetic revolution2. What
we need for this top-down approach is a good evaluation function to prune the search space
from the gigabase genome down to kilobase chromosomal regions. One well-utilized
evaluation function for pruning the genomic search space is the matching between the
inheritance patterns of the genetic trait (in this case, a disease) and the shared chromosomal
inheritance patterns of affected individualsin apopulation. For example, consider two

2positional cloning is not the only method for discovering disease genes. One increasingly popular
approach isthe EST (Adamset al., 1991) or expressed gene method. It involves sequencing short regions
of cDNA clonesisolated from alibrary of a particular tissue such as brain, and then looking for those
(expressed) genes that have interesting amino acid motifs, and comparing the results of normal and affected
tissues.
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related individuals (e.g., siblings) who are both affected by a genetic disease. The
chromosomal regions that they inherit in common from their parents (about 50% of the
genome) are likely placesto look for a causative gene. These shared genome regions are
identical-by-descent (IBD) for the pair. When the IBD regions of many other paired
individuals are determined, the "intersection™ of these regions can point to asmall region
(e.g., ~1 Mb) that contains the causative gene. All that is needed is an efficient way to
determine the shared IBD regions of related individuals.

The determination of this sharing is done by genotyping. A genotype can be viewed as a
small point-like sampling of an individual's DNA at a known chromosomal location (e.g. a
genetic marker). A non-polymorphic DNA point (e.g., ahighly conserved gene) would
have only one alele for everyone, and it would be useless for differentiating two
individuals. The best genetic markers are highly polymorphic with different alelesin a
population so that when two relatives share the same alleles (identical-by-state, or IBS), it
tends to imply that they both inherit the same chromosomal region (IBD). By sampling an
individual's genome with alarge number of highly polymorphic, closely spaced markers,
the geneticist can obtain a high resolution "snapshot” of an individual's genome which can
then be compared with the genetic snapshots of the individual's relatives. With the advent
of very high resolution genetic maps, such genotypic snapshots have become the mainstay
of both regional and genome-wide searches for genes (Hearne et al., 1992).

2.2.3. Tracking genetic inheritance: dense genotyping

To accurately assess therisk of an individual to a disease, it is necessary to determine
whether the individua carries the defective genotypes at the respective geneloci. Idedly,
the individual's genes should be sequenced so that the exact genetic content can be used to
ascertain risk. However, there are thousands of basesin agene (Figure 2.1). Assuch, it
is highly expensive and time-consuming to sequence just one gene. To begin to assessthe
risk of asingleindividual for al the common human genetic diseases, hundreds of millions
of DNA bases will have to be sequenced for each individual.

Thereisamuch more feasible alternative. Using a search strategy similar to that in
positional cloning for finding disease genes, it is possible to determine if an individual
carries the defective aleles without actually sequencing the genes. Asin positional cloning,
we can tag the genome using polymorphic markers that occur along the chromosomes at
high resolution. The chromosomal sharing information between two related individuals
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can be reliably inferred from their genotypes. If anindividua had inherited a chromosomal
segment containing the disease gene from an affected individual in the family, then we can
conclude that thisindividual must also have inherited the defective allele (without having to
know the actual allele of that gene). Furthermore, if the genotyping were done using a
standard set of microsatellite markers that covers the entire genome, the genotyping data
could be re-used to compute the risk for many different genetic diseases, without having to
meticulously sequence any new genes.

Of course, key to using chromosomal inheritance patternsto reliably assessrisksisthe
ability to determine the origins of each inherited chromosomal segments (particularly, the
segment that may contain the disease allele from the affected parent). If the parents had
passed each half of their chromosome pairs on to the offspring intact, then, aslong as we
have a single informative marker on that chromosome, we can tell if an offspring has
inherited the defective allele because the allele must necessarily be inherited together with
the chromosome from the parent. However, because of meiotic recombinations, parents do
not pass on entire chromosome strands to their offspring intact. Instead, the offspring
receives a chromosomal strand that is a combination of the origina parental chromosome
pair. When the markers flanking a chromosomal segment are not informative (i.e. IBS
does not imply IBD), the parental origin of that chromosomal segment can be ambiguous.
Figure 2.3 shows an example in which it isimpossible to determine whether the dlelesin a
marker (the second marker) in the siblings actually originated from the father or from the
mother.

The problem of disambiguating the parental origins of alleles or chromosomal segmentsis
known as the haplotyping problem. When the genetic markers (sample points) are far apart
or when they are not sufficiently polymorphic, recombination events may remain
undetected between uninformative markers, and inheritance of an affected allele cannot be
inferred with certainty from the genotyping information of the flanking markers. To solve
this problem, various analytic solutions have been proposed (Weeks et al., 1995; Wijsman,
1987). However, the haplotyping problem is actually an inherent limitation asin the
example depicted in Figure 2.3. If the parental origins of the chromosomal segments
containing disease alleles cannot be determined unequivocally, it is not possible to assess
the risk of the children to the disease accurately based merely on the genotypes of flanking
markers.

It turns out that the problem can become nonexistent if the chromosomes were densely
genotyped. By sampling the genome at a high resolution with closely-spaced polymorphic
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Figure 2.3. The haplotyping problem. Two individuals may have the same genotypes
but their haplotypes can be different. Both C and D have the same set of allelesfor al three
markers. However, for the second marker, C receives dlele "d" from her father (whois
affected, as indicated with a darkened node) whereas D receives dlele "d" from his mother
(whois hedlthy). In C, there is only one recombination event from the maternal side. For
D, his haplotype is aresult of three recombination events: a double recombination at the
paterna side and one at the maternal side. These recombination events are not unlikely
when the markers are far apart (Ilow-resolution genotyping). The other pair of siblings also
share the same set of alleles, except that E and F's haplotypes both resulted from the same
number of recombination events (two, one from each parent).

markers, recombination events are unlikely to remain undetected since (1) the likelihood of
having all flanking markers uninformative is negligible as the number of flanking markers
increases, and (2) the likelihood of having more than one recombination event occurring
between two closely-spaced flanking markers3 is also negligible. With the full automation
of microsatellite genotyping, it might be feasible to sample genomic points at high
resolution efficiently and inexpensively so that the haplotyping problem is solved.

3| an even number of recombination events had occured between a pair of flanking markers, the markers
genotypes would be indistinguishable from the genotypes in the case of no recombination. If an odd
number of recombination events had occured, the genotypes would be the same as in the case of only one
recombination event. Thus, if there were more than one recombination event between the markers, the
genotypes alone would not be informative enough to distinguish between multiple and single (or no)
recombination events.
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2.3. Biotechnology

The invention of the polymerase chain reaction (PCR) technique by Kary Mullis (Mullis et
al., 1986) in the mid 1980s was a mgjor breakthrough in modern molecular genetics. With
PCR, it became possible to rapidly produce millions of copies of aspecified DNA sequence
invitro. The next related breakthrough for genotyping was the application of PCR to
microsatellite markers such as the CA-repeats by Weber and May in 1989 (Weber and May,
1989). The microsatellites provide an abundant class of closely spaced highly informative
markers that can be amplified by PCR. In addition, they can be genotyped ssimply by their
size differences (using gel electrophoresis), instead of having to meticulously sequence the
DNA segment for each allele. Using sophisticated high throughput sequencer machines
(for example, the ABI/377 and the PharmacialALF machines), it is now possible for a
genetic laboratory to generate vast amounts of data daily. The main bottleneck that remains
isthe tedious task of genotyping all that efficiently generated data.

2.3.1. PCR and PCR stutter

The enzymes that make DNA in the cells are called DNA polymerases. These DNA
polymerases will catalyze the duplication of DNA only in the presence of pre-existing DNA
templates. The PCR process exploits the biology of the DNA polymerasesto replicate
DNA invitro. Using the selectivity of short DNA oligonuclectide primers towards specific
DNA templates, the PCR process can be directed to synthesize a specific region of DNA.
By iterating the replication cycle, millions of copies of the specified DNA regions can be
rapidly generated at an exponential rate. The PCR processis arelatively straightforward
laboratory technique, requiring only avery small amount of the source DNA.

PCR cycle

The PCR cycleis a 3-step process (Figure 2.4):

(1) Denaturation. Thefirst step of the PCR processisto create single-stranded DNA
templates for replication. The double-stranded DNA molecules are separated
("denatured") to form single DNA strands by an increase in temperature (to around
HA°C);

(2) Primer annealing. The second step isto specify aregion on the DNA to be replicated.
To do so, we label the starting point for DNA synthesis with a oligonucleotide
(synthetic) primer that anneals (at alower temperature, say, 30-65°C) to the template at
that point. By supplying apair of flanking primers, only the DNA region between the
flanking primers will be amplified .
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Figure 2.4. The polymerase chain reaction (PCR). By annealing two flanking primers
(primer 1 and 2), the desired short DNA segment is synthesized by a DNA polymerase.

The processis generally repeated 30-60 times to generate millions of copies of the DNA
segment flanked by the two primers.
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(3) DNA synthesis. Thethird step isto replicate the specified DNA region. With the
primers annealed to the binding sites to direct replication, the DNA polymerase (e.g.
Taq polymerase) synthesizes new complementary strands, which can then be
denatured, annealed with primers, and replicated again.

The concentration of the target sequence is doubled with each PCR cycle. After n PCR
cycles, and there are 2" replicated DNA molecules in the resulting PCR mixture.
Typically, the PCR cycleis repeated for as many as 30-60 cycles, taking severa hoursto
complete.

PCR stutter
Ideally, the PCR product should contain only DNA fragments that are exact copies of the
target DNA segment being amplified. When the target segment contains repetitive DNA
regions, aseries of secondary fragmentsis often generated in addition to the target
segment. These extraneous fragments are typically shorter than the target segment, creating
the characteristic "stutter” or "shadow" bands that are observed when the DNA in the PCR
product is size-separated by gel electrophoresis (see Figure 2.5).

Figure 2.5. Autoradiogram of denaturing polyacrylamide gel showing the typing of 5
individuals at a microsatellite marker. Each of the five columns (lanes) contains the result
of size-separating the PCR product of the DNA sample from a different individual.
Because of the pronounced stutter bands, it is difficult to tell if the resulting pattern in each
lane was caused by asingle allele (homozygous) or a pair of aleles (heterozygous) in the
DNA sample, or what these alleles are. (Provided by Dr. Mark Shriver, University of
Pittsburgh.)
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PCR stuttering is generally attributed to the dlippage (misreading) of the polymerase during
the amplification of the template DNA strands (Hauge and Litt, 1993). It isparticularly
pronounced with markers that are tandem repeats of short nucleotide sequences (e.g.
dinucleotides). The dippage of polymerase creates new DNA template strands that are
shortened by alength equal to an integral multiple of the length of the repeating units,
which are then amplified in subsequent PCR cycles. Shorter error templates may also be
created in the subsequent cycles, causing the trail of shadow bands when the PCR product
is sSize-separated on an electrophoretic gel. The stutter bands from one alele may overlap
with those from the other, creating complex band patterns that can be confounding even to
the trained eye of ahuman technician.

Molecular biologists have made numerous attempts to reduce or eliminate the PCR stutters:

1. Modifying the PCR conditions. This approach works to a point (Odelberg and White,
1993) but generally does not remove the artifact completely.

2. Using microsatellite markers with smaller alleles (e.g. using (CA)n, markerswith n
small). Smaller alleles are generally associated with fewer stutter bands asthere are
fewer repeats for the polymerase to "dlip" over. However, this approach drastically
limits the choice of markers, and the smaller n also implies lower polymorphism (fewer
possible aleles) for amarker.

3. Using tri- and tetranucleotide repeats. Markers with larger repeats tend to display little
or no stutter artifact. However, the larger repeats are also more complex, less
informative, and consume more "real estate” onthegel. They are lessdensaly
distributed over the genome than the dinucleotides, and are thus less suitable for fine
analysis.

These conventiona experimental efforts have failed to remove the stutter artifact
completely. Asaresult, current genotyping systems either rely on the human to call the
alleles, or attempt naive alele calling by focusing on the highest peaks (Mansfield et al.,
1994; Ziegle et al., 1992). The latter approach is problematic with single (homozygotic) or
closaly-spaced aleles, and widely-separated alleles with pronounced relative amplification.
It will not work when more than two alleles are present, say, when DNA are pooled from
multiple individualsin a population.

It fact, it may even be unwise to try to remove the PCR stutter from the data totally.
Without the signature stutter pattern, it may be impossible to distinguish a spurious noise
band from an actual data band (Schwengel et al., 1994). With markersthat exhibit
stuttering, the expected presence of the PCR stutter signatures can be used to disambiguate
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true data from spurious noise and contamination bands. 1f we can handle the shadow
bands, data analysis for the stuttering markers (e.g. the dinucleotides) can actually be more
robust against noise and contamination than the stutterless markers (e.g. most tri- and
tetranucl eotides).

2.3.2. Gel electrophoresis

Gel electrophoresisis a standard laboratory technique to separate DNA fragments by size.
When exposed to an electric field, a mixture of DNA molecules travels through amedium
(e.g. an agarose or acrylamide gel) at different rates depending on their molecular sizes.

By labeling the DNA molecules with a radioactive or fluorescent molecule, we can detect
the relative gel positions of the DNA molecules after they have been size-separated and
deduce their relative size differences. If it is necessary to determine the actual sizes of these
DNA molecules, we can run molecular weight (MW) standards or DNAs with known sizes
on the gel together with the unknown DNA molecules (Figure 2.6). We can then use the
calibration curve generated from the gel positions of the size standards to interpolate the
actua sizes of the DNA molecules.

DNA cdibration
mixtures DNA
— -]
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Figure 2.6. Gel electrophoresis. DNA of different sizes migrate at different speedsin a
gel subjected to an electric field. Typically, calibration DNAs with known sizes (molecular
weight standards) are run together with the unknown DNAS so that the unknown DNASs
can be typed by size interpolation.
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Gel electrophoresisis essential for genotyping microsatellite markers. Asmicrosatellites
exhibit length polymorphism, the different aleles directly correspond to different DNA
sizes. Therefore, instead of sequencing the DNA fragments (which can contain 100-500
DNA letters) for the exact DNA content to call the alleles, we only need to size-separate the
PCR product on an electrophoretic gel, and use the calibrated DNA sizes asthe allelesfor
the markers' genotypes.

2.3.3. High throughput genotyping

Because large amounts of genetic data are necessary for statistical genetic linkage analys's,
the main emphasis of genotyping technology is to generate as much data as rapidly as
possible. Figure 2.7 shows the various ways to multiplex gel readout for attaining high
throughput in genotyping:
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Figure 2.7. High throughput genotyping. Multiplexing can occur in three dimensions:
lanes, size, and fluorescence. Firgt, the gl is divided into many lanes (vertical columns) to
allow multiple genotyping on the gel. Second, markers (e.g., M1, M2, and M3 as shown)
with non-overlapping alele window can be genotyped in the samelane. Third, by labeling
markers with different fluorescent dyes, markers with overlapping allele windows can be
multiplexed in each lane (but in a different "plane” or dye). Here, three fluorescent dyes
are used to multiplex atotal of nine markers.
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Multiple lanes. The gel isdivided into as many lanes as possible so that different
genotyping experiments can be run in different lanes on asingle gel. Currently, each
gel contains 30-96 lanes, and this number will continue to increase because of the
constant demand in data throughput.

Multiple size windows. Markers that have non-overlapping allele windows can be
analyzed together in the same lane because their datawill occupy different regions along
thelane. PCR products from three to six different marker assays are routinely pooled
inasingle gel lane for multiplexed readout.

Multiple dye labeling. In multi-channel fluorescence DNA sequencers, additional
multiplexing can be achieved by using different fluorescent dyesto label the markers.
This allows markers that have overlapping alele windows to be run in the same lane,
but emit data from relatively digoint imaging "planes’ (fluorescent dye). For example,
the ABI (Applied Biosystems) machines are four-color systems, in which three of the
dyes aretypically allocated for genetic markers and one for running the MW sizing
markers. This setup increases data throughput by three-fold, while providing each lane
with its own size standards calibration curve.

