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Abstract

Many scientific processes depend upon sequential decision making. Choosing which

experiments to run next, or how to alter an experimental design, or reconfigure experi-

mental instrumentation affects not just the underlying accuracy or quality of the actual

experiment, but also the efficiency at which optimal experimental conditions are iden-

tified. Especially as the ability to automate certain experimental components becomes

more prevalent, practical algorithms that can guide these types of experimental decision

making are more important now than ever. In this dissertation, we use machine learn-

ing to address such sequential decision making problems in two emerging biological

domains— general laboratory experimentation via a Cloud Lab and protein engineer-

ing. Towards the first setting, we introduce protocol, a first-of-its-kind deterministic

algorithm that improves experimental protocols via asynchronous, parallel Bayesian op-

timization. In the latter setting, we describe two methods for selecting protein engineer-

ing experiments. First, we show how to formulate Directed Evolution as a regularized

Bayesian optimization problem where the regularization term reflects evolutionary or

structure-based constraints. Finally, we demonstrate how to use a deep Transformer

Protein Language Model to effectively select lead sequences from nanobody repertoires,

as well as how to select beneficial single-site mutagenesis experiments that optimize

targeted protein functions.
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Chapter 1

Introduction

Automation’s impact on the world continues to increase with improving tech-

nology. There are many benefits of automation that extend to applications of

biological experimentation as well the scientific community at large. The ex-

act role of automation takes one of two forms. The first and perhaps more

commonly appreciated form concerns the machinery and systems in place

that handle repetitive tasks. For instance, there exist specialized robots that

are capable of performing numerous exact pipetting measurements [1], basic

biological assays [2], and routine cell biology experiments [3]. Such systems

are useful because they reduce cost, increase reproducibility, and free sci-

entists to focus their attention on the broader conceptual problems they are

trying to solve [4, 5]. However, these systems are also static. That is, they

require a stable environment and are unable to adapt to new or unexpected

circumstances. They are not able to learn from the complex systems they in-

volve but rather carry out specific tasks related to the system. This form of

automation is not our principal focus.

The other form of automation concerns interacting with a dynamic environ-

ment and learning how to make optimal choices within this environment.

One of the first examples of this type of automation related to biological ex-

3



4 CHAPTER 1. INTRODUCTION

perimentation includes the Adam robot scientist, a robot capable of running

genomic experiments, formulating hypotheses based on these experiments,

then choosing the next experiment to run based on these hypotheses [6]. The

abilities to model the hypothesis space from current known data, as well as

choose subsequent experiments based on the current hypothesis space ex-

emplify this dynamic form of automation. Automating these aspects of the

scientific process yield not only the same benefits as their static counterparts,

but also provide an efficient means to learn about and understand the system

of focus. These systems can range from cancer genomics [7, 8, 9], to precision

medicine [10], to drug discovery [11, 12] and more. Developing algorithms

that are able to carry out these dynamic capabilities is thus an important area

of focus.

In this dissertation, we develop algorithms of this form in order to make ex-

perimental decisions within two important and emerging scientific domains:

1. General experimental biochemistry via a Cloud Laboratory (Chapter 3)

2. Protein design and engineering (Chapters 4 & 5)

In the rest of this chapter, we will briefly introduce these two areas and mo-

tivate the basic research objectives we pursue within this dissertation.



1.1. APPLICATION AREAS 5

1.1 Application areas

1.1.1 Experimental automation in the Cloud Lab

Recently, Carnegie Mellon University and Emerald Cloud Labs partnered together to

form the world’s first academic Cloud Lab [13, 14]. This union not only illustrates the

promise of using automated technologies in research settings, but also how the era of

automated science within academia is in its relative infancy. What a Cloud Lab offers is

an ability to remotely specify complete laboratory procedures that are carried out by a

combination of trained technicians and robotic instruments at an external, secure, fully-

stocked facility [15, 16]. Just as cloud computing is intended to provide on-demand

access to computing resources, a Cloud Lab provides the on-demand access to sophis-

ticated laboratory equipment. Proponents of the Cloud Lab paradigm have found that

it increases reproducibility of experimental work, improves laboratory efficiency, and

leads to faster translation from purely research driven work to real-world applications

[17]. In combination, these can have the effect of making experimental science a more

efficient process, which in turn can speed up the rate of real scientific discovery.

However, there are some limitations that must be overcome before the Cloud Lab

can truly democratize science. Some of these limitations are due to differences between

research performed in academia versus the types of experiments carried out in industry,

where use of automated science is more prevalent. For example, many research experi-

ments rely on highly specialized equipment or experimental procedures that may not be

amenable to the types of generalizable automated capabilities offered by current Cloud

Labs. Still, other Cloud Lab issues mirror those that any researcher may encounter in

their own lab. This includes configuring experimental settings to find those that are best

capable of collecting data or producing interpretable results.

In Chapter 3, we propose a Bayesian optimization algorithm to address issues of

the second type above. By using the unique capabilities of the Cloud Lab to solve a
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practical issue that many researchers will face when carrying out research objectives

on the Cloud Lab themselves, we hope that we are contributing to the positive change

automated science is beginning to bestow upon academia. We believe this work marks

the first instance of academic closed-loop science using a Cloud Lab.

1.1.2 Protein engineering

Proteins are an essential component of all living systems. A given protein can be de-

fined by its constituent sequence of amino acids. The cumulative biophysical properties

of these amino acids cause a protein to uniquely fold into structures that allow it to

carry out necessary and specialized functions. These include acting as enzymes that cat-

alyze vital biochemical reactions, enacting immune responses, facilitating cell signaling

pathways, and innumerably many more.

In many settings, it would be desirable to either enhance a protein’s ability to carry

out its prescribed function, or to synthesize new protein sequences that possess func-

tionalities distinct from those observed by naturally occurring proteins. Examples could

include proteins with a specified therapeutic property that target cancer cells, or proteins

capable of breaking down certain materials for industrial applications. Objectives like

these are addressed by protein engineering [18].

Protein engineers design novel protein sequences that possess some targeted prop-

erty. One way to describe protein design is as a search over the space of protein se-

quences constrained by practical considerations such as limited resources like money,

time, and technological feasibility. Traditional approaches like directed evolution con-

duct this search in a purely stochastic and iterative manner. The best random mutants

obtained in one generation (i.e. those with highest fitness) serve as seeds for the next,

and this continues until a specified stopping criterion is met. While this approach can

lead to effective protein designs, it comes at the cost of efficiency— many costly itera-

tions of experimentation are typically required.
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This has motivated the creation of approaches that more intelligently navigate the

space of protein sequences as a means to more efficiently identify protein sequences

with desired properties [19, 20]. This includes those that are strictly computational,

such as those based on molecular dynamics simulation and/or machine learning. While

many of these approaches show great promise at modeling relationships between amino

acid sequence and structure and function, they can also be further detached from the

experimental realities and capabilities of most protein engineering laboratories. It is

thus important to develop methodologies that are capable of identifying novel protein

sequences with desired properties in ways that are consistent with typical protein engi-

neering workflows.

To this end, we describe our machine-learning enhanced version of directed evolution

in Chapter 4. We show how to use generative models of protein sequences as well

as force-field based modeling to obtain regularization factors that we use within the

context of a general-purpose Bayesian optimization protein design routine. In Chapter 5,

we show how to use a deep Transformer Protein Language Model to identify novel

sequences that have the most promise— we use the model’s self-attention map to calculate

a Promise score that weights the relative importance of a given sequence according to

predicted interactions with a specified binding partner.
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1.2 Summary of contributions

• Chapter 3 introduces the algorithm protocol (PaRallel OptimizaTiOn for ClOud

Laboratories), a bound-based Bayesian optimization approach to configuring ex-

perimental parameterizations in a Cloud-lab setting.

– protocol is the first demonstration of Bayesian optimization in the Cloud

Lab.

– We apply protocol in a simulated cloud-lab to select four parameter settings

that configure two sets of MALDI-ToF MS experiments (Sections 3.4 & 3.4.1).

* protocol identified the optimal parameter settings in 9 out of 10 objec-

tives within a 25 experiment budget.

* Compared to four alternative Bayesian optimization approaches and ran-

dom sampling, protocol found the optimal configurations with higher

frequency (Tables 3.1 & 3.2) and found its best configuration more quickly

(Figure 3.3).

– We apply protocol in a real cloud lab to select six parameter settings that

configure HPLC experiments (Sections 3.6 & 3.6.1).

* protocol initially requests experiments that yield the incorrect number of

peaks, but eventually requests those the identify a correct number (Figure

3.8).

* Given a small budget of 18 total experiments, protocol does not select

HPLC parameterizations that yield higher resolutions than those selected

by Latin Hypercube sampling (Table 3.3).

• Chapter 4 describes a machine learning-enhanced Directed Protein Evolution ap-

proach to protein design via Bayesian optimization with evolutionary and structure-

based regularization.
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– We introduce evolutionary-based regularization as a means to bias variant

selections towards those that are native-like. We show how to obtain these

terms from each of a Markov random field, hidden Markov model, and a

transformer protein language model (Section 4.3.1).

– We introduce structure-based regularization as a means to bias variant selec-

tions towards those expected to have high stability. We show how to obtain

this term using the FoldX empirical force field (Section 4.3.2).

– We incorporate these regularization terms into a Bayesian optimization frame-

work (Section 4.4.1). We use this framework for in silico protein design using

proteins GB1, BRCA1, and Spike (Section 4.5).

* Overall, we find that ML-assisted DE improves upon the traditional single

mutation walk and recombination approaches in designing high fitness

GB1 variants by an average of 45% (Figure 4.3).

* Given a sufficient number of experimental rounds and a complete picture

of the system being optimized, structure-based regularization identifies

variants with highest fitness (Figure 4.4).

* Both evolution and structure-based regularization promotes site-specific

exploration of unexplored sequence space (Section 4.5.5).

• Chapter 5 describes how the transformer protein language model ESM-1b can be

used to identify protein sequences with targeted properties, and thus serves as a

powerful tool for different protein engineering objectives.

– We introduce a joint encoding scheme for a protein sequence and its binding

partner as input for the ESM-1b transformer model (Section 5.2.1).

– We introduce the Promise Score as a measure of a sequence’s likeliness to

possess a targeted property (Section 5.2.2). The Promise Score is calculated
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using ESM-1b’s attention mechanism, and accounts for intramocular and/or

intermolecular interactions between the encoded sequences.

– We use the Promise Score for in silico selection of lead sequences from two

nanobody repertoires. We also use the Promise Score to select single-site

mutagenesis experiments within the BRCA1-BARD1 and Spike-ACE2 protein

complexes to optimize for downstream binding-dependent activity and bind-

ing affinity, respectively.

* Across most encoding schemes, we find that sequences with high Promise

Score tend to be “strong” sequences (Figure 5.2).

* An encoding scheme with no linker or short Alanine linker yields exper-

imental selections that are most enriched with strong sequences (Figures

5.3 & 5.4).

– We introduce a per-residue Promise Score, and find that it provides insights

into protein-target interactions (Section 5.3.3).

* Across both nanobody repertoires, 3 out of 8 validated epitopes are en-

riched with high scoring residues. With BRCA1-BARD1, residues in the

known binding sites of each protein are enriched with high scoring residues.

With Spike-ACE2, residues in the known binding site of ACE2 are en-

riched with high scoring residues (Figure B.8).

– We demonstrate that fine-tuning ESM-1b improves model AUC when training

models that predict nanobody binding strength (Figure 5.7).
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1.3 Summary of publications

The content of Chapter 3 appears in:

[21] Trevor S. Frisby, Zhiyun Gong, and Christopher James Langmead.

“Asynchronous parallel Bayesian optimization for AI-driven cloud labora-

tories”. In: Bioinformatics 37.Suppl_1 (July 2021), pp. i451–i459

The content of Chapter 4 appears in:

[22] Trevor S. Frisby and Christopher James Langmead. “Bayesian opti-

mization with evolutionary and structure-based regularization for directed

protein evolution”. In: Algorithms for Molecular Biology 16.1 (July 2021),

p. 13

[23] Trevor S. Frisby and Christopher James Langmead. “Fold Family-

Regularized Bayesian Optimization for Directed Protein Evolution”. In:

20th International Workshop on Algorithms in Bioinformatics (WABI 2020).

Vol. 172. Leibniz International Proceedings in Informatics (LIPIcs). 2020,

18:1–18:17

The content of Chapter 5 appears in:

[24] Trevor S. Frisby and Christopher James Langmead. “Identifying

promising sequences for protein engineering using a deep Transformer

Protein Language Model”. In: bioRxiv (2023)
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Non-dissertation research: In addition to the above body of work, I also pursued the

following research direction during my PhD. Its content is not included in this disserta-

tion:

[25] Trevor S. Frisby et al. “Harvestman: a framework for hierarchical fea-

ture learning and selection from whole genome sequencing data”. In: BMC

Bioinformatics 22.1 (Apr. 2021)







Chapter 2

Background

This chapter will introduce the basic tools and methodologies that this disser-

tation builds upon. We will expand on these preliminaries in the subsequent

chapters when necessary, or restate for clarity. After all, repetitio mater studio-

rum est.

15
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2.1 Sequential model-based optimization

Algorithms used for real-life research decision making have to learn quickly from an

often limited data supply. Within machine learning, algorithms of this form fit broadly

within the subfield of active learning. Whereas passive supervised learning strategies

focus on learning a model from set-in-place labeled instances [26, 27], active learning fo-

cuses instead on identifying which unlabeled instances to obtain a label for according to

a data access model. This access model describes how the algorithm chooses unlabeled

instances to query [28].

Running actual experiments often presents a large or even prohibitive burden in

terms of financial and time costs. This is because most experiments involve a large num-

ber of trials which can consume a large number of resources. A primary goal of this

dissertation is to introduce methods that reduce these burdens by limiting the number

of necessary trials to find the best solution. While in practice there may exist overly sim-

plistic heuristics to help combat this problem [29], sequential model-based optimization

provides a means to formalize and solve the problem using machine learning.

Sequential model-based optimization routines use a surrogate function, S, to approx-

imate a hard to compute ground-truth function, f . In a typical biology research setting,

f corresponds to a costly experiment or sets of experiments. Optimizing over S obtains

the expected best experimental design for f according to the current available data. By

updating a model of the system M with newly acquired data (x+, f (x+)), we sequen-

tially learn a model of the system while identifying informative instances. In effect, we

efficiently navigate the experimental design space to quickly obtain one that is "best",

where "best" can be quantified by a number of metrics, including expected improvement

and probability of improvement [30].

Sequential model-based optimization has previously been applied to hyperparame-

ter optimization problems. Hutter, Hoos, and Leyton-Brown [31] demonstrate the Ran-

dom Online Aggressive Racing (ROAR) algorithm and its extension Sequential Model-
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Based Algorithm Configuration (SMAC) as a means to automatically configure parame-

ters involved in SAT solving and mixed-integer programming problems. Bergstra et al.

[32] use sequential model-based optimization to optimize hyperparameters of Deep Be-

lief Networks, and introduce the tree-structured Parzen estimator approach. This strat-

egy uses kernel density estimates over parameter configurations to iteratively select con-

figurations that maximize expected improvement. Sequential model-based optimization

can similarly be applied to sequentially optimize experimental protocol configuration.

Rubens et al. [33] use a gradient descent like algorithm to optimize over flow reactor

parameters for automatic polymer synthesis.

2.1.1 Bayesian optimization with Gaussian processes

In this dissertation, we perform sequential model-based optimization by means of Bayesian

optimization [34, 35]. Bayesian optimization is a sequential strategy for optimizing

black-box objective functions that has been used in a variety of contexts, including

robotics [36], particle physics [37], and hyper-parameter optimization in deep learn-

ing [32].

Bayesian optimization is used to maximize an unknown function f : X → R where

X ⊂ Rd:

max
x∈X

f (x) (2.1)

As f is unknown, the Bayesian approach is to treat it as a random function and place

a prior over it, P( f ). This prior captures the belief about the behaviors of this function,

and a typical choice is to use a Gaussian process prior. A Gaussian process [38] is a

distribution over functions of the form GP : X → R such that for finite N, any set

{g(xn), g ∼ GP, xn ∈ X}N
n=1 induces a multivariate Gaussian distribution on RN. In

other words, a Gaussian process is the infinite-dimensional generalization of the multi-

variate Gaussian distribution. As a multivariate Gaussian is defined by its mean µ ∈ Rn

and covariance Σ ∈ Rk×k, a Gaussian process is defined by a mean function µ : X → R
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and kernel function K : X ×X → R that quantifies the joint variability between any pair

(xi, xj) ∈ X × X . Common choices for K includes the radial basis function (RBF) and

Matérn kernels.

The relationship between a Gaussian process and the Gaussian distribution allows

us to compute useful quantities in closed form. Suppose we have observations

y = [ f (x1), f (x2), . . . , f (xN)]
T

and want to identify the marginal distribution of f (x+) for new test case x+ ∈ X . Where

we assume f ∼ GP(µ, K), let

k+ = [K(x1, x+), K(x2, x+), . . . , K(xN, x+)]T

as well as let

Σ =


K(x1, x1) K(x1, x2) · · · K(x1, xN)

...
... . . . ...

K(xN, x1) K(xN, x2) · · · K(xN, xN)

 .

We then have

P( f (x+) | y) ∼ N (kT
+Σ−1y, K(x+, x+)− kT

+Σ−1k+)

where N (µ, σ2) refers to a normal distribution with mean µ and variance σ2. Together,

these mean and covariance functions can be used to compute posterior probabilities over

function values, and related quantities, such as upper and lower confidence values.

These estimates can be used by an acquisition function a : X → R in order to identify

untested points that will provide information relevant to finding the optimal value of f .

The acquisition function specifies a method that balances exploration of feature space X

and exploitation of the current GP estimate for unknown function f . Perhaps the most

direct approach is to use the Upper Confidence Bound acquisition function, which has

two terms that correspond to each of these components:

UCB(x+) = µ(x+) + βσ2(x+). (2.2)
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The mean function µ accounts for exploitation of the current GP estimate. Exploration

is accounted for by the model’s uncertainty, given by variance function σ2, where β is a

parameter that controls the degree of tradeoff between exploration and exploitation.

Other acquisition functions account for improvement— they try to select x+ that im-

proves upon the current best observation, ybest [39]. The net improvement of x+ is given

by:

I(x+) = max( f (x+)− ybest, 0)

One strategy is to choose x+ that has the highest probability for improvement. This

is the probability of improvement (PI) acquisition function, and it is given by:

PI(x+) = P(I(x+) > 0)

= P( f (x+) > ybest)

= ψ

(
µ(x+)− ybest − ξ

σ2(x+)

) (2.3)

where ψ(·) is the cumulative distribution function for the standard Gaussian, and ξ is a

parameter that controls the degree of exploration.

Notably, PI does not account for the magnitude of improvement, just the probability

that there is any improvement. A method that does account for the magnitude is the

Expected Improvement (EI) acuisition function:

EI(x+) = E[I(x+)]

=
∫ ∞

−∞
I(x+)ϕ(z)dz

where ϕ(z) is the probability density function of the standard Gaussian. This integral can

be solved exactly, and simplifies into the following EI acquisition function expression:

EI(x+) = δ(x+)ψ
(

δ(x+)
σ2(x+)

)
+ σ2(x+)ϕ

(
δ(x+)

σ2(x+)

)
(2.4)

where δ(x+) = µ(x+) − ybest − ξ. For some intuition behind this expression, notice

that EI increases as does the difference µ(x+)− ybest (i.e. belief under the GP that f (x+)
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improves upon ybest) and σ2(x+) (i.e. uncertainty, meaning that observing these untested

samples would contribute to exploration).

Regardless of the choice for acquisition function, the iterative, repeating process of

finding x+ = arg maxx a(x), evaluating y+ = f (x+), and updating the Gaussian process

with observation (x+, y+), signifies the sequential aspect of Bayesian optimization.

2.2 Generative modeling

Much of the work presented in this dissertation relies upon generative modeling. Broadly

speaking, machine learning models can be categorized as either generative or discrimi-

native, where the distinction is given by the probability distribution the model describes.

Given independent variable X and target variable Y, a discriminative model is one that

directly models the conditional probability P(Y | X = x). It is a parameterized model

that learns to associate a label y ∈ Y to observation x ∈ X by optimizing the model’s

parameters to make accurate predictions on known data. Well known discriminative

models includes logistic regression, support vector machines, and random forests.

This contrasts with a generative model, which instead learns the joint probability dis-

tribution P(X, Y). It is a statistical model that describes the distribution of the data itself,

typically obtained via maximum likelihood estimation. By applying Bayes’ theorem, it

is possible to recover the conditional probability distribution P(Y | X), meaning that

generative models can still be used for discriminative tasks. Generally speaking, given

sufficient training data, it is expected that a discriminative model will be more accurate

than a generative one. However, it has been shown that in settings with limited training

data, generative models actually tend to perform better than discriminative ones [40].

The use of generative modeling in this dissertation is motivated by their ability to

work well in low-data settings as well as their ability to model long-range dependencies

in biological sequencing data. The types of generative model used in this dissertation

includes the Gaussian process, Hidden Markov model, Markov Random Field, and deep
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Transformer. In Section 6.2, we will provide further detail on other capabilities of gen-

erative models within the context of future directions.

2.2.1 Hidden Markov models and Markov random fields

Importantly, generative models are effective at describing complex dependencies and

patterns that exist within biological data. As an example, models that capture the evo-

lutionary relationships between a set of amino acid sequences from a particular protein

family may be used to ascertain whether or not an unidentified sequence is likely to

belong to the same protein family. Two traditional classes of generative model that have

been applied to problems like this are the Hidden Markov Model (HMM) [41] and the

Markov Random Field (MRF) [42], both of which encode a joint distribution over residue

types at each position in a primary sequence. They are both probabilistic graphical

models, meaning they represent conditional dependencies between random variables as

edges connecting nodes on a graph. An HMM is a directed graph, where a sequence of

observed variables Yn are explained through directed connections from a set of hidden

states Xn. An HMM makes two main assumptions of conditional independence between

variables based on the Markov property:

1. The probability of a particular state Xi = xi depends only on the previous state

Xi−1 = xi−1:

P(xi | x0, . . . , xi−1) = P(xi | xi−1)

2. Observation Yi = yi depends only on the state Xi = xi that produced the observa-

tion:

P(yi | x0, . . . , xi, . . . , xN, y0, . . . , yi, . . . , yN) = P(yi | xi)

With respect to protein sequences, these are a fairly strict set of assumptions. A conse-

quence is that an HMM will not account for long-range dependencies within a protein

sequence.
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An MRF is an undirected graphical model. Dependencies between variables are rep-

resented by an undirected edge between two adjacent nodes. Conditional independence

between variables is given by three Markov properties:

1. Any non-connected variables are conditionally independent given all others.

2. A variable is conditionally independent to all others given its connected neighbors.

3. Subsets of variables are conditionally independent given a separating subset (i.e. a

connected set of nodes that completely separate the two subsets).

The MRF thus is able to capture long-range dependencies, though comes at the cost of

greater model complexity relative to an HMM. The gremlin algorithm [42] specifies a

method to learn both the structure and parameters for an MRF model over amino acid

sequences within a multiple sequence alignment in a tractable manner.

