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Abstract

This report defines the syntax and semantics of the specification language MSR 2.0, and gives requirements
for a run-time environment for it. Specifically, it defines the concrete syntax of the language and formalizes
its typing and execution semantics at an abstract level. It also describes programming environment func-
tionalities such as type reconstruction and facilities for controlling execution. MSR 2.0 is a specification
language based on first-order multiset rewriting modulo equations, dependent types, and subsorting. This
report is meant to act as its “official” definition, as various subsets have appeared in previous publications,
for example [6, 7]. It has been used extensively for studying cryptographic protocols [5, 8, 9, 10, 12, 13, 15]
and especially Kerberos 5 [1, 2, 3, 4, 16, 17]. It was also used experimentally for modeling bio-molecular
systems [11]. MSR 1.0, the precursor of this version, was also used in foundational studies for crypto-
protocols [14, 19]. An implementation of MSR 2.0 which adheres to the definition presented in this report
has been written in Maude [18, 21].
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Chapter 1

Lexicon

Throughout this report, we refer to MSR 2.0 as MSR. This chapter describes the lexicon of MSR using
regular expressions. Meta-symbols (e.g., ‘[’, ‘(’ and ‘+’) will be printed as normal mathematical text. ASCII
characters or their traditional rendering (for non-printable characters) will be written using a typewriter

font or in hexadecimal preceded by the string ‘0x’.

1.1 Spaces

Spaces (non-terminal sp) are strings of one or more white space ( , ASCII 0x20), tabulation (\t, ASCII
0x09), new line (\n, OS-dependent combination of \r and \f), carriage return (\r, ASCII 0x13), and form
feed (\f, ASCII 0x12).

sp = [ \t\n\r\f]+

1.2 Comments

Comments are of two types:

Single-line comments start with the symbol % and extend to the end of the line.

System directives piggyback on this syntax and have the form %token args, where token is a reserved
symbol that has meaning for the interpreter only and args are the arguments it may take. Directives
instruct the run-time system to interpret certain symbols as infix with a certain precedence, for example.

Multi-line comments start with the symbol %{ and extend to the next matching occurrence of }%.

Multi-line comments can be nested and therefore should be ended by balanced occurrence of }%.
Unterminated multi-line comments should be reported as errors (in particular they are not implicitly
closed when encountering the end of the current file). Unbalanced occurrences of }% should also be
reported as errors.

A comment is either a single-line or a multi-line comment.

Comments can occur at any point in a file, and are equivalent to the empty string. For example,
‘my%{xxx}%Id’ is equivalent to the identifier ‘myId’. A single-line comment (together with the terminating
\n) can similarly be excised.
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CHAPTER 1. LEXICON

singlelineComment = %.∗
multilineComment = %{[.\n]∗}%
comment = singlelineComment + multilineComment

1.3 Special Characters

Special characters are not allowed as part of identifiers. They include a minimal set of punctuation and
grouping symbols.

specialChar = [%.)(}{]

1.4 Reserved Symbols

A number of otherwise valid identifiers are reserved operators of MSR. They include the following, each
with a brief description:

include File inclusion
module Module declaration
import Imported symbols of a module
export Exported symbols of a module
* Import/Export wild-card
: Label separator
type Type classifier
state Multiset classifier
-> Functional type
<: Subsort declaration
_ Irrelevant variable

= Equation symbol
for Anchored role header
forall Universal quantifier
exists Existential quantifier
=> Rewrite rule separator
, State element separator
empty Empty multiset
; Guard separator
if Guard separator (alternate syntax)
[id] Reserved for future use

1.5 Identifiers

An identifier is a non-empty string of printable ASCII characters that does not include any special character,
is not a space, a comment, or a reserved symbol.

id = [0x21− 0x7e]+

Identifiers are separated by spaces or special characters. So, ‘my Id’ contains two identifiers (‘my’ and
‘Id’), and similarly for ‘my(Id)’.

1.6 Errors

An error message should be output whenever one of the following situations occur:

1. the lexical analyzer encounters an occurrence of ), } or }% that does not match a previous occurrence
of (, {, or %{, respectively;

2



CHAPTER 1. LEXICON

2. the lexical analyzer reaches the end of a file without being able to balance all occurrences of (, {, or
%{ with corresponding occurrences of ), } or }%, respectively.

The error message should point to the first opening/closing symbol without a corresponding closing/opening
symbol.
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Chapter 2

Syntax

This chapter describes the syntax of MSR specifications on the basis of the lexical entities presented in
Chapter 1. We use standard BNF notation for this purpose. Meta-symbols will be rendered as normal
mathematical text (e.g., ‘::=’ or ‘|’). The meta-symbol ‘·’ denotes the empty string. Terminals are displayed
using a typewriter font. Non-terminals are written using a slanted font, such as the already defined id .
Non-terminals used before they are defined will be written in gray (e.g., subtp). Occasionally, portions of
syntax can be reconstructed from the context or by default rules, or are otherwise optional. We enclose them
in square braces [. . .] and comment on it in the text.

2.1 Organizing Specifications

An MSR specification can be split among a number of files. The include directive is provided to embed
the contents of a file into another file: upon encountering ‘include file’ the compiler replaces this statement
with the contents of file file. include statements can be nested, but should not be circular.

Although it is natural to break specifications in files at the module level, we adopt the more liberal policy
of allowing include directives at any point in a specification. This corresponds to having parsing proper
begin after all the include directives have been expanded.

2.2 Module Infrastructure

An MSR specification is organized as a collection of modules, possibly interspersed with items (declarations,
equations, roles, or state objects — see below) and commands. Commands are mostly used at the top level
of the MSR tool and their use in a module is not encouraged.

A module is introduced by the keyword module, labeled by a unique identifier, and defined by a header
and a body. The header lists symbols imported from other modules and exported outside the defining
module. The body of a module declares the symbols used within the module (with the exception of those
imported), the equations that govern them, and the rules that operate on them.

A module starts with the keyword module and ends either at the end of the specification, or upon
encountering the keyword module that indicates the beginning of another module. Modules cannot be
nested.

SMSRspec ::= · | module MSRspec | item MSRspec | command MSRspec

Mmodule ::= module id header body

The header lists symbols imported from other modules and exported outside the defining module. Import
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CHAPTER 2. SYNTAX

declarations consist of the keyword import, the importing module name, and the imported items, which are
either a single body item or a comma-separated list of labels. They end with a period. Exported items
consist of the keyword export, a comma-separated list of labels, and a period.

