
2009 Senior Thesis Project Reports

Iliano Cervesato∗ Majd Sakr∗ Mark Stehlik†
Brett Browning∗‡ Bernardine Dias∗‡

Khaled Harras∗

May 2009, revised June 2010
CMU-CS-QTR-102

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Qatar campus. †Department of Computer Science. ‡Robotics Institute.

The editors of this report include the members of the Senior Thesis Committee on the
Qatar campus and the students’ advisors.

Abstract

This technical report retrospectively collects the final reports of the undergraduate Computer Sci-
ence majors from the Qatar Campus of Carnegie Mellon University who elected to complete a
senior research thesis in the academic year 2008–09 as part of their degree. These projects have
spanned the students’ entire senior year, during which they have worked closely with their faculty
advisors to plan and carry out their projects. This work counts as 18 units of academic credit each
semester. In addition to doing the research, the students presented a brief midterm progress report
each semester, presented a public poster session in December, presented an oral summary in the
year-end campus-wide Meeting of the Minds and submitted a written thesis in May.



Keywords: Mobile Robotics, Computer Vision, Path Planning, Vehicle Routing.



Contents
Hatem Alismail
Exploring Visual Odometry for Mobile Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Advisor: Brett Browning

Hend Kamal Gedawy
Dynamic Path Planning and Traffic Light Coordination for Emergency Vehicle Routing . . . . . . . 63

Advisor: M. Bernardine Dias and Khaled Harras

title-1



title-2



Senior Honors Thesis

Exploring Visual Odometry for
Mobile Robots

Hatem Alismail

Computer Science Department

hatem@cmu.edu

Advisor:

Brett Browning, Ph.D.

Robotics Institute

brettb@cs.cmu.edu

May 3, 2009

mailto:hatem@cmu.edu
mailto:brettb@cs.cmu.edu


Abstract

Visual odometry makes use of an image sequence to estimate the motion of a robot and

optionally the structure of the world. The low-cost and small-size of cameras, combined

with the high-information content of the images they capture make them ideal for robot

platforms. In this work, we develop a visual odometry system based on stereo input.

The output of the algorithm is a 3D map of the environment as well as camera/robot

trajectory suitable for mobile robots localization and navigation tasks. Our algorithm

makes use of Structure-From-Motion techniques by exploiting the projective geometry

between 3D point landmarks in the world and their projection into 2D imagery. To es-

tablish 2D-3D correspondences over multiple frames, we tracks CenSurE features from a

stereo camera. By combining the 3D depth information from the stereo process with ro-

bust pose estimation using RANSAC and relative orientation, we show that it is possible

to robustly estimate camera pose over time. Furthermore, we show that careful use of

Sparse-Bundle-Adjustment (SBA) produces refined solutions that estimate both world

structure and camera motion. We compare different approaches within this framework

and show that relative orientation is superior to using absolute orientation to estimate

pose. Secondly, we introduce a novel track selection process that improves the fault

tolerance of SBA to short baseline feature tracks. We test our algorithm on outdoor and

indoor environments and present results showing its effectiveness.

i





Acknowledgments∗

A Gb of thanks goes to my advisor for his extreme generosity in his time and resources

that he was willing to give me to finish this thesis. Without his help and guidance I

would not be able to finish this work. I would also like to thank my family for their

continuous and endless support. Many thanks also goes to the CS faculty in Carnegie

Mellon Qatar for their dedication and amount of time they are willing to give to teach

their students. I would also like to thank Dr. Bernardine Dias for not only teaching me

a lot, but also for feeding me something other than CBM’s† while I was working on this

thesis in Pittsburgh.

I would also like to thank Dr. Dudley Reynolds for his very helpful comments and

suggestions for writing this thesis. Thanks also goes to Noura El-Moughny (CS ’08) and

Noha Al Afifi for their creative suggestions and help in the design of the Meeting of the

Minds poster for this thesis. Many thanks goes to Qatar Foundation as well for funding

some of the equipment used in this work.

Last but not the least, a big thank goes to the research staff at the Robotics lab

in Qatar campus, Wael Ghazzawi, Ameer Abdulsalam and Imran Fanaswala, for their

hard work in recovering a hard disk failure of ’scorpion’, the lab’s beloved server.

∗The equipment and computing resources for this paper was funded by the Qatar Foundation for
Education, Science and Community Development. The statements made herein are solely the responsi-
bility of the authors and do not reflect any official position by the Qatar Foundation or Carnegie Mellon
University.

†Cheese and Bread in Microwave

iii





Table of Contents

1 Introduction 1

1.1 Approaches to Visual Odometry . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview of Visual Odometry 5

2.1 Camera Types Used in Visual Odometry . . . . . . . . . . . . . . . . . . 6

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Camera Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Feature Matching & Tracking . . . . . . . . . . . . . . . . . . . . 11

2.5 Obtaining 3D Points/Triangulation . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Triangulation using monocular camera . . . . . . . . . . . . . . . 13

2.5.2 Triangulation using stereo . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Recovery of Camera Motion between Frames . . . . . . . . . . . . . . . . 15

2.6.1 Absolute Orientation . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.2 Relative Orientation . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



vi TABLE OF CONTENTS

2.7 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Nonlinear Motion & Structure Refinement . . . . . . . . . . . . . . . . . 20

3 Our Approach 23

3.1 Initialization / 3D Points Triangulation . . . . . . . . . . . . . . . . . . . 24

3.2 Finding Correspondence and Feature Tracking . . . . . . . . . . . . . . . 25

3.3 Camera Motion Estimation using Relative Orientation . . . . . . . . . . 26

3.4 Motion & Structure Refinement . . . . . . . . . . . . . . . . . . . . . . . 26

4 Experiments & Results 29

4.1 Relative orientation vs. Absolute orientation . . . . . . . . . . . . . . . . 29

4.2 Global vs. Local SBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Visual Odometry without nonlinear refinement . . . . . . . . . . . . . . . 31

4.4 Feature Selection Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Complete system results on indoor and outdoor datasets . . . . . . . . . 35

5 Discussion 41

5.1 Feature Detector & Tracker Performance . . . . . . . . . . . . . . . . . . 41

5.1.1 Number of features . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.2 Accuracy of tracking across frames . . . . . . . . . . . . . . . . . 43

5.1.3 Baseline length between tracked features . . . . . . . . . . . . . . 44

5.2 Motion Estimation from Point Correspondences . . . . . . . . . . . . . . 45

5.3 Nonlinear Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 RANSAC Model-acceptance Threshold . . . . . . . . . . . . . . . . . . . 46

6 Conclusions & Future Work 49



1

Introduction

Navigating an unknown environment is a key task for a variety of mobile robots ap-

plications. The robot needs to be able to keep track of where it is in the world, a

process called localization, and simultaneously build and maintain a map of the envi-

ronment suitable for navigation, a process called mapping. As localization and mapping

must be performed simultaneously, this problem is commonly known as Simultaneous

Localization And Mapping (SLAM).

The SLAM problem has been studied extensively [1, 2], with particular emphasis

on LIDAR as the primary sensor. Recently, there has been renewed interest in vision-

based SLAM (vSLAM, or visual odometry)∗, as cameras offer low cost, high information

content sensors that are eminently suitable for human environments. Recent advances

in Computer Vision also places within reach a variety of synergistic capabilities, such as

object detection, recognition, scene and terrain classification. The main goal of visual

odometry is to recover the camera motion and the 3D structure of the world concurrently

by exploiting the projective geometry relating multiple views.

In this thesis, we study the vSLAM problem without relying on other sensors. The

aim is to be able to use a camera to estimate the robot’s trajectory as well as to build

a 3D model of the world structure. Having the ability to generate maps from camera

input only has many advantages. In addition to being integrated seamlessly in our lives,

cameras are low-cost, small-sized, low-power consumption and high-information content

sensors that makes them ideal for a variety of applications, especially the development

of small-sized intelligent units.

Deployment of cameras as a navigation sensor seems to possess many advantages over

other sensors. However, there are several issues to be addressed in dealing with visual

input. The most important issue is error accumulation and propagation. This issue is

not restricted to visual input only. A motion estimation algorithm would necessarily

suffer from an accumulated unbounded error, as typical motion estimation algorithms

∗We will use the terms interchangeably.

1



2 Chapter 1. Introduction

are iterative. However, error propagation is more exaggerated with the noisy nature of

images. Further, 3D motion estimation has 6 degrees of freedom (DoF), which makes it

more complicated than a 4 DoF problem in a 2D plane. It is important to stress the fact

that a vision-based localization and mapping algorithm could benefit from other sensors

inputs in an integrated system. In fact, the best vision-based navigation performance,

in terms of distance covered, is a combination of motion estimate from a stereo camera

as well as an Inertial Measurement Unit (IMU), see [3].

In this thesis, we focus on motion estimation and map building from only visual

input in order to advance the core technology. Once a robust camera-based motion

and mapping algorithm has been developed, it could be integrated with other sensors

to provide a higher level of robustness. In this thesis, we do not claim to achieve the

most robust visual odometry system, but analyse the problem carefully and propose

possible enhancements that can further increase the robustness of camera-based motion

estimation. In particular, the research question we try to address is:

Given a stream of images from a calibrated camera, can

we estimate the camera position and 3D world structure

robustly and efficiently over time?

The problem is graphically depicted in Figure 1.1, where a typical stream of images

is shown as well as an illustrative trajectory.

1.1 Approaches to Visual Odometry

There has been significant interest in visual odometry recently (e.g. [4, 5, 6, 3, 7]).

Solutions to the problem can be categorized into two groups: (1) Structure-From-Motion

(SFM) techniques, which draw from multi-view projective geometry (e.g. [8, 4, 3]) and

(2) Probabilistic Filtering approaches (e.g. [7]), which draw from the state estimation

literature and are popular in Robotics. Although filtering approaches, which include the

Kalman and Particle Filters, provide accurate estimates, they assume a small number

of 3D features/landmarks and do not scale well to larger problems with hundreds to

thousands of features. Here, we focus our attention on the SFM-based approaches to

visual odometry, with relatively large numbers of features in each image.

Current SFM-based approaches to visual odometry use the following steps:

1. Initialize the model with a set of 3D points as well as a camera pose. Typically, the

camera pose is chosen to be the identity rotation and zero translation, although

any initial frame could be chosen

2. Match features across frames to build tracks of features suitable for refining the

motion and structure. The longer the track corresponding to a 3D point and the

larger the baseline between features, the more accurate the refinement is



1.2. Overview of Our Approach 3

Figure 1.1: Overview of Visual Odometry

3. Triangulate a set of 3D points over frames. The initial set of 3D points will be

soon invisible due to camera motion and it is necessary to triangulate additional

3D points to make sure that the algorithm does not run out of 3D points

4. Obtain an initial estimate of motion between pairs of consecutive images. Several

approaches could be used to recover the motion between two frames. This step is

generally combined with RANSAC [9] for robustness

5. Optionally, refine the estimated motion and structure iteratively using nonlinear

minimization methods. This step is very essential for reducing error propagation

caused by image noise and the iterative nature of the algorithm

6. Repeat from 2

1.2 Overview of Our Approach

Our algorithm initializes a set of 3D points from stereo using a STereo-On-Chip camera

(STOC)†. The camera triangulates 3D points using hardware in real-time. After that,

a set of CenSurE [10] features is extracted from the left frame form each stereo pair.

†From http://www.videredesign.com

http://www.videredesign.com


4 Chapter 1. Introduction

Those features are used to initialize a feature tracker. The feature tracker uses Zero-

Mean Cross Correlation (ZNCC) and a marriage assignment scheme to match features

and track them over time. The matched features between consecutive frames are used

to estimate the camera motion using relative orientation [11]. The process is combined

with RANSAC to filter outliers and obtain a consistent set of matches. The final step

in the algorithm is the use of Sparse Bundle Adjustment (SBA) to refine camera motion

and, if possible, the 3D world structure. Structure refinement might not be always

possible due to short tracks, or insufficient baseline. Hence, we employ a track selection

scheme to select the points suitable for refinement.

1.3 Contributions

The main contributions of this thesis include:

• Analysis of reasons that prevent visual odometry from scaling to large datasets

• Empirical experiments proving that the use of relative orientation to estimate the

motion of the camera, outperforms the use of absolute orientation [12]

• Introducing a track selection scheme to choose a specific subset of the 3D points

to be included in the refinement step, which increases the robustness and accuracy

of the algorithm

• Implementation of the visual odometry system‡

• Evaluation of the algorithm on indoor and outdoor datasets collected by stereo

head mounted on a mobile robot

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 provides an overview of Visual Odome-

try. This includes a literature review of some current algorithms, related work, different

camera types, initialization methods and different results reported from different sys-

tems. In Chapter 3, we present the details of the visual odometry algorithm we chose

to implement and the motivations behind design decisions.Experiments conducted and

evaluations of the proposed approach on indoor and outdoor datasets are presented in

Chapter 4. A discussion and analysis of the work done is presented in Chapter 5. Fi-

nally, we conclude the paper and discuss possibilities of future work and enhancements

on the approach in Chapter 6.

‡The system is implemented using unoptimized MATLAB code that runs in near real-time



2

Overview of Visual Odometry

Visual odometry is the process of determining a visual sensor orientation and position

in 3D space from a sequence of images, or simply put, motion estimation using visual

information only. To us, humans, as well as many other living beings, our perception

system provides the main sensory input for navigation purposes. For example, it has

been shown that honey bees [13] use optical flow [14] as an essential navigation aid. It is

not only that visual inputs are naturally suitable for navigation, but also visual inputs

allows a variety of useful tasks. For example, besides navigating the environment the

robot can generate a 3D reconstruction, detect objects of interest, classify the terrain,

etc. All of those tasks can performed with low-cost and low-power consumption, which

is ideal for robotics platforms.

In Robotics research, the use of visual input for navigation purposes started late in

the 1970’s (see [15]). Among the first uses of cameras for mobile robot navigation can

be traced back to Moravec’s [16], who used several cameras to navigate a robotic cart in

a room. However, the use of vision in mobile robotics has been hindered by the limited

computational power. Typical image processing and understanding tasks require much

computational power due to the amount of data in images, which was not available until

recent advances in hardware Computer Vision algorithms.

Nowadays, visual odometry is attracting much attention in the Robotics and Com-

puter Vision communities. Several real-time visual odometry implementations have been

reported and results are very promising. However, much work remains to be done in

this area. Several improvements and enhancements could be added to current systems

to allow them to scale for very large terrains. The main issue is the ability to deal with

unbounded accumulated error induced by the iterative nature of motion estimation and

exaggerated with the large amount of data in images and the associated noise.

This chapter is organized as follows: First, we introduce some of the camera types

that have been used successfully in visual odometry, leading to a review of related

work. After that, the assumed camera model and geometry is explained. We also

discuss background materials related to feature extraction and 3D structure from images.

5



6 Chapter 2. Overview of Visual Odometry

Finally, this leads to a discussion of estimating camera motion between frames and the

use of RANSAC for robustness.