2.2.2 Deep generative models

Most recent progress in generative modeling focuses on deep generative models. These

models use deep neural networks to learn complex probability distributions and rep-

resentations that encode the different long-range dependencies found within data, in-

cluding biological sequences. Many different varieties of model type and architecture

have been developed, including variational autoencoders [43], generative adversarial

networks [44], and transformers [45]. This dissertation focuses on the transformer archi-

tecture.

As originally described by Vaswani et al. [45], the transformer uses an encoder-

decoder structure1. The encoder takes an input sequence and produces a representation

for the sequence— this is a real-valued vector that encodes the patterns and depen-

dencies that exist within the input sequence. The decoder takes the encoder’s output,
1In some use cases, the transformer may consist of only the encoder or decoder
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and uses it to create an output that fits some intended domain, such as text comple-

tion, neural translation, or image generation. Both the encoder and decoder consist

of sequentially stacked transformer blocks, which themselves consist of a self-attention

mechanism followed by a feed-forward neural network.

Self-attention is the key component that allows the model to account for long-range

relationships in the input sequence. This mechanism calculates weights that denote the

relative importance of each element of the input sequence. These weights are computed

dynamically, and account for all pairwise interactions in one fell swoop via straightfor-

ward matrix operations. This contrasts with recurrent and convolutional models, which

require many steps to represent long-range dependencies. Passing the output of the self-

attention mechanism to a feed-forward neural network ensures that the representation

is able to capture non-linear relationships as well.





Chapter 3

Automating Experimental Protocols with

the Cloud Lab

As described in the Chapter 1 introduction, automation can include processes

that are static or dynamic. In this chapter, we describe a sequential algorithm

that encompasses both aspects. This algorithm, protocol, is intended to

dynamically configure experimental parameters by taking advantage of the

programmable nature of static laboratory equipment within a Cloud Labora-

tory.

25
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3.1 The Cloud Laboratory

Most standard laboratory techniques have been automated, which in turn has enabled

the development of commercial robotic Cloud Laboratories 1, and the emergence of a new

paradigm of Science-as-a-Service. Analogous to cloud computing, cloud labs let scientists

outsource the management and maintenance of a set of resources— automated scientific

instruments, and thus devote more time and money to their research. In addition to

these administrative and economic benefits, cloud labs also significantly increase the

reproducibility of scientific research, due to the use of robotics. For these reasons, one

can anticipate an increase in the utilization of cloud labs by scientists in academia and

industry alike, at least for certain tasks.

Existing cloud labs are largely open-loop, in the sense that humans must specify

every detail of the experimental protocols to be executed by the robots. However, it is not

difficult to imagine an AI-driven cloud lab that automatically finds optimal instrument

settings and/or experimental conditions, so as to maximize throughput and data quality,

or to minimize costs. Eventually, such systems might lead to the widespread use of

general-purpose “robot scientists” capable of making novel discoveries autonomously,

as first demonstrated in 2004 [6]. Towards these ends, this chapter introduces a method,

called protocol (PaRallel OptimizaTiOn for ClOud Laboratories), to perform closed-

loop optimization of experimental protocols against a user-defined objective.

protocol builds on recent work in Bayesian Optimization (BO) [34, 35], which is a

sequential strategy for optimizing black-box (i.e. unknown) functions. The technique is

Bayesian because it places a prior distribution over the objective function, and then com-

putes posteriors at the end of each round, based on the outcome of an algorithmically-

selected function evaluation. The key differences between BO methods are the means

by which they represent the distribution over functions, and the way that they select

the next design configuration to test. Gaussian Processes are a very common choice
1E.g. Emerald Cloud Lab [46] and Strateos [47]

https://www.emeraldcloudlab.com/
https://www.strateos.com/
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for specifying the distribution, and that is what is used in this chapter. The selection

strategy, sometimes called the acquisition function, will define a utility function and then

searches for a design with (approximately) maximal utility. protocol introduces a novel

acquisition strategy that is matched to the features of a cloud lab environment.

Bayesian Optimization is often used in application domains where the evaluation of

the objective function is extremely slow or expensive, such as hyperparameter optimiza-

tion in deep learning (e.g. Bergstra et al. [32]). Performing wet-lab experiments is also

time-consuming, even under the best of circumstances. But cloud labs comprise a set

of shared resources, and so experiments often sit in a queue waiting for specific instru-

ments to become available. That is, the benefits of outsourcing the management and

maintenance of a wet-lab to the cloud are somewhat offset by increased cycle times, on

a per-experiment basis. On the other hand, a suitably equipped cloud lab may facilitate

parallel searches for optimal conditions. protocol’s acquisition function takes advantage

of such parallelism by selecting batches of designs to test, while performing closed-loop,

asynchronous Bayesian Optimization.

We evaluated protocol on two test scenarios. The first optimized four instrument

parameters for MALDI-TOF mass spectrometry in a simulated cloud lab (but using real

data). The second optimized five instrument parameters and the solvent ratio for HPLC

in a real cloud lab. protocol outperforms conventional BO methods dramatically on

the MALDI-ToF data, given the same budget. On the real cloud lab, protocol makes

progress toward finding a high-resolution chromatogram.

3.2 Background and related work

At the heart of most biological discoveries are a set of precise and highly-specialized

laboratory-based methods used to conduct experiments from which meaningful con-

clusions are drawn. In many settings, especially experimental chemistry and biochem-

istry, the goal of configuring an experimental design is to identify a set of independent
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variables that maximize (or minimize) a chosen dependent variable under certain ex-

perimental conditions. In essence, this is a "tuning" or "calibration" stage, where an

experimental setup is honed in order to obtain usable data, making this a critical and

necessary component of many experiments. Let Θ = {θ1, · · · , θd} be the length d set

of independent variables where θi corresponds to the parameterization of independent

variable i and let f : Θ → R be a function mapping the independent variable configura-

tion space to corresponding dependent variable values. Where Y∗ ∈ R corresponds to

optimal dependent variable values, we can state this goal succinctly as

Y∗ = argmax
Θ

f (Θ) (3.1)

In domains with plentiful data, this problem is easily solvable by learning the func-

tion f with standard regression and supervised machine learning. However, identifying

an optimal Θ∗ is typically a first step taken towards finding Y∗, meaning prior data to

learn from is scarce or absent entirely. Drawing from past experiments that used similar

setups or techniques is also not straightforward, as changes to samples or instrumen-

tation used may lead to entirely different behavior over the measured variables. Grid

searches or naïve one-by-one tuning of parameters are common heuristic solutions to

this problem, but they are inefficient, and can lead to large numbers of experiments that

do not contribute towards the goal of finding Y∗. Since there is often great cost associ-

ated with generating such data in terms of time, money, and resources, we want to find

Θ∗ in as few experimental steps as possible.

3.2.1 Bound-based Bayesian optimization

Problems like those of Equation 3.1 can be solved by using Bayesian optimization with

Gaussian processes (see Section 2.1.1). This requires a specified acquisition function. A

common feature of these methods— and a potential weakness, is that they require access

to a finite sampling procedure which affects both the runtime and the ultimate resolu-

tion the optimization procedure— the finer the resolution, the more computationally
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expensive the optimization. Recently, however, an algorithm that does not require sam-

pling during BO was introduced. That algorithm, called imgpo (Infinite Metric Gaussian

Process Optimization) [48], performs serial BO and comes with convergence guarantees.

Our method extends imgpo to the asynchronous parallel setting.

imgpo builds upon previous work in bound-based optimization methods [49, 50],

and uses a divide-and-search strategy based on estimated bounds, like direct [51]. It

proceeds by growing a hierarchical partitioning tree over an n-dimensional search space

while maintaining a GP model conditioned on observations previously requested by the

algorithm. The tree is grown by iterating over it in a top-down fashion and choosing

whether or not to evaluate the center of intervals/hyperrectangles associated with each

node in the tree. Selected intervals may be further divided into three subintervals along

the hyperrectangle’s longest dimension, resulting in three new leaf nodes in the tree.

The decision to evaluate and divide is made by comparing multiple bounds on the

unknown ground-truth value of a given interval’s center. These bounds are defined

by the upper confidence bounds (UCB) of the GP model2, as well as the ground-truth

values of observed interval centers. In general, when the UCB of the current iterate

is greater than the current best observed value, the algorithm will request to evaluate

the current interval’s center, and divide the interval. Ultimately, the sequence of selected

interval centers that are evaluated converge to the ground-truth function’s optimal value.

The imgpo authors prove that their algorithm achieves exponential convergence over

continuous search spaces with respect to simple regret, given by R(x+) = supx∈X f (x)−

f (x+) , where x+ is the configuration found by the algorithm, without the need for

sampling of the input space. Full technical details of the algorithm and proofs are

provided by Kawaguchi, Kaelbling, and Lozano-Pérez [48] . We emphasize that the

imgpo algorithm performs serial optimization, in that it only requests the evaluation of

one design at a time.
2Here, we assume that we are trying to maximize the objective function. If attempting to minimize a

function, one uses lower confidence bounds (LCB).
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3.3 Our method: Protocol

protocol adopts the hierarchical partitioning tree schema and interval division criteria

employed by imgpo. The primary innovation used by protocol is the calculation of a

frontier from which up to k experiments can be chosen to run in parallel. Here, k is the

maximum number of experiments a given cloud lab user is authorized to run at the same

time. The frontier consists of the center points of the set of potentially optimal hyperrect-

angles in the n-dimensional search space (i.e. those that may contain the optimum of the

objective function). The idea of maintaining a set of potentially optimal hyperrectangles

is borrowed and adapted from the direct algorithm [51] for derivative-free global, serial

(non-Bayesian) optimization. One of the points on the frontier will always be the point

that imgpo would have selected (in the serial optimization setting), given access to the

same set of observations of the objective function. Hence, protocol inherits the same

guarantees as imgpo, with respect to exponential convergence.

The remaining points on the frontier are identified by computing the convex hull

over a two-dimensional encoding of the sub-volumes associated with all non-evaluated

leaf nodes in the partition tree. The two coordinates for each sub-volume are the cor-

responding node’s depth in the tree (which is inversely proportional to the size of the

sub-volume), and the UCB of the objective function within that region. The intuition

behind maintaining a frontier based on sub-volumes of different sizes is that those vol-

umes represent different trade-offs between exploration of the input space— to gather

information from under-sampled regions (i.e. those corresponding to relatively large

volumes), and exploitation— to search in the vicinity of the best design observed thus

far (i.e. those corresponding to relatively small volumes). Every BO acquisition function

makes a trade-off between exploration and exploitation; protocol’s strategy is to select

batches of experiments that individually make different trade-offs. The use of the UCB is

justified based on the well-established principle of optimism under uncertainty [52]. Us-

ing the convex hull ensures the algorithm avoids requesting experiments the GP model
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believes to be suboptimal, while considering nodes at each depth promotes choosing

intervals representing varied portions of the input space.

The selection strategy used by protocol can be described as a three step process:

1. Identify intervals eligible for division. This step follows an anologous one in

imgpo, where the algorithm traverses the tree and attempts to identify one interval

at each depth of the tree that is eligible to be divided. If a function evaluation is

necessary, protocol will calculate a frontier, and multiple experiments may be

requested accordingly.

2. Prune the chosen intervals. This step also follows directly from imgpo. Intervals

selected in Step 1 are added to a list if they contain a UCB greater than the value as-

sociated with any smaller interval in the tree. Essentially, this determines whether

or not progress made in other portions of the tree suggests the algorithm should

continue to divide in that area or elsewhere.

3. Select and divide intervals. This step differs from imgpo. Here, any intervals

that passed the initial two steps are divided into three subintervals by splitting

along the longest dimension. Any newly created intervals whose center would

be evaluated according to imgpo are added to an experimental queue. From the

remaining experiments, a frontier is calculated, and the queue is filled up to the

maximum level of parallelization with experiments that lie on the frontier. In the

event that there are more experiments on the frontier than space in the queue, those

with highest UCB are chosen. In the event that there aren’t enough intervals to fill

the queue (i.e. the size of the frontier is < k), then the algorithm simply requests

only the < k identified intervals.

By construction, one of the experiments selected in Step 3 would have been chosen

by the imgpo algorithm (in the serial optimization setting) given access to the same

set of observations. Thus, protocol has the same convergence guarantees as imgpo.
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In particular, both algorithms achieve exponential convergence: R(x+) ∈ O(λN+NGP),

where λ < 1, N is proportional to the number of evaluations of the objective (here, the

number experiments performed), and NGP is the number of evaluations of a Gaussian

Process model.

At the end of a given pass through the tree, the GP hyperparameters are updated,

and the algorithm repeats until a prescribed maximum number of evaluations are made.

3.3.1 Descriptive example of algorithm

To illustrate how the algorithm works, we optimize the 1 dimension sinusoidal function

f (x) = 1
2(sin 13x sin 27x + 1) defined over the unit interval (this function is visualized in

Figure 3.1). This function has multiple local maxima over this domain, where the global

maximizer is given by x ≈ 0.868. We use a hierarchical tree T to maintain and visualize

the division scheme over the input space. Each node corresponds to a subinterval ob-

tained after division of its parent interval node. Each interval is either associated to the

ground-truth function evaluated at the interval center, if it has been previously selected,

or the UCB evaluated at the center according to the GP model otherwise.

Figure 3.2-top shows the hierarchical tree obtained by the algorithm at three differ-

ent time points. In these figures, the horizontal axis refers to the input space for the

function to be optimized, and the nodes have been fixed along this axis according to

each interval’s center coordinate. The ground-truth function optimizer is indicated by

the star along the axis at x ≈ 0.868.

The leftmost figure shows T0, the tree after initial iteration 0. The root node at

depth 0 corresponds to the initial interval center located at the center of the input space

(x = 0.5). After evaluating the function at this value, the interval is divided into three

subintervals with centers x = 1/6, x = 0.5, and x = 5/6. These intervals correspond

to the three nodes at depth 1 in the tree. Since the middle interval has the same center

coordinate as its parent, it is associated with its ground-truth value, whereas the other
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Figure 3.1: The function y = 1
2(sin 13x sin 27x + 1) used to demonstrate protocol. The

function is maximized at x ≈ 0.868, indicated by the blue star and dashed line.

nodes are associated with the UCB of a GP model conditioned on this observed data

point. Proceeding through Step 1, the algorithm will iterate over each depth level in

the tree and try to identify the best candidate node to divide while keeping track of the

current best observed value, νmax. At depth 0, there is only one node, and that node has

already been divided, so no candidate is chosen at this level. By default, νmax will be

set to the ground-truth value of this interval center. At depth 1, none of the nodes have

been divided. The algorithm will identify the interval with the best associated value,

and one of the following will occur:

(i) The selected interval has a ground-truth center value greater than or equal to νmax.

This interval is then added to the candidate list for dividing, and νmax is set to this

center value.
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Figure 3.2: Top row. Shown are hierarchical trees produced by protocol at three differ-
ent time points while optimizing a 1D sinusoidal function (see text for explanation). The
nodes are fixed along the horizontal axis according the center coordinate of the interval
they represent. The function optimizer, x ≈ 0.868, is indicated by the star along the
horizontal axis. Bottom row. A visualization of the frontier calculated by protocol in
relation to the hierarchical tree. The enumerated red nodes on the left indicate intervals
whose center coordinate are used to calculate the frontier. The central diagram shows
the frontier, where intervals 1, 2, and 4 lie on the frontier but intervals 3 and 5 do not.
Note that the depth of the tree is inversely proportional to the size of the interval. The
red nodes on the right denote those intervals that lie on the frontier, and are those whose
center coordinates will be requested for evaluation.

(ii) The selected interval has a ground-truth center value less than νmax. In this case,

no candidate is added to the list at this depth, and νmax is not updated.

(iii) The selected interval has a UCB-based center value, rather than ground-truth (i.e.

it has not been previously evaluated). If this happens, a frontier will be calcu-

lated and up to k many experiments will be requested (at this early stage of the

algorithm, there are only two possible intervals available for consideration, so the

frontier would not be invoked). Once experiments are completed, the ground-
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truth observations are then associated with their corresponding interval, and the

algorithm will again iterate over the depth 1 nodes until (i) or (ii) occur.

If the tree has greater depths, the algorithm moves on to the next depth in the tree, and

proceeds until all depths have been visited.

The center of Figure 3.2-top shows the progression of the algorithm after four more

iterations. To illustrate Step 2, suppose that the interval represented by the indicated

red node at depth 3 has been selected by Step 1. This step will decide whether or

not to keep this interval in the list of intervals to be divided. A tree T ′ rooted at the

node given by this interval is grown to at most a pre-specified depth by using the same

division scheme employed by the algorithm— dividing each interval into three smaller

intervals by splitting along the longest dimension. The UCB of each interval center is

calculated and associated with its node. The UCB values in T ′ are then compared to

the center values of nodes at depth greater than 3 in T4. If T ′ contains a UCB greater

than the center of any of these intervals from T4, then the interval is kept in the list.

Otherwise, it is removed.

At the conclusion of Step 2, all intervals that remain selected are then divided. Upon

division of a given interval, two of the newly created intervals will have unevaluated

centers, while the middle interval will inherit the ground-truth value of its parent. The

algorithm then decides whether or not to evaluate each of the two unevaluated centers

by comparing the UCB evaluated at the center to νmax. If the UCB is less than νmax,

then the UCB is used as the interval center. Otherwise, the ground-truth value must be

obtained. This is where most calls to calculate the frontier occur.

Figure 3.2-bottom shows an example frontier. For visual clarity, the horizontal axis

has not been directly fixed according to the interval coordinates. In the leftmost figure,

nodes 1 and 2 are the two nodes created upon division, and nodes 3, 4, and 5 are the

others that are considered for the frontier (i.e. they are the remaining leaf nodes whose

centers have not been previously evaluated). The middle figure visualizes the frontier,
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where nodes 1, 2, and 4 are selected. Nodes 1 and 2 are selected because they were

the two new nodes created by division (they happen to fall on the frontier, but would

have been evaluated regardless). Node 3 is not selected because it does not fall on the

upper convex hull, and node 5 is not selected because it is dominated by node 4, which

has a greater UCB and is at the same depth in T . The selected interval centers are then

evaluated, and their ground-truth values are associated with each corresponding node.

The algorithm repeats until a prescribed number of evaluations are made. The right-

most figure in Figure 3.2-top shows the the final tree T11 obtained after 50 function

evaluations. Notice how the width of the tree indicates that the algorithm was able to

explore the initially unknown search space, while the depth of the tree is largely concen-

trated near the optimizer x ≈ 0.868. This shows that the GP model was able to quickly

guide the division towards this global optimal solution.

3.4 Simulated Cloud Lab with real data— MALDI-ToF

MS protocol optimization

Matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrom-

etry is a laboratory method used to characterize the contents of a sample, and is used

across many scientific domains [53, 54]. The end result of this experiment is a spectrum

that is used to identify the components within the sample. Significantly, a variety of

instrument settings must be specified, and these adjustable parameters affect the qual-

ity of the resulting data. Typical user-specified parameters include: (i) the accelerating

voltage, (ii) the grid voltage, (iii) the pulse delay, and (iv) the number of laser shots per

spectrum.

When performing MALDI-ToF spectrometry, it is common to perform a brute-force

parameter sweep in order to identify the configuration that produces the highest quality

spectrum. We were provided access to the data produced by two MALDI-ToF parame-
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ter sweeps for two separate samples. The biological context for these experiments was

a study for the use of enzyme-polymer conjugation for chymotrypsin enzyme replace-

ment therapy [55, 56]. The two samples used in these experiments included one with

native chymotrypsin (CT), and the other with a chymotrypsin-polymer conjugate (CT-

polymer). The goal of the parameter sweeps was to identify configurations that produce

easily identifiable signals from each sample. Since the CT-polymer conjugate is a more

complex sample, it should be expected to be harder to obtain such an identifiable signal.

Each data set consists of 120 MALDI-ToF spectra produced via a manual, brute-force

grid search over the four user-specified parameters named previously. We ran protocol

in a simulated cloud lab environment to demonstrate that the algorithm can identify the

optimal parameter configuration in many fewer experiments. By simulated, we mean

that the results of each experiment submitted to the job queue is simply fetched from

the given data sets.

Our experiments considered several different definitions of spectral quality. We used

the MATLAB Bioinformatics Toolbox to calculate peak height (intensity), peak width,

and signal-to-noise ratio (SNR) of each spectrum. In general, a strong signal will include

a large peak, narrow width, and small SNR. Additionally, as a means of combining these

properties into objective measures that quantify multiple properties at the same time, we

also used two linear combinations of these endpoints:

Combo1 = Peak Height +
1

Peak Width
(3.2)

Combo2 = SNR + Combo1 (3.3)

The peak height, peak width, and SNR measurements were first scaled to the unit inter-

val to ensure that different underlying distributions of each endpoint did not skew the

objective.

For both datasets, we ran in-silico experiments using protocol that optimized for

each of these endpoints. For each endpoint, this entails sequentially observing ground-

truth values for experimental configurations according to the scheme outlined in Sec-
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tion 3.3. Each of the four input parameters are scaled to the unit interval, which trans-

forms the input space onto the unit hypercube, as is done with imgpo. An important

difference between this setting and the example using the 1D sinusoidal function is that

we choose experiments from one of 120 possible configurations. To do this, we use

the division procedure outlined previously, but instead of evaluating the center coordi-

nate of an interval, we calculate the Euclidean distance between the center coordinate

and each transformed parameterization, and assign the closest parameter setting to the

interval, where each parameterization is only allowed to be used once. In general, pro-

tocol can also handle any non-continuous variables in this way, so long as the variables

are numerically encoded.

In our experiments, we follow imgpo by using a GP with Matérn kernel with ν = 5/2,

given by:

kM(x, x′) = g

(√
5∥x − x′∥2

l

)
(3.4)

where

g(z) = σ2(1 + z +
z2

3
) exp(−z) (3.5)

Again following imgpo, we initialized the hyperparameters σ2 = 1 and l = 0.25. These

hyperparameters are optimized by maximizing the log marginal likelihood at the end

of each iteration. Where y is a vector of observed ground truth, N is the number of

observations, parameter θ = (σ2, l), and KM(θ) the kernel parameterized by θ, this

likelihood is given as:

log p(y|θ) = −N
2

log 2π − 1
2

log det|KM(θ) + σ2 I| − 1
2

yT(KM(θ) + σ2 I)−1y (3.6)

Given appropriate priors over the hyperparameters, they may be sampled from this

distribution, though we omit this procedure from our experiments.

Other imgpo-specific hyperparameters were set to their default settings. We set the

level of parallelization to 4, meaning that protocol could request as many as four exper-

imental conditions to observe at a time. In each experiment, we allowed the algorithm
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Table 3.1: The frequency that each algorithm identifies the optimal experimental param-
eterization with the Native CT data for each endpoint.

Algorithm Height Width SNR Combo1 Combo2

protocol 100% 100% 0% 100% 100%
TS 43% 9% 40% 35% 38%
EI 35% 11% 69% 40% 38%
PI 36% 40% 63% 40% 38%
UCB 42% 9% 42% 36% 29%
Random 25% 19% 24% 23% 18%

Table 3.2: The frequency that each algorithm identifies the optimal experimental param-
eterization with the CT-polymer conjugate data for each endpoint.

