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Abstract

The ease of understanding, maintaining, and developing a large program depends cru-

cially on how it is divided up into modules. The possible ways a program can be divided

are constrained by the available modular programming facilities (\module system") of

the programming language being used. Experience with the Standard-ML module sys-

tem has shown the usefulness of functions mapping modules to modules and modules
with module subcomponents. For example, functions over modules permit abstract data

types (ADTs) to be parameterized by other ADTs, and submodules permit modules to
be organized hierarchically. Module systems with such facilities are called higher-order,
by analogy with higher-order functions.

Previous higher-order module systems can be classi�ed as either opaque or transparent.
Opaque systems totally obscure information about the identity of type components of

modules, often resulting in overly abstract types. This loss of type identities precludes
most interesting uses of higher-order features. Transparent systems, on the other hand,
completely reveal type identities by inspecting module implementations, which subverts
data abstraction and prevents separate compilation.

In this dissertation, I describe a novel approach that avoids these problems based
on a new type-theoretic concept, the translucent sum. A translucent sum is a kind of

weak sum whose type can optionally specify the identity of its type components. Under
my approach type identities are not determined by inspecting module implementations,
permitting separate compilation. By default, module operations reveal the connections
between the types in their input and output modules. However, these connections can be
obscured using type coercion. This controlled visibility permits data abstraction where

desired without limiting the uses of higher-order features. My approach also allows

modules to be treated as �rst-class values, a potentially valuable feature.
In order to lay out the groundwork for my new approach to designing higher-order

module systems and to demonstrate its utility, I develop in complete detail a kernel

system using my approach. I establish formally the theoretical properties of the system,

including soundness even in the presence of side e�ects. I also show how the system may
be e�ectively type checked.
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Chapter 1

Introduction

1.1 Overview

Many programming languages have a collection of facilities for building modular pro-
grams. These collections of facilities, called module systems, play an important role
in programming languages, especially with regard to programming-in-the-large. This

dissertation concerns a new approach to designing module systems for statically-typed
programming languages. The approach promises a substantially more powerful module
system than those built with previous approaches, while at the same time eliminating
the problems associated with the previous approaches.

Traditional module systems, such as the one provided by Modula-2 [56], are �rst-order,
allowing only trivial manipulations of modules. Some newer programming languages pro-

vide higher-order module systems. Higher-order module systems, unlike �rst-order ones,
permit the non-trivial manipulation of modules within the language. In particular, they
at least permit functions mapping modules to modules and may provide other higher-
order features such as modules containing modules as subcomponents and modules as
�rst-class values. Experience with the Standard-ML module system has shown the useful-

ness of functions mapping modules to modules and modules with module subcomponents.
For example, functions over modules permit abstract data types (ADTs) to be parame-

terized by other ADTs, and submodules permit modules to be organized hierarchically.
Modules as �rst-class values is also likely to be useful because it permits choosing ADT

implementations at runtime.

Previous higher-order module systems can be classi�ed as either opaque or transparent.
Opaque systems totally obscure information about the identity of type components of
modules, often resulting in overly abstract types. This loss of type identities precludes

most interesting uses of higher-order features. Transparent systems, on the other hand,

completely reveal type identities by inspecting module implementations, which subverts

2



CHAPTER 1. INTRODUCTION 3

data abstraction and prevents separate compilation. Unlike opaque systems, transparent

systems cannot support modules as �rst-class values. My thesis is as follows:

By basing a module system on a new type-theoretic concept, namely a new

kind of weak sum whose type can contain both transparent and opaque type

declarations called a translucent sum, it is possible to obtain a higher-order

module system with the advantages of both the opaque and the transparent

approaches, but none of their disadvantages.

In order to demonstrate this thesis, I design a new programming language with a

higher-order module system based on translucent sums. The language I have created is

a kernel system that contains only the features relevant to module system design; con-
siderable extension would be required to make it into a real programming language. The
design of this kernel system and the proofs required to establish formally its properties

form the core of this dissertation. Included are a proof of the system's soundness and
e�ective procedures for type checking its programs.

This dissertation is divided into three parts. The �rst part introduces the problem
and provides the needed background on module systems (this chapter), explains the
previous approaches to designing higher-order module systems (Chapter 2), and describes

my approach using translucent sums (Chapters 3 and 4). The second part, comprising
Chapters 5 to 12, is devoted to the kernel system and its associated proofs. An overview
of this part can be found in Chapter 5; descriptions of this part's other chapters can
be found in Section 5.10. Finally, the third part discusses possible extensions to the
kernel system (Chapter 13), explains related work (Chapter 14), and summarizes this

dissertation's results (Chapter 15).

1.2 Module Systems

A module binds a set of values and types to names. For example, we might have

M = module

val x = 3;

val y = true;

type T = int;

end;

This code creates a new module with three components, called x, y, and T. The compo-
nents x and y are value components that are bound to the values 3 and true respectively;

the component T, by contrast, is a type component that is bound to the type int. Once

this module is created, it is then bound to the name M; this binding will allow us to
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refer to the new modules' components as M.x, M.y, and M.T later on. Although in this

example, we named our new module, this is not required. Sometimes, for example, we

may want to create a new module then immediately apply a function to it; naming the

new module serves no purpose in that case.

Because I am dealing with statically typed languages, modules will have \types",

called interfaces. For example, the module M matches the following interface:

M : interface

val x:int;

val y:bool;

type T;

end;

This interface speci�es that M has two value components, x with type int and y with type
bool, and one type component, T.1 The relationship between modules and interfaces is
many-to-many: Many modules may match the same interface and a given module may
match many interfaces.

A programming language's collection of facilities for building modular programs is
its module system. I classify module systems into two types, depending on what sort of

facilities they have. First-order module systems have only the trivial module facilities
discussed so far: module creation, module naming, and module-component extraction
(M.x). Most traditional module systems are of this type. Examples include Ada [52],
CLU [36], C [29], C++ [53], and Modula-2 [56].

Higher-order module systems, by contrast, have non-trivial module manipulation fa-

cilities. I shall be concerned in this dissertation primarily with three such facilities:
functors, submodules, and modules as �rst-class values. Functors are functions mapping
modules to modules. For example, we might de�ne a rectangle ADT parameterized by a
point ADT using a functor:

MkRect = functor(p:POINT):RECT

module

type T = p.T * p.T;

...

end;

The advantage of doing this is that we can create several rectangle ADTs from the same

code using di�erent point ADTs. For example, if we have point ADTs CartPoint and

PolarPoint, we can create a rectangle ADT based on Cartesian points with CartRect

1In my kernel system I deal with a more complicated version of modules that assigns \types", called

kinds, to types; I have simpli�ed things here.
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= MkRect(CartPoint) and a rectangle ADT based on polar points with PolarRect =

MkRect(PolarPoint).

Submodules are modules contained as components within other modules; they allow

packaging up a series of modules into a single unit. For example, if we had several

search-tree modules, we could package them up into a single module:

SearchTree = module

mod Binary = BinarySearchTree;

mod RedBlack = RedBlackSearchTree;

mod BTree = BTree;

end;

SearchTree, in turn, could be included as part of a larger library algorithms module.
By organizing modules in this way, a hierarchical namespace can be obtained; such

namespaces are easier for programmers to deal with than 
at namespaces. Because
most module systems do not consider modules to be ordinary values, a di�erent keyword
(mod) is needed in general here to specify that these are module components, not value
components.

Modules as �rst-class values refers to the ability to treat modules as if they were

ordinary values of the programming language. This means that anything that can be
done with a ordinary value can be done with a module. Thus, in languages with modules
as �rst-class values, modules can be passed to or returned by functions, stored in variables,
or selected using conditional statements. In such languages, the mod keyword is just
syntactic sugar for the val keyword.

One useful way to use this facility is to select the most e�cient implementation for
an ADT at runtime. For example, the best implementation for a dictionary depends on
the number of items it will contain; the following code sets Dictionary at runtime to
use an implementation that is e�cient for n items:

Dictionary = if n<20 then LinkedList else HashTable;

1.3 Bene�ts of Higher-Order Module Systems

Higher-order module systems o�er many bene�ts over �rst-order module systems. I have
already mentioned some bene�ts (the ability to parameterize with respect to ADTs, the

ability to have a hierarchical namespace, and the ability to choose ADT implementations

at runtime), but the greatest bene�t of higher-order module systems is that they allow
programs to be organized better. Program organization is crucial to ensuring that large

programs are easy to develop, understand, and maintain.
The most well-known programming language with a higher-order module system is

Standard ML (SML) [21]. SML provides functors and submodules, but treats modules as
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normal: mobile: local:

TCP

TCP MOBILE-IP TCP
IP IP glue

ETH ETH ETH

DEV DEV DEV

Figure 1.1: TCP/IP protocol organization

second-class values. The extensive experience of the SML community with functors and
submodules has established their value as program-organization tools. Modules as �rst-

class values shows promise as a valuable addition to module system toolkits, but since
this facility has never been implemented together with the other higher-order facilities,
experience about its value is lacking.

It is hard to �nd good examples of why better organization matters: Any small
section of a program can usually be rewritten so that it no longer uses higher-order

module system features at the cost of making the rest of the program more complicated.
Nonetheless, I am now going to present two examples that I feel convey some of the 
avor
of how higher-order modules systems are used in practice.

My �rst example comes from Carnegie Mellon's Fox Project's implementation of the
TCP/IP protocol suite, the FoxNet [6, 5, 4], in SML. The TCP/IP protocol suite is
organized modularly in the form of a protocol stack (see Figure 1.1). The leftmost stack

in this �gure shows the organization of normal TCP/IP. Normal TCP/IP is built on
a base device driver protocol (DEV), upon which additional protocol layers (ETH, IP,
and TCP in turn) are placed. Each of the additional protocol layers takes in the lower

level protocol implemented by the underlying stack and produces a new protocol with
additional functionality. For example, the IP layer adds the ability to route between

di�erent nets.
What is particularly nice about this organization is that the protocol interfaces of

the layers are (mostly) identical, allowing protocol layers to be mixed and matched in
order to generate many kinds of functionality. For example, the middle stack in Figure 1.1

represents a con�guration for mobile TCP/IP, where in an extra protocol layer, MOBILE-

IP, has been added between the TCP and IP layers in order to provide an extra layer of

indirection between virtual and physical IP addresses; mobile TCP/IP allows computers

to move around physically without losing connections.
Alternatively, the rightmost stack in the �gure represents a con�guration for local

TCP/IP, where the IP layer has been dropped. Because the resulting protocol lacks
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any inter-net routing ability, it can be used only between hosts on the same local net;

however, it will be faster for this purpose because it does less processing and uses smaller

packets. (A small glue layer, labeled glue, is necessary between the TCP and ETH layers

because the protocol interfaces these layers use are slightly di�erent in practice.)

By using functors, FoxNet is able to directly capture this modular organization. Ide-

alized code for doing this might look like the following:

DEV : PROTOCOL = module ... end;

ETH = functor (lower:PROTOCOL):PROTOCOL

module ... end;

...

Here, the base device layer DEV is implemented as a normal module matching the PROTO-

COL interface and the other layers are implemented as functors mapping a PROTOCOL
to a PROTOCOL. Using this code, the normal and local TCP/IP protocol stacks could
then be built up by applying the reverent layer functors in the correct order:

Normal = TCP(IP(ETH(DEV)));

Local = TCP(Glue(ETH(DEV)));

In a language with modules as �rst-class values, we could choose which of these protocol

stacks to use at runtime for maximum e�ciency:

P = if on local net() then Local else Normal;

Note that the resulting implementation is completely type safe and does not require
any runtime type checks. A similar-looking object-oriented programming (OOP) pro-
gram could be written where protocols and packets are objects. (Each protocol contains
a packet type, which is the type of packets belonging to that protocol.). The result-

ing program would be much slower though because it would require frequent runtime

type checks. (Higher-level{protocol packets have extra �elds not present in lower-level{
protocol packets; runtime type checks must be done before those �elds can be accessed

because �rst-order module systems cannot statically distinguish between the di�erent

packet types.)

1.4 Example: B-Trees

My second example involves an ordered dictionary implementation. I have chosen this
example carefully and will be using it throughout the �rst part of my dissertation because

it illustrates well the di�erences between the various approaches to building higher-order

module systems.
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An ordered dictionary is a dictionary whose entries are ordered by an ordering on its

keys. The classic example of an ordered dictionary is the white pages telephone directory:

You can look up phone numbers by name as well as examine entries in alphabetical order.

It order to de�ne the notion of an ordered dictionary, it is �rst necessary to de�ne

the notion of an ordered type:

ORDERED = interface type T;

val cmp: T*T -> int;

end;

Here, I have de�ned an ordered type to be a module containing a type T2, the type in

question, together with a comparison function cmp that compares two values of type T,
returning an integer that indicates how they compare. (That is, cmp(x,y)<0 if x < y,

cmp(x,y)=0 if x = y, and cmp(x,y)>0 if x > y.)
Using this de�nition, the notion of an ordered dictionary ADT can then be de�ned:

ORDERED DICTIONARY =

interface

mod Key:ORDERED;

type elem;

type T;

val new: unit -> T;

val define: T * Key.T * elem -> unit;

val first: T -> Key.T * elem;

...

end;

Here, Key is the ordered type of keys, elem is the type of the elements looked up, and
T is the type of ordered dictionaries managed by the ADT. The functions new, define,

first, and so on, are the operations on ordered dictionaries. For example, new() creates

a new empty ordered dictionary (the type unit contains only one value, denoted ()),

define(d,k,e) adds the binding of key k to element e to the ordered dictionary d, and
first(d) either returns the �rst binding in the dictionary or raises the exception fail.

An example implementation of an ordered dictionary ADT might then be obtained
using B-Trees as follows:

2By convention, the primary type of a module is called T.
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MkBTree =

functor (K:ORDERED, E:interface type T; end)

:ORDERED DICTIONARY

module

mod Key = K;

type elem = E.T;

type T = btree(Key.T,elem);

fun new() = ...

fun define(dict:T, key:Key.T, value:elem) = ...

...

end;

I have parameterized the implementation with respect to which ordered type to use for
keys (K) and which type to use for elements (E.T).3 The implementation �rst makes

copies of the key and element information so that future clients will have access to
this information; second, establishes the representation type it will use, which I have
abbreviated here as btree(Key.T,elem) so that I can refer to it later easily; and, �nally,
third, it provides code for each of the required ordered dictionary operations (not shown).

Because the behavior of MkBTree varies depending on which approach to designing

higher-order module systems is being used, I shall defer further discussion of MkBTree
until I have described the approaches in more detail.

3For technical reasons, it is necessary to wrap up the element type in a module in order to pass it to

a functor; this fact is not important here.



Chapter 2

Previous Approaches

In order to motivate my approach to designing higher-order module systems, I shall now
describe the previous approaches to designing higher-order module systems. The previous

approaches can be classi�ed as either \opaque" or \transparent", depending on how they
treat module and functor boundaries.

2.1 The Opaque Approach

Under the opaque approach, module and functor boundaries are opaque, allowing no
information about the identity of type components to pass through. This is exactly what
we want when we build an ADT. For example, consider the following de�nition of an
integer stack ADT:

IntStack = module

type T = ref(list(int));

fun new() = new [];

fun push(s:T, e:int) = ...

...

end;

The identity of the integer stack type (T) is visible inside the module, allowing us to

implement its operations using the appropriate primitives on its representation type, but
its identity is obscured outside the module: IntStack.T is an abstract type. Thus, the

user of this ADT will be able to create and manipulate integer stacks using code like
IntStack.pop(IntStack.push(IntStack.new(), 3)), which returns 3, but will not be

able to depend in any way on which representation it uses.

Examples of programming languages which take this approach are John Mitchell and
Gordon Plotkin's SOL [43] and Luca Cardelli's Quest [10]. This approach provides data

10
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abstraction at the module level, as we have just seen. It also allows separate compilation,

the ability to type check and compile individual module implementations using only the

interfaces of the modules they reference, because modules depend only on interfaces, not

on implementations. This approach is also compatible with modules as �rst-class values

because it makes no assumptions about type-component identities.

Unfortunately, because this approach obscures the identity of all type components,

it precludes most interesting uses of higher-order features. Consider the B-Tree example

I introduced in Section 1.4. Suppose we try to use it to create a telephone directory. To

keep things simple, let us use the type string as both the key and element type. We can

build an ordered type \string, ordered alphabetically" by wrapping up string with the

appropriate string comparison operator:

StringOrd = module

type T = string;

type cmp = ...;

end;

A simple functor application then su�ces to create an ordered dictionary using this
ordered type for keys and string's for elements:

D = MkBTree(StringOrd, module type T=string; end);

As a test of our new ADT, we can try creating a new telephone directory and then adding
an entry to it:

directory = D.new();

D.define(directory, "John Smith", "123-4567");

Unfortunately, the second line above fails to type check under the opaque approach. The

reason is that D.define has the type

D:T � D:Key:T � D:elem � > unit

which speci�es that D.define's second and third arguments are of type D.Key.T and

D.elem respectively; because the opaque approach treats all type components abstractly

outside their module of de�nition, these two types are not compatible with string,

the type of the passed second and third arguments. This problem renders the B-Tree

implementation unusable under the opaque approach.
The problem with this example is an instance of a more general problem: There is

no way in the opaque approach to build modules \containing" other types; we can only

build modules containing unrelated new types (e.g., StringOrd.T 6= string). Hence,
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modules cannot export type abbreviations; for example, we cannot make Complex.T be

an abbreviation for the type Real*Real. Also, we cannot extend ADTs by adding a

few new operations to an existing ADT.1 Another consequence is that many of the more

useful idioms using higher-order features are inexpressible. Indeed, David MacQueen

argued in a 1986 paper [37] that this problem is severe enough that the opaque approach

should be abandoned in favor of a transparent one.

2.2 The Transparent Approach

Unlike in the opaque approach, under the transparent approach, module and functor

boundaries are transparent, allowing all information about the identities of type compo-

nents to pass through them; the transparent approach does this by inspecting module
implementations to determine the actual identity of type components. For example,
consider again the IntStack example:

IntStack = module

type T = ref(list(int));

fun new() = new [];

fun push(s:T, e:int) = ...

...

end;

This time, the identity of the integer stack type is visible both inside and outside of the

module: We know that IntStack.T = ref(list(int)) and can thus manipulate integer
stacks using reference and list primitives. The identity of IntStack.T is computed by
substituting in its implementation and then reducing the resulting expression:

IntStack.T =

(module type T=ref(list(int)); ... end).T =

ref(list(int))

Examples of programming languages that take this approach are David MacQueen's
DL [37]; Robert Harper and John Mitchell'sXML [41]; and Robert Harper, John Mitchell,

and Eugenio Moggi's �ML [22]. As we have just seen, the transparent approach does not

provide data abstraction at the module level. It is possible, however, to obtain a more

limited kind of data abstraction, which I call closed abstraction, under the transparent

approach.

1For example, we cannot create a new module ExtendedString from a built-in String ADT module

by �rst copying the String type and operations then adding a few new operations, and have extended

strings be interchangeable with the built-in strings.
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Closed abstraction is abstraction limited to a speci�c closed scope. For example,

we might have an abstract-in construct that allows us to hold our integer-stack module

abstract in a particular piece of code (M below):

INTSTACK = interface

type T;

val new : unit -> T;

...

end;

abstract IntStack:INTSTACK = module

type T = ref(list(int));

fun new() = new [];

...

end

in

M

end;

Here IntStack is held abstract inside M ; that is, only the information available in the
interface given for it (INTSTACK) is visible inside M . Thus, the fact that IntStack.T is
a type is visible but not the fact that IntStack.T is equal to ref(list(int)). Because
IntStack is only visible in M , this construct provides only closed abstraction.

The abstract-in construct can be desugared in the transparent approach into a functor
application:

(functor (IntStack:INTSTACK) M)

(module

type T = ref(list(int));

fun new() = new [];

...

end);

Because in general it is not possible to determine the code for functor arguments at
compile time, the transparent-system type checker checks M using only the information

available in interface for IntStack, giving the desired behavior.

By contrast, in open abstraction, which is provided by my approach and the opaque
approach but not by the transparent approach, the scope of the abstraction is not limited

to a single existing scope. For example, using an open-abstraction construct (denoted by
abs here), we might have the following code:
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S = module

abs IntStack:INTSTACK = module

type T = ref(list(int));

fun new() = new [];

...

end;

...

end

...

Here our integer-stack module is held abstract both inside the module S (under the name

IntStack) and outside the module S (under the name S.IntStack). If S is at the top
level of a program then the later scope may include modules complied separately from S

at a later time. Closed abstraction cannot handle such modules because it requires that

all code that uses an ADT be available at the time the ADT is written. Because of this
important limitation, I do not consider systems that support only closed abstraction to
provide abstraction at the module level. Note that under the opaque approach abs is
just a synonym for mod because abstraction is automatic.

Because the transparent approach requires access to the implementations of all the

modules a module refers to in order to compile that module (in order to determine the
identities of type components from those modules), it cannot provide separate compila-
tion. Also, the transparent approach is incompatible with treating modules as �rst-values
because there is no way to determine the actual identity of a type when it depends on
information available only at runtime.2

However, the transparent approach does allow modules to \contain" other types.
This fact allows most of the interesting use of higher-order features to be used under
the transparent approach. For example, if we try and build a telephone directory using
MkBTree like we did before (see Section 2.1), no type errors occur this time because

under the transparent approach, D.define has the type btree(string,string) * string

* string -> unit. Accordingly, the resulting telephone dictionary is fully usable, but
its implementation is exposed (note the �rst argument's type), which is undesirable from

the point of view of information hiding.

2.3 Summary

Summarizing, there are two main previous approaches to designing higher-order module
systems, the opaque approach and the transparent approach. The opaque approach has

2More precisely, unsoundness results from this combination in the presence of side e�ects; the un-

soundness example in Section 4.5 shows this fact because it is well typed under the transparent approach

extended with �rst-class modules but causes a type error at runtime.
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the following advantages:

� Provides module-level data abstraction

� Supports separate compilation

� Compatible with modules as �rst-class values

Its disadvantages include the absence of all of the following:

� Modules can \contain" other types

� Modules may export type abbreviations

� Many of the more useful higher-order idioms work

The transparent approach, on the other hand, has the opposite advantages and disadvan-
tages; it lacks the opaque approach's advantages but it removes the opaque approach's
disadvantages. Both approaches' set of disadvantages are serious enough to result in their

each building unsatisfactory module systems.



Chapter 3

My Approach

In this chapter I introduce the basic ideas of my approach to designing higher-order
module systems, contrast my approach with the previous ones, and explore my approach's

abilities. In the next chapter (Chapter 4), I explain in more detail the technical machinery
behind my approach.

3.1 Module and Functor Boundaries

Under my approach, which I call the translucent approach, module and functor bound-
aries are \translucent," being opaque in some places and transparent elsewhere. Where
the boundaries are opaque is controlled by the programmer using interfaces. Each bound-
ary has an associated interface, which speci�es which type component's identity infor-

mation can be seen through the boundary.
In order to allow this speci�cation, interfaces in my approach are extended to allow

specifying the identity of type components. For example, the following interface for a

hash table ADT speci�es the type identity of the element type (elem) but not that of
hash tables (T):

HashTable : interface type elem = int;

type T;

...

end

Using this ability, the programmer speci�es boundary properties by giving, in the inter-

face associated with a boundary, the type identities of only those components she wishes

the boundary to be transparent to; all other type components will be treated opaquely.
Thus, in the HashTable example above, the boundary will be transparent for the elem

component and opaque for the T component.

16



CHAPTER 3. MY APPROACH 17

Because the programmer is required to provide the actual type identity of transparently-

treated type components in the interface (the type checker checks that the type identities

provided in the interface are correct when the interface is assigned to a module), the type

checker does not need to inspect the implementation of modules to determine the identity

of their type components; it can just believe the module's interface. This fact means that

modules depend on only the interfaces of other modules; my approach is thus able to

support separate compilation without any trouble.

3.2 Default Interfaces

If the programmer does not supply an interface for a simple module (module ... end),

then the type checker infers a fully transparent interface by inspecting the module's
implementation. For example, under my approach, StringOrd, which we bound to the
result of evaluating module type T = string; type cmp = ...; end, would have been
assigned the following interface:

interface type T = string; val cmp: T*T -> int; end

If we compare this interface to the original opaque ORDERED interface (repeated below),
we see that the new interface di�ers only in the addition of the type identity T=string:

interface type T; val cmp: T*T -> int; end

By using a shorthand notation due to Xavier Leroy [31], we can take advantage of this
fact to express the new interface as ORDERED with T=string. Leroy's with notation is

a purely syntactic shorthand that expresses the result of adding information about type
identities to an existing interface. A discussion of exactly how the with notation works
can be found in Subsection 13.7.4.

The situation for non-simple module expressions without interfaces is more compli-

cated, particularly because modules under my approach are treated as �rst-class values.

Brie
y, by the use of some type rules, an interface that is as transparent as possible given
soundness and reasonable compile-time{information constraints1 is inferred. I shall give
an example of how this can occur later in Section 3.7. Code that does not involve using
modules as �rst-class values, higher-order functors (functors that take or return other

functors as arguments), or type coercions will be given a fully transparent interface [34].

This category includes the majority of code written in SML.

1In particular, the type checker makes no attempt to determine the run-time branching of conditionals,

instead assuming that they could branch either way at any time.
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3.3 Subtyping

Subtyping in my system permits forgetting type identities; for example, ORDERED with

T=int is a subtype of ORDERED. This fact means that the programmer can use type

coercions (M <: interface ... end) to increase opacity where and when desired. For

example, the following code creates an initially transparent HashTable module then

makes opaque just the T type component:

HashTable = (module type elem = int;

type T = (string*elem) array;

...

end

<: interface type elem = int;

type T;

...

end);

This technique provides module-level data abstraction under my approach.

Thus, in summary, under the translucent approach, the default is full transparency;
opacity results either from using modules in a �rst-class manner (to prevent unsoundness)
or from using an explicit type coercion (to obtain data abstraction).

3.4 The B-Tree Example

To get a feel for how translucency works, let us consider again the B-Tree example from
Section 1.4. What happens if we try to build a telephone directory using MkBTree under
the translucent approach? If we examine the original code for MkBTree (partially copied
below), we see that it assigns the interface ORDERED DICTIONARY to the result of applying

MkBTree:

MkBTree =

functor (K:ORDERED, E:interface type T; end)

:ORDERED DICTIONARY

module

mod Key = K;

type elem = E.T;

type T = btree(Key.T,elem);

...

end;
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Because ORDERED DICTIONARY is completely opaque (it speci�es no type identities),

this means that MkBTree's boundary under the translucent approach will be completely

opaque as well; consequently, MkBTree will act the same as it did under the opaque

approach: If we try to build a telephone directory like we did before in Section 2.1,

abstract operation-argument types will result in type errors that prevent us from using

the resulting telephone directory.

What happens if we remove the explicit result interface (:ORDERED DIRECTORY) from

the MkBTree code? In that case, the type checker will infer the following totally-

transparent result interface:

ORDERED DICTIONARY with Key.T = K.T

with elem = E.T

with T = btree(K.T,E.T)

(Note that the body of the MkBTree functor is a simple module.)
With this interface, MkBTree's boundary will be completely transparent; consequently,

this version of MkBTree will act the same as the old version of MkBTree did under the
transparent approach: If we try to build a telephone directory, the resulting dictionary

will be fully usable, but its implementation will be exposed to the user.
Both versions of MkBTree are unsatisfactory; what we really need is for Key.T and

elem to be transparent (so that the resulting dictionary will be usable) and for T to be
opaque (so that MkBTree's implementation is hidden). We can achieve this by assigning
the following translucent interface as the return interface for MkBTree:

ORDERED DICTIONARY with Key.T = K.T

with elem = E.T

This interface gives MkBTree a translucent boundary that is transparent for the Key.T

and elem type components but opaque for the T type component.
What happens if we try and create a telephone directory using this new version of

MkBTree as before (code repeated below)?

D = MkBTree(StringOrd, module type T=string; end);

directory = D.new();

D.define(directory, "John Smith", "123-4567");

Because of the translucent boundary, D.definewill have the type D.T * string * string

-> unit, where D.T is an abstract type. Accordingly, there is no problem using the

resulting telephone directory and the implementation of MkBTree is hidden as desired.
Note that only my approach is thus able to handle the B-Tree example in a satisfactory

manner.
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3.5 The Recipe

My approach is based on type theory and the �-calculus. In it, modules are a particular

sort of value and interfaces are a particular sort of type. This choice yields a simple and

uniform design.

My \recipe" for building translucent higher-module systems is as follows:

� Start with a base �-calculus (to model the core language); I use Girard's F! [15] in

my Kernel system

� Add translucent sums (to module modules)

� Add dependent functions (to model functors); dependent functions are needed be-
cause the result type of a functor can depend on its argument

� Add a notion of subtyping (to model implementation-interface matching)

The key component here is the new type theoretical construct I call a translucent
sum; the other components of the recipe are, with the exception of one minor change to
the behavior of dependent functions (see the next chapter), standard components drawn

from the extensive type-theory literature.
Indeed, variations of this recipe can be used to build opaque or transparent higher-

order module systems: To get an opaque system, for example, weak sums (also called
existentials) with the dot notation elimination form (discussed in the next chapter) should
be substituted for translucent sums in the recipe. To get a transparent system, on the
other hand, strong sums should be substituted instead. It will also be necessary in the

transparent case to stratify the system, separating modules, functors, and their \types"
from ordinary terms and types; this strati�cation ensures soundness at the cost of making
modules and functors second-class values.

For both of these variations, in order to handle submodules, dependent sums should

either be added in addition or their functionality should be merged into the weak or

opaque sum construct. (Translucent sums already include the functionality of dependent
sums.)

3.6 Translucent Sums

Translucent sums are weak sums with the dot elimination form that have been enriched

in the following ways:

� The ability to give equational information about type components has been added

� Type equality has been modi�ed to take this equational information into account
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� They have been generalized to:

{ have any number of components

{ have named components

{ allow dependencies on previous (value) components

� Subtyping has been modi�ed to allow

{ forgetting equational information about type components

{ reordering components

{ dropping components

The last two subtyping changes are to allow more 
exible matching of module imple-
mentations to interfaces. This ability is very useful in practice because it allows modules
to be combined in more 
exible ways. In particular, it allows passing a module with extra

or di�erently ordered components than a functor's argument interface requires to that
functor without having to manually write a coercion function to extract only the required
components. The reordering ability also frees programmers of the need to remember the
exact order of an interface's components.

I shall discuss translucent sums in more detail in the next chapter.

3.7 First-Class Values

Like weak sums, on which translucent sums are based, translucent sums are ordinary
values. This fact has a number of consequences. First, because modules are translucent

sums, modules under my approach are �rst-class values. Second, because of this fact,
modules may be nested inside other modules as value components (i.e., using the val
keyword); my approach thus supports submodules without needing to handle submodule

components specially.
Third, because having modules as �rst-class values means that any function can

take or return modules, functors are simply ordinary (dependent) functions; accordingly,
functors in my approach are also just ordinary values. Finally, fourth, because functions

in �-calculi are higher-order (they can take and return functions) and functors are just
ordinary functions, my approach supports higher-order functors.

The recipe I have described builds a module system where modules are �rst-class

values. It is possible to alter the recipe (see Section 13.8) to build instead a translucent

higher-order module system where modules are second-class values. Such an approach

would yield a system with the same abilities as the approach I am describing here except
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that it would not be possible to choose ADT implementations at runtime. The resulting

system, however, would require substantially less complicated proofs.

Code using modules as �rst-class values may automatically lose type identity infor-

mation in order to avoid unsoundness. Consider again, for example, the code to select a

dictionary at runtime based on the number of items needed:

Dictionary = if n<20 then LinkedList else HashTable;

Suppose the programmer gave fully transparent interfaces to LinkedList, say DICTIO-

NARY with T=list(...), and HashTable, say DICTIONARY with T = array(...). Be-

cause the type checker does not know what n's value will be at runtime, it cannot safely

determine Dictionary.T's type identity. Accordingly, it must be conservative and as-
sign Dictionary the more opaque interface DICTIONARY, which makes Dictionary.T

abstract.
No special type rules are needed to implement this behavior: Because the type rule for

if{then{else requires the then and else branches to have the same type and LinkedList

and HashTable have di�erent types, the type checker is forced to use subsumption to
coerce both branches to a common supertype; all such types make Dictionary.T opaque.
It is because of this ability to make types abstract when they cannot be determined at

compile-time that my approach is able to treat modules as �rst-class values without
risking unsoundness.

3.8 Linking

One advantage of a programming language with a higher-order module system based on
type theory is that the process of separate compilation, including linking, can be described
in the language without any need for additional constructs or type rules. The basic idea
here is to describe separate compilation as a preprocessing stage that automatically

converts �les containing code with references to other modules into closed functors by
using the �les containing the interfaces for the referenced modules. The closed functors

can then be compiled completely independently of any other �les. The linker must then

automatically generate code to apply the compiled functors generated by the compiler
to each other in the correct order at runtime.

In order to give you a favor for how this process might work, I am now going to

describe a very simple separate-compilation system. In this system, the implementation

code for modules named M is placed in the �le M.m while the interface for module M
(only one interface per module is allowed in this system) is placed in the �le M.i; this

naming convention allows the preprocessor to �nd the interfaces of referenced modules.
Interface and implementation �les in this system may optionally start with an import

declaration. Only modules listed in a �le's import declaration, if any, may be referenced
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File contents of "String.i":

interface

type T;

val empty : T;

...

end;

File contents of "String.m":

module

type T = array(char);

val empty = ...

...

end;

Figure 3.1: Code for the String module

from that �le. If a module's interface �le includes an import declaration, then it's im-
plementation �le must include an import declaration which starts with the same list of
modules imported in the module's interface �le.

For an example program, consider Figures 3.1 and 3.2. Figure 3.1 contains the inter-

face and implementation �les for a module String that implements a string type from
character arrays. Figure 3.2 contains the interface and implementation �les for a module
Hash, which implements an integer hash-table ADT keyed on strings using an associative
list ADT. The modules String and Assoc (not shown) have no import declarations be-
cause they do not need to refer to any other modules. The Hash interface imports String

(in order to use the type String.T), while the Hash implementation imports Assoc as
well (in order to use the String and Assoc operations to implement hash tables).

The transform of Hash into a closed functor results in the code of Figure 3.3. This

transform can be performed completelymechanically: the list of functor arguments comes
from the implementation's import list, the interfaces from the appropriate interface �les,

and the functor body from the module's implementation �le. Note that no references to
external modules remain: The references to String.T, Assoc.T, and so on, refer to the

MkHash functor's arguments, not to the external modules of the same name. Also note
that checking that Hash's implementation satis�es its publicly declared interface will be

done automatically when the transformed code is compiled; the matching relation here is
just subtyping on interfaces, avoiding the need for a separate set of rules. The transforms

of String and Assoc (not shown) are much simpler since they import nothing.

When this program is linked together, the linker automatically generates the series
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File contents of "Hash.i":

import String;

interface

type T;

val new : unit -> T;

val lookup : T * String.T -> int;

...

end;

File contents of "Hash.m":

import String, Assoc;

module

type T = Assoc.T(int)

fun new() = ...

fun lookup(table:T, key:String.T) = ...;

...

end;

Figure 3.2: Code for the Hash module
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MkHash =

functor (String: interface

type T;

val empty : T;

...

end,

Assoc: interface ... end)

: interface

type T;

val new : unit -> T;

val lookup : T * String.T -> int;

...

end

module

type T = Assoc.T(int);

fun new() = ...

fun lookup(table:T, key:String.T) = ...;

...

end;

Figure 3.3: Code for the transformed Hash module

String = MkString();

Assoc = MkAssoc();

Hash = MkHash(String, Assoc);

Figure 3.4: Code to combine the closed functors
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of functor applications shown in Figure 3.4 to combine the closed functors together into

a complete program. Determining what order to link the closed functors in is somewhat

tricky because of dependencies between modules. In the simple system I am describing,

the order is determined by �rst building a directed graph, whose nodes are the modules

and whose edges represent dependencies between modules: An arrow is drawn from M

to N i� M imports N or M appears before N in any import list. (The second part gives

the programmer some control over the order of module initialization; this control can be

important when side e�ects are involved.) Second, the graph is checked for cycles; it is

an error, aborting linking, if any cycles are found. Otherwise, third, a topological sort is

done to �nd a ordering that respects all the dependencies.

At runtime, this series of applications is done as the e�ect of the program. In a more

realistic example, there would be a Main module, executed last, whose application would
perform the desired computation. Note that if functors are used in the original program,
then the transformed code will involve higher-order functors.

3.9 Type-Sharing Speci�cations

Standard ML has a feature that is sometimes useful called type sharing, which is used in
interfaces to require that (sub)-component types are equal. To see an example of where
this feature might be useful, imagine that we had a number of di�erent ordered-dictionary
implementations that we wished to test to make sure they worked correctly. One easy

test we could do is to write a functor that takes in two ordered dictionaries and performs
random operations on the two dictionaries in parallel; if their answers di�er, then at least
one of them must be incorrect.

In order to make this functor work, we are going to need to require that the two
ordered dictionaries we are passed have the same key and element types. (Otherwise,

we will not be able to perform the same operations on both ordered dictionaries.) This

requirement can be expressed in SML by using type-sharing speci�cations:

functor RandomTest(structure x:ORDERED DICTIONARY;

structure y:ORDERED DICTIONARY;

...

sharing type x.Key.T = y.Key.T

sharing type x.elem = y.elem

) = ...

(SML syntax is slightly di�erent from my notation.)
This SML code can be translated into my approach by using a series of with expres-

sions to set the required-equal type components equal to each other:
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RandomTest =

functor (x:ORDERED DICTIONARY,

y:ORDERED DICTIONARY

with Key.T = x.Key.T

with elem = x.elem,

...)

...

This basic idea | picking the type in an speci�ed equivalence class with maximal scope

and then setting the other types in that class equal to it using with statements | can

used to translate any type-sharing speci�cation from SML into my approach.

3.10 Summary

Summarizing, under my approach the identity of type components start out fully visible;
this visibility can later be obscured either automatically when modules are used in a �rst-
class manner in order to ensure soundness, or manually when the programmer inserts
a type coercion in order to produce abstraction. This controlled visibility permits data
abstraction where desired and modules as �rst-class values without limiting the uses of
higher-order features that depend on modules \containing" other types. My approach

also supports separate compilation because modules depend only on interfaces.
Since my approach gives the programmer control over the degree of visibility, she

can choose opacity or transparency as needed, getting the best of both worlds. Indeed,
because translucency permits the programmer to mix opacity and transparency in the
same module (e.g., the interface for HashTable), new uses of higher-order features be-

come possible (e.g., the B-Tree example). My approach also provides a number of other
bene�ts:

� Functors are �rst-class

� Higher-order functors are provided

� Type-sharing speci�cations can be encoded

� Modules may export type abbreviations

� Linking and separate compilation can be described in the resulting programming

language

� The resulting system has a simple and uniform type theory
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Technical Machinery

Now that I've described the basic ideas of my approach, I shall introduce in this chapter
the technical machinery behind my approach. In particular, I shall explain the syntax and

rules for translucent sums in some detail, describe how the various rules interact to obtain
desirable properties such as decidable type equality, and motivate some restrictions in
the rules. This chapter is intended to serve as an introduction to the machinery worked
out in complete detail in the next part of this dissertation; accordingly, I ignore here a
number of uninteresting minor technical issues such as the need for side conditions on

many rules in order to avoid variable capture and duplicate �eld names.

4.1 Dot Notation

Traditionally, in order to make use of the contents of a weak-sum value (also called an
existential value), a programmer must �rst open it. If the term M 1 evaluates to a weak
sum of type interface type T; val v:A; end, then it may be opened for use in M 2 by

writing open M1 as U,x in M 2 end. During M2's execution, U will be bound to the
type component of the weak sum and x will be bound to its value component, which will
have type [U=T]A. The type rule for open requires that M2's type does not refer to U;

this requirement is necessary to avoid unsoundness. (Because weak sums are �rst-class

values, U may be bound to di�erent types at runtime, making it unsafe to refer to it by
a single static name outside the scope of the open statement.)

Having to write out an open statement each time you want to use a weak sum can be
inconvenient; in a 1990 paper [11], Luca Cardelli and Xavier Leroy introduced a shortcut

they called the dot notation. The basic idea is to allow the programmer to directly

write x.T for the type component of and x.v for the value component of the weak sum
denoted by the variable x. These direct references are then translated away by placing

open statements next to the bindings of the weak sums and by substituting the names

28
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of the opened components for the direct references.

For example, consider the following piece of code:

let x = M1 in

x.v.1(�s::x:T: true)

end

This code translates into the following piece of code:

let x = M1 in

open x as x T,x v in

x v.1(�s:x T: true)

end

end

By using a more complicated translation, Cardelli and Leroy showed, among other
things, that their dot notation could be extended from working on just variables to
working on any (sub)-component of a variable as well. Under that extension, if x.y.z,
the y.z sub-component of the variable x, is a weak sum, then its type component could be
referred to directly as x.y.z.T. The extension does not compromise soundness because

the (sub)-components of variables are essentially just another kind of variable.
I have chosen to build the dot notation into translucent sums directly instead of

requiring it to be �rst translated away or not providing it. In their paper, Cardelli and
Leroy do not deal with dependent sums or functions; it seems unlikely that the dot
notation can be translated into open statements in the presence of these features, both of
which are present in my system. Thus, the dot notation in my system should be regarded

as an independent feature and not an abbreviation for the use of open. As I shall explain
in Section 4.5, my approach is able to support the dot notation on a somewhat larger
class of terms than variables and their (sub)-components.
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4.2 Creation

For the this chapter, I shall use the following syntax:

Simple Modules S ::= module B1; � � � Bn; end (n � 0)

Interfaces I ::= interface D1; � � � Dn; end (n � 0)

Bindings B ::= val x=M j type �=A
Declarations D ::= val x:A j type �=A j type �

Terms M ::= x j S j M:x j functor (x:A) M j
M1M 2 j ...

Types A ::= � j I j FUNCTOR (x:A):A0 j
M:� j ...

Assignments � ::= D1; � � � Dn (n � 0)

Here, the metavariable � ranges over type variables and the metavariable x ranges over
term variables. I have omitted the syntax for constructs other than translucent sums
and dependent functions because it will not be needed; likewise, I have simpli�ed the
presentation of translucent sums here by using only one name per �eld rather than the

pair of names | one for internal access and one for external access | that are required
for technical reasons (see Section 13.1). In the next chapter I shall introduce a more
concise, precise, and formal notation for my system.

In order to type check a simple module, we type check each of its bindings under
the preceding bindings, if any, and the current assignment (assignments describe the

variables from the rest of the program currently in scope):

8i 2 [1::n]: �;D1; � � � ;Di�1 ` Bi : Di

� ` module B1; � � � ;Bn; end : interface D1; � � � ;Dn; end
(I-SIMPLE)

The resulting type for the module is an interface type listing the \types" of the mod-

ule's bindings. The \type" of a binding is a declaration; the following rules associate

declarations with bindings:

� `M : A

� ` val x=M : val x:A
(I-VAL)

� ` A valid

� ` type �=A : type �=A
(I-TYPE)

Here � ` M : A denotes that term M has type A under assignment � and � ` A valid
denotes that A is a valid type under �. Note that the rules assign transparent declarations
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(type �=A) rather than opaque declarations (type �) to type bindings. This behavior

implements the default interface policy for simple modules (full transparency) that I

described in Section 3.2.

As an example, these rules assign module type �=int; val a=2; val b=a+2; end

the type interface type �=int; val a:int; val b:int; end under �. Note that

because we type check successive bindings in the scope of the previous ones, �elds can

refer to earlier �elds. In the above example, the b �eld was able to refer to the a �eld

because it was type checked under the assignment �;type �=int;val x:int. Earlier type

�elds such as � may also be referred to in later �elds.

Later �elds may also refer to (sub)-components of earlier �elds. For example, the

following module is well typed:

module val P=module

type T=int;

val x=3;

end;

type U=P.T;

val y=P.x;

end

Note the use of the dot notation here to refer directly to the type P.T. The rule for
determining when such a reference is valid is (roughly) as follows:

� `M : interface �1; type �; �2; end

� `M:� valid
(V-DOT)

That is to say, if M denotes a translucent sum with an � type �eld1 under �, then
M:� denotes a type. This rule is in fact too general; I shall explain why and how the

set of terms that this rule applies to needs to be restricted in Section 4.5. I shall defer
discussion of how M:x is typed until Section 4.6.

The ability to refer to earlier �elds also exists in interfaces:

8i 2 [1::n]: �;D1; � � � ;Di�1 ` Di valid

� ` interface D1; � � � ;Dn; end valid
(V-INTER)

Thus, interfaces like interface type �; val x:�; end are valid.
All of the rules for dependent functions (functors) are standard except for the typing

rule for application, which I shall explain in Section 4.6. For example, the rule for type

1Note that a transparent declaration for � in M 's interface can always be turned into an opaque

declaration for � by using subsumption on M to forget the identity of �.
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checking functors is as follows:

�;x:A `M : A0

� ` functor (x:A) M : FUNCTOR (x:A):A0
(I-FUNC)

Note that the result type of a functor (A0) can depend on its argument (x).

4.3 Equality

Type equality in my system is structural (i.e.., component-wise) except for equations

derived from the information about type identities found in translucent sums and from
reductions involving functions on types (not discussed in the �rst part of this dissertation;

see Section 5.1). In particular, two interfaces are equal if their corresponding declarations
are equal:

8i 2 [1::n]: �;D1; � � � ;Di�1 ` Di = D0
i

� ` interface D1; � � � ;Dn; end = interface D0
1; � � � ;D

0
n; end

(E-INTER)

Two declarations are equal if they are of the same sort, declare the same variable, and
contain equal types:

� ` A = A0

� ` val x:A = val x:A0
(E-VAL)

� ` type � = type � (E-TYPE-O)

� ` A = A0

� ` (type �=A) = (type �=A0)
(E-TYPE-T)

Note that equality does not permit the reordering of translucent-sum �elds.

The information about type identities contained in translucent sums leads to equa-

tions in two ways. First, whenever a transparent declaration occurs in an assignment, it
gives rise to an equation involving its type variable:

�; type �=A; �0 ` � = A (ABBREV)

Because the components of translucent sums (and functors) are compared for equality
under an assignment extended with the previous declarations, if any, this rule give rise

to equations like the following:

interface type �=int; val x:�; end =

interface type �=int; val x:int; end
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Second, declarations of translucent sums containing transparent declarations, either

directly or in a sub-component, also give rise to equations:

FV(A) \ �elds(�1) = ;

� ` M : interface �1; type �=A; �2; end

� ` M:� = A
(ABBREV0)

As with the previous rule involving the dot notation, V-DOT, this rule is too general; a

similar restriction to the set of terms it applies to will need to be made.

I use FV(A) to denote the free variables of A and �elds(�) to denote the �elds declared

in �. Thus, the �rst precondition of the ABBREV0 rule expresses the requirement that the

type � is equal to (A) does not depend on any earlier �elds inM 's type; this precondition
is needed to prevent variable capture.

Such dependencies can be classi�ed as either essential or inessential. A dependency

is inessential if it can be removed by the use of the equality rules alone; otherwise, it
is essential. Dependencies on transparently-de�ned �elds are inessential: they can be
removed by using the ABBREV or the ABBREV0 rule as appropriate to replace the �eld
name with its declared identity. (The typing rules prohibit �elds from depending on
themselves.) Dependencies on opaquely de�ned �elds, on the other hand, are usually

essential.
As an example, in the following interface type the z �eld depends essentially on the

� �eld but only inessentially on the � �eld:

interface

type �;

type � = int;

val z: FUNCTOR (s:�):�;

end

The di�erence between essential and inessential dependencies is important because several

type rules in my system require all dependencies between certain �elds to be removed

before they can be applied.

Like the ABBREV rule, the ABBREV0 rule also gives rise to equations on interfaces
when combined with the component-wise equality rules. For example, we have that

interface

val x: interface type T=int; end;

type U = x.T;

end

is equal to
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interface

val x: interface type T=int; end;

type U = int;

end

4.4 Subtyping

Subtyping in my system is structural modulo equality | equal types are always subtypes

of each other | except for forgetting information about type-component identities and

the reordering and dropping of translucent-sum �elds. The component-wise subtyping

rule for translucent sums says that two interfaces are subtypes if their corresponding

declarations are \subtypes":

8i 2 [1::n]: �;D1; � � � ;Di�1 ` Di � D0
i

� ` interface D0
1; � � � ;D

0
n; end valid

� ` interface D1; � � � ;Dn; end � interface D0
1; � � � ;D

0
n; end

(S-INTER)

One declaration is a structural \subtype" of another if it is of the same sort and

declares the same variable either to be a subtype of the other declaration's declared
type (value-declaration case) or to be equal to the same type(s) modulo equality (type-
declaration case):

� ` A � A0

� ` val x:A � val x:A0
(S-VAL)

� ` type � � type � (S-TYPE-O)

� ` A = A0

� ` (type �=A) � (type �=A0)
(S-TYPE-T)

Note that it is not safe to replace a transparent type declaration with one that declares

the �eld name to be equal to a subtype of the original type because type �elds can be
used in contravariant positions; types in such positions can in general only be replaced

safely with supertypes.
The forgetting of type-identity information is implemented by a non-structural rule

for declaration \subtyping":

� ` A valid

� ` (type �=A) � (type �)
(S-TYPE-F)
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Some examples of subtyping using these rules are as follows:

(a) interface type T=int; val x:int; end

� interface type T=int; val x:T; end

� interface type T; val x:T; end

(b) interface type T; type U=T; end

� interface type T; type U; end

Here in (a), we �rst created an inessential dependency of the x �eld on T using equality

then converted it into an essential dependency by using forgetting to make T an opaque

�eld. In (b), by contrast, we broke an essential dependency of the U �eld on T by forgetting
that U was equal to T. Subtyping, thus, unlike equality, can be used to break or create
essential dependencies.

Note that before a �eld's type-identity information can be forgotten, it may be neces-
sary to remove some dependencies on that �eld in order to ensure that the resulting type

is valid as required by the second precondition of rule S-INTER. (Such dependencies can
always be removed by substituting the type the �eld is declared equal to for the �eld
name everywhere.) Consider the following valid interface:

interface

type S = interface type T; end;

val M:S;

val N:S;

val x:M.T;

end

We cannot directly forget S's identity because the resulting type is invalid:

interface

type S;

val M:S;

val N:S;

val x:M.T;

end

(Here, M.T is an invalid type because M, being of a (now) abstract type, cannot be shown
to be a translucent sum.)

However, we can forget S's identity if we �rst replace the occurrence of S in M's type

with the interface it is currently de�ned equal to, resulting in the following type:
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interface

type S;

val M : interface type T; end;

val N:S;

val x:M.T;

end

In addition to the component-wise subtyping rule for interfaces, there are additional

non-structural rules that permit the reordering and dropping of translucent-sum �elds.

Because it is unclear how the rules that implement this behavior should be formulated

(see Section 13.2), I shall just give a very rough description of their behavior here: Fields

in interfaces may be dropped if no other �elds (essentially) depend on them. A �eld
may be moved to the right past other �elds if they do not depend (essentially) on the
moving �eld. Some variants of these rules allow a �eld to be moved to the right past

�elds that depend essentially on the moving �eld under some conditions. See Section 13.2
for details.

Consider, for example, the following interface:

interface type a; type b=int; val c:b; val d:a; end

Here, the c and d �elds could be dropped directly and the b �eld could be dropped after
the dependency on it by the c �eld had been broken by using equality. The a �eld, by
contrast, cannot be dropped unless the d �eld is dropped �rst because the d �eld depends
on it essentially. The a �eld could be moved right past the b and c �elds but not past

the d �eld. Likewise, the b �eld could be moved right past the c and d �elds only if the
dependency by c on b was �rst broken.

Note that, like the rule for ordinary non-dependent functions, the subtyping rule for
functor types is contravariant:

� ` A2 � A1 �;x:A2 ` A01 � A02

� ` FUNCTOR (x:A1):A
0
1 � FUNCTOR (x:A2):A

0
2

(S-FUNC)

Here, the direction of subtyping on the functor argument types (Ai) is reversed from
that on the overall types. This fact means that subtyping can be used to \remember" the

type-identity information of variables declared in contravariant positions. This ability

provides another way for dependencies to be broken:

FUNCTOR (x:interface type T; end):x.T

� FUNCTOR (x:interface type T=int; end):x.T

� FUNCTOR (x:interface type T=int; end):int

Here, remembering followed by equality was used to break the essential dependency of

the result type on the argument x.
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4.5 The Phase Distinction

One desirable property of a programming language is that it have a phase distinction [22].

A programming language is said to have a phase distinction if programs in it can be

type checked without evaluating general program expressions (terms). Programming

languages without a phase distinction are hard to compile e�ciently; in the presence of

side e�ects, their semantics are also unclear. (What does it mean for a program's type

to be \if today is Monday then int else bool"?)

Surprisingly, my system has a phase distinction in spite of allowing modules as �rst-

class values. The only di�cult part to ensuring a phase distinction for my system is

�guring out how to handle equality on types containing terms. In particular, how should

equations like the following be checked?

M:� = N:�

The naive method is to simply evaluateM and N , read o� the types of their � type com-
ponents from the resulting values, and then compare the types using equality. However,
since M and N may be arbitrary terms, this rules out having a phase distinction.

My answer is to restrict the set of terms that may occur in types to an extended
set of \values" I call extended values. The set of extended values consists of the usual

call-by-value values (denoted by the metavariable V ) extended with term variables and
selections on extended values:

De�nition 4.5.1 (Syntax)

Extended Values � ::= x j V j �:y

I choose this set because it allows referring to any previous type component (including

nested cases like x.y.�) and is closed under substitution of a call-by-value value for a
term variable, making de�ning the call-by-value semantics of function application much
easier. Note that type coercions of the form V <:A are not considered call-by-value values

because they can be reduced further to V . If they were added to the set of extended
values, then the identity of types like (module type T=int; end <: interface type

T; end).T becomes problematic because in order for abstraction to work properly, this
type should not even be equal to itself, let alone be equal to int.

This restriction, which I call the extended-value restriction, is implemented both
syntactically, by replacing M:� in the grammar for types with �:�, and via the type

rules, by replacing M by � in the rules V-DOT and ABBREV0. The restriction makes
computing the identity of a type component like �:� easy: The only operation that

needs to be performed is selection, which never produces side e�ects and cannot cause

non-termination.
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The computing of type identities for �:�'s is done in my system by the ABBREV0

rule combined with the rules for typing simple modules and selections. These rules give

rise to equations like the following:

(module type T=int; val x=3; end).T = int

(module type T=int; type U=T*bool; end).U = int*bool

(module val x = module type T=int; end; end.x).T = int

Using these equations, any valid type in my system can be converted using equality into

an equal type that contains terms of only the form x:y1:y2 � � � :yn, n � 0. I shall call such

terms places. (The valid-type requirement here is to rule out cases with invalid selections

like (�x:int: 3):�.) Once the need for evaluating terms has been removed, it is easy to
establish a phase distinction.

Note that the remaining terms are of the form that Cardelli and Leroy showed how
to convert into open statements (see Section 4.1); this fact indicates that my extension
of the dot notation to extended values is conservative because �:�'s can be regarded as
just syntactic sugar for a type using only the unextended dot notation.

One consequence of the extended-value restriction is that my system is limited to call-
by-value: Call-by-name requires the ability to substitute general terms for term variables

in terms, which in turn requires the ability to substitute general terms for term variables
in types because terms may contain types; however, substituting general terms into types
results in types containing general terms in violation of the restriction.

Attempting to relax the extended-value restriction in order to get around this limita-
tion gives unsoundness in the presence of side e�ects. To see this, consider the following

example, where the alternate function alternates between returning true and false

(alternate uses side e�ects internally):

IntPkg = module type T = int;

val v = 3;

val f = negate;

end;

BoolPkg = module type T = bool;

val v = true;

val f = not;

end;



CHAPTER 4. TECHNICAL MACHINERY 39

Apply = functor (Pkg: interface type T;

val v:T;

val f:FUNCTOR (x:T):T;

end)

begin

Pkg.f(Pkg.v);

true;

end;

Apply(if alternate() then IntPkg else BoolPkg)

This code is well typed in my system2 and safe under call-by-value because Apply under
call-by-value applies the function f to the value v from the same package. However, if we

evaluate this code under call-by-name, we evaluate Apply's argument twice resulting in a
type error because we end up evaluating either IntPkg.f(BoolPkg.v) = negate(true)

or BoolPkg.f(IntPkg.v) = not(3). A similar runtime type error occurs if we �rst
�-reduce or inline the call to Apply, then evaluate using call-by-value. Because the �-
expansion would type check if the extended-value restriction were relaxed, this example

shows that such a relaxation is unsound in the presence of e�ects.

4.6 Selection and Application

Another consequence of the extended-value restriction is that the traditional elimination
rules3 for dependent sums and functions cannot be used because they require the ability
to substitute general terms into types:

� ` M : interface val x:A1; val y:A2; end

� `M:x : A1

(I-TRAD-S1)

� ` M : interface val x:A1; val y:A2; end

� `M:y : [M:x=x]A2

(I-TRAD-S2)

� `M 1 : FUNCTOR (x:A):A0 � ` M2 : A

� `M 1M2 : [M2=x]A
0

(I-TRAD-F)

2I have used an imperative version of Apply here, which executes Pkg.f(Pkg.v) solely for its side

e�ects, in order to avoid a restriction on functor applications that I discuss in the next section.
3Elimination rules for a construct handle type checking that construct's elimination form(s), in this

case selection for dependent sums and application for dependent functions.
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Here, I have simpli�ed things by only giving the case for binary dependent sums and

have used [M=x]A to denote the substitution of the term M for the term variable x in

the type A in a variable capture avoiding way.

In order to avoid this problem, I limit my selection and application rules to the

non-dependent cases, which do not require term substitution to handle:

� ` � : interface �1; type �; �2; end

� ` �:� valid
(V-DOT)

FV(A) \ �elds(�1) = ;

� ` � : interface �1; type �=A; �2; end

� ` �:� = A
(ABBREV0)

FV(A) \ �elds(�1) = ;

� `M : interface �1;val x:A; �2; end

� ` M:x : A
(I-SELECT)

� `M2 : A

� `M1 : FUNCTOR (x:A):A0 x 62 FV(A0)

� `M1M 2 : A
0 (I-APP)

When can these rules be applied if we assume that all of their preconditions except the
no-dependency one(s) are met? Clearly, the V-DOT rule can always be applied because
opaque declarations cannot depend on anything. Less obviously, if M can be given a

fully-de�ned transparent type | a type that declares all of M 's type (sub)-components
transparently | that also satis�es the traditional preconditions then the I-SELECT rule
can be applied to M and, furthermore, if M is an extended value, then the ABBREV0

rule can be applied to it as well. This fact holds because all dependencies within and on a
fully-de�ned transparent type must be inessential and hence breakable via subsumption;

moreover, this breaking can be done without invalidating the traditional preconditions.
The case for the I-APP rule is similar but the reasoning is more complicated. Here,

it is the argument M 2 that needs to be given a fully-de�ned transparent type in order
for the rule to apply. For the traditional preconditions to hold, this type must be a

subtype of M 1's domain type. Given these two conditions, the I-APP rule can always
be applied: �rst use subtyping to specialize the functor M1's domain type to the fully-

de�ned transparent type for M2; second, use equality to break all dependencies by the

functor result type (A0) on the functor argument (x), which will now all be inessential;
and third, apply the I-APP rule to the resulting non-dependent function type.

As an example, consider type checking the application of a functional version of Apply
(FApply, de�ned below) to IntPkg (de�ned in the previous section).
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FApply = functor (Pkg: interface type T;

val v:T;

val f:FUNCTOR (x:T):T;

end)

Pkg.f(Pkg.v);

FApply and IntPkg have the following types:

IntPkg : interface type T=int;

val v:int;

val f:FUNCTOR (x:int):int;

end

FApply : FUNCTOR (Pkg: interface

type T;

val v:T;

val f:FUNCTOR (x:T):T;

end):Pkg.T

Note that IntPkg's type is a fully-de�ned transparent subtype of FApply's domain type
(use equality to replace occurrences of int with T then forget the type identity of T) so
the functor application will be well typed if we can remove the dependency on Pkg by

FApply's result type.
By using subtyping via subsumption, we can specialize FApply's domain type to

IntPkg's type:

FApply : FUNCTOR (Pkg: interface

type T=int;

val v:int;

val f:FUNCTOR (x:int):int;

end):Pkg.T

Next, we can use equality via subsumption to replace all occurrences of Pkg.T in FApply's
result type by int; this step breaks the dependency on FApply's domain type by its result

type:

FApply : FUNCTOR (Pkg: interface

type T=int;

val v:int;

val f:FUNCTOR (x:int):int;

end):int
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Finally, we can apply the resulting non-dependent version of FApply to IntPkg using

I-APP to get that FApply(IntPkg) has type int. Note that we cannot type FAp-

ply(IntPkg) by �rst using subsumption to coerceM 2's type to that of FApply's domain

type and then using I-APP because once the information about IntPkg.T is lost there is

no way to break the dependency on Pkg.T by FApply's result type.

Because any term that does not denote a translucent sum will have a fully-de�ned

transparent type (because it will have no type (sub)-components), the above result means

that the application of a functor to any such term will never fail due to the no-dependency

precondition. Thus, functors act like standard dependent functions when applied to

anything other than a translucent sum.

There are two special cases worthy of note where translucent-sum expressions can

always be given fully-de�ned transparent types. The �rst such case is translucent sums
that contain no type (sub)-components. Such translucent sums are essentially ordinary
records; their types are always fully-de�ned transparent types with no dependencies
between �elds because they contain no type (sub)-components, which could be depended
on.

The second case concerns translucent-sum extended values; in the next section I shall

introduce two rules I call the EVALUE rules, which allow a fully-de�ned transparent type
to be given to any extended value without losing any information about its �elds. This
ability means that �:�, �:x, and F (�) will always type check if � has an � type �eld,
� has an x type �eld, or � is a member of F 's domain type, respectively. Because the
ABBREV0 rule is restricted to working on only extended values, this fact means that the

no-dependency restriction does not in fact restrict the occasions when the ABBREV0 rule
can be applied. Note also that module names (e.g., IntPkg or SearchTree.Binary) are
special cases of extended values; hence, selection of and application to a named module
cannot fail due to the no-dependency restriction.

What about the remaining cases where the no-dependency restriction cannot be met?

By the process of elimination, these are cases where we are computing a new module

(rather than referring to a previously computed module by name), which contains at
least one type component that is depended on by the resulting type and whose identity
the type checker does not know. Recall that unknown type components can only occur

when the programmer either uses modules in a �rst-class manner or uses a type coercion

to intentionally forget the identity of a type component.
These remaining cases need to be blocked in order to avoid unsoundness. The intuition

behind this fact is that in these cases the result type of the expression in question contains
a type that we have no name for; because we have no name for that type, we cannot

be sure that it does not vary at runtime, leading to possible unsoundness. (Because
my system uses call-by-value, type names must denote a constant type in each of their

dynamic scopes.) As an example, consider the following unsafe code:
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(if alternate() then IntPkg else BoolPkg).f(

(if alternate() then IntPkg else BoolPkg).v)

This is the �-reduction of the unsoundness example from Section 4.5. Note that it

would be well typed if we removed the no-dependency restriction on selection and used

the traditional selection rules for dependent sums. This example can be �-expanded to

produce an similar unsoundness example for functor application:

SelectF = functor (Pkg: interface type T;

val v:T;

val f:FUNCTOR (x:T):T;

end)

Pkg.f;

SelectV = functor (Pkg: interface type T;

val v:T;

val f:FUNCTOR (x:T):T;

end)

Pkg.v;

SelectF(if alternate() then IntPkg else BoolPkg)(

SelectV(if alternate() then IntPkg else BoolPkg))

Note that this example does not violate the no-dependency restriction on selection be-
cause selection is applied only to module names and that both SelectF and SelectV are

well typed even in the presence of the no-dependency restriction.

4.7 The EVALUE rules

Suppose the current assignment contains the following declaration:

val P : interface type T; val x:T; end

What types can we give to the expression P under this assignment? Because we have

a name, P, for the translucent-sum expression we are trying to type, we have a name

for the contents of its T �eld, namely P.T. This suggests that we can give P the type

interface type T=P.T; val x:P.T; end, which is a subtype of the declared type for
P.

This technique of giving a more expressive type to translucent sums when we have a
name for their type components can be generalized to work on arbitrary translucent-sum

extended values. The name in this case is simply �.T where � is the extended value in
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question. The technique cannot be extended to general terms because of the extended-

value restriction (M.T is not in general a valid type in my system). The following two

typing rules implement this technique:

� ` � : interface �1; type �; �2; end

� ` � : interface �1; type �=�.�; �2; end
(EVALUE-T)

� ` �:x : A0

� ` � : interface �1; val x:A; �2; end

� ` � : interface �1; val x':A; �2; end
(EVALUE-V)

(The EVALUE-V rule is used in cases of nested translucent sums to apply the technique

recursively.)
We can give any extended value � a transparent type using these rules by repeating the

following sequence of steps as many times as possible: �rst, �nd the leftmost type (sub)-

component in �'s current type that is not declared transparently, call it C. Second, use
equality (via subsumption) to break all dependencies on earlier type (sub)-components
in �'s type. (We can do this breaking because all earlier type (sub)-components must
be declared transparently by step one.) Third, use the EVALUE rules to convert the C
�eld from an opaque declaration to a transparent one. (Step two here is necessary to
ensure that the selection in the EVALUE-V rule does not fail due to the no-dependency

restriction.) Note that equality (via subsumption) may be needed before applying the
EVALUE rules in order to rewrite �'s type into the form interface ... end.

If �'s original type was fully-de�ned (it declares all its type (sub)-components), then
the resulting type will be a fully-de�ned transparent type. A fully-de�ned type can be
found for � by simply type checking � without reordering or dropping �elds from � and

its (sub)-components. This procedure can always be done if � is well typed (adding extra
information does not make well-typed terms ill-typed). Thus, we can give a fully-de�ned
transparent type to any well-typed extended value using the EVALUE rules.

As an example, consider giving a fully-de�ned transparent type to the extended value
x under an assignment that contains the following declaration:

val x:interface type T; val y:interface type U; type V=T; end; end

The extended value x goes through the following types as we give it a transparent type:

interface type T; val y:interface type U; type V=T; end; end

interface type T=x.T; val y:interface type U; type V=T; end; end

interface type T=x.T; val y:interface type U; type V=x.T; end; end

interface type T=x.T; val y:interface type U=x.y.U;

type V=x.T; end; end
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In addition to their interactions with the elimination rules, the EVALUE rules are

important because they prevent the identity of opaquely-de�ned type (sub)-components

from being lost when the (sub)-components are given a new name. Without these rules,

an abstract type and its copy would be considered di�erent abstract types. Consider, for

example, the following code fragment:

M = module type T=int; type U=int; type V=bool; end

<: interface type T; type U=T; type V=bool; end;

N = M;

O = module val X=N; end;

Using the EVALUE rules we can give the following transparent types to these module
names:

M : interface type T=M.T; type U=M.T; type V=bool; end

N : interface type T=M.T; type U=M.T; type V=bool; end

O : interface

val X : interface type T = M.T;

type U = M.T;

type V = bool;

end;

end

Accordingly, we can infer that M.T = M.U = N.T = N.U = O.X.T = O.X.U and that
M.V = N.V = O.X.V = bool, but not that M.T = int. These equations mean that M,
N, and O.X are interchangeable. Without the EVALUE rules we would only be able to
infer that M.T = M.U, N.T = N.U, O.X.T = O.X.U, and M.V = N.V = O.X.V = bool; M,

N, and O.X are not interchangeable in that case because they do not contain equivalent
T components.

Note that the EVALUE rules, the elimination rules for selection and application, and
the ABBREV rules working in concert are able to propagate all the needed information

about the identity of type (sub)-components solely through types; no term (even just

a value) ever needs to be substituted during type checking. This machinery is what
allows my system to support separate compilation: All the information necessary for
type checking can be placed in a module's type (interface); there is no need to have the

code of a supplier module so that it may be substituted.

One way to show the power of this machinery is to show that all the information

available from substituting an extended value � for x can also be made available by
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giving x an appropriate type A possessed by � (i.e., a fully-de�ned transparent type as

discussed earlier). This claim can be formalized as the following proposition: If � is a

well-typed extended value under � then there exists a type A such that A is a minimal

type for � under � and for all types A0 such that �; [�=x]�0 ` [�=x]A0 valid, we have that

�;x:A; �0 ` [�=x]A0 = A0. The type A is a transparent minimal type for M under � if

for all types A0 such that � `M : A0, we have that � ` A � A0. I prove a version of this

proposition in Sections 11.5 and 11.6 (see especially Theorem 11.5.10 and Lemma 11.6.10)

for my kernel system.

This proposition can be used to show that the following versions of the traditional

elimination rules, which have been restricted to extended values, can be derived in my

system:
� ` � : interface val x:A1; val y:A2; end

� ` �:y : [�:x=x]A2

(I-TRAD-S2')

� ` M : FUNCTOR (x:A):A0 � ` � : A

� `M � : [�=x]A0
(I-TRAD-F')

(For simplicity, I again show only the binary sum case here.)

I shall just sketch the proof of the �rst rule here: Let � have the type inter-

face val x:A1; val y:A2; end under �. By applying the proposition, we can get a
transparent minimal type for �:x, call it A01. By EVALUE-V then, � must also have the
type interface val x:A01; val y:A2; end under �. By the second part of the proposi-
tion then, this type is equal to interface val x:A01; val y:[�:x=x]A2; end. Note that

the y �eld of this type cannot depend on the x �eld because it contains no x's (� cannot
contain x because of (unshown) side conditions required to prevent variable capture). Ac-
cordingly, we can apply equality (via subsumption) to give � this type, then I-SELECT
to show that �:y has the desired type [�:x=x]A2.

Thus, for selection from and application to extended values, my elimination rules are

equivalent to the traditional ones. A similar result can be shown for the other special
cases (non{translucent-sum values and translucent sums without type (sub)-components)

mentioned before in Section 4.6. My rules di�er in the remaining cases in that they

refuse to allow some operations that the traditional rules permit in order to prevent
unsoundness in the presence of modules as �rst-class values and to avoid the need for
substituting general terms so as to be able to support separate compilation.
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Chapter 5

Overview

In order to demonstrate my approach, I now present a calculus based on the idea of
translucent sums. I omit features that add only surface complexity without making the

development more interesting (e.g., syntactic sugar or array types) in order to simplify
the presentation. The system I describe is thus a kernel system, rather than a full
programming language. Nonetheless, I believe that it contains all the important elements
needed in a programming language with higher-order modules. I include both recursive
types (allowing for non-terminating programs) and references (allowing for imperative

programming) to demonstrate that translucent sums are compatible with e�ects.
I make a number of other simpli�cations so that the kernel system proofs are as

simple as possible without losing any results. These simpli�cations include the fact that
translucent-sum expressions in kernel-system types are limited to places (x:y1 � � � :yn,
n � 0) and the factoring of translucent sums into two simpler constructs, a standard

dependent sum and a new construct called a rei�ed constructor (see Section 5.5 for
details). The more complicated system I described in the �rst part of this dissertation
can be recovered from the kernel system by adding a pre-processing elaboration stage. I

choose to move the problem of reordering and dropping translucent-sum components to
this elaboration stage. I do this both to simplify the system and because there is some

uncertainly about what the best choice of subtyping rules is for handling component
reordering (see Section 13.2).

In addition to giving the syntax, the typing rules, and the semantics for the system,
I also give formal proofs of all the important properties for a programming language. In

particular, I prove that type checking modulo subtyping is decidable and that the system
is sound. Unfortunately, subtyping, and hence full type checking, is only semi-decidable;

this is unlikely to cause problems in practice though (see Section 10.9). I cover more

exotic modules features such as parameterized interfaces and value sharing as well as
some design alternatives brie
y in a later chapter on possible extensions.

48
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5.1 Higher Kinds

I have omitted any mention of functions on types from the �rst part of this dissertation in

order to keep the discussion simple. Such functions are necessary to handle concepts like

list and reference types: Statically-typed programming languages have not one list type,

but rather a family of list types parametrized by the type of the elements their members

may contain. Thus, an integer list may contain only integers and so on. Because of this

parametrization, list types are most naturally introduced by making list a primitive

function taking a type (the type of the list's elements) and returning a type (the resulting

list type.) Thus, list(int) would denote a list of int's and list(bool) would denote

a list of bool's.

Both types and functions from types to types are instances of a more general notion of
constructors. Constructors are generalized types that may take any number of arguments.
Types (e.g., int) are constructors that take zero arguments, while functions mapping a
type to a type (e.g., list) are constructors taking one type argument. Constructors in
my kernel system may also take multiple arguments through currying: For example, we

might have a constructor hash table that takes two arguments, namely the type of keys
and the type of elements to use. Such a table with string keys and int elements would
have type hash table(string)(int).

Constructors are distinct from terms, forming a separate level of my kernel system.
In order to do type checking, it is necessary to distinguish among the di�erent sorts

of constructors based on how they may be applied. This distinguishing can be done
by introducing a third level of kinds, which classify constructors in the same way that
types classify terms. The simplest kind is type, which classi�es completely applied
constructors. Only such constructors may be used to classify terms; all other constructors
must �rst be applied to suitable arguments before they can be used to classify terms. I

shall refer to only constructors of kind type as types.
The remaining kinds, called higher kinds, are of the form K1)K2, where K1 and

K2 denote kinds. Such kinds classify constructors that map constructors of kind K1 to
constructors of kind K2. Thus, list will have kind type)type and hash table will
have kind type)(type)type).

It is useful to allow programmers to de�ne new constructors in terms of old ones. For

example, a programmer might want to de�ne dictionaries to be hash tables with string

keys:

constr dictionary = ��::type: hash table(string)(�);

This declaration introduces a new constructor, dictionary, of kind type)type. The

intent is that dictionary(A) should equal hash table(string)(A) for all types A.

My system supports this ability by allowing such constructors (��::K:A), de�ning
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their equality in terms of substitution:

(��::K:A)A0 = [A0=�]A (BETA)

��::K:A� = A; where � 62 FV(A) (ETA)

These rules allow equations such as the following to be derived:

(��::type: hash table(string)(�))(int) = hash table(string)(int)

��::type: list(�) = list

In essence, what is going on here is that the constructor and kind levels in my system
constitute a simply-typed lambda calculus with constructors taking the part of simply-
typed terms and kinds taking the part of their types. Constructors are equal if when con-
sidered as simply-typed terms they evaluate via ��-reduction to the same \value". Like
functions in the simply-typed lambda calculus, constructors can be higher-order, taking

and returning non-type constructors as arguments; for example, ��::type)type: �(int)

is a valid constructor of kind (type)type))type. Similarly, partially applied construc-
tors can also be manipulated. For example, the programmer could equivalently have
declared the following:

constr dictionary = hash table(string);

My constructor level is thus quite 
exible. Actual programming languages tend to

have more restricted constructor levels in order to simplify the programming model for
the programmer. For example, it is common to allow constructors to take only types as
arguments. However, these restrictions do not yield any real simpli�cation in the system
proofs: All of the signi�cant complexities introduced by having a constructor level occur
even if only user-de�ned functions from types to types are allowed. Accordingly, I saw

no good reason to make any restrictions.
In a system with constructors, the natural thing to do is to allow translucent sums

to contain constructor components instead of type components. I do this in my kernel
system, allowing translucent sums like
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Dict = module

constr dictionary = hash table(string);

val empty = ...;

...

end

<: interface

constr dictionary :: type)type;

val empty : 8�. dictionary(�);

...

end

Here the programmer creates an abstract data constructor, a generalization of an ADT.
Dict.dictionary is abstract constructor of kind type)type; the fact that the program-
mer used hash tables to implement dictionaries will be hidden outside this module because

of the type coercion. If the coercion had been omitted, then Dictwould have been given a
transparent type containing the declaration constr dictionary = hash table(string),
causing Dict.dictionary to be an abbreviation for hash table(string).

Note that we now need to specify the kind of constructors in opaque declarations but
not in transparent ones. This fact is because the kind of a given constructor is easily

inferred. Because types occur so often, it is useful to allow the type keyword to be used
as syntactic sugar for a constr declaration with kind type. Aside from this change,
there is no other change to translucent sums or their behavior. The system translucent
sums are embedded in changes greatly, however, due to the enriched behavior of equality,
which now works on constructors of all kinds not just types, and subtyping.

5.2 Previous Work

I described a much earlier version of this work in a previous paper with Robert Harper

[20]. Aside from minor notational di�erences, there are only two changes between the

system described in that paper and the one I have described up to this point. The �rst

change is that I have moved the handling of reordering translucent-sum �elds from the
de�nition of term equivalence (translucent sums whose �elds could be reordered without

changing any dependencies were considered equivalent) to the subtyping rules. This
change simpli�es the equality relation and makes the basic kernel system easier to adapt

to an implementation that prohibits reordering and allows dropping �elds only from the
end of a translucent sum; such implementations can be very e�cient because subsumption

under those conditions can be implemented as a no-op.

The second change concerns the de�nition of extended values. Originally, I had de-
�ned them by adding term variables and the selection operation to the grammar for

call-by-value values. Because the call-by-value value de�nition is recursive, this resulted
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in extended values including additional terms over the current de�nition like mod-

ule val x=z; val y=module val a=3; end.a; end. These terms did not provide any

real bene�t and complicate the explanation of how equality on types containing terms is

handled.

5.3 Extended Interface Matching

I arrived at the kernel system by making a number of simpli�cations to the system I

have described so far. I am now going to discuss each of these simpli�cations in turn,

describing a series of increasingly simple systems, ending with the actual kernel system.

