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Abstract

With the increasing complexity of digital systems, testing of digital

systems is becoming increasingly important. Perhaps, the most pop-

ular method for testing hardware is simulation. The incompleteness

of simulation based testing methods has spurred the recent surge in

the research on formal veri�cation. In formal veri�cation, one builds

a precise model of the hardware under scrutiny and proves that the
model satis�es a speci�cation of interest. For example, suppose one
wants to verify that a router chip does not deadlock. In this case the

user will build a precise model of the router and the speci�cation will
express the property of deadlock freedom. The two approaches to for-
mal veri�cation are model checking and theorem proving. In this thesis
we will only discuss model checking. Most model checking procedures
su�er from the state explosion problem, i.e., the size of the state space

of the system can be exponential in the number of state variables of
the system. For certain systems, exploiting the inherent symmetry
can alleviate the state-explosion problem. We discuss Model Checking
procedures which exploit symmetry. Current model checkers can only
verify a single state-transition system at a time. We also want to extend
the model checking techniques to handle in�nite families of �nite-state

systems.
In practice, �nite state concurrent systems often exhibit considerable
symmetry. We investigate techniques for reducing the complexity of
temporal logic model checking in the presence of symmetry. In partic-

ular, we show that symmetry can frequently be used to reduce the size

of the state space that must be explored during model checking. We
also investigate complexity of various problems related to exploiting

symmetry in model checking. Partial order based reduction techniques
exploit independence of actions. We demonstrate that partial order and

symmetry based reduction techniques can be applied simultaneously.

The ability to reason automatically about entire families of similar
state-transition systems is an important research goal. Such families
arise frequently in the design of reactive systems in both hardware and

software. The in�nite family of token rings is a simple example. More

complicated examples are trees of processes consisting of one root, sev-

eral internal and leaf nodes, and hierarchical buses with di�erent num-
bers of processors and caches. A technique for verifying entire families

of state-transition systems based on network grammars and process
invariants is presented here.
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Chapter 1

Introduction

The use of digital systems, especially microprocessors, is becoming very
wide spread. As the number of users of microprocessors increases, the
impact of an error in a microprocessor can have a dramatic e�ect. Per-
haps, the most glaring example of this is the Intel Pentium Bug. In
light of this, ascertaining the correctness of a digital system before

fabrication is becoming crucial. By far, the most popular method for
checking the correctness of hardware is simulation. The major draw-
back of simulation is that it is not complete, i.e., using simulation one
cannot be certain that a digital system has a required property. On the
other hand formal veri�cation techniques are able to verify that a digi-

tal system has the required property. The main disadvantage of formal
veri�cation techniques is that it requires more memory than simula-
tion. However, due to some recent breakthroughs, formal veri�cation

is becoming a feasible alternative to simulation. Currently, there are
two approaches in formal veri�cation:

� Theorem Proving: In this case the system to be veri�ed is

described by a set of axioms. In order to prove that the system

has the required property or speci�cation, one proves using the
axioms describing the system, that the required property is a

theorem.

� State Exploration Techniques: In this case the system is given

as a labeled directed graph. In order to ascertain that the system

has a particular speci�cation, one explores the labeled directed

7



8 CHAPTER 1. INTRODUCTION

graph corresponding to the system. Model Checking belongs to

this class.

In this thesis we will only consider Model Checking. Some advantages

of Model Checking over theorem proving approaches are:

1. In model checking, the proof that the system has a particular

property is done automatically. This has an advantage over most

theorem provers which require manual assistance. Therefore,

model checking tools are more suitable for industry.

2. If a system does not have a desired property, model checkers can

provide a counter example. These counter examples are very
useful to the designer. It is very hard to provide counter examples
in theorem provers.

3. Model Checkers have no di�culty in handling partial speci�ca-
tions. On the other hand, theorem provers frequently require a
complete set of axioms describing the system.

Next, we describe Model Checking and Temporal Logic in more de-
tail. In the past, temporal logic was used by philosophers to reason
about time [15]. The use of temporal logic to reason about properties

of concurrent systems was �rst described in [62]. Temporal Logic Model

Checking is a technique for determining whether a temporal logic for-
mula is valid in a �nite state systemM = (S;R;L), where S is the state
space, R is the state transition relation, and L is a function that labels
states with sets of atomic propositions. The Model Checking problem

can be stated as

Given a Kripke structure M = (S;R;L), a state s 2
S, and a temporal formula, determine whether M;s j=
f.

An e�cient procedure for model checking where the speci�cation f

is given in the computation tree logic CTL was given in [17]. Such a

structure is usually called aKripke structure and may have an enormous
number of states because of the state explosion problem. Formally, the

state explosion problem can be stated as follows:
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A concurrent system which is a composition of n processes,

with each process having k states, can have kn total

states.

A schematic diagram for model checking is given in Figure 1.1. An ef-

�cient Model Checking procedure tries to reduce the number of states

that are actually explored. Most research in temporal logic model

checking is focussed on e�cient data structures to represent state space.
Perhaps the biggest pragmatic breakthrough in the area of model check-

ing was the use of Ordered Binary Decision Diagrams (OBDDs) to rep-
resent the set of states during model checking [11, 13]. When OBDDs
are used to represent state sets in model checking, it is called symbolic

model checking. The distinction between model checking and symbolic
model checking is pointed out in Figure 1.1. The use of model checking

made it possible to �nd errors in nontrivial circuits which had been
carefully designed [8, 27]. With the discovery of symbolic model check-
ing, it is now possible to verify large systems [18, 56].

BDD (Symbolic)

Yes No (Counter-Example)

System Specification

Model

Checker

Explicit State

Figure 1.1: Schematic Diagram of Model Checking
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1.1 Scope of the Thesis

The �rst part of this thesis describes techniques for exploiting symme-

try to alleviate the state explosion problem. Finite state concurrent

systems frequently exhibit considerable symmetry. It is possible to �nd

symmetry in memories, caches, register �les, bus protocols, network

protocols { anything that has a lot of replicated structure. For exam-

ple, a ring of processes exhibits rotational symmetry. This fact can be
used to obtain an equivalent reduced model of the system. Given a
Kripke StructureM = (S;R;L), a symmetry group G is a group acting
on the state set S that preserves the transition relation R. A symmetry
group G acting on the state set S partitions the state set S into equiv-

alence classes called orbits. A quotient model MG is constructed that
contains one representative from each orbit. The state space SG of the
quotient model will, in general, be much smaller than the the original
state space S. This makes it possible to verify much larger structures.

We also investigate the complexity of exploiting symmetry in model
checking algorithms. The �rst problem that we consider is computing
the orbit relation, i.e., determining whether two states are in the same
orbit or not. This is an important problem because the direct method
of computing the quotient modelMG uses this relation. We also obtain

lower bounds on the size of the OBDDs needed to encode the orbit
relation.

Partial Order based reduction techniques exploit the independence
of actions to tackle the state-explosion problem. The independence re-

lation on actions induces an equivalence class on traces. Partial Order

based reduction techniques explore only few traces from each equiva-

lence class. This thesis presents a method to combine partial order and
symmetry based reductions.

Most of the research done in the area of model checking focuses

on verifying single �nite-state systems. Typically, circuit and protocol

designs are parametrized, i.e., de�ne an in�nite family of systems. For
example, a circuit design to multiply two integers has the width of the
integers n as a parameter. This thesis investigates methods to verify

such parameterized designs. The problem of verifying parametrized

designs can also be thought of as solving the state explosion problem
because in this case the state set is unbounded. Formally, the problem
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of verifying parameterized designs can be stated as:

Given an infinite family F = fPig1i=1 of finite-state

systems and a temporal specification f, determine

whether Pi j= f for all i.

In general the problem is undecidable [4]. However, for speci�c fami-

lies the problem can be solved. Most techniques are based on �nding

network invariants [47, 74]. Given an in�nite family F = fPig1i=1 and
a re
exive, transitive relation �, an invariant I is a process such that
Pi � I for all i. The relation � should preserve the property f we are

interested in, i.e., if I satis�es f , then Pi should also satisfy f . Once
the invariant I is found, traditional model checking techniques can be
used to check that I satis�es f .

Main contributions of this thesis are:

1. A technique for exploiting symmetry during model checking. Ad-
ditional complications arise in using symmetry in conjunction
with OBDDs during model checking. This thesis provides a method
of using OBDDs in combination with symmetry reductions.

2. We also investigate the complexity of various problems related to
the use of symmetry with model checking. We also provide ways
of deriving symmetries of �nite-state systems.

3. Partial order methods exploit the independence of actions. We
discuss techniques to combine partial order and symmetry reduc-

tion techniques.

4. We present a formalism based on network grammars to describe

parameterized designs. We also present a logic based on regular

expressions which can be interpreted over these parameterized

designs. We provide a methodology for constructing invariants

based on a technique called unfolding.
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Chapter 2

Model Checking

The propositional �-calculus is a powerful language for expressing prop-
erties of transition systems by using least and greatest �xpoint opera-
tors. Recently, the �-calculus has generated much interest among re-
searchers in computer-aided veri�cation. This interest stems from the
fact that many temporal and program logics can be encoded into the �-

calculus, and that �nite-state veri�cation procedures for the �-calculus
can be succinctly described. In addition, the wide-spread use of bi-
nary decision diagrams has made �xpoint based algorithms even more
important, since methods that require the manipulation of individual
states do not take advantage of this representation.

Several versions of the propositional �-calculus have been described
in the literature, and the ideas in this chapter will work with any of

them. For the sake of concreteness, we will use the propositional �-

calculus of Kozen [44]. Closed formulas in this logic evaluate to sets

of states. A considerable amount of research has focused on �nding

techniques for evaluating such formulas e�ciently, and many algorithms
have been proposed for this purpose. These algorithms generally fall

into two categories, local and global.

Local procedures are designed for proving that a speci�c state of

the transition system satis�es the given formula. Because of this, it
is not always necessary to examine all the states in the transition
system. However, the worst-case complexity of these approaches is

generally larger than the complexity of the global methods. Tableau-

based local approaches have been developed by Cleaveland [21], Stir-

13



14 CHAPTER 2. MODEL CHECKING

ling and Walker [67], and Winskel [73]. More recently, Andersen [2]

and Larsen [48] have developed e�cient local methods for a subset

of the �-calculus. Mader [52] has also proposed improvements to the

tableau-based method of Stirling and Walker that seem to increase its

e�ciency.

In this chapter, we restrict ourselves to global model checking pro-

cedures. Global procedures generally work bottom-up through the for-

mula, evaluating each subformula based on the values of its subformu-
las. Iteration is used to compute the �xpoints. Because of �xpoint

nesting, a naive global algorithm may require about O(nk) iterations
to evaluate a formula, where n is the number of states in the transi-
tion system and k is the depth of nesting of the �xpoints. Emerson and
Lei [28] improved on this by observing that successively nested �xpoints
of the same type do not increase the complexity of the computation.
They formalize this observation using the notion of alternation depth

and give an algorithm requiring only about O(nd) iterations, where d
is the alternation depth. In an implementation, bookkeeping and set
manipulations may add another factor of n or so to the time required.
Subsequent work by Cleaveland, Klein, Ste�en, and Andersen [2, 22, 23]
has reduced this extra complexity, but the overall number of iterations

has remained about O(nd). In [50] the authors have improved on this
by giving an algorithm that uses only O(nd=2) iterations to compute a
formula with alternation depth d, thus requiring only about the square
root of the time needed by earlier algorithms.

This chapter describes the propositional �-calculus and general al-

gorithms for evaluating �-calculus formulas. Examples of veri�cation
problems that can be encoded within the language of the �-calculus are

also provided. The remainder of this chapter is organized as follows. A

formal syntax and semantics for the propositional �-calculus is given in
Section 2.1. Section 2.2 discusses di�erent algorithms for evaluation �-

calculus formulas and their complexities. A brief description of Ordered
Binary Decision Diagrams (OBDDs) is given in Section 4. Section 5

presents the algorithm for encoding �-calculus formulas with OBDDs.
The syntax and semantics for CTL and for CTL with fairness con-

straints is given in Section 6, while a translation of these logics into the

�-calculus is given in Section 7. De�nitions for di�erent kinds of sim-

ulation preorders and bisimulation equivalences are given in Section 8
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along with encodings for these relations in the �-calculus.

2.1 The Propositional �-Calculus

In the propositional �-calculus, formulas are constructed as follows:

� atomic propositions AP = fp; p1; p2; : : :g
� atomic propositional variables VAR = fR, R1, R2, : : :g
� logical connectives :�, � ^ � and � _ �
� modal operators hai� and [a]� , where a is an action in the set
Act = fa; b; a1; a2; : : :g
� �xpoint operators �Ri:(� � �) and �Ri:(� � �). Propositional variables
bound by the �xpoint operators must be in the scope of the even

number of negations.

There is a standard notion of free and bound variables (by �xpoint

operators) in the formulas. Closed formulas are the formulas without
free variables. Formulas in this calculus are interpreted relative to a
transition system M = (>; T; L) that consists of:
� a nonempty set of states >
� a mapping L : AP ! 2> that takes each atomic proposition to

some subset of > (the states where the proposition is true)

� a mapping T : Act ! 2>�> that takes each action to a binary

relation over > (the state changes that can result from making

an action)

The intuitive meaning of the formula hai� is \it is possible to make an

a-action and transition to a state where � holds". [�] is the dual of h�i;
for [a]�, the intended meaning is that \� holds in all states reachable
(in one step) by making an a-action." The � and � operators are used

to express least and greatest �xpoints, respectively. To emphasize the
duality between least and greatest �xpoints, we write the empty set
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of states as ?. Also, in the rest of this chapter, we will use the more

intuitive notation s
a! s0 to mean (s; s0) 2 T (a).

Formally, a formula � is interpreted as a set of states in which � is

true. We write such set of states as [[�]]M e, where M is a transition

system and e : VAR! 2> is an environment. We denote by e [R S] a

new environment which is the same as e except that e [R S] (R) = S.

The set [[�]]M e is de�ned recursively as follows.

� [[p]]M e = L(p)

� [[R]]M e = e(R)

� [[:�]]M e = >� [[�]]M e

� [[� ^  ]]M e = [[�]]M e \ [[ ]]M e

� [[� _  ]]M e = [[�]]M e [ [[ ]]M e

� [[hai�]]M e = f s j 9t [s a! t and t 2 [[�]]M e] g
[[[a]�]]M e = f s j 8t [s a! t implies t 2 [[�]]M e] g

� [[�R:�]]M e is the least �xpoint of the predicate transformer � : 2> !
2> de�ned by:

� (S) = [[�]]M e [R S]

� The interpretation of �R:� is similar, except that we take the

greatest �xpoint.

Within formulas, the negation is restricted in use, and so the �x-
points are guaranteed to be well-de�ned. Formally, every logical con-

nective except negation is monotonic (�! �0 implies � ^  ! �0 ^  ,
�_ !�0_ , hai�!hai�0, and [a]�![a]�0), and all the negations can be

pushed down to the atomic propositions using De Morgan's laws and

dualities (:[a]� � hai:�, :hai� � [a]:�, :�R:�(R) � �R::�(:R),
:�R:�(R) � �R::�(:R)). Since bound variables are under even num-

ber of negations, they will be negation free after this process. Thus,
each possible formula in a �xpoint operator is monotonic and hence each

possible � is also monotonic (S � S0 implies � (S) � � (S0)). This is

enough to ensure the existence of the �xpoints [68]. Furthermore, since



2.1. THE PROPOSITIONAL �-CALCULUS 17

we will be evaluating formulas over �nite transition systems, mono-

tonicity of � implies that � is also [-continuous and \-continuous, and
hence the least and greatest �xpoints can be computed by iterative

evaluation:

[[�R:�]]M e =
[
i

� i(?) [[�R:�]]M e =
\
i

� i(>):

(� i(S) can be de�ned recursively as � 0(S) = S and � i+1(S) = � (� i(S)).)

Since the domain > is �nite, the iteration must stop after a �nite num-

ber of steps. More precisely, for some i � j>j, the �xpoint is equal to
� i(?) (for a least �xpoint) or � i(>) (for a greatest �xpoint). To �nd
the �xpoint, we repeatedly apply � starting from ? or from > until the
result does not change.

The alternation depth of a formula is intuitively equal to the number

of alternations in the nesting of least and greatest �xpoints, when all
negations are applied only to propositions. There are other more elab-
orate de�nitions of alternation depth [2, 3, 22], that take into account
the possibility that nested �xpoints may still be independent. Such
�xpoints do not depend on the value of approximations to outer �x-

points. Consequently, they only need to be evaluated once. This type
of nesting does not increase the e�ective alternation depth. However,
to simplify our presentation we will use the de�nition of alternation
depth given by Emerson and Lei [28]. Formally, the alternation depth
is de�ned as follows:

De�nition 2.1.1

� The alternation depth of an atomic proposition or a propositional

variable is 0;

� The alternation depth for formulas like � ^  , � _  , hai�, etc.,
is the maximum alternation depth of the subformulas � and  .

� The alternation depth of �R:� is the maximum of: one, the al-

ternation depth of �, and one plus the alternation depth of any

top-level �-subformulas of �. A top-level �-subformula of � is a
subformula �R0: of � that is not contained within any other �x-

point subformula of �. The alternation depth of �R:� is similarly
de�ned.
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Example 2.1.1 Consider the following formula which will be discussed

in Section 7.

�Y:(P ^ hai [�X:(P ^ haiX) _ (h ^ Y )])

This formula expresses the property \P holds continuously along some

fair a-path" and has an alternation depth of two.

Because of the duality,

�R:�(� � � ; R; � � �) = :�R::�(� � � ;:R; � � �)

we could have de�ned the propositional �-calculus with just the least
�xpoint operator and negation. In order to give a succinct description of
certain constructions we sometimes use the dual formulation. However,
the concept of alternation depth is easier to de�ne using the formulation

given earlier.

2.2 Evaluating Fixpoint Formulas

We de�ne model checking as a technique of verifying a model rela-
tive to its speci�cation in the �-calculus. This is the same as evaluating
a formula in a model, i.e., �nding the set of states of the model where
the formula is true. Figure 2.1 presents the naive, straightforward,
recursive algorithm for evaluating �-calculus formulas. The time com-

plexity of the algorithm in Figure 2.1 is exponential in the length of the
formula. To see this, we analyze the behavior of the algorithm when

computing nested �xpoints. The algorithm computes �xpoints by it-

eratively computing approximations. These successive approximations
form a chain ordered by inclusion. Since the number of strict inclu-

sions in such a chain is limited by the number of possible states, we
have that the loop will execute at most n + 1 times, where n = j>j.
Each iteration of the loop involves a recursive call to evaluate the body
of the �xpoint with a di�erent value for the �xpoint variable. If in turn,

the subformula being evaluated contains a �xpoint, the evaluation of

its body will also involve a loop containing up to n+ 1 recursive calls.

Thus, the total number of recursive calls will be O(n2). In general, the
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1 function eval(�, e)

2 if � = p then return L(p)

3 if � = R then return e(R)

4 if � =  1 ^  2 then

5 return eval( 1; e)\ eval( 2; e)

6 if � =  1 _  2 then

7 return eval( 1; e)[ eval( 2; e)

8 if � = hai then
9 return f s j 9t [s a! t and t 2 eval( ; e)] g
10 if � = [a] then

11 return f s j 8t [s a! t implies t 2 eval( ; e)] g

12 if � = �R: (R) then
13 Rval := ?
14 repeat

15 Rold := Rval

16 Rval := eval( ; e [R Rval])
17 until Rval = Rold

18 return Rval

19 if � = �R: (R) then

20 Rval := >
21 repeat
22 Rold := Rval

23 Rval := eval( ; e [R Rval])
24 until Rval = Rold

25 return Rval

Figure 2.1: Pseudocode for the naive algorithm

body of the innermost �xpoint will be evaluated O(nk) times where k
is the maximum nesting depth of �xpoint operators in the formula.

Note that we have only considered the number of iterations required
when evaluating �xpoints and not the number of steps required to eval-

uate a �-calculus formula. While each �xpoint may only take O(j>j)
iterations, each individual iteration can take up to O(jM jj�j) steps,
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where M = (>; T; L) is the model and jM j = j>j +P
a2Act jT (a)j. In

general, then, this algorithm has time complexity O[(jM jj�j)nk].
A result by Emerson and Lei demonstrates that the value of a �x-

point formula can be computed with O((j�jn)d) iterations, where d is

the alternation depth of �. Their algorithm is similar to the straight-

forward one described above, except when a �xpoint is nested directly

within the scope of another �xpoint of the same type. In this case, the

�xpoints are computed slightly di�erently.
A simple example will su�ce to demonstrate the idea. When dis-

cussing the evaluation of �xpoint formulas, we will use R1; : : : ; Rk as
the �xpoint variables, with R1 being the outermost �xpoint variable
and Rk being the innermost. We will use the notation R

i1���ij
j to denote

the value of the ij-th approximation for Rj after having computed the
il-th approximation for Rl for 1 � l < j. We use ij = ! to indicate
that we are considering the �nal approximation (the actual �xpoint

value) for Rj . For example, R!
1 is the value of the �xpoint for R1 and

R30
2 is the initial approximation for R2 after having computed the third

approximation for R1. Consider the formula

�R1: 1(R1; �R2: 2(R1; R2)):

The subformula �R2: 2(R1; R2) de�nes a monotonic predicate trans-
former � taking one set (the value of R1) to another (the value of the
least �xpoint of R2). When evaluating the outer �xpoint, we start with

the initial approximation R0
1 = ? and then compute � (R0

1). This is

done by iteratively computing approximations for the inner �xpoint
also starting from R00

2 = ? until we reach a �xpoint R0!
2 . Now R1 is

increased to R1
1, the result of evaluating  1(R

0
1; R

0!
2 ). We next compute

the least �xpoint � (R1
1). Since R

0
1 � R1

1, by monotonicity we know that

� (R0
1) � � (R1

1). Now note that the following lemma holds:

Lemma 2.2.1 If S � Si � i(?) then Si � i(S) = S
i �

i(?).
In other words, to compute a least �xpoint, it is enough to start iterat-

ing with any approximation known to be below the �xpoint. Thus , we
can start iterating with R10

2 = R0!
2 = � (R0

1) instead of R10
2 = ?. When

we compute the �xpoint R1!
2 , we next compute the new approximation

to R1, which isR
2
1, the result of evaluating  1(R

1
1; R

1!
2 ). Again, we know
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that R1
1 � R2

1 which implies that � (R1
1) � � (R2

1). But � (R1
1) = R1!

2 ,

the value of the last inner �xpoint computed, and � (R2
1) = R2!

2 the

�xpoint to be computed next. Again, we can start iterating with any

approximation below the �xpoint. So to compute R2!
2 we begin with

R20
2 = R1!

2 = � (R1
1). In general, when computing Ri!

2 we always begin

with Ri0
2 = R

(i�1)!
2 . Since we never restart the inner �xpoint computa-

tion, we can have at most n increases in the value of the inner �xpoint

variable. Overall, we only need O(n) iterations to evaluate this expres-
sion, instead of O(n2). In general, this type of simpli�cation leads to an
algorithm that computes �xpoint formulas in time exponential in the

alternation depth of the formula since we only reset an inner �xpoint
computation when there is an alternation in �xpoints in the formula.

Thus, this algorithm for evaluating �-calculus formulas is identical

to the naive algorithm except in the case when the main connective is a
�xpoint operator. The pseudocode for this part of the algorithm is given
in Figure 2.2. Note that unlike the naive algorithm, the approximation
values A[i] are not reset when evaluating the subformula �Ri: (Ri)
(�Ri: (Ri)). Instead, we reset all top-level greatest (least) �xpoint

variables contained in  . By the top-level �xpoints in a formula we
mean all the �xpoints of the same type (� or �) that are not in the
scope of the other type of �xpoints. This guarantees that when we
evaluate a top-level �xpoint subformula of the same type, we do not
start the computation from ? or >, but from the previously computed

value as in our example.

In [50] the authors observe that by storing even more intermediate

values, the time complexity for evaluating �xpoint formulas can be

reduced to O(nbd=2c+1) where again d is the alternation depth of the
formula. To simplify our discussion, we consider formulas with strict
alternation of �xpoints. We present a small example to illustrate the

idea behind this algorithm.

Consider the formula:

�R1: 1(R1; �R2: 2(R1; R2; �R3: 3(R1; R2; R3))):

To compute the outer �xpoint, we start with R1 = ?, R2 = > and

R3 = ?. As in the previous case, we denote these values by R0
1, R

00
2 ,

and R000
3 respectively. The superscript on Rk gives the iteration indices
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1 function eval(�, e)

2 N := The number of �xpoint operators in �

3 for i := 1 to N do A[i] := if the i-th �xpoint of � is � then ? else

>
4 return evalrec(�, e)

Where evalrec is de�ned recursively as

1 function evalrec(�, e)

2 if � = p then return L(p)
3 if � = R then return e(R)
4 if � =  1 ^  2 then
5 return evalrec( 1; e)\ evalrec( 2; e)

6 if � =  1 _  2 then
7 return evalrec( 1; e)[ evalrec( 2; e)
8 if � = hai then
9 return f s j 9t [s a! t and t 2 evalrec( ; e)] g
10 if � = [a] then

11 return f s j 8t [s a! t implies t 2 evalrec( ; e)] g

12 if � = �Ri: (Ri) then
13 For all top-level greatest �xpoint subformulas �Rj : 

0(Rj) of  
14 do A[j] := >
15 repeat

16 Rold := A[i]
17 A[i] := evalrec( ; e [Ri  A[i]])
18 until A[i] = Rold

19 return A[i]

20 if � = �Ri: (Ri) then

21 For all top-level least �xpoint subformulas �Rj : 
0(Rj) of  

22 do A[j] := ?
23 repeat

24 Rold := A[i]

25 A[i] := evalrec( ; e [Ri  A[i]])

26 until A[i] = Rold

27 return A[i]

Figure 2.2: Pseudocode for the Emerson and Lei algorithm
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for the �xpoints involving R1, : : : Rk. We then iterate to compute the

inner �xpoint; call the value of this �xpoint R00!
3 . We now compute

the next approximation R01
2 for R2 by evaluating  2(R

0
1; R

00
2 ; R

00!
3 ) and

go back to the inner �xpoint. Eventually, we reach the �xpoint for

R2, having computed R00
2 , R

00!
3 , R01

2 , R
01!
3 , : : : , R0!

2 , R0!!
3 . Now we

proceed to R1
1 =  1(R

0
1; R

0!
2 ; R

0!!
3 ). We know that R0

1 � R1
1, and we

are now going to compute R1!
2 . Note that the values R0!

2 and R1!
2 are

given by
R0!

2 = �R2: 2(R
0
1; R2; �R3: 3(R

0
1; R2; R3))

and
R1!

2 = �R2: 2(R
1
1; R2; �R3: 3(R

1
1; R2; R3)):

By monotonicity, we know that R1!
2 will be a superset of R0!

2 . However,
since R2 is computed by a greatest �xpoint, this information does not
help; we still must start computing with R10

2 = >. At this point, we

begin to compute the inner �xpoint again. But now let us look at R00!
3

and R10!
3 . We have

R00!
3 = �R3: 3(R

0
1; R

00
2 ; R3)

and
R10!

3 = �R3: 3(R
1
1; R

10
2 ; R3):

Since R0
1 � R1

1 and R00
2 � R10

2 , monotonicity implies that R00!
3 �

R10!
3 . Now R3 is a least �xpoint, so starting the computation of R10!

3

anywhere below the �xpoint value is acceptable. Thus, we can start
the computation for R10!

3 with R100
3 = R00!

3 . Since R00!
3 is in general

larger than ?, we obtain faster convergence. In addition, we have

R01
2 =  2(R

0
1; R

00
2 ; R

00!
3 )

and

R11
2 =  2(R

1
1; R

10
2 ; R

10!
3 )

Since R0
1 � R1

1, R
00
2 � R10

2 , and R
00!
3 � R10!

3 , we will have R01
2 � R11

2 .
This means that we can use the same trick when computing R11!

3 : we

start the computation from R110
3 = R01!

3 . And again, since R0
1 � R1

1,

R01
2 � R11

2 , and R01!
3 � R11!

3 , we will have R02
2 � R12

2 . In general,
we will have R0j

2 � R
1j
2 and R

0j!
3 � R

1j!
3 so we can start computing
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R
1j!
3 from R

1j0
3 = R

0j!
3 . Similarly, once we �nd R2

1 (or in general,

Rk+1
1 ), we can start computing the inner �xpoints from R2m0

3 = R1m!
3

(R
(k+1)m0
3 = Rkm!

3 ).

The table in Figure 2.3 illustrates this by showing the relationship

between all the di�erent possible approximation values for R3. Each

row can have at most n + 1 entries, one for each approximation to

�R2: 2. At �rst glance, it seems possible that each column could have

as many as n2 entries. However, each chain represented by each column
can have at most n + 1 distinct values. Repeated values only appear
when convergence is reached (Rij!

3 = R
ij(!�1)
3 ) and when we start a

computation from a previously computed �xpoint (R
(i+1)j0
3 = Rij!

3 ).

Convergence is reached every time the �xpoint is evaluated, and this
�xpoint is evaluated once for every outer greatest �xpoint approxima-
tion of which there can be no more than n + 1. Since there can be no
more than n+ 1 evaluations, we can start from a previously computed
�xpoint no more than n times. So the number of repeated values is
bounded by 2n + 1. Thus, the total number of entries in any column

is bound by 3n + 2 and the total number of assignments to R3 during
the entire computation is bound by (3n + 2)(n + 1). This means that
there are at most O(n2) iterations performed to compute the innermost
�xpoint.

Again, this algorithm for evaluating a �-calculus formula is identical

to the naive algorithm except when the main connective is a �xpoint
operator. To facilitate explanation, we consider only formulas with
strict alternation of �xpoints, and in particular, with the form:

F1 � �R1: 1(R1; �R
0
1: 

0
1(R1; R

0
1; F2))

F2 � �R2: 2(R1; R
0
1; R2; �R

0
2: 

0
2(R1; R

0
1; R2; R

0
2; F3))

...
Fq � �Rq: q(R1; R

0
1; : : : ; Rq; �R

0
q: 

0
q(R1; R

0
1; : : : ; Rq; R

0
q))

The pseudocode for this part of the algorithm is given in Figure 2.4.
For computing the outermost �xpoint (corresponding to R1) we follow
the naive algorithm, i.e., start with ? and iterate until convergence.

The algorithm uses a table Ti to store the last computed �xpoint val-

ues for the �-variables Ri (for i � 2). Initially, all entries in Ti are ?.
The table Ti is a multi-dimensional table. For the i-th least �xpoint



2.2. EVALUATING FIXPOINT FORMULAS 25

R!0!
3

�
...
�

R!01
3

�
R!00

3

=
��
�=

�

�

�

R!1!
3

�
...
�

R!11
3

�
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3

=
��
�=

� � � � �

� � � � �
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3
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�
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3

�
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3

�
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3

�
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3

=

�
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3

�
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�
R111

3

�
R110

3

=
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R1!!
3

�
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�
R1!1

3

�
R1!0

3

=

R00!
3

�
...
�

R001
3

�
R000

3

�

�

�

R01!
3

�
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�

R011
3

�
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3

� � � � �

� � � � �

� � � � �

R0!!
3

�
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�

R0!1
3

�
R0!0

3

Figure 2.3: Monotonicity constraints on approximations to R3

(corresponding to Ri) we index the table Ti by the iteration counters
k1; � � � ; ki�1 of the greatest �xpoints in which the i-th least �xpoint is
nested. When evaluating Ri, we start with the corresponding table

value and iterate until convergence. At the end of the iteration, the ta-

ble holds the �xpoint value. When evaluating R0
i, we always begin with

> and iterate until convergence. Note that this algorithm implements



26 CHAPTER 2. MODEL CHECKING

12 if � = �Ri: i(Ri) and i � 2 then

13 Rval := Ti[k1] � � � [ki�1]
14 repeat

15 Rold := Rval

16 Rval := evalrec( i; e [Ri  Rold])

17 until Rval = Rold

18 Ti[k1] � � � [ki�1] := Rval

19 return Rval

20 if � = �R0
i: 

0
i(R

0
i) then

21 ki := 0

22 Rval := >
23 repeat
24 Rval := evalrec( 0i; e [R

0
i  Rval])

25 ki := ki + 1
26 until ki = j>j
27 return Rval

Figure 2.4: Pseudocode for the e�cient algorithm

the ideas in the previous example.

If we use these ideas, how many steps does the computation take?

To try to answer this question, we look at the number of approximations

computed for the Ris and R0
is in the algorithm. Let Ti denote the

number of approximations for Ri, and let T 0
i denote the number of

approximations for R0
i. The �xpoint for R

0
i is evaluated at most Ti times

(the number of approximations to the enclosing Ri). Each evaluation

can take at most n+1 iterations for a total of (n+1)Ti approximations.
Thus, T 0

i � (n+1)Ti. The �xpoint for Ri has a table Ti with (n+1)i�1

entries. Because of the monotonicity constraints, each entry can go

through at most n+1 distinct values. Since there are (n+1)i�1 entries,

we have a total of (n + 1)i iterations. These iterations correspond to

the case when the loop test is false. In addition, each time we evaluate

the �xpoint for Ri we will take one extra step to detect convergence
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which will not result in a new value for the corresponding table entry.

We evaluate the �xpoint for Ri at most T 0
i�1 times. Thus we make

at most T 0
i�1 iterations when the loop test is true. In total, we have

Ti � (n+ 1)i + T 0
i�1. Solving this recurrence, we get:

Ti � i(n+ 1)i

T 0
i � i(n+ 1)i+1

Summing over all �xpoints and expressing the result in terms of the al-
ternation depth d = 2q, we get that the algorithm takesO

�
d(n + 1)d=2+1

�
iterations when computing the �xpoints in a formula. In comparison,
previously known algorithms may require O(nd) iterations.

2.3 Ordered Binary Decision Diagrams (OBDDs)

In this section we give a brief description of an e�cient data structure
for representing boolean functions. Consider the space BFn of boolean
functions on n variables x0; x1; � � � ; xn�1. We assume that there is a

total ordering on the boolean variables. The ordering is given by the
index, i.e., xi is ordered before xj i� i < j. The symbol OBDD(f) will
denote the Ordered Binary Decision Diagram (OBDD) for the boolean
function f [11]. OBDDs have the following canonicity property:

Theorem 2.3.1 (Canonicity Theorem): Given two boolean func-
tions f and g in the space BFn, OBDD(f) = OBDD(g) i� f = g.

A detailed proof is given in [11].