Algorithm Height Width SNR Combo1 Combo2

protocol 100% 100% 100% 100% 100%
TS 42% 50% 41% 21% 31%
EI 38% 54% 53% 25% 26%
PI 39% 56% 52% 25% 26%
UCB 43% 53% 37% 28% 28%
Random 21% 31% 19% 22% 18%

to select a total of 25 observations. This corresponds to having only run 25 experiments

in the simulated lab, as opposed to the complete set of 120, as was done in reality.

As points for comparison in a parallel setting, we also performed batch-mode GP op-

timization on the same data using standard acquisition procedures, including Thompson

sampling (TS) [57], UCB, EI, and PI. Each of these methods choose 4 configurations to

observe according to the acquisition procedure, update their GP model (including up-

dating GP hyperparameters), then choose again using the updated model. The initial

setting of the GP in each of these were the same as with protocol, and fully exhaust-

ing the 25 experiment request budget was used as the stopping criterion. We repeated

each 100 times with different randomly selected training sets of size equal to the level of

parallelization (in this case, 4). This imitates the simplest way one could initiate each of

these procedures in a real cloud lab setting.
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3.4.1 MALDI-ToF simulated Cloud Lab results

With both MALDI-ToF datasets, we find that protocol is able to find the optimal pa-

rameter configurations in most situations. Tables 3.1 and 3.2 show the frequency that

protocol and other GP optimization algorithms identify the optimal parameter config-

uration for each endpoint. As protocol is a deterministic algorithm, it can only take

values 100% or 0%. The other frequencies are calculated as the number of times each

found the optimal setting out of the 100 repeated experiments. There was only one case

where protocol did not find the optimal configuration (SNR, CT dataset), whereas the

other GP-based algorithms have low success rates (mean = 34%; median = 36%; st.dev

= 13.4%; max = 69%). Notably, protocol was able to identify the optimal configuration

for each endpoint with the more difficult CT-polymer dataset. Comparably, the perfor-

mance of the other GP optimization regimes tended to decrease with the CT-polymer

dataset compared to just native CT.

To succinctly describe the selection behaviors of each algorithm, we focus our next

analyses on the peak height endpoint, though similar summaries could be made for

others. Figure 3.3-top shows the average progress of each algorithm in identifying the

optimal experimental parameterization. That is, it shows the best observed value as a

function of number of experiments requested and conducted. Experiments with both

native CT and CT-polymer conjugates yield similar patterns. Initially, protocol lags

behind the other GP optimization algorithms, but then quickly rises to the top and

identifies better protocols (in the case of peak height, the best available protocol).

We emphasize that the apparent success of the random procedure is due to the rela-

tively few experiments available (120) to be chosen from 25 times without replacement.

Tables 3.1 and 3.2 show that the random procedure finds the true optimum much less

frequently than the other conventional BO approaches, as expected.

As already described, the comparison GP algorithms require an initial training batch,

and are only able to identify the optimal parameterization a fraction of the time depend-
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Figure 3.3: Top row. The ground truth peak height of observed MALDI-ToF experi-
mental configurations is shown as a function of the number of total evaluations. The
error bars in the non-protocol curves denote a mean ± 1 SEM calculated over 100 trials
initialized with different randomly chosen training sets of size 4 (which is equal to the
allowed level of parallelization). Bottom row. Again with the peak height endpoint,
these show the number of evaluations each algorithm requested before identifying the
optimal configuration. For the non-protocol algorithms, only the subset of the 100 tri-
als that actually identified the optimal configuration are used. Error bars denote ± 1
SEM over this subset of trials.
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ing on this initial training data. Figure 3.3-bottom focuses on the subset of trials that

were able to correctly identify the optimal protocol parameterization. Over these trials,

it shows how many experiments were requested on average before the optimal config-

uration was chosen. The native CT data protocol needed only 10 experiments, while

the other methods required on average 12-14 experiments. This suggests that even when

the other GP algorithms are able to identify the optimal experimental parameterization,

protocol is capable of identifying the optimal solution more quickly.

With the CT-polymer conjugate data, TS and UCB seem to identify the optimal con-

figuration in fewer experiments compared to all other methods (although, as previously

mentioned and shown in Table 3.2, they find such optimal configurations less than 57%

of the time). To investigate this behavior further, Figure 3.4 visualizes choices made by

protocol compared to two trials that used GP-UCB— one that identified the optimal

protocol and one that did not (results with TS are similar). In the figure, the configu-

rations are enumerated along the horizontal axis, with the peak height of the spectra

produced by the given experiment along the vertical axis. In general, configuration

numbers closer to each other correspond to experimental configurations that are more

similar to each other.

protocol’s initial experiment corresponds to an experiment that is far from optimal.

Still, the algorithm is able to quickly survey the input space, and converge on experimen-

tal configurations that yield large peak heights. With the UCB algorithm, the behavior

is largely dependent on the initial training set that was randomly chosen. When there

are training instances that are similar to the optimal configuration, the algorithm suc-

cessfully identifies the optima, but is prone to converging on local optima more similar

to the training data otherwise. This suggests that protocol is better at escaping local

optima than the comparison algorithms.

Figure 3.6 visualizes experiments where we varied the level of parallelization from

k = 1 to k = 10 using both MALDI-ToF datasets as well as with three commonly used

optimization functions. For each data and choice of k, protocol performs the best.
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Figure 3.4: CT-polymer conjugate ground-truth peak heights for MALDI-ToF parame-
terizations selected by protocol and the GP-UCB algorithm. Two cases are shown for
the GP-UCB algorithm— one where the algorithm identified the configuration that led
to the maximum peak height, and one that did not. For each, the initial evaluation
points are indicated by an ‘x’. Whereas the initial point evaluated by protocol is a
consequence of the algorithm (the central point of the input space), GP-UCB depends
on an initial training set. The ability of GP-UCB to identify the optimal configuration is
influenced by this initial set.

3.5 Simulated Cloud Lab with synthetic data—

optimization test functions

In addition to running simulated cloud-lab experiments using real MALDI-ToF data,

we also ran analyses using three general-purpose optimization functions, including the

illustrative 1D sinusoidal function (Figure 3.1) as well as the Hartmann 3D and 6D func-

tions. In order to perform the conventional GP-based approaches on these test functions,

it is necessary to first sample over the input space (Rd where d equals 1, 3, or 6) in order

to obtain a pool of inputs each algorithm can select from during optimization. The num-

ber of samples marks a trade-off between the granularity of the resulting optimization

and computational expense. We created pools of size 5000, 4000, and 4096 for each of

the 1D, 3D, and 6D functions respectively, where each data point corresponds to a lattice

point on a d-dimensional grid. As done with our MALDI-ToF experiments, the conven-

tional approaches used includes GP-EI, GP-PI, GP-UCB, and Random choice. Due to

computational feasibility, we omit Thompson Sampling from these examples.
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Figure 3.5: The objective values of selected function inputs shown as the number of total
evaluations for 1D, 3D, and 6D test functions. The level of parallelization is 4 throughout.
The error bars in the non-protocol curves denote a mean ± 1 SEM calculated over 10
(3D and 6D) or 100 (1D) trials initialized with different randomly chosen training sets of
size 4 (which is equal to the allowed level of parallelization).

Figure 3.5 shows how all approaches perform when the level of parallelization is

set to 4 (this analysis is analogous to that with the MALDI-ToF data shown in the top

of Figure 3.3). With both the 1D sinusoidal and the Hartmann 3D functions, protocol

more quickly approaches its optimal selection, and finds an input for both functions that

exceeds those found by the conventional approaches. In the case of the Hartmann 6D

function, while the conventional approaches are quicker to find their optimal solutions

(aside from the random choice procedure), protocol ultimately finds better inputs over

the course of the allotted 200 evaluations. The need to perform the initial sampling over

the input space is what ultimately hinders the abilities of the conventional approaches

to optimize each function— it is likely that better inputs exist in the non-sampled space.

protocol’s division scheme avoids this sampling altogether, and allows the resolution

of the input space to adapt with the optimization procedure, and allows it to identify

inputs that better optimize these three test functions.

In most practical settings, we imagine that most would have access to a modest level

of parallelization. We thus ran experiments where the allowable level of parallelization

ranged from 1 to 10. In Figure 3.6, we show the regret of each approach as a function

of the level of parallelization. Simple regret is given by R(x+) = supx∈X f (x)− f (x+),

where x+ is the configuration found by the algorithm, and log regret is the base-10
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Figure 3.6: protocol’s performance as a function of the level of parallelization (batch
size). Top row. protocol outperforms conventional BO approaches when optimizing a
1D, 3D, and 6D test function. Whereas the accuracy of the conventional approaches are
limited by a required initial sampling over the input space, protocol’s division scheme
does not need this, and thus better optimizes the function given the same experimental
budget, regardless of the batch size. Bottom row. protocol finds the optimal MALDI-
ToF configuration on both the Native CT and CT-polymer conjugate data across all tested
batch sizes, and consistently outperforms the conventional BO approaches. Note that
when the batch size is 1, protocol and imgpo will make the same selections.

logarithm of simple regret.

With all the test functions, as well as the two real MALDI-ToF data sets, protocol

performs better than the conventional approaches at any given level of parallelization,

k. With respect to the Hartmann 3D and 6D functions, protocol performs clearly best

when k = 1. In that case, protocol by construction will choose the same experiments

that would be chosen by the imgpo algorithm. Thus, with the Hartmann 3D and 6D

functions, the extra experiments selected as a result of allowed parallelization over the

course of the optimization impeded protocol’s ability to find an optimal solution. This

suggests that the added exploration for each k > 1 did not yield any promising search

direction, and came purely at the expense of exploitation. Still, even in these cases,

protocol manages to easily perform better than the conventional approaches. In each
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of the other three optimization problems we investigate, two of which used real-world

experimental data, we did not observe this phenomenon.

By construction, k denotes the maximum number of experiments that protocol may

request in a particular round. If fewer experimental configurations lie on the frontier,

than protocol simply requests only those experiments. This differs from the conven-

tional approaches, which always choose k many experiments according to the respective

acquisition function. On one hand, this means that protocol has the ability to act more

conservatively than allowed when the GP model suggest that strictly fewer than k experi-

ments are necessary, or the hierarchical tree is too shallow. On the other hand, this means

that protocol may take longer to exhaust a given experimental budget. Figure 3.7 vi-

sualizes this trade-off for each of the objectives we have optimized with protocol. An

experimental round refers to when the algorithm requests a batch of experiments. As

an example, a purely serial procedure (k = 1) given a budget of 50 experiments would

take 50 experimental rounds. If the same procedure instead had k = 2 and fully utilized

this level of parallelization in each round, it would take 25 experimental rounds.

protocol exhibits similar behavior in each optimization problem. As the allowable

batch size increases, the total experimental rounds initially decrease before eventually

leveling off. This indicates that protocol is most efficient when given modest levels of

parallelization (a case we believe to be most common in experimental settings). In prac-

tice, the gap between the "Full batches" and protocol corresponds to the amount of

time proportional to the complexity of the experiment needed to satisfy an experimental

budget for a given level of parallelization. Of course, exhausting an experimental budget

more quickly does not necessarily translate into better experimental outcomes— proto-

col after all better optimizes each objective we tested compared to the conventional

approaches, which use full batches. Still, in cases where the experiments are most time

consuming, there could be greater benefit or financial incentive in minimizing the num-

ber of experimental rounds. We leave work towards reducing the gap while maintaining

protocol’s optimization capabilities for future work.
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Figure 3.7: The number of experimental rounds as a function of the allowable level of
parallelization for protocol compared to procedures that use full batches (e.g. conven-
tional GP-based methods) on test objective functions (Top row) and real MALDI-ToF
data (Bottom row).

3.6 Real-world Cloud Lab— HPLC protocol optimization

High performance liquid chromatography (HPLC) is an analytical chemistry technique

used to separate and quantify components of complex mixtures. The method uses pres-

surized liquid solvent to force a sample through a column containing specialized solid

adsorbent material. This material interacts with each component of the sample differ-

ently, causing each to travel through the column at different rates, thus separating the

mixture. A detector measures the absorbance of each sample as they elute at differ-

ent times. Chromatograms are generated from these measurements, which allows for

identification of each component [58].

We used protocol to optimize an HPLC experimental design in a real cloud lab set-

ting using Emerald Cloud Labs (ECL). This means that whenever protocol requested

an experimental configuration to observe, we remotely executed an actual experiment

to be performed at ECL’s laboratory in South San Francisco, CA. Specifically, the HPLC
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experiment involved the separation of a three component mixture of the organic com-

pounds phenol, toluene, and 2,5-xylenol in a water/methanol solvent. The accuracy of

the separation and quantification steps are sensitive to multiple parameters. In each

experiment, we chose a setting for each of the following parameters:

• Flow rate— The speed of the fluid through the HPLC pump. Selected from the

range 0.2-2mL/min.

• Injection volume— The physical quantity of sample loaded into the flow path for

measurement. Selected from the range 1-50µL.

• Column temperature— The temperature of the HPLC column. Selected from the

range 25-45◦C.

• Absorbance wavelength— The wavelength used by the detector to identify sam-

ples flowed through the column. Selected from 260-285nm.

• Solvent ratio— The proportion of methanol to water in the solvent. Selected from

65:35, 70:30, 75:25, and 80:20.

• Gradient— The proportion of solvent:sample flowed through the column over

time. Selected from a nonlinear (the default ECL setting), constant, quick linear,

linear, and slow linear setting.

Unlike the MALDI-ToF experiments where we wanted to optimize the signal from

a single sample with a single component, here we want to simultaneously optimize for

the sample (by adjusting solvent ratios) and the instrument settings that best resolve

the three compounds mixed within a sample. To do this, we used the resolution of

the chromatogram (RS) as our objective function. This is a commonly used metric to

describe HPLC spectra, and is given by:

RS =
n−1

∑
i=1

c(ti+1 − ti)

wi + wi+1
(3.7)
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where n is the number of peaks, ti refers to the time component i elutes from the HPLC

column, wi refers to the half-height width of component i, and c is a constant that

arises from assuming each peak takes the shape of a Gaussian. Essentially, this objective

quantifies how clearly distinguished all adjacent peaks are from each other. The larger

the value, the more clear the separation. We used ECL’s built in software in order to

pick peaks from the chromatogram.

We had access to three threads on ECL, meaning we could run up to three experi-

ments at a time. We thus allowed protocol to select up to this many experiments per

request. Since each possible parameter configuration was either chosen from a finite

list (gradient and solvent ratio) or subject to a finite level of precision when measuring

(flow rate, injection volume, column temperature, and absorbance wavelength), we used

the same strategy as with the MALDI-ToF experiments when assigning a parameter

configuration to an interval within protocol’s hierarchical tree. The input space was

similarly scaled to the unit hypercube, and we used the same GP and imgpo specific

hyperparameters detailed in Section 3.4.

Since we were running real experiments with a limited number of threads on ECL,

we did not have the time or resources to conduct experiments according to alternative

acquisition functions (TS, EI, etc.) as with the MALDI-ToF simulated cloud lab data.

Thus, we also used Latin Hypercube Sampling (LHS) as a baseline to select experiments

to conduct on ECL. Unlike with protocol and other conventional BO strategies, this is

not a sequential process, but rather a form of randomly sampling a prescribed number

of experiments to conduct. This allowed us to submit all the experiments at once, and

allow them to complete according to available resources without the need for further

intervention. We then compared the results of the LHS versus protocol in a separate

set of experiments. In total, we executed 18 experiments selected by protocol, and

(separately) 18 experiments selected via LHS on ECL. Given our available resources, this

was the number of experiments we estimated could be run in 2 month’s time (1 month

for each approach).
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Table 3.3: The top 3 HPLC spectra resolutions according to configurations chosen by
protocol, LHS, and Sim.-LHS, which refers to a simulated LHS method (see text for
details), where mean ± 1 standard deviation are shown over 500 runs. "Best" refers to
the greatest observed resolution.

Algorithm Best 2nd Best 3rd Best Average

protocol 17.4 16.4 8.5 14.1
LHS 44.1 11.5 2.9 19.5
Sim.-LHS 15.8 ± 2.6 12.2 ± 1.5 7.4 ± 1.5 11.8

3.6.1 HPLC real-world Cloud Lab results

protocol and LHS are both able to identify HPLC configurations that yield high reso-

lution. Table 3.3 shows the top three scoring resolutions obtained from configurations

selected by both methods. While protocol’s top scoring configuration yielded a reso-

lution of 17.4, strikingly, LHS selected a configuration that obtained a resolution of 44.1.

Since LHS is ultimately a random sampling procedure, it was unexpected that it was

able to identify such a highly resolved spectrum. This led us to investigate precisely

how unlikely this finding was.

We accomplished this through simulation. We trained a random forest regression

model with the 36 experiments obtained from protocol and LHS, using the measured

resolution as the label. We then repeated the LHS sampling procedure used to generate

experiments 500 times. This allowed us to predict the resolution of these samples using

the random forest regression model. The result of these 500 LHS simulations are shown

by Sim.-LHS in Table 3.3 as a mean ± 1 standard deviation.

We find that the Sim.-LHS results do not yield resolutions anywhere near as large as

the 44.1 found by the experiments on ECL. Rather, the best prediction on average had a

resolution of 15.8. For reference, protocol’s best is about one standard deviation larger

than this value. Furthermore,the maximum predicted resolution over all 500 simulations

was only 26.9, giving a 39% difference in the maximum resolution observed in the ECL

experiments. This is evidence that the configuration that yielded a 44.1 was highly

unlikely to have been chosen.
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Table 3.4: HPLC parameters selected by protocol and LHS that yielded highest resolu-
tion.

Parameter protocol LHS

Flow rate (mL/min) 1.0 0.8
Injection volume (µL) 38.3 6.1
Column temperature (◦C) 35 26.7
Absorbance wavelength (nm) 273 284
Solvent ratio 75:25 65:35
Gradient quick linear nonlinear

The best experimental configurations selected by protocol and LHS were quite dif-

ferent. Table 3.4 lists the best settings selected by both methods. protocol not finding a

similar configuration suggests that, within this search space, more than 18 experiments

were needed. We emphasize that the choice to perform 18 experiments was a product

of time and resource constraints.

Figure 3.8 shows peaks that correspond to experiments selected by protocol and the

outlier LHS result. The panel on the left is typical of the chromatogram one obtains using

a configuration chosen at random (including those typically chosen via LHS). The panel

on the right is an example of a reasonably high quality chromatogram, albeit one that

is unlikely to have been observed when using LHS, as previously argued. The middle

panel is the best one found by protocol given a budget of 18 experiments. It is clearly an

improvement over the left panel. In particular, the built-in automatic peak picking and

resolution-calculating software only identified two peaks in the left panel, but identifies

three peaks in the middle panel (the correct number). Still, the middle panel is far

from optimal. We hypothesize that given a larger experiment budget, protocol would

have continued to find better configurations. Moreover, as shown in the bottom row of

Table 3.3, the typical best resolution obtained via LHS is actually lower than that of the

middle panel. That is, the middle panel is probably representative of what one might

obtain via a LHS with a budget of 18 experiments over this search space.

As a final note, we emphasize the advantage protocol’s use of parallelism has over
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Figure 3.8: Chromatograms corresponding to the first experimental configuration chosen
by protocol (left) as well as the experimental configuration that yielded the greatest
resolution chosen by protocol (middle) and LHS (right).

purely serial procedures (such as imgpo). While we only ran a modest number of ex-

periments selected by protocol (18), it still took 26 days to complete. Had we had run

each experiment sequentially one after another, we estimate from queue times and ex-

periment execution times that it would have taken at least 41 days, meaning we saved

greater than 15 days worth of work.

3.7 R Shiny application

We have implemented protocol as both a Python library, and as part of a stand-alone

application written in R Shiny[59] 3. The Shiny app lets the user initialize and run

optimization jobs using protocol or several conventional BO methods (TS, EI, PI, UCB).

The user defines the optimization problem via a start page by specifying the names

and types of the parameters to optimize over (by hand, or by loading a configuration

file (Figure 3.9-left). After confirming all parameters, the users can upload historical

parameters combinations with their observed objective values (if available). The users

then selects the optimization method (e.g. protocol) and the degree of parallelism (k).

If desired, the user can select more than one optimization method to consider different

selections (Figure 3.9-right). The application computes and displays the next parameter
3The R Shiny application was implemented by paper [21] co-author Zhiyun Gong.
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Figure 3.9: Left. The Shiny app start page, where the user can initialize an optimization
problem by defining the parameters to optimize over. Right. The Shiny app data upload
page, where the user can upload previously evaluated data and select the optimization
algorithm to use.

combination(s) to run. Any existing data and the suggested combinations can be saved

to a file, in order to save state, as the user waits for the experiments to run. When the

results of the experiments are known, the user updates the file and then loads it into the

application, which then suggests the next experiment(s) to run, and so forth.

3.8 Discussion

Cloud-based laboratories present an emerging and exciting new model for conducting

scientific experiments. While they can provide access to sophisticated equipment and

the ability to run experiments in parallel, performing experimental optimizations in a

way that fully utilize these capabilities is an unexplored area. To this end, we have

developed protocol, an algorithm that performs closed-loop optimization of experi-

mental protocols within this setting. Built on the framework of recent bound-based
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optimization methods that come with convergence guarantees, we believe protocol to

be the first such method that explores optimization of experimental designs within this

environment.

In our MALDI-ToF experiments, we compared protocol to conventional BO ap-

proaches. We found that protocol more reliably identified the optimal configuration

across five different endpoints and with two different samples. The ability of the conven-

tional approaches to select desirable parameterizations is highly dependent on the initial

data used to train the models. While there are ways to promote exploration of the search

space with such GP-based approaches, this itself entails an auxiliary optimization rou-

tine, which could be computationally prohibitive and/or prone to over-fit limited data.

We found that protocol’s direct-like division scheme over the input space was able to

combat these issues.

The deterministic nature of the dividing scheme ensures that the underlying GP

model is exposed to instances that are representative of a wide range of the input

space, so it naturally promotes exploration. Additionally, whereas the conventional

approaches select parameterizations primarily based on what the model believes to be

best at any given time, protocol’s strategy is to present the model with parameteriza-

tions selected according to the division scheme, and requesting experiments the model

is sufficiently uncertain about. This ensures that selections made by protocol are not as

exclusively influenced by what the model has been exposed to previously, which leads

to a regularization-like behavior. Another area for future work is to integrate the results

of technical and/or biological replicates into the optimization logic.

While our work with protocol is a promising start towards experimental optimiza-

tion in real Cloud Lab settings, there is still much room for improvement. In our HPLC

experiments using ECL, we noted that protocol likely needed more than 18 selections

to identify an experiment as well resolved as the anomalous LHS finding. Given that

our search space over HPLC parameters was orders of magnitude larger than that of the

MALDI-ToF parameters, it is not altogether surprising that a larger number of experi-
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ments could be necessary.