Hheader ::= imports exports

Iimports ::= · | imports import id *. | imports import id id+. | imports import id item

Xexports ::= · | export *. | exports export id+.

id+ ::= id | id, id+

Import lists will generally mention only labels (id). A complete item, inclusive of the label and the type,
equation or role is available for when a module is intended for separate compilation. When labels only are
given, the corresponding items shall be accessed from the referenced module. Both imports from a same
module and exports can be grouped or broken in import and export declarations at the specifier’s leisure.
For convenience, the wild-card * can be used in place of declarations to specify that a module shall import
all symbols exported by another module, or that it exports all symbols it defines.

The scope of an import or export declaration is the whole module.

The body of a module is a sequence of body items (item), which consist of declarations (decl), equations
(equation), definitions (definition), and roles (role), in arbitrary order. As will become apparent in the
sequel, items consist of a label, a colon “:”, and typing information, an equation or a role. The label and
the colon are optional except for typing information. An identifier, i.e., a label, must be declared before its
first use in an equation or a role. With the exception of roles, body items end with a period.

bitem ::= decl. | equation. | definition. | role

Bbody ::= · | body item

The scope of an item extends to the end of the present module. It is expected that each identifier used
in a module be declared in the module, and that no two declarations declare the same identifier.

Commands are used to interact with and guide the MSR tool. See the user documentation of the tool,
currently [21], for the list of available commands and their effects.

command ::= · · ·

2.3 Declarations

A declarations is either a type declaration (tpDecl), a subtype declaration (subtpDecl), or an object decla-
ration (objDecl). Each of these forms will be terminated by a period.

δdecl ::= tpDecl | subtpDecl | objDecl

It is expected that symbols have a unique declaration in a module, be it in the header through an import
statement, or in the body as a proper declaration.

2.3.1 Type Declarations

Type declarations declare type constructors. Because MSR is dependently typed, we define types before
type declarations themselves.

5



CHAPTER 2. SYNTAX

A base type is either the reserved symbol state or an identifier possibly applied to a sequence of terms
(its arguments or indices). A type is either a base type or a dependent function type, i.e., a type prefixed
by an object declaration.

abaseTp ::= state | id | baseTp term

τtp ::= baseTp | tp -> tp | {objDecl}tp

A dependent function type will have the form {x:τ1}τ2: the object declaration x:τ1 binds every free occur-
rence of x in τ2. As often done, we abbreviate this expression as τ1 -> τ2 whenever x does not occur free in
τ2. The type state is used to classify multisets and their elements.1

Kinds declare type constructors. A kind is either the symbol type, or a dependent kind, i.e., a kind
prefixed by an object declaration. As for types, we use the abbreviation τ -> κ for a kind {x:τ}κ where x
does not occur in κ.

κkind ::= type | tp -> kind | {objDecl}kind

The kind type will be used to classify types.

A type declaration is a pair consisting of an identifier and a kind. They are separated using a colon, and
terminated by a period (see item).

tpDecl ::= id : kind

Any valid identifier can be declared by a type declaration, with the exception of the reserved symbols of
MSR, including the underscore “_”.

Type declarations can be accompanied by directives of the form %name τ X that instruct the compiler
to print variables of type τ it may produce during type reconstruction or execution using the symbol X
followed by progressive numbers. If no %name directive is given, the default is to use X followed by a
progressive number.

tpDirective ::= %name id id

Other directives may be supported by the implementation. See the tool documentation [21] for further
information.

2.3.2 Subtype Declarations

A subtype is a pair of types separated by <: and possibly prefixed by a number of object declarations enclosed
in braces. A subtype declaration is a subtype terminated by a period (see item).

σsubtp ::= tp <: tp | {objDecl}subtp

subtpDecl ::= [id :] subtp

In most cases, the object declarations prefixing a subtype will be reconstructed, either in part or in full. In
the former case, the type is left out and shall be inferred. In the latter case, the identifier is omitted as well.
By convention, only identifiers beginning with a capital letter or underscore (“ ”) can be assumed to have
been implicitly declared in this way.

1state is designated as a type mostly to simplify the structure of the current Maude implementation of MSR [18, 21]. It
can also be designated, possibly more accurately, as a kind. While the choice is important from a type-theoretic perspective, it
has little effect for a user of the language as described in this document. Future extensions may however require changing this
classification.
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CHAPTER 2. SYNTAX

2.3.3 Object Declarations

Object declarations associate an identifier with a type. The pair is separated by a colon and terminated by
a period at the top level or inside modules (see item).

oobjDecl ::= id [: tp]

Any valid identifier can be declared by a type declaration, with the exception of the reserved symbols of
MSR, including the underscore “_”.

Within a rule, the type part of an object declaration can often be reconstructed by the context. It is
omitted in those cases. The typing information shall be present in module-level declarations or at the top
level.

An object declarations can be accompanied by a directives describing non-standard ways to parse oc-
currences of this symbol. A unary constant f can be declared either prefixed or postfixed by means of the
directives %prefix and %postfix. They accept a precedence as a second argument. Binary symbols can be
requested to be infix of a declared precedence and associativity (left, right or none).

Precedences are numbers between 10,000 and 99,999. Lower and higher precedences are reserved to
describe the interpreted operators of MSR. Symbols with higher precedences bind more tightly than symbols
with lower precedences. As a default, the juxtaposition of symbols is to be considered infix, left-associative,
and with precedence 5,000. Precedences can be overridden using parentheses.

objDirective ::= %prefix id prec | %postfix id prec | %infix id prec assoc

prec ::= [1− 9][0− 9]5

assoc ::= left | right | none

These directives are available for the convenience of the user. All symbols can be rewritten in standard prefix
form, possibly with the addition of extra pairs of parentheses where necessary. In the sequel, we will assume
that this expansion phase has taken place.

2.4 Equations

An equation relates two terms with the symbol =. The pair can optionally be prefixed by a sequence of
declarations for the variables occurring in it, although this information can generally be reconstructed.
Another optional component is a label that identifies this equation for export. Equations end with a period
(see item).

equation ::= [id :] eq

Eeq ::= term = term | [forall objDecl ] eq

MSR does not impose a format on the left-hand side and right-hand side of an equation. However, such
formats may be expected from the term rewriting system that handles equations in an implementation.
Therefore, it is advisable to use standard formats for equations, for example left linear. Formatting error
messages will be relayed by the underlying term rewriting system.

2.5 Definitions

A definition introduces an abbreviation for a term. A definition can be parametric. Formal parameters
are specified in a parameter list with each element consisting of an identifier and an optional type (subject
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CHAPTER 2. SYNTAX

to reconstruction). Parentheses are not needed if the type is omitted. A parameter that does not appear
in the body of the definition (but only in omitted typing information) can be omitted whenever it can be
reconstructed.