One simpli�cation I made was to treat extended interface matching (reordering and

dropping module �elds using subsumption) as an extension, rather than building it into
the kernel system directly. The intent is that this ability be provided by a separate pre-
processing phase that elaborates an extended version of the kernel language with implicit
extended interface matching into the kernel system by inserting coercion functions where
necessary.

For example, if the input program at some point used implicit subsumption to con-
vert the termM 's type from interface val x:int; val y:bool; end to interface val
y:bool; val x:int; end, then the elaborator would insert an application of the follow-
ing function to M at that point:

functor (m:interface val x:int; val y:bool; end)

module val y=m.y; val x=m.x; end

Note that no coercions would be required if only equality or forgetting had been used.
In essence, this is just treating where and how to insert �eld-manipulation coercions

as a form of type inference to be performed by the elaborator. This decision allows
the kernel system and its proofs to be simpli�ed greatly. Note that showing soundness

for the extended system reduces to just verifying that the output of the elaborator is
always well typed in the kernel system, given a soundness proof for the kernel system.

Another advantage of this choice is that it avoids hardwiring a particular set of subtyping

rules into the kernel system; this is probably wise given that there is some uncertainly
about what the best choice of subtyping rules is for handling component reordering (see
Section 13.2) and the di�culty of changing the kernel-system proofs.

5.4 Unnamed Binary Sums

Without the ability to reorder or drop module �elds using subsumption, there is no good

reason in a kernel system to have labeled �elds or n-ary (as opposed to binary) sums, so
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I have eliminated those features as well (see Section 13.1 for how they might be added

back as an extension). Thus, code like

M = module val x=3; val y=4; val z=y+1; end;

N = module constr T=int; end;

sum:N.t = M.x + M.y + M.z;

must �rst be translated to use only binary unnamed sums before it can be expressed in

the kernel system. For example, the above code could be translated as

M = module

val x=3;

val module

val y=4;

val module val z=y+1; val 0; end;

end;

end;

N = module constr T=int; val 0; end;

sum:N.1 = M.1 + M.2.1 + M.2.2.1;

Here I am using the notation module val x=M1; val M2; end to denote a binary
unnamed module with two value components, the �rst equal to M1 and the second equal
to M 2. These components can be selected only by number (i.e., M:1 or M:2). The
syntax includes an internal name (x) for the �rst component that allows it to be referred
to in M 2 (e.g., see the y and z �elds above). This name is not in scope anywhere else
and cannot be used to select the �rst component from outside the module. It thus acts

like a local variable and can be �-varied as desired. Either or both components can be
replaced by constructor components with the obvious syntax.

As a further simpli�cation, I have removed the internal naming described above from

simple-module expressions, yielding module creation constructs like module val M 1;

val M2; end. I did this because internal naming in simple-module expressions can be

desugared into the use of a let statement, which in turn can be desugared to a function
application:

module val x=M1; val M2; end

,! let x=M1 in module val x; val M2; end end

,! (functor (x:A) module val x; val M2; end) M 1
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whereM1 has typeA. The case where the �rst component is a constructor is even simpler

because the let statement in that case can be reduced using simple substitution:

module constr �=A1; val M2; end

,! let constr �=A1 in module constr �; val M 2; end end

,! module constr A1; val [A1=�]M2; end

Accordingly, internal naming is not essential in simple-module expressions. I have

thus removed it in order to simplify the operational semantics of the kernel system by

avoiding the need to include the following reduction step:

module val x=V 1; val M2; end

,! module val V 1; val [V 1=x]M2; end

Note that internal naming is still present and needed in interfaces because not all
dependencies can be broken. Consider, for example, the following interfaces for unnamed
binary sums:

interface constr T::type; val list(T); end

interface

val M:interface constr T::type; constr ::type; end;

constr FUNCTOR (x:M.T):M.U;

end

5.5 Rei�ed Constructors

As a further simpli�cation, I have factored the unlabeled binary translucent sums of the

previous section into two simpler constructs, a standard dependent sum and a new con-
struct called a rei�ed constructor. A standard dependent sum (module M 1; M2; end

: interface x:A1; A2; end) is a binary unlabeled module that contains only value

components. Only the fact that the type of its second component may depend on its

�rst component distinguishes it from an ordinary pair.
In order to encode translucent sums using standard dependent sums, it is necessary

to have some way of encoding constructor components as value components. Rei�ed
constructors provide a way to do this encoding. They allow taking a constructor A

and reifying it into a term, <A>. The resulting rei�ed-constructor term is an ordinary

value, which can be manipulated in any of the usual ways. The constructor contained
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in a rei�ed-constructor extended value � can be extracted by writing �!. Constructor

extraction (�!) is limited to extended values because of the extended-value restriction.

Rei�ed constructors can be given either opaque (<K>) or transparent

(<=A::K>) types; K here speci�es the kind of the constructor the rei�ed-constructor

term contains. Similarly to the translucent-sum case, �! will be equal to A if � has the

transparent type <=A::K>. Essentially, a rei�ed constructor is just a degenerate form of

translucent sum that contains exactly one unlabeled constructor �eld. The behavior and

type rules of standard dependent sums and rei�ed constructors are what you would expect

from applying the original translucent-sum rules to translucent sums restricted either

to have only two unlabeled value components or one unlabeled constructor component

respectively.

Any unlabeled binary translucent sum can be easily encoded into one standard de-
pendent sum and zero to two rei�ed constructors where each constructor �eld in the
original translucent sum is represented using a rei�ed constructor. Some representative
examples follow:

module val M 1; val M 2; end :

interface val x:A1; val A2; end

,! module M 1; M2; end :

interface x:A1; A2; end

module val M 1; constr A2; end :

interface val x:A1; constr ::K2; end

,! module M 1; <A2>; end :

interface x:A1; <K2>; end

module constr A1; val M2; end :

interface constr �=A1; val A2; end

,! module <A1>; M 2; end :

interface x:<=A1::K1>; [x!=�]A2; end

module constr A1; constr A2; end :

interface constr �::K1; constr A2; end

,! module <A1>; <A2>; end :

interface x:<K1>; [x!=�]<=A2::K2>; end

Note that we no longer need to allow transparent declarations (constr �=A) in assign-

ments because they are not needed to type check dependent sums or rei�ed constructors
and because their presence in assignments can be encoded away via a similar encoding.
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This factoring simpli�es the system in two main ways. First, it avoids the need to

discriminate on the sort of �elds a translucent sum has. If the �eld sorts matter, then

there are four distinct cases that may need to be considered under the original system; if

the transparency/opacity of a constructor component matters as well, then the number

rises to nine cases. (E.g., the need to give four di�erent sample encodings above.) In the

factored system, only one case of sums and possibly two cases of rei�ed constructors ever

need to be considered.

Second, it eliminates the redundancy in the original system of having two separate

ways of specifying a constructor abbreviation: directly via a constructor �eld (e.g., con-

str �=A in an assignment �) and indirectly via a constructor �eld of a translucent sum.

Because of this redundancy, for example, the original system I described needed two rules

to handle equality for constructor abbreviations (ABBREV and ABBREV0) whereas the
kernel system needs only one. In the kernel system, constructor abbreviations are spec-
i�ed only indirectly via a rei�ed constructor. The original formulation is likely to be
preferred for an actual programming language because it probably produces a slightly
more e�cient implementation in practice (see Section 13.1).

5.6 Rules and Restrictions

As another simpli�cation, I changed where the EVALUE rules can be applied. Originally,
they could be used at any point in a proof, so long as the term being typed was an

extended value. However, it is not hard to see that any such proof can be normalized
so that the EVALUE rules are only used immediately after a term variable has been
introduced on that variable and its (sub)-components. (The EVALUE rules are not
needed to give fully-de�ned transparent minimal types to the other extended values.)
Because such proofs are easier to reason about, I have restricted the application of the

EVALUE rules to places (term variables and their (sub)-components) so that only such

normalized proofs can be constructed. This restriction has no e�ect on what terms can
be given what types.

I have also further restricted what term expressions are allowed in constructors so

that only places (x:i1 � � � :in) may occur in constructors. In the system I described in

the �rst part of this dissertation, arbitrary extended values could appear in constructors.

However, in that system any valid constructor containing extended values could be re-

placed with an equal valid constructor that contains only places. Because the equality of
two constructors that contain only places need never involve constructors that contain

terms other than places (this can be shown via a con
uence argument), the ability to
have constructors containing arbitrary extended values was really useful only as a way

of explaining how substitution of values for term variables in constructors works.

In the kernel system, value substitution is instead handled directly via a special
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notion of substitution (see Section 11.6) that does any selections needed to reduce values

to places at substitution time. For example, the following holds using this notion of

substitution:

[module <A1>; <A2>; end/x]x.2! = A2

This restriction to places allows a more specialized method (see Section 6.4) to be

used to determine the identity and kind of a constructor extraction, breaking the depen-

dency in the �rst part's system on the subtyping and well-formed term judgments by the

constructor validity and equality judgments. (These dependencies are caused by the V-

DOT and ABBREV0 rules, which require typing the term � | possibly using subtyping

| in order to decide if �:� is valid or what it is equal to.) Removing these dependencies
greatly simpli�es the proofs.

I have also introduced a new self function similar to Leroy's strengthening operation
(see Sections 11.1 and 14.3 for details), which captures the e�ect on a place's type of
applying a series of EVALUE rules in a row. More precisely, if starting from the fact
that � ` x:i1 � � � :in : A we can derive the type A0 for x:i1 � � � :in using just the EVALUE
and I-SELECT rules, then we can get a type equal to A0 under � by applying the function
[self=x:i1 � � � :in] to a type equal to A under �. The introduction of self allowed me to

further normalize the proofs by replacing the EVALUE rules by a single application of
the self function when term variables are introduced.

5.7 Notation

Because of the great volume of the proofs, I shall use a more concise, mathematical,
and traditional notation to describe the actual kernel system. Figure 5.1 contains a
translation key from the notation I have used before this point into the corresponding
kernel-system notation. In addition to the notation shown in this �gure, the kernel system

has two primitive constructors (rec and ref) and �ve primitive functions (roll, unroll,
new, get, and set). These provide the functionality of recursive types and references

(mutable cells) and are described in the next section.

5.8 System Summary

In this section I provide a mostly self-contained quick overview of my kernel system.

Complete details will be provided in later chapters as I consider each part of the system
in turn.

My kernel system is based on Girard's F! [15] in much the same way that many sys-

tems are based on the second-order lambda calculus (F2). That is to say, my system can
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Dependent Sums: module M 1; M2; end (M1;M2)

interface x:A1; A2; end �x:A1: A2

M .i M:i

Rei�ed Constructors: <A> <A>

<K> <K>

<=A::K> <=A::K>

x:i1 � � � :in! x:i1 � � � :in!

Functors: functor (x:A) M �x:A:M
FUNCTOR (x:A) A0 �x:A:A0

M 1 M2 M1M2

Type Coercions: M<:A M<:A

Constructors: ��::K:A ��::K:A

A1(A2) A1A2

Kinds: type 

K1)K2 K1)K2

Declarations: val x:A x:A

constr �::K �::K

Assignments: D1; : : : ;Dn �;D1; : : : ;Dn

Figure 5.1: The translation into kernel-system notation
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be (roughly) thought of as being obtained from F! by adding more powerful constructs

(dependent functions, dependent sums, rei�ed constructors, references, and recursive

types) and a notion of subtyping and then removing the old constructs (quanti�cation1

(8), weak sums (9), and non-dependent functions (!)) superseded by the new ones.

Subtyping interacts with the rest of the calculus via implicit subsumption. Bounded

quanti�cation is not supported.

Like F!, my system is divided into three levels: terms, (type) constructors, and

kinds. Kinds classify constructors, and a subset of constructors, called types, having

kind 
 classify terms. The kind level is necessary because the constructor level contains

functions on constructors. Example: the constructor ��::
: ref� has kind 
)
 and

when applied to type int yields ref int. There is no separate module system level; all

terms including dependent sums, dependent functions, and rei�ed constructors are �rst-
class.

5.8.1 Module Constructs

Grouping in my system is handled by (binary unlabeled) dependent sums. Dependent-

sum terms are written (M 1; M 2) with corresponding type �x:A:A
0. As the form of their

type indicates, the type of their second component may depend on the value of their �rst
component. Ordinary pairs are a degenerate form of dependent sums where there is no
dependency. The elimination forms are M:1 for the �rst component of M and M:2 for
the second component of M .

Functional abstraction is handled in my system by dependent functions, denoted by
�x:A:M with corresponding type �x:A:A0. The result type of an application (M1M2)
may depend on the value of the argument (M2). Ordinary functions are a degenerate
form of dependent functions where there is no dependency.

The ability to include constructor components in a module with optional identity

information is handled by rei�ed constructors. Rei�ed constructors allow packing up a
constructor A of kind K into a term, written <A>. This term has both a transparent

type, <=A::K>, with information on the identity of its constructor component, and an

opaque type, <K>, with no such information. The opaque type is a supertype of the
transparent one, allowing the component information to be forgotten later.

Because terms in constructors are limited to places, the elimination form for rei�ed
constructors is syntactically limited to places. If x:i1:i2 � � � :in (n � 0) denotes a rei�ed

constructor, then x:i1:i2 � � � :in! denotes the constructor it contains. If x:i1:i2 � � � :in has
type <=A::K> under assignment � then the equation x:i1:i2 � � � :in! = A will hold under

�.

1Quanti�cation is derivable from dependent functions and rei�ed constructors. See Section 5.8.1 for

details.
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Quanti�cation is a derived form in my system, resulting from a combination of rei�ed

constructors and dependent functions. The quanti�ed term ��::K:M , which denotes the

termM parametrized by a constructor of kind K named �, can be regarded as standing

for �x:<K>: [x!=�]M , where x is not free in M , and the instantiation M [A], which

denotes instantiating the quanti�ed termM with the constructor A, can be regarded as

standing for M <A>.

Aside from the exceptions already mentioned (forgetting component information, con-

structor abbreviations), the equality and subtyping rules are standard. The programmer

can use an explicit coercion (written M<:A) where desired to force a term M to be

coerced to a supertype A. Coercions in the kernel system have no semantic e�ect; their

only e�ect is to discard type information. Coercions may have semantic e�ects in ex-

tensions however. Also present is the machinery (a EVALUE-like rule, restrictions in
the elimination rules for dependent sums and products) needed to properly propagate
information about constructor components solely through the type level.2

5.8.2 References and Recursive Types

SML-like references are provided by three built-in primitives: new, get, and set. If M
is a term that denotes a value of type A then new<A>M returns a new reference with
initial value M . The resulting reference has type refA. Given a term M that denotes
a reference containing values of type A, get<A>M returns the current value of that
reference. Finally, given a termM1 that denotes a reference containing values of type A

and a termM 2 denoting a value of type A, set<A>M1M 2 sets the reference's value to
be M 2 then returns that value.

Recursive types are implemented by means of an isomorphism between recA and
A (recA) mediated by two primitives roll and unroll (hereA is of kind 
)
). roll<A>
maps terms of type A (recA) to terms of type recA and unroll<A> does the opposite.

Semantically, for properly typed V 1 and V 2's, unroll<A> (roll<A>V 1) = V 1 and

roll<A> (unroll<A>V 2) = V 2. As an example of the use of recursive types, I have
sketched in Figure 5.2 an implementation of integer lists written in SML-like pseudo-code
(rather than kernel-system notation) using some simple extensions to the kernel system.

In the example, the term fg denotes the only value of the type unit and the type

A1 + A2 denotes a disjoint union type; the disjoint union's values are inLeft(V 1) and
inRight(V 2) where V 1 is of type A1 and V 2 is of type A2. The disjoint union destructors

are asLeft and asRight; they raise the exception fail if their argument is of the wrong
sort. The function isLeft checks to see if its argument is of the left sort. I have

omitted \type information", such as applications to <intIter>, that type inference
might supply. (My system does not have a unit type, disjoint union's, exceptions, or

2The discussion of this machinery, how it works, and why it is needed, can be found in Chapter 4.
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(*

* Set things up so that intList �= unit + (int, intList)

* via roll and unroll:

*)

constr intIter = ��::
. unit + (int, �);

type intList = rec intIter;

val nil = roll (inLeft fg) ;

fun cons(x:int, y:intList) = roll (inRight (x, y));

fun hd(x:intList) = (asRight(unroll x)).1;

fun tl(x:intList) = (asRight(unroll x)).2;

fun isNil(x:intList) = isLeft(unroll x);

Figure 5.2: Implementing integer lists with recursive types

extensive type inference; I am using them here only for illustrative purposes.)

5.8.3 Semantics

Evaluation proceeds in a deterministicmanner from left to right in a call-by-value manner.
Evaluation does not proceed under quanti�cations because quanti�cation translates into
a lambda abstraction. My system di�ers in this regard from SML which does evaluate

under quanti�cations. See [19] for a discussion of the di�erences between these two
interpretations of quanti�cations and why this choice seems to be preferable. In the
terminology of that paper, my system implements the standard call-by-value semantics

for F! extended with the obvious implementations of references and recursive types.
Note that non-termination is a possible result of evaluation because of the inclusion of

recursive types. (E.g., recursive types can be used to implement a �xed point operator.)

5.9 On the Nature of the Proofs

Even after all the simpli�cations I have implemented, my kernel system is still a large and

complicated system when compared with the sort of systems that are usually analyzed

formally. For example, the system has 48 type rules using 8 auxiliary functions, 10 ways
of building constructors, 13 ways of building terms, and 8 evaluation rules. There are also

a number of dependencies in the system not possessed by simpler systems: constructors
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can depend on term variables, the validity of constructors and the equality of constructors

judgments are mutually recursive, and the equality of two constructors depends on the

assignment under which they are compared.

These dependencies greatly increase the di�culty level of the needed proofs. For

example, they prevent using any of the standard methods for establishing normalization

or con
uence of constructors. Novel methods or extensions to existing methods must be

invented to handle them.

Mutually dependent de�nitions also reduce the modularity of the proofs. It is not

possible, for example, to separate the results about the validity of constructors from those

about the equality of constructors. Indeed, the intertwined proofs of those results take

up four full chapters! The choices of proof methods for the various parts are also highly

interdependent: Proof methods in order to work well often require that the type system
be structured in certain ways; unfortunately, these requirements often con
ict, preventing
proof methods for di�erent parts of the system from being chosen independently.

These facts make the process of designing and proving correct the kernel system
resemble that of solving an NP-complete problem: There are many choice points and
the complexity and sheer size of the problem prevent e�ective lookahead, resulting in

extensive guess work and backtracking until a solution is found. Many times I discovered
only after months of work that a particular proof method was unusable and had to be
discarded because of a subtle interaction with another part of the system.

Like what often happens when solving real NP problems, time limits have prevented
me from �nding an optimal solution. There was simply no time to try each choice to

see which is best; many of my choices are accordingly just the �rst choice I tried that
worked. Better choices almost certainly exist. I have brie
y summarized at the major
choice points which alternatives I considered, why I tried the ones I did, and why many
of them failed to work. Space limitations and the complexity of the interactions between
many choices prevent me from giving more details. I have also included speculations on

which choices seem better based on hindsight. It is my hope that these will bene�t future

designers of systems like this one.

5.10 Organization

I have split up the description of my system and the accompanying proofs into four major
sections: constructor validity and equality, subtyping, soundness, and type checking. To
improve the presentation, I delay introducing parts of the system until they are needed.

For example, terms are not discussed until the section on soundness. For the reader's

convenience, Appendix A contains a complete copy of all the system de�nitions together

in one place. Brie
y, the material covered in each of the chapters devoted to the kernel

system is as follows.
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Chapters 6 to 9 cover constructor validity and equality as a unit. Chapter 6 introduces

the kind and constructor levels of the system and gives the rules for the valid constructor

and equality judgments. It also introduces an alternative formulation called the tagged

system where term variables in types are tagged with their assigned type. These tags

allow the equality of tagged constructors to be decided independently of the assignment

they are being compared under. Chapters 7 and 8 prove the needed results about the

more tractable tagged system which are then transferred back to the original system in

Chapter 9.

In Chapter 7, I use fairly standard methods to introduce a rewriting relation on

constructors for the tagged system and show that it is con
uent, that it preserves typing,

and that it implements equality.3 Because rewriting also preserves the outer shape of a

constructor (roughly, is it a function type?, a sum type?, etc.), I am also able to establish
results about what sort of outer shapes two equal constructors can have as well as show
that equal constructors of the same outer shape must have equal subcomponents under
the appropriate assignments. One consequence, for example, is that function types can
never be equal to sum types.

In Chapter 8, I give an algorithm for deciding if a constructor in the tagged system

is valid. In the process of validity checking, the algorithm reduces the constructor using
the previously introduced rewrite relation. If the constructor is found to be valid, the
algorithm returns a normal form for that constructor. Using this algorithm, I show that
all the judgments of the tagged system are decidable and that normal forms for valid
constructors are computable.

In Chapter 9, I show how to translate judgment derivations back and forth between
the two systems using notions of tag removal and stamping. I then translate the results
from the previous two chapters on the tagged system to the original system. This trans-
lation shows, for example, that the original valid constructor and equality judgments are
decidable. The translation of the normal form results is somewhat tricky and is handled

by what amounts to an abstract data type: The de�nition of the untagged normal form

property uses the tagged system; however, I provide su�cient theorems so that later uses
of the property need not use the the tagged system results directly.

Chapter 10 introduces the subtyping relation. Much of the chapter is devoted to

proving that judgments may be weakened by replacing a type in the assignment with a

subtype of the original type. I also establish results about the shape and sub-components
of subtypes. Using these results, I prove correct a semi-decision procedure for subtyping.

I show that one cannot do better by proving that subtyping is undecidable.
Chapter 11 introduces the term level and lays out the kernel system's semantics. The

weakening by a subtype result from the previous chapter is extended to the well-typed

3By implements equality, I mean that the re
exive, symmetric, and transitive closure of the rewriting

relation is the same as the equality relation modulo the validity of the argument constructors.
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term judgment with some di�culty due to the self function . Using this result, I show

that the system is sound | evaluation is deterministic, does not become stuck, and

preserves typing.

Finally, Chapter 12 discusses type checking. To make the problem more tractable, I

remove some of the built-in type inference in the system. In particular, some coercions

must now be indicated explicitly by the programmer instead of being automatically

inferred. I show that the restricted well-typed term judgment is semi-decidable (decidable

modulo subtyping) by proving correct a decision procedure.



Chapter 6

Types: Setup

Beginning in this chapter, and continuing for the next three chapters, I discuss the
kind and constructor levels of my kernel system, including the notions of constructor

validity and constructor equality, but omitting the notion of subtyping which I discuss
in Chapter 10. In particular, I establish the major results about these notions, namely
decidability and the results about how constructors behave under equality. I also establish
numerous minor results such as strengthening that are needed for later proofs.

6.1 Kinds and Constructors

De�nition 6.1.1 (Syntax for the constructor and kind levels)

Kinds K ::= 
 j K)K 0

Constructors A ::= � j �x:A:A0 j �x:A:A0 j ��::K:A j AA0 j
<K> j <=A::K> j x�! j rec j ref

Paths � ::= � j �:1 j �:2

Assignments � ::= � j �;D
Declarations D ::= �::K j x:A

Here, the metavariable � ranges over constructor variables and the metavariable x
ranges over term variables. The kind 
 denotes the kind of constructors that classify

terms (i.e., types). The empty path is denoted by � and the empty assignment by �. For
convenience, I shall sometimes omit them in non-empty paths and assignments, writing,
for example, :1 for �:1 and �::K for �; �::K. I shall refer to x�'s as places and to x�!'s as

constructor extractions.

65
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Objects of the kernel system are considered equivalent if they di�er only by �-

conversion; the only exception is that assignments with no redeclared variables are never

considered equivalent to assignments with redeclared variables. This exception allows

the valid assignment judgment to require that valid assignments never redeclare vari-

ables, simplifying the system. Scoping is as expected and we have the obvious notions

of free constructor variables (FCV(�)), free term variables (FTV(�)), and constructor

substitution ([A=�]�) on constructors, declarations, and assignments:

De�nition 6.1.2 (Free constructor variables)

FCV(�) = f�g
FCV(��::K:A) = FCV(A)� f�g
FCV(�x:A1: A2) = FCV(A1) [ FCV(A2)
FCV(�x:A1: A2) = FCV(A1) [ FCV(A2)

FCV(A1A2) = FCV(A1) [ FCV(A2)
FCV(<=A::K>) = FCV(A)
FCV(<K>) = ;
FCV(x�!) = ;
FCV(rec) = ;
FCV(ref) = ;

FCV(�::K) = ;
FCV(x:A) = FCV(A)

FCV(�) = ;
FCV(�;D) = FCV(�) [ FCV(D)
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De�nition 6.1.3 (Free term variables)

FTV(x�!) = fxg
FTV(�x:A1: A2) = FTV(A1) [ (FTV(A2)� fxg)
FTV(�x:A1: A2) = FTV(A1) [ (FTV(A2)� fxg)
FTV(��::K:A) = FTV(A)

FTV(A1A2) = FTV(A1) [ FTV(A2)

FTV(<=A::K>) = FTV(A)

FTV(�) = ;
FTV(<K>) = ;
FTV(rec) = ;
FTV(ref) = ;

FTV(�::K) = ;
FTV(x:A) = FTV(A)

FTV(�) = ;
FTV(�;D) = FTV(�) [ FTV(D)

De�nition 6.1.4 (Constructor substitution)

[A=�]� = A

[A=�]�0 = �0 (� 6= �0)
[A=�]��0::K:A0 = ��0::K: [A=�]A0 (�0 6= �; �0 62 FCV(A))

[A=�]�x:A1: A2 = �x:[A=�]A1: [A=�]A2 (x 62 FTV(A))
[A=�]�x:A1: A2 = �x:[A=�]A1: [A=�]A2 (x 62 FTV(A))
[A=�](A1A2) = [A=�]A1 [A=�]A2

[A=�]<=A0::K> = <=[A=�]A0::K>

[A=�]<K> = <K>

[A=�]x�! = x�!

[A=�]rec = rec

[A=�]ref = ref

[A=�](�0::K) = �0::K
[A=�](x:A0) = x:[A=�]A0

[A=�]� = �
[A=�](�;D) = ([A=�]�); [A=�]D

Because paths and assignments are lists, it is useful from time to time to have a
notation for appending them. I shall use �1�2 to denote �2 appended to �1 and �1; �2 to

denote �2 appended to �1. Assignments can also be regarded usefully as partial functions:
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De�nition 6.1.5 (Assignment regarded as a partial function)

dom(�) = ;
dom(�; x:A) = dom(�) [ fxg
dom(�; �::K) = dom(�) [ f�g

(�1;x:A; �2)(x) = A (x 62 dom(�1))

With the exception of subtyping, which shall be discussed later, there are four judg-

ments at the kind and constructor levels:

De�nition 6.1.6 (Judgments)

` � valid valid assignment

� ` A :: K valid constructor

� ` A = A0 :: K equal constructors

� ` x�) A place lookup

All of these judgments are de�ned mutually recursively. For example, the valid assign-
ment judgment checks that each constructor appearing in a valid assignment is valid

under the immediately preceding part of that assignment. Place lookup is an auxiliary
judgment used by the valid and equal constructor judgments.

The kind of the constructor x�! and what it is equal to depend on the type of the
term x�. For example, if x� has type <=A::K> then x� denotes a rei�ed constructor
containing a constructor of kind K that is known to be equal to A so x�! has kind K

and is equal to A. The place lookup judgment is used to determine the type of terms of
this form. If � ` x�) A then x� has type A under assignment �.

Rather than being de�ned directly in terms of the well-formed term judgment, which

assigns types to terms, the place lookup judgment is de�ned using a highly specialized
copy of the machinery needed to determine a term's type. This copying and specialization
allows the valid and equal constructor judgments to not depend on the subtyping or well-

formed term judgments, greatly simplifying the system.

I shall present the details of these four judgments shortly, but �rst I need to discuss
my overall proof strategy so the organization of the rules will make sense.

6.2 Proof Strategy

The key result that needs to be established about the valid and equal constructor judg-

ments is the existence of a con
uent rewriting relation that implements equality and
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under which all valid constructors have normal forms. This result allows the equality of

two valid constructors to be easily tested by simply normalizing both constructors then

testing them to see if they are the same modulo �-conversion. More generally, the same

procedure can also be used to determine constructively if a given valid constructor is

equal to any valid constructor of a certain shape. This ability is needed in order to show

constructor validity checking decidable.

Unfortunately, because the equality of two constructors in my system depends on

the assignment under which they are compared (e.g., under x:<=A::
>, x! = A), the

standard methods for establishing con
uence cannot be used. After extensive searching, I

have found only two approaches that seem promising. Both are based on the well-known

idea of showing con
uence via a rewriting relation which has the diamond property.

A rewriting relation has the diamond property if for any A that rewrites to A1 and
to A2, each in a single step, we can �nd an A0 such that A1 and A2 both rewrite to A0

in a single step. Con
uence follows immediately from this property via a simple \�ll-in-
the-grid" proof (see Section 7.2 for details). In order to use this proof method e�ectively,
the rewriting relation must be simple. By simple, I mean roughly that a single step of
the rewriting relation must do only a small amount of work on each sub-constructor. If

the rewriting relation is not simple then proving the diamond property is no easier than
proving con
uence directly.

The simple property is not easy to arrange in the presence of rei�ed constructors. In
particular, the obvious rule for rewriting x! is as follows. (I am ignoring paths throughout
this section to simplify the discussion.)

�(x)!�

� <=A::K>

x!!� A
(OBVIOUS)

Note that this rule can do an arbitrary amount of work (!� denotes the transitive closure
of !) in a single step and is thus not simple.

Each of my two possible approaches handles the problem of how to obtain a simple
rewriting relation in a di�erent way. In the assignment approach, assignments are rewrit-
ten in parallel with constructors. The rule for rewriting x! can then deal with only the

last step of rewriting the type of x:

�(x)!� <=A::K>

x!!� A
(ASSIGN)

The main rule for rewriting assignments is as follows:

� ! �0 A!�0 A0

�; x:A! �0; x:A0
(STAGED)
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Note that A is rewritten using �0 rather than �; this is necessary to obtain the diamond

property. Under this approach A and A0 will be equal under � i� �; x:A and �; x:A0

(x 62 dom(�)) have a common reduct.

The Tagging approach, on the other hand, introduces a separate tagged system where

term variables are tagged with their type (written xA). This allows x's type to be

rewritten in a series of steps before x! is reduced:

A1 ! A2

xA1

!! xA2

!
(TAG)

A! <=A0::K>

xA!! A0
(REDUCE)

The type rules of the tagged system require that if xA occurs in a constructor valid
under � then �(x) is equal to A under �. This requirement ensures that the tags are
consistent with the assignment. In essence, where the assignment approach reduces x's
type in place (in the assignment), the tagging approach reduces a local copy of x's type.

The tagging approach has the advantage that its rewriting relation does not depend

on the assignment. This fact greatly simpli�es its con
uence and normalization proofs.
However, once proved, the results on the tagged system must be carefully transfered
back to the original untagged system because tagging is incompatible with subtyping.
(Subtyping alters assignments, replacing types with subtypes or supertypes; there is no
good way to maintain the consistency of the tags with the assignment in this case.) This

transfer can be accomplished by transforming derivations between the two systems using
tag removal and stamping (replacing x by x�(x) where � is the current assignment).

It is not at all obvious which of these two approaches is better. The tagging approach
seems to have simpler proofs but is more verbose (two systems instead of one) and requires
extra work to transfer the results. Given the information I had at the time, I chose to

go with the tagging approach. In hindsight, it is not clear that this was the best choice.
I discuss further, using the bene�t of hindsight, this and other decisions in Section 9.7.

Summarizing, my basic proof strategy for Chapters 6 to 9 is to do the following:

� Describe the original (untagged) system

� Describe the corresponding tagged system

� Describe a rewriting relation that implements tagged equality

� Prove the rewriting relation con
uent via the diamond property

� Show normalization and the other desired results for the tagged system

� Transfer the results back to the original system
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Note that in order to make the transfer and equality implementation proofs easy, I

have designed the two systems and the rewrite relation to mirror each other as much as

possible.

6.3 The Type Rules

The rules for the (untagged) judgments we are considering are given below. Aside from

the rules dealing with rei�ed constructors (C-OPAQ, C-TRANS, C-EXT-O, C-EXT-T, E-

TRANS, and E-ABBREV) and place lookup (P-INIT and P-MOVE), they are standard.

I shall defer discussion of the place lookup rules and the de�ning of the selection function

(S(A;x�; �0)) until the next section.

De�nition 6.3.1 (Assignment Formation Rules)

` � valid (EMPTY)

` � valid � 62 dom(�)

` �; �::K valid
(DECL-C)

� ` A :: 
 x 62 dom(�)

` �; x:A valid
(DECL-T)

De�nition 6.3.2 (Constructor Formation Rules)

` � valid �::K 2 �

� ` � :: K
(C-VAR)

�; x:A ` A0 :: 


� ` �x:A:A0 :: 

(C-DFUN)

�; x:A ` A0 :: 


� ` �x:A:A0 :: 

(C-DSUM)

�; �::K ` A :: K 0

� ` ��::K:A :: K)K 0 (C-LAM)

� ` A1 :: K2)K � ` A2 :: K2

� ` A1A2 :: K
(C-APP)

` � valid

� ` <K> :: 

(C-OPAQ)
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� ` A :: K

� ` <=A::K> :: 

(C-TRANS)

� ` x�) <K>

� ` x�! :: K
(C-EXT-O)

� ` x�) <=A::K>

� ` x�! :: K
(C-EXT-T)

` � valid

� ` rec :: (
)
))

(C-REC)

` � valid

� ` ref :: 
)

(C-REF)

De�nition 6.3.3 (Constructor Equality Rules)

� ` A :: K

� ` A = A :: K
(E-REFL)

� ` A0 = A :: K

� ` A = A0 :: K
(E-SYM)

� ` A = A0 :: K � ` A0 = A00 :: K

� ` A = A00 :: K
(E-TRAN)

� ` A1 = A01 :: 


�; x:A1 ` A2 = A02 :: 


� ` �x:A1: A2 = �x:A01: A
0
2 :: 


(E-DFUN)

� ` A1 = A01 :: 


�; x:A1 ` A2 = A02 :: 


� ` �x:A1: A2 = �x:A01: A
0
2 :: 


(E-DSUM)

�; �::K ` A = A0 :: K 0

� ` ��::K:A = ��::K:A0 ::K)K 0
(E-LAM)

� ` A2 = A02 :: K

� ` A1 = A01 :: K)K 0

� ` A1A2 = A01A
0
2 :: K

0
(E-APP)
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� ` A = A0 :: K

� ` <=A::K> = <=A0::K> :: 

(E-TRANS)

�; �::K ` A :: K 0 � ` A0 :: K

� ` (��::K:A)A0 = [A0=�]A :: K 0
(E-BETA)

� ` A :: K)K 0 � 62 FCV(A)

� ` ��::K:A� = A :: K)K 0
(E-ETA)

� ` x�! :: K � ` x�) A � ` A = <=A0::K 0> :: 


� ` x�! = A0 :: K
(E-ABBREV)

De�nition 6.3.4 (Place Lookup Rules)

` � valid x:A 2 �

� ` x) A
(P-INIT)

� ` x�) A � ` A = A0 :: 
 A00 = S(A0; x�; �0)

� ` x��0 ) A00
(P-MOVE)

I have designed these rules and those of all the other judgments I shall discuss later
so that the following structural property holds: all the sub-components of a judgment

are either valid or well-typed as appropriate. For example, if � ` A1 = A2 :: K then it
will be true that ` � valid, � ` A1 :: K, and � ` A2 :: K. This result is immediate for
assignments:

Lemma 6.3.5 (Structural property)

1. A derivation of ` �;D valid contains ` � valid as a sub-derivation.

2. A derivation of � ` A :: K contains ` � valid as a sub-derivation.

3. A derivation of � ` A1 = A2 :: K contains ` � valid as a sub-derivation.

4. A derivation of � ` x�) A contains ` � valid as a sub-derivation.

Proof: By simultaneous structural induction on the typing derivations. 2

The fact that ` � valid is actually a sub-derivation is useful when using proof by induction

on typing derivations. Note that because valid assignments are required not to redeclare

variables, this result means that in rules such as C-DFUN we must have that x 62 dom(�).



CHAPTER 6. TYPES: SETUP 74

The structural property is much harder to establish for constructors and terms and

is proved much later. This fact results from a design choice: I could have added extra

conditions to the rules that would have made those results immediate as well. However,

this choice would have just pushed the work involved elsewhere; it is not possible, for

example, to avoid proving that �-reduction on constructors preserves validity. I did not

have time to explore the full consequences of adding such conditions; it is possible that

a careful choice could lead to a somewhat simpler proof.

The C-OPAQ and C-TRANS rules check the validity of rei�ed constructor types in

a straightforward manner. The validity of occurrences of constructor extractions are

checked by the C-EXT-O and C-EXT-T rules. A constructor extraction x�! has kind K

only if the place x� points to a rei�ed constructor of kind K. There are two separate

rules because the place lookup judgment does not incorporate a notion of subsumption;
this fact means that the cases where x� has types <K> and <=A::K> must be han-
dled separately. (If place lookup handled subsumption, only C-EXT-O would be needed
because <=A::K> is a subtype of <K>.)

The E-ABBREV rule handles equality for x�!. I chose a version of this rule that does
not require that the kind of the constructor extracted from x� (K 0) matches the kind

assigned originally to x�! (K). Later on in the proof, I establish that these two kinds must
be the same because equality preserves kind information for constructor components.
(E.g., if � ` <=A::K> = <=A0::K 0> :: 
 then K = K 0.) The extra equality step on the
type of x� before it is used is there to mirror the relevant rewriting rule (R-ABBREV,
de�ned in Section 7.3).

Alternatively, I could have chosen a version of the rule that requires the two kinds to be
the same; for example, I could have removed the � ` x�! :: K precondition and replaced
K 0 by K. It would still be necessary to prove that the actual extracted constructor has
the right kind; the point where it would have to be proved would change however. In
hindsight, this change seems unlikely to have much e�ect on the complexity of the proofs.

Because of this fact and the fact that the alternative version is simpler and more elegant,

I think it would have been a better choice.

6.4 Place Lookup

As I discussed earlier, the place lookup judgment is used to determine the type of terms
of the form x� (i.e., places) that appear in constructors; the place lookup judgment is
specialized for this purpose and does not handle subsumption. Because subtyping in my

system only forgets information about constructor components, it cannot change what

kind x�! is or what it is equal to; this fact means that place lookup can safely disregard

subsumption, replacing it with the more limited ability to allow a term's type to be

replaced by an equal type.
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If we consider just the typing rules that apply to terms of the form x�, replacing

subsumption as discussed above and using old-style extended-value rules, we might have

something like the following:

` � valid x:A 2 �

� ` x : A
(VAR)

� ` x� : A � ` A = A0 :: 


� ` x� : A0
(EQ)

� ` x� : �x0:A1: A2

� ` x�:1 : A1

(FST)

� ` x� : �x0:A1: A2 x0 62 FTV(A2)

� ` x�:2 : A2

(SND)

� ` x� : <K>

� ` x� : <=x�::K>
(RC-VAL)

� ` x� : �x0:A1: A2 � ` x�:1 : A01
� ` x� : �x0:A01: A2

(FST-VAL)

� ` x� : �x0:A1: A2 � ` x�:2 : A02

� ` x� : �x0:A1: A
0
2

(SND-VAL)

(The FST-VAL and SND-VAL rules are used to recursively apply the RC-VAL rule to
the sub-components of dependent sums.)

By taking advantage of the fact that places may appear in constructors, we can
improve on these rules by replacing SND with a simpler rule:

� ` x� : �x0:A1: A2

� ` x�:2 : [x�:1=x0]A2

(SND2)

Here [x�:1=x0] denotes the place substitution where x�:1 is substituted for x0 (de�ned

below on places, constructors, declarations, and assignments). In essence, SND2 is just

the standard elimination rule for dependent sums limited to x�'s. It can be derived from
the SND, EQ, RC-VAL, FST-VAL, and SND-VAL rules (see Section 4.7).
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De�nition 6.4.1 (Place substitution)

[x�=x0]x0�0 = x��0

[x�=x0]x00�00 = x00�00 (x0 6= x00)

[x�=x0](x00�00!) = ([x�=x0]x00�00)!

[x�=x0]�x00:A1: A2 = �x00:[x�=x0]A1: [x�=x
0]A2 (x00 6= x; x00 6= x0)

[x�=x0]�x00:A1: A2 = �x00:[x�=x0]A1: [x�=x
0]A2 (x00 6= x; x00 6= x0)

[x�=x0]��::K:A = ��::K: [x�=x0]A

[x�=x0](A1A2) = [x�=x0]A1 [x�=x
0]A2

[x�=x0]<=A0::K> = <=[x�=x0]A0::K>

[x�=x0]� = �

[x�=x0]<K> = <K>

[x�=x0]rec = rec

[x�=x0]ref = ref

[x�=x0](�::K) = �::K
[x�=x0](x00:A) = x00:[x�=x0]A

[x�=x0]� = �
[x�=x0](�;D) = ([x�=x0]�); [x�=x0]D

After we replace SND with SND2, the VAL rules are no longer needed and can be
discarded: While the VAL rules do allow more types to be derived for x�, they do not

allow more kinds or equations for x�! to be derived. (For example, if x:<
>, we can
derive x:<=x!::
> using RC-VAL resulting in x! = x!, a redundant equation given E-
REFL.)

By introducing a selection function (S(A;x�; �0)), we can combine the FST and SND2
rules into a more general rule:

� ` x� : A A0 = S(A;x�; �0)

� ` x��0 : A0
(MOVE)

De�nition 6.4.2 (Selection)

S(A;x�; �) = A

S(�x0:A1: A2; x�; :1�
0) = S(A1; x�:1; �

0)
S(�x0:A1: A2; x�; :2�

0) = S([x�:1=x0]A2; x�:2; �
0)
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The selection function S(A;x�; �0) computes the type (if any) for x��0 that can be in-

ferred from � ` x� : A using just the FST and SND2 rules. It does this computation by

descending into the type A according to the path �0: at each step, if the next component

of �0 is :1, it selects the �rst component (if any) of A, and if the next component is .2, it

selects the second component (if any) of A. Because the second component can depend

on the �rst component, when selecting the second component the selection function must

replace the internal name for the �rst component (e.g., x0 in �x0:A1: A2) with its external

name x�:1, where x� is the external name for A. In order that the selection function can

do this replacement, it is passed A's external name as its second argument.

Thus, if �0 is set to :1 or to :2, then MOVE is the same as FST or SND2 respectively.

In the general case, one application of MOVE is equivalent to a series of FST and SND2

applications.
The place lookup judgment implements this improved version of the rules: the P-

INIT rule implements VAR and the P-MOVE rule implements EQ followed by MOVE. I
designed the place lookup judgment to closely mirror the relevant rewriting rules (R-EXT
and R-ABBREV, Section 7.3); in particular, x�'s type is obtained by alternating the use
of equality (to get the type into the right form) and the selection function (to get the

type of a subcomponent).
An alternative design I considered was to use a more restrictive rule that only per-

mitted the use of equality once followed by the use of selection once. Given con
uence
and its associated results, it can be shown that this design is functionally equivalent to
the one I used: both lead to the same types for x�'s. Unfortunately, under the alternate

design this equivalence is required to prove con
uence; a mutual dependency thus results
in the proofs which prevents this design from working.

6.5 Basic Propositions

In this section, I prove a number of miscellaneous basic propositions for use later on.
Included are some propositions on the properties of the basic operators (substitution,
selection, and the domain function), as well as a series of propositions showing that all

term and constructor variables in judgments are bound.

Lemma 6.5.1 [x�=x0]x00�0�00 = ([x�=x0]x00�0)�00.

Lemma 6.5.2 if S(A;x�; :i�0) or S(S(A;x�; :i); x�:i; �0) exists then

S(A;x�; :i�0) = S(S(A;x�; :i); x�:i; �0)

Proof: By inspection of the de�nition of selection. 2
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Lemma 6.5.3 If S(A;x�1; �2�3) exists then

S(A;x�1; �2�3) = S(S(A;x�1; �2); x�1�2; �3)

Proof: By structural induction on �2. The non-basis case is as follows:

S(A;x�1; :i��3)
= S(S(A;x�1; :i); x�1:i; ��3) (Lemma 6.5.2)

= S(S(S(A;x�1; :i); x�1:i; �); x�1:i�; �3) (induction hypothesis)

= S(S(A;x�1; :i�); x�1:i�; �3) (Lemma 6.5.2)

2

Lemma 6.5.4 (Assignment properties)

1. dom(�; �0) = dom(�) [ dom(�0)

2. If x:A 2 � then x 2 dom(�), FCV(A) � FCV(�), and FTV(A) � FTV(�).

Lemma 6.5.5 (Free term variables)

1. FTV([A0=�]A) � FTV(A) [ FTV(A0)

2. FTV([x�=x0]A) � fxg [ (FTV(A)� fx0g)

3. If S(A;x�; �0) exists then FTV(S(A;x�; �0)) � fxg [ FTV(A).

Theorem 6.5.6 (Scoping of term variables)

1. If � ` x�) A then x 2 dom(�):

2. If � ` A :: K then FTV(A) � dom(�).

3. If � ` A1 = A2 :: K then 8i: FTV(Ai) � dom(�).

4. If � ` x�) A then FTV(A) � dom(�).

Proof: Proved sequentially by structural induction on the typing derivations, using

Lemmas 6.5.5 and 6.3.5 as needed. 2
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Corollary 6.5.7

1. If ` � valid then FTV(�) � dom(�).

2. If ` �; x:A valid then x 62 FTV(�).

Proof: The �rst part is proved using structural induction on the typing derivations,

using Theorem 6.5.6 as needed. The second part follows almost immediately from the

�rst part and the rule DECL-T. 2

Theorem 6.5.8 (Scoping of constructor variables)

1. If � ` A :: K then FCV(A) � dom(�).

2. If ` � valid then FCV(�) � dom(�).

Proof: Proved sequentially using structural induction on the derivations applying
Lemma 6.3.5 as needed. 2

Corollary 6.5.9 If ` �; �::K valid then � 62 FCV(�).

Lemma 6.5.10 If ` �1; �2 valid then dom(�1) \ dom(�2) = ;.

Proof: Inspection of the typing rules for assignments combined with the results from

Lemma 6.3.5 reveal that valid assignments never redeclare variables. 2

6.6 Tagging

In the next section I introduce the tagged system which di�ers from the (untagged) kernel

system by having tagged places in constructors and by having slightly di�erent operators

and type rules. Throughout these proofs, I shall be dealing with a number of di�erent
systems. I shall use the same notation for each system whenever possible. Thus, A shall

denote a constructor in each system rather than A denoting an untagged constructor, B
a tagged one, C an erased tagged one, and so on. This convention makes it easy to deal

with systems that di�er only slightly from each other; it also means that there are fewer

syntactic categories that need to be remembered.
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Which system is meant shall either be clear from context or be explicitly stated (e.g.,

\... a tagged constructor A ..."). Because notation occurs most frequently in propositions

and de�nitions, I shall use a special notation to specify what system the variables in a

proposition or de�nition are from. The variables' system shall be indicated by placing its

name in square brackets at the beginning of the proposition or de�nition; if no system is

indicated, then the variables are from the original kernel system. In the rare cases where

variables from multiple systems are needed, the system name shall be replaced with the

word \mixed" and the system of each variable shall be explicitly stated. The system of

the operators and judgments shall be clear from context.

Lemma [Tagged] 6.6.1 (Notation Example)

If ` � valid then ` �	 valid.

Here, the variables' system is the tagged system so � is an assignment from the tagged

system. Because tag removal (�	, de�ned later in Section 9.1) is an operator that
converts objects to the untagged system, �	 must be an assignment from the untagged
system, the �rst judgment must be a tagged one, and the second one must be an untagged
one. The lemma thus states that a valid tagged assignment may be converted to a
valid untagged assignment by tag removal. I shall prove this result later as part of

Theorem 9.3.1.
I originally added tags by replacing x�! in the de�nition of constructor syntax with

xA�!. I also had to alter place substitution so that it replaces a term variable with a
tagged place:

[xA�=x
0]x0
A

0�0 = xA��
0

This change was necessary so that the place substitution function would have a type that
it could use as a tag for x. (The type of x is not computable from the type of x0 or x�
due to missing information.) I made a similar change to the selection function.

Although I was able to work out much of the proof using this de�nition, I eventually

ran into a fatal problem with proving con
uence. The problem arises from the fact that
under this de�nition the place substitution operator \replaces" one tag with another one

(e.g., A for A0 in the previous equation). If the constructor being rewritten is valid,
this replacement will result in a constructor that has a common reduct with the original

one. However, it may take many steps to reach the common reduct. This fact allows a
counterexample to the diamond property to be constructed.

Consider the constructor xA:2! where A = �x0:A9: <=x
0

A0

!::
>, A0 = <=�::
>,

and A9 is such that it rewrites to A0, but does not rewrite to <=A
0::K> for any K or A0

in less than nine steps. Starting from this constructor, in a single step we could extract

the constructor � from the sub-constructor x0A0

! or we could extract the constructor

from xA:2! yielding [xA:1=x
0](x0A0

!) = xA:1!. Thus, in one step we can reach both of the
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following:
x
�x0:A9: <=�::
>

:2! x
�x0:A9: <=x0

A0

!::
>
:1!

The only way to make these two constructors converge again by rewriting is by reducing

both of them to �. Unfortunately, because of the way A9 was constructed, this reduction

will take at least nine steps because A9 needs to be reduced to <=A0::K> for some K

and A0 before the second constructor as a whole can be reduced. Thus, the original

constructor is a counterexample to the diamond property because we can take one step

away from it in two di�erent ways yet be unable to rejoin within one step.

I solved this problem by switching to 
oating tags. Whereas, before, tags had to be

placed immediately after the term variable (i.e., xA�!), with 
oating tags the tag may

be placed anywhere in the path following the term variable (i.e., x�A�
0!). The type

indicated by a 
oating tag is that of the preceding place. Thus, if � ` x�A�
0! :: K then

� ` x�) A. This change means that the place substitution operator no longer needs to
do tag \replacement" or substitute tagged places because it can continue to use the same
tag as before, just in a possibly new location:

[x�=x0](x00�0A�
00!) = ([x�=x0]x00�0)

[x�=x0]A�
00!

6.7 The Tagged System

Except as noted in this section, the tagged system is identical to the untagged one.
The only change in syntax is to replace x�! in the de�nition of constructors with x�A�

0!.
Constructor extractions in the tagged system are accordingly x�A�

0!'s. I shall call x�A�
0's

tagged places, reserving the term place to always refer to x�'s.

The operator de�nitions have to be changed slightly to deal with the changed syntax:

De�nition [Tagged] 6.7.1 (Operator changes)

FCV(x�A�
0!) = FCV(A)

FTV(x�A�
0!) = FTV(A) [ fxg

[A=�]x�A0�0! = x�
[A=�]A0�0!

[x�=x0](x00�0A�
00!) = ([x�=x0]x00�0)

[x�=x0]A�
00!

The operators remain de�ned as before for all other inputs.

The C-EXT-O, C-EXT-T, and E-ABBREV rules are replaced by the following new

rules:
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De�nition [Tagged] 6.7.2 (Rule changes)

� ` x��0 ) <K> � ` x�) A

� ` x�A�
0! :: K

(C-EXT-O2)

� ` x��0 ) <=A0::K> � ` x�) A

� ` x�A�
0! :: K

(C-EXT-T2)

� ` x�A1

�0�00! :: K

� ` A1 = A :: 
 A2 = S(A;x�; �0)

� ` x�A1

�0�00! = x��0A2

�00! :: K
(E-EXT2)

� ` x�A! :: K � ` A = <=A0::K 0> :: 


� ` x�A! = A0 :: K
(E-ABBREV2)

These tagged rules are designed similarly to the untagged rules so that they possess the
same structural property. C-EXT-O2 and C-EXT-T2 are essentially the same as C-EXT-
O and C-EXT-T respectively except that I added an extra precondition (� ` x�) A)

to ensure that the tag (A) assigned to x� is consistent with �.
E-ABBREV2 and the new E-EXT-2 rule are designed to mirror closely the relevant

rewriting rules:
A1 ! A A2 = S(A;x�; �0)

x�A1

�0�00!! x��0A2

�00!
(R-EXT)

A! <=A0::K 0>

x�A!! A0
(R-ABBREV)

(R-EXT is used both to rewrite the tag in place and to move it to the right while R-

ABBREV is used to perform the extraction once the tag has been reduced to a <=A0::K>

type; see Section 7.3 for more.)

The e�ect of the old E-ABBREV rule must be gotten by using repeated applications
of E-EXT-2 followed by an application of E-ABBREV2 (connected using E-TRAN);

more applications are needed because the tagged system, aside from E-TRAN, has only
simple equality rules, which can only do a small amount of work each time they are

applied. Like E-ABBREV, E-ABBREV2 also does not require that the kind of the

constructor extracted from a constructor extraction match the kind assigned originally

to that constructor extraction.
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6.8 Basic Tagged Propositions

In this section, I prove a number of miscellaneous basic propositions about the tagged

system for use later on. Most of these propositions are tagged versions of those I proved

previously for the untagged system in Section 6.5. This duplication is necessary because

these propositions are needed in order to prove that results can be transfered back and

forth between the two systems (see Sections 9.1{9.3). I shall point out the new proposi-

tions as I come to them.

Lemma [Tagged] 6.8.1 If S(A;x�1; �2�3) exists then

S(A;x�1; �2�3) = S(S(A;x�1; �2); x�1�2; �3)

Proof: Exactly the same as the untagged version (Lemma 6.5.3). 2

Lemma [Tagged] 6.8.2 (Assignment properties)

1. dom(�; �0) = dom(�) [ dom(�0)

2. If x:A 2 � then x 2 dom(�), FCV(A) � FCV(�), and FTV(A) � FTV(�).

Lemma [Tagged] 6.8.3 (Structural property)

1. A derivation of ` �;D valid contains ` � valid as a sub-derivation.

2. A derivation of � ` A :: K contains ` � valid as a sub-derivation.

3. A derivation of � ` x�) A contains ` � valid as a sub-derivation.

4. A derivation of � ` A1 = A2 :: K contains ` � valid as a sub-derivation.

Proof: By simultaneous structural induction on the typing derivations. 2

Lemma [Tagged] 6.8.4 (Free term variables)

1. FTV([A0=�]A) � FTV(A) [ FTV(A0)

2. FTV([x�=x0]A) � fxg [ (FTV(A)� fx0g)
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3. If S(A;x�; �0) exists then FTV(S(A;x�; �0)) � fxg [ FTV(A).

Theorem [Tagged] 6.8.5 (Scoping of term variables)

1. If ` � valid then FTV(�) � dom(�).

2. If � ` A :: K then FTV(A) � dom(�).

3. If � ` x�) A then x 2 dom(�) and FTV(A) � dom(�).

4. If � ` A1 = A2 :: K then 8i: FTV(Ai) � dom(�).

Proof: Proved by simultaneous structural induction on the derivations applying Lem-

mas 6.8.3 and 6.5.5 as needed. Sample cases:

DECL-T: Given ` �; x:A valid derived via rule DECL-T from � ` A :: 
 and x 62 dom(�).
By Lemma 6.8.3, ` � valid. Applying the induction hypothesis then gives us that
FTV(A) � dom(�) and FTV(�) � dom(�). Since FTV(�; x:A) = FTV(�) [
FTV(A) and dom(�; x:A) = dom(�)[fxg, this means that FTV(�; x:A) � dom(�)
� dom(�; x:A).

C-DFUN: Given � ` �x:A:A0 :: 
 derived via rule C-DFUN from �; x:A ` A0 :: 
. By
Lemma 6.8.3, ` �; x:A valid ) � ` A :: 
 (DECL-T). Applying the induction hy-
pothesis then gives us that FTV(A) � dom(�) and FTV(A0) � dom(�; x:A) =
dom(�)[fxg ) (FTV(A0)�fxg) � dom(�). Hence, FTV(�x:A:A0) = FTV(A)[
(FTV(A0)� fxg) � dom(�).

P-INIT: Given � ` x) A derived via rule P-INIT from ` � valid and x:A 2 �. Applying
the induction hypothesis gives us that FTV(�) � dom(�). By Lemma 6.8.2, x 2
dom(�) and FTV(A) � FTV(�) � dom(�).

E-BETA: Given � ` (��::K:A)A0 = [A0=�]A :: K 0 derived via rule E-BETA from

�; �::K ` A :: K 0 and � ` A0 :: K. Applying the induction hypothesis gives us that

FTV(A0) � dom(�) and FTV(A) � dom(�; �::K) = dom(�) [ f�g ) FTV(A) �
dom(�) (� is not a term variable). By Lemma 6.8.4, FTV([A0=�]A) � FTV(A) [
FTV(A0) � dom(�). Finally, FTV((��::K:A)A0) = FTV(A)[FTV(A0) � dom(�).

E-EXT2: Given � ` x�A1

�0�00! = x��0A2

�00! :: K derived via rule E-EXT2 from

� ` x�A1

�0�00! :: K, � ` A1 = A :: 
, and S(A;x�; �0) = A2. Applying the in-
duction hypothesis gives us that FTV(x�A1

�0�00!) = fxg [ FTV(A1) � dom(�)

and FTV(A) � dom(�). By Lemma 6.8.4, FTV(A2) = FTV(S(A;x�; �0)) �
fxg [ FTV(A) � dom(�). Finally, FTV(x��0A2

�00!) = fxg [ FTV(A2) � dom(�).
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2

For the untagged system, I needed to show only that all constructor variables in

valid assignment and constructor judgments are bound. I shall need this result for all

four judgments in the tagged case. Accordingly, I have extended the relevant theorem

(Theorem 6.8.7 here) and added the following new lemma to help handle the equality

judgment case:

Lemma [Tagged] 6.8.6 (Free constructor variables)

1. FCV([A0=�]A) � FCV(A0) [ (FCV(A)� f�g)

2. FCV([x�=x0]A) = FCV(A)

3. If S(A;x�; �0) exists then FCV(S(A;x�; �0)) � FCV(A).

Theorem [Tagged] 6.8.7 (Scoping of constructor variables)

1. If � ` A :: K then FCV(A) � dom(�).

2. If � ` x�) A then FCV(A) � dom(�).

3. If � ` A1 = A2 :: K then FCV(A1) � dom(�) and FCV(A2) � dom(�).

Proof: Proved by simultaneous structural induction on the derivations applying Lem-
mas 6.8.3 and 6.8.6 as needed. Sample cases:

C-DSUM: Applying Lemma 6.8.3 to the given �; x:A ` A0 :: 
, gives us that � ` A :: 
. Ap-
plying the induction hypothesis twice, we have that FCV(A) � dom(�) and that

FCV(A0) � dom(�; x:A) = dom(�) [ fxg. Since x is not a constructor variable,

we more precisely have FCV(A0) � dom(�). Thus, FCV(�x:A:A0) = FCV(A) [
FCV(A0) � dom(�).

P-INIT: Repeated use of Lemma 6.3.5 shows that ` �0; x:A valid for some pre�x �0 of �.

Hence, by DECL-T, �0 ` A :: 
. Applying the induction hypothesis, then gives us

that FCV(A) � dom(�0). By Lemma 6.8.2, we have that dom(�0) � dom(�) so
that FCV(A) � dom(�).

P-MOVE: By applying the induction hypothesis, we have that FCV(A0) � dom(�). By

Lemma 6.8.6, FCV(A00) = FCV(S(A0; x�; �0)) � FCV(A0) � dom(�).
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E-BETA: As in the C-DSUM case, applying Lemma 6.8.3 and the induction hypothesis, gives

us that FCV(A0) � dom(�) and FCV(A) � dom(�) [ f�g ) (FCV(A) � f�g) �
dom(�). By Lemma 6.8.6, FCV([A0=�]A) � FCV(A0)[(FCV(A)�f�g) � dom(�).

By the de�nition of FCV(�), we also have that FCV((��::K:A)A0) = (FCV(A)�
f�g) [ FCV(A0) � dom(�).

2

Theorem [Tagged] 6.8.8

1. If ` � valid then FCV(�) � dom(�).

2. If ` �; �::K valid then � 62 FCV(�).

Proof: The �rst part is proved by structural induction on the derivation using Theo-
rem 6.8.7 and Lemma 6.8.3 as needed. The second part follows almost immediately from
the �rst part and rule DECL-C. 2

Lemma [Tagged] 6.8.9 If ` �1; �2 valid then dom(�1) \ dom(�2) = ;.

Proof: Inspection of the typing rules for assignments combined with the results from
Lemma 6.8.3 reveal that valid assignments never redeclare variables. 2

The last two theorems are new. The �rst one shows that tagged judgments may be
weakened by adding extra declarations to their assignment. The second one establishes
some consequences of the fact that valid assignments never redeclare variables.

Theorem [Tagged] 6.8.10 (Weakening)

Suppose ` �; �0 valid and dom(�0) \ dom(�00) = ;. Then:

1. If ` �; �00 valid then ` �; �0; �00 valid.

2. If �; �00 ` A :: K then �; �0; �00 ` A :: K.

3. If �; �00 ` x�) A then �; �0; �00 ` x�) A.

4. If �; �00 ` A1 = A2 :: K then �; �0; �00 ` A1 = A2 :: K.

Proof: By simultaneous structural induction on the length of the derivations involving

�; �00. 2
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Lemma [Tagged] 6.8.11 (Valid assignment properties)

Suppose ` � valid. Then:

1. If �::K 2 � and �::K 0 2 � then K = K 0
.

2. If x:A 2 � then �(x) = A.

3. If x 2 dom(�) then � ` �(x) :: 
.

Proof: Inspection of the typing rules for assignments combined with the results from

Lemma 6.8.3 reveal that valid assignments never redeclare variables. The last part re-

quires weakening plus repeated use of Lemma 6.8.3. 2



Chapter 7

Types: Con
uence

In this chapter, I introduce a rewriting relation for the tagged system and show that
it is con
uent and that it implements equality correctly. These results will be essential

to producing a decision procedure for equality (needed for type checking) and proving
soundness. I shall discuss the existence of normal forms under this relation and the
decidability of the tagged judgments in the next chapter. All constructors, assignments,
etc., in this chapter are tagged.

7.1 Rewriting

I shall write A1 !R A2 to denote that A1 rewrites under relation R to A2 in one step. If
R is omitted, the standard rewriting relation of the system under consideration is meant.

I shall use reduce as a synonym for rewrite, particularly when referring to rewriting steps
(reductions) and to the results of rewriting steps (reducts). Some other useful de�nitions
are as follows:

De�nition [Tagged] 7.1.1 (Irre
exive rewriting) A !1
R A0 i� A !R A0 and A 6=

A0.

De�nition [Tagged] 7.1.2 (Multiple step rewriting) A!�
R A0 i� A and A0 are re-

lated by the re
exive and transitive closure of !R.

De�nition [Tagged] 7.1.3 (One or more step rewriting) A !+
R A0 i� A and A0

are related by the transitive closure of !R.

De�nition [Tagged] 7.1.4 (Conversion) A �R A0 i� A and A0 are related by the

re
exive, symmetric, and transitive closure of !R.

88
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De�nition [Tagged] 7.1.5 (Bi-directional rewriting) A *)R A0 i� A !R A0 or

A0 !R A.

De�nition [Tagged] 7.1.6 (Common reduct) A1 #�R A2 i� 9A such that A1 !�
R A

and A2 !�
R A.

7.2 The Proof Method

As I have discussed previously, equality in the tagged system does not depend on the

assignment (modulo validity); this fact means that relatively standard methods can be

used to prove con
uence. I shall use the well known method of proving con
uence by
constructing a rewriting relation that possesses the diamond property:

De�nition [Tagged] 7.2.1 (Diamond property)

!R possesses the diamond property i� for all A, A1, and A2 such that A !R A1 and

A!R A2 then 9A3 such that A1 !R A3 and A2 !R A3. This can be summarized by the

following diagram, the form of which I shall use as a shorthand in proofs:

A

A1 A2

A3

�
�
��	R

@
@
@@RR

............RR

............	R

Con
uence of the rewriting relation follows directly from this property:

Theorem [Tagged] 7.2.2 (Con
uence)

Suppose ! possesses the diamond property. Then, if A!� A1 and A!� A2 then 9A
0

such that A1 !� A0 and A2 !� A0.

Proof: (Idea) Suppose A rewrites to A1 in 2 steps and rewrites to A2 in 3 steps. By

using the diamond property repeatedly, we can \�ll in the grid" to �nd an A0 that both
A1 and A2 rewrite to to as shown below:
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A

A3 A4

A1 A6 A5

A7 A8 A2

A9 A10

A0

�
�

��	

�
�

��	

............	

............	

............	

............	

............	

............	

@
@
@@R

@
@
@@R

@
@
@@R

............R

............R

............R

............R

............R

............R

By using this method we can �nd an A0 that both A1 and A2 rewrite to regardless of
exactly how many steps it takes A to rewrite to A1 or to A2. (A !� A0 implies that A
rewrites to A0 in a �nite number of steps by the de�nition of transitive closure.) 2

Because my system allows both �- and �-reductions, it only possesses con
uence if
attention is restricted to valid constructors. To see this fact, consider the following critical
pair involving � and �:

��::K: (��0::K 0: <
>)�

��::K:<
> ��0::K 0: <
>

�
�
��	

� @
@
@R

�

In order for us to have con
uence, we must have that K = K 0 (both reducts are in normal
form). This equation will be true if ��::K: (��0::K 0: <
>)� is a valid constructor. If

it is not a valid constructor, however, then K may not equal K 0 and con
uence fails.
This critical pair is the only point where we need to know we are dealing with valid

constructors in order to show con
uence; removing �-reduction from the system, for
example, would allow proving con
uence for arbitrary constructors.

This situation is normally handled by �rst proving that rewriting preserves the valid-

ity of constructors (i.e., subject reduction for constructors) and then proving a version of
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Theorem 7.2.2 to which has been added the precondition that � ` A :: K. This method

cannot be used here directly because in the presence of rei�ed constructors proving sub-

ject reduction for constructors requires some form of con
uence.

As an example, suppose we had x:<=A0::K 0> ` x
<=A::K>

! :: K 0. Subject reduction

then requires that x
<=A::K>

!'s reduct (A via extraction) have kind K 0; since A has

kind K, we must have that K = K 0. Inspection of the relevant typing rules shows that

we have x:<=A0::K 0> ` <=A::K> = <=A0::K 0> :: 
 which implies that <=A::K> �
<=A0::K 0> because the rewriting relation implements equality. Showing that K = K 0

from this fact requires some form of con
uence in order to handle the possibility of

�-expansions.

I shall use a technique due to Herman Geuvers [14] to handle this problem. The idea

is to introduce a notion of erasure (��) which removes the kinds of constructor variables
in constructor functions but not the kinds in rei�ed constructor's types:

(��::K:A)� = ��:A�

<=A::K>� = <=A�::K>

Because the resulting erased constructors do not have kinds attached to constructor-
function arguments, the problematic ��-critical pair is not a problem for erased construc-
tors. This fact means that con
uence can be proved for arbitrary erased constructors;
subject reduction is not required.

This con
uence result can then be used to prove subject reduction. In the previous
example we would �rst show that <=A::K> � <=A0::K 0> implies that <=A::K>� �
<=A0::K 0>� ) <=A�::K> � <=A0�::K 0>. By con
uence on erased constructors, we
then have that there exists an erased constructor B such that <=A�::K> !� B and
<=A0�::K 0> !� B. Because <=A1::K1> always rewrites to a constructor of form
<=A2::K1> for some A2, we must have that K = K 0 in the example as required.

Once subject reduction has been proved, con
uence for the unerased constructors can

be established using the normal method.

7.3 The Rewrite Relation

The rules for the rewriting relation are as follows:

De�nition [Tagged] 7.3.1 (Rewrite relation)

A! A (R-REFL)

A1 ! A01 A2 ! A02

�x:A1: A2 ! �x:A01: A
0
2

(R-DFUN)
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A1 ! A01 A2 ! A02

�x:A1: A2 ! �x:A01: A
0
2

(R-DSUM)

A! A0

��::K:A! ��::K:A0
(R-LAM)

A1 ! A01 A2 ! A02

A1A2 ! A01A
0
2

(R-APP)

A! A0

<=A::K>! <=A0::K>
(R-TRANS)

A1 ! A A2 = S(A;x�; �0)

x�A1

�0�00!! x��0A2

�00!
(R-EXT)

A1 ! A01 A2 ! A02

(��::K:A1)A2 ! [A02=�]A
0
1

(R-BETA)

A! A0 � 62 FCV(A)

��::K:A�! A0
(R-ETA)

A! <=A0::K 0>

x�A!! A0
(R-ABBREV)

These rules constitute a parallel rewriting relation. A parallel rewriting relation is one in
which a single reduction step on A can rewrite all of A's sub-constructors by one reduction
step in parallel. For example, the R-BETA rule allows A1 and A2 to be rewritten in
parallel with the �-reduction. Non-parallel rewriting relations often require multiple
steps to accomplish the same reduction (e.g., one step for each sub-component followed
by one step for the �-reduction).

Being able to do parallel reductions in a single step is crucial to proving the diamond
property. For example, if (��::K:A1)A2 rewrites in one step to (��::K:A1)A

0
2 (via

A2 ! A02) and to [A2=�]A1, we need to be able to show that [A2=�]A1 ! [A02=�]A1. This
reduction requires in a single step that we be able to rewrite in parallel A2 to A

0
2 at each

of the points in A1 where � occurs. Only a parallel rewriting relation can provide this

ability.
The R-EXT and R-ABBREV rules handle rewriting constructor extractions. The

R-EXT rule handles both rewriting the tag and moving it to the right in the path. The
existence of the tag allows x�'s type to be computed by a series of small steps (e.g.,

R-EXT only reduces the tag a single step at a time), resulting in a simple rewriting

relation.
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R-EXT permits moving the tag an arbitrary amount (�0) to the right in a single step,

so long as the tag has the right form (i.e., S(A;x�; �0) exists). In retrospect, I think it

would have been better to only allow moving the tag by a single :i at a time; the ability

to move multiple steps to the right at once only makes the system more complicated.

In order to extract a constructor then, we repeatedly use R-EXT to reduce the tag;

whenever the tag is a sum type, we also move the tag to the right. Eventually, if the

constructor extraction is valid, we will end up with x�
<K>

! or x�
<=A::K>

! for some K

and A. The �rst constructor is in normal form and represents the opaque case. The

second constructor represents the transparent case; it can be reduced using R-ABBREV

to A in a single step.

It will sometimes be useful to consider just the �� or extraction (denoted by 
)

components of the rewriting relation:

De�nition [Tagged] 7.3.2 (��-reduction)

A1 !�� A2 i� A1 ! A2 can be derived without ever using the R-ABBREV rule or the

R-EXT rule with �0 6= �.

De�nition [Tagged] 7.3.3 (
-reduction)

A1 !
 A2 i� A1 ! A2 can be derived without ever using the R-BETA or R-ETA rules.

Here I show that equal constructors can be converted to each other. This result is
the �rst part of proving that the rewriting relation implements equality. The second part
(valid constructors that have a common reduct are equal) requires con
uence and will
be proved later.

Theorem [Tagged] 7.3.4 If � ` A = A0 :: K then 9A0; A1; : : : ; An, n � 0, such that:

1. A = A0

2. A0 = An

3. Ai *) Ai+1 for 0 � i < n

Proof: By structural induction on the derivation of � ` A = A0 :: K. Example cases:

SYM: Apply the induction hypothesis. Since bi-directional rewriting is symmetric, re-

versing the sequence of types obtained from the induction hypothesis then yields

the desired sequence.

TRAN: Apply the induction hypothesis twice then place the two resulting sequences side

by side.
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DFUN: Apply the induction hypothesis twice getting sequences A00; : : : ; A
0
m from

� ` A00 = A0m :: 
 and A000; : : : ; A
00
r from �; x:A00 ` A

00
0 = A00r :: 
. The desired se-

quence is then �x:A00: A
00
0; : : : ;�x:A

0
0: A

00
r ;�x:A

0
1: A

00
r ; : : : ;�x:A

0
m: A

00
r . R-DFUN and

R-REFL are used to connect them with bi-directional rewriting.

BETA: Let n = 1. A0 ! A1 via R-BETA and R-REFL.

EXT2: Applying the induction hypothesis gives the sequence A00; : : : ; A
0
m from

� ` A1 = A :: 
. The desired sequence is then x�A0

0

�0�00!, : : : , x�A0

m

�0�0!, x��0A2

�00!.

R-EXT plus R-REFL are used to connect them with bi-directional rewriting.

ABBREV2: Applying the induction hypothesis gives the sequence A00; : : : ; A
0
m from

� ` A = <=A0::K 0> :: 
. The desired sequence is then x�A0

0

!, : : : , x�A0

m

!, A0. R-

EXT plus R-ABBREV and R-REFL are used to connect them with bi-directional

rewriting.

2

Corollary [Tagged] 7.3.5 (Partial correctness I)

If � ` A = A0 :: K then A � A0.

Proof: Apply Theorem 7.3.4 then use the fact that conversion is the transitive closure

of bi-directional rewriting. 2

The rest of this section is devoted to proving the basic properties I shall need about
the rewriting relation. First I show that rewriting never introduces new variables; this
result is needed to prove the diamond property.

Theorem [Tagged] 7.3.6 (Reduct variables) If A! A0 then

FCV(A0) � FCV(A) and FTV(A0) � FTV(A).

Proof: By structural induction on the derivation of A! A0, using Lemmas 6.8.6 and
6.8.4. 2

Second, I show that except for constructor functions, applications, and extractions,
rewriting preserves the shape of constructors and acts in a component-wise manner.
This result, when combined with con
uence and the fact that the rewriting relation

implements equality, will establish the needed properties of equality (e.g., equality acts

in a component-wise manner).

Lemma [Tagged] 7.3.7 (Shape preservation)
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1. If A! A0 and either A = �, A = rec, A = ref, A = <K>, or A = x�
<K>

! then

A = A0.

2. If �x:A1: A2 ! A0 then 9A01; A
0
2 such that A

0 = �x:A01: A
0
2, A1 ! A01, and A2 ! A02.

3. If �x:A1: A2 ! A0 then 9A01; A
0
2 such that A

0 = �x:A01: A
0
2, A1 ! A01, and A2 ! A02.

4. If <=A1::K>! A0 then 9A01 such that A0 = <=A01::K>, and A1 ! A01.

5. If refA1 ! A0 then 9A01 such that A0 = refA01, and A1 ! A01.

6. If recA1 ! A0 then 9A01 such that A0 = recA01, and A1 ! A01.

Proof: Proved sequentially (the case for <K> is needed to prove the case for x�
<K>

!)
by casing on the possible rewriting rules used and using R-REFL as needed. 2

Finally, I establish the consequences of having a parallel rewriting relation for use in
proving the diamond property:

Lemma [Tagged] 7.3.8 If A2 ! A02 then [A2=�]A1 ! [A02=�]A1.

Lemma [Tagged] 7.3.9 (Substitution for non-free variables)

1. If � 62 FCV(A) then [A0=�]A = A.

2. If x0 62 FTV(A) then [x�=x0]A = A.

3. If � 62 FCV(�) then [A0=�]� = �.

4. If x0 62 FTV(�) then [x�=x0]� = �.

Proof: Proved sequentially using structural induction on A and �. 2

Lemma [Tagged] 7.3.10 (Iterated substitutions I)

1. If � 6= �0 and �0 62 FCV(A) then

[A=�]([A1=�
0]A2) = [[A=�]A1=�

0]([A=�]A2)

2. [x�=x0]([A=�]A0) = [[x�=x0]A=�]([x�=x0]A0)
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3. If S(A0; x�; �0) exists then

[A=�]S(A0; x�; �0) = S([A=�]A0; x�; �0)

Proof: Proved sequentially using structural induction on A2, A
0, and �0 respectively

using Lemmas 7.3.9, 6.8.6, and 6.8.4 as needed. 2

Theorem [Tagged] 7.3.11 (Parallelism I) If A1 ! A01 and A2 ! A02 then [A2=�]A1 !
[A02=�]A

0
1.

Proof: By structural induction on the derivation of A1 ! A01 using Lemmas 6.8.6 and
7.3.6 as needed. Lemma 7.3.8 handles the R-REFL case; lemma 7.3.10 is needed for the
R-BETA and R-EXT cases. 2

Lemma [Tagged] 7.3.12 (Iterated substitutions II)

1. If x01 6= x02 and x
0
2 6= x1 then

[x1�1=x
0
1]([x2�2=x

0
2]A) = [[x1�1=x

0
1]x2�2=x

0
2]([x1�1=x

0
1]A)

2. If S(A;x00�0; �00) exists then

[x�=x0]S(A;x00�0; �00) = S([x�=x0]A; [x�=x0]x00�0; �00)

Proof: Proved sequentially by structural induction on A and �00 respectively. 2

Theorem [Tagged] 7.3.13 (Parallelism II) If A! A0 then

1. [x�=x0]A! [x�=x0]A0

2. If S(A;x�; �0) exists then S(A;x�; �0)! S(A0; x�; �0).

Proof: Proved sequentially by structural induction on the derivation of A ! A0 and

�0 respectively using Lemma 6.8.6 as needed. Lemma 7.3.10 handles the R-BETA case;
lemma 7.3.12 handles the R-EXT case. Lemma 7.3.7 is needed for part 2. 2



CHAPTER 7. TYPES: CONFLUENCE 97

7.4 Argument Kind Erasure

The erasure function which transforms constructors from the tagged system into the

erased system is as follows:

De�nition [Tagged] 7.4.1 (Argument kind erasure)

(��::K:A)� = ��:A�

(�x:A1: A2)
� = �x:A�1: A

�
2

(�x:A1: A2)
� = �x:A�1: A

�
2

(A1A2)
� = A�1A

�
2

<=A::K>� = <=A�::K>

x�A�
0!� = x�A��0!