We will give a succinct explanation of how OBDDs work through an
example. For a more thorough treatment see [11, 14]. Consider the

following boolean function f :

f = x0 � x1 � x2
Figure 2.5 gives the binary tree T corresponding to the boolean function

f . Notice that the binary subtree which we get by following the paths
(0; 1) and (1; 0) from the root are the same. The same is true if we follow
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Figure 2.5: Tree for the 3 bit parity function
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Figure 2.6: OBDD for the 3 bit parity function

the paths (0; 0) and (1; 1). Figure 2.6 re
ects this sharing. Notice that

the number of nodes is reduced from 15 to 7. In general, the binary

tree corresponding to the parity of n bits has 2n+1 � 1 nodes. The
OBDD for the same function has 2n+1 nodes. Therefore, in some cases
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OBDD can be exponentially more succinct than the straightforward

representation. We will use jOBDD(f)j to denote the size of the OBDD
for f , i.e., the number of nodes in OBDD(f). In addition to being

a canonical representation, OBDDs support the usual operations on

boolean functions e�ciently. The complexity of some of the operations

is shown below:

� Given the OBDDs for f and g, the OBDD for f _ g and f ^ g can
be computed in time O(jOBDD(f)j � jOBDD(g)j).

� Given the OBDD for f , the OBDD for :f can be computed in
time O(jOBDD(f)j).

� Given the OBDD for f , the OBDDs for 9xif and 8xif can be
computed in time O(jOBDD(f)j2).

Variable ordering is extremely important to OBDDs. For example,
consider the following boolean function :

f(x1; � � � ; xn; x01; � � � ; x0n) =
n̂

i=1

(xi = x0i)

The OBDD for f with the variable ordering

x1 < x01 < x2 < x02 < � � �xn < x0n

has size 3n + 2. As the following lemma shows, the OBDD for f can
have size exponential in n under some variable orderings. Moreover,
there are some functions whose OBDDs have exponential size under

any variable ordering [11].

Lemma 2.3.1 Let f(x1; � � � ; xn; x01; � � � ; x0n) be the following boolean
function:

n̂

i=1

(xi = x0i)

Let F be the OBDD for f such that all the unprimed variables are
ordered before all the primed variables. In this case jF j � 2n.



30 CHAPTER 2. MODEL CHECKING

Proof: Consider two distinct assignments (b1; � � � ; bn) and (c1; � � � ; cn)
to the boolean vector (x1; � � � ; xn). These two assignments can be dis-

tinguished because of the following equation:

f(b1; � � � ; bn; b1; � � � ; bn) 6= f(c1; � � � ; cn; b1; � � � ; bn)

Let v1 and v2 be the nodes reached after following the path (b1; � � � ; bn)
and (c1; � � � ; cn) from the top node. Since these two assignments can
be distinguished, v1 6= v2. There are 2n di�erent assignments to the
boolean vector (x1; � � � ; xn) and each of them corresponds to a di�erent
node (at level n) in the OBDD F . Therefore, the number of nodes at

level n in the OBDD F is greater than or equal to 2n. 2

2.4 Translating the �-Calculus into OBDDs

In this section we describe how to use OBDDs in the model checking
algorithms described earlier. First, we show how to encode a transition

system M = (>; T; L) into OBDDs. The domain > is encoded by the
set of values of the n boolean variables x1; � � � ; xn, i.e., > is now the
space of 0-1 vectors of length n. Each variable xi has a corresponding
primed variable x0i. Instead of writing x1; � � � ; xn, we sometimes use
the vector notation ~x. For example, we write OBDDp(x1; � � � ; xn) as
OBDDp(~x). Given an interpretation, we build the OBDDs correspond-

ing to closed �-calculus formulas in the following manner.

� Each atomic proposition p has an OBDD associated with it. We

will denote this OBDD by OBDDp(~x). OBDDp(~x) has the prop-
erty that ~y 2 f0; 1gn satis�es OBDDp i� ~y 2 L(p).

� Each program letter a has an ordered binary decision diagram
OBDDa(~x; ~x

0) associated with it. A 0-1 vector (~y; ~z) 2 f0; 1g2n
satis�es OBDDa i�

(~y; ~z) 2 T (a)

Now we describe the encoding of the semantic sets of formulas into
OBDDs. Assume that we are given a �-calculus formula � with free
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propositional variables R1, � � �, Rk. A[Ri] gives the OBDD correspond-

ing to the propositional variable Ri. AhR BRi creates a new associ-

ation by adding a propositional variable R and associating an OBDD

BR with R. In other words, A can be considered as an environment

with OBDD representation. The procedure B given below takes a �-

calculus formula � and an association list A (A assigns an OBDD to

each free propositional variable occurring in �) and returns an OBDD

corresponding to the semantics of �.

� B(p;A) = OBDDp(~x).

� B(Ri;A) = A[Ri].

� B(:�;A) = :B(�;A)
� B(� ^  ;A) = B(�;A) ^ B( ;A).
� B(� _  ;A) = B(�;A) _ B( ;A).
� B(hai�;A) = 9~x0(OBDDa(~x; ~x

0) ^B(�;A)(~x0))
� B([a]�;A) = B(:hai:�;A).
The second equation uses the dual formulation for [a].

� B(�R:�;A) = FIX(�;A;FALSE-BDD).
� B(�R:�;A) = FIX(�;A;TRUE-BDD).

The OBDDs for the boolean functions false and true are denoted
by FALSE-BDD and TRUE-BDD respectively. Notice that � has an
extra free propositional variable R. FIX is described in Figure 2.7.

Now we give a short example to illustrate our point.

Example 2.4.1 Assume that the state space> is encoded by n boolean

variables x1; � � � ; xn. Consider the following formula:

� = �Z:(q ^ Y _ haiZ)

Notice that the variable Y is free in �. Assume that the interpretation

for q is an OBDD OBDDq(~x). Similarly, the OBDD corresponding to
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1 function FIX(�;A; BR)

2 result-bdd = BR

3 do

4 old-bdd = result-bdd

5 result-bdd = B(�;AhR old-bddi)
6 while (not-equal(old-bdd, result-bdd))
7 return(result-bdd)

Figure 2.7: Pseudocode for the function FIX

the program letter a is OBDDa(~x; ~x0). Also assume that we are given
an association list A which pairs the OBDD BY (~x) with Y . In the
routine FIX the OBDD result-bdd is initially set to:

N0(~x) = OBDDq(~x) ^ BY (~x) _ 9~x0(OBDDa(~x; ~x
0) ^ FALSE-BDD)

= OBDDq(~x) ^ BY (~x)

Let N i be the value of result-bdd at the i-th iteration in the loop of
the function FIX. At the end of the iteration the value of result-bdd is
given by:

N i+1(~x) = OBDDq(~x) ^BY (~x) _ 9~x0(OBDDa(~x; ~x
0) ^N i(~x0))

The iteration stops when N i(~x) = N i+1(~x).

2.5 Branching Time Temporal Logics

Let AP be a set of atomic propositions. A Kripke structure over AP

is a triple M = (S; T; L), where

� S is a �nite set of states,

� T � S � S is a transition relation, which must be total (i.e., for

every state s1 there exists a state s2 such that (s1; s2) 2 T ).
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� L : S ! 2AP is a labeling function which associates with each

state a set of atomic propositions that are true in the state.

There are two types of formulas in the temporal logic CTL?: state

formulas (which are true in a speci�c state) and path formulas (which

are true along a speci�c path). The state operators in CTL? are: A
(\for all computation paths"), E (\for some computation paths"). The

path operators in CTL? are: G (\always"), F (\sometimes"), U (\un-

til"), and V (\unless"). Let AP be a set of atomic propositions. A

state formula is either:

� p, if p 2 AP ;
� :f or f _ g, where f and g are state formulas; or

� E(f) where f is a path formula.

Path formulas are de�ned as follows:

� every state formula is a path formula; and

� if f and g are path formulas, then :f , f _ g, X f , f U g, and

f V g are path formulas.

CTL? is the set of state formulas generated by the above rules.

We de�ne the semantics of CTL? with respect to a Kripke structure
M = (S; T; L). A path in M is an in�nite sequence of states � =

s0; s1; ::: such that, for every i � 0; (si; si+1) 2 T . �i denotes the

su�x of � starting at si. �[i] denotes the i-th state on that path �.
The starting state of path � is �[0]. We use the standard notation to

indicate that a state formula f holds in a structure. M;s j= f means
that f holds at the state s in the structure M . Similarly, M;� j= f

means that the path formula f is true along the path �. Assume that

f1 and f2 are state formulas and g1 and g2 are path formulas, then the
relation j= is de�ned inductively as follows:

1. s j= p, p 2 L(s)
2. s j= :f1 , s 6j= f1
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3. s j= f1 _ f2 , s j= f1 or s j= f2

4. s j= E(g1) , there exists a path � starting with s such that

� j= g1

5. � j= f1, s �[0] j= f1.

6. � j= :g1 , � 6j= g1

7. � j= g1 _ g2 , � j= g1 or � j= g2

8. � j= X g1 , �1 j= g1

9. � j= g1 U g2 , there exists k � 0 such that �k j= g2 and for all
0 � j < k; �j j= g1.

10. � j= g1 V g2, for every k � 0, if �j 6j= g1 for all 0 � j < k, then
�k j= g2.

CTL?-X is the subset of CTL? without the X operator. LTL is a

subset of CTL? which only allows formula of the form A �, where �
only has path operators (V, U and X). LTL-X is the subset of LTL
without the next-time operator X. Because of the following equalities
we only consider the path operators V and U.

F � = TrueU �

G � = False V �

CTL is the subset of CTL? in which the path formulas are restricted to
be:

� if f and g are state formulas, then X f , fU g, and f V g are path
formulas.

The basic modalities of CTL are EX f , EG f , and E(f U g), where f
and g are again CTL formulas. The operator E(fVg) can be expressed

as follows:

E(f V g) = E((:f ^ g)U f ^ g) _EG(:f ^ g)
EF f = E(trueU f)



2.5. BRANCHING TIME TEMPORAL LOGICS 35

The operators AG f , AF f and A(f U g) can be expressed in terms of

the basic modalities described above.

AG f = :EF:f
AF f = :EG:f

A(f U g) = :E(:f V :g)

Next, we discuss the issue of fairness. In many cases, we are only in-
terested in the correctness along paths with certain conditions. For
example, if we are verifying a protocol with a scheduler, we may wish
to consider only executions where processes are not ignored by the
scheduler, i.e., every process is given a chance to run in�nitely often.

This type of fairness constraint cannot be expressed in CTL [17]. In
order to handle such properties we have to modify the semantics of
CTL. A fairness constraint can be an arbitrary set of states, usually
described by a CTL formula. Generally, there will be several fairness
constraints. In this paper we will denote the set of all fairness con-

straints by H = fh1; � � � ; hng. We have the following de�nition of a fair
path.

De�nition 2.5.1 Given a Kripke Structure M = (S; T; L) and a set
of fairness constraints H = fh1; � � � ; hng, a path � in M is called fair

i� each CTL formula hi is satis�ed in�nitely often on the path �.

The semantics of CTL has to be modi�ed to handle fairness constraints

H. The basic idea is to restrict path quanti�ers to fair paths. The
formal de�nition is given below:

� s j= EXH f i� there exists a fair path � starting from the state s

such that �[1] j= f .

� s j= E(g1 UH g2) i� there exists a fair path � starting from the
state s and there exists k � 0 such that �[k] j= g2 and for all

0 � j < k; �[j] j= g1.

� s j= EGH f i� there exists a fair path � starting from the state s

such that for all i � 0, �[i] j= f .
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2.6 Translating CTL into the �-Calculus

In this section we give a translation of CTL into the propositional

�-calculus. The algorithm Tr takes as its input a CTL formula and

outputs an equivalent �-calculus formula with only one action a.

� Tr(p) = p.

� Tr(:f) = :Tr(f).
� Tr(f ^ g) = Tr(f) ^ Tr(g).
� Tr(EX f) = haiTr(f).
� Tr(E(f U g)) = �Y:(Tr(g) _ (Tr(f) ^ haiY )).
� Tr(EG f) = �Y:(Tr(f) ^ haiY ).

Note, that any resulting �-calculus formula is closed. Therefore, we can
omit the environment in the set [[�]]M .

Lemma 2.6.1 Let M = (S; T; L) be a Kripke Structure, f be a CTL

formula, and a be an action with interpretation T . Consider the pred-

icate transformer � .

� (Z) = f ^ haiZ
= fs 2 S j s j= f ^ 9s0 2 S((s; s0) 2 T ^ s0 2 Z)g

� satis�es the following conditions:

� � is monotonic.

� Let � i0(>) be the limit of the sequence > � � (>) � � � �. For
every s 2 S, if s 2 � i0(>) then s j= f , and there is a state s0 such
that (s; s0) 2 T and s0 2 � i0(>).

Proof: Let P1 � P2. In this case haiP1 � haiP2, i.e., the successor

relation is monotonic. Therefore, we have that � (P1) � � (P2). Since
� i0(>) is the �xpoint of the predicate transformer � , we have the fol-

lowing equation:

� (� i0(>)) = � i0(>)
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Let s 2 � i0(>). Using the equation given above we get that s 2
� (� i0(>)). By de�nition of � we get that s j= f and there exists a

state s0, such that (s; s0) 2 T and s0 2 � i0(>). 2

The theorem given below proves the correctness of the translation al-

gorithm Tr.

Theorem 2.6.1 Let M = (S; T; L) be the underlying Kripke Struc-

ture. Let � be a CTL formula. Let the interpretation of the action a
be T . An atomic proposition p in Tr(�) has the interpretation L(p).

The set of states > is S. In this case, for all s 2 S

s j= � , s 2 [[Tr(�)]]M

Proof: The proof is by structural induction on �.

� � = p: In this case the result is true by de�nition.

� � = :f : By de�nition [[Tr(�)]]M = S � [[Tr(f)]]M . The result

follows by using the induction hypothesis on f .

� � = f ^ g: By de�nition [[Tr(�)]]M = [[Tr(f)]]M \ [[Tr(g)]]M . The
result follows by using the induction hypothesis on f and g.

� � = EX f : Let Sf be the set of states where f is true. By the
induction hypothesis, [[Tr(f)]]M = Sf . The set of states satisfying
� is the set of states S1 which have a successor in Sf . It is clear

from the semantics of hai that [[Tr(�)]]M = S1.

� � = EG f : Let Y1 be the set of states s such that s j= EG f . Let
� : 2S ! 2S be the following predicate transformer

� (Z) = [[Tr(f)]]M \ ([[haiX]]M e [X  Z])

By de�nition, the greatest �xpoint of � is given by
T
i �

i(>), where
� 0(>) = >, and � i+1(>) = � (� i(>)). Using the semantics of
EG we get that if s 2 Y1, then there exists a path � starting

from s such that each state on the path satis�es f . Therefore, if

s 2 Y1, then s has a successor s0 such that (s; s0) 2 T , s j= f , and



38 CHAPTER 2. MODEL CHECKING

s0 j= EG f . Hence Y1 is a �xpoint for the predicate transformer

� , i.e.,

� (Y1) = Y1

Since
T
i �

i(>) is the greatest �xpoint of � , we have the following
inclusion:

Y1 �
\
i

� i(>)

Now assume that s 2 Ti � i(>). By Lemma 2.6.1, s is the start of

an in�nite path � such that each state s0 on the path � satis�es
f . Therefore, we have the following inclusion:

Y1 �
\
i

� i(>)

Using the two equations we get that Y1 is the greatest �xpoint of
the predicate transformer � .

� � = E(fUg): Let S1 be the set of states s such that s j= E(fUg).

Let � : 2S ! 2S be the following predicate transformer:

� (Z) = [[Tr(g)]]M [ ([[Tr(f)]]M \ ([[haiX]]M e [X  Z]))

First, we will show that S1 is a �xpoint of � , i.e.,

� (S1) = S1

By de�nition, s j= E(f U g) i� there exists a path � starting

from s such that there exists a k � 0 with the property that
�k j= g and �i j= f (for 0 � i < k). Equivalently, s j= E(f U g)

i� s j= g or s j= f and there exists a state s1 such (s; s1) 2 T

and s1 j= E(f U g). From this condition it is clear that S1 is
a �xed point of the predicate transformer � . By de�nition, the

least �xpoint of � is given by

[
i

� i(?)
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Since S1 is a �xpoint for � , we have that

S1 �
[
i

� i(?)

Next we prove that

S1 �
[
i

� i(?)

which proves that S1 is equal to the least �xpoint of the predicate
transformer � . By de�nition, if s 2 S1, then there exists a path
� and a k � 0 such that �k j= g and �j j= f (for j < k). We will

prove by induction on k that s 2 � k(?). The basis case is trivial.
If k = 0, then s j= g and therefore s 2 � (?), which is equal to
[[Tr(g)]]M [ ([[Tr(f)]]M \ [[hai?]]M ) = [[Tr(g)]]M .

For the inductive step, assume that the above claim holds for

every s and every k � m. Let s be the start of a path � =
s0; s1; � � � such that sm+1 j= g and for every i < m+1, si j= f . By
induction hypothesis s1 2 �m(?). Notice that s0 = s 2 [[Tr(f)]]M
and s 2 hai�m(?). Therefore, by de�nition s 2 �m+1(?). Hence,
if s 2 S1, then s 2 Si � i(?).

Using Theorem 2.6.1 we have the following result:

Theorem 2.6.2 Given a Kripke Structure M = (S; T; L), an initial

state s0 2 S, and a CTL formula f , one can decide in O(jSjjf j) itera-
tions whether M;s0 j= f . Where jf j denotes the number of symbols in
the formula f .

Proof: Consider the following formula:

�Y:(�Z:(q _ (p ^ haiZ)) ^ haiY )
Notice that the formula given above is Tr(EG(E(pUq))). Since the in-

ner least �xpoint does not use the propositional variable Y ( associated
with the outer greatest �xpoint), we can compute it �rst and reuse that
value in the outer �xpoint computation. Therefore, if we compute the

inner �xpoint �rst, we can evaluate the formula given above in O(2jSj)
iterations. Notice that given a CTL formula f , Tr(f) has the property
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that the inner �xpoints never use the variables associated with the outer

�xpoint. By evaluating the �xpoints in the nesting order (evaluating

the inner �xpoints �rst), we do not have to recompute the �xpoints.

Therefore, the total complexity is the sum of the complexities for eval-

uating each �xpoint independently. This is bounded by O(jSjjf j).1 2
Given fairness constraints H = fh1; � � � ; hng, we extend the translation
algorithm Tr in the following way:

� Tr(EGH f) = �Y:
�
Tr(f)^haiVni=1 �X: [(Tr(f) ^ haiX) _ (Tr(hi) ^ Y )]

�

We introduce the following formula which is satis�ed at a state s i�
there is a fair path � starting from s.

� fair = EGH True

� Tr(EXH f) = hai(Tr(f) ^ Tr(fair)).

� Tr(E(f UH g)) = �Y:(Tr(g) ^ Tr(fair) _ (Tr(f) ^ haiY )).

We will give an informal proof of correctness for the EGH case.
Consider the following formula:

�Y:(P ^ hai�X: [(P ^ haiX) _ (h ^ Y )])

This corresponds to the formula Tr(EGH f), where H = fhg and P =

Tr(f). First, note that the condition \h holds in�nitely often along

a path" is equivalent to saying that from any point along that path

in a �nite number of steps we will reach a state where h holds. To

understand the formula given above, notice that �X:((P ^haiX)_ (h^
Y )) means that \P holds until h^ Y , and h^Y is reachable in a �nite

number of steps". Since the outer �xed point �Y:(P ^ � � �) indicates
that this property holds globally along the path, the formula exactly

corresponds to the desired property.

1By de�nition of alternation depth given in [2], the formula Tr(f) always has
alternation depth one. Hence, the linear complexity of CTL model checking follows
directly from the algorithm in [2].
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2.7 Preorders and Equivalences.

2.7.1 Simulation and bisimulation.

In this section we will use essentially the same de�nition of a transi-

tion system that was introduced in Section 2.1, except for two special

program letters � and ". The letter � represents the idle action; its

interpretation is always �xed: T (� ) = f(s; s) j s 2 Sg. The program

letter " denotes the invisible action from CCS [58] and will be used in
the de�nition of the weak simulation and bisimulation relations.

De�nition 2.7.1 A relation E � S �S is called a simulation relation,

if for every (s; s0) 2 E the following condition holds:

8a 2 Act:8q 2 S: if s a! q then 9q0 2 S:s0 a! q0 and (q; q0) 2 E:

De�nition 2.7.2 A relation E � S � S is called a bisimulation if E
and E�1 are both simulation relations. In other words, E satis�es the
following conditions: (s; s0) 2 E i�

(i) 8a 2 Act:8q 2 S: if s a! q then 9q0 2 S:s0 a! q0 and (q; q0) 2 E;
(ii) 8a 2 Act:8q0 2 S: if s0 a! q0 then 9q 2 S:s a! q and (q; q0) 2 E:

We de�ne the simulation preorder as follows:

s � s0 i� there exists a simulation relation E such that (s; s0) 2 E.

We de�ne bisimulation equivalence in a similar manner:

s � s0 i� there exists a bisimulation relation E such that (s; s0) 2 E.

It is straightforward to check that � is a preorder. In fact, it is the

maximal simulation relation under inclusion. It is also possible to show

that bisimulation equivalence � is an equivalence relation. Moreover,

it is the maximal bisimulation relation under inclusion.
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2.7.2 Encoding simulation and bisimulation

In order to check if the initial states of two transition systems are

bisimilar using the propositional �-calculus, we �rst need to construct

a new transition system. Given two transition systems M = (S; T; L)

over Act and M 0 = (S; T 0; L0) over Act, we de�ne the product ~M =

M �M 0 over ~Act as follows: ~M = ( ~S; ~T; ~L), where

� ~Act = Act�Act = fab j a 2 Act and b 2 Actg,
� ~S = S � S,

� (s; s0)
ab! (q; q0) i� s

a! q and s0
b! q0.

� ~L may be arbitrary in this case.

We assume that M and M 0 have the same state and action sets. This
is a technical issue because we can always de�ne the transition systems
on larger state and action sets.

Theorem 2.7.1 Let s and s0 be the states of the two transition systems
M and M 0. Then s � s0 i� the following formula holds in the state
(s; s0) of the transition system ~M :

�X:
� ^
a2Act

[a� ] h�aiX
�

Proof: Consider the de�nition of a simulation relation:

(s; s0) 2 E i� 8a 2 Act:8q 2 S: if s a! q then 9q0 2 S:s0 a! q0 and (q; q0) 2 E:

This is the same as the equation

E � ^
a2Act

[a� ] h�aiE

in the transition system ~M (see the semantics of modalities in Section

2.1, and de�nition of ~M). Therefore, E is a simulation relation i� it

is a �xpoint of the above equation. We show that � is the greatest
�xpoint. Let Y denote the set �X:

�V
a2Act [a� ] h�aiX

�
.
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�: s � s0 implies that (s; s0) 2 E for some simulation relation E. Since
E is a �xpoint of the equation, we have E � Y by de�nition of

the greatest �xpoint, therefore (s; s0) 2 Y.

�: Let (s; s0) 2 Y. Since Y satis�es the �xpoint equation, it is a

simulation relation, hence s � s0.

2

Theorem 2.7.2 Two states s and s0 are bisimilar (s � s0) i� the fol-
lowing formula holds in the state (s; s0) of the model ~M :

�X:
� ^
a2Act

[a� ] h�aiX ^ [�a] ha� iX
�

The proof of this theorem is almost identical to the proof of the previous

theorem.

Obviously, the alternation depth of the formulas is one, therefore the
complexity isO(j ~Sj iterations, where the size of ~S is jSj2. The time com-

plexity isO(j ~Sjj ~Actjj ~M j) which is equal to O(jSj2jActj2jM jjM 0j). An al-
gorithm for bisimulation equivalence with time complexityO(jActj(jT j+
jT 0j) log(jSj)) is given in [59]. However, it is not clear if this algorithm
can be modi�ed to compute the simulation preorder or if it can be
adapted to use OBDDs.

2.7.3 Weak simulation and bisimulation.

Weak simulation preorder and weak bisimulation equivalence require
a more elaborate encoding. The de�nition of weak (bi)simulation is
similar to (bi)simulation. The di�erence is that each of the transition

systems is allowed to perform an unbounded but �nite number of in-

visible actions ". Formally, we �rst de�ne a relation ) by

s
a) q i� 9s1; s2:s "�! s1

a! s2
"�! q;

and s
"�! q means that q is reachable from s by 0 or more executions of

".
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De�nition 2.7.3 A relation E � S � S is called a weak simulation

with invisible action ", when (s; s0) 2 E i�
8a 2 Act:8q 2 S: if s a) q then 9q0 2 S:s0 a) q0 and (q; q0) 2 E:

De�nition 2.7.4 A relation E � S � S is called a weak bisimulation

with invisible action ", if (s; s0) 2 E i�
(i) 8a 2 Act:8q 2 S: if s a) q then 9q0 2 S:s0 a) q0 and (q; q0) 2 E;
(ii) 8a 2 Act:8q0 2 S: if s0 a) q0 then 9q 2 S:s a) q and (q; q0) 2 E:

As before, we introduce a preorder called weak simulation preorder:

s �� s0 i� there exists a weak simulation relation E such that (s; s0) 2 E,
and an equivalence called weak bisimulation equivalence:

s � s0 i� there exists a weak bisimulation relation E such that (s; s0) 2 E.
To encode the weak (bi)simulation in the propositional �-calculus

we again make use of the transition system ~M . De�ne the abbrevia-
tions:

h"�; a; "�i� �df �X:(hai(�Y:� _ h"iY ) _ h"iX)
["�; a; "�]� �df :h"�; a; "�i:�

To understand the formulas better, notice that informally thay can be
viewed as translations of EF(haiEF �) and AG([a]AG �), where CTL

operators refer to "-paths. Now, it is straightforward to show that the
following theorems hold:

Theorem 2.7.3 Let s and s0 be states of the two transition systems.

Then s �� s0 i� the following formula holds in the state (s; s0) of the
transition system ~M :

�X:
� ^
a2Act

[("� )�; a� ; ("� )�] h(�")�; �a; (�")�iX
�

Theorem 2.7.4 Two states s and s0 are weakly bisimilar (s � s0) i�

the following formula holds in the state (s; s0) of the model ~M :

�X:
� ^
a2Act

[("� )�; a� ; ("� )�] h(�")�; �a; (�")�iX V
[(�")�; �a; (�")�] h("� )�; a� ; ("� )�iX

�
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Although there are �ve levels of nesting in these formulas, the alterna-

tion depth is only two. Therefore, we can compute it by the algorithm

given in [28] using O((j ~Sjj ~Actj)2) iterations or O(j ~Actj3j ~M jj~(S)j2) time.

Recall that each iteration can take upto O(j ~Actjj ~M j) time. However,

there is another algorithm by H. Andersen [3] that can compute the

�xpoints in O(jActj2jSj2j ~M j) time, which is generally better, since the

number of states in a model is usually less than the number of tran-

sitions. The algorithm in [59] can also be adapted to compute weak
bisimulation equivalence by precomputing the transitive closure of the

" relation. However, the expense of this step dominates the cost of the
entire computation. Again, it is not clear that OBDDs can be used in
the last two algorithms.
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Chapter 3

Symmetry I

Finite state concurrent systems frequently exhibit considerable symme-
try. It is possible to �nd symmetry in memories, caches, register �les,
bus protocols, network protocols { anything that has a lot of replicated
structure. Generally, veri�cation techniques do not take advantage of
this fact. In this chapter we explain how to exploit symmetry to reduce

the size of the state space that must be explored by temporal logic
model checking algorithms.

A symmetry group G of a Kripke Structure M = (S;R;L) induces

an equivalence relation on the state space S. The quotient model MG

is obtained by picking one state out of each equivalence class. If the
property being veri�ed is also invariant under the group G, then f can
be checked on the smaller quotient model MG.

This chapter is organized as follows: Section 3.1 introduces some

preliminary de�nitions and introduces the idea of symmetry group of

a Kripke Structure. Section 3.3 presents a model-checking algorithm
which exploits the inherent symmetries of the system. In Section 3.4 we
explore the complexity of determining whether two states are equivalent

under the action of a group. The complexity of this problem is also

discussed in great detail in Chapter 4. Lower bounds on BDD for an
equivalence relation induced by certain symmetry groups are provided

in Section 3.5. Section 3.6 provides a method which works well in
conjunction with BDDs. Empirical results are provided in Section 3.7.

Comparison of coarsest bisimulation reduction and symmetry based

reductions techniques are provided in Section 3.8. Section 3.9 discusses

47
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some related work.

3.1 Symmetry Groups

This section introduces the notion of symmetry of a Kripke Structure.

We also introduce some preliminary group theoretic concepts which will

be used throughout the chapter.

3.1.1 Basic Group Theory

A group G is a set S endowed with an associative binary operation 00�00
with the following properties:

1. There exists an identity element 1 2 S such that for all s 2 S,
s � 1 = 1� = s.

2. Each element s 2 S has an unique inverse s�1 such that s � s�1 =
s�1 � s = 1.

The number of elements in S is called the order of the group. The sym-
bol [n] denotes the set f1; 2; � � � ; ng. Sn is the group of all permutations
of the set [n]. A cycle of length k (denoted by (i0; � � � ; ik�1)) is a per-
mutation � such that �(ij) = ij+1 (mod k). A rotation group (or cyclic
group Cn) acting on the set [n] is a permutation group generated by

the cycle (1; 2; � � � ; n). Sym(X) denotes the group of all permutations

on the set X. A group G is said to act on the set S if there exists a
map (g; x)! gx from G� S into S satisfying

1. 1(x) = x for all x 2 S.
2. (g1g2)(x) = g1(g2(x)).

Let AP be a set of atomic propositions. A Kripke structure over
AP is a triple M = (S;R;L), where

� S is a �nite set of states,

� R � S � S is a transition relation, which must be total (i.e., for
every state s1 there exists a state s2 such that (s1; s2) 2 R).
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� L : S ! 2AP is a labeling function that associates with each state

a set of atomic propositions that are true in the state.

Let G be a permutation group, i.e., a set of bijective mappings acting

on the state space S of the Kripke structure M . A permutation � 2 G
is said to be a symmetry of M if and only if it preserves the transition

relation R. More formally, � should satisfy the following condition:

(8s1 2 S)(8s2 2 S) ((s1; s2) 2 R ) (�s1; �s2) 2 R)

G is a symmetry group for the Kripke structure M if and only if every
permutation � 2 G is a symmetry of M . Notice that the de�nition of a

symmetry group does not refer to the labeling function L. Furthermore,
since every � 2 G has an inverse, which is also a symmetry, it can be
easily proved that a permutation � 2 G is a symmetry for a Kripke
structure if and only if � satis�es the following condition:

(8s1 2 S)(8s2 2 S) ((s1; s2) 2 R , (�s1; �s2) 2 R)

Example 3.1.1 The transposition � = (S1; S2) exchanges the states
S1 and S2 in the Kripke Structure shown in �gure 3.1. The states S0
and S3 are not a�ected by the permutation �, so the successors of all
the states remain the same when � is applied. Hence, � is a symmetry
of the Kripke Structure.

Let hg1; : : : ; gki be the smallest permutation group containing all the

permutations g1; : : : ; gk. If G = hg1; : : : ; gki, then we say that the

group G is generated by the set fg1; : : : ; gkg. It is easy to see that if
every generator of the group G is a symmetry of M , then the group G
is a symmetry group for M .

3.2 Quotient Models

Let G be a group acting on the set S and let s be an element of S. The
orbit of s is the set �(s) = ft j (9� 2 G)(�s = t)g; From each orbit �(s)

we pick a representative, which we call rep(�(s)) with the restriction
that rep(�(s)) 2 �(s).
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S0 S1

S2 S3

Figure 3.1: A Kripke Structure

De�nition 3.2.1 Let M = (S;R;L) be a Kripke Structure and let G
be a symmetry group acting on M . We de�ne the quotient structure

MG = (SG; RG; LG) in the following manner:

� The state set is SG = f�(s)js 2 Sg, the set of orbits of the states
in S;

� The transition relation RG is given by

RG = f(�(s1); �(s2))j(s1; s2) 2 Rg; (3.1)

� The labeling function LG is given by LG(�(s)) = L(rep(�(s))).

Next, we de�ne what it means for a symmetry group G of a Kripke

Structure M to be an invariance group for an atomic proposition p.

Intuitively, G is an invariance group for an atomic proposition p if and
only if the set of states labeled by p is closed under the application of
all the permutations of G. More formally, a symmetry group G of a

Kripke Structure M = (S;R;L) is an invariance group for an atomic

proposition p if and only if the following condition holds:

(8� 2 G)(8s 2 S)(p 2 L(s) , p 2 L(�s))
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Lemma 3.2.1 If G is an invariance group for an atomic proposition p

and p 2 L(s), then p 2 LG(�(s)) in the quotient Kripke structure MG.

Proof: Let s1 = rep(�(s)). By the de�nition of orbit s1 = �s for some

� 2 G. If p 2 L(s), then p 2 L(�s) because G is an invariance group

for p. Therefore p 2 L(s1), and since LG(�(s)) = L(s1) we have that

p 2 LG(�(s)). 2
De�nition 3.2.2 Given a Kripke structureM = (S;R;L) and a sym-
metry group G, let MG = (SG; RG; LG) be the quotient Kripke struc-
ture. Two paths � = s0; s1; : : : in M and �G = �(t0); �(t1); : : : corre-

spond if and only if 8i(si 2 �(ti)).
Lemma 3.2.2 For every path starting from s0 inM there exists a cor-
responding path starting from �(s0) inMG, and for every path starting
from �(s0) in MG there exists a corresponding path starting from s0 in
M .

Proof:

()) Let � = s0; s1; : : : be a path in M . The corresponding path
in MG is the path produced by taking the orbits of the states, or
�G = �(s0); �(s1); : : : . Notice that �G is a valid path in the quotient
structure MG because (si; si+1) 2 R implies that (�(si); �(si+1)) 2 RG.

(() Let �G = �(s0); �(s1); : : : be a path in MG. We show how to con-
struct a path � = t0; t1; : : : in M such that t0 = s0 and ti 2 �(si). We
construct the path in an inductive manner. Initially, we let t0 = s0,

and we maintain the invariant that ti 2 �(si). Since (�(s0); �(s1)) 2 RG

there exists u 2 �(s0) and v 2 �(s1) such that (u; v) 2 R. Since
u 2 �(s0) there exists a � 2 G such that s0 = �u. By the de�nition

of the symmetry group (�u; �v) 2 R, or (s0; �v) 2 R. Let t1 = �v.
Notice that since v 2 �(s1), we have that t1 2 �(s1). Assume that we

have constructed a path � up to tk such that tk 2 �(sk). Using an

argument similar to one given above we can �nd tk+1 2 �(sk+1) such
that (tk; tk+1) 2 R. 2
Intuitively, the theorem given below states that for a temporal formula

f with invariant propositions it is safe to check the formula f on quo-
tient model.
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Theorem 3.2.1 Let M = (S;R;L) be a Kripke Structure, G be a

symmetry group of M , and h be a CTL? formula. If G is an invariance

group for all the atomic propositions p occurring in h, then

M;s j= h,MG; �(s) j= h (3.2)

where MG is the quotient structure corresponding to M .