~oparam ::= · | param [(objDecl)]

Ddefinition ::= id param := term

A definition associates an identifier followed by zero or more formal parameters with the term it is intended
to abbreviate. Definitions end with a period (see item). A definition cannot be recursive. A defined constant
is used exactly like a declared constant.

2.6 Roles and Rules

Roles are sequences of rules bound together by a declaration. Roles may declare local symbols that will be
called existential variables. A rule consists of a guard, a left-hand side and a right-hand side. These three
entities are defined over the notion of multiset, which in turn relies on terms. We will now define these
objects from the bottom up.

2.6.1 Terms

A term is either an identifier, or a term applied to another term. Juxtaposition is infix, left-associative, and
with precedence 5,000.

tterm ::= id | term term | (term : tp)

The last production annotates a term with a certain type. It is included for debugging purposes upon encoun-
tering a type reconstruction error. This is not intended as a substitute for providing missing declarations.
It is always possible to infer the type of a term given sufficient declarations.

2.6.2 Multisets

A multiset is represented in MSR as a comma-separated list of terms. For convenience, the empty multiset
can be represented either as the empty string (in which case no surrounding comma is required) or as the
terminal empty.

mmset ::= · | empty | mset , term

2.6.3 Rules

A rule has a core consisting of a left-hand side, a right-hand side and optionally a guard. This core is prefixed
by a number of optional object declarations introduced by the keyword forall. The left-hand side and the
guard are multisets. The right-hand side is a multiset possibly prefixed by a sequence of object declarations
introduced by the keyword exists.

rhsrhs ::= mset | exists objDecl rhs

rrule ::= mset => rhs | mset ; mset => rhs | mset => rhs if mset | [forall objDecl ] rule

The base syntax for a rule is “g ; lhs => rhs”. An alternative way to write the same expression is
“lhs => rhs if g”. Whenever the guard g is empty, it can be dropped, simply writing “lhs => rhs”.

8



CHAPTER 2. SYNTAX

The scope of an exist declaration extends to the end of the right-hand side, and that of a forall

declaration, either explicit or implicit, extends to the end of the current rule.

In many cases, the forall declarations in a rule can be reconstructed, either in full or in part. In the
former case, the type is left out and shall be inferred. In the latter case, the identifier is omitted as well. By
convention, only identifiers beginning with a capital letter or underscore (“ ”) can be assumed to have been
implicitly declared in this way.

exists declaration can be reconstructed only in part, i.e., only the type portion of these declarations
can be omitted.

2.6.4 Roles

A rule sequence, rule∗, is a period-separated list of rules, possibly interspersed with object declarations
introduced by the exists keyword. These will serve to bind identifiers local to the role. An optional label
may prefix a rule.

A role is given by a rule sequence enclosed in curly braces, and prefixed by a label and either an object
declaration or by the form “for id”. These prefixes are intended to designate the owner of the role.

rsrule∗ ::= · | empty | [id :] rule. rule∗ | exists objDecl rule∗

ρrole ::= id : forall objDecl { rule∗ } | id : for id { rule∗ }

The scope of an exists declaration extends to the end of the rule set. The scope of the forall declaration
of a role, when present, extends to the entire rule set that it qualifies.

2.7 Parsing

The parser shall recognize valid MSR specifications according to the above grammar and build appropriate
data structures to support subsequent functionalities.

Whenever it is established that the input files do not satisfy this grammar, an error message should be
output. It shall be accompanied by information, as precise as possible, about the location of the error.
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Chapter 3

Type Reconstruction

Each constant occurring in an MSR module is to be interpreted as having been introduced by a declaration,
either in the header of the current module, or in the earlier part of this module, or in a dependent prefix, or
in an equation as a forall declaration, or in a definition as a formal parameter, or in a role (as the leading
forall or through exists), or inside the rule itself as a forall or exists declaration. The latter are called
the local variables of the rule.

As a matter of readability, convenience to the user and usability of the tool, a number of declarations and
typing information can be omitted. An MSR implementation is expected to either reconstruct this omitted
data, when this can be done unambiguously according to the rules below, or issue detailed error messages
so that the user can add sufficient text to help the compiler reconstruct omitted parts.

The acceptable omissions fall into the following two classes:

• Implicit bindings comprise

– the forall declarations at the head of a rule or equation,

– the dependent prefixes of a type, subtype, or kind, and

– the formal parameters of a definition as long as they do not appear in the body.

• Type part of an object declaration.

The omitted dependent prefixes of a type or kind declaration and the omitted formal parameters of a
definition also lead to the omission of the corresponding parameters when these symbols are used.

A detailed account of type reconstruction in the presence of dependent types can be found in [20].

3.1 Reconstruction of forall Bindings

The binders forall X : τ occurring in a rule or equation can be omitted as long as

• the implicitly bound variable starts with a capital letter [A-Z] or the underscore “ ”, or is the under-
score symbol by itself, which has a special interpretation (see below), and

• type τ can be reconstructed.

Upon encountering an undeclared symbol X starting with a capital letter or the underscore, the compiler
shall extend the rule or equation it occurs in with the prefix forall X (the still implicit type is reconstructed
at a later stage, or a type variable α, to be instantiated subsequently, can be inserted).

10



CHAPTER 3. TYPE RECONSTRUCTION

Each occurrence of the underscore symbol “ ” stands for a different implicitly declared variable. Therefore,
the compiler shall replace each occurrence with a different new variable X, and extend the current rule with
the prefix forall X, as in the previous case. Because of this special interpretation, the underscore symbol
shall not be declared.

The reconstruction algorithms outlined in this section apply only within a rule or an equation, and not
elsewhere. It shall also be noted that, in general, this simple syntactic binder reconstruction needs to be
alternated with the more complex reconstruction of omitted types, as an omitted type may make use of a
yet undeclared variable.

3.2 Reconstruction of Dependent Prefixes

Every symbols occurring in a base type shall be declared before its first use. However, since many of these
declarations are bookkeeping dependent prefixes of the type, subtype, or kind they appear in, it is convenient
to omit them whenever they can be reconstructed.

We adopt the same syntax as in the case of omitted forall declarations: implicitly declared variables
occurring in a type shall begin with a capital letter [A-Z] or the underscore “ ”, or be the underscore. The
missing binder for symbol X is added at the front of the type, subtype or kind as an object declaration {X}
with its type omitted (or temporarily expressed as a type variable). More precisely, we extend

• a type τ into {X}τ ,

• a subtype σ into {X}σ, and

• a kind κ into {X}κ.

Each occurrence of the underscore “ ” is first replaced with a different identifier before this extension step.

Whenever a symbol starting with a capital letter or the underscore occurs in a type within a rule, it may
need to be expanded as either a forall declaration or a dependent prefix. In general, the latter is preferred
if it occurs within a single type after all the reconstruction steps have been performed. A forall declaration
is necessary only when this symbol occurs in two or more different types.