�� = �

rec� = rec

ref� = ref

<K>� = <K>

The erased system is obtained by taking the tagged system without type rules and replac-
ing ��::K:A in the de�nition of constructors with ��:A. The operators and rewriting
relation are modi�ed in the obvious ways:

De�nition [Erased] 7.4.2 (Operator changes)

FCV(��:A) = FCV(A)� f�g

FTV(��:A) = FCV(A)

[A=�]��0: A0 = ��0: [A=�]A0 (�0 6= �; �0 62 FCV(A))

[x�=x0]��:A = ��: [x�=x0]A

De�nition [Erased] 7.4.3 (Rule changes)

A! A0

��:A! ��:A0
(R-LAM3)

A1 ! A01 A2 ! A02

(��:A1)A2 ! [A02=�]A
0
1

(R-BETA3)

A! A0 � 62 FCV(A)

��:A�! A0
(R-ETA3)
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(These rules replace R-LAM, R-BETA, and R-ETA.)

I shall need to show many of the same properties for the rewriting relation of the erased

system as I did for the tagged rewriting relation in order to prove con
uence for the erased

system. Rather than duplicate work, I shall relate the two systems using erasure and

an unerasure function then transfer the needed results from the tagged system. First

though, I shall need some results about how erasure interacts with the other operators:

Lemma [Tagged] 7.4.4

1. FCV(A�) = FCV(A)

2. FTV(A�) = FTV(A)

Lemma [Tagged] 7.4.5

1. ([A2=�]A1)
� = [A�2=�](A

�
1)

2. ([x�=x0]A)� = [x�=x0](A�)

3. If S(A;x�; �0) exists then S(A;x�; �0)� = S(A�; x�; �0).

Proof: Proved sequentially by structural induction on A, A, and �0 respectively. Ex-
amples:

([A=�]��0::K:A0)� = (��0::K: [A=�]A0)� = ��0: ([A=�]A0)�

= ��0: [A�=�](A0�) = [A�=�]��0: (A0�) = [A�=�]((��0::K:A0)�)

([x�=x0]��0::K:A0)� = (��0::K: [x�=x0]A0)� = ��0: ([x�=x0]A0)�

= ��0: [x�=x0](A0�) = [x�=x0]��0: (A0�) = [x�=x0]((��0::K:A0)�)

S(�x0:A1: A2; x�; :2�
0)� = S([x�:1=x0]A2; x�:2; �

0)� = S(([x�:1=x0]A2)
�; x�:2; �0)

= S([x�:1=x0](A�2); x�:2; �
0) = S(�x0:A�1: A

�
2; x�; :2�

0) = S((�x0:A1: A2)
�; x�; :2�0)

Where �0 6= � and �0 62 FCV(A) = FCV(A�) by Lemma 7.4.4. 2

Lemma [Tagged] 7.4.6 If A1 ! A2 then A�1 ! A�2.

Proof: By structural induction on the derivation of A1 ! A2. 2
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Corollary [Tagged] 7.4.7 If A1 � A2 then A�1 � A�2.

Proof: Proved by structural induction on the length of the conversion using Lemma 7.4.6

to convert from tagged-system rewriting steps to erased-system rewriting steps. 2

The unerasure function is de�ned as follows:

De�nition [Erased] 7.4.8 (Argument kind unerasure)

��:A = ��::
: A

�x:A1: A2 = �x:A1: A2

�x:A1: A2 = �x:A1: A2

A1A2 = A1A2

<=A::K> = <=A::K>

x�A�
0! = x�

A
�0!

� = �

rec = rec

ref = ref

<K> = <K>

It simply inserts 
 as the kind of each argument. This insertion will not in general
produce valid constructors, but it su�ces to give the needed properties; note in particular
Lemma 7.4.12 below:

Lemma [Erased] 7.4.9 (A)� = A

Corollary [Erased] 7.4.10

1. FCV(A) = FCV(A)

2. FTV(A) = FTV(A)

Proof: Substitute A for A in Lemma 7.4.4 then apply Lemma 7.4.9. 2

Lemma [Erased] 7.4.11 If S(A;x�; �0) exists then S(A;x�; �0) exists.

Lemma [Erased] 7.4.12 If A1 ! A2 then A1 ! A2.
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Proof: By structural induction on the derivation of A1 ! A2. 2

Using these results about erasure and unerasure, the needed theorems and lemmas

can be transfered from the tagged to the erased system:

Lemma [Erased] 7.4.13 If S(A;x�1; �2�3) exists then

S(A;x�1; �2�3) = S(S(A;x�1; �2); x�1�2; �3)

Proof:

S(A;x�1; �2�3) exists (given)
) S(A;x�1; �2�3) exists (Lemma 7.4.11)

) S(A;x�1; �2�3) = S(S(A;x�1; �2); x�1�2; �3) (Lemma 6.8.1)
) S(A;x�1; �2�3)

� = S(S(A;x�1; �2); x�1�2; �3)
� (erase both sides)

) S(A
�
; x�1; �2�3) = S(S(A

�
; x�1; �2); x�1�2; �3) (Lemma 7.4.5)

) S(A;x�1; �2�3) = S(S(A;x�1; �2); x�1�2; �3) (Lemma 7.4.9)

2

Theorem [Erased] 7.4.14 (Reduct variables) If A1 ! A2 then FCV(A2) � FCV(A1)

and FTV(A2) � FTV(A1).

Proof: The constructor variable case is as follows:

A1 ! A2 (given)

) A1 ! A2 (Lemma 7.4.12)
) FCV(A2) � FCV(A1) (Theorem 7.3.6)
) FCV(A2) � FCV(A1) (Corollary 7.4.10)
The term variable case is similar. 2

Lemma [Erased] 7.4.15 (Shape preservation)

1. �! A implies that A = �.

2. <K>! A implies that A = <K>.

3. <=A1::K>! A implies that A has form <=A2::K> for some A2 where A1 ! A2.
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Proof: All are proved the same way. Example case:

<=A1::K>! A (given)

) <=A1::K>! A (Lemma 7.4.12)

) 9A3 such that A = <=A3::K> (Lemma 7.3.7)

) (A)� = <=A�3::K> (erase both sides)

) A = <=A�3::K> (Lemma 7.4.9)

2

Lemma [Erased] 7.4.16 (Substitution for non-free variables)

1. If � 62 FCV(A) then [A0=�]A = A.

2. If x0 62 FTV(A) then [x�=x0]A = A.

Proof: All are proved the same way. Example case:

� 62 FCV(A) (given)

) � 62 FCV(A) (Corollary 7.4.10)

) [A0=�]A = A. (Lemma 7.3.9)

) ([A0=�]A)� = A
�
. (erase both sides)

) [A0
�
=�]A

�
= A

�
. (Lemma 7.4.5)

) [A0=�]A = A. (Lemma 7.4.9)

2

Theorem [Erased] 7.4.17 (Parallelism I and II) If A1 ! A01 and A2 ! A02 then

1. [A2=�]A1 ! [A02=�]A
0
1

2. [x�=x0]A1 ! [x�=x0]A01

3. If S(A1; x�; �
0) exists then S(A1; x�; �

0)! S(A01; x�; �
0).

Proof: All are proved the same way. Example case:

A1 ! A01 and A2 ! A02 (given)

) A1 ! A01 and A2 ! A02 (Lemma 7.4.12)

) [A2=�]A1 ! [A02=�]A
0
1 (Theorem 7.3.11)

) ([A2=�]A1)
� ! ([A02=�]A

0
1)
� (Lemma 7.4.6)

) [A2
�
=�](A1

�
)! [A02

�

=�](A01
�

) (Lemma 7.4.5)
) [A2=�]A1 ! [A02=�]A

0
1 (Lemma 7.4.9)
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2

7.5 Kind Preservation

In this section I prove con
uence for the erased system by �rst proving the diamond

property. I then use this result to show that conversion in the erased system preserves the

kinds of rei�ed constructors and whether or not rei�ed constructors' types are transparent

or opaque. This kind preservation result is required to prove subject reduction; see the

next section for details.

Theorem [Erased] 7.5.1 (Diamond property)

If A! A1 and A! A2 then 9A3 such that A1 ! A3 and A2 ! A3.

Proof: By structural induction on A with case analysis on what rewriting rules were
used. Without loss of generality (WLOG), we may assume that the derivation for A! A1

uses the same or an earlier rule (earlier here being de�ned as occuring �rst in de�ni-

tion 7.3.1) than the A! A2 derivation.
An extension of the diagram notation used in de�ning the diamond property (Def-

inition 7.2.1) is used to present the subproofs. Rule names next to an arrow indicate
that that rewriting step used that particular rule. The symbols � and 	 represent arbi-
trary reduction steps. Multiple occurrences of one of these symbols in the same subproof
represent the same reduction step. Solid arrows represent givens while dotted arrows

are constructed according to the symbol attached to them. (IH) stands for a use of the
induction hypothesis and (lemma name) stands for an application of the named lemma.

The forms of the constructors in the diagrams are determined by the requirements of

the rules being considered and the shape preservation lemma (Lemma 7.4.15). The cases
are as follows:

1. REFL vs. any rule
A

A A2

A2

�
�
�
�	

REFL @
@
@@R

�

............R�

............	 REFL
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2. DFUN vs. DFUN
�x:A:A0

�x:A1: A
0
1 �x:A2: A

0
2

�x:A3: A
0
3

�
�
��	

DFUN @
@
@@R

DFUN

...........RDFUN

...........	 DFUN

Via:
A

A1 A2

A3

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

A0

A01 A02

A03

�
�
��	

@
@
@@R

...........R
(IH)

...........	
(IH)

3. DSUM vs. DSUM
�x:A:A0

�x:A1: A
0
1 �x:A2: A

0
2

�x:A3: A
0
3

�
�
��	

DSUM @
@
@@R

DSUM

...........RDSUM

...........	 DSUM

Via:
A

A1 A2

A3

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

A0

A01 A02

A03

�
�
��	

@
@
@@R

...........R
(IH)

...........	
(IH)

4. LAM3 vs. LAM3
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��:A

��:A1 ��:A2

��:A3

�
�

��	

LAM3 @
@
@@R

LAM3

............RLAM3

............	 LAM3

A

A1 A2

A3

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

5. LAM3;(REFL or APP) (R) vs. ETA3 (� 62 FCV(A))

��:A�

��:A1 � A2

A3

�
�

��	

R @
@
@@R

ETA3

............RETA3

............	�

A

A1 A2

A3

�
�
��	

@
@
@@R

............R
(IH)

............	
� (IH)

Here, � 62 FCV(A1) by the reduct variables lemma (Lemma 7.4.14).

6. LAM3;BETA3 (R) vs. ETA3 (WLOG � 6= �0; � 62 FCV(A))

��: (��0: A)�

��: [�=�0]A1 A2

A3

�
�
�	

R @
@
@@R

ETA3

...........R	

............	�

��0: A

��0: A1 A2

A3

............	

LAM3 @
@
@@R

............R	 (IH)

............	 � (IH)

Here, ��0: A ! ��0: A1 follows via the R-LAM3 rule from the given (not shown)

A! A1. Since � 62 FCV(A1) by the reduct variables lemma, ��0: A1 = ��: [�=�0]A1

(two constructors are considered the same if they are related by �-conversion).



CHAPTER 7. TYPES: CONFLUENCE 105

7. APP vs. APP
AA0

A1A
0
1 A2A

0
2

A3A
0
3

�
�
��	

APP
@
@
@@R

APP

...........R
APP

...........	
APP

Via:
A

A1 A2

A3

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

A0

A01 A02

A03

�
�
��	

@
@
@@R

...........R
(IH)

...........	
(IH)

8. APP;(REFL or LAM3) (R) vs. BETA3

(��:A)A0

(��:A1)A
0
1 [A02=�]A2

[A03=�]A3

�
�
�	

R @
@
@R

BETA3

...........RBETA3

...........	 (parallelism I)

Via:
A

A1 A2

A3

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

A0

A01 A02

A03

�
�
��	

@
@
@@R

...........R
(IH)

...........	
(IH)
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9. APP;ETA3 (R) vs. BETA3 (� 62 FCV(A))

(��:A�)A0

A1A
0
1 [A02=�]A2

[A03=�]A3

�
�
�	

R @
@
@R

BETA3

...........R(parallelism I)

...........	 (parallelism I)

Via:
A�

A1 � A2

A3

............	

APP
@
@
@@R

............R
(IH)

............	
(IH)

A0

A01 A02

A03

�
�
��	

@
@
@@R

...........R
(IH)

...........	
(IH)

Here, A� ! A1 � follows via the R-APP and R-REFL rules from the given (not

shown) A ! A1. Applying parallelism I to A01 ! A03 and A1 � ! A3 yields
[A01=�](A1 �) = A1A

0
1 ! [A03=�]A3. ([A01=�]A1 = A1 by Lemma 7.4.16 since

� 62 FCV(A1) by the reduct variables lemma.)

10. TRANS vs. TRANS

<=A::K>

<=A1::K> <=A2::K>

<=A3::K>

�
�

��	

TRANS @
@
@@R

TRANS

............RTRANS

............	TRANS

A

A1 A2

A3

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

11. EXT vs. EXT
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x�1A�2�3�4!

x�1�2A
0

1

�3�4! x�1�2�3A
00

2

�4!

x�1�2�3A
00

3

�4!

�
�
�	

EXT @
@
@R

EXT

..........R
EXT

..........	
EXT

A

A1 A2

A3

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

Where A01 = S(A1; x�1; �2) and A002 = S(A2; x�1; �2�3). By parallelism II, we have

that A03 = S(A3; x�1; �2) and A003 = S(A3; x�1; �2�3) exist with A01 ! A03 and

A002 ! A003. By Lemma 7.4.13,

A003 = S(A3; x�1; �2�3) = S(S(A3; x�1; �2); x�1�2; �3) = S(A03; x�1�2; �3)

12. EXT vs. ABBREV

x�A!

x�A1

! A2

A3

�
�
�	

EXT @
@
@R

ABBREV

...........RABBREV

............	
(shape)

A

A1 <=A2::K>

<=A3::K>

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

13. BETA3 vs. BETA3

(��:A)A0

[A01=�]A1 [A02=�]A2

[A03=�]A3

�
�
�	

BETA3
@
@
@R

BETA3

...........R(parallelism I)

...........	 (parallelism I)
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Via:
A

A1 A2

A3

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

A0

A01 A02

A03

�
�
��	

@
@
@@R

...........R
(IH)

...........	
(IH)

14. ETA3 vs. ETA3 (� 62 FCV(A))

��:A�

A1 A2

A3

�
�
��	

ETA3 @
@
@@R

ETA3

............R	

............	�

A

A1 A2

A3

�
�
��	

@
@
@@R

............R	 (IH)

............	 � (IH)

15. ABBREV vs. ABBREV

x�A!

A1 A2

A3

�
�
�	

ABBREV
@
@
@R

ABBREV

............R
(shape)

............	
(shape)

A

<=A1::K> <=A2::K>

<=A3::K>

�
�
��	

@
@
@@R

............R
(IH)

............	
(IH)

2

Theorem [Erased] 7.5.2 (Con
uence)

If A!� A1 and A!� A2 then 9A
0
such that A1 !� A0 and A2 !� A0.

Proof: Same as that of Theorem 7.2.2. 2
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Theorem [Erased] 7.5.3 (Church-Rosser)

If A1 � A2 then A1 #� A2.

Proof: (Idea) A1 � A2 means that one can get from A1 to A2 via a �nite alternating

series of �rst rewriting then rewriting backwards. Without loss of generality, we can

assume the series starts with rewriting and ends with rewriting. (This is because we

can always rewrite (backwards) a term to itself via the R-REFL rule.) We can then use

con
uence to \�ll in the bottom half of the gird" like we did for the previous theorem.

Example:
A1 A6 A5

A7 A8 A2

A9 A10

A0

�
�
��	
�

�
�
��	
�

............	
�

............	
�

............	
�

@
@
@@R�

@
@
@@R
�

............R
�

@
@
@@R
�

............R
�

............R
�

The result we want follows by the transitivity of !�. 2

Lemma [Erased] 7.5.4 (Kind Preservation)

1. If <=A::K> � <=A0::K 0> then K = K 0
.

2. <=A::K> � <K 0> is impossible.

Proof: Applying Theorem 7.5.3 shows that the two sides of each conversion have a
common reduct. Repeated application of Lemma 7.4.15 places requirements on the form

the common reduct can have. In the �rst case, the common reduct must be a transparent

type whose kind is the same as both K and K 0. Hence, K must equal K 0. In the second

case, the conversion is impossible because it would require the common reduct to be both

a transparent and an opaque type at the same time. 2
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7.6 Subject Reduction

In this section I prove subject reduction for constructors. Because I have not yet shown

that all sub-constructors of a constructor are valid (in particular, tags are not yet shown

to be valid), I have to do this via a series of steps. First I prove the propositions needed

to show that �- or �-reducing an entire valid constructor with no reduction of any sub-

constructors results in a valid constructor:

Lemma [Tagged] 7.6.1 (Substitutions on assignments)

Let � be a place or constructor substitution. Then:

1. dom(��) = dom(�)

2. �(�1; �2) = (��1); (��2)

3. If �::K 2 � then �::K 2 ��.

4. If x:A 2 � then x:(�A) 2 ��.

Proof: The �rst two parts are shown by structural induction on � and �2 respectively.
For the last two parts, �rst show by structural induction that:

�(�;D1; : : : ;Dn) = ��; �D1; : : : ; �Dn

The desired results then follow from this plus the facts that �(�::K) = �::K and
�(x:A) = x:(�A). 2

Theorem [Tagged] 7.6.2 (Validity of constructor substitution)

Suppose � ` A :: K. Then:

1. If ` �;�::K; �0 valid then ` �; [A=�]�0 valid.

2. If �;�::K; �0 ` A0 :: K 0
then �; [A=�]�0 ` [A=�]A0 :: K 0

.

3. If �;�::K; �0 ` x�) A0 then �; [A=�]�0 ` x�) [A=�]A0.

4. If �;�::K; �0 ` A1 = A2 :: K
0
then �; [A=�]�0 ` [A=�]A1 = [A=�]A2 :: K

0
.

Proof: By simultaneous structural induction on the derivations. Example cases:

DECL-T: Given ` �; �::K; �00; x:A0 valid derived via rule DECL-T from
�; �::K; �00 ` A0 :: 
 and x 62 dom(�; �::K; �00). By the induction hypothesis, we

have that �; [A=�]�00 ` [A=�]A0 :: 
. By Lemma 6.8.2, dom(�; �::K; �00) = dom(�)[
f�g[dom(�00) so we have that x 62 dom(�) and x 62 dom(�00). Since by Lemma 7.6.1,
dom([A=�]�00) = dom(�00), we have that x 62 dom(�; [A=�]�00). Hence, by rule

DECL-T, we have that ` �; [A=�]�00; x:A0 valid.
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C-VAR I: Given �;�::K; �0 ` � :: K 0 derived via rule C-VAR from ` �;�::K; �0 valid and

�::K 0 2 �;�::K ; �0. By Lemma 6.8.11, K = K 0. By the induction hypothesis,

we have that ` �; [A=�]�0 valid. By weakening (Theorem 6.8.10), we have that

�; [A=�]�0 ` A :: K ) �; [A=�]�0 ` [A=�]� :: K 0.

C-VAR II: Given �; �::K; �0 ` �0 :: K 0, � 6= �0, derived via rule C-VAR from

` �; �::K; �0 valid and �0::K 0 2 �;�::K; �0. By Lemma 7.6.1, �0::K 0 2 �; [A=�]�0.

By the induction hypothesis, we have that ` �; [A=�]�0 valid. Hence, by rule C-

VAR and the fact that [A=�]�0 = �0,

�; [A=�]�0 ` [A=�]�0 :: K 0.

P-INIT: Given �; �::K; �0 ` x) A0 derived via rule P-INIT from ` �; �::K; �0 valid and
x:A0 2 �; �::K; �0. Applying the induction hypothesis gives us that ` �; [A=�]�0 valid.
By Lemma 7.6.1, x:[A=�]A0 2 [A=�]�; [A=�]�0. By repeated use of Lemma 6.8.3,
we have that ` �; �::K valid ) � 62 FCV(�) (Theorem 6.8.8) ) [A=�]� = �
(Lemma 7.3.9) ) x:[A=�]A0 2 �; [A=�]�0. From these results, the desired result

follows via the P-INIT rule.

P-MOVE: Given �; �::K; �0 ` x��0 ) A3 derived via rule P-MOVE from

�; �::K; �0 ` x�) A1, �; �::K; �0 ` A1 = A2 :: 
, and A3 = S(A2; x�; �
0). Apply-

ing the induction hypothesis gives us that �; [A=�]�0 ` x�) [A=�]A1 and
�; [A=�]�0 ` [A=�]A1 = [A=�]A2 :: 
. By Lemma 7.3.10, [A=�]A3 =
[A=�]S(A2; x�; �

0) = S([A=�]A2; x�; �
0). From these results, the desired result fol-

lows via the P-MOVE rule.

E-ETA: Given �; �::K; �0 ` ��0::K 0: A0 �0 = A0 :: K 0)K 00 derived via rule E-ETA from
�; �::K; �0 ` A0 :: K 0)K 00 and �0 62 FCV(A0). WLOG, assume �0 6= � and �0 62
FCV(A). By the induction hypothesis, we have that �; [A=�]�0 ` [A=�]A0 :: K 0)K 00.
By Lemma 6.8.6, FCV([A=�]A0) � FCV(A)[(FCV(A0)�f�g)) �0 62 FCV([A=�]A0).
The desired result follows via the E-ETA rule.

2

Lemma [Tagged] 7.6.3 (Kind inhabitation) If ` � valid and K is any kind then 9A
such that � ` A :: K.

Proof: De�ne K as:

 = <
>

K1)K2 = ��::K1:K2

Then show by structural induction on K that � ` K :: K. 2
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Corollary [Tagged] 7.6.4 (Strengthening)

If �; �::K ` A :: K 0
and � 62 FCV(A) then � ` A :: K 0

.

Proof: By Lemma 6.8.3, ` � valid. Apply Lemma 7.6.3 to K to get K such that

� ` K ::K . Then apply Theorem 7.6.2 with � = �, �0 = �, A = K , K = K , and

K 0 = K 0 to get � ` [K=�]A :: K 0. Since � 62 FCV(A), we have that [K=�]A = A by

Lemma 7.3.9. This gives us the desired result. 2

Second, I use these results and the previous section's kind preservation result to prove

that equal constructors are valid constructors. (This result is needed to show that place

lookup produces valid constructors and hence tags of valid constructors are valid.)

Lemma [Tagged] 7.6.5 If � ` x�A�
0! :: K then

1. � ` x�) A is a sub-derivation.

2. � ` x��0 ) A0 where A0 has either the form <K> or the form <=A00::K> for some

A00

Proof: By inspection of the only two rules (C-EXT-O2 and C-EXT-T2) capable of
deriving � ` x�A�

0! :: K. 2

Lemma [Mixed] 7.6.6 If � ` x�) A, where � = :i1: � � � :in, (n � 0) then 9B0; B
0
0; B1; B

0
1;

: : : ; Bn such that:

1. B0 = �(x)�

2. B0
j � Bj (0 � j < n)

3. Bj+1 = S(B0
j; x:i1 � � � :ij; :ij+1) (0 � j < n)

4. Bn � A�

(Here A's are tagged constructors and B's are erased constructors.)

Proof: By structural induction on the derivation of � ` x�) A. The base case is
handled using Theorem 6.8.11 to show that x:A 2 � ) A = �(x) and the fact that con-

version is re
exive by de�nition. The inductive case is handled using Corollary 7.3.5 and

Corollary 7.4.7 (to turn the equality judgment into an erased conversion), Lemmas 7.4.5
and 7.4.13 (to turn multiple-step path selections into erased staged single-step selections),
and the properties of conversion (to turn a possibly empty series of conversions into a

single one). 2
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Lemma [Erased] 7.6.7 If A � A0 and both S(A;x�; �0) and S(A0; x�; �0) exist then

S(A;x�; �0) � S(A0; x�; �0).

Proof: By Theorem 7.5.3, A and A0 have a common reduct. By repeated use of paral-

lelism II (theorem 7.4.17), this means that S(A;x�; �0) and S(A0; x�; �0) have a common

reduct; hence they convert. 2

Theorem [Tagged] 7.6.8 If � ` x�) A1 and � ` x�) A2 then A�1 � A�2.

Proof: First apply Lemma 7.6.6 to both � ` x�) A1 and � ` x�) A2 then apply

Lemma 7.6.7 as many times as needed. 2

Theorem [Tagged] 7.6.9 (Replacement with an equal type)

Suppose � ` A1 = A2 :: 
 and � ` A2 :: 
. Then:

1. If ` �; x:A1; �
0
valid then ` �; x:A2; �

0
valid.

2. If �; x:A1; �
0 ` A :: K then �; x:A2; �

0 ` A :: K.

3. If �; x:A1; �
0 ` x0�) A then �; x:A2; �

0 ` x0�) A.

4. If �; x:A1; �
0 ` A = A0 :: K then �; x:A2; �

0 ` A = A0 :: K.

Proof: By simultaneous structural induction on the derivations. Interesting cases:

DECL-T I: Given ` �; x:A1 valid derived via DECL-T from � ` A1 :: 
 and x 62 dom(�).
The desired result, ` �; x:A2 valid follows immediately from the precondition that

� ` A2 :: 
 via the DECL-T rule.

P-INIT I: Given �; x:A1; �
0 ` x) A derived via rule P-INIT from ` �; x:A1; �

0 valid and

x:A 2 (�; x:A1; �
0). By applying the induction hypothesis, we have that

` �; x:A2; �
0 valid. By rule P-INIT then, �; x:A2; �

0 ` x) A2. By applying weak-

ening to the equality precondition (theorem 6.8.10), we have that

�; x:A2; �
0 ` A1 = A2 :: 
. Then, by applying E-SYM, we have that

�; x:A2; �
0 ` A2 = A1 :: 
. By lemma 6.8.11, we have that A = A1. Thus, by

P-MOVE, we have that �; x:A2; �
0 ` x) A.

2

Theorem [Tagged] 7.6.10 (Validity of equal constructors)

If � ` A1 = A2 :: K then � ` A1 :: K and � ` A2 :: K.
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Proof: By structural induction on the typing derivation. Example cases:

E-DFUN: Given � ` �x:A1: A2 = �x:A01: A
0
2 :: 
 derived via rule E-DFUN from

� ` A1 = A01 :: 
 and �; x:A1 ` A2 = A02 :: 
. Applying the induction hypothesis

gives us that � ` A01 :: 
, �; x:A1 ` A2 :: 
, and �; x:A1 ` A
0
2 :: 
. Applying Theo-

rem 7.6.9, we get that �; x:A01 ` A
0
2 :: 
. Applying rule C-DFUN twice then gives

us the desired results.

E-BETA: Given � ` (��::K:A)A0 = [A0=�]A :: K 0 derived via rule E-BETA from

�; �::K ` A :: K 0 and � ` A0 :: K. By using rules C-LAM and C-APP, we have

that � ` (��::K:A)A0 :: K 0. By Theorem 7.6.2, � ` [A0=�]A :: K 0.

E-ETA: Given � ` ��::K:A� = A :: K)K 0, � 62 FCV(�) (WLOG), derived via rule E-
ETA from � ` A :: K)K 0 and � 62 FCV(A). By Lemma 6.8.3, ` � valid. Hence,
by rules C-VAR and DECL-C, �; �::K ` � :: K. By weakening (Theorem 6.8.10),
�; �::K ` A :: K)K 0. Hence, by rules C-APP and C-LAM, � ` ��::K:A� :: K)K 0.

E-EXT2: Given � ` x�A1

�0�00! = x��0A2

�00! :: K derived via rule E-EXT2 from
� ` x�A1

�0�00! :: K, � ` A1 = A :: 
, and S(A;x�; �0) = A2. By Lemma 7.6.5,

we have that � ` x�) A1 and � ` x��0�00 ) A0 where A0 has either the form
<K> or the form <=A00::K> for some A00. By P-MOVE then, � ` x��0 ) A2.

Thus, by C-EXT-O2 or C-EXT-T2 (depending on the form of A00), we have that
� ` x��0A2

�00! :: K.

E-ABBREV2: Given � ` x�A! = A0 :: K derived via rule E-ABBREV2 from � ` x�A! :: K and
� ` A = <=A0::K 0> :: 
. Applying the induction hypothesis gives us that

� ` <=A0::K 0> :: 
 and hence (only rule C-TRANS can apply) that � ` A0 :: K 0.
By Lemma 7.6.5, we have that � ` x�) A and � ` x�) A00 where A00 has ei-
ther the form <K> or the form <=A000::K> for some A000. By rule P-MOVE,

� ` x�) <=A0::K 0>. By Theorem 7.6.8, this implies that <=A0�::K 0> � A00�

where A00� is either <K> or <=A000�::K>. By Lemma 7.5.4, this implies that
K = K 0.

2

The following theorem, which will be needed for deciding constructor validity, also

follows from the kind preservation results:

Theorem [Tagged] 7.6.11 (Uniqueness of constructor kind)

If � ` A :: K1 and � ` A :: K2 then K1 = K2.

Proof: By structural induction on A. Example cases:



CHAPTER 7. TYPES: CONFLUENCE 115

Var: Here A = �. The only applicable rule is C-VAR so we must have that �::K1 2 �

and �::K2 2 �. By Lemma 6.8.3 and Theorem 6.8.11, K1 = K2.

Lam: Here A = ��::K:A0. The only applicable rule is C-LAM. Applying the induction

hypothesis, gives us that �; �::K ` A0 ::K 0 for exactly one K 0. Hence, by C-LAM,

K1 = K2 = K)K 0.

Ext: Here A = x�A
0�0!. By Lemma 7.6.5, � ` x��0 ) A1 and � ` x��0 ) A2 where the

Ai's each have either the form <K i> or the form <=A0i::K i> for some A0i. By

Theorem 7.6.8, A�1 � A�2. Hence, by kind preservation (Lemma 7.5.4), K1 = K2.

2

Third, I show that selection as used in place lookup results in valid constructors:

Theorem [Tagged] 7.6.12 (Validity of place substitution)

Suppose � ` x�) A0. Then:

1. If ` �; x0:A0; �0 valid then ` �; [x�=x0]�0 valid.

2. If �; x0:A0; �0 ` A :: K then �; [x�=x0]�0 ` [x�=x0]A :: K.

3. If �; x0:A0; �0 ` x00�00 ) A then �; [x�=x0]�0 ` [x�=x0]x00�00 ) [x�=x0]A.

4. If �; x0:A0; �0 ` A1 = A2 :: K then �; [x�=x0]�0 ` [x�=x0]A1 = [x�=x0]A2 :: K.

Proof: By simultaneous structural induction on the typing derivations. Example cases:

DECL-T I: Given ` �; x0:A0; �0; x00:A valid derived via rule DECL-T from
�; x0:A0; �0 ` A :: 
 and x00 62 dom(�; x0:A0; �0) = dom(�) [ fx0g [ dom(�0) by
Lemma 6.8.2. By Theorem 6.8.3, ` �; x0:A0; �0 valid. Applying the induction hy-

pothesis then gives us that �; x0:A0; �0 ` A :: 
 and

�; [x�=x0]�0 ` [x�=x0]A :: 
. Since by Lemma 7.6.1, dom([x�=x0]�0) = dom(�0), we
have that x00 62 dom(�; [x�=x0]�0). Thus, by DECL-T, we have that
` �; [x�=x0]�0; x00:[x�=x0]A valid.

C-VAR: Given �; x0:A0; �0 ` � :: K derived via C-VAR from ` �; x0:A0; �0 valid and �::K 2
(�; x0:A0; �0). Applying the induction hypothesis gives us that ` �; [x�=x0]�0 valid.

By Lemma 7.6.1, we have that �::K 2 �; [x�=x0]�0. The desired result then follows

via the C-VAR rule.
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C-EXT-O2: Given �; x0:A0; �0 ` x00�0A�
00! :: K derived via C-EXT-O2 from

�; x0:A0; �0 ` x00�0�00 ) <K> and �; x0:A0; �0 ` x00�0 ) A. Applying the induction

hypothesis gives us that �; [x�=x0]�0 ` [x�=x0]x00�0�00 ) <K> and

�; [x�=x0]�0 ` [x�=x0]x00�0 ) [x�=x0]A. The desired result then follows via the C-

EXT-O2 rule since [x�=x0]x00�0A�
00! = ([x�=x0]x00�0)

[x�=x0]A�
00! and [x�=x0]x00�0�00 =

([x�=x0]x00�0)�00 by Lemma 6.5.1.

P-INIT I: Given �; x0:A0; �0 ` x0 ) A derived via rule P-INIT from ` �; x0:A0; �0 valid and

x0:A 2 (�; x0:A0; �0). By repeated use of Lemma 6.8.3, we have that ` �; x0:A0 valid

) � ` A0 :: 
 and x0 62 dom(�) (DECL-T). By Theorem 6.8.5, FTV(A0) � dom(�)

) x0 62 FTV(A0) ) [x�=x0]A0 = A0 (Theorem 7.3.9). By Lemma 6.8.11, A = A0.

Applying the induction hypothesis gives us that ` �; [x�=x0]�0 valid. By applying

weakening (Theorem 6.8.10) to the precondition, we get that �; [x�=x0]�0 ` x�) A0.
Hence, �; [x�=x0]�0 ` [x�=x0]x0 ) [x�=x0]A. as desired.

P-INIT II: Given �; x0:A0; �0 ` x00 ) A, x00 6= x0, derived via rule P-INIT from

` �; x0:A0; �0 valid and x00:A 2 (�; x0:A0; �0). Applying the induction hypothesis
gives us that ` �; [x�=x0]�0 valid. By Lemma 7.6.1, x00:[x�=x0]A 2
([x�=x0]�; x0:[x�=x0]A0; [x�=x0]�0). By repeated use of Lemma 6.8.3, we have that
` �; x0:A0 valid and ` � valid) x0 62 dom(�) (DECL-T). By Theorem 6.8.5, FTV(�)
� dom(�)) x0 62 FTV(�)) [x�=x0]� = � (Theorem 7.3.9). Hence, x00:[x�=x0]A 2
�; [x�=x0]�0. The desired result then follows via the P-INIT rule.

E-BETA: By use of the induction hypothesis plus Lemma 7.3.10.

E-ETA: By use of the induction hypothesis plus Lemma 6.8.6.

E-EXT2: Given �; x0:A0; �0 ` x00�0A1

�00�000! = x00�0�00A2

�000! :: K derived via rule E-EXT2 from

�; x0:A0; �0 ` x00�0A1

�00�000! :: K, �; x0:A0; �0 ` A1 = A :: 
, and S(A;x00�0; �00) = A2.
Applying the induction hypothesis gives us that

�; [x�=x0]�0 ` ([x�=x0]x00�0)
[x�=x0]A1

�00�000! :: K and

�; [x�=x0]�0 ` [x�=x0]A1 = [x�=x0]A :: 
. By Lemma 7.3.12, [x�=x0]A2 =

[x�=x0]S(A;x00�0; �00) = S([x�=x0]A; [x�=x0]x00�0; �00). The desired result then follows
via the E-EXT2 rule.

2

Theorem [Tagged] 7.6.13 (Validity of selection)

Suppose � ` x�) A, � ` A :: 
, and S(A;x�; �0) = A0. Then

1. � ` A0 :: 
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2. � ` x��0 ) A0

Proof: By structural induction on �0:

Base: Given � ` x�) A, � ` A :: 
, and S(A;x�; �) = A0 = A (�0 = �). The desired

results follow from this immediately.

Fst: Given � ` x�) A, � ` A :: 
, and S(A;x�; �0:1) = A0. By Lemma 6.8.1,

S(A;x�; �0:1) = S(S(A;x�; �0); x��0; :1). LetA00 = S(A;x�; �0). Since S(A00; x��0; :1)
exists and equals A0, A00 must have form �x0:A0: A2 for some A2. Applying the in-

duction hypothesis gives us that � ` x��0 ) A00 and � ` �x0:A0: A2 :: 
) � ` A0 :: 

(C-DSUM). By E-REFL, � ` A00 = A00 :: 
, so by P-MOVEwe have � ` x��0:1) A0.

Snd: Given � ` x�) A, � ` A :: 
, and S(A;x�; �0:2) = A0. By Lemma 6.8.1,
S(A;x�; �0:2) = S(S(A;x�; �0); x��0; :2). LetA00 = S(A;x�; �0). Since S(A00; x��0; :2)
exists and equals A0, A00 must have form �x0:A1: A2 for some A1 and A2 where
[x��0:1=x0]A2 = A0. Applying the induction hypothesis gives us that � ` x��0 ) A00

and � ` �x0:A1: A2 :: 
 ) � ` A1 :: 
 and �; x0:A1 ` A2 :: 
 (C-DSUM). By E-

REFL, � ` A00 = A00 :: 
 and � ` A1 = A1 :: 
, so by P-MOVE we have
� ` x��0:1) A1 and � ` x��0:2) A0. By Theorem 7.6.12, we have that
� ` [x��0:1=x0]A2 :: 
.

2

Fourth, I show from this result and the validity of equals result that the result of
looking up a place is valid and hence that tags of valid constructors are valid:

Theorem [Tagged] 7.6.14 (Validity of looked up places)

If � ` x�) A then � ` A :: 
.

Proof: By structural induction on the typing derivation:

P-INIT: Given � ` x) A derived via rule P-INIT from ` � valid and x:A 2 �. By
Lemma 6.8.11, � ` A :: 
.

P-MOVE: Given � ` x��0 ) A00 derived via rule P-MOVE from � ` x�) A,

� ` A = A0 :: 
, and S(A0; x�; �0) = A00. By Theorem 7.6.10, � ` A0 :: 
. By P-

MOVE, � ` x�) A0. Hence, by Theorem 7.6.13, � ` A00 :: 
.

2

Theorem [Tagged] 7.6.15 (Validity of tags)

If � ` x�A�
0! :: K then � ` A :: 
.
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Proof: By Lemma 7.6.5, � ` x�) A. By Theorem 7.6.14, � ` A :: 
. 2

Finally, I use the previous results to show subject reduction:

Theorem [Tagged] 7.6.16 (Partial correctness II)

If � ` A :: K and A! A0 then � ` A = A0 ::K .

Proof: By structural induction on the derivation of A! A0. Example cases:

R-DFUN: Given �x:A1: A2 ! �x:A01: A
0
2 derived via rule R-DFUN from A1 ! A01 and

A2 ! A02 as well as � ` �x:A1: A2 :: 
 ) � ` A1 :: 
 and �; x:A1 ` A2 :: 
 (C-

DFUN). Applying the induction hypothesis gives us that � ` A1 = A01 :: 
 and

�; x:A1 ` A2 = A02 :: 
. Hence, by E-DFUN, � ` �x:A1: A2 = �x:A01: A
0
2 :: 
.

R-EXT: Given x�A1

�0�00!! x��0A2

�00! derived via rule R-EXT fromA1 ! A and S(A;x�; �0) =
A2 as well as � ` x�A1

�0�00! :: K. By Theorem 7.6.15, � ` A1 :: 
. Applying the
induction hypothesis then gives us that � ` A1 = A :: 
. The desired result then
follows via the E-EXT2 rule.

R-BETA: Given (��::K:A1)A2 ! [A02=�]A
0
1 derived via rule R-BETA from A1 ! A01 and

A2 ! A02 as well as � ` (��::K:A1)A2 :: K
0 ) � ` ��::K:A1 :: K)K 0 and

� ` A2 :: K (C-APP) ) �; �::K ` A1 :: K
0 (C-LAM). Applying the induction hy-

pothesis then gives us that �; �::K ` A1 = A01 :: K
0 and � ` A2 = A02 :: K. Hence

by E-LAM and E-APP, � ` (��::K:A1)A2 = (��::K:A01)A
0
2 :: K

0. By Theorem 7.6.10,
�; �::K ` A01 :: K

0 and � ` A02 :: K. The desired result then follows via the E-BETA
and E-TRAN rules.

R-ETA: Given ��::K:A�! A0 derived via rule R-ETA from A! A0 and � 62 FCV(A) as
well as � ` ��::K:A� :: K)K 0 ) �; �::K ` A� :: K 0 (C-LAM)
) �; �::K ` A :: K)K 0 (C-APP). By Corollary 7.6.4, � ` A :: K)K 0. The de-
sired result then follows via the E-ETA rule.

R-ABBREV: Given x�A! ! A0 derived via rule R-ABBREV from A ! <=A0::K 0> as well as
� ` x�A! :: K. By Theorem 7.6.15, � ` A :: 
. Applying the induction hypothesis
then gives us that � ` A = <=A0::K 0> :: 
. The desired result then follows via the

E-ABBREV2 rule.

2

Corollary [Tagged] 7.6.17 (Subject reduction)

If � ` A :: K and A! A0 then � ` A0 :: K.

Proof: By Theorem 7.6.16, � ` A = A0 ::K . By Theorem 7.6.10, � ` A0 :: K. 2
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7.7 Con
uence

A constructor context C is a constructor with a single hole, written []:

Contexts C ::= [] j �x:C:A j �x:A:C j �x:C:A j �x:A:C j ��::K:C j
C A j AC j <=C::K> j x�C�

0!

The hole in C may be �lled by a constructor A, written C[A], by replacing the hole

with A, incurring capture of free variables in A that are bound at the occurrence of the

hole. For example, if C = ��::
:�x:<=�::
>: [] , and A = x
<=�::
>

!, then C[A] =

��::
:�x:<=�::
>:x
<=�::
>

!. The variables that are bound at the hole of a context

are said to be exposed (to capture) by that context. I shall write ECV(C) for the exposed
constructor variables and ETV(C) for the exposed term variables of a context.

Type checking is compositional in the sense that if a constructor is valid, then so are
all its sub-constructors:

Lemma [Tagged] 7.7.1 (Decomposition)

Suppose that � ` C[A] :: K such that ETV(C)\dom(�) = ; and ECV(C)\dom(�) = ;.1

Then there exists �0 and K 0
such that:

� dom(�0) = ECV(C) [ ETV(C)

� �; �0 ` A :: K 0

Proof: By structural induction on C. Example cases:

DFUN I: GivenC = �x:[]: A2, � ` �x:A:A2 :: 
, ETV(C) = ;\dom(�) = ;, and ECV(C) =
; \ dom(�) = ; ) ECV(C) [ ETV(C) = ; and � ` A :: 
 (C-DFUN). Thus, it

su�ces to let �0 = � and K 0 = 
.

DFUN II: Given C = �x:A1: [], � ` �x:A1: A :: 
, ETV(C) = fxg \ dom(�) = ;, and
ECV(C) = ; \ dom(�) = ;. ) x 62 dom(�) and ECV(C) [ ETV(C) = fxg
and �; x:A1 ` A :: 
 (C-DFUN). Thus, it su�ces to let �0 = �; x:A1 and K 0 = 
.

EXT: Given C = x�[]�
0!, � ` x�A�

0! :: K, ETV(C) = ; \ dom(�) = ;, and ECV(C) =

; \ dom(�) = ; ) ECV(C) [ETV(C) = ;. By Theorem 7.6.15, � ` A :: 
. Thus,

it su�ces to let �0 = � and K 0 = 
.

2

1The conditions on the exposed variables can always be satis�ed by alpha-renaming C[A]

appropriately.
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Theorem [Tagged] 7.7.2 (Diamond property)

If � ` A :: K, A! A1, and A! A2 then 9A3 such that A1 ! A3 and A2 ! A3.

Proof: The proof is very similar to that of that for the erased system (Theorem 7.5.1),

with the tagged rather than erased versions of the various lemmas and theorems being

used. Lemma 7.7.1 is used to establish the validity of the various sub-constructors so

that the induction hypothesis can be applied. Only one case requires di�erent handling

because of the presence of kind labels in lambdas:

� LAM;BETA (R) vs. ETA (WLOG � 6= �0; � 62 FCV(A))

��::K: (��0::K 0: A)�

��::K: [�=�0]A1 A2

A3

�
�
�	

R @
@
@@R

ETA

...........R	

............	�

��0::K 0: A

��0::K 0: A1 A2

A3

............	

LAM @
@
@@R

............R	 (IH)

............	 � (IH)

Here, ��0::K 0: A ! ��0::K 0: A1 follows via the R-LAM rule from the given (not
shown) A! A1. We are given that � ` ��::K: (��0::K 0: A)� :: K)K 00 )
�; �::K ` (��0::K 0: A)� :: K 00 (C-LAM)) �; �::K ` ��0::K 0: A :: K)K 00 (C-APP

and C-VAR) ) K = K 0 (C-LAM). Since � 62 FCV(A1) (by the reduct variables
lemma), ��0::K 0: A1 = ��0::K:A1 = ��::K: [�=�0]A1 (two constructors are consid-
ered the same if they are related by �-conversion).

2

Corollary [Tagged] 7.7.3 (Con
uence)

If � ` A :: K, A!� A1, and A!� A2 then 9A3 such that A1 !� A3 and A2 !� A3.

Proof: Same proof as for the erased version (Theorem 7.5.2) except that the tagged

rather than erased version of the diamond property is used and subject reduction (Corol-
lary 7.6.17) is used to establish the validity precondition of the diamond property for the

tagged system. 2

7.8 Equality

Now that I have con
uence, I can complete the proof that the rewriting relation imple-

ments equality:
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Lemma [Tagged] 7.8.1 If � ` x�A�
0! :: K and � ` A = A0 :: 
 then

� ` x�A
0�0! :: K.

Proof: By Lemma 7.6.5, � ` x�) A and � ` x��0 ) A0 where A0 has either the form

<K> or the form <=A00::K> for some A00. By P-MOVE, � ` x�) A0. Hence by C-

EXT-O2 or C-EXT-T2, depending on the form of A00, the desired result follows. 2

Theorem [Tagged] 7.8.2 If � ` A = A0 :: K then 9A0; A1; : : : ; An, n � 0, such that:

1. A = A0

2. A0 = An

3. � ` Ai = Ai+1 :: K for 0 � i < n

4. Ai *) Ai+1 for 0 � i < n

Proof: By structural induction on the typing derivation. Example cases:

SYM: Apply the induction hypothesis then use the E-SYM rule repeatedly to reverse all
the equality judgments. Since bi-directional rewriting is symmetric, reversing the

sequence of types obtained from the induction hypothesis then yields the desired
sequence.

TRAN: Apply the induction hypothesis twice then place the two resulting sequences side
by side so that A0 is in the middle.

DFUN: Apply the induction hypothesis twice getting sequences A00; : : : ; A
0
m from

� ` A00 = A0m :: 
 and A000; : : : ; A
00
r from �; x:A00 ` A

00
0 = A00r :: 
. By Theorem 7.6.10,

� ` A0i :: 
 for 0 � i � m and �; x:A00 ` A
00
r :: 
. Hence, by E-REFL, � ` A

0
0 = A00 :: 


and �; x:A00 ` A
00
r = A00r :: 
. By repeated use of the replacement with an equal type

theorem (Theorem 7.6.9) then, �; x:A0i ` A
00
r = A00r :: 
 for 0 � i < m. The desired

sequence is then �x:A00: A
00
0; : : : ;�x:A

0
0: A

00
r ;�x:A

0
1: A

00
r ; : : : ;�x:A

0
m: A

00
r . E-DFUN is

used connect them with equality judgments and R-DFUN and R-REFL to connect

them with bi-directional rewriting.

BETA: Let n = 1. A0 ! A1 via R-BETA and R-REFL.

EXT2: Applying the induction hypothesis gives the sequenceA00; : : : ; A
0
m from � ` A1 = A :: 
.

By Lemma 7.8.1, � ` x�A0

i

�0�00! :: K for 0 � i � m. The desired sequence is then

x�A0

0

�0�00!, : : : , x�A0

m

�0�0!, x��0A2

�00!. E-EXT2 is used connect them with equality

judgments and R-EXT2 plus R-REFL to connect them with bi-directional rewrit-

ing.
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ABBREV2: Applying the induction hypothesis gives the sequence A00; : : : ; A
0
m from

� ` A = <=A0::K 0> :: 
. By Lemma 7.8.1, � ` x�A0

i

! :: K for 0 � i � m. The

desired sequence is then x�A0

0

!, : : : , x�A0

m

!, A0. E-EXT2 plus E-ABBREV2 and E-

REFL are used connect themwith equality judgments and R-EXT plus R-ABBREV

and R-REFL to connect them with bi-directional rewriting.

2

Theorem [Tagged] 7.8.3 (Church-Rosser)

If n � 0, � ` Ai :: K for 0 � i � n, and Ai *) Ai+1 for 0 � i < n then A0 #� An.

Proof: Same basic proof as for the erased version (Theorem 7.5.3) except that the
tagged rather than erased version of con
uence is used and subject reduction (Corol-

lary 7.6.17) is used to establish the validity precondition for tagged con
uence. 2

Corollary [Tagged] 7.8.4 (Partial Correctness III)

If � ` A = A0 :: K then A #� A0.

Proof: Apply Theorem 7.8.2 followed by Theorem 7.8.3. 2

Theorem [Tagged] 7.8.5 (Full correctness)

� ` A1 = A2 :: K i� all of the following:

1. � ` A1 :: K

2. � ` A2 :: K

3. A1 #� A2

Proof: The forward direction is handled by validity of equals (Theorem 7.6.10) and
Corollary 7.8.4. The backwards direction is handled by repeated use of Theorem 7.6.16

and Theorem 7.6.10 followed by repeated use of E-TRAN, E-SYM, and E-REFL. 2

An immediate corollary of this result is strengthening (removal of unreferenced dec-

larations from an assignment) for equality:

Corollary [Tagged] 7.8.6 (Strengthening)

If �1; x:A; �2 ` A1 = A2 :: K, �1; �2 ` A1 :: K, and �1; �2 ` A2 :: K then

�1; �2 ` A1 = A2 :: K.
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Proof: Follows immediately from Theorem 7.8.5. 2

Combining the equality implementation result with shape preservation

(Lemma 7.3.7) gives two important results about the properties of equality:

Lemma [Tagged] 7.8.7 (Equality of forms)

Suppose � ` A1 = A2 :: K and A2 has neither the form A02A
00
2, A

0
2 62 fref; recg, the form

x�1A
0

1

�2!, nor the form ��::K:A01. Then

1. If A1 has one of the forms �, <K>, rec, or ref then A1 = A2.

2. If A1 has the form �x:A01: A
00
1 then A2 has the form �x:A02: A

00
2.

3. If A1 has the form �x:A01: A
00
1 then A2 has the form �x:A02: A

00
2.

4. If A1 has the form <=A01::K> then A2 has the form <=A02::K>.

5. If A1 has the form refA01 then A2 has the form refA02.

6. If A1 has the form recA01 then A2 has the form recA02.

Proof: By Theorem 7.8.5, A1 #� A2 ) 9A such that A1 !� A and A2 !� A. By
Lemma 7.3.7, A must have the same form as A1. Moreover, by the same lemma, since

all remaining forms possible for A2 are preserved by rewriting, this means that A2 can
only have the same form as A (and hence, A1). 2

Lemma [Tagged] 7.8.8 (Component-wise equality)

1. If � ` �x:A1: A2 = �x:A01: A
0
2 :: 
, x 62 dom(�), then

� ` A1 = A01 :: 
 and �; x:A1 ` A2 = A02 :: 
.

2. If � ` �x:A1: A2 = �x:A01: A
0
2 :: 
, x 62 dom(�), then

� ` A1 = A01 :: 
 and �; x:A1 ` A2 = A02 :: 
.

3. If � ` <K> = <K 0> :: 
 then K = K 0
.

4. If � ` <=A::K> = <=A0::K 0> :: 
 then

K = K 0
and � ` A = A0 :: K.

5. If � ` refA = refA0 :: 
 then � ` A = A0 :: 
.

6. If � ` recA = recA0 :: 
 then � ` A = A0 :: 
)
.
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Proof: The proofs of each part are similar; we give here only the proof for part

one: Given � ` �x:A1: A2 = �x:A01: A
0
2 :: 
. By Theorem 7.8.5, �x:A1: A2 #� �x:A

0
1: A

0
2,

� ` �x:A1: A2 :: 
, and � ` �x:A01: A
0
2 :: 
) �; x:A1 ` A2 :: 
 and �; x:A01 ` A02 :: 
, (C-

DFUN) and 9A00 such that �x:A1: A2 !� A00 and �x:A01: A
0
2 !

� A00 ) � ` A1 :: 


and � ` A01 :: 
 (Theorem 6.8.3 and DECL-T). Hence, by shape preservation (Lemma 7.3.7),

9A001; A
00
2 such that A

00 = �x:A001: A
00
2, A1 !� A001, A

0
1 !

� A001, A2 !� A002, and A
0
2 !

� A002. By

Theorem 7.8.5 and Corollary 7.6.17 then, � ` A1 = A01 :: 
, �; x:A1 ` A2 = A002 :: 
, and

�; x:A01 ` A
0
2 = A002 :: 
) �; x:A1 ` A

0
2 = A002 :: 
 (Theorem 7.6.9)) �; x:A1 ` A2 = A02 :: 


(E-TRAN). 2



Chapter 8

Types: Canonicalization

In this chapter, I show how to compute normal forms for valid tagged constructors and
how to decide all tagged judgments. These results, once transfered back to the original

untagged system (see the next chapter), will be crucial in proving the (semi)-decidability
of subtyping (and hence type checking in general). All constructors, assignments, etc.,
in this chapter are tagged unless stated otherwise.

8.1 Normal Forms

De�nition [Tagged] 8.1.1 (Normal form)

A is in normal form for rewriting relation R (often written R-normal form or just normal

form if the rewriting relation is the full one) i� 6 9A0: A!1
R A0.

If A!�
R A0 and A0 is in R-normal form, then A0 is said to be a R-normal form for A

and A is said to be R-normalizing. If all reduction sequences starting from A using !1
R

eventually lead to a R-normal form, then A is said to be strongly R-normalizing:

De�nition [Tagged] 8.1.2 (Strong normalization)

A is strongly normalizing under R-reduction i� there are no in�nite reduction sequences

starting from A using !1
R (i.e., A!1

R A1 !1
R A2 !1

R A3 : : :).

(I am using!1
R instead of!R here to rule out steps, such as that generated by R-REFL,

which leave the constructor unchanged.)

One advantage of normal forms is that they allow checking for a common reduct to
be reduced to an easier check for identity (modulo �-conversion):

Lemma [Tagged] 8.1.3 If A1 and A2 are both in normal form then A1 #� A2 i� A1 =

A2.

125
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Proof: By the de�nition of a common reduct, A1 #� A2 i� 9A. A1 !� A and A2 !� A.

Since Ai is in normal form, Ai !� A0i implies that Ai = A0i. Hence, A1 #� A2 i� 9A.
A1 = A and A2 = A ) A1 #� A2 i� A1 = A2. 2

This fact when combined with the implementing equality result from the previous chapter

means that I can check that � ` A1 = A1 :: K by checking that 8i: � ` Ai ::K and that

A1 and A2 have the same normal form.

Another similar advantage of normal forms is that they make searching for construc-

tors equal to a given constructor but with a certain form easy. For example, suppose we

wanted to know if A under � is equal to a constructor of the form <=A1::K> for some

K and A1, given � ` A :: 
 and A0 a normal form for A. We can reason as follows:

Assume such a constructor exists. Then, by the implementing equality result, A0 #�

<=A1::K> ) <=A1::K> !� A0 since A0 is in normal form ) A0 must have the form
<=A01::K> for some A01 since rewriting preserves this shape (see Lemma 7.3.7). Thus,
we have that A0 itself must have the form in question i� such an equal constructor
exists. Note that this new condition can be checked by a simple inspection and that the
inspection provides an example of such an equal constructor.

Because my rewriting relation allows only ��- and 
-reductions, a constructor is in
normal form i� it is in both ��- and 
-normal form:

Lemma [Tagged] 8.1.4 If A!1 A0 then 9A00 such that either A!1
�� A

00
or A!1


 A
00
.

Proof: By structural induction on the derivation of A!1 A0. Example cases:

APP: Given A1A2 !1 A01A
0
2 derived via rule R-APP from A1 ! A01 and A2 ! A02. Since

A1A2 6= A01A
0
2, we must have Ai !1 A0i for some i in f1; 2g. Applying the induction

hypothesis gives us that 9A00i such that either Ai !1
�� A

00
i or Ai !1


 A
00
i . The desired

result follows by R-APP and R-REFL. (A00 is either A1A
00
2 or A

00
1 A2.)

EXT I: Given x�A1

�0�00!!1 x��0A2

�00!, �0 6= �, derived via rule R-EXT from A1 ! A01 and

S(A01; x�; �
0) = A2. If A1 = A01 then x�A1

�0�00! !1

 x��

0
A2

�00! via R-EXT and R-

REFL and we are done. Otherwise, A1 !1 A01. Applying the induction hypothesis

gives us that 9A001 such that either A1 !
1
�� A001 or A1 !

1

 A001. By R-EXT then,

either x�A1

�0�00!!1
�� x�A00

1

�0�00! or x�A1

�0�00!!1

 x�A00

1

�0�00!.

ABBREV: Given x�A1

! !1 A01 derived via rule R-ABBREV from A1 ! <=A01::K
0>. If

A1 = <=A01::K
0> then x�A1

! !1

 A01 via R-ABBREV and R-REFL so we are

done. Otherwise, A1 !1 <=A01::K
0>. Applying the induction hypothesis gives us

that 9A001 such that either A1 !1
�� A001 or A1 !1


 A001. Hence, by R-EXT, either
x�A1

!!1

 x�A

00

1

! or x�A1

!!1
�� x�A

00

1

!.
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2

Corollary [Tagged] 8.1.5 If A is in both ��-normal form and 
-normal form then A

is in normal form.

Proof: Assume not. Then 9A0: A!1 A0. Hence, by Lemma 8.1.4, 9A00 such that either
A!1

�� A
00 or A!1


 A
00. But this is impossible because A is in both ��-normal form and


-normal form. 2

8.2 The Method

As with F!, invalid constructors in my system may not be normalizing. For example,
if W = ��::
: (��) (��) then W W is not normalizing because we can apply the step
W W !�� (W W ) (W W ) to sub-constructors of it forever. Thus, in general normaliza-
tion of a constructor in my system will require that the constructor be valid.

In F!, which has only �- and �-reductions, valid constructors are strongly normalizing.

This result can be proved by encoding F!'s kind and constructor levels into the type
and term levels of the simply-typed lambda calculus (�!) and then using the fact that
�! is known to be strongly normalizing for well-typed terms. The same method (see
Section 8.3) can be used to prove that valid constructors in the tagged system are strongly
��-normalizing. Handling normalization for the full rewriting relation is more di�cult.

It is not possible in the tagged system to �rst check that a constructor is valid and then
normalize it by reducing it until it can no longer be reduced any further. The reason
is that validity checking requires checking equality on sub-constructors which in turn
requires normalizing sub-constructors. Accordingly, it is necessary to interleave the tasks
of checking a constructor's validity and computing its normal form in a single algorithm
that returns a normal form only when the constructor is valid. Because constructors can

have at most one kind (Theorem 7.6.11), the algorithm can also return the constructor's

kind when it is valid.
Such an algorithm can be de�ned inductively over (�; A) pairs (� is needed to check

variable references). For example, to handle the case where A = ��:A1: A2, � 62 dom(�),
we can �rst call ourselves recursively on (�; A1) and ((�; �:A1); A2). If A1 or A2 are

found to be invalid or to have kinds other than 
, ��:A1: A2 must be invalid as well.

Otherwise, the desired normal form is ��:A01: A
0
2 (��:A

0
1: A

0
2 is in normal form i� A01 and

A02 are) and the kind of A is 
.
There are two problematic cases. The �rst one is constructor extraction where A =

x�A1

�0!. We need to check that � ` x�) A1 and search for a kind K and constructor

A2 in normal form such that either � ` x��0 ) <K> or � ` x��0 ) <=A2::K>. Only
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if both the check and the search succeed is A valid; in that case A will have kind K and

normal form x��0
<K>

! (if � ` x��0 ) <K>) or A2 (otherwise).

By combining the properties of normal forms with parallelism II (Theorem 7.3.13), it

can be shown that if A0 is a normal form for �(x) then � ` x�) A0 i� S(A0; x; �) exists

and � ` A0 = S(A0; x; �) :: 
. This result allows handling the above questions, as well

as place lookup judgments in general, via questions about equality that can be handled

using the methods of the previous section.

The second problematic case is constructor application where A = A1A2. We can

�rst call ourselves recursively on (�; A1) and (�; A2). A has kind K (and hence is valid)

i� A1 has kind K
0)K and A2 has kind K

0 for some K 0. This condition is easily checked;

�nding a normal form for A when it is valid is more di�cult. The recursive calls will

have given us a normal form for A1 (call it A
0
1) and a normal form for A2 (call it A

0
2).

Hence, A!� A01A
0
2 by R-APP.

Unfortunately, while A01A
0
2 is in 
-normal form, it is not necessarily in ��-normal

form (e.g., consider (��::
: �)<
>). At this point, we do know that A01A
0
2 is a valid

constructor so we could repeatedly ��-reduce it to a ��-normal form. (This process must
terminate since valid constructors are strongly ��-normalizing.) It is not immediately

clear, however, if this procedure works in general because the ��-reductions might enable
new 
-reductions, resulting in a constructor not in 
-normal form.

For example, �-reducing the following constructor enables an 
-reduction:

(��::
)
: x�<=<
>::
>
!)��0::
: �0

This and other such examples are not valid constructors however (the constructor extrac-
tion is invalid because �<=<
>::
> cannot be shown equal to any rei�ed constructor
type) which suggests that there may be some special property of these constructors that

rules out the enabling of new 
-reductions by ��-reductions.
This intuition is in fact correct and can be seen by looking again at discussion of

the �rst problematic case. Notice that we introduce constructor extractions of only the
form x�

<K>
!. I shall call a constructor that contains constructor extractions of only this

form, a constructor in 
-�nal form. Such constructors must trivially be in 
-normal form.

More interestingly, this property is stable under ��-reductions because the constructor
extractions contain no free constructor variables, which could be substituted for by the

��-reductions.
Thus, if we knew that A01 and A02 were in 
-�nal form, we could safely just ��-

normalize their application and return the result as a normal form for A. In order to get

A01 and A02 in 
-�nal form, we need to show that our algorithm returns not just normal
forms but normal forms in 
-�nal form (canonical forms). This result can be established

by using the obvious stronger induction hypothesis when proving the algorithm correct.
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8.3 ��-Normalization

In this section I prove that valid constructors are strongly ��-normalizing and give an

algorithm, using this result, that ��-normalizes valid constructors. I prove the result by

encoding kinds and constructors into �!'s type and term levels respectively and then

taking advantage of �!'s strong normalization property.

The syntax for the �! system is quite simple:

De�nition [�!] 8.3.1 (Syntax)

Types A ::= 
 j A!A0

Terms M ::= x j 	A j �x:A:M jMM 0

Assignments � ::= � j �; x:A

Here, the metavariable x ranges over term variables and 	A denotes an uninterpreted
constant of type A. (I have included the constants solely to make the encoding simpler;
a more complicated proof can be constructed without them.)

The usual conventions apply and we have the usual operators:

De�nition [�!] 8.3.2 (Free term variables)

FTV(x) = fxg
FTV(	A) = ;

FTV(�x:A:M) = FTV(M)� fxg
FTV(M1M2) = FTV(M1) [ FTV(M 2)

De�nition [�!] 8.3.3 (Term substitution)

[M=x]x = M

[M=x]x0 = x0 (x 6= x0)

[M=x]	A = 	A
[M=x]�x0:A:M 0 = �x0:A: [M=x]M 0 (x0 6= x; x0 62 FTV(M))

[M=x](M1M2) = [M=x]M1 [M=x]M2

De�nition [�!] 8.3.4 (Assignment regarded as a partial function)

dom(�) = ;
dom(�; x:A) = dom(�) [ fxg

(�1;x:A; �2)(x) = A (x 62 dom(�1))
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The system has only two judgments, which have simple rules:

De�nition [�!] 8.3.5 (Judgments)

` � valid valid assignment

� ` M : A well-typed term

De�nition [�!] 8.3.6 (Assignment Formation Rules)

` � valid (L-EMPTY)

` � valid x 62 dom(�)

` �; x:A valid
(L-EXTEND)

De�nition [�!] 8.3.7 (Term Formation Rules)

` � valid x:A 2 �

� ` x : A
(L-VAR)

` � valid

� ` 	A : A
(L-CON)

�; x:A `M : A0

� ` �x::A:M : A!A0
(L-LAM)

� `M 1 : A2!A � `M2 : A2

� ` M1M 2 : A
(L-APP)

The rewriting relation for �! is de�ned on terms rather than types and permits both

�- and �-reductions. Its rules are as follows:

De�nition [�!] 8.3.8 (Rewrite relation)

M !M 0

�x:A:M ! �x:A:M 0
(LR-LAM)

M1 !M 0
1

M 1M2 !M 0
1M2

(LR-LEFT)

M2 !M 0
2

M 1M2 !M 1M
0
2

(LR-RIGHT)
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(�x:A:M1)M 2 ! [M2=x]M1 (LR-BETA)

x 62 FTV(M )

�x:A:M x!M
(LR-ETA)

One of the classic results for �! (see, for example, Barendregt [2]) is that all well-

typed terms are strongly normalizing:

Theorem [�!] 8.3.9 (Strong normalization)

If � `M : A then there are no in�nite reduction sequences starting from A using !
(i.e., A! A1 ! A2 ! A3 : : :).

The encoding I will be using is follows. It encodes kinds as �!-types, constructor
variables as �!-term variables, assignments as �!-assignments, and constructors as �!-

terms. The encoding of constructors takes the constructor's assignment as an extra
argument so that it can determine the kind of constructor extractions; this information
is necessary to ensure that the encoding maps valid constructors to well-typed terms.

De�nition [Tagged] 8.3.10 (The �!-encoding)


? = 


(K1)K2)
? = K?

1!K?
2

�? = �
(�; �::K)? = �?; �?:K?

(�; x:A)? = �?

�?� = �?

(��::K:A)?� = ��?:K?: A?�;�::K (� 62 dom(�))

(A1A2)
?� = A?�

1 A?�
2

(�x:A1: A2)
?� = 	
!
!
A?�

1 A
?�;x:A1

2 (x 62 dom(�))

(�x:A1: A2)
?� = 	
!
!
A?�

1 A?�;x:A1

2 (x 62 dom(�))

<K>?� = 	

<=A::K>?� = 	K

?!
A?�

x�A�
0!?� = 	
!K

? A?�
where � ` x�A�

0! :: K

rec?� = 	
(
!
)!


ref?� = 	
!
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(The mapping from constructor variables to �! term variables is not shown; any bijective

mapping is su�cient.)

The basic idea of the encoding is to map variables, functions, and applications to �!-

terms of the corresponding sort; all other sorts of constructors are mapped to constants or

applications of constants to the encodings of the constructor's component constructors.

This mapping allows any ��-reduction between two constructors to be mirrored on the

corresponding �!-terms. Note that the encoding of constructors is well de�ned when

restricted to valid constructors:

Lemma [Tagged] 8.3.11 (Existence)

If � ` A :: K then A?� exists and is uniquely de�ned (modulo �-conversion).

Proof: The only case which could cause A?� to be unde�ned or multiply de�ned is if a
sub-constructor of A of the form x�A

0�0! is either not well-formed or has multiple kinds.
However, this is not possible: by decomposition (Lemma 7.7.1), all such sub-constructors
must be well-formed and by Lemma 7.6.11, they each have only one kind. 2

The encoding possesses two key properties. The �rst is that it maps valid assignments
to �! valid assignments and constructors to �! well-typed terms:

Lemma [Tagged] 8.3.12

1. If ` � valid then ` �? valid.

2. If � ` A :: K then �? ` A?� : K?
.

Proof: Proved sequentially by structural induction on � and A respectively. Example
cases:

DECL-C: Given ` �; �::K valid derived via rule DECL-C from ` � valid and � 62 dom(�).
Applying the induction hypothesis gives us that ` �? valid. Inspection of the en-

coding reveals that �0 2 dom(�) i� �0? 2 dom(�?) ) �? 62 dom(�?). Hence, by

L-EXTEND, ` �?; �?:K? valid
) ` (�; �::K)? valid.

C-DFUN: Given � ` �x:A1: A2 :: 
, x 62 dom(�), derived via rule C-DFUN from �; x:A1 ` A2 :: 


) � ` A1 :: 
 and ` � valid (Theorem 6.8.3). By part one, ` �? valid. Applying

the induction hypothesis gives us that �? ` A?�
1 : 
 and �? ` A?�;x:A1

2 : 
. Hence,

by rules L-CON and L-APP, �? ` 	
!
!
A?�
1 A?�;x:A1

2 : 
 )

�? ` (�x:A1: A2)
?� : 
?.
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C-LAM: Given � ` ��::K:A :: K)K 0, � 62 dom(�), derived via rule C-LAM from

�; �::K ` A :: K 0. Applying the induction hypothesis gives us that

�?; �?:K? ` A?�;�::K : K 0? ) �? ` ��?:K?: A?�;�::K : K?!K 0? (L-LAM)

) �? ` (��::K:A)?� : (K)K 0)?.

C-EXT-T2: Given � ` x�A�
0! :: K ) ` � valid (Theorem 6.8.3) ) ` �? valid (part one). By

Theorem 7.6.15, � ` A :: 
. Applying the induction hypothesis gives us that

�? ` A?� : 
. Hence, by rules L-CON and L-APP, �? ` 	
!K
? A?� : K? )

�? ` x�A�
0!?� : K?.

2

The second key property of the encoding is that two constructors related by a ��-
reduction are still related by a reduction after they are encoded as �!-terms; moreover,

irre
exive rewriting steps are mirrored by one or more �! rewriting steps. (The later
part is needed to ensure that mapping an in�nite reduction sequence of irre
exive steps
into �! generates an in�nite reduction sequence.)

Lemma [Tagged] 8.3.13 If A?�
exists then FTV(A?�) = FCV(A)

?
.

Lemma [Tagged] 8.3.14 (Encoding properties)

1. If �1; �3 ` A :: K, ` �1; �2 valid, and dom(�2) \ dom(�3) = ; then

A?�1;�2;�3 = A?�1;�3.

2. If �1 ` A1 ::K and �1; �::K; �2 ` A2 :: K
0
then

[A?�1

1 =�?](A?�1;�::K ;�2

2 ) = ([A1=�]A2)
?�1;[A1=�]�2

Proof: Proved sequentially using structural induction on A and A2. Part one requires

the use of weakening (Theorem 6.8.10). Part two requires the use of part one, Theo-

rem 7.6.2, and Lemma 6.8.3. 2

Lemma [Tagged] 8.3.15 (Mirroring) Suppose � ` A1 :: K. Then:

1. If A1 !1
�� A2 then A?�

1 !+ A?�
2 .

2. If A1 !�� A2 then A?�
1 !� A?�

2 .
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Proof: Note that the second part follows immediately from the �rst part plus the fact

that !� is re
exive; it will accordingly be used recursively in the proof of the �rst part.

The proof of part one proceeds by structural induction on the derivation ofA1 !1
�� A2.

By Lemma 8.3.12 and subject reduction (Corollary 7.6.17), A?�
1 and A?�

2 exist. Example

cases:

R-DFUN: Given � ` �x:A1: A2 :: 
 and �x:A1: A2 !1
�� �x:A

0
1: A

0
2, x 62 dom(�), derived via

rule R-DFUN from A1 !�� A
0
1 and A2 !�� A

0
2 ) � ` A1 :: 
 and �; x:A1 ` A2 :: 


(Theorem 6.8.3), and A1 !1
�� A

0
1 or A2 !1

�� A
0
2.

Applying the induction hypothesis gives us that A?�
1 !+ A0?�1 and

A
?�;x:A1

2 !� A
0?�;x:A0

1

2 or that A?�
1 !� A0?�1 and A

?�;x:A1

2 !+ A
0?�;x:A0

1

2

) A?�
1 A

?�;x:A1

2 !+ A0?�1 A
?�;x:A1

2 !� A0?�1 A
0?�;x:A0

1

2 or A?�
1 A

?�;x:A1

2 !�

A0?�1 A?�;x:A1

2 !+ A0?�1 A
0?�;x:A0

1

2 (repeated use of LR-LEFT followed by LR-RIGHT)

) A?�
1 A?�;x:A1

2 !+ A0?�1 A
0?�;x:A0

1

2

) 	
!
!
A?�
1 A

?�;x:A1

2 !+ 	
!
!
A0?�1 A
0?�;x:A0

1

2 (L-RIGHT)

) (�x:A1: A2)
?� !+ (�x:A01: A

0
2)
?�

R-BETA: Given � ` (��::K:A1)A2 :: K
0 and (��::K:A1)A2 !

1
�� [A02=�]A

0
1, � 62 dom(�),

derived via rule R-BETA from A1 !�� A01 and A2 !�� A02 ) � ` A2 :: K and
�; �::K ` A1 :: K

0 (C-APP and C-LAM).

Applying the induction hypothesis gives us that A?�;�::K
1 !� A01

?�;�::K
and

A?�
2 !� A02

?�
. Hence, ((��::K:A1)A2)

?� = (��?:K?: A
?�;�::K
1 )A?�

2

!� (��?:K?: A0?�;�::K
1 )A0?�2 ! [A0?�2 =�](A0?�;�::K

1 ) = ([A02=�]A
0
1)
?� (the last by

Lemma 8.3.14).

R-ETA: Given � ` ��::K:A� :: K)K 0 and ��::K:A� !1
�� A

0, � 62 dom(�), derived via

rule R-ETA from A!�� A
0 and � 62 FCV(A)

) �; �::K ` A :: K)K 0 (C-LAM and C-APP)) � ` A :: K)K 0 (Corollary 7.6.4).

Applying the induction hypothesis then gives us thatA?� !� A0?�. By Lemma8.3.13,

�? 62 FTV(A?�). Hence, (��::K:A�)?� = ��?:K?: A?�;�::K � = ��?:K?: A?� �!

A?� !� A0?� (the second equality is by Lemma 8.3.14).

2

Using these two properties of the encoding, a proof of strong ��-normalization for

valid constructors is easily constructed:
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Theorem [Tagged] 8.3.16 (Strong ��-normalization)

If � ` A :: K then A is strongly normalizing under ��-reduction.

Proof: By Lemma 8.3.12, �? ` A?� : K?. Suppose A is not strongly normalizing under

��-reduction. Then there exists an in�nite ��-reduction sequence starting from A, say

A !1
�� A1 !1

�� A2 !1
�� A3 : : :. Hence by repeated use of Lemma 8.3.15 and subject

reduction (Corollary 7.6.17), A?� !+ A?�
1 !+ A?�

2 !+ A?�
3 : : : ) A?� is not strongly

normalizing in �!. But this contradicts Theorem 8.3.9, so we must have that A is

strongly normalizing under ��-reduction as desired. 2

In Figure 8.1, I give the code for an algorithm to ��-normalize valid constructors based
on this result. I have written the algorithm in functional pseudo-code. My version of
pseudo-code allows raising and handling the single exception fail. Functions written in it
can thus return a value, raise fail, or loop forever (functions can be de�ned recursively).

Patterns in case expressions are matched sequentially in the order written, stopping
with the �rst match; if no match is found, fail is raised. I allow guard conditions
on the variables involved in a pattern in order to handle equivalence via �-conversion.
Attempting to evaluate an unde�ned selection (e.g., S(<K>;x; :1)) or an unde�ned
assignment lookup (i.e., �(x) for x 62 dom(�)) also results in fail being raised. I shall
be using this notation throughout the dissertation.

The algorithm is composed of two procedures, RO and BR. RO is a reduction
procedure, reducing its argument constructor by one ��-step. I have constructed RO

so that it will only return its constructor unchanged if it is in ��-normal form. BR

is the actual ��-normalizing procedure; it just applies RO iteratively to its argument
until it stops changing. Theorem 8.3.16 ensures that BR always terminates on valid

constructors. The correctness proofs for these algorithms are as follows:

Lemma [Tagged] 8.3.17 (Properties of RO algorithm I)

1. RO(A) always returns

2. A!�� RO(A)

Proof: The �rst part follows from the fact that all recursive calls to RO are on smaller
constructors and there are no points where fail can be raised. The second part is proved

by structural induction on A. Example cases:

Lam: Here A = ��::K:A1. Applying the induction hypothesis gives us that A1 !��

RO(A1). By R-LAM then, ��::K:A1 !�� ��::K:RO(A1). If A1 = A0 �, � 62
FCV(A0) then ��::K:A1 !�� A

0 via R-ETA and R-REFL. Hence, by inspection of

RO, regardless of which path is taken, A!�� RO(A).
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RO(A) = case A of

��::K:A1: let A
0
1 = RO(A1) in

if A1 6= A01 then

return(��::K:A01)

else

case A1 of

(A0�), � 62 FCV(A0): return(A0)

A0: return(��::K:A1)
end

A1A2: let A
0
1 = RO(A1);

A02 = RO(A2) in
if A1A2 6= A01A

0
2 then

return(A01A
0
2)

else

case A1 of
��::K:A0: return([A2=�]A

0)
A0: return(A1A2)

�x:A1: A2: return(�x:RO(A1): RO(A2))

�x:A1: A2: return(�x:RO(A1): RO(A2))
<=A0::K>: return(<=RO(A0)::K>)

x�A0�0!: return(x�
RO(A0

)
�0!)

A0: return(A0)

BR(A) = let A0 = RO(A) in
if A = A0 then

return(A)
else

return(BR(A0))

Figure 8.1: �-reducing a term
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App: Here A = A1A2. Applying the induction hypothesis gives us that A1 !�� RO(A1)

and A2 !�� RO(A2). By R-APP then, A1A2 !�� RO(A1)RO(A2). If A1 =

��::K:A0 then A1A2 !�� [A2=�]A
0 via R-BETA and R-REFL. Hence, by inspec-

tion of RO, regardless of which path is taken, A!�� RO(A).