Figure 2.8. An example gel with 50 lanes and dye-multiplexed marker data. PCR
products of DNA samples were labeled with one of four fluorescent dyes so that the
genotyping experiments could share the same gel lanes and size windows. Here, one of the
dyes was used solely for running internal MW size standards. On this gel, the bands of the
MW standards formed horizontal rows amidst the marker bands since the same size
standards were run in every lane. (Provided by Dr. Vicki Magnuson, National Institutes
of Health.)
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With an average of 12 markers per lane (4 size windows per lane and 3 fluorescent labels)
and 32 lanes (as shown in Figure 2.8), about 400 different microsatellite experiments can
be read out on asingle multiplexed gel. Current efforts to increase data throughput will
continue to increase the number of lanes and fluorescent dyes per gel so that thousands or
more genotypes can be produced on asingle gel. This super-efficiency in data generation
must be coupled by the full automation of data analysis, for even a highly staffed laboratory
will quickly be inundated with aflood of dataif each of the genotypes has to be analyzed
by hand, creating a genotyping bottleneck.

2.4. The Bottleneck: Genotyping

Almost al the major stepsin the genotyping pipeline have been successfully automated:
robotic sample preparation, PCR amplification, gel electrophoresis, and gel data
digitization. The genotyping (gel data analysis) step has remained the critical bottleneck
precluding full automation. Nearly all laboratories require an experienced human technician
to visually inspect the microsatellite data, atask that istedious, error-prone, time-
consuming and expensive. In fact, roughly half of the error and cost (about $2-3 total per
genotype) in current high-throughput microsatellite-based genotyping is attributable to the
need for human operators to semi-automatically scorethe data. A system that can directly
analyze the gel image files from automated DNA sequencers, and automatically detect,
calibrate, quantitate, and genotype the marker data on the gel will remove this costly
bottleneck and achieve the requisite throughput in genotyping studies.
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3. Problem Overview

The data flow of the genotyping problem is straightforward: given a digitized gel image as
input, output the genotypes for al the genotyping experiments multiplexed on the gel (Box
3.1). Theunderlying tasks, however, are nontrivial:

1. Dataretrieval: How do we parse a highly-multiplexed gel image to retrieve segments of
signa intensity profiles (electropherograms) that contain the data for each multiplexed
genotyping experiment?

2. Dataquantitation: How do we extract from the continuous intensity profile of an
el ectropherogram discrete data bands binned with molecular units and quantified with
DNA concentration measures?

3. Datadeconvolution: How do we reduce a convoluted series of quantitated data band
patterns into two consistently labeled alleles?

Input: adigitized multi-dimensional gel image on
which hundreds to thousands of genotyping
experiments are multiplexed.

!
retrieval
!
quantitation
!
deconvolution
!

Output: apair of consistently labeled alleles for each
of genotyping experiments.

Box 3.1. The overall data flow in the genotyping problem. Theinput datais a highly
multiplexed gel image, from which we retrieve the data window for each multiplexed
experiment for analysis, quantitate the extracted signal data into molecular units, and
deconvolve the complex data patterns to accurately call the two alleles in the genotype.
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3.1. Retrieving data from gel

Aswe have discussed previoudly, current biotechnology allows hundreds to thousands of

genotyping experiments to be multiplexed on asingle gel in three dimensions:

* width: by partitioning the gelsinto vertical tracks or lanes, genotyping experiments can
berunin parald onasingle gd in different lanes;

* length: by pooling markers with non-overlapping size windows together, they can be
run out on the same gel lane; and

» plane: by labeling markers with different fluorescent dyes, genotyping experiments can
be run in the same size window and gel lane, emitting data signalsin different "dye

planes”.
Elactrop haragrarm
1o
113 F
dye

Ray  Separation 2D gel o 12er

image - Lr;ag;olﬁe - 125}

(digitized) (pixel)
130
136

(bp)

Figure 3.1. Retrieving datafrom gel. First, the raw digitized image from the DNA
sequencer is separated into two-dimensional gel images for each fluorescent dye used in the
experiment. Then, the coordinate transformation function a convertsthe gel imageinto
linear electropherogram traces of microsatellite datain each lane, calibrated by DNA size
instead of pixel.

Figure 3.1 shows how we can systematically undo the multidimensional multiplexing
systematicaly to retrieve data* from agel for analysis. First, we undo the "plane”
multiplexing by aprocess called dye separation. After we have separated the datainto
different dye planes, we undo the "width" multiplexing by a process called lane tracking
which converts the two-dimensional gel images into one-dimensional intensity profiles
(electropherograms). With the one-dimensional electropherograms, we can then undo the

4Most DNA sequencer systems provide on-line digitized scanning during gel runs, so the raw datais often
generated in a computer-readable format. If not, the gel data may be digitized using high resolution
scanners. We will assume in this dissertation that the input gel images are digitized.
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Figure 3.2. A sizing grid constructed from the MW size standards data. The vertical
grid lines are the lane traces; the horizontal grid lines are contour lines of identical MW
mobility and size. The sizing grid is useful for localizing expected marker alele events on
the gel image.

"length" multiplexing by identifying regions on the gel lanes that contain marker data for
analysis. Asthe dataregions are defined by the size ranges of the possible marker alleles,
it is necessary to trandate the image pixel coordinates into molecular weight unitsfirst. We
call this process molecular weight (MW) calibration. Once alane has been calibrated in
MW sizes (bps), we can then zoom in to regions on the lanes based on the possible allele
sizes of the size-multiplexed markers. Excluding the dye separation step (sincethisis
typically done by the DNA sequencers as part of the data generation step), the overall
operation can be described with a coordinate transformation function:

a: <x,y>pixes o <lane, size> points

This coordinate transformation function isby asizing grid that can be constructed based on
the MW size standards data, as shown in Figure 3.2.
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3.2. Quantitating data bands

From our understanding about PCR and gel electrophoresis, we know that the fluorescent
signals detected by the laser sensors were emitted by discrete classes of DNA fragments
that haveintegral lengthsin bps. Therefore, after we have localized the marker datafor a
genotyping experiment on agel using the sizing grid, we must discretize the continuous
signa intensity profile in the electropherogram extracted from theimage. To convert the
image data into the corresponding "molecular space”, we must (@) reduce the continuous
signalsinto a discrete series of marker bands binned with integer sizes, and (b) quantitate
each detected discrete data band into a DNA concentration measure (Figure 3.3). The
overall operation can be described with the following transformation function:

[B: imagedata+ sizing grid — {<bp, concentration>}
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Figure 3.3. Quantitating the marker data bands. The transformation function g
discretizes the continuous signal profile in an electropherogram. This involves detecting
the marker bands from the background noise, and assigning to each band an integral size
(in bp) and avalue that corresponds to the concentration of the DNA fragments of that size
in the PCR product.
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3.3. Calling the alleles

PCR amplification of ashort tandem repeat allele typically generates additional DNA
fragments, creating more marker bands than the actual alleles present in gel electrophoresis.
These extraneous stutter bands must be eliminated mathematically to recover the underlying
alelesin the genotype, as shown in Figure 3.4. Therequisite transformation, then, isa
deconvolution function y.

y: quantitated data with stutter - genotypes
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Figure3.4. Calingthealleles. Asaresult of PCR stuttering, complicated data band
patterns are observed. We must decide which of the bands (at most two) amidst the
numerous convoluting stutter bands correspond to the true aleles in the genotype.

It is nontrivial to remove PCR stuttering from the quantitated data, as (a) PCR stutters from
two alleles may superimpose onto one another, (b) stuttering patterns may differ from one
allele to another, with the smaller alleles generally displaying steeper stutters than the larger
aleles, and (c) there may be differential amplification between the two alelesin the
genotype as the alleles compete for amplification during PCR. Without properly
accounting for these artifacts, a human genotyper must be relied upon to call the alleles by
visual inspection.
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Figure 3.5. An automated genotyping system takes a two-dimensional gel image,
executes three transformations a, g, and y, and outputs the genotypes of the markers on the
gel. Thefirst transformation o converts the gel image into linear electropherogram traces
of microsatellite datain each lane, calibrated by discrete DNA sizes. Then, gquantitates
each detected data band and computes the DNA concentrations. Finally, y transformsthe
quantitated stutter datainto the two underlying alleles.

3.4. Summary

Asdepicted in Figure 3.5, afully automated genotyping system analyzes the gel
electrophoresis images from automated DNA sequencers by correctly detecting and
determining the lane, size, and relative DNA concentration of every data-related band
detected on the gel, and then mathematically removing the PCR stutter artifacts from the
marker datato correctly call the genotypes. Box 3.2 summarizes the three requisite
transformations that we have identified in this chapter:

1. Coordinate transformation

a: <x,y>pixes - <lane, size> points
2. Databand quantitation

[ imagedata+ sizing grid — {<bp, concentration>}
3. Stutter data genotyping

y: quantitated data with stutter — genotypes

Box 3.2. Datatransformations in solving the genotyping problem: (1) image pixel
coordinates are transformed to facilitate data extraction, (2) data bands are quantitated into
molecular units, and (3) stutter data tare deconvolved into recover thetrue allelesin the
genotypes.



In the next three chapters, we will describe, with examples from real data, how we
computationally handle each of the three data transformations. To further illustrate the
power of the computational approaches that we advocate in this dissertation, we will
describe, in afollowing chapter, how we can enable a new functionality called pooled
genotyping with asimple generalization of our computational solutions.
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4. Grid Construction

In Chapter 1, we outlined the various problems that make full automation of microsatellite
genotyping difficult. Thefirst problem was:

» Datatracking: how to automatically track the relevant data regions on a highly
multiplexed gel with hundreds to thousands of genotyping experiments?

In high throughput microsatellite genotyping, data multiplexing can occur in up to three
dimensions:. dyes, lanes, and marker size windows (as shown in Figure 4.1). To unravel
this intricate multiplexing, we perform the following transformations:

Stage 1. Dye separation. Separating the multi-dimensional raw datainto two-dimensional
image planes for each of the dyesin the system;

Stage 2. Lanetracking. Reducing the two-dimensional image planes into one-dimensional
electropherograms for each of the loaded gel lanes; and

Stage 3. MW calibration. Calibrating the electropherograms from the image units (pixels)
into in molecular units (bps) along each of the gel 1anes, so that marker

Figure4.1. A highly multiplexed gel on which hundreds of genotyping experiments
wereranin paralel. The experiments were highly multiplexed in terms of lanes, size
windows, and fluorescent dyes. Onethisgel, atotal of three fluorescent dyeswere used in
labeling the DNA samplesto allow multiple genotyping experiments to share the same gel
lanes and size windows. A fourth dye was dedicated to labeling the internal MW size
standards for accurate sizing.
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knowledge (e.g. the expected allele size window) can be used to localize data
regions on the electropherograms for analysis.

4.1. Problem

Commercial DNA sequencers (such as the ABI machines) exploit fluorescent primer-
labeling technology to generate maximally multiplexed gel datalabeled in different dyes.
These machines are usually equipped with internal dye-separation mechanisms, so that dye-
separated data are automatically generated. Therefore, in this dissertation, we will assume
that al gel images are already dye-separated by the sequencers, and that the dye-separations
are generaly adequate. In the event that the internal dye separation isimperfect, some post-
processing of the datawill be necessary. For this, we will describe in Section 4.2 how to
filter out artifacts (e.g. dye bleedthroughs) from gel images that are imperfectly separated.

The main data tracking problem isin tracking the gel 1anes and detecting the MW bands.
Thistracking involves the construction of asizing grid a that transforms pixel coordinates
into lanes and molecular sizes:

a: <x,y>pixels - <lane, size> points

Sizing grid construction has not previously been successfully automated. Even in the most
advanced genotyping systems, the human eye is required to resolve various confounding
data artifacts on the gels. Figures 4.2 (a,b), 4.3 (a,b), and 4.4 (a,b,c) show the common
artifacts (from actual gels) that make automated sizing grid construction difficult. Each
figure shows agel image for the TAMRA dye, the dye used for |abeling the MW size
standards. The same set of TAMRA-labeled MW sizes has been loaded in the lanes on
each of the gels, forming the rows of bands observed. The common confounding data
artifacts are;

* Dyebleedthroughs. Imperfect dye separation causes "bleedthrough” bands from anon-
resident dye to occur in the dataimage for another dye, as shown in Figures 4.2a and
4.2b. These non-resident bands can interfere destructively with the actual data bands,
or masquerade as data bands of the resident dye;

* Gd gmiles. Identical DNA fragments may migrate at varying rates along different lanes
on the same gel, causing "gel smiling" patterns such as those depicted in Figures 4.3a
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and 4.3b. The presence of gel smilesimpedes size calibration by linear interpolation
across lanes;

» Saggeredloading. It isacommon practiceto load DNA samplesinto the gel lanesina
staggered mannerS. This loading practice creates highly complicated patterns such as
those shown in Figures 4.4a, 4.4b and 4.4c. When coupled with the "gel smile"
effect, the patterns can be visually indecipherable on a high throughput gel with alarge
number of gel lanes.

Relying on human technicians to manually track the dataiis at best atemporary measure.
Recent advancesin gel separation technology and demands for higher throughput will
further increase the number of lanes that can be packed onto asingle gel. Moreover, the
need for sizing precision will lead to common usage of high resolution MW size standards,
increasing the number of MW bands that has to be calibrated per lane (by hand). As
manual data tracking becomes lessfeasible, the fully automated construction of gel sizing
grids becomes increasingly essential.

SThisis apractice carried over by technicians who are used to loading gels for DNA sequencing instead of
fragment analysis such as microsatellite genotyping. Instead of using a"square-tooth” loading comb, a
"shark-tooth" loading comb is used to load the DNA samples onto agel. With this loading method, there
are no pre-defined loading wells for the lanes on the gel. As such, the lanes must be loaded in batches.
First, a subset of the lanes (e.g. the odd-numbered lanes) is loaded onto the gel with the shark-tooth comb.
The gel isthen allowed to run-out partially before loading the other set of lanes with the shark-tooth
loading comb. Thistime delay resultsin a zig-zagging band patterns observed on the gel, which are useful
for detecting spillovers from neighboring lanes.
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Figure 4.2a. Gel bleedthroughs. Shown here is the image of a 32-lane gel for the
TAMRA dye. Therows of data bands are from the identical set of TAMRA-labeled MW
sizesloaded in each of the 32 lanes. On closer inspection, other data bands can also be
seen in the region between 160-200 bp and lanes 1-15. As magnified in Figure 4.2b, these
bands are "bleedthrough bands" from the HEX dye, which labels a genetic marker with
alele sizes 160-200 bp on thisgel. (Provided by Lillian M. Bloch, Cybergenetics, Inc.)
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Figure 4.2b. We zoom in to the gel region between 160-200 bp, and lanes 1 through 15
for the gel shownin Figure4.2a. On thetop isthe gel image for the TAMRA dye, below it
isthe image for the HEX dye for the same gel region. The data bands from the marker in

the HEX dye have clearly bled into the TAMRA dye image.
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Figure 4.3a. Gel smiles. Instead of forming straight rows across the lanes, the
identical sizing DNA fragments |loaded in each of the 34 lanes on this gel migrated at
different ratesin different lanes, resulting in curved rows ("smiles") across the lanes.
(Provided by Dr. Charles Mein, University of Oxford.)
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450

400

Base Pair Sizes

e a :.:_': ?‘.":'.'. -
75 B el i il celiionilir iliiealintP el vl S T i
1 5 10 15 20 25 30 35 40 45
Lanes

Figure 4.4a. Staggered loading. Instead of loading all the 48 lanes on this gel
simultaneously, the odd numbered lanes were loaded first, followed by the even numbered
lanes after adlight time delay, resulting in azig-zagged pattern. (Provided by Frosti
Palsson, deCODE Genetics, Inc., Iceland.)
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Figure 4.4b. Another example of staggered loading. On this 48-lane gels, sets of
lanes were |oaded at three different times. First, lanes 1, 4, 7, and so on were |oaded.
Then, lanes 2, 5, 8, and so on were loaded. Finally, the remaining lanes, lanes 3, 6,
9, and so on, were loaded. Thisresulted in acomplex zig-zagging pattern that is very
different from the one shown in Figure 4.3a. (Provided by Frosti Palsson, deCODE
Genetics, Inc., Inceland.)
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Figure 4.4c. Yet another example of staggered loading. In this 48-lane gel, lane
numbers that are multiples of 3 were loaded first, followed by the remaining lanes.
Thisresulted in another pattern that is visually interesting but difficult to track
manually. (Provided by Frosti Palsson, deCODE Genetics, Inc., Iceland.)
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4.1.1. Algorithm

Because of the gel image size® and the various confounding factors such as dye
bleedthroughs, gel smiles, and staggered loading, direct two-dimensional pattern matching
istoo computationally intensive for a practical genotyping system which the complex sizing
grids must be constructed in minutes. To achieve the requisite speedup of our expectation-
based methods, we simplify the problem using a divide-and-conquer strategy (Figure 4.5):
first, we reduce the two-dimensional problem into multiple one-dimensional spacesto
quickly generate a grid template; then, we locally refine the grid template in two-
dimensional space. Assume that there are n gel lanes each loaded with a MW standard of m
DNA sizing fragments.