Other considerations are as in the case of implicit forall declarations.

3.3 Reconstruction of Omitted Types

Object declarations “x : τ” can be abbreviated as “x” whenever the type τ can be reconstructed from
the context. Type reconstruction information is obtained from previous declarations. For example, if a
specification contains an explicit or reconstructed declaration f : τ → τ ′ for a symbol f , and a type
{X}(. . . fX . . .) where the type of X has been omitted, then it can be deduced that the type of X shall be
τ .

Type reconstruction is usually done by inserting type variables in place of the omitted types, and col-
lecting and propagating constraints until a single solution emerges (success), the constraints are found to
be inconsistent (fatal error), or all possible constraint simplifications have been attempted but constraints
remain (underspecification error). In the latter case, the author of the specification shall be invited to add
typing information and run the checker again.

3.4 Subtypes

Whenever a type subject to reconstruction belongs to a subtype hierarchy, the result shall be the lower
bound of all types occurring in the constraints, subject to the usual variance and contravariance conditions.

11



CHAPTER 3. TYPE RECONSTRUCTION

For example, given a subtype declaration τ <: τ ′ and a variable whose type can be reconstructed as either
τ or τ ′, τ shall be preferred. If this lower bound is not unique, then an underspecification error shall be
returned.

3.5 Definitions

Every symbol occurring in the body of a definition shall either appear among its formal parameters or be
declared earlier in the module. These symbols cannot be reconstructed as formal parameters since their
occurrence order would be up to the implementation: a user would not know how to specify actual values
when using the definition. However, the types of the formal parameters are subject to reconstruction.
Moreover, whenever the reconstructed types mention variables that do not occur in the body, hence new
formal parameters, they are subject to full reconstruction since the implementation can decide on an order
both at the definition and use level, without user input.

3.6 Implicit Arguments

Whenever an identifier declaration relies on omitted typing information, any use of this identifier shall omit
all arguments corresponding to this omitted typing information. For example, if f is declared of type a X -> b
(by means of the declaration f : a X -> b) where the type of X is kept implicit, then every use of f shall
take the form f t for some term t of type a t′ for an appropriate term t′. If instead f is declared of type
{X:c}a X -> b (by means of the declaration f : {X:c}a X -> b) with the type of X given explicitly, then
every use of f can only be of the form f t′ t where t′ has type c and t has type a t′.

During reconstruction, these omitted arguments shall be reconstructed as well.

3.7 Output of Reconstructed Information

It is useful to have the implementation return successful output information in at least two modes:

Verbose. In this mode, the compiler shall display outputs that include all the reconstructed binding and
typing information. This mode is useful mostly for debugging purposes.

Normal. Under normal usage, the compiler shall display outputs without any reconstructed information.
For example, if the specification declares a function f : τ ′ → τ ′′ that the type reconstruction phase
completes as f : {X : τ}τ ′ → τ ′′, uses of f shall have the form f t (for t of type τ ′), not f x t for an
appropriate x of type τ .

Intermediate modes may be useful if it is found that the verbose mode displays overwhelming amounts of
information, but the normal mode is too succinct to permit effective debugging.

3.8 Errors

The implementation shall report an error whenever omitted parts of an MSR specification cannot be recon-
structed unambiguously. It is preferable to output modules and other declarations as soon as they have been
fully reconstructed in order to narrow down the portion of a program that requires user attention. Error
messages should be as informative as possible.

12



Chapter 4

Type Checking

This chapter identifies those MSR specifications that shall be viewed as sensible by requiring symbols to be
used consistently with their declaration. This is achieved by laying out a typing semantics on top of the
MSR syntax defined in Chapter 2. We assume that implicit information has been reconstructed in full as
described in Chapter 3. Those specifications and components that satisfy the typing semantics will be called
valid.

We present the typing semantics of MSR using judgments defined by typing rules, following the format of
Structured Operational Semantics. Whenever a meta-variable of any postulated syntactic category appears
below, it shall be implicitly assumed that it stands for a well-formed expression within that syntactic category.

4.1 Substitutions

The meta-level operation of substitution is used in many of the rules needed to validate judgments involving
dependent types. It is also used during execution, as discussed in Chapter 5.

The capture-avoiding substitution of a term t for a variable x in an object o of the appropriate syntactic
category is uniformly denoted [t/x]o for each class of objects. In case of ambiguity, the specific category of
o will be indicated using a superscript, as in [t/x]msetrhs. Substitution is defined for all syntactic categories
except modules and their headers, bodies, definitions and roles.

Terms

Term substitution, [t/x]t′ propagates across the structure of the term t′ until an identifier is found. If this
identifier is the variable x, it is replaced with t, otherwise it remains unchanged.

[t/x]y =

{
t if y = x

y otherwise

[t/x](t′ t′′) = ([t/x]t′) ([t/x]t′′)
[t/x](t′ : τ) = (([t/x]t′) : ([t/x]τ))

Kinds, Types, and Subtypes

Substitution propagates across the structure of kinds, types and subtypes until a term is encountered, where
substitution on terms is invoked. The substitution meta-operation is capture-avoiding: whenever it traverses
a binding construct, such as a dependent type, it implicitly renames the bound variable to a symbol different
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from x if needed.
Kinds: [t/x]type = type

[t/x]({y : τ}κ) = {y : [t/x]τ}([t/x]κ)

Types: [t/x]state = state

[t/x]y = y
[t/x](a t′) = ([t/x]a) ([t/x]t′)
[t/x]({y : τ}τ ′) = {y : [t/x]τ}([t/x]τ ′)

Subtypes: [t/x](τ <: τ ′) = ([t/x]τ) <: ([t/x]τ ′)
[t/x]({y : τ}σ) = {y : [t/x]τ}([t/x]σ)

Equations

Substitution over equations traverses the universal quantifiers, renaming their bound variables as needed,
and then invokes term substitution on each side of the equality symbol.

[t/x](forall y : τ.E) = forall y : ([t/x]τ).([t/x]E)
[t/x](t′ = t′′) = ([t/x]t′) = ([t/x]t′′)

Multiset, Rules, and Rule Sequences

Substitution over multisets reduces to the term substitution over each member term. Substitution over
right-hand sides traverses the existential quantifiers, renaming their bound variables as needed, and then
invokes multiset substitution. Substitution over rules traverses the universal quantifiers, renaming their
bound variables as needed, and then invokes multiset substitution on the guard and left-hand side, and
right-hand side substitution on the right-hand side of each rule. Substitution over a rule sequence reduces to
rule substitution over each embedded rule. The existential quantifiers are traversed, renaming their bound
variables as needed.