2.1 Camera Types Used in Visual Odometry

A variety of camera types exist and a survey of all of the different types of imaging

devices and lenses is beyond the scope of this thesis. Nevertheless, we can identify three

main camera types that have been successfully used in various implementations of visual

odometry. Those are shown in Figure 2.1.

The first and the most recommended camera for a robust visual odometry is a stereo

camera. The reasons behind the choice of a stereo camera will become apparent when

we discuss the main steps in visual odometry, which is mainly the ease of triangulating

3D points. The fixed and known baseline of a stereo camera allows efficient and more

accurate triangulation process. However, one drawback of using stereo is the relatively

high cost compared to conventional cameras.

Another type of cameras, is the conventional monocular camera. The main moti-

vation for using a monocular camera is the relatively cheap cost and easy deployment.

Monocular cameras are being integrated seamlessly in our lives. For example, many cell

phones and laptops are now camera-enabled upon purchase.

Finally, there have been some work on visual odometry using an omnidirectional

camera, i.e. a camera that has more than 180◦ field of view (FOV). The very wide field

of view from an omnidirectional camera provides many advantages, especially for mobile

robots. The most important advantage is that 3D landmark features remain in the field

of view of the camera for a longer period of time, which contributes to generating a more

dense and better refined 3D model of the world structure.

(a) (b) (c)

Figure 2.1: Different camera types used in visual odometry, (a) monocular camera
(http://ptgrey.com), (b) multi-camera omnidirectional system (http:
//ptgrey.com), (c) stereo camera (http://videredesign.com)

It is not only that different types of cameras have been used to obtain visual odom-

etry, but also the approach has been used in a variety of terrains and different robotics

http://ptgrey.com
http://ptgrey.com
http://ptgrey.com
http://videredesign.com


2.2. Related Work 7

platforms. One of the most interesting applications of vision-based robot navigation is

currently running on the Mars Exploration Rovers, Spirit and Opportunity developed by

NASA. According to [17, 18], visual odometry was a “life saver” in NASA’s Mars explo-

ration program. The authors report that the left back wheel of the rover “Opportunity”

is drawing more current that it should be and it had to be dragged most of the time to

maintain its expected lifetime. Dragging the wheel is a major cause of inaccurate wheel

odometry and hence visual odometry was there to the rescue.

Back on earth, visual odometry has been used in several terrains and environments,

including rough terrains, urban areas, indoor environments, underwater and in air [3,

19, 20, 21]. An interesting example of using vision is the underwater vSLAM algorithm

developed in [22]. Another interesting application of vision based navigation system is

the one developed for helicopter navigation [23].

2.2 Related Work

The idea of using vision as the main sensor for navigation purposes in not new. The

idea has been around since late seventies, early eighties. Some work on SFM started in

1979 by Bonde et al.[15]. In 1980, Moravec [16] demonstrated obstacle avoidance and

navigation on a robotic rover using computer vision. However, research on vision-based

navigation stalled for a while, due to several factors including the high computational

complexity and the existence of more accurate, but more expensive sensors, such as Laser

range finders LIDAR, that became the dominant navigation sensor. Recently, however,

advances in computer hardware and algorithms are allowing image processing tasks to

run in real-time. Such advances are renewing interest in the use of vision for localization

and mapping tasks.

Visual odometry has been used in a variety of terrains and environments. The most

relevant environments are outdoor and indoor environments accessible by mobile robots.

Visual odometry algorithms seem to be more successful in outdoor than indoor terrains

as it is easier to extract more unique features compared to features extracted in typical

indoor environments. For example, a robot navigating a meadow is more likely to find

distinctive features compared to navigating a building. Blank walls and uniform textured

floors in indoor environments makes difficult the extraction of distinctive features that

could be used for triangulation or tracking. However, a visual odometry system designed

to address navigation in indoors environments could benefit greatly from the known

Euclidean geometry in indoor environments, such as the straightness of walls.

One of the leading approaches to visual odometry is the work of Nister et al. [4]. The

authors demonstrate the use of visual odometry on rough terrains using a monocular as

well as a stereo camera. Nister’s monocular scheme as well as the stereo scheme operate

in real time, partially by tailoring modern CPU instructions to extract features very



8 Chapter 2. Overview of Visual Odometry

efficiently as well as the use of preemptive RANSAC [24]. Preemptive RANSAC plays

a key role in the system, adds robustness to the approach by rejecting outliers to the

motion model, and it achieves this very efficiently.

The monocular scheme of Nister’s approach depends on extracting Harris corners and

tracking them across frames. Once a feature track has a large enough baseline, the first

and last features are used to triangulate the 3D point, while the rest of features on the

track are used in an iterative minimization step later on. Motion between consecutive

keyframes of the camera sequence is estimated using the 5-point algorithm [25], followed

by an iterative refinement step. The last step is put the current motion estimate in the

coordinate system of the previous image to obtain a consistent trajectory of the camera.

The stereo scheme in Nister’s work is very similar. However, the fixed baseline of

the stereo head simplifies the problem of 3D point triangulation and resolves the scale

ambiguity. Dense correlation based stereo is performed to obtain 3D points at every

frame and motion is estimated using the 3-point algorithm [11] followed by an iterative

refinement step. In both cases, Nister et al. limit error propagation by introducing a

firewall into the system. The idea is that the motion estimation is stopped after a

certain number of frames, and visual odometry is reinitialized. This reduction in error

propagation in the system comes at the cost of reducing the number of 3D points used

for tracking and refinement and has to be balanced correctly to prevent the system from

running out of 3D points.

The use of Bundle Adjustment, or more specifically, Sparse Bundle Adjustment

(SBA) has been also used to determine camera motion and world structure without

an initial motion estimate. The work of Süderhauf et. al. [26] investigated the use

of SBA to estimate camera motion and structure directly from stereo data. This is

achieved by using feeding SBA with features from both the left and right stereo pair

without a proper initialization of 3D structure or camera motion. The approach is also

combined with a simple outlier rejection method to reject points with an error larger

than a certain threshold. However, providing good initial estimates of camera motion

and structure is essential for seriously motivated applications. The relatively low error

rate reported in [26] does demonstrate the power of SBA and its effectiveness in visual

odometry applications.

Using SBA with proper initialization of camera motion from point matches using

absolute orientation has been implemented by Konolige et al. [6]. The authors show

that the use of Bundle Adjustment in visual odometry can reduce errors by 50%. They

also combine visual odometry output with an IMU and are able of estimating a trajectory

up to 10Km with only 10m of error.

Next, we describe the background materials as well as the basic components needed

in a visual odometry system.



2.3. Camera Models 9

2.3 Camera Models

In this work, we assume an ideal pinhole camera model. The pinhole camera model is

arguably the simplest camera model. Camera projection is essentially a mapping from

a 3D world to 2D plane (the imaging surface). The camera matrix, P is a 3 × 4 matrix

that achieves this mapping. According to the pinhole camera model, x ≡ PX, where

X is a 3D point in the world represented in homogeneous coordinates, and ≡ denotes

equality up to scale. The homogeneous representation of a 3D world point and a 2D

image points are X = [X Y Z W ]T , and x = [x y w]T respectively. To obtain the final

2D pixel coordinates one divide the coordinates by w to get xc = [x/w y/w]T . The use

of homogeneous coordinates in Computer Vision is essential for the projection task and

very important to be able to seamlessly represent points at infinity.

The camera matrix is usually represented as P = K[R T], where K is a 3×3 intrinsic

parameters matrix, R,T are the rotation and translation that transform the world 3D

points to the camera frame, or camera extrinsic parameters.

The camera intrinsic parameters matrix provides the transformation from retinal

coordinates to image coordinates as depicted in Figure 2.3(b). A typical intrinsic pa-

rameters matrix is an upper triangulate matrix in the form

K =

 fx α cx

0 fy cy

0 0 1

 (2.1)

Where:

• fx, fy are the horizontal and vertical focal lengths respectively

• cx, cy are the x, y coordinates of the camera projection center

• α is the camera skew parameters to account for non-rectangular pixels. For the

majority of cameras, especially the CMOS camera used in this work, the imaging

plane has rectangular pixel, or a very insignificant skew that it is safe to assume

α = 0.

Note that the camera matrix could also be written as:

P = KR[I| − C] (2.2)

where the pixel coordinates of the point X becomes x ≡ KR[I| − C]. Here, C is the

coordinates of the camera center in the world frame. Comparing this notation with the

more convenient notation 2.2, we see that

C = −RTT (2.3)



10 Chapter 2. Overview of Visual Odometry

(a) (b)

Figure 2.2: (a) the geometry of the pinhole projection model, (b) transformation
between retinal coordinate to image coordinates by the intrinsic matrix K

Hence, knowledge of camera rotation,R, and translation, T allows the computation

of the camera center. A more comprehensive treatment of camera models and geometry

of camera can be found in [8]. Note, for this exposition, we are glossing over distortions

to the moel which we assume can be removed through a good calibration process.

2.4 Image Features

We now describe how image features are extracted and tracked across frames.

2.4.1 Feature detection

Features are points/regions in the image that have desirable properties to make them

distinctive and therefor easily detected. The ability to extract distinctive features from

images is essential to reducing the amount of information encoded in images. Given the

projection of a feature in at least two views, it is possible to reconstruct the 3D location

of the point. Further, given a large enough set of feature correspondences between views

it is possible to recover the underlying epipolar geometry and perform several tasks, such

as camera motion recovery and 3D triangulation.

A single pixel in a typical image is useless without its surrounding texture. Hence, an

image feature can be thought of as a vector describing the local image patch surrounding

a pixel (see Figure 2.3). This vector is typically called a ‘descriptor’. The aim from

computing a feature descriptor is to robustly describe the image patch so that comparing



2.4. Image Features 11

two image patches becomes a distance similarity operation on the two descriptors.

Figure 2.3: Feature vector extract from a 3 × 3 region centered at pixel (x, y)

Desirable properties of a descriptor include: invariance to illumination, scale changes,

viewpoint and affine transformations. However, the more operations applied to increase

the robustness of a descriptor, the more computation power needed and the slower the

process becomes. Thus, the choice of features and feature descriptors depend highly on

the applications and whether real-time performance is needed.

Available feature point extraction and description algorithms include, Harris cor-

ners [27], CenSurE features [10], FAST [28], Hessian Affine [29], SURF [30], SIFT [31].

The last two feature detectors, SIFT and SURF belong to the category of affine invariant

feature descriptors that generate great feature matching accuracies. However, they re-

quire lots of computational power that might not available for high frame rate real-time

systems. Hence, simple corner features, that are very efficiently computed, are perfectly

valid as the main feature types.

2.4.2 Feature Matching & Tracking

In the context of visual odometry, image features are useful only when they are matched

with features from other views. In Structure From Motion the aim is to recover the

structure of the world as well as the camera motion from point correspondences in

different views. More formally, let x ≡ PX and x′ ≡ P′X be the projections of the same

3D world point X, then the problem becomes recovering P′ and X. For a calibrated

camera, where K is know, this resolves to finding, R,T,X such that P′ = K[R T]

Several methods exist to match features between frames. The variation of methods

depends mainly on the feature types used as well as application demands. For high

dimensional features, such as the 128-d SIFT descriptor, nearest neighbor search using

the L2-norm distance is the method of choice using, or a KD-tree for performance. Cross



12 Chapter 2. Overview of Visual Odometry

Figure 2.4: Examples of image features

(a) Original image (b) CenSurE

(c) Multiscale Harris (d) SIFT



2.5. Obtaining 3D Points/Triangulation 13

correlation can also be used to match features. Normalized Cross Correlation (NCC) is

a method of matching feature descriptors, which incorporates more robustness into the

descriptor in the normalization step.

Once feature matching is done, visual odometry can benefit from maintaining tracks

of features, especially in the refinement step. A sufficiently large baseline, or the distance

between two projections of a feature will generally guarantee a stable refinement of the

reconstruction. However, at high frame rates, two features matched in two consecutive

views may not guarantee a large enough baseline. Hence, tracking feature across many

frames increases the accuracy of visual odometry considerably. Tracking a feature point

across frames could be done with mathematical models, such as the well-known Lucas-

Kanade tracker [32], or repeated usage of the previously feature matching methods.

2.5 Obtaining 3D Points/Triangulation

An essential part of the algorithm is obtaining 3D feature points (landmarks) from the

camera. Those points are not only for map generation and visualization, but also they

serve as a way of obtaining and estimating the camera position. This step is commonly

referred to as the initialization step of the algorithm. The way points are triangulated

varies with the type of camera. We now present ways of initializing the visual odometry

algorithm using a monocular camera as well as a stereo camera.

2.5.1 Triangulation using monocular camera

In the monocular case, 3D points are triangulated using the Epipolar geometry between

multiple views. The basic idea is computing the Fundamental Matrix (or the Essential

Matrix if calibration is present), to reconstruct the camera matrix relative to another

camera assumed to be at the origin with a canonical camera matrix P = K[I 0].

Many uncertainties in the use of the Epipolar constraint arise especially when images

are taken from a mobile robot. In general, a monocular camera for navigation is mounted

on the robot facing the direction of movement such that it can have front view. In

this case, the Epipole between consecutive view is at the center of the image, along

the direction of motion, which increases the triangulation uncertainty considerably as

illustrated in Figure 2.5. Moreover, the reconstruction can only be recovered up to scale.

2.5.2 Triangulation using stereo

The fixed baseline in the stereo case is a great advantage in the process of triangulation.

Knowledge of the base line permits an accurate computation of the disparity image and

allows for fast and dense 3D triangulation. Moreover, it resolves the scale ambiguity

found in the monocular scenario.



14 Chapter 2. Overview of Visual Odometry

Figure 2.5: The shaded area represents the area of uncertainty in triangulating 3D
points from different views. The smaller the baseline (distance between
the image planes optical centers) the more uncertain the triangulation. In
particular, notice the case in the last image when the two camera are in
front of each other. The Epipole in this case is at the center of image and
causes the largest uncertainty in estimating the 3D points in the FOV.
Figure from [8]

(a) Stereo setup (b) Stereo geometry

Figure 2.6: Stereo vision geometry



2.6. Recovery of Camera Motion between Frames 15

Figure 2.7(a) shows a canonical depiction of a fronto-parallel stereo rig. Given the

projection ray of point X on each camera image plane and knowledge of the baseline

between the two image planes, we can intersect the two rays in space and estimate the

3D location of the point X in the camera coordinate system. The process of computing

3D information from the stereo camera starts by computing a disparity image. Since

the two image planes in the majority of stereo systems are fronto-parallel, the vertical,

y, coordinate of image corresponding image pixels is the same. Hence, it is enough

to compute the horizontal disparity, which the difference between the x coordinate of

corresponding pixels in each image plane∗. Once the correspondence problem between

the two view is solved, computing the 3D coordinates of a point X = (X Y Z)T can be

obtained from trigonometry. From similarity of triangles in Figure 2.7(b), observe that:

Z

B
=

Z − f

B − xl + xr

(2.4)

By rearranging the equation above to isolate Z in on side, we get:

Z =
Bf

δ
(2.5)

where δ = xl − xr, the disparity value.

