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Abstract
Given two different brain-scan modalities, like fMRI and MEG, how can we

combine them, to achieve better resolution in both space and time, than each? Given
power grid measurements (voltage, current), how can we spot patterns, anomalies
and do forecasts? We answer these types of questions in the two parts of the thesis.

In the first part of the thesis, we discuss our work on signal reconstruction. We
live in a world that is flooded by streaming signals that come from different sources
in different resolutions which often account for the same information. One example
is historical records on patient counts; one TV source may report the patient counts
in weekly intervals, while a newspaper source may report in monthly intervals. An-
other example is the brain activity signals; while fMRI has high spatial resolution
and low temporal resolution, it is vice versa for MEG/EEG. We are interested in
constructing higher resolution signals that complement those signals from different
sources or modes in different resolutions. We discuss our work on signal recon-
struction in two applications: historical epidemiological data and brain data. 1)
Historical epidemiological data: We introduce constraints such as smoothness and
periodicity, utilizing the well-known epidemiological model ‘susceptible-infected-
susceptible (SIS)’. Also we discuss how we can utilize techniques like annihilating
filters and discrete cosine transforms to discover linear or multiple periodicities in
the sequences. 2) Brain data: We discuss our proposed approaches that employ
various assumptions such as sparsity, low rank, or smoothness and show that recon-
structed brain signal displays richer information of fMRI and MEG, interpolating in
time and space in a principled way.

In the second part of the thesis, we discuss our work on signal mining. Raw
signals can contain unnoticeable hidden information that is not observable in their
raw forms. One example is power grid signals (voltages, currents); signals in its
raw form do not lead to straightforward interpretation. Another example is aircraft
sensor signals; sensor signals are result of complex physical models which do not
provide straight-forward interpretation. If we want to understand the data, we should
explore it deeper (if you mind it, mine it!), preferably with domain knowledge. We
are interested in mining signals that can provide us with better interpretation of the
data, and aid us with various data mining tasks such as forecasting, anomaly detec-
tion, etc. We discuss our signal mining work on two different application domains:
power grid data and aircraft data. 1) Power grid data: We introduce our works that
incorporate a physics model, the BIG model, to better interpret the data, and utilize
tensor factorization and Holt-Winters to model the data for anomaly detection and
forecasting. Experimental results on CMU and Lawrence Berkeley National Lab-
oratory (LBNL) power grid dataset demonstrate 32% and 27% error reduction in
forecasting compared to the latest algorithm. Also we show that proposed algorithm
successfully detects anomalous events. 2) Aircraft data: We discuss our proposed
method on analyzing aircraft sensor signals for detecting anomalous events using
coupled tensor factorization.
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Chapter 1

Introduction

This thesis consists of two parts: 1) signal reconstruction and 2) signal mining. In each of
the chapter, we introduce our proposed methods and share our insights in different application
domains.

An overview of our works is demonstrated in Figure 1.1, in a simplified diagram. In (a), the
signal reconstruction process is demonstrated. Given low resolution signals, we try to recover
high resolution signals utilizing domain knowledge, etc. In (b), signal mining is described. Given
complex sensor signals, we try to understand the pattern, so that we can detect anomalies, predict
future points, etc. Details of each task are provided in the following chapters.

(a) Signal resonctruction (b) Signal mining

Figure 1.1: Overview. (a) Signal reconstruction and (b) signal mining.

In the first chapter, we discuss our work on signal reconstruction. We live in a world that
is flooded by streaming signals that come from different sources in different resolutions which
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often account for the same information. One example is historical records on patient counts;
one TV source may report the patient counts in weekly intervals, while a newspaper source may
report in monthly intervals. Another example is the brain activity signals; while fMRI has high
spatial resolution and low temporal resolution, it is vice versa for MEG/EEG. Even though they
all account for the same information and we have abundant amount of data, unless we harness
them to put together in a principled manner to come up with a big picture, they are almost not
so useful pieces of information – we cannot utilize them. Therefore, it is of great interest to
combine those different sources of signals to come up with richer information.

This is called "information fusion" or super resolution reconstruction problem; reconstruct-
ing higher resolution signals given low resolution signals. Because this is an under-determined
problem, one has to utilize regularizers or constraints suitable for the domain. Exploring domain
specific assumptions and optimizing the problem constitute the major challenges in the super
resolution problem.

Super-resolution via fusing multi-modal data is an active research area in the image process-
ing community. Specifically, fusion of remotely sensed hyper-spectral and multi-spectral images
is of great interest [79]. Both hyper- and multi-spectral images are special images whose pixels
span many frequency bands and can provide spectral information of the materials contained in
the pixels – which finds many applications in geoscience, mineral detection, and food safety.
Much effort has been spent on fusing these two types of images that captured on the sites, to
create super-resolution data in both space and frequency.

Although the super resolution problem has been studied extensively in the image process-
ing community, it is not straightforward to apply the methods to other domains as it requires
domain specific assumptions and optimizations. We discuss our work on signal reconstruction
in two applications where the super resolution problem has not been studied before: historical
epidemiological data and brain data. 1) Historical epidemiological data: We start by introduc-
ing the most simple constraints such as smoothness and periodicity. As our next attempt, we
apply domain-specific constraints, utilizing the well-known epidemiological model ‘susceptible-
infected-susceptible (SIS)’ to reconstruct the data and also interpret the epidemiological time
evolving characteristics. As a next step, we discuss how we can utilize techniques like anni-
hilating filters and discrete cosine transforms to discover linear or multiple periodicities in the
data.2) Brain data: Although there have been previous works on learning the intersection of two
different brain image modalities, there had not been a work that tries to recover a super resolu-
tion image from them. In our work, we try to reconstruct finer resolution brain image from two
different brain image modalities, fMRI and MEG, that have opposite resolution characteristics;
fMRI has high spatial resolution and low temporal resolution while it is vice versa for MEG. We
discuss our proposed approaches that employ various assumptions such as sparsity, low rank, or
smoothness and show that the reconstructed brain signal displays richer information of fMRI and
MEG, providing more accurate interpolation in both time and space, close to the ground-truth
data.

In the second chapter, we discuss our work on signal mining. Raw signals can contain unno-
ticeable hidden information that is not observable in their raw forms. One example is the power
grid signals (voltages, currents); signals in their raw form do not lead to the straightforward inter-
pretations. Another example is the aircraft sensor signals; sensor signals reflect the pilot controls
and the complex physics models in the aircraft system, which is rarely understandable without
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proper knowledge. If we want to understand the data, we should explore it deeper (if you mind
it, mine it!), preferably with domain knowledge. We are interested in mining signals that can
provide us with better interpretation of the data, and aid us with various data mining tasks such
as forecasting, anomaly detection, etc.

Data mining has been actively applied to a wide variety of data, in many different domains.
Mining methods depend on the goal (what we want to do with the data – is it forecasting, learning
patterns, detecting anomalies, etc), and the data characteristics (is it time evolving, is it binary/-
continuous, is it multi-dimensional, etc).

We discuss our signal mining work on two different application domains: power grid data
and aircraft data. 1) Power grid data: We introduce our proposed approaches that incorporate
a physics model, the BIG model, to better represent and interpret the data. On top of the BIG
model, we construct and factorize the data in tensors and use the Holt-Winters for anomaly
detection and forecasting. 2) Aircraft data: We introduce our method for analyzing aircraft
sensor signals for detecting anomalous events using coupled tensor factorization method.

The structure of this thesis is as follows: In the following Part 1 I, we introduce our work
on signal reconstruction in two application domains: historical epidemiological data (Chapter 2)
and brain image (Chapter 3). In Part 2 II, we introduce our work on signal mining in power grid
domain (Chapter 4) and aircraft systems (Chapter 5).

A summary of our works in this thesis is shown in Table 1.1.

Tasks Applications

Signal reconstruction Historical epidemiological data (Chapter 2)
Brain data (Chapter 3)

Signal mining Power grid data (Chapter 4)
Aircraft systems data (Chapter 5)

Table 1.1: Overview of the thesis
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Part I

Part 1: Signal reconstruction
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In Part I, we show how to reconstruct time sequences from multiple sources in larger gran-
ularity. We will introduce our proposed methods and applications for 1-dimensional signals
(historical epidemiology data in Chapter 2) as well as high-dimensional signals (brain scans in
Chapter 3).
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Chapter 2

Historical epidemiological data

In this Chapter, we describe the methods that we have proposed to solve the signal reconstruction
problem in historical epidemiological domain.

We introduce H-FUSE (section 2.1), GB-R (section 2.2), ARES (section 2.3), and HOMERUN

(section 2.4). The methods are introduced in the order of increasing complexity. Here we list
some of the distinctions between the methods.
• H-FUSE: This is the simplest signal reconstruction method. If the time sequences of your

interest evolve smoothly over time, with a known period, then the most naive method you
can try is H-FUSE.

• GB-R: If the target sequences follow the epidemics model (SIS), then GB-R, which in-
corporates nonlinear domain knowledge from epidemiology is the better choice.

• ARES: If the target sequences are not necessarily epidemiological data, and you would like
to discover notable linear patterns in your target sequences, we suggest using ARES.

• HOMERUN: If you know that the target sequences should be non-negative and are sure
that the sequences consist of multiple periods (or wish to represent your target sequences
using sparse dictionaries), then HOMERUN is the right choice.

In Table 2.1 below, we summarize a few main properties of the methods.
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Table 2.1: Comparison of H-FUSE, GB-R, ARES, HOMERUN

Distinctions LSQ
H-F

USE
(2.

1)

GB-R
(2.

2)

ARES
(2.

3)

HOM
ERUN

(2.
4)

Smoothness reconstruction ! ! ! !

Periodicity reconstruction ! ! ! !

Epidemics model (SIS) !

Auto-detect linear patterns !

Auto-detect multiple periods
(quasi-periodic)

!
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2.1 H-FUSE: assuming smoothness and periodicity [77]
H-FUSE is our first attempt at solving signal reconstruction problem for epidemics data. The
main idea behind our H-FUSE is to apply naive regularizers: 1) smoothness and 2) periodicity
constraint. Our experimental results on the Tycho dataset shows that our choice of regularizers
help signal reconstruction compared to using no regularizers at all.

2.1.1 Introduction

(a) Tycho New York measles data - 30%, 81% improve-
ment by H-FUSE-S, H-FUSE-P over LSQ

(b) Tycho California smallpox data - 58%, 41% improve-
ment by H-FUSE-S, H-FUSE-P over LSQ

Figure 2.1: H-FUSE is effective: Tycho [100] (a) New York measles and (b) California smallpox
counts per week (in blue). H-FUSE (in red and yellow) captures the cycles, outperforming top
competitor ’LSQ’ (in black).

Information fusion is the process of reconstructing objects from multiple observations. The
need for information fusion appears in numerous domains, including multi-sensor data fusion
[48], information fusion for data integration [14], and human-centered information fusion [49].
It is particularly important for interdisciplinary research, where a comprehensive picture of the
subject requires large amounts of historical data from disparate data sources from a variety of dis-
ciplines. For example, epidemiological data analysis often relies upon knowledge of population
dynamics, climate change, migration of biological species, drug development, etc. Similarly,
information fusion is vital for exploring long-term and short-term social changes, where we need
to consolidate data on social-scientific, health, and environmental dynamics. Such historical data
sets are available from numerous groups worldwide such as the Institute for Quantitative Social
Science and the Center for Geographic Analysis at Harvard, or World-Historical Database at the
University of Pittsburgh.

In all cases, we have an unknown, target time sequence x = {x1, x2, . . . , xT} (say, of count
of measles incidents in the USA, per week), and we want to reconstruct it, from aggregated
information.
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Informal Problem 1 (Information Fusion) Informally, the problem is as follows:
• Given: several (aggregate) reports for the target sequence ~x, (for example, some of the

monthly sums from source ’A’, and some of the weekly sums from source ’B’)
• Reconstruct the target sequence ~x, as accurately as possible, and
• Confidence: indicate whether we should trust the reconstruction.

The challenges are the following:
• Conflicts/Overlaps: the reports may overlap; and even worse, conflict, e.g., the sum of the

monthly reports for year, say 1993, might not be the same as the count for that year, from
source ’B’.

• Missing values: Maybe none of our sources (’A’ and ’B’, above), covers the period of
1940-1944 (because, say, of World War II).

• Trust in results: How confident should one be on the reconstructed values? As we show
later, in most cases our proposed method is very good, but in some cases, no method can
do good reconstruction (see Recommendation 3 in Section 2.1.6).

We introduce H-FUSE, a systematic and efficient approach to address the problem of fusing ag-
gregated historical data sources. Our H-FUSE consistently dis-aggregates historical data reports,
addressing all the challenges mentioned above. The main idea is to take into account domain
knowledge (e.g., smoothness, periodicity) and to infuse it as constraints in an optimization prob-
lem, when merging several historical reports.

The advantages of our method are
• effective: our experimental result on real data show that H-FUSE reconstructs the original

data with good accuracy, outperforming top competitors: (see figure 2.1).
• self-aware : H-FUSE provides an assessment of when the recovery is not reliable.
• scalable : H-FUSE provably scales almost linearly on the length T of the target time se-

quence.
Figure 2.1 deserves some discussion: it plots the New York measles data (in blue, ‘Truth’), the

reconstruction of the top competitor (in black, ‘LSQ’, for least squares, see Section 2.1.2), and the
two versions of H-FUSE (‘Smoothness’ in red, and ‘Periodicity’ in yellow). Our reconstructions
are visibly better than ‘LSQ’, with up to 80% better reconstruction (see Section 2.1.4 for more
details).
Reproducibility: the Tycho dataset is publicly available [100]; our code is open-sourced at
https://github.com/zonggel/GFusion.