Step 1: Lanetracking.
Instead of initially searching the entire gel image two-dimensionaly for al the mxn MW
bands, wefirst track the n vertical lanes. Note that gel lanes are reasonably straight , at
least within asmall gel section. We therefore divide the gel image into severa
horizontal subsets, as shown in thefirst pane of Figure 4.5. For each horizontal
subset, we project the two dimensional subset region onto the x-axis to form alocal
"lane template”. We then combine these partial lane templates to form a complete lane
template for the entire gel.

Step 2: MW calibration.
With the n lanes tracked, we reduce the image into n one-dimensiona intensity profiles
or electropherograms, as shown in the second pane of Figure 4.5. We then search one-
dimensionally along each of the electropherograms for the m MW bands. Once every
lane has been processed, we have found the mxn MW bands that form the sizing grid a
for the gel.

Step 3: 2D grid refinement.
Finally, as shown in the third pane of Figure 4.5, we perform local two-dimensional
refinementson a to account for the two-dimensional dependencies|ost during the
divide-and-conquer problem reduction.

6Currently, agel image is about 15Mb. The need for high precision and high throughput will only
continue to increase the gdl size further.
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Figure 4.5. Sizing grid construction. A three-step divide-and-conquer approach for
constructing the sizing grid for atwo-dimensional gel image.
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Algorithm CONSTRUCT_GRID

In this algorithm, we assume that DNA migrates along the direction in the y-axis of the
gel image.

Step 1: Lane tracking.

Construct, using algorithm TRACK _LANE, the mapping function

Olane: <X, y> pixels - lane
This transformation reduces the vast 2D gel image into 1D |lane electropherograms
to facilitate separate MW calibration on each lane.

Step 2: MW cadlibration.

Congtruct, using algorithm CALIBRATE_MW, the mapping function

Ogze: <lane y> - size
This function maps the y-coordinates of each gel lane from the image pixel unitsto
the molecular base pair (bp) units.

Step 3: Grid refinement.

Construct, from the composition of the two mapping functions, an initial band
localization grid:

O = 0gze. Alane: <X, y> pixels - <lane, size>
Refine, using algorithm 2D_REFINE_GRID, each expected MW grid point locally
to adjust for any unaccounted two-dimensional shifts.

Box 4.1. CONSTRUCT_GRID: adivide-and-conquer algorithm for constructing a two-
dimensional band-localization grid. Wetrack the lanes first so that we can reduce the vast
gel image into one-dimensional lane intensity profiles (electropherograms), on which we
search for the MW bands one-dimensionally. To account for the two-dimensional
irregularities resulting from the problem space reduction, we post-process the sizing grid
by refining each grid point locally in two-dimensions.
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Box 4.1 shows the overall algorithm for automatic construction of the sizing grid a on a
dye-separated gel image containing MW data. The component algorithms for dye
separation, lane tracking, MW calibration, and grid refinement will be described separately
in the ensuing sections.

4.2. Dye separation

By tagging DNA samples with primers labeled with different fluorescent dyes for separate
signal detection, multiple DNA samples can share both the same lane and the same size
window on the same gel. Using dyes that have non-overlapping fluorescent spectrums, we
can detect the signals from the DNA samples labeled with different dyes separately using
multiple laser-induced fluorescence sensors.

The fluorescent spectral ranges of the dye labels may not be perfectly non-overlapping in
reality. Asaresult, dye signals occurring in the overlapping range may also be picked up
by a sensor for detecting data signals from another dye. Asaresult, the signals from one
dye can show up in theimage for a different dye (as shown in Figure 4.2a and 4.2b).
Such signal cross-talk is known as dye bleedthrough. A bleedthrough band may be
indistinguishable from a data band of the resident dye, especialy when thereisahigh
concentration of datain the gel.

Most DNA sequencers provide a multi-component correction filter, usualy in the form of a
"dye separation matrix"”, that can be applied to the raw data to minimize the bleedthrough
effects. For best results, the dye separation matrix must be frequently calibrated on a DNA
sequencer to experimentally minimize the bleedthrough effect observed on gels generated
from that machine. Thisisthe recommended approach for minimizing dye bleedthrough.
However, as afallback, we will also describe an agorithm to computationally refine a dye
matrix that has not been perfected experimentally.

4.2.1. Algorithm

Algorithm MINIMIZE_BLEEDTHROUGH shown in Box 4.2 describes one approach for
computationally refining adye correction filter. The algorithm exploits the expected
location of digoint size datafor overlapping spectral dyes. In essence, the algorithm
maximizes, at every image pixel, the signal from one dye while minimizing the signals
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from the other dyes. As such, the algorithm works best with data that contain mutually
exclusive regions of signals from different dyes. On a high throughput gel wherethereisa
high concentration of datafrom all the dyes, regions with mutual dye exclusion may be
hard to find. In this case, we refine the dye separation matrix using separate calibration
lanes, such as a gel with lanes |oaded with only samples from a single dye to ensure
maximal mutual dye exclusion, or agel with one or more lanes loaded with DNA of known

genotypesfor al the dyes, and then using the algorithm at selected pixels of known dye
exclusions.

Algorithm MINIMIZE_BLEEDTHROUGH

Assume an n-dye system. Let ¥ denote a given bleedthrough correction filter (e.g. a
dye separation correction matrix) to be applied to the dye planes Py, Po, ..., Ph. The
goal isto refinethefilter w to maximize, at each image pixel, the signal for one dye
while minimizing the interference of the other dyes.

Let Pyq(i) denotetheresulting signal intensity at dye d'si-th image pixel after

applying the filter ¥. We can solve the bleedthrough minimization problem by
iteratively refining wuntil we find:

mﬁglz %Dw,o(i)(i) - d;if)w,d(i)%l

where D(i) isthe dye plane with the maximum value at pixel i; in other words,
PD(i)(i) = mdax Py (i)

Box 4.2. MINIMIZE_BLEEDTHROUGH: an algorithm for refining dye-separation to
minimize bleedthroughs.
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4.2.2. Example

A typical multi-component dye separation filter for an n-dye system is an nxn square matrix
with each row adjusting for potential dye signal cross-talk for one of then dye
components. That is, each (i,j)-th element of the dye matrix defines the amount of
fluorescent signal from the j-th non-resident dye that can be included in (or excluded from)
the datafor the resident dyei. If the fluorescence range of the dyes were perfectly non-
overlapping, then the dye separation matrix is simply thenxn identity matrix. More
typically, adye matrix would look like Dgjven, an actua dye separation matrix on the ABI
377 sequencer (a 4-dye system with dyes FAM, TET, HEX, and TAMRA) that generated
the gel shown in Figure 4.2a:

FAM TET HEX  TAMRA

FAM 2.644  -2.809 1387  -0.382
TET -2.203 4.091 -2.369 0.654
HEX -0.114  -1.084 1945 -0.664
TAMRA 0.008 -0.055  -0.405 1.159

To filter the multi-channel raw data using this dye matrix, we align the raw data collected
by the respective laser sensors into arow-matrix with one row for each of the dyesin the
system. Let uscall this datamatrix RAW_DATA. To generate the dye-separated data, we
simply multiply RAW_DATA with the separation matrix Dgjven:

SEPARATED_DATA = Dygjven X RAW_DATA

The resulting gel image for the TAMRA dye after the application of Dgjyen Was shown in
Figure 4.2a. For acloser inspection, we show the intensity profiles of the pre-dye
separated raw datain Figure 4.6a, and the dye-separated profilesin Figure 4.6b. The high
degree of bleedthrough in the raw data was greatly reduced after applying the Dgjyen to the
data. However, some dye bleedthrough can still be seen to remain in the data, as shownin
Figure 4.6b (and Figure 4.2b).
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Figure4.6a. Thesignal intensity profiles from the raw data from the laser
sensors for each of the fluorescent dyes. Without applying the dye separation
matrix, thereis ahigh degree of dye bleedthrough. For example, the data
signals between scan columns (x-axis) 500 and 1000, as well as those near
scan column 1500, showed up in the intensity profiles of all the dyes.
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Figure 4.6b. After applying the dye separation matrix Dgjven , it became
clear that the data bands between scan columns 500 and 1000 belonged to the
HEX dye, whereas the bands around scan column 1500 belonged to the TET
dye. However, the bleedthroughs have not been totally eliminated. For
example, some of the data bands from the HEX dye can till be found in the
datafor the TAMRA (labeled as TAM here) and FAM dyes, and some of the
bands from the TET dye found in the data for the HEX dye.



By using the strategy outlined in algorithm MINIMIZE_BLEEDTHROUGH, we
computationally refine the dye matrix to maximize, at every image pixel, the signal from
one dye while minimizing the cross-talk signals from the other dyes. The corrected dye
matrix, Drefined, iS shown below with the modified vauesitalicized:

FAM TET HEX TAM
FAM 2.644  -2.400 0.750 0.050
TET -2.203 4.091 -2.300 0.654
HEX -0.114  -1.450 1.945  -0.600
TAM 0.008 0.150 -0.650 1.159

In Figure 4.6¢, we show the signal profiles after applying Drefineg. FOr comparison with
the gel images in Figures 4.2a and 4.2b, we also show the resulting gel image for the
TAMRA dyein Figure 4.7a, and magnified gel portionsfor TAMRA and HEX in Figure
4.7b.
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Figure4.6c. Thesignal intensity profiles for the different dyes after applying the
corrected dye separation matrix Dyefineg. The data bands from dye HEX no longer bled into
the dyeimagesfor TAM and FAM, and the bleedthrough bands from the TET dye have
also been eliminated from the data for the HEX dye.
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Figure4.7a. The gel image for the TAMRA dye after the application of the refined
dye matrix Dyefined ON the raw data. See also the gel image shown in Figure 4.2afor
comparison.
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Figure4.7b. Magnification of the gel region between lanes 1-15, and 139-200 bp. The
datafor the TAMRA (top) and HEX (bottom) dyes are shown. Unlike the ssimilar images
shown previously in Figure 4.2b, data bands from the HEX dye no longer bled into the
dataimage for the TAMRA dye.
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4.3. Lane tracking

In multiple-dye systems, data from the different dyes can be treated asif they wererunin
separate "dye planes' in parallel. Inorder to caibrate each gel laneinternaly with
molecular weight (MW) size standards, one of the dye planes, the "MW plane”, istypicaly
devoted to running the size standards exclusively. In single-dye systems, it is usually not
possible to co-electropherosize the size standards with the genetic markers in the same
lanes. Instead, some of the gel lanes are devoted to running the MW size standards while
other lanes run the genetic markers. For these systems, we can create a pseudo "MW
plane" by filtering out the marker data. Thus, data on an electrophoretic gel can generally
be classified into two broad categories: data from the genetic markers (the "marker
planes'), and datafrom the MW size standards (the "MW plane™).

Because the same size standards are run in every calibration lane on the MW plane, highly
regular band patterns are expected to appear on the MW plane. In addition, we can predict
the MW band patterns with great certainty since we know the exact molecular sizes of the
DNA fragments on the MW plane. As compared with the marker planes where the band
patterns are by no means regular or predictable, the MW planeis therefore the best
candidate for tracking gel lanes.

4.3.1. Algorithm

Efficiency and robustness are two important criteriafor a practical system which handles

real data: efficiency can be accomplished by pruning the search space as much as possible,

while robustness can be attained by pruning the search space intelligently. to avoid the

pitfalls created by the various spurious artifactsin real data Computationally, the search

space can be pruned by problem reduction, and the spurious data artifacts can be evaded

using expectation mapping. The general framework, which you will seein most of the

algorithms described in this dissertation, involves:

* Problemreduction: Simplify the problem as much as possible without |osing too much
information about the original problem,;

»  Expectation construction: Create expectations that are as specific as possible using all
the information that we have about the domain, the problem, and the data;

»  Expectation application: Apply the expectations by mapping them onto the observed
patterns of the data; and
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» [Iterative refinement: Refine the solutions constructed from the reduced problem space in
the original problem space to adjust for any artifacts that may have been lost in the
process of problem reduction.

Let us apply this computational framework to solve the lane tracking problem. Inthe
following discussion, we will use the convention that (a) the gel image (i.e. the MW plane)
isarectangular intensity matrix, (b) the gel lanes (or DNA migration) are vertical, and (c)
the same MW standards are loaded in every lane.

Step 1: Reduce problem.

Since the lanes on agel may not be perfectly straight throughout, we divide the gel image
into numerous horizontal sectionsthat are small enough so that the segments of lanes can
be correctly assumed to be straight within the sections. We can then exploit the lane
"gtraightness’ characteristic in each gel section to reduce them into cross-sectiona profiles
formed by vertically projecting the image pixel with the highest intensity in each column
onto the horizontal axis. In thisway, we reduce the problem of tracking lanesin avast two
dimensional image into amuch simpler problem of identifying peaks along a set of one-
dimensional projection profiles.

Step 2: Build expectation.

Using our knowledge about the gel's layout and assuming approximately equal lane
widths, we build a preliminary expectation of where the lane peaks might lie in each of the
projection profiles. We then refine this expectation further by making it conform locally to
the actual detected peaksin the best projection profile in the gel.

Step 3: Apply expectation.

Using the localized expectation from the best projection profile, we map the detected peaks
in the other projection profiles. A good strategy which exploits the gel continuity isto start
mapping from the neighboring gel sections from the best projection profile. When al the
Ccross sections have been processed, we join the mapped lane peaksin the each projection
profiles to form a piece-wise constant lane template for the entire gel.

Step 4. Iteratively refine.

If necessary, we can repeat steps 2 and 3 using different initial projection profilesto seeif
we can improve on the lane template that we have constructed so far. We will postpone the
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adjustment for two dimensional dependencies (using algorithm 2D_REFINE_GRID)
until after we have detected the MW bands.

Box 4.3 presents the detail s of our lane tracking algorithm.

Algorithm: TRACK_LANE
Step 1: Reduce problem.

(& Dividethe gel into several (say, k) horizontal sections: Ry, Ry, ..., Rk such
that each R; is wide enough to contain at least a complete row of MW bands.

(b) Reduceeach R sectioninto an intensity profile pj (X) by projecting every (X,
y) pixel in the region onto the X-axis using:

pi (X) = max R (x,y) foralyinR; .

We use the "max" operator instead of the "sum" or the "mean" operator since it
is more robust to slanted MW rows caused by gel smiles’.

(©) Identify the peaksin each compressed profile p; (X). Each of these peaks
indicates a potential MW-loaded lane. Let us assume that there are n loaded gel
lanes.

Step 2: Build expectation.

(@ Identify abest horizontal section by selecting from the R 's, an Rpeg that
maps with theinitial lane expectation (based on gel layout information and
assuming equal lane widths) best.

(b) Establish the best mapping between the peaks detected in ppegt(X) and then
MW:-lanes laney, laney, ..., laney:

Poest: X — lane

Boest fOrms the lane expectation that we can apply to the other gel sections.

"For example, if the MW rows were slanted from left to right, then a horizontal gel region may contain
more MW bands on the left than on the right. By taking the maximum instead of the summation or the
mean of each column, only one of the MW rows (the one with the maximum intensity) will be projected
onto the summarized profile, regardliess of how many extra MW rows that column happen to contain.
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Step 3: Apply expectation.

Based on fpeg, construct individual mappings for the flanking regions Rpegt-1  and
Roest+1 Which maps the peaks in the cross-sectional profilesto laney, laney, ...,
lanen:

Poest-1: X - lane
Boest+1 X — lane

Locally propagate from Rpegt until all k §i's are determined. Together, the cross-
sectional lane mappings<p1, Bz ..., Bk > form an approximate piece-wise constant
lane template for the entire gel.

Step 4. Iteratively refine.