This theorem is a direct consequence of the following lemma.

Lemma 3.2.3 Let h be a either a state formula or a path formula such
that G is an invariance group for all atomic propositions p occurring
in h. Let � = s; s1; : : : be a path in M and �G = �(s); �(t1); : : : be a

corresponding path in MG. Then

� M;s j= h,MG; �(s) j= h if h is a state formula, and

� M;� j= h,MG; �G j= h if h is a path formula.

Proof: This proof is similar to the proof of Lemma 3.2 given in [9],
and proceeds by structural induction.

Basis: h 2 AP . Because G is an invariance group for h, it is easy
to see by Lemma 3.2.1 and the de�nition of an invariance group that

M;s j= h,MG; �(s) j= h .

Induction: There are several cases.

� h = :h1, a state formula.
By the inductive hypothesis we have thatM;s j= h1,MG; �(s) j=
h1. Therefore M;s j= h , MG; �(s) j= h. The same reasoning

holds if h is a path formula.

� h = h1 _ h2, a state formula

M;s j= h , M;s j= h1 orM;s j= h2

, MG; �(s) j= h1 orMG; �(s) j= h2

, MG; �(s) j= h

The second step uses the inductive hypothesis. We can also use
this argument if h is a path formula.
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� h = E(h1), a state formula

Suppose M;s j= h. There is a path � starting with s such that

M;� j= h1. By Lemma 3.2.2 there is a corresponding path �G in

MG starting with �(s). By the inductive hypothesisM;� j= h1,
MG; �G j= h1. Therefore, M;s j= E(h1)) MG; �(s) j= E(h1). A

similar argument holds in the other direction.

� h = h1, where h is a path formula and h1 is a state formula.
Although the lengths of h and h1 are the same, we can imagine
that h = path(h1), where path is an operator which converts a
state formula into a path formula. Now we can apply the induc-
tive step.

� h = Xh1, a path formula.
By the de�nition of the next time operator M;�1 j= h1. Since �
and �G correspond, so do �1 and �1G. Therefore, by the inductive

hypothesis, MG; �
1
G j= h1, so MG; �G j= h. A similar argument

proves the implication in the other direction.

� h = h1Uh2, a path formula.
Suppose that M;� j= h1Uh2. By the de�nition of the until op-
erator, there is a k such that M;�k j= h2 and for all 0 � j < k,
M;�j j= h1. Since � and �G correspond, so do �j and �jG for
any j. Therefore, by inductive hypothesis MG; �

k
G j= h2 and

MG; �
j
G j= h2 for all 0 � j < k. Therefore, we have MG; �G j= h.

We can use the same argument in the other direction. 2.

3.3 Model Checking with Symmetry

In this section we describe how to perform model checking in the pres-

ence of symmetry. We discuss how to �nd the set of states in a Kripke

structure that are reachable from a given set of initial states using an
explicit state representation. In the explicit state case, a breadth-�rst
or depth-�rst search starting from the set of initial states is performed.

Typically, two lists, a list of reached states and a list of unexplored

states are maintained. At the beginning of the algorithm, the initial
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states are put on both the lists. In the exploration step, a state is re-

moved from the list of unexplored states and all its successors are pro-

cessed. An algorithm for exploring the state space of a Kripke structure

in the presence of symmetry is discussed in [42]. The authors introduce

a function �(q), which maps a state q to the unique state represent-

ing the orbit of that state. While exploring the state space, only the

unique representatives from the orbits are put on the list of reached and

unexplored states. Figure 3.2 gives the pseudo-code for exploring the
state space under the presence of symmetry. This simple reachability

algorithm can be extended to a full CTL model checking algorithm by
using the technique described in [17].

Reached = ;;
Unexplored = ;;
For each initial state s Do

Append �(s) to Reached;

Append �(s) to Unexplored;
Endforloop
While Unexplored 6= ; Do

Remove a state s from Unexplored;
For each succesor state q of s

If �(q) is not in Reached
Append �(q) to Reached;
Append �(q) to Unexplored;

EndIf
Endforloop

EndWhile

Figure 3.2: Algorithm for exploring state space in presence of symmetry

We can now focus on how to perform symbolic model checking in

the presence of symmetries. The straightforward method of computing
the quotient model uses the OBDD for the orbit relation �(x; y) �
(x 2 �(y)). Given a Kripke structure M = (S;R;L) and a symmetry
group G on M with r generators g1; g2; � � � ; gr, the orbit relation � can
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be de�ned as the least �xpoint of the equation given below:

Y (x; y) � (x = y) _ (9z)(Y (x; z) ^ (z = g1y _ z = g2y � � � _ z = gry))

(3.3)

The following lemma shows that this de�nition is correct.

Lemma 3.3.1 The least �xpoint of Equation 3.3 is the orbit relation

� induced by the group G generated by g1; g2; � � � ; gr.
Proof: First, we prove that � is a �xpoint of the equation given below:

Y (x; y) = (x = y _ (9z)(Y (x; z) ^ (z = g1y _ z = g2y � � � _ z = gry)))

It is obvious by the transitivity and re
exivity of the orbit relation �

that

�(x; y) � (x = y _ (9z)(�(x; z) ^ (z = g1y _ z = g2y � � � _ z = gry))):

Suppose �(x; y) is true, then by the de�nition of the orbit relation
there exists � 2 G such that x = �y. Without loss of generality assume
that x 6= y. This means there exists a generator gk; k � r such that
x = �1gky. Setting z = gky, we see that �(x; z) and z = gky. Since x
and y are arbitrary boolean vectors we get the following inclusion:

�(x; y) � (x = y _ (9z)(�(x; z) ^ (z = g1y _ z = g2y � � � _ z = gry)))

Hence � is a �xpoint of Equation 3.3.
Next, we prove that if T is any �xpoint of equation 3.3, then � � T

by showing that �(x; y)) T (x; y). The de�nition of the orbit relation

�(x; y) implies that there exists a � = gim � � � gi2gi1 ; 1 � ij � r such
that x = �y. Since T is a �xed point of Equation 3.3, it can be proved

by induction that for all 1 � l � m, T (gil : : : gi1y; y) holds. Using this

result for l = m, we see that T (x; y) holds. Since �(x; y) ) T (x; y),
we obtain that � � T . Hence, � is the least �xpoint. 2

If a suitable state encoding is available, this �xpoint equation can be

computed using OBDDs [13]. Once we have the orbit relation �, we

need to compute a function � : S ! S, which maps each state s to

the unique representative in its orbit. If we view states as vectors of

values associated with the state variables, it is possible to choose the
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lexicographically smallest state to be the unique representative of the

orbit. Since � is an equivalence relation, these unique representatives

can be computed using OBDDs by the method of Lin [49].

De�nition 3.3.1 Let B = f0; 1g and R � Br�Bn be a total relation.

A function F : Br ! Bn is compatible with R if it has the following

properties:

� For all x 2 Br, we have (x;F(x)) 2 R;
� For every u and v in Br, if the possible mappings of u and v

are the same (i.e., (8y 2 Bn)((u; y) 2 R , (v; y) 2 R)) then
F(u) = F(v).

Lin [49] also de�nes a compatible projection operator which is a com-
patible function that maps x 2 Br to the least y 2 Bn (with respect to
some norm N) such that (x; y) 2 R. Formally, the compatible projec-
tion is de�ned as follows:

De�nition 3.3.2 Let R � Br � Bn be a binary relation. The pro-

jection of R, denoted by projection(R), is the function F de�ned as
follows:

F = f(x; y)j(x; y) 2 R ^ (8z)((x; z) 2 R ) N(z) � N(y))g
where the norm N(x) is de�ned as follows:

N(x) =
nX
i=0

xi2
n�i

That is, N(x) is the number whose binary representation is the vector

x.

It can be shown that projection(R) is a compatible function of R. This
function can be computed e�ciently in a single bottom-up traversal of

the OBDD representation of the relation R. Given the orbit relation
�, the function projection(�) maps each state to the unique represen-

tative of its orbit. Notice that projection(�) is exactly the function �

introduced before.
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Assuming that we have the OBDD representation of the mapping

function �, the transition relation RG of the quotient structure can be

expressed as follows:

RG(x; y) = (�(x) = x) ^ (9y1)(R(x; y1) ^ �(y1) = y)

The formula �(x) = x expresses the fact that x is the unique repre-

sentative of its orbit. To construct the function �(q) it is important

to compute the orbit relation e�ciently. In the next section we will

discuss the computational complexity of �nding the orbit relation.

3.4 Complexity of orbit calculations

The behavior of a sequential circuit or protocol is frequently determined
by the values of a set of boolean state variables x1; x2; : : : ; xn. For
example, the behavior of a bus arbitration protocol may be determined

by the boolean state variables that encode the command on the bus and
the identity of the master. When we extract a Kripke structure from a
circuit or protocol, we treat these state variables as atomic propositions.
The set of atomic propositions is AP = fx1; � � � ; xng. The resulting
Kripke model M = (S;R;L) will have the following components:

� S � Bn, where each state can be thought of as a truth assignment
to the n state variables;

� R � S � S, where R is determined by the behavior of the circuit

or protocol;

� L : S ! 2AP where L is de�ned so that xi 2 L(s) if and only if
the i-th component of s is 1.

It is often the case that the symmetry group is also given in terms

of the state variables. For example, in a two bit adder with inputs

x1; x2 and x3; x4, the permutation (13)(24) is a symmetry because we
can exchange the inputs without a�ecting the result. If we have a per-

mutation �, which acts on the set f1; 2; : : : ; ng, then � acts on vectors
in Bn in the following manner:

�(x1; x2; � � � ; xn) = (x�(1); x�(2); � � � ; x�(n)):
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Given two vectors x and y in Bn and a permutation �, it is easy to

see that x 6= y implies �x 6= �y. Therefore, a group G acting on the

set f1; 2; � � � ; ng induces a permutation group G1 acting on the set Bn.

In other words, a symmetry on the structure of a circuit induces a

symmetry on the state space of the circuit.

De�nition 3.4.1 Let G be a group acting on the set f1; 2; � � � ; ng.
Assume that G is represented in terms of a �nite set of generators.

Given two vectors x 2 Bn and y 2 Bn, the orbit problem asks whether
there exists a permutation � 2 G such that y = �x.

Let G induce the permutation group G1 acting on B
n. The orbit prob-

lem asks if x and y are in the same orbit under the action of the group
G1. As we show below, the Orbit Problem is as hard as the Graph

Isomorphism problem.

De�nition 3.4.2 Given two graphs G1 = (V1; E1) and G2 = (V2; E2)
such that jV1j = jV2j, the Graph Isomorphism problem asks whether

there exists a bijection f : V1 ! V2 such that the following condition
holds

(i; j) 2 E1 , (f(i); f(j)) 2 E2

Theorem 3.4.1 The orbit problem is as hard as the Graph Isomor-

phism problem.

Proof:

Given two graphs G1 = (V1; E1) and G2 = (V2; E2) we construct a

group G and two 0-1 vectors x and y such that x and y are in the

same orbit under the action of the group G if and only if G1 and G2

are isomorphic. We assume that jV1j = jV2j = n and are labeled by

integers. Let A = faijg and B = fbijg be the adjacency matrices of the
graph G1 and G2 respectively. Let x 2 Bn2 be de�ned as follows:

xn(i�1)+j = aij ; 1 � i � n ; 1 � j � n

The vector x 2 Bn2 is a list of the elements of the matrix A in row

order. The vector y 2 Bn2 is de�ned in a similar fashion using the

adjacency matrix B. Let (ij) be a transposition acting on the set
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f1; 2; � � � ; ng. Intuitively, this transposition exchanges the vertices i

and j in the graph G1. This transposition corresponds to exchanging

the rows i and j, and columns i and j, in the adjacency matrix and has

exactly the same e�ect as applying the permutation � given below to

the vector x.

�row = (n(i� 1) + 1; n(j � 1) + 1) : : : (n(i� 1) + n; n(j � 1) + n)

�col = (i; j) : : : ((n� 1)n + i; (n� 1)n + j)

� = �row�col

Each permutation acting on the set of size n corresponds to a bijection
f : V1 ! V2. We assume that the vertices are labeled by integers. If
the bijection corresponding to the permutation (ij) is an isomorphism

between G1 and G2, then exchanging rows i and j and columns i and
j in the adjacency matrix A yields the matrix B. Thus y = �x, be-
cause x and y are just encodings of the adjacency matrices A and B,
respectively. Similarly, if y = �x, then the bijection corresponding
to the permutation (ij) is an isomorphism between the graph G1 and
G2. Therefore, y = �x if and only if the bijection corresponding to

the permutation (ij) is an isomorphism between G1 and G2. Every
bijection f : V1 ! V2 corresponds to some permutation in the full sym-
metric group Sn. Since the group Sn acting on the set f1; 2; � � � ; ng is
generated by the transpositions (12),(13), : : : (1n) we have the result.
We just have to code all these transpositions in the context of the 0-1

vectors x and y. 2.

Example 3.4.1 Consider the two graphs G1 and G2 given in the �g-

ure 3.3. The vectors x and y given below encode the adjacency matrices

of the graphs G1 and G2 respectively:

x = (011 100 100)

y = (010 101 010)

The permutations are de�ned as follows:

�row = (1; 4)(2; 5)(3; 6)

�col = (1; 2)(4; 5)(7; 8)

� = �row�col
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Notice that y = �x and the bijection corresponding to the permutation

(1; 2) is an isomorphism between G1 and G2. The permutation �row
corresponds to exchanging rows 1 and 2.

3
G1 G2

3

1

2

2

1

Figure 3.3: Two isomorphic graphs

A modi�ed version of the orbit problem called the bounded orbit

problem is de�ned as follows:

De�nition 3.4.3 Given a group G generated by r permutations g1,g2,
� � �, gr acting on the set f1; 2; � � � ; ng, two vectors x; y 2 Bn, and an
integer k, does there exist a permutation � obtained by at most k
applications of the generators such that x = �y? That is, does � have
the following form � = gi1gi2 : : : gim , where m � k?.

Intuitively, in the bounded orbit problem we limit the number of times
we can apply the generators. Although the graph isomorphism problem

is not known to be NP -hard, the bounded orbit problem can be shown
to be NP -complete. The reduction is from EXACT COVER BY 3-

SETS [33].

De�nition 3.4.4 The EXACT COVER BY 3-SETS (X3C) is de�ned
as follows:
INSTANCE: Set X with jXj = 3q and a collection C of 3-element

subsets of X.

QUESTION: Does C contain an exact cover for X? That is, is there

a subcollection C 0 � C such that every element of X occurs in exactly

one member of C 0?

Theorem 3.4.2 The bounded orbit problem is NP -complete.
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Proof: The reduction is from the X3C problem. Consider an instance

of X3C, where we are given a speci�c set X with jXj = 3q and a

collection C of 3-element subsets of X. We construct a group G acting

on the set f1; 2; � � � ; 6qg. Let n = 3q. With an element xi 2 X we

associate the permutation (i; n + i), 1 � i � n. With each 3-element

set in the collection C we associate a permutation which is the product

of the permutation corresponding to its elements. For example, if we

have the set fxi; xj; xkg 2 C, then the permutation associated with
it is (i; n + i)(j; n + j)(k; n + k). Let Cg be the set of permutations

corresponding to the collection C. The group G is the group generated
by the set of permutations Cg. Consider two 0-1 vectors x and y of
length 6q de�ned as follows: x has 1s in �rst 3q positions and 0s in
last 3q positions, and y has 0s in �rst 3q positions and 1s in last 3q
positions. We will show that there exists a permutation �, which is the
product of q generators from the set Cg, such that y = �x if and only

if the instance of X3C has a cover C 0 for the set X.
Because we are dealing with 3-element subsets and X has 3q ele-

ments, we must use exactly q 3-element sets to cover X. Suppose there
is a collection C 0 of q sets that covers X, and consider the permutation
� that is the product of all the permutations corresponding to the sets

in the cover C 0. Since C 0 is a cover for X, the transposition (i; n + i)
for each element xi occurs in the permutation �. Hence, it is obvious
that y = �x.

Suppose, on the other hand, there exists a permutation �, which is
the product of at most q generators from the set Cg, such that y = �x.

Let us assume that � = g1 : : : gr where r � q and gi 2 Cg for 1 � i � r.
Since xi = 1 and yn+i = 1(for 1 � i � 3q), the permutation � has to

include each transposition of the form (i; n + i) for 1 � i � 3q. Since

we need at least 3q transpositions of the form (i; n+ i) to transform the
vector x to y, we will have to use exactly q generators. Moreover, the q

generators must be disjoint. It follows that the collection formed by the
3-element sets corresponding to the q generators of � is a cover for X.

So the instance of the bounded orbit problem with the set of generators
Cg, 0-1 vectors x and y, and the integer bound q has a solution if and

only if the instance of X3C has solution.

The bounded orbit problem is obviously in NP because we can

guess the string of k (the given integer) generators that generates the



62 CHAPTER 3. SYMMETRY I

permutation � such that y = �x, where x and y are the speci�ed 0-1

vectors 2.

Example 3.4.2 Consider the following instance of X3C with q = 2.

The various sets in this instance of X3C are de�ned as follows:

X = fx1; x2; x3; x4; x5; x6g
C = ffx1; x3; x5g; fx2; x4; x6g; fx1; x2; x6gg

Now we de�ne the instance of the bounded orbit problem. With each
element xi ; 1 � i � 6 we associate the permutation (i; 6+ i). With the
collection C we associate the following set Cg of permutations:

Cg = f(1; 6 + 1)(3; 6 + 3)(5; 6 + 5) ; (2; 6 + 2)(4; 6 + 4)(6; 6 + 6) ;

(1; 6 + 1)(2; 6 + 2)(6; 6 + 6)g
For example, the permutation (1; 6 + 1)(3; 6 + 3)(5; 6 + 5) corresponds
to the set fx1; x3; x5g. Consider the following vectors x and y in B12:

x = (111111000000)

y = (000000111111)

Notice that ffx1; x3; x5g; fx2; x4; x6gg is a cover for x, and the permu-

tation � which is the product of the permutations corresponding to
these sets satis�es the equation: y = �x.

At �rst glance, the bounded orbit problemmight seemmuch weaker

than the general orbit problem. However, given a permutation group

G with an arbitrary set of generators, we can always �nd a set of
generators such that every permutation � 2 G is the product of at
most n of the new generators, where n is the size of the set on which

G acts. This result follows immediately using an algorithm described

in [32]. Given a group G acting on a set of size n and generated by
g1; � � � ; gk, we can construct a table T with n rows (labeled 0 to n� 1)

and n columns (labeled 1 to n), of permutations with the following
property: � 2 G if and only if � can be expressed as a0a1 � � � ar, were
ai is a member of the i-th row. Using the permutations in the table T ,

the general orbit problem on G can be converted into an instance of
the bounded orbit problem (with the bound n).
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3.5 Complexity of the OBDD for the orbit relation

The use of OBDD has proved quite successful in model checking [14, 55].

In [20] it was proved that the OBDD for the orbit relation is exponential

for transitive groups. A method using multiple representatives which

avoids building the orbit OBDD was also provided in [20]. In this

section, we expand the theorem given in [20] to the class of separable

groups. Because of lemma 3.5.1 the result given in [20] is a special case

of the theorem given here.

De�nition 3.5.1 Let G be a group acting on a set S. Two subsets C
and D of S are said to be separable i� there exists a permutation � 2 G
such that �(C) and D are disjoint. The group is said to be k-separated

if and only if any sets C and D such that jCj = k and jDj < k are
separable.

De�nition 3.5.2 A group of G permutations acting on a set S is called
transitive, if and only if for all i; j 2 S there exists g 2 G such that
g(i) = j.

We have the following lemma.

Lemma 3.5.1 A transitive group G � Sn is
p
n-separable. The full

symmetric group Sn is
n
2
-separable.

Proof: The result for transitive groups is given in [6]. Given two

subsets C and D of [n] such that jCj = n
2
and jDj � n

2
, one can always

�nd a permutation � 2 Sn such that �(C) = [n]�D. The result follows
from de�nition of separability.2

A special case of the above situation is the following: the set S = Bnm

(i.e., a system composed of n components each with m state variables)
and the group G acting on S is induced by a group G0 of permutations
acting on the [n] in the following way:

g(hx1;1; : : : ; x1;m; : : : ; xn;1; : : : ; xn;mi) = hxg0(1);1; : : : ; xg0(1);m; : : : ; xg0(n);1; : : : ; xg0(n);mi

with g 2 G and g0 2 G0. Intuitively, the group G0 tells us how to per-

mute blocks where each block has m variables. Ring structures, where
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the components are ordered in a ring and can be rotated any number

of steps, occur frequently in practice. The token ring protocol used

in the solution to the distributed mutual exclusion problem uses this

topology. In the terminology given above the symmetry group for the

ring structure is induced by the rotation group. In star or bus topolo-

gies components are unordered and can be exchanged arbitrarily. Such

situations occur, for example, in systems where components commu-

nicate via a common bus (e.g. multiprocessor systems), or in systems
with broadcast and star-like communication structures. The symmetry

group of these systems is induced by the full symmetric group, i.e.,
G0 = Sn.

De�nition 3.5.3 The orbit relation � ofG is the set of pairs fhs; ti j t 2
�(s)g. The orbit relation induced by G0 is the orbit relation of group
G. If S = Bnm the orbit relation can be represented by a characteristic
boolean function � : Bnm �Bnm ! B.

Theorem 3.5.1 Let S = Bnm. For a d-separated group G acting on
the set f1; 2; � � � ; ng we can obtain the following lower bound for the
OBDD representing the induced orbit relation �:

j�j > 2K with K = min(d; 2m�1 � 1)

Proof: We use unprimed variables xi;j for representing the �rst argu-
ment of the orbit relation and primed variables x0i;j for the second. For

the proof we only consider the �rst variable of each component. First

we determine a partition (L;R) of the variables | we go through all
the variables in the given variable ordering, until we have K unprimed

variables xi;1 or K primed variables x0i;1 in L and put the rest of the
variables in R. Notice that all variables in L precede all the variables

in R in the variable ordering. Without loss of generality, we assume

that L contains K unprimed variables with indices I = fi1; :::; iKg and
less than K primed variables x0j;1 with indices j 2 J .

Since G is d-seperated, we can �nd a g 2 G, such that all primed

variables x0g(i);1 for i 2 I are in R. In other words, g(I) and J are dis-
joint. Notice that K � d. We construct an assignment in the following

way: for ij 2 I, the variables hxij;2; :::; xij;mi and hx0g(ij);2; :::; x0g(ij);mi
are instantiated with the binary representation of the number #j for
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1 � j � K. Note that since K has to be representable in m�1 bits, we
need that K � 2m�1 � 1. The variables xi;j and x

0
g(i);j are instantiated

with 0 for i 62 I. Let �0 be the OBDD obtained from � by the above

instantiation. Instantiating variables with constant values in a OBDD

does not increase its size, so j�0j � j�j. The OBDD �0 only depends on

the variables xi;1 and x
0
g(i);1 for i 2 I and by our construction the only

valid assignments are those, where the values of xi;1 and x
0
g(i);1 agree.

In other words, �0 is the OBDD for the following proposition:

^
i2I

xi;1 = x0g(i);1

Since all variable xi;1 precede all variables x0g(i);1 , the OBDD �0 has

atleast 2K nodes (see Lemma 2.3.1.2

Notice that from lemma 3.5.1 and the previous theorem one gets ex-
ponential lower bounds for the orbit OBDD for transitive and full-
symmetric groups.

3.6 Multiple Representatives

Since the OBDD for the orbit relation is large for some groups that
occur frequently in practice, it is computationally expensive to use the
single representative theory described earlier. For example, Lin's al-
gorithm to extract an unique representative from each orbit requires
the explicit construction of the OBDD for the orbit relation. In this

section, we develop a scheme to use multiple representatives. In this

scheme the size of OBDDs remain more manageable, because the orbit
relation for the symmetry group is never explicitly constructed. Next,
we explain the main idea behind the algorithm using multiple repre-

sentatives. Consider n processes P1; � � � ; Pn contending for the bus.

Assume that we can exchange processes arbitrarily. Consider a state s
in which the control of the bus is granted to Pj (j � 2). By permuting

processes P1 and Pj we can map state s into a state s0 where P1 has the
control of the bus. This should allow us to always work in the restricted

set of states where P1 always has control of the bus.

First, we explain the concept of cosets which will be used in this section.
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De�nition 3.6.1 Let G be a group. Let H � G. Given two elements

a; b 2 G, we say that a �r b if and only if ab�1 2 H. In a similar

manner, a �l b if and only if a�1b 2 H. It is easy to see that �r
and �l are equivalence relations on the elements of G. The equivalence

classes induced by �r are called right cosets of G under H. Similarly,

the equivalence classes induced by �l are called left cosets of G under

H.

Notice that Ha denotes the right coset containing the element a. aH
denotes the left coset containing the element a. [G : H] denotes the
number of right cosets (which is equal to the number of left cosets [39])
of G underH. GivenG andH � G, a right traversal ofH inG is a set of
k = [G : H] elements fa1; � � � ; akg such that G = [ki=1Hai. Intuitively a

right traversal has a representative from each right coset. Left traversal
is de�ned in a similar manner using left cosets. A subgroup N of H
is called a normal subgroup if and only if for all a 2 G, aNa�1 = N .
Given a normal subgroup N � G, the right and left cosets match, i.e.,
for all a 2 G, aN = Na. Morover, the set of all right or left cosets,

denoted by GnN , is a group of order [G : N ] under the binary operation
(aN)(bN) = (abN)(see [39]). A group G is called simple if and only
if G has no proper normal subgroups. For an excellent treatment of
group theoretic concepts see [39, 43].

Let Rep be the set of representatives. Let � � S � Rep be the rep-
resentative relation. We are assuming the most general setting where
there can be multiple representatives from one orbit and a state can
be related by � to more than one representative from its orbit. All the

basic modalities of CTL (EFp, EGp, and E(qUp)) can be expressed

as �xpoints using the modality EX. The �xpoint equations are de-

scribed below and the correctness of the equations was demonstrated
in Chapter 2.

EFp = �Y:(p _ EXY )
EGp = �Y:(p ^ EXY )

E(qUp) = �Y:(p _ (q ^ EXY ))

Consequently, it is su�cient to give the semantics for EXf . Let Im�

be the forward image under the representative relation, and Im�1
R
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be the pre-image under the transition relation of the original struc-

ture M = (S;R;L). The set of representatives satisfying EXf is

Im�(Im
�1
R (K)), where K is the set of representatives satisfying the

state formula f . For example, consider the formula EFp such that

p is an atomic proposition and G is an invariance group for p. Let

K0 � Rep be the set of representatives labeled by p. Let Ki be the

set of representatives at the i-th iteration. The equations given below

describe the set of representatives that satisfy the formula EFp:

K0 = fr j r 2 Rep and p 2 L(r)g
Ki+1 = Im�(Im

�1
R (Ki)); for i � 0

If K is a set of representatives, then Im�(Im
�1
R (K)) again is a set of

representatives. Therefore, in this new model checking algorithm, we
always maintain subsets of representatives, which can result in substan-
tial savings. By placing some restrictions on the representative relation
�, we can prove the correctness of this model. These restrictions on
representative relations are quite general and we believe that they hold

in most practical cases. There is an implicit assumption that for each
orbit �(s) of S under G there exists r 2 Rep such that �(s) = �(r);
that is, we assume that every orbit is represented.

De�nition 3.6.2 Let G be a symmetry group for a Kripke structure

M = (S;R;L). Let � � S � Rep be a representative relation such
that (s; r) 2 � implies that �(s) = �(r). Let C � G be a subset of
permutations. The set C is called complete for � if and only if

� The condition (s; r) 2 � implies that 9(� 2 C) such that �s = r.

� For all r 2 Rep and � 2 C we have that (�r; r) 2 �.

The intuition for this de�nition will become clear when we prove Lemma 3.6.1.

It allows us to translate a path in the quotient model MG to a corre-

sponding path in the model M� which is de�ned below.

De�nition 3.6.3 Given a Kripke structure M = (S;R;L) and a rep-

resentative relation � � S � Rep, M� = (Rep; R�; L�) is de�ned as
follows:
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R� = f(r1; r2) j 9(s 2 S)((s; r1) 2 � ^ (s; r2) 2 R)g
L�(r) = L(r)

Notice that ImR�
= ImR � Im�1

� and Im�1
R�

= Im� � Im�1
R . There-

fore, the pre-image of a set of representatives K in the structure M�

is Im�(Im
�1
R (K)). Hence, proving that the model checking procedure

described at the beginning of the section is correct is equivalent to prov-
ing that M� and M satisfy the same invariant CTL? formulas. Since

we have already proved the equivalence between M and the quotient
model MG, it su�ces to prove the equivalence between M� and MG.

Lemma 3.6.1 If � has a complete set of permutations C � G, then
the corresponding path theorem holds for M� and MG.

Proof: Let �� = (r0; r1; � � �) be a path in M�. From the de�nitions

it is easy to see that (r1; r2) 2 R� ) (�(r1); �(r2)) 2 RG, so �G =
(�(r0); �(r1); � � �) is a path in MG.

For the other direction, let �G = (�(s0); �(s1); � � �) be a path in MG.
Let r0 be an arbitrary representative from the orbit �(s0). Since G is a
symmetry group for M and (�(s0); �(s1)) 2 RG, there exists t1 2 �(s1)
such that (r0; t1) 2 R. Let r1 2 Rep such that (t1; r1) 2 �. Since C
is a complete set for �, there exists � 2 C such that �t1 = r1. Since
G is a symmetry group, (�r0; �t1) 2 R. Since C is a complete set for
� , (�r0; r0) 2 �. By de�nition of R�, (r0; r1) 2 R�. Continuing the
argument we can show that for every natural number i there exists

ri 2 Rep such that �(ri) = �(si) and (ri; ri+1) 2 R�. The path �� =

(r0; r1; � � �) is a corresponding path in M�. 2.

Theorem 3.6.1 Let M = (S;R;L) be a Kripke Structure, G be a

symmetry group of M , and h be a CTL? formula. Let � � S �Rep be
a representative relation and C � G be the corresponding complete set.
If G is an invariance group for all the atomic propositions p occurring

in h, then for all r 2 Rep
MG; �(r) j= h,M�; r j= h (3.4)

where MG is the quotient structure corresponding to M and M� is

de�ned above.
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Proof: The proof of theorem is very similar to that of Lemma 3.2.3

using Lemma 3.6.1.2

Theorem 3.6.2 Let G be a permutation group acting on a �nite set S,

and let H be a sub-group of G. Let the set of representatives Rep � S
be the union of some orbits of S under H. Given the conditions above,

there exists a representative relation � and a corresponding complete

set C.

Proof: Let G = H +H 1+ � � �+H r be the complete right traversal
of H in G (each  i is in a di�erent right coset of GnH). De�ne C =
fe;  1;  

�1
1 � � � ;  r;  �1r g (e is the identity permutation). We de�ne the

representative relation as follows: (s; r) 2 � if and only if there exists

� 2 C, r 2 Rep, and �s = r. The �rst condition for C to be complete for
� follows from the de�nition. We now prove that the second condition
holds. Consider �r for � 2 C. Since ��1 2 C, we have that (�r; r) 2 �.
Hence, C is a complete set for �, but we have to prove a consistency

condition, i.e., for every s 2 S there exists r 2 Rep such that (s; r) 2 �
and �(s) = �(r). The condition states that every state is related to
some representative in its orbit.

The way we have de�ned � means that proving consistency is equiv-
alent to proving that for all s 2 S there exists a � 2 C such that
�s 2 Rep. Notice that since C � G, for all � 2 C the states �s and
s are in the same orbit of S under G. Let �(s) be the orbit of s 2 S
under G. Since H is a sub-group of G, the orbits of S under H are

a re�nement of orbits of S under G. Let �H � �(s) be an orbit of S

under H such that �H � Rep. Let r 2 �H be an arbitrary representa-
tive. Since r and s belong to the same orbit of S under G, there exists
� 2 G such that �s = r. Using the right traversal of H in G we can

write � = �1 , were �1 2 H and  2 C. Since �s = r,  s = ��11 r.

Since ��11 2 H, ��11 r 2 �H. Therefore  s 2 Rep. 2.

The theorem given above assumes that Rep is the union of some orbits
of S under H. Therefore, if the orbits of H are large, then the set of

representatives could be large. In practice, Rep is provided and then

the group H is determined as follows. Suppose the state set S is given
by the assignment to n boolean state variables x1; � � � ; xn. Let Rep be
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those states such that x1 = 1. If G is the symmetry group of the un-

derlying structure, then G1 (the subgroup of G which �xes the index

1) serves the purpose of H in the theorem given above. This fact will

be shown later. Hence, in some sense the choice of H is �xed by the

choice of Rep.

A permutation � acting on the set S is said to stabilize a set Y � S
i� the following condition holds:

8(y 2 Y )(�(y) 2 Y )
Notice that the condition given above is equivalent to the condition
�(Y ) = Y . Let G be a permutation group acting on the set S. Given
Y � S, the subgroup GY (the stabilizer of Y in G) of G is de�ned as
follows:

GY = f�j(� 2 G) ^ (�(Y ) = Y )g
Now we prove a useful generalization of the theorem given above.

Theorem 3.6.3 Let M = (S;R;L) be a Kripke structure and G be
its symmetry group. Let Rep � S be the set of representatives. Let

H be a subgroup of G such that for all � 2 H, �(Rep) = Rep (notice
that that this is another way of stating that Rep is the union of some
orbits of S under H), i.e., H stabilizes Rep. Let C � G be a set which
satis�es the following conditions

1. For each coset of GnH we have a permutation  2 C which

belongs to that coset.

2. The set C is inverse closed, i.e  2 C implies that  �1 2 C.

Let the representative relation � be de�ned as follows: (s; r) 2 � i�
s 2 S, r 2 Rep and there exists a  2 C such that  s = r. Then � is

valid representative relation and C is the corresponding complete set.

Proof: It is exactly same as the proof of Theorem 3.6.2. 2.

In the theorem given below S is the set of states given by assignments

to the boolean variables x1; x2; � � � ; xn. Each state is a 0-1 vector of size
n.
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Theorem 3.6.4 Let the set of representatives Rep be given by the

propositional formula p(x1; x2; � � � ; xn), i.e., a state s = (y1; � � � ; yn) is
a representative i� p(y1; � � � ; yn) = 1. If G is the symmetry group for

the Kripke structure M = (S;R;L), then there exists a representative

relation � � S � Rep and a corresponding complete set C.

Proof: Let Gp be the invariance group of the propositional formula

p. Let H = Gp \ G. We prove that if s 2 S is a representative (i.e.,

p(s) = 1), then �H(s) � Rep (�H(s) is the orbit of s under H). Since
every permutation � 2 H is an invariant for p, p(�s) = 1 for all � 2 H.