The outline of this section is typical: background, proposed method, experiments, theoretical
analysis and conclusions.

2.1.2 Background and Related Work
In this section, we briefly introduce our problem domain, and related works.

Challenge of Historical Information Fusion

A major challenge in historical information fusion is estimating number of historical events from
multiple aggregated reports while handling redundant, and possibly, inconsistent information.

12
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Figure 2.2: Illustration on the nature of the data. Time-overlapping historical reports

Figure 2.2 shows an example of a database with two historical reports on total cases of measles
in NYC overlapping in time. Either of the reports are covering time intervals of 20 years. The
task of information fusion would be estimating the population dynamics within smaller time units
(e.g., what was the most likely annual numbers of measles cases in NYC from 1900 to 1930?).
Granularity of the reports may differ. For example, we may need to estimate weekly numbers
from monthly reports, or daily values from weekly aggregates. The process of information fusion
requires efficient dis-aggregation of the reported data. In general, this problem can be stated in
wider context of fusion and making sense of data obtained from a variety of sources, with gaps
and overlaps in time and space, and uncertainty in trust of sources.

In our approach, we represent the overlapping historical report as a system of linear equa-
tions, – a characteristic linear system, as shown in Figure 2.3. Each report generates a binary
row vector for coverage in an observation matrix with “ones” corresponding to the time units
covered by the report. The characteristic system is commonly under-determined and we need
to find a reasonably accurate approximate solution that would correspond to the dis-aggregated
information.

Related Work

Our work is related to a more general problem of a large-scale information integration to cope
with diverse data sources. A prominent example of a large-scale information integration project
is Tycho [100, 126, 140]. Currently, Tycho consolidates information from approximately 50,000
reports on United States epidemiological data spanning more than 100 years. We used Tycho
data for experimental evaluation of our method in Section 2.1.4.

Historical information fusion task often requires dis-aggregation of historical reports and
solving an under-determined linear system. Temporal dis-aggregation methods have been studied
in time series analysis of mostly economic data (see [20, 28, 107] for review). Given a low
frequency time series (e.g. annual sales, weekly stock market index, etc.) the goal of temporal
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Figure 2.3: Illustration on our problem setting. Characteristic Linear System of time-
overlapping historical reports

dis-aggregation is to produce a high-resolution series (e.g. quarterly sales, daily stock market
index, etc.) while satisfying temporal aggregation constraints.

Temporal aggregation constraints ensure that the sum, average, the first or the last value of
the resulting high frequency time series is consistent with the low frequency series. If available,
related series observed at the required high frequency can be used to dis-aggregate the original
observations. Such series are called indicators. However, care must be taken when selecting indi-
cators since two strongly correlated low frequency time series may not be correlated at a higher
frequency [44]. Thus, choosing good indicator series is not a straightforward task. Temporal
dis-aggregation methods have been used for the cases of non-overlapping aggregated reports and
cannot be directly applied to the task of historical information fusion.

Table 2.2 contrasts our H-FUSE method against the state-of-the-art competitors. We present
our method in the next section.

The challenge of data fusion has been studied in various domains such as image processing,
signal processing, geology, etc, that deals with uncertainty in the task. The image and signal
processing community has been dealing with related ill-posed problems such as edge detection,
surface reconstruction [143], vehicle detection [106], or super-resolution image reconstruction
[91, 98]. A common way to find an approximate solution of an under-determined linear system
is to apply least squares method (LSQ) and Tikhonov regularization [43, 45], by introducing
additional constraints such as smoothness in space and/or temporal domain so that reconstruc-
tion reflects some aspects of the target data. Although Tikhonov regularization has been widely
used in solving ill-posed problem in various communities, to our knowledge the application of
Tikhonov regularization has not been addressed in historical data fusion domain.

In ’VLDB97’, Faloutsos et. al. [41] use smoothness, for information fusion. The summaries
were expected to be consecutive and non-overlapping; we believe that it could handle overlaps
and missing values (indicated as ’?’ in Table 2.2) but the method is completely incapable of
handling conflicts.
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Scalability ! ! "

Self-awareness ! "

Overlapping reports ! ? "

Missing values ? "

Conflicting reports "

Domain knowledge ? ! "

Table 2.2: H-FUSE matches all specs, while competitors miss one or more of the features.

2.1.3 Method

In this section, we explain our H-FUSE in more details. Table 2.3 gives the list of symbols we
use.

The common requirement in all reconstruction methods, is that the reconstructed sequence ~x
should satisfy the reports/facts, that is

F(~x) =
N∑

n=1

(vn −
T∑

t=1

Ontxt)
2 (2.1)

and, in matrix form:
F(~x) = ||~v −O~x||22 (2.2)

Ideally, the deviation from the facts should be zero, unless the facts/reports are conflicting.
The top competitor, ‘LSQ’, stopped here, and tried to minimize F(); since the problem is (usu-
ally) under-determined, ‘LSQ’ proposed to find the minimum-norm solution ( min ||~x||22) that
satisfies F . This is a well-understood problem, and ‘LSQ’ can find that unique solution using
the so-called Moore-Penrose pseudo-inverse.

But there is no reason why the solution would have minimum norm, which leads to our
proposed solution.

Intuition

The main idea behind our H-FUSE is to infuse domain knowledge. For example, in most cases
where the solution sequence ~x should be smooth, we propose to penalize large differences be-
tween adjacent timeticks; if we know that the periodic, we propose to also impose periodicity
constraints.

More formally, our approach is to find the values (xt, t = 1, . . . , T ) that (a) can be aggregated
to generate observed report (~v) and (b) minimize a domain-dependent penalty functions. Thus,
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Symbols Definitions
~x = (x1, . . . , xT ): target time series (unknown.)
T total number of timeticks in ~x
PD (smallest) period of ~x
N total number of reports
D report duration
~v = (v1, . . . , vN): values of reports (observed -

aggregated form of unknown ~x)
O N × T observation matrix (~v = O~x)
F(~x) deviation from facts/reports
C(~x) domain-imposed soft constraint
L(~x) total penalty (’loss’)
Hs (T − 1) × T smoothness matrix
Hp (T − PD)× T periodicity matrix

Table 2.3: Symbols and Definitions

we propose to formulate the optimization problem as follows:
min
~x
L(~x) = min

~x
(F(~x) + C(~x)) (2.3)

where L(~x) stands for the total penalty (’loss’, hence the symbol L), and consists of two compo-
nents: The first is F(~x), the deviation from the reports (’facts’), that we defined before (Eq. 2.2).
The second component, C(~x), infuses domain knowledge, in the form of soft constraints, like
smoothness and periodicity, that we explain below. It could also infuse other types of domain
knowledge, like sparsity, adherence to an epidemiology model like SIS (susceptible-infected-
susceptible, like the flu, as we do in Section 2.2), but we will not elaborate here. Let us focus on
the two constraints that we propose, since they proved to be the most successful in our experi-
ments.
• Smoothness constraint Cs This constraint penalizes big jumps between successive timet-

icks. Formally:

Cs(~x) =
T∑

t=1

(xt − xt+1)
2 = ||Hs~x||22 (2.4)

where Hs is a R(T−1)×T matrix whose tth row has 1 and−1 in the tth and (t+1)th column,
respectively.

• Periodicity constraint Cp: If there is a period (say PD=52 weeks = 1 year) in our data, we
can penalize deviations from that, as follows:

Cp(~x) =
T∑

t=1

(xt − xt+PD)2 = ||Hp~x||22 (2.5)

where Hp is a R(T−PD)×T matrix whose tth row has 1 and −1 in the tth and (t + PD)th
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column respectively. The intuition here is to make the event at timetick t to be close to the
one at t+ PD.

Subtle issue: relative weights. A careful reader may wonder whether we should give different
weight to deviations from the facts F(·), as opposed to the (soft) constraints/conjectures C(·).

The short answer is ’no’. The long answer is that we tried a weighting parameter λ, and we
tried to minimize the loss function L(·) = F(·) + λC(·). However, we recommend to set λ=1,
for the following reasons: (a) it gives optimal, or near-optimal results, for all real cases we tried
(as compared to the ground truth ~x); (b) the results are insensitive to the exact value of λ, when
λ ≤ 1; (c) it is hard for a practitioner to set the value of λ, given that the target sequence is
unknown.

Methods

In short, smoothness is the constraint that we propose to use as default, if the domain expert has
nothing else to tell us. The reason is that it performs well, as we see in the experiments, as well
as for theoretical reasons (Lemma 2).

If the domain expert believes that there is a periodicity with period PD, then we can do even
better. The exact problem formulations are as follows.

H-FUSE-S (Smoothness Method)

The proposed loss function Ls(·) is given by Equation 2.3
Ls(~x) = F(~x) + Cs(~x)

which gives, in matrix form:
min
~x
Ls(~x) = min

~x
(||~v −O~x||22 + ||Hs~x||22) (2.6)

H-FUSE-P (Periodicity Method)

Time sequence data are often periodic. Historical events such as epidemics, weather measure-
ments demonstrate repeating cycles of patterns. For example, flu outbreak records may have a
seasonal pattern where there is a peak in the winter and recovery in the summer season. Weather
measurements may demonstrate cyclic patterns in days, and seasons.

For such cases, we propose to impose both smoothness, as well as periodicity constraints,
with the period PD that a domain expert will provide.

Then, we propose the loss function Lp(·) to be
Lp(~x) = F(~x) + 1/2Cs(~x) + 1/2Cp(~x)

which leads to the optimization problem below:
min
~x
||~v −O~x||22 + 1/2||Hs~x||22 + 1/2||Hp~x||22 (2.7)

We chose equal weights of 1/2 for each of the constraints, so that they will not overwhelm
the facts-penalties F(·). In any case, the reconstruction quality is rather insensitive to the ex-
act choice of weights, with similar arguments as we discussed earlier about the λ weight (see
subsection ’Intuition’ 2.1.3).
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2.1.4 Experiments
In this section we report experimental results of our H-FUSE on the real data.

Experimental setup

To prove the effectiveness of H-FUSE on the real data, we apply H-FUSE on Tycho [100] New
York measles data which is our default main dataset. The full dataset contains 3952 weekly
records with some missing values. We carefully select the time period without missing values,
Week 51 to Week 450, which gives us 400 records in total as our selected dataset. To test the
generality of H-FUSE, we also select 400 weekly records from California smallpox data, ranging
from Week 501 to Week 900.

We refer to the observations or records as reports, and the number of observations as report
numbers, and the timeticks that each report covers as report duration. We vary the report num-
bers and the report duration to conduct sensitivity test of H-FUSE. The reports are generated
randomly for specific report number and report duration combination, i.e., the mixing matrix O
is constructed to reflect the report number and duration that we set.

Effectiveness of H-FUSE-S

In this section, we compare the reconstruction performance of H-FUSE-S and the conventional
approach, LSQ method. In Figure 2.4, the reconstruction comparisons of LSQ method and H-
FUSE-S are shown for (a) Tycho New York measles data, and (b) Tycho California smallpox data.
We see that generally, H-FUSE with smoothness constraint gives better reconstruction than the
LSQ method.

We further conducted experiment under various configurations of report number and report
duration ranging from 10 to 80. For each configuration, we repeat the experiment 100 times, and
average over the reconstruction MSE. The error dynamics of H-FUSE with smoothness constraint
on various settings of report number and report duration is shown in Figure 2.5 (a). We vary
the report number and the report duration in the x-axis and y-axis, respectively. Here brighter
color indicates higher MSE in reconstruction. From the figure, we observe a clear trend of
decrease in reconstruction MSE as the report number increases, and MSE reach its minimum for
a combination of large report number and long report duration.

Effectiveness of H-FUSE-P

In the case of Tycho New York measles data, it is known that it has a periodicity of one year.
Therefore, we apply Cp periodicity constraint in addition to Cs smoothness constraint on the
measles data, i.e. H-FUSE-P as described in Section 2.1.3. Earlier in Figure 2.1, the recon-
struction comparisons of LSQ method, H-FUSE-S and H-FUSE-P give us a clear picture on how
periodicity constraint improves the performance in addition to that of the smoothness constraint.
We observe that in almost all cases the additional periodicity constraint results in smaller MSE
than the smoothness constraint alone.

The error dynamics of H-FUSE-P on various settings of report number and report duration
is shown in Figure 2.5 (b). We observe a similar trend as in the simple smoothness constraint
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(a) Tycho New York measles data - 30% improvement
over LSQ

(b) Tycho California smallpox data - 58% improvement
over LSQ

Figure 2.4: H-FUSE-S reconstructs well: H-FUSE-S wins over LSQ method in reconstruction
all along. (a) Tycho New York measles data (N = 20, D = 20) - H-FUSE-S reconstructs 30%
better than LSQ. (b) Tycho California smallpox data (N = 30, D = 30) - H-FUSE-S reconstructs
58% better than LSQ.

(a) H-FUSE-S (b) H-FUSE-P

Figure 2.5: H-FUSE with various configurations. Both versions of H-FUSE reconstruct well
(blue) unless the report duration matches exactly with the period D = P (= 52).

case: the MSE decreases as the report number increases. However, we observe that the additional
periodicity constraint significantly improves the accuracy in terms of MSE.