Now, we can obtain the X and Y coordinates of the point using the basic pinhole

projection model:

X =
Z

f
xl Y =

Z

f
yl (2.6)

2.6 Recovery of Camera Motion between Frames

To recover camera motion between frames, there are two common approaches: Absolute

orientation and relative orientation.

2.6.1 Absolute Orientation

The problem of absolute orientation is the following: Given, at least 3, 3D points in

coordinate system A and a corresponding set of points in a different 3D coordinate system

B. Find the rotation R, translation t and a scale factor s such that XA = s (RXB + t)†.

The algorithm has been studied extensively and a variety of solution were discovered.

In 1983, Faugeras and Hebert [33] published the first solution using unit quaternions to

represent rotation. In 1987, Horn published a closed form solution to the problem also

using unit quaternions to represent rotation [12]. A solution using rotation matrices was

∗Note, we again ignore distortions and skew in the approach as they can be recovered by careful
calibration

†Note the use of scaling factor s. For stereo, s is forced to be 1



16 Chapter 2. Overview of Visual Odometry

presented by Arun et al. [34] using singular value decomposition (SVD). Following to

that, in 1991, Umeyama discovered and corrected some degenerate cases [35].

Figure 2.7: Absolute orientation

The basic intuition in most of the absolute orientation algorithms is that solving for

R, t and s can be done separately. Solving for rotation is the most difficult part in the

problem. Once rotation is found, estimation of translation and scale become an easy

task. Translation can be estimated between the centroid of XA and the rotated and

scaled centroid of XB, while scale is handled similarly. Finally, because of the noisy

nature of measurements, solutions to the problem are casted as finding R, t, and s, such

that an error criteria is minimization.

Typically the quantity to be minimized is:

E =
∑
R,t,s

||s(RXB + t) − XA||2 (2.7)

This least squares fitting method is very sensitive to outlier measurements. Therefor,

the approach should be used as part of hypothesis-and-test RANSAC [9] framework to

reject such outliers.

2.6.2 Relative Orientation

Relative orientation is camera motion estimation obtained from a set of 2D-3D point

correspondences. The set of 3D points are in the world frame and the 2D points are

their projections as seen by a camera. The task is to recover the relative camera position

based on the given information. Two key steps are performed to obtain a motion estimate

form 2D-3D correspondences. First, the depth, or the distances of each of the 3D points

from the camera center is estimated. Second, the Euclidean transformation from the

estimated points in camera frame to the world frame is recovered. This transformation

describes the camera motion we are interested in. The two steps are explained below.



2.6. Recovery of Camera Motion between Frames 17

Figure 2.8: Relative orientation

First, estimating depth of a set of 3D points in the camera frame, based on their pro-

jection and their coordinates in a reference frame is called the Perspective-N-Point prob-

lem (PnP). The PnP problem is well studied problem in photogrammetry and Computer

Vision. Solutions to this problem can be traced back to Grunert’s work in 1841 [36]. A

formal definition of the problem has been given Fischler and Bolles in 1981 [9] as: given

the relative spatial locations of n control points and the angle to every pair of control

points from the center of perspective (CP), find the lengths of the line segments joining

the CP to each of the control points. This is different from the camera resectioning

problem [8] where the camera intrinsic parameters are allowed to change. Depending on

the number of points used, there exists the P3P, P4P and P5P variants of the problem.

Cases with n < 3 are not applicable as 1 or 2 points are not enough to constrain the

problem and result in an infinity of solutions.

The fundamental problem, and the one we are interested in, is the P3P problem.

By looking at Figure 2.8 we observe that there is a tetrahedron consisting of the rays

projected from each of the 3D points onto the camera center C. Each of the 3D points

are on the form

Pi =

 Xi

Yi

Zi

 (2.8)

The known lengths of the sides of the triangle connecting the three 3D points is:

a = ||P2 − P3|| (2.9)

b = ||P1 − P3|| (2.10)

c = ||P1 − P2|| (2.11)

The projection of each of the 3D points, from the camera frame, is a 2D point qi =



18 Chapter 2. Overview of Visual Odometry

(
ui

vi

)
, where each coordinate is obtained using the perspective equations:

ui = f
Xi

Zi

vi = f
Yi

Zi

(2.12)

The unit vectors from C to each of the Pi’s is given by

ji =
1√

u2
i + v2

i + f2
i

 ui

vi

f

 , i = 1, 2, 3 (2.13)

Since the camera calibration is known, we can determine the angles between each of the

rays (tetrahedron legs) and the camera center C. Let α, β, γ be the angles corresponding

to a, b, c, line segments connecting the three 3D points Pi’s, respectively, then the angles

can be given by the following equations:

α = cos−1 (j2 · j3) (2.14)

β = cos−1 (j1 · j3) (2.15)

γ = cos−1 (j1 · j2) (2.16)

Where, ji’s are the unit vectors given by 2.13. Let Si be the unknown distance from

each Pi to the camera center C, then Si = ||Pi||, i = 1, 2, 3. Since Pi = Siji, it is

sufficient to find each of the Si’s to determine the position of each of the points in the

camera frame.

The main idea to find a solution to the problem is the use of the known information to

form a high degree polynomial. The real roots of the polynomial correspond to possible

solutions, which are then verified for correctness.

The general approach starts by using the Law of Cosines to get the following:

a2 = S2
2 + S2

3 − 2S2S3 cos α (2.17)

b2 = S2
1 + S2

3 − 2S1S3 cos β (2.18)

c2 = S2
1 + S2

2 − 2S1S2 cos γ (2.19)

Let

S2 = uS1 S3 = uS1 (2.20)

then:

a2 = S2
1(u

2 + v2 − 2uv cos α) (2.21)

b2 = S2
1(1 + v2 − 2v cos β) (2.22)

c2 = S2
1(1 + u2 − 2u cos γ) (2.23)



2.7. RANSAC 19

Therefore

S2
1 =

a2

u2 + v2 − 2uv cos α
(2.24)

=
b2

1 + v2 − 2v cos β
(2.25)

=
c2

1 + u2 − 2u cos γ
(2.26)

After this point, several solutions exist [11]. The solution we use in this work is the one

given by Fischler and Bolles [9], in which they manipulate the equations above to obtain

a fourth order polynomial

D4u
4 + D3u

3 + D2u
2 + D1u + D0 = 0 (2.27)

The polynomial in 2.27 could have up to 4 solutions. For each solution a value for

ui and vi are recovered. By plugging the u value in 2.26, we can obtain S1, while S2

and S3 can be obtained by Equation 2.20. The correct solution, of of the possible four

solutions, must satisfy the Law of Cosines, Equation 2.19. Once the position of each of

the Pi’s is determined in the camera frame, Pi, then the relative orientation of the camera

with respect to the world reference frame can be obtained using absolute orientation as

explained in Section 2.6.1.

A complete survey of the major relative orientation/P3P algorithms can be found

in the work of Haralick et al. [11]. An efficient O(n) solution to the PnP was recently

developed in 2007 by Moreno-Noguer et al. [37].

2.7 RANSAC

Obtaining an estimate of camera motion using either relative or absolute orientation is

not the end of the story. The aforementioned algorithms rely on the minimum number

of samples to obtain an estimate of motion. However, in the presence of noise, some

measurements are gross outliers and hurt the estimation significantly.

RANSAC (RANdom SAmple Consensus) is an algorithm developed by Fischler and

Bolles in 1981 [9]. The algorithm’s core idea is very simple, but it is probably the

most cited algorithm in the Computer Vision literature. RANSAC repeats a set of of

steps L times, where at each step a minimal set of points (3 in this case) is sampled at

random and the pose is estimated. The number of points that agree with this solution

as determined by a threshold are counted, and are called inliers. The pose with the most



20 Chapter 2. Overview of Visual Odometry

outliers is kept. The algorithm runs at most L steps, where

L =
log (pfail)

log (1 − (pgood)k)
(2.28)

Where pgood is the probability of a randomly selected data point being in a good model

and pfail = (1− (pgood)
k)L is the probability of the algorithm failing. While it is possible

to use overdetermined solutions, we can see that the running time of the algorithm is

proportional to sample size used to generate the hypothesis. Hence, it is important to

use the smallest possible sample size for a more efficient solution. Pseudo code for the

RANSAC routine is show in Algorithm 1.

Algorithm 1 The RANSAC algorithm

RANSAC(data, N, k, pgood, ɛ, τ)
1 Select a random minimum number of samples k to compute a model
2 Fit the model to the data set and record the number of inliers that are within a threshold ɛ

3 if k
N > τ

4 then
5 Accept the model
6 else
7 Repeat from 1 L times
8 Cannot find a model, data is too noisy or threshold is too low

2.8 Nonlinear Motion & Structure Refinement

Unbounded accumulated error, image noise and the many nonlinearities involved in

estimating camera motion require the use of a nonlinear minimization step to reduce

error. Bundle Adjustment [38] algorithm to refine motion and structure estimates as a

large nonlinear minimization problem. The name stems from the analogy of adjusting the

‘bundle’ of rays projected of 3D points and converging onto each of the camera centers.

The goal of the process to adjust the world structure and camera parameters in one

bundle. Examples of using the bundle adjustment technique include [5, 3, 19]. Assuming

Gaussian noise and the absence of outliers, the bundle adjustment algorithm provides

an optimal solution to the problem of refining motion and structure based on image

measurements. Further, the sparse nature of the problem makes it possible to use Sparse

Bundle Adjustment (SBA) in real-time applications in many times. Bundle adjustment

could be run in real-time using local bundle adjustment, mask/feature selection and

rejecting outliers to simplify the minimization equations.

The SBA algorithm tries to minimize the reprojection error. The reprojection error



2.8. Nonlinear Motion & Structure Refinement 21

is the Euclidean distance between the predicted projection of all the 3D points using the

model and measured projections in the image given by:

min
aj ,bi

n∑
i=i

m∑
j=1

d(Q(aj, bi) − xij)
2 (2.29)

where, n is the number of points, m number of cameras, Q(aj,bi) is the predicted

projection of point i on image j, xij is the measured image coordinates and d(·) denotes

the Euclidean distance. The minimization problem can solved using iterative nonlinear

minimization least squares, such as the Levenberg-Marquardt (LM) algorithm [39, 40].

LM provides a way to iteratively minimize the cost by robustly solving a modified form

of normal equations:

JTJδ = JT ɛ (2.30)

where J is the Jacobian for the projection function Q(·). Input to the projection function

is a vector of camera parameters
(
aT

1 , aT
2 , . . . , aT

m

)
, and a vector of points parameters(

bT
1 , bT

2 , . . . , bT
n

)
, where ai =

(
QT

i T T
i

)‡ and bi = (Xi Yi Zi). The output of the projection

function is
(
x̂T

11, x̂
T
12, . . . , x̂

T
mn

)
, which is a set of projection for each of the 3D points in

each camera where the point is visible.

The Jacobian of the projection function J is constructed from
∂x̂ij

∂ak
and

∂x̂ij

∂bk
. The

spareness of the Jacobian comes from the fact that
∂x̂ij

∂ak
= 0 and

∂x̂ij

∂bk
= 0, unless j = k

because the projection of a point in a camera i depends only on the parameters of camera

i and nothing else.

In this chapter, we present the details of our approach to visual odometry.

‡Qi is the imaginary part of unit quaternion corresponding to rotation





3

Our Approach

Our approach is inspired by several algorithms in the field [5, 3, 6, 4]. The approach

does not place any constraints on the camera (such as forcing the estimated motion to be

above the ground plane) and does not incorporate any predictive models on the camera

motion. The motion of each frame is computed using an efficient relative orientation

computation in a hypothesize-and-test RANSAC [9] framework. The iterative nature

of this motion estimation scheme requires careful attention to error propagation. We

make use of the Bundle Adjustment technique to refine motion and possibly the world

structure (see Hartley and Zissermen [8]). Bundle Adjustment is considered the method

of choice for optimal refinement of motion and structure if the error is modeled as a

zero-mean Gaussian. In this chapter, we explain the details of our visual odometry

algorithm. Figure 3.1 outlines the main steps in our approach and Figure 2 is our

algorithm in pseudo code. The core algorithm is currently implemented in MATLAB

while feature detection and tracking is implemented in C/C++.

Figure 3.1: Overview of the main steps in Visual Odometry. The dotted line denotes
a less frequent use of nonlinear refinement depending on the need and
available image projections

The algorithm starts with initializing the world model with an initial set of 3D points

from stereo and aligns the world coordinate system with the first camera, i.e. Q0 =

23



24 Chapter 3. Our Approach

Algorithm 2 Overview of the visual odometry algorithm, details in the text

Visual-Odometry(K)
1 [X,x] = Initialize-from-stereo
2 while there are images to process
3 do
4 ✄ Obtain data from the stereo head
5 [Xm,Ym,ym] = FindCorrespondence(x,y)
6 [Qi, Ti, inliers] = RANSAC-relative-orientation(Xm,Ym,ym,K)
7 [Q̂i, T̂i,Xm(inliers)] = SBA-motion-refinement
8 if there are tracks longer than 3 frames staring from frame k
9 then

10 ✄ Refine motion & structure using SBA
11 [Q̂k:i, T̂k:i,Xs] = SBA-motion-and-structure

Figure 3.2: The STOC camera used in the system

(1 0 0 0)T ∗, T0 = (0 0 0)T , where Qi is camera rotation represented as a quaternion.

After that, a three-step processes is then repeated: (1) finding a set correspondence

between 3D points and their 2D features in the left image of the stereo, (2) obtaining a

robust estimate of motion using RANSAC and relative orientation, (3) refining motion

parameters only using SBA. To increase the accuracy of the approach, we sub-select

features that are tracked for more than three frames to refine motion and structure

concurrently using SBA.

3.1 Initialization / 3D Points Triangulation

In this work, we delegate the task of triangulation and obtaining a set of 3D points

at every frame to hardware using a Stereo On Chip Camera (STOC)†, which performs

dense correlation-based stereo. The camera has 9cm baseline and is connected to the

computer using Firewire, see Figure 3.2.

The small baseline as well as the relatively wide FOV of the camera do not allow the

∗Equiveantly R0 = I3
†From Videre design http://www.videredesign.com

http://www.videredesign.com


3.2. Finding Correspondence and Feature Tracking 25

camera to accurately triangulate 3D points that are far away from the camera. During

empirical experiments with the camera, we observed that points that are farther than

5m from the camera have unreliable depth and are not used in the algorithm. This has

been in a problem in testing the approach for outdoors datasets.

3.2 Finding Correspondence and Feature Tracking

The STOC camera tries to find a dense set of 3D points by matching as many points

as possible between the left and right image. Knowledge of epipolar lines allow a fast

and dense set of features to be matched resulting in a dense 3D point cloud. However,

the high density of features used for triangulation introduces more challenges to feature

matching across frames. For the approach to be successful, it needs more distinctive

features that could be matched between frames with higher confidence. Thus, we extract

different types of features from the left image of each stereo frame to use them for motion

and structure refinement.