There are a number of algorithmic improvements worth pursuing. This includes

identifying better strategies to initialize protocol’s hierarchical tree. At present, the

algorithm always starts by selecting the center of the hyperrectangle, no matter how

much prior data are available. An alternative approach might initialize a tree that is

already grown to some depth, and using some subset of leaf nodes in this tree as a

starting point. The use of the frontier would provide a natural way to still select from

nodes that were created in the tree’s initiation. Since this tree could provide a larger

initial pool of experiments to choose from, it could help provide a better initial search in

larger dimensional settings.

In this chapter, we have shown how to adapt a principled bound-based BO routine

to work in a parallel setting. We further demonstrate that such an approach is capable

of being executed in a real cloud lab environment, and show that it performs favor-

ably relative to conventional BO routines on real-world data. While we chose to adapt

protocol from imgpo due to its theoretical guarantees, there are of course other sophis-

ticated BO algorithms that could be similarly adapted to work in our cloud-based setting

(e.g. Kathuria, Deshpande, and Kohli [60]). We leave formal comparisons between the

performance of such alternative approaches in the cloud lab to future work.

One final point is that protocol is broadly more applicable than the experimental

design use case we have presented here. Since it shares similarities with other bound-

based optimization algorithms (most directly imgpo), it could be used to optimize most

any black-box function. It would be interesting to apply protocol to tackle such prob-

lems in parallel, such as hyperparameter optimization for deep models, especially those

applied to biological settings.





Chapter 4

Regularized Bayesian Optimization for

Directed Protein Evolution

In this and the subsequent chapter, we shift our focus from automation within

the Cloud Lab to that of protein design and engineering. As with the previ-

ous chapter, we continue to focus on dynamic, sequential experimental deci-

sion making algorithms. Here, we again build upon Bayesian optimization

techniques, but now applied to selecting (in silico) mutagenesis experiments

within the context of Directed Evolution.

57
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4.1 Introduction

The field of protein engineering seeks to design molecules with novel or improved prop-

erties [61]. Many techniques used in protein engineering fall into two broad categories:

rational design [62] and directed evolution (DE) [63]. Rational design uses model-driven

in silico combinatorial searches to identify promising candidate designs, which are then

synthesized and tested experimentally. Directed evolution, in contrast, involves iterative

rounds of saturation mutagenesis at select residue positions, followed by in vitro or in

vivo screening for desirable traits. The most promising sequences are then isolated and

used to seed the next round of mutagenesis.

Traditionally, directed evolution is a model-free approach. That is, computational

models are not used to guide or simulate mutagenesis. Recently, however, a technique

for incorporating Machine Learning (ML) into the DE workflow was introduced [64].

Briefly, this ML-assisted form of DE uses the screening data from each round to update

a model that predicts the effects of mutations on the property being optimized. The mu-

tagenesis step in the next round of DE is then biased towards generating sequences with

the desired property under the model, as opposed to generating a uniformly random

sample. ML-assisted DE has been shown to reduce the number of rounds needed to find

optimal sequences, relative to traditional (i.e. model-free) DE [64].

Significantly, the models learned in ML-assisted DE are myopic in the sense that they

only consider the relationship between a limited set of residues (e.g. those in a bind-

ing interface) and the screened trait (e.g. binding affinity). Thus, DE may improve the

measured trait at the expense of those that are unmeasured, but nevertheless important

(e.g. thermostability, solubility, subcellular localization, etc.). The primary goal of this

chapter is to introduce an enhanced version of ML-assisted DE that is biased towards

native-like designs, while optimizing the desired trait. By ‘native’ we mean that the op-

timized design still has high probability under a generative model of protein sequences,

or is predicted to be thermodynamically stable, according to a given energy function.
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The intuition behind this approach is that any sequence with these properties is likely to

respect factors that are not directly accounted for by the fitness model, such as epistatic

interactions between the mutated residues and the rest of the protein [65], among others.

Our method performs Bayesian optimization [34] and incorporates a regularization

factor derived from either a generative model of protein sequence or an in silico predic-

tion of structural thermodynamic stability. In this chapter, we refer to these as “Evolu-

tionary" or “Structure-based" regularization factors, respectively. Our method is agnostic

with respect to the means by which the regularization factors are computed. For exam-

ple, we evaluated three distinct generative models of protein sequences, including a

contextual deep transformer language model [66], a Markov Random Field (MRF) gen-

erated by the gremlin algorithm [42], and profile Hidden Markov Model (HMMs) [67].

For structural thermodynamic stability, we use the FoldX protein design Suite [68] to

calculate changes in Gibb’s free energy (∆∆G) associated with new designs.

We first demonstrate our method by re-designing the B1 domain of streptococcal

protein G (GB1) at four residues to maximize binding affinity to the IgG Fc receptor.

Next, using data obtained from deep-mutational scans, we use ML-assisted DE to inves-

tigate the factors governing the relationships between sequence and clinically relevant

phenotypes. Specifically, we (i) identify variants of the RING domain of the BRCA1

protein for which the activity of tumor suppressor gene E3 ubiquitin ligase is maxi-

mal, and (ii) identify variants of the receptor binding domain of the SARS-CoV2 Spike

protein that optimize binding affinity to the ACE2 receptor. Our results on these three

targets demonstrate that a structure-based regularization term usually leads to better

designs than the unregularized versions, and almost never hurts. The results using

an evolutionary-based regularization are mixed; it leads to better designs for GB1, but

worse designs for BRCA1. We also demonstrate that a Bayesian approach to ML-assisted

DE outperforms the (non-Bayesian) approach introduced in Wu et al. [64]. Specifically,

we show that our approach reduces the wet-lab burden to identify optimal GB1 designs

by 67%, relative to the results presented in Wu et al. [64] on the same data.
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4.1.1 Directed protein evolution

Directed evolution (DE) is an iterative technique for designing molecules. It has been

used to create proteins with increased stability [69], improved binding affinity [70], to

design new protein folds [71], to change an enzyme’s substrate specificity [72] or ability

to selectively synthesize enantiomeric products [64], and to study fitness landscapes [73],

among others. Given an initial sequence, the primary steps in directed evolution are: (i)

random mutagenesis, to create a library of variants; (ii) screening, to identify variants with

the desired traits; and (iii) amplification of the best variants, to seed the next round.

Each step can be performed in a variety of ways, giving rise to multiple options for

performing DE. For example, the mutagenesis step can be performed one residue at

a time, called a single mutation walk (Figure 4.1-top), or simultaneously at multiple

positions, followed by genetic recombination (Figure 4.1-bottom). The key to the success

of DE is that it performs what is in effect a parallel in vitro or in vivo search over designs

that simultaneously explores the design space (via the mutagenesis step) while exploiting

the information gained in previous rounds (via the amplification step). The exploratory

aspect of DE is effectively a strategy for getting out of local optima on the underlying

fitness landscape.

4.1.1.1 Machine learning-assisted directed protein evolution

While effective, the mutagenesis, screening, and amplification steps in DE are expensive

and time-consuming, relative to in silico screens using statistical models or tools such

as FoldX [68]. In an effort to reduce these experimental demands, a Machine Learning-

assisted approach to DE was introduced recently [64]. This ML-assisted form of DE

is summarized in Figure 4.2. The key difference between traditional and ML-Assisted

DE is that the data generated during screening are used to (re)train a model that is

capable of predicting the property of interest for a given sequence. The model, f̂ , may

be a classifier or regression model and acts as a surrogate for the true function, f (i.e.
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Figure 4.1: Traditional, model-free approaches to directed evolution: (Top) The ‘single
mutation walk’ approach to directed evolution. The library of variants is the union of k
libraries created by performing saturation mutagenesis at a single location. The resulting
library, therefore, has 20k variants. The library is screened to find the single variant that
optimizes the measured trait. That variant is fixed and the procedure is repeated for
the remaining k − 1 positions. (Bottom) The library of variants is created by performing
saturation mutagenesis at k positions. The top variants are identified through screening.
Those variants are randomly recombined to generate a second library, which is then
screened to find the top design.

the one used by nature). The model can thus be used to perform an in silico screen

over designs. Promising designs are then synthesized/cloned and screened in the lab.

The key assumption made by ML-assisted DE is that the cost of performing an in silico

screen using f̂ is much lower than running wet-lab experiments (i.e. evaluating f ). This

assumption is almost always valid.

Like rational design, ML-assisted DE uses computational models, but the nature of

those models is rather different. For one, the models used in ML-assisted DE make pre-

dictions corresponding to the quantity measured in the screening step, whereas the mod-

els used in rational design tend to be based on physical or statistical energy functions,

and are therefore making predictions about the energetic favor of the design. Second,
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Figure 4.2: Machine Learning-assisted directed evolution: The first step in ML-assisted
DE is the same as for traditional DE (see Fig 4.1). A library of variants is created via
mutagenesis. Existing data, S = {sk, y}i=1:n are used to train a classifier or regression
model, f (sk) → y, which is then used to rank variants via an in silico screen. The top
variants are then synthesized/cloned and screened using in vitro or in vivo assays. The
data from the ith round is added to S and used in subsequent DE rounds.

the models used in ML-assisted DE are updated after each DE round to incorporate

the new screening data, and thus adapt to protein-specific experimental observations.

The models used in rational design, in contrast, are typically fixed. Finally, the models

used in ML-assisted DE are myopic, in the sense that they only consider the relationship

between a small subset of sequence positions (e.g. a binding site) and the measured

quantity. The models used in rational design, in contrast, generally consider the entire

sequence, and are thus better suited to filtering energetically unfavorable designs. The

technique introduced in this chapter seeks to combine the strengths of both methods;

our method uses a fitness model that adapts to the experimental data, but also considers

the utility of the mutations across the entire sequence.

4.1.2 Bayesian optimization

Protein design is a quintessential black-box optimization problem with an expensive

objective function, and so it is a natural candidate for Bayesian optimization, including

in the context of ML-assisted DE (e.g. Yang, Wu, and Arnold [74]).
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Recall that, in the Bayesian optimization framework, the objective function f is un-

known, and so it is modeled as a random function with a suitably defined prior, P( f ).

At the beginning of each iteration, an algorithm known as the acquisition function [30]

selects one or more candidate designs to evaluate, based on P( f ). The resulting data are

used to compute a posterior distribution over f , which becomes the prior for the next

round. Typical choices for priors/posteriors include Gaussian Processes [38] and Tree-

structured Parzen estimators [32]. In the context of this chapter, f is the function that

maps protein sequences to an experimentally measured property (e.g. fitness or binding

affinity/activity), and our goal is to find s∗ = arg maxs∈S f (s), where S is the space of

sequences. Naturally, the evaluation of f is expensive, because it requires the previously

described DE mutagenesis and screening steps, but a surrogate function, f̂ ∼ P( f ) can

be used to perform in silico screens.

Our proposed approach uses custom acquisition functions that consider whether a

given sequence resembles proteins observed in nature [75, 76, 77], in addition to the

usual considerations of exploration and exploitation. Computationally, this is imple-

mented using a regularization term, as defined in Section 4.4.1. We evaluated two types

of regularization terms: (i) an evolutionary factor calculated using generative models of

protein sequences, and (ii) a structure-based factor calculated using the program FoldX.

4.1.3 Generative modeling of protein sequences

The statistical properties of protein sequences found in nature have been optimized

through natural evolution to ensure that they have a full range of physical, chemical,

and biological properties to function properly in a complex cellular environment. There-

fore, one strategy for enforcing native-like properties in engineered proteins is to use a

regularization term that penalizes designs that deviate significantly from the statistical

patterns found in nature. To do this, we propose to use a generative model of protein

sequences to calculate the regularization term.
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The primary model we investigate here is the Evolutionary Scale Model [66], a deep

contextual transformer protein language model (TPLM). Within the field of Natural Lan-

guage Processing, transformer models have become state-of-the-art over Recurrent Neu-

ral Networks (RNN). This is because the attention-based mechanism [45] used by Trans-

formers allows the model to contextualize its focus on elements of a sequence it believes

are most important. Transformer models not only capture long-range dependencies, but

do so without the need to memorize the sequence from beginning to end. On the other

hand, an RNN layer requires O(n) many sequential operations to model such interac-

tions, where n is the length of a sequence. When a sequence’s length is less than the

dimensionality of its representation learned by either a transformer or RNN (which is

typically the case), the transformer’s attention layer will be faster and have lower com-

putational complexity compared to the RNN. Additionally, the computation within a

transformer layer can be parallelized through the use of multi-head attention. Thus,

on a per-layer basis, transformers enjoy higher efficiency compared to RNN’s, which in

practice can lead to the ability to train on greater amounts of data. The transformer

model used in this chapter was trained on over 250 million protein sequences, and has

been shown to learn representations for proteins that improve predictive performance

over many tasks, including secondary structure and tertiary contact predictions.

In addition to the TPLM, we also evaluate two fold family-specific options— profile

HMMs and Markov Random Fields (MRF), as generated by the gremlin algorithm [42]

(see Appendix A). HMM and MRF models can be learned from known sequences from

a given fold family. The primary difference between these models is that HMMs make

strong assumptions about the conditional independencies between residues. In particu-

lar, gremlin identifies and models both sequential and long-range dependencies. Either

way, the models encode a joint distribution over residue types at each position in the

primary sequence, P(s(1), ..., s(n)), which can be used to compute the probability (or

related quantities, like log-odds) of given designs. We assume that any design with a

high probability or log-odds under the generative model is native-like.
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Table 4.1: The wildtype sequences for each of the proteins used in our experiments.

GB1: MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVD
GEWTYDDATKTFTVTE

BRCA1: MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCD
HIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFS
QLVEELLKIICAFQLDTGLEYAN

Spike: NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSAS
FSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPG
QTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLY
RLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQ
SYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG

4.2 Data

4.2.1 Sequences and notation

In our experiments, we use protein sequence data for proteins GB1, BRCA1, and Spike

to identify variants that improve a targeted, experimentally measured quantity. In order

to run our analyses, it is necessary to have a wildtype sequence for each of these proteins

to use as a starting point. We use the wildtype sequences in Table 4.1 for each of these

proteins.

When referring to a sequence, the coordinates we use are with respect to the wildtype

sequences above. That is, the first amino acid of each sequence corresponds to position

1, and so on. When we refer to a variant sequence, we use the notation ‘X#Y,’ where X

is the wildtype amino acid, # is an integer denoting the position, and Y is the variant

amino acid.

4.2.2 Protein G B1 domain

Protein G is an antibody-binding protein expressed in groups C and G Streptococcus bac-

teria. The B1 domain of protein G (GB1) interacts with the Fc domain of immunoglobu-

lins. We performed our experiments on data generated by Wu et al. [78], who performed
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saturation mutagenesis at four carefully chosen sites in GB1 in order to investigate the

protein’s evolutionary landscape. The four chosen residues (V39, D40, G41, and V54) are

collectively present in 12 of the protein’s top 20 pairwise epistatic interactions, meaning

these sites are not just expected to contain evolutionarily favorable variants [79], but also

those that are involved in interactions with each other.

The fitness criterion for their study was binding affinity to IgG-Fc. Experimental mea-

surements were obtained for 149,361 out of 160,000 (i.e. 204) possible variants at these

four loci using mRNA display [80], followed by high-throughput Illumina sequencing.

Briefly, this approach to measuring binding affinity works by first creating an input

mRNA-protein fusion library from GB1 variants. This input library is then exposed to

the GB1 binding target IgG-Fc. Any variant that binds to the target is subsequently

sequenced for identification. By measuring the counts of each variant contained in the

input library, cin, and output “selected" library, cout, the relative fitness w of the ith

variant is calculated as follows:

wi = γ
cin

i
cout

i
(4.1)

Here, γ is a normalizing factor that ensures the wildtype sequence has fitness 1, and

sequences with improved fitness are greater than 1. The range of fitness scores is from

0 to 8.76, with mean 0.08 (see Table 4.2). Only 3,643 sequences (≈ 2.4%) have fitness

greater than 1.

4.2.3 BRCA1 RING domain

BRCA1 is a multi-domain protein that belongs to a family of tumor-suppressor genes.

It contributes to this function through involvement in homology directed DNA repair,

which undoes the genetic instability that underlies cancer development by fixing broken

DNA strands. The RING domain of BRCA1 plays a critical role in this process by form-

ing a heterodimer with fellow tumor suppressor BARD1 to constitute an E3 ubiquitin

ligase, whose activity is responsible for this tumor suppressing function [81].
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Table 4.2: The mean, median, and variance for each scoring metric and each protein type.
The final three columns show spearman correlations between each respective score.

Protein Metric Mean Median Variance (1) (2) (3)

GB1
(1) Fitness 0.08 0.003 0.16 1.0 -0.09 -0.25
(2) TPLM Log-odds 11.55 11.49 3.80 -0.09 1.0 -0.01
(3) FoldX ∆∆G 9.42 8.39 27.93 -0.25 -0.01 1.0

BRCA1
(1) E3 Ubiquitin Ligase Activity 0.63 0.60 0.17 1.0 0.31 -0.38
(2) TPLM Log-odds 2.46 2.56 6.06 0.31 1.0 -0.26
(3) FoldX ∆∆G 2.03 0.76 15.83 -0.38 -0.26 1.0

Spike
(1) ACE2 Binding Affinity 0.74 0.87 0.07 1.0 -0.06 -0.63
(2) TPLM Log-odds 2.62 2.73 0.42 -0.06 1.0 0.11
(3) FoldX ∆∆G 2.51 1.48 14.36 -0.63 0.11 1.0

Starita et al. [82] investigated the functional effect of single site point mutations and

deletions at BRCA1 residues 2-304 on E3 ubiquitin ligase activity. Using a phage display

assay [83], they determined an E3 ubiquitin ligase activity score for 5154 total variant

sequences. The activity was determined by calculating a relative change in abundance

of each variant allele as a result of the assay. The scores were normalized so that the

wildtype sequence had a score of 1, and nonfunctional sequences 0. After filtering the

sequences based on quality, they found scores that ranged from nonfunctional to 2.8.

We used our approach on the Starita data to find BRCA1 RING domain sequences

that maximize ubiquitin ligase activity, and thus provide insights into the factors gov-

erning sequence-activity relationships. Our experiments were limited to the mutations

in residues 2-103 corresponding to the RING domain coordinates that passed a quality

filter specified by Starita. In total, this gave us 1388 variant sequences. Activity scores

across these residues range from nonfunctional to 2.8, with an average score of 0.63 (see

Table 4.2). Only 227 sequences (≈ 15%) had activity scores greater than 1.

4.2.4 Spike protein receptor binding domain

The β-coronavirus SARS-CoV-2 is the virus responsible for the COVID-19 pandemic.

The Spike glycoprotein is located on the virus’ surface, and plays a critical role in viral
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transmission. More specifically, the Spike receptor binding domain binds the human

cell surface protein ACE2. Binding with ACE2 facilitates entry of the virus into the cell’s

interior via membrane fusion or endocytosis.

Starr et al. [84] performed a deep mutational scan of the Spike glycoprotein using a

yeast display platform to assess the effect of mutations in the receptor binding domain

on ACE2 binding affinity. Their approach obtained measurements for each single site

mutation within the protein binding domain [85]. In total, they tested 4020 variant se-

quences, and found binding affinities that ranged from -4.84 to 0.3, where wildtype was

normalized to have value 0 and higher scores are better. We removed knock-out variants,

leaving all single-site point mutations, and re-scaled their affinities to fall within the unit

interval. The re-scaled wildtype had score 0.94, and the average score was 0.74 (see Ta-

ble 4.2). In total, 398 sequences (≈ 11%) had an affinity greater than wildtype. We used

our approach on the Starr data to find Spike receptor binding domain sequences that

maximize affinity to ACE2, and thus provide insights into one of the factors governing

host-virus interactions.

4.3 Modeling

4.3.1 Evolutionary-based regularization factors

In order to obtain an evolutionary regularization term, we used pre-trained model ESM-

1b made available through Rives et al. [66]. This transformer model is trained on all data

available through the UniParc [86] database, and thus models every protein fold family

represented therein. The model is trained using the following masked language model

objective:

LMLM = Es∼SEM ∑
i∈M

− log p(s(i)|s/M) (4.2)

Each training sequence s is masked at a set of indices M. The model is trained by

minimizing the negative log likelihood of each true amino acid s(i) given the masked
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sequence s/M. In other words, the model must learn to use the surrounding sequence as

context in order to predict the masked amino acids.

The model itself consists of 33 layers, and contains over 650 million parameters.

While in principle the TPLM can be fine-tuned, we simply use it as-is. We use the model

to obtain a log-odds score for a given protein design. To obtain this score, we provide

as input a variant protein sequence, and the final layer of the TPLM outputs a logit for

each possible amino acid at each position in the sequence. By summing over these logits

for a given variant sequence, we obtain a TPLM-derived log-odds score. We calculated

such log-odds scores for each variant in the available GB1, BRCA1, and Spike data.

In addition to using the TPLM, we also derive what we refer to as a fold-family spe-

cific regularization term. We evaluated two options for such models, (i) an MRF model

learned using the gremlin algorithm [42], and (ii) a profile HMM. We downloaded the

profile HMM [67] for the fold family to which GB1 belongs (Pfam id: PF01378) from

the Pfam database [87]. We also downloaded the multiple sequence alignment that was

used to train the HMM from Pfam, and then used the alignment to train the gremlin

model. Thus, the gremlin and HMM models were trained from the same sequence data.

We used these models to compute the log-odds of each design. These log-odds are used

as a regularization factor in the Bayesian optimization. The two models make different

assumptions about the conditional independencies among the residues in the distribu-

tion over GB1 sequences, and thus will output different log-odds scores for the same

design, in general. Importantly, these are well-suited to training from limited sets of

data, especially when compared to deep models. gremlin in particular learns a sparse

model precisely to resist overfitting, and is thus better suited to learning from relatively

small amounts of data.
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4.3.2 Structure-based regularization factors

In order to obtain a structure-based regularization term, we used the FoldX protein mod-

eling Suite. FoldX uses an empirical force field to calculate changes in energy associated

with mutations to a protein’s amino acid sequence. It contains terms that account for

Van der Waal’s interactions, solvation energies, energy due to Hydrogen bonding, en-

ergy due to water bridges, energy due to electrostatic interactions, and entropy due to

dihedral angles and side chain conformations. The specific details of the FoldX force

field are included in Schymkowitz et al. [68].

For each protein tested, we obtained expected changes in Gibbs free energy (relative

to the wildtype sequence) for each variant sequence. We followed the below protocol to

obtain these energy calculations for each set of variant sequences:

1. Download a protein structure from the Protein Data Bank [88]. Table 4.3 shows the

structures used for each protein tested.

2. Repair the PDB structure using FoldX’s RepairPDB command. This fixes structures

that have bad torsion angles, Van der Waal’s clashes, or total energy by rotating

specific residues or side chains into more energetically favorable conformations.

3. Calculate the energy associated with introducing each mutation into the structure

using FoldX’s BuildModel command. Calculations for each mutated sequence are

done three times.

The final energy associated with each mutation is given by the average over the three

FoldX runs. Mutations that are predicted to improve folding energy will have negative

values, whereas positive values indicate an energetically less favorable mutation.
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Table 4.3: Protein structural data used for FoldX simulations. Binding partner refers to
whether or not the structure includes the protein is in complex with its binding partner.

Protein PDB ID Experiment Type Resolution (Å) Binding partner?