In fact, among all of the report number and report duration configurations, there were only a
very few case when H-FUSE-S outperformed the H-FUSE-P. The result is illustrated in more detail
in Figure 2.5 (b). These cases arise because when we have many reports, neither assumption is
required to be strong any more. Therefore they have similar level of performance.

In Figure 2.6 (a), we study the change in MSE with varying report numbers. The overall
observation is that the MSE decreases with the increase of the number of reports.
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We also analyzed the change in MSE with varying report duration in Figure 2.6 (b). We
observe that MSE displays a periodic pattern, reaching its peaks when D = 52. The reason is
that when report duration matches the periodicity of the data, all of the values in any of the report
will have similar values, leading to deficit of information.

(a) error vs. report number (b) error vs. report duration

Figure 2.6: H-FUSE wins consistently (a) Error decreases consistently with report number N .
(here D = 40) (b) Error is almost constant with respect to report duration D unless D = P = 52
(here N = 40).

2.1.5 Theoretical analysis: Self-awareness, and Scalability

In this section we provide theoretical analysis on H-FUSE. From the theoretical analysis, we
induce a set of observations that provide an assessment of the cases when the reconstruction
is not reliable, which we refer to as “self-awareness” of H-FUSE. Also, we demonstrate the
scalability property of H-FUSE in terms of both theory and empirical aspects.

Background

Consider
min
~x
||~v −O~x||22 + ||H~x||22 (2.8)

which is equivalent to

min
~x

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣



~v

−
~0


−




O

−
H


 ~x

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

2

. (2.9)

Here H is of type
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Hs =




−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1



, (2.10)

Signals in the right null space of the matrix are smooth. In the case of Hs, the signals are
constant. More generally, notice that if |~x(n)− ~x(n− 1)| ≤ ε, then ||Hs~x||22 ≤ ε2(T − 1), where
T = length(~x).

In short, the inclusion of the regularizer ||H~x||22, nudges ~x into a smoother solution vector.

Self-awareness

What can we say about the error of reconstruction? We give the theoretical analysis here, and
later on, show how they translate to practical recommendations.

The first lemma states that if our target sequence ~x satisfies a smoothness condition, and if
we have enough ’suitable’ equations, then we can have error-free reconstruction.

Formally, let O denote the N × T observation matrix, ~x be the target time series, and H is
one of the smoothness regularization matrices in Eq. 2.10.

Lemma 1 With the above notations, if (a)




O

−
H


 is tall or square and full column rank, and (b)

H~x = 0, then we can have error-free reconstruction.

Proof 1 Special case of the upcoming Lemma 2. �

The first condition (full column rank) is almost always true; the second condition is rather
strict. The next Lemma relaxes it, effectively stating that if our target sequence is close to smooth
(H~x ≈ 0), then the reconstruction error is small. Formally, with the same notations as above, we
have:

Lemma 2 If




O

−
H


 is tall or square and full column rank, the squared error for our smoothness

reconstruction is given by
SE = ||(OTO + HTH)−1HTH~x||22 (2.11)

Proof 2 Let ~̂x be the solution we obtain from solving Equation 2.8. This is an over-determined
system (more rows/equations than unknowns/columns), and the solution is given by

~̂x = (OTO + HTH)−1OT~v

Then for ~x, we have trivially that
~x = I~x
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with I being the T × T identity matrix. Then:

~x =



[
OT |HT

]



O

−
H







−1

[
OT |HT

]



O~x

−
H~x




= (OTO + HTH)−1(OT~v + HTH~x)

= ~̂x+
(
OTO + HTH

)−1
HTH~x

Thus, the error vector ~e = ~x− ~̂x is
~e =

(
OTO + HTH

)−1
HTH~x

and its squared norm is given by Eq. 2.11 �

Clearly, when H~x = 0, the loss becomes zero, which is exactly what Lemma 1 says. Other-
wise, the error depends on how much ~x deviates from smoothness (H~x), as well as the specifics
of the O and H matrices.

The above lemmas hold for arbitrary starting points of the reports, and for arbitrary lengths.
We can provide additional bounds and guide-lines, for the (very realistic) setting that the reports
all have the same length D. We distinguish 3 settings, in this case:
• semi-random report: The starting points of the reports, are random. Thus, they may over-

lap, and/or coincide, and/or leave uncovered parts of the target signal ~x.
• tile report: The reports have deterministic starting points (1, D+1, 2 ∗D+1, . . .) and thus

they cover the whole time interval, without overlaps.
• shingle report: General case of tile report: successive reports overlap by o time-ticks (for

tile report, o=0).
Then we can give additional guarantees.

Lemma 3 Given an infinite target time series ~x, with smallest period PD; in a tile report setting
of duration D, if

D < PD/2

then there exists a method for reconstructing the signal with no error.

Proof 3 See [41]. The proof is closely related to the Nyquist sampling frequency. �

Lemma 4 Given an infinite target time series ~x, with smallest period PD in a shingle report
setting of duration D, if

D < PD/2

then there exists a method for reconstructing the signal with no error.

Proof 4 Choose the subset of reports that form a tile report setting - by Lemma 3 we can have
error-free reconstruction. �

Informally, the above Lemmas explains our empirical observations which show that if the
target time series ~x is finite and periodic with smallest period P (52 weeks, in our measles
data), and if we have tile report (or shingle report) reports with D < PD/2, H-FUSE (with its
smoothness constraint) will result in small error.

When the D ≥ PD/2, there are no recommendations any more - H-FUSE may, or may not,
result in large errors.
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Scalability

Our H-FUSE eventually needs to solve a sparse linear system, and, intuitively, this should be fast.
This is indeed the case, as we show next. Let Dmax be the duration of the longest report, and
assume thatDmax ≥ b, where b is the bandwidth of the H matrix - b=2 for Hs as in Section 2.1.3.
With the usual notation (~x is the target sequence, of length T ), we have the Lemma:

Lemma 5 For any report setting, let Dmax be the longest report duration. Then the total com-
putation time for our H-FUSE-S is

O(T log(T ) + 4D2
max)

Proof 5 The most time consuming part is the matrix inversion. The O is a banded Toeplitz matrix
with bandwidth Dmax, thus OTO is likewise a banded Toeplitz matrix of bandwidth 2Dmax − 1;
and the same holds for H and HTH, with bandwidth b ≤ Dmax. Then, the result follows from
[59]. �

Figure 2.7: H-FUSE is scalable: H-FUSE-S scales near-linearly on the length T . CPU time
(seconds) vs T , in lin-lin scales; dashed orange line is plotted for reference.

Empirically, our H-FUSE seems to have even better scalability, close to linear: Figure 2.7
shows the wall-clock time versus the sequence length T . We used “regular” reports, with duration
D = 200, on the full New York measles data with T = 3, 952 time ticks and applied H-FUSE

with the smoothness constraint.

2.1.6 Practitioner’s Guide

From the above discussion, smoothness has desirable theoretical properties, and, as the exper-
iments show, it is a good choice for solving the information fusion problem. Moreover, if the
domain expert knows that there is a periodicity of period, say PD, our H-FUSE can incorporate
it and achieve even better reconstruction.

The question is when should the domain expert trust (or discard) the results of our recon-
struction? We summarize our recommendations, next.
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Recommendation 1 (Smoothness is effective) If the target sequence ~x is smooth, and we have
enough reports, then H-FUSE achieves good reconstruction.

The error is given by Lemma 2, and it is zero, if ~x is perfectly smooth (Lemma 1) Figure 2.6 (a)
provides evidence.

Recommendation 2 (Nyquist-like setting) When we have regular reports frequently enough
(i.e., with D < PD/2), then we can expect small error from our H-FUSE.

This is the informal version of Lemma 3, and illustrated in Figure 2.6. PD is the smallest period
of our target signal (eg., PD=52 weeks, in our measles data).

Finally, we did not provide a proof, but the recommendation is obvious. Given reports of the
same length D, we have:
Recommendation 3 (Obliteration) If the report length D coincides with the period PD of the
signal, large errors are possible.
The intuition is that, say, if all our reports span exactly D=52 weeks (=1 year), there is no way
anyone can recover the annual (March) spikes of measles. Figure 2.5 gives us an arithmetic
example where you have large MSE for D=52 weeks.

2.1.7 Conclusion
We proposed H-FUSE method that efficiently reconstructs historical counts from possibly over-
lapping aggregated reports. We propose a principled way of recovering a times sequence from
its partial sums, by formulating it as an optimization problem with various constraints (Eq. 2.3).
Our formulation allows the injection of domain knowledge (smoothness, periodicity, etc). Our
method has the following major properties:

1. Effectiveness: The experimental result on the real-world Tycho New York measles data,
outperformed the reconstruction by naive approach as shown in Section 2.1.4.

2. Self-awareness: We provide theoretical results that help evaluate the quality of the recon-
struction as discussed in Section 2.1.5 ’Self-awareness’.

3. Scalability: The computational cost for H-FUSE scales nicely as O(T log(T ) + 4D2) as
discussed in Section 2.1.5 ’Scalability’.
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2.2 GB-R: incorporating SIS epidemics model [116]
In this section, we introduce GB-R, a signal reconstruction method specifically designed for
epidemics dataset. We utilize one of the prominent epidemics evolving model called “SIS model”
as the constraint to fit the unknown time series x. Utilizing the domain knowledge allows for
improvement over the baseline method that does not consider the data specific characteristics.
With SIS model, we show how GB-R is able to make interpretations out of the data as well.

2.2.1 Introduction
Given reports from multiple data sources, in several granularities, (like monthly counts of sales
from one source, and weekly counts of sales from another), with some of the reports missing,
how can we reconstruct the daily sales counts? The problem is usually under-determined - how
can we find a realistic solution, if experts advice us that the real sequence obeys a well-defined
model, like the susceptible-infected-susceptible (‘SIS’) cascade model?

(a) (b)

Figure 2.8: GB-R outperforms competitors: (a) GB-R (red) is closer to truth (gray dot), in
measles patient-counts over time (1954-1960); (b) it gives 3x to 25x better MSE in reconstruc-
tion.

More formally, the problem is as follows: Let x = (x1, . . . , xT ) be the unknown time se-
quence (say, weekly counts of flu patients); let y = (y1, . . . , yN) be the aggregated information
(say, reports of monthly sums, with some of them missing); and suppose that domain experts ad-
vise that the unknown sequence x obeys a differential equation, like the SIS model (see equation
(2.13)), or some other model; such models have a few parameters, like the patient-recovery rate
δ, the spreading-rate β, etc. Our goal is to reconstruct the time sequence x (and the model pa-
rameters β etc), so that x satisfies the aggregated information (y), and also matches the gray-box
model as best as it can.
Informal Problem 2 (Gray-Box Reconstruction)
• Given: the reports y; and a differential equation (gray box model, with some unknown

parameters)
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• Reconstruct: the true time series x, and the gray-box-model parameters

One especially challenging setting is when the peak values are wrong, or missing (“flooding
effect”). For example, when there is an outburst of an epidemic in an developing regions (e.g.
Ebola epidemic in West Africa1), clinical practitioners may prioritize clinical care over case
reporting. Similarly, in computer traffic monitoring, during peak times, routers drop packets,
resulting in incorrect count of packets.

We propose the “GB-R” method to solve the gray-box reconstruction problem. What sets
GB-R apart from all other reconstruction methods is that it carefully infuses domain knowledge
(like the SIS cascade model), with dual benefits: (a) accuracy: it better reconstructs the unknown
time series x; and (b) interpretability: it also estimates the gray-box model parameters (infection
rate, etc), thus allowing a better understanding of the cascade.

Figure 2.8 compares GB-R against top contenders. The real data were the Project Tycho
level1 measles weekly counts in the state of Texas, during 1954-1960 [100] (gray dots in Figure
2.8-(a)). We generated the 5-week sums, omitting the peak times (“flooding effect” scenario).
From those 5-week sums, we reconstructed the true data to weekly granularity, using GB-R in
red, and the competitors, ‘LSQ’ ([140]), ‘H-FUSE-S’ ([77]), ‘H-FUSE-P’ ([77]) in cyan, blue,
and green, respectively. The proposed GB-R method reconstructs the true data very closely,
including the peaks, while other methods fail to reconstruct. Figure 2.8(b) shows GB-R achieves
3x- 25x better reconstruction than the competitors.

The contribution of our work is as follows:
1. Effectiveness: GB-R outperforms the competitors, often by 3x-25x in reconstruction er-

ror.
2. Scalability: GB-R scales linearly with respect to the length of the time sequence.
3. Interpretability: GB-R also estimates the gray-box-model parameters (spreading-rate,

patient-recovery rate, timing of peak, etc), providing a better understanding of the time
sequence.

Reproducibility: Our code for GB-R is open-sourced at: http://www.cs.cmu.edu/
~hyunahs/code/GB_R.zip. All the data we used are publicly available at https://
www.tycho.pitt.edu/

The outline of this section is the typical one: Background and related work; method descrip-
tion; intuition behind our approach; experiments; and conclusions.

2.2.2 Background and Related Work
In this section, we provide a brief background on the basic epidemic model, and the information
fusion problem. Then we introduce some of the previous work related to our work.

SIS epidemic model basics

Among the numerous epidemic models (SI, SIR, SIRS, etc [6]), we choose here the SIS model,
because it is the simplest one and still gives good fits. The SIS model is suitable for, say, the flu,

1http://www.nejm.org/doi/full/10.1056/NEJMsr1600236?af=R&rss=currentIssue#
t=article
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where we assume no immunity: a person is either susceptible (‘S’, i.e., healthy but possible to get
infected), or infected (‘I’, i.e., sick). An infected person heals with probability δ, and becomes
susceptible again (no immunity); an infected person may infect a healthy person with probability
β.