Once features are extracted, a 3D-2D correspondence needs to be established between

the extracted features and the 2D coordinates of the 3D points generated by the stereo

head. The correspondence approach used is very simple by matching the coordinates of

the extracted features to the 2D coordinates of stereo head. In this work, we extract

CenSurE features [10] from the left image of each stereo pair, see Figure 2.4 for an

example of CenSurE features. CenSurE features were extracted in scale-space to add

invariance to feature scale [41]. The use of CenSurE features has two advantages: one,

computing CenSurE features in an image is a relatively efficient task, thus providing

means for a real-time implementation. Two, CenSurE features seem to perform well in

outdoor as well as in indoor environments.

Each extracted feature is assigned a unique ID to be able to build tracks of features

over time. For each image Ii a number of CenSurE feature vectors vi’s are extracted.

Similarly, for image Ii+1 we extract a number of feature vectors vi+1’s. Two feature

vectors are matched if the Zero Normalized Cross Correlation (ZNCC Equation 3.3)

exceeds a certain threshold. Further, the spatial information is also incorporated by

limiting the search window around the feature vector to a certain number of pixels.

Moreover, features are matching in a marriage assignment scheme, to obtain a more

reliable matching. Each of the feature vectors in vi is assigned a matching feature vector

in vi+1 based on the ZNCC score and spatial information. At the same time, each of the

feature vectors in vi+1 is assigned a matching vector in vi, again using the ZNCC score

and spatial information. Finally, two feature vectors vi, vi+1 are declared as matches if

both features have been assigned to each other by the marriage assignment scheme.

As a note, the choice of the many different thresholds involved in the process (e.g.

search window size, ZNCC threshold, scale factor between every octave, etc.) is rather



26 Chapter 3. Our Approach

1

N − 1

∑
x,y

(Ix,y − µI) (w − µw)

σIσw

(3.1)

Figure 3.3: Zero-mean Normalized Cross Correlation (ZNCC), where Ix,y denotes the
subimage, w is the feature vector, N is the number of entries in the feature
vector, µ the mean and σ is the covariance

cumbersome. Choices are highly dependent on the image sequence on hand and are a

matter of art and experimentation to get the best combination of magical numbers. In

this work, we decide the best combination of thresholds for each datasets separately by

experimentation and visual verification.

3.3 Camera Motion Estimation using Relative Orientation

To obtain an initial estimate of the camera motion we use a 3-pt relative orientation

algorithm [11]. We combine the relative orientation algorithm with RANSAC [9] to reject

outliers and obtain a robust pose estimates. The input to the 3-pt relative orientation

algorithm is a set of 3D points in the world coordinate frame Xi, a corresponding set

of 3D points in the camera coordinate frame Yi, a set of 2D image projections yi

corresponding to each of the Yi’s and the camera intrinsic parameters matrix K. Since

we have the calibration matrix, we can work directly in normalized image coordinates

to reestimate the depth of each of the points Yi and obtain a more accurate set of 3D

points Ŷi in the camera coordinate system. After that, we apply an absolute orientation

step to recover R and T, such that Xi = R(Yi − T) (see Section 2.6.2).

The use of relative orientation instead of directly recovering the camera motion using

absolute orientation step is motivated by the uncertainties in computing the depth of a

point from stereo. Although both relative and absolute orientation are sensitive to noise,

the latter is empirically more stable. Thus, reestimating the points as a preprocessing

step before the absolute orientation step yields better results (see Chapter 4).

3.4 Motion & Structure Refinement

The step of refining motion and structure is crucially important. The unbounded nature

of the accumulated error is the main reason preventing visual odometry algorithms to

scale. As can be seen, there is much room for errors involved in every step of the

algorithm influenced by the noisy nature of images. Sources for error in the system

include:

• Triangulating 3D points from stereo: the process of triangulation is not error-free



3.4. Motion & Structure Refinement 27

and error could be introduced during feature matching steps. Further, more gross

errors could easily be introduced to the system by the nonlinear proportionality of

disparity uncertainty with respect to depth.

• Feature tracking: the feature tracker is also not error-free. In fact, one of the most

devastating errors are wrong image matches. However, a good percentage of those

errors are handled by RANSAC

• Errors in initial motion estimates: again, initial motion estimates are prune to

errors. The major cause of error in this case are wrong feature tracks as well as

inaccurate 3D triangulations. We try to handle as much as possible of those errors

by using RANSAC as well as reestimating the 3D points using relative orientation

prior to apply an absolute orientation step.

The problem of motion and structure estimation is essentially non-linear. Although

the use of an outlier rejection scheme as RANSAC is extremely important, a nonlinear

minimization/refinement step should be applied. In this work, the Bundle Adjustment

[38] algorithm to refine the motion as well as the structure whenever possible. In this

work, we use the Sparse Bundle Adjustment implementation provided by Lourakis et

al. [42]. We have observed that it is almost always possible to refine estimate motion

using bundle adjustment, however care should be taken when using the bundle adjust-

ment method to refine structure. The choice of the 3D feature points to be included in

the bundle adjustment computation should be made carefully. An important factor in

determining whether a 3D point is included in the refinement is the number of corre-

sponding image projections. More precisely, the baseline between those projections is

the quantity we would like to have as large as possible to obtain an accurate reconstruc-

tion. However, consecutive images passed to the algorithm are of actual image motions.

Thus, we assume that the number of frames we track a feature for is a good indication

for sufficient camera movement to allow accurate reconstruction. In our experiments,

we include a 3D point into the refinement step iff we can see the point for more than 3

frames. In other words, the point is projected into at least 3 cameras.

In the next chapter, we describe experiments done and report on results obtained

from this algorithm in outdoor and indoor datasets.





4

Experiments & Results

In order to test and evaluate the performance of our approach, we have collected stereo

imagery taken by a camera mounted on a mobile robot in indoor and outdoor environ-

ments. The camera used is STOC camera shown in Figure 2.2(c) with 9cm baseline and

a wide Field of View (FOV). The short baseline of the camera as well as the wide FOV

favored the use of the camera in indoor environments with limited scene depth. We have

also tested the approach in outdoor environments, but with the camera titled towards

the ground to get more useful 3D points.

We experimentally tested major components of the visual odometry system. In

particular we experiment with:

• Relative orientation vs. Absolute orientation

• Global vs. Local SBA

• Visual odometry without nonlinear refinement

• Feature selection mechanism

• Complete system results on indoor and outdoor datasets

Next, we explain experiments conducted and report results of testing the algorithm

on outdoor and indoor datasets.

4.1 Relative orientation vs. Absolute orientation

Since 3D points can be triangulated from stereo in camera frame and can be matched to

a set of points in the world frame, why not use absolute orientation directly? In absolute

orientation, a transformation between corresponding 3D points in different coordinate

29



30 Chapter 4. Experiments & Results

systems can be computed efficiently and in closed form [12]. Nonetheless, relative ori-

entation proves superior in this problem. In our experiments, we have tested pose esti-

mation using relative orientation and absolute orientation and we have experimentally

found that relative orientation provides more stable results.

Both relative and absolute orientation are very sensitive to erroneous measurements.

Although the use of RANSAC adds robustness to the algorithm, it does not solve the

problem of inaccurate measurements. The situation is more exaggerated in the case of

triangulating 3D points from stereo imagery, especially when 3D points triangulation

uncertainties increase significantly in the direction of depth.

In Figure 4.2(a) the trajectory of the camera was estimated using relative orientation

(red) versus absolute orientation. Both methods seem to perform well until the 73rd

frame of the sequence in which trajectory estimation using absolute orientation becomes

useless. Figure 4.2(b) is a plot of the cardinality of the set of inlier 3D points at every

frame of the sequence. From the plot, we can see that absolute orientation is able to

maintain a slightly higher number of inliers at every frame. More interestingly, at frame

73, when motion estimation using absolute orientation breaks, we can see a significant

increase in the number of inliers. This high number is due to a low error when the

absolute orientation model is fitted to data that is should not be consistent with motion.

(a) Relative (red) vs. Absolute orientation
trajectory. See text for details

(b) Number of RANSAC inliers over time

Figure 4.1: Relative vs. Absolute orientation results

Since the trajectory estimation is iterative and depends on previous estimates, it is

not possible to recover the correct trajectory once it fails. It is possible to establish

another segment of odometry, however, there is no easy way to connect those segments

without using other sensors or more complex algorithms. Accepting inaccurate points

as inliers hurts the algorithm significantly and our algorithm does not provide a solution

to this problem. Instead, we use relative orientation to compute a robust estimate of

motion between frames that correctly rejects 3D points that are outliers to the motion



4.2. Global vs. Local SBA 31

model based on the geometric reprojection error.

4.2 Global vs. Local SBA

Bundle Adjustment is an established algorithm in the field of photogrammetery and

provides an optimal refinement of motion and structure assuming that error is zero-

mean normally distrusted. However, naive implementation of the algorithm is very

computationally expensive as it requires inversion of very large matrices. Even with

the introduction of fast matrix inversion methods, the size of the matrices are typically

large preventing the use of Bundle Adjustment in real time. The structure of the prob-

lem, however, is naturally sparse. Exploiting this sparsity leads to significant gains in

performance and allows careful use of the algorithm to run in real-time.

Nonetheless, the matrix inversion step is still a burden when the problem grows and

we are dealing with large matrices. In solution to this problem, local Sparse Bundle

Adjustment (SBA) could be used instead of running the SBA globally on all frames. In

fact, the iterative nature of the problem does not allow SBA to run globally as images

are not known beforehand.

In our experiments, we have used SBA to refine all frames whenever a new frame is

added, which we call global SBA, and we have used SBA to refine only a fixed number

of frames locally. Results obtained from local SBA are of comparable quality to using

global SBA. In fact, this minor loss of quality is compensated by the ability refine motion

and structure much faster than refinement using global SBA.

4.3 Visual Odometry without nonlinear refinement

We have analyzed the performance of visual odometry using relative orientation com-

bined with RANSAC without any use of nonlinear refinement and we have found that

results depend on the dataset. In particular, relative orientation provides acceptable

results when camera rotations are small, other than rotations along the direction of

depth. If camera motion consists of translation only, then the use of relative orientation

generates a trajectory and map that are adequate for mobile robot navigation purposes.

However, as soon as rotations are introduced, the nonlinear refinement step is essential.

Results for this experiment are in Figure 4.3 and 4.2.

Figure 4.2 shows the trajectory of the robot driving in a line up a gentle slope. Red

is the trajectory estimated using SBA, while the other is the trajectory estimate by

relative orientation only. In both algorithms, the X and Y coordinates of the trajectory

report that the robot did not move neither left or right. However, as the robot was going

up, relative orientation overestimated the robot’s rotation.



32 Chapter 4. Experiments & Results

Figure 4.2: Relative orientation is prone to errors. Nonlinear refinement (red) is
essential for obtaining accurate results. See text for details.

Nonlinear refinement is also required in the case of rotations. Figure 4.3 shows SBA

trajectory (in red) versus relative orientation only on a dataset collected by moving the

camera in circular trajectory by hand.

More analysis is shown in Figure 4.4 where the mean re projection error is plotted

before applying SBA and after applying SBA. In this plot, SBA is ran on all frames in the

sequence in a global fashion. The spike in the error plot was due to large rotation that

caused blurry image affecting the quality of features. However, after motion refinement

using SBA the error goes back to an acceptable values.

4.4 Feature Selection Mechanism

Information about 3D points and their projection is stored in a matrix, where rows of

the matrix correspond to 3D points identified by a unique feature identifier and columns

correspond to frame number in the image sequence, as shown in Figure 4.5. The matrix

is binary, such that Mi,j = 1 if the 3D point with the feature i is visible at camera

frame j. Following the convention of [42] we refer to this matrix as the visibility mask,

or mask for short. The mask contains a lot of information about the features and the

performance of feature tracking. The example mask shown in Figure 4.5 is a diagonal

matrix as one would expect. As the camera moves in space, 3D features are expected

to disappear from the field of view. Hence, features observed on the first frame might

not be visible at the 20th frame depending on how fast the robot moves, camera frame



4.4. Feature Selection Mechanism 33

(a)

(b)

Figure 4.3: Large camera rotation requires the use of nonlinear refinement



34 Chapter 4. Experiments & Results

Figure 4.4: Mean reprojection error at every frame before and after applying a global
SBA motion refinement. Motion refinement only was used and no structure
refinement used to generate the figure

Figure 4.5: Example of a visibility mask, the red rectangles in inside the close up are
some of the included points for nonlinear refinement



4.5. Complete system results on indoor and outdoor datasets 35

rate, and feature tracking performance.

One merit of the visual odometry approach is that it does not require a feature to be

visible at every frame. However, features that appear in very few frames, e.g. features

visible in 2 frames only, should be treated with care in the nonlinear refinement step as

they often do not constrain the refinement significantly.

To accurately refine a 3D point location in space it is necessary to have a sufficient

baseline. Most of the features that appear in two frames only are very close to each

other and not suitable for refinement. Refining those points will most likely result in

hurting the performance of the algorithm significantly. In our experiments, we noticed

two devastating behaviors if points with only two projections are used. The refinement

could either scale the 3D points coordinates down very close to zero, or it could scale

the coordinates up to values very close to infinity, in order to minimize error.

In this work, we select 3D points that are seen in more than 3 views for inclusion in

a joint motion and structure refinement step. Otherwise, we refine motion only, leaving

the structure intact, as shown in Figure 4.5.

4.5 Complete system results on indoor and outdoor datasets

We have tested the approach in indoors and outdoors environments. In this section we

present results on an outdoor dataset taken by a mobile robot. The robot, shown in

Figure 4.6, is a modified ER1 robot from Evolution Robotics∗. A sample from one of

the outdoor datasets used to test the algorithm is shown in Figure 4.9. This dataset is

particularly challenging because of the abrupt robot motion caused by the bricks on the

ground and the small-sized robot wheels. The visual odometry results from that dataset

are shown in Figure 4.10.