Repeat Step 2 and 3 using other Rj as Roest to Seeif <f1 B2 ... Bk> canbe
improved further. The mappings are then smoothed and interpolated to form the
final lane template for the gd:

Olane: <X, y> pixels - lane

Box 4.3. TRACK_LANE: an expected-based, divide-and-conquer algorithm for tracking
gel lanes.
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4.3.2. Example

As an example, we will track the gel lanes on the example "bleedthrough” gel from Figure
4.2a. First, we divide the gel into horizontal segments so that we can assume straightness
of thelanesin each gel segments. Using our knowledge about the gel layout (there were
34 wells on the gel, 32 of which were loaded with DNA, skipping lanes 17 and 34), we
create alane peak expectation which we refine by mapping it with the detected peaksin the
best bottom-up projection profile shown in Figure 4.8a. As shown in thefigure, there
were 32 peaks detected (marked "*") as lane candidates. However, lane 22 did not contain
sufficient signal level to be detected initially, while a candidate peak was detected at the
unloaded 34th lane. Using the top-down expectation created from gel layout information,
we robustly mapped the lane peaks (marked "0") by locating the missing 22nd peak and
ignoring the extraneous 34th peak.
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Figure 4.8a. The projection profile of the best horizontal subsection inthegel. The
locally detected data peaks are marked "*", while the "0" markers indicate the final mapped
lane locations using the gel's expectation layout information.

0

Using the refined lane template (marked "o" in Figure 4.89) that we have created from the

best cross-sectiona projection profile, we proceed to map the lane peaksin the other cross-
sections on the gel. Figure 4.8b shows the final mapped lane locations (depicted as dotted
lines) of the first four cross-sections on the gel.
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Figure 4.8b. The mapped lane locations (for all 34 lanes, including the unloaded lanes

17 and 34) for the various gel regions. The lane locations are depicted as vertical dotted

lines, whilethe "*"'s mark the lane peaks that were detected initially on the projection
profiles.

By joining the mapped lane |locations from the different cross sections together, we
congtruct a piece-wise constant lane template for the entire gel. The final lane templateis
shown in Figure 4.8c together with the MW plane, illustrating that the lane template was
fairly accurate even though it was constructed as a two-dimensiona concatenation of one-
dimensionally cross-sectional projection profiles.
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4.4, MW calibration

Once the lanes have been tracked, the two-dimensional gel image can be reduced
immediately to a series of one-dimensional vertical electropherograms which can then be
calibrated separately. In each lane, we detect the MW peaks and label them with the correct
molecular sizes. To filter out extraneous peaks or infer any missing ones, we construct
expectations to accurately predict where the MW bands are on the electropherograms.

To predict the expected positions of the MW peaks, the conventional approach isto assume
afixed mobility function such as the local Southern function (Ghosh et al., 1997,

Southern, 1979). Here, we adopt a data-driven approach by using actual relative pixels of
MW peaks from previous gels to predict where the MW peaks would fall on the current
gel. Therelative pixelsrecord the relative distances of the MW bands. Using the relative
pixels of MW peaks learned from previous gel's running the same MW standards, we can
easily construct ahighly reliable MW peak expectation without globally assuming any
mobility function.

4.4.1. Algorithm

Lanetracking and MW calibration are actually a pair of symmetrical problems:. the former
involves the mapping of detected peaks horizontally ("row"-wise) to infer vertical points,
while the latter involves mapping the peaks vertically (lane-wise) to infer horizontal
patterns. As such, we apply the same computational framework:

(& Reduce problem. The two-dimensional complexity of the problemisdrastically
reduced, since the lane template from TRACK _LANE is used to extract lane
el ectropherograms for one-dimensional MW calibration;

(b) Build expectation. We apply relative pixel information that we have learned from
previous gels, and customize it with the data on the best lane on the current gel;

() Apply expectation. We apply the MW peak expectation to search for MW bandsin the
neighboring lanes. To exploit lane to lane continuity, we adopt the strategy of
searching for the MW peaks in the neighboring lanes first, incrementally refining the
MW expectation as we propagate away from theinitial lanes;
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(d) Ilteratively refine. We iteratively refine the solution by repeating the process using
some other lanes to build the initial MW peak expectation in (b).

Box 4.4 givesthe detailed description our MW calibration algorithm.

Algorithm: CALIBRATE_MW

Step 1: Build expectation.

(@ Select, from laney, laney, ..., lane,, alanepeg that has the cleanest
electropherogram ppest(Y) -

(b) Based on the relative pixels we have learned from previous gels, establish
the best mapping between the peaks in ppegt(y) and the known MW sizes:

Ppet: Y —» SiZe

Step 2: Apply expectation.

Base on the locally refined relative pixelsin ¢peg, construct individual
mappings for the flanking lanes of lanepeg, Namely lanepeg-1 and lanepeg+1:

Pbest-1: Y — Size

Repeat Step 2 for the flanking lanes of lanepeg-1 and lanepeg+ 1, until the MW
peaks of al thelanesin the gel are detected and mapped.

Step 3. Iteratively refine.

Repeat Steps 1 and 2 using other lang 's as lanepeg to seeif the quality of the
MW mappings can be improved further. The best set of <¢1 @2 . P>

collectively forms the MW mapping for al the lanesin the gel:

Opp: <lane, y> - bp

Box 4.4. CALIBRATE_MW: an expected-based algorithm for MW calibration.
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4.4.2. Example

We continue with the "bleedthrough” gel (originally shown in Figure 4.2a) as an example.
The MW size standards used on this gel was "GS350", which contains twelve standard
DNA sizefragments:

‘ MW standards
bp ‘35 50 75 100 139 150 160 200 250 300 340 350

First, we construct a customized MW peak expectation from previous relative pixels for
GS350 and the detected peaks on the best electropherogram, shown in Figure 4.9a (the
smaller sizes are to the |eft of the electropherogram). The detected peaks are marked "*",
and the mapped peaks are marked "0". Notice that there is a bleedthrough band between
the size fragments for 150 bp and 200 bp. Since we are using the relative pixel information
from previous gels running GS350, our algorithm is robust enough to avoid the
bleedthrough band.
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Figure4.9a. The lane electropherogram for constructing the initial MW peak
expectations. The detected peaks are marked "*", and the "0"'s indicate the mapped peaks.
There is ableedthrough band in the middle (the one marked with "*" but without an
associated "0"), but the algorithm intelligently avoids this band using expectation
information. The high intensity signals on the left are due to the excess primer bands from
the markers.
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Thelocalized MW peak expectation enables usto robustly detect and label the MW bands
on the other lane electropherograms. In Figure 4.9b, we show alane electropherogram
where the bleedthrough bands actually have higher intensities than the actual MW bands.
Our expectation-based approach again intelligently avoids the pitfalls.
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Figure 4.9b. An examplein which the bleedthrough bands (in the middle region) are of
higher signal intensities than the actual MW bands.

Figure 4.9c shows the final mapped MW peaks for the first 5 lanes, and Figure 4.9d
depicts the mapped MW bands for al 32 lanes overlaid on the gel image.
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Figure 4.9c. The detected ("*"'s) and mapped (dashed lines) MW bands for the first 5
lanes of the gel. Notice how the bleedthrough bands have been avoided by the expectation-
based approach.
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45. Grid refinement

Tremendous speedup is obtained in reducing the two-dimensional grid construction
problem into one-dimensional problems of lane tracking and MW calibration. The
associated price for such problem simplification is that certain subtle two-dimensional
dependencies may be lost in the reduced problem space. In particular, the MW bands are
actually two-dimensional regions with finite widths and lengths, and not merely flat peaks
along one-dimensional lane profiles. So, idedlly, the grid points on the sizing grid should
be the centroids of the two-dimensionally shaped MW bands. When mapping the MW
peaks along the lanes tracked one-dimensionally by TRACK _LANE, we may missthe
actual centroids of some of the MW bands since they could lie dightly off the lane
templates. To account for such two-dimensional singularities, we perform afina grid
refinement by locally searching for the peaks centroids at each grid point.

45.1. Algorithm

From the mappings that we have constructed in TRACK_LANE and CALIBRATE_MW,
namely:

Olane: <X, y> pixels - lane, and

Ogze: <lane y> - size
we obtain abasic grid (as explained in CONSTRUCT_GRID) using functional
composition:

Qinit = Ogze- Olane: <X, y> pixels - <lane, size>

Thisgrid (ajnit) formsthe initial expectation of where the MW bands might lie two-
dimensionally. Aswe have seen, Qijnjt isfairly accurate, so we only need to search locally
in the vicinity of each grid pointsin ajnjt for the peak centroids. Box 4.4 describes how
we refine djpjt two-dimensionally to form the final sizing grid.
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Algorithm: 2D_REFINE_GRID
For each grid point <X, y> in Qjpjt, do:

Step 1. Estimate enclosing rectangle of MW peak.

Using ainjt, we determine an approximate height and width of arectangular
region enclosing the MW peak. For example, we can begin by trying a
rectangle region with a1 bp height and awidth that is 75% of the actual lane
width.

Step 2: Build local contour.
In the estimated rectangular region, build the local contour for the median pixel
intensity value by joining pixelswith at least thisintensity value together.

Step 3: Adjust enclosing rectangle.

If the contour line does not form an enclosing region, then expand the enclosing
rectangle accordingly and repest Step 2.

If there are more than one enclosed contour linesin the rectangular region, then
contract the rectangle towards the contour region that was closest to the
expected size of aMW band, and repeat Step 2.

We stop until asingle enclosed local contour can be drawn inside the
rectangular region.
Step 4: Find centroid.

Compute the centroid <x', y> of the enclosed contour. Replace the grid point
<X, y> inajnjt with <x', y'> , and then proceed to refine the remaining grid
points in djnit.

Box 4.5. 2D_REFINE_GRID: an agorithm for refining the band localization grid locally
and two-dimensionally.
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45.2. Example

Asan example of aninitial grid peak which deviates from the actual centroid, let uszoomin
on the lower left grid corner (i.e., lane 1, 35 bp) of our example gel. Figure 4.10a shows
the three-dimensional view of the gel region near the lower left grid corner. The grid point
detected by the one-dimensional algorithms TRACK_LANE and CALIBRATE MW
(marked "*") was dightly off the center of the actual MW band.

1150°

Figure4.10a. A close-up three-dimensional contour view of the lower left grid corner
of theexample gel. Theinitial grid point is marked "*".

To refine the misplaced grid point, we define a bounding rectangle in its vicinity which
includes a complete enclosed contour, as shown in Figure 4.10b. We then adjust the grid
point by snapping it to the two-dimensional centroid of the enclosed contour (marked "+"
in Figure 4.10b) in the bounding box. Figure 4.10c shows the relative positions of the
original grid point (marked "*") and the two-dimensionally refined grid point (marked "+")
in athree-dimensional contour view of the gel region.
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Figure 4.10b. Enclosed contour near the original grid point (marked "*"). The centroid

ismarked "+".
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Figure 4.10c. Two dimensional refinement of the grid point (marked "*"). The final
grid point is (marked "+") resides on the tip of the contoured MW peak.
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4.6. Results

We have shown in great detail how our algorithms efficiently and robustly handled
bleedthrough bands in our example gel. The computed grid for this gel is shown in Figure
4.11.
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Figure 4.11. The computed sizing grid for the example "bleedthrough” gel originally

shown in Figure 4.2a.

Our agorithms are also able to handle complex grid patterns caused by gel smiles (shown
in Figures 4.3a and 4.3b) and staggered loading (shown in Figures 4.4a, 4.4b, and 4.4c).
By tracking the lanesfirst, we can calibrate the MW bands separately on the gel 1anes,
handling the possibly drastic lane-to-lane shifts from gel smiles and staggered |oading by
not making any strict lane-to-lane continuity8 assumptions during the independent MW
calibration. Figures4.12aand 4.12b show the computed sizing grids for the gels with gel
smiles (shown originally in Figures 4.3aand 4.3b). The sizing grids for the staggered

8The only lane-to-lane continuity assumption that we exploit is that the relative pixels (and not the
absolute pixels) of the MW bands are more similar for lanes that are closer together than lanes that are
further apart on the same gel.
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loaded gels shown in Figures 4.4a, 4.4b, and 4.4c are shown in Figures 4.13a, 4.13b, and
4.13c respectively.
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Figure 4.12a. The computed sizing grid for a gel showing "gel smile" artifacts.
The original gel image was shown in Figure 4.3a.
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4.7. Discussion

The grid construction agorithms presented in this chapter are computationally
straightforward. Despite their simplicity, these algorithms were very effective in handling
real and complex data, as we have seen from the examples. The algorithms were
specifically designed to meet the various criteriafor practical genotyping problem solving,
such as:

» versatility: the agorithms must be able to handle vastly different loading patterns;

* robustness: the algorithms must not be easily distracted by noise and other pitfalls, such
as extraneous or missing MW bands; and

» efficiency: the algorithms must be able to scan agel and construct an accurate two-
dimensional sizing grid in minutes.

In solving the practical problem of sizing grid construction, we have adopted various
computational strategies. Although they are fundamental computational approaches, they
have been critical in handling complex and noisy data in the case of sizing grid
construction:

» Divide-and-conquer. Whenever possible, we reduce the problem into simpler ones.

Simple problems are more likely to result in simple solutions that are easier to
implement and maintain, and are therefore more robust in the practical sense. The
reduction of problem also increases the degree of modularity in the system. Because
we have separated lane tracking from MW calibration, the computer can handle both
data that require lane tracking (e.g. ABI) and data that are aready lane-tracked (e.g.
Pharmacia), asit can optionally use the lane tracking module with the MW calibration
module;

» Apply expectations. When constructing asizing grid, we invest much effort in creating
accurate localized expectations for guiding the search. Asthe computed expectations
are used asinitial solutions for the search, accurate expectations can drastically reduce
the search required. With good data, the actual solution would be closeto the
expectation, and the computer will be able to find the solution quickly. With imperfect
data, the actual solution deviates further from the expectation, thereby requiring more
search effort from the computer to reach the solution. Thus, an associated advantage of
expectation-based processing is that the computational requirement is directly
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proportional to the quality of the data. Additionally, the expectations provide a robust
reference frame from which the computer can reliably assess the quality of the data,
dynamically allocate its resource to regions of data that need more attention, intelligently
attempt recoveries, and helpfully provide meaningful feedback to the user;

» Refineusing data. Whenever we form an initial expectation based on somea priori
assumption (e.g. equa lanewidthsin TRACK_LANE, initia relative pixelsin
CALIBRATE_MW), we aways refine these expectations locally using the actual data
as soon aswe can. The data-corrected expectations are more accurate than expectations
based on simplifying global assumptions;

» Makefew assumptions. By making as few assumptions about the data as possible, we
can efficiently handle unexpected characteristicsin the data. For example, the practice
of staggered loading, which resulted in complex zig-zagged patterns such as those
shown in Figure 4.4a, b, and c, started only after we implemented the sizing grid
construction module for our system. Because we did not make any a priori
assumptions on strict lane-to-lane alignment, we were able to extend the MW
calibration agorithm to handle the complex |oading patterns;

» Useheuristics. In handling real data, the basic computational power of the algorithms
must be complemented by heuristics which encode the immense obligatory field
expertise. The heuristics handle the "details" that are necessary when working with real
datain apractica system.

This assortment of basic computational strategies turns out to be fairly representative of the
algorithms that we have devel oped for solving the other related problemsin genotyping.
As such, they will recur frequently in the next few chapters as we describe our other
algorithms for solving the remaining problems.
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5. Band Quantitation

The construction of the sizing grid allows us to reduce genotyping complexity in two ways.
First, using the lane mapping in the grid, we reduce the multi-dimensional gel image into
one-dimensional electropherograms; then, using the grid's MW calibration, we apply our
knowledge about the markers expected allele size range to isolate windows of marker data
on the electropherograms for analysis.

In this chapter, we describe the next level of problem reduction. The PCR and gel
electrophoresis process (Chapter 2) generates electrophoretic signals from size-separated
classes of tagged DNA fragments. Each of these DNA fragments has an integral molecular
sizein base pairs (bp). Therefore, underlying the continuous intensity signals that we
observe on the electropherograms are actually series of discrete data bands emitted by
classes of DNA fragments with integral molecular sizes. The next natural problem
reduction step is to discretize the continuous signals on the el ectropherograms into discrete
data bands, each indexed with an integral alele size and quantitated with arelative DNA
concentration measure. That is, we compute the following mapping function:

[B: imagedata+ sizing grid - {<bp, concentration>}
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Figure 5.1. Band quantitation. Thisinvolves converting the continuous el ectrophoretic
signals (shown on the left) into discrete data bands (shown on the right), assigning an
integral sizeto each of the data bands detected, and determining the relative DNA
concentrations of the data bands.
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5.1. Problem

There are two main tasks in band quantitation:

1. binning: indexing each marker band with an integral molecular size, and

2. quantitation: determining each marker band's relative DNA concentration (defined as
either the area under the peak in the intensity profile, or as the peak height).