Let xt be the count of infected people at time t. Then, the SIS model uses the following
differential equation:

dxt
dt

= βxt(P − xt)− δxt (2.12)

The equivalent difference equation is: xt = xt−1 + βxt−1(P − xt−1)− δxt−1 where β, δ are
the infection rate and recovery rate of the disease, and P is the population size.

In [85], the authors modified the SIS model to allow for periodicity (flu propagates faster
during the colder months, etc). and they modeled the infection rate β as periodic function of
time, βt, as follows:

xt = xt−1 + βt−1xt−1(P − xt−1)− δxt−1 (2.13)
where βt is defined as

βt = β0

(
1 + Pa cos

(2π

Pp
(t+ Ps)

))
(2.14)

and β0, Pa, Ps, Pp are the average infection rate of the disease, the amplitude, the phase shift,
and the period of the infection rate, respectively.2

Information fusion basics

(We saw most of these materials in Section 2.1.3, but we repeat them here for the readers’ con-
venience.)

As mentioned, the problem is to recover the true data x=(x1, . . . , xT ) (e.g., daily counts of
infected people) given some aggregated counts or reports y=(y1, . . . , yN ), say, monthly sums.
Next, we show that this becomes an under-specified, linear problem.

Figure 2.9 illustrates the concepts that we need, which are defined below:
• true data x: the finer-scale data that we want to reconstruct, in length of T .
• a report (y): a sum of true data over a longer period (in Figure 2.9, report 1 (yi=1) is a sum

of 30 weeks) The report coverage of report i is the time interval that it spans (tistart, t
i
end),

and the report duration is obviously the time length (tiend − tistart + 1).
The given N reports y = (y1, . . . , yN) are the hard constraints that we need to satisfy.

The information fusion task can be formulated as a system of linear equations, the charac-
teristic linear system [77]. We need the concept of mixing matrix A: this is an N × T matrix,
where N and T are the total number of reports and total number of timeticks in the true data, re-
spectively; with all entries as zero, except Ait = 1 when the i-th report includes the t-th timetick
(i.e., tistart ≤ t ≤ tiend, for each ith report as shown in Figure 2.10).

2Note that the conventional formulation of the SIS model would be β
P , proportioned by the population instead

of just β, but in terms of the objective function, there is no difference.
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Figure 2.9: Information fusion basics.

With the above definition of the mixing matrix A, we have
y = Ax (2.15)

which is under-determined, since N < T .

Related works

(Most of the related works have been mentioned in Section 2.1.2, but we repeat them here for the
readers’ convenience.)

Previous works fall in the following groups: information fusion, super resolution reconstruc-
tion, and epidemics modeling.

Infofusion: One of the most well-known information fusion projects in the historical data
domain is the Tycho project [100, 126, 140]. Project Tycho is an open-access repository for
disease data for which over 6,500 weekly disease reports were digitized and curated, spanning
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Figure 2.10: Information fusion formulation

125+ years and 100+ diseases. Data entry for Project Tycho took 200 million keystrokes, making
it into a valuable real-world dataset and a testbed for the problem of information fusion.

A recent work appeared in [77], where the main idea is to assume that the unknown sequence
x is smooth, and/or periodic. The resulting methods, H-FUSE-S and H-FUSE-P, give good results
on Tycho data, and we use them as baselines here, together with the least squares method “LSQ”.
(throughout this section, we use the term LSQ to refer to the minimum norm solution to the
under-determined system, following the convention of [77] - while in signal processing, it usually
means the least squares solution to the over-determined problem.)

Super resolution reconstruction: Information fusion and super resolution reconstruction
share a similar goal of reconstructing higher resolution data from low. The most basic algo-
rithm for super resolution reconstruction is the least squares (LSQ) method along with Tikhonov
regularization [43, 45] that enforce additional constraints such as smoothness. Super resolution
reconstruction has been studied in various fields like signal processing (“F.J.S. method” [41]), or
brain imaging (BRAINZOOM [42]).

Epidemics modeling: With respect to the epidemic data modeling, cascade and epidemic
analysis have attracted huge interest [65], [99], also in biological/computer virus propagation,
word-of-mouth marketing campaigns, etc.

In contrast to GB-R, none of the algorithms mentioned allows for information fusion using
the domain knowledge, lacking the interpretability of the result (e.g. phase shift of the sinusoidal
pattern, healing rate, etc).

In Table 2.4, a we compare GB-R and other competitors on the basis of selected properties.

2.2.3 Method

In this section, we provide the details of GB-R.
A table of symbols that is used throughout this section is shown in Table 2.5.
Our goal is to reconstruct the unknown true time series data x given the multiple reports y

of aggregated sums and the mixing matrix A that tells us the coverage of each report. Because
this is an underdetermined optimization problem (N � T ), we need to incorporate additional
constraints and/or regularization, based on and reflecting our domain knowledge about the nature
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Table 2.4: GB-R captures all of the listed properties.

Properties L
S

Q

F.
J.

S.
m

et
ho

d
[4

1]

B
R

A
IN

Z
O

O
M

[4
2]

H
-F

U
S

E
[7

7]

G
B

-R

Scalability ! ! ! ! "

Smooth reconstruction ! ! ! "

Periodic reconstruction ! "

Nonlinear modeling ! "

Interpretability "

Infusion of domain knowledge "

Table 2.5: Symbols and definitions

Symbols Definitions

xt true (unknown) time series data in fine scale that we want
to reconstruct. t = 1, · · · , T

yi a report count (an aggregated sum of x). i = 1, · · · , N
A mixing matrix used to generate report from x: y = Ax.

A ∈ RN×T

T total timeticks of x

N total number of reports y

β0 average infection rate in SIS model
δ recovery rate of the disease in SIS model
Pa amplitude of the SIS model
Ps phase shift of the SIS model
Pp period of the SIS model
Θ a set of parameters to optimize. {x, z, Pa, Ps, β0, δ}
M a set of SIS model parameters. {Pa, Ps, β0, δ}
P the size of population
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of the data.
In our work of GB-R, we utilize one of the prominent epidemic model called “SIS model”

(Section 2.2.2) to fit the unknown time series x. This expert-model explains how individuals
in the population become infected, and how they recover and become susceptible to the disease
again. The model uses parameters such as infection rate, peak phase, peak amplitude, etc that
help interpret the evolving pattern of the time series data in terms of the model parameters, which
capture how rapidly infection spreads, when it reaches its peak values, etc. Other models, like
SIR (allowing immunity), SIRS (temporary immunity) etc, may reflect the nature of the disease
even better, but the expert-model we propose to use here, gives very good accuracy and it is
simpler to fit. Thus we decided to use the SIS model as our expert-model.

Details of our proposed algorithm GB-R are provided in the following section.

Proposed problem formulation

What is the simplest way to reconstruct the true data from the aggregated reports, i.e. to solve
for infofusion problem? The most naive approach is to solve the following problem:

min
x

N∑

i=1

(yi −
T∑

t=1

Aitxt)
2 (2.16)

where x is the true data that we want to reconstruct, y is a vector ofN given reports, and A is the
mixing matrix that generates the reports. However, as we mentioned in the previous section, this
is under-determined problem (N < T ), so we need to have proper regularizers that can reflect
the nature of the true data.

Then how can we reconstruct the true data from the aggregated reports, in a way that it obeys
the domain knowledge (expert-model)? The first attempt (the most naive approach) to include
the expert-model is shown below:

min
Θ

[ N∑

i=1

(yi −
T∑

t=1

Aitxt)
2

+ µ

T∑

t=2

(xt − xt−1 − βt−1xt−1(P − xt−1) + δxt−1)
2
]

(2.17)
where Θ is a set of parameters we optimize Θ = {x, z, Pa, Ps, β0, δ} and βt is defined as equa-
tion (2.14). The first term is for the reconstruction of the true data from the aggregated reports,
and the second term is to fit the true data using our expert-model to incorporate our domain
knowledge.

Then our next question is: how can we optimize the nonlinear equation given in equation
(2.17)? In the second term (expert-model), we see that the key challenge is in the quadratic form
of xt−1, which makes the second term a fourth-order polynomial, which is very hard to optimize.

In GB-R, we reformulate our problem to turn it to a bilinear one, which can be handled
using alternating optimization. This is the key step needed to derive a computationally tractable
and effective algorithm. We use the variable splitting method, where we introduce an auxiliary
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variable z that is a copy of x, and replaced one of x with its copy z so that our problem becomes
bilinear. Then we enforce that the copy z is same as x. This reformulation of the problem reduces
to the optimization problem below:

min
Θ

[ N∑

i=1

(yi −
T∑

t=1

Aitxt)
2

+µ
T∑

t=2

(xt − xt−1 − βt−1xt−1(P − zt−1) + δxt−1)
2

+ξ
T∑

t=1

(xt − zt)2
]

(2.18)

From the experimental results, we can simply set µ and ξ to 1.
Our optimization problem of equation (2.18) consists of three terms: T1: hard constraint

(reconstruction), T2: soft constraint (expert-model), and T3: variable splitting. We will explain
each term in more detail in the following.

T1: hard constraint (reconstruction)

N∑

i=1

(yi −
T∑

t=1

Aitxt)
2 (2.19)

The first term in our optimization problem is shown above. It is to ensure that when we aggregate
our reconstruction x̂ based on the mixing matrix A, we are able to generate as good matches to
the observed reports y as possible. This is a hard constraint that must be met.

T2: soft constraint (expert-model)

T∑

t=2

(xt − xt−1 − βt−1xt−1(P − zt−1) + δxt−1)
2 (2.20)

The second term of the optimization problem shown above involves the domain knowledge mod-
eling of x. T2 nudges x̂ towards the solution that best obeys the domain knowledge. By this term,
we enforce 1) smoothly but possibly peaky patterns, and 2) periodic patterns in x̂. T2 enables us
to recover the underlying evolving characteristics of given data by learning basic parameters of
β0, δ, Pa, and Ps.

As discussed briefly earlier in the section, in our reformulation, we introduce an auxiliary
variable z that is a copy of x and replace one of x with its copy z (variable splitting method).
This reformulated optimization problem becomes bilinear and becomes easier to solve using
alternating optimization method. This is to replace the quadratic nonlinear term in the cost
function by one that is conditionally linear in one of the two variables given the other. This
greatly facilitates optimization, as we will see.
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T3: Variable splitting

T∑

t=1

(xt − zt)2 (2.21)

With our formulation in GB-R, in T3 we enforce that z, a copy of x, matches x.

Proposed optimization steps

In this section, we explain how we solve our optimization problem shown in equation (2.18).
Given that our optimization problem is reformulated into bilinear form, we propose to use
an alternating optimization method. The iterative update rule of GB-R algorithm is shown
in Algorithm 1. We alternatively solve for each of the variables in the parameter set Θ =
{x, z, Pa, Ps, β0, δ} one at a time, while fixing the rest. The update equations are derived by
setting the corresponding partial derivative of equation (2.18) to zero.

Notice that thanks to the variable splitting method (i.e. the introduction of an auxiliary vari-
able z), each alternating optimization step of our problem can be solved as a least-squares prob-
lem, using the Moore-Penrose pseudoinverse. We will explain the update equations in the fol-
lowing section.
How to optimize for x: The solution is explained in Lemma 6 below.
Lemma 6 x can be solved via Moore-Penrose pseudoinverse:

x =




A

−
M1

−
I




† 


y

−
0

−
z




(2.22)

where † means Moore-Penrose pseudoinverse and M1 is a 2-band diagonal matrix of size (T −
1× T ):

M1(t, t) = −1− βt(P − zt) + δ

M1(t, t+ 1) = 1 (2.23)
for ∀t = 1 · · · , T − 1. I is an identity matrix of size (T × T ).

Proof 6 To update x, consider only the terms involving x. Then we can reformulate the opti-
mization problem as follows.

min
x

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣




y

−
0

−
z



−




A

−
M1

−
I




x

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

2

2

. (2.24)

Solving for above optimization problem enables us to solve x via Moore-Penrose pseudoinverse
as in equation (2.22).
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How to optimize for z: z can be solved in the similar manner. The solution is shown in Lemma
7.
Lemma 7 z can be solved via Moore-Penrose pseudoinverse:

z =




I

−
M2




† 


x

−
v1


 (2.25)

Here, v1 is a vector of size (T − 1):
v1(t) = −xt+1 + xt + βtPxt − δxt, (2.26)

∀t = 1, · · · , T − 1. M2 is a diagonal matrix of size (T − 1× T ):
M2(t, t) = βtxt, (2.27)

∀t = 1, · · · , T − 1, and I is an identity matrix of size (T × T ).

Proof 7 Considering only the terms involving z, we can reformulate optimization problem re-
garding z as follows.

min
z

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




x

−
v1


−




I

−
M2


 z

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

2

. (2.28)

Solving for above optimization problem enables us to solve z via Moore-Penrose pseudoinverse
as in equation (2.25).

How to optimize for expert-model parameters M: The rest of the variablesM = {Pa, Ps, β0, δ}
can be updated in a similar manner:
Update equation for Pa:

Pa =
T∑

t=2

xt − xt−1 − β0xt−1(P − zt−1) + δxt−1
β0 cos( 2π

Pp
(t− 1 + Ps))xt−1(P − zt−1)

(2.29)

Update equation for Ps: For better interpretability of Ps, we seek Ps to be an integer (week).
Thus we perform exhaustive search of 52 possible positions (weeks throughout a year) and pick
the one with the smallest cost.