Figure 4.6: The ER1 robot, one of the robots used to collect data

∗www.evolution.com

www.evolution.com


36 Chapter 4. Experiments & Results

Figure 4.7: Sample frames from an indoor dataset



4.5. Complete system results on indoor and outdoor datasets 37

Figure 4.8: Results on one of the indoor datasets, showing the circular trajectory and
3D world texture



38 Chapter 4. Experiments & Results

Figure 4.9: An outdoor dataset used to evaluate the algorithm



4.5. Complete system results on indoor and outdoor datasets 39

(a) The world

Figure 4.10: Visual odometry results shown on one of the outdoors datasets





5

Discussion

Visual odometry for localization and mapping is a certainly promising approach. The

ability to use the algorithm indoors as well as outdoors is a great advantage. Other

advantages include the ability to generate 3D maps of the environment using a camera,

rather than a 2D map using other sensors. Cameras in particular have several advantages

including the low-cost and high-information content. However, some issues need to

be addressed in order to obtain a scalable and robust visual odometry system. In

this chapter we discuss some of the major issues needed to obtain scalable and robust

performance. These issues include:

• Feature detector & tracker performance

• Motion estimation from point correspondences

• Nonlinear minimization

• RANSAC model-acceptance threshold

5.1 Feature Detector & Tracker Performance

Performance of feature detector and especially the tracker is crucial to robust visual

odometry. Three main issues to be considered:

1. Number of features extracted

2. Baseline length between tracked features

3. Accuracy of tracking across frames

41



42 Chapter 5. Discussion

5.1.1 Number of features

An integral part of the approach is the use of RANSAC to obtain an initial robust

motion estimates. The more the number of samples used to estimate motion, the better

RANSAC performance is. For example, if 30% of the extracted features are correct

on average, then extracting 1000 features will yield 300 correct matches on average.

However, if only 100 are extracted, then we would only expect 30 matching pairs to

be correct. Although it is possible to determine camera pose uniquely from three 3D

points, the least-square fitting approach will be hurt in the presence of non-Gaussian

noise. Thus, it is better to always solve the overdetermined system and choose the best

fit with the help of RANSAC.

Image noise is an important factor that affects features extraction and matching sig-

nificantly, especially in visual odometry. The real-time requirements of visual odometry

prevents the use of sophisticated feature extraction methods. Feature extracted in real-

time have a much higher percentage of noise. Further, feature extraction and matching

across frames is not an error-free processes. Noisy points propagate to feature match-

ing across frames reducing the accuracy of matching, let alone the challenges of feature

matching in different views. Correlation-based matching between feature vectors in dif-

ferent views does not explicitly make use of the recovered camera motion parameters as

the scale of features change. In our approach, we use CenSurE features extracted in scale

space to avoid this problem. However, scale-space feature extraction does not eliminate

the problem entirely. Accepting inaccurate matches hurts the algorithm significantly.

Feature extraction and tracking are the main challenges in our approach. We extract

approximately 500 features per frame, 200 of those are distinctive enough to be tracked.

However, the 3D-2D correspondence step with the stereo data reduces the number to

less than 100 features per image. The number is further reduced to an average of 50

features after the RANSAC outlier rejection step. The problem is exaggerated with the

small baseline of the stereo, which requires tilting the camera towards the ground to

keep the 3D triangulation step as accurate as possible.

With that mentioned, visual odometry could benefit greatly if the camera is able to

triangulate far away points, especially in outdoor environments. Farther points remain

the field of view of the camera for a longer period of time, which allows tracking those

feature for a longer temporal window. Another advantage is that the motion of far away

points seem minimal with respect to the camera, which make their use ideal for rotation

estimation. This idea of separating rotation from translation has been implemented by

Tardif et al. [43]. Their approach of decoupling rotation from translation is key that

allows their system to achieve a trajectory of 2.5Km in urban areas.

Problems caused by an insufficient number of inliers, or matches, is shown in Fig-

ure 5.1. In this situation, the robot turned quickly and introduced a significant blur

to the image. Feature extraction and definitely matching was hurt significantly by the



5.1. Feature Detector & Tracker Performance 43

Figure 5.1: Lost pose caused by a low number of matched points, exactly three points,
used to find an initial estimate of motion. The very low number of matched
features is due to image blur caused by a fast turn by the robot

blurry image and caused the algorithm to break.

5.1.2 Accuracy of tracking across frames

Several solutions to the problem of feature tracking and matching have been proposed.

An obvious solution is the use of more robust feature extraction methods, such as the use

of SIFT feature descriptor [31], or MSER regions [44]. However, real-time requirement

of visual odometry especially for mobile robots prevents the use of computationally

expensive feature extraction/description methods. A simpler solution is to extract as

many points as possible and hope that a large enough subset of those points could

be correctly matched. The problem with this approach is that the density of features

will hurt matching accuracy and might cause a large number of correct features to be

incorrectly rejected.

Other solutions include the use of guided feature matching based on the epipolar

constraint between multiple views [8]. However, rotations around the center of projection

without translation require special treatment. Other guided matching methods include

the use of the estimated motion to predict the location of matches and reject inconsistent

matches early on. Guided matching based on motion models requires the assumption



44 Chapter 5. Discussion

that camera motion can be expectedly modeled. In other words, the camera cannot

suddenly move significantly. For example, a camera cannot rotate 180◦ between two

frames in normal circumstances. In the case of mobile robots, we can predict the robot

motion based on previous measurements, especially at high frame rates and incorporating

the estimated motion to guide feature matching could potentially help the performance

of the algorithm.

Matching across several frames before motion estimation is a more robust solution.

As mentioned earlier, features tracked for two frames only are most probably wrong or

inconsistent matches. Feature extraction and tracking could be modified such that it

only tracks points that are visible for more than two frames. Triplets of features could be

used to estimate the initial motion, which is a more robust approach to feature tracking

and motion estimation for a visual odometry system for mobile robots.

5.1.3 Baseline length between tracked features

Another important issue to keep into consideration is the baseline between the features

being tracked. If the baseline is too small, then structure refinement becomes unstable.

The situation arises when a mobile robot is driving slowly in environments with similar

textures and cannot match feature accurately. This causes many tracks to contain two

features only that are very close to each other. Given that a feature could only be tracked

for 2 frames and the robot is driving slowly, then it is very likely that this feature is

only noise and its use in a refinement step is not recommended. In the case of visual

odometry for mobile robots, the length of a track is a good indication to the quality of

features and accuracy of the approach. Longer tracks imply the detection of distinctive

features and constraints the refinement of the world structure. However, track length as

an indication of an accurate SFM is not necessarily true in other applications.

Finally, small robot motions tend to cause drift in the estimated trajectory. This

is even more visible when the robot is stationary and is mainly attributed to incorrect

feature matching due to image noise. In solution to this problem, wheel odometry could

be used to detect visible motion before visual odometry. In cases where wheel odometry

is not present, the use of the initial motion estimation from RANSAC could serve as a

good indication of whether motion estimate for the current frame should be integrated

into the visual odometry estimate. Another approach to solve this problem is measuring

the baseline between feature tracks. More precisely, measuring the baseline between

points that are close to the robot, which can be done without an explicit computation

of the ground plane.



5.2. Motion Estimation from Point Correspondences 45

5.2 Motion Estimation from Point Correspondences

In this work, two motion estimation algorithms have been compared. One is absolute

orientation that recovers camera motion from 3D-3D point correspondences in different

frames. The other is relative orientation, which estimates camera motion from 2D-3D

correspondences. Empirical experiments have shown that relative orientation produces

more stable estimates than absolute orientation, without significantly affecting the run-

ning time of the algorithm.

Whether relative orientation is always better than absolute orientation is an open

questions. For many cases, 3D triangulation from stereo will have several inaccuracies

that grow nonlinearly with the distance of the triangulated points. However, Konologie

et al. [3] report a successful visual odometry system from stereo data using absolute

orientation as the initial motion estimation step. On the other hand, Nister et al. [4]

reports similar problems of the use of absolute orientation in camera motion estimation

in their work, although no detailed results were reported. The most likely explanation

of these different results is the stereo triangulation algorithm in use. If 3D points trian-

gulation is accurate enough, then absolute orientation would show a good performance

comparable to the use of relative orientation. Defining good enough triangulation is not

an easy tasks as well as obtaining good enough 3D points. Graph based stereo algo-

rithms show the best performance in computing disparity from stereo [45]. However, the

computational complexity of graph based stereo algorithm makes their use inapplicable

for real-time performance. In summary, the use of 2D-3D point correspondence would

be a better approach in the general case.

5.3 Nonlinear Minimization

Visual odometry is a nonlinear problem at its heart. The camera projection model,

3D triangulation from stereo and the 3-pt algorithm are all nonlinear. Similarly, the

3D triangulation step is nonlinear. The situation is more complex with the 3-pt algo-

rithm that requires finding a solution for a 4th degree polynomial, or even a 10th degree

polynomial[11]. Thus, there is a need for a nonlinear minimization step.

Further, the approach is also iterative. Camera motion estimation depends not only

on the last frame, but only on several frames in the sequence. Accumulation of error is

a serious problem that has to be addressed for a robust visual odometry.

Bundle Adjustment (BA) is the recommended algorithm to refine motion and struc-

ture. Exploiting the sparseness of the problem and the use of local BA allows for real-

time performance and optimal refinement. Also, the use of BA gives a good indication

of the accuracy of the initial motion estimation step using either relative orientation or

absolute orientation.



46 Chapter 5. Discussion

Estimation obtained using relative orientation or absolute orientation is used as a

starting point for nonlinear minimization to minimize the reprojection error. If this

estimate is good enough, then BA will need less than 15 iterations to converge, which

can be done very efficiently. However, poor initial solutions will result in a much more

computationally expensive BA step. Using the number of iteration as an indication of the

accuracy of the initial estimates could be used to assess the validity of a certain motion

estimation. If BA is run for 20 iterations and no good solution is found, dropping the

frame reduces the error risks that will hurt future frames. Although somewhat expensive,

the idea of using the number of BA iterations could be used to select keyframes that are

reliable for visual odometry.

Figure 5.2: Number of RANSAC inliers with respect to threshold

5.4 RANSAC Model-acceptance Threshold

The aim of using RANSAC is to obtain an accurate subset of measurements from an

initial set of noisy measurements. This is accomplished by using a randomly selected

subset of data with the minimum cardinality to compute a model. After that, the

model is fitted to all measurements in the set and each measurement residual error

is computed. An accurate subset of measurements is obtained from the model that

generates the highest number of inliers. Inliers are those measurements that have an

error less than a specified threshold.



5.4. RANSAC Model-acceptance Threshold 47

In many case, the threshold is just a magic number that is very hard to compute

before hand. In the context of visual odometry, RANSAC contributions are two fold.

One, it makes motion estimates robust by rejecting noisy measurements form being

included in the estimation. The other, it filters inaccurate 3D points from initial set of

3D points, which will be used in the next step of the algorithm.

The next step of the algorithm is refinement using nonlinear least-squares that does

not take into account error/noise models. Although it is possible to include such models,

computation time of the refinement is expected to increase significantly. Hence, rejecting

any outliers before the nonlinear refinement step is very important.

The number of motion estimation inliers is determined by one threshold, which is the

maximum allowed reprojection error. On the one hand, a very strict threshold provides

more accurate results, by accepting points that generate very low errors in the generated

motion model. However, more accurate results come at the price of lowering the number

of 3D points that survive to the next step of the algorithm. On the other hand, a very

relaxed threshold allows many points to pass through the RANSAC robustness filter,

which is good for having a more dense model of the world. However, the majority of

those points are inconsistent with the motion model and hurt the algorithm significantly.

Figure 5.2 shows the relation between number of RANSAC inliers and acceptance

threshold. As expected, the relationship between inliers and threshold is counter pro-

portional. In this work, we use the value 0.005 as RANSAC threshold. This value is the

maximum accepted reprojection error in normalized image coordinates.





6

Conclusions & Future Work

In this thesis, we have presented a visual odometry system based on camera input only.

The system estimates a mobile robot position overtime as well as generate a 3D map of

the surrounding environment. The main contributions of the thesis include

• Analysis of reasons preventing visual odometry to scale

• Empirical experiments favoring the use of relative over absolute orientation to

obtain an initial estimate of motion

• Introduction of a novel track selection mechanism to select points to be included

in the refinement step and the implementation of the system.

• Implementation of the system and evaluation on indoor and outdoor datasets.

One of the most important considerations in developing a visual odometry system is

the performance of feature matching and tracking. Accurate matching between frames

and a large enough set of features is a very important factor in a robust visual odometry

system. A small number of matched feature between views will generally result in an

inconsistent motion estimates that eventually break the estimation process.

Further, in this thesis, we have empirically shown that relative orientation outper-

forms absolute orientation. Relative orientation relies on image measurements, which

are much more accurate than 3D points triangulated from imagery. Even if the triangu-

lation process is made more accurate, relative orientation is at least as good as absolute

orientation with a very little overhead in terms of computational complexity.

The many nonlinearities in the various steps of visual odometry require the use of

nonlinear minimization methods. In this thesis, we use the Sparse Bundle Adjustment

(SBA) for this task. SBA is probably the most accurate refinement approach, but is a

computationally expensive algorithm if used on a large problem. The use of local SBA

instead of global SBA simples the process and allows for faster refinement.

49



50 Chapter 6. Conclusions & Future Work

Selecting 3D features to be included in the refinement is also an important considera-

tion. Short feature tracks are better excluded from the refinement as those are associated

with small baseline in most of the time. Eliminating those points from the refinement

step not only increases accuracy, but also reduces the running time of the algorithm as

the number of 3D points in the refinement step becomes smaller.

Several possibilities for future work could be considered. To increase the robustness

and scalability of visual odometry, we propose the use of robust image matching tech-

niques to ‘stitch’ segments of visual odometry. The number of features extracted, or

number of matches between consecutive views is a good indication for the success of the

algorithm. If the number of extracted features or matches between conductive frames

drops suddenly to a very low value, then it is very likely the image is blurry. Image

blur is most of the time caused by fast robot rotation. Once the rotation is over, image

come back to a good quality that allows extracting of a large number of features and

matches. Blurry images causes by rotations are typically introduced for two or three

frames. Thus, once a low number of features is detected we can stop visual odmetry and

wait for a good image. Once a good image is obtained, there is a very high probability

that the image will have some overlap with the last image in the previous visual odom-

etry. Given that the overlap region might not be large enough, robust image matching

techniques could be used to connect the previous segment of visual odometry with the

current one using direct absolute orientation with scale estimation. The merit of the

proposed approach is that it retains the benefit of fast feature extraction methods and

performs the more expensive robust image matching only when needed.

Other immediate possibilities of future work include the assessment of other feature

types. In this work, CenSurE features were extracted in scale-space and used for motion

estimation and refinement. It will be interesting to experiment with simpler features,

such as Harris corners and compare results. Further, we would like to compare the algo-

rithm against data from (D)GPS to get a better grasp of the algorithm’s performance.



Bibliography

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,”
Robotics & Automation Magazine, IEEE, vol. 13, no. 2, pp. 99–110, 2006.

[2] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (slam): part
II,” Robotics & Automation Magazine, IEEE, vol. 13, no. 3, pp. 108–117, 2006.

[3] K. Konolige, M. Agrawal, and J. Sol, “Large-scale visual odometry for rough terrain,”
SRI International Visual SLAM Workshop, 2007.

[4] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in CVPR04, 2004, pp. I:
652–659.

[5] N. Sünderhauf, K. Konolige, S. Lacroix, P. Protzel, and T. U. Chemnitz, “Visual odometry
using sparse bundle adjustment on an autonomous outdoor vehicle,” in In Tagungsband
Autonome Mobile Systeme. Springer Verlag, 2005.