Multisets: [t/x]empty = empty

[t/x](m, t′) = ([t/x]m), ([t/x]t′)

Right-hand sides: [t/x]m = [t/x]msetm
[t/x](exists y : τ.rhs) = exists y : ([t/x]τ).([t/x]rhs)

Rules:
[t/x](m;m′ => rhs) = ([t/x]m); ([t/x]m′) => ([t/x]rhs)
[t/x](forall y : τ.r) = forall y : ([t/x]τ).([t/x]r)

Rule sequences: [t/x]empty = empty

[t/x](r.rs) = ([t/x]r).([t/x]rs)
[t/x](exists y : τ.rs) = exists y : ([t/x]τ).([t/x]rs)

4.2 Typing Judgments

The typing semantics of MSR is specified on the basis of the following judgments, which follow closely the
syntax described in Chapter 2. The definition of these judgments is given in the next section.
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` S spec S is a valid specification

S ` M module M is a valid module in specification S
S ` I imports I is a valid import list w.r.t. specification S
B ` X exports X is a valid export list w.r.t. extended body B

` Γ context Γ is a valid context
Γ ` B body B is a valid body in context Γ

Γ ` κ kind κ is a valid kind in context Γ
Γ ` τ : κ τ is a valid type of kind κ in context Γ
Γ ` σ inst σ is a valid subtype in context Γ

Γ ` E eq E is a valid equation in context Γ

Γ ` t : τ t is a valid term of type τ in context Γ
Γ ` m mset m is a valid multiset in context Γ
Γ ` rhs rhs rhs is a valid right-hand side in context Γ
Γ ` r rule r is a valid rule in context Γ
Γ ` rs rules rs is a valid rule sequence in context Γ
Γ ` ρ role ρ is a valid role in context Γ

4.3 Typing Rules

4.3.1 Specifications

A valid MSR specification (` S spec) is a possibly empty sequence of modules. Each module shall be valid
in the context provided by the subspecification that precedes it. This is in order to verify the validity of
import statements.

` S spec S is a valid specification

vS ·
` · spec

` S spec S ` M module
vS M

` S M spec

This judgment depends on the judgment validating a module w.r.t. a specification (S ` M module),
described below.

4.3.2 Modules

A module M consisting of an identifier id , an import list I, an export list X and a body B is valid w.r.t. a
specification S when the import list is valid w.r.t. S, the body prefixed with the inlining of I is valid, and
this same entity includes the export list X.

S ` M module M is a valid module in specification S

S ` I imports · ` inlineS(I), B body inlineS(I), B ` X exports
vM

S ` module id I X B module

This judgment depends on the judgment validating an import list w.r.t. a specification (S ` I imports), the
judgment validating the body of a module, extended with all the items it recursively imports (Γ ` B body),
the function inlineS(I) that retrieves the items corresponding to an import list from the modules where they
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were originally introduced, the auxiliary functions I and X, and the judgment that validates an export list
w.r.t. the extended body (B ` X exports).

The rest of this section defines these judgments, with the exception of the validation of the extended
body, which is specified in the next section. For convenience, we first define the auxiliary functions I and
X, that break an import and an export list so that each import or export statement contains one label (or
the wild-card *, or an actual body item cum label c : b).
· = ·
I, import id ∗ = I, import id ∗
I, import id b = I, import id b

I, import id (cs, c) = I, import id cs, import id c

I, import id c = I, import id c


· = ·
X, export ∗ = X, export ∗
X, export (cs, c) = X, export cs, export c
X, export c = X, export c

The function inlineS(I) recurses over the list I. It is assumed that I has been expanded using the function
I. For reasons of succinctness, we will treat the cases where an element refers to a label c and a body item
(c : b) together, writing c[: b], which shall be understood as the former if ”: b” is absent, and as the latter
otherwise. For each element in I, inlineS(I) produces the corresponding item from the importing module.
This item can be found in either its body, or in its import list, in which case inlineS( ) calls itself recursively.
When encountering an import id ∗ declaration, it imports the body of module id and calls itself recursively
on its import list.

inlineS(·) = ·
inlineS((import id ∗), I) = inlineS′(I ′), B, inlineS(I)

where S = S′, (module id I ′ X B), S′′

inlineS((import id c[: b]), I) = c : b, inlineS(I)
where S = S′, (module id I ′ X (B, c : b, B′)), S′′

inlineS((import id c[: b]), I) = inlineS′(import id ′ c[: b]), inlineS(I)
where S = S′, (module id (I ′, import id ′ c[: b], I ′′) X B), S′′

A valid import list consists of either generic statements import id ∗, or of precise items import id c[: b].
In the first case, it is sufficient to verify that module id exists in the preceding part of the specification. In
the second case, it is also necessary to verify that this module exports that item.

S ` I imports I is a valid import list w.r.t. specification S

vI ·
S ` · imports

S ` I imports
vI ∗

S′, (module id I ′ X B), S′′︸ ︷︷ ︸
S

` I, (import id ∗) imports

S ` I imports (c : b) ∈ (inlineS′(I ′), B) inlineS′(I ′), B ` c exports
vI I

S′, (module id I ′ X B), S′′︸ ︷︷ ︸
S

` I, (import id c[: b]) imports

This judgment relies on the judgment validating an export list w.r.t to an extended module (B ` X exports),
described next.

An extended body is always allowed to export ∗. An extended body exports a label c if an item c : b is
contained in it.
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B ` X exports X is a valid export list w.r.t. extended body B

vX ·
B ` · exports

B ` X exports
vX ∗

B ` X, (export ∗) exports

B ` X exports
vX I

B′, c : b, B′′︸ ︷︷ ︸
B

` X, (export c) exports

This judgment does not depend on any other judgment.

4.3.3 Bodies in Context

The (inlined) body of a module is a sequence of declarations, equations, definitions, and roles. Each of
these objects can refer to identifiers declared or defined earlier in the body. The list of declared identifiers is
maintained in a context.

Contexts

A context Γ is an ordered list of kind declarations, type declarations, or subsorting declarations. It is assumed
that any declared symbol occurs exactly once in a context. A context is given by the following grammar:

Γ ::= · | Γ, x : κ | Γ, x : τ | Γ, x : σ

Note that contexts are not legal MSR entities, but they form a helper syntactic category for the purpose of
type checking.

A context is valid if each declaration occurring in it is valid with respect to the earlier declarations in
the context. Therefore, a kind declaration x : κ is valid if κ is a valid kind with respect to the earlier part
of this context. Similarly for type and subsort declarations.