For the binning task, the MW sizing grid can only give approximate sizes for the marker

bands. There are two potential sources of binning errors:

* Inadequate resolution. The commercialy available MW size standards (Genescan 500,
Bioventures Map) provide only 50 to 20 bp spacing resol ution, whereas the data bands
from the markers can be as close as 2 bp (for dinucleotide repeat markers) or 1 bp (for
mononucleotide repeat markers, or markers exhibiting the "plus-A" artifacts) apart;

» Inappropriate interpolation. The sizing grid is constructed using molecular size
standards DNA, whose DNA sequences may differ chemically from the marker DNAS.
Asaresult, the molecular weight spacing of the marker DNA fragment may not equal
the spacing of the size standards. Thus, interpolating within the size standards may
lead to inaccurate of the marker fragments.

For the quantitation task, since the fluorescent signal intensity is directly related to the
amount of tagged DNA present, we can determine the relative DNA concentrations of the
marker bands based on their intensities in the el ectrophoretic profiles. 1n aperfect system,
the signal for each allele size present would be detected as an unambiguous spike, located
exactly at the integral molecular size with a height (intensity) that is directly proportional to
the amount of DNA of the particular size. With real data, there are two main problems:

* Band widths. Instead of generating unambiguous singular spikes, the DNA fragments
produce data bands with two-dimensional shapes that have significant widths. One
immediate consequenceisthat it is difficult to determine the exact integral sizefor adata
band, asits center can lie anywhere within the band width;

* Band overlap. Because of the band widths, neighboring marker bands may overlap
into one another, making it difficult to determine the individual areas or heights of the
bands independently. Band overlap is particularly problematic with markers having

9The fluorescent molecul es attached to the MW DNA fragments are different from those attached to the
sample DNA in a multi-dye system. More importantly, the marker DNA is most likely to be chemically
different from the MW standards. For example, arepeat unit of a CA-repeat consists of a cytosine (C) and
an adenine (A), whereas a corresponding unit in the MW may contain a different pair of molecules formed
by any two of the nucleoctides adenine, guanine (G), cytosine , and thymine (T).
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small repeats (e.g. the dinucleotide repeat markers), since the marker bands tend to be
close together.

5.2. Binning by stutter crawling

Traditionally, stutter bands have been considered as noise because they obscure the true

alldebands. Geneticists have attempted to minimize PCR stutter in markers

experimentally, or failing that, avoided using markers with stutter altogether. Surprisingly,

abundant stutter bands can provide a perfect solution for the binning problem, since:

(1) stutter bands, which include the true allele bands, provide the precise resolution
needed for binning alleles;

(2) thereare no discrepancies in the sequence chemistry, since the stutter bands have the
same chemical unitsasthetrue aleles.

We will show, by anovel technique called stutter crawling, how we can use the stutter data

to self-calibrate the marker bands, solving two of the problemsintroduced in Chapter 1:

» Sizing precision: how to calibrate the marker data with the requisite resolution, even
when using low resolution MW standards for size calibration,;

» Binning consistency: how to ensure that the alleles are binned with consistent integral
size labels, minimizing interpolation and rounding errors.
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5.2.1. Algorithm

In the laboratory, one can create a high resolution allelic ladder for amarker. Thisisdone
by pooling together many DNA samples from a population and then size-separating the
pooled mixture on asingle gel lane. To ensure that the resulting allelic ladder hasthe
resolution required for disambiguating any two marker alleles, it is best to pool together
many different DNA samples—thiswill sample adiverse set of dleles. Individua DNA
samples can then be size-separated in gel 1anes adjacent to the alelic ladders. This
procedure permits consistent and unambiguous allele binning19, as shown in Figure 5.2.

Figure5.2. Allele binning by experimentally pooling DNA samples. DNA samples
from the popul ation are pooled together in single lane run-outs (lanes 5 and 9). The
resulting alelic ladders are used for binning individual DNA samples alele bandsin the
neighboring lanes, asis shown here. (Provided by Lillian M. Bloch, Cybergenetics, Inc.)

The basic idea of stutter crawling is to computationally simulate a pooled alélic ladder by
superimposing all the available stutter data, as shown in Figure 5.3. One advantage of
pooling the data computationally is that we can superimpose stutter data from different
lanes, and from different gels— we require only that the data share common experimental
conditions. Using additional knowledge (e.g. the marker's repeat size), we intelligently
"crawl" along the highly redundant superimposed stutter datato compute an alelic ladder
for binning alleles.

Box 5.1 describes the details of our stutter crawling algorithm. We bin the stutter bandsin
abreadth-first fashion across the gel 1anes, instead of naively superimposing the stutter
trailsfrom al gel lanes and ignoring the lane information completely. To improve the
robustness of our stutter crawling algorithm, we use local lane information to verify the

101 fact, this is a common practice in DNA forensics.
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continuity of stutter trails within lanes, before globally crawling from one stutter to the

next.
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Figure 5.3. Computational pooling of stutter data from different gel lanes. The bottom

display pane shows the result of superimposing 32 lanes of electropherogramsfor the
dinucleotide repeat marker D16S511. By pooling alarge number of lanes, we would be
able to obtain a marker-specific alelic ladder that is of the requisite 2 bp resolution.
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Algorithm: STUTTER_CRAWL

Step 1: Align stutter trails.

In each lane, identify potential stutter bands in the marker window. Then, aign
the stutter bands across lanes and gels by indexing the bands relative to their
interpolated MW sizes. Thus, bands do not depend on specific pixel positions.

Step 2: Identify an "anchor" row.

Scanning across al data, identify arow that contains the most stutter bands with
high intensities. In other words, determine aMW size mg that maximizes the

total number of high intensity stutter bandsindexed by a size within the range of
Mg = €. Here, € isaheuristically determined bin width.

Assign Bg = round(mg) as the bin label for all stutter bands along this anchor
row.

Step 3. Stutter crawl from anchor row.

(8 Starting from the anchor row, either crawl upwards (in increasing sizes) or
downwards (in decreasing sizes) to search for a neighboring row of stutter
bands that are all approximately n' bp away, where n is the number of
nucleotidesin arepeat unit of the marker, and n' is the corresponding
interpolated MW size of such aunit. Ideally, n=n". However, because of
the chemical difference between the sizing DNA and the marker DNA, as
well asthe inherent error in real data, n' only approximates n. Initially, we
usen' =n=+0.5.

(b) If aneighboring row with comparable number of stutter bands as those

found in the anchor row is found, we add it to the set of binned aleles and
assign it with the appropriate bin label Bg +n (if it is upwards from the

anchor row) or Bg - n (if it is downwards from the anchor row). We also
update locally the expected size (n') of arepeat unit of the marker with the
difference between the mean sizes of the two consecutive bins.

() Repeat (a) and (b) by crawling from any of the binned alleles. Stop when
no more neighboring stutter rows can be binned.
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Step 4: Iterate.

Repeat steps 2 and 3 until no more segregated stutter rows can be binned.

Box 5.1. STUTTER_CRAWL.: an alele binning algorithm for constructing a high-
resolution marker-specific alelic ladder using all the stutter data.

5.2.2. Example

Figure 5.4 shows the actual gelll image for a dinucleotide repeat marker D16S511. The
MW sizing grid (from Bioventures 20-bp ladder) provides an average sizing resol ution of
20 bp. Thisresolution istoo low for a dinucleotide repeat marker that has alleles only 2 bp
apart. However, our stutter crawling algorithm can exploit the high degree of PCR
stuttering in D16S511, and refine the sizing grid into one with the requisite 2-bp resol ution.
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Figure5.4. The marker image for the TET-labeled dinucleotide D16S511. There are 32
lanes on the gel shown. The "o"sindicate the locations of the MW (Bioventures 20 bp
ladder) sizing grid from the TAM dye plane. The highest resolution provided is 10 bp,

11Thisis the gel that we shipped as the demo gel with the FAST-MAP package (see Chapter 8 for
information about the FAST-MAP genotyping system).
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which istoo low for D16S511, a dinucleotide repeat marker requiring 2-bp sizing
resolution. (Data provided by Gordon Bentley, gene/Networks.)

First, using the MW sizing grid, we align al the detected marker bands. In case we are
aligning stutter bands from different gels, we use relative pixels to index the detected
marker bands to avoid any local dependency on the absolute image pixel vaues. With
sufficient data, aregular pattern emerges when all available lanes are aligned. Figure 5.5
shows high signal intensity marker bands in darker colors, making regular rows of dark
bands visually apparent.

.............................................................................. 226
0.7 e e 1224
.............................................................................. 222
ieeessscasseansacanseansagageeesascasnsassasansssnnsscansess’ ™ ecnccaanncanngse 220
i eeessscasseansacansecnsapgageeesascattscsaacastscnasscansasanseannsaanncas e 218
(11 R R R R 4216
GO, e e g IOUPR ‘oo “a e e WA e 214
T e o PR R T T I T —— J& 212

e B 5% S At e * " PP o e e PR Lt ccessssssssesssasssennnans T T 210

B S PO . o I L S PR e 4208

S T PR T T VO [T P O e YT YRR YT L P T ., v, v 206

- - P — e 4204

o
o

(dq) sapa1e

..... < S N S B -+ N W M s -+ e s e s e e+ - 2] 2

......... e e e e e e e e s g s 2 ] 2 [
.............................................. S e | | |
................................................................. anunsss™al 196
e ——T s e e e e T e e T e o e e ¢ T T T T e T+ s Tk 194
(1] ) R 1L N S 4132

e s e e nna et e s n P e P ik 190

Relative Pixels
o
'.:;
i

et L L v {585
................................. o LR TETERE T | 1
D2k ommmme i e P - P P — 184
............................................................................. 182
.............................................................................. 180
.............................................................................. 178

Figure5.5. Binning of the TET-labeled dinucleotide D16S511 by stutter crawling. The
detected marker bandsin each of the lanes (32 lanes are shown) are aligned together; the
darker bands having higher signal intensity than the lighter ones. The 2-bp ladder resulting
from stutter crawling is shown by the horizontal grid lines, which are indexed by their
integral aldic labelson the right.
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To start stutter crawling on the aligned data, we locate the row with the most dark bands
(i.e., the most visually distinct row) as the anchor row. For example, in Figure 5.5, we
pick the row marked "204" bp. Picking arow that has many high intensity marker bands
ensures that most are actual stutter bands that lie on stutter trails. This choice makesthe
row highly "extensible” — we can extend the ladder ("crawl") to stutter bands along the
many emerging stutter trails. Figure 5.5 shows the 2-bp sizing ladder that we constructed
for the gel using stutter crawling.

To investigate the effect of binning by stutter crawling, we show, in Figure 5.6, both the
pre-binning MW sizing grid and the post-binning grid on the superimposed
electropherogram from the 32 lanes on the gel (shown previoudly in Figure 5.3). With the
original MW sizing grid, the marker bands generaly lie dightly off the grid, incurring
significant rounding errors that may result in inconsistent allele calling. With the refined
grid, the marker bands now "snapped" closely to the grid, minimizing rounding errors that
occur when assigning integral alele sizesto the marker bands. The average rounding error
(or "bin width") for the 32 genotypes was reduced from 0.29 bp with the MW-sizing grid,
to 0.17 bp with the refined grid.

pre-binning:

180 184 183 196 200

post-binning

180 184 188 192 196 200 204 208 212

Figure5.6. Sizing grid refinement. In the top pane, the pre-binning MW sizing grid is
overlaid on the superimposed electropherogram of 32 lanes of D16S511 (see aso Figure
5.3). The marker bands lie dightly off the MW sizing grid. In the bottom pane, the post-
stutter crawling grid isoverlaid. The marker bands now snap tightly to the refined grid.
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5.2.3. Discussion

To reiterate, the possible chemical difference between the MW DNA and the marker DNA
makes the MW sizing grid inadequate for sizing the marker bands— 1 bp of MW DNA
may not correspond exactly to 1 bp of marker DNA. Weillustrate thisin Figure 5.7 by
plotting the calibrated MW sizes of the alele bands of marker D16S511 againgt the actual
alelic sizes, and compute the dope of the resulting line. With the unadjusted pre-binning
MW-sizing grid, the size calibration slope gives avalue of 1.92 bp/repeat for marker
D16S511. This means that when sized with the Bioventures 20-bp MW ladder, each repeat
of D16S511 is actually equivaent to only 1.92 bp of the MW DNA molecules. Onthe
other hand, the size calibration curve adjusted with stutter crawling gives the correct slope
of 2 bp/repeat.
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Figure5.7. The size calibration curves for the dinucleotide D16S511. We plot the

interpolated sizes against the actual allele sizes. With the MW-sizing grid ("pre-binning"),

the slope gives 1.92 bp/repeat, whereas with the marker-adjusted grid (" post-binning), the

sizing slopeis an accurate 2.00 bp/repest.
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We show the relative sizing of the other dinucleotide repeat markersin our example gel in
Table5.1. The MW-cdibrated allele size differences range from 1.84 bp to 1.98 bp per
repeat (instead of 2 bp per repeat). The MW sizing discrepancy is especially pronounced
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on this gel with markersthat have larger allele sizes (e.g. D16S515 and D16S503). The
associated rounding error can lead to a miscall when the alleles of a genotype are far apart.

marker dye allele window MW size per repeat
D165405 FAM 103-161 bp 1.98 bp
D15S165 HEX 176-224 bp 1.96 bp
D16S511 TET 178-238 bp 1.92 bp
D16S503 HEX 290-326 bp 1.88 bp
D16S515 FAM 316-366 bp 1.84 bp

Table5.1. The MW sizing of the 5 markers on the example gel (32 lanes). All the
markers are dinucleotide repeats, with an expected spacing of 2 bp per repeat. The gel was
sized with BVMap from Bioventures (20-bp MW ladder).

5.3. Quantitating DNA concentration

The DNA concentrations at the data bands can be quantitated using either the areas of the
data bands or the heights of the corresponding peaks in the electropherograms. Because of
band overlap, it is often difficult to determine these val ues independently, since
neighboring data bands may overlap one another. Conventional genotyping systems
generally ignore the effects of band overlap atogether, using truncated areas or
densitometric intensities at the band centers as rough estimates of the DNA concentrations.

A common approach for handling band overlap isto fit the data bands parametrically to a
model shape function using least square minimization (Galat, 1989; Ribeiro and
Sutherland, 1991; Vohradsky and Panek, 1993). Each fit isthen subtracted from the
electropherogram, and the processisiterated to fit the remaining data bands. One major
advantage of this method is that each band isfitted locally with the model function using
individually optimized parametric values. This can account for any local variation in the
smearing function. Computationally, the accuracy and efficiency of this method rely
heavily on the model function and the data quality. With awrong model function, the
method may not converge to a satisfactory fit. We must therefore carefully select an
appropriate data band model.
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5.3.1. Data Band Model

After experimenting with avariety of model peak shapes, we found that afunction that has
aGaussian left half and a Runga right half fits gel electrophoretic data best (Richards and
Perlin, 1995). We call it the Gauss-Runga function :

Gauss-Runga data band model function:

where ¢ isthe center of the band, h the height, o the half-width of the Gaussian
left half, and v the scale factor of the Rungaright half. T ranges over the x- (base
pair) coordinate.

Box 5.2. Gauss-Runga: A hybrid model function that is useful for fitting data bands
from gel electrophoresis.

Figure 5.8 shows an example of a Gauss-Runga peak. Assuming that DNA migrates from
right to left, the longer Rungatail on the right models the trailing effect of the DNA asit
migrates through the gel. In our experience, the Gauss-Runga mode! function has been
very useful in fitting data from current DNA sequencers such as the ABI machines, and the
Pharmacia ALF. Of course, adifferent model function will be used to fit the data should a
new sequencer produce data bands with a different shape.
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5.3.2. Algorithm

To fit amarker band with a Gauss-Runga function, there are four parameters to optimize:
the band center c, the height h, the Gaussian half-width o, and the Runga scale factor v .
The band center ¢ can beinitially approximated from the stutter crawling agorithm'salele
bins position. The other three peak parameters (height h, Gaussian half-width o, and
Runga scale factor v) are inter-dependent, and should ideally be determined using global
nonlinear optimization. However, the computational requirement for globally optimizing
three parameters per peak isimpractical for real-time systems. Moreover, such
computation would be overkill, since the data bands generally only overlap their immediate
neighbors. Based on these computational considerations, we adopt a hybrid "locally-
optimize globally-refine" approach for fitting the peaks:
* locally optimize: First, weoptimizeh, o, and v localy;
» globally refine: Then, we apply the global optimizer on h aone, asthe band height is
most sensitive towards band overlap.
We repest this process to incrementally refine the solution by comparing the overal fit with
the observed electrophoretic data. Quantitating each genotyping experiment typically takes
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several seconds. Thisreduction in the computational cost isthree orders of magnitude less
than the original "global" algorithm. With thousands of experiments to quantitate per gel,
this improvement isimportant.