[6] K. Konolige, M. Agrawal, R. C. Bolles, C. Cowan, M. Fischler, and B. Gerkey, “Out-
door mapping and navigation using stereo vision,” in Proceedings of the International
Symposium on Experimental Robotics, 2006.

[7] A. J. Davison and D. W. Murray, “Simultaneous localization and map-building using
active vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 865–880, 2002.

[8] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.
Cambridge University Press, ISBN: 0521540518, 2004.

[9] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography,” Commun. ACM, vol. 24,
no. 6, pp. 381–395, June 1981.

51



52 BIBLIOGRAPHY

[10] M. Agrawal, K. Konolige, and M. Blas, “Censure: Center surround extremas for realtime
feature detection and matching,” in ECCV08, 2008, pp. IV: 102–115.

[11] R. M. Haralick, C.-N. Lee, K. Ottenberg, and M. Nölle, “Review and analysis of solutions
of the three point perspective pose estimation problem,” Int. J. Comput. Vision, vol. 13,
no. 3, pp. 331–356, December 1994.

[12] B. K. Horn, “Closed-form solution of absolute orientation using unit quaternions,” J. Opt.
Soc. Am. A, vol. 4, no. 4, pp. 629+, April 1987.

[13] L. Chittka and J. Tautz, “The spectral input to honeybee visual odometry,” Experimental
Biology, vol. 206, pp. 2393–2397, 2003.

[14] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,” ACM Comput.
Surv., vol. 27, no. 3, pp. 433–466, 1995.

[15] T. Bonde and H. H. Nagel, “Deriving a 3-d description of a moving rigid object from
monocular tv-frame sequence,” in In J.K. Aggarwal & N.I. Badler, editor, Proc. workshop
on computer analysis of time-varying imagery, Philadelphia, PA, April 1979, pp. 44–45.

[16] H. Moravec, “Obstacle avoidance and navigation in the real world by a seeing robot rover,”
Ph.D. dissertation, Stanford, September 1980.

[17] Y. Cheng, M. Maimone, and L. Matthies, “Visual odometry on the mars exploration
rovers,” IEEE Robotics and Automation Magazine, 2006.

[18] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual odometry on the mars
exploration rovers,” Journal of Field Robotics, Special Issue on Space Robotics, vol. 24,
2007.

[19] E. Mouragnon, F. Dekeyser, P. Sayd, M. Lhuillier, and M. Dhome, “Real time localiza-
tion and 3d reconstruction,” in Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, vol. 1, 2006, pp. 363–370.

[20] R. Eustice, “Large-area visually augmented navigation for autonomous underwater vehi-
cles,” Ph.D. dissertation, Massachusetts Institute of Technology / Woods Hole Oceano-
graphic Joint-Program, June 2005.

[21] P. Corke, D. Strelow, and S. Singh, “Omnidirectional visual odometry for a planetary
rover,” in In Proceedings of IROS 2004, 2004, pp. 4007–4012.

[22] R. Eustice, “Large-Area Visually Augmented Navigation for Autonomous Underwater
Vehicles,” Ph.D. dissertation, MIT - Woods Hole Oceanographic Institute, June 2005.

[23] O. A. T. Kanade and J. R. Miller, “Autonomous helicopter research at carnegie mellon
robotics institute,” in Proceedings of Heli Japan ‘98, April 1998.

[24] D. Nister, “Preemptive ransac for live structure and motion estimation,” in ICCV03, 2003,
pp. 199–206.



BIBLIOGRAPHY 53

[25] ——, “An efficient solution to the five-point relative pose problem,” in CVPR03, 2003,
pp. II: 195–202.

[26] N. Süderhauf, K. Konolige, S. Lacroix, and P. Protzel, “Visual odometry using sparse
bundle adjustment on an autonomous outdoor vehicle.” in AMS, ser. Informatik Aktuell,
P. Levi, M. Schanz, R. Lafrenz, and V. Avrutin, Eds. Springer, 2005, pp. 157–163.

[27] C. Harris and M. Stephens, “A combined corner and edge detection,” in Proceedings of
The Fourth Alvey Vision Conference, 1988, pp. 147–151.

[28] E. Rosten and T. Drummond, “Fusing points and lines for high performance tracking,”
in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 2,
2005, pp. 1508–1515 Vol. 2.

[29] K. Mikolajczyk and C. Schmid, “Scale and affine invariant interest point detectors,” In-
ternational Journal of Computer Vision, vol. 60, no. 1, pp. 63–86, October 2004.

[30] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Computer
Vision - ECCV 2006. Springer, 2006, pp. 404–417.

[31] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, November 2004.

[32] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application
to stereo vision,” in IJCAI81, 1981, pp. 674–679.

[33] O. Faugeras and M. Hebert, “A 3-d recognition and positing algorithm using geometrical
matching between primitive surfaces,” in IJCAI83, 1983, pp. 996–1002.

[34] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d point sets,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 9, no. 5, pp. 698–700, September 1987.

[35] S. Umeyama, “Least-squares estimation of transformation parameters between two point
patterns,” Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 4, pp.
376–380, 1991.

[36] J. A. Grunert, “Das pothenotische problem in erweiterter gestalt nebst Über seine anwen-
dungen in der geodäsie,” Grunerts Archiv für Mathematick and Physik, vol. Band, no. 1,
pp. 238–248, 1841.

[37] F.Moreno-Noguer, V.Lepetit, and P.Fua, “Accurate non-iterative o(n) solution to the pnp
problem,” in IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil,
October 2007.

[38] B. Triggs, P. F. Mclauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment –
a modern synthesis,” Lecture Notes in Computer Science, vol. 1883, pp. 298+, January
2000.

[39] K. Levenberg, “A method for the solution of certain non-linear problems in least squares,”
Quarterly Journal of Applied Mathmatics, vol. II, no. 2, pp. 164–168, 1944.



54 BIBLIOGRAPHY

[40] D. W. Marquardt, “An algorithm for least-squares estimation of non-linear parameters,”
Journal of the Society of Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441,
1963.

[41] T. Lindeberg, “Feature detection with automatic scale selection,” International Journal
of Computer Vision, vol. 30, pp. 79–116, 1998.

[42] M. Lourakis and A. Argyros, “The design and implementation of a generic sparse bun-
dle adjustment software package based on the levenberg-marquardt algorithm,” Institute
of Computer Science - FORTH, Heraklion, Crete, Greece, Tech. Rep. 340, Aug. 2004,
available from http://www.ics.forth.gr/~lourakis/sba.

[43] J.-P. Tardif, Y. Pavilidis, and K. Danniilidis, “Monocular visual odometry in urban envi-
ronments using an omnidirectional camera,” in IROS, 2008.

[44] E. Murphy-Chutorian and M. Trivedi, “Maximally-stable extremal regions,” in British
Machine Vision Conference, 2002, pp. 384–396.

[45] D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms,” in IEEE Workshop on Stereo and Multi-Baseline
Vision, 2001. (SMBV 2001), 2001, pp. 131–140.



1

Dynamic Path Planning and Traffic Light    
Coordination for Emergency Vehicle Routing

Hend Kamal Gedawy

Advisors:

M. Bernardine Dias, Ph.D., Assistant Research Professor, Robotics Institute

Khaled Harras, Ph.D., Assistant Teaching Professor, Computer Science Department

Abstract— An ambulance or fire truck arriving a couple of 
seconds late can be the difference between life and death for 
some. As different technologies emerge, various approaches to 
expediting the movement of emergency vehicles have evolved.
Horns, sirens and flashing lights were early attempts that are no 
longer sufficient in most places to clear traffic on the emergency 
vehicle’s route. In these situations, traffic signal preemption has 
made it possible to guide traffic to move in favor of clearing the 
emergency vehicle’s route. Early traffic signal preemption
approaches depended on direct communication between an
emergency vehicle’s signal emitter and a corresponding signal 
receiver on the traffic light it was approaching. Accordingly, the 
location of the vehicle could be detected. Later, (D)GPS was used 
to more accurately locate the emergency vehicle. This solution 
was further enhanced by using efficient or even optimal path 
planning algorithms to choose the route of the emergency 
vehicle. In the state-of-the-art in emergency vehicle routing, 
online static route selection is combined with traffic-light 
preemption to make emergency vehicle travel faster and safer 
along the chosen optimal path. 

In this thesis, we propose an enhancement to the state-of-the-
art approaches for reducing the emergency vehicle’s travel time. 
Our hypothesis is that combining traffic signal preemption with 
dynamic path planning will increase the efficiency of routing an 
emergency vehicle. We implement a graph version of the D*Lite
informed search algorithm to efficiently and dynamically plan 
optimal paths for the emergency vehicle while taking into 
consideration the real-time updates of congestion levels and 
other delays to travel time. To further improve our solution, we 
propose a traffic light preemption strategy that seeks to ensure
fast and safe travel of the emergency vehicle while, as a 
secondary priority, maximizes other traffic flow through the 
intersection. We evaluate our hypothesis through analytical 
experiments using our implementation of D* Lite, and further
validate our proposed solution through scenarios developed
using the VISSIM specialized microscopic traffic simulator [15].
The results validate our hypothesis demonstrating that dynamic 
path planning can improve travel time under uncertain 
congestion conditions, and that incorporating an appropriate 
traffic light preemption mechanism can further improve travel 
time for an emergency vehicle; potentially saving lives.

Keywords— Emergency vehicle routing, Traffic signal 
preemption, Dynamic path planning, Signal phase selection

I. INTRODUCTION

Expedient movement of emergency vehicles to and from 
the scene of an accident can greatly improve the probability
that lives will be saved. There are some potential barriers to 
this expedient movement that range from synchronized 
operation of traffic lights to the traffic conditions in the 
current and nearby intersections. Since traffic lights can 
control traffic flow at intersections, they can guide the flow of 
traffic to favour movement in the direction that best suits the 

emergency vehicle. This factor has been a key component for
preventing traffic-related delays of emergency vehicles.

Since the 1960s, as different technologies were introduced, 
the approaches taken to solve the problem of effective 
emergency vehicle routing accordingly evolved. Initial 
strategies of using noisy sirens were deemed insufficient to 
clear traffic that blocked the path of an emergency vehicle. 
Thus, traffic lights were coordinated to move traffic in 
directions that would clear congestion on the route of the 
emergency vehicle. The main idea is to communicate the 
presence of the emergency vehicle to the relevant traffic lights 
and notify the traffic light of the emergency vehicle’s position 
and direction of travel. Detectors for strobe lights and sirens 
were attached to traffic lights to enable them to recognize the 
emergency vehicles. However, these approaches required 
clear line of sight which was difficult to maintain in bad 
weather conditions, near curves, or most importantly, when 
obstacles prevented this line-of-sight detection. To address 
these difficulties, radio and microwave signal transceivers 
were deployed to improve the communication between the 
emergency vehicles and the traffic lights [2][3][4][5][6][7]. 
When Differential Global Positioning System (D)GPS
technology emerged it was possible to track the position of
emergency vehicles more accurately and indicate the arrival 
of an emergency vehicle at an intersection much earlier [8][9]. 

A later improvement that was added to emergency vehicle 
routing to further reduce its travel time was static path 
planning, where algorithms were employed to choose the 
fastest path to the destination based on the congestion 
information available at the time of planning the path. This 
approach was adopted by Kim and Kwon whose solution is to 
use Dijkstra’s algorithm for static path planning for the 
emergency vehicle and dynamically preempt the traffic lights 
as the vehicle travels along its route [9]. Their solution 
provides an online route selection module that when queried 
checks the current traffic conditions and statically recalculates 
the least cost path from the vehicle’s location to the goal.

Although path planning is an enhancement of previous 
approaches in that it views the route in its entirety and not just 
the local impediments, path planning approaches have 
adopted a static perspective on route planning. This ignores 
the possibility that costs are constantly changing because the 
level of congestion keeps changing over time. While Kim and 
Kwon [9] provide an online route selection module, it is not 
until a replanning request is made that the current changes in 
traffic conditions is taken into consideration. This is not 
efficient if the replanning occurs after the vehicle is stuck in a 
congested route. Also, it is neither time efficient nor effective
to plan from scratch, which is what happens with Dijkstra’s 
algorithm. Algorithms that locally replan by modifying 



2

previous search results have been shown to replan one to two 
orders of magnitudes faster than planning from scratch [10]. 

Accordingly, one possible development that can be built on 
the previous approaches to further improve the emergency 
vehicle’s travel time is to efficiently and dynamically plan the 
emergency vehicle’s route depending on the updated traffic 
conditions. Hence, this paper presents a solution that 
combines dynamic path planning with a corresponding traffic 
light preemption plan. The dynamic path planning uses the D* 
Lite informed search algorithm that can efficiently and 
optimally plan and replan according to changing costs in the 
traffic network. The cost of a given route translates to the
travel time of that route since the main goal is to reduce the 
emergency vehicle’s delay. For a chosen route, a preemption
strategy is used to select a signal phase that reduces the 
emergency vehicle's delay and, when possible, maximizes 
flow for other vehicles approaching the intersection.

We evaluate our work at two levels. First, an analytical
evaluation is conducted using the graph version of D*Lite we 
implemented. Extra costs are assigned to nodes or 
intersections when preemption is not in effect, and extra costs 
are assigned to edges to represent the effects of congestion.  
Our analytical results clearly demonstrate reduced travel 
times for emergency vehicles when using dynamic path 
planning combined with preemption; especially in the 
presence of unforeseen congestion in the road network. Our 
second level of evaluation is based on evaluating appropriate 
scenarios using the high fidelity VISSIM microscopic traffic 
simulator [15].

The rest of this thesis is organized as follows. In Section II
we present our related work and discuss the limitations in the 
current state-of-the-art solutions. Afterwards, we explain our
proposed solution in detail in Section III. We then evaluate 
our solution and results in Section IV. Finally, in Section V, 
we conclude and discuss future work.

II. RELATED WORK

A. Existing Approaches

In this section we review the state of the art in emergency 
vehicle routing techniques.

1)  Direct communication techniques: The main idea of the 
direct communication solutions is to attach a device to the 
emergency vehicles to communicate with a suitable receiver 
in the traffic lights’ control system [2][3][4][5][6][7]. Early 
systems depended on strobe lights emitted from the vehicle 
being detected by optical receivers on the traffic lights. Then 
directional microphones were used to detect the sirens of the 
emergency vehicle. However, these two approaches required 
clear line of sight. This requirement limits their functionality. 
When different obstacles or bad weather conditions affect the 
communication, i.e. the signal, traffic lights fail to correctly 
detect the presence of the emergency vehicle near the 
intersection. Later, microwave and radio signal transceivers 
were used for earlier detection of the emergency vehicle since 
these signals could reach further and could overcome the clear 
line of sight limitation introduced in the previous approaches. 