Ps = arg min
P ′s=1,2,··· ,52

T∑

t=2

xt − xt−1

− β0(1 + Pacos(
2π

Pp
(t− 1 + P ′s)))xt−1(P − zt−1) + δxt−1 (2.30)

Update equation for β0:

β0 =
T∑

t=2

xt − xt−1 − βt−1xt−1(P − zt−1)
(1 + Pacos(

2π
Pp

(t− 1 + Ps)))
(2.31)

Update equation for δ:

δ =
T∑

t=2

xt − xt−1 − βt−1xt−1(P − zt−1)
−xt−1

(2.32)
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Algorithm 1: GB-R.
Data: mixing matrix A, reports y, the population P , the periodicity Pp
Result: A set of parameters Θ: unknown true data {x} of finer scale, and expert-model

parameters {Pa, Ps, β0, δ}
for iter = 1, · · · , until convergence do

(block coordinate descent);
Update each variable from Θ = {x, z, Pa, Ps, β0, δ}, while fixing the rest;

2.2.4 Experiments

In this section, we demonstrate experimental results of GB-R to address three questions: Q1:
how effective is the method; Q2: how scalable; and Q3: how easy it is to interpret its answer.

Data description: Tycho data [100, 126, 140] is an epidemic database that is integrated
from more than 6, 500 weekly reports of the United States epidemic data spanning over 100
years from multiple sources in different granularities. There are 3 types of dataset: Level 1, 2,
and 3 based on the level of standardization of the data. Level 1 dataset is in the most tailored
and standardized, thus the most complete form, but with limitations in the types of diseases and
the location of the data. There are 7 state-level diseases (hepatitis A, measles, mumps, pertussis,
polio, rubella, and smallpox) and 1 city-level disease (diphtheria) for 50 states and 122 cities,
respectively. The total time coverage of the counts varies for different types of diseases, some of
which starts as early as 1916 and ends as recent as 2009. The counts are weekly-basis, and there
exist missing values.

We applied GB-R on Tycho Level 1 dataset, and 7 state-level diseases.
Experimental setup: We incorporate our knowledge on the yearly periodicity of the epi-

demic data, and set Pp = 52 (since the Tycho data is weekly basis, and there are 52 weeks in one
year). We fixed the total population P = 10 million, following the population of the New York
State. (the result is not sensitive to the population as long as it is set to sufficiently large value,
so we fixed P for all of the states)

Scenarios: In Figure 2.11, different types of report generation processes are illustrated: 1)
“flooding effect” scenario, and 2) random reporting.

1) “Flooding effect” scenario: As mentioned in section 2.2.1, “flooding effect” refers to the
case where the reported counts during the peak season may not be accurate due to prioritization
of clinical care.

Illustration on the “flooding effect” scenario is shown in Figure 2.11 (a). The report duration
and the intervals between each report are fixed, except that during the peak seasons, there is no
report covering the time period.

2) Random reporting: Random reporting is illustrated in Figure 2.11 (b). In this setting,
report duration is still fixed, but the allocation of the report coverage is randomly assigned. This
results in overlaps between reports, and long space between reports (long time range with no
report coverage). This is a plausible scenario when there are multiple data sources, each of them
having different “shifts”.
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(a) “flooding effect” (b) random reporting

Figure 2.11: Report generation scenarios.

Q1: Effectiveness

In this section, we demonstrate and prove the effectiveness of GB-R on the real-world data.
1) Case of “flooding effect”: The effectiveness of GB-R on the real-world Tycho data under

“flooding effect” scenario was demonstrated earlier in Figure 2.8: We chose Texas state because
the time series pattern in Texas state was more spiky compared to that of New York state, thus
more suitable to demonstrate the “flooding effect” scenario. We fixed the report duration to be
5-week, and the “shift” to be 2-week. We left out the peak seasons with no report.

In Figure 2.8 (a) and (b), we have demonstrated that GB-R successfully reconstructs the
spiky peak patterns by utilizing its domain expert knowledge ensuring the data follows the natural
cascade pattern, resulting in reduction of the reconstruction error compared to the competitors.

2) Case of random reporting: Random reporting scenario is the most likely scenario in the
real world, so we focus more on the experiments under this setting.

Generalization over diseases and states: In Figure 2.12, bar plots of MSE of the re-
constructions by GB-R and the competitor algorithms on different types of diseases (measles,
pertussis, hepatitis A, polio, rubella, mumps, and smallpox, all 7 state-level diseases available in
level 1 Tycho dataset) in three largest states (California (CA), New York (NY), and Texas (TX))
are shown.

We used first T = 1, 000 time points of the weekly counts as our unknown true dataset and
generated reports from it using random reporting process as illustrated in Figure 2.11 (b). Each
disease starts in different time of the year. We fixed the report duration to be 20-week and the
total number of reports as N = 100.

GB-R wins over competitors in reconstructing all of the diseases except for Hepatitis A, and
Smallpox. Even for the losing cases, the amount of loss is small.

Intuition behind GB-R: In this section, we share our intuition on why GB-R outperforms
the competitors. In Figure 2.13, a reconstruction of weekly measles count of New York state by
H-FUSE-S, and H-FUSE-P is shown in top and bottom, respectively.

In the top plot, H-FUSE-S fails to reconstruct the first and the eighth peaks (no report cover-
age). For the time region where there is too scarce reports as reference to make a guess on the
true data, H-FUSE-S interpolates, or “smooths out” the counts of the adjacent time points with
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.12: GB-R almost always wins, often by large margin. Bar plots of MSE of recon-
struction of (a) measles, (b) pertussis, (c) hepatitis A, (d) polio, (e) rubella, (f) mumps, and (g)
smallpox in three largest states California (CA), New York (NY), and Texas (TX) are shown.

report coverage.
In the bottom plot, H-FUSE-P overestimates the peak values for years 1940-1946 due to the

strong assumption of periodic pattern that expects repetitive heights for the recurring peaks.
On the other hand, in both plots, GB-R demonstrates good reconstructions; no smoothing

out or overestimation problem as H-FUSE-S or H-FUSE-P, thanks to the expert-model, that forces
the reconstruction to follow more natural evolving patterns with spiky peaks, spread rate, and
recovery rate.

Q2: Scalability

In Figure 2.14, the wall clock time (s) required for GB-R to run on different length of timeticks
(T ) is plotted along with a line for better understanding. It shows that GB-R scales linearly with
respect to the length of the timeticks T in the given data.

Q3: Interpretability

Some of the expert-model parameters values (Ps, δ) learned by GB-R on the weekly counts of
measles, polio, and pertussis in California state are shown in Table 2.6.

Phase shift: Ps represents the peak seasons of the data. In Table 2.6, GB-R learned differ-
ent peak seasons for each disease. Our interpretation of the peak seasons of measles, polio, and
pertussis matches with the epidemiology:
1) “Measles increases during the late winter and early spring” 3

3http://www.who.int/ith/diseases/measles/en/
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Figure 2.13: Superiority of GB-R. Competitors enforcing smoothness or periodicity may miss
/ over represent the spikes

Table 2.6: expert-model parameters

Measles Polio Pertussis

Ps 52 weeks 27 weeks 47 weeks
(peak: Jan) (peak: Jul) (peak: Nov)

δ 0.31 0.31 0.92

2) “Polio typically peaks in the summer months” 4

3) “Peak season for Pertussis is late summer and early fall.” 5

Recovery rate: δ corresponds to how sharp is the drop in the spike. Figure 2.15 (top) shows
the synthetically generated data with increasing values of δ: larger the δ, sharper the drop.

Figure 2.15 bottom left shows real Tycho data (gray) and the fitting by GB-R (red). Figure
2.15 bottom right shows the fittings of measles, polio, and pertussis on top of each other for the
comparison of the sharpness of the drop. GB-R successfully learned small δ for smooth drop,
and large δ for sharp drop that matches with the actual pattern of the disease.

4https://www.cdc.gov/vaccines/pubs/pinkbook/polio.html
5https://consumer.healthday.com/infectious-disease-information-21/

misc-infections-news-411/spread-of-whooping-cough-raises-concern-641758.html
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Figure 2.14: GB-R scales linearly with respect to the signal length.

Figure 2.15: GB-R is interpretable. GB-R learns the healing rate parameter. Pertussis with
larger parameter value heals faster.

2.2.5 Conclusion
In this Section, we proposed GB-R, an algorithm that reconstructs time series counts from ag-
gregated reports by careful infusion of domain knowledge.

1. Effectiveness: GB-R outperforms top competitors by 3x-25x in reconstructing real-world
data thanks to its principled infusion of domain knowledge.

2. Scalability: GB-R scales linearly on the duration of the output sequence.
3. Interpretability: GB-R provides understanding of the time sequence, by estimating the

gray-box-model parameters, like the average infection rate (β0), the peak timing (Ps), the
peak size (Pa), etc.

Reproducibility: We provide our source code for at: http://www.cs.cmu.edu/~hyunahs/
code/GB_R.zip. All our data are publicly available at https://www.tycho.pitt.
edu/
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2.3 ARES: extracting notable patterns [136]
In this section, we discuss ARES, (Automatic REStoration), a two-phase signal reconstruction
method that can also derive patterns from the target sequences. In the first phase, ARES es-
timates the sequences using domain knowledge such as smoothness. And then, in the second
phase, ARES further refines the estimated sequences by utilizing annihilating filter technique,
where the idea is to learn a linear shift-invariant operator whose response to the desired sequence
is (approximately) zero – yielding a set of null-space equations that the desired signal should
satisfy, without the need for the accompanying data. In the process, the annihilating filters help
us derive notable patterns in the target sequence.

2.3.1 Introduction

Figure 2.16: ARES reconstructs more accurately: An example of Tycho [100] measles counts

There are numerous historical data sets available from various worldwide groups, such as the
Institute for Quantitative Social Science at Harvard, Great Britain Historical GIS at Portsmouth,
the International Institute of Social History in Amsterdam, and World-Historical Database at the
University of Pittsburgh. In health sciences, the Vaccine Modeling Initiative at the University
of Pittsburgh aims to gather and analyze the information from thousands of reports on United
States epidemiological data, spanning over 100 years. Making sense of such data is particularly
important for interdisciplinary research, where a comprehensive picture of the subject requires
consolidation/fusion of large amounts of historical data from a variety of disciplines.

Historical data commonly includes reports on time series aggregated at different levels (e.g.,
weekly and monthly sums of counts of people infected with flu). It is common to have over-
lapping and even conflicting reports. For example, we may have multiple monthly and annual
reports from different authorities about cases of measles in Los Angeles. Meanwhile, the sum
of the monthly reports for a particular year might not be the same as the count for that year
from an annual report. Besides, some data may be missing (e.g., the reports do not cover the pe-
riod of 1940-1944 because of World War II). Proper reconstruction of historical events requires
reasonably accurate disaggregation of such data.

In this Section, we propose a novel and efficient approach, called ARES (Automatic REStoration),
which automatically reconstructs historical data in two phases: (1) first, it estimates the sequence
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of historical counts utilizing domain knowledge, such as smoothness and periodicity of historical
events; (2) then, it uses the estimated sequence to derive notable patterns in the target sequence
to refine the reconstructed time series. ARES applies an annihilating filter technique that is
reminiscent of ideas encountered in spectral estimation and compressed sensing [54, 118]. The
idea of annihilating filtering is to learn a linear shift-invariant operator whose response to the
desired sequence is (approximately) zero – yielding a set of null-space equations that the desired
signal should satisfy, without the need for the accompanying data. ARES further improves the
reconstruction accuracy by applying the annihilating filtering at the second phase iteratively.

ARES recovers historical data from aggregated reports with high accuracy and considerably
outperforms the state-of-the-art methods. We evaluate ARES on the real epidemiological data
from the Tycho project [100]. Figure 2.16 illustrates how ARES compares to the common least
squares (LSQ) reconstruction and more advanced H-FUSE method [77]. Figure 2.16(a) plots the
New York measles data (in blue, ‘Truth’), the least squares reconstruction (in black, ‘LSQ’),
the reconstruction of the H-FUSE (in yellow, ‘H-FUSE’), and the reconstruction of the ARES (in
red, ‘ARES’). We observe that ARES reconstruction is visibly better than both LSQ and H-FUSE.
Moreover, ARES can automatically tune itself for the best performance under specific application
constraints (such as report durations and overlaps), as detailed in Section 2.3.3.

The rest of the section is organized as follows: we go through background and related work in
section 2.3.2, and explain our proposed method in section 2.3.3. We demonstrate our experimen-
tal result in section 2.3.4, elaborate on complexity of our method in section 2.3.5, and conclude
our work ARES in section 2.3.6.

2.3.2 Background and Related Work

Information Disaggregation

(We saw most of these materials in section 2.1.2, but we repeat them here for the readers’ con-
venience.)

The problem of historical information disaggregation, which we consider in this section,
is a special case of the information fusion dealing with reconstructing objects from multiple
observations. In the process of historical information disaggregation, researchers need to recover
numbers of historical events from multiple aggregated reports, while handling redundant, and
possibly, inconsistent data. Figure 2.17 shows an example of a database with two historical
reports on total cases of measles in NYC. Each report covers time interval of 4 weeks with one
week overlap. The task of historical information disaggregation would be to reconstruct the
most likely weekly numbers of measles cases. The granularity of the reports may differ (e.g„ we
may need to reconstruct daily numbers from weekly aggregates). This task can be formalized as
finding an (approximate) solution to a characteristic linear system [77].