Hence �H(S) � Rep. Therefore, Rep is the union of orbits ofH. Now we
can use Theorem 3.6.2 to get a representative relation � and a complete
set C. 2

We give examples illustrating the utility of the result.

Example 3.6.1 Let x1; x2; � � � ; xn be the list of boolean state variables.
Let G be a permutation group acting on the set f1; 2; � � � ; ng. G induces
a permutation group B(G) on the set f0; 1gn, but we will work with
G. Quite frequently representatives are given by an assignment to
variables whose index is in a certain set Y � f1; 2; � � � ; ng. For example,

Y = f1; 2g and x1 = 0; x2 = 1 might describe the representatives (in
this case the proposition �x1 ^ x2 describes the representatives). Let A
be the assignment to the variables xi such that i 2 Y . The assignment
A de�nes the set of representatives Rep. We use Ai to denote the
value of the variable xi (i 2 Y ) in the assignment. Let Y1 = fijAi =
1g and Y0 = Y � Y1. In this case H (the invariance group of the
proposition describing the representatives) is (GY1)Y0 . Intuitively, all

variables which are assigned the same value by the assignmentA can be

permuted freely. Now we can use Theorem 3.6.4 to get a representative
relation � and a corresponding complete set C.

Example 3.6.2 We give an even more concrete example. Take the

cache-coherence protocol with n processes. Each process has k local

variables. The variables xk(i�1)+1; � � � ; xk(i�1)+k are the local variables
corresponding to process i. Let xk(i�1)+1 correspond to the variable that
indicates whether process i is the master: xk(i�1)+1 = 1 means process

i is the master. Assume that we can switch the context of processes i

and j, which corresponds to the permutation
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�ij = (k(i� 1) + 1; k(j � 1) + 1) � � � (k(i� 1) + k; k(j � 1) + k)

The symmetry group G of the Kripke structure M is generated by �1i
(2 � i � n). Suppose we choose the set of representatives as the states

where process 1 is the master, i.e., x1 = 1. The invariance group H of

the proposition x1 is G
1, where G1 is the subgroup of G that �xes the

index 1. Two permutations �1 and �2 are in the same coset of GnG1 i�
�1(1) = �2(1). Notice that for k 6= j, �1j and �1k lie in di�erent coset
of of GnG1 because they map 1 to di�erent positions. Therefore, the

complete right traversal of G1 in G is given by the following equation.

G = G1 +G1�12 + � � �+G1�1n

Using Theorem 3.6.3 we get a representative relation � and the complete
set fe; �12; � � � ; �1ng

The next lemma will be used to prove the correctness of our experi-
ments performed on a simple version of the Futurebus+ cache-coherence
protocol. The experimental results are given in the next section. We
extend the de�nition of the orbit of a state to a orbit of a set of states.
Orbit of a set Y � f1; 2; � � � ; ng is de�ned as follows:

�(Y ) = fY 0 j 9(� 2 G)(�(Y ) = Y 0)g

The group G acts on the set f1; 2; � � � ; ng.
Lemma 3.6.2 Let G, Y , Y0, Y1 be as in Example 3.6.1. Let C � G

be a set which is inverse closed and such that for every pair of sets
Y 0
0 2 �(Y0) and Y 0

1 2 �(Y1) there exists a � 2 C such that �(Y0) = Y 0
0

and �(Y1) = Y 0
1 . Let � � S � Rep be de�ned as follows: (s; r) 2 �

i� there exist � 2 C such that �(s) = r. In this case � is a valid

representative function and C is the corresponding complete set.

Proof: Let H = (GY1 )Y0 be as de�ned in example 3.6.1. Two permu-

tations �1 and �2 of G are in the same coset of H i� �1(Y0) = �2(Y0)
and �1(Y1) = �2(Y1). Therefore, C has a permutation from every coset

of GnH (the argument is very similar to the one given in the example
before). Applying Theorem 3.6.2 we get the result.2
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3.7 Empirical Results

This section provides empirical results to test the multiple representa-

tive theory given earlier.

3.7.1 Futurebus cache-coherence protocol

The �rst example is a simple cache coherence protocol for a single-bus

multiprocessor system based on the Futurebus+ IEEE standard [41].
The veri�cation of a more detailed version of the protocol with mul-
tiple buses is described in [18]. The system has a bus over which the
processors and the global memory communicate. Each processor con-
tains a local cache which consists of a �xed number of cache lines (see

Figure 3.4).

cl 1,K

cl 1,2

cl 1,1

...

cl 1,K

cl 1,2

cl 1,1

... ...

P1 P2

cl 2,1

cl 2,2

cl 2,K

...

mem 2

mem K

mem 1

Mem

cl 2,K

Bus

Figure 3.4: System structure

In each bus cycle the bus arbiter chooses one processor to be the
master. The master processor selects a cache line address and a com-

mand it wants to put on the bus. The other processors and the memory

respond to the bus command and change their local context. The re-
action of the components is described in the protocol standard, which

enforces the coherence of the cache lines among the di�erent proces-
sors, i.e., only valid data values are read by the processors and no

writes are lost. For the veri�cation task the protocol is formalized, and

cache coherence and other important system properties are expressed
in temporal logic.
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The behavior of the processors, the bus and the memory can be

described by �nite state machines. The state of the processor Pi is

a combination of the states of each cache line in the processor cache

and the state of the bus interface. The global bus is represented by

the command on the bus, the active cache line address and other bus

control signals (e.g., for bus snooping and arbitration.)

There are two obvious symmetries in the system. First, processors

are symmetric: we can exchange the context of any two processors in
the system. Second, cache lines are symmetric: any two cache lines

can be exchanged simultaneously in all processors and the memory. To
maintain consistency, along with applying the symmetries mentioned
above, all the cache lines and processor addresses in the system must
be renamed. Both symmetries are indicated in Figure 3.4 by arrows.

The complete system is the synchronous composition of all the com-
ponents and can be described by a Kripke structure M = (S;R;L).

Since domains can be encoded in binary, a state is just a binary vector,
and the transition relation R can be represented by a OBDD. The
experiments were performed with two variable orderings which we call
\concatenation" and \interleaving". The concatenation ordering is sim-
ply P1 � P2 � : : : � PN . The variables of processor i are ordered before
the variables of processor i+ 1. In the interleaved ordering the proces-
sor variables are interleaved; that is p1;1 < p2;1 < � � � < pN;1 < p2;2; � � �,
where pi;1; � � � ; pi;K are the state variables of processor Pi. The vari-
ables of the bus and the memory are ordered before all other variables
in both orderings. In both orderings, each next state variable is placed

immediately after the corresponding state variable.
Throughout this discussion we use N to denote the total number

of processors and M to denote the total number of cache lines. Let

�1j be the permutation which exchanges the context of processor 1
with processor j. Let  1k be the permutation that exchanges cache

line 1 with cache line k. The symmetry group that uses processor
(cache) symmetry alone is generated by the set of permutations � =

f�1jj1 � j � Ng(	 = f 1kj1 � k � Mg). The symmetry group that
uses processor and cache symmetry is generated by the permutations

�[	. When only the processor (cache) symmetry was used, the set of

representatives were the states where processor 1 is the master (cache

line 1 is active). When both the symmetries were used, the set of
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representatives were the set of states where processor 1 is the master

and cache line 1 is active. The representative relation for all three cases

is given below:

1. In the case of processor symmetry, (s; r) 2 �p i� there exists �1j
(1 � j � N) such that �1j(s) = r.

2. In the case of cache symmetry, (s; r) 2 �c i� there exists  1k

(1 � k �M) such that  1j(s) = r.

3. In the case when both symmetries are used, (s; r) 2 �pc i� there
exists 1 � j � N and 1 � k �M such that  1k(�1j(s)) = r.

We will prove that the set C = f 1k � �1jjk � M ^ j � Ng is
complete for the representative relation �pc. The cases when we use
only cache and processor symmetry are very similar to Example 3.6.2.
Let masteri be the index of the variable that tells that processor i is the

master: xmasteri = 1 means processor i is that master. Let activej be
the index that indicates that cache line j is active. Using the notation
of Lemma 3.6.2 we have that Y1 = fmaster1; active1g. The orbit of Y1
is the set of pairs of indices of the form fmasterj; activekg. Consider
a typical element Y 0 = fmasterj; activekg in �(Y1). It is clear that

 1k(�1j(Y1)) = Y 0. Therefore, by Lemma 3.6.2, C is a complete set for
�pc.

Consider the following properties which can be represented by a
propositional formula:

1. Property p asserts that for all cache lines, if one processor is in

EM(exclusive modi�ed) state, then all other processors are in

I(invalid) state.

2. Property q states that for all cache lines, if memory has valid
data, then either all processors are in SU (shared unmodi�ed) or
I(invalid) state or one processor is in EU(exclusive unmodi�ed)

state.

3. Property m asserts that all cache lines in memory are valid.

4. Property c says that the command on the bus is either read-

modi�ed or invalidate
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To verify that p and q remain true everywhere, we checked that the

initial state does not belong to EF:p and EF:q. These properties

could be checked by doing reachability, but in order to test our theory

we check them by computing EF:p because this involves �nding pre-
images. We also checked whether the initial state satis�es the property

AG(m! A(mUc)) which asserts that if memory has valid data then it

remains valid until an appropriate command is issued. This property

turned out be false because there are reachable states where m is true
and there exists a path where the command is never read-modi�ed or

invalidate. We also tested that from all the reachable states it is possi-
ble to get to a state where memory has valid data for all the cache lines,
i.e., we checked that initial state satis�es the property AG(EFc). The
OBDD sizes for the property EF:q were the largest. We ran the exper-
iments with various system con�gurations. The results are summarized
below. The OBDD sizes in the case of the interleaved ordering were

much smaller than the OBDD sizes in the case of the concatenation
ordering. Therefore, in the tables given below we have only included
the data for the interleaved ordering.

Each row jPkC in the table gives the results for a con�guration of
j processors and k cache lines. The �rst column gives the number of

OBDD nodes for representing the transition relation. The remaining
columns give the size of the largest OBDD and cpu time for model
checking of the properties described above. First, no symmetry was
used. Next, we give the results for symmetry between processors and
symmetry between cache lines. In the last case, we used the combina-

tion of both symmetries. All experiments were run on a Sun Sparc10
workstation and the size of the largest OBDD gives a tight bound for

the maximal memory usage. Table 3.1 gives the results without the

use of symmetry. Table 3.2 summarizes the results when symmetry
was exploited.

Exploiting the symmetry between processors or cache lines reduces
the OBDD size by a factor that is linear in the number of processes or

cache lines. The combination of these two symmetries reduces the size
of the largest OBDD by the product of the number of processors and

cache lines, because the two symmetries are independent. As a result,

exploiting symmetry reduces the memory usage. The cpu times are not

reduced by the same factor: exploiting symmetry requires additional
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system trans. no symmetry
con�g. relation

BDD BDD time

nodes nodes sec.

2P2C 631 920 2

4P2C 8,534 6,048 11

2P4C 1,519 6,166 36

4P4C 22,154 42,595 231

2P8C 3,295 17,446 756

4P8C 49,394 121,475 5,911

2P12C 5,071 28,726 5,136

4P12C 76,686 - -

Table 3.1: Empirical Results Without Symmetry

system symmetry
con�g. processors cache lines combination

BDD time BDD time BDD time
nodes sec. nodes sec. nodes sec.

2P2C 668 1 518 1 368 1

4P2C 2,573 4 2,855 6 1,309 3

2P4C 3,917 18 1,458 9 1,178 6

4P4C 14,626 62 6,831 47 4,266 27

2P8C 10,837 407 2,618 152 2,338 98

4P8C 40,466 1,400 11,551 678 8,986 424

2P12C 17,757 2,884 3,778 841 3,498 577

4P12C - - 16,271 3,808 13,706 2,300

Table 3.2: Empirical Results With Symmetry

time to map states onto the representatives after each pre-image step

in the model checking procedure.
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3.7.2 Futurebus Arbiter

Our next example is the Futurebus Arbiter. Each module has a priority

number. While competing for the bus, modules with higher priority

number are given preference. Among competing modules with the same

priority number, the winner is decided non-deterministically. Winner

is the module which wins the competing phase. The arbitration cycle

(which results in a winner) has six phases. We give a brief overview of

these phases. The interested reader is referred to the IEEE Futurebus

standard for a more detailed account [41].

� Phase 0
In this phase modules decide to compete for the bus.

� Phase 1
Noticing that a competition phase is about begin, other modules

might decide to compete.

� Phase 2
In this phase a winner (called the master elect) is selected from
the set of competing modules. Winner is selected according to
the rules described earlier.

� Phase 3
Other modules check that the master elect had the highest prior-

ity number among the competing modules. If this is not the case,
modules assert an error. If an error has not occurred, this phase
continues until the master of the bus relinquishes its control. In

this phase a module with higher priority than the master elect

might start a new arbitration cycle. This is called deposing the
master elect.

� Phase 4
In this phase the current master of the bus might inhibit transfer

of control of the bus to the master elect. If the master relinquishes

its control over the bus, the arbitration cycle moves to the last
phase.
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� Phase 5
In this phase the master elect gets control of the bus. This phase

is called the transfer of tenure phase.

There are three boolean variables in each module which ensures the

proper sequencing of the phases in an arbitration cycle. The internal

state of the module depends on the outcome of the arbitration cycle

and is shown below.

Master ElectMaster

Idle Compete
request

winner

loser

deposition
error

transfer of 

tenure

transfer

of

tenure

Figure 3.5: States of the Arbiter

Notice that two modules with the same priority number can be per-

muted without changing the behavior of the system. Formally, the the

permutation corresponding to exchanging two modules with the same
priority number is a symmetry of the system. However, two modules
with di�erent priority numbers cannot be exchanged. In the table given

below the �rst column shows the con�guration of the system. For exam-

ple, 10m is the con�guration with 10 modules having the same priority
number. 10m10m denotes the con�guration where the �rst 10 modules

have a higher priority number than the last 10 modules (there are 10
modules in all). Assume that we have m sets of n modules (denoted by

fM11; � � � ;M1ng; � � � ; fMm1; � � � ;Mmng. Moreover, the priority numbers

of two modules Mjl and Mrt is the same i� j = l, or they belong to
the same set. In this case the set of representatives is the set of states
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where the �rst module from a particular set is always chosen master

elect. The reasoning that this is a valid set of representatives is very

similar to the one given for the Futurebus cache-coherence protocol.

The table of experimental results is shown below:

System Time BDD Time BDD size
Con�g size (Symm) (Symm)

10m 163.41 369,705 37.04 27,671

12m 487.56 921,034 43.12 36,135

10m10m 1171.85 932,429 126.17 73,514

12m12m - - 198.195 93,094

3.8 Bisimulation Experiments

A relation B � S � S is called a bisimulation relation for a Kripke

structure M = (S;R;L) if and only if (s; s1) 2 B implies that:

� for all s0 such that (s; s0) 2 R there exists a s01 such that (s1; s
0
1) 2

R and (s0; s01) 2 B
and an equivalent condition holds for s1.

Given a symmetry group G for the Kripke structure M = (S;R;L)
the orbit relation induced by G is a bisimulation relation. A natural

question is, why we do not use bisimulation minimization algorithms

to obtain a quotient structure?
Bisimulationminimization algorithms require that a transition graph

must be constructed (partially in \on-the-
y" algorithms), and then

minimized using the �xpoint characterization of bisimulation. In con-
trast, symmetry can be already used during the construction of the

transition graph (see Algorithm 3.2). Therefore, even in�nite systems
can be handled, if the quotient structure is �nite.

The orbit relation corresponding to a symmetry group is not the
largest bisimulation: two orbits might be bisimilar and could be merged

by the coarsest bisimulation. As a result, the quotient structure ob-

tained by symmetry may have more states than the one obtained using

bisimulation minimization. However when using OBDDs the crucial
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parameter is not the number of states, but the \structure" of the state

space. For example, using multiple representatives increased the num-

ber of representatives, but provided a signi�cant performance improve-

ment. Similarly, the experiments described below indicate that we get

better reductions using symmetry (with multiple representatives) than

using bisimulation minimization.

Let R be the transition relation of a Kripke structure and E an

equivalence relation on the set of states. BE is the largest bisimula-
tion contained in E and can be computed by the following �xpoint

computation:

B0(p; q) := E(p; q)
repeat

Bi+1(p; q) := 8p0 : (R(p; p0)! 9q0 : (R(q; q0) ^ Bi(p
0; q0))) ^

8q0 : (R(q; q0)! 9p0 : (R(p; p0) ^ Bi(p
0; q0)))

until Bi == Bi+1

BE := Bi

When implementing such an iterative scheme using OBDDs, the vari-

able ordering is very important. There are two variable orderings to
consider:

� The variable ordering of the p variables (similarly q variables).
This ordering was the interleaved ordering de�ned in section 3.6.

� The variable ordering of q variables with respect to the p variables.

The experiments were performed with three di�erent orderings between

p and q: concatenated, (i.e., all p variables precede all q variables); in-

terleaved (i.e., p0,q0,p1,q1,: : : ); and reordered, where we used dynamic
variable reordering [31, 63] during the iteration1. In Table 3.3 the col-

umn bisim order denotes the used order. Experiments with the inter-
leaved ordering always behaved much worse with respect to time and

space requirements than those with the concatenated ordering. There-
fore, we have only included the data for the concatenated ordering and

reordering in the table.
Results for various con�gurations of the cache-coherence protocol

are listed in the Table 3.3. The computations were aborted if a spec-

1We used window and sifting techniques in the reorder algorithms
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example inv reach bisim time nodes

(sec) order (sec)

2p2c inv no c 5.4 935

2p2c inv 0.5 c 1.2 506

2p2c inv 0.6 r 3.5 405
2p2c none no c 0.9 180

2p2c none 0.6 c 1.1 506
2p2c none 0.6 r 3.5 405

2p4c inv no c - -
2p4c inv 1.4 c 7.7 1986
2p4c inv 1.5 r 21.8 1203

2p4c none no c 4.0 344

2p4c none 1.5 c 7.8 1986
2p4c none 1.5 r 21.9 1203

4p2c inv no c - -
4p2c inv 2.2 c - -
4p2c inv 2.0 r - -
4p2c none no c 10.6 528

4p2c none 2.1 c 10.9 1904
4p2c none 2.1 r 40.0 1484

Table 3.3: Bisimulation results

i�ed time bound was exceeded. The column inv denotes the set used
for E. The symbol none means that E = true and inv means that two

states are in E i� they agree on the property con
ict, which is true if

a cache line exists, for which the caches of two di�erent processors are

in con
ict, e.g., both are in \exclusive-modi�ed" states. Notice that

the property con
ict is basically the property :p where p is de�ned in
Section 3.6. We experimented with computing the reachable states in

advance and performed bisimulation minimization only for the reach-
able states. For these experiments column reach gives the time for

reachability computation. If reachability computation was not done,

there is a no in that column. The column time gives the time for the
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bisimulation iteration (without reachability) and nodes the number of

OBDD nodes for the OBDD for the relation BE. For all larger con�gu-

rations, such as 4p4c, not listed in the table the time bound was always

exceeded.

In summary, these experiments show that for this example bisimu-

lation minimization is more complex than performing model checking

using multiple representatives. Using symmetry we showed that model

checking can be made more e�cient. So we conclude that in our class
of applications exploiting symmetry is superior to performing bisimu-

lation minimization.

3.9 Related Work

There has been relatively little research on exploiting symmetry in
verifying �nite state systems. Most of the work on this problem has
been performed by researchers investigating the reachability problem
for Petri nets [38, 66]. However, the work on Petri nets does not con-

sider general temporal properties nor the complications that are caused
by representing the state space using OBDDs. In related research, Ip
and Dill [42] propose a data type scalarset which facilitates detection
of symmetry in �nite state systems. Their technique uses an explicit
state representation rather than OBDDs and only considers reachabil-

ity analysis. The research closest to the one presented in this chapter
is of Emerson and Sistla [29], but their work does not investigate the
complexity that arises while using OBDDs. In [45] an approach to cut
down the cost of protocol analysis using quotient structures induced by

automorphism is proposed, but this work considers only limited kind

of symmetry.
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Chapter 4

Symmetry II

This chapter investigates the complexity of problems associated with
exploiting symmetry. For example, given a group G and two states
s and s0, the orbit problem asks whether s and s0 in the same orbit.
Determining whether two states are in the same orbit is at the core of
any model checking procedure exploiting symmetry. We prove that the

orbit problem is equivalent to an important problem in computational
group theory. We also investigate the complexity of checking whether
a permutation is a symmetry of a Kripke Structure. We explore ways
of deriving symmetries of shared variable concurrent programs. Since
the orbit problem in its full generality is quite hard, this chapter also

shows that the orbit problem is easy for certain commonly occurring
groups.

This chapter is organized as follows: In Section 4.1 we introduce a

shared variable model. Section 4.2 gives a technique to derive symme-
tries of shared variable programs. Section 4.3 derives symmetry groups

for certain commonly occuring architectures like hypercubes, toruses,
and trees. In section 4.4 we discuss the complexity of checking sym-

metry. Section 4.5 investigates the complexity of the orbit problem.
Section 4.6 investigates some special classes of the orbit problem.

4.1 A Shared Variable Model of Computation

A shared variable program is de�ned with the state sets and the tran-
sition relation as follows:

85
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� S = LocI �DV is the �nite set of states, with Loc a �nite set of

individual process locations, I the set of process indices, and V is

a �nite set of shared variables over a �nite data domain D.

� R � S � S which represents the transitions of the system.

For convenience, each state s = (s0; s00) 2 S can be written in the

form (`1; : : : ; `n; v = d; : : : ; v0 = d0) indicating that processes 1; : : : ; n

are in locations `1; : : : ; `n, respectively and the shared variables v; : : : ; v
0

are assigned data values d; : : : ; d0, respectively.
Next, we de�ne a labeling function for a shared variable program.

The set of terms are expressions of the form li (i 2 I) and v = d (v 2 V
and d 2 D). The set of atomic propositions AP are constructed from
the set of terms by the logical connectives ^ and :. Given an atomic

proposition p 2 AP and a state s 2 S, the satisfaction relation s j= p

is de�ned in the following way:

� s j= li i� the i-th process in the state s is in location li.

� s j= v = d i� the shared variable v has the value d in the state s.

� s j= f ^ g i� s j= f and s j= g.

� s j= :f i� s 6j= f .

Given a shared variable program, we can construct a corresponding

Kripke Structure M = (S;R;L) (S and R were de�ned before) by

constructing the following labeling function L : S ! 2AP .

� p 2 L(s) , s j= p.

In practice, for ordinary model checking,M is the Kripke Structure

corresponding to �nite state concurrent program P of the form kni=1Ki

consisting of processes K1; : : : ;Kn running in parallel. Each Ki may
be viewed as a �nite state transition graph with node set Loc. An arc

from node ` to node `0 may be labeled by a guarded command B ! A.

The guard B is an atomic proposition that can inspect shared variables
and local states of \accessible" processes. A is a set of simultaneous

assignments to shared variables v := d k � � � k v0 := d0. When process
Ki is in local state ` and the guard B evaluates to true in the current
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global state, the program P can nondeterministically choose to advance

by �ring this transition of Ki which changes the local state of Ki to

be `0 and the shared variables in V according to A. Thus the arc

from ` to `0 in Ki represents a local transition of Ki that we denote by

` : B ! A : `0 .

The Kripke structure M = (S;R;L) corresponding to P is thus

de�ned using the obvious formal operational semantics. First, the set

of (all possible) states S is determined from P because it provides us
with the set of local (i.e., individual process) locations Loc, process
indices I, variables V , and data domain D. For states s; t 2 S, we
de�ne s! t 2 R i�
9i 2 I such that the process Ki can cause s to move to t, denoted

s!i t i�
9i 2 I 9 local transition �i = `i : Bi ! Ai : mi of Ki which drives s =
(s0; s00) to t = (t0; t00); i-th component of s0 equals `i, the i-th component
of t0 equals mi, all other components of s0 equal the corresponding
component of t0, predicate Bi(s) = true, and t00 = Ai(s

00). Ai(s
00) is

constructed from s00 by replacing the values of the shared variables
according to the simulatneous assignment statement Ai. The labeling
function L is de�ned as before.

4.2 Deriving Symmetry

This section deals with deriving symmetry for shared variable programs

introduced in the previous section. Intuitively, if one has a graph G

whose nodes corresponds to processes and the processes communicate

over the edges of G, an automorphism of the graph G should manifest

itself into a symmetry of the underlying structure. Succintly speaking,
structural symmetry introduces symmetry in the model. This section

proves that for certain cases one can derive the symmetry of the model
from the topology of the system. Given a concurrent program P =

kni=1Ki, we build a hypergraph HG(P). Under certain restrictions, we
prove that the each automorphism of HG(P) is also a symmetry of the

underlying Kripke Structure M . A restricted version of the theorem

appeared in [29]. For example, in [29] the authors assume that all

processes are isomorphic and the variables are only shared between two
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processes. For instance, consider an arbiter which maintains a global

master variable (indicating who has the resource). This arbiter could

be handled by the framework presented in this section, but the theorem

given in [29] does not apply in this context.

Let P = kni=1Ki be a concurrent program. In this section the index

set is I = [n]. Each shared variable v is subscripted the by the set of

indices of the processes which access that shared variable. For example,

if x is accessed by processes 1, 4, and 5, we write x as xf1;4;5g. Notice
that each shared variable is uniquely determined by its name and sub-

script, but we allow shared variables to have the same name as long as
their subscripts are di�erent. For example, xf1;2g and xf3;4g are allowed.
A permutation � 2 Sn acts on the variables in a natural manner, i.e.,
�(xw) = x�(w). A permutation � acting on [n] is called consistent if and
only if for every shared variable xw, x�(w) is a variable as well. This
means that we only allow permutations which map shared variables to

shared variables.
We de�ne how a consistent permutation � acts on states, atomic

propositions, and processes. Let � be a consistent permutation.

� Given a state s = (l1; � � � ; ln; vw1 = d1; � � � ; vwk = dk), the state
�(s) is de�ned as follows:

{ The i-th process is in location l�(i) in the state �(s).

{ The shared variable v�(w) in the state �(s) has the same

value as the variable vw in the state s.

� Let p 2 AP be an atomic proposition. �(p) is recursively de�ned
as follows:

{ �(f ^ g) = �(f) ^ �(g).
{ �(:f) = :�(f).
{ �(li) = l�(i).

{ �(vw = d) = (v�(w) = d).

� Given a simultaneous assignment A = (vw1 = d1k � � � kvwk = dk),
de�ne �(A) as the following simultaneous assignment.

v�(w1) = d1k � � � kv�(wk) = dk
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� Given a process Ki, the process �(Ki) is constructed in the fol-

lowing manner:

{ l : B ! A : l0 is a transition in Ki i� l : �(B)! �(A) : l0 is

a transition in �(Ki).

The lemma given below says that applying consistent permutations

preserves the satisfaction relation.

Lemma 4.2.1 Let � be a consistent permutation. Let s be a state
and p be an atomic proposition. In this case, s j= p i� �(s) j= �(p).

Proof: The proof is by structural induction on p. 2

The Lemma given below will be used in proving the main theorem.

Lemma 4.2.2 Let � be a consistent permutation such that �(i) = j

and �(Ki) = Kj . Assume that s!i t. Then �(s)!j �(t).

Proof: Let s = (l1; � � � ; ln; vw1 = d1; � � � ; vwk = dk). Assume that
s !i t. This means that a there is a transition � : li : B ! A : l0i in
the process Ki which drives s to t. By de�nition, we have that s j= B.
Using Lemma 4.2.1 we have that �(s) j= �(B). Since Kj = �(Ki),
li : �(B) ! �(A) : l0i is an enabled transition in Kj in the state �(s).
Let �(s)!j t

0. We have to prove that t0 = �(t). This follows straight

from the de�nition.2

De�nition 4.2.1 A colored hypergraph with n vertices and k colors

is a 3-tuple H = ([n]; E;C) such that E � 2[n] is the edge set, and
C : [n]! [k] is the coloring function which colors each node with one
of the k colors. A permutation � acting on [n] is called an automorphism

of the hypergraph H i� the following two conditions hold:

� For all 1 � i � n, C(i) = C(�(i)).

� w 2 E i� �(w) 2 E.
The group of automorphisms of the hypergraphH is denoted byAut(H).

De�nition 4.2.2 Given a concurrent program P = kni=1Ki, de�ne the

corresponding colored hypergraph HG(P) = ([n]; E;C) in the following

manner:
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� w 2 E i� there exists a shared variable with subscript w.

� Assume that we have a equivalence relation �= on the processes

K1; � � � ;Kn. Partition the processes K1; � � � ;Kn into equivalence

classes induced by the relation �=. Let c1; � � � ; ck be the k equiv-

alence classes. The coloring function C is de�ned as follows:

C(i) = r i� the process Ki is in the equivalence class cr.

The de�nition of the equivalence relation �= will depend on the partic-
ular example, but here are two choices:

� Ki
�= Kj if and only if there exists a consistent permutation �

such that �(Ki) = Kj .

� Ki and Kj are the instances of the same MODULE de�nition [55].

Our goal is to relate the automorphism group of the Kripke Structure
M (corresponding to the program P = kni=1Ki) to the automorphism
group of the hypergraph HG(P). We want to make sure that every
automorphism of HG(P) which maps vertex i to j also maps process

Ki to Kj , i.e., respects the structure of the program P. To achieve this
we introduce the following de�nition: Let �(Ki) be the set of indices
j such that there exists a shared variable xw such that fi; jg � w.
Intuitively, if j 2 �(Ki), then Ki and Kj share some variables. �(Ki) is
called the neighborhood of Ki. We require that i 2 �(Ki), i.e., a process

is in its own neighborhood. Process Ki respects its neighborhood if and
only if given any consistent bijection f : �(Ki) ! �(Kj ) such that
f(i) = j and for all r 2 �(Ki), Kr

�= Kf(r), then f(Ki) = Kj. The
bijection f acts on Ki exactly the same way as a permutation acts on
Ki. The notion of consistency of bijections is similar to the consistency

of permutations. Notice that the check that a process Ki respects

its neighborhood is local , i.e., only involves processes with which its
shares data. Moreover, sometimes processes are entirely symmetric,

i.e., given a permutation �, �(Ki) = K�(i). In this case, Ki respects its
neigborhood trivially.

Theorem 4.2.1 Let HG(P) be the hypergraph corresponding to the
program P = kni=1Ki. Moreover, assume that for all 1 � i � n, Ki re-

spects its neighborhood. Let M be the Kripke Structure corresponding

to P. Given these conditions, Aut(HG(P)) � Aut(M).
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Proof: Let � 2 HG(P) be an aribitrary automorphism of the hy-

pergraph corresponding to P. Because of the second condition in the

de�nition of the automorphism of a colored hypergraph, � is consis-

tent. Let s !i t be an arbitrary transition in M . Since � is an

automorphism of HG(P), Ki
�= K�(i) (this follows from the coloring

function of HG(P)). Let �(Ki) be the neigborhood of Ki. Notice that

�(�(Ki)) = �(K�(i)). Let f� : �(Ki)! �(K�(i)) be the bijection corre-

sponding to �, i.e., for all i 2 �(Ki), f� = �(i). Since Ki respects its
neighborhood, f�(i)(Ki) = K�(i). This also implies that �(Ki) = K�(i).

Using Lemma 4.2.2 we get that �(s) !�(i) �(t). Therefore, given a
transition s ! t in M , �(s) ! �(t) is also a transition in M . Hence,
� 2 Aut(M).2

4.3 Symmetries of Various Common Architectures

In section 4.2 we proved that in some cases structural symmetry in-
duces symmetry in the underlying model. For example, if processes
communicate over a hypercube, the symmetry of the hypercube will
induce a symmetry on the underlying model. This section derives the

automorphism group of three commonly occuring architectures: Hyper-
cube, Torus, and Tree. First, we have to de�ne certain operations on
groups which will be used in this section. Two groups G and H acting
on a set S are called disjoint i� for all � 2 G and all  2 H, �(i) 6= i

implies that  (i) = i, and  (i) 6= i implies that �(i) = i. Intuitively,

G and H act on di�erent parts of S. Product of G and H (denoted by
G �H) is the group generated the set

f :� j  2 G ^ � 2 Hg
Disjoint product is the product of two disjoint groups.

De�nition 4.3.1 First, we give an informal de�nition ofwreath prod-

uct of two groups G and H denoted by GoH. Let G � Sn and H � Sm.
Take m disjoint copies of a set X of size n. The elements of G oH work
on X1 [ � � � [Xm in the following manner. First permute the elements

of Xi according to a permutation in the group G and then permute

the sets of Xi according to a permutation in H. Therefore, a per-
mutation in G o H can be written as (g1; � � � ; gm; h) were gi 2 G and
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h 2 H. Formally, consider the set [nm]. The i-th block of integers is

f(i� 1)n + 1; � � � ; (i� 1)n+ ng. A permutation (g1; � � � ; gm; h) acts on
the set [nm] in the following way:

� First, apply the permutations gi in the following manner:

gi((i� 1)n + j) = (i� 1)n+ gi(j)

� Then apply the permutation h in the following way:

h((i� 1)n + j) = (h(i)� 1)n+ j

4.3.1 Hypercube

De�nition 4.3.2 We will use B to denote the set f0; 1g. A Hypercube

of dimension n has 2n vertices labeled by vectors from Bn. Two nodes
u and v labeled by vectors x; y 2 Bn are connected i� x and y di�er
in just one bit, i.e., the hamming distance between them is 1. See
Figure 4.1. Recall that the hamming distance between two 0-1 vectors
is the number of positions in which they di�er.

(0,0,0)
(0,0,1)

(0,1,0)
(0,1,1)

(1,1,1)

(1,0,0)

(1,1,0)

(1,0,1)

Figure 4.1: A 3-dimensional Hypercube
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A permutation group Sn acts on the space Bn of n-dimenional 0-1

vectors in the natural way: a permutation � 2 Sn maps a vector

(x1; � � � ; ; xn) to (x�(1); � � � ; x�(n)). We denote this group acting on Bn

by B(Sn).

Lemma 4.3.1 Let B(Sn) be the permutation group acting on Bn in-

duced by the full symmetric group Sn acting on [n]. A permutation

� 2 Sn maps (x1; � � � ; xn) to (x�(1); � � � ; x�(n)). An automorphism f of a

n-dimensional hypercube which maps the zero vector ~0 to itself belongs
to B(Sn).

Proof: Since an automorphism of the hypercube preserves hamming

distances, f has to map a vector x 2 Bn to a vector which has the
same number of 1s, i.e., f(x) and x have same number of ones. This
can be easily seen by comparing the hamming distance of f(~0) = ~0 and
f(x). Let ei (for 1 � i � n) be the 0-1 vector which has a 1 in the i-th
position and 0 everywhere else. Let � 2 Sn be such that �(i) = j i�

f(ei) = ej. Now it easy to see that f corresponds to � 2 Sn. 2.
The i-th complementation group C i

n acts on B
n in the following manner:

It maps a vector (x1; � � � ; xi; � � � ; xn) to the vector (x1; � � � ; xi; � � � ; xn),
i.e., complements the i-th bit. The group C i

n acts on B
n and is a cyclic

group of order 2.