Box 5.3 detailsthe QUANTITATE_BAND algorithm.

Algorithm: QUANTITATE_BAND

Step 1: Estimate an initid fit.

For efficiency and convergence in the least-square minimization process, it is
important to accurately estimate the initial fit.

Using the allele bin positions computed by the STUTTER_CRAWL agorithm,
we search for data bands in the marker window with nontrivial heights.
Starting with the tallest data band detected in the marker window, we determine
theinitial valuesfor the parametersc, h, o, and v by finding a best fit locally
within the local region c-0.5 < x < ¢+0.5, where c is the expected bin center
(from STUTTER_CRAWL) for that allele. When done, we subtract the fitted
band I(c,h ,o,v) from the observed electropherogram, and then iteratively
estimate the parameters for the next tallest band in the marker window until the
parameters for al the data bands are estimated.

Step 2: Localy refine each parameter individually.

(& Bandcentersc: Starting with the most confident (i.e., tallest) band, locally
micro-adjust its center ¢ for the best fit relative to the entire
electropherogram. Repeat (), using the next most confident data band.

(b) Gaussian half widths g: Perform (a), adjusting o instead of c.

(c) Rungascalefactors v: Perform (a), adjusting v instead of c.

(d) Heightsh: Perform (a), adjusting h instead of c.

Step 3. Globally optimize the band heights.

Since h isthe parameter most affected by band overlap, globally optimize al the
heights ssimultaneoudly. For efficiency, it isimportant to use afast nonlinear
optimizing algorithm, such as the L evenberg-Marquardt method (Marquardt,
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1963). Fortunately, because the computationally tedious steps 1 and 2 produce
acloseinitia estimate, the nonlinear optimization of h typically converges

rapidly.

Step 4: Iteratively refine (best-first search).
Repesat Steps 2 and 3 until the sum of squares error of the fit versus the
observed electropherogram is minimized.

Step 5: Output band quantitations.

To index each detected data band, assign it the bin label b (such that the band
center c falswithin the bin widths of allele bin b). Using the height h asthe
measure of DNA concentration2, we output the pairs{<b, h>} to form the
transformation function for band quantitation:

[B: imagedata+ sizing grid - {<b, h>}

Box 5.3. QUANTITATE_BAND: A least-squares minimization band fit using the
Gauss-Runga mode function.

5.3.3. Example

Thisexampleisfrom D20S195, a FAM-labeled dinucleotide repeat marker loaded on a 34-
lane ABI/377 gel, with the GS500 sizing standard in the TAM dye. The marker's
electropherogram from one of the gel'slanesis shown in Figure 5.9.

Thefirst step isto identify the marker bands aong the continuous intensity profilein the
electropherogram. Using the binned sizing grid constructed by the STUTTER_CRAWL
algorithm, we search in the expected locations (shown as vertical grid linesin Figure 5.9)
for potential data peaks. The maximaof the detected peaks (marked "*" in the figure) are
used as the peak centers (parameter c).

12\When band overlap effects are eliminated mathematically, the band heights work as well as band areas as
an estimate of DNA concentration. In fact, with real data, band areas may be less robust than band heights
because they are more sensitive to baseline and discontinuity artifacts in the intensity profile. When using
band area for the DNA concentration in [3, use the closed functional form of /(c,h,o,u) inBox 5.2.
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Figure5.9. D20S195's lane electropherogram gridded by the marker-adjusted sizing
grid. Using the pre-binned grid lines as expectations, we quickly and reliably detect the
marker peaks (marked as "*"'s in the electropherogram).

Starting from the highest peak detected (at 144 bp), we iteratively estimate the initial values
for the other peak parametersfor each of the detected peaks: the peak height h, the
Gaussian half-width g, and the Runga scale factor v , as described in Step 1 of the

QUANTITATE_BAND agorithm. Figure 5.10 shows the sum of the initial fits.

136 138 140 142 144 146 148 150 (bp)

Figure 5.10. Initial sum of fit. The solid line shows theinitial sum of the fit from
iteratively estimating an initial fit for each detected peaksindividualy. The original
electropherogram is plotted with a dashed line (of alighter color) above the fitted profile.
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With theinitial fit, we proceed to Step 2 of QUANTITATE_BAND, where we locally
refine each of the peak parametersin the following order: Gaussian half-widths o, Runga
scale factors v, and peak heights h. Figure 5.11 shows the results of locally refining the
Gaussian half-widths 0. Since this parameter affects only the left halves under our Gauss-
Runga peak model, the resulting sum of fit shows marked improvement on the left sides of
the fitted peaks.

146 148 150 (bp)

Figure5.11. Sum of fit after locally optimizing the Gaussian half-widths (o) of the
detected marker peaks. The resulting sum of fit (dark solid line) shows noticeably closer fit
to the original electropherogram (light dashed line) on the left sides of the marker peaks.
Thisis because under our peak model, only the left halves are Gaussian.

136 138 140 142 144
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Similarly, by locally optimizing the Runga parameters, the resulting sum of fit shows
improvement on the right halves of the marker peaks, as shown in Figure 5.12.

n
r
5
"
it

136 138 140 142 144 146 148 150 (bp)

Figure5.12. Sum of fit after locally optimizing the Runga scale factors (v) of the
detected marker peaks. Thistime, the resulting sum of fit (solid line) shows noticeably
closer fit tothe original electropherogram (dashed line) on the right sides of the marker
peaks, since the right-half of our peak model is defined by the Runga parameter.

Thefinal local refinement step optimizes the peak heights. Asshown in Figure 5.13, the
local optimization process has generated afairly accuratefit.

136 138- 140 142 144 146 143 150(bp)

Figure 5.13. Sum of fit (dark solid line) after locally optimizing the peak heights (h) of
each detected marker peaks. Thisisafairly closefit to the origina electropherogram (light
dashed line) after one round of locally optimizing peak parameters.
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In Step 3 of QUANTITATE_BAND, werefine our initial solution by globally optimizing
all the peak heights simultaneoudly. In principle, global optimization is computation-
intensive. However, the good initia fit from the efficient local optimization steps
significantly reduced the global search effort. Figure 5.14 shows the globally optimized
sum of fit.

136 138 140 142 144 146 145 150 (bp)
Figure 5.14. Sum of fit (dark solid line) after globally optimizing the peak heights.

For the best fit, we iteratively refine (Step 5 of QUANTITATE _BAND) the solution by
repeating the "locally-adjust, globally-optimize" process. In this example, only one
iteration was required. The final sum of fit is shown in the top panein Figure 5.15. For
output, we assign an integral size label to each detected band, and compute the relative
DNA concentrations. For the integral size labels, we use the molecular sizes from stutter
crawling, rounding if necessary. For the DNA concentration, we can use band height or
area under each fitted curve (using the closed functional form of I (c,h ,o,u) in Box 5.2).
We show the final output of the band quantitation step in the bottom pane of Figure 5.15.
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Figure 5.15. Band quantitation output. The top pane shows the final sum of fit (solid
line) and the individual peaks benesth it. The bottom pane shows the output of the band
quantitation step: each darkened bar represents a discretized data band located at an integral
alelesize. The heights of the bars depict the computed relative DNA concentrations.

5.3.4. Discussion: Developing algorithms

In this chapter, we have presented algorithms for solving two main problemsin band
quantitation, namely: stutter crawling, which solvesthe allele binning problem, and gauss-
runga peak fitting, which solves the DNA concentration quantitation problem. Although
these are two straightforward algorithms, the process involved in developing them (as well
as the other algorithms described in this dissertation) was not as straightforward. A typical
development process involved making afew false starts along the way, discovering new
facts about the ever-changing domain, and going through several cycles of agorithm
refinements. We describe, in this section, a brief representative account of how we
developed the band quantitation algorithms.
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Stutter crawling

The conventional approach to the allele binning problem was to first call the alleles using
molecular sizes interpolated from the MW sizing grid, and then bin the two alleles by
assigning appropriate integer size labelsto them (Ghosh et al., 1997). This approach
works when the stutter bands are not treated as part of the data, and therefore do not play a
roleinthe alele caling step.

Following the conventional approach, our initial allele binning solution did not involve
binning the alleles for all the data bands (including the stutter bands) in the quantitation
step. Instead, our initial solution involved quantitating the data bands for DNA
concentrations, and then calling the alleles using various stutter deconvolution algorithms
(to be described in the next chapter). Asit turned out, our allele calling algorithms
performed poorly on real data, even though they had worked very well on simulated
guantitated data (Section 6.4 and Appendix A).

Initially, it appeared that the poor performance was due to the allele calling algorithms, but
our effortsto improve our stutter deconvolution methods were to no avail. On further
investigation, the source of the problem turned out to be in the stutter patterns used by the
deconvolution algorithms for calling aleles. Because we did not pre-bin the stutter bands,
sizing interpolation errors led the computer to learn stutter patterns that were inconsistently
sized. Since the computer relied on these compiled patterns as definitive expectationsin
guiding its search for the correct alleles, our expectation-based alele calling agorithms
were adversely affected by the sizing errors.

The stutter band sizing problem led us to devel op a novel technique (" stutter-crawling™) for
binning stutter data. By pre-binning all data bands during the quantitation step, the
computer was able to learn stutter patterns that are consistently sized, and the power of our
stutter deconvolution algorithmsin alele calling began to unveil. Our venture into stutter
binning also led us to discover an unexpected source for binning errors. in addition to the
rounding errors associated with MW sizing interpolation, allele binning can aso be affected
by a sizing mismatch due to the chemical differences between the MW DNA and the marker
DNA (see Table5.1), when we used MW datato calibrate the marker data.

Our experience with the allele binning problem is representative of the high degree of
interdependency between the various algorithms described in this dissertation. Thereal
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cause of errorsin one algorithm (say, alele calling) may have been due to errorsin another
algorithm (say, band quantitation) that pre-processes the input datato the algorithm. In
solving a complex problem reduced into multiple subproblems, it isimportant to keep a
global perspective of the interdependencies between the various subproblems when
debugging the algorithms.

Thereis another aspect of our allele binning experience that istypical of agorithm
development in an emergent domain such as molecular genetics. While attempting to
improve our agorithmic solutions, we a so discovered new non-algorithmic causes of
errors, such as the chemical factor of the sizing errors. In acomplex problem domain that
is ever-changing with new facts and discoveries, it isimportant for the computer scientist to
be closely involved with the process of discovery in the problem domain, so that the
algorithms designed can be easily adapted to the latest domain changes.

Band quantitation

Our experience in devel oping the gauss-runga peak fitting (QUANTITATE_BAND)
algorithm illustrates the power of agorithmic refinements. In our initial
QUANTITATE_BAND dgorithm, we globally optimize all the band parameters (band
centers ¢, Gaussian half widths g, Runga scale factors v, and peak heights h). Thisnaive
strategy resulted in a huge multidimensional search space consisting of about 50 peak
parameters!3 to be simultaneously and globally optimized . Quantitating just one
genotyping experiment took hours of computation, even on a powerful computer.
Furthermore, despite the intense computation invested, the computer did not adwaysfind a
satisfactory solution, as there were many local minimain the vast search space, entrapping
the computer in its unconstrained global search.

Our first algorithmic refinement was to prune the multidimensional search space, using two
common artificial intelligence (Al) approaches. (1) we greatly restricted the range of values
that the peak parameters can be optimized to, and (2) we heuristically improved on the
accuracy of theinitial solution for the global search. Using these two standard Al
techniques, we were able to reduce the computation time about ten-fold.

13For amarker that exhibits PCR stuttering, there are typically 10-15 data bands per genotyping
experiment. Each data band is defined by 4 peak parameters (c, g, v, and h), resulting in atotal of about
40-60 peak parameters.
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Our next attempt was to significantly reduce the number of dimensions of the quantitation
search space, by effectively reducing the number of peak parameters for global
optimization. Instead of applying the global optimizer to all the peak parameters
simultaneoudly, we optimized each of the peak parameters locally, and then globally refined
only the peak parameter most sensitive to band overlapping artifacts (namely, the peak
heights h). Wethen iteratively refined on the parametric fit to ensure convergence. This
third refinement step resulted in another ten-fold speedup, allowing the computer to
guantitate each genotyping experiment in seconds.

This exercise in agorithm refinement showed how basic search space reduction techniques
in computer science can bring about dramatic improvements in agorithms designed for
solving data-intensive problems. In the case of QUANTITATE_BAND, we were able to
reduce the analysis time at least 100-fold, enabling the computer to analyze a highly
multiplexed gel in acouple of hours.

5.3.5. Discussion: "Plus-A" artifacts

Solving a complex interdisciplinary problem requires collaborative problem solving from
all involved domains. Although it isour thesisto advocate using computational approaches
for solving the microsatel lite genotyping problem, we must not overlook the importance of
not re-solving problems that can be easily eliminated with aternative approaches. In this
section, we describe the "plus-A" artifact problem where there is an experimental solution
that is better than the computational counterpart. Interdisciplinary solutions should be
expected when solving a complex interdisciplinary problem such as the one addressed in
this thesis.

Experimental versus Computational solutions

One advantage of our band quantitating approach, in addition to accounting for band
overlap and providing accurate DNA concentration measures, isthat it allows usto
mathematically excise "plus-A" artifacts from the data. During the PCR amplification of
microsatellite markers, polymerases sometimes add atrailing adenosine baseto a
synthesized DNA strand. This causesthe "plus-A" artifact, where not one, but two bands
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appear for every band!4. The combination of "plus-A" and "PCR stutter" artifacts can
produce a pattern of many bands that are separated by only one base pair, and since the
artifact can be highly variable from run to run, it can be unclear which isthe correct alele.

To computationally excise the "plus-A" bands from the data, we need to quantitate each
marker band individually. Thisisdonein our band quantitation, where we quantitate each
marker band with an individualized Gauss-Runga peak model. However, thereis still the
problem of determining which marker bands to excise from the data. We must make
assumptions about the distinguishing characteristics of the "plus-A" bands, such as
whether the "plus A" bands are of lower intensity than the actual bands, or whether the
"plus A" bands are those of odd-numbered sizes (say).

A more robust approach isto experimentally remove the "plus-A" artifact from the data,
and restore the two base pair separation. This can be done by forcing the polymerase to
suppress "plus-A"s, or preferentially enhance "plus-A"s (Magnuson et al., 1996). Since
new, simple experimental procedures effectively remove the "plus-A" s (using the "G-
clamping” or "PIG-tailing" techniques), most genotyping centers now generate clean "plus-
A"-free genotyping data. In the case of "plus A" artifact reduction, the experimental
approach is more elegant than the computational solution. Nevertheless, band quantitation
istill essential for removing the band overlap effects and for quantitating marker bands
with accurate relative DNA concentrations. Such exquisite band quantitation is used by the
deconvol ution genotyping algorithms that we describe in the next chapter, and also for
other non-genotyping applications such as computer-based differential display analysis
(Jones et al., 1997; Liang and Pardee, 1992; Luehrsen et al., 1997).

140ur example marker D20S195 has a small degree of "plus-A", producing small "plus-A" peaksin
between the major evenly-spaced ones (see Figure 5.9).
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6. Allele Determination

In this chapter, we address the final step in microsatellite genotyping: calling the aleles

from quantitated electrophoretic data. Problemsin allele determination include:

* PCR duttering: how to eliminate the shadow bands in the data to recover the underlying
truedlees?

» Relative amplification: how to account for unequal amplification of allelesin the
genotypes?

» Pattern specificity: how to acquire, maintain, and apply marker- and allele-specific
patternsintelligently and efficiently?

These problems are PCR limitations that cannot be eliminated experimentally. Therefore,
we will show how to resolve them computationally. Our final transformation function for
the genotyping problemiis:

y: quantitated data with stutter — genotypes

6.1. Convolution Model

PCR is analogous to an amplifier in conventional signal processing. With perfect fidelity,
the amplification of asingle alele is expected to produce only asingle band on agel. With
an imperfect amplifier, asisin the case of PCR, a distortion response is introduced which
causes an alele to generate multiple bands instead. In a heterozygotic genotype, if the two
alleles are close to each other with respect to their molecular sizes, their trailing shadows
overlap and create a convoluted band pattern when size-separated on an electrophoretic gel
(Figure 6.1).

observed bands

alele dlele from genotype
[ | [ |
[ | [ [ |
- [ ] [
— [ — [ |
—_— — [

Figure 6.1. Overlapping of PCR stutter bands. Stutter patterns from the allelesin a
genotype combine together to form a convoluted band pattern.
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Under fixed PCR conditions (including enzyme, cycle times, number of cycles, template
and primer concentrations, and buffers), the stutter pattern of each alele of agiven marker
isknown to be reproducible (Perlin et al., 1994). This means that we can handle PCR
stuttering in microsatellite markers by applying standard techniques from electronic signal
processing (Papoulis, 1977) for modeling reproducible responses of an amplifier. Using
signal processing techniques, we can accurately model PCR stuttering as a convol ution:

Convolution model for PCR stuttering:

y = AX

A models the marker's distortion responses (i.e. stutter patterns), x
represents the underlying genotype, and y denotes the predicted convoluted
stutter pattern that would be observed on the gel.