Figure 2.17 shows an example of the characteristic linear system for these two NYC measles
reports. Each report is represented as a binary row vector in an observation matrix with ”one”
corresponding to the time units covered by the report. The characteristic system is commonly
under-determined (the number of reports is smaller than the number of time-ticks). A disaggre-
gated historical sequence forms an approximate solution to the characteristic system.

In order to reconstruct a historical sequence, we need to find a reasonably accurate solution of
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Figure 2.17: Illustration on the nature of the data and the setting of our problem.

the characteristic linear system. No matter what kind of reconstruction method we are using, the
reconstructed sequence ~x should satisfy the historical reports. More formally, it should minimize
the following deviation:

F(~x) =
N∑

n=1

(vn −
T∑

t=1

Ontxt)
2 (2.33)

and, in matrix form:
F(~x) = ||~v −O~x||22 (2.34)

where T is the total number of time-ticks in ~x, N is the total number of reports, ~v is the value of
report, O is the observation matrix. Ideally, the deviation from the reports should be zero, unless
the reports are conflicting.

The ’LSQ’ tries to minimizeF(), which aims to find the minimum-norm solution ( min ||~x||22)
that satisfies F() = 0. The problem is usually under-determined and ’LSQ’ can find such solu-
tion using the Moore-Penrose pseudo-inverse [87].

The more advanced H-FUSE method [77] (section 2.1) tries to infuse domain knowledge to
improve the reconstruction accuracy. For example, H-FUSE penalizes large differences between
the ~x values of adjacent time ticks if we expect the solution sequence ~x to be smooth. Further-
more, if we know that the sequence ~x is periodic, H-FUSE also imposes periodicity constraints.
H-Fuse can further improve its performance by combining both smoothness and periodicity con-
straints.

Smoothness and periodicity constraints are examples of domain knowledge about some sim-
ple sequential patterns in the target series. The idea of recognizing and utilizing sequential
patterns for sequence reconstruction is actually behind the concept of Annihilating Filter, which
forms a basis of our proposed approach, and we will explain it in Section 2.3.3.

Related Work

The problem of historical information disaggregation can be stated in a wider context of fusing
and making sense of data obtained from a variety of sources, with gaps and overlaps in time
and space, and with uncertainty in trust of sources. As an example, considering project Tycho
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[100, 126] on large-scale integration of epidemiological data sources spanning more than 100
years. We use Tycho data to evaluate the performance of ARES in Section 2.3.4.

The concept of information fusion has been used in different areas including multi-sensor
data fusion [48], human-centered information fusion [49], and information fusion for data inte-
gration [14]. Multi-sensor data fusion utilizes multiple sensors to improve signal-to-noise ratio,
as well as robustness and reliability of the sensor network in the presence of sensor failures.

Human-centered information fusion enhances fusion techniques by including human obser-
vations, as well as web-based information about interactions between humans (e.g. social net-
works). As an example, in previous work the researchers developed automatic information fusion
methods that exploit the collective intelligence of mobile robots and human operators/observers,
and efficiently crowd-source the victim detection task [141].

The emergence of the Internet facilitates the access to different types of data sources of
varying reliability, which may also be mutually inconsistent due to conflicting data [38]. The
challenge of resolving data conflicts and data inconsistencies has been addressed in the task of
data integration [14, 139].

Information disaggregation is a key component of historical information fusion. In Section
2.3.2.1 we considered least squares method (LSQ) and more advanced H-FUSE method to re-
cover historical time series from an under-determined linear system. Temporal disaggregation
methods have also been studied in time series analysis of mostly economic data (see [20, 107]).
Given a low frequency time series (e.g. annual sales, weekly stock market index, etc.), the goal
of temporal disaggregation is to produce a high-resolution series (e.g. quarterly sales, daily stock
market index, etc.) satisfying temporal aggregation constraints. Temporal disaggregation meth-
ods have been used for the cases of non-overlapping aggregated reports and cannot be directly
applied to the task of historical information fusion.

Another method, reported in [41], performs information reconstruction/disaggregation from
consecutive and non-overlapping summaries (histograms). It is not obvious how this method,
called ’HistRecovery’ below, could handle overlaps and missing values.

The challenge of information disaggregation has also been explored in domains of image
and signal processing, where researchers have been dealing with related ill-posed problems.
For example edge detection, surface reconstruction [143], vehicle detection [106], and super-
resolution image reconstruction [91] are ill-posed. The annihilating filter technique, used by
our ARES approach, is a signal processing method, which we apply to the task of historical
information disaggregation.

An annihilating filter is a linear shift-invariant operator of finite support, which completely
suppresses a certain signal. That is, a filter with impulse response h(t), such that (x ∗ h)(t) :=∑

τ xt−τhτ = 0,∀t. The concept has been introduced in spectral analysis, particularly line
spectra estimation [54, 118]. It has been subsequently used in other contexts, notably compressed
sensing by Vetterli et al. [128]. The basic idea is as follows. To recover the fine-scale data, we
need additional information – ideally, more measurements. Instead, if we know a linear shift-
invariant operator that annihilates the signal of interest, then we can use it to build additional
equations that the signal satisfies, without the need for additional data – simply because that
data would be zero anyway. In practice, the filter will only approximately annihilate the signal
of interest when the latter is not a sum of a few sinusoids, so these virtual equations are only
approximate. However, we can use a least squares approach to account for errors in both actual
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and ‘virtual’ measurements. This is the starting point of our approach. Our work is the first work
that applies annihilating filters to information disaggregation in the historical data fusion domain.

Table 2.7 contrasts our ARES method against the related state-of-the-art competitors. We
present our method in the next section.
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H-FUSE ! ! ! !

ARES " " " " " "

Table 2.7: ARES matches all specs, while competitors miss one or more of the features.

2.3.3 Method
In this section, we explain our ARES method in detail. As mentioned before, smoothness and
periodicity constraints are examples of domain knowledge about simple sequential patterns in
a time series. ARES applies Annihilating Filter (AF) to derive more sophisticated sequential
patterns in a historical time series to reconstruct/disaggregate it. AF allows us to discover more
notable sequential patterns flexibly.

In the following sub-section, we introduce the calculation of AF and the patterns discovered
by AF.

Informal Explanation of Annihilating Filter (AF)

Figure 2.18 shows examples of different AFs and corresponding sequential patterns. The AF
length L in the first column is the interval length, which the sequential pattern should work on.
Different Ls will result in different types of patterns that the target sequence should follow. Each
histogram in the second column corresponds to an AF with lengthL, where each bar shows an AF
coefficient cl such that

∑L
l=1(cl~xl) = 0 for any successive L time-ticks of a target sequence. The

third column shows this equation for coefficients of each of the considered AFs. For example, for
the L = 2 with coefficients of −0.6 and 0.6, the equation is x1 − x2 = 0 for any two successive
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Figure 2.18: Illustration of patterns for different AF lengths (Ls). Different Ls result in
different types of patterns; the second column shows the bar chart for AF coefficients; the third
column shows the AF equation that the target sequence should satisfy; the last column shows an
example of a sequence that satisfies this equation.

time-ticks (i.e., the pattern is a flat line and it corresponds to an extreme smoothness constraint).
For the L = 3 with coefficients of 0.4, −0.8 and 0.4 the equation is x1 − 2x2 + x3 = 0 for any
three successive time-ticks.

Figure 2.19 shows examples of the AFs reflecting sequential patterns of increasing lengths
for three epidemiological time series from the Tycho repository. We observe that all sequences
have very similar AFs for L = 2 and L = 3. For L = 2, it almost matches the smoothness
constraint, which provides another evidence that smoothness is a reasonable assumption in the
process of a sequence reconstruction. For longer filters, the patterns start to deviate, reflecting
more specific dynamics of a target sequence.

Generating Annihilating Filter

The algorithm to generate AF (Algorithm 2) is based on finding the eigenvector corresponding
to the smallest eigenvalue in the Singular Value Decomposition (SVD) of a square matrix. The
square matrix is constructed from the input sequence and the dimension of the matrix is L, as we
explain below.

For a given AF length L, the AF intends to find a stable pattern within any L contiguous
timeticks. Therefore, the output of the filter can be written in a column vector form as −→y =

Xmat

−→
h , where

−→
h is an L×1 column vector holding the impulse response of the filter, and Xmat

is (T −L+1)×L matrix constructed by all L contiguous timeticks from the input sequence (see
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Figure 2.19: AFs for three epidemiological time series with increasing lengths (from 2 to 6).
All series have very similar AFs for L = 2 and L = 3, while for longer filters the patterns reflect
more specific sequence dynamics.

(a) Major steps of the AFilter procedure (b) An example of calculating AF and corresponding an-
nihilating matrix Ha for a short input sequence

Figure 2.20: Illustration of ARES AF generation algorithm

details in Figure 2.20(a)). The norm squared (energy) of the output vector is then ||Xmat

−→
h ||2 =−→

h TXT
matXmat

−→
h . Then the

−→
h that minimizes this expression is the eigenvector corresponding to

the smallest eigenvalue of XT
matXmat. This can be easily seen because any

−→
h can be written as

Uλ, where λ is a vector of coefficients, whose norm must be 1 and U contains the eigenvectors of
XT
matXmat, which are orthogonal [118]. After

−→
h has been determined, the output of the AF can

also be written as −→y = Ha
−→x , where Ha is a Toeplitz matrix constructed from

−→
h . The Toeplitz

matrix is a matrix in which each descending diagonal from left to right is constant. Thus Ha is
an annihilating matrix that we use to define the annihilating constraint below.

The generation procedure of AF is illustrated in Figure 2.20. Figure 2.20(a) shows a general
flow of the algorithm starting from an input sequence ~x and resulting in construction of an annihi-
lating matrix Ha with L = 3. Then the Ha matrix can be combined with the observation matrix
O from the original characteristic linear system to determine the system more precisely (bot-
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tom part of the Figure 2.20(a)). Figure 2.20(b) shows major steps in generating the annihilating
matrix Ha for a simple example of a short input sequence.

Next we will explain how the AF can be used for data reconstruction.

Algorithm 2: Generate Annihilating filter
procedure AFILTER(~x)

Step 1: Select an appropriate AF length (L).
Step 2: Build a (T − L+ 1)× L matrix Xmat from an input sequence ~x and

calculate Ymat = XT
matXmat

Step 3: Perform SVD for Ymat and extract the last column
−→
h from the left singular

vector matrix.
Step 4: Given ~h, construct a Toeplitz (T − L+ 1) matrix Ha starting from the

diagonal.
Step 5: Output the annihilating matrix Ha

Data Reconstruction Using AF

Since patterns with different AF length are mutually independent, we can combine appropriate
patterns reflected in AFs as additional constraints to improve reconstruction/disaggregation accu-
racy, as illustrated in Figure 2.21. In this figure, we combine AFs of increasing length in different
ranges (L ∈ [2, 30], L ∈ [2, 50], L ∈ [2, 60], L ∈ [2, 70] and L ∈ [2, 90]) to reconstruct the Tycho
New York measles time series. We use a single aggregated report covering the whole sequence
(i.e., it reports the total sum of all ticks in the time series). Note, that we intentionally use this
case where our characteristic linear system includes only one equation and the reconstruction
accuracy depends entirely on the patterns discovered by AFs. This way we can illustrate how
the AF patterns alone help to recover the sequence. We observe that as we use more patterns,
the reconstruction accuracy improves steadily. Note, that we generate AF coefficients from the
target sequence and this is why the reconstruction dynamics is so good. However, our major
challenge in ARES is to discover AF patterns under an assumption that the target sequence is not
available. This is why ARES will apply a two-phase reconstruction strategy, which we propose to
generate the AF patterns based on the reconstructed sequence under smoothness and periodicity
constrains, and which we explain next.

ARES Model

ARES recovers the original sequence ~x in two phases. In order to generate annihilating filters,
ARES requires some knowledge of the original sequence. Since in practice only aggregated re-
ports are available, we propose to resolve this problem by building the filters with the ~xsp recon-
structed at the first phase of ARES using smoothness and periodicity constraints The expectation
is that smoothness and periodicity constraints combined with a characteristic linear system will
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Figure 2.21: Time series reconstruction using Annihilating Filters. Reconstructing Tycho
New York measles time series from a single report (total sum). Characteristic linear system
includes only one equation and the reconstruction accuracy depends entirely on the patterns
discovered by AFs. As we combine more patterns, the reconstruction accuracy improves steadily.

refine the information about the target series to an extent that it can be re-used to build annihi-
lating filter representing reasonably accurate sequential patterns in the target series. Such filters
can be used to improve reconstruction accuracy.

In the first phase of ARES we use the combined smoothness and periodicity constraint:

Csp(~x) =
1

2
Cs(~x) +

1

2
Cp(~x),

where Cs(~x) is the smoothness constraint to penalize big jumps between successive timeticks,
and Cp(~x) is the periodicity constraint which is to make the event at timetick t to be close to the
one at t+ PD.