Theorem 4.3.1 The automorphism group of a n-dimensional hyper-

cube is the group generated by B(Sn) and C
i
n (1 � i � n).

Proof: Let g be a automorphism of the n-dimesional hypercube. Let
g(~0) have 1 in k positions i1; i2; � � � ; ik. If k = 0, g 2 B(Sn) (by the pre-
vious lemma). Let h be the permutation which complements the bits

in the positions i1; i2; � � � ; ik. Notice that h is in the group generated
by C i

n (1 � i � n). Using the property that g preserves hamming dis-

tances, we can see that g�h�1 is an automorphism of the n-dimensional
hypercube which maps ~0 to ~0. Now we use the previous lemma and get

that g � h�1 2 B(Sn). 2.
Consider Figure 4.1. Now consider the permutation (2; 3) 2 S3 and the

complementation group C1
3 . The cyclic permutation (2; 3) has the e�ect

of exchanging vertices (0; 0; 1) with (0; 1; 0) and (1; 0; 1) with (1; 1; 0) in
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the top and bottom squares of the hypercube. The complementation

group C1
3 exchanges the top and bottom squares. It is easy to see that

this is an automorphism of the hypercube.

4.3.2 Torus

De�nition 4.3.3 Consider a n � n grid whose nodes are labeled by

tuples (i; j) (1 � i � n and 1 � j � n). A torus is formed by adding

edges between the nodes (i; 1) and (i; n) and (1; i) and (n; i) to the grid.

See Figure 4.2.

(3,1) (3,2)

(2,2)(2,1)

(1,2)(1,1)

(3,3)

(2,3)

(1,3)

Figure 4.2: A 3� 3 Torus

De�nition 4.3.4 We de�ne the following permutations:

1. The 
ip permutation F is de�ned as follows: F ((i; j)) = (j; i).
The permutation F 
ips the torus and is an automorphism of a
n� n torus. Notice the F is it owns inverese.

2. Let Cn be the cyclic group acting on [n]. Let R = Cn � Cn. The
permutations in R are of the form (�; �) such that � 2 Cn and
� 2 Cn and its acts on (i; j) in the following manner: (�; �)(i; j) =

(�(i); �(j)).

Lemma 4.3.2 Let f be an automorphism of the n�n torus such that

f(1; 1) = (i; 1) and f(2; 1) = (j; 1). In this case f 2 R and is of the
form (�; e), were � 2 Cn and e is the identity permutation.
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Proof: Basically, the lemma states that if the node (1; 1) and (2; 1) are

mapped to the same column by f , then f is equivalent to a permuta-

tion in Cn. The proof goes as follows: Just by looking at the torus it is

easy to see that f(1; k) = (i; k) and f(2; k) = (j; k) (we are assuming

that f(1; 1) = (i; 1) and f(2; 1) = (j; 1)). Continuing this way we can

see that all nodes in column k are mapped to nodes in column k. Let

�(i) = j i� f(i; 1) = (j; 1). Now it is clear that f = (�; e). 2.

Theorem 4.3.2 The automorphism group of the n�n torus is gener-
ated by R and F .

Proof: Consider an automorphism f of a n � n torus. Let f(1; 1) =
(i; j). Let � 2 Cn be such that �(j) = 1. Consider � = (e; �). Let
g = � � f . The permutation g has the property that g(1; 1) = (i; 1). If

g(2; 1) = (j; 1), then by the previous lemma g = � � f = (�; e) or in
other words f = (�; ��1). Suppose g(2; 1) = (i; k) (notice that (2; 1)
has to remain adjacent to (1; 1) under automorphisms). In this case
g(1; 2) = (j; 1). It is easy to see that g�F (2; 1) = g(1; 2) = (j; 1). There-
fore g�F = (�; e) (by the previous lemma) or f = (e; ��1)� (�; e)�F�1

or in other words f = (�; ��1) � F . Since f was an arbitrary automor-
phism of the torus, the proof is complete.2.

Now we will illustrate how a generic automorphism of the torus is con-

structed through an example. Consider the 3 � 3 torus given in Fig-

ure 4.2. First, one can rotate the three columns simultaneously. After
that, we can rotate all the rows simulataneously. After we are done
rotating, we can 
ip the torus, i.e., node (i; j) becomes node (j; i). It

is easy to see that all these three operations maintain the structure of

the torus. The theorem given above says that all automorphisms of the
torus can be generated in this manner.

4.3.3 Rooted Trees

Consider a tree T = (V;E) with a distinguished vertex r as the root.
We investigate the automorphism group of a rooted tree T . First color

the nodes of the tree T with their isomorphism class, i.e., two nodes u

and v are assigned the same color i� the trees rooted at u and v are
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isomorphic. We also assign level numbers to the nodes, i.e., leaves are

assigned level 0 and the level of the root is the height of the tree. All

these operations can be done in polynomial time (see [1]). We describe

the automorphism group of the tree T in an inductive manner. First,

assign a leaf u a trivial group acting on the set fug. Let v be a node at
level i. Let the sons of v be divided into m isomorphism classes. Let

Ck = fsk1; � � � ; sknkg be the sons of v which are in the k-th isomorphism

class. The natural number k ranges from 1 to m. A typical permutation
of the subtree rooted at v can permute the sons in an isomorphism class

Ck. Let Gsk
i
be the automorphism group of the tree rooted at ski . Notice

that a typical automorphism of Tv (the subtree rooted at v) which only

permutes its sons in Ck can be represented by (�k1 ; � � � ; �knk ; ) where
�i 2 Gsk

i
and  2 Sk. Basically, this means �rst we can permute

the subtrees rooted at ski and then permute the trees in Ck. Since by
hypothesis Gsk

i

�= Gk
sj
, the group Gk which only permutes the vertices in

the k-th isomorphism class Ck is (by de�nition) isomorphic to Gsk
1
oSk.

The automorphism group of Tv is generated by
Sm
i Gi. Carrying on

in an inductive fashion, gives us the automorphism group of T which
is just Tr. We will illustrate our ideas on the binary tree given in

0

1

2 3

4

5 6

Figure 4.3: A Binary Tree

Figure 4.3. We can perform the following operations on the binary tree

shown in Figure 4.3.

� Exchange the leaves 2 or 3 or leave them intact.

� Exchange the leaves 5 and 6 or leave them intact.
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� Exchange the subtree rooted at 1 with the tree rooted at 4 or

leave the trees unpermuted.

It is easy to see that these three operations leave the tree intact. Also if

we regard the subtrees rooted at 1 and 4 as blocks of numbers (f1; 2; 3g
and f4; 5; 6g), the automorphism group generated by the three opera-

tions is isomorphic to S2 o S2.

4.4 Complexity of Checking Symmetry

In this section we assume that the state-space S of a Kripke Structure
M = (S;R;L) is given by assignments to n boolean state variables
x1; � � � ; xn. Notice that in this case S �= Bn where B = f0; 1g. The

transition relation R is given as a boolean function

R(x1; � � � ; xn; x01; � � � ; x0n)
with the following semantics:

� Given a state s = (y1; � � � ; yn) and s0 = (y01; � � � ; y0n), there is a
transition from s to s0 if and only if

R(y1; � � � ; yn; y01; � � � ; y0n) = 1

The set of atomic propositions AP are fx1; � � � ; xng. The labelling
function L is de�ned as follows:

� Given a state s = (y1; � � � ; yn), xi 2 L(s) if and only if yi = 1.

Given a group G = hg1; � � � ; gki acting on [n], we want to check that G
is indeed a symmetry group of M . Notice, that in order to check that

G is a symmetry group for M we need to only verify that each of the
generators gi is a symmetry of G. First, we de�ne how a permutation

� 2 Sn acts on the transition relation R. The permutation � acts on R

in the following manner:

�(R(x1; � � � ; xn; x01; � � � ; x0n)) = R(x�(1); � � � ; x�(n); x0�(1); � � � ; x0�(n))
By de�nition, � 2 Sn is a symmetry ofM if and only if it preserves the

transition relation R. Or in other words, R = �(R). Ordered Binary
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Decision Diagram (OBDD) is an e�cient data structure to represent

boolean functions [11]. If we represent R as an OBDD, it is easy to

obtain the OBDD for �(R) by variable substitution. Since OBDDs are

a canonical representation for boolean functions, R = �(R) if and only

if the OBDDs for R and �(R) are the same. Therefore, if R is given

as a OBDD, we can check that G = hg1; � � � ; gki is a symmetry group

form M by verifying that R = gi(R) for all 1 � i � k.
The basic step in checking symmetry is: given a permutation �

acting on [n] and a boolean function f(x1; � � � ; xn), check that f = �(f),

i.e.,

f(x1; � � � ; xn) = f(x�(1); � � � ; x�(n))
We call this problem the symmetry checking problem.

Theorem 4.4.1 Symmetry checking is co-NP complete

Proof: We will prove that the complement of the symmetry checking
problem is NP -complete. The complement problem can be stated as
follows:

Given a permutation � acting on [n] and a boolean function f(x1; � � � ; xn)
does there exist a (y1; � � � ; yn) 2 Bn such that

f(y1; � � � ; yn) 6= f(y�(1); � � � ; y�(n))
The problem is obviously inNP because one can guess a vector (y1; � � � ; yn) 2
Bn and check that

f(y1; � � � ; yn) 6= f(y�(1); � � � ; y�(n))
Next, we prove that the problem is NP -complete. The reduc-

tion is from SAT [33]. Assume that we are given a boolean function

f(x1; � � � ; xn) of n variables. Assume that f(0; � � � ; 0) = 0 (otherwise we

have found a satisfying assignment to f). We construct a new function
g(x1; � � � ; xn; y1; � � � ; yn) of 2n variables in the following manner:

g(x1; � � � ; xn; xn+1; � � � ; x2n) = f(x1; � � � ; xn) ^ xn+1 ^ � � � ^ x2n
Consider the permutation � = (1; n + 1)(2; n + 2) � � � (n; 2n). We will
prove that � is not a symmetry of g if and only if f is satis�able.
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� Assume that f is satis�able.

Let f(y1; � � � ; yn) = 1. By assumption, (y1; � � � ; yn) 6= (0; � � � ; 0).
By the de�nition of g we have that

g(y1; � � � ; yn; 0; � � � ; 0) = 1

g(0; � � � ; 0; y1; � � � ; yn) = 0

Therefore, � is not a symmetry of g.

� Assume that � is not a symmetry of g.
Hence, there exists (y1; � � � ; yn; yn+1; � � � ; y2n) such that

g(y1; � � � ; yn; yn+1; � � � ; y2n) 6= g(yn+1; � � � ; y2n; y1; � � � ; yn)

The previous equations implies that one of the equations given

below is true.

g(y1; � � � ; yn; yn+1; � � � ; y2n) = 1

g(yn+1; � � � ; y2n; y1; � � � ; yn) = 1:

In either case using the de�nition of g we have that f is satis�able.

It is obvious that our reduction can be done in polynomial time. The

size of g and the size of f only di�er by a polynomial. 2

4.5 Complexity of the Orbit Problem

In this section we assume that the state space of our system is given
by assignments to n boolean state variables x1; � � � ; xn. Therefore, the
state space is isomorphic to Bn (where B = f0; 1g). We assume that

the symmetry group G � Sn acts on Bn in the natural way: a per-

mutation � maps a vector (z1; � � � ; zn) to (z�(1); � � � ; z�(n)). The orbit
problem is at the core of any method exploiting symmetry. The orbit

problem asks whether two states s and s0 (which in this case happen
to be two 0-1 vectors of size n) are in the same orbit, i.e., there exists

a permutation � 2 G such that s0 = �(s). In Chapter 3 it was proved

that the graph isomorphism problem can be reduced to the orbit prob-
lem. Therefore, the orbit problem is harder than the graph isomorphism
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problem. In this section we show that the orbit problem is equivalent to

the problem of �nding a set stabilizer of a set Y in a coset (we call this

problem SSC). Since the graph isomorphism problem can be reduced

to SSC [37], this result subsumes the result which appeared in Chap-

ter 3. Moreover, SSC (and hence the orbit problem) is equivalent to

several important problems in computational group theory, which are

harder than graph isomorphism, but not known to be NP -complete.

Proofs of most the theorems are based on techniques introduced in [51].

The Orbit Problem (OP ): Given two 0-1 vectors x and y of size n

and a group G � Sn, does there exist a permutation � 2 G which maps
x to y, i.e., y = �(x).

Set Stabilizer in a coset (SSC): Given a set Y � [n], let G � Sn be
a group and 
 2 Sn be a permutation. The problem is to �nd whether
there exists � 2 G
 which stabilizes the set Y , i.e., �(Y ) = Y .

Constructive Set Stabilizer in a coset (CSSC): Given a set
Y � [n], let G � Sn be a group and 
 2 Sn be a permutation. The

problem is to �nd whether there exists � 2 G
 which stabilizes the set
Y , i.e., �(Y ) = Y and if so, to exhibit such a �. �(Y ) = Y .

Lemma 4.5.1 The problems SSC and CSSC are polynomially equiv-
alent.

Proof: It is obvious that SSC is polynomially reducible to CSSC. To

show the other direction, let G; 
; Y � [n] be an instance of CSSC.

Let Gi be the subgroup of G which �xes f1; 2; � � � ; ig. We have a chain
of subgroups I = Gn�1 � � � � � G1 � G0 = G. This chain of subgroups

and the right traversal of Gi=Gi+1 can be found in polynomial time [32].
We perform the following steps:

1. First, determine using SSC whether there exists a � 2 G
 such
that �(Y ) = Y . If the answer is no, stop, otherwise perform the

remianing steps.

2. Let f�1; � � � ; �kg be the right traversal of G0=G1. By de�nition,

here exists a � 2 G
 such that �(Y ) = Y i� there exists j � k

such that � 2 G1�j
 and �(Y ) = Y .
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3. Make k calls to SSC (using the inputs fG1; �1
; Y g, � � �, fG1; �k
; Y g)
�nd a j � k such that there exists a � 2 G1�j
 such that

�(Y ) = Y .

4. Now use G1; �j
; Y and repeat the above argument using G1 in-

stead of G and G2 in place of G1.

Iteratively, descending down the chain gives us the answer after n� 1

steps. Since the number of elements in the right traversal of Gi=Gi+1

is atmost n, we make less than n2 calls to SSC 2

We illustrate the proof of Theorem 4.5.1 by an example. Consider

the vectors, x = (0; 1; 1; 0) and y = (1; 0; 0; 1), the group S4, and the
permutations � = (1; 2)(3; 4) and  = (1; 3)(2; 4). Note that y =
�(x) and y =  (x). First, notice that � = � �1 = (1; 4)(2; 3) is
an automporhism of x, i.e., �(x) = x. In fact, given two arbitrary
permutations �1 and �2 such that �1(x) = �2(x) = y, one can prove
that �1�

�1
2 is an automorphism of x. Moreover, any automorphism of x

has to map a 1 to a 1 and a 0 to a 0. Therefore, an automorphism of x
has to stabilize the set f2; 3g. The proof is based on these observations.

Theorem 4.5.1 The problems OP and SSC are polynomially equiv-
alent.

Proof:

(OP ) SSC :) Let x; y and G be given. Form a partition fCx
0 ; C

x
1 g of

the set [n] in the following manner:

i 2 Cx
0 , xi = 0

i 2 Cx
1 , xi = 1

De�ne Cy
0 and C

y
1 in a similar manner using the vector y. Find a

permutation 
 such that 
(Cx
0 ) = C

y
0 and 
(Cx

1 ) = C
y
1 . In this case,


(x) = y. Suppose there exists � 2 G such that �(x) = y. Since

(x) = y, this means that ��1
(x) = x. Or equivalently, ��1
(Cx

0 ) =

Cx
0 (recall that Cx

0 is the set of positions of 0s in x). Therefore, there

exists a  2 (G
) which stabilizes Cx
0 ( (Cx

0 ) = Cx
0 ) i�  

�1
(x) = y or

equivalently  (x) = y. Hence, OP can be reduced to SSC.
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(SSC ) OP :) Let Y � [n], G, and 
 2 Sn be an instance of the

problem SSC. De�ne a 0-1 vector x in the following manner:

i 2 Y , xi = 0

i 2 Y c , xi = 1

Let B0 = 
(Y ) and B1 = 
(Y c). De�ne the 0-1 vector y such that

yi = 0 if i 2 B0 and yi = 1 if i 2 B1. The group G in this instance of

OP is just G. By the argument given in the previous part it is obvious
that a permutation � 2 G
 stabilizes the set Y i� �
�1 2 G satis�es

y = �
�1(x). 2

In general, the SSC problem is hard because the graph isomorphism

problem can be reduced to it [37]. We discuss conditions under which
this problem can be solved in polynomial time.

De�nition 4.5.1 Let G be a �nite group. A subgroup tower

I = G(m) � G(m�1) � � � � � G(1) = G

of G is called a subnormal series of G. Furthurmore, if G(i+1) is a

proper normal subgroup of G(i) and the factor groups G(i)=G(i+1) are
all simple, then the series is called a composition series.

De�nition 4.5.2 For each natural number b de�ne a class �b consist-
ing of those �nite groups which have a composition series in which each
factor group G(i)=G(i+1) has order at most b.

Theorem 4.5.2 (Luks [51]) Let G be a permutation group acting on

the set [n] presented by a generating set consisting of at most O(n2)

permutations. If G is in �b, then there is a polynomial p(x) whose
degree depends only on b and an algorithm A such that algorithm A
computes the setwise stablizer of Y in the coset G� in time p(n).

The theorem given above gives a polynomial time algorithm solving the

orbit problem in a special case. The condition that G be given by at

most O(n2) generators is not a restriction because it is always possible

( see [32]). Given two groups A and B � A, the centralizer CA(B) of
B in A is the following group:

fa 2 A j aBa�1 = Bg
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Given a group G acting on [n] and a set Y � [n], the stabilizer of Y in

G (denoted by GY ) is the group given below.

f� 2 G j �(Y ) = Y g
In [37] it is proved that all these problems are polynomially equivalent.

Other problems

Problem 1 (Double Coset Membership)Given the groups A;B �
Sn by generating sets and the permutation �;  2 Sn, test whether
 2 A�B.
Problem 2 (Group Factorization) Given the groups A;B � Sn by
generating sets and the permutation � 2 Sn, test whether there are
� 2 A;� 2 B, such that � = ��. Equivalently test whether � 2 AB.
Problem 3 (Number of factorizations)Given the groups A;B � Sn
by generating sets and the permutation � 2 Sn, determine the number

k � 0 of distinct factorizations � = �� of �, where � 2 A, � 2 B.
Problem 4 (Coset Intersection Emptiness)Given the groups A;B �
Sn by generating sets and given a permutation � 2 Sn, test whether
A� \B is empty.

Problem 5 (Group Intersection) Given the groups A;B � Sn by
generating sets, determine a generating set for C = A \ B.
Problem 6 (Setwise Stabilizer) Given the group A � Sn by a gen-
erating set, and given a subset X of [n], determine a generating set for

the stabilizer AX of X in A.

Problem 7 (Centralizer in Another Group) Given the groups
A;B � Sn by generating sets, determine a generating set for the cen-
tralizer CA(B) of B in A.

Problem 8 (Restricted Graph Automorphism) Given a graph
G = (V;E) and permutation group A � Sym(V ), determine genera-

tors for all automorphisms of G which are also in A, i.e., �nd generators

for A \Aut(G).
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Theorem 4.5.3 The set stabilizer in a coset problem (SSC) is poly-

nomially equivalent to Problems 1 through 8.

Proof:

We will prove that SSC is polynomially equivalent to Problem 4. Since

Problem 4 is equivalent to Problems 1 through 8, the result follows.

First we reduce to an instance of SSC to Problem 4. Let a set Y , a

group G, and a permutation  2 Sn be give. There exists a � 2 G 
which stabilizes the set Y i� � 2 G \ Sym(Y )Sym([n]� Y ). Notice
that any permutation in the group Sym(Y )Sym([n]�Y ) stabilizes the
set Y . Therefore, SSC is reducible to Problem 4.

Now we reduce Problem 4 to SSC. This part is bit more complicated.
Given groups A � Sn, B � Sn, and a permutation � 2 Sn, we want
to test whether A� \ B is non empty. Consider the set [n] � [n] and
the group D = f(�; �) j � 2 A and � 2 Bg. The permuations (�; �)

act on (i; j) in the following manner (�; �)(i; j) = (�(i); �(j)). Let
Z = f(i; i)ji 2 [n]g and Z� = f(��1(i); i)ji 2 [n]g. It is easy to see that
there exists 
 2 D such that 
(Z) = Z� i� there exists 
1 2 D such
that 
1(Z�) = Z (
�1 can serve as 
1) i� there exists a � 2 A� \ B.
Now consider the group H = D o C2 (C2 is the cyclic group acting

on the set [2]), the only permutation in C2 is (1; 2)). H acts on two
copies of the set [n]� [n]. Let Z1 be the set corresponding to Z in the
�rst copy and Z2 be the set corresponding to Z� in the second copy of
[n]� [n]. Let  = (e; e; (1; 2) be the permutation in G (e is the identity
permutation). Let G � H be all permuations of the form (�1; �2; e)
such that �1; �2 2 D. Basically, in G we are not allowed to switch the

two copies of the set [n]� [n]. Now it is easy to see that � 2 G has

the form (�1; �2; (1; 2)). There exists a permutation � = (�1; �2; (1; 2))
which setwize stabilises Z1[Z2 i� �1(Z) = Z� i� A�\B is non-empty.

2.

4.5.1 The Constructive Orbit Problem

Modeling states by boolean variables, in some cases, is too cumbersome

and detailed. For example, consider the shared variable program intro-

duced in Section 4.1. Let P = kni=1Ki be a concurrent program which
does not have shared variables. Let the size of the set of locations Loc
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be k. In this case, a typical state in P is given by a vector of size

n whose elements are integers between 1 and k, i.e., the space [k]n.

Permuting the processes Ki amounts to permuting the corresponding

integers in that state. A symmetry group G � Sn acts on the space

[k]n in the following way: a permutation � 2 G maps (x1; � � � ; xn) to
(x�(1); � � � ; x�(n)).

Given a symmetry group G, one frequently needs a representative

function � : S ! S (S is the state space of the system) which has the

following properties:

� s and �(s) are in the same orbit.

� If s and s0 are in the same orbit, then �(s) = �(s0).

Such a representative function is used during state exploration in [42].
The need to �nd such a representative function motivates the following
problem.

De�nition 4.5.3 The Constructive Orbit Problem (COP ): Given
a group acting on [n] and vector x = (x1; � � � ; xn) �nd the lexicographi-
cally least element (or lex-least element for short) in the orbit of x (the
group G permutes the indices of x)

Notice that if one can solve COP in polynomial time, one can construct
the representative function �. Given a state x, �(x) is simply the lex-
least element in its orbit. In [5] it is proved that the problem is NP -

hard. The paper also shows that if the group G is in �d, then COP can
be solved in polynomial time. Actually, for our purposes it is enough

to �nd a canonical element from each orbit.

4.6 Working Around the Orbit Problem

Results of section 4.5 prove that the Orbit problem is quite hard. In this

section we discuss three possible techniques which will help circumvent

the hardness of the orbit problem.

1. We prove that for a large class of groups, which occur commonly

in practice, the orbit problem can be easily solved.
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2. Given an arbitrary group G, we provide techniques to construct

a subgroup H � G such that the orbit problem for H can be

solved in polynomial time. Notice that since we are working with

a group which is smaller than G, we might not be getting full

reduction.

3. An approach that uses multiple representatives from each orbit

rather than just one was described in Chapter 3.

The two subsections outline the �rst two approaches.

4.6.1 Easy Groups

Notice that if a group G � Sn has polynomial size, COP for G can be
solved in polynomial time by exhaustive enumeration. For example, a
rotation group acting on set of size [n] has order n. Therefore, for the

rotation group one can solve COP in linear time. The lemma given
below states that if COP can be solved in polynomial time for two
disjoint groups J and K, then COP can be solved in polynomial time
for their direct product.

Lemma 4.6.1 Let G = J � K be a disjoint product of J and K. If
COP for J and K can be solved in polynomial time, then COP for G
can be solved in polynomial time.

Proof: Since J and K are disjoint, we have two disjoint sets of indices

IJ = fi1; � � � ; ilg and IK = fj1; � � � ; jrg such that J acts on IJ , K acts
on IK and IJ [ IK = [n]. Given a vector x, let xJ be the projection
of the vector on the index set IJ . In a similar manner, let xK be the

projection on the index set IK. We solve COP for xJ and xK separately

and put them together. 2

The next lemma is similar to the previous one but considers wreath

products.

Lemma 4.6.2 Let G = J o K. The group J;K;G act on the sets

[n]; [m]; [nm] respectively. If COP for J;K can be solved in polynomial
time, then COP for G can be solved in polynomial time.
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Proof: Let x = (x1; � � � ; xmn) be a vector of size mn. Recall that each
permutation in G = J oK can be thought of as a tuple of permutations

(�1; � � � ; �n; 
) such that �i 2 J and 
 2 K. Let Bi = (xni; � � � ; xni+n�1)
be the i-th block. We permute the blocks according to the permutation


 and then permute the elements in the block Bi according to the per-

mutation �i. Regard Bi as an integer by concatenating all the integers

in that block. Solve the COP for (B1; � � � ; Bm) and the group K and

get a lex-least element (B
(1); � � � ; B
(n)) where 
 2 K. Now solve the
COP for each B
(i) and J . 2

Lemma 4.6.3 Let Sn be the full symmetric group acting on the set
[n]. The COP problem for Sn can be solved in polynomial time.

Proof: Given a vector x = (x1; � � � ; xn), the lex-least element of x un-
der the group Sn can be obtained by sorting the elements xi. 2.

Frequently in practice, symmetries are given as a set of transpositions.
For example, a system which has the star topology, the two outer pro-

cesses can be switched. The lemma given below states that if the group
is only generated by transpositions, then COP for it can be solved in
polynomial time.

Lemma 4.6.4 Let G be a permutation group acting on the set [n].
Assume that G is generated by a set of transpositions S. The COP

problem for G can be solved in polynomial time.

Proof: Consider a graph K = ([n]; E) with n vertices. Let S be the set
of transpositions generating the group G. The edge hi; ji 2 E i� (i; j) 2
S. Let C1; C2; � � � ; Cm be the connected components of the graph K.

We will prove that each connected component corresponds to a full-
symmetric group acting on the vertices in that connected component.

Without loss of generality let f1; � � � ; kg be the vertices in the connected
component C1 (otherwise we can rename the vertices). We will prove

that (1; r) 2 G for 2 � r � k. Let h1; i1i; � � � ; h1; ri be the path
from vertex 1 to r. Composing all the transpositions along the path,

we get that (1; r) 2 G. Since f(12); (13); � � � ; (1k)g generates the full
symmetric group Sk, the connected component C1 corresponds to Sk.

Therefore, G is the disjoint direct product of m full symmetric groups
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(one group for each connected component). Now using lemma 4.6.3

and lemma 4.6.1 we get that COP for G can be solved in polynomial

time. 2

4.6.2 Finding Easy Subgroups

Let G � Sn be a permutation group acting on the set f1; 2; � � � ; ng =
[n]. We will �nd a subgroup G0 of G such that the orbit problem for

G0 is solvable in polynomial time.

De�nition 4.6.1 Given G acting on [n] de�ne G[i;k] as the subgroup
of G which �xes the set T = [n]�fi; i+1; � � � ; i+ k� 1g, i.e., for every
j 2 T and every � 2 G[i;k] we have that �(j) = j.

Note that the generator for the subgroups G[i;k] can be found in polyno-
mial time [32]. Let m = dn

k
e. Given G acting on [n], let G0 be de�ned

by the following equation:

G0 =

 
mY
i=1

G[k(i�1)+1;k]

!
�G[km+1;n�m]

In the formula given above, � denotes disjoint product of groups. Since
each component in the formula given above is subgroup of G, it follows
trivially that G0 is a subgroup of G. Intuitively, G0 is the subgroup of
G in which we retrict ourselves to permute only k indices.

Lemma 4.6.5 The orbit problem for G0 can be solved in polynomial

(in n and k) time.

Proof: Notice that each component G[i;k] permutes a disjoint set of

indices. Furthurmore, since G[i;k] only permutes k indices, the order

of G[i;k] is � k! � k
k
2 . Given two 0-1 vectors x and y, we can divide

the orbit problem for G0 into m + 1 orbit problems. Each of these

subproblems involves a subgroup of G which permutes only k indices

and hence can be solved in time k
k
2 . Therefore, the orbit problem for

G0 can be solved in time O(nk
k
2 ) 2.

In practice the user will choose k and the group G0 will be computed

automatically. For example, if the user restricts himself to exchanging

two adjacent processes, then k will correspond to the total number of
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local bits of two processes. Given a symmetry group G acting on [n], let

H � G be the subgroup generated by the set of transpositions S � G

given below.

S = f(i; j) j (i; j) 2 Gg

Since one can test (i; j) 2 G in polynomial time [32], the set S can

be found in polynomial time (there are only n2 transpositions). By

lemma 4.6.4 COP for H can be solved in polynomial time. Therefore,
if we work with H instead of G, we are solving an easy instance of the
orbit problem.
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Chapter 5

Partial Order and Symmetry

Partial order based methods exploit the independence of actions [36,
60, 70, 71]. The basic idea is that given a set of interleaving sequence

of actions, some of these sequences can be ignored because the actions
occurring in them are independent and hence can be permuted. The
method works by partitioning the sequences into equivalence classes,
and then the algorithm explores only few sequences from each equiva-
lence class. For example, assume that the actions � and � are indepen-
dent. Independence means that it does not matter in what order the

�nite-state system executes the actions � and �. So a sequence u�� is
equivalent to the sequence u��. Therefore, if we consider the sequence
u��, we can ignore the sequence u��. Most methods work by choos-
ing a small set of actions from a state. While doing depth-�rst search

to explore the state-space, we only execute these small set of actions

from the state. The enabled actions have the property that the method
considers at least one sequence of actions from each equivalence class.

In chapter 3 symmetry based methods to avoid the state-explosion
problem during model-checking were described. This chapter combines

symmetry and partial order based reduction techniques. In a system
comprised of states and actions, partial order based techniques exploit

the independence of actions. On the other hand, symmetry based tech-
niques exploit the symmetry on states. Since symmetry and partial

order based methods work on di�erent components of the system, it

should be possible for both techniques to be applied simultaneously. In

this chapter it is proved that this is indeed the case.

111
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The chapter is organized as follows: Section 5.1 provides de�nitions

used throughout the chapter. Section 5.2 gives an algorithm which

preserves LTL formulas without the nexttime operator. Section 5.3

provides an algorithm which preserves CTL? without the nexttime op-

erator.

5.1 De�nitions

In this section we introduce various de�nitions used throughout the
chapter. Subsection 5.1.1 de�nes di�erent pre-orders between LTSs.
The notion of bisimulation preserving abstractions is de�ned in Sub-
section 5.1.2. The subsection after that de�nes what it means for two

actions to be independent. The last subsection de�nes what it means
for a LTS to be symmetric. Next, we introduce the concept of a labeled
transition system (LTS).

Let AP be a set of atomic propositions. A labeled transition system

(LTS) is 5-tuple T = (S;R;L;Act; s0), where

� S is a �nite set of states,

� R � S � Act � S is a transition relation ((s; �; s0) 2 R is also
written as s

�! s0 2 R).
� L : S ! 2AP is a labeling function which associates with each
state a set of atomic propositions that are true in the state.

� Act is a �nite set of actions.
� s0 is the initial state.

The set �T (s) is the set of all �-successors of s in T , i.e., s
0 2 �T (s) i�

s
�! s0 2 R. An action � is said to be enabled from a state s in T if

and only if there exists a s0 such that s
�! s0 2 R. The symbol enT (s)

denotes the set of actions enabled from the state s in T . An action

� is called invisible in T i� for all s and s0 such that s
�! s0 2 R we

have that L(s) = L(s0). Basically, an invisible action does not change

the truth of atomic propositions. The set of invisible actions in T is

denoted by invisT . The set of visible actions is denoted by visT .
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5.1.1 Various pre-orders between processes

Some pre-orders were de�ned in chapter 2, but we de�ne them in this

chapter in the context of LTSs. Given two LTSs T1 = (S1; R1; L1; Act; s0;1)

and T2 = (S2; R2; L2; Act; s0;2), a relation B � S1�S2 is called a bisim-
ulation between T1 and T2 if and only if the following conditions hold:

� s0;1 B s0;2.
� Assume that s B s0. Then the following conditions hold:

{ L(s) = L(s0)

{ Given an arbitrary transition s
�! s1 2 R1, there exists

s2 2 S2 such that s0
�! s2 2 R2 and s1 B s2.

{ A symmetric condition holds with roles of s0 and s reversed.

T1 and T2 are said to be bisimilar (denoted by T1 �=B T2) if and only if
there exists a bisimulation between T1 and T2.

De�nition 5.1.1 Let T1 = (S1; R1; L1; Act; s0;1) and T1 = (S2; R2; L2; Act; s0;2)

be two LTSs. Let E � S1 � S2 be a relation. Consider paths � = s0
�0!

s1
�1! � � � in T1 and �0 = t0

�0! t1
�1! � � � in T2. Paths � and �0 are called

stuttering E-equivalent if and only if there exists sequences of natural
numbers i0 = 0 < i1 < i2 < � � � and k0 = 0 < k1 < k2 < � � � such that
for all j � 0 the following condition is true.

� For all ij � r < ij+1 and kj � m < kj+1, sr E tm.
Paths � and �0 are called stuttering equivalent if they are stuttering

L-equivalent where s L s0 if and only if L(s) = L(s0). Sometimes, we

will refer to the set of integers fij; ij + 1; � � � ; ij+1 � 1g and fkj; kj +
1; � � � ; kj+1 � 1g as the j-th blocks Bj and B

0
j.

Next, we de�ne the notion of stuttering bisimulation. Stuttering bisim-

ulation is similar to bisimulation, but each LTS is allowed to take

several steps to simulate a path of the other LTS. Given two LTSs
T1 = (S1; R1; L1; Act; s0;1) and T2 = (S2; R2; L2; Act; s0;2), a relation

E � S1�S2 is called a stuttering bisimulation between T1 and T2 if and
only if the following conditions hold:
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� s0;1 E s0;2.
� If s E s0, then the following conditions hold:

{ L(s) = L(s0)

{ For every path � starting from s in T1 there exists a stut-

tering E-equivalent path �0 starting from s0 in T2. See de�-

nition 5.1.1 for the explanation of stuttering E-equivalent.
{ The same condition as the previous one holds but with the
roles of s and s0 reversed.