2

Lemma [Tagged] 8.3.18 (Properties of RO algorithm II)

If A = RO(A) then A is in ��-normal form.

Proof: We prove the contrapositive (if 9A0: A!1
�� A

0 then A 6= RO(A)) by structural

induction on A. Example cases:

Lam: Given ��::K:A1 !1
�� A

0. Inspecting the rewriting rules shows that this implies
that one of the following is true:

� A1 !1
�� A

0
1 for some A01

) A1 6= RO(A1) (induction hypothesis)
) RO(��::K:A1) = ��::K:RO(A1) 6= ��::K:A1

� A1 is in ��-normal form and is equal to A0 �, � 62 FCV(A0).
) A1 = RO(A1) (Lemma 8.3.17 plus de�nition of normal form)
) RO(��::K:A1) = A0 6= ��::K:A1 = ��::K:A0 �

App: Given A1A2 !1
�� A

0. Inspecting the rewriting rules shows that this implies that

one of the following is true:

� Ai !1
�� A

0
i for some A0i, i 2 f1; 2g

) Ai 6= RO(Ai) (induction hypothesis)

) A1A2 6= RO(A1)RO(A2)

) RO(A1A2) = RO(A1)RO(A2) 6= A1A2

� A1 is in ��-normal form and has the form ��::K:A00, A2 is also in ��-normal

form, and A0 = [A2=�]A
00.

) A1A2 = RO(A1)RO(A2) (Lemma 8.3.17 plus de�nition of normal form)

) RO(A1A2) = [A2=�]A
00 = A0

) A 6= A0 = RO(A) (de�nition of !1
��)

2

Corollary [Tagged] 8.3.19 (Properties of BR algorithm)

If � ` A :: K then
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1. BR(A) always returns

2. A!�
�� BR(A)

3. BR(A) is in ��-normal form.

Proof: Inspection of the BR procedure reveals that: when called with A, it recurses on

RO(A), then RO(RO(A)) = RO2(A), then RO3(A), : : :, then ROn(A) where 0 � n �1
and ROi(A) 6= ROi+1(A) for 0 � i < n. If BR(A) returns then it returns ROn(A),

n <1, and ROn(A) = ROn+1(A).

By Lemma 8.3.17, A!1
�� RO(A)!

1
�� RO

2(A) : : :!1
�� RO

n(A). By Theorem 8.3.16

then, n must be �nite. (Otherwise, A is not strongly normalizing under ��-reduction.)
That BR(A) always returns then follows sinceRO is known to always return by Lemma 8.3.17
and the above argument shows that BR calls itself only a �nite number of times. From
the transitivity of !�

��, we have that A !�
�� RO

n(A) ) A !�
�� BR(A). Finally, by

Lemma 8.3.18, BR(A) = ROn(A) is in ��-normal form. 2

8.4 Canonical Form

In this section I de�ne 
-�nal and canonical form and prove some useful properties about
them. I start out with 
-�nal form:

De�nition [Tagged] 8.4.1 (
-�nal form)

A is in 
-�nal form i� A = C[x�A0�0!] implies that �0 = � and A0 = <K> for some K.

Lemma [Tagged] 8.4.2 If A is in 
-�nal form then A is in 
-normal form.

Proof: Suppose A!
 A
0. We can show by structural induction on the derivation that

A = A0 (example cases below). Hence, A is in 
-normal form.

EXT: Given x�A1

�0�00! !
 x��0A2

�00! derived via rule R-EXT from A1 !
 A01 and

S(A01; x�; �
0) = A2. By the de�nition of 
-�nal form, �0 = �00 = � and A1 is in


-�nal form) A01 = A2. Applying the inductive hypothesis gives us that A1 = A01
) x�A1

�0�00! = x��0A2

�00!.

ABBREV: Given x�A1

! !
 A01 derived via rule R-ABBREV from A1 !
 <=A01::K
0>. By

the de�nition of 
-�nal form, A1 = <K> for some K. By shape preservation

(Lemma 7.3.7), <K>! <=A01::K
0> is impossible. Hence this case can't occur.

2
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Lemma [Tagged] 8.4.3 If A1 and A2 are in 
-�nal form then [A2=�]A1 is in 
-�nal

form.

Proof: By structural induction on A1. Example cases:

Var I: Here A1 = � ) [A2=�]A1 = A2.

Ext: Here A1 = x�
<K>

! ) [A2=�]A1 = A1, which is in 
-�nal form.

2

Lemma [Tagged] 8.4.4 If A is in 
-�nal form and A !�� A0 then A0 is in 
-�nal

form.

Proof: By structural induction on the derivation of A!�� A
0. Example cases:

R-BETA: Given (��::K:A1)A2 !�� [A02=�]A
0
1 derived via rule R-BETA from A1 !�� A01

and A2 !�� A
0
2. By the de�nition of 
-�nal form, A1 and A2 are in 
-�nal form.

Applying the induction hypothesis gives us that A01 and A02 are in 
-�nal form.
Hence, by Lemma 8.4.3, [A02=�]A

0
1 is in 
-�nal form.

R-ETA: Given ��::K:A�!�� A
0 derived via rule R-ETA fromA!�� A

0 and � 62 FCV(A).
By the de�nition of 
-�nal form, A is in 
-�nal form. Applying the induction
hypothesis gives us that A0 is in 
-�nal form.

R-EXT: Given x�A1

�0�00! !�� x��
0
A2

�00!, �0 = �, derived via rule R-EXT from A1 !�� A
0
1

and S(A01; x�; �
0) = A2 ) A01 = A2. By the de�nition of 
-�nal form, �00 = � and

A1 = <K> for some K. By Lemma 7.3.7, A2 = <K> ) A = A0.

2

Here I de�ne canonical form and show how new constructors in canonical form can
be created from existing constructors in canonical form:

De�nition [Tagged] 8.4.5 (Canonical form)

A is in canonical form i� A is in both ��-normal form and 
-�nal form.

Lemma [Tagged] 8.4.6 Suppose A is in canonical form. Then:

1. [x�=x0]A is in canonical form.

2. If S(A;x�; �0) exists then S(A;x�; �0) is in canonical form.
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Proof: Proved sequentially by structural induction on A and �0 respectively. 2

Lemma [Tagged] 8.4.7

1. If �; �::K ` A :: K 0
and A is in canonical form then BR(��::K:A) returns A0 such

that ��::K:A!� A0 and A0 is in canonical form.

2. If � ` A1 :: K2)K, � ` A2 :: K2, and A1 and A2 are in canonical form then

BR(A1A2) returns A
0
such that A1A2 !� A0 and A0 is in canonical form.

Proof: The proof is similar for both parts; we give only the proof of the �rst part here:
By C-LAM, � ` ��::K:A :: K)K 0. By the de�nition of canonical form, A is in 
-

�nal form ) ��::K:A is in 
-�nal form (by defn.). By Corollary 8.3.19, BR(��::K:A)
always terminates, ��::K:A !�

�� BR(��::K:A), and BR(��::K:A) is in ��-normal

form. By Lemma 8.4.4, BR(��::K:A) is in 
-�nal form) BR(��::K:A) is in canonical
form (by defn.). 2

Because canonical forms are normal forms, they are reducts of all constructors they
are equal to. Since reducing a constructor preserves many properties about it (e.g.,

possession of certain outer shapes), this fact means that if a canonical form is equal
to a constructor with certain properties then that canonical form must also have those
properties:

Lemma [Tagged] 8.4.8 If A is in canonical form then A is in normal form.

Proof: By Lemma 8.4.2, A is in 
-normal form. Hence, by Corollary 8.1.5, A is in
normal form. 2

Lemma [Tagged] 8.4.9 If � ` A1 = A2 :: K and A2 is in canonical form then A1 !�

A2.

Proof: By Lemma 8.4.8, A2 is in normal form. By Theorem 7.8.5, A1 #� A2 )
9A. A1 !� A and A2 !� A. By the de�nition of normal form, A = A2. Hence,

A1 !
� A2. 2

Lemma [Tagged] 8.4.10 (Shape Pullback)

Suppose � ` A1 = A2 :: K and A1 is in canonical form. Then:
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1. If A2 = �, A2 = ref, A2 = rec, or A2 = <K> then A1 = A2.

2. If A2 = �x:A02: A
00
2 then 9A

0
1; A

00
1: A1 = �x:A01: A

00
1.

3. If A2 = �x:A02: A
00
2 then 9A01; A

00
1: A1 = �x:A01: A

00
1.

4. If A2 = <=A02::K> then 9A01: A1 = <=A01::K>.

5. If A2 = refA02 then 9A
0
1: A1 = refA01.

6. If A2 = recA02 then 9A
0
1: A1 = recA01.

Proof: By Lemma 8.4.9 and E-REFL, A2 !� A1. The desired results then follow from

Lemma 7.3.7. 2

Corollary [Tagged] 8.4.11 (Canonical Strengthening)

If �1; x:A; �2 ` A1 = A2 :: K, A1 is in canonical form, and �1; �2 ` A2 :: K then

�1; �2 ` A1 = A2 :: K.

Proof: By E-SYM and Lemma 8.4.9, A2 !� A1 ) �1; �2 ` A1 :: K (Corollary 7.6.17)
) �1; �2 ` A1 = A2 :: K (Corollary 7.8.6). 2

By a similar argument using Parallelism II (Theorem 7.3.13), we can \pull back"
selections through equality to a canonical form; by doing this repeatedly, we can reduce
place lookup using an assignment in canonical form to checking equality:

Lemma [Tagged] 8.4.12 (Pullback)

If A is in canonical form, � ` A = A0 :: 
, and � ` S(A0; x�; �0) :: 
 then

� ` S(A;x�; �0) = S(A0; x�; �0) :: 
.

Proof: By E-SYM and Lemma 8.4.9, A0 !� A ) S(A0; x�; �0)!� S(A;x�; �0) (Theo-
rem 7.3.13) ) � ` S(A;x�; �0) :: 
 (Corollary 7.6.17)
) � ` S(A;x�; �0) = S(A0; x�; �0) :: 
 (Theorem 7.8.5). 2

Lemma [Tagged] 8.4.13 If �(x) is in canonical form and � ` x�) A then

� ` A = S(�(x); x; �) :: 
 and S(�(x); x; �) is in canonical form.

Proof: By structural induction on the derivation of � ` x�) A. Example cases:

P-INIT: Given � ` x) A (� = �) derived via rule P-INIT from ` � valid and x:A 2 �

) S(�(x); x; �) = �(x). By Lemma 6.8.11, �(x) = A and � ` A :: 
. Hence, by

E-REFL, � ` A = S(�(x); x; �) :: 
.
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P-MOVE: Given � ` x��0 ) A derived via rule P-MOVE from � ` x�) A0,

� ` A0 = A00 :: 
, and S(A00; x�; �0) = A. Applying the induction hypothesis then

gives us that � ` A0 = S(�(x); x; �) :: 
 and S(�(x); x; �) is in canonical form )
� ` S(�(x); x; �) = A00 :: 
 (E-TRAN and E-SYM). By Theorem 7.6.14, � ` A :: 
.

Hence, by Lemma 8.4.12, � ` S(S(�(x); x; �); x�; �0) = A :: 


) � ` A = S(�(x); x; ��0) :: 
 (Lemma 6.8.1 and E-SYM) By Lemma 8.4.6,

S(�(x); x; ��0) is in canonical form.

2

8.5 Assignment Reduction

For e�ciency reasons, the normalization and validity checking algorithm I give only

reduces the assignment once rather than reducing parts of it each time they are needed.
In order to do this, I shall need to extend the notions of reduction and canonical form to
assignments:

De�nition [Tagged] 8.5.1 (Reduction of assignments) Reduction can be extended

to assignments as follows:

� ! � (R-EMPTY)

�! �0

�; �::K ! �0; �::K
(R-DECL-C)

�! �0 A! A0

�; x:A! �0; x:A0
(R-DECL-T)

De�nition [Tagged] 8.5.2 (Canonical form for assignments)

� is in canonical form i� 8x:A 2 �: A is in canonical form.

I shall need that reducing the assignments in judgments leaves the judgments' truth

values unchanged and that reduction on assignments preserves assignment validity:

Lemma [Tagged] 8.5.3

1. If �1; �2 ! �0 then 9�01;�
0
2 such that �0 = �01; �

0
2, �1 ! �01, and �2 ! �02.

2. If �0 ! �1; �2 then 9�
0
1;�

0
2 such that �0 = �01; �

0
2, �

0
1 ! �1, and �02 ! �2.
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Proof: By structural induction on �2. 2

Lemma [Tagged] 8.5.4 Suppose �*) �0. Then:

1. dom(�) = dom(�0)

2. If �::K 2 � then �::K 2 �0.

Lemma [Tagged] 8.5.5 (Reduction and assignments)

Suppose ` � valid, ` �0 valid, and �! �0. Then:

1. ` �;D valid i� ` �0;D valid.

2. � ` A :: K i� �0 ` A :: K.

3. � ` x�) A i� �0 ` x�) A.

4. � ` A1 = A2 ::K i� �0 ` A1 = A2 :: K .

Proof: We prove an equivalent version of the lemma where the rewriting precondition

is instead that � *) �0 and the results are that the judgments involving � imply the
judgments involving �0. We prove this by simultaneous structural induction on the
derivations. Interesting cases:

DECL-T: Given ` �; x:A valid derived via rule DECL-T from � ` A :: 
 and x 62 dom(�).

Applying the induction hypothesis gives us that �0 ` A :: 
 By Lemma 8.5.4, dom(�) =
dom(�0) ) x 62 dom(�0). Hence, by DECL-T, ` �0; x:A valid.

C-VAR: Given � ` � :: K derived via rule C-VAR from ` � valid and �::K 2 �) �::K 2 �0

(Lemma 8.5.4) ) �0 ` � :: K (C-VAR).

C-DFUN: Given � ` �x:A:A0 :: 
 derived via rule C-DFUN from �; x:A ` A0 :: 

) ` �; x:A valid (Theorem 6.8.3). Applying the induction hypothesis gives us

that ` �0; x:A valid. By R-DECL-T and R-REFL, �; x:A *) �0; x:A. Applying

the induction hypothesis again gives us that �0; x:A ` A0 :: 
 ) �0 ` �x:A:A0 :: 

(C-DFUN).

P-INIT: Given � ` x) A derived via rule P-INIT from ` � valid and x:A 2 � ) 9�1;�2:

� = (�1; x:A; �2). )` �1; x:A valid and ` �1 valid are sub-derivations of � ` x) A

(Theorem 6.8.3) ) �1 ` A :: 
 is a sub-derivation of � ` x) A (DECL-T). By

Lemma 8.5.3 and R-DECL-T, 9�01; A
0;�02 such that �0 = �01; x:A

0; �02, �1 *) �01, and

A *) A0. ) ` �01 valid (Theorem 6.8.3).

Applying the induction hypothesis gives us that �01 ` A :: 
 ) �0 ` A :: 
 (Theo-

rem 6.8.10). By P-INIT, �0 ` x) A0. By Lemma 6.8.11, �0 ` A0 :: 
. Hence, by

Theorem 7.8.5, �0 ` A0 = A :: 
 ) �0 ` x) A (P-MOVE).
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2

Theorem [Tagged] 8.5.6 (Subject reduction for assignments)

If ` � valid and �! �0 then ` �0 valid.

Proof: By structural induction on the derivation of ` � valid. The interesting case is

as follows:

DECL-T: Given ` �; x:A valid derived via rule DECL-T from � ` A :: 
 and x 62 dom(�) as

well as �; x:A ! �0; x:A0 derived via rule R-DECL-T from � ! �0 and A ! A0

) ` � valid (Theorem 6.8.3). Applying the induction hypothesis gives us that
` �0 valid. By Lemma 8.5.5, �0 ` A :: 
. By subject reduction (Corollary 7.6.17),
�0 ` A0 :: 
. By Lemma 8.5.4, dom(�) = dom(�0) ) x 62 dom(�0). Hence, by
DECL-T, ` �0; x:A0 valid.

2

8.6 Decidability

In this section I give and prove correct algorithms for use in deciding all the tagged
judgments. For each judgment, I give an algorithm that decides that judgment given

certain preconditions about its arguments (e.g., the assignment is already normalized in
constructor validity case). Later on I give versions based on the original algorithms that
have no preconditions. This organization allows extra work such as repeatedly reducing
assignments to be avoided.

In Figure 8.2, I give the code for the algorithms for the equal constructors (EC 0)

and place lookup (PL0) judgments. EC 0 takes as input two pairs, each containing one
constructor in canonical form and the kind of that constructor relative to an (unpassed)

assignment �. If the two constructors are equal under � then EC 0 returns their kind.

Otherwise, it raises fail. Because the constructors are in normal form, it can do this
just by comparing them and their kinds.

Lemma [Tagged] 8.6.1 (Properties of EC 0 algorithm)

1. EC 0((A1;K1); (A2;K2)) always terminates.

2. If � ` A1 :: K1, � ` A2 :: K2, and A1 and A2 are in canonical form then

EC 0((A1;K1); (A2;K2)) returns K i� � ` A1 = A2 :: K.
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EC 0((A1;K1); (A2;K2)) = if K1 = K2 and A1 = A2 then

return(K1)

else

raise fail

PL0(�; x�;A) = EC 0((S(�(x); x; �);
); (A;
))

V T 0(�; A) = case V C 0(�; A) of (A0;
): return(A0)

Figure 8.2: Determining the equality and place lookup judgments

Proof: The �rst part follows from inspection of the EC 0 procedure. The second part is

proved as follows:
By Lemma 8.4.8, A1 and A2 are in normal form. Hence, by Lemma 8.1.3, A1 #� A2

i� A1 = A2.

)) By inspection of the EC 0 procedure, EC 0((A1;K1); (A2;K2)) returns K implies
that K = K1 = K2 and A1 = A2 ) A1 #� A2. Hence, by Theorem 7.8.5,
� ` A1 = A2 ::K .

() By Theorem 7.6.10, � ` A1 :: K and � ` A2 :: K. By Theorem 7.6.11, K1 = K2 =
K. By Theorem 7.8.5, A1 #� A2 ) A1 = A2

) EC 0((A1;K1); (A2;K2)) returns K .

2

If � ` A :: 
 and � and A are both in canonical form, then PL0(�; x�;A) returns
i� � ` x�) A. It does this by using Lemma 8.4.13 to reduce place lookup to equality

checking and then using EC 0 to decide the resulting equality question.

Lemma [Tagged] 8.6.2 (Properties of PL0 algorithm)

1. PL0(�; x�; A) always terminates.

2. If � ` A :: 
 and � and A in canonical form then PL0(�; x�; A) returns i� � ` x�) A.

Proof: The �rst part follows from inspection of the PL0 procedure plus Lemma 8.6.1.

The second part is proved as follows:
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)) By inspection of the PL0 algorithm, PL0(�; x�; A) returns implies that

EC 0((S(�(x); x; �);
); (A;
)) returns) �(x) and S(�(x); x; �) exist) x 2 dom(�).

By inspection of the EC 0 algorithm, we also have that S(�(x); x; �) = A. By

Lemma 6.8.3, ` � valid. By Theorem 6.8.11, � ` �(x) :: 
. By P-INIT then,

� ` x) �(x). By P-MOVE and E-REFL then, � ` x�) S(�(x); x; �). Hence,

� ` x�) A.

() By Theorem 6.8.5, x 2 dom(�)) �(x) exists. By the de�nition of canonical form,

�(x) is in canonical form. Hence, by Lemma 8.4.13, � ` A = S(�(x); x; �) :: 

and S(�(x); x; �) is in canonical form. By Theorem 7.6.10, � ` S(�(x); x; �) :: 
.
By Lemma 8.6.1 then, EC 0((S(�(x); x; �);
); (A;
)) returns 
 ) PL0(�; x�; A)

returns.

2

Also in Figure 8.2 is the code for an algorithm for checking type validity (V T 0). It

is de�ned using the algorithm for checking general constructor validity (V C 0), the code
for which may be found in Figure 8.3. These algorithms are mutually recursive and
di�er mainly in their return behavior. Both take as arguments a valid assignment in
canonical form and a constructor. They check the validity of the constructor under the
given assignment while normalizing the constructor. If the constructor is invalid or, in

the case of V T 0, has kind other than 
, then fail is raised. Otherwise, a canonical
form for the constructor is returned; V C 0 returns the constructor's kind under the given
assignment as well in a pair with the canonical form. These algorithms implement the
ideas discussed in Section 8.2.

Lemma [Tagged] 8.6.3 (Properties of V C 0 and V T 0 algorithms I)

If ` � valid and � is in canonical form then:

1. V T 0(�; A) and V C 0(�; A) alway terminate.

2. If V T 0(�; A) returns A0 then � ` A :: 
, A!� A0, and A0 is in canonical form.

3. If V C 0(�; A) returns (A0;K) then � ` A :: K, A !� A0, and A0 is in canonical

form.

Proof: All parts are proved simultaneously by induction on the procedure call in
question under the following metric:

jV T 0(�; A)j = 2jAj+ 1
jV C 0(�; A)j = 2jAj
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V C 0(�,A) = case A of

�: case � of

(�1; �::K ; �2), � 62 dom(�1): return(�; K)

�x:A1: A2, x 62 dom(�): let A01 = V T 0(�; A1) in

return(�x:A01: V T
0((�; x:A01); A2); 
)

end

�x:A1: A2, x 62 dom(�): let A01 = V T 0(�; A1) in

return(�x:A01: V T
0((�; x:A01); A2); 
)

end

��::K:A, � 62 dom(�): let (A0;K 0) = V C 0((�; �::K); A) in
return(BR(��::K:A0); K)K 0)

end

A1A2: let (A
0
1;K

0
1) = V C 0(�; A1)

(A02;K
0
2) = V C 0(�; A2)

(K)K 0) = K 0
1 in

if K = K 0
2 then

return(BR(A01A
0
2); K

0)

else
raise fail

end
<=A::K>: let (A0;K 0) = V C 0(�; A) in

if K = K 0 then
return(<=A0::K>; 
)

else
raise fail

x�1A�2!: let A
0 = S(�(x); x; �1�2) in
PL0(�; x�1; V T

0(�; A));
case A0 of

<K>: return(x�1�2<K>
!; K)

<=A00::K>: return(A00; K)

end
<K>: return(<K>; 
)
rec: return(rec; (
)
))
)

ref: return(ref; 
)
)

Figure 8.3: Determining the validity of a constructor
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where jAj is any reasonable metric on constructors such that if A0 is a proper sub-

constructor of A then 0 � jA0j < jAj. (That is to say, V T 0 may call V C 0 with the same

constructor and V C 0 may call either procedure with a strictly smaller constructor.)

The parts involving V T 0 follow from the parts about V C 0 plus inspection of the V T 0

procedure. The interesting cases for V C 0 are as follows. Unless otherwise indicated,

termination follows by inspection of the relevant code.

Var: Here A = �. By inspection, if we return, we return (�; K) where �::K 2 � )
� ` � :: K (C-VAR). By R-REFL, �!� �. By the de�nition of canonical form, �

is in canonical form.

Dfun: Here A = �x:A1: A2, x 62 dom(�). By the induction hypothesis, V T 0(�; A1) ter-
minates; if it returns A01 then � ` A1 :: 
, A1 !� A01, and A01 is in canonical form

) �; x:A01 is in canonical form (by defn.) and �x:A1: A2 !
� �x:A01: A2 (R-DFUN

and R-REFL).

Assume it returns. By repeated use of subject reduction (Corollary 7.6.17), � ` A01 :: 

) ` �; x:A01 valid (DECL-T). By Theorem 7.8.5, � ` A01 = A1 :: 
. Applying the
induction hypothesis again gives us that V T 0((�; x:A01); A2) terminates; if it returns
A02 then �; x:A01 ` A2 :: 
, A2 !� A02, and A02 is in canonical form ) �x:A01: A

0
2 is

in canonical form (by defn.) and �x:A01: A2 !� �x:A01: A
0
2 (R-DFUN and R-REFL)

) �x:A1: A2 !� �x:A01: A
0
2 (transitivity).

Assume it returns. By Theorem 7.6.9, �; x:A1 ` A2 :: 
 ) � ` �x:A1: A2 :: 
 (C-
DFUN). Thus, by inspection of the relevant code in V C 0, we must terminate and
moreover, if we return, we return (�x:A01: A

0
2; 
) which has the needed properties.

Lam: Here A = ��::K:A1, � 62 dom(�). By DECL-C, ` �; �::K valid. By the de�ni-
tion of canonical form, �; �::K is in canonical form. By the induction hypothesis
then, V C 0((�; �::K); A1) terminates; if it returns (A01;K

0) then �; �::K ` A1 :: K
0,

A1 !� A01, and A01 is in canonical form ) � ` ��::K:A1 :: K)K 0 (C-LAM) and

��::K:A1 !� ��::K:A01 (R-LAM).

Assume it returns. By repeated use of subject reduction (Corollary 7.6.17),

�; �::K ` A01 :: K
0, By Lemma 8.4.7, BR(��::K:A01) returnsA

0 such that ��::K:A01
!� A0 and A0 is in canonical form ) ��::K:A1 !� A0 (transitivity). Thus, by

inspection of the relevant code in V C 0, we must terminate and moreover, if we

return, we return (A0; K)K 0) which has the needed properties.

App: Here A = A1A2. By the induction hypothesis, V C 0(�; A1) terminates; if it returns

(A01;K
0
1) then � ` A1 :: K

0
1, A1 !� A01, and A

0
1 is in canonical form and V C 0(�; A2)

terminates; if it returns (A02;K
0
2) then � ` A2 :: K

0
2, A2 !� A02, and A

0
2 is in canon-

ical form ) A1A2 !� A01A
0
2 (R-APP).
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Assume they both return. Then, by repeated use of subject reduction (Corol-

lary 7.6.17), � ` A01 :: K
0
1 and � ` A02 ::K

0
2.

Assume 9K;K 0 such that K 0
1 = K)K 0 and K 0

2 = K . Then, by C-APP,

� ` A1A2 :: K
0. By Lemma 8.4.7, BR(A01A

0
2) returns A

0 such that A01A
0
2 !

� A0

and A0 is in canonical form ) A1A2 !� A0 (transitivity). Thus, by inspection of

the relevant code in V C 0, we must terminate and moreover, if we return, we return

(A0; K 0) which has the needed properties.

Trans: Here A = <=A1::K>. By the induction hypothesis, V C 0(�; A1) terminates; if it

returns (A01;K
0
1) then � ` A1 :: K

0
1, A1 !� A01, and A01 is in canonical form )

� ` <=A1::K
0
1> :: 
 (C-TRANS), <=A1::K

0
1>!� <=A01::K

0
1> (R-TRANS), and

<=A01::K
0
1> is in canonical form (by defn.).

Assume it returns and K 0
1 = K . Then we return (<=A01::K>; 
) which has the

needed properties. Otherwise, by inspection of the relevant code, we must terminate
by failing.

Ext: Here A = x�A1

�0!. By Lemma 8.6.2 and the induction hypothesis, PL0(�; x�1;
V T 0(�; A)) always terminates ) we always terminate in this case.

If we are going to return, then A0 = S(�(x); x; �1�2) must exist. By Lemma 8.4.6

and the fact that � is in canonical form, A0 is in canonical form. By Theorem 6.8.11,
� ` �(x) :: 
. By P-INIT then, � ` x) �(x). By P-MOVE and E-REFL then,
� ` x�1�2 ) A0 Hence, by Theorem 7.6.14, � ` A0 :: 
.

There are 2 cases where we return:

� Here 9K: A0 = <K> ) � ` x�1�2<K>
! :: K (C-EXT-O2). Since we return

(x�1�2<K>
!; K) for this case, the needed properties are satis�ed.

� Here 9A00;K: A0 = <=A00::K> ) A00 is in canonical form (by defn.) and
� ` A00 :: K (C-TRANS). Since we return (A00; K) for this case, the needed
properties are satis�ed.

Rec: Here A = rec. By C-REC, � ` rec :: (
)
))
. By R-REFL, rec !� rec. By

the de�nition of canonical form, rec is in canonical form. Inspection of the relevant
code shows that V C 0(�; rec) always returns

(rec; (
)
))
).

2

Lemma [Tagged] 8.6.4 (Properties of V C 0 and V T 0 algorithms II)

If � is in canonical form then:
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1. If � ` A :: 
 then V T 0(�; A) returns.

2. If � ` A :: K then 9A0: V C 0(�; A) returns (A0;K).

Proof: Both parts are proved simultaneously by induction on the procedure call in

question using the samemetric as in the previous lemma. The �rst part follows easily from

induction using the second part and inspection of the de�nition of V T 0. The interesting

cases for the second part are as follows:

C-VAR: Given � ` � :: K derived via rule C-VAR from ` � valid and �::K 2 � ) 9�1;�2:

� = (�1; �::K ; �2), � 62 dom(�1) ) V C 0(�; �) returns (�;K).

C-DFUN: Given � ` �x:A1: A2 :: 
, x 62 dom(�), derived via rule C-DFUN from �; x:A1 ` A2 :: 


) � ` A1 :: 
 (Theorem 6.8.3). Applying the induction hypothesis gives us that
V T 0(�; A1) returns. By Lemma 8.6.3, A1 !� V T 0(�; A1) and V T 0(�; A1) is in
canonical form ) �; x:V T 0(�; A1) is in canonical form (by defn.). By subject re-
duction (Corollary 7.6.17), � ` V T 0(�; A1) :: 
. By Theorem 7.8.5 then,
� ` A1 = V T 0(�; A1) :: 
. Hence, by Theorem 7.6.9, �; x:V T 0(�; A1) ` A2 :: 
. Ap-

plying the induction hypothesis again gives us that V T 0((�; x:V T 0(�; A1)); A2) re-
turns. Hence, by inspection, V C 0(�;�x:A1: A2) returns with a pair whose second
element is 
 as required.

C-LAM: Given � ` ��::K:A :: K)K 0, � 62 dom(�), derived via rule C-LAM from
�; �::K ` A :: K 0 ) ` �; �::K valid (Theorem 6.8.3). By the de�nition of canon-
ical form, �; �::K is in canonical form. Applying the induction hypothesis then
gives us that 9A0: V C 0((�; �::K); A) returns (A0;K 0). By Lemma 8.6.3 and sub-
ject reduction (Corollary 7.6.17), �; �::K ` A0 :: K 0 ) � ` ��::K:A0 :: K)K 0 (C-

LAM) ) BR(��::K:A0) returns (Lemma 8.3.19). Hence, by inspection of V C 0,
V C 0(�; ��::K:A) returns with a pair whose second element is K)K 0 as required.

C-EXT-O2: Given � ` x�1A�2! :: K derived via rule C-EXT-O2 from � ` x�1�2 ) <K> and

� ` x�1 ) A. By Theorem 7.6.15, � ` A :: 
. Applying the induction hypothe-

sis gives us that V T 0(�; A) returns. By Lemma 8.6.3 and Theorem 6.8.3, A !�

V T 0(�; A) and V T 0(�; A) is in canonical form. By subject reduction (Corollary 7.6.17),
� ` V T 0(�; A) :: 
. By Theorem 7.8.5, � ` A = V T 0(�; A) :: 
) � ` x�1 ) V T 0(�; A)

(P-MOVE). Hence, by Lemma 8.6.2, PL0(�; x�1; V T
0(�; A)) returns.

By Theorem 6.8.5, x 2 dom(�) ) �(x) is in canonical form (by defn.) Hence, by

Lemma 8.4.13, � ` <K> = S(�(x); x; �1�2) :: 
 and S(�(x); x; �1�2) is in canonical
form ) <K> !� S(�(x); x; �1�2) (Lemma 8.4.9) ) S(�(x); x; �1�2) = <K>

(Lemma 7.3.7). Hence, by inspection we see that in this case V C 0(�; x�1A�2!)

returns a pair whose second element is K as required.
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V A0(�) = case � of

�: return(�)

�0; �::K: if � 2 dom(�0) then

raise fail

else

return(V A0(�0),�::K)

�0; x:A: let �00 = V A0(�0) in

if x 2 dom(�0) then
raise fail

else
return(�00,x:V T 0(�00,A))

end

Figure 8.4: Determining the validity of an assignment

2

Figure 8.4 contains the code for the valid assignment judgment algorithm (V A0). It
takes as an argument an assignment and returns a canonical form for that assignment if
it is valid. Otherwise, it raises fail. The code is quite simple and uses V T 0.

Lemma [Tagged] 8.6.5 (Properties of V A0 algorithm I)

1. V A0(�) always terminates.

2. If V A0(�) returns �0 then ` � valid, �!� �0, and �0 is in canonical form.

Proof: By structural induction on �. Example case:

DECL-T: Here � = �0; x:A. Applying the induction hypothesis gives us that V A0(�0) always

terminates and that if V A0(�0) returns �00 then ` �0 valid, �0 !� �00, and �00 is in

canonical form.

Assume we return �00 and x 62 dom(�0). By Theorem 8.5.6, ` �00 valid. Hence,

by Lemma 8.6.3, V T 0(�00; A) always terminates and if V T 0(�00; A) returns A0 then

�00 ` A :: 
, A!� A0, and A0 is in canonical form.
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Assume V T 0(�00; A) returns A0. Hence, by R-DECL-T, �0; x:A !� �00; x:A0. By

the de�nition of canonical form, �00; x:A0 is in canonical form. By Lemma 8.5.5,

�0 ` A :: 
 ) ` �0; x:A valid.

Thus, by inspection of the relevant code in V A0, we must terminate and moreover,

if we return, we return �00; x:A0 which has the needed properties.

2

Lemma [Tagged] 8.6.6 (Properties of V A0 algorithm II)

If ` � valid then V A0(�) returns.

Proof: By structural induction on the typing derivation. Example case:

DECL-T: Given ` �0; x:A valid derived via rule DECL-T from �0 ` A :: 
 and x 62 dom(�0)
) ` �0 valid (Theorem 6.8.3). Applying the induction hypothesis gives us that
V A0(�0) returns some assignment, call it �00. By Lemma 8.6.5, �0 !� �00 and �00 is

in canonical form ) ` �00 valid (Theorem 8.5.6) ) �00 ` A :: 
 (Lemma 8.5.5) )
V T 0(�00; A) always returns (Lemma 8.6.4). Hence, by inspection of V A0, we always
return.

2

By combining V A0 and V C 0, I can decide constructor validity without any precondi-
tions:

Lemma [Tagged] 8.6.7

1. If V A0(�) returns then ` V A0(�) valid.

2. V T 0(V A0(�); A) and V C 0(V A0(�); A) always terminate.

3. � ` A :: 
 i� V T 0(V A0(�); A) returns.

4. � ` A :: K i� 9A0: V C 0(V A0(�); A) returns (A0;K).

Proof: Part one follows from Lemma 8.6.5 and Theorem 8.5.6. Part two follows from
part one, Lemma 8.6.5, and Lemma 8.6.3. The proofs of parts three and four are similar.

We give just the proof of part four here:
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V A(�) = V A0(�)

V C(�; A) = V C 0(V A0(�); A):2

PL(�; x�;A) = PL0(V A0(�); x�; V T 0(V A0(�); A))

EC(�; A1; A2) = EC 0(V C 0(V A0(�); A1); V C
0(V A0(�); A2))

Figure 8.5: Procedures for deciding judgments

): Given V C 0(V A0(�); A) returns (A0;K)) V A0(�) returns. Hence, by Lemma 8.6.5,

` V A0(�) valid, �!� V A0(�), and and V A0(�) is in canonical form. By part one,

` V A0(�) valid. By Lemma 8.6.3 then, V A0(�) ` A :: K. Hence, by Lemma 8.5.5,
� ` A :: K.

(: Given � ` A :: K ) ` � valid (Theorem 6.8.3) ) V A0(�) returns (Lemma 8.6.6).
Hence, by Lemma 8.6.5, ` V A0(�) valid, �!� V A0(�), and and V A0(�) is in canon-

ical form. By part one, ` V A0(�) valid. Thus, by Lemma 8.5.5, V A0(�) ` A :: K.
Hence, by Lemma 8.6.4, 9A0: V C 0(V A0(�); A) returns (A0;K).

2

Using this technique, I have de�ned a set of algorithms for deciding each of the
judgments without any preconditions in Figure 8.5.

Lemma [Tagged] 8.6.8 (Deciding judgments I)

1. V A(�), V C(�; A), PL(�; x�;A), and EC(�; A1; A2) always terminate.

2. V A(�) returns i� ` � valid.

3. V C(�; A) returns K i� � ` A :: K.

4. PL(�; x�;A) returns i� � ` x�) A.

Proof: By Lemma 8.6.5, V A0(�) always terminates ) V A(�) always terminates. By

Lemmas 8.6.5 and 8.6.6, V A0(�) returns i� ` � valid ) V A(�) returns i� ` � valid.
The termination of V C(�; A) and the fact that V C(�; A) returns K i� � ` A :: K fol-

low from inspection of the de�nition of V C(�; A) and Lemma 8.6.7. The termination of
PL(�; x�;A) and EC(�; A1; A2) follows from the termination of V A0(�) (Lemma 8.6.5),
the termination of V T 0(V A0(�); A) and V C 0(V A0(�); A) (Lemma 8.6.7), and Lemmas 8.6.2

and 8.6.1. The proof of the last part is as follows:
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): Given PL(�; x�;A) returns ) 9A0: V T 0(V A(�); A) returns A0 ) V A0(�) returns.

Hence, by Lemma 8.6.3, V A0(�) ` A :: 
, A !� A0, and A0 is in canonical form.

By subject reduction (Corollary 7.6.17), V A0(�) ` A0 :: 
. Hence, by Lemma 8.6.2,

V A0(�) ` x�) A0. By Theorem 7.8.5, V A0(�) ` A0 = A :: 
 ) V A0(�) ` x�) A

(P-MOVE). By Lemma 8.6.5, Lemma 8.6.7, and Lemma 8.5.5, � ` x�) A.

(: Given � ` x�) A) � ` A :: 
 (Theorem 7.6.14) ) 9A0: V T 0(V A(�); A) returns
A0 ) V A0(�) returns. Hence, by Lemma 8.6.3, V A0(�) ` A :: 
, A !� A0, and

A0 is in canonical form. By subject reduction (Corollary 7.6.17), V A0(�) ` A0 :: 
.
By Lemma 8.6.5, Lemma 8.6.7, and Lemma 8.5.5, V A0(�) ` x�) A. By Theo-

rem 7.8.5, V A0(�) ` A = A0 :: 
 ) V A0(�) ` x�) A0 (P-MOVE). Hence, by

Lemma 8.6.2, PL0(V A0(�); x�; V T 0(V A0(�); A)) returns ) PL(�; x�;A) returns.

2

Lemma [Tagged] 8.6.9 (Deciding judgments II)

EC(�; A1; A2) returns K i� � ` A1 = A2 ::K .

Proof:

): Given EC(�; A1; A2) returns K ) 9A01; A
0
2;K1;K2 such that V C 0(V A0(�); A1) re-

turns (A01;K1) and V C
0(V A0(�); A2) returns (A

0
2;K2). By Lemma8.6.7, � ` A1 :: K1

and � ` A2 :: K2. By Lemma 8.6.3, A1 !� A01, A2 !� A02, and A01 and A02
are in canonical form. By subject reduction (Corollary 7.6.17), � ` A01 :: K1 and
� ` A02 :: K2. Hence, by Lemma 8.6.1, � ` A01 = A02 :: K ) � ` A01 :: K and
� ` A02 :: K (Theorem 6.8.3) ) K = K1 = K2 (Theorem 7.6.11). By Theo-
rem 7.8.5, � ` A1 = A01 :: K and � ` A2 = A02 :: K. Hence, by E-TRAN and E-

SYM, � ` A1 = A2 :: K.

(: Given � ` A1 = A2 :: K ) � ` A1 :: K and � ` A2 :: K (Theorem 6.8.3))9A01; A
0
2

such that V C 0(V A0(�); A1) returns (A
0
1;K) and V C 0(V A0(�); A2) returns (A

0
2;K)

(Lemma 8.6.7) By Lemma 8.6.7, Lemma 8.6.5, and Corollary 7.6.17, � ` A01 :: K,

� ` A02 :: K, and A01 and A02 are in canonical form. Hence, by Lemma 8.6.1,
EC 0(V C 0(V A0(�); A1); V C

0(V A0(�); A2)) returns K ) EC(�; A1; A2) returns K.

2

The consequences of these algorithms can be summed up in three propositions:

Corollary [Tagged] 8.6.10 (Decidability of judgments)

The following judgments are decidable:
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1. ` � valid

2. � ` A :: K

3. � ` x�) A

4. � ` A = A0 :: K

Corollary [Tagged] 8.6.11 (Kind Inference)

A recursive algorithm A exists such that

1. If � ` A :: K then A(�; A) returns K.

2. If :9K: � ` A :: K then A(�; A) raises fail

Proof: Let A(�; A) = V C(�; A). The desired result then follows immediately from

Lemma 8.6.8. 2

Theorem [Tagged] 8.6.12 (Computability of canonical types)

If � ` A :: 
 then a constructor A0 is recursively computable such that

� ` A = A0 :: 
 and A0 is in canonical form.

Proof: By Lemma 8.6.7, V T 0(V A0(�); A) always returns. By Lemma 8.6.3, A !�

V T 0(V A0(�); A) and V T 0(V A0(�); A) is in canonical form. By Corollary 7.6.17,
� ` V T 0(V A0(�); A) :: 
. By Theorem 7.8.5, � ` A = V T 0(V A0(�); A) :: 
. 2



Chapter 9

Types: Summary

In this chapter I transfer the results of the previous two chapters on the tagged system to
the original untagged system. I do this by introducing two transforms I call tag removal

and stamping. Tag removal (�	) transforms objects from the tagged to the untagged

system by removing tags (e.g., x�A�
0!	 = x��0!). Stamping (���) transforms in the

opposite direction by adding tags:

x�!�� = x�(x)�!

The tag to be added is obtained from the current assignment. Using these two trans-
forms, I shall show how to transform judgment derivations between the two systems.
Transferring the results between systems is then straightforward.

This chapter is the last of the four chapters devoted to the constructor validity and

equality judgments. In the remaining chapters about the kernel system, I shall discuss
subtyping, soundness, and type checking terms respectively.

9.1 Tag Removal

In this section I introduce the tag removal transform and prove the needed properties

about it. Tag removal can be applied to tagged constructors, declarations, assignments,

and judgments, resulting in untagged objects of the same sort. Its de�nition is straight-
forward:

156
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De�nition [Tagged] 9.1.1 (Tag removal)

�	 = �

rec	 = rec

ref	 = ref

<K>	 = <K>

(�x:A1: A2)
	 = �x:A	1 : A

	
2

(�x:A1: A2)
	 = �x:A	1 : A

	
2

(��::K:A)	 = ��::K:A	

(A1A2)
	 = A	1 A

	
2

<=A::K>	 = <=A	::K>

x�A�
0!	 = x��0!

(�::K)	 = �::K
(x:A)	 = x:A	

�	 = �
(�;D)	 = �	;D	

(` � valid)	 = ` �	 valid

(� ` A :: K)	 = �	 ` A	 :: K
(� ` x�) A)	 = �	 ` x�) A	

(� ` A1 = A2 :: K)	 = �	 ` A	1 = A	2 :: K

Tag removal interacts with the other operators in the expected ways:

Lemma [Tagged] 9.1.2

1. FCV(A	) � FCV(A)

2. FTV(A	) � FTV(A)

Lemma [Tagged] 9.1.3 (Properties of tag removal)

1. ([A2=�]A1)
	 = [A	2 =�](A

	
1 )

2. ([x�=x0]A)	 = [x�=x0](A	)

3. If S(A;x�; �0) exists then S(A;x�; �0)	 = S(A	; x�; �0).

4. dom(�) = dom(�	)
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5. If D 2 � then D	 2 �	

Proof: Proved sequentially by structural induction on A1, A, �
0, �, and � respectively.

Examples:

([A=�]��0::K:A0)	 = (��0::K: [A=�]A0)	 = ��0::K: ([A=�]A0)	

= ��0::K: [A	=�](A0	) = [A	=�]��0::K: (A0	) = [A	=�]((��0::K:A0)	)

([A2=�]x�A1

�0!)	 = (x�
[A2=�]A1

�0!)	 = x��0! = [A	2 =�]x��
0!

= [A	2 =�](x�A1

�0!)	

([x�=x0]x00�0A�
00!)	 = (([x�=x0]x00�0)

[x�=x0]A�
00)	 = ([x�=x0]x00�0)�00

= [x�=x0]x00�0�00 = [x�=x0](x00�0A�
00)	

S(�x0:A1: A2; x�; :2�
0)	 = S([x�:1=x0]A2; x�:2; �

0)	 =
S(([x�:1=x0]A2)

	; x�:2; �0) = S([x�:1=x0](A	2 ); x�:2; �
0) =

S(�x0:A	1 : A
	
2 ; x�; :2�

0) = S((�x0:A1: A2)
	; x�; :2�0)

dom(�; x:A) = dom(�) [ dom(x:A) = dom(�) [ fxg = dom(�	) [ fxg
= dom(�	) [ dom(x:A	) = dom(�	; (x:A)	) = dom((�; x:A)	)

D 2 �) � = �;D1; : : : ;Dm;D;Dm+1; : : : ;Dn

) �	 = �;D	
1 ; : : : ;D

	
m;D

	;D	
m+1; : : : ;D

	
n ) D	 2 �	

Where �0 6= �, �0 62 FCV(A) � FCV(A	) by Lemma 9.1.2, and ([x�=x0]x00�0)�00 =

[x�=x0]x00�0�00 by Lemma 6.5.1. 2

Lemma [Tagged] 9.1.4 If S(A	; x�; �0) exists then S(A;x�; �0) exists.

Proof: By structural induction on �0. 2

Lemma [Tagged] 9.1.5 (�; �0)	 = �	; �0	

If a tagged constructor extraction x�A�
0! has kind K under � (� ` x�A�

0! :: K), then
it will always be equal to a constructor extraction involving the same place, but with a

tag of �(x) next to x (i.e., x�(x)��
0!). This equality allows the stamping transform to

assign tags of this sort to all constructor extractions.

Lemma [Tagged] 9.1.6 If � ` x�) A and � ` x��0 ) A0 where A0 has either the form

<K> or the form <=A00::K> for some A00 then � ` x�(x)��
0! = x�A�

0! :: K.
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Proof: By structural induction on the derivation of � ` x�) A:

P-INIT: Given � ` x) A (� = �) derived via rule P-INIT from ` � valid and x:A 2 �. By

C-EXT-O2 or C-EXT-T2 (depending on the form of A00), � ` x�(x)��
0! :: K. By

Lemma 6.8.11, �(x) = A. By E-REFL then, � ` x�(x)��
0! = x�A�

0! :: K.

P-MOVE: Given � ` x��00 ) A derived via rule P-MOVE from � ` x�) A1,

� ` A1 = A2 :: 
, and S(A2; x�; �
00) = A. Applying the induction hypothesis gives

us that � ` x�(x)��
00�0! = x�A1

�00�0! :: K. By E-EXT2, � ` x�A1

�00�0! = x��00A�
0! :: K.

The desired result then follows by E-TRAN.

2

Applying the equality twice followed by E-TRAN to two di�erent valid tagged con-
structor extractions involving the same place shows that the two constructor extractions
must be equal regardless of what or where their tags are:

Corollary [Tagged] 9.1.7 If � ` x�A1

�0�00 :: K and � ` x��0A2

�00 :: K then

� ` x�A1

�0�00 = x��0A2

�00 :: K.

Proof: Apply Lemma 7.6.5 then Lemma 9.1.6 for each of the two givens then apply
E-TRAN and E-SYM. 2

This result can be usefully generalized to show that two valid tagged constructors
that di�er only in their tags' values or locations must be equal:

Theorem [Tagged] 9.1.8 If � ` A1 :: K, � ` A2 :: K, and A	1 = A	2 then

� ` A1 = A2 :: K.

Proof: By structural induction on A	1 . Example cases:

Var: Here A	1 = A	2 = � ) A1 = A2 = � (inspection of the de�nition of tag removal)

) � ` A1 = A2 :: K (E-REFL).

DFun: HereA	1 = A	2 = �x:B1: B2 for some untagged constructorsB1 andB2, � ` A1 :: K,
and � ` A2 :: K ) A1 = �x:A11: A12 and A2 = �x:A21: A22 for some A11, A12,

A21, and A22 where A
	
11 = A	21 = B1 and A	12 = A	22 = B2 (inspection of the def-

inition of tag removal) ) K = 
, � ` A11 :: 
, � ` A21 :: 
, �; x:A11 ` A12 :: 
,

and �; x:A21 ` A22 :: 
 (C-DFUN). Applying the induction hypothesis gives us that
� ` A11 = A21 :: 
 ) �; x:A11 ` A22 :: 
 (Theorem 7.6.9). Applying the induction

hypothesis again then gives us that �; x:A11 ` A12 = A22 :: 
 ) � ` A1 = A2 :: K

(E-DFUN).
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Ext: Here A	1 = A	2 = x�!, � ` A1 :: K, and � ` A2 :: K ) A1 = x�1A
0

1

�2�3! and

A2 = x�1�2A
0

2

�3! where �1�2�3 = � for some A01 and A02
) � ` x�1A

0

1

�2�3! :: K, and � ` x�1�2A
0

2

�3! :: K ) � ` A1 = A2 :: K

(Corollary 9.1.7).

2

9.2 Stamping

In this section I introduce the stamping transform and prove the needed properties about
it. Stamping can be applied to (untagged) constructors, declarations, assignments, and

judgments, resulting in tagged objects of the same sort. The stamping of constructors and
declarations takes the stamped version of the current assignment as an extra argument
so that the transform can lookup term variables' types for use as tags. The de�nition of
stamping is as follows:
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De�nition 9.2.1 (Stamping)

��� = �

rec�� = rec

ref�� = ref

<K>�� = <K>

(�x:A1: A2)
�� = �x:A��1 : A

��;x:A
��
1

2 (x 62 dom(�) [ FTV(�))

(�x:A1: A2)
�� = �x:A��1 : A

��;x:A
��
1

2 (x 62 dom(�) [ FTV(�))

(��::K:A)�� = ��::K:A��;�::K (� 62 dom(�) [ FCV(�))

(A1A2)
�� = A��1 A��2

<=A::K>�� = <=A��::K>

x�!�� = x�(x)�!

(�::K)�� = �::K

(x:A)�� = x:A��

�� = �

(�;D)� = ��;D���

(` � valid)� = ` �� valid

(� ` A :: K)� = �� ` A��
�

:: K

(� ` x�) A)� = �� ` x�) A��
�

(� ` A1 = A2 :: K)� = �� ` A��
�

1 = A��
�

2 :: K

Stamping is not always de�ned. In particular, x�!�� is only de�ned if x 2 dom(�).

Stamping is de�ned, however, for the components of judgments. This result will be

su�cient to translate results between the systems.

Theorem [Mixed] 9.2.2 (Existence of stamping)

1. If FTV(A) � dom(�0) then A��
0

exists.

2. If �� exists then dom(��) = dom(�).

3. If ` � valid then �� exists.
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4. If � ` A :: K then A��
�

exists.

5. If � ` x�) A then A��
�

exists.

6. If � ` A1 = A2 :: K then A��
�

i exist.

(Here �0 is a tagged assignment; all other variables are untagged.)

Proof: The �rst two parts are proved by structural induction on A and � respectively.

Then the last four parts are proved by simultaneous structural induction on the typing

derivations. In the last three parts, Lemma 6.3.5 plus part three via the induction hy-

pothesis shows that �� exists. Lemma 6.5.6 plus parts one and two then shows that

A��
�

or A��
�

i exists. 2

Stamping and tag removal are partial inverses in the sense that stamping followed

by tag removal leaves untagged objects unchanged. The reverse operation (tag removal
followed by stamping) does change the tagged objects, altering their tags' values and loca-
tions. If the original object was a valid tagged constructor then the resulting constructor
will at least be equal under the equality relation to the original (Theorem 9.1.8).

Lemma [Mixed] 9.2.3 (Cancellation of stamping)

1. If A��
0

exists then (A��
0

)	 = A.

2. If �� exists then (��)	 = �.

3. If the judgment J� exists then (J�)	 = J .

(Here �0 is a tagged assignment; all other variables are untagged.)

Proof: Proved sequentially using structural induction on A, �, and J respectively. 2

The interactions between stamping and the other operators are more complicated
than in the tag removal case because of the need to take the assignment into account,

the need to worry about when stamping is de�ned, and the need to keep track of where
the tags are. In many cases the operators can be related only by using the equality

relation.

For example, when trying to relate place substitution and stamping, we can reason
as follows:

[x�=x0](x0!��;x
0:A

0
;�0

) ? ([x�=x0]x0!)��;[x�=x0]�0

, [x�=x0](x0A0!) ? x�!��;[x�=x0]�0

, x�A
0! ? x

(�;[x�=x0]�0
)(x)�!
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The two sides are clearly not the same because their tags are in di�erent locations.

Under appropriate conditions, however, they will be equal under the equality relation

(Theorem 9.2.6, below).

Lemma [Mixed] 9.2.4 (Properties of stamping I)

1. If A��1;�3 exists and dom(�2) \ dom(�3) = ; then A��1;�2;�3 = A��1;�3.

2. If �� exists and D 2 � then D��
�

2 ��

3. If FTV(A1) � dom(�1), � 62 FCV(�1), and FTV(A2) � dom(�1; �::K; �2) then

[A��1

1 =�]A��1;�::K ;�2

2 = ([A1=�]A2)
��1;[A

��1

1 =�]�2 .

(Here the �i's are tagged assignments; all other variables are untagged.)

Proof: Proved sequentially using structural induction on A, �, and A2 respectively,

using Lemmas 7.6.1 and 7.3.9. 2

Lemma [Mixed] 9.2.5 If �; x:A0; �0 ` B��;x:A0
;�0

:: K and � ` A0 = A00 :: 
 then

�; x:A0; �0 ` B��;x:A0
;�0

= B��;x:A00
;�0

:: K.

(Here B's are untagged constructors; all other variables are tagged.)

Proof: By structural induction on B. Example cases:

Var: Since ���;x:A
0
;�0

= � = ���;x:A
00
;�0

, applying E-REFL gives the desired result.

Dfun: Let �00 = �; x:A0; �0 and �000 = �; x:A00; �0.

Given �00 ` �x0:B��00

: B0��00
;x0:B��00

:: 
, x0 62 dom(�0) [ FTV(�00) [ FTV(�000),

derived via rule C-DFUN from �00; x0:B��00

` B0��00
;x0:B��00

:: 


) ` �00; x0:B��00

valid (Lemma 6.8.3) ) �00 ` B��00

:: 
 (DECL-T). Applying the

induction hypothesis gives us that �00 ` B��00

= B��000

:: 
 and

�00; x0:B��00

` B0��00
;x0:B��00

= B0��000
;x0:B��00

:: 
. By Theorem 7.6.10 and 7.6.9,

�000; x0:B��00

` B0��000
;x0:B��00

:: 
 and �000 ` B��00

= B��000

:: 
. Hence, applying
the induction hypothesis again gives us that

�000; x0:B��00

` B0��000
;x0:B��00

= B0��000
;x0:B��000

:: 
.
Applying Theorem 7.6.10 and 7.6.9 again gives us that

�00; x0:B��00

` B0��000
;x0:B��00

= B0��000
;x0:B��000

:: 
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) �00; x0:B��
00

` B0��
00
;x0:B��

00

= B0��
000
;x0:B��

000

:: 
 (E-TRAN).

Hence, by E-DFUN,

�00 ` �x0:B��00

: B0��00
;x0:B��

00

= �x0:B��000

: B0��000
;x0:B��

000

:: 


) �00 ` (�x0:B:B0)��
00

= (�x0:B:B0)��
000

:: 
.

Ext I: Let �00 = �; x:A0; �0 and �000 = �; x:A00; �0. Given �00 ` x0�00
(x0)

�! :: K derived via

rule C-EXT-O2 from �00 ` x0�) <K> and �00 ` x0 ) �00(x0). By weakening (The-

orem 6.8.10), �00 ` A0 = A00 :: 
. By Lemma 6.8.11 and E-REFL, 8x00 2 dom(�00):

�00 ` �00(x0) = �00(x0) :: 
. Hence, �00 ` �00(x0) = �000(x0) :: 
. Thus, by E-EXT2,

�00 ` x0�00
(x0)�! = x0�000

(x0)�! :: K ) �00 ` (x0�!)��
00

= (x0�!)��
000

:: K.

2

Theorem [Mixed] 9.2.6 If � ` x�) A0 and �; x0:A0; �0 ` B��;x0:A
0
;�0

:: K then

�; [x�=x0]�0 ` [x�=x0](B��;x0:A
0
;�0

) = ([x�=x0]B)��;[x�=x0]�0

:: K.

(Here B's are untagged constructors; all other variables are tagged.)

Proof: By structural induction on B. Example cases:

Var: By Theorem 7.6.12, �; [x�=x0]�0 ` [x�=x0]���;x
0:A

0
;�0

:: K. Since ���
00

= � and
[x�=x0]� = �, by E-REFL we have the desired result.

Dfun: Let �00 = �; x0:A0; �0, � = [x�=x0], and �000 = �; ��0. We are given that

�00 ` (�x00:B1: B2)
��00

:: K where x00 62 dom(�00)[FTV(�00)[FTV(�000)[fx; x0g )

�00 ` �x00:B��00

1 : B
��00

;x00:B��00

1

2 :: K

) �00; x00:B��00

1 ` B
��00

;x00:B��00

1

2 :: K (C-DFUN))` �00; x00:B��00

1 valid (Lemma6.8.3)

) �00 ` B��00

1 :: 
 (DECL-T). Applying the induction hypothesis then gives us that

�000 ` �B��00

1 = (�B1)
��000

:: K and

�000; x00:�B��00

1 ` �B
��00

;x00:B��00

1

2 = (�B2)
��000

;x00:�B��00

1 :: K.
By Lemma 9.2.5,

�000; x00:�B��00

1 ` (�B2)
��000

;x00:�B��00

1 = (�B2)
��000

;x00:(�B1)
��000

:: K

) �000; x00:�B��00

1 ` �B
��00

;x00:B��00

1

2 = (�B2)
��000

;x00:(�B1)
��000

:: K
(E-TRAN). Hence, by E-DFUN,

�000 ` �x00:�B��00

1 : �B
��00

;x00:B��00

1

2 = �x00:(�B1)
��000

: (�B2)
��000

;x00:(�B1)
��000

:: K
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) �000 ` ��x00:B��
00

1 : B
��

00
;x00:B��

00

1

2 = (�x00:�B1: �B2)
��000

:: K

) �000 ` �(�x00:B1: B2)
��

00

= (��x00:B1: B2)
��

000

:: K

Ext I: Let �00 = �; x0:A0; �0, � = [x�=x0], and �000 = �; ��0. We are given that

�00 ` (x0�0!)��
00

::K . By Theorem 7.6.12, �000 ` �(x0�0!��
00

) :: K) �000 ` x�
�A

0�0! :: K.

By Lemmas 7.6.5 and 9.1.6, �000 ` x�000
(x)��

0! = x�
�A

0�0! :: K

) �000 ` (�x0�0!)��
000

= �(x0�0!��
00

) :: K. The desired result follows from E-SYM.

Ext II: Let �00 = �; x0:A0; �0, � = [x�=x0], and �000 = �; ��0. We are given that

�00 ` (x00�0!)��
00

:: K, x00 6= x0. By Theorem 7.6.12, �000 ` �(x00�0!��
00

) :: K

) �000 ` x00
��00

(x00)
�0! :: K. By repeated use of Lemma 6.3.5, ` �; x0:A0 valid )

x0 62 dom(�) (DECL-T) ) x0 62 FTV(�) (Theorem 6.8.5)) �� = � (Lemma 7.3.9)
) ��00(x00) = (��00)(x00) = (�(�; x0:A0; �0))(x00) = (��; x0:�A0; ��0)(x00) = (�; ��0)(x00)
= �000(x00). Hence, by E-REFL, �000 ` x00

��00
(x00)�

0! = x00�000
(x00)

�0! :: K

) �000 ` �(x00�0!��
00

) = (�x00�0!)��
000

:: K.

2

Lemma [Mixed] 9.2.7 (Properties of stamping II)

If � ` x�) B�� and S(B;x�; �0)�� exists then � ` x��0 ) S(B;x�; �0)��.
(Here B's are untagged constructors; all other variables are tagged.)

Proof: By structural induction on �0:

Empty: Since �0 = � for this case, the desired result is the �rst precondition.

Fst: Here �0 = :1�00 and B = �x0:B1: B2. By Lemma 6.5.3, S(B;x�; :1�00) =
S(S(B;x�; :1); x�:1; �00) = S(B1; x�:1; �

00). Hence, by Lemmas 9.1.4

and 9.2.3, S(B��; x�; :1) exists. By Theorems 7.6.15 and 7.6.13,

� ` x�:1) S(B��; x�; :1)) � ` x�:1) B��
1 . Applying the induction hypothesis

gives us that � ` x��:100 ) S(B1; x�:1; �
00)�� ) � ` x��:100 ) S(B;x�; �:100)��.

Snd: Here �0 = :2�00 and B = �x0:B1: B2. By Lemma 6.5.3, S(B;x�; :2�00) =
S(S(B;x�; :2); x�:2; �00) = S(([x�:1=x0]B2); x�:2; �

00). Hence, by Lemmas 9.1.4

and 9.2.3, S(B��; x�; :2) exists. By Theorem 7.6.15, � ` (�x0:B1: B2)
�� :: 


) �; x0:B��
1 ` B

��;x0:B��
1

2 :: 
 (Lemma 6.8.3 and DECL-T). By Theorem 7.6.13,

� ` x�:2) S(B��; x�; :2)
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) � ` x�:2) [x�:1=x0]B
��;x0:B��

1

2 . By Theorem 9.2.6,

� ` [x�:1=x0]B
��;x0:B��

1

2 = ([x�:1=x0]B2)
�� :: 
. Hence, by P-MOVE,

� ` x�:2) ([x�:1=x0]B2)
��. Applying the induction hypothesis gives us that

� ` x��:200 ) S([x�:1=x0]B2; x�:2; �
00)�� ) � ` x��:200 ) S(B;x�; :2�00)��.

2

Relating stamping and the append operator for assignments requires de�ning a notion

of extended stamping for assignments. Extended stamping (�0��) takes an additional

argument that represents the result of stamping the preceding assignment. The desired
result is then Lemma 9.2.9 below:

De�nition [Mixed] 9.2.8 (Extended Stamping)

��� = �

(�0;D)�� = �0��;D��;�0��

(� is a tagged assignment; everything else is from the untagged system.)

Lemma 9.2.9 (�; �0)� = ��; �0��
�

Lemma [Mixed] 9.2.10 If ���
0

exists then dom(���
0

) = dom(�).
(Here � is untagged while the �0 is tagged.)

Lemma [Mixed] 9.2.11 Suppose dom(�2)\ (dom(�3)[ dom(�)) = ;. Then if ���1;�3

exists, ���1;�2;�3 = ���1;�3.

(Here the � is a tagged assignment; all other variables are untagged.)

Proof: By structural induction on � using Lemmas 9.2.4, 6.8.9, and 6.8.2 for the base
case. 2

9.3 System Correspondence

In this section I show that tag removal can be used to transform tagged judgment deriva-

tions into derivations of the corresponding untagged judgments and that stamping can be

used to transform untagged judgment derivations into derivations of the corresponding
tagged judgments. These results mean that the original judgment J is true i� the tagged

judgment J� exists and is true.
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Theorem [Tagged] 9.3.1 (System correspondence I)

1. If ` � valid then (` � valid)	.

2. If � ` A :: K then (� ` A :: K)	.

3. If � ` x�) A then (� ` x�) A)	.

4. If � ` A1 = A2 :: K then (� ` A1 = A2 :: K)	.

Proof: By simultaneous structural induction on the length of the typing derivations,

using lemma 9.1.3 as needed. Example cases:

DECL-T: Given ` �; x:A valid derived via rule DECL-T from � ` A :: 
 and x 62 dom(�).

Applying the induction hypothesis gives us that �	 ` A	 :: 
. By Lemma 9.1.3, x 62
dom(�	) so by rule DECL-T, we have that ` �	; x:A	 valid) (` �; x:A valid)	.

C-EXT-T2: Given � ` x�A�
0! ::K derived via rule C-EXT-T2 from � ` x��0 ) <=A0::K> and

� ` x�) A. Applying the induction hypothesis gives us that
�	 ` x��0 ) <=A0	::K>. Hence, by C-EXT-T, �	 ` x��0! :: K) (� ` x�A�

0! :: K)	.

P-INIT: Given � ` x) A derived via rule P-INIT from ` � valid and x:A 2 �. Applying
the induction hypothesis gives us that ` �	 valid. By Lemma 9.1.3, x:A	 2 �	.
Hence, by P-INIT, �	 ` x) A	 ) (� ` x) A)	.

E-BETA: Given � ` (��::K:A)A0 = [A0=�]A :: K 0 derived via rule E-BETA from
�; �::K ` A :: K 0 and � ` A0 :: K. Applying the induction hypothesis gives us
that �	; �::K ` A	 :: K 0 and �	 ` A0	 :: K. Since [A0	=�]A	 = ([A0=�]A)	 by
Lemma 9.1.3, by rule E-BETA we have that �	 ` ((��::K:A)A0)	 = ([A0=�]A)	 :: K 0

) (� ` (��::K:A)A0 = [A0=�]A :: K 0)	.

E-EXT2: Given � ` x�A1

�0�00! = x��0A2

�00! :: K derived via rule E-EXT2 from

� ` x�A1

�0�00! :: K, � ` A1 = A :: 
, and S(A;x�; �0) = A2. Applying the induc-

tion hypothesis gives us that �	 ` x��0�00! :: K. Hence, by E-REFL,
�	 ` x��0�00! = x��0�00! :: K ) (� ` x�A1

�0�00! = x��0A2

�00! :: K)	.

E-ABBREV2: Given � ` x�A! = A0 :: K derived via rule E-ABBREV2 from � ` x�A! :: K and
� ` A = <=A0::K 0> :: 
. By Lemma 7.6.5, � ` x�) A is a sub-derivation of
� ` x�A! :: K. Applying the induction hypothesis then gives us that �	 ` x�! :: K,

�	 ` x�) A	, and �	 ` A	 = <=A0	::K 0> :: 
. Hence, by E-ABBREV,

�	 ` x�! = A0	 :: K ) (� ` x�A! = A0 :: K)	.
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2

Theorem 9.3.2 (System correspondence II)

1. If ` � valid then (` � valid)�.

2. If � ` A :: K then (� ` A :: K)�.

3. If � ` x�) A then (� ` x�) A)�.

4. If � ` A1 = A2 :: K then (� ` A1 = A2 :: K)�.

Proof: By simultaneous structural induction on the derivations. Existence of the various

stamped items is shown using Theorem 9.2.2. Example cases:

DECL-T: Given ` �; x:A valid derived via rule DECL-T from � ` A :: 
 and x 62 dom(�).

Applying the induction hypothesis gives us that �� ` A��
�

:: 
. By Theorem 9.2.2,

dom(�) = dom(��) ) x 62 dom(��). Hence, by DECL-T, ` ��; x:A��
�

valid )
` (�; x:A)� valid.

C-DFUN: Given � ` �x:A:A0 :: 
 derived via rule C-DFUN from �; x:A ` A0 :: 
. Applying

the induction hypothesis gives us that ��; x:A��
�

` A0��
�
;x:A���

:: 


) �� ` �x:A��
�

: A0��
�
;x:A

���

:: 
 (C-DFUN) ) �� ` (�x:A:A0)��
�

:: 
.

C-EXT-T: Given � ` x�! :: K derived from � ` x�) <=A::K>. Applying the induction hy-

pothesis gives us that �� ` x�) <=A��
�

::K>. By Theorem 6.8.3, ` �� valid.
By Theorem 6.8.5, x 2 dom(��). Hence, by P-INIT, �� ` x) ��(x). By C-EXT-

T2 then, �� ` x��
(x)�! :: K ) �� ` (x�!)��

�

:: K.

P-INIT: Given � ` x) A derived via rule P-INIT from ` � valid and x:A 2 �. Applying

the induction hypothesis gives us that ` �� valid. By Lemma 9.2.4, x:A��
�

2 ��.

Hence, by P-INIT, �� ` x) A��
�

.

P-MOVE: Given � ` x��0 ) A00 derived via rule P-MOVE from � ` x�) A,
� ` A = A0 :: 
, and S(A0; x�; �0) = A00. Applying the induction hypothesis gives

us that �� ` x�) A��
�

and �� ` A��
�

= A0��
�

:: 
 ) �� ` x�) A0��
�

(P-

MOVE). By Theorem 9.2.2, A00��
�

= S(A0; x�; �0)��
�

exists. Hence, by Theo-

rem 9.2.7, �� ` x��0 ) A00��
�

.
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E-BETA: Given � ` (��::K:A)A0 = [A0=�]A :: K 0 derived via rule E-BETA from

�; �::K ` A :: K 0 and � ` A0 :: K ) FTV(A) � dom(�; �::K) and

FTV(A0) � dom(�) (Theorem 6.5.6). By Theorems 6.3.5 and 6.5.9, � 62 FCV(�).

Hence, by Theorem 9.2.4, [A0��=�]A��;�::K = ([A0=�]A)��. Applying the induc-

tion hypothesis gives us that ��; �::K ` A��
�
;�::K :: K 0 and �� ` A0��

�

:: K

) �� ` (��::K:A��
�
;�::K )A0��

�

= [A0��
�

=�](A��
�
;�::K ) :: K 0

(E-BETA) ) �� ` ((��::K:A)A0)��
�

= ([A0=�]A)��
�

:: K 0.

E-ETA: Given � ` ��::K:A� = A :: K)K 0, � 62 dom(�), derived via rule E-ETA from

� ` A :: K)K 0 and � 62 FCV(A). Applying the induction hypothesis gives us that

�� ` A��
�

::K)K 0. By Theorem 9.2.2, dom(�) = dom(��) ) � 62 dom(��).

By Theorem 6.8.7, FCV(A��
�

) � dom(��)) � 62 FCV(A��
�

). By Lemma 9.2.4,

A��
�

= A��
�
;�::K . Hence, by E-ETA, �� ` ��::K:A��

�
;�::K � = A��

�

:: K)K 0

) �� ` (��::K:A�)��
�

= A��
�

:: K)K 0

E-ABBREV: Given � ` x�! = A0 :: K derived via rule E-ABBREV from � ` x�! :: K, � ` x�) A,
and � ` A = <=A0::K 0> :: 
. Applying the induction hypothesis gives us that

�� ` x��
(x)�! :: K, �� ` x�) A��

�

, and �� ` A��
�

= <=A0��
�

::K 0> :: 
. By

Lemmas 7.6.5 and 9.1.6, �� ` x��
(x)�! = x�

A
��� ! :: K. By Theorem 7.6.10 and

E-ABBREV2, �� ` x�
A

��� ! = A0��
�

:: K. The desired result then follows via

E-TRAN.

2

Theorem 9.3.3 (System correspondence III)

1. ` � valid i� ` �� valid.

2. � ` A :: K i� �� ` A��
�

:: K.

3. � ` x�) A i� �� ` x�) A��
�

.

4. � ` A1 = A2 ::K i� �� ` A��
�

1 = A��
�

2 :: K.

Proof: Follows from the two previous system correspondence theorems and the cancel-
lation of stamping lemma. 2
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9.4 Converted Results

In this section I use the results of the previous three sections to transfer many results

for the tagged system, which were proved in the previous three chapters, to the original

untagged system. The following results come from Chapter 6:

Theorem 9.4.1 (Weakening)

Suppose ` �; �0 valid and dom(�0) \ dom(�00) = ;. Then:

1. If ` �; �00 valid then ` �; �0; �00 valid.

2. If �; �00 ` A :: K then �; �0; �00 ` A :: K.

3. If �; �00 ` x�) A then �; �0; �00 ` x�) A.

4. If �; �00 ` A1 = A2 :: K then �; �0; �00 ` A1 = A2 :: K.

Proof: The proof of each part is similar. I give here only the proof for part one. Given
` �; �0 valid and ` �; �00 valid ) ` (�; �0)� valid and ` (�; �00)� valid (Theorem 9.3.3)

) ` ��; �0��
�

valid and ` ��; �00��
�

valid (Lemma 9.2.9) ) dom(�0��
�

) = dom(�0)

and dom(�00��
�

) = dom(�00) (Lemma 9.2.10) ) dom(�0��
�

) \ dom(�00��
�

) = ; )

` ��; �0��
�

; �00��
�

valid (Theorem 6.8.10))` (��; �0��
�

; �00��
�

)	 valid (Theorem 9.3.1)

) ` (��)	; (�0��
�

)	; (�00��
�

)	 valid (Lemma 9.1.5)
) ` �; �0; �00 valid (Lemma 9.2.3) 2

Lemma 9.4.2 (Valid assignment properties)

Suppose ` � valid. Then:

1. If �::K 2 � and �::K 0 2 � then K = K 0
.

2. If x:A 2 � then �(x) = A.

3. If x 2 dom(�) then � ` �(x) :: 
.

Proof: Inspection of the typing rules for assignments combined with the results from

Lemma 6.8.3 reveal that valid assignments never redeclare variables. The last part re-
quires weakening (Theorem 9.4.1) plus repeated use of Lemma 6.3.5. 2

The next set of results are from Chapter 7:

Theorem 9.4.3 (Validity of equal constructors)

If � ` A1 = A2 :: K then � ` A1 :: K and � ` A2 :: K.
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Theorem 9.4.4 (Validity of looked up places)

If � ` x�) A then � ` A :: 
.

Theorem 9.4.5 (Uniqueness of constructor kind)

If � ` A :: K1 and � ` A :: K2 then K1 = K2.

Proof: By Theorems 7.6.11 and 9.3.3. 2

Theorem 9.4.6 (Replacement by an equal type)

Suppose � ` A1 = A2 :: 
. Then:

1. If ` �; x:A1; �
0
valid then ` �; x:A2; �

0
valid.

2. If �; x:A1; �
0 ` A :: K then �; x:A2; �

0 ` A :: K.

3. If �; x:A1; �
0 ` x0�) A then �; x:A2; �

0 ` x0�) A.

4. If �; x:A1; �
0 ` A = A0 :: K then �; x:A2; �

0 ` A = A0 :: K.

Proof: By Theorem 9.4.3, � ` A2 :: 
. Convert to the tagged system via stamping
(Theorem 9.3.3 and Lemma 9.2.9), then apply the tagged version of the theorem (The-
orem 7.6.9), then return to the original system via tag removal and cancellation (Theo-
rem 9.3.1, Lemma 9.2.3, Lemma 9.1.3, and Lemma 9.1.5). 2

Theorem 9.4.7 (Validity of place substitution)

Suppose � ` x�) A0. Then:

1. If ` �; x0:A0; �0 valid then ` �; [x�=x0]�0 valid.

2. If �; x0:A0; �0 ` A :: K then �; [x�=x0]�0 ` [x�=x0]A :: K.

3. If �; x0:A0; �0 ` x00�00 ) A then �; [x�=x0]�0 ` [x�=x0]x00�00 ) [x�=x0]A.

4. If �; x0:A0; �0 ` A1 = A2 :: K then �; [x�=x0]�0 ` [x�=x0]A1 = [x�=x0]A2 :: K.

Proof: Convert to the tagged system via stamping (Theorem 9.3.3 and Lemma 9.2.9),

then apply the tagged version of the theorem (Theorem 7.6.12), then return to the origi-
nal system via tag removal and cancellation (Theorem 9.3.1, Lemma 9.2.3, Lemma 9.1.3,
and Lemma 9.1.5). 2
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Theorem 9.4.8 (Strengthening)

If �1; x:A; �2 ` A1 = A2 :: K, �1; �2 ` A1 :: K, and �1; �2 ` A2 :: K then

�1; �2 ` A1 = A2 :: K.

Proof: Convert to the tagged system via stamping (Theorem 9.3.3 and Lemma 9.2.9),

observe that �
�(�1;x:A)�

2 = �
���

1

2 and A
�(�1;x:A;�2)

�

i = A
�(�1;�2)

�

i (Lemmas 9.2.10,

6.8.9, 6.8.3, 9.2.11, and 9.2.4), then apply the tagged version of the lemma (Lemma 7.8.6),

then return to the original system via tag removal and cancellation (Theorem 9.3.1 and

Lemma 9.2.3). 2

Lemma 9.4.9 (Equality of forms)

Suppose � ` A1 = A2 :: K and A2 has neither the form A02A
00
2, A

0
2 62 fref; recg, the form

x�!, nor the form ��::K:A01. Then

1. If A1 has one of the forms �, <K>, rec, or ref then A1 = A2.

2. If A1 has the form �x:A01: A
00
1 then A2 has the form �x:A02: A

00
2.

3. If A1 has the form �x:A01: A
00
1 then A2 has the form �x:A02: A

00
2.

4. If A1 has the form <=A01::K> then A2 has the form <=A02::K>.

5. If A1 has the form refA01 then A2 has the form refA02.

6. If A1 has the form recA01 then A2 has the form recA02.

Proof: Convert to the tagged system via stamping (Theorem 9.3.3), then apply the
tagged version of the lemma (Lemma 7.8.7), then return to the original system via tag
removal and cancellation (Theorem 9.3.1 and Lemma 9.2.3). Note that both stamping

and tag removal preserve forms. 2

Lemma 9.4.10 (Component-wise equality)

1. If � ` �x:A1: A2 = �x:A01: A
0
2 :: 
, x 62 dom(�), then

� ` A1 = A01 :: 
 and �; x:A1 ` A2 = A02 :: 
.

2. If � ` �x:A1: A2 = �x:A01: A
0
2 :: 
, x 62 dom(�), then

� ` A1 = A01 :: 
 and �; x:A1 ` A2 = A02 :: 
.