More formally, in the first phase ARES minimizes a total penalty function L(~x) solving the
following optimization problem:

min
~x
L(~x) = min

~x
(F(~x) + Csp(~x)), (2.35)

where F(~x) is defined as in Eq. 2.33.
Next, we introduce the annihilating constraints corresponding to sequential patterns gener-

ated by AFs in the second phase. ARES applies such constraints to the characteristic linear
system, thus determining the system more precisely. Formally, at the second phase ARES solves
the following optimization problem

min
~x
L(~x) = min

~x
(F(~x) + Ca(~x)), (2.36)

where Ca(~x) corresponds to the annihilating constraint that we define below:
• Annihilating constraint Ca: If there is an Annihilating Filter (AF) of length L, then the

successive L time-ticks should follow the pattern defined by the AF (i.e., successive L
time-ticks multiplied by corresponding AF coefficients should sum up to zero). Formally:

Ca(~x) =
T−L+1∑

t=1

(
L∑

l=1

(clxl+t))
2 = ||Ha~x||22 (2.37)
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where Ha is an R(T−L+1)×T annihilating matrix whose tth row has cl in the L successive
columns starting from the tth column, respectively.

To sum up, ARES first applies smoothness and periodicity constraints to the aggregated re-
ports to obtain a reconstructed sequence ~xsp, then builds a corresponding annihilating constraint
Ca(~x) based on the information in ~xsp. Using Eq. 2.36, ARES refines the reconstructed sequence
~xsp to a target sequence ~x.

Automatic Parameter Selection

As we observed in Figure 2.21, the AF length L impacts reconstruction accuracy. Moreover,
from our experiments we observed that L has different impact on different report configurations
(i.e., different report durations and overlaps). Next we propose an automatic method using the
Minimum Description Length (MDL) principle [103] to select the best AF length L, which pro-
vides the best reconstruction for each configuration. We select the length L using the following
Selection Criteria (SC):

Selection criteria : SC(L) = ‖~v −O~̂x‖22 + ‖Ha~̂x‖22 + L (2.38)
In Eq.2.38 the first term accounts for data fidelity for the measurements in y; the second term

accounts for data fidelity for the ‘virtual’ measurements, which are approximately zero; and the
third term penalizes model complexity – the length of the AF that is used. This is precisely in
the spirit of MDL, whose philosophy is to pick the most parsimonious model that describes the
data well-enough. In other words, to avoid over-fitting, we penalize L, because if L is too large
then we can zero out any signal, and this does not yield useful information.

Iterative ARES

We can extend ARES based on the Alternating Least Squares Optimization (ALS). For two vari-
ables, x and h, we can fix one and update the other to minimize the common cost function. We
will call this ITERATIVE ARES.

2.3.4 Experiments

In this subsection, we share our experimental results. We will evaluate ARES using real epidemi-
ological time series from project Tycho [100] that collected epidemiological reports spanning
more than 100 years.

Experimental setup

In order to generalize our results and observations we apply ARES to six diseases: California
smallpox (from Week 501 to Week 900), California hepatitis (from Week 2653 to Week 3051),
California mumps (from Week 2756 to Week 3155), California polio (from Week 1659 to Week
2058), California rubella (from Week 2805 to Week 3204), and California pertussis (from Week
1649 to Week 2048). Figure 2.22 plots each of the selected time series. We observe that each
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disease has notably different dynamics and different degree of periodicity, which provides a rich
test set for ARES evaluation.

Figure 2.22: Disease time series used for the experiments. While most of the diseases have
annual periodicity, they have notably different dynamics.

We use Pittsburgh Supercomputing Center Bridges HPC resource6 to run most of our experi-
ments. Bridges consists of 846 compute nodes (27,408 cores total), each with hardware-enabled
coherent shared memory: 4 nodes with 12 TB, 42 nodes with 3 TB, and 800 nodes with 128 GB.
A node with 12TB of RAM shares the memory between up to 320 cores while 128GB nodes
have 28 cores each. We obtained Bridges allocation through XSEDE 7 at no charge for open
data-intensive research.

Effectiveness

To obtain a more general picture of the ARES behavior, we performed experiments under various
report configurations. We changed both RD (ranging from 2 to 60) and shift (ranging from 1
to 26). We select those ranges with the awareness that epidemiological data have a prominent
yearly periodicity of 52 weeks. If the report shift is exactly 26, then we critically sample this
periodicity according to the Shannon-Nyquist sampling theorem [86]: that is, we gather two
samples per yearly cycle. If we take less than 2 samples per yearly period, then, because of heavy
aliasing, we should not expect to reconstruct the fundamental frequency of the time series, let
alone accurately reconstruct the time series. Otherwise, the reconstruction accuracy is reasonably
high for all report configurations (RD and Shift).

In Figure 2.23, we show the bar plot of average RMSEs of the reconstructions by different
methods. We observe that iterative ARES performs the best, followed by ARES, H-FUSE, and
LSQ. Iterative ARES improves reconstruction by 9.6%, 34% and 60% over ARES, H-FUSE and
LSQ, respectively.

6https://www.psc.edu/index.php/bridges
7https://www.xsede.org/
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Figure 2.23: ARES effectively reconstructs: average RMSEs of reconstructions. Iterative ARES

improves reconstruction by 9.6%, 34% and 60% over ARES, H-FUSE and LSQ, respectively

2.3.5 Complexity
In this section, we analyze the complexity of ARES. Taking into account the two-phase process
of ARES, we need to figure out the complexity of each phase. Since both of these two phases
aim to solve a sparse linear system, they should be reasonably fast. We estimate the complexity
in two steps.

First Phase: ~xsp reconstruction

Lemma 8 For any report setting, let RDmax be the longest report duration, let H be the smooth
matrix and let T be the total number of events to recover. Then the total computation time for
our method is

O(T log(T ) + 4RD2
max)

Proof 8 Recall that H-FUSE requires computation time of O(T log(T ) + 4RD2
max): see Lemma

5 in section 2.1.5 for H-FUSE.

Second Phase: Applying annihilating filter

ARES performs ~xsp reconstruction as the first step, and this takes O(T log(T ) + 4RD2
max). The

second step is applying the annihilation filter of length L. Notice that it results in a banded
Toeplitz matrix with bandwidth L, thus this step takes O(T log(T ) + 4L2) resulting in

O(2T log(T ) + 4max(L,RDmax)
2)

2.3.6 Conclusion
We proposed ARES, an automatic approach for reconstructing historical counts from possibly
overlapping or incomplete aggregated reports. Our approach has the following advanced fea-
tures:
• ARES efficiently discovers notable patterns in the target time series and utilizes them to

improve the reconstruction accuracy.
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• ARES applies advanced Annihilating Filters (AF) technique to derive such patterns.
• ARES uses the Minimum Description Length principle to automatically select the AF

length that provides the best reconstruction.
Our experiments on the real-world epidemiological time series demonstrated outperforming

reconstruction performance of ARES over the competitors.
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2.4 HOMERUN: scalable sparse-spectrum reconstruction [3]

In this section, we introduce HOMERUN, a signal reconstruction method that exploits an al-
ternative representation of the sequence and finds the spectrum of the target sequence. More
specifically, we formulate the problem as so-called basis pursuit using the Discrete Cosine Trans-
form (DCT) as a sparsifying dictionary and impose non-negativity and smoothness constraints.
HOMERUN utilizes the energy compaction feature of the DCT by finding the sparsest spec-
tral representation of the target sequence that contains the largest (most important) coefficients.
We leverage the Alternating Direction Method of Multipliers to solve the resulting optimization
problem with scalable and memory efficient steps.

2.4.1 Introduction

Gathering and analyzing information from multiple historical data sources requires reconstruct-
ing the time sequences in finer scale. For example, given multiple monthly sums of patient
counts, how can we recover the weekly patient counts? This is so-called data disaggregation
problem [108].

Notable challenges of historical data disaggregation are: 1) each data source may report the
aggregated sums on different scales (e.g., one data source may report the weekly number of
patients while another source reports on monthly scale), 2) the time periods covered by different
data sources may or may not overlap (e.g., one source may report the number of patients for years
1920-1930, and another for 1940-1950, resulting in missing information for years 1930-1940),
and 3) the reports may have conflicts (e.g., one data source may report 100 patients while another
may report 80 patients for the same time period). Our informal problem definition is the same as
in the informal problem formulation 1 in section 2.1.1 - but we repeat here for convenience:
Informal Problem 3 (Disaggregation)

1. Given: the multiple reports of the aggregated sums of the time sequence (e.g., monthly
sums)

2. Recover: the time sequence in finer scale (e.g., weekly sums)
The prevailing approach is to formulate the problem as linear Least Squares (LS), however, as

we have seen in the previous sections and which we will explain in more details later, this prob-
lem is usually under-determined in practice. In cases where the number of available reports is
much smaller than the length of the target sequence, the LS approach becomes inefficient. There
have been previous works for solving the disaggregation problem that add different regularizers
to the LS, such as smoothness and periodicity in the data (H-FUSE) as we have seen in section 2.1.
Enforcing smoothness and periodicity in the time domain is a reasonable approach since many
of the time sequences that we observe are smooth and quasi-periodic in nature. The main issue
with smoothness and periodicity regularized LS is the lack of identifiability, especially when the
time series is not exactly smooth, nor exactly periodic. Another advanced approach that does not
enforce smoothness or periodicity in the target sequences was introduced earlier in section 2.3
(ARES), where it utilizes annihilating filters to learn notable patterns in the target sequence to
refine the reconstructed time series. Also in section 2.2, we introduced another method GB-R
where it is applicable if the target sequences are known to follow the SIS epidemics model.
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(a) More accurate reconstruction (b) HOMERUN wins (c) Linear scalability

Figure 2.24: HOMERUN is effective and scalable: (a) visible improvement of HOMERUN over
the baseline method H-FUSE; (b) performance of HOMERUN versus H-FUSE across different
number of reports; (c) HOMERUN is memory efficient and scales linearly with the length of the
target sequence.

In this section, we introduce HOMERUN – an efficient algorithm for solving the disaggrega-
tion problem in which we exploit an alternative representation of the target time sequence. More
specifically, we search for the coefficients that best represent the sequence in a fixed dictionary
of cosine basis, i.e., we solve for the coefficients of the Discrete Cosine Transform (DCT) of the
sequence we are seeking. As we will explain in the following section, DCT with few non-zeros
represents a sum of few cosines, i.e., few dominant periodicities. Therefore, DCT transformation
is a good basis for quasi-periodic historical data. Moreover, expressing the time sequence using
the DCT basis functions provides a sparse representation as most of the energy is compacted in
the coefficients of low frequencies.

We formulate the data disaggregation in the form of the so-called Basis Pursuit (BP) where
we enforce sparsity in the DCT coefficients of the target sequence. We call the resulting BP
formulation HOMERUN-0, which is the basic version of our proposed method. One significant
advantage of our approach is that it automatically detects the prominent periodicities in the data,
as opposed to the methods in related works, which assume that there is only one or few known pe-
riodicities. In addition to the periodicity, other common domain knowledge properties of the time
sequences are non-negativity and smoothness over timestamps. We also propose HOMERUN-N
method that improves HOMERUN-0 by enforcing non-negativity constraint on the time domain
sequence. We further extend our method by imposing smoothness in the time sequence in ad-
dition to non-negativity, resulting in the final version of the proposed method: HOMERUN. We
derive the steps of the Alternating Direction Method of Multipliers (ADMM) algorithm that can
solve the optimization problem after adding non-negativity and smoothness constraints. Finally,
we derive a scalable and memory efficient implementation of HOMERUN.

We apply HOMERUN to the epidemiological data from the Tycho project [100], the same
dataset that we have been using in our earlier works (sections 2.1, 2.2, 2.3). Our dataset contains
the number of cases for major epidemic diseases (hepatitis A, measles, mumps, pertussis, polio,
rubella, and smallpox) in the US over 100 years. We demonstrate that HOMERUN helps to
recover the time sequences much better than the competing baseline methods, H-FUSE [77] and
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LS.
Figure 2.24 shows an example of the results of HOMERUN when reconstructing the weekly

counts of measles, given multiple aggregated reports. We observe in Fig. 2.24 (a) that HOME-
RUN is closer to the true sequence compared to the baseline H-FUSE, HOMERUN estimates the
number of patients with Root Mean Square Error (RMSE = 20.30), while the RMSE of H-
FUSE is 104.23. In data analysis, e.g., studying the impact of vaccination, not only the average
error matters, but also the weekly single error. We can see that for several weeks, H-FUSE un-
derestimates (or overestimates) the counts by the order of hundreds, while HOMERUN is very
close to the true value. Fig. 2.24 (b) shows the percentage of improvement/diminishment in the
RMSE between HOMERUN and the baseline H-FUSE with various numbers of given aggregated
reports – HOMERUN always improves the RMSE, ‘70’ means HOMERUN reduces the RMSE
of H-FUSE by 70%, and so on. Fig. 2.24 (c) compares the running time of HOMERUN with
the baselines. It shows how HOMERUN is memory efficient and scales linearly in time with the
sequence length (up to 2 million) – note the log scales. In summary, the contributions of our
work are as follows:
• Formulation: we propose to formulate the data disaggregation problem in the form of

so-called Basis Pursuit (BP), add domain knowledge constraints, and derive the iterative
updates of the ADMM algorithm to solve the resulting optimization problem.

• Effectiveness: our HOMERUN method recovers the time sequences with up to 94% im-
provement in the accuracy of the best of baseline methods.

• Scalability: we derive an efficient accelerated implementation of HOMERUN that scales
linearly with the length of the target sequence.

• Generality: HOMERUN is parameter-free and it adapts to the input signal and automati-
cally detects the prominent periodicities in the data.

This section is structured as follows. We explain the necessary background and the related
work in section 2.4.2, and introduce our proposed method in section 2.4.3. Then, we explain
our experimental setup in section 2.4.4 and show the experimental results in section 2.4.5. We
conclude in section 2.4.6.