GB1 2GB1 Solution NMR NA No
BRCA1 RING Domain 1JM7 Solution NMR NA Yes
Spike PBR Domain 6M0J X-ray diffraction 2.45 Yes

4.4 Applying regularization terms to directed protein

evolution

Bayesian optimization is performed using Gaussian Process (GP) regression as the prior

over the unknown fitness or activity function, f . A GP requires a kernel, K, which

describes the similarity between sequences si and sj. In our models, we use the squared

exponential kernel (also known as the “radial basis function”) given by:

Ksi,sj = exp
(
−

d(si, sj)
2

2ℓ2

)
(4.3)

where d(·, ·) is the Euclidean distance and ℓ the scalar length scale. We used a one-hot

encoding of the variants. That is, each residue was assigned a length 20 vector, where

each position corresponds to a specific amino acid. The position that corresponds to the

residue present in the sequence takes value 1, and all others 0. Hyperparameter θ is

optimized while fitting the GP to data by maximizing the log marginal likelihood:

log p(y|θ) = −N
2

log 2π − 1
2

log det|K + σ2 I| − 1
2

yT(K + σ2 I)−1y (4.4)

Since we use the squared exponential kernel in our experiments, length scale ℓ is the

only hyperparameter. The term y is a vector of the given property (e.g. fitness) of N

sequences, σ2 the variance of observations, and I is the N × N identity matrix. Once fit-

ted, the GP encodes a distribution, P , which is used to obtain a posterior mean function

µP (si) and variance over the unknown function f :

µP (si) = E[ f (si)] = Ksi,s(K + σ2 I)−1y (4.5)

Var[ f (si)] = Ksi,si − Ksi,s(K + σ2 I)−1Ks,si (4.6)
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Ksi,s refers to the row vector of kernel function values between sequence si and all other

sequences, denoted by subscript s. Additionally, Ks,si = KT
si,s.

4.4.1 Regularized acquisition functions

The GP becomes the argument to an acquisition function, which is used to select se-

quences for wet-lab screening. The data produced via the screening step are used to

update the GP for the next round. We performed experiments that used either the ex-

pected improvement (EI), probability of improvement (PI), or upper confidence bound

(UCB) criteria as the acquisition function. Two versions of each acquisition function were

considered: (i) the standard version, which is often used in Bayesian optimization, and

(ii) a regularized form. The standard forms of EI, UCB, and PI are given by:

EI(si;P) = EP
[
max

(
0, f (si)− µP (s+)

)]
(4.7)

PI(si;P) = P
(

f (si) > µP (s+)
)

(4.8)

UCB(si;P) = µP (si) + βσ(si) (4.9)

where s+ is the location of the (estimated) optimal posterior mean, β a constant scaling

factor (0.05 in our experiments), and σ(·) the standard deviation.

We also evaluated a regularized form of each acquisition function by scaling the stan-

dard version by a design-specific scaling factor, F (s;P). In our experiments, F refers to

the evolution-based log-odds score obtained by either a TPLM, MRF, or profile HMM, or

the structure-based ∆∆G calculated be FoldX, as described previously. Our regularized

EI, PI, and UCB are defined as:

EIF (si;P) = EI(si;P)F (si) (4.10)

PIF (si;P) = PI(si;P)F (si) (4.11)

UCBF (si;P) = UCB(si;P)F (si) (4.12)
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We will demonstrate that this small modification to the acquisition function results in

a substantial shift in the designs discovered via ML-assisted DE towards native-like

designs, as expected.

4.4.2 Directed evolution with machine learning and in silico

traditional approaches

Our experiments contrast the performance of ‘standard’ ML-assisted DE (i.e. non-

regularized) to the regularized version. We also compare the results to simulated forms

of ‘traditional’ DE (i.e. without ML), as was also done in Wu et al. [64]. Since the BRCA1

and Spike protein data only include single-site mutations, we limit this analysis to the

more exhaustive GB1 data. Specifically, we simulated both the single mutation walk and

recombination versions of DE (see Figure 4.1). We note that the single mutation walk

approach is deterministic, given the starting sequence. With the single step, we start

each trial with a randomly chosen sequence from the GB1 variant library. At each of

positions 39, 40, 41, and 54, we observe the experimentally determined fitness values for

all possible single-residue mutations. Having observed these mutations, we then fix in

place the single-residue mutant which has the highest fitness. With this residue fixed,

we then repeat this procedure for the remaining unfixed residue positions. Continuing

in this manner, the trial ends when all residues have been fixed. All observed fitness

values within a trial thus represent a DE determined fitness function approximation.

For the recombination method, we mimic saturation mutagenesis experiments by

starting with n randomly chosen sequences from the GB1 variant library. From these, we

identify the top three sequences that have highest fitness (as was done in Wu et al. [64]),

and use these sequences to perform recombination. A recombinant library is simulated

in silico by computing the Cartesian product S39 × S40 × S41 × S54, where the set Sm refers

to the variant residues found at position m among the three highest fitness sequences in

the initial random library. The resulting list of 4-tuples defines the recombinant library.



74 CHAPTER 4. REGULARIZED DIRECTED EVOLUTION

Here, the DE fitness function approximation is given by observing fitness values for the

n starting sequences as well as the recombined sequences.

4.5 Results

In this section, we report the results of five approaches to performing DE:

(i) single mutation walk (see Figure 4.1-top)

(ii) recombination (see Figure 4.1-bottom)

(iii) Bayesian optimization using standard acquisition functions (Eq. 4.7-4.9), denoted

by:

a) GP+EI

b) GP+PI

c) GP+UCB

(iv) Bayesian optimization using evolution-based regularized acquisition functions with

TPLM-derived log-odds, denoted by:

a) GP+EI+TPLM

b) GP+PI+TPLM

c) GP+UCB+TPLM

(v) Bayesian optimization using structure-based regularized acquisition functions with

FoldX-derived ∆∆G values, denoted by:

a) GP+EI+FoldX

b) GP+PI+FoldX

c) GP+UCB+FoldX
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The regularized versions of each acquisition function used in (iv) and (v) are given

by Eq. 4.10-4.12. For simplicity, we focus our analysis on a subset of all experiments

that we conducted. We include additional results briefly mentioned within the text in

Appendix A.

Each method was allowed to screen (e.g. obtain fitness values for) a total of 191

variants. This number was chosen to be similar to the number of sequences screened

by the deterministic single mutant walk so that each method had similar experimental

burden. Each model was initially trained on 20 randomly selected sequences. The small

number of initial sequences simulates the scenario where the available fitness data is

limited, prior to DE. The Bayesian optimization methods selected the top 19 sequences

during each acquisition round. Each model is then updated with the experimentally

measured fitness values for the chosen batch of 19 sequences, and this process is repeated

for 9 batches (i.e. 20 initial sequences plus 9 batches of 19 designs per batch, giving

20 + 19 × 9 = 191 variants selected). We refer to a complete set of variant selection

batches as a trial. We performed 100 total trials with each selection strategy with different

random initial starting sequences. 20% of the data were held out for testing purposes

(see Appendix A).

4.5.1 ML-assisted DE outperforms traditional DE

Traditionally, DE techniques aim to identify sequences that score highly in one property.

In Figure 4.3 we demonstrate that ML-assisted DE outperforms simulated traditional

approaches (i.e. single-mutant walk and recombination) when optimizing GB1 with re-

spect to fitness. We observe this trend across all three forms of acquisition function

tested (EI, PI, or UCB). On average, ML-assisted techniques (regularized and unregular-

ized) identify a variant with fitness 7.22 (EI), 7.27 (PI), and 7.08 (UCB), whereas simu-

lated traditional approaches identify a variant with fitness 4.97. The single mutant walk

procedure finds a variant with maximum fitness 5.22, whereas recombination yields a
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Figure 4.3: ML-assisted Directed Evolution techniques identify high fitness GB1 vari-
ants more frequently than simulated traditional DE approaches. Shown are the frac-
tion of trials (y-axis) that reach less than or equal to a specified fitness (x-axis), where
the selection criterion was either a simulated traditional DE approach, or standard or
regularized EI, PI, and UCB was the acquisition function. (Left) Expected Improve-
ment. The cumulative-weighted average fitness values are 7.25 for GP+EI+TPLM, 7.24
for GP+EI, and 7.16 for GP+EI+FoldX. (Middle) Probability of improvement. The
cumulative-weighted average fitness values are 7.62 for GP+PI+TPLM, 7.17 for GP+PI,
and 7.03 for GP+PI+FoldX. (Right) Upper confidence bound. The cumulative-weighted
average fitness values are 7.76 for GP+UCB+TPLM, 7.10 for GP+UCB, and 6.38 for
GP+UCB+FoldX. (All) The traditional single step and recombination approaches select
variants with cumulative-weighted average fitness values of 5.22 and 4.71, respectively.

variant with maximum fitness 4.71. Overall, we find that ML-assisted DE thus improves

upon traditional approaches in designing high fitness GB1 variants by an average of

45%. This result is consistent with the findings in Wu et al. [64]. In Figure A.1, we

show that evolution-based regularization via gremlin and profile HMMs are also able

to improve upon traditional DE techniques on the same GB1 variant selection task.

4.5.2 Structure-based regularization usually leads to better designs

Next, we investigated the effects of regularization and choice of acquisition function

in the context of ML-assisted DE. Figure 4.4 shows the results of experiments on each

protein using various regularized and unregularized acquisition functions. Overall, we

find that structure-based regularization usually leads to better designs, and almost never

hurts. The exceptions involve GB1. We note that the GB1 structure used in our experi-
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GB1 BRCA1 Spike

Figure 4.4: Regularization leads to better designs. Shown are the cumulative per batch
scores for each protein averaged (± 1 SEM) over 100 trials. GP models were initial-
ized with 20 randomly chosen sequences, and each batch consisted of 19 selected vari-
ants. (Left) GP+UCB+TPLM selected the GB1 variant with highest average fitness (7.76),
(Middle) GP+EI+FoldX selected the BRCA1 variant with highest average E3 ubiquitin
ligase activity (2.65), and (Right) GP+UCB+FoldX selected the Spike variant with high-
est average ACE2 binding affinity (0.98).

ments does not include the antibody, and so FoldX does not have a complete picture of

the system being optimized.

Figure 4.4 also shows that the benefits of structure-based regularization vary accord-

ing to the experimental budget. For example, if one were only able to perform 4 rounds,

then the unregularized acquisition works better for BRCA1, but not for the other two

proteins. Still, aside from the previously mentioned exception with GB1, structure-based

regularization never hurts, given a sufficient number of rounds.

4.5.3 Evolutionary-based regularization is unreliable

If a structure model is not available, it is natural to consider an evolutionary-based reg-

ularization term. That is, one based on a sequence model, like a transformer. However,

we find that evolutionary-based regularization via the as-is ESM-1b TPLM is unreliable.

As seen in Figure 4.4, it does very well for GB1— outperforming both structure-based

and the unregularized methods, but it underperforms for BRCA1 and Spike. This vari-

ability is perhaps expected, since a sequence model is obviously just an abstraction of

a molecule. The TPLM apparently captures enough of the relevant information for the
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GB1 design task, but does not for BRCA1 or Spike. We also ran experiments that used

gremlin and HMM regularized methods, but found that they did not perform much

differently than unregularized methods (Figure A.2-top). Together, these results suggest

that one should obtain more consistent (in some cases, better) results using unregular-

ized or structure-based ML-assisted DE compared to the evolutionary-based regulariza-

tion methods we have tested.

4.5.4 Correlation among traits

Naturally, the inclusion of a regularization term will bias variant selection towards de-

signs that score favorably according to the regularization criteria, in addition to the

objective value. This is seen clearly in Figure 4.5, where the grey curves associated with

the evolutionary bias achieve high log odds (top row), and the brown curves associated

with the structural bias achieve low ∆∆G values (bottom row), as intended. The fact

that the corresponding objective values are also high (see Figure 4.4) simply indicates

that the regularization terms generally do no harm. What is unexpected, however, is the

fact that the blue and brown curves in the top row also rise by varying amounts, and

the blue and grey curves in the bottom row also fall by varying amounts, even though

those curves correspond to acquisition strategies that do not consider the quantity plot-

ted on the y axis. This behavior reveals that the objective and regularization values carry

some information about unmeasured traits. gremlin and HMM regularized acquisition

functions reveal similar patterns (Figure A.2-bottom)

4.5.5 Evolution and structure-based regularization promotes

site-specific exploration of unexplored sequence space

Thus far, we have characterized variants selected by each ML-assisted DE technique

in terms of their average fitness (GB1), measured activity (BRCA1), or binding affin-

ity (Spike). We now consider the residue-specific behavior of choices made under each
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GB1 BRCA1 Spike

Figure 4.5: Evolution and structure-based regularization biases variant selections to-
wards those that score favorably under multiple criteria. Shown are the regularization
scores for variants selected for GB1 (Left), BRCA1 (Middle), and Spike (Right) under
each selection criterion. As expected, variants selected by TPLM-regularized methods
have higher log-odds under the TPLM than those selected from non-TPLM regular-
ized methods (Top). Similarly, variants selected by FoldX regularized methods have
lower ∆∆G values than those selected by non-FoldX methods (Bottom). The figures also
show that TPLM-regularized methods tend to improve FoldX scores, and that FoldX-
regularized methods tend to improve log-odds, indicating that there is some correlation
between log-odds and thermodynamic stability.

model. Figure 4.6 shows residue-specific entropy of variant selections with the best per-

forming model for each protein. A high entropy block (dark blue) indicates that the

method selects many different residue types at that position within a given batch. Low

entropy blocks (light blue) indicate that the method selects only few residue types. The

relative entropy of selections thus provides a sense of how the model explores sequence

space, as well as the confidence the model has that a particular variant residue is infor-

mative.

Qualitatively, we notice that regularized methods for each protein have darker shad-

ing than their unregularized counterpart. This indicates that regularized methods ex-

plore more variant types at specific positions in each protein. With GB1 (Figure 4.6-left),
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Figure 4.6: Bayesian selection techniques quickly identifies informative sequence pat-
terns. Shown are the per-batch average position-specific entropy of variant selections
under the top scoring model for each protein using a regularized (Top) or unregularized
(Bottom) acquisition function. Lighter squares denote low entropy decisions, meaning
the model selects among fewer residue types at that position in that batch.

positions 39 and 40 have highest entropy for regularized and unregularized methods.

The unregularized method has the least entropy at position 41, indicating that it has

highest certainty at this position, whereas the regularized method has highest certainty

at position 54. With both BRCA1 and Spike (Figure 4.6-middle/right), there is generally

much more light shading throughout the sequence, regardless of whether or not there is

regularization. This is to be expected due simply to the larger number of positions that

could be mutated using these protein data (recall that while the GB1 data includes all

pairwise variants across 4 positions, these data include all single-site mutations across

regions larger than 100 sequences each). Still, the regularized methods contain regions

of darker shading, indicating a greater level of site-specific exploration. Given that the

only difference between the methods shown for each protein is the presence or absence

of regularization, it is the evolution or structure-based regularization that must drive

this increased exploration at targeted positions.
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Figure 4.7: Evolutionary and structure-based regularization biases variant selection
towards sequences with desirable properties. Shown are sequence logos for the best
performing variant selection method along with their unregularized counterpart. All
four variant residue positions are shown with the GB1 protein (Left), whereas the posi-
tions that correspond to variants with the top five true activity/binding affinity scores
are shown for BRCA1 (Middle) and Spike (Right). Highlighted residues denote notable
distinctions between the regularized and unregularized sequence selections.

In Figure 4.7, we show sequence logos obtained from the same models whose en-

tropy are shown in Figure 4.6. With GB1 (Figure 4.7-left), the regularized method

selected consensus sequence {V39F,D40W,G41A,V54A}, whereas the unregularized method

selected {V39F,D40W,G41L,V54A}. While these sequences are similar, the single different

amino acid selected at position 41 is meaningful in terms of the overall fitness of the

design— {V39F,D40W,G41A,V54A} is the highest fitness variant in the data (8.76), whereas

{V39F,D40W,G41L,V54A} ranks 443rd (3.66). With respect to BRCA1 (Figure 4.7-middle) and

Spike (Figure 4.7-right), the sequence logos show amino acid selections for the positions

where the top five scoring variants within each data set are located. For both of these

proteins, the consensus sequences selected by the unregularized methods corresponds

to the wildtype sequence. However, the best regularized method used for both proteins

arrived at one consensus variant. With BRCA1, this corresponds to I21E, which is the

highest scoring variant in the BRCA1 data. Additionally, the Spike variant Q120M se-

lected by a FoldX regularized method has ACE2 binding affinity 0.18, which is the sixth

highest scoring variant in the data set. Additionally, while Y is the consensus selection

at position 120 for both models shown, we see that more trials that were regularized by

FoldX selected variant Y120F, the third highest scoring variant, compared to the unreg-
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ularized methods. Thus, regularized ML-assisted DE better identified the top scoring

variant in the GB1 and BRCA1 data, and the third and sixth highest scoring variant in

the Spike protein data compared to unregularized methods.

4.6 Discussion

Our work extends ML-assisted DE via Bayesian optimization [74] by incorporating a

regularization term into the acquisition function. The regularization term is intended

to prevent the algorithm from optimizing the target property at the expense of unmea-

sured, but nevertheless important properties (e.g. solubility, thermostability, etc.). The

results on the GB1 design task demonstrate that the inclusion of a regularization term

can decrease the number of rounds needed to find high-fitness designs, relative to the

unregularized version (Figure 4.3), but the difference in performance does depend on

which acquisition criterion is used (EI, PI, or UCB), and which regularization term is

used (evolutionary or structure-based).

When our method is applied to more proteins, a clearer picture emerges. Given

a sufficient number of rounds, structure-based regularization usually produces better

designs, and only did harm in one configuration (GP+UCB+FoldX on GB1). In contrast,

evolutionary-based regularization terms were seen to be unreliable; it only helped in two

configurations (GP+PI+TPLM and GP+UCB+TPLM on GB1), but did poorly on BRCA1

and one configuration of Spike (GP+UCB+TPLM). Taken together, these results suggest

that structure-based regularization using either EI or PI is beneficial or, at worst, neutral.

The one protein for which structure-based regularization using either EI or PI does

not produce better designs than the unregularized version was GB1. Here, we note that

GB1 was the one protein where the structure did not include the binding partner (see

Table 4.3). That is, FoldX was not given relevant information, and so its predictions are

less helpful as a guide during optimization. The structures used for the experiments

on BRCA1 and Spike, in contrast, include the binding partner. It makes sense in this
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circumstance that FoldX will better determine the stability induced by a variant when in

the presence of the binding partner— it simply has more relevant information.

As previously noted, evolution-based regularization by the TPLM is less reliable than

its structure-based counterpart. One consideration that may contribute to this observa-

tion are the differences between the three data sets. For one, GB1 has the shortest

sequence length (56) compared to BRCA1 (103) or Spike (193). It may be that the TPLM

better captures interactions between sequence elements within smaller protein regions.

The GB1 data is also more exhaustive than that for BRCA1 and Spike in that it contains

all pairwise variants from four specific GB1 residues, whereas the others are limited

to single-site mutations. More specifically, the four GB1 sites that were varied were

chosen because they were predicted to be among the most involved in epistatic interac-

tions [79]. That is, these residues are expected to contribute to long-range interactions

between residues in GB1. The TPLM model we used was chosen because it is effective at

encoding long-range dependencies within a protein sequence [66]. Thus, it may be that

the GB1 data set is particularly well-suited to demonstrate the strengths of the TPLM.

Another consideration is the TPLM itself. Recall that the TPLM uses unsupervised

training across over 250 million different proteins to learn an effective representation for

protein sequences. The model is thus very general, and not customized for a particular

fold-family. Others have recently shown that a TPLM can be fine-tuned for a given fold

family, and that a fine-tuned model can perform better compared to the general model

on predictive tasks related to the tuned protein family [89]. In Section 5.3.4, we will de-

scribe some of our own fine-tuning experiments within the context of a related protein

engineering objective.

Finally, our results also demonstrate the benefits of a Bayesian approach to ML-

assisted DE, as opposed to the approach introduced in Wu et al. [64]. When using the

GB1 data (the only data set for which a head-to-head comparison is possible), we find

that a Bayesian approach only required 191 fitness value acquisitions (20 initial observa-

tions plus 9 batches of 19) to identify designs with high fitness values. In contrast, the
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experiment in Wu et al. [64] required 470 initial observations plus a single batch of 100

to find similarly fit designs. This is a 67% reduction in the number of sequences tested,

which demonstrates the merits of Bayesian optimization in this context. The acquisi-

tion functions used in Bayesian optimization make a trade-off between exploration and

exploitation of the domain, much like DE itself. Thus, ML-assisted DE via Bayesian Opti-

mization effectively uses two forms of exploration and exploitation (one computational,

one experimental). In contrast, the computational approach used in Wu et al. [64] is

effectively pure exploitation. It is known that optimal regret bounds require a combina-

tion of exploration and exploitation [52], which may explain the advantage of Bayesian

optimization in this context. As shown in Figure 4.6, adding a regularization term to the

acquisition function changes where the algorithm chooses to explore. This is seen by the

differences in the entropy at select positions between the regularized and unregularized

approaches. The regularized version tends to concentrate exploration at select residues,

whereas unregularized methods select positions more uniformly. Notably, this trend is

apparent in all regularized methods and all acquisition function types (Figures A.3-A.5).

This difference in behavior leads to subtle changes in the final designs, as shown in

Figure 4.7, but regularization tends to produce the better design (Figure 4.4).







Chapter 5

Identifying Promising Sequences for

Protein Engineering using a Deep

Transformer Protein Language Model

In the previous chapter, we found that incorporating protein structure infor-

mation into an optimization routine helped us to guide Directed Evolution

experiments towards designs with desirable properties. This suggests that

further work aimed towards reducing experimental burden during protein

engineering campaigns could benefit by leveraging information about physi-

cal protein interactions. In this chapter, we again focus on the ESM-1b trans-

former model. However, we now focus on a capability of ESM-1b that we had

previously neglected that more directly accounts for molecular interactions.

By treating ESM-1b’s attention mechanism as a protein-protein interaction

map, we show how to calculate a Promise Score that measures the promise

of a sequence within the context of a protein engineering campaign.
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5.1 Introduction

5.1.1 Protein engineering

As described in the previous chapter, protein engineering is a rapidly evolving field that

aims to develop novel protein sequences with useful properties. Protein engineers can

be found across many scientific domains, so these useful properties can have equally

far-reaching applications, including those that are therapeutic [90, 91, 92, 93], industrial

[94, 95, 96], and environmental [97, 98]. Regardless of application, a common issue

among protein engineering pipelines is the sheer number of experiments required to

identify these useful sequences. The combinatorics associated with altering the amino

acid composition at different sites within a protein sequence quickly escalates beyond

what is experimentally feasible. Developing general-purpose methods that can help

protein engineers with experimental decision making is thus important and necessary.