` Γ context

vΓ ·
` · context

` Γ context Γ ` κ kind
vΓ κ

` Γ, x : κ context

` Γ context Γ ` τ : type
vΓ τ

` Γ, x : τ context

` Γ context Γ ` σ subsort
vΓ σ

` Γ, x : σ context

This judgment depends on the judgment validating a kind (Γ ` κ kind), the judgment validating a type
(Γ ` τ : type), and the judgment validating a subsorting relation (Γ ` σ subsort). All are described in the
next section.

Bodies

A body is valid if all items it contains are valid in the context consisting at least of all preceding declarations.
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Γ ` B body B is a valid body in context Γ

` Γ context
vB ·

Γ ` · body

Γ ` κ kind Γ, x : κ ` B body
vB κ

Γ ` x : κ,B body

Γ ` τ : type Γ, x : τ ` B body
vB τ

Γ ` x : τ,B body

Γ ` σ subsort Γ, x : σ ` B body
vB σ

Γ ` x : σ,B body

Γ ` ~o body Γ, ~o ` t : τ Γ, x : {~o }τ ` B body
vB D

Γ ` x ~o := t. B body

Γ ` E eq Γ ` B body
vB E

Γ ` x : E. B body

Γ ` ρ role Γ ` B body
vB ρ

Γ ` x : ρ. B body

This judgment depends on the judgment that checks the validity of a context (` Γ context), defined above.
It also depends on the judgments validating a kind (Γ ` κ kind), a type (Γ ` τ : type), a subsorting relation
(Γ ` σ subsort), a term (Γ ` t : τ), an equation (Γ ` E eq) and a role (Γ ` ρ role). The judgments in
this last class will be defined in the next few sections.

Each of these rules adds an object to the current context. As they do so, they verify the validity of
this object. Therefore, the check performed by rule vB · can be omitted whenever this judgment is initially
called with an empty context.

Rule vB D validates a definition x ~o := t where x is the defined identifier, ~o is the list of parameters
of the definition, and t is the defining term. The first premise verifies that each declaration in ~o is valid in
the current context. With a slight abuse of notation, we rely on an independent call to the body validation
judgment to perform this check. The second premise verifies that t is a valid term of some type τ in the
current context extended with the parameters, the third premise makes x available for the validation of the
rest of the body B. Its type is set to be the dependent type given by τ prefixed with each of the declarations
in ~o, in order. Formally, {~o }τ is defined as follows:{

{·}τ = τ
{(x : τ ′)~o }τ = {x : τ}({~o }τ)

The identifier prefixing a subsorting declaration and an equation is optional. When not present, it is
assumed that the type checker synthesizes a new unique identifier and associates it with this entity.

4.3.4 Declarations

Declarations are issued for kinds, types and subsorts. This section defines the judgments that decide whether
a kind, a type and a subsort are valid.

Kinds

Kinds classify types and type constructors. The kind type is valid in any context. A dependent kind is valid
if each prefixing object declaration has a valid type with respect to the current context augmented with the
object declarations preceding it.
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Γ ` κ kind κ is a valid kind in context Γ

vκ type

Γ ` type kind

Γ ` τ : type Γ, x : τ ` κ kind
vκ Π

Γ ` {x : τ}κ kind

This judgment relies on the type validation judgment (Γ ` τ : κ) defined later in this section.

Subsorts

A subsorting declaration is valid if both sides of <: are valid types in the current context augmented with
declarations for each prefixing dependent object.

Γ ` σ subsort σ is a valid subsort in context Γ

Γ ` τ : type Γ ` τ ′ : type
vσ <:

Γ ` τ <: τ ′ subsort

Γ ` τ : type Γ, x : τ ` σ subsort
vσ Π

Γ ` {x : τ}σ subsort

This judgment depends on the judgment validating types (Γ ` τ : κ) defined next.

Subtypes

Type τ is a valid subtype of τ ′ if it is a valid subsort of τ ′, if both are obtained by instantiation with a valid
term of the expected type, or if they can be linked transitively by these two rules.

Γ ` σ inst σ is a valid subsort instance in context Γ

Γ ` σ subsort
viσ base

Γ, σ,Γ′ ` σ inst

Γ ` t : τ Γ ` {x : τ}σ inst
viσ Π

Γ ` [t/x]σ inst

Γ ` τ <: τ ′ inst Γ ` τ ′ <: τ ′′ inst
viσ <:

Γ ` τ <: τ ′′ inst

This judgment depends on the just introduced judgment validating subsorts (Γ ` σ subsort) and on the
judgment validating terms (Γ ` t : τ) defined in a section to come.

Types

Types classify terms. Types and type constructors are in turn classified by kinds. This judgment decides
whether a type belongs to a given kind with respect to a given context. A constant declared in the context
of some valid kind κ has that kind, unless it is the constant state that has kind type unconditionally. A
base type (a t) is validated by discovering the type τ of t and checking that a has a kind dependent on τ .
The kind of (a t) is obtained by replacing any mention x with t. A dependent type {x : τ}τ ′ shall always
have kind type, and the same applies for the embedded types τ and τ ′. Because of the dependency on x,
the type τ ′ must be validated in a context extended with the declaration x : τ .
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Γ ` τ : κ τ is a valid type of kind κ in context Γ

Γ ` κ kind
vτ base

Γ, a : κ,Γ′ ` a : κ
vt state

Γ ` state : type

Γ ` t : τ Γ ` a : {x : τ}κ
vτ atm

Γ ` a t : [t/x]κ

Γ ` τ : type Γ, x : τ ` τ ′ : type
vτ Π

Γ ` {x : τ}τ ′ : type

This judgment relies on the judgment validating a kind (Γ ` κ kind) defined above, on the judgment
validating a term (Γ ` t : τ) defined in a section to come, and on the substitution operation defined earlier.

4.3.5 Equations

An equation is valid if both sides have the same type in the current context augmented with declarations
for each object in its forall prefix.

Γ ` E eq E is a valid equation in context Γ

Γ ` t1 : τ Γ ` t2 : τ
vE =

Γ ` t1 = t2 eq

Γ ` τ : type Γ, x : τ ` E eq
vE ∀

Γ ` forall x : τ. E eq

This judgment depends on the judgment validating terms (Γ ` t : τ) introduced in the next section and the
judgment validating types (Γ ` τ : κ) defined earlier.

4.3.6 Roles and Rules

Terms

A term is valid if it is a known constant applied to zero or more valid terms. An application t t′ is typechecked
by discovering the type τ ′ of t′ and checking that t a type {x : τ ′}τ dependent on τ ′. The type of t t′ is
obtained by replacing any mention of x in τ with t′. Rule vt <: specifies that a term can also be validated
by looking for any supertype. By rule vt :, a term can only be annotated with a valid type.