2)  (D)GPS-dependent approaches: The next generation of 
approaches took advantage of the Differential Global 
Positioning System (D)GPS for real-time data of the actual 
vehicle location. This helped to detect the location of the 
emergency vehicle more accurately and start the traffic light 

preemption process earlier. Radio transceivers were used to 
communicate the GPS data between the vehicle and each 
traffic light the vehicle approached. The (D)GPS transmitted a 
signal either directly to an intersection controller or to a 
central server that could dynamically preempt traffic lights 
along the vehicle’s route [8][9].  

3)  Adding static path planning: Lights, radio transmitters, 
and DGPS all address the need for preempting traffic signals. 
More recent work has suggested that traffic preemption
techniques should be combined with efficient path planning 
[9]. Path planning avoids delaying the emergency vehicle in a 
congested or otherwise delayed route by choosing the best 
(fastest) route for the vehicle given the current best 
information. To apply path planning to the emergency vehicle 
routing problem, the traffic network is abstracted into nodes 
representing intersections and links representing roads. The 
costs assigned to the links are estimates of travel time along 
these links and they depend on different factors, including the 
level of congestion on these links.  This approach was taken 
by two researchers Kim and Kwon, who used Dijkstra’s 
algorithm for static path planning for the emergency vehicle 
and designed a preemption scheme for the traffic lights along 
the emergency vehicle’s route [9]. Their solution provides an 
online route selection module that when queried checks the 
current traffic conditions and statically recalculates the least 
cost path from the vehicle’s location to the goal.

B. Limitations

The main limitation in the previous approaches is that path 
planning approaches have adopted a static perspective on 
route planning which ignores the uncertainty in the level of 
congestion which could change in many ways due to events 
such as accidents or adverse weather conditions. Even though 
Kim and Kwon provide an online route selection module, it 
needs to be triggered by a replanning request from the driver 
of the emergency vehicle and it cannot repair its plan; but 
instead must plan from scratch.  This is a limitation of the 
choice of Dijkstra’s algorithm for path planning.   We propose 
to address this limitation by using the D* Lite optimal 
dynamic planning algorithm coupled with an appropriate 
traffic light preemption mechanism.

III. PROPOSED SOLUTION

A. Assumptions

Before delving into the details of the solution, we explore
some basic assumptions on which the proposed solution 
builds. First, we assume that traffic lights are controlled by a 
central server with an overall view of the entire traffic 
network. This is not a strong assumption as long as we can get 
updated congestion information during runtime of the 
emergency vehicle, and if we are allowed to execute our 
preemption mechanism on any traffic light as needed.  Our 
second assumption is that we have uninterrupted connectivity
between the emergency vehicle and the central server. This 
can be done through many technologies which in cases might 
be expensive but worth deploying for emergencies. Our third 
assumption is the existence of a reliable congestion detection 
system that can measure the congestion level on the roads of 
the network and report it to the central server. Fourth, we 
assume the emergency vehicle has a GPS (or other) tracking 
system that can accurately determine its current location at 



3

any point during its traverse and send this information back to 
the server. Our fifth and final assumption is access to a traffic 
model that provides useful estimates of traffic flow patterns
so we can seed our path planning algorithm and preemption 
mechanism with reasonable default values.

B. Solution Components

The proposed solution consists of two main components:
dynamic path planning and preemption. As shown in Figure 1, 
the destination and current location of the emergency vehicle 
is determined using data from the GPS tracking system. We 
then model the traffic network between the source and 
destination as a graph where nodes represent intersections and 
edges represent the roads in between. Costs are assigned to 
both nodes and edges. Since the goal of the whole solution is 
to reduce the emergency vehicle’s travel time, the cost of a 
particular edge is translated to the time needed to travel along 
that road and the cost of a node is the time to cross that 
intersection. This estimated travel time includes reasoning 
about congestion. Once costs are assigned to edges and nodes, 
the graph is provided as an input to the dynamic path planning 
algorithm; i.e. D* Lite. The algorithm keeps receiving updates 
about the current location of the emergency vehicle using 
GPS data and the current costs of the edges using the assumed 
congestion detection system, and accordingly outputs the best 
route available at any point in time. After identifying a path, 
the preemption process can start early depending on the time 
the vehicle is expected to arrive at intersections along that 
route. Finally, for every intersection affected by the 
preemption process, a recovery phase is applied to the traffic 
lights to restore back their normal operation once the 
emergency vehicle passes through.  

1)  Dynamic path planning: D* Lite is an informed or 
heuristic search algorithm invented by Koenig and Likhachev
in 2002 and since then has been used in different applications 
for dynamic path planning.  It can be customized for a 
specific domain using an appropriate heuristic. This heuristic 
is selected specific to the problem domain and guides the 
search. It is an enhancement of another informed search 
algorithm called A*, and specifically Lifelong Planning A*.  
Most of D* Lite properties are inherited from Lifelong 
Planning A*.  However, unlike Lifelong Planning A* that 

does forward search, D* Lite does backward search. It 
searches starting from the goal to the start state. This property 
makes repairing the current plan easier in D* Lite because the
goal stays fixed and the start node keeps moving around [11].  
D* Lite is a simpler version of the D* algorithm previously 
invented by Stentz [16].

D* Lite works as follows. It maintains two estimates of 
node’s costs. One is called g and is an estimate of the 
objective function value while the other, rhs, is one-step look-
ahead estimate of the objective function value. A node is 
considered to be consistent as long as these two estimates are
equal. If a node is not consistent it is added to a priority queue 
for processing. Nodes are added and processed each 
depending on its priority or key (k) which is defined 
depending on the heuristic and the two estimates of the node, 
as shown in (1)[10].

)]();([)( 21 sksksk  …………………………………(1)

),())(),(min()(1 sshsrhssgsk start …………..(2)

))(),(min()(2 srhssgsk  ………………………….(3)

)(')( sksk  iff either )(')( 11 sksk  or 

         )(')( 11 sksk  and )(')( 22 sksk  ……………(4)

Figure 2 shows pseudo code for the D* Lite algorithm [10]. 
First, `the algorithm calls Initialize(), line {17’}, which 
initializes g and rhs values of the nodes.  It sets all of them to 
infinity since their cost is unknown yet but the rhs value of 
goal is set to zero. The priority queue now has only the goal 
vertex since it is the only inconsistent vertex. Its g value is 
infinity and its rhs value is zero. Then, the algorithm 
computes the shortest path, as shown in line {18’} from the 
current start vertex to the goal. If the goal is not yet reached, 
then one step or transition is made along the shortest path 
towards the goal and the start state is updated to be the current 
vertex that we stepped to, lines {21’-22’}. The algorithm then 
checks for edges with changed costs, {23’}, and for each of 
these it calls UpdateVertex() procedure to update the rhs 
value of vertices affected by the changed costs.  Accordingly, 
the priority queue is updated to contain all the inconsistent 

Figure 1: Proposed Solution Overview



4

nodes. In line {29’} the priorities of all vertices in the priority 
queue are updated and shortest path is recalculated to 
incorporate the changes, line {30’}.

We chose D* Lite for applying dynamic path planning to 
emergency vehicle routing for a number of principled reasons. 
First, it is provably complete, optimal, and can handle 
dynamic cost changes [10]. This feature is significant for 
vehicle path planning based on traffic conditions, such as
congestion level, that can suddenly change at anytime. Second, 
D* Lite implements fast replanning because it does not plan 
from scratch but rather fixes the current plan considering 
those edges affected with the changes and only the ones that 
matter to the least cost path. During emergencies, this fast 
replanning can save the emergency vehicle unnecessary time 
spent planning from scratch. Third, D* Lite makes no
assumptions about how the costs of the edges are changing. 
This is necessary for accurate routing of emergency vehicles 
because the cost or travel time of the roads can increase 
dramatically due to sudden and unexpected incidents, like car 
accidents.  Thus, we should not assume anything about how 
costs are changing in this case.

To apply D* Lite to emergency vehicle’s path planning, we 
implemented a graph version of the algorithm which was 
needed to incorporate the intersections, the roads and their 
associated costs. It is written in JAVA and intersections are 
modelled as Node objects while the roads are defined as Edge 
objects. Since D* Lite requires an admissible heuristic to 
guarantee an optimal path, we chose our heuristic to be an 
estimate of the lowest possible travel time on a link or road in 
the network or graph (which is computed as the link distance 
divided by the Vehicle’s maximum speed). This heuristic is 
admissible, i.e. does not overestimate cost, because it 
estimates the travel time based only on distance and the 

maximum speed of the vehicle. While there are other factors, 
like congestion, that might affect travel time of a link or road, 
these factors do not always exist. Thus, adding them to the 
heuristic would be an overestimation and would make the 
heuristic inadmissible. Our objective function is travel time 
since we wish to minimize the travel time of the emergency 
vehicle as it travels from its start to destination.

2)  Signal preemption: Signal preemption involves extending 
the current phase of a traffic light, or ending the current phase
and switching to another phase to allow fast and safe travel of 
the emergency vehicle through that intersection. We address 
two main questions related to preemption. The first question 
is how should preemption be done? The second is when or 
how early should preemption start?

How should preemption be done?
Deciding how preemption is done mainly depends on 

satisfying the expedient movement of an emergency vehicle 
and then, if possible, maximizing the flow of other traffic at 
the intersection. Maximizing the flow on the other approaches, 
i.e. other than the one the emergency vehicle is coming from, 
of the intersection is not possible unless doing this does not 
affect the emergency vehicle’s delay and safety. With this 
goal in mind, the traffic lights phase selection depends on the 
congestion level, the current phase of the traffic lights when 
preemption is triggered, and on the intersection approach
from which the vehicle is coming and to which the vehicle is 
heading. Figure 4 shows an example of traffic light phases 
that can be used to explain the phase selection algorithm. 
These phases were borrowed from the work by Kim and 
Kwon [9]. We use the same example but develop our own 
preemption plan. 

In this example, the possible destinations of a vehicle 
coming from any of the four sides of the intersection are 
indicated by numbers. A phase reflects the set of traffic lights, 

Figure 3: Defining traffic signal phases [9]

Figure 2: D* Lite Pseudo Code [10]



5

indicated by numbers that have a green light at the 
intersection. As shown in Figure 4, the phases’ cycle starts 
with (4+7) which means that traffic lights 4 and 7 are green 
and every other traffic light at the intersection is red.

Now that the traffic lights phases are identified, it is 
important to consider how to control these phases to achieve 
the aforementioned preemption goal.  This control depends on 
the level of congestion as we demonstrate below.

To begin with, if the level of congestion is high, then delay 
can be imposed onto the emergency vehicle’s route. Traffic, 
therefore, needs to be cleared around the emergency vehicle 
as much as possible.  Given the current phase of the traffic 
lights and the emergency vehicle’s origin/destination, we built 
Table 1 to indicate the best phase selection to ensure fast and 
safe travel of the emergency vehicle through the intersection. 

The rows represent the directions of the emergency vehicle 
at the intersection, while the columns describe which of the 
eight phases has the green lights on when the preemption is 
triggered. Given these two inputs, the intersection of the row 
and the column gives the best phase that should be green for 
the emergency vehicle to pass through quickly and safely. The 
results of the table can be summarized as follows: regardless 
of the current traffic light phase when the emergency vehicle 
arrives, and regardless of its destination on the intersection, 
all traffic lights on the approach it is coming from has to be 
green. This is reflected in the four phases: (4+7) if the vehicle 
is approaching the intersection from the North, (3+8) if it is 
coming from South, (2+5) if it is coming from West and (1+6) 
if it is coming from East. Doing this ensures that the 
emergency vehicle would not get delayed by traffic on its 
route. The green coloured cells represent the case where the 
preemption is triggered when the optimal phase is on so we 
just extend the green light for the phase until the emergency 
vehicle has cleared the intersection. 

On the other hand, if the level of congestion is low then the 
emergency vehicle’s expedient movement is quite easy to 
achieve so traffic flow on other approaches of the intersection 
can be maximized as well. Thus, the phase selection criteria 
becomes as follows. If the current phase allows the vehicle to 
get through to its desired approach in the intersection, we 
extend the phase. Otherwise, we pick the phase that allows the 
emergency vehicle through the intersection and maximizes 
vehicle flow on the other sides of the intersection. Applying 
these criteria to the eight defined phases, given the current 

phase when preemption is initiated and the desired 
origin/destination intersection approaches of the emergency 
vehicle, we get Table 2. 

An example to clarify the algorithm under low congestion 
conditions is when the vehicle is heading from North to South, 
i.e. second row in Table 2, on the intersection while the green 
signal phase is (3+8), i.e. third column. Considering the phase 
choices available to get a vehicle from North to South on the 
intersection, there are two phases, (4+8) and (4+7). Since the 
level of congestion is low, emergency vehicle’s delay is not a 
concern in either case. However, delaying other traffic on the 
other sides of the intersection is a concern. Choosing (4+8) 
would allow vehicles coming from South and heading East or 
North to move through. However, choosing (4+7) would keep 
these vehicles waiting unnecessarily. Thus, the Table outputs 
(4+8) in this case. The rest of the cells are filled by applying 
the same analysis. 

Comparing the two tables, the green cells are the cases on 
which they match. In other words, these are where high or 
low congestion makes no difference in our phase selection 
decision. This result indicates that preemption phase selection 
is not affected by congestion in one eighth of the scenarios 
and therefore congestion needs to be taken into consideration 
in most preemption scenarios.

When should preemption start?
How early preemption should be triggered for a given 

intersection approach also differs depending on congestion 
level. The base case is when there is no congestion. In this 
case, the factors affecting how early preemption should occur 
are the time the vehicle is expected to arrive at the traffic light 
and the phase transition time, i.e. time needed to end the 
current traffic signal phase and switch to another one. A 
safety margin is also needed for ensuring no delay affects the 
vehicle’s travel time. If the vehicle is approaching intersection 
traffic light X and expected to be at the stop line of the traffic 
light at time  and the transition time is Trans, then time to 
start preemption at X , or 

inmsafetyTranspnc arg  ……..………………..(5)

On the other hand, if congestion is introduced into the 
network, then preemption should start earlier considering the 

Table 1: Traffic signal phases selected when level of 
congestion is high

Table 2: Traffic signal phases selected when level of 
congestion is low



6

congestion effect on the vehicle’s travel time. For a given 
approach to an intersection, there are two possible delays that 
can affect the travel time of vehicles on that approach. This is 
based on a new time dependent travel time estimation model,
developed by Linu and Ma, that has proven to be quite
accurate [12]. The first delay is the signal delay which they 
define as the time spent at the traffic light due to red light. 
However, since preemption occurs before the vehicle is at the 
traffic light, this delay will not affect the emergency vehicle. 