Stutter patterns from a single marker typicaly vary from one allele to another, as shownin
Figure6.2. Usually, alleleswith bigger sizes produce flatter and longer stutter trails than
aleleswith smaller sizes (for example, compare the stutter patterns for the 155 bp allele
with the 135 bp allelein Figure 6.2)15. Conventiona (linear shift-invariant) convolution
model uses a single distortion vector — this does not adequately model PCR stutter.
Instead, we use anon shift-invariant convolution with one distortion vector for each alele.
To represent al the possible stutter patternsin a marker, we write down the stutter pattern
for each dlelein amatrix A. Figure 6.3 shows an example of an actual stutter matrix A for
the dinucleotide repeat marker D22S283. Each column in A records the specific stutter
pattern of one alele for the marker.

150ne possible explanation for this stutter variation is that the polymerase tend to "slip" more with the
bigger alleles during PCR, creating more stutter bands than with the smaller aleles.
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Figure 6.2. Stutter patterns for alleles 135 bp, 145 bp, and 155 bp for TET-labeled

g
marker D22S283. D22S283 is a dinucleotide repeat marker with alleles ranging from
13510 165 bp. The stutter patterns shown were acquired from an ABI 377 gel running

16 lanes of marker datafor D225283.
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Figure 6.3. The stutter matrix A for marker D22S283 acquired from an ABI 377 gel
running 16 lanes of marker data. In particular, note the gradual increase in stutter length
from the smaller alleles to the bigger ones.

In our convolution model, the true genotype is represented by a column vector x indexed
by the possible marker alleles. Each row entry in x records the number of copies of a
particular allelethat is present in the genotype. For a heterozygote, x will be a (0,1)-vector
with two 1sfor the two distinct allelesin the genotype. For a homozygote, x will be a
(0,2)-vector with asingle entry in the vector that has the value 2.

When the PCR product of a DNA sampleis size separated on an el ectrophoretic gel, the
stutter bands from each allele in the genotype combine additively (as shown in Figure 6.1
previoudy). Thisconvolution process is mathematically equivaent to asimple matrix-
vector multiplication:

y = AX
wherey is the response vector in our convolution model that predicts the relative DNA
concentrations in the resulting PCR product. In other words, given the true genotype X,
the vector y predicts the relative signal intensities of the shadow bands that would be
observed onthe gel (see Figure 6.4).
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Figure 6.4. Convolution of stutter patterns. The action of the stutter matrix A against
two alleles (encoded as "1"sin the genotype vector X) additively superimposes the
corresponding PCR amplifier patterns, predicting the data vector data vector y observed on
the gel.

6.2. Genotyping Microsatellites by Deconvolution (GMBD)

Our task in genotyping is to recover the genotype vector x from the observed gel datay.
Let us assume for now that we a so have access to a stutter matrix A for each microsatellite
marker to be genotyped. Under our convolution model, we can use deconvolution to
systematically remove the PCR stutter to recover the true alleles for each genotyping
experiment (Figure 6.5). Mathematically, this amounts to a matrix-vector "left division" by
the matrix A:

x= Aly
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Here, |€eft division (the MATLAB26 "\" operation) means solving for x in the least squares
sense for the over- or under-determined system of equations Ax = y. It can be roughly
interpreted as ALy,

genotype vector X

0 1 1 0

observed
band patterns
y output
[
[ mm
[ ] = BE B
[ input -— ams BN R
[ ] — s Em R
|| —_— — s
I _— e—
— —— = | stutter matrix
A

Figure 6.5. The GMBD procedure. The stutter matrix A is divided by the observed
(input) data vector y to compute a best-fit (output) genotype vector x.

The stutter matrix A for amarker can be determined from a set of known reference
(column) genotype vectors X and the corresponding set of experimentally observed
(column) data vectors'Y, by asimple extension of our origina PCR stutter convolution
model y = Ax to the matrix equation:

Y = AX

whereY, A, and X are all matrices. The stutter pattern matrix A can then be computed
using matrix "right division" of the (over or under-determined) linear system:

A=YIX

16MATLAB is the programming language in which we implemented our automated microsatellite
genotyping system FAST-MAP (see Chapter 8).
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With the MATLAB "/" operator (matrix right division), Y/X is roughly interpreted as YX-1.
Since the stutter patterns are only reproducible under identical experimental conditions, the
stutter matrix A must be re-computed should the marker's PCR conditions be changed.

6.3. Relative Amplification

In addition to the stutter artifact, there is a second complication associated with
microsatellite PCR amplification. During PCR, the different fragments present in aDNA
sample compete with one another for amplification by the polymerase enzyme. An dlele of
asmall molecular size tends to be amplified more efficiently than an alele of alarger size,
since there are relatively fewer nucleotides that to duplicate. 1n aheterozygotic genotype,
thisresultsin arelative amplification effect between the two aleles (including their stutter
bands). Generally, the wider the two true aleles are apart, the higher is the degree of
relative amplification between them, asillustrated in Figure 6.6.

1500

750

0 ] 1
131 135 139
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0 i ; i i i i i
131 135 139 143 147 151 155 159 163 (hp)

Figure 6.6. Relative amplification of widely separated aleles. Shown are two examples
from marker D22S283. Shown here are two genotyping experiments of D22S283 from the
samegel. Inthetop pane, thetrue alleles are 139 bp and 151 bp. The stutter bands for the
aleleat 151 bp are dightly less amplified than those for the 139 bp allele. In the bottom
pane, the true aleles are even further apart, at 139 bp and 159 bp. The corresponding
relative amplification effect between the allelesis even more pronounced.

To model the relative amplification effect in our convolution model, we generalize the

genotype vector x from a(0,1)-vector to area-valued vector. Thisextension enablesthe
model to account for genotypes with alleles that amplify in anon 1:1 ratio. Instead of being
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merely a Boolean vector indicating the presence or absence of particular aleles, the
genotype vector x is now aweighted vector that records the alleles' relative amplifications.
The vector sum for x should still be normalized to the total number of aleles present in the
genotype. This meansthat for diploids, x would sum to 2.

6.4. Deconvolution Methods

For solving the matrix division problem in microsatellite genotyping, we have adapted
various deconvol ution methods from diverse areas, including signal processing, matrix
computation, and artificial intelligence. The agorithms can be organized into two main
categories:

() Linear shift-invariant algorithmsthat use a single size-independent PCR stutter pattern
vector afor all alleles.

* POLY: Polynomial division isused to divide the stutter vector a by the data vector y in
order to estimate the genotype vector X.

* FFT: TheFast Fourier Transform is used to deconvolve the data vector y with the
stutter vector a to recover the genotype vector x. Thisisdone by dividing the FFT of y
by the FFT of a, and then recovering the deconvolved vector x by an inverse FFT.

*  WIENER: The FFT method is used with additional Wiener filtering (Presset al.,
1992) to filter out possible noise from the observed data. A noisefilter @, derived
directly from the data, isused. Here, we assume that noise arises from low-power
interference and does not exceed 15% of the observed data,

|P(f)] = min(sp, 0.155y),
where sp and S are the minimum and maximum values of the data's power spectrum
respectively.

(i) Allele-dependent algorithms that use a marker's size-dependent PCR stutter patterns,
recorded in a matrix A.

 GAUSS: Gaussian dimination. Starting from the rightmost band (largest allele size),
successively subtract off each alel€'s stutter pattern.

* SVD: Singular value decomposition. Use SVD to essentially invert the stutter matrix A
and apply the inverse matrix to the data vector y to recover the genotype vector x.

ENUM: Enumeration. Directly enumerate (by exhaustive search) all feasible genotype
vectors x to find the one having the least error between observed data vector y and
predicted pattern vector Ax.
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The linear shift-invariant algorithms POLY, FFT, and WIENER are conventional signal-
processing algorithms that assume (usually incorrectly) that the stutter pattern does not vary
with alele size. The alele-dependent algorithms GAUSS, SVD, and ENUM, on the other
hand, are specifically designed to account for stutter patterns that vary with allele size.
Thus, we would expect the algorithms from the latter category to outperform those from the
former category in analyzing actual data.

A comparative study

To decide on the deconvol ution methods to use for GMBD in our genotyping system, we
conducted a preliminary comparative study (Perlin et al., 1995) on all six algorithmswith
simulated data (Appendix A). Asameasure of the effectiveness of an algorithmin
removing the PCR stutter artifacts, we compared the methods based on the extent with
which they re-center the allele distribution onto the correct genotype (see Figure 6.6). Note
that we did not include relative amplification in our 1995 simulations, which focused on
pure stutter artifacts.
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Figure 6.6. Effect of deconvolution in removing PCR stutter artifact for alleles differing
by 2 bp. Shown are the allele distribution of the uncorrected datay without deconvolution
(blackened bars), and the distribution of the corrected data x with deconvolution
(unblackened bars). The alele distributions are normalized to sumto 2, i.e., the number of
alleles present. Note that the distribution x corrected by deconvolution (in this case, SVD)
islargely centered on the correct two aleles at 151 bp and 153 bp. The data shown isfrom
microsatellite marker D22S283, size separated in one lane of a 34-lane ABI/377 gel.
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Table 6.1 shows the results of our comparative study. It confirmsthat allele-dependent
algorithms are more effective than allele-independent deconvol ution algorithms, especially
in the presence of severe stutter. In particular, ENUM performed perfectly in our study,
sinceit always re-centers the allele mass to exactly two (correct) alleles. SVD and GAUSS
were also highly effectivein re-centering the allele distribution. Since SVD and GAUSS
(unlike ENUM) do not rely on any assumptions on the number of discrete aleles present in
the PCR mixture, they are also useful for detecting abnormalities or contamination in the
DNA samples. For example, if there had been three alleles in the genotype, SVD would
probably have detected this by returning a deconvolved vector x having three non-zero
entries, each with an allele mass of approximately 0.67 units.

Noise
0% 10%
Moderate stutter (5 bands):
Input y 0.635 0.635
POLY 0.991 0.950
FFT 0.990 0.948
WIENER 0.959 0.920
GAUSS 1.000 0.981
SVD 1.000 0.955
ENUM 1.000 1.000
Severe stutter (10 bands):
Input y 0.468 0.469
POLY 0.977 0.921
FFT 0.977 0.919
WIENER 0.896 0.852
GAUSS 1.000 0.979
SVD 1.000 0.938
ENUM 1.000 1.000

Table6.1. The re-centering effects, measured as the fraction of allele distribution re-
centered on the correct genotype, for the six deconvolution algorithms on simulated data.
The ssimulation studies were conducted with 300 simulated genotypes of closely spaced
allelesthat were separated by 0 to 3 dinucleotide repeat units.
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6.5. Processes in GMBD

The transformation in aldle determination is summarized as:

y: quantitated stutter data — Genotypes

To perform this transformation, we need information about the stutter patterns as well as
the relative amplifications of the microsatellite marker. This knowledge is acquired from
prior data analysis of the marker, and is organized in a systematic marker library for
efficient computer retrieval and maintenance. The GMBD transformation y therefore

involves two consecutive processes.

» Marker library construction
y;: stutter data + [known genotypes] — pattern matrix A + ratio table p

»  Genotyping by deconvolution
Y, Stutter data + pattern matrix A + ratio table p — genotypes

Before we proceed to describe the dgorithms for y; and vy, in detail, to better understand

the processesinvolved in GMBD, we first examine an actual program trace of our
genotyping system on amarker. In the program trace below, the gel "3/19/97_rp_Gel
isa34-well ABI/377 gel, 16 lanes of which (lanes 11 through 26) were loaded with marker
panel "panel3 ". Out of the 11 markersin the panel, we focus on marker "D22S283", a
dinucleotide repeat marker with an alele window of 135 to 165 bp (in fact, D22S283 has
been the example marker in this chapter). Hereisthe trace of our genotyping system
analyzing D22S283 on a Macintosh PowerBook 3400c:

Marker D22S283 (5 of 11 markers in panel3): [22-Nov-97 17:17:43]

Scanning 3/19/97_rp_Gel for marker windows.................. Done.
Scanning 3/19/97_rp_Gel for marker bands.................... Done.
Binning marker bands.............cccocoviiiiiie e Done.

.a.b.a.b..Done.

Quantitating D225283 3/19/97 rp_Gel lane 11....

Quantitating D22S283 3/19/97_rp_Gel lane 12.....a.b..Done.
Quantitating D22S283 3/19/97_rp_Gel lane 13.....a.b.a.b.a.b..Done.
Quantitating D22S283 3/19/97_rp_Gel lane 14.....a.b..Done.

Quantitating D22S283 3/19/97_rp_Gel lane 15....
Quantitating D22S283 3/19/97 rp_Gel lane 16.....
Quantitating D225283 3/19/97 rp_Gel lane 17....
Quantitating D22S283 3/19/97_rp_Gel lane 18....
Quantitating D22S283 3/19/97_rp_Gel lane 19....
Quantitating D22S283 3/19/97_rp_Gel lane 20.....
Quantitating D22S5283 3/19/97_rp_Gel lane 21....
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.a.b.a.b.a.b..Done.

a.b.a.b..Done.

.a.b.a.b..Done.
.a.b.a.b.a.b..Done.
.a.b.a.b..Done.

a.b..Done.

.a.b..Done.



Quantitating D225283 3/19/97_rp_Gel lane 22....
Quantitating D22S283 3/19/97_rp_Gel lane 23....
Quantitating D22S283 3/19/97_rp_Gel lane 24....
Quantitating D22S283 3/19/97_rp_Gel lane 25....
Quantitating D22S283 3/19/97_rp_Gel lane 26....

Estimating genotypes

.a.b..Done.

Using the following 14 estimated genotypes to construct initial

stutter library for D22S283:
3/19/97_rp_Gel Lane 11 :
3/19/97_rp_Gel Lane 12 :
3/19/97_rp_Gel Lane 13 :
3/19/97_rp_Gel Lane 14 :
3/19/97_rp_Gel Lane 15:
3/19/97 rp_Gel Lane 17 :
3/19/97_rp_Gel Lane 18 :
3/19/97_rp_Gel Lane 19 :
3/19/97_rp_Gel Lane 20 :
3/19/97_rp_Gel Lane 21 :
3/19/97_rp_Gel Lane 22 :
3/19/97_rp_Gel Lane 23 :
3/19/97_rp_Gel Lane 25 :
3/19/97_rp_Gel Lane 26 :

<151, 159> (qual =
<145, 151> (qual =
<145, 159> (qual =
<151, 151> (qual =
<145, 159> (qual =
<139, 151> (qual =
<151, 153> (qual =
<147, 151> (qual =
<151, 153> (qual =
<139, 139> (qual =
<149, 153> (qual =
<145, 153> (qual =
<145, 149> (qual =

<143, 153> (qual =

0.80)
0.81)
0.83)
0.93)
0.76)
0.85)
0.82)
0.85)
0.85)
0.85)
0.80)
0.84)
0.89)
0.79)

.a.b.a.b..Done.

.a.b.a.b..Done.
.a.b.a.b..Done.
.a.b.a.b..Done.

Bootstrapping initial library A usmg estlmated
genotypes.............: .............................................

Genotyping D22S283 3/19/97_rp_Gel lane 11....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 12....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 13....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 14....Done.
Genotyping D225283 3/19/97 rp_Gel lane 15....Done.
Genotyping D225283 3/19/97 rp_Gel lane 16....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 17....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 18....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 19....Done.
Genotyping D225283 3/19/97_rp_Gel lane 20....Done.
Genotyping D225283 3/19/97 rp_Gel lane 21....Done.
Genotyping D225283 3/19/97 _rp_Gel lane 22....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 23....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 24....Done.
Genotyping D22S283 3/19/97_rp_Gel lane 25....Done.
Genotyping D225283 3/19/97_rp_Gel lane 26....Done.
Updating stutter library....... Done.