Γ ` t : τ t is a valid term of type τ in context Γ

Γ ` τ : type
vt base

Γ, c : τ,Γ′ ` c : τ

Γ ` t′ : τ ′ Γ ` t : {x : τ ′}τ
vt Π

Γ ` t t′ : [t′/x]τ

Γ ` t : τ
vt :

Γ ` (t : τ) : τ

Γ ` τ <: τ ′ inst Γ ` t : τ ′
vt <:

Γ ` t : τ

This judgment depends on the judgment validating types (Γ ` τ : κ) and on the judgment validating
subtypes (Γ ` σ inst), both introduced earlier.

Multisets

Multisets are possibly empty comma-separated lists of terms of type state.
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Γ ` m mset m is a valid multiset in context Γ

vm empty

Γ ` empty mset

Γ ` m mset Γ ` t : state
vm ,

Γ ` m, t mset

This judgment depends on the typing judgment for terms (Γ ` t : τ) defined above.

Rules

A valid rule right-hand side is a multiset prefixed by zero or more variable declarations exists x : τ , each
for a valid type τ . The embedded multiset may make use of these variable declarations.

Γ ` rhs rhs rhs is a valid right-hand side in context Γ

Γ ` m mset
vrhs base

Γ ` m rhs

Γ ` τ : type Γ, x : τ ` rhs rhs
vrhs ∃

Γ ` exists x : τ. rhs rhs

This judgment relies on the judgment validating types (Γ ` τ : κ), defined earlier.

A valid rule has at its core a two valid multisets, the guard and the left-hand side, and a right-hand
side. This core is prefixed by zero or more variable declarations forall x : τ , each for a valid type τ . The
constituents of core may make use of these variable declarations.

Γ ` r rule r is a valid rule in context Γ

Γ ` τ : type Γ, x : τ ` r rule
vr ∀

Γ ` forall x : τ. r rule

Γ ` m mset Γ ` m′ mset Γ ` rhs rhs
vr =>

Γ ` m;m′ => rhs rule

This judgment depends on the judgments validating types (Γ ` τ : κ), multisets (Γ ` m mset), and
right-hand sides (Γ ` rhs rhs), all introduced earlier.

Roles

A rule sequence is valid it is either empty or a list of valid rules. Rules in a rule sequence may be interspersed
with existential variable declarations exists x : τ which may be used in subsequent rules. The type τ of
each such declaration shall be valid.

Γ ` rs rules rs is a valid rule sequence in context Γ

vrs empty

Γ ` empty rules

Γ ` r rule Γ ` rs rules
vrs .

Γ ` r.rs rules

Γ ` τ : type Γ, x : τ ` rs rules
vrs ∃

Γ ` exists x : τ. rs rules

This judgment depends on the previously defined judgments validating types (Γ ` τ : κ) and rules (Γ `
r rule).

A valid role is a valid rule sequence that is either prefixed by a variable declaration forall x : τ for a
valid type τ , or paired with a declared constant x using the constructor for x.

Γ ` ρ role ρ is a valid role in context Γ

Γ ` τ : type Γ, x : τ ` rs rules
vρ ∀

Γ ` forall x : τ. {rs} role

Γ ` rs rules
vρ for

Γ′, x : τ,Γ′′︸ ︷︷ ︸
Γ

` for x. {rs} role
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This judgments depends on the previously defined judgments validating types (Γ ` τ : κ) and rule sequences
(Γ ` rs rules).

4.4 Errors

An implementation of type checking for MSR shall accept any specification that can be given a typing
derivation according to the rules presented in this chapter. Whenever an MSR specification cannot be
validated according to these rules, the typechecker shall report an error. Error messages should be as precise
as possible and contain enough information so that the programmer can quickly fix their cause.

22



Chapter 5

Execution

This chapter defines two variants of an abstract execution semantics for MSR. One is sequential, the
other parallel. Both operate on fully reconstructed programs as described in Chapter 3. We also assume
that module boundaries have been dissolved so that specifications can be seen as a single body. Neither
semantics requires programs to be well typed. However, MSR is type safe under both, i.e., execution of a
well-typed program always transforms valid states into valid states.

While we do not discuss how to refine these abstract semantics into concrete MSR run-time systems in
any detail, we briefly examine basic directives to allow users to control execution.

5.1 Snapshots

A state of execution, or snapshot, is a 4-tuple consisting of a multiset m of ground terms, a context Σ
recording the symbols in use, an active role set R (defined next), and a multiset ~E of equations without free
variables. We write this snapshot as [m]R

Σ;~E
and abbreviate it as C when the components are unimportant.

C ::= [S]R
Σ;~E

An active role set R is a multiset of active roles, where an active role rsA is a rule sequence with
distinguished owner A and without free variables. Active roles are partially instantiated role suffixes.

R ::= · | R, rsA

The natural extension of the substitution operation is defined over active roles.

Both snapshots and active roles are run-time artifacts, unavailable to the programmer.
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5.2 Execution Judgments

The two execution semantics of MSR examined here are specified on the basis of the following judgments.
Their definition is given in the next section.

t�~E t′ Equality modulo equations

m�~E m′ Left-hand side match

(rhs)Σ � (m)Σ′ Right-hand side instantiation

r . [m] Σ � [m′] Σ′ Rule application

B . C −→ C ′ One-step sequential firing

B . C −→∗ C ′ Multi-step sequential firing

B . C =⇒ C ′ One-step parallel firing

B . C =⇒∗ C ′ Multi-step parallel firing

5.3 Execution Rules

Both the sequential and the parallel execution semantics rely on the same notion of state equality and rule
application.

5.3.1 Equational Matching

Ground terms t and t′ are equal modulo ground equations ~E if rewriting some subterms of t using ~E yields
t′.

t�~E t′ Equality modulo equations

xeq id

t�~E t
xeq eq

t�(~E,t=t′) t
′

t1 �~E t′1 t2 �~E t′2
xeq app

t1 t2 �~E t′1 t
′
2

t�~E t′
xeq :

t : τ �~E t′ : τ

States m and m′ are equal modulo ground equations ~E if rewriting some subterms of m using ~E yields
m′.

m�~E m′ Left-hand side match

xeq empty

empty�~E empty

m�~E m′ t�~E t′
xeq ,

m, t�~E m′, t′

This judgment depends on the equality modulo equations judgment (t�~E t′) just defined.

5.3.2 Rule Application

A right-hand side is instantiated by replacing each existential quantifier with a new symbol and recording it
in the context.