Protein engineering pipelines do not fit within a single mold. Just as the applications

are varied, so too are the experimental requirements and focal points. Whereas last

chapter we focused specifically on direct evolution-based approaches, in this chapter

we refer to protein engineering in a more general sense. While some workflows may

focus specifically on a particular objective, many are multi-faceted and include different

stages that each involve their own rounds of sequence selection or experimental decision

making. A general workflow may be given as:

Protein Discovery → Protein Optimization → Model Building

As many protein engineering pipelines include at least one of these components, we

will now briefly define each of these stages, and describe the types of experiments and

decisions that are made within each.

Protein discovery. While the design of novel protein sequences lies at the heart of

most protein engineering objectives, in many settings there is an initial discovery phase.
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Perhaps most notably, this includes the design of antibody-based therapeutics [99, 100,

101]. Antibodies (Abs) play an important role in initiating an immune response by

specifically targeting and binding targeted antigens. An Ab’s specificity for and ability to

bind antigens depends on the sequence identity at three complementarity-determining

regions (CDR), as residues in these CDR will bind to the surface of an antigen. The Ab

residues involved in antigen binding are known as paratopes, and those on the antigen

as epitopes. Understanding the interactions between paratopes and epitopes is at the

heart of many Ab therapeutics design problems [102, 103]. Recently, a similar class of

proteins called nanobodies (Nbs) have also been used for their therapeutic properties

[104, 105]. Nbs are shorter than Abs, which makes them easier and cheaper to produce,

though are only found naturally in camelid species, which can make them harder to

initially collect (whereas Abs can be obtained from common lab mice). Structurally,

Abs and Nbs form Y-shaped proteins, where the CDR are located within hypervariable

tips. The hypervariability means that sequences collected from an animal sample will

have high diversity, and only a subset of the sequences collected will strongly bind a

specified antigen target. Collecting this repertoire of diverse sequences is the crux of

the protein discovery phase. These Abs or Nbs will undergo assays that quantify their

ability to bind a specified antigen. From this, a panel of the best sequences, or leads,

are identified and used in downstream engineering objectives that take advantage of

the leads’ strong therapeutic properties. Finding ways to identify strong leads while

minimizing the required wet-lab experimentation is thus an important undertaking.

Protein optimization. Optimization is an integral component of all protein engineer-

ing campaigns. It is a stage where protein sequences are modified with the goal of

identifying those that possess desirable properties. The optimization typically involves

making a relatively small number of changes to a given parental protein sequence. For

example, in de novo protein design [106, 107], computational models are used to propose

novel sequences that are expected to have certain structural properties. These proposed
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sequences are typically experimentally refined (i.e. optimized) to ensure they best match

the desired properties. More commonly, naturally obtained sequences are optimized di-

rectly, such as leads selected from a protein discovery campaign. In any case, there are

many types of experimental technologies that may be used to perform the sequence op-

timization. Traditionally, these approaches involve random mutagenesis at one or more

selected sites [63]. Site-specific mutagenesis [108, 109, 110, 111] and deep-mutational

scanning [112] further allow greater throughput and specificity as to where in a pro-

tein’s sequence edits should be made. Emerging approaches based on CRISPR/Cas9

[113, 114] continue this trend. Given the costs associated with these experiments as well

as the exponential number of potential edits that can be made to any protein sequence,

it is important to identify ways that efficiently and effectively select at which sites to

perform these mutagenesis experiments.

Model building. In conjunction with the novel sequences that may be designed and

synthesized during a protein engineering campaign, it is often desirable to also obtain

a structural model of the system under investigation. The model serves as a tool that

can be used to better understand physical properties of a protein, such as how it folds

or interacts with other proteins. Traditionally, these models have been obtained through

experimental means, such as x-ray crystallography [115]. While x-ray crystallography

can provide a high-resolution structure of a protein or protein complex, it requires very

specific conditions that may preclude its applicability to certain systems. It also only

provides a static, or fixed model for a protein’s structure, whereas most interactions

worth modeling depend on many moving parts. Computational models built on machine

learning and artificial intelligence bridge this gap between the generalizability and ap-

plicability of purely experimental model building approaches. With respect to protein

structure prediction, AlphaFold [116] is able to predict any protein’s 3D structure, and

is shown to have highest accuracy on the benchmark CASP challenges [117]. More gen-

erally, computational models can be used to make predictions on any protein property.
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In some settings, these models can even form a feedback loop, where predictions by a

model are used to select experiments, and the experimental results are used to update

the model [64, 22, 21]. Whether or not a model is used in-line with running protein engi-

neering experiments, most protein engineering pipelines generate large amounts of data,

which makes them well-suited for training machine learning models at the conclusion

of all experimentation.

5.1.2 Attention and transformer protein language models

Protein engineers look to design novel proteins that have certain desired functions or

structure. It is has been shown that these biological features are represented through

the statistical dependencies between evolutionarily selected sequences that are found in

nature [118, 119]. Finding ways to encode and exploit this evolutionary information

could help to guide the sequence design choices made by protein engineers.

In the previous chapter, we introduced the deep transformer protein language model

ESM-1b that was designed just for this purpose. We used the ESM-1b logits to calculate

a log-odds score that served as a regularization factor within a Bayesian optimization-

based directed evolution routine. In this chapter, we again utilize ESM-1b, but instead

focus more squarely on the component of the model that is most responsible for its

power— attention.

ESM-1b’s attention mechanism [45] allows the model to capture the statistical depen-

dencies across all sequences, as it accounts for all pairwise interactions between each

position in a sequence. Attention has been shown to align strongly with protein contact

maps, as well as target specific protein binding sites [120]. The resulting self-attention

map, or matrix of all pairwise interactions, can thus be interpreted as a protein-protein

interaction map.

Since ESM-1b is trained on many millions of protein sequences spanning practically

all known protein families, it learns many general patterns that exist across all protein
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sequences. When model building, it is typical to want to learn how to predict a spe-

cific task (e.g. how proteins from a specific family binds a specific target). Transformer

models can provide a good starting point when obtaining these specific models. Trans-

formers have been shown to be effective few-shot learners [121], meaning they can be

used to predict specific tasks when given only few labeled examples. Developing exact

mechanisms to train such models is an active area of research within NLP, and includes

methods such as knowledge distillation [122], fine-tuning [123], and transfer learning

[124].

In this work, we show how to use the deep transformer protein language model

ESM-1b to help select experiments associated with the protein discovery and protein

optimization phases of protein engineering pipelines. We then demonstrate how to

apply the computational model building techniques of fine-tuning and transfer learning

using the Transformer in each of these settings.

5.2 Materials and methods

5.2.1 Encoding a sequence and its protein target as input for ESM-1b

We use the deep Transformer Protein Language Model ESM-1b [66] to jointly model

interactions between a protein sequence, sbinder, and its protein binding target sequence,

starget (Figure 5.1). For our purposes, ESM-1b is a function ESM(·) that takes as input a

length n (tokenized) protein sequence, s, and outputs a tuple (R,L,A):

(R,L,A) = ESM(s) (5.1)

Here, R ∈ R1280 is the sequence representation, or feature-rich learned encoding ob-

tained from the final Transformer block. L ∈ Rn×k contains the logits returned by the

Transformer model. These logits can be used to assign an evolutionary probability

to each of k possible tokens (the 20 standard amino acids, nonstandard amino acids,

and special tokens internal to ESM-1b) at each position of the input sequence. Finally,
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MENSDS... AAAAA... EVPPTR...

sbinder slinker starget

Attention Map Encoded Sequence

Aintra Ainter
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Attention
Mechanism
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Feed-Forward
Neural Network
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33x
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Figure 5.1: We use a deep Transformer Protein Language Model to identify promising
sequences within protein engineering campaigns. Using Nb discovery and protein opti-
mization as two test cases, we introduce the Promise Score, and show how it can help
address the needle-in-the-haystack issue of identifying protein sequences with targeted
properties. To calculate a Promise Score, we specifically encode a sequence and its bind-
ing target through concatenation with a linker, and use this adjoined sequence as input
to the pre-trained ESM-1b model. This Transformer model uses an attention mecha-
nism that captures all expected pairwise interactions between residues within the input
sequence through an attention map. We use this map to quantify intermolecular and
intramolecular interactions within each protein sequence. The Promise Score reflects
these interactions, meaning stronger sequences should tend to have higher Promise

Scores than weaker sequences.

A ∈ Rn×n is the self-attention map returned by the final Transformer block’s attention

mechanism. This attention map is analogous to a predicted protein-protein interaction

map, and is the principal output from ESM-1b that we use.

We want to use ESM-1b to identify interactions between sbinder and starget. To do

this, we construct input sequence s to encode both of these sequences jointly. In our

experiments, we show that a simple concatenation scheme is effective. We encode each

input sequence s as:

s = concatenate(sbinder, slinker, starget) (5.2)

where slinker is a sequence of one of the following:

1. Alanine. An amino acid. A poly-alanine linker represents a flexible loop in s.
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2. <mask>. A special token used by ESM-1b.

3. No linker. sbinder and starget are concatenated without a separating linker.

ESM-1b imposes the constraint that any input protein sequence must be no longer

than 1024 residues. In our experiments, the combined lengths of sbinder, slinker and starget

was always considerably less than 1024. We experimented with linker lengths 10, 50,

and 100.

5.2.2 Formulating a Promise Score

In order to assess the promise of a given sequence sbinder as a focus for protein engi-

neering, we use the attention map for s to calculate a “Promise Score”. Treating the

attention map as a predicted protein-protein interaction map, we use it to calculate a

score that accounts for intermolecular interactions between sbinder and starget, and, when

appropriate, intramolecular interactions within sbinder. Let n, ℓ, and τ be the lengths of

sbinder, slinker, and starget, respectfully, and let N = n + ℓ + τ. We accomplish this by

first isolating sections of A that correspond to either intermolecular or intramolecular

interactions:

Ainter = A1:n,n+ℓ:N ∈ Rn×τ Aintra = A1:n,1:n ∈ Rn×n (5.3)

Ainter and Aintra represent intermolecular and intramolecular interaction profiles,

which we use to calculate separate intermolecular and intramolecular scores. We obtain

these profiles and scores for all sequences being considered for protein engineering. To

standardize the numerical scaling of these profiles in order to ensure fair comparisons

between different sequences, we apply min-max scaling to both as follows:

A′ =
A− min(A)

max(A)− min(A)
(5.4)
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The intermolecular interaction score Sinter is given as a sum over Ainter normalized

by the length of sbinder
1. For all aij ∈ Ainter:

Sinter =
1
n ∑

i,j
aij (5.5)

In our protein discovery experiments, we simply use Promise Score S = Sinter. In

many real-life protein engineering pipelines, a subsequent protein optimization stage

applies site-specific mutagenesis experiments to a functional but suboptimal baseline

protein sequence sbaseline. This could correspond to a lead sequence selected from a

previous protein discovery campaign, or a wildtype sequence that has been identified

previously. We obtain intramolecular interaction score Sintra by calculating a difference

between the intramolecular interaction profiles of sbaseline and sbinder. Where Bintra is the

intramolecular interaction profile for sbaseline, we obtain such a score as:

Sintra = ∥Bintra −Aintra∥2 (5.6)

The larger Sintra is, the greater the difference between intramolecular interaction pro-

files. We assume that the functional property of sbaseline is driven in part by the the

intramolecular interactions reflected by Bintra. This leads us to expect that a functional

sbinder should have an intramolecular interaction profile that is more similar than dissim-

ilar to Bintra. This reasoning motivates our formulation of the Promise Score S during

protein optimization— a linear combination of Sinter and Sintra:

S = Sinter − λSintra (5.7)

A promising design will have many intermolecular interactions and an intramolecular

interaction profile that is similar to a known functional baseline.

Hyperparameter λ ≥ 0 governs the degree to which the intramolecular term impacts

the overall score. In principle, any standard hyperparameter fitting method could be
1In our experiments, the length of starget does not change. To generalize to settings where this length

is variable, Eq. 5.5 should be further scaled by 1/mt, where mt refers to the length of target sequence t.
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applied to set λ. We have devised a means to automatically select λ that takes advan-

tage of the fact that Sinter and Sintra can be pre-computed for any sequence without the

need for an external label. As Sinter and Sintra are typically considerably different in

magnitude, our approach is to treat λ as a scaling factor between the two terms so that

one value does not dominate the other. Let S inter and S intra be the set of all Sinter and

Sintra computed for each sequence that is being evaluated. Let S inter refer to the mean

of S inter, and S intra the mean of S intra. We identify the scaling factor by taking a simple

ratio, and use this approach to select λ in all of our experiments:

λ =
S inter

S intra
(5.8)

5.2.3 Fine-tuning and knowledge transfer with ESM-1b

While we have so far used the pre-trained ESM-1b model as-is in order to calculate

Promise Scores, we now describe how it can be fine-tuned in order to learn a model that

predicts the binding strength between sbinder and starget. In order to imbue ESM-1b with

the ability to provide such a prediction, we attach a three-layered neural network to the

head of the model. In other words, ESM-1b’s learned representation serves as input for

the neural network head. Fine-tuning occurs during model training. During backpro-

pogation, we fine-tune by updating the parameters of ESM-1b’s final Transformer block

in conjuction with the parameters of the neural network head. All other ESM-1b param-

eters are left fixed at their pre-trained state. In our experiments, the neural network head

consists of three linear layers connected by rectified linear unit (ReLU) activation func-

tions. The full model is trained using cross-entropy loss for 30 epochs using PyTorch’s

AdamW optimizer [125, 126] with default parameter settings (learning rate γ = 1e−6,

β1 = 0.9, β2 = 0.999, and weight decay coefficient λ = 0.01).

We expect that it would be beneficial to be able to take knowledge gained in one en-

gineering campaign and apply it to that of another (related) campaign. To this end, we

show the ability to transfer knowledge learned from one protein engineering objective
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to another within the discovery and optimization stages. Within protein discovery, we

use models for protein binding learned from Nano-HSA data and show their ability to

predict binding on Nano-GST data, and vice-versa. Similarly within protein optimiza-

tion, we take models learned from BRCA1-BARD1 binding data and show their ability

to predict binding between Spike and ACE2, and vice-versa.

5.2.4 Data

We use the Promise Score at two phases of the protein engineering pipeline— protein

discovery and protein optimization. Table 4.2 provides an overview of the data we use

in our experiments.

At the protein discovery phase, we show how to use the Promise Score to select

lead sequences from two Nb repertoire data sets [127]. The repertoires were previously

collected from an immunized llama using protein targets human serum albumin (Nano-

HSA) and glutathione S-transferase (Nano-GST). The relative binding strengths of each

Nb sequence to its target sequence was originally provided as a categorical label, where

one of the three possible labels corresponds to strong binding sequences. We re-labeled

each sequence as "strong binding" or "not strong binding" to obtain a binary descriptor

for relative binding strength, which we use in our experiments. In total, the Nano-HSA

data set contains 20,670 Nb sequences and the Nano-GST data set 51,330. The percentage

of strong binders in Nano-HSA and Nano-GST was 47.5% and 31.1%, respectively.

When computing Promise Score S with these data, we let sbinder be the full Nb se-

quence. However, when obtaining Ainter, we focused our attention on the CDR3 region

of each Nb by only considering the region of attention map A that corresponds to in-

termolecular interactions between the CDR3 and target sequence. Figure B.1 shows the

distributions of CDR3 sequence lengths for both repertoires.

At the protein optimization stage, we show how to use the Promise Score to select

mutagenesis experiments for two different proteins— BRCA1 and Spike. We obtained
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Table 5.1: An overview of the data we used to evaluate the Promise Score. The sequence
IDs are given as the DataBase:ID indicating where the sequence can be accessed, or are
NA (not applicable).

Dataset Baseline ssequence starget Total sequences "Strong" percentage

Nano-HSA NA UniProt:P02768 20,670 47.5
Nano-GST NA UniProt:P08515 51,330 31.1
BRCA1 PDB:1JM7 PDB:1JM7 1389 10
Spike PDB:6M0J PDB:6M0J 3651 10

BRCA1 sequences from single site mutational scans [82] that measured the downstream

activity caused by interaction between BRCA1 and its binding target protein BARD1.

Spike sequences were similarly obtained from single site mutational scans [84] that mea-

sured the binding affinity between Spike and its binding target protein ACE2. These are

the same data previously described in Sections 4.2.3 and 4.2.4, respectively. We obtained

binary labels for both datasets by binning the raw experimental values, where the top

10% were labeled as "strong" sequences, and the rest "not strong".

5.3 Experiments and results

5.3.1 The Promise Scores of strong and weak sequences are different

In order for the Promise Score to provide an effective means for selecting sequences

for protein engineering, the scores of known strong binders should be distinguishable

from those of weak binders. According to how the Promise Score is formulated, we

further expect that the scores of strong binders should be generally higher than those of

weak binders. For both Nb discovery and protein optimization, we computed Promise

Scores for all sequences using different linker types and lengths, and compare how

strong binders were scored relative to weak ones. The raw scores are only comparable

within a given linker type and length— the relative ability to discern strong from weak

binders is what can be compared.

During Nb discovery (Figure 5.2-top), there is a significant difference in the distribu-
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Figure 5.2: We calculated Promise Scores for each sequence identified within two Nb
discovery campaigns (Top) and two protein optimization campaigns (Bottom), and com-
pare how “strong” sequences scored compared to those that were “not strong”. In each
case, strong binders had an average Promise Score greater than sequences that were not
strong. These differences were either statistically significant (p < 0.05 denoted with *,
Mann-Whitney U-test), or had a p-value just above the 0.05 threshold (BRCA with no
linker— p = 0.066).

tion of Promise Scores of strong and weak binders for each linker type and length, and

the average score of strong scoring sequences is higher than that of weak binders. For

Nano-GST, using no linker obtains Promise Scores that have greatest ability to discern

strong from weak binding Nb sequences on average. For Nano-HSA, a length 100 ala-

nine linker provides the greatest ability to discern. For both Nano-HSA and Nano-GST,

calculating a Promise Score using a mask linker of any length or a length 50 alanine

also confers the ability to discern strong from weak binders (Figure B.2-top).

During protein optimization (Figure 5.2-bottom), in all but two cases, there is again a
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Figure 5.3: We used Promise Scores to help identify potential lead sequences from two
Nb discovery campaigns. We found that Promise Score derived methods identified se-
quences that were enriched with strong binders, and often identified a higher frequency
of strong binders compared to other sequence-based calculation methods. In both Nb
discovery campaigns, the best overall strategy used the Promise Score.

significant difference in the distribution of Promise Scores of strong and weak binders

for each linker type and length, where the stronger sequences have a higher Promise

Score on average than their weak counterparts. The exceptions are with BRCA1 using

no linker and a length 10 mask linker, though they just barely misses the threshold for

significance at p = 0.066 and p = 0.054, respectively. In general, the Promise Scores

for each linker type and length in protein discovery and protein optimization provides a

narrow (but still real) ability to discern strong from weak binders. This also includes us-

ing a mask linker or length 50 alanine (Figure B.2-bottom). We found that including the

Sintra term in Equation 5.2.2 ensured this ability to discern strong from weak sequences

(Figure B.3).

5.3.2 The Promise Score identifies beneficial experiments

Since strong binders tend to have higher Promise Scores than weak binders, we can use

the score to rank the sequences in a repertoire and expect that a set of top-ranked se-

quences will be enriched with strong binders. Figure 5.3 demonstrates this for different

sized subsets obtained by taking the top 1, 2, . . . , 100 sequences ranked by the Promise
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Score. Thus, the Promise Score may be useful as a means to identify binders.

During protein discovery, we compare the cumulative strong binder enrichment for

the top 100 sequences obtained using the Promise Score calculated with no linker, 10

length alanine, and 100 length alanine linkers. The enrichment is given as the ratio of the

observed strong binder frequency at a given sample size to the expected strong binder

frequency (i.e. the underlying true strong binder frequency). We compare to sequence-

derived calculations commonly used to assess Nb sequences when identifying potential

lead sequences. Though none of these metrics directly measure a protein’s ability to

bind a target, they measure qualities that are reasonably expected to correlate with this

property. These metrics include:

1. CDR3 Length. The number of residues within the CDR3. While an optimal CDR3

length depends on the particular target sequence, previous analysis [127] of the Nb

sequences used in our experiments determined that sequences with shorter CDR3

tended to be stronger binders.

2. Nb Isoelectric point (pI). [128, 129] The pH where the Nb carries no net electrical

charge. Low pI Nbs are more likely to aggregate, which can lead to inactivation

and induces immunogenicity [130].

3. CDR3 Hydrophobicity. The frequency of hydrophobic residues within the CDR3.

The prevalence of hydrophobic residues can increase the propensity for aggrega-

tion [131].

4. Nb Flexibility. [132] The relative mobility of Nb residues. An Nb with greater

flexibility may have greater ability to bind its target.

We ranked all sequences according to these metrics and report the cumulative strong

binder enrichment of the top 100 sequences. CDR3 length and hydrophobicity are

ranked in ascending order, whereas Nb isoelectric point and flexibility are ranked in
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descending order. We also used the logits produced by ESM-1b to calculate a probabil-

ity under the ESM-1b model for the CDR3 of each sequence. We do this by computing

the softmax over the logits associated with each position of the CDR3. The probability

is then given as the product over the probabilities assigned to each residue present in

the sequence. We only used the Nb sequences as input for ESM-1b when calculating a

probability, rather than the sequence concatenated to the target sequence, and report the

cumulative strong binder enrichment of the top 100 most probable sequences.

With Nano-GST (Figure 5.3-left), the Promise Score computed with no linker and a

length 10 alanine linker have a cumulative strong binder enrichment greater than two

at almost every sample size up to 100. At sample size 100, they produce two of the

highest cumulative strong binder enrichment values, along with a length 50 alanine

linker (Figure B.4-left). Using the Promise Score computed with a length 100 alanine

linker struggles to identify strong binders for the top 50 scoring sequences, but by sam-

ple size 100 produces a cumulative enrichment greater than 1.5. Calculating a Promise

Score using a mask linker tends to have a strong binder enrichment less than 2 (Figure

B.4-left). Among the sequence-based calculations, hydrophobicity tends to produce the

highest cumulative enrichment, and typically ranks between no linker and alanine 10.

The shortest CDR3 are enriched with strong binders, but the enrichment fades by sam-

ple size 100. The isoelectric point of Nb sequences is generally not enriched for strong

binders at these sample sizes, and neither are the probable sequences under the ESM-1b

model.

With Nano-HSA (Figure 5.3-right), the Promise Score computed with no linker and

a length 100 alanine linker are consistently the two strategies that yield the greatest

strong binder enrichment. Both have cumulative enrichment greater than two across

all sample sizes up to 100. Using any length mask linker or 50 length alanine yields

an enrichment greater than 1.5 for each sample size up to 100 (Figure B.4-right). The

most probable sequences under the ESM-1b model also fare well, with a strong binder

enrichment consistently right around 2. The Promise Score calculated with a length



5.3. EXPERIMENTS AND RESULTS 103

No l
ink

er
Ala-

10

Ala-
10

0

ES
M pr

ob

Ra
nd

om
0.00

0.05

0.10

0.15

0.20

0.25

St
ro

ng
 se

qu
en

ce
 fr

eq
ue

nc
y

BRCA

No l
ink

er
Ala-

10

Ala-
10

0

ES
M pr

ob

Ra
nd

om
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

St
ro

ng
 se

qu
en

ce
 fr

eq
ue

nc
y

SPIKE

Figure 5.4: We used Promise Scores to select 10 site-specific mutagenesis experiments
on each of BRCA1 and Spike. For most linker types and lengths, the Promise Scores

identified sites that had a higher strong sequence frequency than selecting randomly or
using evolutionary sequence probabilities.