T1 and T2 are said to be stuttering bisimilar if and only if there exists
a stuttering bisimulation between them. We denote this by T1 �=SB T2.

T1 = (S1; R1; L1; Act; s0;1) and T2 = (S2; R2; L2; Act; s0;2) are said to
be stuttering path equivalent (denoted by T1 �=SPE T2) if and only if

� For every path � starting from s0;1 in T1 there exists a stuttering
equivalent path �0 starting from s0;2 in T2.

� A symmetric condition holds with the roles of s0;1 and s0;2 re-
versed.

T1 = (S1; R1; L1; Act; s0;1) and T2 = (S2; R2; L2; Act; s0;2) are said to

be path equivalent (denoted by T1 �=PE T2) if and only if

� For every path � starting from s0;1 in T1 there exists a path �0

starting from s0;2 in T2 such that L1(�[0]) = L2(�
0[0]).

� A symmetric condition holds with the roles of s0;1 and s0;2 re-
versed.

Next, we de�ne the notion of stammering bisimulation. Stammer-
ing bisimulation is a stronger equivalence than stuttering bisimulation.

Intuitively, each transition in one structure is simulated by a �nite se-
quence of transitions in the other structure. The formal de�nition is

given below:

De�nition 5.1.2 Given two LTSs T1 = (S1; R1; L1; Act; s0;1) and T2 =
(S2; R2; L2; Act; s0;2) a relation SB � S1 � S2 is called a stammering

simulation if and only if s0;1 SB s0;2 and if s SB s0, then the following

conditions hold:
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1. L(s) = L(s0).

2. If s
�! v is a transition in T1, then

� � 2 invisT1 and v SB s0, or
� there exists a path s0 = t0

�0! t1
�1! � � � tn �n! v0 in T2 such

that for 0 � i < n, s SB ti and �i 2 invisT2. Moreover,

v SB v0.
3. If there is an in�nite path s = v0

�0! v1
�1! v2 � � � in T1 such that

for all i � 0, �i 2 invisT1 and vi SB s0, then there exists a path

s0 = t0
�0! t1

�1! � � � �j�1! tj
�j! tj+1 in T2 such that s SB ti and

�i 2 invisT2 for 0 � i � j, and v1 SB tj+1.

A relation SB is called a stammering bisimulation if and only if SB
and SB�1 are both stammering simulations. T1 and T2 are called stam-
mering bisimilar (denoted by T1 �StB T2) if and only if there exists a

stammering bisimulation between them.

Notice that a stuttering bisimulation relation cannot distinguish
between next states. Therefore, it is not surprising that stuttering
bisimulation preserves the truth of CTL� formula without the next
time operator. The proof of this theorem �rst appeared in [9].

Theorem 5.1.1 Let f be a formula in CTL?-X. Let T1 and T2 be two
stuttering bisimilar LTSs. Let E be a stuttering bisimulation relation

between T1 and T2. If s E s0, then T1; s j= f if and only if T2; s
0 j= f .

The proof of this Theorem follows from the Lemma given below.

Lemma 5.1.1 Let T1 and T2 be two stuttering bisimilar LTSs. Let E
be the stuttering bisimulation between T1 and T2. Assume that s E s0.
Let � and �0 be two stuttering E-equivalent paths in T1 and T2 re-
spectively. Assume that f is state formula and g is a path formula in

CTL?-X. In this case we have:

1. s j= f i� s0 j= f .

2. � j= g i� �0 j= g.
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Proof:

Basis: f 2 AP . By de�nition, L(s) = L(s0). Therefore, s j= f if and

only if s0 j= f .

Induction: There are several cases.

� f = :f1, a state formula.
By the inductive hypothesis we have that s j= f1 , s0 j= f1.

Therefore s j= f , s0 j= f . The same reasoning holds in case of
a path formula.

� f = f1 _ f2, a state formula

s j= f , s j= f1 or s j= f2

, s0 j= f1 or s
0 j= f2

, s0 j= f

The second step uses the inductive hypothesis. We can also use
this argument in case of the path formula.

� f = E(f1), a state formula

Suppose s j= f . There is a path � starting with s such that
� j= f1. By de�nition, there exists a stuttering E-equivalent path
�0 in T2 starting with s

0. By the inductive hypothesis � j= f1 ,
�0 j= f1. Therefore, s j= E(f1)) s0 j= E(f1). A similar argument

holds in the other direction.

� g = f , where g is a path formula and f is a state formula.

Although the lengths of g and f are the same, we can imagine
that g = path(f), where path is an operator which converts a state
formula into a path formula. Now we can apply the inductive step.

� g = g1 U g2.

Assume that � and �0 are stuttering E-equivalent. By de�ni-

tion, we have two strictly increasing sequences of natural numbers

fijg1j=0 and fkjg1j=0 such that i0 = k0 = 0 and for all j > 0 we
have that:
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{ For all ij � m � ij+1 and kj � n < kj+1, �[m] E �0[n]

We will prove that � j= g implies that �0 j= g. Assume that

� j= g. By de�nition, there exists a k � 0 such that �k j= g2
and for all 0 � j < k, �j j= g1. Let m be a natural number such

that im � k < im+1. Notice that �
0km is stuttering E-equivalent

to �k. Moreover, for every 0 � j < k we can �nd a natural

number 0 � r < km such that �j is stuttering E-equivalent to
�0r. To see this, consider an arbitrary j. Let r be such that

ir � j < ir+1. We have that �j is stuttering E-equivalent to �0l
for all l (kr � l < kr+1). By the induction hypothesis �0km j= �2
and �0r j= �1 for all 0 � r < km. The proof that �

0 j= � implies
� j= � is symmetric.

� g = g1 V g2
Again, Assume that � and �0 are stuttering E-equivalent. Assume
that we have two increasing sequences of natural numbers fijg1j=0

and fkjg1j=0 as before. The proof is very similar to the one given

above, so we will give a brief proof in this case. Assume that
� j= g. We will prove that �0 j= g. By de�nition, for all k � 0
if �j 6j= g1 for all 0 � j < k, then �k j= g2. Let k � 0 be an
arbitrary natural number such that �0j 6j= g1 for 0 � j < k. Let
m � 0 be such that km � k < km+1. It is easy to see that �

r 6j= g1
for 0 � r < im+1 (use the induction hypothesis and the fact that

� j= g). Also, �0k j= g2 by the induction hypothesis and the fact
that �r j= g2. Notice that �

0k is stuttering equivalent to �r. Using

the de�nition of the V operator it follows that �0 j= �. The proof

that �0 j= � implies � j= � is symmetric.

Theorem 5.1.2 Let f be a formula in LTL-X. Let T1 = (S1; R1; L1; Act; s0;1)

and T2 = (S2; R2; L2; Act; s0;2) be two stuttering path equivalent LTSs.

s0;1 j= f , s0;2 j= f

The proof of the theorem follows from the lemmawhich states that stut-

tering equivalent paths cannot distinguish between LTL-X formula.
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Lemma 5.1.2 Let � and �0 be two paths that are stuttering equiva-

lent. Let � be a formula with only the path operators U and V. We

have that:

� j= � , �0 j= �

Proof: Let i0 = 0 < i1 < i2 < � � � and k0 = 0 < k1 < k2 < � � � be
the two sequences corresponding to � and �0. The sequences satisfy

the conditions for � and �0 to be stuttering equivalent. The proof is by
structural induction on �.

� (Case � = p)

The formula � is an atomic proposition. Since L(�[0]) = L(�0[0]),
we have that � j= p i� �0 j= p.

� (Case � = :�1)
The result follows from structural induction.

� (Case � = �1 U �2)

We will prove that � j= � implies that �0 j= �. Assume that
� j= �. By de�nition, there exists a k � 0 such that �k j= �2
and for all 0 � j < k, �j j= �1. Let m be a natural number such
that im � k < im+1. Notice that �0km is stuttering equivalent
to �k. Moreover, for every 0 � j < k we can �nd a natural

number 0 � r < km such that �j is stuttering equivalent to
�0r. To see this, consider an arbitrary j. Let r be such that
ir � j < ir+1. We have that �j is stuttering equivalent to �0l for

all l (kr � l < kr+1). By the induction hypothesis �0km j= �2 and
�0r j= �1 for all 0 � r < km. The proof that �

0 j= � implies � j= �

is symmetric.

� (Case � = �1 V �2)

The proof is very similar to the one given above, so we will give a
brief proof in this case. Assume that � j= �. We will prove that

�0 j= �. By de�nition, for all k � 0 if �j 6j= �1 for all 0 � j < k,
then �k j= �2. Let k � 0 be an arbitrary natural number such that

�0j 6j= �1 for 0 � j < k. Let m � 0 be such that km � k < km+1.

It is easy to see that �r 6j= �1 for 0 � r < im+1 (use the induction
hypothesis). Also, �0k j= �2 by the induction hypothesis and the
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fact that �r j= �2. Using the de�nition of the V operator it

follows that �0 j= �. The proof that �0 j= � implies � j= � is

symmetric.

The basic idea in the proof is that within a block im and im+1 (or km
and km+1) the truth of a path formula does not change.2

Lemma 5.1.3 T1 �=B T2 implies that T1 �=SB T2. T1 �=StB T2 implies
that T1 �=SB T2. Similarly, T1 �=SB T2 implies that T1 �=SPE T2.

Proof: Assume that T1 and T2 are bisimilar. Let B be a bisimulation

relation between T1 and T2. Assume that s B s0. Let � be a path
starting from s in T1. By de�nition, there exists a path �0 starting
from s0 in T2 such that �[i] B �0[i] (for all i). Paths � and �0 are
stuttering B-equivalent with the fij = jg1j=0 and fkj = jg1j=0. The
other case is symmetric.

Now assume that T1 and T2 are stammering bisimilar. Let E be a
stammering bisimulation between T1 and T2. Let s E s0. By de�nition,
L(s) = L(s0). Let � be a path starting from s in T1. We will build
a stuttering E-equivalent path �0 starting from s0 in T2. Assume that
� is s = s0

�0! s1
�1! � � �. We will construct a path �0 (denoted by

s0 = t0
�0! t1

�1! � � �) inductively. We maintain the following counters.

i: state si in path � is being processed.

j: length of the path �0 so far.

k: current block number for �.
l: current block number for �0.

Initially, all the counters are 0. First, we will handle the second case in

the de�nition of stammering bisimulation. Suppose we are processing
the transition si

�i! si+1 of the path �. We have the following two

subcases.

� Suppose �i is invisible and si+1 E tj
In this case we update i = i+ 1.
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� Suppose there exists a path �1 = tj
�j! tj+1

�j+1! � � � �j+m�1! tj+m
such that 0 � r < m, si E tj+r and �i 2 invisT1, and si+1 E tj+m.
We append �1 to �0. We also make the following updates: i =

i+1, j = j +m, k = k+1, and l = l+1. Notice that we started

a new block at state si+1 and tj+m.

The third case in the de�nition of stammering bisimulation is handled

in a similar manner to the previous case. It is not hard to see that
�0 is stuttering E-equivalent to �. The block numbers can be used to
construct the stuttering equivalence between paths � and �0.

Let E be a stuttering bisimulation between T1 and T2. By de�nition,
s E s0 implies that L(s) = L(s0). From this it follows that if � and �0

are stuttering E-equivalent then they are stuttering equivalent. Since
the initial state of T1 and T2 are related by E, this shows that T1 and
T2 are stuttering path equivalent. 2

Lemma 5.1.4 The pre-orders �=B, �=SB,�=StB and �=SPE are transitive.

Proof: Proof follows from the de�nitions.2

The table given below summarizes the relationships between various
pre-orders and temporal logics. The �rst column lists all the pre-orders.
The second column lists various logics. If a pre-order and logic appear
in the same row, then they are equivalent. For example, T1 �=PE T2 i�
T1 and T2 satisfy the same LTL formulas.

Pre-order Logic
�=B CTL?

�=SB CTL?-X
�=PE LTL
�=SPE LTL-X

5.1.2 Abstractions

Let T = (S;R;L;Act; s0) be an LTS. Let h : S ! S be an abstraction

function. We say that h is bisimulation preserving if and only if there
exists a bisimulation relation B � S � S between T and T such that;

� For all s 2 S, s B h(s)
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� s B s0 implies that h(s) = h(s0)

In this case, we say that h preserves the bismulation relation B. Intu-
itively, h picks a representative from each equivalence class of S induced

by the bisimulation B. Given a bisimulation preserving abstraction

function h on an LTS T = (S;R;L;Act; s0), de�ne the corresponding

abstract LTS Th = (Sh; Rh; Lh; Act; h(s0)) in the following manner:

� Sh = h(S).

� r1 �! r2 2 Rh if and only if there exists s 2 S such that r1
�! s 2

R and h(s) = r2.

� For all r 2 Sh, Lh(r) = L(r).

Lemma 5.1.5 Given an LTS T = (S;R;L;Act; s0) and a bisimulation
preserving abstract function h, T and Th are bisimilar.

Proof: Let B be a bisimulation between T and T such that h preserves

B. Construct Bh � S � Sh in the following way:

s Bh r , s B r

We will prove that Bh is a bisimulation relation. Assume that s Bh r.
It is obvious that the labels of r and s match.

� Assume that s
�! s0 2 R.

Since s B r, there exists a s1 such that r
�! s1 2 R and s0 B s1.

By de�nition, r
�! h(s1) 2 Rh and s1 B h(s1). By transitivity,

s0 B h(s1), which implies that s0 Bh h(s1).

� Assume that r
�! r0 2 Rh.

The de�nition of Rh implies that there exists s1 such that r
�!

s1 2 R and h(s1) = r0. Since s B r, there exists s0 such that

s
�! s0 and s0 B s1. Using the fact that s1 B r0 (recall that

h(s1) = r0 and h is bismulation preserving) and transitivity of B,
s0 B r0. This implies that s0 Bh r

0.

By de�nition of Bh, s0 Bh h(s0). The proof is complete.2
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5.1.3 Independent Actions

Now we de�ne the concept of independent actions. The notion of inde-

pendence is central to the partial-order reduction techniques.

De�nition 5.1.3 Let T = (S;R;L;Act; s0) be an LTS. An indepen-

dence relation on actions is an irre
exive and symmetric relation I �
Act�Act such that for each pair of actions (�; �) 2 I (called indepen-

dent actions) it must hold that for each s 2 S
� If f�; �g � enT (s), then for each state s0 2 �T (s) we have that
� 2 enT (s0).

� If f�; �g � enT (s), then there exists a path from s
�! s1

�! s0 in

T i� there exists a path s
�! s01

�! s0 in T .

The �rst condition states that if � and � are independent, then ex-
ecuting � from a state s, does not disable the action �. The second
condition states that independent actions are commutative (see Fig-

ure 5.1). Notice that I is an independence relation with respect to a
particular LTS T .

s

s’

s’

s1

1

α

αβ

β

Figure 5.1: Commutativity of actions

The lemma given below states that if I is an independence relation
for T , then I is also an independence relation for Th. This means that

given an independence relation for T , we can use the same independence

relation while performing partial-order reduction on the abstract LTS
Th.
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Lemma 5.1.6 Let I be an independence relation for a LTS T = (S;R;L;Act; s0).

Let h be a bisimulation preserving abstraction function. Let Th =

(Sh; Rh; Lh; Act; h(s0)) be the corresponding abstract LTS. Then, I is

also an independence relation for Th

Proof: Let I be an independence relation for T . We will prove that I

is also an independence relation for I. Let B be a bisimulation relation

between T and T which is preserved by h. Assume that (�; �) 2 I. Cor-
responding to the two conditions in the de�nition of the independence
relation we have the following two cases.

� Assume that f�; �g � enTh(r). Let r0 2 �Th(r). We have to

prove that � 2 enTh(r0). By de�nition, there exists s 2 S such
that r

�! s and h(s) = r0. Since I is an independence relation for
T , � 2 enT (s). Since h is bismulation preserving, we also have
that s B r0 . Therefore, � 2 enT (r0), which in turn implies that
� 2 enTh(r0).
� Assume that f�; �g � enTh(r). Now suppose that there exists a

path r
�! r1

�! r0 in Th. Let s 2 S such that r
�! s 2 R and

h(s) = r1. Also assume that r1
�! t1 2 R and h(t1) = r0. Since

� 2 enT (s), we can construct a path r
�! s

�! s0 in T such that
s0 B t1. Since I is an independence relation for T , there exists a

path r
�! s1

�! s0 in T . A transition h(s1)
�! s00 such that s0 B s00

exists because s1 B h(s1). By transitivity, s00 B t1. Therefore,

h(s00) = h(t1) = r0. Hence, r
�! h(s1)

�! r0 is a path in Th.

Only the second part of the proof uses the fact that s B s0 implies that

h(s) = h(s0).2

Now we proceed to de�ne an equivalence relation on paths which is

induced by the independence relation. As usual �? [ �! denotes the
set of in�nite and �nite strings over the alphabet �. The symbol �[i]

denotes the i-th letter in the string �. Given a relation E on the set �,

a relation �E on �? [ �! is de�ned as follows. First, we de�ne �E on
�nite strings. Given two strings � and �, we say that � �E � i� there

exists a sequence �0; � � � ; �n, where �0 = � and �n = � and for each
0 � i � n, �i = ��aa0�̂ and �i+1 = ��a0a�̂ for some �nite strings �� and
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�̂, and aEa0. That is, we say two strings are related if the second string

can be obtained from the �rst by permuting E-related letters. Given

two �nite strings �; � 2 �?, we say that � �E � i� there exists 
 2 �?
such that � �E 
 and � is a pre�x of 
. Next, we extend the de�nition

to in�nite strings. We say that � �E � i� every �nite pre�x u of �

there exists a �nite pre�x w of � such that u �E w. Two in�nite strings
� and � are �E-related i� � �E � and � �E �. If E is a irre
exive and

symmetric relation on �, then one can show that �E is an equivalence
relation on strings [54]. Given an irre
exive and symmetric relation E,

a trace is an equivalence class of �nite or in�nite strings induced by
the equivalence relation �E. Given a string v, [v]E is the trace which
contains v. Notice that if v �E w, then for all z 2 [v]E and y 2 [w]E
it is true that z �E y. Therefore, we can extend the preorder �E to
traces in a natural way. Formally, [v]E �E [w]E i� v �E w. Sometimes
when the relation E is clear from the context, we write [a] instead of

[a]E.

Let I be an independence relation on a LTS T = (S;R;L;Act; s0).
De�ne �I on the set Act? [ Act! as described above. The relation �I
can be lifted to paths in the following way: � �I �0 i� � #2�I � #2
The sequence of actions corresponding to a path � is denoted by � #2.

5.1.4 Symmetry

Next, we de�ne the concept of a symmetry group G of a LTS.

De�nition 5.1.4 Given a LTS T = (S;R;L;Act; s0), a group G acting

on S is called a symmetry group of T i�

� For all � 2 Act and for all � 2 G, s �! s0 i� �(s)
�! �(s0).

� For all � 2 G, L(s) = L(�(s)).

Notice that if we are interested in checking a temporal formula f , the
labeling function of the LTS can be restricted to the atomic propositions
occurring in f . Therefore, all the restrictions on labelings given above

only have to hold for the atomic propositions occurring in the temporal

formula f of interest. We say that s and s0 are in the same orbit

i� there exists a � 2 G such that �(s) = s0. � � S � S is the
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orbit relation induced by the symmetry group G. Given a LTS T =

(S;R;L;Act; s0) and a symmetry group G acting on S, we de�ne a

representative function � : S ! S. The function � has two properties:

� s and �(s) are in the same orbit.

� If s and s0 are in the same orbit, then �(s) = �(s0).

The function � maps a state to an unique representative in its orbit. The

lemmagiven below states that � is a bisimulation preserving abstraction
function for T . This means that the entire framework automatically
gives a method for combining partial-order and symmetry reductions.

Lemma 5.1.7 Assume that we are given a LTS T = (S;R;L;Act; s0)
and a symmetry group G acting on S. Assume that � is a representative
function corresponding to G. In this case, � is a bisimulation preserving
abstraction.

Proof: Let � � S � S be the following relation:

� s � s0 i� s and s0 are in the same orbit.

It is easy to prove that � is a bisimulation relation. By de�nition of �,
� has the required properties with respect to the bisimulation relation
�.2

In the de�nition of the symmetry group given at the beginning of this

subsection we did not allow the actions to be permuted. This might

seem overly restrictive. Now we will allow the symmetry group to
permute states and actions simultaneously. Next, we will prove that
this new seemingly more powerful notion of symmetry is equivalent to

the de�nition of symmetry given before. Assume that we are given

an LTS T and a symmetry group G according to the de�nition 5.1.5.
We construct an LTS T1 from T by relabeling actions such that G is

a symmetry group for T1 using de�nition 5.1.4. The group Sym(S) �
Sym(Act) is the group of all permutations (�; �) such that � 2 Sym(S)
and � 2 Sym(Act). Given a permutation  = (�; �) 2 Sym(S) �
Sym(Act), for all s 2 S and � 2 Act we de�ne  (s) = �(s) and
 (�) = �(�).
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De�nition 5.1.5 Given a LTS T = (S;R;L;Act; s0), a group G �
Sym(S)� Sym(Act) is called a symmetry group of T i�

� For � 2 G, s �! s0 i� �(s)
�(�)! �(s0).

� For all � 2 G, L(s) = L(�(s)).

The orbit of an action � 2 Act (denoted by �G(�)) is the following set:

�G(�) = f�j9� 2 G(�(�) = �)g

Let I be an independence relation on the LTS T . Let G be the symme-

try group of T according to de�nition 5.1.5. De�ne �G(I) � Act�Act
in the following manner:

� (�; �) 2 �G(I) if and only if there exists �0, �0, and � 2 G such
that (�0; �0) 2 I, �0 = �(�) and �0 = �(�)

The lemma given below states that if I is an independence relation for
T , then �G(I) is also an independence relation for T .

Lemma 5.1.8 Let T = (S;R;L;Act; s0) be a LTS and G � Sym(S)�
Sym(Act) be a symmetry group of T . If I is an independence relation
on T , then �G(I) is an independence relation on T .

Proof: Assume that s 2 S, f�; �g � enT (s) and (�; �) 2 �G(I). By
de�nition there exists a  2 G such that ( (�);  (�)) 2 I. Using

the fact that G is a symmetry group we have that f (�);  (�)g �
enT ( (s)). Moreover, we also have that there exists a path  (s)

 (�)!
s1

 (�)! s0 i� there exists a path s
�!  �1(s1)

�!  �1(s0). Similarly, there

exists a path  (s)
 (�)! r1

 (�)! s0 i� there exists a path s
�!  �1(r1)

�!
 �1(s0). The result follows from these observations and de�nition of

independence. 2

Now we can assume that we are working with �G(I) instead of I.
Notice that in general, �G(I) can be much larger than I. The lemma

given below states that the property of an action being invisible is an
invariant for an orbit.
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Lemma 5.1.9 Let � 2 G be an arbitrary permutation in G. An action

� 2 invisT i� �(�) 2 invisT .

�(Act) denotes the set of orbits of the actions. Given an LTS T =

(S;R;L;Act; s0), a symmetry group G � Sym(S)� Sym(Act) (accord-

ing to the de�nition 5.1.5) and an independence relation I � Act�Act,
we construct an LTS T1 = (S1; R1; L1;�(Act); s0), a symmetry group

G1 � Sym(S), and and independence relation I1 � �(Act)��(Act) in
the following manner:

� S1 = S.

� L1(s) = L(s).

� s �G(�)! s0 2 R1 i� s
�! s0 2 R.

� � 2 G1 i� there exists � such that (�; �) 2 G.
� �G(�) I1 �G(�) i� for all �0 2 �G(�) and for all �0 2 �G(�) we
have that �0 I �0.

The lemma given below states that de�nition 5.1.4 can be used without
loss of generality.

Lemma 5.1.10 Let G be a symmetry group of an LTS T using de�-
nition 5.1.5. Let T1 and G1 be constructed as before. In this case G1 is
the symmetry group of T1 according to the de�nition 5.1.4. Moreover,

I1 is an independence relation for T1.

Proof: Immediate from the construction of T1. 2

5.2 Algorithm for preserving LTL-X

Let T = (S;R;L;Act; s0) be an LTS and h be a bisimulation preserving
abstraction function. In this section we will provide an algorithm which

performs partial-order reduction and the reduction corresponding to the

abstraction function h simultaneously. Basically, we give an algorithm

which performs the partial-order reduction on the abstract LTS Th =

(Sh; Rh; Lh; Act; h(s0)), but does not require the explicit construction
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of Th. First we present an algorithm which uses the structure Th. This

algorithm is only given for the sake of the proof and was �rst presented

in [60].

1 push(h(s0))

2 expand-node(h(s0))

3 function expand-node(s)
4 working-set(s) = ample(s)
5 while working-set(s) 6= � do

6 � = some action in ample(s)
7 working-set = working-set(s)nf�g
8 for all s0 2 �Th(s) do
9 if (new(s0)) then
10 push(s0)
11 expand-node(s0)

12 create-edge(s,�,s0)
13 �

14 end for all
15 end while

16 mark s as explored.

17 end expand-node

Figure 5.2: State space expansion algorithm (A1)

The various routines used by the algorithm are described below:

� The routine new(s) checks that the state s has not been marked
explored.

� The routine push(s) pushes the state s onto the search stack. We
also assume that when a state s is marked explored (line 16), it
is removed from the search stack.

� There is a LTS T 0 maintained by the algorithm. The routine
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create(s,�,s0) creates an transition between s and s0 labelled by

�.

R is called a run of the algorithm A1 if and only if R is an execution

of the algorithm A1 where the sets ample(s) are chosen according to

the rules C1-h, C2-h and C3-h. Notice that if we choose ample(s) =

en(s), the rules C1-h, C2-h and C3-h are satis�ed, but this is same

as reachability analysis with not partial-order reduction.

� (C1-h) For no action � 2 Actnample(s) that is dependent on
some action in ample(s) there exists a path � in Th such that �

appears in � before an action from ample(s) appears on �.

� (C2-h) If ample(s) is a proper subset of the actions enabled from
s in Th, then for no action � 2 ample(s) it holds that a state in
the set �Th(s) is on the search stack.

� (C3-h) If ample(s) is a proper subset of enTh(s), then none of the
actions in ample(s) are visible in Th.

The following theorem states that any run of the algorithmA1 produces
a structure which is stuttering path equivalent to Th.

Theorem 5.2.1 Let T 0 be the LTS produced by an arbitrary run of
the algorithm A1. In this case Th �=SPE T

0.

Proof: See [60]. A proof of this theorem with some additional condi-
tions appears at the end of this section. 2

Now we modify algorithm A1 to produce algorithm A2. Algorithm
A2 works on the LTS T , but because of some modi�cations it looks

like that it is performing the partial order reduction on the LTS Th.

Algorithm A2 is constructed from A1 by changing lines 8, 9, 10, 11,
and 12. We reproduce the whole algorithm for convenience, but mark

the changed lines with a (**). R is called a run of the algorithm A2

if and only if R is an execution of the algorithm A2 where the sets

ample(s) are chosen according to the rules C1, C2, and C3.

� (C1) For no action � 2 Actnample(s) that is dependent on some

action in ample(s) there exists a path � in T such that � appears
in � before an action from ample(s) appears on �.
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1 push(h(s0))

2 expand-node(h(s0))

3 function expand-node(s)

4 working-set(s) = ample(s)

5 while working-set(s) 6= � do

6 � = some action in ample(s)
7 working-set = working-set(s)nf�g
8 for all s0 2 �T (s) do (**)
9 if (new(h(s0)) then (**)
10 push(h(s0)) (**)
11 expand-node(h(s0)) (**)
12 create-edge(s,�,h(s0)) (**)

13 �

14 end for all
15 end while

16 mark s as explored.
17 end expand-node

Figure 5.3: State space expansion algorithm (A2)

� (C2) If ample(s) is a proper subset of the actions enabled from

s in T , then for no action � 2 ample(s) it holds that a state in

the set h(�T (s)) is on the search stack.

� (C3) If ample(s) is a proper subset of enT (s), then none of the

actions in ample(s) are visible in T .

The lemma given below will be used in our main theorem.

Lemma 5.2.1 Let T = (S;R;L;Act; s0) be an LTS and h a bisimula-
tion preserving abstraction function. Let Th = (Sh; Rh; Lh; Act; h(s0))

be the corresponding abstract LTS. Then, we have the following con-

ditions:
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� Let s 2 Sh. There exists a path s = s0
�0! s1

�1! � � � in T if and

only if there exists a path s = t0
�0! t1

�1! � � � in Th. Notice that
exactly the same actions appear in the two paths.

� An action � is visible in T if and only if it is visible in Th.

� For all s 2 Sh, enT (s) = enTh(s).

Proof: The results are a direct consequence of the fact that T and Th
are bisimilar (see lemma 5.1.5).2

Next, we prove that given a run of the algorithm A2 there exists a run
of the algorithm A1 such that both runs produce the same LTS. We
must emphasize again that algorithm A1 only exists for the sake of

the proof. In practice, A2 will be implemented. The basic idea of the
theorem is to run A1 and A2 in lockstep and show that the ample sets
which satisfy conditions C1, C2, and C3 for algorithm A2 also satisfy
conditions C1-h, C2-h, and C3-h for algorithm A1 at each step.

Theorem 5.2.2 For every run R of the algorithm A2 there exists a
run R0 of the algorithm A1 such that the LTS produced by the two
runs are the same.

Proof: We will construct a run R0 of the algorithm A1 as we trace the
execution corresponding to the run R of the algorithm A2. At each
point we will prove that the following invariants hold:

� If the run R chooses a set ample(s) in line 4 which satis�es condi-
tions C1, C2, and C3, then ample(s) satis�es, C1-h, C2-h and

C3-h for the run R0.

� The state of the two runs are the same, i.e., the stacks have the

same states and the same states are marked explored.

Initially, the invariants hold because both the runs will push h(s0) on

the stack. Suppose that at some point in the execution the runR of the
algorithmA2 chooses a set ample(s) on line 4 which satis�es conditions
C1, C2, and C3. Due to lemma 5.2.1 ample(s) also satis�es conditions

C1-h and C3-h. Consider a state r 2 �Th(s) where � 2 ample(s).

Notice that by de�nition there exists a state s0 2 �T (s) such that
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r = h(s0). Now it is obvious from condition C2 that r cannot be on the

search stack because r 2 h(�T (s)). So ample(s) considered by the run

R satis�es condition C2-h for the run R0. Also notice that lemma 5.2.1

implies that

(ample(s) 6= enT (s)) , (ample(s) 6= enTh(s))

Now we advance the two runs, and assume that they consider the states

in the same order in the for all loop starting at line 8. 2

The theorem given below states that any run of the algorithm A2

produces a LTS which stuttering path equivalent to T .

Theorem 5.2.3 Let R be an arbitrary run of the algorithm A2 Let
T 0 be the LTS produced by the run R. Then we have that T �=SPE T

0.

Proof: Let R0 be the run of the algorithm A1 which produces the
same LTS as the run R. Run R0 exists because of theorem 5.2.2. By

theorem 5.2.1 T 0 �=SPE Th. By lemmas 5.1.3 and 5.1.4 T �=SPE T
0.2.

Notice that dut to theorem 5.1.2, T and T 0 satisfy the same LTL-X
formulas. Therefore, one can check a speci�cation given in LTL-X on
the smaller LTS.

Now we proceed to give the proof of Theorem 5.2.1. To make the
proof simple we replace conditions C3-h by the following conditions:

� If (�; �) 2 I, then either � 2 invisTh or � 2 invisTh.

� (F) If an action � is enabled from some state of a path in Th,

then some action that is dependent on � (possibly � itself) must
appear later (or immediately) in this path.

The results given here are true without these modi�cations. The proofs

in this section are based on [60]. The proofs of the results without the
additional constraints are also given in [60]. First, we have the following

lemma.

Lemma 5.2.2 Let � and �0 be two paths in Th such that � �I �0. In
this case � and �0 are stuttering equivalent.
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Proof: Throughout the proof we assume that vis = visTh. Given a

path �, let � #vis be the projection of the path down to the visible

actions. First, notice that if we have two paths �1 and �2 such that

�1 �I �2, then �1 #vis and �2 #vis are the same. This is because

when we permute two independent actions � and �, one of them has to

be invisible. Therefore, permutation of independent actions does not

change the sequence of visible actions.

We will prove that � and �0 are stuttering equivalent. By the ob-
servation given at the beginning of the proof, we have that � #vis and

�0 #vis are equal. There are two cases.

� � #vis is in�nite.
For concreteness, let � #vis= 
1; 
2; � � �. Let ij be such that

�[ij]

j! �[ij+1]. Similarly, let kj be such that �

0[kj]

j! �0[kj+1].

Using the sequences i0 = 0 < i1 < i2 < � � � and k0 = 0 < k1 <

k2 < � � � and the observation that invisible actions do not change
labels of states, we have that � and �0 are stuttering equivalent.

� � #vis is �nite.
In this case we use the same construction as in the in�nite case,
but to make the sequence of integers fijg and fkjg in�nite we
use the integers corresponding to the invisible actions after the
last visible action on the paths � and �0. Formally, let � #vis=

1; 
2; � � � ; 
l. Construct two �nite sequences i0 = 0 < i1 < � � � <
il and k0 = 0 < k1 < � � � < kl as in the previous case. The two
sequences can be made in�nite by setting ij = il + (j � l) and
kj = kl + (j � l) for j > l. 2

Throughout the proof we will be using the fact that we are working
with the LTS Th. Given a �nite path � = s0

�0! s1
�1! � � � �n�1! sn and

path �0 = t0
�0! � � �, � �! �0 denotes the following path:

s0
�0! s1

�1! � � � �n�1! sn
�! t0

�0! � � �
Lemma 5.2.3 Let ample(s) be a set satisfying conditions C1-h. Let

� be F-fair path. Let � = �1
�! �2 be such that the last state on

the �nite path �1 is s. There exists an action � 2 ample(s) such that
[�] �I [�2 #2].
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Proof: To clean up the notation let w = �2 #2. Consider the string of
actions �w. Let v be the maximal pre�x of �w such that v\ample(s) =
�. Using the fairness constraint F and the condition C1-h, we have

that v is �nite. Let v�w0 = �w. By de�nition, � 2 ample(s) and

the actions in v are independent of � (otherwise we have a violation of

condition C1-h). Therefore, �vw0 �I �w. Hence, [�] �I [�w]. 2
The lemma given below states that if a node s is marked explored, then

every transition from it can be eventually taken. In other words, no
transition reachable from the initial state h(s0) is delayed forever, or
eliminated from the reduced structure produced by the algorithm A1.

Lemma 5.2.4 Let s be an explored state. Let � be F-fair path in an
LTS Th. Let � = �1

�! �2 such that the last state on the �nite path
�1 is a state s in the reduced LTS T 0 produced by the algorithm A1.