(rhs)Σ � (m)Σ′ Right-hand side instantiation

xr base

(m)Σ � (m)Σ

([a/x]rhs)(Σ,a:τ) � (m)Σ′

xr ∃
(∃x : τ. rhs)Σ � (m)Σ′
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To apply a rule, we first instantiate each prefixed universal quantifier with a term of the appropriate
type, obtaining a ground rule m;m′r => rhs. This rule is enabled in a state m∗ if m∗ has the form m̄,m,m′

where m′r is equal to m′ modulo the current set of equations. This rule instance is applied (or fired) in m∗

by replacing the left-hand side m′ with the result m′′ of instantiating the right-hand side rhs. This yields
the state m̄,m,m′′. Notice that the guard m must be present, but is not modified by firing this rule.

r . [m]
Σ;~E
� [m′]

Σ′;~E
Rule application

Σ ` t : τ [t/x]r . [m]
Σ;~E
� [m′]

Σ′;~E
xr ∀

(∀x : τ. r) . [m]
Σ;~E
� [m′]

Σ′;~E

m′r �~E m′ (rhs)Σ � (m′′)Σ′

xr =>

(m;m′r => rhs) . [m̄,m,m′]
Σ;~E
� [m̄,m,m′′]

Σ′;~E

This judgment depends on the right-hand side instantiation judgment defined earlier.

5.3.3 Sequential Execution

Sequential execution, or firing, operates by copying a role to the active role set. Roles of the form forallx :
τ. rs are first instantiated with a valid owner of type τ . Equations and definitions are copied to the current
equation set and instantiated. Active roles are processed by instantiating existentials with appropriate
constants which are recorded in the context, by applying a rule, or by skipping a rule. An empty rule
sequence can be disposed of.

B . C −→ C ′ One-step sequential firing

xB for

(B, for A. {rs}) . [S]R
Σ;~E
−→ [S]R,rs

A

Σ;~E

Σ ` A : τ
xB ∀

(B, forall x : τ. {rs}) . [S]R
Σ;~E
−→ [S]

R,([A/x]rs)A

Σ;~E

xD

B, (x ~o := t) . [S]R
Σ;~E
−→ [S]R

Σ;(~E,∀(~o) x ~o := t)

xE

(B,E) . [S]R
Σ;~E
−→ [S]R

Σ;(~E,E)

Σ ` t : τ
xE ∀

B . [S]R
Σ;(~E,forall x:τ. E)

−→ [S]R
Σ;(~E,[t/x]E)

xrs ∃

B . [S]
R,(exists x:τ. rs)A

Σ;~E
−→ [S]

R,([c/x]rs)A

(Σ,c:τ);~E

r . [S]
Σ;~E
� [S′]

Σ′;~E
xrs .

B . [S]
R,(r.rs)A

Σ;~E
−→ [S′]

R,(rs)A

Σ′;~E

xrs skp

B . [S]
R,(r,rs)A

Σ;~E
−→ [S]

R,(rs)A

Σ;~E

xrs empty

B . [S]
R,(empty)A

Σ;~E
−→ [S]R

Σ;~E

Rule xD transforms a definition into an equation by prefixing it with a universal quantifier for each
formal parameter. The notation ∀(~o) x ~o := t is defined as follows:{

∀(·) x ~o := t = x ~o = t

∀(x : τ, ~o) D = ∀x : τ. (∀(~o) D)

This judgment depends on the rule application judgment (r . [S]
Σ;~E
� [S′] Σ′) defined earlier.

Multi-step sequential firing is defined as the reflexive and transitive closure of the one-step sequential
firing judgment.
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B . C −→∗ C ′ Multi-step sequential firing

x∗ 0

B . C −→∗ C
B . C −→ C ′ B . C ′ −→∗ C ′′

x∗ n

B . C −→∗ C ′′

5.3.4 Parallel Execution

A single step of parallel execution is modeled by splitting the current snapshot into independent portions,
doing one sequential firing step in each, and reassembling the result.

B . C =⇒ C ′ One-step parallel firing

p id

B . C =⇒ C

B . [m1]R1

Σ;~E1
−→ [m′1]

R′
1

(Σ,Σ′
1);~E′

1

B . [m2]R2

Σ;~E2
=⇒ [m′2]

R′
2

(Σ,Σ′
2);~E′

2
p par

B . [m1,m2]
(R1,R2)

Σ;(~E1, ~E2)
=⇒ [m′1,m

′
2]

(R′
1,R

′
2)

(Σ,Σ′
1,Σ

′
2);(~E′

1,
~E′
2)

This judgment depends on the single-step sequential execution judgment B . C −→∗ C ′.
Multi-step parallel execution is the reflexive and transitive closure of single-step parallel execution

B . C =⇒∗ C ′ Multi-step parallel firing

p∗ 0

B . C =⇒∗ C
B . C =⇒ C ′ B . C ′ =⇒∗ C ′′

p∗ n

B . C =⇒∗ C ′′

5.4 Properties

MSR satisfies type preservation with respect to the typing semantics given in Chapter 4 and both execution
semantics just examined.

Theorem 1 (Type preservation)

Let decl(B) be the declarations occurring in B. Given snapshot [m]R
Σ;~E

, define B ` [m]R
Σ;~E

snapshot

to hold if ` decl(B),Σ context holds, decl(B),Σ ` ~E eq holds, decl(B),Σ ` m mset holds, and
decl(B),Σ ` R role holds.

If B . [m]R
Σ;~E
−→ [m′]R

′

Σ′;~E′ and · ` B body and B ` [S]R
Σ;~E

snapshot, then B ` [S′]R
′

Σ′;~E′ snapshot.

A detailed proof for a variant of this language can be found in [10]. Type preservation for multi-step and
parallel firing are similar.

Type preservation ensures that, starting from a well-formed snapshot, execution of a well-typed specifi-
cation cannot produce ill-formed snapshot. It also implies that execution can be implemented as not to rely
on typing information except possibly for role owner instantiation, although this is a useful debugging tool.

5.5 Controlling Execution

A concrete run-time environment for MSR shall be correct with respect to the sequential or parallel semantics
just presented. At the minimum, it shall give the user a command to run a specification from a specified
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snapshot. However, this makes it hard to develop correct specifications and debug them in practice. It is
recommended that the development environment provide commands to inspect the state, limit execution
and control it. Some useful examples follow:

• init C: Set C as the current snapshot.

• run [i] [m]: Execute the specification from the currents snapshot. If the argument i is present, do at
most n steps. If the argument m is present, stop when a snapshot matches the parametric multiset m.

• show: Display the current snapshot.

• choices: Show the possibilities for the next execution step from the current snapshot.

• choose n: Choose the n-th execution step possibility from the current snapshot.

An implementation can make more sophisticated commands available [21].

5.6 Outputs

Type preservation ensures that running a well-typed MSR program cannot result in a run-time error.

In addition to the outputs of user commands intended to control execution (see above), it is useful
to provide facilities for tracing and debugging an execution. This includes step-by-step snapshots, partial
snapshots that focus on specific state elements, and execution statistics.
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