10 alanine linker has the lowest strong binder enrichment among the ESM-1b derived

metrics. Each of CDR3 length, CDR3 hydrophobicity, and Nb isoelectric points tend

to have cumulative strong binder enrichment that is lower than using no linker or a

length 100 linker, but higher than the length 10 linker. Sequences predicted to have high

flexibility are not enriched for strong binders.

To summarize across both Nb discovery campaigns, the no linker Promise Scores

most consistently identified sequences enriched with strong binders. Among the com-

parison metrics, each of the isoelectric point, protein flexibility, and ESM-1b were inconsistent–

sequences selected according to each were enriched with strong binders in one campaign

and not in the other. While both hydrophobicity and CDR3 length consistently identified

sequences enriched with strong binders, at most sample sizes, the enrichment was lower

than that obtained by the no linker Promise Score.

We also show how the Promise Score can be used to select site-specific mutagenesis

experiments during protein optimization. Rather than selecting from a set of discovered

sequences, the task here is to select specific positions from a baseline sequence at which

to conduct single-site mutagenesis. The intent is to select the positions that will cumu-

latively yield the highest percentage of strong binders. To do this, we first obtain the
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Promise Score for each individual (linked) variant sequence. We then take the top 500

scoring sequences, and identify at which position each sequence is variant relative to the

baseline sequence. We treat this tally as a “vote", and the selected sites correspond to the

positions that obtain the most votes. In our experiments, we identified the top 10 sites.

Figure 5.4 shows the strong binder frequency obtained by this procedure on the BRCA1

and Spike protein optimization sequences.

With BRCA1 (Figure 5.4-left), the Promise Score calculated with no linker identi-

fied sites that yielded the highest percentage of strong binders. Alanine with length 10

linker also performed well and had the second highest strong binder frequency. The

length 100 alanine linker had the third highest strong binder frequency. We generally

found that short mask linkers were also effective (Figure B.5-left). To better quantify how

enriched for strong binders these experiments were, we simulated randomly selecting

mutagenesis sites 50 times for comparison. Both no linker and a length 10 alanine linker

have greater strong frequency enrichment relative to the random sampling. The length

100 alanine linker performed comparably to random sampling. We also calculated the

probability of each variant sequence under the ESM-1b model, and used those proba-

bilities to select single sites for mutagenesis. We used the same voting scheme as with

the Promise Score, but instead used the sequence probabilities. The sites with most

probable sequences yielded strong binders at frequency similar to random sampling.

With Spike (Figure 5.4-right), the Promise Score calculated with alanine linkers yield

the highest strong binder frequency. The length 10 linker was highest and the length 100

linker second highest. Using no linker yielded the third highest frequency. All three of

these approaches performed similarly to each other and better than random sampling.

We found that using a mask linker was generally less effective than using an alanine

linker (Figure B.5-right). The sites selected by the most probable sequences under the

ESM-1b model were not enriched for strong binders, and had a lower strong binder

frequency than random sampling.
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5.3.3 The attention map provides insights into protein-target

interactions

In addition to identifying strong binders for the purposes of protein engineering, Promise

Scores can also provide biological insights about the modes of interaction between a

protein sequence and its target protein. To calculate any Promise Score, we use the

attention map to quantify intermolecular interactions between a protein sequence sbinder

and its target starget, given by Ainter. The rows of Ainter correspond to each position of

sbinder, whereas the columns correspond to each position of starget. While calculating the

Promise Score involves summing over all of Ainter, we can sum over the columns to in-

stead obtain a per-residue score for the target sequence. We use these per-residue scores

to identify specific residues on starget that are expected to interact the most with a given

sbinder. To identify the target residues predicted to be most involved in intermolecular

interactions, we took the top 10% of protein sequences according to Promise Score, and

used these sequences to obtain an average per-residue score for the target residue. We

then identified target residues that scored in the top 20 percentile as those most strongly

believed to be involved in intermolecular interactions. Figures 5.5 and 5.6 show these

per-residue scores overlaid on 3D structures of each tested protein (Figures B.6 and B.7

shows each of these structures rotated 180◦).

In a Nb discovery campaign, identifying target residues involved in intermolecular

interaction is akin to identifying Nb epitopes. With both Nano-GST and Nano-HSA, we

compared the strongest scoring residues on target proteins to experimentally validated

epitope regions. With Nano-GST (Figure 5.5-top left), we identified 42 GST residues

predicted to be involved in intermolecular interactions. Of these identified residues,

12 of them are located within the experimentally validated E3 epitope. E3 was the

strongest validated epitope, as 50% of the tested Nbs bound to this region. Seven of

the 12 residues are singletons within the E3 region located at residues 158-200, and the

other five residues are at the contiguous E3 region at residues 213-217. Of the remaining
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Figure 5.5: We use intermolecular contact map Ainter to calculate residue-specific scores
to identify residues that contribute the most to intermolecular interactions. With Nb dis-
covery, we highlight overlap between our top scoring residues and epitopes previously
validated through cross-linking mass spectrometry (Top). The magenta spheres indicate
this overlap. Each other colored sphere indicates a residue within a validated epitope
region. The red sticks correspond to top scoring sites that did not fall in any validated
region (denoted “Miss"), and the gray sticks indicate all other residues within the pro-
tein sequence. (Bottom) The heatmaps show the relative values of the residue-specific
scores across the entire target protein. The coloring scale is normalized for each indi-
vidual protein to show the relative scores of residues on a given protein (i.e. red shaded
residues on GST are the highest scoring residues on that protein, but may have different
Promise Scores than the red shaded HSA residues). The structures we used are given
by PDB IDs 1DUG and 1AO6.
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Figure 5.6: We use intermolecular contact map Ainter to calculate residue-specific scores
to identify residues that contribute the most to intermolecular interactions. With protein
optimization, we show structures of each protein bound to its target. (Top) The spheres
indicate residues known to play a role in protein-target binding. Those shaded magenta
were identified by the per-residue scoring. Red sticks indicate residues outside this
binding region that were also identified. Dark gray sticks indicate starget residues, and
light gray sbinder residues. (Bottom) The heatmaps show the relative values of the residue-
specific scores across the entire sbinder-starget complex. The coloring scale is normalized
for each individual protein to show the relative scores of residues on a given protein (i.e.
red shaded residues on BRCA1 are the highest scoring residues on that protein, but may
have different Promise Scores than the red shaded BARD1, Spike, or ACE2 residues).
The structures we used are given by PDB IDs 1JM7 and 6M0J.
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identified residues, one fell within the E2 epitope region (residue 125), and the rest did

not fall within one of the validated epitope regions.

With Nano-HSA (Figure 5.5-top right), we identified 98 HSA residues predicted to

be involved in intermolecular interactions. These predicted interacting residues overlap

most strongly with validated epitopes E1 and E3. For E1, these include the contiguous

region at residues 23-25, 113-114, and 126-127, as well as the singleton residues 28, 111,

116, 118, 123, and 138. For E3, these include the contiguous regions at residues 5-13

and 93-94 as well as singletons at residues 96 and 98. 5% of the validated Nbs bound to

epitope E1 and 20% at epitope E3. There were two sporadic singleton residues identified

in other validated epitopes, residue 172 in E5, and residue 301 in E2. The remaining

selected residues did not fall in one of the validated epitope regions, though blanketed

the protein region surrounding epitopes E1, E3, and E5.

We performed similar analyses with both of the protein optimization protein se-

quences (Figure 5.6). In addition to computing per-residue scores for starget, we also

computed per-residue scores for sbinder by summing over the rows of Ainter. As with

the starget per-residue scores, we identified the top 20% of residue scores as those most

involved in intermolecular interactions. We found 3D structures for both the BRCA1-

BARD1 (Figure 5.6-left) and Spike-ACE2 complexes (Figure 5.6-right), and highlight the

residues on sbinder and starget that had highest scores indicative of intermolecular inter-

actions. In general, we found that the largest contiguous cluster of identified residues

were located at the protein-target binding interface.

Binding between BRCA1 and BARD1 is known to be driven by interactions between

BRCA1 residues 8-22 and 81-96 and BARD1 residues 36-48 and 101-116 [133]. Of the 23

high scoring BRCA1 residues we identified, 10 of them fell within these regions (residues

14-15, 18-19, 21-22, 86, 93, and 95-96), and the remaining high scoring residues flanked

each of these regions (residues 24, 26-27, 41-42, 79, and 97-103). Similarly, 10 out of the

24 BARD1 residues we identified fell within these ranges (residues 36-38, 42, 45, 102,

105, 108-109, and 112), and the rest also flanked these regions (residues 27-35, 49, 51, 54,
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99, and 134).

Spike-ACE2 binding is facilitated through specific interactions between 17 different

Spike residues and 20 different ACE2 residues [134]. We identified 39 Spike residues

expected to be most involved in intermolecular interaction, two of which overlap with

the known interacting residues. While some of the non-overlapping residues are in the

vicinity of these binding regions, we found that identified residues were widely spread

across the entire Spike protein. With ACE2, we identified 121 residues, including 13

of the known interacting residues. While many of the non-overlapping residues were

again in the vicinity of the known binding region, many were also spread throughout

the ACE2 protein.

In order to demonstrate that the per-residue patterns we have described above did

not arise by chance, we simulated randomly selecting residues for each protein system.

In each case, we randomly selected a number of residues equal to the amount identified

by the per-residue Promise Score. Over 50 replicates, we identified the frequency with

which these randomly selected residues fell within a known binding area, and compared

these frequencies to those obtained with the Promise Score selected residues. Indeed,

for each of the regions that we identified substantial overlap between the residues se-

lected by the per-residue Promise Scores and a known binding region, we found that

the Promise score selected residues within that region at a rate higher than if selected at

random (Figure B.8).

We investigated Promise Scores’ ability to predict whether particular residues fall

within the previously determined epitopes or binding regions. With respect to the two

Nb repertoires (Figure B.9), we found that Promise Scores were able to identify residues

within select epitopes better than a random model (i.e. those where we previously

identified overlap), but were ineffective at predicting, in general, whether a given starget

residue fell within any epitope. With protein optimization (Figure B.10), Promise Scores

are able to identify residues that fall within the BRCA1, BARD1, and ACE2 binding

regions better than a random model, but are ineffective at identifying residues within
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the Spike binding region.

Finally, to better understand how ESM-1b interprets the alanine linkers that we used

to separate sbinder and starget, we computed per-residue Promise Scores using the rows

of attention map A that correspond to slinker (Figures B.11 and B.12). This shows how

ESM-1b believes the linkers interact with components of the actual protein sequences

sbinder or starget, as well as with slinker itself. In all the protein systems that we tested,

we found that the Promise Scores tend to be highest in the regions of the sequence

that correspond to the linker interacting with itself. While there is always a degree of

predicted interaction between the linker and sbinder or starget, these interactions tend to

be fairly uniform, with the exception that sometimes the residues that are sequentially

adjacent to the linker region will have increased interaction.

5.3.4 Using ESM-1b to learn models for protein binding

Having used ESM-1b to prioritize sequences expected to strongly bind their target, we

now show to what extent we can use ESM-1b to learn predictive classification models for

this targeted property. With Nb discovery, we randomly selected 5000 sequences from

Nano-GST and Nano-HSA to serve as two separate training sets, and another 15,000

sequences from each as testing sets. Within a protein engineering context, the training

sequences are analogous to a preliminary round of experimentation carried out for the

purpose of collecting initial data. We then used fine-tuning to train two classifiers, one

that was trained with Nano-GST, and one that was trained with Nano-HSA. We then

used these models in a traditional (i.e. used to predict binding strength to the same

target sequence used during training) and transfer learning manner. As a point for

comparison, we also trained classifiers without fine-tuning. That is, during training, we

only updated the parameters of the neural network head, and left all ESM-1b parameters

fixed. This demonstrates the ability to simply use the pre-trained representations when

learning a model for protein binding. We also used these models in both the transfer
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Figure 5.7: ROC curves for models trained to classify strong and weak sequences for
both Nb discovery (top) and protein optimization (bottom). Orange curves correspond
to models that used fine-tuning, and blue those that did not. Solid curves correspond to
models applied in a traditional machine learning paradigm, whereas dashed lines used
transfer learning. With Nb discovery, fine-tuned models used in the traditional setting
were very strong. While all models learned in protein optimization were of lower quality,
we found that fine-tuning with and without transfer performed better than a random
classifier with Spike (Bootstrapping with n = 1000, p < 0.05).
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and traditional learning settings.

We obtained comparable results with both Nano-GST and Nano-HSA (Figure 5.7-

top). Fine-tuned models used traditionally were far and away the best at predicting

binding strength. The model used to predict Nb binding strength with GST had an

AUC of 0.988, and the model used to predict Nb binding strength to HSA an AUC of

0.958. The non-fine-tuned models that used pre-trained representations were second

best, though clearly less effective than their fine-tuned counterparts. The AUC obtained

were 0.795 with GST and 0.753 with HSA. We found that knowledge transfer hurt the

predictive capability of both the fine-tuned and non-fine-tuned models. The non-fine-

tuned models were hurt less, and still achieved an AUC of 0.712 with GST and 0.683 with

HSA. Fine tuning combined with transfer learning essentially yielded random classifiers,

as the models has AUC of 0.514 and 0.474 with GST and HSA, respectively. We found

similar results for each linker type used in the input sequence encoding (Figure B.13).

We next used ESM-1b to train classifiers using the two sets of protein optimization

sequences. For both BRCA1 and Spike, we randomly selected 75% of the single residue

sites in each protein. We used the sequences previously obtained via single-site mutage-

nesis at these selected positions as training data. The mutatations at all other sites were

then used as test data. We again trained models with and without fine-tuning, and used

both in a traditional and transfer setting.

While we were able to obtain at least one reliable classification model for protein

binding using fine-tuning with the Nb discovery data, we found that it was much more

difficult to do so within the context of protein optimization (Figure 5.7-bottom). To

better quantify the performance of the models trained using BRCA1 and Spike protein

sequences, we used bootstrapping (n = 1000) to collect a sample of AUC values, and

used this sample to calculate p-values from z-scores to ascertain whether each model’s

AUC was different than a random model (i.e. an AUC of 0.5). With BRCA1, we failed to

reject the null hypothesis in each case (p > 0.05). With Spike, we were able to reject the

null hypothesis with both fine-tuned models (p < 0.05). The model using fine-tuning
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with transfer had an AUC of 0.671, while the model with fine-tuning and no transfer

had an AUC of 0.567. The traditional learning models performed no better than random

classifiers (p > 0.05). As with Nb discovery, we found that using different linkers led to

similar trends (Figure B.14).

5.4 Discussion

We have shown how to use the deep Transformer Protein Language Model ESM-1b to

calculate a Promise Score that can prioritize specific sequences and be used to guide

protein engineers towards designs that are more likely to bind to a given target. We

believe this can lead to more efficient and successful protein engineering campaigns.

5.4.1 The role of linkers when computing Promise Scores

In our experiments, we hypothesized that self-self attention maps would reveal, in a

coarse-grained fashion, the interactions between a sequence sbinder, and a binding part-

ner starget. We tested this hypothesis by first concatenating sbinder and starget with a sepa-

rating linker, and use this as input to the ESM-1b model. Strictly speaking, ESM-1b was

not designed with this use case in mind. Rather, the model was trained using millions of

monomer sequences, and has been used to describe secondary structures or make down-

stream predictions for singular protein sequences. And yet, when we use the attention

map generated with our concatenated protein-target sequence, we are able to calculate

Promise Scores that tend to favor strong binders. From a biological perspective, this

suggests that the types of interactions present in the monomers used to train ESM-1b are

informative enough to identify the intermolecular interaction between a protein and its

binding partner. From a modeling perspective, this suggests that representation learning

approaches trained on monomers are strong enough to identify the ways that multiple

sequences interact with each other.
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Where we used linkers, we experimented with two types— a polyalanine, and the

special <mask> character that is internal to ESM-1b. Alanine’s simple methyl side chain

makes it a flexible amino acid. The idea was that the model may interpret a chain of

alanines as a “tether” connecting the protein sequence and its target protein sequence.

The flexibility would allow the two protein sequences to interact as if they were two

unconnected proteins in close proximity. The <mask> character is used when training

ESM-1b. Random residues are replaced with the <mask> character, and the model

learns to predict which residue belongs where the <mask> is placed. In our use, the

<mask> character denotes space between sequences without specifically committing to

any particular residue type that may bias the interactions between residues.

Generally speaking, we found that using no linker always produced a high degree of

strong sequence enrichment. We found that using a linker could occasionally perform

better than no linker, but not overwhelmingly so. When comparing the two linker types,

we found that the natural amino acid alanine produced more consistent results, whereas

there was much greater variance in the performance of Promise Scores calculated with

<mask> linkers. For future work, we would recommend using no linker or a short

alanine linker.

When we investigated how ESM-1b may interpret the linker, we found that the atten-

tion map indicates the model places highest attention on interactions between the linker

and itself as opposed to the linker and sbinder or starget. Since the linker is ultimately an

unnatural sequence, perhaps this suggests that ESM-1b has a general ability to detect

unnatural sequences. More pertinent here, it seems that this effect increases as does the

linker length. This perhaps explains our observation that longer alanine linkers lead

to less reliable Promise Scores— ESM-1b’s attention is preoccupied by these unnatural

sequences to the detriment of identifying real interactions between sbinder and starget.
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5.4.2 The generalizability of Promise Scores

We first showed how to use Promise Scores to select lead sequences using Nbs ob-

tained from two different Nb discovery campaigns. Notably, we showed that Promise

Score selected sequences are often stronger than sequences selected by a number of

sequence-based scoring metrics. This again shows the power of representation-learning

approaches like ESM-1b. Despite not being trained to know anything about the bio-

physical properties of a given protein sequence, we show that we can use the model to

make inferences about the relative strength of a protein with greater effect than using

biophysical calculations.

We also showed how to use Promise Scores to select single site mutagenesis experi-

ments during protein optimization. The primary task associated with protein optimiza-

tion is considerably different than that of Nb discovery. Rather than identifying a subset

of promising sequences from a naturally large and diverse repertoire, the goal is to iden-

tify specific sites on a baseline sequence to perform single-site saturation mutagenesis.

As a result, the set of sequences under consideration will be smaller and more uniform

than those encountered during Nb discovery, both of which add to the challenge of this

task. We overcame this challenge by adding an extra term (Sintra) to the calculation of

Promise Score S that accounted for intramolecular interactions. The formulation of

Sintra is consistent with protein optimization— we want to identify sequences that en-

hance an already existing feature of a baseline sequence. So while we have shown the

effectiveness of computing particular Promise Scores for Nb discovery and protein op-

timization, the more general point is that we have shown an ability to formulate scoring

functions using the attention map of a Transformer Protein Language Model that are

tailored to specific protein engineering objectives. We believe that our work can serve as

a baseline for different protein engineering objectives that have different constraints and

assumptions.

While we have demonstrated how the Promise Score may be used in isolation to



116 CHAPTER 5. IDENTIFYING PROMISING SEQUENCES

prioritize protein sequences during Nb discovery and protein optimization, we know

that most protein engineering pipelines are multi-facteted. They often include different

types of analyses that have somewhat orthogonal yet complementary focuses. These

may include genomic assays that identify DNA-protein interactions [135], molecular

modeling that predict molecular dynamics and structure [136], or phylogenetic analyses

that uncover genomic relationships between related species [137]. We want to emphasize

that using Promise Scores is similarly complementary, as they can be used to prioritize

sequences at any and all stages of complex protein engineering pipelines.

Finally, we believe it is important to note that Promise Scores can be computed

using any Transformer Protein Language Model, not just ESM-1b. While we found

ESM-1b to be an effective and convenient model with which to showcase this ability, any

model that uses self-attention could be used in its place. Our intent is not to champion

one Transformer model over the other, but to demonstrate that this class of model can

be used to prioritize protein sequences within the context of protein engineering. We

see this as a strength of the approach, as it can be easy to implement using new and

improved models and they become available. Indeed, even the authors of ESM-1b have

released other versions of Transformer Protein Language Models with differing designs

and specifications since we began working with ESM-1b [138, 139, 140]. We leave formal

comparisons between Transformer Protein Language Models applied towards this goal

to future work.

5.4.3 ESM-1b as a coarse-grained model for intermolecular

interactions

While the Promise Score is a singular numeric value that reflects the promise of a

sequence in its entirety, we showed that we can also easily obtain per-residue scores for

sbinder or starget. Using these per-residue scores, we show that we can identify specific

residues that are known to be involved in intermolecular interactions. More generally,
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we believe these results demonstrate that ESM-1b can be viewed as a coarse-grained

model for intermolecular interactions. With each set of sequences that we used, we

observed that the “hits” and “misses” tended to congregate in regions of each protein

that have highest concentration of known interacting residues.

In the case of Nb discovery, we used these per-residue scores to identify potential

epitopes, and compared these findings to experimentally validated epitope sites. It is

important to note that the experimental validation consisted of cross-linking models at

sites chosen by computational molecular docking. The validation thus does not provide

any evidence for or against potential epitopes beyond the sites that were tested. Addi-

tionally, the experimental validation only used 24 Nb sequences, meaning the reported

binding percentages are noisy estimates of the true underlying values. We believe these

contributed to our finding that Promise Scores did not effectively predict whether a

given starget residue fell within one of these epitope regions— it is likely that these

regions do not actually correspond to ground truth binding regions for many of the

epitopes within the repertoire, including those that are known to be strong binders.

Still, across two sets of Nb discovery sequences, the per-residue scores identified sites

that overlapped three out of eight total validated epitope regions, as well as identifying

many sites outside these regions. We believe that this is an encouraging sign that Protein

Language Models like ESM-1b are able to identify specific residues that are expected to

contribute to intermolecular interactions. Such an ability could allow protein engineers

to better pinpoint the regions in a protein of interest that should be investigated within

an protein optimization campaign. Of course, we also made simplifying assumptions

in our work that contribute to disagreement with the validation analyses. For one, we

only considered interactions involving CDR3, so any effect caused by CDR1 or CDR2

are unaccounted for entirely. As such, we see these analyses as a jumping off point for

future work that identify epitope, or even paratope sequences.

Applied to protein optimization, we investigated not only finding per-residue scores

for starget, but also doing so for sbinder. For the BRCA1-BARD1 complex, nearly half of
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the residues that we identified fell within the known binding interface. This strongly

suggests that high per-residue scores obtained from Ainter do indeed identify residues

involved in intermolecular interactions. In the case of Spike-ACE2, we identified more

than half of the known interacting ACE2 residues, though only two out of the 17 known

interacting Spike residues. This highlights an important distinction behind how we

compute scores for each starget (ACE2) and sbinder (Spike). For each sequence used, starget

is unchanged, whereas each sbinder differs from all others at exactly one residue (due

to each Spike sequence having been obtained from a single site mutation scan). Thus,

the distribution of high scores throughout the Spike sequence indicates that the model

believes different mutations affect the residues that interact at the binding interface. This

capability could be used to generate hypotheses about how mutations affect binding

patterns between a protein and its partner. Still, that the vast majority of known ACE2

interacting residues were identified indicates that the Transformer accurately identifies

interacting residues within the Spike-ACE2 complex.