Then there exists a path s = s0
�1! s1

�2! � � � �n! sn
�! t in Th such

that �1; � � � ; �n are independent of � and [�1 � � ��n�] = [��1 � � ��n] �I
[�(�2 #2)]

Proof: The proof is by induction on the time when the state is marked
explored. There are two cases to be considered.

� (Case � 2 ample(s))
In this case the statement trivially holds with n = 0.

� (Case � 62 ample(s))
Using Lemma 5.2.3 there exists a 
 2 ample(s) such that 
 ap-

pears on the path �2. Let s
0 be a state such that s


! s0. Using
condition C2-h we have that s0 is an explored state. Since the

algorithm A1 explores the nodes in the depth �rst search order,

s0 has to be marked explored before s. By permuting 
 to the
front of �, (by the proof of Lemma 5.2.3 
 and � are independent)

we get a new path �0 = �

! s0

�! �02. Since s
0 is marked explored

before the state s, we can apply the induction hypothesis to s0.

There exists a �01; � � � ; �0m such that s0 = s0
�0
1! s1

�0
2! � � � �0m! sm

�! t.

Concatenating 
 at the beginning of �01; � � � ; �0m we get the re-
quired result.
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The lemma is at the core of the partial-order reduction method. It says

that no action is delayed in�nitely, and can be eventually taken. 2

Notice that T 0 constructed by the algorithm A1 is a sub-structure of

the abstract LTS Th. Therefore, every path of T 0 is also a path of

Th. Hence, the theorem given below proves that Th �=SPE T
0 (which is

Theorem 5.2.1).

Theorem 5.2.4 Let � be a path in the abstract LTS Th. Then there
exists a path �0 in the LTS T 0 constructed by the algorithm A1 such
that � �I �0.
Proof: Let � be a path in the abstract LTS Th. We will construct a
path �0 in T 0 starting from �[0]. The path is constructed in an inductive
manner. We will maintain the following data structures:

r: The sequence of actions in � which have been processed.
t: The partial path (a part of �0) constructed in T 0 so far.

l: The sequence of actions from t which have not been processed.
s: The current state in �0.

Initially, let r = l = � and t be the empty path. Also at the initial stage
s = �[0]. Whenever a transition si

�! si+1 is processed from the path
�, following updates are made:

1. r = r�.

2. If l = u�w for some u;w 2 Act? and all actions in u are indepen-
dent of �, then let l = uw.

3. If the condition for executing step 2 does not hold, choose a se-

quence of actions starting from the state s and ending in the state
s0 such [t #2 �1�2 � � ��n�] = [t #2 ��1 � � ��2] �I [� #2] and make
the following updates:

� s = s0.

� l = l�1 � � ��n.
� t = t

�1! t1
�2! t2 � � � �n! tn

�! s0.

The following invariants are maintained by the procedure given above.
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1. [r][l] = [t #2].
2. [t #2] �I [� #2].
3. If step 2 cannot be executed, then all actions in l are independent

of �.

4. The choice of the sequence of actions �1�2 � � � �n� can always be

made in step 3.

We will now show that the invariants hold throughout the procedure.
It is trivial to check that the invariants hold initially. By the induction
hypothesis we have the following equation

[r][l] = [t] �I [� #2] = [r][�w]

Therefore, l can be written as u�z, where actions in u are independent
of �. If step 2 cannot be executed, then l does not contain �, so
actions in l are independent of �. Invariant 4 is direct consequence of
Lemma 5.2.4. Let �0 be the in�nite path collected in the variable t.

Notice that �0 can be regarded as an in�nite run on the input � of the
!-automata described by the three update rules. By the �rst invariant
every pre�x r of � #2 is �I �0 #2. Hence, � #2�I �0 #2. By the second
invariant every pre�x t of �0 #2 is �I � #2. Therefore, �0 #2�I � #2.
Hence by de�nition � �I �0. 2

5.3 Algorithm Preserving CTL?-X

The algorithm given in the previous section only preserved the existence
of equivalent paths. The semantics of branching time logics (likeCTL?)

are based on computation trees. Therefore, these logics can distinguish

the branching structure of a state. Hence, to preserve branching time
logics one has to put more stringent restrictions on the set ample(s)

considered by the algorithms. We call R a run of the of the algorithm
A1 if the ample(s) satis�es the following condition in addition to con-

ditions C1-h, C2-h, and C3-h given earlier.

� (C4-h) The set ample(s) is a singleton set or ample(s) = enTh(s).
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In a similar manner, We call R a run of the of the algorithm A2 if the

ample(s) satis�es the following condition in addition to conditions C1,

C2, and C3.

� (C4) The set ample(s) is a singleton set or ample(s) = enT (s).

The treatment is exactly the same as in section 5.2. Therefore, we will

skip all the proofs. The proofs will use lemma 5.2.1 to establish that

condition C4 implies condition C4-h. In order for the proofs to work,

we will have strengthen the notion of independence. The new de�nition
of independence is given below:

De�nition 5.3.1 Let T = (S;R;L;Act; s0) be an LTS. An indepen-

dence relation on actions is an irre
exive and symmetric relation I �
Act�Act such that for each pair of actions (�; �) 2 I (called indepen-

dent actions) it must hold that for each s 2 S
� If f�; �g � enT (s), then for each state s0 2 �T (s) we have that
� 2 enT (s0).
� If f�; �g � enT (s), the for all s

0 2 �(s) and for all s00 2 �(s) we
should have that s0

�! s1 if and only if s00
�! s1.

An LTS T = (S;R;L;Act; s0) is called deterministic if and only if for
all s 2 S and � 2 Act we have that j�(s)j � 1. It is straight forward to
prove that if T is deterministic then the new de�nition of independence

and the old one are equivalent.

Theorem 5.3.1 Let T 0 be the LTS produced by an arbitrary run of

the algorithm A1. In this case Th �=SB T
0.

Proof: The proof of the theorem appears in [35] and [61]. For sake
of completeness, we give the proof at the end of the section. By

Lemma 5.3.4 we have that Th �=StB T 0. Now by lemma 5.1.3 we have
that Th �=SB T

0. 2.

The proof of theorem given below is exactly the same as the proof of
the theorem 5.2.2.

Theorem 5.3.2 For every run R of the algorithm A2 there exists a

run R0 of the algorithm A1 such that the LTS produced by the two

runs are the same.
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The theorem given below states that any run of the algorithm A2

produces a LTS which is stuttering bismular to T .

Theorem 5.3.3 Let R be an arbitrary run of the algorithm A2. Let

T 0 be the LTS produced by the run R. Then we have that T �=SB T
0.

Proof: Let R0 be the run of the algorithm A1 which produces the

same LTS as the run R. Run R0 exists because of theorem 5.3.2. By

theorem 5.3.1 T 0 �=SB Th. By lemmas 5.1.3 and 5.1.4 T �=SB T
0.2

Notice that because of theorem 5.1.1 T and T 0 satisfy the same CTL-X
formulas. Therefore, one can check a speci�cation given in CTL-X on
the smaller LTS T 0 instead of T .

Now we proceed to show that there exists a stammerring bisimula-
tion between Th and T

0. The proof here is based on the proofs which
appear in [35, 61]. Let Th = (Sh; Rh; Lh; Act; h(s0)) be the abstract
LTS. Let T 0 = (S0; R0; L0; Act; s00) be the reduced LTS produced by al-
gorithm A1. Notice that the the ample sets should satisfy condition
C1-h, C2, C3-h, and C4-h. First, we de�ne a relation �� Sh � Sh.
An action � is called a singleton action from a state s if and only if
� 2 invisTh and � satis�es the condition C1-h from the state s. A

path t0
�0! t1

�1! � � � tn is called a singleton path if and only if �i is a
singleton action from the state ti. We say that s � s0 if and only if
there is singleton path from s to s0. The length of the shortest path
between s and s0 is called the distance between s and s0. The lemma

given below states that if � is singleton action from a state s, then � is

a singleton action from all successors of s0 such that s
�! s0 and � 6= �.

We assume throughout the proof that we are working with the LTS Th.

Lemma 5.3.1 Let s
�! t be such that � is a singleton action from s.

Let s
�! r such that � 6= �. In this case � is a singleton action from r.

Proof: Condition C1-h implies that � is independent of �. This means
that � is enabled from r. By de�nition � is invisible. Suppose � is not

a singleton action from r. Then there exists a path � starting from r

such that an action dependent on � appears in � but � does not appear

in �. In this case, path s
�! � violates the condition C1-h from s. A

contradiction.2
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The lemma given below is a characterization of singleton paths which

will be used in the main lemma. The second part of the lemma is

particularly useful in performing induction over the length.

Lemma 5.3.2 Let s = s0
�0! s1

�1! � � � �n�1! sn = s0 be a singleton path.

If s
�! t, then there are two possibilities.

1. If � is independent of �i (for 0 � i � n� 1), then t = t0
�0! t1

�1!
� � � �n�1! tn is a singleton path such that si

�! ti for all i.

2. Supoose � is independent of �i (0 � i < j � n � 1) and � is

dependent on �j. In this case, there exists a singleton path of
length n� 1 from t to s0.

Proof: The proof of the lemma follows from the following observations
(see Figure 5.4 and 5.5 ).

� If �i and � are independent, then �i is enabled from ti (recall

that si
�! ti). Moreover, because of lemma 5.3.1 �i is a singleton

action from ti.

� Now we consider the second case. Notice that � and �j are depen-
dent and both actions are enabled from sj. Since �j is a singleton
action from sj, � = �j. Otherwise, we have a violation of con-

dition C1-h. We have that tj�1 2 �(sj�1) and sj 2 �j�1(sj�1).
Using the fact that � and �j�1 are independent under the new
de�nition, we can choose tj = sj+1.
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0 1
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t n
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α α α
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β β β β
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Figure 5.4: � is indpendent of �i

The corollary given below will be crucial in establishing a stammering

bisimiulation between Th and T
0.
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Figure 5.5: � is dependent on �j

Corollary 5.3.1 Let s � s0 and s �! t. In each of the following cases,

there exists and edge s0
�! t0 such that t � t0.

1. � does not appear on some singleton path from s to s0 (in partic-
ular � 2 visTh), or

2. t 6� s0.

Proof: Let s = s0
�0! s1

�1! � � � �n�1! sn = s0 be a singleton path from
s to s0 such that � does not appear on this path. If � is dependent on
�j, then by the proof of lemma 5.3.2 � appears on the singleton path
from s to s0 (recall that �j = �). Therefore, � is independent of �i for
all i. Now by the �rst part of lemma 5.3.2 there exists a singleton path

from t to t0 such that s0
�! t0. By de�nition, t � t0.

Now we move on to the second case. Assume that t 6� s0. Let

s = s0
�0! s1

�1! � � � �n�1! sn = s0 be a singleton path from s to s0.

In this case � is also independent of �i (for all i). Notice that if �
was dependent on �j, then because of lemma 5.3.2 there would exist
a singleton path between t and s0. But, that would imply t � s0,

a contradiction. Now by lemma 5.3.2 there exists a singleton path

between t and t0 such that s0
�! t0.2

In the reduced LTS T 0 produced by algorithm A1 a state s whose
ample(s) is a singleton set is called partial. Otherwise, the state s is
called full. The lemma given below states that in a reduced structure

there always exists a singleton path from a partial state s to a full state

s0, or given a partial state s one can always �nd a full state s0 such that
s � s0.
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Lemma 5.3.3 Let T 0 be the reduced LTS produced by the algorithm

A1. Given a partial state s, there exists a singleton path from s to a

full state s0, i.e., s � s0.

Proof: The proof is by induction on the order in which the states are

marked explored by algorithm A1. Let s be a partial node. Let s
�! s1

be a transition in T 0. If s1 is a full state, we are done. Assume that s1
is a partial state. Since algorithm A1 explores the states in the depth

�rst order, s1 has to be marked explored before s (otherwise we have a
violation of condition C2-h). By the induction hypothesis there exists

a singleton path � from s1 to a full node s0. By de�nition, s
�! � is a

singleton path from s to s0.2

Let �� SG�S0 be the relation � with the right hand side is restricted

to S0, i.e., �=� \(SG � S0).

Lemma 5.3.4 The relation � is a stammering bisimulation between
the abstract LTS Th = (Sh; Rh; Lh; Act; h(s0)) and the LTS T

0 = (S0; R0; L0; Act; s00)
produced by the algorithm A1.

Proof: Observe that since � is re
exive, h(s0) � h(s0). A singleton
path can only have invisible actions, so s � s0 implies that L(s) =
L(s0). This proves the �rst condition of the stammering bisimulation
(see de�nition 5.1.2).

Now we move on to proving the second condition of the stammering

bisimulation. Assume that s
�! t 2 Rh. There are two case.

� Case 1: t � s0 and � is invisible.
In this case the condition is true by de�nition.

� Case 2: t 6� s0 or � is visible.

By corollary 5.3.1 there exists t0 such that s0
�! t0 and t � t0. Since

we cannot guarantee that t0 2 S0, we cannot assert that t � t0.

By lemma 5.3.3 there exists a full node s00 such that s0 � s00. By
transitivity, s � s00. There are two subcases here.

{ Case 2.1: t0 � s00 and � is invisible.

In this case, t � t0 � s00. Therefore, by transitivity t � s00.
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{ Case 2.2: t 6� s00 or � is visible.

By corollary 5.3.1 there exists a t00 such that s00
�! t00 with

t0 � t00. Since s00 is a full node, t00 2 S0. Therefore, t � t00.

Now we handle the other direction. Suppose, s0
�! t0 is a transition in

T 0. Since s � s0, there exists a singleton path �, s = s0
�0! s1

�2! � � � �n!
sn = s0. In this case the path �

�! t0 satis�es condition 2 of stammering

bisimulation (see de�nition 5.1.2).

Finally, we prove that � satis�es the third condition corresponding

to stammering bisimulation. Let s = s0
�0! t1

�1! � � � be an in�nite path
in Th such that for all i, �i 2 invisTh and ti � s0. By Lemma 5.3.3
there exists a full state s00 in T 0 such that s0 � s00. By transitivity,

ti � s00 for all i.
First, we will show that there exists a �j such that �j does not

appear on a singleton path from tj to s
00. We will prove the result by

contradiction. Let �0 be a �nite singleton path between s = t0 and s
00.

By assumption �0 appears in �0. Path �0 exists because s � s00. By
Lemma 5.3.2 there exist a singleton path �1 from t1 to s

00 whose length
is 1 less than that of �0. Continuing this way, we can construct an
in�nite sequence of �nite paths �0; �1; � � � such that the length of �i+1

is one less than that of �i. This is not possible because �0 is of �nite
length. Therefore, assume that �j does not appear on a singleton path

from tj to s
00. By corollary 5.3.1 there exists t00 such that s00

�! t00 and
tj+1 � t00. Since s00 is a full state, t00 2 S0. Therefore, tj+1 � t00.

Now assume that s0 = r0
�0! r1

�1! � � � is an in�nite path such that
for all i, �i 2 invisTh and s � ri. By de�nition, there exists a singleton
path � from s to s0. Path �

�0! r1 satis�es the required condition.2

5.4 Example

In this section we given an example to illustrate our ideas. Figure 5.6

shows a solution to the two process mutual exclusion problem. Ni

denotes that process i is the nuetral section. Ti is the trying region for

the process i. Ci signals that process i is in the critical section. Since
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we are only dealing with two processes, i = 1 or i = 2. Whenever,

process 2 makes a transition from N2 to T2 it sets an auxiliary variable

t = 1. This signals the fact that process 1 can move into its critical

section. A symmetric transition appears in process 1. It is obvious

that exchanging indices 1 and 2 is a symmetry for this system. Let

G be the corresponding symmetry group. There are 8 possible actions

corresponding to the transitions shown below:

�1 N1 ! T1 �2 N2 ! T2
�1 T1! C1 �2 T2 ! C2

�1 N1 ! T1 �2 N2 ! T2
�1 C1 ! N1 �2 C2 ! N2

N    N    

T N    

C N    

C T T C

N    C

N    T

T T T T

1 

1 2

1 2

1 2

1 2 1 2

1 2

1 2

1 2t=1 t=2

2

Figure 5.6: Token Ring

Following the discussion in subsection 5.1.4, actions with the same name
but di�erent indices are in the same orbit under the action of the group

G. For example, �1 and �2 are in the same orbit. Renaming the
actions and performing the symmetry reductions we get the abstract

structure given in the Figure 5.7. From the �gure it should be clear

what the representative function is. Also, notice that action � and � are

independent. Now performing partial-order reduction on the abstract

structure we get the structure given in the Figure 5.8.
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N    N    1 2

T N    2

T T2 t=1

C T1 2

C N    1 2 1 

1 

α

β

β

α

χ

δ

δ

Figure 5.7: Quotient Structure

N    N    1 2

T N    2

C T1 2

1 

C N    1 2

β

α

χ

δ

δ

Figure 5.8: Quotient Structure with PO reduction



Chapter 6

Verifying Parameterized

Networks

This chapter considers the problem of veri�cation of family of state-
transition systems. The veri�cation problem for a family of similar
state-transition systems can be formulated as follows:

Given a family F = fPig1i=1 of systems Pi and a temporal
formula f , verify that each state-transition system in the
family F satis�es f .

In general the problem is undecidable [4]. However, for speci�c families
the problem may be solvable.

The technique presented in this chapter is based on �nding network

invariants [47, 74]. Given an in�nite family F = fPig1i=1, this technique
involves constructing an invariant I such that Pi � I for all i. The pre-
order � preserves the property f we are interested in, i.e., if I satis�es
f , then Pi satis�es f . Once the invariant I is found, traditional model

checking techniques can be used to check that I satis�es f . Following

[53] and [64] we restrict our attention to families of systems derived by
network grammars. The advantage of such a grammar is that it is a
�nite (and usually small) representation of an in�nite family of �nite-

state systems (referred to as the language of the grammar). While

[53, 64] use the grammar in order to �nd a representative that is equiv-
alent to any system derived by the grammar, the technique presented

145
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here �nds a representative that is greater in the simulation preorder

than all of the systems that can be derived using the grammar.

This chapter is organized as follows. Section 6.1 de�nes the basic no-

tions, including network grammars and regular languages used as state

properties. In Section 6.2 abstract systems are de�ned. Section 6.3

presents a veri�cation method. Section 6.4 describes a synchronous

model of computation and show that it is suitable for the veri�cation

technique presented here. Section 6.5 describes an asynchronous model
of computation. In Section 6.6 the veri�cation method is applied to

two non-trivial examples.

6.1 De�nitions and Framework

De�nition 6.1.1 (LTS) A Labeled Transition System or an LTS is a

structure M = (S;R;ACT; S0) where S is the set of states, S0 � S is
the set of initial states, ACT is the set of actions, and R � S�ACT�S
is the total transition relation, such that for every s 2 S there is some
action a and some state s0 for which (s; a; s0) 2 R. We use s

a! s0 to
denote that (s; a; s0) 2 R.
A path � from a state s in an LTS M is a sequence of transitions
s = s0

�0! s1
�1! s2 � � �. The su�x of � starting from the i-th state is

denoted by �i. The i-th state on the path � is denoted by �[i]. Let
LACT be the class of LTSs whose set of actions is a subset of ACT .
Let L(S;ACT ) be the class of LTSs whose state set is a subset of S and

the action set is the subset of ACT . The de�nition of LTS given here is
di�erent from the one given in Chapter 5 in that the labeling function

is ignored in the current de�nition. Moreover, the current de�nition of
LTS allows more than one initial state.

De�nition 6.1.2 (Composition) A function k : LACT � LACT 7!
LACT is called a composition function i� given two LTSsM1 = (S1; R1; ACT; S

1
0)

and M2 = (S2; R2; ACT; S
2
0) in the class LACT , M1kM2 has the form

(S1�S2; R0; ACT; S1
0�S2

0). Notice that we write the composition func-

tion in in�x notation.

Our veri�cation method handles a set of LTSs referred to as a network.

Intuitively, a network consists of a set of LTSs obtained by composing
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any number of LTSs from L(S;ACT ). Thus, each LTS in a network is

de�ned over the set of actions ACT , and over a set of states in Si, for

some i.

De�nition 6.1.3 (Network) Given a state set S and a set of actions

ACT , any subset of
S1
i=1 L(Si;ACT ) is called a network on the tuple

(S;ACT ).

6.1.1 Network grammars

Following [53] and [64] we use context-free network grammars as a for-
malism to describe networks. The set of all LTSs derived by a network

grammar (as \words" in its language) constitutes a network. Let S be
a state set and ACT be a set of actions. Then, G = hT;N;P;Si is a
grammar where:

� T is a set of terminals, each of which is an LTS in L(S;ACT ). These
LTSs are sometimes referred to as basic processes.

� N is a set of non-terminals. Each non-terminal de�nes a network.

� P is a set of production rules of the form

A! BkiC

whereA 2 N , and B;C 2 T[N , and ki is a composition function.
Notice that each rule may have a di�erent composition function.

� S 2 N is the start symbol that represents the network generated

by the grammar.

Example 6.1.1 We clarify the de�nitions on a network consisting of
LTSs that perform a simple mutual exclusion using a token ring algo-

rithm. The production rules of a grammar that produces rings with

one process Q and at least two processes P are given below. P and
Q are terminals, and A and S are nonterminals where S is the start
symbol.

S ! QkA
A ! PkA
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A ! PkP
P and Q are LTSs de�ned over the set of states fnc; csg and the set

of actions ACT = f�; get-token; send-tokeng. They are identical,

except for their initial state, which is cs for Q and nc for P . Their

transition relation is shown in Figure 6.1.

For this example we assume a synchronous model of computation in

which each process takes a step at any time. We will not give a formal

de�nition of the model here. In Sections 6.4 and 6.5 we suggest suitable

de�nitions for synchronous and asynchronous models. Informally, a
process can always perform a � action. However, it can perform a
get-token action if and only if the process to its left is ready to perform
a send-token action. In the composed LTS, the two actions get-token
and send-token are replaced by � .

We can apply the following derivation

S ) QkA ) QkPkP
to obtain the LTS QkPkP . The reachable states with their transitions
are shown in Figure 6.2.

get-token

send-token
nc cs

τ τ

Figure 6.1: Process Q, if S0 = fcsg; process P if S0 = fncg

6.1.2 Speci�cation language

Let S be a set of states. From now on we assume that we have a network

de�ned by a grammarG on the tuple (S;ACT ). The automaton de�ned

below has S as its alphabet. Thus, it accepts words which are sequences
of state names.

De�nition 6.1.4 (Speci�cation) D = (Q; q0; �; F ) is a deterministic

automaton over S, where
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τ τ

τ

(cs,nc,nc) (nc,cs,nc) (nc,nc,cs)

Figure 6.2: Reachable states in LTS QkPkP

1. Q is the set of automaton states.

2. q0 2 Q is the initial state.

3. � � Q� S �Q is the transition relation.

4. F � Q is the set of accepting states.

L(D) � S? is the set of words accepted by D.
Our goal is to specify a network of LTSs composed of any number of
components (i.e., of basic processes). We will use �nite automata over
S in order to specify atomic state properties. Since a state of an LTS

is a tuple from Si, for some i, we can view such a state as a word in
S?. Let D be an automaton over S. We say that s satis�es D, denoted
s j= D, i� s 2 L(D). Our speci�cation language is a universal branching
temporal logic (e.g., 8CTL, 8CTL� [19]) with �nite automata over S
as the atomic formula. In this chapter, we only de�ne 8CTL, but the
theorems hold for 8CTL? as well.
De�nition 6.1.5 The logic 8CTL is de�ned inductively as follows:

1. The constant true is an atomic formula.

2. The speci�cation automaton D is an atomic formula.

3. If � is an atomic formula, then :� is a formula.

4. If � and  are formulas, then � ^  and � _  are formulas.

5. If � and  are formulas, then AX �, A(�V ), and A(�U ) are
formulas.
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Consider a LTS M = (Si; R;ACT; S0). The satisfaction relation (j=)
is inductively de�ned as follows. Given s 2 Si, we say:

1. s j= D , s 2 L(D)
2. s j= :f1 , s 6j= f1

3. s j= f1 _ f2 , s j= f1 or s j= f2

4. s j= f1 ^ f2 , s j= f1 and s j= f2

5. s j= AX g1 i� for all states s0 and for all actions � if s
�! s0, then

s0 j= g1.

6. s j= A(g1 U g2) i� for all paths � starting from s there exists
k � 0 such that �[k] j= g2 and for all 0 � j < k; �[j] j= g1.

7. s j= A(g1 V g2) i� for all paths � starting from s and for every
k � 0, if �[j] 6j= g1 for all 0 � j < k, then �[k] j= g2.

Example 6.1.2 Consider again the network of Example 6.1.1. Let
D be the automaton of Figure 6.3, de�ned over S = fcs; ncg, with
L(D) = fncg�csfncg�. The formula AGD speci�es mutual exclusion,
i.e., at any moment there is exactly one process in the critical section.
Let D0 be an automaton that accepts the language csfncg�, then the

formula AGAFD0 expresses non-starvation for process Q. Note that,
for our simple example non-starvation is guaranteed only if some kind

of fairness is assumed.

cs cs

nc nc nc, cs

q0 q1 q2

Figure 6.3: Automaton D with L(D) = fncg�csfncg�
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6.2 Abstract LTSs

In the following sections we de�ne abstract LTSs and abstract com-

position in order to reduce the state space required for the veri�cation

of networks. The abstraction should preserve the logic under consider-

ation. In particular, since we use 8CTL, there must be a simulation

preorder � such that the given LTS is smaller by � than the abstract

LTS. We also require that composing two abstract states will result in
an abstraction of their composition. This will allow us to replace the
abstraction of a composed LTS by the composition of the abstractions

of its components. For the sake of simplicity, we �rst assume that the
speci�cation language contains a single atomic formula D. We later
show how to extend the framework to a set of atomic formulas.

6.2.1 State equivalence

We start by de�ning an equivalence relation over the state set of an
LTS. The equivalence classes will then be used as the abstract states
of the abstract LTS. Given an LTS M , we de�ne an equivalence

relation on the states of M , such that if two states are equivalent then
they both either satisfy or falsify the atomic formula. This means
that the two states are either both accepted or both rejected by the
automaton D. We also require that our equivalence relation is preserved
under composition. This means that if s1 is equivalent to s

0
1 and s2 is

equivalent to s02 then (s1; s2) is equivalent to (s
0
1; s

0
2).

We will use h(M) to denote the abstract LTS of M . The straight-
forward de�nition that de�nes s and s0 to be equivalent i� they both

are in or not in the language L(D) has the �rst property, but does not
have the second one. To see this, consider the following example.

Example 6.2.1 Consider LTSs de�ned by the grammar of Example

6.1.1. Let D be the automaton in Figure 6.3, i.e., L(D) is the set of
states that have exactly one component in the critical section. Let
s1; s

0
1; s2; s

0
2 be states such that s1; s

0
1 2 L(D), and s2; s02 62 L(D). Fur-

thermore assume that, the number of components in the critical section

are 0 in s2 and 2 in s02. Clearly, (s1; s2) 2 L(D) but (s01; s02) 62 L(D).
Thus, the equivalence is not preserved under composition.
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We therefore need a more re�ned equivalence relation. Our notion of

equivalence is based on the idea that a word w 2 S� can be viewed as

a function on the set of states of an automaton. We de�ne two states

to be equivalent if and only if they induce the same function on the

automaton D. Formally, given an automaton D = (Q; q0; �; F ) and a

word w 2 S?, fw : Q 7! Q, the function induced by w on Q is de�ned

by

fw(q) = q0 i� q
w�! q0:

Note that w 2 L(D) if and only if fw(q0) 2 F , i.e., w takes the initial
state to a �nal state. The set of functions associated with an automaton
D is a monoid and has been studied extensively.

Let D = (Q; q0; �; F ) be a deterministic automaton. Let fw be the
function induced by a word w on Q. Then, two states s and s0 are
equivalent, denoted by s � s0, i� fs = fs0. It is easy to see that � is
an equivalence relation. The function fs corresponding to the state s

is called the abstraction of s and is denoted by h(s). Let h(s) = f1 and
h(s0) = f 01. The abstract state of (s; s0) is h((s; s0)) = f1 � f 01 where
f1 �f 01 denotes composition of functions. We follow the convention that
when we write f1 � f 01 we apply f1 before f 01. Note that s � s0 implies
that s 2 L(D), s0 2 L(D). Thus, we have s j= D i� s0 j= D. We also

have,

Lemma 6.2.1 If h(s1) = h(s2) and h(s01) = h(s02) then h((s1; s
0
1)) =

h((s2; s
0
2)).

In order to interpret speci�cations on the abstract LTSs, we extend j=
to abstract states so that h(s) j= D i� fs(q0) 2 F . This guarantees

that s j= D i� h(s) j= D.
Our framework can easily be extended to any set of atomic formulas.

The restriction to one atomic formula was done in order to simplify the

presentation. However, in practice we may want to have several such
formulas, related by boolean and temporal operators. The notion of

equivalence is extended to any set of atomic formulas in the following

way. Let AF = fD1; : : : ;Dkg be a set of atomic formulas, where Di =
(Qi; q

i
0; �i; Fi). Let f is be the function induced by s on Qi. Then, two

states s and s0 are equivalent if and only if for all i, f is = f is0. The
abstraction of s is now h(s) =< f1s ; : : : ; f

k
s >, and we have that, if
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s � s0 then for every i, s 2 L(Di) , s0 2 L(Di). The relation j=
is extended for abstract states by de�ning h(s) j= Di i� f is(q

i
0) 2 Fi.

Thus, we again have that for every Di 2 AF, s j= Di i� h(s) j= Di.

Example 6.2.2 Consider again the automaton D of Figure 6.3 over

S = fcs; ncg. D induces functions fs : Q 7! Q, for every s 2 S�.

Actually, there are only three di�erent functions, each identifying an

equivalence class over S�. f1 = f(q0; q0); (q1; q1); (q2; q2)g represents all
s 2 nc� (i.e., fs = f1 for all s 2 nc�). f2 = f(q0; q1); (q1; q2); (q2; q2)g
represents all s 2 nc� cs nc�, and f3 = f(q0; q2); (q1; q2); (q2; q2)g repre-
sents all s 2 nc� cs nc� cs fcs; ncg�.

6.2.2 Abstract process and Abstract Composition

Let FD be the set of functions corresponding to the deterministic au-
tomaton D. Let Q be the set of states D. In the worst case jFDj =
jQjjQj, but in practice the size is much smaller. Note that FD is also
the set of abstract states for s 2 �� with respect to D. Subsequently,
we will apply abstraction both to states s 2 �� and to abstract states
fs for s 2 ��. To unify notation we �rst extend the abstraction func-
tion h to FD by setting h(f) = f for f 2 FD. We now further ex-
tend the abstraction function h to (S [ FD)? in the natural way, i.e.,
h((a1; a2; � � � ; an)) = h(a1) � � � � � h(an). From now on we will consider

LTSs in the network N on the tuple (S [ FD; ACT ).
We now de�ne abstract LTSs. The abstract transition relation is

de�ned as usual for an abstraction that should be greater by the simu-
lation preorder than the original structure [25]. If there is a transition

between one state and another in the original structure, then there is

a transition between the abstract state of the one to the abstract state
of the other in the abstract structure. Formally,

De�nition 6.2.1 Given an LTS M = (Si; R;ACT; S0) in the network

N , the corresponding abstract LTS is de�ned by h(M) = (Sh; Rh; ACT; Sh0 ),

where

� Sh = fh(s) j s 2 Sig is the set of abstract states.
� Sh0 = fh(s) j s 2 S0g.



154 CHAPTER 6. VERIFYING PARAMETERIZED NETWORKS

� The relation Rh is de�ned as follows. For any h1; h2 2 Sh, and
a 2 ACT

(h1; a; h2) 2 Rh ,
9s1; s2[h1 = h(s1) and h2 = h(s2) and (s1; a; s2) 2 R]:

We say that M 0 = (S0; R0; Act; S00) simulates M = (S;R;Act; S0) [57]

(denoted M � M 0) if and only if there is a simulation preorder E
� S�S0 that satis�es the following conditions: for every s0 2 S0 there
is s00 2 S00 such that (s0; s

0
0) 2 E. Moreover, for every s; s0, if (s; s0) 2 E

then

1. h(s) = h(s0).

2. For every s1 such that s
a! s1 there is s

0
1 such that s0

a! s01 and
(s1; s

0
1) 2 E.

Notice that the de�nition of the simulates relation uses the fact that
M and M 0 are de�ned on the same action sets. If (s; s0) 2 E, we say
that s � s0. Given a path � in M and a path �0 in M 0, we say that

� � �0 i� �[i] � �0[i] for all i.
Lemma 6.2.2 Let M and M 0 be two LTSs such that M �M 0. Let �
be a path starting from s in M . If s � s0, then there exists a path �0

starting from s0 in M 0 such that � � �0.

Proof: Proof follows from the de�nition of the simulation relation E.

Lemma 6.2.3 We have the following results.

1. M � h(M), i.e., h(M) simulatesM .

2. If M �M 0, then h(M) � h(M 0).

Proof: For the proof of the �rst part, consider the following simulation

relation:

(s; a) 2 E , (h(s) = a)
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It is easy to prove that E has all the desired properties. For the second
part, let E be the simulation relation between M and M 0. De�ne the

relation Eh in the following manner:

(a; b) 2 Eh , 9s1; s2(h(s1) = a ^ h(s2) = b ^ (s1; s2) 2 E)

It is easy to prove that Eh is the required relation between h(M) and

h(M 0). 2

Recall that the abstraction h guarantees that a state and its abstrac-
tion agree on the atomic property corresponding to the automaton D.
Based on that and on the previous lemma, the following theorem is
obtained. A proof of a similar result appears in [19].

Theorem 6.2.1 Let � be a formula in 8CTL over atomic formula D.
Let M and M 0 be two LTSs such that M � M 0. Let s � s0. Then

s0 j= � implies s j= �.

Proof: The proof is by structural induction on �. Notice that (s0 j=
�) s j= �) is equivalent to (s 6j= �) s0 6j= �). Sometimes we will use
the second formulation.

� Case � = D: h(s) = h(s0) implies that s j= D if and only s0 j= D.
� Case � = f1 _ f2: Assume that s0 j= �. By de�nition s0 j= f1 or
s0 j= f2. By the inductive hypothesis s j= f1 or s j= f2. Therefore,
s j= �.

� Case � = f1 ^ f2: This is very similar to the case given above.

� Case � = AX g1: Assume that s 6j= �. Then there exists s1
such that s

�! s1, and s1 6j= g1. By de�nition there exists s01 such
that s0

�! s01 and s1 � s01. By the inductive hypothesis s01 6j= g1.

Therefore, s0 6j= �.