3. If � ` <K> = <K 0> :: 
 then K = K 0
.
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4. If � ` <=A::K> = <=A0::K 0> :: 
 then

K = K 0
and � ` A = A0 :: K.

5. If � ` refA = refA0 :: 
 then � ` A = A0 :: 
.

6. If � ` recA = recA0 :: 
 then � ` A = A0 :: 
)
.

Proof: Convert to the tagged system via stamping (Theorems 9.3.3 and 9.2.2), then

apply the tagged version of the lemma (Lemma 7.8.8), then return to the original system

via tag removal and cancellation (Theorem 9.3.1 and Lemma 9.2.3). 2

Finally, these results are from Chapter 8:

Theorem 9.4.11 (Decidability of judgments)

The following judgments are decidable:

1. ` � valid

2. � ` A :: K

3. � ` x�) A

4. � ` A = A0 :: K

Proof: Follows from Theorem 9.3.3, Corollary 8.6.10, and the fact that the stamping
process always terminates. The later is proved by structural induction on the item being

stamped. 2

Corollary 9.4.12 (Kind Inference) A recursive algorithm A exists such that

1. If � ` A :: K then A(�; A) returns K.

2. If :9K: � ` A :: K then A(�; A) raises fail

Proof: Follows from Theorem 9.3.3, Corollary 8.6.11, and the fact that the stamping
process always terminates. The later is proved by structural induction on the item being

stamped. 2
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9.5 Semi-Canonical Types

In this section I transfer the useful results about tagged constructors in canonical form

from Chapter 8 to the original untagged system. I shall do this by introducing semi-

canonical types, an untagged analogue of types in canonical form. A type is a semi-

canonical type (roughly) if it is the result of removing the tags from a valid tagged type

in canonical form:

De�nition 9.5.1 (Semi-canonical Types)

A is a semi-canonical type under assignment � (A 2 C�) i� there exists a tagged con-

structor B such that:

1. B	 = A

2. �� ` B :: 


3. B is in canonical form

Note that unlike in the tagged case, the notion of a semi-canonical type is relative to
an assignment. For example, x! is a semi-canonical type under x:<
> but not under
x:<=<
>::
>. This re
ects the fact that equality (and hence any related notion of
rewriting) depends on the assignment in the untagged system but not in the tagged
system.

Some properties about semi-canonical types follow immediately from the de�nition.
Note that stamping a semi-canonical type does not necessarily yield a canonical type
because stamping does not in general attach the right tags.

Lemma 9.5.2 (Semi-canonical properties)

If A 2 C� then

1. � ` A :: 


2. �� ` B = A��
�

:: 


where B is the tagged constructor from the de�nition of A 2 C�.

Proof: By the de�nition of A 2 C�, B
	 = A and �� ` B :: 
. By Theorem 9.3.1 and

Lemma 9.2.3, � ` B	 :: 
 ) � ` A :: 
 ) �� ` A��
�

:: 
 (Theorem 9.3.3). Hence, by

Theorem 9.1.8 and Lemma 9.2.3, �� ` B = A��
�

:: 
. 2

In order to keep the proofs modular, I shall treat the de�nition of semi-canonical

types like an abstract data type; that is, I shall provide su�cient propositions about
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semi-canonical types in this section so that it will not be necessary to refer to the tagged

system or the details of this de�nition again after this chapter.

The following two lemmas formalize the fact that semi-canonical sums are built from

semi-canonical components. The equivalent statements for the tagged system involving

canonical forms follow immediately from the de�nition of canonical form.

Lemma 9.5.3 If �x:A1: A2 2 C�, x 62 dom(�) then A1 2 C� and A2 2 C�;x:A1

.

Proof: By the de�nition of �x:A1: A2 2 C�, there exists a tagged constructor B such

that B	 = �x:A1: A2, �
� ` B :: 
, and B is in canonical form ) B = �x:B1: B2 for

some tagged constructors B1 and B2 such that B	
1 = A1 and B

	
2 = A2 (inspection of the

de�nition of tag removal) ) �� ` B1 :: 
 and ��; x:B1 ` B2 :: 
 (C-DSUM and The-
orem 9.2.2) By inspection of the de�nition of canonical form, B1 and B2 must also in
canonical form because they are sub-constructors of a canonical constructor) A1 2 C�.

By Lemma 9.5.2, � ` �x:A1: A2 :: 
) � ` A1 :: 
 (C-DSUM)) �� ` A��
�

1 :: 
 (The-

orem 9.3.3) ) �� ` A��
�

1 = B1 :: 
 (Theorem 9.1.8 and Lemma 9.2.3)

) ��; x:A��
�

1 ` B2 :: 
 (Theorem 9.4.6) ) (�; x:A1)
� ` B2 :: 
 ) A2 2 C�;x:A1

. 2

Lemma 9.5.4 If A1 2 C�, A2 2 C�;x:A1

, x 62 dom(�), then �x:A1: A2 2 C�.

Proof: By the de�nition of semi-canonical types, 9 tagged constructors B1 and B2

such that B	
1 = A1, B

	
2 = A2, �

� ` B1 :: 
, �
�; x:A��

�

1 ` B2 :: 
, and B1 and B2

are in canonical form ) �x:B1: B2 is in canonical form (de�nition of canonical form),

(�x:B1: B2)
	 = �x:A1: A2, and �� ` A��

�

1 :: 
 (DECL-T and Lemma 6.3.5)

) �� ` A��
�

1 = B1 :: 
 (Theorem 9.1.8)) ��; x:B1 ` B2 :: 
, (Theorem 7.6.9 and The-
orem 7.6.10) ) �� ` �x:B1: B2 :: 
 (C-DSUM) ) �x:A1: A2 2 C�. 2

The following lemma allows weakening the assignment a semi-canonical type is relative

to:

Lemma 9.5.5 (Weakening)

If A 2 C�1;�3

, ` �1; �2 valid, and dom(�2) \ dom(�3) = ; then A 2 C�1;�2;�3

.

Proof: By the de�nition of A 2 C�1;�3

, 9B such that B	 = A, ��1 ; �
���

1

3 ` B :: 
,

and B is in canonical form. By Theorem 9.3.3 and Lemma 9.2.9, ` ��1 ; �
���

1

2 valid

) ��; �
���

1

2 ; �
���

1

3 ` B :: 
 (Lemma 9.2.10 and Theorem 6.8.10). By Lemma 9.2.11,
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�
��

�

1

3 = �
��

�

1 ;�
���

1

2

3 ) (�1; �2; �3)
� ` B :: 
 ) A 2 C�1;�2;�3

(by de�nition). 2

The following propositions are transfered from Sections 8.4 and 8.6 using the results

from Sections 9.1 to 9.3:

Lemma 9.5.6 If A 2 C�, � ` x�) A, and S(A;x�; �0) exists then
S(A;x�; �0) 2 C�.

Proof: By the de�nition of A 2 C�, there exists a tagged constructor B such that

B	 = A, �� ` B :: 
, and B is in canonical form. By Lemma 9.1.4, S(B;x�; �0) ex-

ists. By Theorem 9.3.3, �� ` x�) A��
�

) �� ` x�) B (P-MOVE, E-SYM, and
Lemma 9.5.2) ) �� ` S(B;x�; �0) :: 
 (Theorems 7.6.13 and7.6.14). By Lemma 9.1.3,
S(B;x�; �0)	 = S(B	; x�; �0) = S(A;x�; �0). By Lemma 8.4.6, S(B;x�; �0) is in canoni-
cal form. Hence, S(A;x�; �0) 2 C�. 2

Lemma 9.5.7 (Shape Pullback)

Suppose � ` A1 = A2 :: 
 and A1 2 C�. Then:

1. If A2 = �, A2 = ref, A2 = rec, or A2 = <K> then A1 = A2.

2. If A2 = �x:A02: A
00
2 then 9A

0
1; A

00
1: A1 = �x:A01: A

00
1.

3. If A2 = �x:A02: A
00
2 then 9A01; A

00
1: A1 = �x:A01: A

00
1.

4. If A2 = <=A02::K> then 9A01: A1 = <=A01::K>.

5. If A2 = refA02 then 9A
0
1: A1 = refA01.

6. If A2 = recA02 then 9A
0
1: A1 = recA01.

Proof: By Theorem 9.3.3, �� ` A��
�

1 = A��
�

2 :: 
. By the de�nition of A1 2 C�,
there exists a tagged constructor B such that B	 = A1 and B is in canonical form. By

Lemma 9.5.2, �� ` B = A��
�

1 :: 
 ) �� ` B = A��
�

2 :: 
 (E-TRAN). The desired re-

sults follows from Lemma 8.4.10 and the fact that the form of a constructor is una�ected

by stamping and tag removal. 2

Lemma 9.5.8 (Pullback)

If A 2 C�, � ` A = A0 :: 
, � ` x�) A0, and S(A0; x�; �0) exists then
� ` S(A;x�; �0) = S(A0; x�; �0) :: 
.
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Proof: By Theorem 9.3.3, �� ` A��
�

= A0��
�

:: 
 and �� ` x�) A0��
�

. By Lem-

mas 9.1.4 and 9.2.3, S(A0��
�

; x�; �0) exists. Hence by Theorems 7.6.13 and7.6.14,

�� ` S(A0��
�

; x�; �0) :: 
. By the de�nition of A 2 C�, there exists a tagged constructor

B such that B	 = A, �� ` B :: 
, and B is in canonical form. Hence, by Lemma 9.5.2,

�� ` B = A��
�

:: 
 ) �� ` B = A0��
�

:: 
 (E-TRAN). Hence by Lemma 8.4.12,

�� ` S(B;x�; �0) = S(A0��
�

; x�; �0) :: 
 ) � ` S(B	; x�; �0) = S(A0; x�; �0) :: 
 (Theo-

rem 9.3.1 and Lemma 9.2.3) ) � ` S(A;x�; �0) = S(A0; x�; �0) :: 
. 2

Lemma 9.5.9 If �1; x:A1; �2 ` x�) A and A1 2 C�1

then

�1; x:A1; �2 ` A = S(A1; x; �) :: 
 and S(A1; x; �) 2 C�1;x:A1;�2

.

Proof: Let � = �1; x:A1; �2. By Theorem 9.3.3 and Lemma 9.2.9,

��1 ; x:A
���

1

1 ; �
�(�1;x:A1)

�

2 ` x�) A��
�

. By the de�nition ofA1 2 C�1

and Lemma 9.5.2,

9B: B	 = A1, B in canonical form, and ��1 ` B = A
���

1

1 :: 


) ��1 ; x:B; �
�(�1;x:A1)

�

2 ` x�) A��
�

(Theorems 7.6.9 and 7.6.10).

Hence, by Lemmas 6.8.11 and 8.4.13, ��1 ; x:B; �
�(�1;x:A1)

�

2 ` A��
�

= S(B;x; �) :: 


and S(B;x; �) is in canonical form ) �� ` A��
�

= S(B;x; �) :: 
 (Theorems 7.6.9
and 7.6.10) ) �� ` S(B;x; �) :: 
 (Theorem 7.6.10) ) S(A1; x; �) 2 C� (de�nition

of a semi-canonical type and Lemma 9.1.3). By Theorem 9.3.1, Lemma 9.1.3, and
Lemma 9.2.3, � ` A = S(A1; x; �) :: 
. 2

Theorem 9.5.10 (Computability of semi-canonical types) If � ` A :: 
 then a con-

structor A0 is (recursively) computable such that � ` A = A0 :: 
 and A0 2 C�.

Proof: By Theorem 9.3.3, �� ` A��
�

:: 
. By Theorem 8.6.12, we can compute a

tagged constructor B such that �� ` A��
�

= B :: 
 and B is in canonical form )
�� ` B :: 
 (Theorem 6.3.5) and � ` A = B	 :: 
 (Theorem 9.3.1 and Lemma 9.2.3)

) B	 2 C�. (Note that tag removal is computable; this is easily proved by structural
induction on the item undergoing tag removal.) 2

The last two lemmas of this section formalize when x! is in semi-canonical form and
that semi-canonical types for a given type under a given assignment are unique:

Lemma 9.5.11 If � ` x! :: 
 and �(x) = <
> then x! 2 C�.



CHAPTER 9. TYPES: SUMMARY 178

Proof: By Lemma 9.2.4, (x:<
>)��
�

2 �� ) ��(x) = <
> (Lemma 6.3.5, The-

orem 9.3.3, and Lemma 9.4.2) ) �� ` x
<
>

! :: 
 (Theorem 9.3.3). By the de�nition

of canonical form, x
<
>

! is in canonical form ) x! 2 C� (de�nition of semi-canonical

types). 2

Lemma 9.5.12 If A1 2 C�, A2 2 C�, and � ` A1 = A2 :: 
 then A1 = A2.

Proof: By the de�nition of Ai 2 C�, 9Bi such that B	
i = A, �� ` Bi :: 
, and

Bi is in canonical form ) �� ` Bi = A��
�

i :: 
 (Lemma 9.5.2). By Theorem 9.3.3,

�� ` A��
�

1 = A��
�

2 :: 
) �� ` B1 = B2 :: 
 (E-SYM and E-TRAN)) B1 #� B2 (The-
orem 7.8.5)) B1 = B2 (Lemma 8.1.3 and the de�nition of canonical form)) B	

1 = B	
2

) A1 = A2 2

9.6 Strengthening

In this section I use the results about semi-canonical types to prove strengthening (re-
moval of unreferenced declarations from an assignment) for the valid assignment, valid
constructor, and equal constructor judgments. I previously showed strengthening by
removing constructor declarations (Theorem 7.6.2 and Corollary 7.6.4); here I show
strengthening by removing term variable declarations:

Theorem 9.6.1 (Strengthening) Suppose x 62 FTV(�0) [ FTV(A). Then:

1. If ` �; x:A0; �0 valid then ` �; �0 valid.

2. If �; x:A0; �0 ` A :: K then �; �0 ` A :: K.

Proof: By simultaneous structural induction on the typing derivations. The only

interesting cases are:

C-EXT-O: Given �; x:A0; �0 ` x0�! :: K, x0 6= x, derived via rule C-EXT-O from

�; x:A0; �0 ` x0�) <K>.

Casing on the order of x and x0 in �; x:A0; �0 (Theorem 6.5.6 and

Lemma 9.4.2):

{ x occurs �rst:

9�2;�
0
2: �2; x

0:A1; �2 = �0 where A1 = (�; x:A0; �0)(x0).

Let �1 = �; x:A0; �2, �
0
1 = �02, �0 = �;�2, and �00 = �02.
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{ x0 occurs �rst:

9�2;�
0
2: �2; x

0:A1;�
0
2 = � where A1 = (�; x:A0; �0)(x0).

Let �1 = �2, �
0
1 = �02; x:A

0; �0, �0 = �2 and �00 = �02; �
0.

Either way, �1; x
0:A1;�

0
1 = �; x:A0; �0 and �0; x

0:A1;�
0
0 = �;�0

) ` �; x:A0; �0 valid, ` �1 valid, and �1 ` A1 :: 
 are sub-derivations of the given

derivation (repeated use of Lemma 6.3.5 and DECL-T).

) ` �; �0 valid and �0 ` A1 :: 
 (induction hypothesis)

By Theorem 9.5.10, 9A2: �0 ` A1 = A2 :: 
 and A2 2 C�0

) �1 ` A1 = A2 :: 
 andA2 2 C�1

(Lemma 6.5.10, Theorem 9.4.1, and Lemma9.5.5)

) �1; x
0:A2;�

0
1 ` x

0�) <K> (Theorem 9.4.6)

By Lemma 9.5.9 then, �1; x
0:A2; �

0
1 ` <K> = S(A2; x

0; �) :: 
 and

S(A2; x
0; �) 2 C�1;x0:A2;�

0

1

)S(A2; x
0; �) has form<K> (E-SYM and Lemma9.5.7).

By P-INIT, �; �0 ` x0 ) A1 ) �; �0 ` x0�) S(A2; x
0; �) (Theorem 9.4.1 and P-

MOVE)) �; �0 ` x0�) <K> ) �; �0 ` x0�! :: K (C-EXT-O).

C-EXT-T: Handled the same as the C-EXT-O case except that the form in question is<=A00::K>.

2

Corollary 9.6.2 (Strengthening)

Suppose x 62 FTV(�0) [ FTV(A1) [ FTV(A2). Then, if �; x:A
0; �0 ` A1 = A2 :: K, then

�; �0 ` A1 = A2 :: K.

Proof: By Theorems 9.4.3 and 9.6.1, �; �0 ` Ai :: K. The desired result then follows
from Theorem 9.4.8. 2

A useful corollary is that replacing a type with an equal semi-canonical type never

introduces new free term variables:

Corollary 9.6.3 (Non-Free Variable Pullback)

If �; x:A ` A1 = A2 :: 
, A1 2 C�;x:A, x 62 FTV(A2) then x 62 FTV(A1).

Proof: By Theorem 9.4.3, �; x:A ` A2 :: 
) � ` A2 :: 
 (Theorem 9.6.1) and ` �; x:A valid

(Lemma 6.3.5) ) x 62 dom(�) (DECL-T). By Theorem 9.3.3,

��; x:A��
�

` A��
�
;x:A���

1 = A
���

;x:A���

2 :: 
 and �� ` A��
�

2 :: 


) ��; x:A��
�

` A��
�
;x:A

���

1 = A��
�

2 :: 
 (inspection of the de�nition of stamping).
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By the de�nition of A1 2 C�;x:A, there exists a tagged constructor B such that: B	 =

A1, �
�; x:A��

�

` B :: 
, and B is in canonical form ) ��; x:A��
�

` B = A��
�

2 :: 


(Lemma 9.5.2 and E-TRAN)) �� ` B = A��
�

2 :: 
 (Corollary 8.4.11)) � ` A1 = A2 :: 


(Theorem 9.3.1 and Lemma 9.2.3)) � ` A1 :: 
 (Theorem 9.4.3)) FTV(A1) � dom(�)

(Theorem 6.5.6) ) x 62 FTV(A1). 2

9.7 Alternatives

I have now �nished the part of the proofs devoted to constructor validity and equality.

Once I was able to reach this point in the proofs, I did not have to make any more
changes in this part of the system. I had to do considerable backtracking in the later
parts of the proofs, but I never had to back up past this point again.

Accordingly, this is a good point to stop and consider alternative formulations of the
system. The following suggestions are what I would try if I were to start the system and

proofs over again from scratch. Be warned that these are highly speculative ideas and
that although they are based on my experience, it is quite possible that they may be
found to be unusable only after months of work.

I think the biggest source of complexity in the proofs is the mutual dependency
between the valid constructor and equal constructor judgments. I suggest that this cycle

be broken by dropping the current requirement that equations may involve only valid
constructors. Let equal constructors under � be de�ned as two constructors that have
the same kind under � and that are convertible via a rewriting relation on (possibly
invalid) constructors. Under an assignment approach (cf. Section 6.2), this might result
in the following rule for equality:

� ` A1 :: K � ` A2 :: K

�; x:A1 � �; x:A2 x 62 dom(�)

� ` A1 = A2 :: K
(EQUAL)

(Note that assignments as well as constructors have to be converted under the assignment

approach because rewriting depends on the current assignment.)

The conversion relation can then be de�ned directly using a rewriting relation without

any reference to the valid or equal constructor judgments. By adding the following rule,

the rewriting relation can be made con
uent on (possibly invalid) constructors even in
the presence of both � and �:

A!�;�::
 A0

��::K:A!� ��::
: A0
(ARG-KIND)
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This addition avoids the need to use erasure or subject reduction in order to prove con-


uence while preserving all the needed properties of the equality relation. This approach

also avoids the need to prove that the rewriting relation implements a separately de�ned

equality relation.

Ideally then, the rewriting relation could be introduced �rst. Only after its properties

had been proved (con
uence, kind preservation, shape preservation, etc.), the valid con-

structor and equal constructor judgments could be introduced. This arrangement would

allow breaking up the �rst part of the proof into two mostly separate parts.

The ARG-KIND rule does complicate normalization somewhat. Subject reduction

will only hold if the ARG-KIND rule is excluded. This means that normalization will

have to proceed in two steps: First, normalize as before under the rewriting relation

modulo the ARG-KIND rule. Second, use ARG-KIND to change all argument kinds to

. This last step cannot enable any new reductions so we will have a normal form.

I believe the approach sketched above should be substantially simpler than the one I
used. I suggest the use of the assignment approach rather than the tagged one because
in retrospect it seems simpler.



Chapter 10

Subtyping

In this chapter I introduce the subtyping relation (� ` A � A0) and prove the major
results about it: subtypes' shapes are related, judgments may be weakened by replacing

types in assignments by subtypes, subtyping acts in a component-wise manner, a semi-
decision procedure for deciding subtyping exists, and subtyping is undecidable. The
replacement by a subtype result will be crucial in proving soundness for the kernel system
in the next chapter because it shows that values of a subtype can be substituted where
values of a supertype are expected.

The replacement by a subtype result is hard to prove, however. One problem is that
proving it directly requires knowing that subtyping acts in a component-wise manner;
unfortunately, proving that subtyping acts in a component-wise manner requires the
replacement by a subtype result in order to handle transitivity,1 resulting in a cycle.

I shall avoid this problem by introducing a one-step subtyping relation

(� ` A< A0). The one-step subtyping relation is quite simple and only allows information
about constructor components to be forgotten. It has no transitivity rule and does not
allow rewriting via equality of constructors, thus avoiding the equality transitivity rule as
well. Because of the lack of transitivity rules, it can be proved to act in a component-wise

manner without using a replacement result. The lack of equality also simpli�es relating

the shapes of one-step subtypes.
The full subtyping relation can be constructed from the one-step subtyping relation

and equality by de�ning A to be a subtype of A0 under � i� you can get from A to A0 by a
series of applications of equality and one-step subtyping under �. For example, we might

have � ` A � A0 by � ` A = A1 :: 
, � ` A1 < A2, � ` A2 = A3 :: 
, and � ` A3 < A0.

Using this de�nition of subtyping, the replacement by a subtype result can be proved

as follows: First, prove that types in assignments can be replaced by one-step subtypes
using the fact that one-step subtyping acts in a component-wise manner. Second, combine

1This fact can be seen in the use of Theorem 10.4.7 in the second to last step of Lemma 10.5.1.
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that result with the replacement by an equal type result (Theorem 9.4.6) to prove the

desired result. (The key idea for the second part is that you can always replace a type

by a subtype by means of a sequence of replacements by equal and one-step subtypes;

the sequence needed can be determined from the subtyping derivation.)

10.1 One-Step Subtyping

The rules for the one-step subtyping relation follow. Note that aside from the O-FORGET

rule, the rules act either in a component-wise manner or leave the constructor unchanged.

De�nition 10.1.1 (One-Step Subtyping Rules)

� ` A :: 


� ` A< A
(O-REFL)

� ` A01 < A1

�; x:A01 ` A2 < A02 �; x:A1 ` A2 :: 


� ` �x:A1: A2 < �x:A01: A
0
2

(O-DFUN)

� ` A1 < A01
�; x:A1 ` A2 < A02 �; x:A01 ` A

0
2 :: 


� ` �x:A1: A2 < �x:A01: A
0
2

(O-DSUM)

� ` A :: K

� ` <=A::K>< <K>
(O-FORGET)

The usual propositions on judgments also hold for one-step subtyping:

Lemma 10.1.2 (Validity of one-step subtypes)

If � ` A< A0 then � ` A :: 
 and � ` A0 :: 
.

Theorem 10.1.3 (Weakening)

Suppose ` �; �0 valid and dom(�0) \ dom(�00) = ;. Then if �; �00 ` A1 < A2 then

�; �0; �00 ` A1 < A2.

Proof: By structural induction on the derivation of �; �00 ` A1 < A2, using Theo-
rem 9.4.1 as needed. 2

Lemma 10.1.4 (Strengthening)

Suppose x 62 FTV(�0) [ FTV(A1) [ FTV(A2). Then, if �; x:A0; �0 ` A1 < A2, then

�; �0 ` A1 < A2.
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Proof: By structural induction on the derivation using Theorem 9.6.1 as needed. 2

Lemma 10.1.5 (Validity of place substitution)

Suppose � ` x�) A0. Then, if �; x0:A0; �0 ` A1 < A2 then

�; [x�=x0]�0 ` [x�=x0]A1 < [x�=x0]A2.

Proof: Proved by structural induction on the derivation of �; x0:A0; �0 ` A1 < A2 using

Theorem 9.4.7 as needed. 2

Lemma 10.1.6 (Replacement with an equal type)

Suppose � ` A1 = A2 :: 
. Then, if �; x:A1; �
0 ` A< A0 then �; x:A2; �

0 ` A< A0.

Proof: Proved by structural induction on the derivation of �; x:A1; �
0 ` A< A0 using

Theorem 9.4.6 as needed. 2

Because one-step subtyping lacks any transitivity rules, it can easily be shown to act
in a component-wise manner:

Lemma 10.1.7 (Component-wise one-step subtyping)

1. If � ` �x:A1: A2 < �x:A01: A
0
2, x 62 dom(�), then

� ` A01 < A1 and �; x:A01 ` A2 < A02.

2. If � ` �x:A1: A2 < �x:A01: A
0
2, x 62 dom(�), then

� ` A1 < A01 and �; x:A1 ` A2 < A02.

Proof: Proved by structural induction on the derivations. The O-DFUN and O-DSUM

cases are immediate. The only other possible case is O-REFL which is handled by

Lemma 10.1.2 and C-DFUN/C-DSUM (to establish the validity of A1 and A2) followed
by O-REFL. 2

Using this result, I can prove that (single-step) selections can be pulled back across

one-step subtyping:

Lemma 10.1.8 (Pullback)

If � ` x�) A1 and � ` A1 < �x0:A02: A
00
2 then � ` S(A1; x�; :i)< S(�x0:A02: A

00
2; x�; :i).
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Proof: WLOG, let x0 62 dom(�). Inspection of the rules for one-step subtyping

shows that � ` A1 < �x0:A02: A
00
2 must have been derived using either O-REFL or O-

DSUM. Either way, WLOG, A1 must have the form �x0:A01: A
00
1 for some A01 and A001 )

� ` A01 < A02 and �; x0:A01 ` A
00
1 < A002 (Lemma 10.1.7) and S(A1; x�; :1) = A01 exists )

� ` S(A1; x�; :1)< S(�x0:A02: A
00
2; x�; :1).

By Theorem 9.4.4, E-REFL, and P-MOVE, � ` x�:1) A01
) � ` [x�:1=x0]A001 < [x�:1=x0]A002 (Lemma 10.1.5)

) � ` S(A1; x�; :2)< S(�x0:A02: A
00
2; x�; :2).

Thus, � ` S(A1; x�; :i)< S(�x0:A02: A
00
2; x�; :i). 2

10.2 The Subtyping Relation

The rules for the full subtyping relation are as follows:

De�nition 10.2.1 (Subtyping Rules)

� ` A = A0 :: 


� ` A � A0
(S-EQ)

� ` A< A0

� ` A � A0
(S-ONE)

� ` A � A0 � ` A0 � A00

� ` A � A00
(S-TRAN)

Again, the usual propositions on judgments hold:

Lemma 10.2.2 (Validity of subtypes)

If � ` A � A0 then � ` A :: 
 and � ` A0 :: 
.

Theorem 10.2.3 (Weakening)

Suppose ` �; �0 valid and dom(�0) \ dom(�00) = ;. Then if �; �00 ` A1 � A2 then

�; �0; �00 ` A1 � A2.

Proof: By structural induction on the derivation of �; �00 ` A1 � A2, using Theo-

rems 9.4.1 and 10.1.3 as needed. 2

Theorem 10.2.4 (Strengthening)

Suppose x 62 FTV(�0) [ FTV(A1) [ FTV(A2). Then, if �; x:A0; �0 ` A1 � A2, then

�; �0 ` A1 � A2.
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Proof: By structural induction on the derivation using Lemma 10.1.4 and Corol-

lary 9.6.2 as needed. 2

Lemma 10.2.5 (Replacement with an equal type)

Suppose � ` A1 = A2 :: 
. Then, if �; x:A1; �
0 ` A � A0 then �; x:A2; �

0 ` A � A0.

Proof: Proved by structural induction on the derivation of �; x:A1; �
0 ` A � A0 using

Theorem 9.4.6 and Lemma 10.1.6 as needed. 2

10.3 Shapes

In this section I formalize the notion of constructor shapes and establish results about
how the shapes of constructors related by the equality, one-step subtyping, and subtyping

judgments are related. I shall use the following set of shapes to describe the structure of
constructors:

De�nition 10.3.1 (Shape syntax)

Shapes � ::= ? j � j � j � j � j <K> j <=::K> j rec j ref j recapp j
refapp

The has-shape function (d�e) assigns these shapes to constructors in the following man-
ner:

De�nition 10.3.2 (Constructor shapes)

d�e = �

d�x:A:A0e = �

d�x:A:A0e = �
d��::K:Ae = �

drecA0e = recapp

drefA0e = refapp

dAA0e = ? (A 62 frec; refg)
d<K>e = <K>

d<=A::K>e = <=::K>

dx�!e = ?

drece = rec

drefe = ref
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I have chosen the set of shapes so that if the ? shape is considered a wildcard, equal

to any other shape, then equal constructors always have equal shapes:

Lemma 10.3.3 (Shapes and equality)

Suppose � ` A1 = A2 :: 
. Then one of the following is true:

1. dA1e = ?

2. dA2e = ?

3. dA1e = dA2e

Proof: By Theorem 9.4.3, � ` A1 :: 
 and � ` A2 :: 
 ) dA1e 6= � and dA2e 6= �

(inspection of the typing rules). The desired result then follows by Lemma 9.4.9. 2

In order to describe how one-step subtyping interacts with shapes, it is useful to
introduce the following ordering relation on shapes, which puts transparent type shapes
before opaque type shapes that contain constructors of the same kind:

De�nition 10.3.4 (Ordering of shapes)

We say that �1 � �2 i� either of the following:

1. �1 = �2

2. �1 = <=::K> and �2 = <K> for some K

Note that this ordering relation is transitive:

Lemma 10.3.5 (Transitivity)

If �1 � �2 and �2 � �3 then �1 � �3.

The shapes of constructors related by one-step subtyping are related by this ordering:

Lemma 10.3.6 (Shapes and one-step subtyping)

If � ` A1 < A2 then dA1e � dA2e.

Proof: Proved by inspection of the one-step subtyping rules. 2

If one-step subtyping is applied to a constructor with the ? shape, it acts as the

identity relation:

Lemma 10.3.7 If � ` A1 < A2 and dA1e = ? or dA2e = ? then:
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1. A1 = A2

2. � ` A1 = A2 :: 


3. dA1e = dA2e = ?

Proof: Inspection of the one-step subtyping rules shows that � ` A1 < A2 must be

derived using the O-REFL rule ) A1 = A2 ) � ` A1 = A2 :: 
 (Theorem 9.4.3 and

E-REFL). 2

When dealing with multiple equalities or one-step subtypings (as is the case when

dealing with the full subtyping relation), it is useful to introduce the concept of a con-
structor's intrinsic shape under a given assignment (d�e�). The intrinsic shape of a
constructor is the most de�ned shape it can be put into using equality where ? is consid-
ered the least de�ned shape:

De�nition 10.3.8 (Intrinsic constructor shapes)

If � ` A :: K then de�ne dAe� as follows:

1. If 9A0 such that � ` A = A0 :: K, dA0e = �, and � 6= ? then dAe� = �.

2. Otherwise, dAe� = ?.

(Note that this de�nition is well de�ned because Lemma 10.3.3 and E-TRAN imply that

case one cannot hold for two di�erent shapes.)
When necessary, a type's intrinsic shape under a given assignment may be computed

by �rst computing an equal semi-canonical type (via Theorem 9.5.10) then determining
the resulting semi-canonical type's shape:

Lemma 10.3.9 If A 2 C� then dAe� = dAe.

Proof: Suppose not. Then by the de�nition of intrinsic shape and E-REFL, dAe = ? and

dAe� 6= ? ) 9A0 such that � ` A = A0 :: K, dA0e = dAe�. By Lemma 9.5.2, � ` A :: 
.

By Theorems 9.4.5 and 9.4.3, K = 
 and � ` A0 :: 
. ) dA0e 6= � (inspection of typing

rules). By Lemma 9.5.7 then, dAe = dA0e = dAe�. 2

Equal constructors, of course, have the same intrinsic shape:

Lemma 10.3.10 If � ` A1 = A2 :: K then dA1e� = dA2e�.
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Proof: By E-TRAN, A1 and A2 are equal to exactly the same types under �. Hence,

by the de�nition of intrinsic constructor shapes, their intrinsic constructor shapes must

be the same. 2

Both forms of subtyping relate types whose intrinsic shapes are related by the intro-

duced ordering on shapes:

Lemma 10.3.11 If � ` A1 < A2 then dA1e� � dA2e�.

Proof: Cases:

Case I: dA2e = ?

) A1 = A2 (Lemma 10.3.7) ) dA1e� = dA2e� ) dA1e� � dA2e�.

Case II: dA2e 6= ?
By Lemma 10.3.6, dA1e � dA2e ) dA1e 6= ? (? � �) � = ?)) dA1e = dA1e� and

dA2e = dA2e� (Lemma 10.1.2, E-REFL, and the de�nitions of shape and intrinsic
shape) ) dA1e� � dA2e�.

2

Corollary 10.3.12 If � ` A1 � A2 then dA1e� � dA2e�.

Proof: Proved by structural induction on the derivation, using Lemma 10.3.11,
Lemma 10.3.5, and the de�nition of intrinsic shape as needed. 2

Subtyping collapses to equality when applied to types with certain intrinsic shapes:

Lemma 10.3.13 If � ` A1 < A2, dA1e� = dA2e�, and dA2e� 62 f�; �g then

� ` A1 = A2 :: 


Proof: Lemma 10.3.7 handles the case where dA1e = ? or dA2e = ?, so we can assume
that dA1e 6= ? and dA2e 6= ? ) dA1e = dA1e� = dA2e� = dA2e (de�nition of intrinsic

shape) ) � ` A1 < A2 was derived using O-REFL (inspection of the one-step subtyping

rules) ) A1 = A2 ) � ` A1 = A2 :: 
 (Theorem 9.4.3 and E-REFL). 2

Corollary 10.3.14 If � ` A1 � A2, dA1e� = dA2e�, and dA2e� 62 f�; �g then

� ` A1 = A2 :: 
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Proof: Inspection of the rules for subtyping shows that a subtyping derivation for

� ` A1 � A2 can be regarded as a linear sequence of types starting with A1 and ending

with A2 such that adjacent types are related either by equality or one-step subtyping

(under assignment �). By Lemma 10.3.11 and the de�nition of intrinsic shape, it fol-

lows that the intrinsic shape with respect to � of all the types in the sequence are the

same. Hence, by Lemma 10.3.13 then, we can replace the one-step subtyping steps in

the sequence by equalities. By repeatedly applying E-TRAN then, we get the desired

result. 2

I shall need the following lemma about shapes and one-step subtyping in order to

prove the replacement by a subtype result:

Lemma 10.3.15 (Shape preservation)

Suppose � ` A1 < A2 and � ` A2 = A3 :: 
. Then:

1. If dA3e = <K> then either � ` A1 = A3 :: 
 or dA1e = <=::K>.

2. If dA3e = <=::K> then � ` A1 = A3 :: 
.

Proof: If dA2e = ? then, by Lemma 10.3.7 and E-TRAN, we have that � ` A1 = A3 :: 


and are done. So, assume otherwise ) dA2e = dA3e
(Lemma 10.3.3). By Lemma 10.3.6, dA1e � dA2e. There are two cases:

case I: Here dA1e = dA2e ) dA1e 6= ?) dA1e� = dA1e and dA2e� = dA2e (Lemma 10.1.2,
E-REFL, and de�nition of intrinsic shape)

) � ` A1 = A2 :: 
 (Lemma 10.3.13) ) � ` A1 = A3 :: 
 (E-TRAN).

case II: Here dA1e = <=::K> and dA3e = dA2e = <K>. We must proving part two here
and are thus done.

2

10.4 Replacement by a Subtype

In this section I prove the key result that if you take a true judgment and replace a type in

its assignment with a subtype, the resulting judgment is also true. As I discussed earlier,
I shall do this by �rst proving a similar result using the one-step subtyping relation

instead of the full subtyping relation.
The induction hypothesis required for proving this statement is quite tricky; I shall

need a notion of constructor size that decreases when a constructor is replaced by a

selection on that constructor using a non-empty path:
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De�nition 10.4.1 (�-size) If A has form �x:A1: A2 then bAc = bA1c + bA0c + 1.

Otherwise, bAc = 0.

Lemma 10.4.2 (�-size properties)

1. bAc � 0

2. b[x�=x0]Ac = bAc

3. If S(A;x�; :i) exists then bS(A;x�; :i)c < bAc.

4. If S(A;x�; �0), �0 6= �, exists then bS(A;x�; �0)c < bAc.

Proof: Parts one and two are proved by structural induction on A. Part three follows
from parts one and two and the de�nitions of selection and �-size. Part four follows from
part three and Lemma 6.5.3. 2

In order to prevent the proof from getting too complicated, I have (partially) pulled
out the following lemma that is used to handle the induction case for the place lookup
judgment. Preconditions one through four of the lemma describe a simpli�ed version of
that case. In particular, the lemma assumes that the selection is by exactly one step (:i);
I shall remove this simpli�cation shortly.

The �fth precondition represents the induction hypothesis of the replacement by a one-
step subtype result that we are trying to prove. This precondition allows the lemma to use
the replacement result with smaller (in the �-size sense) constructors. The lemma says
that under these preconditions, we can either directly lookup the end type (S(A2; x�; :i))
or we can lookup a type (A03) that we can convert via one-step subtyping (� ` A03 < A01)

followed by equality (� ` A01 = S(A2; x�; :i) :: 
) to the end type. In the second case, the
one-step supertype �-size is such that we can use the replacement result with it.

Lemma 10.4.3 (Special pullback lemma I) Suppose:

1. � ` x�) A3

2. � ` A3 < A1

3. � ` A1 = A2 :: 


4. S(A2; x�; :i) exists

5. 8x0; A;A0; A01; A
0
2: If �; x

0:A ` A01 = A02 :: 
, � ` A
0 < A, bAc < bA1c then

�; x0:A0 ` A01 = A02 :: 
.
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Then one of the following holds:

� � ` x�:i) S(A2; x�; :i)

� 9A03; A
0
1: � ` x�:i) A03, � ` A

0
3 < A01, bA

0
1c < bA1c, and

� ` A01 = S(A2; x�; :i) :: 


Proof: Since S(A2; x�; :i) exists, 9x0; A
0
2; A

00
2: A2 = �x0:A02: A

00
2 and x0 62 dom(�) By

Lemma 10.3.3, we have the following cases:

� dA1e = ? ) � ` A3 = A1 :: 
 (Lemma 10.3.7) ) � ` A3 = A2 :: 
 (E-TRAN) )
� ` x�:i) S(A2; x�; :i) (P-MOVE)

� dA1e = � ) 9A01; A
00
1: A1 = �x0:A01: A

00
1 ) � ` �x0:A01: A

00
1 = �x0:A02: A

00
2 :: 
,

� ` S(A3; x�; :1)< S(�x0:A01: A
00
1; x�; :1), and

� ` S(A3; x�; :2)< S(�x0:A01: A
00
1; x�; :2). (Lemma 10.1.8)

) � ` A01 = A02 :: 
 and �; x0:A01 ` A001 = A002 :: 
 (Lemma 9.4.10) and
� ` S(A3; x�; :1)< A01 ) � ` S(A1; x�; :1) = S(A2; x�; :1) :: 
.

By Lemma 10.4.2, bA01c = bS(A1; x�; :1)c < bA1c and bS(A1; x�; :2)c < bA1c.
Hence, by precondition number �ve, �; x0:S(A3; x�; :1) ` A

00
1 = A002 :: 
.

By Theorem 9.4.4, E-REFL, and P-MOVE, � ` x�:1) S(A3; x�; :1) and

� ` x�:2) S(A3; x�; :2) ) � ` [x�:1=x0]A001 = [x�:1=x0]A002 :: 
 (Lemma 10.1.5) )
� ` S(A1; x�; :2) = S(A2; x�; :2) :: 
.

Thus, � ` x�:i) S(A3; x�; :i), � ` S(A3; x�; :i)< S(A1; x�; :i),
bS(A1; x�; :i)c < bA1c, and � ` S(A1; x�; :i) = S(A2; x�; :i) :: 
.

2

By iterating the previous lemma, we can remove the restriction that the selection be
by only one step (the statement of the lemma is otherwise unchanged):

Lemma 10.4.4 (Special pullback lemma II) Suppose:

1. � ` x�) A3

2. � ` A3 < A1

3. � ` A1 = A2 :: 


4. S(A2; x�; �
0) exists

5. 8x0; A;A0; A01; A
0
2: If �; x

0:A ` A01 = A02 :: 
, � ` A
0 < A, bAc < bA1c then

�; x0:A0 ` A01 = A02 :: 
.
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Then one of the following holds:

� � ` x��0 ) S(A2; x�; �
0)

� 9A03; A
0
1: � ` x��0 ) A03, � ` A

0
3 < A01, bA

0
1c < bA1c, and

� ` A01 = S(A2; x�; �
0) :: 


Proof: Proved by induction on the length of �0. Cases:

Zero: Here �0 = � ) S(A2; x�; �
0) = A2. Let A

0
3 = A3 and A01 = A1 and we are done.

Many: Here �0 = �00:i. By Lemma 6.5.3, S(A2; x�; �
00:i) = S(S(A2; x�; �

00); x��00; :i).

Hence, by the induction hypothesis, we have two cases:

{ Here � ` x��00 ) S(A2; x�; �
00)) � ` x��00:i) S(A2; x�; �

00:i) (Theorem 9.4.4,
E-REFL, and P-MOVE)) � ` x��0 ) S(A2; x�; �

0)

{ Here 9A003; A
00
1: � ` x��

00 ) A003, � ` A
00
3 < A001, bA

00
1c < bA1c, and

� ` A001 = S(A2; x�; �
00) :: 
. Since bA001c < bA1c, we can apply

Lemma 10.4.3 to get: 9A03; A
0
1: � ` x��

00:i) A03, � ` A03 < A01, bA
0
1c < bA001c,

and � ` A01 = S(S(A2; x�; �
00); x��00; :i) :: 
) � ` x��00:i) A03, � ` A

0
3 < A01,

bA01c < bA1c, and � ` A01 = S(A2; x��
00; �0) :: 


2

Using the improved version of the lemma, I can now prove the desired replacement
result:

Theorem 10.4.5 (Replacement with a one-step subtype)

If � ` A2 < A1 then:

1. If ` �; x:A1; �
0
valid then ` �; x:A2; �

0
valid.

2. If �; x:A1; �
0 ` A :: K then �; x:A2; �

0 ` A :: K.

3. If �; x:A1; �
0 ` A = A0 :: K then �; x:A2; �

0 ` A = A0 :: K.

4. If �; x:A1; �
0 ` x0�) A, x0 6= x, then �; x:A2; �

0 ` x0�) A.

5. If �; x:A1; �
0 ` x�) A then one of:

� �; x:A2; �
0 ` x�) A

� 9A02; A
0
1: �; x:A2; �

0 ` x�) A02, �; x:A2; �
0 ` A02 < A01,

bA01c � bA1c, and �; x:A2; �
0 ` A01 = A :: 
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Proof: Proved by simultaneous induction on all �ve parts; the metric used is based

�rst on bA1c and then on the structure of the derivations of the parts. Thus, we may

recursively call ourselves either with a A1 of smaller �-size or with the same A1 and a

sub-derivation of the original one. Interesting cases:

C-EXT-O II: Given �; x:A1; �
0 ` x�! :: K derived via C-EXT-O from �; x:A1; �

0 ` x�) <K>.

By the induction hypothesis, Theorem 9.4.4, O-REFL, and E-REFL, we have

9A02; A
0
1: �; x:A2; �

0 ` x�) A02, �; x:A2; �
0 ` A02 < A01, and

�; x:A2; �
0 ` A01 = <K> :: 
) �; x:A2; �

0 ` A02 = <K> :: 
 or 9A002: A
0
2 = <=A002::K>

(Lemma 10.3.15) ) �; x:A2; �
0 ` x�) <K> (P-MOVE) or

�; x:A2; �
0 ` x�) <=A002::K> ) �; x:A2; �

0 ` x�! :: K (C-EXT-O or C-EXT-T).

C-EXT-T II: Given �; x:A1; �
0 ` x�! :: K derived via C-EXT-T from

�; x:A1; �
0 ` x�) <=A::K> By the induction hypothesis, Theorem 9.4.4, O-REFL,

and E-REFL, we have 9A02; A
0
1: �; x:A2; �

0 ` x�) A02, �; x:A2; �
0 ` A02 < A01, and

�; x:A2; �
0 ` A01 = <=A::K> :: 
 ) �; x:A2; �

0 ` A02 = <=A::K> :: 

(Lemma 10.3.15)) �; x:A2; �

0 ` x�) <=A::K> (P-MOVE)) �; x:A2; �
0 ` x�! :: K

(C-EXT-T).

E-ABBREV II: Given �; x:A1; �
0 ` x�! = A0 :: K derived via E-ABBREV from

�; x:A1; �
0 ` x�! :: K, �; x:A1; �

0 ` x�) A, and
�; x:A1; �

0 ` A = <=A0::K 0> :: 
 By the induction hypothesis,
Theorem 9.4.4, O-REFL, and E-REFL, we have �; x:A2; �

0 ` x�! :: K,

�; x:A2; �
0 ` A = <=A0::K 0> :: 
, and 9A02; A

0
1: �; x:A2; �

0 ` x�) A02,
�; x:A2; �

0 ` A02 < A01, and �; x:A2; �
0 ` A01 = A :: 


) �; x:A2; �
0 ` A01 = <=A0::K 0> :: 
 (E-TRAN)

) �; x:A2; �
0 ` A02 = <=A0::K 0> :: 
 (Lemma 10.3.15)

) �; x:A2; �
0 ` x�) A (P-MOVE, E-SYM, and E-TRAN)

) �; x:A2; �
0 ` x�! = A0 :: K (E-ABBREV).

P-INIT I: Given �; x:A1; �
0 ` x0 ) A, x0 6= x, derived via P-INIT from ` �; x:A1; �

0 valid and

x0:A 2 �; x:A1; �
0 ) x0:A 2 �; �0 and ` �; x:A2; �

0 valid (induction hypothesis) )
x0:A 2 �; x:A2; �

0 ) �; x:A2; �
0 ` x0 ) A (P-INIT).

P-INIT II: Given �; x:A1; �
0 ` x) A derived via P-INIT from ` �; x:A1; �

0 valid and x:A 2
�; x:A1; �

0 ) ` �; x:A2; �
0 valid (induction hypothesis) and A = A1 (Lemma 9.4.2)

) �; x:A2; �
0 ` x) A2 (P-INIT) and �; x:A2; �

0 ` A2 < A1 and �; x:A2; �
0 ` A1 :: 


(Lemma 10.1.2 and Theorem 9.4.1) ) �; x:A2; �
0 ` A1 = A1 :: 
 (E-REFL) Let

A02 = A and A01 = A1 and we are done.

P-MOVE II: Given �; x:A1; �
0 ` x��0 ) A00 derived via P-MOVE from �; x:A1; �

0 ` x�) A,

�; x:A1; �
0 ` A = A0 :: 
, and A00 = S(A0; x�; �0). Applying the induction hypothe-

sis gives us that �; x:A2; �
0 ` A = A0 :: 
 and that one of the following cases holds:
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{ Here �; x:A2; �
0 ` x�) A ) �; x:A2; �

0 ` x��0 ) A00 (P-MOVE).

{ Here 9A002; A
00
1: �; x:A2; �

0 ` x�) A002, �; x:A2; �
0 ` A002 < A001,

bA001c � bA1c, and �; x:A2; �
0 ` A001 = A :: 
 ) �; x:A2; �

0 ` A001 = A0 :: 
 (E-

TRAN). The desired result then follows directly from an application of

Lemma 10.4.4. (Precondition �ve of the lemma is met by the induction hy-

pothesis since bA001c � bA1c.)

2

The result extends immediately to the one-step subtyping relation:

Corollary 10.4.6 (Replacement with a one-step subtype)

If � ` A1 < A2 and �; x:A1; �
0 ` A< A0 then

�; x:A2; �
0 ` A< A0.

Proof: By structural induction on the derivation of �; x:A1; �
0 ` A< A0 using Theo-

rem 10.4.5 as needed. 2

Finally, using these results plus the replacement by an equal type result (Theo-

rem 9.4.6), the desired replacement by a subtype result can be proved:

Theorem 10.4.7 (Replacement with a subtype)

If � ` A2 � A1 then:

1. If ` �; x0:A1; �
0
valid then ` �; x0:A2; �

0
valid.

2. If �; x0:A1; �
0 ` A :: K then �; x0:A2; �

0 ` A :: K.

3. If �; x0:A1; �
0 ` A = A0 :: K then �; x0:A2; �

0 ` A = A0 ::K .

4. If �; x0:A1; �
0 ` x�) A, x 6= x0, then �; x0:A2; �

0 ` x�) A.

5. If �; x0:A1; �
0 ` A � A0 then �; x0:A2; �

0 ` A � A0.

Proof: Proved simultaneously by structural induction on the derivations. The S-EQ

case is handled by Theorem 9.4.6 and Lemma 10.2.5. The S-ONE case is handled by

Theorem 10.4.5 and Corollary 10.4.6. 2
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10.5 A Semi-Decision Procedure

In this section I �rst prove some results about how subtyping behaves then give and prove

correct a semi-decision procedure for subtyping. The �rst result I show for subtyping is

that it acts in a component-wise manner:

Lemma 10.5.1 (Component-wise subtyping)

1. If � ` �x:A1: A
0
1 � �x:A2: A

0
2, x 62 dom(�), then

� ` A2 � A1 and �; x:A2 ` A01 � A02.

2. If � ` �x:A1: A
0
1 � �x:A2: A

0
2, x 62 dom(�), then

� ` A1 � A2 and �; x:A1 ` A01 � A02.

Proof: The proof of both parts are similar. I give the proof for only part one here:
Inspection of the rules for subtyping shows that a subtyping derivation for
� ` �x:A1: A

0
1 � �x:A2: A

0
2 can be regarded as a linear sequence of types starting with

�x:A1: A
0
1 and ending with �x:A2: A

0
2 such that adjacent types are related either by

equality or one-step subtyping (under assignment �).
Using Lemma 10.3.7 we can turn one-step subtyping on types with shape ? into

equalities on the same types. By using E-TRAN afterwards, we can collapse adjacent
equalities so that all the remaining types in the sequence have shapes other than ?.

Hence, by Lemma 10.3.11 and the de�nition of intrinsic shapes, all the types in the
new sequence have shape � ) 9n � 2: 8i 2 f1 : : : ng: 9Bi; B

0
i such that

1. A1 = B1 and A01 = B0
1

2. if i > 1 then either � ` �x:Bi�1: B
0
i�1 = �x:Bi: B

0
i :: 
 or

� ` �x:Bi�1: B
0
i�1 < �x:Bi: B

0
i

3. A2 = Bn and A02 = B0
n

) 8i 2 f2 : : : ng: (� ` Bi�1 = Bi :: 
 or � ` Bi < Bi�1) and (�; x:Bi ` B0
i�1 = B0

i :: 


or �; x:Bi ` B0
i�1 < B0

i) (Lemma 9.4.10 and O-DFUN)
) 8i 2 f1 : : : ng: � ` Bn � Bi (E-REFL, E-SYM, S-EQ, S-ONE, and S-TRAN ap-

plied repeatedly)
) � ` A2 � A1 and 8i 2 f2 : : : ng: �; x:Bn ` B0

i�1 = B0
i :: 
 or

�; x:Bn ` B0
i�1 < B0

i (Theorem 10.4.7)

) �; x:A2 ` A
0
1 � A02 (E-REFL, S-EQ, S-ONE, and S-TRAN applied repeatedly) 2

With the next series of results, I establish that versions of the O-DFUN and O-

DSUM rules using the full subtyping relation instead of the one-step subtyping relation

are derivable:
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Lemma 10.5.2 Suppose � ` A1 � A2. Then:

1. If � ` �x:A2: A :: 
 then � ` �x:A2: A � �x:A1: A.

2. If � ` �x:A2: A :: 
 then � ` �x:A1: A � �x:A2: A.

Proof: The proof of both parts are similar. I give the proof for only part one here:

WLOG, let x 62 dom(�). By C-DFUN, �; x:A2 ` A :: 
. The proof proceeds by structural

induction on the derivation of � ` A1 � A2:

O-EQ: Given � ` A1 = A2 :: 
. By E-REFL, �; x:A2 ` A = A :: 


) � ` �x:A2: A = �x:A1: A :: 
 (E-DFUN)) � ` �x:A2: A � �x:A1: A (S-EQ).

O-ONE: Given � ` A1 < A2. By O-REFL, �; x:A2 ` A< A ) �; x:A1 ` A< A (Corol-
lary 10.4.6) ) � ` �x:A2: A < �x:A1: A (O-DFUN)
) � ` �x:A2: A � �x:A1: A (S-ONE).

O-TRAN: Given � ` A1 � A0 and � ` A0 � A2. By the inductive hypothesis,
� ` �x:A2: A � �x:A0: A) � ` �x:A0: A :: 
 (Lemma 10.1.2)
) � ` �x:A0: A � �x:A1: A (induction hypothesis)
) � ` �x:A2: A � �x:A1: A (E-TRAN).

2

Lemma 10.5.3 If �; x:A ` A1 � A2 then:

1. � ` �x:A:A1 � �x:A:A2

2. � ` �x:A:A1 � �x:A:A2

Proof: The proof of both parts are similar. I give the proof for only part one here: By

Lemma 10.2.2, �; x:A ` A1 :: 
 ) � ` A :: 
 (Lemma 6.3.5 and DECL-T). The proof

proceeds by structural induction on the derivation of �; x:A ` A1 � A2:

O-EQ: Given �; x:A ` A1 = A2 :: 
) � ` �x:A:A1 = �x:A:A2 :: 
 (E-REFL and E-DFUN)
) � ` �x:A:A1 � �x:A:A2 (S-EQ).

O-ONE: Given �; x:A ` A1 < A2 ) � ` �x:A:A1 < �x:A:A2 (O-REFL and O-DFUN) )
� ` �x:A:A1 � �x:A:A2 (S-ONE).

O-TRAN: Given �; x:A ` A1 � A0 and �; x:A ` A0 � A2. By the inductive hypothesis,

� ` �x:A:A1 � �x:A:A0 and � ` �x:A:A0 � �x:A:A2

) � ` �x:A:A1 � �x:A:A2 (S-TRAN).
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2

Theorem 10.5.4

1. If � ` A2 � A1, �; x:A1 ` A
0
1 :: 
, and �; x:A2 ` A

0
1 � A02 then

� ` �x:A1: A
0
1 � �x:A2: A

0
2.

2. If � ` A1 � A2, �; x:A2 ` A
0
2 :: 
, and �; x:A1 ` A

0
1 � A02 then

� ` �x:A1: A
0
1 � �x:A2: A

0
2.

Proof: The proof of both parts are similar. I give the proof for only part one
here: By Lemma 10.5.3, � ` �x:A2: A

0
1 � �x:A2: A

0
2. By C-DFUN, � ` �x:A1: A

0
1 :: 
)

� ` �x:A1: A
0
1 � �x:A2: A

0
1 (Lemma 10.5.2) ) � ` �x:A1: A

0
1 � �x:A2: A

0
2 (S-TRAN).

2

Using these results and those proved earlier in the chapter, I can reduce the problem
of deciding subtyping on semi-canonical types to either simpler problems (e.g., equality or
shape inspection) or subtyping problems involving sub-components of the original types:

Theorem 10.5.5 Suppose A1 2 C� and A2 2 C�. Then � ` A1 � A2 i� at least one of

the following:

1. � ` A1 = A2 :: 


2. 9K: bA1c = <=::K> and bA2c = <K>

3. 9x;A01; A
00
1; A

0
2; A

00
2: A1 = �x:A01: A

00
1, A2 = �x:A02: A

00
2, � ` A

0
2 � A01, and

�; x:A02 ` A
00
1 � A002.

4. 9x;A01; A
00
1; A

0
2; A

00
2: A1 = �x:A01: A

00
1, A2 = �x:A02: A

00
2, � ` A

0
1 � A02, and

�; x:A01 ` A
00
1 � A002.

Proof:

() Casing on which choice chosen:

case 1: By S-EQ, we have � ` A1 � A2.

case 2: By the de�nition of constructor shapes, 9A01 such that A1 = <=A01::K> and

A2 = <K>. By Lemma 9.5.2, � ` A1 :: 
 ) � ` A01 :: K (C-TRANS) )
� ` A1 < A2 (O-FORGET) ) � ` A1 � A2 (S-ONE).

case 3: By Lemma 9.5.2, � ` A1 :: 
. By Theorem 10.5.4 then, � ` A1 � A2.
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SUT (�; A1; A2) = let A01 = CAN(�; A1);

A02 = CAN(�; A2) in

if EQL(�; A01; A
0
2;
) then

return

else

case (A01; A
0
2) of

(<=A001::K>;<K>): return

(�x:A4: A5;�x:A6: A7): SUT (�; A6; A4);

SUT ((�; x:A6); A5; A7);

return

(�x:A4: A5;�x:A6: A7): SUT (�; A4; A6);
SUT ((�; x:A4); A5; A7);
return

A: raise fail

Figure 10.1: A semi-decision procedure for subtyping

case 4: By Lemma 9.5.2, � ` A2 :: 
. By Theorem 10.5.4 then, � ` A1 � A2.

)) By Lemma 10.3.9, dA1e� = dA1e and dA2e� = dA2e. By Corollary 10.3.12 then,
dA1e = dA2e or 9K: dA1e = <=::K> and dA2e = <K>. If the later is true,

then we are done (case 2 holds) so assume the former. By Corollary 10.3.14 then,
dA2e� 2 f�; �g or � ` A1 = A2 :: 
. If the later is true, then we are done (case 1
holds) so assume the former. By Lemma 10.5.1 then, case 3 or 4 holds.

2

This result can be used to construct a semi-decision procedure for subtyping:

Theorem 10.5.6 (Semi-decidability)

The judgment � ` A1 � A2 is semi-decidable. Non-termination only occurs if the judg-

ment is false.

Proof: Using Theorems 10.5.5, 9.4.3, 9.4.11, and 9.5.10, a semi-recursive procedure is

easily created. An example procedure using the notations of Section 8.3 is contained in

Figure 10.1.
Here, CAN(�; A) is an algorithm based on Theorem 9.5.10 that, if � ` A :: 
 holds,

returnsA0 such that A0 2 C� and � ` A = A0 :: 
. Otherwise, it raises fail. EQL(�; A1; A2;K),
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based on Theorem 9.4.11, returns true if � ` A1 = A2 :: K holds and returns false other-

wise.

Inspection plus the theorems mentioned previously su�ce to show that:

1. SUT (�; A1; A2) returns i� � ` A1 � A2.

2. SUT (�; A1; A2) fails ) :� ` A1 � A2.

2

10.6 The Simple Type System

In this and the next three sections, I show that the subtyping relation for my system is
undecidable using a slight modi�cation to Benjamin Pierce's proof of the undecidability
of F� subtyping [51, 50]. In order to make the source of the undecidability clear, I

shall �rst introduce the simple type system, which has only the minimum constructs and
rules required to produce undecidability; second show that the simple subtyping problem
is easier than the kernel system's subtyping problem; and third show that the simple
subtyping problem is undecidable.

The simple system has only types; there are no constructors of kind other than 
.

The methods for building types allow only for binary opaque weak sums (9�:A), binary
transparent weak sums (9�=A1:A2), and negative types (:A). Negative types abstract
the idea of contra-variant subtyping: � ` :A � :A0 i� � ` A0 � A. In a more realistic
type system, contra-variance would be part of a more complicated construct (e.g., �-
types). The syntax for the simple type system is as follows:

De�nition [Simple] 10.6.1 (Syntax)

Types A ::= � j :A j 9�:A j 9�=A1:A2

Assignments � ::= � j �; �

Here, the metavariable � ranges over type variables. Equivalence of types, assign-

ments, and other syntactic objects is de�ned as usual (�-conversion modulo the assign-
ment exception2), and the de�nitions of free type variables (FV(A)), type substitution

([A=�]A0) , and the domain function (dom(�)) are the obvious ones:

2Namely, assignments with no redeclared variables are never considered equivalent to assignments

with redeclared variables.
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De�nition [Simple] 10.6.2 (Free type variables)

FV(�) = f�g
FV(:A) = FV(A)

FV(9�:A) = FV(A)� f�g
FV(9�=A1:A2) = FV(A1) [ (FV(A2)� f�g)

De�nition [Simple] 10.6.3 (Type substitution)

[A=�]� = A

[A=�]�0 = �0 (� 6= �0)

[A=�](:A1) = :[A=�]A1

[A=�]9�0:A1 = 9�0:[A=�]A1 (�0 6= �; �0 62 FV(A))
[A=�]9�0=A1:A2 = 9�0=[A=�]A1:[A=�]A2 (�0 6= �; �0 62 FV(A))

De�nition [Simple] 10.6.4 (Domain function)

dom(�) = ;
dom(�; �) = dom(�) [ f�g

The simple type system has the following judgments:

De�nition [Simple] 10.6.5 (Judgments)

` � valid valid assignment

� ` A valid valid type

� ` A = A0 equal types

� ` A � A0 subtyping relation

The rules for these judgments follow. In order to mirror Pierce's fragment FF� (see
Section 6.4 of Pierce's thesis [51]) closely, these rules handle transparent de�nitions (�=A)
by substitution rather than by adding a transparent de�nition to the current assignment.

(See, for example, the SUM-T and SU-SUM-T rules.)

De�nition [Simple] 10.6.6 (Assignment Formation Rules)

` � valid (EMP)

` � valid � 62 dom(�)

` �; � valid
(DCL)
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De�nition [Simple] 10.6.7 (Type Formation Rules)

` � valid � 2 dom(�)

� ` � valid
(VAR)

� ` A valid

� ` :A valid
(NEG)

�; � ` A valid

� ` 9�:A valid
(SUM-O)

� ` A valid � ` [A=�]A0 valid

� ` 9�=A:A0 valid
(SUM-T)

De�nition [Simple] 10.6.8 (Equality Rules)

� ` � valid

� ` � = �
(EQ-VAR)

� ` A1 = A2

� ` :A1 = :A2

(EQ-NEG)

�; � ` A = A0

� ` 9�:A = 9�:A0
(EQ-SUM-O)

� ` A1 = A01 � ` [A1=�]A2 = [A1=�]A
0
2

� ` 9�=A1:A2 = 9�=A01:A
0
2

(EQ-SUM-T)

De�nition [Simple] 10.6.9 (Subtyping Rules)

� ` � valid

� ` � � �
(SU-VAR)

� ` A2 � A1

� ` :A1 � :A2

(SU-NEG)

�; � ` A � A0

� ` 9�:A � 9�:A0
(SU-SUM-O)

� ` A1 = A01 � ` [A1=�]A2 � [A1=�]A
0
2

� ` 9�=A1:A2 � 9�=A01:A
0
2

(SU-SUM-T)
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� ` A valid

�; � ` A2 valid � ` [A=�]A1 � [A=�]A2

� ` 9�=A:A1 � 9�:A2

(SU-FOR)

Note that all the rules are syntax directed: each shape or pair of shapes has at most

one applicable rule under each relation. Because of this fact, decision procedures can

be constructed directly from the rules. The termination of such procedures is unclear,

however, because the SUM-T, EQ-SUM-T, SU-SUM-T, and SU-FOR rules may increase

the size of the types being dealt with.

The usual propositions on judgments hold:

Lemma [Simple] 10.6.10 (Structural property I)

1. If ` �; � valid then ` � valid.

2. If � ` A valid then ` � valid.

Lemma [Simple] 10.6.11 (Weakening)

Suppose ` �; �0 valid and dom(�0) \ dom(�00) = ;. Then:

1. If ` �; �00 valid then ` �; �0; �00 valid.

2. If �; �00 ` A valid then �; �0; �00 ` A valid.

Proof: By sequential structural induction on the length of the derivations involving
�; �00. 2

Although the simple-subtyping relation lacks an EQ rule, the next lemma shows that
the following SU-EQ rule is derivable:

� ` A1 = A2

� ` A1 � A2

(SU-EQ)

Lemma [Simple] 10.6.12 If � ` A1 = A2 then � ` A1 � A2 and � ` A2 � A1.

Proof: Proved by structural induction on the derivation. 2

The following notion of an extended simple-subtyping derivation that permits the use

of SU-EQ will be useful later:
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De�nition [Simple] 10.6.13 (Extended derivations)

An extended derivation for � ` A1 � A2 is a derivation of � ` A1 � A2 using the normal

simple-subtyping rules plus the SU-EQ rule. The size of an extended derivation is de�ned

to be the number of SU rules (including SU-EQ) used in the derivation.

Because of Lemma 10.6.12, an extended derivation for � ` A1 � A2 su�ces to prove that

� ` A1 � A2. Extended derivations will be important because their size as de�ned above

remains constant under operations such as strengthening and type substitution:

Lemma [Simple] 10.6.14 (Strengthening)

1. If ` �; �; �0 valid then ` �; �0 valid.

2. If �; �; �0 ` A valid and � 62 FV(A) then �; �0 ` A valid.

3. If �; �; �0 ` A1 = A2 and � 62 FV(A1) [ FV(A2) then �; �0 ` A1 = A2.

4. If �; �; �0 ` A1 � A2 by an extended derivation and � 62 FV(A1) [ FV(A2) then

�; �0 ` A1 � A2 by an extended derivation of equal size.

Proof: Proved sequentially by structural induction on the derivations. 2

Lemma [Simple] 10.6.15 Suppose � ` A valid. Then:

1. If �; �; �0 ` A1 valid then �; �; �0 ` [A=�]A1 valid.

2. If �; �; �0 ` A1 = A2 then �; �; �0 ` [A=�]A1 = [A=�]A2.

3. If �; �; �0 ` A1 � A2 by an extended derivation then

�; �; �0 ` [A=�]A1 � [A=�]A2 by an extended derivation of equal size.

Proof: Proved sequentially by structural induction on the derivations involving A1.
Lemma 10.6.11 and Lemma 10.6.10 are used to handle the VAR case. The SU-EQ rule
is used to handle the SU-VAR case in order to keep the resulting derivation the same

size. 2

Corollary [Simple] 10.6.16 (Validity of type substitution)

Suppose � ` A valid. Then:

1. If �; � ` A1 = A2 then � ` [A=�]A1 = [A=�]A2.

2. If �; � ` A1 � A2 by an extended derivation then

� ` [A=�]A1 � [A=�]A2 by an extended derivation of equal size.

Proof: Follows immediately from Lemma 10.6.15 and Theorem 10.6.14. 2
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10.7 Encoding Simple Judgments

I shall show that the simple subtyping problem is easier than than the kernel system's sub-

typing problem by showing that simple subtyping problems can be translated into equiv-

alent kernel-system subtyping problems using the following encoding on simple-system

types, assignments, and judgments. The encoding results in kernel-system constructors,

assignments, and judgments respectively.

De�nition [Simple] 10.7.1 (Encoding simple judgments)

�
 = b�!

(:A)
 = �x:A
: <
>

(9�:A1)

 = �b�:<
>:A
1

(9�=A1:A2)

 = �b�:<=A
1 ::
>:A



2

�
 = �
(�; �)
 = �
; b�:<
>

(` � valid)
 = ` �
 valid

(� ` A valid)
 = �
 ` A
 :: 

(� ` A1 = A2)


 = �
 ` A
1 = A
2 :: 

(� ` A1 � A2)


 = �
 ` A
1 � A
2

Here, b� is any bijective mapping from simple type variables to kernel-system term vari-
ables.

Encoding type substitution in the simple system results in the substitution in the
kernel system of a constructor for a constructor extraction:
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De�nition 10.7.2 (Constructor substitution for an extraction)

[A=x�!]x�! = A

[A=x�!]x0�0! = x0�0! (x� 6= x0�0)

[A=x�!]� = �

[A=x�!]��0::K:A0 = ��0::K: [A=x�!]A0 (�0 62 FCV(A))

[A=x�!]�x0:A1: A2 = �x0:[A=x�!]A1: [A=x�!]A2 (x0 6= x; x0 62 FTV(A))

[A=x�!]�x0:A1: A2 = �x0:[A=x�!]A1: [A=x�!]A2 (x0 6= x; x0 62 FTV(A))

[A=x�!](A1A2) = [A=x�!]A1 [A=x�!]A2

[A=x�!]<=A0::K> = <=[A=x�!]A0::K>

[A=x�!]<K> = <K>

[A=x�!]rec = rec

[A=x�!]ref = ref

[A=x�!](�::K) = �::K
[A=x�!](x0:A0) = x0:[A=x�!]A0

[A=x�!]� = �
[A=x�!](�;D) = ([A=x�!]�); [A=x�!]D

Lemma [Simple] 10.7.3 (Encoding properties)

1. dom(�
) = ddom(�)

2. ([A1=�]A2)

 = [A
1 =b�!](A



2 )

Proof: Proved using induction on � and A2 respectively. 2

The intrinsic shapes of encoded simple types can be computed using previous results.

Note that encoded variables have intrinsic shape ? because simple assignments do not
have transparent de�nitions.

Lemma [Simple] 10.7.4 (Shapes of encoded types)

1. If �
 ` �
 :: 
 then d�
e�
 = ?.

2. If �
 ` (:A0)
 :: 
 then d(:A0)
e�
 = �.

3. If �
 ` (9�:A1)

 :: 
 then d(9�:A1)


e�
 = �.
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4. If �
 ` (9�=A1:A2)

 :: 
 then d(9�=A1:A2)


e
�
 = �.

Proof: For part one, we have �
 ` �
 :: 
 ) �
 ` b�! :: 
 ) b� 2 dom(�
) (Theo-

rem 6.5.6)) � 2 dom(�) (Lemma 10.7.3)) b�:<
> 2 �
) �
(b�) = <
> (Lemma 6.3.5

and Lemma 9.4.2) ) b�! 2 C�
. (Lemma 9.5.11)) db�!e�
 = db�!e = ? (Lemma 10.3.9).

Parts two to four follow immediately from the de�nitions of the encoding, intrinsic

shape, and E-REFL. 2

In order to show that simple subtyping problems can be translated into equivalent

kernel-system subtyping problems, I shall need the following series of lemmas relating

substitutions for constructor extractions and transparent de�nitions (x:<=A::
>) in the
kernel system:

Lemma 10.7.5 If �; x:<=A::
>; �0 ` [A=x!]A0 :: K then

�; x:<=A::
>; �0 ` [A=x!]A0 = A0 ::K .

Proof: Proved by structural induction on A0. Interesting cases:

DFUN: Here �; x:<=A::
>; �0 ` [A=x!]�x0:A1: A2 :: 
, x
0 62 dom(�; x:<=A::
>; �0)

) �; x:<=A::
>; �0 ` �x0:[A=x!]A1: [A=x!]A2 :: 


) �; x:<=A::
>; �0; x0:[A=x!]A1 ` [A=x!]A2 :: 
 (C-DFUN)
) �; x:<=A::
>; �0 ` [A=x!]A1 :: 
 (Lemma 6.3.5)
) �; x:<=A::
>; �0 ` [A=x!]A1 = A1 :: 
 and
�; x:<=A::
>; �0; x0:[A=x!]A1 ` [A=x!]A2 = A2 :: 
 (induction hypothesis)
) �; x:<=A::
>; �0 ` �x0:[A=x!]A1: [A=x!]A2 = �x0:A1: A2 :: 
 (E-DFUN)

) �; x:<=A::
>; �0 ` [A=x!]�x0:A1: A2 = �x0:A1: A2 :: K

EXT I: Here �; x:<=A::
>; �0 ` [A=x!]x! :: K) �; x:<=A::
>; �0 ` A :: K. By Lemma 6.3.5,

` �; x:<=A::
>; �0 valid and ` �; x:<=A::
> valid) � ` <=A::
> :: 
 (DECL-

T) ) � ` A :: 
 (C-TRANS) ) �; x:<=A::
>; �0 ` A :: 
 (Theorem 9.4.1) )
K = 
 (Theorem 9.4.5). By P-INIT, �; x:<=A::
>; �0 ` x) <=A::
>

) �; x:<=A::
>; �0 ` x! = A :: 
 (C-EXT-T, E-ABBREV, E-REFL, and C-TRANS)

) �; x:<=A::
>; �0 ` [A=x!]x! = x! :: 
 (E-SYM)

2

Lemma 10.7.6 If � ` A :: 
 and � ` [A=x!]A0 :: 
, x 62 dom(�), then
�; x:<=A::
> ` [A=x!]A0 = A0 :: 
.
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Proof: By C-TRANS, � ` <=A::
> :: 
. By Lemma 6.3.5, ` � valid

) ` �; x:<=A::
> valid (DECL-T) ) �; x:<=A::
> ` [A=x!]A0 :: 
 (Theorem 9.4.1)

) �; x:<=A::
> ` [A=x!]A0 = A0 :: 
. (Lemma 10.7.5) 2

Lemma 10.7.7 If �; x:<=A::
>; �0 ` A0 :: K then

�; x:<=A::
>; �0 ` A0 = [A=x!]A0 ::K .

Proof: Proved by structural induction on A0. Interesting cases:

DFUN: Here �; x:<=A::
>; �0 ` �x0:A1: A2 :: 
, x
0 62 dom(�; x:<=A::
>; �0)

) �; x:<=A::
>; �0; x0:A1 ` A2 :: 
 (C-DFUN) ) �; x:<=A::
>; �0 ` A1 :: 

(Lemma 6.3.5) ) �; x:<=A::
>; �0 ` A1 = [A=x!]A1 :: 
 and
�; x:<=A::
>; �0; x0:A1 ` A2 = [A=x!]A2 :: 
 (induction hypothesis)
) �; x:<=A::
>; �0 ` �x0:A1: A2 = �x0:[A=x!]A1: [A=x!]A2 :: 
 (E-DFUN)

) �; x:<=A::
>; �0 ` �x0:A1: A2 = [A=x!]�x0:A1: A2 :: 


EXT I: Here �; x:<=A::
>; �0 ` x! :: K ) ` �; x:<=A::
>; �0 valid (Lemma 6.3.5) )
�; x:<=A::
>; �0 ` x) <=A::
> (P-INIT)
) �; x:<=A::
>; �0 ` x! = A :: 
 (C-EXT-T, E-ABBREV, E-REFL, and Theo-
rem 9.4.4) ) �; x:<=A::
>; �0 ` x! = [A=x!]x! :: 
 By Theorem 9.4.5 and Theo-

rem 9.4.3, K = 
 ) �; x:<=A::
>; �0 ` x! = [A=x!]x! :: K

2

Lemma [Simple] 10.7.8 Suppose �; x:<=A::
>; �0 ` A1 < A2 by a derivation that uses

s applications of the one-step subtyping rules. Then

�; x:<=A::
>; �0 ` [A=x!]A1 < [A=x!]A2 by s applications of the one-step subtyping rules.

Proof: Proved by structural induction on the derivation. Lemmas 10.1.2, 10.7.7,

and Theorem 9.4.3 are used to establish that [A=x!]A1 and [A=x!]A2 are valid under
�; x:<=A::
>; �0. Theorem 10.1.6 is needed in addition to handle the O-DFUN and
O-DSUM cases; inspection of its proof shows that it leaves the number of applications of

the one-step subtyping rules unchanged. 2

The previous lemmas when combined with the following lemma, the structural proper-

ties, strengthening, weakening, and transitivity, allow converting between the use of trans-
parent de�nitions and substitutions. For example, given � ` A
 :: 
 and x 62 dom(�), we

can show that �; x:<=A
::
> ` A
1 = A
2 :: 
 i� � ` [A
=x!](A
1 ) = [A
=x!](A
2 ) :: 
.

Lemma [Simple] 10.7.9 If b� 62 FTV(A0
) then b� 62 FTV([A0
=b�!](A
))
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10.8 Problem Reduction

In this section I show that for any simple judgment J , J holds in the simple system i�

J
 holds in the kernel system. The forward direction is straightforward:

Lemma [Simple] 10.8.1 (Reduction I)

1. If ` � valid then ` �
 valid.

2. If � ` A valid then �
 ` A
 :: 
.

3. If � ` A1 = A2 then �
 ` A
1 = A
2 :: 
.

4. If � ` A1 � A2 then �
 ` A
1 � A
2 .

Proof: Proved by simultaneous induction on the derivations. Interesting cases:

DCL: Here ` �; � valid derived via rule DCL from ` � valid and � 62 dom(�) ) b� 62
dom(�
) (Lemma10.7.3). By the induction hypothesis, ` �
 valid) �
 ` <
> :: 

(C-OPAQ) ) ` �
; b�:<
> valid (DECL-T) ) ` (�; �)
 valid.

VAR: Here, � ` � valid derived via VAR from ` � valid and � 2 dom(�)) b�:<
> 2 �


By the induction hypothesis, ` �
 valid) �
 ` b�) <
> (P-INIT)) �
 ` b�! :: 

(C-EXT-O) ) �
 ` �
 :: 
.

SUM-T: Here, � ` 9�=A:A0 valid derived via SUM-T from � ` A valid and
� ` [A=�]A0 valid, � 62 dom(�) ) b� 62 dom(�
) (Lemma 10.7.3). By applying the

induction hypothesis, �
 ` A
 :: 
 and �
 ` ([A=�]A0)
 :: 
) �
 ` [A
=b�!](A0
) :: 

(Lemma 10.7.3)
) �
; b�:<=A
::
> ` [A
=b�!](A0
) = A0
 :: 
 (Lemma 10.7.6)
) �
; b�:<=A
::
> ` A0
 :: 
 (Theorem 9.4.3)

) �
 ` �b�:<=A
::
>:A0
 :: 
 (C-DSUM) ) �
 ` (9�=A:A0)
 :: 
.