5.4.4 Model learning within the context of protein engineering

Having a predictive model for the targeted property in a protein engineering campaign

could serve as an invaluable asset, as it can serve as a tool that helps with sequence

design decisions. For this reason, we investigated how well we could learn such models

using ESM-1b. First, we compared fine-tuning ESM-1b to using the sequence represen-

tations from the pre-trained model, and found that fine-tuning worked very well with

the Nb discovery setting. With protein optimization, we found it difficult to learn reli-

able models with or without fine-tuning. We believe this ability to learn reliable models

with Nb discovery but not with protein optimization can be explained by differences

between these data. As discussed in Section 5.4.2, the Nb discovery data is both more

diverse and contains more sequences than the protein optimization data. Diversity and

data quantity are well-known factors that influence the ability to train machine learning
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models [141]. This highlights an important consideration for the experimental design

choices within protein engineering campaigns. Our work suggests that single-site mu-

tagenesis experiments across relatively short spans of a protein sequence may not yield

informative enough data for accurate model learning. If obtaining a reliable predictive

model is imperative or desirable when using single-site mutagenesis, protein engineers

may want to consider ways to inject greater diversity into their experiments.

In addition to fine-tuning, we also investigated the viability of knowledge transfer

when training models. The ability to use knowledge transfer would allow protein engi-

neers to take what they learn during one engineering campaign and apply it to another.

With the Nb discovery data, we found that knowledge transfer was less harmful com-

pared to not using knowledge transfer if using the pre-trained representations rather

than a fine-tuned model. This makes sense— a fine-tuned model is adapted to work

with a specific sbinder-starget pair, so using it on different data would be counter pro-

ductive. Interestingly, with the Spike protein optimization data, we found that using

knowledge transfer with fine-tuning yielded a model with higher AUC relative to using

knowledge transfer with no fine-tuning. One thought as to why we may see an improve-

ment in this case again relates back to the issue of diversity. Perhaps being trained on a

set of sequences that were different entirely than those being tested on actually provided

a greater degree of diversity that led to slightly better performance. As a final point, we

only tried a very basic form of transfer learning in each of these cases, where we use one

data set to train a model (e.g. Nano-HSA), and make prediction on a separate data set

(e.g. Nano-GST). It is conceivable that having access to many different data sets to use

during training could improve the model’s performance.





Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this dissertation, we addressed sequential decision making problems in two biological

domains— general laboratory experimentation via a Cloud Lab and protein engineering.

We introduced our algorithm protocol in Chapter 3, which used the unique capa-

bilities of the Cloud Lab to automate the optimization of experimental parameteriza-

tions. protocol is a bound-based Bayesian optimization algorithm that builds off of the

theoretically-grounded imgpo. Our innovation is to make this optimization paralleliz-

able by calculating a Pareto-optimal frontier that selects multiple experimental parame-

terizations. These experiments can be executed asynchronously in the Cloud Lab, and

the chosen parameterizations represent a balance between exploration and exploitation.

We used protocol in both a simulated and real Cloud Lab environment. In the

simulated lab, it outperforms alternative approaches to Bayesian optimization in terms

of its ability to find optimal configurations, and the number of experiments required

to find the optimum. In the real-world lab, the algorithm makes progress towards the

optimal setting. We believe this work marks the first such instance of academic research

based on the Cloud Lab environment, and hope that it can act a springboard for future

advances using this technology.
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In Chapter 4, we introduced a regularized approach to ML-assisted DE via Bayesian

optimization. We evaluated two approaches, one based on structure and the other based

on evolutionary constraints. Our results suggest that structure-based regularization us-

ing an EI or PI acquisition function usually leads to designs with higher fitness compared

to unregularized approaches. In the absence of a structure model, it is natural to con-

sider the use of a sequence-based regularization term. However, our results demonstrate

that such terms do not lead to reliably better designs, at least for the specific proteins

we considered.

Previous research had demonstrated that ML-assisted DE can reduce the experi-

mental burden, relative to traditional DE. Our results demonstrate that ML-assisted DE

via Bayesian optimization decreases the experimental burden further, compared to the

method in Wu et al. [64]. We also demonstrated that integrating a regularization term

into the acquisition function can lead to better designs, and does so by concentrating

exploration at select residues.

Chapter 5 described how to use the transformer protein language model ESM-1b to

identify promising sequences during protein engineering campaigns. By jointly encod-

ing a protein sequence sbinder and its binding target starget, we use ESM-1b’s self-attention

mechanism to identify intermolecular and intramolecular interactions between these se-

quences. We use these interactions to formulate what we refer to as the Promise score,

and show how this score can be tailored to prioritize protein sequences in two distinct

protein engineering domains— protein discovery and protein optimization.

With protein discovery, we show how to use Promise Scores to effectively select

lead sequences from two separate Nb repertoires. And with protein optimization, we

show how to use Promise Scores to identify single-site mutagenesis experiments that

successfully identify strong binders. In both cases, we show how to also compute per-

residue scores that indicate those expected to undergo intermolecular interactions. We

showcase that high scoring residues on Nb target proteins correspond to known epi-

topes, and those within the BRCA1-BARD1 and Spike-ACE2 complexes correspond to
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known interacting residues.

Finally, we demonstrate that ESM-1b can be fine-tuned to learn accurate models

for Nb binding strength, and discuss the limitations of model learning in single-site

mutagenesis protein engineering campaigns. We believe this work is highly adaptable

and directly applicable to many protein engineering pipelines, so can help to make

protein engineering more efficient and effective.

6.2 Future directions

6.2.1 Experimental science in the Cloud Lab

Given the relative novelty of applying the Cloud Lab towards academic research pur-

suits, the space of future directions in this area seems nearly limitless. In Section 3.8,

we briefly described a potential modification to the protocol algorithm, which we will

now expand upon.

In our experiments, we operated as first time Cloud Lab users with no previous data

to help us make decisions on how to parameterize the laboratory equipment we used.

In practice, this may be a somewhat unrealistic scenario. For one, Cloud Lab users

will quickly accumulate data that they can refer to in subsequent experimental tasks.

Additionally, the Cloud Lab is a shared resource, meaning the work of others may also

be available for use. Clearly, it would be beneficial to be able to effectively use any and

all existing data to help make experimental decisions.

protocol is a deterministic procedure that sequentially grows a hierarchical parti-

tioning tree. A limitation of this hierarchical tree structure is that it is not influenced

by existing data, only by decisions made using an underlying Gaussian process model.

While this underlying Gaussian process model may be trained on all available data,

the hierarchical tree is still the scaffold on which protocol’s sequential decision making

takes place. If this scaffold could also reflect any level of available prior knowledge, then
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the entire protocol optimization routine should stand to benefit. For this reason, we

believe that identifying different ways to initialize protocol’s hierarchical tree would

be a prudent future direction.

There are two primary considerations to account for in proposing new ways to ini-

tialize protocol’s hierarchical tree. First is the actual structure of this initialized tree.

Perhaps the most straightforward strategy would be to simply pre-compute a tree simi-

lar to the one already used by protocol to a specified depth. Another approach may be

to use an entirely different data structure altogether, such as a k-d tree [142]. With a k-d

tree, the volumes of the hyperrectangles in the initialized tree would depend upon the

density of the training instances over the feature space. This could potentially help with

the exploration-exploitation tradeoff when computing each frontier, as hyperrectangles

corresponding to those most likely in greatest need of exploration would have larger

volumes.

In either case, the effectiveness of these strategies will depend upon the second

consideration— how to associate the prior knowledge to the pre-initialized tree. Since

most any lab equipment will be used to address many varied experimental objectives,

most available data would likely not directly correspond to the experimental task at

hand. Still, finding ways to address these issues could help make protocol an even

stronger Cloud Lab resource.

Of course, there are many directions beyond the scope of protocol that can be

addressed to further facilitate the advancement of the Cloud Lab within academia. We

see protocol as a first step towards this goal that addresses a practical yet important

issue that anyone using the Cloud Lab may face, and believe that future applications of

machine learning to this setting will only make the Cloud Lab that much more vital to

future academic laboratory-based experimentation.
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6.2.2 Protein design and engineering

Since we started our own work using transformers for protein engineering, there has

been a huge (independent) surge in the popularity of the transformer applied to many

different tasks. Towards NLP objectives, transformer-based large language models have

shown great promise towards text-based generative capabilities. ChatGPT [121, 143]

can generate human-like passages when provided colloquial commands or prompts.

Similar models can even generate complex images from text input, like those at the

beginning of each chapter of this dissertation [144]. Novel approaches have also been

applied to protein sequence design [145]. Many of these applications use the underlying

representation learned by a transformer to make predictions about some property of

given protein sequences, such as secondary structure [66, 146, 147], homology [148],

mutational effects [66, 149, 150], protein-protein interactions [151, 152], and drug-target

interactions [153, 154].

Other approaches have more directly used the generative capabilities of the trans-

former as a means to design new sequences. Madani et al. [89] introduce the conditional

transformer ProGen as a means for controllable protein design. Their model "grows" a

seed sequence one amino acid at a time by conditioning on a set of keyword tags that

describe qualities of the desired protein sequence, such as its host organism, function,

and cellular location. Castro et al. [155] introduce Regularized Latent Space Optimiza-

tion. The method learns a latent space embedding that is constrained to be smooth with

respect to protein fitness, continuous with respect to training data points, and pseudo-

convex with respect to non-training data. This allows for gradient or non-gradient based

optimization within the latent space directly, which will yield novel representations that

can be decoded into novel protein sequences. Certainly transformer models will con-

tinue to play a large role in the design and engineering of novel protein sequences, and

further tapping into the generative capabilities of these models should lie at the heart of

most future work.
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Before concluding this dissertation, it would be a great oversight to not touch on the

potential union between this dissertation’s two focal points— Cloud Lab experimenta-

tion and protein engineering. In Chapters 4 and 5, we describe automatable approaches

to sequential protein design problems, but actual real-world automation is yet to be

seen. A Cloud Lab equipped with the right instrumentation to carry out protein engi-

neering experiments could fundamentally change the capabilities of AI-driven protein

engineering.

A limitation with many existing deep generative protein design approaches is that

they are beholden to existing labeled protein sequence data. The Cloud Lab removes

this limitation, as any necessary sequences could be experimentally measured on de-

mand. Perhaps most importantly, this capability could open the possibility for algorith-

mic paradigms that take advantage of open-ended exploration, such as reinforcement

learning [156]. As an example, imagine using a transformer architecture in order to

obtain a latent space similar to that described by Castro et al. [155]. Then, use rein-

forcement learning to train a policy that traverses the latent space to find regions that

encode high fitness sequences. At each iteration, the specified sequences are generated

in the Cloud Lab, and allow the policy and transformer-based model to be updated in

real time as more and more real data becomes available. This is of course a very high-

level description of a potential protein engineering algorithm, and there are certainly

practical considerations that would need to be hammered out, but these are the types of

possibilities that are offered by combining a Cloud Lab with protein engineering. This

is exactly why the future of these two domains is so exciting.







Appendix A

Supplementary Material: Regularized

Bayesian Optimization for Directed

Protein Evolution

A.1 Evolutionary-based regularization of GB1 with

Gremlin and profile-HMM log-odds

Our experiments using gremlin and HMM regularized approaches follow the same

sequential strategy used by experiments outlined in Section 4.5. In Figure A.1, we show

how they compare to simulated traditional approaches, as well as those regularized by

TPLM and FoldX. When EI or PI is used as the acquisition function, gremlin and HMM-

based regularization typically identify variants with higher fitness relative to traditional

approaches. Compared to the other ML-assisted methods, these approaches tend to

identify variants with slightly lower fitness. When UCB is the acquisition function, we

find that gremlin and HMM-based regularization outperform traditional approaches

in roughly half of trials, but is outperformed by other ML-assisted approaches in most

trials.
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Expected 
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Figure A.1: ML-assisted Directed Evolution techniques identify high fitness GB1 vari-
ants more frequently than simulated traditional DE approaches. Shown are the frac-
tion of trials (y-axis) that reach less than or equal to a specified fitness (x-axis), where
the selection criterion was either a simulated traditional DE approach, or standard or
regularized EI (Left), PI (Middle), and UCB (Right) was the acquisition function. Ex-
periments with methods regularized by gremlin and profile-HMM log-odds scores are
shown alongside results depicted in Figure 4.3.

In Figure A.2-top, we show the same results with GB1 from Figure 4.2 with the

addition of gremlin and HMM regularized trials. While these additions do greatly

improve upon wildtype GB1 fitness, with the exception of using structure-based regu-

larization and UCB acquisition, other ML-assisted DE approaches, regularized or not,

identify higher fitness GB1 variants. In Figure A.2-bottom, we show that gremlin and

HMM-based regularization has the intended effect of biasing variant selections towards

those that have high log odds under each model. Putting together these results, when

performing evolutionary-based regularization, TPLM is the best option for generative

model compared to gremlin or profile-HMMs.

A.2 Additional sequence-space exploration experiments

In Section 4.5.5, we describe how regularization induces site-specific exploration of unex-

plored sequence space. In Section 4.6, we note that this behavior occurs for all regulariza-

tion types, acquisition functions, and protein types that we investigated. Figures A.3-A.5

show these results for each of GB1, BRCA1, and Spike, respectively. Columns from left
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Figure A.2: (Top) Regularization leads to better designs. Shown are the cumulative
per batch scores for GB1 averaged (± 1 SEM) over 100 trials. GP models were ini-
tialized with 20 randomly chosen sequences, and each batch consisted of 19 selected
variants. Experiments with methods regularized by gremlin and profile-HMM log-odds
scores are shown alongside results depicted in Figure 4.2-left. (Bottom) Evolution and
structure-based regularization biases variant selections towards those that score favor-
ably under the regularization criterion. Shown are the gremlin and HMM log-odds
scores for variants selected from the GB1 ML-assisted DE experiments. Variants selected
by methods regularized by both of these terms have high log-odds.
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Evolution-based 
regularization UnregularizedStructure-based 

regularization

Figure A.3: Bayesian selection techniques quickly identify informative patterns (GB1).
Shown are the per-batch average position-specific entropy of GB1 variant selections un-
der each (un)regularized method.

to right show TPLM-based regularization, structure-based regularization, and unregu-

larized approaches, and rows from top to bottom show experiments with UCB, EI, then

PI acquisition functions. As described previously, we observe localized shading with

greater intensity in regularized approaches compared to the unregularized ones. Even

with GB1 where there is clearly more exploration at residues 40 and 39 compared to 41

and 54 regardless of regularization, there tends to be darker shading in the regularized

approaches.
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Figure A.4: Bayesian selection techniques quickly identify informative sequence pat-
terns (BRCA1). Shown are the per-batch average position-specific entropy of BRCA1
variant selections under each (un)regularized method.
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Figure A.5: Bayesian selection techniques quickly identify informative sequence pat-
terns (Spike). Shown are the per-batch average position-specific entropy of Spike variant
selections under each (un)regularized method.

A.3 Predictions on unseen data

In Section 4.5, we characterize the batched variant sequence selections made by ML-

assisted DE techniques with and without evolution or structure-based regularization.

These selections allowed us to iteratively update GP models using sequences that each

model expected to be informative. To demonstrate the continued predictive capability

of these models, we used them to predict the respective objectives of a held out test

set for each protein. We emphasize that these sequences were never seen by the models
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Table A.1: Predictions on held out data for each protein type, averaged across all
regularization types. MSE refers to the mean square error over all predictions. Fit-
ness/Activity/Affinity refers to the average true value for the predicted top sequence
obtained for each method.

GB1 BRCA1 Spike
Regularization MSE Fitness MSE Activity MSE Affinity

Unregularized 1.96 4.99 0.14 1.47 0.04 0.93
TPLM 2.22 5.05 0.15 1.46 0.02 0.93
FoldX 1.89 5.04 0.14 1.35 0.04 0.92

during the iterative variant selection stage of each trial, and that they constitute a random

subsample (20%) of the data for each protein.

For each protein, we used the models from the end of each trial to identify what

they believe to be the best variant from the held out testing data. Table A.1 shows

the average mean squared error (MSE) averaged across all trials and acquisition types

for each form of regularization. Additionally, it shows the average true value of this

predicted best sequence. With GB1, we find that all models are high error, but do a

good job at identifying a high fitness variant. With BRCA1, the models have better

accuracy, and consistently identify a variant that improves upon wildtype E3 ubiquitin

ligase activity. With Spike, all model types have good accuracy, and the top predicted

sequence is generally comparable to wildtype ACE2 binding affinity. Thus, even when

the models have relatively low accuracy, they are able to identify sequences that are

comparable to or better than the wildtype sequence, similar to previous results [64].
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Figure B.1: The distribution of CDR3 lengths from the Nano-GST and Nano-HSA reper-
toires.
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Figure B.2: We calculated Promise scores for each sequence identified within two Nb
discovery campaigns (Top) and two protein optimization campaigns (Bottom), and com-
pare how “strong” sequences scored compared to those that were “not strong”. In
each case, strong sequences had an average Promise score greater than sequences that
were not strong. These differences were either statistically significant (p < 0.05, Mann-
Whitney U-test, denoted with *) or had a p-value just above the 0.05 threshold (BRCA
mask-10— p = 0.054), with the only exception when using a 100 length mask linker
with Spike (p = 0.282).
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Figure B.3: Promise Scores do not differentiate "strong" and "not strong" sequences
(p ≥ 0.05, Mann-Whitney U-test) during protein optimization when the Sintra term is
excluded from the objective function (Equation 5.2.2).
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Figure B.4: We used Promise scores to help identify potential lead sequences from two
Nb discovery campaigns. Here, we show the strong sequence enrichment when using
Promise scores obtained with mask linkers of length 10, 50, and 100, as well as a length
50 alanine linker. With Nano-GST, we found that alanine linkers yielded higher strong
sequence enrichment than mask linkers. With Nano-HSA, we found that all linker types
yielded comparable strong sequence enrichments.
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Figure B.5: We used Promise scores to select 10 site-specific mutagenesis experiments
on each of BRCA1 and Spike. With BRCA1, using length 10 or 50 mask linkers yield
strong sequence frequencies comparable to those when using alanine linkers. With
Spike, the mask linker yields more variable results compared to alanine linkers at differ-
ent linker lengths.
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Figure B.6: These are the same structures shown in Figure 5.5, but rotated 180◦ about
the y-axis. We use intermolecular contact map Ainter to calculate residue-specific scores
to identify residues that contribute the most to intermolecular interactions. With Nb dis-
covery, we highlight overlap between our top scoring residues and epitopes previously
validated through cross-linking mass spectrometry (Top). The magenta spheres indicate
this overlap. Each other colored sphere indicates a residue within a validated epitope
region. The red sticks correspond to top scoring sites that did not fall in any validated
region (denoted “Miss"), and the gray sticks indicate all other residues within the pro-
tein sequence. (Bottom) The heatmaps show the relative values of the residue-specific
scores across the entire target protein. The coloring scale is normalized for each indi-
vidual protein to show the relative scores of residues on a given protein (i.e. red shaded
residues on GST are the highest scoring residues on that protein, but may have different
Promise Scores than the red shaded HSA residues). The structures we used are given
by PDB IDs 1DUG and 1AO6.
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Figure B.7: These are the same structures shown in Figure 5.6, but rotated 180◦ about
the y-axis. We use intermolecular contact map Ainter to calculate residue-specific scores
to identify residues that contribute the most to intermolecular interactions. With protein
optimization, we show structures of each protein bound to its target. (Top) The spheres
indicate residues known to play a role in protein-target binding. Those shaded magenta
were identified by the per-residue scoring. Red sticks indicate residues outside this
binding region that were also identified. Dark gray sticks indicate starget residues, and
light gray sbinder residues. (Bottom) The heatmaps show the relative values of the residue-
specific scores across the entire sbinder-starget complex. The coloring scale is normalized
for each individual protein to show the relative scores of residues on a given protein (i.e.
red shaded residues on BRCA1 are the highest scoring residues on that protein, but may
have different Promise Scores than the red shaded BARD1, Spike, or ACE2 residues).
The structures we used are given by PDB IDs 1JM7 and 6M0J.
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Figure B.8: The frequency (i.e. “Hit rate”) at which Promise score selected and ran-
domly selected residues fall within a known binding region for a given protein system.
The hit rate obtained via random selection is given as a mean over 50 replicates ± 1 SEM.
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Figure B.9: ROC-AUC curves showing the Promise Score’s ability to predict residues
involved in epitope binding using the Nano-GST (left) and Nano-HSA (right) repertoires.
From top to bottom, we show the effect of using either no linker, a length 10 Alanine
linker, or a length 100 Alanine linker. While the Promise Score has some predictive
ability for select epitope regions, it is a poor predictor of general epitope binding.
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Figure B.10: ROC-AUC curves showing the Promise Score’s ability to predict residues
involved in protein binding using the BRCA1-BARD1 (left) and Spike-ACE2 (right) pro-
tein complexes. Promise Scores are generally predictive within the BRCA1-BARD1
complex (especially with no linker or a length 10 Alanine linker), as well as with ACE2.
Promise Scores are generally not predictive with Spike.
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Figure B.11: The interactions between Alanine linkers and the sbinder-slinker-starget se-
quence encoding according to the attention map for two Nb repertoires. The per-residue
Promise Scores left of the vertical dashed line shows predicted interactions of slinker
to itself. Promise Scores to the right of the dashed line shows predicted interactions
between slinker and starget.
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Figure B.12: The interactions between Alanine linkers and the sbinder-slinker-starget se-
quence encoding according to the attention map for the BRCA1-BARD1 and Spike-ACE2
protein complexes. The per-residue Promise Scores left of the vertical dashed line
shows predicted interactions between slinker and sbinder. Promise Scores in between the
vertical dashed lines shows predicted interactions of slinker with itself. Promise Scores

to the right of the dashed line shows predicted interactions between slinker and starget.
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Figure B.13: ROC curves for models trained to classify strong and weak sequences with
Nb discovery. The top row shows Nano-GST, and the bottom Nano-HSA. The left col-
umn shows models trained with a length 10 alanine linker, and the right columns shows
models trained with a length ten mask linker. Orange curves correspond to models that
used fine-tuning, and blue those that did not. Solid curves correspond to models ap-
plied in a traditional machine learning paradigm, whereas dashed lines used transfer
learning. Fine-tuned models used in the traditional setting were very strong, regardless
of linker type or length.
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Figure B.14: ROC curves for models trained to classify strong and weak sequences in
protein optimization. The top row shows BRCA1, and the bottom Spike. The left column
shows models trained with a length 10 alanine linker, and the right columns shows
models trained with a length ten mask linker. Orange curves correspond to models
that used fine-tuning, and blue those that did not. Solid curves correspond to models
applied in a traditional machine learning paradigm, whereas dashed lines used transfer
learning. While all models learned in protein optimization were of lower quality, we
saw evidence that transfer learner led to model improvement.
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