� Case � = A(g1 U g2): Assume that s 6j= �. This means that

there exists a path � starting from s such that for all k, either

�[k] 6j= g2 or there exists 0 � j < k such that �[j] 6j= g1. Using

Lemma 6.2.2 there exists a path �0 starting from s0 in M 0 such

that � � �0, i.e., for every i � 0, �[i] � �0[i]. By the induction
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hypothesis we have that for all k, either �0[k] 6j= g2 or there exists

0 � j < k such that �0[j] 6j= g1. Thus, � 6j= g1U g2, which implies

that s0 6j= �.

� Case � = A(g1 V g2): Assume that s0 j= �. We will prove that

s j= �. Let � be an arbitrary path starting from s in M . Let �0

be a path starting from s0 in M 0 such that � � �0. Since s0 j= �,

for all k, either there exists a j such that 0 � j < k, �0[j] j= g1 or

�0[k] j= g2. By the induction hypothesis, we can conclude that for

k, �[k] j= g2 or there exists j such that 0 � j < k and �[j] j= g1.
Therefore, � j= g1Vg2. Since � is an arbitrary path starting from
s, we have that s j= �. 2

De�nition 6.2.2 A composition k is called monotonic with respect
to a simulation preorder � i� given LTSs such that M1 � M2 and

M 0
1 � M 0

2, we have that M1kM 0
1 � M2kM 0

2. A network grammar G
is called monotonic if and only if all rules in the grammar use only
monotonic composition operators.

6.3 The Veri�cation method

Given a network grammar G, we associate with each symbol A of the

grammar a representative process rep(A). A set of representative pro-
cesses is said to satisfy the monotonicity property i�

� For every terminal A, h(rep(A)) � h(A).

� For every rule A! BkC we have the following condition:

h(rep(A)) � h(h(rep(B))kh(rep(C)))

We have the following theorem:

Theorem 6.3.1 Let G be a monotonic grammar and suppose we can

�nd representatives for the symbols of G which satisfy the monotonicity

property. Let A be a symbol of the grammar G and let a be an LTS

derived fromA using the rules of the grammarG. Then, h(rep(A)) � a.
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Proof: We will prove that h(rep(A)) � h(a). Since h(a) � a, the

result follows by transitivity. Let A )k a, i.e., A derives a in k steps.

Our result is by induction on k.

� (k = 0): In this case A is a terminal and a = A. The result

follows from the monotonicity property.

� (k > 0): In the derivation of a from A, let the �rst rule be

A! BkC. Assume B )i b and C )j c such that i < k, j < k,
and a = bkc. By the induction hypothesis h(rep(B)) � h(b) and
h(rep(C)) � h(c). We have the following equations:

h(rep(B))kh(rep(C)) � h(b)kh(c) (monotonicity of k)
� bkc (Lemma 6.2.3 and monotonicity of k)

h(h(rep(B))kh(rep(C))) � h(bkc) (Lemma 6.2.3)

� h(a)

By the monotonicity property we have:

h(rep(A)) � h(h(rep(B))kh(rep(C)))

The result follows. 2

6.3.1 Veri�cation Method

Here we describe our veri�cation method. Assume that we are given

a monotonic grammar G and a 8CTL formula � with atomic formulas

D1; � � � ;Dk. To check that every LTS derived by the grammarG satis�es

� we perform the following steps:

1. For every symbol A in G choose a representative process rep(A)
and construct the abstract LTS h(rep(A)) with respect to the

atomic formulas D1; � � � ;Dk.

2. Check that the set of representatives satisfy the monotonicity

property. By Theorem 6.3.1 we have that for every a derived by

the grammar G, h(rep(S)) � a.
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3. Model Check � on h(rep(S)). If h(rep(S)) j= �, then by The-

orem 6.2.1 we can conclude that for all LTSs M derived by the

grammar G, M j= �.

Next, we describe an unfolding heuristic which might help us �nd the

set of representatives which satisfy the monotonicity property.

6.3.2 The Unfolding Heuristic

We discuss a heuristic that might be helpful in �nding representatives
automatically. Initially, the representative of a symbol A in G is the
smallest LTS that can be derived fromA using the rules of G. A further

search for monotonic representatives is based on the observation that
often certain behaviors only occur when a process is composed with
other processes (these other processes provide the environment). This
leads to the idea that by unfolding the derivation rules of G we may
�nd a larger set of potential representatives which might satisfy the

monotonicity property. Given two sets of LTSs X and Y we de�ne
XkY in the following way:

XkY = fpkq j p 2 X and q 2 Y g
Now we describe a heuristic to �nd representatives with the monotonic-
ity property. An association for a grammar G assigns a set of processes

set(A) to each symbol A of the grammar. Given an association for a
grammar G, we de�ne an unfolding of the association which is again

an association. The unfolding associates a new set of processes set0(A)

with each symbol A of grammar G in the following manner:

� If A is a terminal, set0(A) = set(A).

� Assume that A is a non-terminal. A process p 2 set0(A) i� there

exists a rule A ! BkC such that p 2 set(B)kset(C) or p 2
set(A). Note that B or C may be A itself.

Now we de�ne an iterative process to �nd representatives. First, we
describe how to �nd the initial association. For a terminalA, set0(A) =

fAg. We repeat the following step until we have a non-empty associa-

tion for each symbol A.
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� For each rule A ! BkC if set0(A) is empty and set0(B) and

set0(C) are de�ned then:

set0(A) = set0(B)kset0(C)

Each iteration consists of the following two steps.

1. If there exists representatives for each nonterminal A such that

rep(A) 2 seti(A) and the representatives satisfy the monotonicity
property, we are done. Otherwise go to the next step.

2. Create a new association seti+1(A) by unfolding the i-th associa-
tion. Go back to the previous step.

It is not hard to see that each iteration increases the set of processes
associated with a nonterminal. Therefore, as we unfold, we have more
choices to �nd representatives with the required property. In the exam-
ples we show how unfolding is used to �nd representatives. Notice that
if we �nd representatives with the monotonicity property such that
h(rep(S)) 6j= �, we cannot conclude anything about the correctness

of the network derived by the grammar G. In this case the counter-
example might aid the user in �nding a more re�ned invariant or we
may want to apply the unfolding technique again.

6.4 Synchronous model of computation

In this section we develop a synchronous framework that will have

the properties required by our veri�cation method. We de�ne a syn-

chronous model of computation and a family of composition operators.
We show that the composition operators are monotonic with respect to
�.

Our models are a form of LTSs,M = (S;R; I;O; S0), that represent

Moore machines. Traditionally, in Moore machines the outputs are
associated with the states. We assume that the outputs are moved

from the states to the transitions emanating from it. Our models have
an explicit notion of inputs I and outputs O that must be disjoint.

In addition, they have a special internal action denoted by � (called

silent action in the terminology of CCS [58]). The set of actions is
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ACT = f�g [ 2I[O, where each non-internal action is a set of inputs

and outputs.

The composition of two LTSs M and M 0 is de�ned to re
ect the

synchronous behavior of our model. It corresponds to standard compo-

sition of Moore machines. To understand how this composition works,

we can think of the inputs and outputs as \wires". IfM has an output

and M 0 has an input both named a, then in the composition the out-

put wire a will be connected to the input a. Since an input can accept

signal only from one output, MkM 0 will not have a as input. On the
other hand, an output can be sent to several inputs, thus MkM 0 still
has a as output. Consequently, the set of outputs of MkM 0 is O [ O0

while the set of inputs is (I [ I 0) n (O [O0).

A transition s
a! t from s in a machineM with a = i [ o such that

i � I and o � O occurs only if the environment supplies inputs i and
the machine M produces the outputs o. Assume transitions s

a! t in

M and s0
a0! t0 in M 0. There is a transition from (s; s0) to (t; t0) i� the

outputs provided by M agree with the inputs expected by M 0 and the
outputs provided by M 0 agree with the inputs expected by M .

Formally, let O \ O0 = ;. The synchronous composition of M and
M 0, M 00 =M kM 0 is de�ned by:

1. S00 = S � S0.
2. S000 = S0 � S00.
3. I 00 = (I [ I 0) n (O [O0).

4. O00 = O [O0.1

5. (s; s0)
a00! (s1; s

0
1) is a transition in R00 i� the following holds: s

a!
s1 is a transition in R and s0

a0! s01 is a transition in R0 for some

a, a0 such that a \ (I 0 [O0) = a0 \ (I [O) and a00 = a [ a0.

Lemma 6.4.1 The composition k is monotonic with respect to �.
1Note that, ACT 00 = 2I

00
[O

00

[f�g is not identical to ACT and ACT 0. This is a
technical issue that can be resolved by de�ning some superset of actions from which
each LTS takes its actions.
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Proof: LetM = (S;R; I;O; S0),M
0 = (S0; R0; I 0; O0; S00),M1 = (S1; R1; I1; O1; S1;0),

and M 0
1 = (S01; R

0
1; I

0
1; O

0
1; S

0
1;0) be four Moore machines. Assume that

M �M 0 and M1 �M 0
1. Let E � S�S0 and E1 � S1�S01 be the corre-

sponding simulation relations. We say that ((s; s1); (s
0; s01)) 2 E �E1 i�

(s; s0) 2 E and (s1; s
0
1) 2 E1. We will show that E � E1 has the required

properties. It is clear from the de�nition that given states s0 2 S0 and
s0;1 2 S1;0, there exists a s00 2 S00 and s01;0 2 S01;0 such that

((s0; s1;0); (s
0
0; s

0
1;0)) 2 E � E1

Assume that ((s; s1); (s
0; s01)) 2 E � E1.

1. By assumption, we have that h(s) = h(s0) and h(s1) = h(s01).

Therefore, h((s; s1)) = h(s) �h(s1) is equal to h((s0; s01)) = h(s0) �
h(s01).

2. Let (s; s1)
a00! (t; t1) be a transition in MkM1. This means that

there exists a transition s
a! t in M and a transition s1

a1! t1 in
M1 such that a \ (I1 [ O1) = a1 \ (I [ O) and a00 = a [ a1 By

de�nition there exists t0 and t01 such that s0
a! t0 and s01

a1! t01,

where (t; t0) 2 E and (t1; t
0
1) 2 E1. Therefore, (s0; s01)

a00! (t0; t01)
and ((t; t1); (t

0; t01)) 2 E � E1. 2

6.4.1 Network grammars for synchronous models

Only a few additional de�nitions are required in order to adapt our gen-
eral de�nition of network grammars to networks of synchronous models.

Like before a network grammar is a tuple G = hT;N;P;Si, but now,
every terminal and nonterminal A in T [N is associated with a set of

inputs IA and a set of outputs OA. In G we allow di�erent composition

operators ki for the di�erent production rules. In order to de�ne the
family of operators to be used in this framework we need the following

de�nitions.

A renaming function R is an injection which acts on the input and

outputs of the Moore machines. When applied to A, it maps inputs to
inputs and outputs to outputs such that R(IA)\R(OA) = ;. Applying
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R to a LTS M results in an LTS M 0 = R(M) with S = S0, S0 = S00,

I 0 = R(I)nf�g,O0 = R(O)nf�g, and (s; a; s0) 2 R i� (s;R(a); s0) 2 R0.

A hiding function Ract for act � I [O, is a renaming function that

maps each element in act to � .

A typical composition operator in this family is associated with two

renaming functions, Rleft, Rright and a hiding function Ract, in the

following way.

MkiM 0 = Ract (Rleft(M)kRright(M
0));

where k is the synchronous composition de�ned before. The renaming
functions are applied to LTSs and not to nonterminals. Therefore, the
derivations are composed bottom up. For example, consider the rule of
the form shown below:

A!Ract (Rleft(B)kRright(C))

In this case �rst we apply the derivations for B and C to derive two
LTS b and c. Then the renaming and hiding functions are applied to

complete the derivation.

To use our framework, we need to show that every such operator is
monotonic, i.e., if M1 � M2 and M 0

1 � M 0
2 then M1kiM 0

1 � M2kiM 0
2.

The latter means that

Ract(Rleft(M1)kRright(M
0
1)) � Ract (Rleft(M2)kRright(M

0
2))

The following lemma, together with monotonicity of the synchronous
composition k imply the required result.

Lemma 6.4.2 LetM ,M 0 be Moore Machines and letR be a renaming
function. If M �M 0 then R(M) � R(M 0).

Proof: Let E be the simulation preorder between M and M 0. It is

easy to show that E is also a simulation preorder between R(M) and
R(M 0). 2

Corollary 6.4.1 The composition operators ki, de�ned as above are
monotonic.
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Example 6.4.1 We return to Example 6.1.1 and reformulate it within

the synchronous framework. Doing so we can describe more precisely

the processes and the network grammar that constructs rings with any

number of processes. The processes P and Q will be identical to those

described in Figure 6.1 except that now we also specify for both pro-

cesses I = f get-tokeng and O = fsend-tokeng.
The derivation rules in the grammar apply two di�erent composition

operators:

S ! Qk1A
A ! Pk2A
A ! Pk2P

k1 is de�ned as follows.

� R1
left maps send-token to some new action cr (stands for connect

right) and get-token to cl (stands for connect left).

� R1
right maps send-token to cl and get-token to cr.

� The hiding function hides both cr and cl by mapping them to � .

Thus, the application of this rule results in a network with one terminal
Q and one nonterminal A, connected as a ring. k2 is de�ned by (see
Figure 6.4):

� R2
left maps send-token to cr and leaves get-token unchanged.

� R2
right maps get-token to cr and leaves send-token unchanged.

� The hiding function hides cr

The application of the third rule, for instance, results in a network

in which the nonterminal A is replaced by a LTS consisting of two

processes P , such that the send-token of the left one is connected to
the get-token of the right one. The get-token of the left process

and send-token of the right one will be connected according to the
connections of A (see Figure 6.4 and Figure 6.5).
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get Q get A send
cr

cl

S send

A
get P send get A send

crget send

get P send get P send
sendgetA cr

Figure 6.4: Derivation rules with renaming

S
Q A

Q P

τ

τ

τ

τ

τ
P

Figure 6.5: Derivation of a ring of size 3

6.5 Asynchronous Model of Computation

In this section we describe a model for asynchronous communication.
The model is similar to CCS [58]. Each process is associated with a
set of actions. The symbol � denotes the internal (non communication)

actions of a process.

De�nition 6.5.1 A process M is a 4-tuple,

M = (ACT; S;R; S0)

where

� ACT is a �nite set of actions (ports or channels) not containing

� .

� S is a �nite set of states.

� R is a labeled transition relation, R � S � (ACT [ f�g)� S.
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� S0 is the set of initial states.
When two processes M and M 0 are combined into a new process

MkM 0, zero or more channels are formed. Each channel pairs a port

of M and a port of M 0 that have identical names. The channel is used

merely for synchronization (i.e., no data is transferred). However, data

can be encoded by sequences of synchronizations. The unpaired ports

of M and M 0 become the ports of the combined process MkM 0.

De�nition 6.5.2 The composition ofM = (S;R;ACT; S0) andM
0 =

(S0; R0; ACT 0; S00) is a new process

M 00 =MkM 0 = (S00; R00; ACT 00; S000 )

where

� ACT 00 = (ACT [ACT 0)n(ACT \ ACT 0)

� S00 = (S � S0)
� S000 = S0 � S00
� R00 =

f((s; s0); �; (s1; s01)) j 9� : s
�! s1 ^ s0

�! s01 ^ � 2 ACT \ ACT 0
o
[

f((s; s0); �; (s1; s0)) j s
�! s1 ^ � 62 ACT 0

o
[

f((s; s0); �; (s; s01)) j s0
�! s01 ^ � 62 ACT

o

When combining processes, we sometimes need to change their action

names in order to form a network of a desirable structure. The de�ni-
tion of renaming and hiding functions are similar to the one introduced

for the synchronous model. Let R be an 1-1 renaming function of the
ports of the process M . R(M) denotes a new process M 0 identical to

M except that:

� s R(�)! t 2 R0 i� s
�! t 2 R.

A hiding function R
act

(where act � ACT ) disallows synchronization

on the actions in the set act by renaming them to the silent action � .

Formally Ract (M) is a new process M 0, which is identical to M except
that its transition relation R0 is:
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� s �! t 2 R0 i� s
�! t 2 R and � 62 act .

� s �! t 2 R0 i� s
�! t 2 R and � 2 act .

The network grammar G = hT;N;P;Si has the production rules of the
following form.

� P is the set of production rules of the form

A! Ract (Rleft(B)kRright(C))

where A 2 N , B;C 2 T [ N , Rleft and Rright are renaming
functions, and Ract is the hiding function for that rule.

We have the following theorems.

Theorem 6.5.1 (Monotonicity theorem)LetM = (S;R;ACT; S0),
M1 = (S1; R1; ACT1; S0;1),M

0 = (S0; R0; ACT; S00),M
0
1 = (S01; R

0
1; ACT1; S

0
0;1)

be processes such that M � M 0 and M1 � M 0
1. In this case MkM1 �

M 0kM 0
1.

Proof: Let E � S � S0 and E1 � S1 � S01 be the simulation relations.
Consider the following relation E � E1 � (S � S1)� (S0 � S01)
� ((s; s1); (s

0; s01)) 2 E � E1 i� (s; s0) 2 E and (s1; s
0
1) 2 E1

We will prove that E � E1 is the simulation relation between MkM1

and M 0kM 0
1, and hence, MkM1 � M 0kM 0

1. Note that set of actions of

MkM1 andM
0kM 0

1 are both identical to (ACT[ACT1)n(ACT\ACT1).
� For all (s0; s0;1) 2 S0 � S0;1 there exists (s00; s00;1) 2 S00 � S00;1 such
that

((s0; s0;1); (s
0
0; s

0
0;1)) 2 E � E1

This follows because we can �nd s00 2 S00 and s00;1 2 S00;1 such that
(s0; s

0
0) 2 E and (s0;1; s

0
0;1) 2 E1.

� Let ((s; s1); (t; t1)) 2 E �E1. By assumption, we have that h(s) =
h(t) and h(s1) = h(t1). Therefore, h((s; s1)) = h(s) � h(s1) is
equal to h((t; t1)) = h(t) � h(t1). Assume that (s; s1)

�! (s0; s01).

There are three cases.
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{ (s; s1)
�! (s0; s01) and s

�! s0, s1
�! s01 for � 2 ACT \ACT1.

In this case, there exists t0 and t01 such that t
�! t0 and

t1
�! t01 such that (s0; t0) 2 E and (s01; t

0
1) 2 E1. It is clear

that (t; t1)
�! (t0; t01) and ((s0; s01); (t

0; t01)) is in E � E1.
{ (s; s1)

�! (s0; s01) and s
�! s0, s1 = s01 and � 62 ACT1. In this

case, there exists t0 such t
�! t0 and (s0; t0) 2 E. It is clear

that (t; t1)
�! (t0; t1) and ((s0; s1); (t

0; t1)) is in E �E1. Notice
that by assumption (s1; t1) 2 E1.

{ (s; s1)
�! (s0; s01) and s = s0, s1

�! s01, and � 62 ACT . This
case is similar to the one given above. 2

The theorem given below states that renaming and hiding preserve

monotonicity.

Theorem 6.5.2 Let M and M 0 be two processes such that M � M 0.
Let R and Ract be renaming and hiding functions respectively. In this
case R(M) � R(M 0) and Ract (M) � Ract (M

0).

Proof: The proof of this theorem is straightforward.2

Using the two theorems given above we can prove that the composition
operators used in the grammar are monotonic.

6.6 Examples

We implemented the algorithm for network veri�cation and applied it

to two examples of substantial complexity. The �rst example uses the

asynchronous composition. The second example uses the synchronous
model of composition.

6.6.1 Dijkstra's Token Ring

The �rst is the famous Dijkstra's token ring algorithm [26]. This algo-

rithm is signi�cantly more complicated than the one used as a running

example along the chapter. The example uses the asynchronous model
of computation. There is a token t which passes in the clockwise direc-

tion. To avoid the token from passing unnecessarily, there is a signal r
(r stands for request) which passes in the counter-clockwise direction.
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Whenever a process wishes to have the token, it sends the signal r to

its left neighbor, i.e., the process on the counter-clockwise side. The

states of the processes have the following four components:

� It is either b (black{an interest in the token exists to the right),

w (white{no one is interested in the token)

� It is either n (in the neutral state), d (the process is delayed

waiting for the token) or c (the process is in the critical section)

� It is either t (with the token), or e (empty{without the token).

� A set of outputs o enabled from the state. The possible values of

o are ;, frg, ftg, and fr; tg.
Each process has r? and t? as input actions and r! and t! as output
actions. This notation is borrowed from CSP. While synchronizing, r!

is matched with r?. Similarly, t! is matched with t?. Each state has an
output associated with it (kept in the component o). The name of the
state is a combination of its properties. Thus hwne; frgi is a neutral
state with no request on the right, no token and has output r. We
will describe a state with a 2-tuple, i.e., hx; oi where x describes the
�rst three components and o is the set of outputs enabled from that

state. If the output from a state s0 is non-empty (o 6= ;), then there is
a transition to s0 with every action in o labelling the transition. Given
a state hx; oi, the following transitions are present in the system:

8(� 2 o)
h
hx; oi �!! hx; onf�gi

i

For conciseness, the list of transitions for a process that performs the
token ring protocol is given in the table below.

wne
r=r! bne wne

=r! wde bne! bde

bne
t=t! wne wde

r=! bde wde
t=! wct

bde
t=! bct wnt

r=t! wde wnt! wct

wct
r=! bct wct! wnt bct

=t! wne
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We explain how the transitions given above can be translated into our

notation. The �rst component on the transition label is the input and

the second is the output. We consider the four kind of transitions:

� x! y corresponds to the transitions hx; oi �! hy; oi.

� x =v! y corresponds to transitions hx; oi �! hy; o [ fvgi.

� x u=! y corresponds to transitions hx; oi u?! hy; oi.

� x u=v! y corresponds to transitions hx; oi u?! hy; o [ fvgi.
Notice that each entry in the table actually corresponds to a group of
transitions which only di�er from each other by the value of the second
component.

Let Q be the process with hwnt; ;i as the initial state and the tran-
sitions shown above. Let P be the process with hwne; ;i as the initial
state and the same transitions as Q. The network grammar generating
a token-ring of arbitrary size is similar to that of Example 6.4.1.

Let S be the set of states in a basic process of the token ring. Let t
be the subset of states which have the token. Let not-t be the set Snt.
The automaton D is the same as the automaton in Figure 6.3 with t

substituted for cs and not-t substituted for nc. The automaton accepts

strings S? such that the number of processes with the tokens is exactly
one. Let h be the abstraction function induced by the automaton. The

initial association is:

set(Q) = fQg
set(P ) = fPg
set(A) = fPkPg
set(S) = fQkPkPg

Unfortunately, the corresponding representatives did not satisfy the

monotonicity condition. Therefore, we unfolded the initial association

to get the following association:

set(A) = fPkPkP;PkPg
set(S) = fQkPkPkP;QkPkPg



170 CHAPTER 6. VERIFYING PARAMETERIZED NETWORKS

Notice that unfolding does not change the associations for the terminals.

If we choose the representatives as

rep(P ) = P

rep(Q) = Q

rep(A) = PkPkP
rep(S) = QkPkPkP

then the monotonicty condition holds, i.e.,

h(rep(A)) � h(h(rep(P )kh(rep(P )))
h(rep(A)) � h(h(rep(A))kh(rep(P )))
h(rep(S)) � h(h(rep(Q))kh(rep(A)))

By Theorem 6.3.1 we conclude that rep(S) simulates all the LTSs
generated by the grammar G. Notice that if rep(S) satis�es the prop-
erty AGD, then Theorem 6.2.1 implies that every LTS generated by
the grammar G satis�es AGD. Using our system we established that
rep(S) is a model for AGD.

6.6.2 Parity tree

We consider a network of binary trees, in which each leaf has a bit value.
We describe an algorithm that computes the parity of the values at the
leaves. The algorithm is taken from [69]. A context-free grammar G

generating a binary tree is given below, where root, inter and leaf

are terminals (basic processes) and S and SUB are nonterminals. The

precise de�nition of the composition operator is given later.

S ! rootkSUBkSUB
SUB! interkSUBkSUB
SUB! interkleafkleaf

An intuitive description of the algorithm follows. The root process

initiates a wave by sending the readydown signal to its children. Every



6.6. EXAMPLES 171

internal node that gets the signal sends it further to its children. When

the signal readydown reaches a leaf process, the leaf sends the readyup

signal and its value to its parent. An internal node that receives the

readyup and value from both its children, sends the readyup signal

and the xor(�) of the values received from the children to its parent.

When the readyup signal reaches the root, one wave of the computation

is terminated and the root can initiate another wave. The semantics of

the composition used in the grammarG should be clear from Figure 6.6.
For example, the inputs readyp l and value l of an internal node are

identi�ed with the outputs readyup and value of its left child.

Next, we describe the various signals in detail. First we describe the

readyup readydown readyup readydown
value value

readydownreadyup
value

Parent

left child right child

readyup_l
value_l

readyup_r
value_r

Figure 6.6: Internal node of the tree

process inter. The process inter is the process in the internal node

of the tree. The various variables for the process are shown in the table:
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state vars output vars input vars

root or leaf readydown readydown

readydown readyup readyup l

readyup l value readyup r

readyup r value l

value value r

readyup

The following equations are invariants for the state variables:

root or leaf = 0

readyup = readyup l ^ readyup r
The output variables have the same value in each state as the corre-

sponding state variable, e.g., the output variable readydown has the
same value as the state variable readydown. The equations given be-
low show how the input variables a�ect the state variables. The primed
variables on the left hand side refer to the next state variables and the
right hand side refers to the input variables.

readydown0 = readydown

readyup l0 = readyup l

readyup r0 = readyup r

value0 = (readyup l ^ value l)� (readyup r ^ value r)
Since the root process does not have a parent, it does not have the input
variable readydown. The invariant root or leaf = 1 is maintained for
the root and the leaf process. Since the leaf process does not have a

child, the output variable readydown is absent. The leaf process has

only one input variable readydown and the following equation between
the next state variables and input variables is maintained:

readyup0 = readydown

For each leaf process the assignment for the state variable value is

decided non-deterministically in the initial state and then kept the same
throughout the computation.
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A state in the basic processes (root,leaf,inter) is a speci�c as-

signment to the state variables. We call this state set S. Notice that

the state set S �= f0; 1g6 because there are 6 state variables.
The automata we describe accepts strings from S?. Let value1; � � � ; valuen

be the values in the n leaves. Let value be the value calculated at the

root. Since at the end of the computation the root process should

have the parity of the bits valuei (1 � i � n), the following equation

should hold at the end of the computation:

value�
nM
i=1

valuei = 0:

Let p be de�ned by the following equation:

p = fs 2 S j s satis�es root or leaf ^ valueg:
Let not(p) = S � p. The automaton given in Figure 6.7 accepts the
strings in S? which satisfy the equation given above. Since root or leaf =
0 for internal nodes, the automaton essentially ignores the values at the
internal nodes. We call this automaton parity. We also want to assert

q0

p

p

not(p)

not(p)

q1

Figure 6.7: Automaton for parity

that everybody is �nished with their computation. This is signaled by
the fact that readyup = 1 for each process. The automaton given in

Figure 6.8 accepts strings in S? i� readyup = 1 in each state. i.e. all

processes have �nished their computation. We call this automaton �n-
ished. The automata parity and �nished are our atomic formulas.
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m0 m1
not(readyup)

readyup

S

Figure 6.8: Automaton for ready

We want to verify that if the computation is �nished then the parity

at the root is correct. Hence, we want to check that the initial state
satis�es the property AG(�nished! parity). Let h be the abstrac-
tion function induced by the atomic formulas (see Section 6.2 for the
de�nition of h). The initial association is:

set0(SUB) = finterkleafkleafg
set0(S) = rootkset0(SUB)kset0(SUB)

The association corresponding to the terminals is simply the process
associated with the terminal. The association for S can be derived

from set(SUB). The representatives corresponding to the initial asso-
ciation did not satisfy the monotonicty condition. Unfolding the initial

association we get:

I = interkleafkleaf
I1 = interkIkI

set1(SUB) = fI1g [ set0(SUB)
set1(S) = frootkI1kI1g [ set0(S)

Now we could �nd representatives that did satisfy the monotonicity

condition. Using Theorem 6.3.1 we can conclude that H = h(rep(S))
simulates all the networks generated by the context free grammar G.
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We checked that H; s0 j= AG(�nished ! parity) (s0 is the initial

state of the process H). Theorem 6.2.1 implies that that every network

derived by G has the desired property, i.e., when the computation is

�nished the root process has the correct property.

6.7 Related Work

The �rst paper to investigate in�nite family of �nite-state systems
was [10]. They considered the problem of verifying a family of to-
ken rings. In order to verify the entire family, the authors established a
bisimulation relation between a 2-process token ring and an n-process
token ring for any n � 2. It follows that the 2-process token ring and

the n-process token ring satisfy exactly the same temporal formulas.
The drawback of their technique is that the bisimulation relation had
to be constructed manually.

Induction at the process level has also been used to solve problems
of this nature by two research groups [30, 34]. They prove that for rings

composed of certain kinds of processes there exists a k such that the
correctness of the ring with k processes implies the correctness of rings
of arbitrary size. In [72] an alternative method is proposed for checking
properties of parametrized systems. In this framework there are two
types of processes: Gs (slave processes) and Gc (control processes).

There can be many slave processes with type Gs, but only one control
process with type Gc. The slave processes Gs can only communicate
with the control process Gc.

In [53, 64] context-free network grammars are used to generate in-
�nite families of processes with multiple repetitive components. Using

the structure of the grammar they generate an invariant I and then
check that I is equivalent to every process in the language of the gram-

mar. If the method succeeds, then the property can be checked on the
invariant I. The requirement for equivalence between all systems in F is

too strong in practice and severely limits the usefulness of the method.
In this chapter, equivalence was replaced with a suitable preorder while

still using network grammars.
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Chapter 7

Conclusion

Chapter 2 showed the importance of the propositional �-calculus by
giving translations of various graph-based veri�cation algorithms into
the �-calculus. An OBDD based algorithm for �-calculus model check-
ing which has proved to be extremely e�cient in practice was also
presented. Finally, the best known algorithm for evaluating �-calculus

formulas was described. However, there is still much work to be done
in each of these areas.

Although OBDDs do not reduce the worst-case complexity of the

model checking problem for the �-calculus, their use in model checking
has had an enormous e�ect on formal veri�cation. Before the use of OB-
DDs, it was only possible to verify models with at most 106 states [17].
By using the OBDD techniques described in this paper, in practice, it is

now possible to verify examples with up to 10120 states and several hun-

dred state variables [12]. However, there is no theoretical framework

which explains when OBDDs will work well in practice. The algorithm

given in Chapater 2 does not depend on the data structure used to
represent boolean functions, so it should be possible to use any better

data structures that may be discovered.

In addition to the veri�cation problems we have considered, there

are other graph theoretic problems that can be encoded in the �-
calculus. An important question is how useful these OBDD and �x-
point techniques are for problems like �nding minimum spanning trees,

determining graph isomorphism, etc. For example, let E(u; v) be the

edge relation for a directed graph and let each vertex v be a state en-
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coded by an assignment ~v to the boolean variables ~x = x1; : : : ; xk. The

formula

�(~x) � �R:~x _ haiR
computes the set of states reachable from the state encoded by the

assignment to ~x, where the interpretation for the program letter a is

the edge relation E. Then the graph satis�es the formula

[~u! �(~v)] ^ [~v! �(~u)]

if and only if the two vertices u and v are in the same strongly connected
component. In general, the graph is strongly connected if and only if
it satis�es the formula

8~x:�(~x):
Although strictly speaking this is not a �-calculus formula according
to the syntax presented earlier, recall that we allow quanti�cation over
boolean variables in our translation of the �-calculus into OBDDs.

E�cient evaluation algorithms, which exploit monotonicity proper-
ties when evaluating �xpoints were also described in Chapter 2. How-
ever, these algorithms remain exponential in the alternation depth. I
conjecture that there is no polynomial-time algorithm for determining

if a state satis�es a given formula. Consider an algorithm that com-
putes least �xpoints by iterating, and that guesses greatest �xpoints.
The guess for a greatest �xpoint can be easily checked to see that it

really is a �xpoint. Furthermore, while we cannot verify that it is the
greatest �xpoint, we know that the greatest �xpoint must contain any

veri�ed guess. Then by monotonicity, the �nal value computed by this
nondeterministic algorithm will be a subset of the real interpretation

of the formula. The state in question satis�es the formula if and only
if it is in the set computed by some run of the algorithm. Also note

that one can negate formulas, so the complexity of determining if a
state satis�es a formula is the same as the complexity of determining

if a state does not satisfy the formula. Thus, the problem is in the

intersection of NP and co-NP. This suggests that the conjecture will be
very di�cult to prove.

In Chapter 3 various techniques for exploiting symmetry during
model checking were discussed. There are a number of directions for
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future research. It would be insightful to have tight lower bounds on the

size of the OBDDs needed for the orbit relation for symmetry groups

occurring in practice. This type of information would be useful in deter-

mining if it is feasible to construct the quotient model directly using the

orbit relation or whether it is necessary to develop special techniques for

mapping states onto representatives. An automatic procedure for iden-

tifying symmetries in circuits would de�nitely be useful. Techniques

based on the Walsh transform have been tried for this purpose in the
past [40]. However, I suspect that this will always be a hard problem

and that some information from the designer of the circuit will usually
be required. It will also be very insightful to try other hardware exam-
ples with more complicated topologies in addition to cache coherency
protocols.

Chapter 4 investigated the complexity of various problems associ-
ated with exploiting symmetry in model checking. We also provided

ways of deriving symmetry for shared variable concurrent programs.
An important research problem will be to take some existing hardware
description languages and derive symmetry information statically from
the system descriptions written in that language. Perhaps, some of the
ideas presented in section 4.2 could be used. This chapter also made

the connection between exploiting symmetry in model checking and
computational group theory. An important research direction will be
to use some of the powerful techniques available in the computational
group theory literature in the model checking domain.

Chapter 5 described techniques to combine partial-order and sym-

metry reduction methods. In the future, I would like to implement these
methods on some existing veri�cation tools and try some examples.

Another interesting problem is to derive symmetry and independence

information from the description of the LTS being veri�ed. Presently,
most veri�cation systems rely on the user to provide this information. I

would also like to investigate whether some other reduction techniques
could be combined using similar ideas.

Chapter 6 described a new technique for reasoning about families
of �nite-state systems. This work combines network grammars and

abstraction with a new way of specifying state properties using regu-

lar languages. I have implemented this veri�cation method and used

it to check two non-trivial examples. In the future, I intend to ap-
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ply the method to even more complex families of state-transition sys-

tems. There are several directions for future research. The context-

free network grammars can be replaced by context-sensitive grammars.

Context-sensitive grammars can generate networks like square grids

and complete binary tree which cannot be generated by the context-

free grammars. The speci�cation language can be strengthened by re-

placing regular languages by more expressive formalisms (like !-regular

languages). An interesting extension would be to add fairness to the
models under consideration.
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