EQ-SUM-T: Here, � ` 9�=A1:A2 = 9�=A01:A
0
2 , � 62 dom(�), derived via EQ-SUM-T from

� ` A1 = A01 and � ` [A1=�]A2 = [A1=�]A
0
2 ) b� 62 dom(�
) (Lemma 10.7.3). By

the induction hypothesis, �
 ` A
1 = A0
1 :: 
 and
�
 ` ([A1=�]A2)


 = ([A1=�]A
0
2)

 :: 


) �
 ` [A
1 =b�!](A


2 ) = [A
1 =b�!](A

0

2 ) :: 
 (Lemma 10.7.3)

) �
; b�:<=A
1 ::
> ` [A
1 =b�!](A


2 ) = A
2 :: 
 and

�
; b�:<=A
1 ::
> ` [A
1 =b�!](A
0

2 ) = A0
2 :: 
 (Lemmas 9.4.3 and 10.7.6)

) �
; b�:<=A
1 ::
> ` A
2 = A0
2 :: 
 (E-SYM and E-TRAN)

) �
 ` �b�:<=A
1 ::
>:A


2 = �b�:<=A0
1 ::
>:A0
2 :: 
 (E-TRANS and E-DSUM)

) �
 ` (9�=A1:A2)

 = (9�=A01:A

0
2)

 :: 
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SU-FOR: Here, � ` 9�=A:A1 � 9�:A2, � 62 dom(�), derived via SU-FOR from � ` A valid,

�; � ` A2 valid, and � ` [A=�]A1 � [A=�]A2 ) b� 62 dom(�
) (Lemma 10.7.3). By

the induction hypothesis, �
 ` A
 :: 
, �
; b�:<
> ` A
2 :: 
, and

�
 ` ([A=�]A1)

 � ([A=�]A2)


) �
 ` [A
=b�!](A
1 ) � [A
=b�!](A
2 ) (Lemma10.7.3)

) �
; b�:<=A
::
> ` [A
=b�!](A
1 ) = A
1 :: 
 and

�
; b�:<=A
::
> ` [A
=b�!](A
2 ) = A
2 :: 
 (Lemmas 10.2.2 and 10.7.6)

) �
; b�:<=A
1 ::
> ` A
1 � A
2 (E-SYM, S-EQ, and S-TRAN).

By Lemma 6.3.5, DECL-T, C-TRANS, O-FORGET, S-ONE,

�
 ` <=A
1 ::
> � <
> ) �
 ` �b�:<=A
::
>:A
1 � �b�:<
>:A
2
(Theorem 10.5.4) ) �
 ` (9�=A:A1)


 � (9�:A2)



2

The backward direction is harder. To handle the simple validity and equality judg-
ments, the following metric on types is useful:

De�nition [Simple] 10.8.2 (Size metric)

j�j = 0
j:Aj = 1 + jAj

j9�:Aj = 1 + jAj
j9�=A:A0j = 1 + jAj+ j[A=�]A0j

This de�nition can be seen to be well de�ned by noticing that if we extend types so they
may contain integers and de�ne jij = i, we get that j[A1=�]A2j = j[jA1j=�]A2j. Note
that under this metric, both A1 and [A1=�]A2 are smaller than 9�=A1:A2. This fact will
allow us to recurse on the \natural sub-components" of a simple type.

Using this metric proving the backward direction for the validity judgments is straight-
forward:

Lemma [Simple] 10.8.3 (Reduction II: validity)

1. If ` �
 valid then ` � valid.

2. If �
 ` A
 :: 
 then � ` A valid.

Proof: Proved sequentially by induction on j�j and jAj respectively. Interesting cases:

Dcl: Here ` (�; �)
 valid ) ` �
; b�:<
> valid ) b� 62 dom(�
) and
�
 ` <
> :: 
 (DECL-T) ) � 62 dom(�) (Lemma 10.7.3) and ` �
 valid

(Lemma 6.3.5) ) ` � valid (induction hypothesis) ) ` �; � valid (DCL).
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Var: Here �
 ` �
 :: 
 ) �
 ` b�! :: 
 ) �
 ` b�) <
> or �
 ` b�) <=A::
> for

some A (C-EXT-O and C-EXT-T) ) ` �
 valid (Lemma 6.3.5) and b� 2 dom(�
)

(Theorem 6.5.6))` � valid (induction hypothesis) and � 2 dom(�) (Lemma10.7.3)

) � ` � valid (VAR).

TSum: Here �
 ` (9�=A1:A2)

 :: 
, � 62 dom(�) ) �
 ` �b�:<=A
1 ::
>:A



2 :: 
 and

b� 62 dom(�
) (Lemma 10.7.3) ) �
; b�:<=A
1 ::
> ` A
2 :: 
 (C-DSUM)

) �
 ` <=A
1 ::
> :: 
 (Lemma 6.3.5 and DECL-T) and

�
; b�:<=A
1 ::
> ` A
2 = [A
1 =b�!]A


2 :: 
 (Lemma 10.7.7)) �
 ` A
1 :: 
 (C-TRANS)

and �
; b�:<=A
1 ::
> ` [A
1 =b�!]A


2 :: 
 (Theorem 9.4.3) ) �
 ` [A
1 =b�!]A



2 :: 


(Theorem 6.5.6, Lemma 10.7.9, and Theorem 9.6.1) ) �
 ` ([A1=�]A2)

 :: 


(Lemma 10.7.3) ) � ` A1 valid and � ` [A1=�]A2 valid (induction hypothesis) )
� ` 9�=A1:A2 valid (SUM-T).

2

Because equality in the kernel system between encoded simple types can proceed

via transitivity through constructors which have no analog in the simple system (e.g.,
constructor applications), kernel-system equality derivations cannot be directly converted
into the simple system. Instead, the derivations must converted as we go into a form that
does not use the transitivity rule; this conversion is accomplished by using the results
about how equality acts in a component-wise manner and about how equality relates the

intrinsic shapes of encoded types. The size metric is used to ensure that the conversion
process terminates.

Lemma [Simple] 10.8.4 (Reduction II: equality)

If �
 ` A
1 = A
2 :: 
 then � ` A1 = A2.

Proof: Proved by induction on jA1j. By Theorem 9.4.3, Lemma 10.7.4, Lemma 10.3.3,

and the de�nition of intrinsic shapes, we have only the following cases:

Var: Here �
 ` �
1 = �
2 :: 
) �
 ` c�1! = c�2! :: 
) �
 ` c�1! :: 
 (Theorem 9.4.3))
� ` �1 valid (Lemma 10.8.3).

Hence, for i 2 f1; 2g, we have: �
 ` c�i! :: 
 (Theorem 9.4.3) ) c�i 2 dom(�
)

(Theorem 6.5.6) ) �i 2 dom(�) (Lemma 10.7.3) ) c�i:<
> 2 �
 ) �
(�i) =

<
> (Lemma 9.4.2) ) c�i! 2 C�
 (Lemma 9.5.11) ) c�1! = c�2! (Lemma 9.5.12)

) �1 = �2 ) � ` �1 = �2 (EQ-VAR).

Neg: �
 ` (:A1)

 = (:A2)


 :: 


) �
 ` �x:A
1 : <
> = �x:A
2 : <
> :: 
, x 62 dom(�
)

) �
 ` A
1 = A
2 :: 
 (Lemma 9.4.10) ) � ` A1 = A2 (induction hypothesis) )
� ` :A1 = :A2 (EQ-NEG).
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OSum: �
 ` (9�:A1)

 = (9�:A2)


 :: 
, � 62 dom(�)

) �
 ` �b�:<
>:A
1 = �b�:<
>:A
2 :: 
 and b� 62 dom(�
)

(Lemma 10.7.3) ) �
; b�:<
> ` A
1 = A
2 :: 
 (Lemma 9.4.10)

) �; � ` A1 = A2 (induction hypothesis) ) � ` 9�:A1 = 9�:A2 (EQ-SUM-O).

TSum: �
 ` (9�=A1:A2)

 = (9�=A01:A

0
2)

 :: 
, � 62 dom(�)

) �
 ` �b�:<=A
1 ::
>:A


2 = �b�:<=A0
1 ::
>:A0
2 :: 
 and b� 62 �
 (Lemma 10.7.3)

) �
 ` <=A
1 ::
> = <=A0
1 ::
> :: 
 and

�
; b�:<=A
1 ::
> ` A
2 = A0
2 :: 
 (Lemma 9.4.10) ) �
 ` A
1 = A0
1 :: 


(Lemma 9.4.10) and �
; b�:<=A
1 ::
> ` [A
1 =b�]A


2 = [A
1 =b�]A

0

2 :: 


(Theorem 9.4.3, Lemma 10.7.7, E-SYM, and E-TRAN)

) �
 ` [A
1 =b�]A


2 = [A
1 =b�]A

0

2 :: 
 (Theorem 9.4.3, Theorem 6.5.6,

Lemma 10.7.9, and Theorem 9.6.1)
) �
 ` ([A1=�]A2)


 = ([A1=�]A
0
2)

 :: 
 (Lemma 10.7.3) ) � ` A1 = A01 and

� ` [A1=�]A2 = [A1=�]A
0
2 (induction hypothesis)

) � ` 9�=A1:A2 = 9�=A01:A
0
2 (EQ-SUM-T).

2

Some useful properties about the simple equality and subtyping relations can be
transfered from the kernel system using the results so far:

Theorem [Simple] 10.8.5 (Equality properties)

1. If � ` A valid then � ` A = A.

2. If � ` A1 = A2 then � ` A2 = A1.

3. If � ` A1 = A2 and � ` A2 = A3 then � ` A1 = A3.

Proof: Each part is proved the same way: �rst convert to the kernel system using

Lemma 10.8.1, second apply the relevant kernel rule (E-REFL, E-SYM, and E-TRAN
respectively), and third, transfer the result back to the simple system using Lemma 10.8.3
or Lemma 10.8.4. 2

Corollary [Simple] 10.8.6 (Re
exivity) If � ` A valid then � ` A � A.

Proof: Follows immediately from Theorem 10.8.5 and Lemma 10.6.12. 2
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Theorem [Simple] 10.8.7 (Structural property II)

1. If � ` A1 = A2 then � ` A1 valid and � ` A2 valid.

2. If � ` A1 � A2 then � ` A1 valid and � ` A2 valid.

Proof: Proved by �rst converting to the kernel system using Lemma 10.8.1, second

applying either Theorem 9.4.3 or Lemma 10.2.2, and third, transferring the result back

to the simple system using Lemma 10.8.3. 2

A similar problem to that of the equality judgment case arises with the subtyping
judgment case. Unfortunately, because of the SU-NEG and SU-FOR rules, the simple-
type size metric cannot be used to ensure termination here, forcing a di�erent proof
strategy to be used. My solution to this problem involves taking advantage of the fact

that kernel-system subtyping is de�ned (see Section 10.2) in terms of a series of equality
and one-step subtyping steps joined by transitivity.

I have already shown that kernel-system equality steps can be converted to simple
subtyping steps (Lemmas 10.8.4 and 10.6.12). I shall show next that one-step subtyping
can also be converted to simple subtyping. Because the one-step subtyping relation

lacks any transitivity rule, the proof of this fact is fairly straightforward. By showing
that simple subtyping is transitive, I shall then have that any kernel-system subtyping
judgment derivation can be converted to a simple subtyping judgment derivation by
converting its steps one at a time to simple subtyping and then combining the resulting
steps via transitivity.

Lemma [Simple] 10.8.8 (Reduction II: one-step subtyping)

If �
 ` A
1 < A
2 then � ` A1 � A2.

Proof: Proved by induction on the number of applications of the one-step subtyping
rules needed to derive �
 ` A
1 < A
2 . Interesting cases:

O-REFL: Here �
 ` A
 < A
 derived via O-REFL from �
 ` A
 :: 
 ) � ` A valid

(Lemma 10.8.3) ) � ` A � A (Corollary 10.8.6)

O-DFUN: Here �
 ` (:A1)

 < (:A2)


 derived via O-DFUN from �
 ` A
2 < A
1 ) � ` A2 � A1

(induction hypothesis) ) � ` :A1 � :A2 (SU-NEG).

O-DSUM I: Here �
 ` (9�:A1)

 < (9�:A2)


, � 62 dom(�), derived via O-DSUM from

�
 ` <
>< <
>, �
; b�:<
> ` A
1 < A
2 , and �
; b�:<
> ` A
2 :: 

) �; � ` A1 � A2 (induction hypothesis) ) � ` 9�:A1 � 9�:A2 (SU-SUM-O).
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O-DSUM II: Here �
 ` (9�=A01:A1)

 < (9�:A2)


, � 62 dom(�), derived via O-DSUM from

�
 ` <=A0
1 ::
>< <
>, �
; b�:<=A0
1 ::
> ` A
1 < A
2 , and

�
; b�:<
> ` A
2 :: 
 ) �; � ` A2 valid (Lemma 10.8.3) and �
 ` A0
1 :: 
 (O-

FORGET) and �
; b�:<=A0
1 ::
> ` [A0
1 =b�!]A


1 < [A0
1 =b�!]A



2

(Lemma 10.7.8) ) � ` A01 valid (Lemma 10.8.3) and

�
 ` ([A01=�]A1)

 < ([A01=�]A2)


 (Lemma 10.1.4 and Lemma 10.7.3).

Since by Lemma 10.7.8 and by inspection of the proof of Lemma 10.1.4,

�
 ` ([A01=�]A1)

 < ([A01=�]A2)


 uses the same number of applications of the one-

step subtyping rules as does �
; b�:<=A0
1 ::
> ` A
1 < A
2 , a sub-derivation of the

original derivation, we can apply the induction hypothesis to get

� ` [A01=�]A1 � [A01=�]A2 ) � ` 9�=A01:A1 � 9�:A2 (SU-FOR).

O-DSUM III: Here �
 ` (9�=A01:A1)

 < (9�=A02:A2)


, � 62 dom(�), derived via O-DSUM from

�
 ` <=A0
1 ::
>< <=A0
2 ::
>, �
; b�:<=A0
1 ::
> ` A
1 < A
2 , and
�
; b�:<=A0
2 ::
> ` A
2 :: 
 ) A0
1 = A0
2 and �
 ` <=A0
1 ::
> :: 
 (O-REFL)
and �
; b�:<=A0
1 ::
> ` [A0
1 =b�!]A



1 < [A0
1 =b�!]A



2 (Lemma 10.7.8)

) �
 ` A0
1 :: 
 (C-TRANS) and �
 ` ([A01=�]A1)

 < ([A01=�]A2)




(Lemma 10.1.4 and Lemma 10.7.3)) �
 ` A0
1 = A0
2 :: 
 (E-REFL)) � ` A01 = A02
(Lemma 10.8.4).

Since by Lemma 10.7.8 and by inspection of the proof of Lemma 10.1.4,
�
 ` ([A01=�]A1)


 < ([A01=�]A2)

 uses the same number of applications of the one-

step subtyping rules as does �
; b�:<=A0
1 ::
> ` A
1 < A
2 , a sub-derivation of the
original derivation, we can apply the induction hypothesis to get
� ` [A01=�]A1 � [A01=�]A2 ) � ` 9�=A01:A1 � 9�=A02:A2 (SU-SUM-T).

2

In order to prove transitivity for simple subtyping, we shall �rst need to prove
a lemma that if � ` A = A0 and � ` [A=�]A1 � [A=�]A2 by an extended derivation,

then � ` [A0=�]A1 � [A0=�]A2 by an extended derivation of equal size. This result
is needed to handle the case where we have that � ` 9�=A1:A

0
1 � 9�=A2:A

0
2 and

� ` 9�=A2:A
0
2 � 9�=A3:A

0
3, both by extended derivations via the SU-SUM-T rule. By

SU-SUM-T, we also have that � ` A1 = A2, � ` [A1=�]A
0
1 � [A1=�]A

0
2 and

� ` [A2=�]A
0
2 � [A2=�]A

0
3. We need to show that � ` [A1=�]A

0
1 � [A1=�]A

0
3 so we can

apply the SU-SUM-T rule to get that � ` 9�=A1:A
0
1 � 9�=A3:A

0
3.

The lemma will allow us to deduce that � ` [A1=�]A
0
2 � [A1=�]A

0
3. The needed result

would then follow from transitivity if available. In order to use transitivity (the induction

hypothesis) here, though, we need to know that we are dealing with a smaller problem.
We can arrange this by inducting on the size of the extended derivations involved and

taking advantage of the fact that extended derivation size is unchanged by this lemma.
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Lemma [Simple] 10.8.9 If � ` [A1=�]A valid and � ` A1 = A2 then

� ` [A1=�]A = [A2=�]A.

Proof: Proved by structural induction on A. 2

Lemma [Simple] 10.8.10 If � ` A = A0 and � ` [A=�]A1 = [A=�]A2 then

� ` [A0=�]A1 = [A0=�]A2.

Proof: By Theorem 10.8.7, � ` [A=�]A1 valid and � ` [A=�]A2 valid

) � ` [A=�]A1 = [A0=�]A1 and � ` [A=�]A2 = [A0=�]A2 (Lemma 10.8.9)

) � ` [A0=�]A1 = [A=�]A1 (Theorem 10.8.5)) � ` [A0=�]A1 = [A0=�]A2 (Theorem 10.8.5).

2

Lemma [Simple] 10.8.11 Suppose � ` A1 � A2 by an extended derivation of size s.

Then:

1. If � ` A0 = A1 then � ` A0 � A2 by an extended derivation of size s.

2. If � ` A2 = A3 then � ` A1 � A3 by an extended derivation of size s.

3. If A1 = [A=�]A01, A2 = [A=�]A02, and � ` A = A0 then

� ` [A0=�]A01 � [A0=�]A02 by an extended derivation of size s.

Proof: Proved by simultaneous induction on s, with the proviso that part three may
also call parts one and two with a derivation of the same size. Interesting cases:

SU-NEG 1: Here � ` :A0 = :A1 and � ` :A1 � :A2 via an extended derivation starting with
rule SU-NEG from � ` A2 � A1 (with extended size s�1) ) � ` A0 = A1 (EQ-

NEG)) � ` A1 = A0 (Theorem 10.8.5) ) � ` A2 � A0 (with extended size s�1)
(induction via part two) ) � ` :A0 � :A2 (with extended size s) (SU-NEG).

SU-EQ 1: Here � ` A0 = A1 and � ` A1 � A2 via an extended derivation of size 1 starting

with rule SU-EQ from� ` A1 = A2 ) � ` A0 = A2 (Theorem 10.8.5)) � ` A0 � A2

(with extended size 1) (SU-EQ).

SU-SUM-T 1: Here � ` 9�=A0:A
0
0 = 9�=A1:A

0
1 and � ` 9�=A1:A

0
1 � 9�=A2:A

0
2 via an extended

derivation starting with rule SU-SUM-T from � ` A1 = A2 and

� ` [A1=�]A
0
1 � [A1=�]A

0
2 (with extended size s�1) ) � ` A0 = A1 and

� ` [A0=�]A
0
0 = [A0=�]A

0
1 (EQ-SUM-T) ) � ` A0 = A2 (Theorem 10.8.5) and

� ` [A0=�]A
0
1 � [A0=�]A

0
2 (with extended size s�1) (induction via part three) )

� ` [A0=�]A
0
0 � [A0=�]A

0
2 (with extended size s�1) (induction via part one and

Theorem 10.8.5) ) � ` 9�=A0:A
0
0 � 9�=A2:A

0
2 (with extended size s) (SU-SUM-

T).
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SU-SUM-T 2: Here � ` 9�=A2:A
0
2 = 9�=A3:A

0
3 and � ` 9�=A1:A

0
1 � 9�=A2:A

0
2 via an extended

derivation starting with rule SU-SUM-T from � ` A1 = A2 and

� ` [A1=�]A
0
1 � [A1=�]A

0
2 (with extended size s�1) ) � ` A2 = A3 and

� ` [A2=�]A
0
2 = [A2=�]A

0
3 (EQ-SUM-T) � ` A1 = A3 (Theorem 10.8.5) and

� ` [A1=�]A
0
2 = [A1=�]A

0
3 (Lemma 10.8.10) ) � ` [A1=�]A

0
1 � [A1=�]A

0
3 (with ex-

tended size s�1) (induction via part two)

) � ` 9�=A1:A
0
1 � 9�=A3:A

0
3 (with extended size s) (SU-SUM-T).

SU-FOR 2: Here � ` 9�:A02 = 9�:A03 and � ` 9�=A1:A
0
1 � 9�:A02 via an extended derivation

starting with rule SU-FOR from � ` A1 valid, �; � ` A
0
2 valid, and

� ` [A1=�]A
0
1 � [A1=�]A

0
2 (with extended size s�1) ) �; � ` A02 = A03 (EQ-SUM-

O) ) �; � ` A03 valid (Theorem 10.8.7) and � ` [A1=�]A
0
2 = [A1=�]A

0
3

(Corollary 10.6.16) ) � ` [A1=�]A
0
1 � [A1=�]A

0
3 (with extended size s�1) (induc-

tion via part two) ) � ` 9�=A1:A
0
1 � 9�:A03 (with extended size s) (SU-FOR).

PART 3: Here � ` A = A0 and � ` [A=�]A01 � [A=�]A02 by an extended derivation of size s)
� ` [A=�]A01 valid and � ` [A=�]A02 valid (Theorem 10.8.7)) � ` [A=�]A01 = [A0=�]A01
and � ` [A=�]A02 = [A0=�]A02 (Lemma 10.8.9) ) � ` [A0=�]A01 = [A=�]A01 (Theo-
rem 10.8.5) ) � ` [A0=�]A01 � [A=�]A02 (with extended size s) (induction via part

one) ) � ` [A0=�]A01 � [A0=�]A02 (with extended size s) (induction via part two).

2

Theorem [Simple] 10.8.12 (Transitivity)

If � ` A1 � A2 by an extended derivation and � ` A2 � A3 by an extended derivation

then � ` A1 � A3.

Proof: Proved by induction on the sum of the sizes of the two extended derivations.
Interesting cases:

NEG: Here � ` :A1 � :A2 by an extended derivation via SU-NEG from
� ` A2 � A1 and � ` :A2 � :A3 by an extended derivation via SU-NEG from

� ` A3 � A2 ) � ` A3 � A1 (induction | the sum of sizes is unchanged by swap-

ping the derivations) ) � ` :A1 � :A3 (SU-NEG).

EQ L: Here � ` A1 � A2 by an extended derivation via SU-EQ from � ` A1 = A2 and

� ` A2 � A3 by an extended derivation ) � ` A1 � A3 (Lemma 10.8.11).

TSUM: Here � ` 9�=A1:A
0
1 � 9�=A2:A

0
2 by an extended derivation via SU-SUM-T from

� ` A1 = A2 and � ` [A1=�]A
0
1 � [A1=�]A

0
2 and

� ` 9�=A2:A
0
2 � 9�=A3:A

0
3 by an extended derivation via SU-SUM-T from
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� ` A2 = A3 and � ` [A2=�]A
0
2 � [A2=�]A

0
3 (with extended size s)) � ` A1 = A3

(Theorem 10.8.5) and � ` [A1=�]A
0
2 � [A1=�]A

0
3 (with extended size s)

(Lemma 10.8.11) ) � ` [A1=�]A
0
1 � [A1=�]A

0
3 (induction)

) � ` 9�=A1:A
0
1 � 9�=A3:A

0
3 (SU-SUM-T).

FOR L: Here � ` 9�=A1:A
0
1 � 9�:A02 by an extended derivation via SU-FOR from

� ` A1 valid, �; � ` A
0
2 valid, and � ` [A1=�]A

0
1 � [A1=�]A

0
2 and

� ` 9�:A02 � 9�:A03 by an extended derivation via SU-SUM-O from

�; � ` A02 � A03 (with extended size s) ) �; � ` A03 valid (Theorem 10.8.7) and

� ` [A1=�]A
0
2 � [A1=�]A

0
3 (with extended size s) (Corollary 10.6.16)

) � ` [A1=�]A
0
1 � [A1=�]A

0
3 (induction) ) � ` 9�=A1:A

0
1 � 9�:A03 (SU-FOR).

2

Lemma [Simple] 10.8.13 (Reduction II: subtyping)

If �
 ` A
1 � A
2 then � ` A1 � A2.

Proof: Proved by structural induction on the derivation. The S-EQ case is handled by
Lemma 10.8.4 and Lemma 10.6.12, the S-ONE case is handled by Lemma 10.8.8, and
the S-TRAN case is handled by Theorem 10.8.12. 2

Thus, I have shown that any simple judgment may be decided by �rst encoding it as
a kernel-system judgment and then deciding the encoded judgment:

Theorem [Simple] 10.8.14 (Reduction III)

1. ` � valid i� ` �
 valid.

2. � ` A valid i� �
 ` A
 :: 
.

3. � ` A1 = A2 i� �
 ` A
1 = A
2 :: 
.

4. � ` A1 � A2 i� �
 ` A
1 � A
2 .

Proof: Follows immediately from Lemmas 10.8.1, 10.8.3, 10.8.4, and 10.8.13. 2

As consequences of this, the simple validity and equality judgments are decidable and
the simple subtyping problem reduces to the kernel-system subtyping problem. This last

fact means that if the simple subtyping problem is undecidable, then the kernel-system
subtyping problem must be undecidable as well.
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Corollary [Simple] 10.8.15 (Problem reduction)

1. The ` � valid judgment is decidable.

2. The � ` A valid judgment is decidable.

3. The � ` A1 = A2 judgment is decidable.

4. If the � ` A1 � A2 judgment is undecidable, then the kernel system subtyping prob-

lem is undecidable.

Proof: Follows from Theorem 10.8.14, Theorem 9.4.11, and the fact that the encoding
can be done by an algorithm. 2

10.9 Undecidability

In this section I prove that the simple subtyping problem, and hence the kernel-system
subtyping problem, is undecidable. All judgments in this section are from the simple
system. First, it is worth noting that in the absence of the SU-FOR rule, simple subtyping

is decidable:

Lemma [Simple] 10.9.1

1. If jA1j = jA2j then j[A1=�]Aj = j[A2=�]Aj.

2. If � ` A1 = A2 then jA1j = jA2j.

Proof: Proved sequentially by induction on A and the derivation of � ` A1 = A2 re-
spectively. 2

Theorem [Simple] 10.9.2 (Decidability)

If the SU-FOR rule is removed, then simple subtyping is decidable.

Proof: Inspection of the other SU rules shows that each of them strictly decreases

the following non-negative measure, so the simple syntax-directed procedure always ter-

minates in this case: j� ` A1 � A2j = jA1j + jA2j. (Lemma 10.9.1 is needed to handle
the SU-SUM-T case; the decidability of the other judgments' procedures is handled by
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Corollary 10.8.15.) 2

Note that use of the SU-FOR rule does not decrease this measure and in fact can

increase it because the type on the right side can grow without limit in the recursive

call. This fact can be used to construct examples that cause the simple syntax-directed

procedure for checking simple subtyping to loop. For example, consider the following

de�nitions:
P (A) = 9�=A::A (� 62 FV(A))

G�(A) = 9�::A

An example which causes cyclic behavior under the empty assignment is then as follows:

P (G�(P (�))) � G�(P (�))
= 9�0=G�(P (�))::G�(P (�)) � 9�0::P (�0)
) [G�(P (�))=�

0](:G�(P (�))) � [G�(P (�))=�
0](:P (�0))

= :G�(P (�)) � :P (G�(P (�)))
) P (G�(P (�))) � G�(P (�))

...

Pierce's proof of the undecidability of F� subtyping has two steps. First, he introduces
a new kind of machine called a row machine and shows that the halting problem for these
machines is undecidable by reducing the two-counter Turing machine halting problem, a
known undecidable problem, to it. Second, he shows that F� subtyping can be used to
decide rowing machine halting problems.

Row machines come in a variety of positive widths; the syntax for n-width rowing
machines is as follows:

De�nition [Rowing] 10.9.3 (Syntax of n-width row machines)
Rows � ::= � j ��1; : : : ; �n:m j HALT
Machines m ::= <�1; : : : ; �n>

Here, the metavariable� ranges over row variables. Equivalence of rows and row machines
is de�ned as usual (�-conversion). The de�nition of free row variables (FV(�)) and row

substitution ([�=�]�) on rows and row machines are the obvious ones:

De�nition [Rowing] 10.9.4 (Free row variables)

FV(�) = f�g
FV(��1; : : : ; �n:m) = FV(m)� f�1; : : : ; �ng

FV(HALT) = ;

FV(<�1; : : : ; �n>) = FV(�1) [ � � � [ FV(�n)
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De�nition [Rowing] 10.9.5 (Row substitution)

[�=�]� = �

[�=�]�0 = �0 (� 6= �0)

[�=�]��01; : : : ; �
0
n:m = ��01; : : : ; �

0
n: [�=�]m (8i: �0i 6= �;�0i 62 FV(�))

[�=�]HALT = HALT

[�=�]<�1; : : : ; �n> = <[�=�]�1; : : : ; [�=�]�n>

Row machines of width n are elaborated using the following rewriting relation:

De�nition [Rowing] 10.9.6

�1 = ��1; : : : ; �n:m
0 m00 = [�n=�n] : : : [�1=�1]m

0

<�1; : : : ; �n>! m00
(ROW)

Only closed row machines (FV(m) = ;) are elaborated; the rewriting relation preserves
the closed property:

Lemma [Rowing] 10.9.7 If FV(m) = ; and m! m0 then FV(m0) = ;.

Proof: First show by induction on m that if FV(�) = ; then FV([�=�]m) � (FV(m)�
f�g). The result then follows easily from the de�nitions of row machine rewriting, free

row variables, and row substitution. 2

The basic idea of row machine elaboration is that a row machine of width n contains
n registers, each of which may contain a row. The row machine <�1; : : : ; �n> represents
a machine who's �rst register holds �1, who's second register holds �2, and so on. The

�rst register of a row machine holds its program counter (PC). To move to the next state,
the PC is used as a template to construct the new contents of each of the registers from

the current contents of all of the registers (including the PC). A row machine halts when

its PC becomes HALT:

De�nition [Rowing] 10.9.8 The closed n-width row machine m is said to halt i�

9�2; : : : ; �n: m!� <HALT; �2; : : : ; �n>.

A closed row machine that never halts will run forever:

Lemma [Rowing] 10.9.9

If FV(m) = ; and 8�2; : : : ; �n: m 6= <HALT; �2; : : : ; �n> then 9m0: m! m0.
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Proof: Let m = <�1; : : : ; �n> ) FV(�1) = ; (de�nition of free row variables) and

�1 6= HALT (given)) �1 = ��1; : : : ; �n:m
00 for some �1; : : : ; �n; and m

00) 9m0: m! m0

(ROW). 2

More discussion of row machines, including examples, can be found in Section 6.5 of

Pierce's thesis [51]. The elaboration function given there di�ers slightly from the one here

because it uses simultaneous substitution where I have used iterated substitution; the

de�nitions can easily be seen to coincide on closed row machines however. In Section 6.8

of his thesis, Pierce proves the following theorem:

Theorem [Rowing] 10.9.10 (Undecidability)

The halting problem for closed row machines is undecidable. (The width may vary from

problem instance to problem instance.)

By making some slight modi�cations, Pierce's encoding of row machines into F�
subtyping can be turned into an encoding of row machines into simple subtyping. The
following encoding (F(�)) of width n rows and row machines into simple types is designed
so that a closed n-width row machinem halts i� the simple judgment � ` F(m) � � holds
(� is de�ned below):

De�nition [Rowing] 10.9.11 (Encoding row machines of width n)

� = 9�:9�01: � � � 9�
0
n::9�

00
1=�

0
1: � � � 9�

00
n=�

0
n::�

F(�) = �

F(��1; : : : ; �n:m) = 9�1: � � � 9�n::F(m)
F(HALT) = 9�1: � � � 9�n::�

F(<�1; : : : ; �n>) = 9�=�:9�01=F(�1): � � � 9�
0
n=F(�n)::�

0
1;

(f�; �01; : : : ; �
0
ng \ FV(<�1; : : : ; �n>) = ;)

Where jf�; �01; : : : ; �
0
n; �

00
1; : : : ; �

00
ngj = 2n+ 1.

The key di�erences from Pierce's encoding (see Section 6.6 of his thesis) are as follows:

� Use of � ` 9�=A:A1 � 9�:A2 instead of 8�:A2 � 8��A:A1.

� Use of re
exivity to halt computation instead of the FTOP rule. (Compare the
two de�nitions of F(HALT))

The proof that the encoding is correct is straightforward:
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Lemma [Rowing] 10.9.12 (Encoding properties)

1. FV(�) = ;

2. FV(F(�)) = FV(�) and FV(F(m)) = FV(m)

3. F([�0=�]�) = [F(�0)=�]F(�) and F([�0=�]m) = [F(�0)=�]F(m)

Proof: The �rst part is proved by inspecting the de�nition of �. The remaining two

parts are proved by simultaneous induction on � and m. 2

Lemma [Mixed] 10.9.13 (Encoding validity)

1. � ` � valid

2. If FV(�) � dom(�) and ` � valid then � ` F(�) valid.

3. If FV(m) � dom(�) and ` � valid then � ` F(m) valid.

(Here � is a simple assignment; all other variables are from the row system.)

Proof: The �rst part is proved by using VAR, NEG, SUM-O, and SUM-T. The re-
maining parts are proved by simultaneous structural induction on � and m, using Lem-
mas 10.9.12 and 10.6.11 as needed. 2

Lemma [Rowing] 10.9.14 If FV(<HALT; �2; : : : ; �n>) = ; then
� ` F(<HALT; �2; : : : ; �n>) � �.

Proof: By Corollary 10.8.6, NEG, and Lemma 10.9.13, � ` :� � :�
) � ` 9�001=F(HALT):9�

00
2=F(�2): � � � 9�

00
n=F(�2)::� � 9�1: � � � 9�n::�

(Lemma 10.9.12, 10.9.13, SUM-O, SU-FOR, and the given)

) � ` 9�001=F(HALT):9�
00
2=F(�2): � � � 9�

00
n=F(�2)::� � F(HALT)

) � ` :F(HALT) � :9�001=F(HALT):9�
00
2=F(�2): � � � 9�

00
n=F(�2)::� (SU-NEG)

) � ` 9�=�:9�01=F(HALT):9�
0
2=F(�2): � � � 9�

0
n=F(�n)::�

0
1 �

9�:9�01: � � � 9�
0
n::9�

00
1=�

0
1: � � � 9�

00
n=�

0
n::� where jf�; �01; : : : ; �

0
n; �

00
1; : : : ; �

00
ngj = 2n + 1

(Lemma 10.9.12, 10.9.13, SUM-O, SU-FOR, and the given)

) � ` F(<HALT; �2; : : : ; �n>) � �. 2
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Lemma [Rowing] 10.9.15

Suppose m = <�1; : : : ; �n>, FV(m) = ;, and �1 6= HALT. Then:

1. If m! m0 and � ` F(m0) � � then � ` F(m) � �.

2. If � ` F(m) � � then 9m0: m! m0 and � ` F(m0) � � by a smaller derivation.

Proof: By the givens and Lemma 10.9.9, we must have that �1 = ��1; : : : ; �n:m
00 for

some �1; : : : ; �n, and m00 ) m! m0 where m0 = [�n=�n] : : : [�1=�1]m
00 (ROW). We can

then reason as follows with jf�; �01; : : : ; �
0
n; �

00
1; : : : ; �

00
ngj = 2n + 1:

� ` F(m) � � , � ` F(<�1; : : : ; �n>) � �

, � ` 9�=�:9�01=F(�1): � � � 9�
0
n=F(�n)::�

0
1 �

9�:9�01: � � � 9�
0
n::9�

00
1=�

0
1: � � � 9�

00
n=�

0
n::�

, � ` 9�01=F(�1): � � � 9�
0
n=F(�n)::�

0
1 � 9�01: � � � 9�

0
n::9�

00
1=�

0
1: � � � 9�

00
n=�

0
n::�

(Lemma 10.9.12, 10.9.13, SUM-O, SU-FOR, and the given)
, � ` :F(�1) � :9�001=F(�1): � � � 9�

00
n=F(�n)::� (Lemma 10.9.12, 10.9.13, SUM-O, SU-

FOR, and the given)
, � ` 9�001=F(�1): � � � 9�

00
n=F(�n)::� � F(�1) (SU-NEG)

, � ` 9�001=F(�1): � � � 9�
00
n=F(�n)::� � F(��1; : : : ; �n:m

00)
, � ` 9�001=F(�1): � � � 9�

00
n=F(�n)::� � 9�1: � � � 9�n::F(m00)

,� ` :� � :[F(�n)=�n] : : : [F(�1)=�1]F(m
00) (Lemma 10.9.12, 10.9.13, SUM-O, SU-FOR,

and the given)
, � ` [F(�n)=�n] : : : [F(�1)=�1]F(m

00) � � (SU-NEG)
, � ` F([�n=�n] : : : [�1=�1]m

00) � � (Lemma 10.9.12)
, � ` F(m0) � �. 2

Theorem [Rowing] 10.9.16 Suppose m is a closed n-width row machine. Then m

halts i� � ` F(m) � �.

Proof: The forward direction follows from Lemma 10.9.14, part one of
Lemma 10.9.15, and Lemma 10.9.7. The backward direction follows from part two of
Lemma 10.9.15 and Lemma 10.9.7. 2

The desired undecidability results then follow immediately:

Theorem [Simple] 10.9.17 Simple subtyping is undecidable.

Proof: Follows immediately from Theorem 10.9.16 and Theorem 10.9.10. 2

Corollary 10.9.18 The kernel-system subtyping problem is undecidable.
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Proof: Follows immediately from Theorem 10.9.17 and Corollary 10.8.15. 2

Is the undecidability of subtyping likely to be a problem in practice? I don't think

there is much chance of it being a problem with human generated code. Consider, for

example, the previous looping example, which is the smallest such example known. Ex-

amining it reveals that a type at least as complicated as :G�(P (�)) = :9�::9�0=�::�
is needed to start the loop going.

Translated into SML-like code, using functors to implement negations, this type would

look like the following:

FUNCTOR (s: interface

type T;

FUNCTOR F(s: interface

type U = T;

FUNCTOR G(s: U):RES;

end):RES;

end):RES

where RES is any type. The translated type is quite complicated, involving a functor that

takes an argument containing a functor that takes an argument containing yet another
functor. Types of this sort seem unlikely in practice to arise in human generated code.

Machine generated code is a di�erent matter: it seems plausible that some kind of
automatic encoding of objects, for example, might produce types of this sort. I suggest
that this problem be handled by adding a depth limit to the subtyping procedure so that

it returns an error if it cannot resolve the subtyping question within the speci�ed depth
limit. An initial limit of ten thousand should allow all reasonable programs to be type
checked without problem (I shall show in Chapter 12 that well-typed programs never
produce looping) ; if the programmer is unsure if an error is due to looping or to the
limit, she can increase the limit to a much higher value and recheck the program. If the
program still gives an error, either it really does have a type error, or, alternatively, it

just takes so long to type check that it is unusable in practice.



Chapter 11

Soundness

I have now �nished discussing the kernel-system kind and constructor levels and their
associated proofs. In this chapter, I introduce the term level, de�ne the system's seman-

tics, and prove soundness. I defer the discussion of how to e�ciently type check terms
to the next chapter.

11.1 The Terms

The syntax for the term level is as follows:

De�nition 11.1.1 (Syntax for the term level)

Terms M ::= x j �x:A:M jM 1M2 j (M 1; M 2) jM:1 jM:2 j <A> j
M<:A j roll j unroll j new j get j set

Scoping is as would be expected and the de�nitions of free constructor variables (FCV(M))
and free term variables (FTV(M)) on terms are the obvious ones:

225
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De�nition 11.1.2 (Free constructor variables)

FCV(x) = ;
FCV(roll) = ;

FCV(unroll) = ;
FCV(new) = ;
FCV(get) = ;
FCV(set) = ;

FCV(M:1) = FCV(M)

FCV(M:2) = FCV(M)

FCV(<A>) = FCV(A)

FCV(�x:A:M) = FCV(A) [ FCV(M)
FCV(M<:A) = FCV(M) [ FCV(A)
FCV(M1M2) = FCV(M1) [ FCV(M2)

FCV((M1; M2)) = FCV(M1) [ FCV(M2)

De�nition 11.1.3 (Free term variables)

FTV(x) = fxg
FTV(�x:A:M ) = FTV(A) [ (FTV(M)� fxg)

FTV(roll) = ;
FTV(unroll) = ;
FTV(new) = ;
FTV(get) = ;
FTV(set) = ;

FTV(M:1) = FTV(M )

FTV(M:2) = FTV(M )

FTV(<A>) = FTV(A)

FTV(M1M 2) = FTV(M 1) [ FTV(M2)

FTV((M 1; M 2)) = FTV(M 1) [ FTV(M2)

FTV(M<:A) = FTV(M ) [ FTV(A)

The term level's only judgment is the well-typed term judgment (� `M : A) which
assigns a type (A) to a term (M ) that is well-typed under a assignment (�). When

discussing the types of terms, the following abbreviations will be useful:
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De�nition 11.1.4 (Arrow types)

The arrow type A!A0 is de�ned to be equal to �x:A:A0 where x 62 FTV(A0). The arrow

operator (!) is de�ned to have lower precedence than application (A1A2).

De�nition 11.1.5 (Pair types)

The pair type (A;A0) is de�ned to be equal to �x:A:A0 where x 62 FTV(A0).

De�nition 11.1.6 (Polymorphic types)

The polymorphic type 8�::K:A is de�ned to be equal to �x:<K>: [x!=�]A where x 62
FTV(A).

The rules for the well-typed term judgment follow. The elimination rules for depen-
dent functions (T-APP) and dependent sums (T-SND) are restricted so that they apply
only to terms with non-dependent types. The introduction rule for rei�ed constructors
(T-REIFY) always assigns a transparent type; an opaque type can be obtained instead

by using subsumption afterwards (i.e., use T-REIFY followed by T-SUMP). The rule for
term variables (T-VAR) uses the self function ([self=x�]�), discussed below, to get the
e�ect of a series of EVALUE rules in a row; the advantage of the self function, which is
used only at term-variable introduction time, over separate EVALUE rules, which can be
applied at any time, is that it results in normalized typing derivations, which are easier

to reason about. I discussed how these kind of rules work together to allow information
about constructor components to be propagated solely through the constructor level in
Chapter 4 and Section 5.5.

De�nition 11.1.7 (Term Formation Rules)

� ` �(x) = A :: 


� ` x : [self=x]A
(T-VAR)

�; x:A `M : A0

� ` �x:A:M : �x:A:A0
(T-LAM)

� `M 1 : A2!A � `M2 : A2

� ` M1M 2 : A
(T-APP)

� `M 1 : A1 � ` M2 : A2

� ` (M1; M 2) : (A1; A2)
(T-PAIR)

� ` M : �x:A1: A2

� `M:1 : A1

(T-FST)
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� `M : (A1; A2)

� `M:2 : A2

(T-SND)

� ` A :: K

� ` <A> : <=A::K>
(T-REIFY)

� `M : A0 � ` A0 � A

� `M : A
(T-SUMP)

� `M : A

� ` M<:A : A
(T-COERCE)

` � valid

� ` new : 8�::
:�!ref�
(T-NEW)

` � valid

� ` get : 8�::
:ref�!�
(T-GET)

` � valid

� ` set : 8�::
:ref�!(�!�)
(T-SET)

` � valid

� ` roll : 8�::
)
:� (rec�)!rec�
(T-ROLL)

` � valid

� ` unroll : 8�::
)
:rec�!� (rec�)
(T-UNROLL)

The self function is de�ned below. Given a term x� with type A, [self=x�]A computes

a subtype of A for x� by adding information about the identity of constructor components

to opaque types (<K>) in A. For example,
[self=x�]�x0:<=�::
>:<
> = �x0:<=�::
>:<=x�:2!::
>. Note that the self function

leaves transparent types (<=A::K>) unchanged because more useful information about

the identity of their components is already available.



CHAPTER 11. SOUNDNESS 229

De�nition 11.1.8 (Self function)

[self=x�]<K> = <=x�!::K>

[self=x�]�x0:A1: A2 = �x0:[self=x�:1]A1: [self=x�:2]A2; where x 6= x0

[self=x�]� = �

[self=x�]�x0:A1: A2 = �x0:A1: A2

[self=x�]��::K:A = ��::K:A

[self=x�]A1A2 = A1A2

[self=x�]<=A::K> = <=A::K>

[self=x�]x0�0! = x0�0!

[self=x�]rec = rec

[self=x�]ref = ref

The self function does not take into account equality on types; it leaves unchanged
types with shape ?, regardless of their intrinsic shape. For example, [self=x]((��::
: �)<
>)
= (��::
: �)<
> even though [self=x]<
> = <=x!::
> and
� ` (��::
: �)<
> = <
> :: 
.

The e�ect of any series of applications of EVALUE-like rules can be gotten by �rst

using equality to rewrite the type so that only the opaque types you want to alter have
non-? shapes and then applying the self function. For instance, suppose ` � valid and
�(x) = �x0:<
>:<
> and we want to add information to only the second component
of x. By the equality rules, we have that � ` �(x) = �x0:(��::
: �)<
>:<
> :: 
. By
the de�nition of the self function, [self=x]�x0:(��::
: �)<
>:<
> =
�x0:(��::
: �)<
>:<=x:2!::
>. Hence, by T-VAR, we have

� ` x : �x0:(��::
: �)<
>:<=x:2!::
>) � ` x : �x0:<
>:<=x:2!::
> (T-SUMP, etc.)
as desired.

11.2 Self Validity

In this section I prove that under suitable conditions the self function produces valid

types. In order to describe when the self function is valid, a notion of cleaving is needed.

The cleave function (�;A + �), de�ned below, takes as input an assignment �, a type A
under �, and a path �. Treating A like a tree whose branches are named by :1 and :2, it

cleaves apart A following the path � into three parts: the part of A rooted at �, call it
A0; the declarations in A that A0 is under (the tree to the left of �), call it �0; and the

remaining part (the tree to the right of �). The cleave function then returns �; �0; A0,
discarding the right part of A.
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De�nition 11.2.1 (Cleave function)

�;A + � = �; A

�;�x0:A1: A2 + :1� = �;A1 + �

�;�x0:A1: A2 + :2� = (�; x0:A1);A2 + � where x0 62 dom(�)

Like the selection function, the cleave function can also be done in steps:

Lemma 11.2.2 If �;A + �1�2 exists then �;A + �1�2 = �2; A2 where �2; A2 = �1;A1 + �2
and �1; A1 = �;A + �1.

Given a valid assignment, type pair, cleaving results in a new valid assignment, type
pair:

Lemma 11.2.3 (Cleave validity)

If � ` A :: 
 and �0; A0 = �;A + � then �0 ` A0 :: 
.

The types produced by either cleaving or selecting from the same type A using the

same path are related via a series of place substitutions on the term variables bound in
A:

Lemma 11.2.4 (Shape preservation) d[x�=x0]Ae = dAe

Lemma 11.2.5 (Cleaving vs. selection)

If �;A + �0 or S(A;x�; �0) exist, then 9 a series of place substitutions, � = �1 � � � �n, such
that S(A;x�; �0) = �A0 and dom(�) = dom(�0)� dom(�) where �0; A0 = �;A + �0.

Proof: Proved by structural induction on �0. Cases:

�0 = �: ) �0 = �, A0 = A, and S(A;x�; �0) = A ) S(A;x�; �0) = A0 = �A0 and dom(�) =

; = dom(�0)� dom(�) if n = 0.

�0 = �00:i: ) �;A + �00 or S(A;x�; �00) exist (Lemmas 6.5.3 and 11.2.2). Hence, by the in-
duction hypothesis, 9 a series of place substitutions, � = �1 � � � �n, such that

S(A;x�; �00) = �A00 and dom(�) = dom(�00) � dom(�) where �00; A00 = �;A + �00 )
S((�A00); x��00; :i) or �00;A00 + :i exist (Lemmas 6.5.3 and 11.2.2)) d�A00e = dA00e =
� (Lemma 11.2.4) ) 9x0; A1; A2: A

00 = �x0:A1: A2 where x 6= x0 and x0 62 dom(�)
) �A00 = �x0:�A1: �A2 (WLOG) ) �0 = �00, A0 = Ai, and S(A;x�; �0) = �A1 (if
i = 1) or �0 = �00; x0:A1 and S(A;x�; �0) = [x��00:1=x0](�A2) (if i = 2) (Lemmas 6.5.3

and 11.2.2) ) 9�0: S(A;x�0; �0) = �0A0 and dom(�0) = dom(�0)� dom(�).
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2

One corollary of this result is that such types must have the same shape:

Corollary 11.2.6 If �;A + �0 or S(A;x�; �0) exist, then dS(A;x0�0; �)e = dA0e where

�0; A0 = �;A + �

Proof: Follows directly from Lemmas 11.2.5 and 11.2.4. 2

Another corollary is that if the part of A being selected or cleaved to is not bound by

any term variables declared in A, then the type obtained by selection and cleaving will

be the same:

Lemma 11.2.7 (Substitution for non-free variables)

1. If � 62 FCV(A) then [A0=�]A = A.

2. If x0 62 FTV(A) then [x�=x0]A = A.

3. If � 62 FCV(�) then [A0=�]� = �.

4. If x0 62 FTV(�) then [x�=x0]� = �.

Proof: Proved sequentially using structural induction on A and �. 2

Corollary 11.2.8 If � ` A :: 
, �0; A0 = �;A + �, and � ` A0 :: 
 then

S(A;x�0; �) = A0.

Proof: By Lemma 11.2.3, �0 ` A0 :: 
. By Lemma 11.2.5, 9 a series of place substitu-
tions, � = �1 � � � �n, such that S(A;x�0; �) = �A0 and dom(�) = dom(�0) � dom(�). By
inspection of the de�nition of cleaving, �0 = �;�00 for some �00. By Lemmas 6.3.5, 6.5.10,

and 6.5.4, dom(�) \ dom(�00) = ; ) dom(�0)� dom(�) = dom(�00). By Theorem 6.5.6,

FTV(A0) � dom(�) ) FTV(A0) \ dom(�00) = ; ) FTV(A0) \ dom(�) = ; ) �A0 = A0

(Lemma 11.2.7) ) S(A;x�0; �) = A0. 2

If we ignore the question of when the self function produces valid types, it is straight-

forward to show that the self function produces a subtype of the type it is applied to:

Lemma 11.2.9 If � ` A :: 
 and � ` [self=x�]A :: 
 then � ` [self=x�]A � A.
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Proof: Proved by structural induction on A. All but the following two cases follow

immediately from O-REFL and S-ONE:

Opaq: Here A = <K> for some K ) [self=x�]A = <=x�!::K>

) � ` [self=x�]A � A (C-TRANS, O-FORGET, and S-ONE).

DSum: Here A = �x0:A1: A2 for some x0, A1, and A2 where x 6= x0 and x0 62 dom(�)

) [self=x�]A = �x0:[self=x�:1]A1: [self=x�:2]A2 ) � ` A1 :: 
, �; x
0:A1 ` A2 :: 
,

� ` [self=x�:1]A1 :: 
, and �; x0:[self=x�:1]A1 ` [self=x�:2]A2 :: 
 (C-DSUM,

Lemma 6.3.5, and DECL-T) ) � ` [self=x�:1]A1 � A1 and

�; x0:[self=x�:1]A1 ` [self=x�:2]A2 � A2 (induction hypothesis) )
� ` [self=x�]A � A. (Theorem 10.5.4)

2

Using these results, I can now show when the self function produces valid types. The
cleave function is needed here because the self function recurses in a cleave-like manner

while, on the other hand, the place lookup judgment, which is needed to ensure the
validity of the inserted names, recurses in a selection-like manner.

Theorem 11.2.10 (Self validity)

If � ` x�) A and �0; A0 = �;A + �0 then �0 ` [self=x��0]A0 :: 
.

Proof: Proved by structural induction on A0. Theorem 9.4.4 and Lemma 11.2.3 handle
the cases where dA0e 6= � and dA0e 6= <K>. The other cases are:

Opaq: Given A0 = <K> for some K ) [self=x��0]A0 = <=x��0!::K>. By Lemma 11.2.3,
�0 ` A0 :: 
 ) ` �0 valid (Theorem 6.3.5). By Theorem 9.4.4 and E-REFL,

� ` x��0 ) S(A0; x�; �0)) � ` x��0 ) <K> (Corollary 11.2.6)) �0 ` x��0 ) <K>

(Theorem 9.4.1)) �0 ` x��0! :: K (C-EXT-O)) �0 ` <=x��0!::K> :: 
 (C-TRANS)
) �0 ` [self=x��0]A0 :: 
.

DSum: Given A0 = �x0:A1: A2 for some x0, A1, and A2 where x 6= x0 and x0 62 dom(�0).
By Theorem 9.4.4 and Lemma 11.2.3, �0 ` A1 :: 
. By the induction hypothesis,
�0 ` [self=x��0:1]A1 :: 
 and �0; x0:A1 ` [self=x��0:2]A2 :: 
.

) �0 ` [self=x�:1]A1 � A1. (Lemma 11.2.9)

) �0; x0:[self=x�:1]A1 ` [self=x��0:2]A2 :: 
 (Theorem 10.4.7)

) �0 ` �x0:[self=x��0:1]A1: [self=x��
0:2]A2 :: 
 (C-DSUM)

) �0 ` [self=x��0]A0 :: 
.

2
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Corollary 11.2.11 If � ` x�) A and �0; A0 = �;A + �0 then
�0 ` [self=x��0]A0 � A0.

Proof: By Theorem 9.4.4 and Lemma 11.2.3, �0 ` A0 :: 
. By Theorem 11.2.10,

�0 ` [self=x��0]A0 :: 
. Hence, by Lemma 11.2.9, �0 ` [self=x��0]A0 � A0. 2

The following lemma, which describes the interaction between subtyping and cleaving,

will be useful in the next section:

Lemma 11.2.12 Suppose � ` A1 � A2, �
00
1; A

00
1 = �;A1 + �, and

�002; A
00
2 = �;A2 + �. Then:

1. �001 ` A001 � A002

2. If �002; �3 ` A :: K then �001; �3 ` A :: K.

3. If �002; �3 ` A � A0 then �001; �3 ` A � A0.

Proof: Proved simultaneously by structural induction on �:

� = �: Here � = �001 = �002 so we are done.

� = �0:1: Here 9A4; A5; x
0: �;A1 + �0 = �01;�x

0:A001: A4 and �;A2 + �0 = �02;�x
0:A002: A5, �

00
1 =

�01, and �002 = �02, where x0 62 dom(�01) [ dom(�02) [ fxg. By the induction hy-

pothesis, �01 ` �x0:A001: A4 � �x0:A002: A5 ) �01 ` A
00
1 � A002 and �01; x

0:A001 ` A4 � A5

(Lemma 10.5.1) ) �001 ` A001 � A002. Parts two and three follow from the induction
hypothesis.

� = �0:2: Here 9A4; A5; x
0: �;A1 + �0 = �01;�x

0:A4: A
00
1 and �;A2 + �0 = �02;�x

0:A5: A
00
2, �

00
1 =

�01; x
0:A4, and �

00
2 = �02; x

0:A5, where x
0 62 dom(�01)[dom(�02)[fxg. By the induction

hypothesis, �01 ` �x0:A4: A
00
1 � �x0:A5: A

00
2 ) �01 ` A4 � A5 and �

0
1; x

0:A4 ` A
00
1 � A002

(Lemma 10.5.1) ) �001 ` A001 � A002. Parts two and three follow from the induction
hypothesis followed by replacement by a subtype (Theorem 10.4.7).

2

11.3 Self and Subtyping

In this section I establish results about the interaction between the self function and the
subtyping relation that are needed to extended the replacement by a subtype result to

the term level. First, I shall need some minor lemmas relating self to selection and to

cleaving:
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Lemma 11.3.1 If x 6= x0 then [self=x�][x00�0=x0]A = [x00�0=x0][self=x�]A.

Lemma 11.3.2 (Self and selection)

If either S([self=x2�2]A;x1�1; �) or S(A;x1�1; �) exists, then
S([self=x2�2]A;x1�1; �) = [self=x2�2�]S(A;x1�1; �).

Proof: Proved by structural induction on � using Lemma 11.3.1 as needed. Example

case:
S([self=x2�2]�x

0:A1: A2; x1�1; :2�
0) =

S(�x0:[self=x2�2:1]A1: [self=x2�2:2]A2; x1�1; :2�
0) =

S([x2�2:1=x
0][self=x2�2:2]A2; x1�1:2; �

0) =

S([self=x2�2:2][x2�2:1=x
0]A2; x1�1:2; �

0) =

[self=x2�2:2�
0]S([x1�1:1=x

0]A2; x1�1:2; �
0) =

[self=x2�2:2�
0]S(�x0:A1: A2; x1�1; :2�

0)

(x0 chosen so that x0 6= x2) 2

Lemma 11.3.3 (Self and cleaving)

If �0; A0 = �;A + � then 9�00: �;[self=x�0]A + � = �00; [self=x�0�]A0.

Proof: Proved by structural induction on �. 2

I shall also need the following result which shows that an equality on part of a type
can be extended to an equality on the entire type:

Lemma 11.3.4 (Equality back o�)

Suppose � ` A1 :: 
, �1; A
0
1 = �;A1 + �0, and �1 ` A01 = A02 :: 
. Then, 9�2; A2 such

that:

1. �2; A
0
2 = �;A2 + �0

2. � ` A1 = A2 :: 


Proof: Proved by structural induction on �0. Cases:

�0 = �: ) �1 = � and A1 = A01. Let �2 = � and A2 = A02 and we are done.

�0 = �00:i: Here �01;�x
0:A3: A4 = �;A1 + �00 for some �01, x

0, A3, and A4 where x0 6= x and

x0 62 dom(�01) (Lemma 11.2.2) ) A01 = Ai+2. By Lemma 11.2.3, �01 ` A3 :: 
 and

�01; x
0:A3 ` A4 :: 
 ) �01 ` A3 = A3 :: 
 and

�01; x
0:A3 ` A4 = A4 :: 
 (E-REFL)) �01 ` �x0:A3: A4 = A5 :: 
 whereA5 = �x0:A02: A4

if i = 1 and A5 = �x:A3: A
0
2 if i = 2.

Hence, by the induction hypothesis, 9�0; A2: �0; A5 = �;A2 + �00 and � ` A1 = A2 :: 


) 9�2: �;A2 + �00:i = �2; A
0
2.
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2

The �rst key result I need is that if x is bound to a semi-canonical type A in � (i.e.,

� = �1; x:A; �2 and A 2 C�1

), then the result of selecting using path � on A (S(A;x; �))
can also be obtained by means of equality on the type resulting from cleaving A with �

under the assignment resulting from cleaving �; [self=x]A with �. (See Theorem 11.3.9

below for the formal version of this result.)

In essence, this result says that applying the self function to the declarations binding a

subcomponent of A adds enough information to allow converting back and forth between

the internal and external names for the preceding subcomponents. (Selection converts

internal names to external ones; cleaving leaves names unchanged.) For example, if

A = �x0:<
>:x0! and � = :2, then we will have the following:

�; x0:[self=x:1]<
> ` x0! = x:1! :: 


The restriction that A be a semi-canonical type is needed here to ensure that su�cient
information is added by self. (Because semi-canonical types have maximally de�ned
shapes, self applied to them gives the maximal amount of information.) If we gave x0 the
non-semi-canonical type (��::
: �)<
> instead, the desired equation would not hold.

The proof of this result is quite complicated. First, I show that constructor extractions
involving a component of A can have their names converted if we can use the �nal

result on subcomponents of the component in question (Lemma 11.3.7). Second, I show
how to extend the �rst lemma's result from constructor extractions to arbitrary types
(Lemma 11.3.8). And �nally, third, I use the previous lemmas to prove the desired result
(Theorem 11.3.9).

The key idea behind the third step is to apply Lemma 11.3.7 each time we cleave o�

a declaration so as to convert all references to that component in the type remaining so
they use the component's external name; by using the fact that self produces a subtype
and the replacement by a subtype result, we can connect together the resulting series of

equalities to convert all the references. The recursion involved can be shown to terminate
by showing that all the recursive calls are to lexically preceding paths (de�ned below) and

that only a �nite number of paths are valid for any given A (i.e., S(A;x; �) exists).

De�nition 11.3.5 (Lexical order for paths)

The path �1 lexically precedes the path �2 (written �1 < �2) i� one of the following:

1. �1 = � and �2 6= �

2. �1 = :1�01 and �2 = :2�02

3. �1 = :i�01, �2 = :i�02, and �
0
1 < �02
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Lemma 11.3.6 If �1; x:A; �2 ` x�! :: K and A 2 C�1

then

�1; x:A; �2 ` x�) S(A;x; �) and dS(A;x; �)e � <K>.

Proof: Inspection of the typing rules reveals that the derivation of

�1; x:A; �2 ` x�! :: K must be by either the rule C-EXT-O or the rule C-EXT-T )
9A00;K: �1; x:A; �2 ` x�) A00 and dA00e � <K> ) �1; x:A; �2 ` A

00 = A0 :: 
 and A0 2
C�1;x:A;�2

where A0 = S(A;x; �) (Lemma 9.5.9) ) dA0e = dA00e (Lemma 9.5.7 and E-

SYM) ) dA0e � <K>. By P-INIT, P-MOVE,

Lemma 6.3.5, Theorem 9.4.4, and E-REFL, �1; x:A; �2 ` x�) A0. 2

Lemma 11.3.7 (Name conversion) Suppose:

1. A 2 C�1

2. � = �1; x:A; �2

3. �0; A0 = �;([self=x]A) + �1

4. �00; A
0
0 = �0;A0 + �2

5. �09; A
0
9 = �;A + �1�2

6. �00 ` A
0
9 = S(A;x; �1�2) :: 


7. �0; x
0:A0; �

00 ` x�1�2! :: K

Then �0; x
0:A0; �

00 ` x�1�2! = x0�2! :: K

Proof: By Lemma 11.2.2, we can let �9; A9 = �;A + �1 and have �09; A
0
9 = �9;A9 + �2.

By Lemma 11.3.6, 9K: �0; x
0:A0; �

00 ` x�) S(A;x; �1�2) and
dS(A;x; �1�2)e � <K>. Let A0 = S(A;x; �1�2). Casing on dA0e:

<K>: Here dA0e = <K>)A0 = <K>)A09 = <K> (Corollary 11.2.6))S(A9; x
0; �2) =

<K> (Corollary 11.2.6) and A0 = [self=x�1]A9

(Lemma 11.3.3) ) S(A0; x
0; �2) = S([self=x�1]A9; x

0; �2) =

[self=x�1�2]<K> (Lemma 11.3.2) ) S(A0; x
0; �2) = <=x�1�2!::K>

) �0; x0:A0; �
00 ` x0�2 ) <=x�1�2!::K> (P-INIT, P-MOVE, E-REFL, and Theo-

rem 9.4.4)
) �0; x0:A0; �

00 ` x�1�2! = x0�2! ::K (C-EXT-T, E-ABBREV, E-REFL, E-SYM,

Lemma 6.3.5, and Theorem 9.4.4).
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<=::K>: Here dA0e = <=::K> ) dA09e = <=::K> (Corollary 11.2.6) ) 9A2; A3: A
0 =

<=A2::K> and A09 = <=A3::K>) �0; x0:A0; �
00 ` x�1�2! = A2 :: K (E-ABBREV,

Theorem 9.4.4, and E-REFL) and �00 ` A
0
9 = <=A2::K> :: 
)A00 = [self=x�1�2]A

0
9

(Lemma 11.3.3) ) A00 = A09 ) �00 ` A00 = <=A2::K> :: 
.

By Lemma 6.3.5, P-INIT, and Theorem 11.2.10, �0 ` A0 :: 


) 9�8; A8: �8; <=A2::K> = �0;A8 + �2 and �0 ` A0 = A8 :: 
 (Lemma 11.3.4) By

Lemma 6.3.5, P-INIT, Theorem 9.4.4, E-REFL, and P-MOVE,

�0 ` <=A2::K> :: 
 ) S(A8; x
0; �2) = <=A2::K> (Corollary 11.2.8)

By P-INIT and Lemma 6.3.5, �0; x
0:A0; �

00 ` x0 ) A0

) �0; x
0:A0; �

00 ` x0�2 ) S(A8; x
0; �2) (P-MOVE, Theorem 9.4.1, and

Lemma 6.3.5) ) �0; x
0�2:A0; �

00 ` x0�2 ) <=A2::K>

) �0; x
0�2:A0; �

00 ` x0�2! = A2 :: K (E-ABBREV, C-EXT-T, Theorem 9.4.4, and

E-REFL).

) �0; x
0:A0; �

00 ` x�1�2! = x0�2! :: K (E-SYM and E-TRAN).

2

Lemma 11.3.8 (Name conversion)

Suppose for all �0 and �0, if �; �0 ` x��0! :: K then �; �0 ` x��0! = x0�0! :: K.

Then if �; �00 ` [x�=x0]A :: K then �; �00 ` A = [x�=x0]A :: K.

Proof: Proved by structural induction on the derivation of �; �00 ` [x�=x0]A :: K. The
proof is completely straightforward using E-REFL except for the following case:

C-EXT-? I: Here �; �00 ` [x�=x0]x0�0! :: K ) �; �00 ` x��0! :: K
) �; �0 ` x��0! = x0�0! :: K. (supposition)
) �; �0 ` x0�0! = [x�=x0]x0�0! :: K (E-SYM).

2

Theorem 11.3.9 (Name conversion) Suppose:

1. A 2 C�1

2. �0; A0 = �1; x:A; �2;A + �

3. �0; A0 = �1; x:A; �2;([self=x]A) + �

Then �0 ` A
0 = S(A;x; �) :: 
.
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Proof: Proved by induction on the lexical order of �; recursive calls are only permitted

on lexically preceding paths. Note that this measure is well-founded because there are

only a �nite number of paths for which �1; x:A; �2;A + � exists. Let � = �1; x:A; �2.

Casing on �:

� = �: ) S(A;x; �) = A, A0 = A, and �0 = �. By Lemma 9.5.2, Lemma 6.3.5, and

Theorem 9.4.1, � ` A :: 
. The desired result then follows via E-REFL.

� = �0:1: ) 9x0; A2; A
0
2: �0;�x

0:A0: A2 = �;([self=x]A) + �0 and
�0;�x0:A0: A02 = �;A + �0 where x0 6= x and x0 62 dom(�00)[dom(�00) (Lemma 11.2.2).

By Corollary 11.2.6 and Lemma 6.5.3,

9A001; A
00
2: S(A;x; �

0) = �x:A001: A
00
2 and S(A;x; �) = A001.

Applying part one of the induction hypothesis on �0 gives
�0 ` �x0:A0: A02 = S(A;x; �0) :: 
 ) �0 ` �x0:A0: A02 = �x:A001: A

00
2 :: 


) �0 ` A
0 = A001 :: 
 (Lemma 9.4.10) ) �0 ` A

0 = S(A;x; �) :: 
.

� = �0:2: ) 9�00; x
0; A1; A

0
1: �

0
0;�x

0:A1: A0 = �;([self=x]A) + �0 and
�00;�x0:A01: A

0 = �;A + �0 where x0 6= x and x0 62 dom(�00)[dom(�00) (Lemma11.2.2).
By Corollary 11.2.6 and Lemma 6.5.3,
9A001; A

00
2: S(A;x; �

0) = �x:A001: A
00
2 and S(A;x; �) = [x�0:1=x0]A002.

Applying part one of the induction hypothesis on �0 gives
�00 ` �x0:A01: A

0 = S(A;x; �0) :: 
 ) �00 ` �x0:A01: A
0 = �x:A001: A

00
2 :: 


) �00; x
0:A01 ` A

0 = A002 :: 
 (Lemma 9.4.10).

By P-INIT, Lemma 6.3.5, and Corollary 11.2.11, � ` [self=x]A � A) �00 ` A1 � A01
(Lemma 11.2.12 and Lemma 11.3.3) ) �00; x

0:A1 ` A
0 = A002 :: 
 (Theorem 10.4.7).

By P-INIT, P-MOVE, E-REFL, Lemma 6.3.5, and Theorem 9.4.4,
�00; x

0:A1 ` [x�0:1=x0]A002 :: 


By Lemmas 11.3.7, 11.3.6, 11.2.5, 11.3.3, and 11.2.2 combined with the induction
hypothesis on paths starting with �0:1, we have that if
�00; x

0:A1; �
00 ` x�0:1�2! ::K then �00; x

0:A1; �
00 ` x�0:1�2! = x0�2! :: K.

Hence by Lemma 11.3.8, �00; x
0:A1 ` A002 = [x�0:1=x0]A002 :: 


) �00; x
0:A1 ` A

0 = [x�0=x0]A002 :: 
 (E-TRAN) ) �0 ` A
0 = S(A;x; �) :: 
.

2

The second key result (Corollary 11.3.12, below) is that if x is bound to a semi-
canonical type A1 in �, � ` A1 � A2, and � ` [self=x]A2 :: 
, then
� ` [self=x]A1 � [self=x]A2. This result is exactly what is needed to prove the replace-

ment by a subtype result for the term level in the T-VAR case (see the VAR I case of

Theorem 11.4.20).
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The only hard point in the proof is the inductive case where the � component via

cleaving of A1 is <=A::K> and of A2 is <K>. In that case, we need to show that

A = x�! under the appropriate assignment, call it �0, since [self=x�]A1 = <=A::K> and

[self=x�]A2 = <=x�!::K>. It is easy to show that �0 ` x�! = S(A1; x; �) :: K. The previ-

ous key result (Theorem 11.3.9) can then be used to show that �0 ` A = S(A1; x; �) :: K.

Lemma 11.3.10 If �0; A0 = �;A + � and A 2 C� then A0 2 C�
0.

Proof: Proved by structural induction on � using Lemma 9.5.3. 2

Theorem 11.3.11 (Self and subtyping) Suppose:

1. � = �1; x:A1; �2

2. A1 2 C�1

3. �0; A01 = �;A1 + �

4. �00; A02 = �;A2 + �

5. �0; [self=x�]A
0
1 = �;[self=x]A1 + �

6. �0 ` A01 � A02

7. �0 ` [self=x�]A02 :: 


Then �0 ` [self=x�]A01 � [self=x�]A02.

Proof: Proved by structural induction on A01. By P-INIT and Lemma 6.3.5, � ` x) A1

) � ` [self=x]A1 � A1 (Corollary 11.2.11) ) �0 ` [self=x�]A01 � A01 and �0 ` A
0
1 � A02

(Lemma 11.2.12) ) �0 ` [self=x�]A01 � A02.

This handles all the cases for dA02e 62 f�; <K>g () [self=x�]A02 = A02). By Lemma 6.3.5,

Theorem 9.5.5, and Lemma 11.3.10, A01 2 C�0 ) dA01e�0 = dA01e (Lemma 10.3.9) )
dA01e � dA02e�0 (Lemma 10.3.11). The remaining cases are thus:

case I: dA02e = <K>:
) dA02e�0 = <K> (de�nition of intrinsic shape and E-REFL)
) dA01e � <K>. There are two cases:

{ dA01e = <K> ) A01 = <K> = A02 ) [self=x�]A01 = [self=x�]A02
) �0 ` [self=x�]A01 � [self=x�]A02 (O-REFL and S-ONE).
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{ dA01e = <=::K> ) 9A4: A
0
2 = <K> and A01 = <=A4::K> By Theo-

rem 11.3.9, �0 ` <=A4::K> = S(A1; x; �) :: 
 ) �0 ` x�) <=A4::K> (P-

INIT, Lemma 6.3.5, Theorem 9.4.4, E-REFL, and P-MOVE)

) �0 ` x�! = A4 :: K (E-ABBREV, C-EXT-T, Theorem 9.4.4, and E-REFL)

) �0 ` <=x�!::K> = <=A4::K> :: 
 (E-TRANS)

) �0 ` [self=x�]<=A4::K> = [self=x�]<K> :: 
 (E-SYM)

) �0 ` [self=x�]A01 = [self=x�]A02 :: 
. )
�0 ` [self=x�]A01 � [self=x�]A02 (S-EQ).

case II: dA02e = �:

) dA02e�0 = � (de�nition of intrinsic shape and E-REFL) ) dA01e = � )
9x0; A4; A5; A6; A7 such that A01 = �x0:A4: A5 and A02 = �x0:A6: A7 where x0 62
dom(�0) [ dom(�0). By Lemma 10.5.1, �0 ` A4 � A6 and �0; x0:A4 ` A5 � A7. By
C-DSUM, DECL-T, and Lemma 6.3.5, �0 ` [self=x�:1]A6 :: 
 and
�0; x

0:[self=x�:1]A6 ` [self=x�:2]A7 :: 
.

Hence, by Lemmas 11.2.2, 11.3.3, and the induction hypothesis on A4,

�0 ` [self=x�:1]A4 � [self=x�:1]A6

) �0; x
0:[self=x�:1]A4 ` [self=x�:2]A7 :: 
 (Theorem 10.4.7). Hence, by

Lemmas 11.2.2, 11.3.3, and the induction hypothesis on A5,
�0; x

0:[self=x�:1]A4 ` [self=x�:2]A5 � [self=x�:2]A7 )
�0 ` �x0:[self=x�:1]A4: [self=x�:2]A5 � �x0:[self=x�:1]A6: [self=x�:2]A7

(Theorem 10.5.4) ) �0 ` [self=x�]A01 � [self=x�]A02.

2

Corollary 11.3.12 (Self and subtyping) Suppose:

1. A1 2 C�1

2. �1; x:A1; �2 ` A1 � A2

3. �1; x:A1; �2 ` [self=x]A2 :: 


Then �1; x:A1; �2 ` [self=x]A1 � [self=x]A2.

Proof: Follows immediately from Theorem 11.3.11 with � = �. 2
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11.4 Runtime States

In this section I introduce the semantic system, an extension of the kernel system that

allows tracking the richer runtime states that arise during evaluation. The semantic

system di�ers only at the term level; it extends the set of kernel system terms with

locations (l) and adds stores (S) which map locations to values (V ). Stores are assigned

store types (�) which map locations to types. As a technical device to simplify the

semantics, the primitive functions roll, unroll, new, get, and set are replaced in the

semantic system with versions that are either fully uncurried (roll2(�;�)) or curried
only in their last argument (unroll1(�), new1(�), get1(�), and set2(�;�)). The fully
curried versions can be regarded as syntactic sugar for the (partially) uncurried ones:

De�nition [Sem] 11.4.1 (Syntactic sugar)

roll = �x:<
)
>:�x0:x! (recx!): roll2(x!; x
0)

unroll = �x:<
)
>:unroll1(x!)

new = �x:<
>:new1(x!)
get = �x:<
>:get1(x!)
set = �x:<
>:�x0:refx!: set2(x!; x

0)

Similarly, the new primitives can be de�ned in terms of the old ones:

De�nition [Sem] 11.4.2

roll2(A;M ) = (roll<A>)M

unroll1(A) = unroll<A>

new1(A) = new<A>

get1(A) = get<A>

set2(A;M ) = (set<A>)M

The syntax for the semantic system is the same as for the kernel system except for
the following changes and additions:
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De�nition [Sem] 11.4.3 (Changed syntax)

Terms M ::= x j �x:A:M jM 1M2 j (M 1; M2) jM:1 jM:2 j
<A> jM<:A j l j roll2(A;M ) j
unroll1(A) j new1(A) j get1(A) j set2(A;M)

Values V ::= �x:A:M j (V 1; V 2) j <A> j l j roll2(A;V ) j
unroll1(A) j new1(A) j get1(A) j set2(A; l)

Store types � ::= � j �; l:A
Stores S ::= � j S; l=V

These changes in syntax require the obvious changes in the free term variables and free

constructor variables functions:

De�nition [Sem] 11.4.4 (Changes)

FTV(l) = ;
FTV(new1(A)) = FTV(A)
FTV(get1(A)) = FTV(A)

FTV(unroll1(A)) = FTV(A)
FTV(set2(A;M)) = FTV(A) [ FTV(M )
FTV(roll2(A;M)) = FTV(A) [ FTV(M )

FCV(l) = ;
FCV(new1(A)) = FCV(A)
FCV(get1(A)) = FCV(A)

FCV(unroll1(A)) = FCV(A)

FCV(set2(A;M)) = FCV(A) [ FCV(M)
FCV(roll2(A;M)) = FCV(A) [ FCV(M)

Values are a special subset of terms (all V s areMs) that evaluate to themselves. When

a program terminates, the result of its evaluation is always a value. With the exception
of the body of a lambda, all components of values are themselves values. The set of val-

ues includes user functions (�x:A:M ), partially applied primitive functions (unroll1(A),
new1(A), get1(A), and set2(A; l)

1), pairs of values, rei�ed constructors, locations (the

values of reference types), and rolled values (roll2(A;V ), the values of recursive types).

Term variables, applications, projections, and coercions are never values.
The semantic system has three term-level judgments:

1I choose to make the value syntax re
ect the fact that set2(�;�)'s second argument is always a

location in a well-typed computation result; the complexity of the system is une�ected by this choice.
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De�nition [Sem] 11.4.5 (Judgments)

` � valid valid store type

� `� M : A well-typed term

` S : � well-typed store

Note that the semantic system's well-typed term judgment takes an additional parameter,

a store type (�), which is used to determine the types of locations appearing in the term.