Done processing marker D22S283 at 22-Nov-97 17:51:45.

First, the computer scans the gel for regions ("marker windows") containing D22S283's
genotyping data for analysis (" Scanning for marker windows... ). Todo so, the
computer uses the MW sizing grid information and marker information such asthe
expected alele size window, aswell as gel information such as the layout of the loaded
lanes. After the computer has located marker windows in each lane's electropherogram,
the computer scans for marker bands in the data windows ("Scanning for marker

bands.... "). The marker bands are then aligned and binned using our
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STUTTER_CRAWL agorithm to refine the MW sizing grid to the marker's actual alelic
ladder ("Binning marker bands.... ").

Using the binned allelic ladder as a sizing reference, the computer then quantitates the
marker bandsin each of the genotyping experiment (" Quantitating lane

11....a.b.ab.. ") with the QUANTITATE_BAND agorithm. To obtain an
quantitated fit that is as close to the actual data bands as possible, the computer iteratively
refinesits data peak parameters (for the Gauss-Runga peak model) using least-square
methods. Each"a.b " pair in the program trace indicates one such iteration. Asshownin
the example, only two or so iterations are generally needed to reach convergence for clean
data.

Since we are analyzing marker D22S283 for the first time, the computer does not have any
previous marker library that it can use for allele determination. Therefore, the computer
bootstraps by estimating the alleles ("Estimating genotypes.... "), and then constructs
amarker library from the estimated genotypes ("Bootstrapping initial

library.... "). Toobtain aninitial marker library that is as accurate as possible, the
compulter iteratively refines the marker library constructed during bootstrapping process.
Each refining iteration isindicated with acolon ":" in the program trace.

After constructing a marker library for D22S283, the computer then proceedsto the allele
determination step (" Genotyping lane 11.... ") using the marker library. When the
computer has completed calling the alleles on al the genotyping experiments, it learns from
the data by refining D22S283's marker library using the final alele calls ("Updating

stutter library.... "). The computer automatically augmentsitsinternal knowledge
base with new stutter pattern and relative amplification information from the data. Inthis
way, the computer improves its performance over time as it analyzes more data for marker
D22S283.

6.6. Algorithms. Marker Library Construction
In this section, we describe the algorithms for constructing marker libraries. A marker
library stores the relevant characteristics of the marker's expected allele stutter patterns that

the computer can use in genotyping by deconvolution. The library consists of two
components. A, astutter pattern matrix, and p, arelative amplification ratio table.
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Preferably, both A and p should be determined with known reference genotypes. If not
(asis often the case), they can be compiled from a bootstrapping technique.

As previoudly described, we construct the stutter pattern matrix A using matrix "right
divison" of the linear system:

A=YIX

where Y contains quantitated stutter data and X contains known or computed genotypes.
Both X and Y are matrices, with each column representing respectively the genotype or the
data of a genotyping experiment. The relative amplification ratios are computed from the
guantitated data and their known genotypes, using the expected stutter patternsin A.

Box 6.1 describes the overall algorithm for constructing a marker library. Details on the
actual structures of the marker libraries used in our genotyping system are described in
Appendix C.

Algorithm: CONSTRUCT_LIBRARY

Step 1: Construct stutter matrix A.

Case 1: If both the stutter data Y and the reference genotypes X are given,
construct A using algorithm CONSTRUCT _A.

Case 2: If the reference genotypes X are not available, construct A on only the
stutter data Y using algorithm BOOTSTRAP_A.

Step 2: Construct ratio table p.

Construct the amplification ratio table p using agorithm CONSTRUCT _p.

Box 6.1. CONSTRUCT_LIBRARY: An algorithm for constructing a marker library.
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6.6.1. Stutter matrix construction

The stutter matrix A can be constructed from the quantitated data Y and the associated
known genotypes X (weighted by their relative amplifications) by solving the under- or
over-determined linear system Y = AX. If X does not cover al the possible marker
alleles, wefill in the stutter patterns for the absentee alleles with copies of stutter patterns
from the nearest alleles. As more data become available, we refine the stutter matrix by
replacing the copied patterns with the actual stutter patterns from the new data (using the
REFINE_A agorithm).

Box 6.2 below describesthe CONSTRUCT _A agorithm for constructing a stutter matrix
A from agiven set of quantitated stutter data Y and their corresponding genotypes X.

Algorithm: CONSTRUCT_A

Step 1: Normalize columnsin Xand Y.

Normalize the columnsin X and Y such that every column sums to the expected
number of allelesin the genotype represented by that column. Usually,
individual reference genotypes are used!’, so the column sums are 2 (for
diploids).

Step 2: Numerically compute A.
Given Y and X, compute an initial A using matrix "division”:
A = YIX

The symbol "/" represents solving the linear system AX=Y with numerical
least-square algorithms (e.g. Gaussian €limination, Cholesky factorization, or
QR-factorization (Press et al., 1992)). Many numerical programming systems
support this operation as part of the language. For example, in Matlab, we

simply type A = Y/X.

17n principle, we can aso used pooled genotype for constructing A. That is, we can pool together
individual DNA samplesin a single genotyping experiment, as long as we normalize the corresponding
columnsin X and Y to the appropriate allele sums.
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Step 3: Normalize columnsin A.

Depending on the algorithms used in the matrix division, the resulting matrix A
may contain negative entries. Zero out any non-positive entriesin the stutter
matrix, and normalize each column in Ato sum to 1, since each column
contains the stutter pattern for asingle alele.

For each row i in X that has no non-zero entries, zero out the entirei-th column
of matrix A, if itisnot already all zeros.

Step 4: Fill in columnsin A for absentee alleles.

For each all-zero column in A, replace with acopy of the stutter pattern from the
closest non-zero column.

Box 6.2. CONSTRUCT_A: An agorithm for constructing a stutter pattern matrix from
reference genotype data.

Bootstrapping

The reference genotypes X are often not available for stutter matrix construction when we
first genotype amarker (either a marker from anew marker panel or an old marker under a
new experimental condition). In such situations, we must bootstrap the construction of the
marker library without any reference genotypes.

First, we generate approximate reference genotypes from the data by re-using an old stutter
matrix from asimilar marker (or simply ageneric stutter matrix) and use our deconvolution
methods to construct an initial X. Then, using X on Y, we construct an estimated stutter
matrix A. Aswith al our algorithms, asafina step, weiteratively refine A by minimizing
the least-square error between the predicted patterns AX and the observed dataY. Box 6.4
below describes this bootstrapping process in greater detail.
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Algorithm: BOOTSTRAP_A

Step 1: Construct an initia A.

First, either obtain aninitial A from apreviously compiled marker that is ssmilar
to the new marker, or construct A by filling each column with a generic stutter
pattern.

Step 2: Construct an initial X by SVD.

Given Aand Y (normalized), compute a corresponding X using the SVD
deconvolution method. Normalize the entriesin X so that each column contains
at most two non-zero entries, and that each column sumsto 2.

Step 3: Iteratively refine A.

Using agorithm REFINE_A, refine A iteratively.

Box 6.3. BOOTSTRAP_A: An algorithm for constructing a stutter matrix without using
reference genotypes.

Refining

Some of the possible alleles for amarker may not be included in theinitial reference
genotypes for constructing the stutter matrix. Then, the computer estimates the stutter
patterns for these alleles by using the stutter patterns from the nearest reference alleles.
When data for these aleles later become available, the computer should automatically
update its stutter matrix A with the actual stutter patterns. This update allows the computer
to learn and improve over time and data, as well as gracefully adjust to changesin the
marker's behavior (by biasing towards the more recent data, if necessary).

Box 6.5 shows our algorithm for refining the stutter matrix A from new datain X and Y.
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Algorithm: REFINE_A

Step 1: Construct anew A .

Using algorithm CONSTRUCT _A, construct a new stutter matrix Aney from X and
Y.

Step 2: Compare Anew against A.

(@ Using agorithm SYD_DECONVOLVE on Apey and Y, compute new
genotypes in Xpew-

(b) Compute errpan, the total sum of squares error between the matrix product
AnenXnew and the observed data .

Step 3: Iteratively refine.

If errnewislessthan the original sum of squares error between AX and Y, replace A
with Anew , and repeat Steps 1 and 2.

Box 6.4. REFINE_A: An algorithm for incrementally improving the stutter matrix A.

6.6.2. Relative amplification ratio table construction

We define the relative amplification ratio for a genotype asthe ratio of the total DNA
(including stutter bands) from the smaller alele to the total DNA from the larger dlele. In
other words, the relative amplification of a genotype isthe ratio in aweighted genotype
vector X between the vector vaue of the smaller alleleto that of the larger allele. We storea
range of possible amplification ratios for each genotype in a marker's amplification ratio
table, since the relative amplification ratios vary dightly from one genotyping experiment to
another (even if they have the same genotype).

To compute the entriesin the relative amplification table p, we use the same reference
genotype data X and Y used for constructing the stutter pattern matrix A. For each
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genotype in X, we compute the best relative amplification ratio for the allele pair that
minimizes the |east-square error between the observed data vector in Y and the expected
stutter pattern re-constructed in AX.

Since the reference data typically does not include all possible marker aleles, thereis
usually not reference datafor every possible pair of alleles. To compute the relative
amplification ratios, we could fill in the missing amplification ratios either by interpolation
or using the relative amplification ratio values from the nearest reference allele pairs, aswas
done for the absentee alleles in stutter matrix A. However, we have observed that
amplification ratios depend primarily on alele size difference rather than actua allelic
values. We therefore make the following assumption:

p (a1, @) Lp (b1, bp) where[ag -az | = [b1- byl

This simplifying assumption allows us to compress p from an O(n?) table for an n-alele

marker to an O(n) table indexed by the alelic differences. Figure 6.7 shows an example of
acompressed amplification ratio table for D22S283. With the simplified p, there are now

only O(n) relative amplification ratios that have to be determined. Moreover, any missing
values can easily belinearly interpolated (a partialy-filled two-dimensional table p ismore
complex to interpolate). Although we could expand p out to its full-blown n-entry table
as more data become available, our experience has been that the compressed version of pis

adequate for GMBD computations.

In Box 6.5, we describe CONSTRUCT _p , our agorithm for computing the relative
amplification ratios from the quantitated stutter data Y, the reference genotypes X, and the
stutter matrix A .
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Figure 6.7. Relative amplification ratio table. Shown isthe compressed form of
the relative amplification ratio table for TET-labeled dinucleotide marker D22S283
(allele range 135-165 bp), as compiled from an ABI 377 gel running 16 lanes of
marker data. The vertical error bars show an expected range of relative
amplification ratios for each allele pair, while the plotted line shows the mean
amplification ratios. (The stutter matrix for D22S283 was shown in Figure 6.3.)
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Algorithm: CONSTRUCT_p

Step 1: Sort the known genotypes.

Group the columnsin X according to their alele size differences.

Step 2: Compute amplification ratios for each observed alele size difference.

(& For each columnin X that has (non-zero) alele size difference d, compute a
new genotype vector (say, X ). Computex; using the SVD deconvolution
method with stutter matrix A and the data vector y; from the corresponding
columnin. Theratio of the two genotype entriesin x; givestherelative
amplification ratio, uj , for this reference genotype.

(b) Minimally adjust each v; so that the predicted vector A adjusted by v has
least sum of squares error with the observed data vector y; .

(c) Let ugsbethe mean of the computed uj 's, and gsthe corresponding standard
deviation. Set p(d) ~ [Us — O3 Uz + OF].
Step 3: Interpolate amplification ratios for the unobserved alele size differences.

Fill any empty entriesin p using spline interpolation.

Box 6.5. CONSTRUCT _p: An algorithm for constructing a relative amplification ratio
table for amarker from its quantitated stutter data Y, reference genotypes X, and the stutter
matrix A.
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6.6.3. Example

L et us step through the marker library construction for the marker D22S283. We showed
the actual program trace for the entire alele determination process for D22S283 in Section
6.5. Here, we focus on the construction of a marker library for D22S283. For simplicity,
we use asmaller example with only 8 reference lanes.

To construct amarker library for D22S283, we need both the quantitated data Y and the
corresponding reference genotypes X. First, we write down the band quantitations from
each lane's el ectropherogram in the columns of data matrix Y. Each column of Yis
normalized to sum to 2, the expected number of aleles present in the genotype:

Datamatrix Y
(bp | lane1l lanel2 lanel3 laneld lanel5 lanel6 lanel7 lanel8
131 0 0 0 0 0 0 0 0
133 0 0 0 0 0 0.0158 0 0
135 0 0 0 0 0.01 0.1010 0 0
137 0 0.0235 0 0 0.027 0.3271 0 0
139 0 0.0499 0.0109 0 0.0477 0.6166 0 0.0331
141 | 0.0263  0.1428 0.1317 0 0.1319 0 0.0205 0.0531

143 | 0.0485 0.3436 0.3781 0.0627 0.3341 0.056 0.0660 0.1413
145 | 0.1044 0.5710 0.6112 0.1143 0.5314 0.0523 0.1004 0.3208
147 | 0.1794 0.1986 0 0.2822 0.0726 0.1110 0.2141 0.5948
149 | 0.3399 0.2634 0.037 0.6029 0.0532 0.2586 0.4001 0.3037
151 | 0.5230 0.3762 0.0451 0.8264 0.0686 0.3757 0.6807 0.3986

153 0 0 0.0594 0.1115 0.0836 0.0859 0.4235 0.0978
155 | 0.1434 0.0310 0.1058 0 0.1266 0 0.0947 0.0568
157 | 0.2417 0 0.2411 0 0.206 0 0 0
159 | 0.3337 0 0.3273 0 0.2581 0 0 0
161 | 0.0597 0 0.0524 0 0.0492 0 0 0
total 2 2 2 2 2 2 2 2

To construct the stutter matrix A, we aso need a corresponding reference genotype matrix
X. Thisisthefirst time anayzing marker D22S283, so there are no previously analyzed
genotypes available, nor do we know the actual genotypesfor Y. Thus, we bootstrap by
using GMBD on the quantitated data with ageneric marker library to compute a set of
estimated genotypesfor Y astheinitial X. Since D22S283 is a dinucleotide repeat marker,
we use atypical stutter matrix A containing a generic stutter pattern (for dinucleotide repeat
markers) of three data bands with relative DNA concentrations 0.571, 0.286, and 0.143, as
shown in Figure 6.8. In Figure 6.9, we show the default stutter matrix A and the default
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relative amplification ratio table p for bootstrapping dinucleotide marker library
construction.

o o
B (o]

relative [DNA]
o
N

a-4 a-2 a
alelesize (bp)
Figure 6.8. A generic stutter pattern for any alele a of a dinucleotide repeat marker.

This generic stutter pattern is used in bootstrapping dinucleotide marker library
construction.
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Figure 6.9. A default dinucleotide repeat marker library for bootstrapping. Shown on
the left is the default stutter matrix A, and on the right is the default relative amplification
ratio table (compressed form) p.

Using the default dinucleotide marker library A and p on the quantitated data matrix Y, we
estimate the initial reference genotypes X using the SV D agorithm (described in the next
section). Hereisaprogram trace:
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Estimating genotypes..........cooccvvivieveveeeee s
Using the following 8 estimated genotypes to construct initial

stutter library for d22s283:

3/19/97 rp_Gel Lane 11 :
3/19/97 _rp_Gel Lane 12 :
3/19/97 rp_Gel Lane 13 :
3/19/97 rp_Gel Lane 14 :
3/19/97 rp_Gel Lane 15 :
3/19/97 _rp_Gel Lane 17 :
3/19/97 rp_Gel Lane 18 :
3/19/97 _rp_Gel Lane 19 :

<151, 159> (qual = 0.80)
<145, 151> (qual = 0.81)
<145, 159> (qual = 0.83)
<151, 151> (qual = 0.93)
<145, 159> (qual = 0.76)
<139, 151> (qual = 0.85)
<151, 153> (qual = 0.82)
<147, 151> (qual = 0.85)

From the 8 estimated genotypes, we construct a reference genotype matrix Xyef:

reference genotype matrix Xref

lane1l lanel1l2 lanel3 lanel4 lanel5 lanel6 lanel7 lanel8

(bp)
139
141
143
145
147
149
151
153
155
157
159

total

NFPOOORFRPROOOOOO
NOOOORrROORFrROOO
NFPOOOOOORFrROOO
NOOOONOOOOOO
NFPOOOOOOFrOOO
NOOOORrROOOOOR
NOOORFRPROOOOOO
NOOOORORFRPROOOO

For each genotype in X;¢f,