The second delay is the queuing delay, )(qt ,  which they 

defined as the time needed to clear queue of vehicles between 
the vehicle and the traffic light stop line at time  . This delay 
is very likely during congestion and it can affect the 
emergency vehicle’s travel time. Thus, taking this delay into 
account, preemption at X now becomes (6):

)(qncc tpp  ……………………………..……………..(6)  

)()( 1  qq nhlt  ……………………………………….(7)












otherwisegtDA

onisgreenwhentstDA
n

G

GG
q

),()(

)},()()(,0max{
)(

0

00




 ..(8)

According to Linu and Ma, queuing delay at time  can be 
estimated by equation (7), depending on the number of 
vehicles in the queue (8) [12].  h is the saturation headway or 
the constant headway achieved once a stable moving queue is 
established and is defined in (seconds/vehicle)[14]. When the 
traffic stream starts, the first several vehicles consume more 
than h (seconds/vehicle). Adding the incremental headways 

of these vehicles gives the value 1l , the Start-up lost time 

[14].  )(qn is the number of vehicles in the queue at time 
which is the difference between the arrival counts and the 
departure counts. Detectors are used before the signal stop 
line and at the stop line to calculate these counts.  

)(A represents the arrival count at time . 0
Gt is the start of 

the green time of the current cycle, g is the green time of the 

current cycle, and )( 0
GtD and  )( 0 gtD G  are the departure 

counts at the start of the current green, and the end of the 
current green respectively. s is the saturation flow rate or the 
number of vehicles that can enter the intersection in a single 
lane if the signal were always green for that lane and vehicles 
were never stopped [14]. 

IV. EVALUATION

A. Analytical Evaluation

We first evaluate our hypothesis analytically using our 
D*Lite graph-based implementation where costs are assigned 
to edges for queuing delay due to congestion and costs are 
assigned to nodes for signal delay. These test cases were run 
with two graphs, as shown in Figure 4. One is simple with one 
decision point between the source, a, and the destination, d. 
The other graph is more complex where there are many routes 
that can be taken between the start, A, and destination M. The 
numbers on the edges indicate the length of the network roads 
in Kilometres. The emergency vehicle’s max speed is 
assumed to be 120 Km/hr. To test cost and intersection delay, 

when preemption is not done, a 3 minutes cost was assigned 
to nodes, or intersections, between the start and the 
destination. In cases where there is no congestion, queuing 
delay is assumed to be zero. When there is congestion, a 7 
minutes estimated cost is assigned to some edges in the 
network to indicate the queuing delay mounting at these edges. 
As a lower bound in terms of delay, preemption is assumed to 
be done perfectly leaving no congestion along the emergency 
vehicle’s route.

Overall, as results indicate in Figures 5 and 6, dynamic 
path planning shows significant improvement over static path 
planning. The difference is more prominent in the complex 
graph scenario. When there is zero congestion, then static and 
dynamic path planning give the same travel time results as 
one would expect. 

However, when congestion occurs, a clear travel time 
improvement is observed with dynamic path planning. The 
most obvious difference in performance is in the complex 
case where there is no preemption and a lot of congestion. 
This analytical result indicates that even in cities where doing 
preemption is not feasible, dynamic routing alone can make a 
significant difference. When preemption is added a clear cut 
in travel time takes place in both dynamic and static routing 
but dynamic path planning saves more time because it 
preempts the least cost path. 

Figure 4: Road Networks Used in Testing

Figure 5: Analytical Result for Simple Graph

routing without preemption
(Simple Graph)

0

5

10

15

20

25

No Congestion Congestion

congestion level

T
ra

v
e

l T
im

e
 

(m
in

u
te

s
)

static

dynamic

routing with preemption
(Simple Graph)

0

5

10

15

20

25

No Congestion Congestion

congestion level

T
ra

v
e

l T
im

e
 

(m
in

u
te

s
)

static

dynamic



7

Another set of test cases on the complex graph were run to 
evaluate the average impact of using dynamic routing with 
preemption on the traffic network with emergency vehicles 
coming and heading to different parts of the network. To 
further reflect real-life scenarios, random roads or links are 
congested with random levels of congestion as well. To 
overcome the problem of having random start and goal points 
and to make the comparison meaningful, the numbers plotted 
represent an increase percentage relative to a base travel time
specific to the case. The base case picked in each test case 
was the travel time value when there is no congestion and no 
signal delay. The results are reflected in Figure 7. The figure 
shows the results of ten runs of the test case where in each run 
the percentage increase of travel time over an optimal case is 
calculated. As the results show, preemption alone buys us 
more time than dynamic routing alone does. However, when 
both are combined the curve dives the most, compared to any 
other combination.

As shown in Figure 8, the next evaluation on the congested 
complex graph considered randomized signal and queuing 
delay costs and their effect on the emergency vehicle’s travel 
time.  Again, the vehicle’s max speed was 120. 

For the queuing delay, we fixed the signal delay at 3 
minutes, when preemption does not exist, and randomly chose 
different queuing delay costs in a range between zero and 
seven minutes. The same links in the network were assigned 
the different queuing delay costs. As the results indicate, the 
vehicle’s travel time with dynamic path planning stays 
constant as the queuing delay increases since the route is 
replanned and the high congested routes are avoided. 
However, for static routing the travel time increases with 
queuing delay since we stick to the same route even though it 
gets more and more congested.  As the results also show 
adding preemption, in this case, saves around 5 to 10 minutes 
of the emergency vehicle’s travel time. 

For the signal delay, we fixed queuing delay at 7 minutes 
for a chosen set of edges and randomly chose different signal
delay costs in a range between zero and three minutes. With 
preemption, assuming it is working perfectly, there is no
signal delay and the vehicle is not stopped at red traffic lights. 
Thus, the curves stay constant. However, when preemption
does not exist, signal delay has a major effect on the travel 
time. As the results also show, the travel time curve for static 
routing grows steeper than the dynamic routing curve when 
preemption does not exist.

   

Average Percentage Increase in Travel Timw Randmozing 
Start-Goal Combinations and Congestion

0
200
400
600
800

1000
1200
1400
1600
1800

Dynamic and
Preemption

Dynamic and
no preemption

static and
preemption

static and no
preemption

A
ve

ra
g

e 
p

er
ce

n
ta

g
e 

in
cr

ea
se

 i
n

 
tr

av
el

 t
im

e

Series10

Series9

Series8

Series7

Series6

Series5

Series4

Series3

Series2

Series1

Figure 7: Randomized start-goal states and congestion

  Another test that goes along with our hypothesis is shown 
in Figure 9. This is again a combination of randomized set of 
values for signal and queuing delays. The test proves that 
overall, regardless of the costs introduced into the network, 
dynamic path planning combined with pre-emption 
outperforms everything else.

Figure 8: Second Set of Evaluations (Complex 
Graph with Congestion)

Effect of Queuing Delay on the vehicle's travel time 
(with static v.s. dynamic routing)

0

5

10

15

20

25

30

1 3 5 7

Queuing Delay (minutes)

T
ra

ve
l T

im
e 

(m
in

ut
e

s)

with preemption
(static routing)

with preemption
(dynamic routing)

without preemption
(static routing)

without preemption
(dynamic routing)

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5

with preemption
(static routing)

with preemption
(dynamic routing)

without preemption
(static routing)

without preemption
(dynamic routing)

Effect of Intersection Delay on the vehicle's travel 
time (with static v.s. dynamic routing)

Travel Time 
(minutes)

Intersection Delay (minutes)

routing without preemption
(Complex Graph)

0

5

10

15

20

25

30

No Congestion Congestion

congestion level

T
ra

v
e

l T
im

e
 

(m
in

u
te

s
)

static

dynamic

routing with preemption
(Complex Graph)

0

5

10

15

20

25

30

No Congestion Congestion

congestion level

T
ra

v
e

l T
im

e
 

(m
in

u
te

s
)

static

dynamic

Figure 6: Analytical Results for Complex Graph



8

0

50

100

150

200

250

300

350

400

450

30 seconds 60 seconds 100 seconds 180 seconds

SNoP

SP

DNoP

DP

Figure 9: Intersection and Queuing Delay Effect

B. Evaluation via Simulation

At this point we understand that our analytical results abstract 
many details in a real traffic network. To further verify our 
results, we test our solutions and algorithms over a more 
realistic environment using a specialized simulator. The 
complementary set of results we present was conducted using 
the VISSIM microscopic traffic simulator which we have 
been exploring. VISSIM was developed in Germany by 
Planung Transport Verkehr (PTV) company. It simulates 
urban and highway traffic, including pedestrians, cyclists and 
motorized vehicles. It has been used to model different traffic 
engineering problems [13]. One major advantage of VISSIM 
over other existing traffic simulators is its flexible structure 
that allows continuous interaction between VISSIM’s main 
simulation module and an external module that controls every 
traffic light in the network [9]. Thus, for this research’s 
interest, the preemption algorithm and dynamic path planning 
algorithm can be separately coded into an external module 
that would continuously interact with VISSIM. VISSIM in 
turn gives simulated detector data to the external module.

However, configuring VISSIM is non-trivial and we were 
unable to master all of its features in the duration of this thesis 
work.  In fact, VISSIM courses are offered at the graduate 
level and for professionals due to the complexity of its 
configuration, and mastering VISSIM often takes several 
years of practice. Nevertheless, we have developed an initial 
scenario of a Manhattan Grid network (zoomed in screenshots 
shown in Figure 10). This scenario sets the traffic lights to 
behave in the phases defined in Figure 3.  

We simulated the dynamic path planning in VISSIM by 
modeling the VISSIM road network in our D* Lite 
implementation and manually feeding the resulting path to 
VISSIM. To measure the emergency vehicle’s delay under 
different traffic levels when dynamic versus static routing is 
used, different runs were conducted using VISSIM. We 
injected different traffic volumes on a specific route and 
measured the travel time it takes the emergency vehicle to get 
through. Since in static path planning, the planned path is 
never changed in response to traffic, the travel time cost 
increases as traffic along the chosen route increases. As 
Figure 11 indicates, the more the injected number of vehicles 
per hour, the more the travel time is. Now, comparing this to 
dynamic path planning, we notice a big difference and 
improvement in terms of travel time. The algorithm allows the 
vehicle to route and reroute avoiding this congested part of 
the network. 

Figure 10: Snapshots of VISSIM Scenario

Static versus Dynamic Routing

0

100
200

300
400

500
600

700

800

900

600 1000 1300 2000 2500 4000

Traffic Volume (Vehicle/Hour)

T
ra

ve
l 

T
im

e 
(s

ec
o

n
d

s)

static

dynamic

Figure 11: Static v.s. Dynamic Travel Time with Different 
Traffic Volumes.

V. CONCLUSION AND FUTURE WORK

This thesis improves the state of the art in emergency 
vehicle routing by introducing dynamic path planning 
combined with traffic light preemption.  As our results 
demonstrate, dynamic path planning has proven to reduce the 
emergency vehicle’s travel time. Even if not combined with 
preemption, dynamic path planning shows significant 
improvement over static path planning. Thus, in countries 
where doing preemption is not feasible, dynamic path 
planning can still play a significant role in saving lives. 

There are three enhancements we are planning for future 
work. First, we plan to build a complete COM interface 
between the path planner, the preemption mechanism, and 
VISSIM. The second enhancement is considering the 
emergency vehicle’s vicinity in the preemption plan since 
extended congestion from neighbour intersections can affect 
the traffic flow at the intersection closest to the emergency 
vehicle. Doing preemption only along the emergency 
vehicle’s route, does not guarantee the smooth travel of the 
emergency vehicle. This has been a major limitation in all of 
the previous work. The third enhancement is handling 
multiple priorities at an intersection with the approach that we 
discussed in this research paper. 



9

ACKNOWLEDGEMENTS

• I wish to acknowledge the support and 
encouragement of my advisors, Professor M. 
Bernardine Dias and Professor Khaled Harras for 
their support throughout the year. I also acknowledge 
the support of Professor Amer Shalaby, Associate 
Professor in the Department of Civil Engineering in 
the University of Toronto, who helped me a lot with 
his expertise in Traffic Engineering. I also would 
like to thank my supportive classmates, class of 2009, 
and my very supportive family.  

REFERENCES

[1] The National Transportation Safety Board and the Federal Highway 
Administration (2006). Traffic Signal Preemption for Emergency 
Vehicles. A CROSS-CUTTING STUDY.

[2] Schwab, Bruce B. (1959). Remote emergency traffic control system. 
United States Patent Office.

[3] Malach. (1975). Emergency Vehicle traffic controller. US patent.
[4] Anderson, George P. (1980). Emergency Vehicle traffic control system. 

United States patent.
[5] Mitchell, Wilbur L. Traffic Light control for Emergency Vehicles. United 

States patent.

[6] Robertson, Michael T. (1994). Traffic Light control means for 
emergency-type vehicles. United States Patent.

[7] King, Frederick N. (1982). Detection System for Emergency Vehicles.
United  States Patent.

[8] Brooke, O. (2005). Centralized traffic signal preemption and method of 
use. United  States Patent.

[9] Kwon, E., & Kim, S. (2003). Development of dynamic route clearance 
strategies for Emergency Vehicle operations phase I. 

[10] Koenig, S. & Likhachev, M. (2002). Improved fast replanning for robot
navigation in unknown terrain. Robotics and Automation. Proceedings. 
ICRA '02. IEEE International Conference on , vol.1, no., pp. 968-975 
vol.1, 2002

[11] Browning, B. & Dias, B. (2008). Artificial Intelligence. PowerPoint
presentation.

[12] Koenig, Sven, & Likhachev, Maxim (2007). Time-Dependent Travel 
Time Estimation Model for Signalized Arterial Network. Transportation 
Research Board 86th Annual Meeting.

[13] Planung Transport Verkehr AG (2008). Vissim User Manual, V5.10. 
Germany

[14] Pernia J. (2006).  Traffic Flow principles. PowerPoint presentation.
[15] http://www.vissim.com/
[16] Stentz, A. (1995) Optimal and Efficient Path Planning for Unknown and 

Dynamic Environments. International Journal of Robotics and 
Automation, Vol. 10, No. 3.


	CMU-CS-QTR-102
	alismail
	Introduction
	Approaches to Visual Odometry
	Overview of Our Approach
	Contributions
	Thesis Outline

	Overview of Visual Odometry
	Camera Types Used in Visual Odometry
	Related Work
	Camera Models
	Image Features
	Feature detection
	Feature Matching & Tracking

	Obtaining 3D Points/Triangulation
	Triangulation using monocular camera
	Triangulation using stereo

	Recovery of Camera Motion between Frames
	Absolute Orientation
	Relative Orientation

	RANSAC
	Nonlinear Motion & Structure Refinement

	Our Approach
	Initialization / 3D Points Triangulation
	Finding Correspondence and Feature Tracking
	Camera Motion Estimation using Relative Orientation
	Motion & Structure Refinement

	Experiments & Results
	Relative orientation vs. Absolute orientation
	Global vs. Local SBA
	Visual Odometry without nonlinear refinement
	Feature Selection Mechanism
	Complete system results on indoor and outdoor datasets

	Discussion
	Feature Detector & Tracker Performance
	Number of features
	Accuracy of tracking across frames
	Baseline length between tracked features

	Motion Estimation from Point Correspondences
	Nonlinear Minimization
	RANSAC Model-acceptance Threshold

	Conclusions & Future Work

	gedawy