Store types are valid if they never redeclare the type of a location and if all types

they assign to locations are valid under the empty assignment:

De�nition [Sem] 11.4.6 (Store Type Formation Rules)

` � valid (ST-EMPTY)

` � valid � ` A :: 
 l 62 dom(�)

` �; l:A valid
(ST-EXTEND)

The rules for the semantic system's well-typed term judgment follow. The LAM, APP,
PAIR, FST, SND, SUMP, and COERCE rules are unchanged from the kernel system
aside from the addition of the extra store-type parameter. The VAR and REIFY rules

have an extra precondition ` � valid added to ensure that if � `� M : A then ` � valid
(see Lemma 11.4.12). The NEW, GET, SET, ROLL, and UNROLL rules are modi�ed
to handle the (partially) uncurried versions of the primitive functions. The previous
versions of these rules (using the curried versions) are easily veri�ed to be derived rules
in the semantic system. The SM-LABEL rule is the only completely new rule; it assigns

the type ref �(l) to location l.

De�nition [Sem] 11.4.7 (Term Formation Rules)

` � valid � ` �(x) = A :: 


� `� x : [self=x]A
(SM-VAR)

�; x:A `� M : A0

� `� �x:A:M : �x:A:A0
(SM-LAM)

� `� M 1 : A2!A � `� M 2 : A2

� `� M 1M2 : A
(SM-APP)
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� `� M 1 : A1 � `� M2 : A2

� `� (M1; M2) : (A1; A2)
(SM-PAIR)

� `� M : �x:A1: A2

� `� M:1 : A1

(SM-FST)

� `� M : (A1; A2)

� `� M:2 : A2

(SM-SND)

` � valid � ` A :: K

� `� <A> : <=A::K>
(SM-REIFY)

� `� M : A0 � ` A0 � A

� `� M : A
(SM-SUMP)

� `� M : A

� `� M<:A : A
(SM-COERCE)

` � valid ` � valid l 2 dom(�)

� `� l : ref (�(l))
(SM-LABEL)

` � valid � ` A :: 


� `� new1(A) : A!refA
(SM-NEW)

` � valid � ` A :: 


� `� get1(A) : refA!A
(SM-GET)

` � valid � ` A :: 
)


� `� unroll1(A) : recA!A (recA)
(SM-UNROLL)

� `� M : refA

� `� set2(A;M) : A!A
(SM-SET)

� `� M : A (recA)

� `� roll2(A;M) : recA
(SM-ROLL)

Because these rules are so similar to the kernel system ones, the proofs for many proposi-
tions are essentially the same for both systems. Accordingly, I present each such propo-

sition only once; these results, marked with [(Sem)], hold both in the semantics system
and (once the store types are removed) in the kernel system.

Any well-typed term in the kernel system is also a well-typed term in the semantic

system taking De�nition 11.4.1 into account:
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Lemma 11.4.8 If � `M : A then � `� M : A.

The reverse is also true if we limit ourselves to terms that do not contain locations and

use De�nition 11.4.2:

Lemma [Sem] 11.4.9 If � `� M : A and M contains no locations then

� ` M : A.

A store S has valid store type � i� it assigns a unique value V of type �(l) under the

empty assignment and store type � to each location l mapped by �:

De�nition [Sem] 11.4.10 (Store Formation Rules)

` � valid

jSj = j�j 8l 2 dom(�): � `� S(l) : �(l)

` S : �
(STORE)

As with assignments, stores and store types can be treated as as partial functions:

De�nition [Sem] 11.4.11 (Store (types) regarded as partial functions)

dom(�) = ;
dom(�; l:A) = dom(�) [ flg

(�1; l:A; �2)(l) = A (l 62 dom(�1))

dom(�) = ;
dom(S; l=V ) = dom(S) [ flg

(S1; l=V ;S2)(l) = V (l 62 dom(S1))

Lemma [Sem] 11.4.12 (Store (type) properties)

1. dom(�;�0) = dom(�) [ dom(�0)

2. dom(S;S0) = dom(S) [ dom(S0)

3. If l:A 2 � then l 2 dom(�).

4. If l=V 2 S then l 2 dom(S).

The usual propositions on judgments hold for the semantic and kernel systems' term-

level judgments:
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Lemma [Sem] 11.4.13 (Structural properties)

1. If ` � valid and l 2 dom(�) then � ` �(l) :: 
.

2. If ` S : � then ` � valid.

3. If � `� M : A then ` � valid.

Lemma [Sem] 11.4.14 (Valid store (type) properties)

Suppose ` � valid and ` S : �0. Then:

1. dom(S) = dom(�0)

2. If l:A 2 � then �(l) = A.

3. If l=V 2 S then S(l) = V .

Proof: Inspection of the typing rules for store (types) reveal that valid store (types)
never redeclare/rebind labels. Thus, we have that j�0j = jdom(�0)j and jSj = jdom(S)j
) dom(S) = dom(�0) by STORE. 2

Theorem [(Sem)] 11.4.15 (Validity of Term Types)

If � `� M : A then � ` A :: 
.

Proof: Proved by structural induction on the derivation. Interesting cases:

VAR: Given � ` �(x) = A :: 
 ) � ` x) A (Lemma 6.3.5, P-INIT, and P-MOVE) )
� ` [self=x]A :: 
 (Theorem 11.2.10).

SND: Given � `� M : �x:A1: A2, x 62 FTV(A2)) � ` �x:A1: A2 :: 
 (induction hypoth-

esis) ) �; x:A1 ` A2 :: 
 (C-DSUM) ) � ` A2 :: 
 (Theorem 9.6.1).

SUMP: Follows immediately from Lemma 10.2.2.

SM-NEW: Using P-INIT, C-EXT-O, C-DFUN, C-REF, and C-APP it is easy to prove that
� ` 8�::
:�!ref� :: 
 Using weakening (Theorem 9.4.1) then, we get the desired

result: � ` 8�::
:�!ref� :: 
.

SM-LABEL: Follows immediately from Lemma 11.4.13, Theorem 9.4.1, Lemma 6.3.5, C-REF,
and C-APP.

2



CHAPTER 11. SOUNDNESS 247

Lemma [(Sem)] 11.4.16 If � `� M : A then FTV(M) � FTV(�).

Proof: By structural induction on the derivation using Theorem 6.5.6,

Lemma 6.3.5, Theorem 11.4.15, and Lemma 10.2.2 as needed. 2

Theorem [(Sem)] 11.4.17 (Weakening)

Suppose ` �; �0 valid and dom(�0) \ dom(�00) = ;. Then if �; �00 `� M : A then

�; �0; �00 `� M : A.

Proof: By structural induction on the derivation of �; �00 `� M : A, using Theo-

rem 9.4.1, Theorem 10.2.3, Lemma 6.3.5, and Lemma 9.4.2 as needed. 2

Theorem [Sem] 11.4.18 (Weakening)

Suppose ` �;�0 valid. Then if � `� M : A then � `�;�0 M : A.

Proof: By structural induction on the derivation of � `� M : A. The only interesting
case is SM-LABEL which is handled by the fact that l 2 dom(�) ) l 2 dom(�;�0) and
�(l) = (�;�0)(l) (de�nition of store type as a partial function). 2

Theorem [(Sem)] 11.4.19 (Strengthening)

Suppose x 62 FTV(�0) [ FTV(M) [ FTV(A). Then, if �; x:A0; �0 `� M : A, then

�; �0 `� M : A.

Proof: By structural induction on the derivation using Theorem 9.6.1, Corollary 9.6.2,
Lemma 10.2.4, Lemma 6.3.5, and Lemma 9.4.2 as needed. 2

Theorem [(Sem)] 11.4.20 (Replacement by a subtype)

If � ` A2 � A1 and �; x:A1; �
0 `� M : A then �; x:A2; �

0 `� M : A.

Proof: By structural induction on the derivation of �; x:A1; �
0 `� M : A using Theo-

rem 10.4.7 as needed. The only interesting case is as follows:

VAR I: Here �; x:A1; �
0 `� x : [self=x]A derived via rule T/SM-VAR from

�; x:A1; �
0 ` (�; x:A1; �

0)(x) = A :: 
 ) �; x:A1; �
0 ` [self=x]A :: 


(Theorem 11.4.15) ) �; x:A2; �
0 ` [self=x]A :: 
 and

�; x:A2; �
0 ` (�; x:A1; �

0)(x) = A :: 
 (Theorem 10.4.7) ) ` �; x:A2; �
0 valid and

�; x:A2; �
0 ` A1 = A :: 
 (Lemma 6.3.5 and Theorem 9.4.2)
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) �; x:A2; �
0 ` A2 � A1 (Theorem 10.2.3) ) �; x:A2; �

0 ` A2 � A (S-EQ and E-

TRAN).

By Theorem 9.5.10 and Lemma 10.2.2, 9A02: � ` A2 = A02 :: 
 and A02 2 C� )
�; x:A02; �

0 ` [self=x]A :: 
 (Theorem 9.4.6), �; x:A02; �
0 ` A2 � A (Theorem 10.2.5),

and �; x:A02; �
0 ` A2 = A02 :: 
 (Theorem 10.2.3 and Lemma 6.3.5)

) �; x:A02; �
0 ` A02 � A (E-SYM, S-EQ, and S-TRAN). Hence, by Corollary 11.3.12,

�; x:A02; �
0 ` [self=x]A02 � [self=x]A.

By T/SM-VAR and Theorem 9.4.6, �; x:A2; �
0 `� x : [self=x]A02

) �; x:A2; �
0 `� x : [self=x]A (T/SM-SUMP).

2

11.5 Properties of Values

In this section I establish a number of properties of values that I shall need to prove
soundness. In order to do type inference in the presence of subsumption, it is necessary

to be able to compute minimal types of terms:

De�nition [Sem] 11.5.1 A is a minimal type for M under � and �
(A 2 Min�;�(M)) i�:

1. � `� M : A

2. If � `� M : A0 then � ` A � A0.

I shall need the minimal types of the primitive function values in order to determine
the types of their arguments in applications:

Lemma [Sem] 11.5.2 (Minimal types of selected values)

Suppose � `� V : A. Then:

1. If V = <A0> then 9K: <=A0::K> 2 Min�;�(V ).

2. If V = l then ref�(l) 2 Min�;�(V ).

3. If V = new1(A) then A!refA 2 Min�;�(V ).

4. If V = get1(A) then refA!A 2 Min�;�(V ).

5. If V = set2(A; l) then A!A 2 Min�;�(V ).
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6. If V = roll2(A;V ) then recA 2 Min�;�(V ).

7. If V = unroll1(A) then recA!A (recA) 2 Min�;�(V ).

Proof: Any derivation of � `� V : A for the above values must consist of an application

of SM-REIFY/SM-LABEL/SM-NEW/SM-GET/SM-SET/SM-ROLL/SM-UNROLL re-

spectively followed by zero or more applications of SM-SUMP. Hence, A must be a

supertype under � for the respective listed type by S-TRAN. 2

This information can also be used to compute the intrinsic shapes of values' types:

Lemma [(Sem)] 11.5.3 If � `� M : A and dAe 6= ? then dAe� = dAe.

Proof: By Theorem 11.4.15 and E-REFL, � ` A = A :: 
 ) dAe� = dAe (de�nition
of intrinsic shape). 2

Lemma [Sem] 11.5.4 (Intrinsic shapes of values' types)

Suppose � `� V : A. Then:

1. If V = <A0> then 9K: <=::K> � dAe�.

2. If V = l then dAe� = refapp.

3. If V = roll2(A;V ) then dAe� = recapp.

4. If V = new1(A), get1(A), set2(A; l), or unroll1(A) then dAe� = �.

5. If V = �x:A0: V 0
then dAe� = �.

6. If V = (V 1; V 2) then dAe� = �.

Proof: For parts 1-4, Lemma 11.5.2, provides a minimal type A0 for V under � such that
dA0e 6= ?) dA0e� = dA0e (Lemma 11.5.3 and de�nition of minimal type) and � ` A0 � A

(de�nition of minimal type)) dA0e � dAe� (Corollary 10.3.12)) 9K: <=::K> � dAe�
for part 1 and dA0e = dAe� for parts 2-4.

For parts 5/6, any derivation of � `� V : A for the values in question must consist

of an application of SM-LAM/SM-PAIR respectively followed by zero or more applica-
tions of SM-SUMP. Hence, A must be a supertype under � of a dependent function/pair

type by S-TRAN ) A's intrinsic shape under � must be �/� (Corollary 10.3.12 and
Lemma 11.5.3). 2

Before I describe the last property of values I shall need, I �rst need to introduce
some de�nitions. A transparent constructor is one that contains no direct components

(i.e., the result of a cleaving operation) of the form <K> for some K:
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De�nition 11.5.5 (Transparent constructors)

A constructor A is a transparent constructor i� either:

1. 8K: dAe 62 f�; <K>g

2. 9A1; A2: A = �x:A1: A2 and both A1 and A2 are themselves transparent construc-

tors.

Because the self function only adds information to direct components of the form <K>,

the self function leaves transparent constructors unchanged:

Lemma 11.5.6 If A is a transparent constructor then [self=x�]A = A.

A disconnected constructor is one in which no direct component refers back to a

previous component:

De�nition 11.5.7 (Disconnected constructors)

A constructor A is a disconnected constructor i� either:

1. dAe 6= �

2. 9A1; A2: A = �x:A1: A2, x 62 FTV(A2), and both A1 and A2 are themselves discon-

nected constructors.

The property of being a transparent and disconnected constructor is preserved by selec-
tion:

Lemma 11.5.8 If A is a transparent and disconnected constructor and

S(A;x�; �0) exists then S(A;x�; �0) is a transparent and disconnected constructor.

Proof: Proved by structural induction on �0. Example case:

Snd: Here �0 = :2�00 and A = (A1; A2) ) S(A;x�; :2) = A2 ) S(A;x�; :2�00) =
S(S(A;x�; :2); x�:2; �00) = S(A2; x�:2; �

00) (Lemma 6.5.3). By the de�nitions of
transparent and disconnected constructors, A2 is a transparent and disconnected

constructor. Hence, by the inductive hypothesis, S(A2; x�:2; �
00) is a transparent

and disconnected constructor ) S(A;x�; �0) is a transparent and disconnected

constructor.

2

The importance of the property of being a transparent disconnected constructor is

that when a term variable has a transparent disconnected semi-canonical type, all paths

involving it are de�ned transparently rather than opaquely:
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Lemma [Sem] 11.5.9 If A 2 C� and A is a transparent disconnected constructor then

�; x:A; �0 ` x�) <K> is impossible.

Proof: By Lemma 9.5.9 and E-SYM, �; x:A; �0 ` S(A;x; �) = <K> :: 
 and S(A;x; �) 2
C�;x:A;�

0 ) S(A;x; �) = <K> (Lemma 9.5.7) ) S(A;x; �) is not a transparent con-

structor. But this this contradicts Lemma 11.5.8, so this is impossible. 2

All values can be assigned such a type as a minimal type:

Theorem [Sem] 11.5.10 If � `� V : A then there exists a type A0 such that:

1. � ` A0 � A

2. � `� V : A0

3. A0 2 C�

4. A0 is a transparent constructor

5. A0 is a disconnected constructor

Proof: Proved by structural induction on V . Cases:

REIFY: Here V = <A1> ) 9K: <=A1::K> 2 Min�;�(V ). (Lemma 11.5.2)

) � `� V : <=A1::K> and � ` <=A1::K> � A (de�nition of minimal type). By

Theorem 11.4.15 and Theorem 9.5.10, 9A0: � ` <=A1::K> = A0 :: 
 and A0 2 C�
) � `� V : A0 and � ` A0 � A (S-EQ, S-TRAN, and SM-SUMP) and dA0e =
dA0e� = d<=A1::K>e = <=::K> (Lemma 10.3.9 and de�nition of intrinsic shape)
) A0 is a transparent and disconnected constructor.

PAIR: Here V = (V 1; V 2). WLOG, � `� V : A was derived without using the SM-SUMP
rule) 9A1; A2: A = (A1; A2), � `� V 1 : A1, and � `� V 2 : A2 (SM-PAIR). Hence,
by the induction hypothesis, 8i 2 f1; 2g: 9A0i: � ` A

0
i � Ai, � `� V i : A

0
i, A

0
i 2

C�, and A0i is a transparent and disconnected constructor. Let A0 = �x:A01: A
0
2,

x 62 FTV(A02) [ dom(�) ) A0 is a transparent and disconnected constructor,

� `� (V 1; V 2) : A
0 (SM-PAIR and DECL-T), �; x:A01 ` A

0
2 � A2 and

�; x:A1 `� A2 : 
 (Theorem 9.4.1 and DECL-T), and A02 2 C�;x:A0

1

(Lemma 9.5.5

and DECL-T) ) � ` A0 � A (Theorem 10.5.4) and A0 2 C� (Lemma 9.5.4).

OTHER: Here V does not have the form <A1> or the form (V 1; V 2). By Theorem 11.4.15
and Theorem 9.5.10, 9A0: � ` A = A0 :: 
 andA0 2 C�) � ` A0 � A and � ` A � A0

(E-SYM and S-EQ) and dA0e� = dA0e (Lemma 10.3.9)) � `� V : A0 (SM-SUMP)
) 8K: dA0e 62 f�; <K>g ) A0 is a transparent and disconnected constructor.

2
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11.6 Value Substitution

In this section I introduce value substitution ([V =x]�) which involves substituting values
for term variables in constructors, assignments, and terms. Value substitution is the

analog of constructor substitution in reducing applications at the term level ((�x:A:M)V

reduces to [V =x]M). Before I can de�ne value substitution, I shall need some auxiliary

de�nitions.

The de�nition of selection can be extended to values:

De�nition [Sem] 11.6.1 (Value selection)

V # � = V

(V 1; V 2) # :1�0 = V 1 # �0

(V 1; V 2) # :2�0 = V 2 # �0

Note that the de�nition is simpler for values because of the lack of internal names for
components. Like selection on constructors, selection on values can also be done in steps:

Lemma 11.6.2 if V # :i�0 or (V # :i) # �0 exists then

V # :i�0 = (V # :i) # �0

Proof: By inspection of the de�nition of value selection. 2

Lemma 11.6.3 If V # �1�2 exists then

V # �1�2 = (V # �1) # �2

Proof: By structural induction on �1. The non-basis case is as follows:

V # :i��2
= (V # :i) # ��2 (Lemma 6.5.2)

= ((V # :i) # �) # �2 (induction hypothesis)

= (V # :i�) # �2 (Lemma 6.5.2)

2

The type of a value selection by � on V can be related to V 's type if it is a transparent

disconnected type that can be selected on by �:
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Lemma [Sem] 11.6.4 If � `� V : A, A a transparent disconnected constructor, and

S(A;x; �) exists then � `� (V # �) : S(A;x; �).

Proof: Proved by structural induction on �. Example case:

Snd: Here � = :2�0 and A = (A1; A2)) V has form (V 1; V 2) (Lemma 11.5.4, de�nition of

intrinsic shape, Theorem 9.4.3, and E-REFL) ) V # :2 = V 2 and S(A;x; :2) = A2

) V # :2�0 = (V # :2) # �0 = V 2 # �0 (Lemma 11.6.3) and S(A;x; :2�0) =

S(S(A;x; :2); x; �0) = S(A2; x; �
0) (Lemma 6.5.3). By the de�nition of a transparent

disconnected constructor, A2 is a transparent disconnected constructor. Inspection

of the typing rules shows that � `� V : Amust be derived using SM-PAIR followed

by zero or more occurrences of SM-SUMP ) 9A01; A
0
2: � ` (A01; A

0
2) � (A1; A2),

� `� V 1 : A
0
1, and � `� V 2 : A

0
2 ) �; x:A01 ` A

0
2 � A2 for some x such that x 62

FTV(A2) [ FTV(A02) [ dom(�) (Lemma 10.5.1) ) � ` A02 � A2 (Theorem 10.2.4)
) � `� V 2 : A2 (SM-SUMP). Hence, by the induction hypothesis,
� `� (V 2 # �0) : S(A2; x; �

0) ) � `� (V # �) : S(A;x; �).

2

The extraction operator on values is a partial function that converts from rei�ed
constructors to their component constructor:

De�nition [Sem] 11.6.5 (Extraction)

<A>! = A

Again, the result of the extraction operator on a value can be related to that value's

type:

Lemma [Sem] 11.6.6 If � `� V : <=A::K> then � ` V ! = A :: K.

Proof: By Lemma 11.5.3, d<=A::K>e� = <=::K> ) V has form <A0> for some

A0 (Lemma 11.5.4) ) V ! = A0 and 9K 0: � ` <=A0::K 0> � <=A::K> (Lemma 11.5.2
and de�nition of minimal type)) K = K 0 and � ` <=A0::K> = <=A::K> :: 
 (Corol-

lary 10.3.14, Lemma 10.2.2, E-REFL, and de�nition of intrinsic shape)) � ` A0 = A :: K
(Lemma 9.4.10) ) � ` V ! = A :: K. 2

These results can be combined to determine the type of a value selection followed by

an extraction:

Theorem [Sem] 11.6.7

If � `� V : A, A a transparent disconnected constructor, A 2 C�, and

�; x:A; �0 ` x�) <=A0::K> then �; x:A; �0 ` (V # �)! = A0 :: K.
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Proof: By Lemma 9.5.9 and E-SYM, �; x:A; �0 ` S(A;x; �) = <=A0::K> :: 
. By

Lemma 11.6.4 and Theorem 11.4.17, �; x:A; �0 `� (V # �) : S(A;x; �)
) �; x:A; �0 `� (V # �) : <=A0::K> (S-EQ and SM-SUMP)

) �; x:A; �0 ` (V # �)! = A0 :: K (Lemma 11.6.6). 2

Using these de�nitions, I can de�ne value substitution ([V =x]�) on constructors and

assignments; the key idea is to replace x� with (V # �)!:

De�nition [Sem] 11.6.8 (Value substitution on constructors)

[V =x]x�! = (V # �)!
[V =x]x0�! = x0�! (x0 6= x)

[V =x]��::K:A = ��::K: [V =x]A (�0 62 FCV(V ))

[V =x]�x0:A1: A2 = �x0:[V =x]A1: [V =x]A2 (x0 6= x; x0 62 FTV(V ))
[V =x]�x0:A1: A2 = �x0:[V =x]A1: [V =x]A2 (x0 6= x; x0 62 FTV(V ))

[V =x](A1A2) = [V =x]A1 [V =x]A2

[V =x]<=A0::K> = <=[V =x]A0::K>

[V =x]� = �

[V =x]<K> = <K>

[V =x]rec = rec

[V =x]ref = ref

[V =x](�::K) = �::K
[V =x](x0:A0) = x0:[V =x]A0

[V =x]� = �
[V =x](�;D) = ([V =x]�); [V =x]D

Note that because (V # �)! is not always de�ned, value substitution is a partial function.

Lemma [Sem] 11.6.9 (Free variables)

1. If V # � exists, then FTV(V # �) � FTV(V ).

2. If V ! exists, then FTV(V !) = FTV(V ).

3. If [V =x]A exists and x 62 FTV(V ) then x 62 FTV([V =x]A).
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4. If x 62 FTV(A) then [V =x]A = A.

If x is assigned a transparent disconnected semi-canonical type, then substitution of

a value with that type for x in a constructor results in an equal constructor:

Lemma [Sem] 11.6.10 If � `� V : A, A a transparent disconnected constructor, A 2
C�, and �; x:A; �0 ` A0 :: K then �; x:A; �0 ` A0 = [V =x]A0 :: K.

Proof: Proved by structural induction on the derivation of �; x:A; �0 ` A0 :: K. Example

cases:

C-DSUM: Here �; x:A; �0 ` �x0:A1: A2 :: 
, x
0 6= x and x0 62 FTV(V ), derived via rule C-

DSUM from �; x:A; �0; x0:A1 ` A2 :: 
 ) �; x:A; �0 ` A1 :: 
 (DECL-T).

Hence, by the induction hypothesis, �; x:A; �0 ` A1 = [V =x]A1 :: 
 and
�; x:A; �0; x0:A1 ` A2 = [V =x]A2 :: 


) �; x:A; �0 ` �x0:A1: A2 = �x0:[V =x]A1: [V =x]A2 :: 
 (E-DSUM)
) �; x:A; �0 ` �x0:A1: A2 = [V =x](�x0:A1: A2) :: 


C-EXT-O I: Here �; x:A; �0 ` x�! :: K derived via rule C-EXT-O from
�; x:A; �0 ` x�) <K>. But, by Lemma 11.5.9, this is impossible so this case
cannot exist.

C-EXT-T I: Here �; x:A; �0 ` x�! :: K derived via rule C-EXT-O from
�; x:A; �0 ` x�) <=A0::K> ) �; x:A; �0 ` x�! = A0 :: K (E-ABBREV, E-REFL,
Theorem 9.4.4) and �; x:A; �0 ` (V # �)! = A0 :: K. (Theorem 11.6.7)
) �; x:A; �0 ` x�! = (V # �)! :: K (E-SYM and E-TRAN)
) �; x:A; �0 ` x�! = [V =x]x�! :: K

2

Extending value substitution to terms with [V =x]x de�ned to be V is straightforward:
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De�nition [Sem] 11.6.11 (Value substitution on terms)

[V =x]x = V

[V =x]x0 = x0 (x 6= x0)

[V =x]�x:A:M = �x:[V =x]A: [V =x]M (x0 6= x; x0 62 FTV(V ))

[V =x](M1M2) = [V =x]M1 [V =x]M2

[V =x](M1; M2) = ([V =x]M1; [V =x]M2)

[V =x](M:1) = ([V =x]M):1

[V =x](M:2) = ([V =x]M):2

[V =x]<A> = <[V =x]A>

[V =x](M<:A) = ([V =x]M)<:[V =x]A
[V =x]l = l

[V =x]roll2(A;M) = roll2([V =x]A; [V =x]M)
[V =x]unroll1(A) = unroll1([V =x]A)

[V =x]new1(A) = new1([V =x]A)
[V =x]get1(A) = get1([V =x]A)

[V =x]set2(A;M ) = set2([V =x]A; [V =x]M)

The previous result on the existence and validity of value substitution on constructors

(Lemma 11.6.10) can be extended to value substitution on terms:

Theorem [Sem] 11.6.12 Suppose � `� V : A, A a transparent disconnected construc-

tor, A 2 C�, and �; x:A; �0 `� M : A0 then
�; x:A; �0 `� [V =x]M : [V =x]A0.

Proof: Proved by structural induction on the derivation of �; x:A; �0 `� M : A0. Note
that because of Theorem 11.4.15, Lemma 11.6.10, S-EQ, and SM-SUMP, a proof of

�; x:A; �0 `� [V =x]M : A0 is also su�cient. We prove whichever is most convenient from

case to case. Interesting cases:

SM-VAR I: Here �; x:A; �0 `� x : [self=x]A0 derived via rule SM-VAR from ` � valid and

�; x:A; �0 ` (�; x:A; �0)(x) = A0 :: 
. By Lemma 6.3.5, Lemma 9.4.2, and P-INIT,
(�; x:A; �0)(x) = A and �; x:A; �0 ` x) A ) �; x:A; �0 ` A � A0 (S-EQ).
By P-INIT, Lemma 6.3.5, Theorem 9.4.4, E-REFL, P-MOVE, and Theorem 11.2.10,

�; x:A; �0 ` [self=x]A0 :: 
. By Lemma 6.3.5, Theorem 11.4.15, Theorem 11.4.17,

and Lemma 9.5.5, �; x:A; �0 `� V : A and A 2 C�;x:A;�0. By Theorem 11.3.11

then, �; x:A; �0 ` [self=x]A � [self=x]A0

) �; x:A; �0 ` A � [self=x]A0 (Lemma 11.5.6)) �; x:A; �0 `� V : [self=x]A0 (SM-

SUMP) ) �; x:A; �0 `� [V =x]x : [self=x]A0
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SM-VAR II: Here �; x:A; �0 `� x0 : [self=x0]A0, x 6= x0, derived via rule SM-VAR

) �; x:A; �0 `� [V =x]x0 : [self=x0]A0

SM-LAM: Here �; x:A; �0 `� �x0:A0:M : �x0:A0: A00, x0 6= x and x0 62 FTV(V ), derived via

rule SM-LAM from �; x:A; �0; x0:A0 `� M : A00

) �; x:A; �0; x0:A0 `� [V =x]M : [V =x]A00 (induction hypothesis)

) �; x:A; �0; x0:[V =x]A0 `� [V =x]M : [V =x]A00 (S-EQ, Theorem 11.4.20, and

Lemma 11.6.10)

) �; x:A; �0 `� �x0:[V =x]A0: [V =x]M : �x0:[V =x]A0: [V =x]A00 (SM-LAM)

) �; x:A; �0 `� [V =x]�x0:A0:M : [V =x]�x0:A0: A00

SM-REIFY: Here �; x:A; �0 `� <A0> : <=A0::K> derived via rule SM-REIFY from ` � valid
and �; x:A; �0 ` A0 :: K ) �; x:A; �0 ` [V =x]A0 :: K (Lemma 11.6.10 and Theo-

rem 9.4.3)
) �; x:A; �0 `� <[V =x]A0> : <=[V =x]A0::K> (SM-REIFY)
) �; x:A; �0 `� [V =x]<A0> : [V =x]<=A0::K>

SM-SUMP: Here �; x:A; �0 `� M : A0 derived via rule SM-SUMP from
�; x:A; �0 `� M : A00 and �; x:A; �0 ` A00 � A0

) �; x:A; �0 ` [V =x]A00 � [V =x]A0 (Lemma 11.6.10), E-SYM, S-EQ, S-TRAN) and
�; x:A; �0 `� [V =x]M : [V =x]A00 (induction hypothesis)
) �; x:A; �0 `� [V =x]M : [V =x]A0 (SM-SUMP)

2

Because all values have minimal types that are transparent disconnected semi-canonical

types, the previous theorem can be strengthened by dropping the requirements on x's
type:

Corollary [Sem] 11.6.13 (Validity of value substitution)

If � `� V : A and �; x:A; �0 `� M : A0 then �; [V =x]�0 `� [V =x]M : [V =x]A0.

Proof: By Theorem 11.5.10, 9 a type A00 such that � ` A00 � A, � `� V : A00, A00 2 C�,

and A00 is a transparent disconnected constructor. By Theorem 11.4.20,
�; x:A00; �0 `� M : A0 ) �; x:A00; �0 `� [V =x]M : [V =x]A0

) �; x:A00; [V =x]�0 `� [V =x]M : [V =x]A0 (repeated use of Lemma 6.3.5,

Lemma 11.6.10, and Theorem 9.4.6) ) �; [V =x]�0 `� [V =x]M : [V =x]A0

(Lemma 11.6.9 and Theorem 11.4.19). 2
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11.7 Evaluation

In this section I de�ne how evaluation works then prove soundness for the semantic

system. Except where stated otherwise, all constructors, terms, and so on in this section

are drawn from the semantic system.

Analogous to the constructor context notion I introduced in Section 7.7, a notion of

a term context can be introduced:

Term Contexts C ::= [] j �x:A: C j CM jM C j (C; M) j (M; C) j
C:1 j C:2 j C<:A j roll2(A; C) j set2(A; C)

As before, �lling a hole in a term context C with a termM (written C[M ]) can incur the

capture of free variables in M that are bound at the occurrence of the hole in C. For
example, (�x:A: [])[x] = �x:A:x. Again as before, I write ETV(C) for the exposed term
variables of a term context. (Since term contexts never bind constructor variables, there
is no need for a notion of exposed constructor variables of a term context.)

Type checking of terms is compositional in the sense that if a term is well typed, then
so are all its constituent terms:

Lemma [(Sem)] 11.7.1 (Decomposition)

Suppose that � `� C[M ] : A such that ETV(C)\ dom(�) = ;.2 Then there exists �0 and
A0 such that:

� dom(�0) = ETV(C)

� �; �0 `� M : A0 by a rule other than T/SM-SUMP

� If �; �0 `�;�0 M 0 : A0 then � `�;�0 C[M 0] : A.

Proof: Proved by structural induction on C using Lemma 11.4.13 and Theorem 11.4.18
as needed. 2

De�ning an evaluation strategy requires giving both a set of reductions and a way to

determine which potential reduction (if any) to do next. I shall specify which reduction
to do next by de�ning syntactically a set of redices (R) representing potential reduction

sites and a subset of term contexts, called evaluation contexts (E). I shall prove that
any closed well-typed term M is either a value or can be expressed as E[R] in exactly

one way.
Evaluation of closed well-typed terms using a compatible valid store (i.e., both the

term and the store were typed using the same store type) is then de�ned as follows: If

2The condition on the exposed variables can always be satis�ed by alpha-renaming C[M ]

appropriately.
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M is a value, then it evaluates to itself using any store. Otherwise, if M = E[R], then

M evaluates using S to the result of evaluating E[M 0] using store S0 where R reduces

using S to M 0 while yielding the new store S0.

I shall also prove that reductions of well-typed terms produce well-typed terms. When

combined with the result about expressing well-typed terms in terms of values, redices,

and evaluation contexts, this result will show that my evaluation strategy deterministi-

cally chooses which, if any, potential reduction to do next and that it never gets \stuck"

in a state where it is trying to evaluate a non-value that has no potential reduction sites.

De�nition [Sem] 11.7.2 (Speci�cation of evaluation order)

Redices R ::= (�x:A:M)V j (V 1; V 2):1 j (V 1; V 2):2 j V <:A j
new1(A)V j get1(A) l j set2(A; l)V j
unroll1(A) (roll2(A

0; V ))
Evaluation Contexts E ::= [] j EM j V E j (E; M ) j (V ; E) j

E:1 j E:2 j E<:A j roll2(A;E) j set2(A;E)

The evaluation order speci�ed here is normal call by value with applications and pairs

having their components evaluated from left to right.
It is straightforward to prove that values do not contain potential reduction sites and

that potential reduction sites do not contain potential reduction sites as proper subterms:

Lemma [Sem] 11.7.3 ETV(E) = ;

Lemma [Sem] 11.7.4 V = E[R] is impossible.

Proof: Proved by contradiction using structural induction on V . By inspecting the

de�nitions of values and redices, we see that no value is a redice so we must have that
E 6= []. By inspecting the de�nition of evaluation contexts then, it is easily seen that
E[M ] cannot have the forms �x:A:M 0, <A>, l, new1(A), get1(A), or unroll1(A). Thus,

we need worry about values with only the forms (V 1; V 2), roll2(A;V ), and set2(A; l))
E[R] = E1[E2[R]] where E1 is one of []V 2, V 1 [], roll2(A; []), or set2(A; []). ) E2[R] = V j

for j 2 f1; 2g. But, this is impossible by the induction hypothesis so we are done. 2

Lemma [Sem] 11.7.5 If R = E[R0] then R = R0 and E = [].

Proof: Inspection of the de�nition of redices reveals that if R = E[R0], E 6= [], then
9E1; E2: E[R

0] = E1[E2[R]] and E2[R
0] is a value. By Lemma 11.7.4, it cannot be the

case that E2[R
0] is a value so E must equal [] and hence R = R0. 2

The following lemmas relate the minimal type of a function in an application to the

argument and result types of the application:
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Lemma [Sem] 11.7.6 If � `� M 1M2 : A then 9A1; A2: � `� M 1 : A2!A1,

� `� M2 : A2, and � ` A1 � A.

Lemma [Sem] 11.7.7 Suppose � `� M1M 2 : A.

1. If �x:A01: A
0
2 2 Min�;�(M1) then � `� M2 : A

0
1.

2. If A01!A02 2 Min�;�(M1) then � ` A02 � A.

Proof: By Lemma 11.7.6, 9A1; A2: � `� M1 : A2!A1, � `� M2 : A2, and � ` A1 � A

) � ` �x:A01: A
0
2 � A2!A1 (part one) or � ` A01!A02 � A2!A1 (part two) (de�nition

of minimal type) ) � ` A2 � A01 (Lemma 10.5.1) ) � `� M2 : A
0
1 (SM-SUMP).

For part two, by Lemma 10.5.1, �; x:A2 ` A
0
2 � A1 where x 62 FTV(A02) [ FTV(A1)

) � ` A02 � A1 (Theorem 10.2.4) ) � ` A02 � A (S-TRAN). 2

By using these results and the results on the properties of values from Section 11.5,
I can prove that well-typed applications of values are always redices:

Lemma [Sem] 11.7.8 If � `� V 1 V 2 : A then V 1 V 2 is a redice.

Proof: By Lemma 11.7.6, 9A1; A2: � `� V 1 : A2!A1 ) V 1 must have one of the forms:
new1(A), get1(A), set2(A; l), unroll1(A), or �x:A

0: V 0 (Lemma 11.5.3 and Lemma 11.5.4).
Example cases:

�x:A0: V 0: Here V 1 V 2 = (�x:A0: V 0)V 2, a redice.

get1(A): Here V 1 V 2 = get1(A)V 2. ) � `� V 2 : refA (Lemma 11.5.2 and
Lemma 11.7.7) ) V 2 is a label (Lemma 11.5.3 and Lemma 11.5.4) ) V 1 V 2 is a
redice.

unroll1(A): Here V 1 V 2 = unroll1(A)V 2. ) � `� V 2 : recA (Lemma11.5.2 and Lemma 11.7.7)

) V 2 has form roll2(A
0; V 0) (Lemma 11.5.3 and Lemma 11.5.4)) V 1 V 2 is a redice.

2

I can now prove the desired theorem about expressing closed well-typed terms in
terms of values, redices, and evaluation contexts:

Theorem [Sem] 11.7.9 (Progress)

If � `� M : A then either M is a value or there exists an unique evaluation context E

and an unique redice R such that M = E[R].
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Proof: Proved by structural induction onM . By Lemma 11.7.4, it su�ces to show that

if M is not a value then 9 an unique E and an unique R such that M = E[R]. Since

Lemma 11.7.5 handles the cases whereM is a redice, we need only handle here the cases

where M is not a redice. Example remaining cases:

VAR: Here M = x ) � `� x : A which is impossible so this case cannot occur.

FST: Here M = M 0:1, M 0 not a value. By Lemma 11.7.1 and the induction hypoth-

esis then, 9 an unique evaluation context E0 and an unique redice R0 such that

M 0 = E0[R0])M can only be constructed from the evaluation context, redice pair

(E0:1)[R0].

PAIR I: Here M = (M1; M2), M 1 not a value. By Lemma 11.7.1 and the induction hy-
pothesis, 9 an unique evaluation context E0 and an unique redice R0 such that
M1 = E0[R0] ) M can only be constructed from the evaluation context, redice
pair ((E0; M2))[R

0].

PAIR II: HereM = (V ; M 0),M 0 not a value. By Lemma 11.7.1 and the induction hypothesis,
9 an unique evaluation context E0 and an unique redice R0 such that M 0 = E0[R0]
)M can only be constructed from the evaluation context, redice pair ((V ; E 0))[R0]

(Lemma 11.7.4).

APP I: HereM =M1M 2,M1 not a value. By Lemma 11.7.1 and the induction hypothesis,
9 an unique evaluation context E0 and an unique redice R0 such that M 1 = E0[R0]

)M can only be constructed from the evaluation context, redice pair (E0M2)[R
0].

APP II: Here M = V M 0, M 0 not a value. By Lemma 11.7.1 and the induction hypothesis,
9 an unique evaluation context E0 and an unique redice R0 such that M 0 = E0[R0]

) M can only be constructed from the evaluation context, redice pair (V E 0)[R0]
(Lemma 11.7.4).

APP III: HereM = V 1 V 2,M not a redice. But, this is impossible by Lemma 11.7.8, so this
case cannot happen.

2

The set of reductions for the semantic system follow. Note that the reductions are
de�ned to act on term, store pairs in order to allow reductions to have side e�ects on the

store.
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De�nition [Sem] 11.7.10 (Reduction on terms)

E[(�x:A:M)V ]; S ,! E[[V =x]M ]; S

E[(V 1; V 2):1]; S ,! E[V 1]; S

E[(V 1; V 2):2]; S ,! E[V 2]; S

E[V <:A]; S ,! E[V ]; S

E[unroll1(A) (roll2(A
0; V ))]; S ,! E[V ]; S

E[new1(A)V ]; S ,! E[l]; (S; l=V ) (l 62 dom(S))

E[get1(A) l]; S ,! E[S(l)]; S

E[set2(A; l)V ]; S ,! E[V ]; [l = V ]S

The �rst reduction rule handles the application of user de�ned functions via value substi-
tution. The second and third rules handle selecting from a pair in the standard manner.

The fourth rule handles coercions by dropping them. Because of the implicit subsumption
rule (SM-SUMP), this action can leave the term's type unchanged.

The �fth rule handles the unroll1(A) function which strips o� a roll2(A
0;�) from

its argument. The remaining three rules handle the primitives dealing with references:
new1(A) extends the store with a new location set to its argument then returns the new

location, get1(A) returns the value of the location speci�ed by its argument in the store,
and set2(A; l) sets the location l in the store to its argument then returns its argument.
The last reduction rule uses the following function to change the store:

De�nition [Sem] 11.7.11 (Setting stores)

[l = V ]� = �
[l = V ](S; l=V 0) = ([l = V ]S); l=V
[l = V ](S; l0=V 0) = ([l = V ]S); l0=V 0 (l0 6= l)

Because I shall show that evaluation chooses which reduction to do next deterministi-
cally, these rules mean that evaluation is completely deterministic aside from the choice

of which new location name to use when extending the store. Because evaluation and

typing only compare location identity, this indeterminism cannot otherwise e�ect the
outcome of evaluation. If a completely deterministic evaluation function was desired,

a notion of equivalence on terms modulo location-name conversion could be de�ned, or
alternatively, locations could be allocated in some prede�ned deterministic manner.

Proving that extending and changing stores preserves the well-typedness of the store
is straightforward:

Lemma [Sem] 11.7.12 If ` S : �, � `� V : A, and l 62 dom(S) then

` S; l=V : �; l:A.
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Proof: Inspection of the de�nition of (�; l:A)(l0) shows that it equals A if l0 = l and

�(l0) otherwise. By Lemma 11.4.14, dom(S) = dom(�) ) l 62 dom(�). Hence, inspec-

tion of the de�nition of (�; l:A)(l0) shows that it equals A if l0 = l and �(l0) otherwise. By

STORE, ` � valid, jSj = j�j, and 8l 2 dom(�): � `� S(l) : �(l) ) jS; l=V j = j�; l:Aj,
` �; l:A valid (Theorem 11.4.15 and ST-EXTEND), and 8l 2 dom(�; l:A):

� `� (S; l=V )(l0) : (�; l:A)(l0) ) 8l 2 dom(�; l:A):

� `�;l:A (S; l=V )(l0) : (�; l:A)(l0) (Theorem 11.4.18) ) ` S; l=V : �; l:A

(STORE). 2

Lemma [Sem] 11.7.13 If ` S : � and � `� V : �(l) then ` [l = V ]S : �.

Proof: Inspection of the de�nition of [l = V ]S shows that j[l = V ]Sj = jSj and for

l0 2 dom(S), ([l = V ]S)(l0) = V if l0 = l and S(l0) otherwise. By STORE, ` � valid,
jSj = j�j, and 8l 2 dom(�): � `� S(l) : �(l)) 8l 2 dom(�): � `� ([l = V ]S)(l) : �(l)
) ` [l = V ]S : � (STORE). 2

The crucial theorem that reduction preserves well-typedness is then as follows:

Theorem [Sem] 11.7.14 (Subject reduction)

Suppose � `� E[R] : A and ` S : �. Then 9M 0; S0;�0 such that:

1. E[R]; S ,! E[M 0]; S0

2. ` S0 : �;�0

3. � `�;�0 E[M 0] : A

Proof: By Lemma 11.7.1 and Lemma 11.7.3, 9A0: � `� R : A0 by a rule other than SM-
SUMP and if � `�;�0 M 0 : A0 then � `�;�0 E[M 0] : A. ) FTV(A0) = ; (Lemma 11.4.16).

Casing on R:

�: Here R = (�x:A1:M)V . ) 9A2: � `� �x:A1:M : A2!A0 and � `� V : A2 (SM-
APP) ) 9A00: � `� �x:A1:M : �x:A1: A

00 by a rule other than SM-SUMP and

� ` �x:A1: A
00 � A2!A0 (inspection of typing rules)

) �; x:A1 `� M : A00 (SM-LAM), � ` A2 � A1 and �; x:A2 ` A
00 � A0

(Lemma 10.5.1) ) �; x:A2 `� M : A00 (Theorem 11.4.20)

) �; x:A2 `� M : A0 (SM-SUMP) ) � `� [V =x]M : [V =x]A0

(Corollary 11.6.13) ) � `� [V =x]M : A0 (Lemma 11.6.9). Thus, it su�ces to let

M 0 = [V =x]M, S0 = S, and �0 = �.
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Fst: Here R = (V 1; V 2):1. ) 9x;A2: � `� (V 1; V 2) : �x:A
0: A2 (SM-FST) ) 9A01; A

0
2:

� `� (V 1; V 2) : (A
0
1; A

0
2) by a rule other than SM-SUMP and � ` (A01; A

0
2) � �x:A0: A2

(inspection of typing rules) ) � `� V 1 : A
0
1 (SM-PAIR) and � ` A01 � A0

(Lemma 10.5.1) ) � `� V 1 : A
0 (SM-SUMP) Thus, it su�ces to let M 0 = V 1,

S0 = S, and �0 = �.

Snd: Here R = (V 1; V 2):2. ) 9A1: � `� (V 1; V 2) : (A1; A
0) (SM-SND) ) 9A01; A

0
2:

� `� (V 1; V 2) : (A
0
1; A

0
2) by a rule other than SM-SUMP and

� ` (A01; A
0
2) � (A1; A

0) (inspection of typing rules))� `� V 2 : A
0
2 (SM-PAIR) and

�; x:A01 ` A
0
2 � A0 where x 62 FTV(A02) [ FTV(A0) (Lemma 10.5.1) ) � ` A02 � A0

(Theorem 10.2.4) ) � `� V 2 : A
0 (SM-SUMP) Thus, it su�ces to let M 0 = V 2,

S0 = S, and �0 = �.

Coerce: HereR = V <:A0)� `� V : A0 (SM-COERCE))� `� E[V ] : A. Thus, it su�ces
to let M 0 = V , S0 = S, and �0 = �.

New: Here R = new1(A1)V . By Lemmas 11.7.6, 11.5.2, and 11.7.7, � `� V : A1 and

� ` refA1 � A0. Let M 0 = l, S0 = S; l=V , and �0 = �; l:A1 where l 62 dom(S). )
` S0 : �;�0 (Lemma 11.7.12) ) � `�;�0 l : ref ((�;�0)(l)) (SM-LABEL, EMPTY,

and STORE) ) � `�;�0 l : refA1 (STORE and Lemma 11.4.14) ) � `�;�0 l : A0

(SM-SUMP)

Get: Here R = get1(A1) l. By Lemmas 11.7.6, 11.5.2, and 11.7.7, � `� l : refA1 and

� ` A1 � A0 ) 9A01: � `� l : refA01 via a rule other than SM-SUMP and
� ` refA01 � refA1 (inspection of typing rules) ) A01 = �(l) (SM-LABEL) and
� ` refA01 = refA1 :: 
 (Lemma 10.2.2, E-REFL, and Corollary 10.3.14)
) � `� S(l) : A01 (STORE) and � ` A01 = A1 :: 
 (Lemma 9.4.10)) � `� S(l) : A0

(S-EQ, S-TRAN, and SM-SUMP) Thus, it su�ces to let M 0 = S(l), S0 = S, and
�0 = �.

Set: Here R = set2(A1; l)V . ) � `� l : refA1 (SM-SET) ) 9A01: � `� l : refA01 via
a rule other than SM-SUMP and � ` refA01 � refA1 (inspection of typing rules)

) A01 = �(l) (SM-LABEL) and � ` refA01 = refA1 :: 
 (Lemma 10.2.2, E-REFL,

and Corollary 10.3.14) ) � ` �(l) = A1 :: 
 (Lemma 9.4.10). By Lemmas 11.7.6,
11.5.2, and 11.7.7, � `� V : A1 and � ` A1 � A0 ) � `� V : A0 (SM-SUMP) and

� `� V : �(l) (E-SYM, S-EQ, and E-TRAN) ) ` [l = V ]S : � (Lemma 11.7.13).
Thus, it su�ces to let M 0 = V , S0 = [l = V ]S, and �0 = �.

Unroll: Here R = unroll1(A1) (roll2(A2; V )). By Lemmas 11.7.6, 11.5.2, and 11.7.7,

� `� roll2(A2; V ) : recA1 and � ` A1 (recA1) � A0

) � `� roll2(A2; V ) : recA2 via a rule other than SM-SUMP and
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� ` recA2 � recA1 (inspection of typing rules))� `� V : A2 (recA2) (SM-ROLL)

and � ` recA2 = recA1 :: 
 (Lemma 10.2.2, E-REFL, and Corollary 10.3.14) )
� ` A2 = A1 :: 
)
 (Lemma 9.4.10).

) � ` A2 (recA2) � A1 (recA1) (C-REC, E-REFL, E-APP, and S-EQ)

) � `� V : A1 (recA1) (SM-SUMP)) � `� V : A0 (SM-SUMP). Thus, it su�ces

to let M 0 = V , S0 = S, and �0 = �.

2

Thus, I have given a de�nition of evaluation for the semantic system that is well-

de�ned, deterministic (modulo exact location names), and for which the semantic type

system is sound:

Corollary [Sem] 11.7.15 (Soundness)

Suppose � `� M : A and ` S : �. Then:

1. If M is a value then M evaluates using S only to M .

2. If M is not a value then 9M 0; S0;�0 such that:

� M;S ,!M 0; S0

� If M;S ,! M 00; S00 then M 0 = M 00
and S0 = S00 (modulo the choice of exact

location names)

� ` S0 : �;�0 and � `�;�0 M 0 : A

Proof: Follows from Theorems 11.7.9 and 11.7.14 and the de�nition of the reduction
rules. 2



Chapter 12

Type Checking

In this chapter I consider the problem of type checking the kernel system. After discussing
the di�culties with directly type checking the kernel system, I introduce a more restrictive

type system and show that type checking for it is semi-decidable; in the presence of an
oracle for subtyping, I show that type checking for it is decidable.

12.1 Type-Checking Di�culties

There are three di�culties with type checking the kernel system. The �rst di�culty is
the question of how to handle the T-VAR rule, which is not syntax directed: The type
checker must decide what type to apply the self function to. By Corollary 11.3.12, it
is always safe to choose a semi-canonical type equal to the variable in question's type:

Any other typing can be obtained from this one by the use of the T-SUMP rule. By
Theorem 9.5.10, such a type is recursively computable. Thus, this di�culty is not a
problem in practice.

The second di�culty is caused by the presence of the T-SUMP rule. Because the
T-SUMP rule allows introducing subtyping anywhere, the type checker must be able
to solve systems of inequalities rather than the usual systems of equalities handled by

uni�cation. Solving such systems is likely to be hard, especially given that even checking

for subtyping between known types is undecidable.
Even worse is the third di�culty: The system does not possess minimal or \prin-

ciple" types. In particular, the T-APP rule would require computing the minimal
supertype of a given type that is x free (because of the non-dependent type restric-

tion). For example, suppose � `M 2 : A1 and � ` �x:A1: (M<:A2) : �x:A1: A2. Then

� ` (�x:A1: (M<:A2)) (M2<:A1) : A i� �; x:A1 ` A2 � A and x 62 FTV(A).
Such types do not exist in general, however. For example, �x0:<
)
>: <=x0! (x)::
>

has two x-free supertypes, �x0:<
)
>:<
> and

266



CHAPTER 12. TYPE CHECKING 267

�x0:<=��::
: <
>::
)
>:<=<
>::
>, which are incomparable with each other.

Hence, the kernel system in general does not possess minimal types.

Because of these di�culties, the problem of constructing a type checking procedure

for the full kernel system is very hard. However, as I shall show shortly, by restricting

the type system slightly, a reasonable type checking procedure can be obtained without

losing any of the bene�ts of the translucent sum approach. Accordingly, I have chosen

to leave the problem of typing checking the full kernel system to future work.

12.2 The Inference System

In this section I introduce the inference system, which is identical to the kernel system

except for having a more restrictive type system. The major restriction is implemented
by the replacement of the T-SUMP and T-COERCE rules by the new rules I-UN and
I-COERCE respectively:

De�nition [Inf] 12.2.1 (Replacement rules I)

� `M : A0 � ` A0 = A :: 


� `M : A
(I-UN)

� `M : A0 � ` A0 � A

� ` M<:A : A
(I-COERCE)

These rules specify that equality may be used anywhere (I-UN) but subtyping (subsump-
tion) may be used only where and how speci�ed by the programmer (I-COERCE). This
restriction removes the need to handle systems of inequalities.

The inference system is not quite as restrictive as implied by the above rules: there
is one point where enough information exists to make it possible for the type checker

to automatically insert an explicit coercion. This point is at function application time:
because we will have minimal types (in the inference system) for the function and its

argument, we can insert an explicit coercion that specializes the function's type so that
it operates on arguments of the actual argument type. For example, if f has minimal

type �x:A1: A2 and M has minimal type A01, then we can insert an explicit coercion into

the application f M to get (f<:�x:A01: A2)M .

This idea is incorporated into the new I-APP rule below which replaces the old T-

APP rule. The new I-VAR rule (also below), which replaces the old T-VAR rule, handles
the di�culty with type checking term variables as described in the previous section. The

CAN function used in the I-VAR rule is used to compute semi-canonical types; it is

de�ned in the next section (See Lemma 12.3.1).
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De�nition [Inf] 12.2.2 (Replacement rules II)

� `M1 : �x:A0: A1 � `M 2 : A2

� ` A2 � A0 � ` �x:A2: A1 = A2!A :: 


� `M 1M2 : A
(I-APP)

` � valid x 2 dom(�)

� ` x : [self=x]CAN(�;�(x))
(I-VAR)

These four rule replacements are the only di�erences between the kernel and inference

systems.

Because the inference system's type system is a restriction of the kernel system's type
system, all well-typed inference system terms are also well-typed in the kernel system:

Lemma [Inf] 12.2.3 If � ` M : A in the inference system then � `M : A in the kernel

system.

Proof: Proved by structural induction on derivation of � `M : A in the inference
system. Interesting cases:

I-VAR: Here, � ` x : [self=x]CAN(�;�(x)) derived via rule I-VAR from ` � valid and x 2
dom(�) ) � ` �(x) :: 
 (Lemma 9.4.2) ) CAN(�;�(x)) exists, CAN(�;�(x)) 2
C�, and � ` �(x) = CAN(�;�(x)) :: 
 (Lemma 12.3.1)
) � ` x : [self=x]CAN(�;�(x)) in the kernel system (T-VAR).

I-APP: Here, � `M1M 2 : A derived via rule I-APP from� `M1 : �x:A0: A1, � ` M2 : A2,
� ` A2 � A0, and � ` �x:A2: A1 = A2!A :: 
) � ` M1 : �x:A0: A1 and � `M2 : A2

in the kernel system (induction hypothesis) and � ` �x:A0: A1 � �x:A2: A1

(Lemma 10.5.2) ) � ` M1 : A2!A in the kernel system (T-SUMP and S-EQ)

) � ` M1M2 : A in the kernel system (T-APP).

2

Note that because of this fact, the inference type system is also sound for the kernel-

system semantics of Chapter 11.
The reverse result does not hold: there are well-typed kernel system terms that cannot

be typed under the inference system. However, all such terms can be typed under the
inference system if we insert explicit coercions where T-SUMP and T-VAR were used in

the kernel system derivation:

Lemma 12.2.4 If � ` M : A in the kernel system then 9M 0 such that M and M 0 are

the same if explicit coercions are removed and � `M 0 : A holds in the inference system.
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Proof: Proved by structural induction on derivation of � `M : A in the kernel system.

Interesting cases:

T-SUMP: Here � `M : A derived via rule T-SUMP from � ` M : A0 and � ` A0 � A) 9M 00:

M and M 00 are the same if explicit coercions are removed and � `M 00 : A0 in the

inference system (induction hypothesis)) � ` M 00<:A : A in the inference system

(I-COERCE). Hence, let M 0 =M 00<:A and we are done.

T-VAR: Here, � ` x : [self=x]A, where � = �1; x:A0; �2, x 62 dom(�1), derived via rule T-

VAR from � ` A0 = A :: 


)` � valid and �1 ` A0 :: 
 (Lemma 6.3.5 and DECL-T), � ` A0 :: 
 (Lemma6.3.5

and Lemma 9.4.2), and � ` [self=x]A :: 
 (Theorem 11.4.15)
) CAN(�1; A0) exists, CAN(�1; A0) 2 C�1

, �1 ` A0 = CAN(�1; A0) :: 
,

CAN(�; A0) exists, CAN(�; A0) 2 C�, and � ` A0 = CAN(�; A0) :: 
 (Lemma12.3.1)
) ` �1; x:CAN(�1; A0); �2 valid, �1; x:CAN(�1; A0); �2 ` [self=x]A :: 
, and
�1; x:CAN(�1; A0); �2 ` A0 = A :: 
 (Theorem 9.4.6) and CAN(�1; A0) 2 C�
(Lemma 9.5.5)) �1; x:CAN(�1; A0); �2 ` A0 = CAN(�1; A0) :: 
 (Theorem 9.4.1)
) �1; x:CAN(�1; A0); �2 ` CAN(�1; A0) � A (E-SYM, E-TRAN, and S-EQ) )
�1; x:CAN(�1; A0); �2 ` [self=x]CAN(�1; A0) � [self=x]A

(Corollary 11.3.12) ) � ` [self=x]CAN(�1; A0) � [self=x]A
(Lemma 10.2.5).

By Theorem 9.4.6, E-SYM, and E-TRAN,
� ` CAN(�1; A0) = CAN(�; A0) :: 
 ) CAN(�1; A0) = CAN(�; A0)
(Lemma 9.5.12) ) � ` [self=x]CAN(�; A0) � [self=x]A.

By I-VAR, � ` x : [self=x]CAN(�; A0) in the inference system
) � ` (x<:[self=x]A) : [self=x]A in the inference system (I-COERCE).

2

Thus, type checking the full kernel system can be viewed as doing type inference to de-

termine how and where to add explicit coercions so that the terms type check in the more

explicit inference system. I have chosen to treat the less explicit kernel system as the

primary system rather than the inference system because of the kernel system's greater el-
egance and superior properties modulo deciding type checking (e.g., the inference system
does not possess a replacement by a subtype property at the term level).

The requirement that the programmer specify where subsumption should be used

with the exception of specializing function argument types is not likely to be too bur-
densome. Except when taking advantage of translucent sum abilities (e.g., to get data

abstraction), such speci�cations are not needed. Normal computation, including poly-
morphic abstraction and instantiation, does not require extra speci�cations, thanks to
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the I-VAR rule. (Under the I-VAR rule, any application with an argument that has a

transparent semi-canonical type does not require any extra subsumptions to type check;

the only way to get a term that does not have such a type is to use an explicit coercion

to make things opaque.)

Because of the restrictions made, the inference system, unlike the kernel system,

possesses principle types. In particular, all the types possessed by a given term under �

are equal under �:

Corollary [Inf] 12.2.5 (Validity of Term Types)

If � `M : A then � ` A :: 
.

Proof: Follows immediately from Lemma 12.2.3 and Theorem 11.4.15. 2

Theorem [Inf] 12.2.6 (Existence of principle types)

If � `M : A1 and � ` M : A2 then � ` A1 = A2 :: 
.

Proof: Proved by structural induction on M . WLOG, � ` M : A1 and
� ` M : A2 were derived using rules other than I-UN (E-REFL). By Corollary 12.2.5,

� ` A1 :: 
) � ` A1 = A1 :: 
 (E-REFL). That takes care of the cases where A1 = A2.
The interesting remaining cases are:

SND: Here M =M 0:2, � `M 0 : (A01; A1), and � `M 0 : (A02; A2)
) � ` (A01; A1) = (A02; A2) :: 
 (induction hypothesis)
) �; x:A01 ` A1 = A2 :: 
, x 62 dom(�) [ FTV(A1) [ FTV(A2) (Lemma 9.4.10)
) � ` A1 = A2 :: 
 (Theorem 9.6.1).

APP: Here M =M1M 2, � `M1 : �x:A
0
0: A

0
1, � `M2 : A

0
2, � ` A

0
2 � A00,

� ` �x:A02: A
0
1 = A02!A1 :: 
, � `M 1 : �x:A

00
0: A

00
1, � `M 2 : A

00
2,

� ` A002 � A000, and � ` �x:A002: A
00
1 = A002!A2 :: 
 where x 62 dom(�) [ FTV(A1) [

FTV(A2)) � ` �x:A00: A
0
1 = �x:A000: A

00
1 :: 
, � ` A

0
2 = A002 :: 
 (induction hypoth-

esis), �; x:A02 ` A
0
1 = A1 :: 
 and �; x:A002 ` A

00
1 = A2 :: 
 (Lemma 9.4.10)

) �; x:A00 ` A
0
1 = A001 :: 
 (Lemma 9.4.10) and

�; x:A02 ` A
00
1 = A2 :: 
 (Theorem 9.4.6)) �; x:A02 ` A

0
1 = A001 :: 
 (Theorem 10.4.7)

) �; x:A02 ` A1 = A2 :: 
 (E-SYM and E-TRAN)
) � ` A1 = A2 :: 
 (Theorem 9.6.1).

2

This result means that the type checker can deal with equivalence classes of equal types

rather than individual types; there is no need to determine in advance which representa-

tive of the current class to use.
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V ALID(�) = if ` � valid then return else raise fail

KIND(�; A) = if 9K: � ` A :: K then return(K) else raise fail

EQUAL(�; A1; A2;K) = if � ` A1 = A2 :: K then return else raise fail

SUB(�; A1; A2) = if � ` A1 � A2 then return else raise fail or hang

CAN(�; A) = If � ` A :: 
 then

return(A0) such that A0 2 C� and � ` A = A0 :: 

else
raise fail

Figure 12.1: Auxiliary procedures for type checking

12.3 Semi-Decidability

In this section I give a procedure that decides the well-typed term judgment for the infer-
ence system and show that it is semi-decidable (decidable given an oracle for subtyping).

First, I will need some auxiliary procedures:

Lemma 12.3.1 (Existence of auxiliary procedures)

Procedures exist which have the behavior speci�ed in Figure 12.1. VALID, KIND,

EQUAL, and CAN are algorithms while SUB may fail to return only in the negative

case.

Proof: Follows from Theorem 9.4.11, Corollary 9.4.12, Theorem 10.5.6, and Theo-

rem 9.5.10. 2

The decision procedure is given in Figure 12.2. TY PE(�;M) computes a valid type
for M under � unless M is not a well-typed term under �, in which case it fails. TY PE

uses CAN when it is necessary to �nd an equivalence-class representative having a certain

form. (This method works because semi-canonical types are maximally de�ned and
have the minimal number of dependencies.) The proof of the correctness of the TY PE

procedure is straightforward:

Lemma [Inf] 12.3.2 If TY PE(�;M) returns A then � `M : A.
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TY PE(�;M) = V ALID(�);

case M of

x: if x 2 dom(�) then

return([self=x]CAN(�;�(x)))

else

raise fail

�x:A:M , x 62 dom(�): return(�x:A:TY PE((�; x:A);M))
M 1M2: case CAN(�; TY PE(�;M1)) of

�x:A0: A1: SUB(�; TY PE(�;M2); A0);
case CAN(�;�x:TY PE(�;M2): A1) of

A!A0: return(A0)
(M1; M2): return((TY PE(�;M1); TY PE(�;M2)))

M:1: case CAN(�; TY PE(�;M)) of
�x:A:A0: return(A)

M:2: case CAN(�; TY PE(�;M)) of
(A;A0): return(A0)

<A>: <=A::KIND(�; A)>

M<:A: SUB(�; TY PE(�;M); A);
return(A)

new: return(8�::
:�!ref�)
get: return(8�::
:ref�!�)
set: return(8�::
:ref�!(�!�))

roll: return(8�::
)
:� (rec�)!rec�)
unroll: return(8�::
)
:rec�!� (rec�))

TERM(�;M;A) = EQUAL(�; TY PE(�;M); A;
)

Figure 12.2: Decision procedure for type checking
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Proof: Proved by structural induction on M . By inspection of the code for TY PE,

TY PE(�;M) returns ) V ALID(�) returns ) ` � valid (Lemma 12.3.1). Example

cases:

new: Here TY PE(�;new) returns 8�::
:�!ref�. By T-NEW,

� ` new : 8�::
:�!ref�.

<A>: Here TY PE(�; <A>) returns <=A::KIND(�; A)> ) KIND(�; A) returns )
� ` A :: KIND(�; A) (Lemma 12.3.1)

) � ` <A> : <=A::KIND(�; A)> (T-REIFY).

M<:A: Here TY PE(�;M<:A) returns A and SUB(�; TY PE(�;M); A) returns

) TY PE(�;M) returns and � ` TY PE(�;M) � A (Lemma 12.3.1)
) � ` M : TY PE(�;M ) (induction hypothesis) ) � ` M<:A : A (I-COERCE).

M 1M2: Here TY PE(�;M 1M2) returns A
0 where 9x0; A0; A1:

CAN(�; TY PE(�;M1)) = �x:A0: A1, SUB(�; TY PE(�;M2); A0) returns,
CAN(�;�x:TY PE(�;M2): A1) = A!A0, and x 62 dom(�) [ FTV(A0)

) � ` TY PE(�;M2) � A0, � ` TY PE(�;M1) = �x:A0: A1 :: 
,
� ` �x:TY PE(�;M2): A1 = A!A0 :: 
 (Lemma 12.3.1), TY PE(�;M1) returns,
and TY PE(�;M2) returns

) � ` M1 : TY PE(�;M1), � `M 2 : TY PE(�;M2) (induction hypothesis),
� ` TY PE(�;M2) = A :: 
, and �; x:TY PE(�;M 2) ` A1 = A0 :: 
 (Lemma 9.4.10)

) � ` M1 : �x:A0: A1 (I-UN) and
� ` �x:TY PE(�;M2): A1 = TY PE(�;M 2)!A0 :: 
 (Theorem 9.4.3, E-REFL, and
E-DFUN) ) � `M 1M2 : A

0 (I-APP).

2

Lemma [Inf] 12.3.3 If � `M : A then TY PE(�;M) returns.

Proof: Proved by structural induction on � `M : A. By Corollary 12.2.5, � ` A :: 

) ` � valid (Lemma 6.3.5) ) V ALID(�) returns (Lemma 12.3.1). Example cases:

I-VAR: Here � ` x : [self=x]CAN(�;�(x)) derived via rule I-VAR from ` � valid and x 2
dom(�) ) TY PE(�; x) returns.

T-REIFY: Here � ` <A> : <=A::K> derived via rule T-REIFY from� ` A :: K)KIND(�; A)
returns K (Lemma 12.3.1) ) TY PE(�; <A>) returns (inspection of TYPE code).
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I-COERCE: Here � `M<:A : A derived via rule I-COERCE from � `M : A0 and � ` A0 � A

) TY PE(�;M) returns (induction hypothesis)

) � `M : TY PE(�;M) (Lemma 12.3.2) ) � ` TY PE(�;M ) = A0 :: 
 (Theo-

rem 12.2.6) ) � ` TY PE(�;M) � A (S-EQ and S-TRAN)

) SUB(�; TY PE(�;M ); A) returns (Lemma 12.3.1)) TY PE(�;M<:A) returns

(inspection of TYPE code).

I-SND: Here � ` M:2 : A2 derived via rule T-SND from � `M : (A1; A2)

) TY PE(�;M) returns (induction hypothesis) ) � ` M : TY PE(�;M )

(Lemma 12.3.2) ) � ` TY PE(�;M) :: 
 (Corollary 12.2.5) and

� ` TY PE(�;M) = (A1; A2) :: 
 (Theorem 12.2.6)

) CAN(�; TY PE(�;M)) returns A0 such that A0 2 C� and
� ` TY PE(�;M) = A0 :: 
 (Lemma 12.3.1)) � ` (A1; A2) = A0 :: 
 (E-SYM and
E-TRAN)

) 9x;A01; A
0
2: A

0 = �x:A01: A
0
2 and x 62 dom(�) [ FTV(A2) (Lemma 9.5.7)

) �; A01: ` A
0
2 = A2 :: 
 (Lemma 9.4.10 and E-SYM) andA02 2 C�;x:A0

1

(Lemma 9.5.3)

) x 62 FTV(A02) (Corollary 9.6.3) ) A0 = (A01; A
0
2) ) TY PE(�;M:2) returns A02

(inspection of TYPE).

I-APP: Here � `M 1M2 : A
0 derived via rule I-APP from� `M1 : �x:A0: A1, � `M2 : A2,

� ` A2 � A0 and � ` �x:A2: A1 = A2!A0 :: 
 where x 62 dom(�) [ FTV(A0) )
TY PE(�;M1) and TY PE(�;M 2) return (induction hypothesis) and
�; x:A2 ` A1 = A0 :: 
 (Lemma 9.4.10) ) � `M1 : TY PE(�;M 1) and

� ` M2 : TY PE(�;M2) (Lemma12.3.2)) � ` TY PE(�;M 1) :: 
 (Corollary 12.2.5),
� ` �x:A0: A1 = TY PE(�;M1) :: 
, and � ` A2 = TY PE(�;M2) :: 

(Theorem 12.2.6)

) �; x:TY PE(�;M2) ` A1 = A0 :: 
 (Theorem 9.4.6) and
CAN(�; TY PE(�;M1)) returns A

00 such that A00 2 C� and

� ` TY PE(�;M1) = A00 :: 
 (Lemma 12.3.1) ) � ` A00 = �x:A0: A1 :: 
 (E-SYM

and E-TRAN)

) 9A00; A
0
1: A

00 = �x:A00: A
0
1 (Lemma 9.5.7 and E-SYM)

) � ` A00 = A0 :: 
, �; x:A
0
0 ` A01 = A1 :: 
, (Lemma 9.4.10) and

�; x:A00 ` A
0
1 :: 
 (Theorem 9.4.3 and C-DFUN) ) � ` TY PE(�;M2) � A00 (E-

SYM, S-EQ, and S-TRAN) ) SUB(�; TY PE(�;M 2); A
0
0) returns

(Lemma 12.3.1), �; x:TY PE(�;M 2) ` A
0
1 :: 
, and �; x:TY PE(�;M 2) ` A1 = A01 :: 


(Theorem 10.4.7) ) � ` �x:TY PE(�;M 2): A
0
1 :: 
 (C-DFUN) and

�; x:TY PE(�;M2) ` A01 = A0 :: 
 (E-TRAN)
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) CAN(�;�x:TY PE(�;M2): A
0
1) returns A

000 such that A000 2 C� and

� ` �x:TY PE(�;M2): A
0
1 = A000 :: 
 (Lemma 12.3.1)

) 9A08; A
0
9: A

000 = �x:A08: A
0
9 (Lemma 9.5.7)

) � ` A08 = TY PE(�;M2) :: 
, �; x:TY PE(�;M2) ` A
0
9 = A01 :: 


(Lemma 9.4.10) and A09 2 C�;x:A
0

8

(Lemma 9.5.3)

) �; x:TY PE(�;M2) ` A
0
9 = A0 :: 
 (E-TRAN)

) �; x:A08 ` A09 = A0 :: 
 (Theorem 9.4.6) ) x 62 FTV(A09) (Corollary 9.6.3) )
A000 = A08!A09 ) TY PE(�;M1M2) returns A

0
9 (inspection of TYPE).

2

Moreover, if we had an oracle for the SUB procedure, then the TY PE procedure
would always terminate:

Lemma [Inf] 12.3.4 If the SUB procedure in TY PE is replaced by an oracle for sub-

typing which never hangs then TY PE(�;M) always terminates.

Proof: By Lemma 12.3.1, V ALID, CAN , and KIND always terminate. Since all
recursive calls to TY PE are on proper sub-terms of the original term, TY PE(�;M ) can
only fail to terminate if a call to SUB fails to terminate. 2

Thus, because of these results and the fact that the inference system has princi-
ple types (Theorem 12.2.6), the inference system's well-typed term judgment is semi-
decidable (decidable given an oracle for subtyping):

Theorem [Inf] 12.3.5 (Semi-decidability)

The judgment � ` M : A is semi-decidable. Non-termination only occurs if the judgment

is false. If an oracle is provided for subtyping then the judgment becomes decidable.

Proof: Claim: TERM(�;M;A) returns i� � `M : A:

)) Here TERM(�;M;A) returns ) TY PE(�;M) returns and
� ` TY PE(�;M) = A :: 
 (Lemma 12.3.1) ) � `M : TY PE(�;M)

(Lemma 12.3.2) ) � ` M : A (I-UN)

() Here � ` M : A ) TY PE(�;M ) returns (Lemma 12.3.3)

) � ` M : TY PE(�;M ) (Lemma 12.3.2) ) � ` TY PE(�;M) = A :: 


(Theorem 12.2.6) ) EQUAL(�; TY PE(�;M); A;
) (Lemma 12.3.1)

) TERM(�;M;A) returns

Hence, the judgment is semi-decidable, with non-termination only occuring if the judg-
ment is false. By Lemmas 12.3.4 and 12.3.1, TERM always terminates if an oracle is used

for subtyping) the judgment is decidable in the presence of an oracle for subtyping. 2
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Chapter 13

Extensions

In this chapter I discuss brie
y a number of possible extensions to the basic kernel system.
Some of them are straightforward while others will likely require extensive future research.

13.1 N-Ary Named Fields

One extension needed to make the kernel system a more realistic programming language

is the ability to have translucent sums with any number of named �elds. This extension
would allow us to create translucent sum terms likemodule a=3; x=5; y=7; end with
type interface a:int; x:int; y:int; end. Without this ability, we would have to use
a more cumbersome term like (3; (5; 7)) with type (int; (int; int)); we would also have
to remember when accessing �elds that .a corresponds to :1, .x to :2:1, and .y to :2:2.

This requirement unnecessarily burdens the programmer's memory and makes adding or
removing �elds later di�cult.

Because translucent sums are dependent sums, there must be a way for the types of

components to refer to previous �elds. Naively, one might expect that the �eld names
could be reused for this purpose. This idea does not work because of a con
ict between
the requirements on external and internal names: Internal names must be free to �-vary

under substitution, �-reduction, and other operators while external names must remain

�xed (otherwise, the set of legal �eld names which can be selected on changes).
A simple solution is just to have separate external and internal names for each �eld.

As an example, with internal names denoted in parentheses, we might have the following
type:

interface

T(�):<type>;

S(S):<= interface T(�):<type>; x(x):�!->�!; end ::type>;

end

277
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Note that in the absence of separate names there would be no way to express the fact that

the x �eld's type depends on the types of both the �rst and second T �elds. The scope

of internal names is the remaining �elds of the translucent sum type; external names are

never in scope. In order to simplify the system and catch programmer errors, duplicate

external names in a translucent sum should be prohibited.

I expect that di�erent internal and external names will seldom be needed in practice.

Accordingly, a useful abbreviation is to allow the internal name to be omitted when

it is the same as the external one. Translucent sum terms in the kernel system, for

simplicity, do not contain internal bindings and thus do not need internal names. This

ability is easy added, however, using syntactic sugar. For example, the internal bindings

inmodule x(a)=2; y=a+a; end can be removed by rewriting the term to let val a=2;

val y=a+a; in module x=a; y=y; end.
Because of the way I factored translucent sums in the kernel system, they contain

only values directly; constructors can be contained only indirectly via the use of a rei�ed
constructor. This factoring could either be hidden from the programmer by syntactic
sugar or removed entirely; the result would be translucent sums that (appear) to have
both constructor and value components. The previous example type would then be as

follows:

interface

constr T(�)::type;

constr S = interface constr T(�)::type; val x:�->�; end;

end

Here constructor �elds are indicated by the keyword constr and value �elds by the
keyword val; opaquely de�ned constructor �elds like T just list the kind of the �eld while
transparently de�ned constructor �elds like S give the constructor they are de�ned equal
to (the kind can be inferred). Note that because � and � are types here, constructor
extractions (�!) are no longer needed. Since most constructors are types, it is convenient

to allow the type keyword to be used as syntactic sugar for a constr declaration of kind

type (e.g., type T(�); or type U = int;).

Although the factored version is simpler theoretically, it may be less e�cient in prac-
tice. Consider an implementation that wishes to save memory by omitting constructor

�elds (the kernel system semantics do not require any type information at runtime). This
optimization is easily done in the non-factored version because the two sorts of �elds are

syntactically distinguished.
In the factored version, on the other hand, it is impossible in general to tell what

sort of �eld we are dealing with. In particular, a �eld's sort may depend on whether

or not a free type variable whose identity is not known at compile time is equal to
a rei�ed constructor type. Because traditional representation methods require that a

type's representation be invariant under type substitution, this optimization requires
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non-traditional representation methods in the factored case. New representation methods

using intensional polymorphism [23, 44] may allow this optimization, but probably not

without some runtime and compiler-complexity cost.

What notions of equality and subtyping are appropriate for n-ary named translucent

sums? One approach is to just extend the kernel system rules in the obvious way. Using

a factored version, this approach might look as follows:

` � valid

� ` fg = fg :: 

(E-BASE)

� ` A = A0 :: 


�; x:A ` fFg = fF 0g :: 
 n 62 �elds(F )

� ` fn(x):A; Fg = fn(x):A0; F 0g :: 

(E-FIELD)

` � valid

� ` fg � fg
(S-BASE)

� ` A � A0 �; x:A0 ` fF 0g :: 


�; x:A ` fFg � fF 0g n 62 �elds(F )

� ` fn(x):A; Fg � fn(x):A0; F 0g
(S-FIELD)

Here, F and F 0 represent possibly empty lists of �elds; �elds(F ) is the set of �eld names
de�ned in F . I am using f and g instead of interface and end for conciseness. Notice

that these rules only allow translucent sums with the same �eld names in the same order
to be equal to or subtypes of each other.

13.2 Extended Interface Matching

Another approach is to provide what I call extended interface matching, the ability to

reorder or drop �elds using subtyping. This ability is very useful in practice because it

allows modules to be combined in more 
exible ways. For example, using the dropping
ability, a programmer could pass a module with more features than required to a functor
without having to manually write a coercion function to extract only the required �elds.

Likewise, the reordering ability frees programmers of the need to remember the exact

order of the �elds of an interface.
Adding the following rule to the rules of the previous section permits subtyping to

drop �elds at the end of a translucent sum:

� ` fFg :: 


� ` fFg � fg
(DROP-END)
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Dropping �elds at the end is always safe because the �elds that remain cannot depend

on the �elds being dropped. In order to drop �elds in the middle, we must check that

none of the later �elds depend on the �elds being dropped:

x 62 FTV(F 0)

�; x:A ` fFg � fF 0g n 62 �elds(F )

� ` fn(x):A; Fg � fF 0g
(DROP-ANY)

What rules to use for reordering �elds is problematic. In the original formulation of

the kernel system [20], rules equivalent to the following rule were used:

x1 62 FTV(A2) x2 62 FTV(A1)

� ` fn1(x1):A1; n2(x2):A2; Fg :: 


� ` fn1(x1):A1; n2(x2):A2; Fg � fn2(x2):A2; n1(x1):A1; Fg
(SWAP)

This rule allows adjacent �elds be swapped if the later �eld does not refer to the earlier
one.

I have since discovered a problem with this rule: It does not treat nested translu-

cent sums the same as it does the equivalent 
attened version. For example, under the
assignment �; �::
, we have that

fxa:<
>; xb:�; y:<=��::
)
: � xa!::(
)
))
>;g
� fxa:<
>; y:<=��::
)
: � xa!::(
)
))
>; xb:�;g
= fxa:<
>; y:<=��::
)
: � xa!::(
)
))
>; xb:y! (��::
: �);g
� fxa:<
>; y:<(
)
))
>; xb:y! (��::
: �);g
� fy:<(
)
))
>; xa:<
>; xb:y! (��::
: �);g

The subtyping fails to hold though, if we combine xa and xb together in a single sum
nested inside the outer sum:

fx:fa:<
>; b:�;g; y:<=��::
)
: � x:a!::(
)
))
>;g
� fx:fa:<
>; b:�;g; y:<(
)
))
>;g
� fy:<(
)
))
>; x:fa:<
>; b:�;g;g
6� fy:<(
)
))
>; x:fa:<
>; b:y! (��::
: �);g;g

(We are forced here to forget the information about y's identity in order to swap the x

and y �elds | swapping requires removing the dependency on x. Unfortunately, we need

this information after the swap is done in order to relate b's type to y.)
I �nd this behavior counterintuitive. We could make subtyping treat nested and


attened sums the same by adding 
attening rules so that, for example,

fF1;x:fa:A1; b:A2;g;F2g � fF3;x:fa:A
0
1; b:A

0
2;g;F4g



CHAPTER 13. EXTENSIONS 281

holds if
fF1;xa:A1;xb:[xa=a]A2;[xa=x:a][xb=x:b]F2g �
fF3;xa:A

0
1;xb:[xb=b]A

0
2;[xa=x:a][xb=x:b]F4g

provided no variable capture or �eld duplication occurs. In the more general case, the x

�eld on the right-hand side might have fewer sub�elds in a di�erent order or might not

exist at all.

The decision problem for these rules (both with and without 
attening) appears to be

quite di�cult; it is hard to see how the need to guess intermediate types can be avoided.

(E.g., what type should we coerce a �eld to before we swap it with the preceding �eld?)

An alternative way of handling reordering can be obtained by imagining translating

the system with reordering and dropping of �elds into the system of the previous sec-
tion by inserting coercion functions into the code whenever subsumption occurs. Thus,
for example, if subsumption was used to swap the �elds of a translucent sum with

type fx:A1; y:A2;g resulting in the type fy:A02; x:A
0
1;g, the following function of type

fx:A1; y:A2;g!fy:A02; x:A
0
1;g would be inserted1:

�r:fx:A1; y:A2;g: (fy=r:y; x=r:x; g<:fy:A
0
2; x:A

0
1;g)

To make this insertion work, the subtyping rules must ensure that this function is always
well typed in the previous section's system whenever they allow fx:A1; y:A2;g to be a
subtype of fy:A02; x:A

0
1;g.

By examining the type rules of the target system, it can be seen that the following

rule is the most general rule possible for this case:

� ` fy(x2):A
0
2; x(x1):A

0
1;g :: 


�; x1:A1; x2:A2 ` [self=x1]A1 � A01

�; x1:A1; x2:A2 ` [self=x2]A2 � A02
� ` fx(x1):A1; y(x2):A2;g � fy(x2):A

0
2; x(x1):A

0
1;g

(TWO-FLIP)

The original SWAP rule can be derived from this rule. However, unlike the original rule,
this rule treats nested and 
attened translucent sums the same. The example that we

needed extra 
attening rules to handle before can be done using just the new TWO-FLIP
rule: Under the assignment �; �::
; x:fa:<
>; b:�;g; y:<=��::
)
: � x:a!::(
)
))
>,

1To simplify the discussion, I am assuming here that no reordering or dropping of sub�elds is needed

on the contents of the x and y �elds. In the general case it may be necessary to insert additional coercion

functions before r:y and r:x in order to handle this.
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we have that

[self=x]fa:<
>; b:�;g =

fa:<=x:a!::
>; b:�;g =

fa:<=x:a!::
>; b:(��::
: �)x:a!;g =

fa:<=x:a!::
>; b:(��::
)
: � x:a!) (��::
: �);g =

fa:<=x:a!::
>; b:y! (��::
: �);g �
fa:<
>; b:y! (��::
: �);g

and
[self=y]<=��::
)
: � x:a!::(
)
))
> =

<=��::
)
: � x:a!::(
)
))
> �
<(
)
))
>

Thus, TWO-FLIP handles the nested translucent sum example.
Because neither of these abilities (to derive SWAP and to handle nesting properly)

require the use of the self function, a simpler and less powerful rule could be substituted
for TWO-FLIP without losing either of these abilities:

� ` fy(x2):A
0
2; x(x1):A

0
1;g :: 


�; x1:A1; x2:A2 ` A1 � A01
�; x1:A1; x2:A2 ` A2 � A02

� ` fx(x1):A1; y(x2):A2;g � fy(x2):A
0
2; x(x1):A

0
1;g

(SIMPLER)

The most important di�erence between these rules is that TWO-FLIP, unlike SIM-
PLER, allows the swapping of �elds that must contain identical constructors. For exam-
ple, only under TWO-FLIP is fx:<
>; y:<=x!::
>;g a subtype of fy:<
>; x:<=y!::
>;g.
The use of the self function is crucial here:

x:<
>; y:<=x!::
> ` [self=x]<
> = <=x!::
> = <=y!::
>

It is unclear how important this ability is in practice however.

The analysis based on the translation idea can be extended to deal with reordering and
dropping an arbitrary number of �elds at the one time, producing generalized versions of

TWO-FLIP and SIMPLER. Xavier Leroy's system [31] (see Section 14.3) appears to be

using a generalized variant of SIMPLER. The decision problem for these rules (TWO-
FLIP, SIMPLER, and generalizations thereof) does not seem to be much more di�cult

than the current kernel-system subtyping problem.

13.3 Transparent Value Declarations

Translucent-sum types as I have described them so far allow opaque constructor declara-

tions, transparent constructor declarations, and opaque value declarations. By analogy
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with opaque and transparent constructor declarations, we could consider adding trans-

parent value declarations (TVDs for short) as well. A transparent value declaration would

specify the existence of a value component with a given type those contents is equal to

a speci�ed term. As an example, consider the following type with TVDs:

interface

val x:int = 3;

val X:interface type T; type S; val n:int; end;

val Y:interface type T; type S; val n:int; end = X;

end

If M is a module declared to have this interface, then we can infer that M.x = 3 and M.X =
M.Y; hence we can also infer that M.X.T = M.Y.T, M.X.S = M.Y.S, and M.X.n = M.Y.n.

There are three reasons why we might want to extend translucent sums to allow trans-
parent value declarations. First, TVDs support inlining; for example, when compiling a
module that uses module M, the compiler can use the fact that M.x = 3 to replace refer-
ences to M.x with 3. (This ability is, of course, more useful when M.x is a complicated
function.)

Second, TVDs allow value sharing, the ability to express the fact that two modules

refer to the same value. This ability may be useful when it is important that two modules
constructed independently use a common piece of code. See [37] for some good examples
of where value sharing is useful.

Third, TVDs allow module sharing (also called structure sharing); module sharing
permits equating all the components of two modules with a single equation (e.g., M.X =

M.Y) which would otherwise require possibly exponentially many equations equating all
the individual components of the modules. Module sharing is thus a useful abbreviation
mechanism.

What terms should we allow TVDs to declare value components' contents to be equal
to? In order to be able to express value or module sharing, we will need to allow places

(x�'s). Since subject reduction (desirable for soundness) requires that the set of types
be closed under value substitution, we must then also allow values and projections from

values, resulting in extended values:

De�nition 13.3.1 (Syntax)

Extended Values � ::= x j V j �:n

If we are concerned with only inlining, then allowing only values may su�ce.

Either of these choices has the drawback that it greatly increases the complexity of
the system: types may contain values which may contain arbitrary terms because of

functional values so that the type-validity judgment must then depend on the full valid
term and subtyping judgments. An actual programming language could restrict the set
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of legal terms in TVDs further to simplify type inference but this restriction would not

change the underlying theory or its di�culty.

If we allow arbitrary terms in TVDs, then unsoundness results. Consider the fol-

lowing example using rnd(), a pseudo-random number generator (implemented using a

reference):

constr S = interface type T; val v:T; val f:T!T; end;

val M1:S = module type T=int;

val v=3; val f = �x:int. -x; end;

val M2:S = module type T=bool;

val v=true; val f = �x:bool. not x; end;

val F = �x:int. if x % 2 = 1 then M1 else M2;

val X = module x=F(rnd()); y=F(rnd()); end <:

interface x:S=F(rnd()); y:S=F(rnd()); end;

If we allow arbitrary terms in TVDs, this example will type check, allowing us to conclude

that X.x = X.y and hence that X.x.T = X.y.T; the call X.x.f(X.y.v) will thus type
check but produce a runtime type error half the time.

If more terms than the extended values are desired in TVDs, one sound approach is
to formulate a notion of value-like terms whose evaluation does not produce side-e�ects
or depend on the store. Robert Harper and Chris Stone have taken this approach in

recent work [24], introducing a separate judgment which they use to determine which
terms are value like.

What notation of equality is appropriate for extended values (or value-like terms)?
Clearly, at an absolute minimum, we need equivalent extended values (i.e., �-convertible)
to be equal. For consistency, it would be nice to also allow constructors to convert using
the existing constructor equality relation, but this ability is not strictly necessary. The

extended-value equality must also take into account any TVDs in the context, allowing

places with TVDs to be replaced by the extended value that they are declared equal to.
Because of the presence of projections in extended values, it will also be necessary to

handle projection (e.g., fx=3; y=4;g.x = 3).
I see no need for including additional equalities, except possibly to handle applications

if value-like terms are allowed; in that case, the implications for the decidability of value-

like term equality will have to be considered carefully. No purpose seems to be served by
allowing functions that are functionally equivalent to be equal, particularly given that
such functions may di�er in terms of e�ciency.

Because translucent sums can contain constructors, equations on translucent sum

values can also imply equations on constructors (e.g., M.X.T = M.Y.T in the �rst TVDs
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example). These inferences can be handled by adding the following rules for constructor

equality (assuming a factored formulation of translucent sums):

� ` �1 = �2 : <K>

� ` �1! = �2! :: K
(E-VAL-O)

� ` �1 = �2 : <=A::K>

� ` �1! = �2! :: K
(E-VAL-T)

� ` A = A0 ::K

� ` <A>! = A0 :: K
(E-TVD)

Note that constructor extractions in constructors are now of the form �! rather than the
old x�!; this change simpli�es things because the value substitution operator no longer
needs to handle projections or extraction | it can just substitute the value for the term
variable and let the extended-value equality handle the projections and extractions.

Under the factored approach, transparent rei�ed constructor types (<=A::K>) are
unnecessary after TVDs have been added: we can replace occurrences of val x:<=A::K>

by val x:<K>=<A> in interfaces while preserving the equation x! = A. Accordingly,
under those circumstances, we could switch from the current kernel-system (translucent)
rei�ed constructors, which have both transparent and opaque types, to opaque rei�ed
constructors, which have only opaque types. This change would simplify the system and
avoid the redundancy of having two di�erent ways to specify a transparent constructor

de�nition.
Just as the notion of rei�ed constructors allowed translucent sums to be factored into

simpler primitives in the kernel system, a notion of singleton types would allow factoring
translucent sums with TVDs into simpler primitives. A singleton type ((=�)A) is a type
that may contain only a single sort of extended values:

� ` � : A � ` � = �0 : A

� ` � : (=�0)A
(ST-INTRO)

Singleton types are subtypes of the appropriate non-singleton type:

� ` (=�)A :: 


� ` (=�)A � A
(SI-SUB)

What equality rules singleton types should obey is not completely clear, depending in
part on the choice of what they can specify their members are equal to. Likely equality
rules include:

� ` A = A0 :: 
 � ` � = �0 : A

� ` (=�)A = (=� 0)A0 :: 

(SIE-COMP)
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� ` (=�)�x:A1: A2 :: 
 x 62 FTV(�)

� ` (=�)�x:A1: A2 = �x:(=�:1)A1: (=�:2)A2 :: 

(SIE-DSUM)

Note that these rules allow simplifying the self function to [self=�]A = (=�)A. A

rule similar to E-ABBREV allows making use of the knowledge about the identity of a

singleton type's members:
� ` x�) (=�)A

� ` x� = � :: A
(SI-ABBREV)

If singleton types are introduced, then transparent value declarations (val x:A =

�) can be replaced by opaque value declarations using singleton types (val x:(=�)A).
Opaque rei�ed constructors can then be used to handle opaque constructor declarations

(val x:<K>) and transparent constructor declarations (val x:(=<A>)<K>). Thus,
by using these encodings, translucent sums with TVDs can be factored into simpler
components: dependent sums, singleton types, and opaque rei�ed constructors.

13.4 Kind Components

Another possible extension is to allow translucent sums to contain kinds. For exam-
ple, we might allow translucent sum types like interface kind K1; kind K2=type;

constr T1::K1; constr T2::K2; val x:T2; end (unfactored) or interface K1:<<>>;

K2:<<=type>>; T1:<K1!>;T2:<K2!>; x:T2!; end (factored) where <<>> and <<=type>>
denote rei�ed-kind types.

Rei�ed kinds are similar to rei�ed constructors, but package up kinds instead of
constructors. The transparent type <<=K>> is the type of rei�ed kinds containing the
kind K (<<K>>), while the opaque type <<>> is the type of all rei�ed kinds, regardless
of what kind they contain. If x� has a rei�ed kind type under �, then the kind extraction

x�! is a valid kind under �. If x� has type <<=K>> under � then x�! and K are equal

kinds under �. The type <<=K>> is a subtype of the type <<>> under any � for which
K is a valid kind.

Both versions of this extension require adding notions of what a valid kind is and

of which kinds are equal. Both notions depend on the types of the term variables in

the assignment and on the equality of types judgment. This fact is likely to greatly
complicate the proof theory of the extended system.

There are at least two plausible reasons to allow kind components in translucent
sums. The �rst is based on the concept of a module as being \a chunk of namespace".

If a language allows kinds to be named for abbreviation or mnemonic purposes, then it

should, according to this view of what a module is, also allow kind de�nitions in modules.
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This decision avoids the need to have di�erent syntax for modules and let statements

(including any interactive top level).

The second reason is that allowing translucent sums to contain kinds introduces kind

polymorphism (the ability to abstract over kinds) to the language as a derived form in

much the same way that normal translucent sums allow constructor polymorphism. In

particular, ��:M would stand for �x:<<>>: [x!=�]M , x 62 FTV(M), and M K would

stand for M <<K>>.) Kind polymorphism is derivable only at the term level; ��:A

is not a derivable form. Kind polymorphism may be useful in combination with single-

ton kinds (de�ned in Section 13.8, below) to give more expressive types to higher-order

functors. I discuss this further in Section 14.4.

13.5 Recursion

The kernel system provides the needed primitives to implement recursion but does not
directly provide a way to build recursive functions. A real programming language should
provide at least a �xed-point operator (�x), and preferably some kind of let-rec statement.

Fixed point operators can easily be implemented in the kernel system using recursive
types; see Figure 13.1 for an example implementation of �x in SML-like syntax that can
be used to produce recursive functions of type �x:A:A0. Alternate implementations of
�x are also possible using references instead of recursive types.

Note that this implementation of �x will work for any dependent function type, not

just arrow types. Unfortunately, however, there is no way in the kernel system to abstract
over just dependent function types so multiple copies of the implementation using di�er-
ent types may be needed to cover all the ways �x is used in a given program. It is possible,
though, to handle all the non-dependent function types using a single implementation by
abstracting separately over the argument and return types:

fix : 8�::
: 8�::
: ((�!�)!(�!�))!(�!�)

One approach to the problem of needing multiple copies of �x is to simply make �x

a built-in primitive with a special typing rule that allows it to work on any dependent
function type:

De�nition 13.5.1 (Fix Typing Rule)

� ` �x:A:A0 :: 


� ` �x : ((�x:A:A0)!(�x:A:A0))!(�x:A:A0)
(T-FIX)

Another approach is to introduce parametric interfaces (�x:A:A0 :: A)K), which are

functions at the constructor level that map values to constructors. Parametric interfaces
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type target type = �x:A:A0;

type fix type = (target type!target type)!target type;

(*

* Set things up so that we can pass a rolled up

* version of fix1 to fix1 as its first argument:

*)

type fix1 iter = ��::
: �!fix type;

val fix1 roll = roll <fix iter>;

val fix1 unroll = unroll <fix iter>;

(*

* fix1 is like fix except that it takes a rolled

* up copy of itself as an extra argument:

*)

fun fix1 (rolled fix1:rec fix1 iter) (f:target type) =

f (�x:A: (fix1 unroll rolled fix1) rolled fix1 f x);

val fix = fix1 (fix1 roll fix1);

Figure 13.1: A sample �xed-point operator implementation
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allow abstracting over dependent function types by �rst abstracting away the argument

type (a normal type), and then second, abstracting away the result type modulo the

argument (a parametric interface):

�x : 8�::
: 8�::�)
: ((�x:�: � x)!�x:�: � x)!�x:�: � x

Parametric interfaces (often called parametric signatures when they are available only

at the level of modules) are also likely to be useful for describing the types of modules;

for example, they allow abstracting over a module that several components of another

module depend on. This ability is most likely to be useful if value sharing is allowed.

(If a module depends only on the type components of another module, then we could

alternatively abstract over each type component in turn, giving the same e�ect at the

cost of more e�ort.)
Adding parametric interfaces would de�nitely complicate the kernel system (e.g.,

kinds would then depend on constructors and hence term variables). How best to go
about adding parametric interfaces and what the full consequences of adding them would
be are open questions.

Because the kernel system provides recursive types and existentials (a degenerate
form of translucent sums), it might seem natural to try and encode objects from object-
oriented programming languages into the kernel system. Unfortunately, this idea does not
work in practice because the kernel-system subtyping rules do not take all the properties
of recursive types into account. For example, the following desirable inequality does not
hold in the kernel system:

rec��::
: fx:int; y:int; self :�;g � rec��::
: fx:int; self :�;g

It is likely that additional subtyping rules could be added to remedy this problem but
the e�ect those rules would have on the semi-decidability of subtyping and type checking
is unclear.

Given a �xed point operator, let-rec statements can be elaborated into uses of �x and
non-recursive let statements. Some programming languages (e.g., CLU) allow modules

to be de�ned recursively in terms of each other. This feature is di�cult to provide in a

translucent sums framework for several reasons.
One problem is that recursivemodule de�nitions allow de�ning types recursively. This

ability is di�erent from the existing kernel-system recursive-type mechanism because it
provides a true equality rather than just an isomorphism. For example, if we could de�ne

type T=T!T, then T = T!T would be derivable under suitable assignments; however,
the similar equation rec��::
: �!� = (rec��::
: �!�)!(rec��::
: �!�) does not

hold. Permitting types to be de�ned recursively is a problem because it makes the type

system completely undecidable. The following recursive de�nition de�nes a �xed point

operator at the constructor level:

type Y = �f ::(
)
))(
)
): f ��::
: Y f �
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Using this combinator, any computation problem (including does Turing machine M

halt?) can be encoded into a type-validity question.

If the possibility of de�ning types recursively is disallowed, this problem can be gotten

around by staging module computation so that we �rst compute just the type components

of each module non-recursively then compute the remaining components recursively. Un-

fortunately, however, there is no way in general to automatically perform this staging:

because �rst-class translucent sums combine types and values in a single object, the

computations of the type and value components can be arbitrarily interweaved.

More generally, it is possible to have n-stage module computations where the com-

ponents de�ned in stage i depend only on type components from stages 0 to i�1 and on

value components from stages 0 to i. This idea raises additional problems for automation

because the data 
ow information needed to arrange this staging automatically is not
available from just the module interfaces. (Requiring access to the source code of the
referenced modules would break separate compilation.)

Thus, in summary, programmers can manually de�ne modules recursively in terms
of each other in the kernel system so long as no type components are de�ned in terms
of themselves. A full automatic solution to the problem of handling module recursion is

unlikely, but it seems possible that a simple automatable partial solution could be found
that handles most of the uses of recursive modules.

13.6 Better Type Inference

The kernel system is explicitly typed, requiring the programmer to specify explicitly
the type of function arguments, what constructors a polymorphic object should be in-
stantiated to, when and how a term should be polymorphically abstracted over, and,
for the inference system, when and how to use subsumption. It seems likely that some

kind of type reconstruction algorithm could be found which would reduce the amount of

information required.
One possible approach is to try and modify Frank Pfenning's type reconstruction

algorithm for F! [48, 49] to work for the kernel system. The idea would be to require the

programmer to provide all constructors involving translucent sums, dependent functions,

or rei�ed constructors. The reconstruction algorithm would then not have to infer these

sorts of constructors.

13.7 Elaborations

A number of useful extensions are more naturally added as features that elaborate dur-

ing an elaboration stage down to the core language. For example, a simple let state-
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ment, let x:A = M1 in M2 end, could be elaborated into the kernel-system expres-

sion (�x:A:M2) M1. Elaboration often incorporates a degree of type inference as well.

For example, we could make supplying a type forM 1 in let statements optional; since the

kernel inference system possesses principle types (see Chapter 12), supplying this type is

easy for the elaborator to do.

13.7.1 SML-like Elaborations

The language Standard ML (SML) [21] possesses many elaborations that would make

useful extensions to the kernel system. These include complex let statements that allow

sequential, parallel, recursive, and local bindings; a special syntax for function bind-

ings (e.g., fun inc(x:int) = x+1 rather than val rec inc = �x:int: x+1); tuples as
sugar for records (translucent sums) with numbered �elds (e.g., (int, bool) stands for
f1:int; 2:bool;g); datatypes2; and pattern matching. The SML syntax for datatypes

and pattern matching will need to be extended though in order to handle polymorphic
constructors such as the list cons operator, which require instantiation to an explicit type
before they can be used.

Using these SML-like elaborations, we can write code like the following polymorphic
function which swaps the components of a homogeneous length-two tuple:

fun swap(<T::type>, (x:T, y:T)) = (y, x);

Because type variables are declared so frequently, it is helpful to introduce an abbreviation
'T to stand for <T::type>:

fun swap(`T, (x:T, y:T)) = (y, x);

The curried version of this function would look like

fun swap `T (x:T, y:T) = (y, x);

Using this de�nition, swap <int> (1,2) evaluates to (2,1). For an actual programming

language, we would probably wish to replace the <A> notation for rei�ed constructors
with some other syntax so that we can make use of the < and > symbols to denote the

relational operators.

13.7.2 Translucent-Sum Syntax

Translucent sums are used in two main ways in the kernel system: they are used as record-
like temporary objects that are created and passed around in the process of computation

2While datatypes were originally built into SML, recent reformulations of the language [24] treat

them as elaborations in terms of simpler constructs: recursive types, tuples, one-ofs, and patterns.
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and they are used as module-like permanent objects that contain chunks of program

namespace. These uses are su�ciently di�erent that they would bene�t from di�erent

syntax. For record-like use, a light, concise syntax similar to that of records is desirable.

When you are creating translucent sums every other line, fx=3; y=4;g is far preferable
to module val x=3; val y=4; end.

For module-like use, on the other hand, a heavier syntax that stands out is ap-

propriate: Modules are an important part of program structure and should be easily

visible to a reader, not buried in a mess of symbols. Another important reason for

using heavier syntax is that it allows incorporating SML's complex binding forms in

the syntax: We can regard module bindings end as an elaboration for let bindings

in fx1=x1; x2=x2; : : :; xn=xn;g end where x1, x2, : : :, xn are the names bound in

bindings in the order that they are bound.3

For example, module val x=2; val y=x+2; end would elaborate to let val x=2;
val y=x+2; in fx=x; y=y;g end. A slight extension of the SML binding syntax will
be needed here to allow for optionally di�erent external and internal names. As an ex-
ample,module val x(tmp)=2; val y=x+tmp; end might elaborate to let val tmp=2;

val y=x+tmp; in fx=tmp; y=y;g end. Multiple bindings using the same external name

should be disallowed. Corresponding forms of syntax are useful at the type level (e.g.,
fx:int;g vs. interface val x:int; end).

13.7.3 Open and Include

A useful additional form of binding is the open binding form (open M), which makes
each component of a selected module available under its external name. (Pascal's with
statement [26] provides a similar form of binding for records.) The elaboration of
open M depends on M 's principle type.4 For example, ifM has principle type fx:int;
y:bool;g, then let open M inM 0 end will elaborate to let local m=M in val x=m.x

and val y=m.y; end in M 0 end.
In combination with the previous module syntax, the open binding form allows

for easy module extension. For example, module val x=3; open M; end creates a

module identical to M except for an added initial x �eld equal to 3. If a similar abil-
ity is desired for interfaces, the SML include feature can be provided as well. (in-

terface val x:int; include fy:int; z:int;g; end elaborates to interface x:int;

y:int; z:int; end.)

3I am assuming in this section that the record-like syntax does not include any binding; if it provides

sequential binding, then a slightly more complicated encoding using di�erent external and internal names

will have to be used here to avoid capture.
4The principle type is used to ensure that all ofM 's components are made available. If a non-principle

type was used, it might be missing components because of subsumption.
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13.7.4 Leroy's With Notation

An important abbreviation feature when dealing with translucent sum types is some

version of Leroy's with notation [31]. Leroy's with notation is used to add informa-

tion about the contents of a translucent sums' constructor components to its inter-

face. For example, if S is a valid type that is equal to the semi-canonical type inter-

face type x; type y; end, then S with x=int denotes the interface type x=int;

type y; end. It is an error to attempt to rede�ne what a component is equal to (e.g.,

S with x=int with x=int is erroneous).

Choosing the right scoping rules for with expressions is somewhat tricky. We would

like S with y=x to denote interface type x; type y=x; end, but what should Swith

x=y denote? Possibilities include interface type x=y; type y; end (here x is declared

equal to an x bound outside), an error (because the inner y is not in scope for the
declaration of x), interface type x; type y=x; end (this interfaces makes the x and
y components equal), and interface type y; type x=y; end (this type is a subtype of
S under some forms of extended matching; see Section 13.2 for details). Also problematic
is the question of how to use with notation to set S's y component equal to an x bound

outside without incurring capture by S's x component.
One solution is to alter with expressions so that they reference module components

using a name supplied by the programmer. For example, S with (it) it.y = it.x

would denote the old S with y=x while S with (it) it.y=x would denote setting the
y component equal to an x bound outside of S. In order to keep things simple and to

catch as many programmer errors as possible, I recommend declaring references to non-
preceding components as errors. Thus, S with (it) it.x = it.y would be erroneous.

This change to the with notation solves the scoping problems at the cost of a more
verbose notation. A reasonable alternative might be to provide both forms, with the
original with notation as an abbreviation for the new one: S with n=A would stand

for S with (it) it.n=[it:x=x][it:y=y]A, where it 62 FTV(A). Most of the time the

shorter version could be used, but when necessary (to avoid capture) or to make things
clearer, the longer version could be used.

Note that S with z=int is illegal, even if z exists outside: the with notation is only

allowed to add information to its argument type, not to the surrounding context. We

can extend the with notation to handle nested modules though, by allowing with to

add information about subcomponents. For example, interface type r; val s:S; end

with (it) it.s.y = it.s.x->it.r would be de�ned equal to interface type r; val

s:S with (s) s.y = s.x->r; end, which in turn is equal to interface type r; val

s:interface type x; type y=x->r; end; end.
I recommend against trying to implement the SML sharing-type construct because

of its complicated non-local e�ects: interface type T sharing type x=y; end can

set x and y, which are bound somewhere outside this type, to be equal to each other.
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The clearer with construct can be used for all the same purposes that the sharing-type

construct is used for in SML, abet requiring a bit more thought to use in some cases.

13.7.5 Separate Compilation

Another important extension that can be added by elaboration is separate compilation.

This addition requires that the compiler automatically convert �les containing code with

references to other modules into closed functors using the �les containing the interfaces

for the referenced modules. Some kind of convention needs to be established so that the

compiler can �nd the �les containing the appropriate interfaces. The linker then must

automatically generate code to apply the compiled functors generated by the compiler

to each other in the correct order at runtime. There are many possible ways of setting
up this sort of system; I gave an example of one way in Section 3.8.

13.8 Reformulations

Finally, I want to discuss brie
y two possible reformulations of my kernel system. The
�rst reformulation involves using singleton kinds as an alternative way of capturing the
notion of transparent constructor declarations. Singleton kinds are due independently to
Robert Harper [16] and Xavier Leroy [31]. A singleton kind is composed of a base kind

and a constructor of that kind; in order for a constructor to belong to a singleton kind,

it must belong to the singleton kind's base kind and be equal to the singleton kind's
constructor. A singleton kind thus describes a single equivalence class of constructors.
Singleton kinds are similar to singleton types, but involve the kind and constructor levels
rather than the type and term levels.

I shall describe brie
y one formulation of singleton kinds here. To simplify things,

I shall restrict base kinds (B) syntactically so that they do not include singleton kinds

(=A::B):

De�nition 13.8.1 (Extended kind level syntax)

Base Kinds B ::= 
 j B)B0

Kinds K ::= 
 j =A::B j K)K 0

This restriction avoids the need to handle singleton kinds of the form =A::(=A0::K).

Adding singleton kinds requires allowing kinds to contain constructors; because con-

structors are not always valid (because their use of type and term variables may di�er
from what the assignment says is legal), this change means that an additional judgment

for establishing kind validity (� ` K valid) must be added:
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De�nition 13.8.2 (Valid Kind Rules)

` � valid

� ` 
 valid
(KV-TYPE)

� ` K1 valid � ` K2 valid

� ` K1)K2 valid
(KV-FUN)

� ` A :: B

� ` =A::B valid
(KV-SINGLE)

The other judgments must then be altered to ensure that all kinds in valid judgments are
themselves valid. This change increases the di�culty of proving things about the system
because it makes the kind level dependent on the constructor and term levels.

Because the equality relation on constructors is not syntactic identity, an equal kind

judgment (� ` K1 = K2) must also be introduced:

De�nition 13.8.3 (Kind Equality Rules)

` � valid

� ` 
 = 

(KE-TYPE)

� ` K1 = K 0
1 � ` K2 = K 0

2

� ` K1)K2 = K 0
1)K 0

2

(KE-FUN)

� ` A = A0 :: B

� ` (=A::B) = (=A0::B)
(KE-SINGLE)

The constructor equality judgment then needs to be modi�ed to allow for di�erent but

equal kinds. For example, the E-LAM rule becomes

� ` K1 = K2

�; �::K1 ` A1 = A2 :: K
0

� ` ��::K1: A1 = ��::K2: A2 :: K1)K 0 (E-LAM-K)

It is also necessary to add a rule to handle checking constructor equality at singleton
kinds:

� ` A1 = A2 :: B � ` A1 = A :: B

� ` A1 = A2 :: (=A::B)
(E-SINGLE)

In order to allow subtyping to forget the information about constructor identity con-

tained in singleton kinds, it is necessary to introduce a subkinding judgment (� ` K � K 0)

that allows singleton kinds to be converted to their base kinds:
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De�nition 13.8.4 (Subkinding Rules)

` � valid

� ` 
 � 

(KS-TYPE)

� ` K 0
1 � K1 � ` K2 � K 0

2

� ` K1)K2 � K 0
1)K 0

2

(KS-FUN)

� ` A = A0 :: B

� ` =A::B � =A0::B
(KS-SINGLE)

� ` =A::B valid

� ` =A::B � B
(KS-FORGET)

The subtyping and one-step subtyping judgments are then modi�ed to allow for subkind-
ing. For example, the following rule needs to be added:

� ` K1 � K2

� ` <K1>< <K2>
(O-REIFY)

Subkinding also interacts with the constructor validity judgment by means of a sub-
sumption rule:

� ` A :: K 0 � ` K 0 � K

� ` A :: K
(C-SUMP)

The rules for introducing and using singleton kinds are then as follows:

� ` A = A0 :: B

� ` A :: (=A0::B)
(K-INTRO)

� ` A :: (=A0::B)

� ` A = A0 :: B
(K-ABBREV)

The e�ect of a transparent constructor declaration (constr T=A) can then be gotten
by writing constr T::(=A::B), whereB is the base kind of A. Subsumption can be used

as before to forget T's identity. This ability means that we could either switch to simpler
opaque rei�ed constructors (like the case with singleton types in Section 13.3) or to a

simpler version of translucent sums with only opaque constructor and value declarations.
Thus, in summary, the �rst possible reformulation of the kernel system is to use

singleton kinds rather than transparent rei�ed constructor types to express transparent
constructor de�nitions. While this change would result in a more orthogonal system
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since the concepts of transparent constructor de�nitions and rei�ed constructors would

be split into separate primitives, the accompanying increase in complexity (e.g., compare

the above rules to the only rules needed for transparent rei�ed constructors: C-EXT-T,

E-TRANS, E-ABBREV, and O-FORGET) seems too high to be worth paying. This

tradeo� may change, however, if features like bounded polymorphism, which can be

implemented using power kinds [9], are added to the language.

The second possible reformulation of the kernel system is to reformulate the system so

that modules are second class instead of �rst class. This change would involve introducing

separate module and interface levels; translucent sums and dependent functions would

live on the module level while their \types" would live on the interface level. Because

modules would no longer be terms and interfaces would no longer be types, translucent

sums would need to be extended with three new kinds of declarations: opaque inter-
face declarations, transparent interface declarations, and opaque module declarations.
This extension would allow for modules like module type T=int; val x=3; inter

S=IO INTERFACE; mod s=IO MODULE end and interfaces like interface type O; type

T=int; val x:T; inter I; inter S=IO INTERFACE;mod s:S end.
Either a non-factored version of translucent sums could be used (see Section 13.1) or

opaque rei�ed values, translucent rei�ed constructors, and translucent rei�ed interfaces
could be introduced on the module level. These would allow packaging up a value, a
constructor, or an interface as a module, possibly with information about its contents
in its interface if it packages a constructor or an interface. They would thus allow
opaque value, transparent and opaque constructor, and transparent and opaque interface

declarations to be expressed using only opaque module declarations.
Separate record, non-dependent function, and polymorphic abstraction constructs

would need to be introduced at the term level to handle the previous non-module uses of
translucent sums and dependent functions. The subtyping relation on constructors would
no longer be needed, but new notions of equality and subtyping for interfaces would have

to be introduced. (Forgetting of information would occur only at the interface level.)
Unless additional constructs were added at the interface level (e.g., parametric inter-

faces or functions mapping interfaces to interfaces), these relations would be relatively

simple because there is no analog to ��-reduction on the interface level, only an analog
of 
-reduction. The subtyping relation for interfaces would still be undecidable, however,

for the same reasons that the kernel system's subtyping relation is undecidable. (The
proof in Sections 10.6 to 10.9 can be adapted to this case.)

An even simpler system can be obtained by disallowing opaque or transparent in-
terface declarations (and hence 
-reductions); this change makes interface equality com-

pletely structural: equality cannot change the shape of interfaces. It thus greatly sim-
pli�es place lookup as well as many other parts of the system. It particular, it is likely

that type checking decidable is decidable for this system. Xavier Leroy's manifest-types

system [31] (see Section 14.3) takes this approach. It is unclear, though, how problematic



CHAPTER 13. EXTENSIONS 298

the lack of transparent interface de�nitions is from the programmer's viewpoint.

Either way, I expect the resulting system to be far easier to prove things about in spite

of the likely larger number of rules and constructs. Because there are no conditionals

at the module level, types at runtime will not be able to depend on runtime values in

a second-class module system; this fact means that additional typings can be assigned

to such programs that would be unsound in the presence of �rst-class modules. One

extension that permits such typings is Xavier Leroy's applicative functors [32]. (See

further discussion in Section 14.4.) The utility of such extensions should be investigated

for any second-class module system.



Chapter 14

Related Work

In this chapter I discuss work related to the work contained in this dissertation.

14.1 First-Order Module Systems

How does the module system I built relate to �rst-order module systems? The answer is
that languages like Modula-2 [56], which have �rst-order module systems, basically im-

plement the �rst-order fragment of a second-class version of my module system. (By the
�rst-order fragment, I mean here the fragment that results from syntactically disallowing
the use of functors and submodules.)

These languages allow translucent interfaces (interfaces that may contain both opaque
and transparent type declarations), and propagate type-identity information across mod-

ule boundaries similarly to my translucent approach. In particular, the only information
available about a module's type component is that provided by the module's interface.
Their type systems are extremely simple compared to my kernel system because they do

not need to deal with issues like how to compute the interface of a functor application
or how to rewrite an interface into a form that can be used.

For e�ciency reasons, most of these languages only allow reference (aka pointer) types

plus possibly some other types with single{machine-word representations like integers to

be held abstract. This decision allows polymorphic code to treat abstract-type values
uniformly since they all occupy a single machine word, while still allowing non-abstract-

type values to have multiple-word representations. By contrast, most implementations
of Standard ML, which does not have this restriction, are less e�cient because they

represent all values as single machine words. This choice allows polymorphic code to

work uniformly as before on any type, but requires types that need more than one word
of storage to be represented as a pointer to data in the heap. This extra level of indirection

slows down Standard ML and uses more space.

299
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The restriction on what types can be held abstract is implemented by requiring that

type components declared opaquely in interfaces must contain types that may be held

abstract. This restriction could be added to my kernel system by modifying the O-

FORGET subtyping rule so that it requires that the type being forgotten can be held

abstract:
� ` A :: 
 � ` A sword

� ` <=A::
>< <
>
(O-FORGET')

Here, � ` A sword is a new judgment that denotes that A's values �t in a single machine

word. I have limited this rule to types because none of these languages allow opaque

higher-kinds. It would not be di�cult, however, to extend this rule to allow holding

abstract constructors that when fully applied always produce a type that �ts in a single
machine word.

Ada [52] handles the problem of how to implement abstraction in an e�cient man-
ner di�erently: Instead of restricting what types may be held abstract, it replaces
opaque type declarations with private type declarations. A private type declaration

for � (type � privately is A) declares privately that � is equal to A. This informa-
tion about �'s identity is not visible to the programmer: � is an abstract type that is
unequal to A, preventing the programmer from taking advantage of the fact that � must
be equal to A at runtime. The information is visible to the compiler, however, allowing
it to generate non-polymorphic | and hence e�cient | code.

The main drawback of using private rather than opaque type declarations to imple-
ment abstraction is that they increase the amount of recompilation that needs to be done
when modules are changed: With private type declarations, if the programmer changes
the representation type of an ADT, all the client modules that use that ADT will have
to be recompiled because their code depends on the ADT's representation type. No
recompilation of client modules is required with opaque type declarations because the

generated code in that case is polymorphic in the ADT's representation type.
Aside from the extra recompilation incurred, using private instead of opaque type

declarations works �ne in a �rst-order module system. Attempting to build a higher-

order module system without opaque type declarations, however, leads to problems; I
shall explain why in Section 14.2.2 where I cover Mesa and Cedar, which have only

transparent and a weak form of private type declarations.

14.2 Previous Higher-Order Module Systems

In addition to the work I have already mentioned in Chapter 2, there are several other
previous (proposed) programming languages with module systems that permit non-trivial

manipulations of modules.
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14.2.1 Modula-3

Modula-3 [45] provides a functor-like construct called a generic module. A Modula-3

generic module is a module parametrized by a series of interface names. Such a module

can be instantiated by binding its formal interface parameters to the names of actual

interfaces. Instantiation is essentially equivalent to making a textual copy of the body of

the generic module with the formals replaced by the actual names; each such instantiation

results in new machine code, unlike functor applications in my system.

Moreover, only actual instantiations are type checked; the generic module itself cannot

be type checked because no information is available for its formals. Generic modules thus

act as untyped macros. This fact means that we lose the bene�ts of static typing and

separate compilation whenever we use Modula-3's higher-order module-system features.

Also, because instantiation can be done only at compile time, generic modules must
be second-class values. These drawbacks make for a highly-unsatisfactory higher-order
module system.

Modula-3's method of handling abstraction di�ers from all other higher-order mod-
ule systems I am aware of. Modula-3 has two separate sorts of types, which I call

transparently-de�ned types and revealed types. Transparently-de�ned types are de�ned
using transparent type declarations and act the same as in my system. Revealed types,
by contrast, are abstract by default unless information about their identity is available
in the current scope.

While most higher-order module systems use a model where information about type

identities 
ows locally from place to place, starting from the implementation and oc-
casionally getting restricted along the way, Modula-3 uses a model where identity in-
formation for revealed types can be given anywhere using a reveal declaration; global
restrictions ensure that the information revealed is self consistent and that the full in-
formation about a revealed type is revealed in exactly one place. By placing the full

revelation for an ADT's type in its implementation module, the programmer can thus

ensure that no client module has access to the full representation information. Note that
because of the need for global checks, this approach cannot type check modules using
only the interfaces they reference; it is thus incompatible with separate compilation.

Unlike my system, Modula-3 supports partial abstraction: The programmer can

choose to reveal only that an ADT's representation type is a subtype of some type

A. This feature can be used in combination with Modula-3's object-oriented features to

implement private (in the sense of C++) �elds in objects. It can also be used to give two
interfaces to an ADT, one for normal users that hides implementation details and one for

experts that reveals a more complicated and powerful interface; this is done by revealing
a smaller subtype in the expert interface than in the normal one. Partial abstraction

seems to be useful only when combined with objects.

The obvious way to add partial abstraction to my system would be to add partially-
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opaque type declarations (type � <: A). Forgetting would then allow converting from

transparent to partially-opaque to even more opaque to fully-opaque type declarations.

Partially-opaque type declarations in assignments would induce subtyping inequalities in

the same way that transparent type declarations induce equalities in the current system.

The subtyping procedure would need to be revised to handle the resulting inequalities.

14.2.2 Mesa and Cedar

The programming languages Mesa [40, 13] and its successor Cedar [30, 54, 55, 3] fall out-

side my opaque verses transparent classi�cation of higher-order module systems. These

languages are unusual in that they require interfaces to fully specify the identity of all

type components; it is impossible in these languages to refrain from committing to what
type(s) a module will contain. Types in these languages are thus really contained in
interfaces (as type abbreviations) rather than in modules since two modules with type
components containing di�erent types can never have the same interface.

Accordingly, most of the interesting uses of higher-order features are inexpressible
in these languages. For example, functors are much less useful when they cannot take

modules containing types as inputs1; the B-Tree example (see Section 1.4) is completely
inexpressible in these languages, for example. Also, these languages do not provide (real)
data abstraction.2

Because modules depend only on interfaces (all the needed type information is re-
quired to be available in the interfaces), these languages support separate compilation

and could, potentially, support modules as �rst-class values. Modules as �rst-class values
are fairly useless, however, if modules cannot contain types, because it is not possible in
that case to choose between di�erent ADT implementations at runtime.

14.2.3 Standard ML

Experience with the programming language Standard ML (SML) [21] has provided much
of the motivation for work on higher-order module systems; SML was the �rst widely

available real programming language with a higher-order module system. SML has a

(mostly) transparent module system that provides modules, submodules, and �rst-order

functors at a separate module level. This strati�cation of module-like constructs from

ordinary terms limits modules to being second-class values in SML.

1Caveat: It is possible to get around this problem somewhat by using the System Modeller (a module

con�guration language for Cedar)'s ability to treat any module as a Modula-3{like generic module

parameterized by the names of its input and output interfaces; however, this \solution" has the same


aws as using generic modules (see Section 14.2.1).
2A very weak form of data abstraction | any module can violate the abstraction by simply declaring

that it wishes to do so | is available via a weak form of private type declaration.
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SML has the transparent approach's advantages and disadvantages as described in

Section 2.2 with one exception mentioned below. Unlike in a pure transparent approach,

though, datatype expressions (a core-level data-structure mechanism) and module ex-

pressions in SML are generative: Each time they are evaluated, they give rise to a new

instance with a unique identity. This generativity is implemented in the SML type sys-

tem by means of a complicated, non-declarative, and hard to reason about mechanism

that uses stamps.

The generativity of datatype expressions is present to ensure that types generated

with abstype expressions are abstract: A datatype expression creates at the same time

a new type di�erent from any other and a set of (de)-constructors for constructing and

de-constructing values of that type; an abstype expression can be thought of as sugar for

�rst declaring a datatype, second, de�ning some operators using the new datatype, and
third, hiding the datatype's (de)-constructors. This procedure results in a type whose
values can be manipulated only using the previously-de�ned operations.3

Although intended as a core-level abstraction mechanism, it is possible, though some-
what awkward, to get data abstraction at the module level by either using an abstype
expression directly, or more 
exibly, by using a datatype for the representation type of

the ADT then using a type coercion to forget all the (de)-constructors of the datatype
outside of the ADT module. SML, thus, unlike other transparent module systems, has
the advantage of providing a form of module-level data abstraction.

The generativity of modules is only important for structure-sharing speci�cations,
an SML feature similar to type-sharing speci�cations that allows requiring that two

submodules of a module are identical (see Section 13.3 for discussion of how structure-
sharing speci�cations might be added to my system); because of the generativity of
modules, the test for module identity is not whether or not two modules contain the
same components, but whether or not they were created from the same evaluation step.
Structure-sharing speci�cations are not considered to be very useful and recent proposals

for new versions of SML [24, 47] suggest dropping them from the language.

In addition to structure-sharing speci�cations, SML allows type-sharing speci�cations
(see Section 3.9). SML allows type-sharing speci�cations to refer only to type names, not
arbitrary type expressions. This restriction prevents SML from giving fully transparent

interfaces in many cases. The lack of fully transparent interfaces, in turn, prevents SML

from providing separate compilation: It is not possible in general to give an interface for
a module that captures all the information the type checker can obtain from inspecting

that module's implementation directly; hence there are legal SML programs that cannot
be divided into module-sized pieces that type check separately.

3Caveat: Abstype and the given desugaring di�er on their treatment of equality: abstypes never

admit equality, while the desugaring's result type admits equality i� the underlying datatype does. This

di�erence cannot be removed because SML does not provide any way to hide automatically-generated

equality functions.
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The New Jersey implementation of SML (SML/NJ, version 0.93) [1] extends SML

in a number of ways. In particular, it adds to the SML module system the ability to

have higher-order functors, although in a way that depends on SML having modules

as second-class values (see Section 14.4), and a way to make selected modules' bound-

aries opaque, the abstraction binding. Note that because abstraction bindings can only

make a boundary completely opaque, they cannot be used to solve the B-Tree example

or similar problems. SML/NJ also adds additional software support for incremental re-

compilation [18], which partially makes up for SML/NJ's lack of separate compilation

by reducing the number of unneeded recompilations required. It is still not possible to

compile without implementations of all referenced modules though.

14.2.4 Experimental Designs

Burstall and Lampson's experimental language Pebble [8] is an early transparent design;
unlike later transparent work, it has modules as �rst-class values. It avoids unsoundness
only because of a lack of e�ects; Burstall and Lampson suggested that side e�ects could
be added to Pebble by �rst extending Pebble's type system to distinguish expressions

that might cause e�ects from those that could not, and then, second, restricting types
to expressions that could not cause e�ects. Pebble has no phase distinction and its type
checking problem is undecidable. These problems have lead later researchers to consider
the transparent approach incompatible with modules as �rst-class values.

Mitchell, et al. [42] consider an extension of the SML module system with �rst-

class modules as a means of supporting certain object-oriented programming idioms.
Their paper is primarily concerned with illustrating an interesting language design rather
than with the type-theoretic underpinnings of such a language, though a brief sketch is
provided.

Their system is particularly interesting, because like mine, their system displays a

forced loss of typing information when using modules in conditionals and other primitives.
In that system, types are divided into two universes, U1, the universe of \normal" types

like int and bool!int, and U2, the universe of module types. The loss in their system is

caused by the need to apply an implicit coercion from a strong sum (which belongs to
U2) to a weak sum (which belongs to U1) because primitives operate only on terms with

types in U1. This coercion causes a total loss of typing information. My system is more

exible than this because it only loses just enough information to ensure soundness.

Russell [7] and Poly [39] both seem likely to have some relationship with my system,
but a detailed comparison seems di�cult in the absence of a type-theoretical analysis of

these languages (see [25] for an early attempt).
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14.3 Manifest Types

The most directly relevant work to mine is Xavier Leroy's work on manifest types [31].

This work, done independently, uses similar ideas but di�ers most fundamentally from

mine in that his system treats modules as second-class values. This choice greatly simpli-

�es the theoretical complexity of his system and holds out the possibility of a decidable

type system if named interfaces are prohibited. (Section 13.8 discusses these matters in

more detail.)

His system also di�ers from mine in that his system is based on Damas-Milner style

polymorphism [12] and is implicitly typed, while my kernel system is based on Girard's

F! and is explicitly typed. He has not yet provided either a proof of soundness or a

provably-correct type-checking procedure4 for his system.
The two systems also di�er due to slightly di�erent type machinery arranged in di�er-

ent ways. For example, Leroy independently invented an operation he calls strengthening
(written A=x� in my notation) which corresponds to the self function in my system. In
Leroy's original formations of manifest types [31, 32], A=x� computes essentially the same

type as my [self=x�]A except for transparent types: My self function leaves transparent
types unchanged ([self=x�]<=A::K> = <=A::K>), while Leroy's original strengthen-
ing operation replaces the information already in the transparent type with information
about the name of the type (<=A::K>=x� = <=x�!::K>). In more recent formations
of manifest types [33, 34], Leroy has switched to a version of strengthening that treats

transparent types in the same way as my self function.
Another technical di�erence is that Leroy combines external and internal names for

modules into a single identi�er (written xi where x is the external name and i the internal
one). Leroy's system requires the user to supply only the external name for an identi�er,
generating the internal name automatically using stamps: Each time an external name

is bound, it is assigned a fresh internal identi�er name; external-name references are
assigned the internal name from the innermost binding of that external name in scope.
This design decision is problematic, however, because it makes it impossible for the user

to refer to outer components shadowed by an inner component with the same external
name (e.g., the example in Section 13.1).

14.4 Modules as Second-Class Values

Since the initial publication of my work on translucent sums [20] and Leroy's work on

manifest types [31], followup work has begun to appear in the literature. A sizeable

4He did give a type checking procedure and a \proof" of its correctness in his paper [31], but both

were later discovered to be 
awed.
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I = interface type T; end;

Apply =

functor (F:FUNCTOR(x:I):I, A:I)

F(A);

Int = module type T=int; end;

Bool = module type T=bool; end;

Id = functor (x:I) x;

ConstInt = functor (x:I) Int;

Figure 14.1: Leroy's paradigmatic higher-order functor example

portion of this new work concerns the expressiveness of such systems (translucent module
systems) when modules are second-class values.

Leroy showed in a recent paper [34] that translucent module systems capable (possibly
via extension) of supporting modules as �rst-class values can express most (unextended)
SML programs5 so long as SML type ascriptions (M : A) are translated to coercion
functors in the obvious way. (The translation is necessary because SML type ascriptions
can drop or reorder components but not forget type information.)

This result, however, does not extend to SML/NJ because the proof breaks down
in the presence of higher-order functors. To see where the problem arises, consider
Figure 14.1, an example due to Leroy [32]. Here we have de�ned an interface I for
modules that contain a type T and then de�ned a higher-order functor Apply that takes
a functor (F) mapping I's to I's and an I (A), and returns the result of applying F to

A. The rest of the example is composed of a number of sample modules and functors for

use in testing Apply.
In SML/NJ (assuming the appropriate syntactical translation) and other transpar-

ent module systems with higher-order functors, Apply behaves in what MacQueen and

Tofte [38] call a fully-transparent manner: That is, the type checker knows everything

that could be learned from actually executing the functor application(s). In particular,

it knows the following:

Apply(Id; Bool):T = bool

Apply(ConstInt; Bool):T = int

5Leroy's proof does not cover SML code that uses structure sharing or partially-applied higher-order

constructors.
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SML/NJ is able to infer these type identities because it type checks functor applica-

tions by essentially executing them while ignoring any value components. Such execution

must terminate because there are no conditionals or looping mechanisms at the module

level in SML/NJ. By actually executing functor-application expressions, SML/NJ can

�gure out the exact identity of the resulting type components. Note, however, that

SML/NJ's ability to do this type-identity computation depends crucially on its knowl-

edge of the exact de�nition of the functors involved; because this information cannot be

encoded in their types in SML/NJ, many uses of Apply will not type check in SML/NJ

if separately compiled.

In my system and Leroy's original version of manifest types, by contrast, Apply(F,A).T

is always an abstract type, regardless of what F and A are: Apply gets assigned the type

FUNCTOR (F:FUNCTOR (x:I):I, A:I):I

because F(A) is not an extended value. Functors in these systems are thus not fully
transparent in the sense of [38].

This behavior should not be too surprising, however, for the case where modules are
�rst-class values: There is in general no reasonable way to completely evaluate functor
applications at type-checking time when they may involve conditionals, recursion, and

the computation of arbitrary values. Even approximations of fully-transparent behavior,
such as Leroy's applicative functors (described later in this section), that assume that
types do not depend on runtime values are unsound in the presence of �rst-class modules.
It may be possible to incorporate such approximations in a systemwith �rst-class modules
by distinguishing (via the type system) those functors that do not use modules in a �rst-

class manner; unsoundness would then be avoided by using the approximation only on
expressions involving those functors.

It is possible, however, to specialize Apply so that it can handle some of the Apply

test cases correctly at the cost of excluding others. For example, we could de�ne the
following specialized versions of Apply:

ApplyId =

functor (F:FUNCTOR(x:I) :I with T=x.T, A:I)

F(A);

ApplyConstInt =

functor (F:FUNCTOR(x:I) :I with T=int, A:I)

F(A);
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Then, under the two translucent systems, we would have that

ApplyId(Id;Int):T = int

ApplyId(Id;Bool):T = bool

ApplyConstInt(ConstInt; Int):T = int

ApplyConstInt(ConstInt; Bool):T = int

However, ApplyId(ConstInt,Int) and ApplyConstInt(Id,Int) fail to type check.

Xavier Leroy has suggested that it may be possible to some degree to use extra

parameterization by possibly-singleton kinds (see Sections 13.4 and 13.8) to produce

more 
exible versions of Apply [35]. For example, the following version can act either

like Apply if it is given the kind type as its �rst argument or like ApplyConstInt if it is
given the singleton kind =int::type as its �rst argument:

FlexApply =

functor (K:KIND, F:FUNCTOR(x:I) :I with T::K, A:I)

F(A);

Here, I with T::K is intended to denote interface constr T::K; end by analogy with
the usual with notation. FlexApply cannot be made to act like ApplyId though (x.T is
not in scope outside of FlexApply). It is possible that FlexApply could be made still

more 
exible by introducing kinds that depend on term variables but this approach seems
to be far more trouble than it is worth.

If modules are restricted to second-class values, the translucent approach can be ex-
tended to handle the Apply example in the same way that SML/NJ does. Leroy's work
on applicative functors [32] demonstrates one way to accomplish this. Under this ap-

proach, functor applications are assumed to never generate new constructors: Any result
constructor (sub)-component of a functor is assumed to be a (deterministic) function
of the constructors contained in that functor's arguments. Thus, if A = B and F(A).T

is valid then F(A).T must equal F(B).T. This assumption is true in SML/NJ because
SML/NJ has no way to choose a module (and hence its constructors) at runtime.

Leroy noticed that under this assumption he could safely allow the following set of
terms in constructors:

Extended Names � ::= x j �:y j �1(�)2

Note that because of the assumption and the fact that we are using call-by-value, the
expression �:� must denote a constant constructor during each of its dynamic scopes.

Using this extension to the set of terms legal in constructors, we can give Apply the

following type:

FUNCTOR (F:FUNCTOR (x:I):I, A:I):I with T=F(A).T
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(Leroy's EVALUE-like rules give F(A) the type I with T=F(A).T in this system.) To

handle type checking Apply(Id,Bool) then, for example, we would �rst specialize further

Apply's type as follows:

FUNCTOR (F:FUNCTOR (x:I):I, A:I):I with T=F(A).T

FUNCTOR (F:FUNCTOR (x:I):I with T=x.T, A:I)

:I with T=F(A).T

FUNCTOR (F:FUNCTOR (x:I):I with T=x.T, A:I)

:I with T=A.T

The �nal specialized type is same type as the original translucent systems gave to Ap-

plyId. Accordingly, it can be used to show that

Apply(Id; Int):T = int

Apply(Id; Bool):T = bool

If we wished to type check Apply(ConstInt,Bool).T instead, we would have instead

specialized Apply to the type of ApplyConstInt:

FUNCTOR (F:FUNCTOR (x:I):I with T=int, A:I)

:I with T=int

This method is in fact general and can be used to handle all uses of Apply possible in
SML/NJ.

Leroy's applicative-functor system is thus more fully transparent than either of my
and Leroy's original translucent module systems. Because of the applicative-functor
system's underlying assumptions, functors in that system cannot produce new abstract

types each time they are applied to the same argument. However, this slight loss of
abstractive power over the original systems is unlikely to be problematic in practice.

Leroy's applicative-functor system is not fully transparent, however. Consider the
following more complicated functor:

ApplyList =

functor (F:FUNCTOR(x:I):I, A:I)

F(module type T=list(A.T); end);

Because ApplyList's functor body is not an extended name, ApplyList can only be
given the opaque type

FUNCTOR (F:FUNCTOR (x:I):I, A:I) :I
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Accordingly, ApplyList(Id,Int).T is abstract in this system rather than equal to list(int)

as required by full transparency.

In principle it should be possible to build a system with a rich enough type system so

that both separate compilation and full transparency can be achieved at the same time.

Because separate compilation requires that all information needed for type checking the

uses of a functor be expressible in that functor's interface, this goal will require functor

interfaces to (optionally) contain an idealized copy of the code for the functor whose

behavior they specify. I expect such a system to be highly complicated and hard to

reason about. MacQueen and Tofte [38] have begun to explore how a system with full

transparency might be built.

There thus appears to be a tradeo� in higher-order module systems with second-class

modules between system simplicity and the degree of full transparency provided. Unfor-
tunately, there is as yet no consensus on the value of full transparency to programmers
because of insu�cient experience with higher-order functors.

14.5 Other Follow-On Work

Feeling that the type theory of translucent module systems is unnecessarily complicated,
Mark Jones has recently proposed an alternative approach to handling higher-order mod-
ule systems [27]. He observes that programs written in a SML-like module system without
abstraction or generativity can be translated into a system with no modules or functors

but with (ordinary) records, functions, and universal polymorphism (8�:A). The trans-
lation works by lifting type de�nitions within a module to the top level, in a manner
similar to �-lifting (see his paper for details). He believes that abstraction can be pro-
vided separately, possibly via (opaque) existentials. He thus suggests that we can do
away with modules containing type components entirely, and just program directly in

the translation's target system.

I do not consider his proposed solution satisfactory for three reasons. First, his trans-
form does not respect extended-interface matching: Dropping a type component from
a module does not produce a module whose type is a supertype of the original mod-

ule's type. Second, his suggested style of programming forces the programmer to place

the type de�nitions and procedure de�nitions of a single \module" far apart, violating

the modularity percept that related de�nitions should be bundled together. Third, and

most crucially, he is mistaken in his belief that abstraction can be separated from where
types are de�ned: Abstraction via existentials requires that abstract types be de�ned in

the same place as the operations that implement them while his transformation requires
separating type de�nitions from the code that uses them; thus, his transformation and

abstraction via existentials are incompatible.

My work has already begun to be used in the design of new programming languages.



CHAPTER 14. RELATED WORK 311

In [46], John Ophel investigates how a small language with �rst-class modules based on

translucent sums might be de�ned and what the consequences of such a language might

be. In [24], Robert Harper and Chris Stone give a type-theoretic semantics for a new

version of SML, SML 1996, using an typed intermediate language with translucent sums.

While SML 1996 is essentially a slightly better tuned and simpli�ed version of the

original SML, work is underway to build a successor language to SML, currently called

ML2000, that will be substantially more powerful than the current SML implementa-

tions [17]. ML2000's module system is based on my work on translucent sums. It treats

modules as second-class values in order to keep the type system simple; I feel that this

was a wise choice, given that ML2000's type system also has to deal with object oriented

features, a known source of complexity [47].



Chapter 15

Conclusions

In this, the �nal chapter, I sum up the contributions of my dissertation and discuss
possible future work.

15.1 Contributions

This dissertation makes a number of contributions. I divide them up here according to

the area they contribute in.

15.1.1 Better Higher-Order Module Systems

I began this dissertation work with the following thesis:

By basing a module system on a new type-theoretic concept, namely a new
kind of weak sum that can contain both transparent and opaque type de�-
nitions called a translucent sum, it is possible to obtain a higher-order mod-

ule system with the advantages of both the opaque and the transparent ap-

proaches, but none of their disadvantages.

I believe I have by now �rmly established this thesis. In chapter 3, I showed how my
approach using translucent sums provides the advantages of the opaque approach, namely

� (Open) data abstraction is provided at the module level.

� Separate compilation is supported.

� Modules are �rst-class values.

as well as the advantages of the transparent approach, namely

312
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� Modules can \contain" other types.

� Modules may export type abbreviations.

Moreover, my approach provides the following additional advantages not available in

either of the two previous approaches:

� All of the higher-order idioms work.

� Transparency and opacity can be mixed, even in the same module.

My approach also o�ers the following advantages:

� User-de�ned higher-order constructors are available.

� Functors are �rst-class.

� Higher-order functors are provided.

� Type-sharing speci�cations can be encoded.

� Linking and separate compilation can be described in the resulting programming
language.

� The resulting system has a simple and uniform type theory.

My approach thus represents a major step forward in the design of higher-order
module systems over previous approaches, providing the �rst truly satisfactory higher-

order module system. This is the single biggest contribution of my dissertation.

15.1.2 Feasibility of My Approach

In order to show that these advantages are actually realizable in practice, I need to
show that my approach is feasible. I have done this by creating a complete working
system using my approach | the kernel system | and proving that it has the necessary

properties. In particular, I have shown the following:

� How to arrange the system and its associated proofs so they are tractable

� The system's soundness even in the presence of side e�ects

� How to do type checking e�ectively by giving:

{ a recursive algorithm for constructor and assignment validity

{ a recursive algorithm for constructor equality
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{ a semi-decision procedure for subtyping

{ a proof that type checking is decidable, given an oracle for subtyping

{ a semi-decision procedure for type checking

{ an argument that the semi-decidability of type checking is not likely to be

problem in practice

All of these represent contributions of my dissertation; the �rst item above is particularly

important because of the complexity of systems providing translucent sums. I expect that

this dissertation, especially the section on recommended improvements (Section 9.7), will

prove invaluable to future designers of systems with translucent sums. In additional to

being useful as a starting point for building extended systems, my kernel system is likely
to be useful as a reduction target because of these proven properties; for example, I
expect that the soundness of Xavier Leroy's system [31] can be established in this way
far more easily than if it was proved directly.

The negative results about soundness under certain extensions, the decidability of
subtyping (and hence type checking), and the existence of principle types if implicit
subsumption is permitted are also contributions of my dissertation. Similarly to the case
with the full kernel system, I expect that the simple system (see Section 10.6) will be
useful in proving subtyping in other systems with translucent sums undecidable.

15.1.3 Technical Contributions

My dissertation also contains a number of more technical contributions. The most obvious
of these are a large number of properties about the kernel system's type system that are

useful in reasoning about the kernel system. For example, I have shown that in the kernel
system all of the following operations preserve judgment validity:

� weakening (adding extra declarations to assignments)

� strengthening (removing unreferenced declarations from assignments)

� replacing a type in an assignment by a subtype

� subject reduction on constructors

Several of the techniques I used to make the proofs more tractable are also noteworthy:

� Specializing the well-typed term judgment to places so that the constructor validity
and equality judgments do not depend on term validity or subtyping judgments

� Using the self function to normalize typing derivations
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� De�ning subtyping as a series of equality and one-step subtyping steps

� Factoring translucent sums into dependent sums plus rei�ed constructors

� Introducing a separate tagged system to remove the dependency of rewriting (and

hence equality) on assignments

The �rst three of these techniques are tied fairly closely to systems involving translucent

sums. However, the fourth technique, factoring, could be used to simplify any system

with modules or sums that allow �elds to contain either terms or types, and the �fth

technique, the use of a tagged system, could be applied usefully in any system where the

rewriting of constructors depends on the assignment.

15.2 Future work

One obvious piece of future work would be to construct a prototype based on the kernel

system, but with a more programmer-friendly interface. Ideally, some form of type infer-
ence would be devised for the prototype so as to reduce the amount of type information
that would need to be given by the programmer. The prototype would be especially
useful in evaluating the value of having modules as �rst-class values; exploration with
the prototype might well lead to the discovery of useful new higher-order{module idioms.

The two extensions to the kernel system that I think are the most interesting to pursue
are adding reordering via an elaboration stage (this will require determining the proper
reordering rule(s) for subtyping), and adding transparent value declarations to permit
inlining. I also think that it is worth investigating the relationship between �rst-class
modules and objects in more detail.



Appendix A

Collected Kernel System Rules

A.1 The Kind and Constructor Level

De�nition A.1.1 (Syntax for the constructor and kind levels)

Kinds K ::= 
 j K)K 0

Constructors A ::= � j �x:A:A0 j �x:A:A0 j ��::K:A j AA0 j
<K> j <=A::K> j x�! j rec j ref

Paths � ::= � j �:1 j �:2

Assignments � ::= � j �;D
Declarations D ::= �::K j x:A
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De�nition A.1.2 (Free constructor variables)

FCV(�) = f�g
FCV(��::K:A) = FCV(A)� f�g
FCV(�x:A1: A2) = FCV(A1) [ FCV(A2)

FCV(�x:A1: A2) = FCV(A1) [ FCV(A2)

FCV(A1A2) = FCV(A1) [ FCV(A2)

FCV(<=A::K>) = FCV(A)

FCV(<K>) = ;
FCV(x�!) = ;
FCV(rec) = ;
FCV(ref) = ;

FCV(�::K) = ;
FCV(x:A) = FCV(A)

FCV(�) = ;
FCV(�;D) = FCV(�) [ FCV(D)

De�nition A.1.3 (Free term variables)

FTV(x�!) = fxg
FTV(�x:A1: A2) = FTV(A1) [ (FTV(A2)� fxg)
FTV(�x:A1: A2) = FTV(A1) [ (FTV(A2)� fxg)
FTV(��::K:A) = FTV(A)

FTV(A1A2) = FTV(A1) [ FTV(A2)
FTV(<=A::K>) = FTV(A)

FTV(�) = ;
FTV(<K>) = ;
FTV(rec) = ;
FTV(ref) = ;

FTV(�::K) = ;
FTV(x:A) = FTV(A)

FTV(�) = ;
FTV(�;D) = FTV(�) [ FTV(D)
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De�nition A.1.4 (Constructor substitution)

[A=�]� = A

[A=�]�0 = �0 (� 6= �0)

[A=�]��0::K:A0 = ��0::K: [A=�]A0 (�0 6= �; �0 62 FCV(A))

[A=�]�x:A1: A2 = �x:[A=�]A1: [A=�]A2 (x 62 FTV(A))

[A=�]�x:A1: A2 = �x:[A=�]A1: [A=�]A2 (x 62 FTV(A))

[A=�](A1A2) = [A=�]A1 [A=�]A2

[A=�]<=A0::K> = <=[A=�]A0::K>

[A=�]<K> = <K>

[A=�]x�! = x�!

[A=�]rec = rec

[A=�]ref = ref

[A=�](�0::K) = �0::K
[A=�](x:A0) = x:[A=�]A0

[A=�]� = �
[A=�](�;D) = ([A=�]�); [A=�]D

De�nition A.1.5 (Place substitution)

[x�=x0]x0�0 = x��0

[x�=x0]x00�00 = x00�00 (x0 6= x00)

[x�=x0](x00�00!) = ([x�=x0]x00�00)!
[x�=x0]�x00:A1: A2 = �x00:[x�=x0]A1: [x�=x

0]A2 (x00 6= x; x00 6= x0)
[x�=x0]�x00:A1: A2 = �x00:[x�=x0]A1: [x�=x

0]A2 (x00 6= x; x00 6= x0)
[x�=x0]��::K:A = ��::K: [x�=x0]A
[x�=x0](A1A2) = [x�=x0]A1 [x�=x

0]A2

[x�=x0]<=A0::K> = <=[x�=x0]A0::K>

[x�=x0]� = �

[x�=x0]<K> = <K>

[x�=x0]rec = rec

[x�=x0]ref = ref

[x�=x0](�::K) = �::K

[x�=x0](x00:A) = x00:[x�=x0]A

[x�=x0]� = �
[x�=x0](�;D) = ([x�=x0]�); [x�=x0]D



APPENDIX A. COLLECTED KERNEL SYSTEM RULES 319

De�nition A.1.6 (Selection)

S(A;x�; �) = A

S(�x0:A1: A2; x�; :1�
0) = S(A1; x�:1; �

0)

S(�x0:A1: A2; x�; :2�
0) = S([x�:1=x0]A2; x�:2; �

0)

De�nition A.1.7 (Assignment regarded as a partial function)

dom(�) = ;
dom(�; x:A) = dom(�) [ fxg
dom(�; �::K) = dom(�) [ f�g

(�1;x:A; �2)(x) = A (x 62 dom(�1))

De�nition A.1.8 (Arrow types)

The arrow type A!A0 is de�ned to be equal to �x:A:A0 where x 62 FTV(A0). The arrow
operator (!) is de�ned to have lower precedence than application (A1A2).

De�nition A.1.9 (Pair types)

The pair type (A;A0) is de�ned to be equal to �x:A:A0 where x 62 FTV(A0).

De�nition A.1.10 (Polymorphic types)

The polymorphic type 8�::K:A is de�ned to be equal to �x:<K>: [x!=�]A where x 62
FTV(A).

De�nition A.1.11 (Judgments)

` � valid valid assignment

� ` A :: K valid constructor

� ` A = A0 :: K equal constructors

� ` A � A0 subtype relation

� ` x�) A place lookup

� ` A< A0 one-step subtype relation

De�nition A.1.12 (Assignment Formation Rules)

` � valid (EMPTY)

` � valid � 62 dom(�)

` �; �::K valid
(DECL-C)
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� ` A :: 
 x 62 dom(�)

` �; x:A valid
(DECL-T)

De�nition A.1.13 (Constructor Formation Rules)

` � valid �::K 2 �

� ` � :: K
(C-VAR)

�; x:A ` A0 :: 


� ` �x:A:A0 :: 

(C-DFUN)

�; x:A ` A0 :: 


� ` �x:A:A0 :: 

(C-DSUM)

�; �::K ` A :: K 0

� ` ��::K:A :: K)K 0
(C-LAM)

� ` A1 :: K2)K � ` A2 :: K2

� ` A1A2 :: K
(C-APP)

` � valid

� ` <K> :: 

(C-OPAQ)

� ` A :: K

� ` <=A::K> :: 

(C-TRANS)

� ` x�) <K>

� ` x�! :: K
(C-EXT-O)

� ` x�) <=A::K>

� ` x�! :: K
(C-EXT-T)

` � valid

� ` rec :: (
)
))

(C-REC)

` � valid

� ` ref :: 
)

(C-REF)
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De�nition A.1.14 (Constructor Equality Rules)

� ` A :: K

� ` A = A :: K
(E-REFL)

� ` A0 = A :: K

� ` A = A0 :: K
(E-SYM)

� ` A = A0 :: K � ` A0 = A00 :: K

� ` A = A00 :: K
(E-TRAN)

� ` A1 = A01 :: 


�; x:A1 ` A2 = A02 :: 


� ` �x:A1: A2 = �x:A01: A
0
2 :: 


(E-DFUN)

� ` A1 = A01 :: 


�; x:A1 ` A2 = A02 :: 


� ` �x:A1: A2 = �x:A01: A
0
2 :: 


(E-DSUM)

�; �::K ` A = A0 :: K 0

� ` ��::K:A = ��::K:A0 ::K)K 0
(E-LAM)

� ` A2 = A02 :: K

� ` A1 = A01 :: K)K 0

� ` A1A2 = A01A
0
2 :: K

0 (E-APP)

� ` A = A0 :: K

� ` <=A::K> = <=A0::K> :: 

(E-TRANS)

�; �::K ` A :: K 0 � ` A0 :: K

� ` (��::K:A)A0 = [A0=�]A :: K 0
(E-BETA)

� ` A :: K)K 0 � 62 FCV(A)

� ` ��::K:A� = A :: K)K 0
(E-ETA)

� ` x�! :: K � ` x�) A � ` A = <=A0::K 0> :: 


� ` x�! = A0 :: K
(E-ABBREV)

De�nition A.1.15 (Place Lookup Rules)

` � valid x:A 2 �

� ` x) A
(P-INIT)
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� ` x�) A � ` A = A0 :: 
 A00 = S(A0; x�; �0)

� ` x��0 ) A00
(P-MOVE)

De�nition A.1.16 (Subtyping Rules)

� ` A = A0 :: 


� ` A � A0
(S-EQ)

� ` A< A0

� ` A � A0
(S-ONE)

� ` A � A0 � ` A0 � A00

� ` A � A00
(S-TRAN)

De�nition A.1.17 (One-Step Subtyping Rules)

� ` A :: 


� ` A< A
(O-REFL)

� ` A01 < A1

�; x:A01 ` A2 < A02 �; x:A1 ` A2 :: 


� ` �x:A1: A2 < �x:A01: A
0
2

(O-DFUN)

� ` A1 < A01
�; x:A1 ` A2 < A02 �; x:A01 ` A

0
2 :: 


� ` �x:A1: A2 < �x:A01: A
0
2

(O-DSUM)

� ` A :: K

� ` <=A::K>< <K>
(O-FORGET)

A.2 The Term Level

De�nition A.2.1 (Syntax for the term level)

Terms M ::= x j �x:A:M jM 1M2 j (M 1; M 2) jM:1 jM:2 j <A> j
M<:A j roll j unroll j new j get j set
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De�nition A.2.2 (Free constructor variables)

FCV(x) = ;
FCV(roll) = ;

FCV(unroll) = ;
FCV(new) = ;
FCV(get) = ;
FCV(set) = ;

FCV(M:1) = FCV(M)

FCV(M:2) = FCV(M)

FCV(<A>) = FCV(A)

FCV(�x:A:M) = FCV(A) [ FCV(M)
FCV(M<:A) = FCV(M) [ FCV(A)
FCV(M1M2) = FCV(M1) [ FCV(M2)

FCV((M1; M2)) = FCV(M1) [ FCV(M2)

De�nition A.2.3 (Free term variables)

FTV(x) = fxg
FTV(�x:A:M ) = FTV(A) [ (FTV(M)� fxg)

FTV(roll) = ;
FTV(unroll) = ;
FTV(new) = ;
FTV(get) = ;
FTV(set) = ;

FTV(M:1) = FTV(M )

FTV(M:2) = FTV(M )

FTV(<A>) = FTV(A)

FTV(M1M 2) = FTV(M 1) [ FTV(M2)

FTV((M 1; M 2)) = FTV(M 1) [ FTV(M2)

FTV(M<:A) = FTV(M ) [ FTV(A)

De�nition A.2.4 (Judgments)

� `M : A well-typed term
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De�nition A.2.5 (Term Formation Rules)

� ` �(x) = A :: 


� ` x : [self=x]A
(T-VAR)

�; x:A `M : A0

� ` �x:A:M : �x:A:A0
(T-LAM)

� `M 1 : A2!A � `M2 : A2

� ` M1M 2 : A
(T-APP)

� `M 1 : A1 � ` M2 : A2

� ` (M1; M 2) : (A1; A2)
(T-PAIR)

� ` M : �x:A1: A2

� `M:1 : A1

(T-FST)

� `M : (A1; A2)

� `M:2 : A2

(T-SND)

� ` A :: K

� ` <A> : <=A::K>
(T-REIFY)

� `M : A0 � ` A0 � A

� `M : A
(T-SUMP)

� `M : A

� ` M<:A : A
(T-COERCE)

` � valid

� ` new : 8�::
:�!ref�
(T-NEW)

` � valid

� ` get : 8�::
:ref�!�
(T-GET)

` � valid

� ` set : 8�::
:ref�!(�!�)
(T-SET)

` � valid

� ` roll : 8�::
)
:� (rec�)!rec�
(T-ROLL)

` � valid

� ` unroll : 8�::
)
:rec�!� (rec�)
(T-UNROLL)
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De�nition A.2.6 (Self function)

[self=x�]<K> = <=x�!::K>

[self=x�]�x0:A1: A2 = �x0:[self=x�:1]A1: [self=x�:2]A2; where x 6= x0

[self=x�]� = �

[self=x�]�x0:A1: A2 = �x0:A1: A2

[self=x�]��::K:A = ��::K:A

[self=x�]A1A2 = A1A2

[self=x�]<=A::K> = <=A::K>

[self=x�]x0�0! = x0�0!

[self=x�]rec = rec

[self=x�]ref = ref
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