2.4.2 Background
In this section, we provide background on both the problem of historical data disaggregation and
the techniques we employ in the proposed approach to solve this problem. We also review the
related work relevant to both the problem and the proposed method.

Notation: bold capital letters (e.g., A) denote matrices; bold small letters (e.g., x) denote column
vectors; A† is the Moore-Penrose pseudo-inverse of a matrix A; AT denotes the transpose of A.
xn is the nth element in vector x. (a)+ is the non-negative projection of a vector a, performed
by zeroing out the negative elements in a. Table 2.8 summarizes the symbols we use frequently.

Historical Data Disaggregation

Data disaggregation considered in this work is a special case of data fusion as we aim to recon-
struct an unknown time sequence from multiple aggregated observations with possible overlaps.
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Table 2.8: Symbols and Definitions

Symbol Definition
y ∈ RM vector contains the known measurements
x ∈ RN the target time sequence
s ∈ RN sparse presentation of x in fixed basis
O ∈ RM×N observation matrix
D matrix of DCT basis functions
RD report duration
shift difference between the starts of adjacent reports

H ∈ R(N−1)×N smoothness matrix

For example, consider reconstructing the weekly counts of infection incidents (e.g., by measles)
in the United States from reports aggregated over multiple weeks. In general, those aggregated
reports could have overlaps, gaps or conflicts between them. Figure 2.25 shows an illustrative
example of each case, respectively.

Formally, we want to reconstruct a detailed time sequence x = {xn}Nn=1, given the aggregated
observations y = {ym}Mm=1, where ym corresponds to the sum of multiple elements in x. Thus,
we specify a linear system y = Ox, where each row of an observation matrix O ∈ RM×N is a
binary vector that has ones for the elements of x that contribute in ym (see Example in Eq. 1). We
refer to the number of timeticks covered by a report as Report Duration (RD), i.e., ones in the
mth row of O, and the difference between the starting points of two successive reports as shift
(marked in blue in Eq. 1). Observed reports may have different RD values, e.g., we may have
one report covering a month and another covering two weeks. In any case, we can sort the reports
according to their starting points. Below is an illustrative example containing three reports with
RD = 4, 4, and 2, and shift = 1 between the first two reports and shift = 2 between the 2nd

and 3rd ones. Note that the reports in the example have overlaps (marked in green), however they
could have gaps if the shift between two reports is larger than RD of the first one. Moreover,
conflict occurs when two rows of O are identical, but with different ym values.




1 1 1 1 0

0 1 1 1 1

0 0 0 1 1




︸ ︷︷ ︸
O

×




x1

x2

x3

x4

x5




︸ ︷︷ ︸
x

=



y1

y2

y3




︸ ︷︷ ︸
y

(2.39)

If O is square (i.e., N = M ) and full rank, then the solution is trivial and error free. In
practical settings, the resulting system of linear equations is under-determined (number of reports
� number of timeticks in the target sequence). In this case, the linear system has many solutions
and Least Square (LS) solution finds x with minimum norm (min ‖x‖22). However, there is
no special reason why the best reconstructed sequence would have the minimum norm for this
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Figure 2.25: Historical data examples: overlap; gap; conflict (from top to bottom).

problem, which led researchers to add domain knowledge penalty terms to the linear system [77]
to improve the LS solution.

Instead of solving for x directly, as it is common in the literature for this problem, we ex-
ploit an alternative signal representation and propose to solve for the DCT representation of the
target sequence (as formulated in Section 2.4.3). We define the DCT in the next section before
proceeding to the proposed methods.

Discrete Cosine Transform (DCT)

Discrete Cosine Transform (DCT) transforms a finite-length discrete-time data sequence from
the time (or spatial) domain into the frequency domain. In particular, DCT represents the finite-
length sequence in terms of a sum of basis sequences. These basis are cosines oscillating at
different frequencies [2, 90]. We focus here on one-dimensional DCT since the problem of our
interest is the reconstruction of one-dimensional sequence. Formally, the most common DCT
definition of a data sequence x of length N is as follows [66]:

sk =
N−1∑

n=0

xn α(k)cos

(
πk(2n+ 1)

2N

)

︸ ︷︷ ︸
φ(k,n)

=
N−1∑

n=0

xnφ(k, n) (2.40)

for 0 ≤ k ≤ N − 1, where α(k) is a coefficient factor defined as follows:

α(k) =





√
1
N
, k = 0,√

2
N
, 1 ≤ k ≤ N − 1.

(2.41)

Similarly, the original finite-length sequence can be uniquely recovered from its DCT using
the inverse DCT (iDCT) defined as:

xn =
N−1∑

k=0

skφ(k, n) (2.42)

for 0 ≤ n ≤ N − 1.

To facilitate concisely formulating the problem, we define a DCT matrix D ∈ RN×N whose
entries are the cosine basis functions:
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Figure 2.26: NYC measles data in time domain, x (left) and its spectrum, s (right).

D =




φ(0, 0) . . . φ(0, N − 1)
... . . .

φ(N − 1, 0) . . . φ(N − 1, N − 1)


 =




dT0
...

dTN−1


 (2.43)

where, as it is clear from (2.40), φ(k, n) = α(k)cos(πk(2n + 1)/2N). The inner product of
any row dn with itself is 1, while the inner product of any two different rows is 0. Thus, D is
orthogonal (and DCT is an orthogonal transform [90]), i.e., D−1 = DT . Equations (2.40) and
(2.42) can be written as:

s = Dx (2.44)

x = DT s (2.45)

Since cosines are periodic and even symmetric, the DCT transform imposes periodicity in
the time domain signal [90]. An important property of DCT is energy compaction, which is the
reason why DCT is widely used in many data compression applications, such as image com-
pression [105]. Specifically, the DCT of a signal is usually concentrated in the coefficients of
the low frequencies and the remaining coefficients can be discarded without a significant impact
[90]. The degree of DCT energy compaction depends on how correlated the original signal is in
time (or spatial) domain. For example, in image processing, the DCT energy compaction of an
image relies on the correlation degree between its pixels. We demonstrate this phenomenon by
showing New York (NYC) measles and California (CA) hepatitis weekly counts and their DCT
in Figure 2.26 and 2.27, respectively. We can see that CA hepatitis sequence is less correlated
(less smooth) in time domain, and therefore its DCT has high frequency components that are
larger than in the case of NYC measles (relative to their maximum values) as clear in the zoomed
parts.

If we discard the small coefficients of DCT, the DCT representation of the signal becomes
sparse. In other words, although the reports of those diseases do not have zero values across all
timeticks, most of their DCT coefficients are small, and the few large coefficients carry most of
the energy and capture most of the information. We show an illustrative example by keeping
only the largest 10% of the DCT coefficients of NYC measles and CA hepatitis weekly counts
sequences and set the rest to zero, i.e., we pick the largest 10% elements in s and zero out the
rest. In Figure 2.28, we show the time sequence of both data sets recovered from this 10%
(using Equation (2.45)). It is clear that NYC measles has a better recovery since its DCT is
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Figure 2.27: CA hepatitis data in time domain, x (left) and its spectrum, s (right).

sparser (compact and has less significant components). Finally, we should note that the ability of
accurately estimating the DCT coefficients (s) of a sequence enables us to recover this sequence
in time-domain (x). In the following section, we explain the basics of sparse reconstruction since
it is essential to our methods.

Figure 2.28: Data recovered from the largest 10% coefficients of their DCT – NYC measles (left)
and CA hepatitis (right).

Figure 2.29: Recovery with L1 norm (left) and recovery with L2 norm by replacing L1 by L2 in
(2.46) (right).

Sparse Signal Recovery

The goal of sparse reconstruction and compressive sensing [24] is to find a sparse approximate
solution s of an under-determined linear system As = y, where A ∈ RM×N , s ∈ RN ,y ∈ RM

, with M < N . Then, s could be recovered by solving the following convex problem known as
BP [29]:
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min
s

‖s‖1
s.t. As = y

(2.46)

where ‖s‖1 =
∑N

n=1 |sn| is the L1 norm which promotes sparsity in the solution. In general,
A may be a matrix containing the elements of an over-complete dictionary [39] and we seek to
solve for the sparsest coefficient vector s to represent the observed measurements y.

Now we will consider a more practical scenario: suppose we have a (non-sparse) signal in
time-domain x ∈ RN under-sampled in such a way that we have fewer linear measurements
y ∈ RM about x in the form y = Φx, where Φ ∈ RM×N . Thus, we are interested in solving
for the unknown signal x given the observed measurements y. In the case of M � N where
there are much fewer measurements than the unknowns, solving the linear problem may appear
too challenging. However, if x can be compressed (accurately represented as sparse coefficients
on some fixed basis) such that the number of the non-zero coefficients that carry most of the
energy is less than N (the size of x), then this changes the problem radically, making the search
for solutions feasible [24]. In particular, suppose we have a sparse vector s that contains the
coefficients of a time (spatial)-domain signal x in an orthonormal basis Ψ, i.e., x = Ψs. For
example, x is the vector containing pixels of an image, s is the coefficient sequence of x in the
wavelet basis, and Ψ is an N × N matrix containing the wavelet basis functions as its entries
[25]. In this case, we would recover the coefficient sequence s with the minimum L1 norm that
satisfies As = y, where A = ΦΨ in problem (2.46).

As mentioned above, BP is often used as a heuristic algorithm for finding a sparse solution
to an under-determined system of linear equations and L1 promotes sparsity in the solution. In
Figure 2.29, we illustrate the advantage of using L1 norm by showing the solution we get from
(2.46) and when replacing the L1 norm by L2 norm. In this example, we try to recover the DCT
representation of NYC measles data (shown in Figure 2.26) from 29 measurements in the time
domain (each measurement has the sum of counts over 21 weeks with overlaps). We can see that
the two solutions are different. The L2 solution does not give a good approximation as it has
spikes where the original signal is almost zero.

Alternating Direction Method of Multipliers: problem (2.46) can be recast as a linear program.
However, we propose to use the ADMM algorithm as it is well suited for large-scale problems.
ADMM solves the convex optimization of the following form

min
s,z

f(s) + g(z)

s.t. As + Ez = c.
(2.47)

by iteratively updating the following blocks
s← argmin

s
f(s) + (ρ/2)‖As + Ez− c + u‖22, (2.48a)

z← argmin
z
g(z) + (ρ/2)‖As + Ez− c + u‖22, (2.48b)

u← u + (As + Ez− c) (2.48c)
where u is a scaled version of the dual variable corresponding to the equality constraint in (2.47),
and ρ > 0 is the augmented Lagrangian parameter specified by the user.
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Problem (2.46) can be reformulated as follows after introducing the auxiliary variable z ∈
RN :

min
s,z

I{As=y} + ‖z‖1
s.t. s− z = 0

(2.49)

where I{As=y} is an indicator function such that:

I{As=y} =

{
0 if As = y

∞ otherwise.
We will skip the derivation of the algorithm for brevity – refer to [18] for more comprehensive
review of the ADMM algorithm. The solution to (2.46) is provided by the following iterative
updates:

sk+1 ← (I−AT (AAT )−1A)(zk − uk) + AT (AAT )−1y

zk+1 ← (sk+1 + uk − 1/ρ)+ − (−sk+1 − uk − 1/ρ)+

uk+1 ← uk + (sk+1 − zk+1)

Related Work

Disaggregation: The aggregation of the data vector can be seen as representing or summariz-
ing the data vector using linear transform. In [31, 32], the idea of sketches has been introduced
as means of data aggregation or summarization. With the advance of the data collection tech-
nologies, we have been gaining more access to various sources of historical data in aggregated
form. This has led to an increasing interest in data integration and fusion including, in particular,
disaggregation of the data sources [15, 37, 41, 77, 102, 141]

The disaggregation problem is of interest in various domains. In the image and signal pro-
cessing communities, for example, there have been works on solving under-determined problems
for various applications, such as super-resolution reconstruction of image data [91], or informa-
tion recovery from noisy or missing data [26].

In section 2.1 [77], we proposed an algorithm called H-FUSE that enforces smoothness and
periodicity constraints for the reconstruction of the historical data. The authors show that the
proposed algorithm improves the reconstruction compared to the minimum-norm linear LS for-
mulation, which is the most common formulation for solving the disaggregation problem. We
will use this algorithm as our main baseline.

DCT and Sparse reconstruction: DCT is one of the most commonly used compression tech-
niques in the signal processing community. It has been shown to be an effective transformation
for compressing the data in large networks [72]. DCT is widely used especially for image com-
pression [132] due to its energy compaction property, and for image denoising [40, 46]. DCT
has been also used in databases community for answering queries in compressed form via DCT
transform [55], representing the time series in spectral domain [36], etc.

The principle of finding a sparse signal representation in a basis dictionary has been used in
various applications, such as denoising [29] and information recovery from incomplete and/or
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noisy measurements [26]. Basis Pursuit (BP) formulation is used to obtain such a sparse solution
to the ill-posed problem. Expressing a signal in a proper basis (dictionary), where it is sparse
for the purpose of recovering this signal from fewer linear measurements has been used in com-
pressive sensing [24]. As an example, wavelet basis has been considered in order to sparsely
represent an image to recover it from fewer measurements [25]. In [40], DCT is used as a dictio-
nary for sparse representation of a noisy image for the purpose of removing the noise from the
image.

To our knowledge, the application of DCT and sparse representation has not been exploited in
historical data fusion domain. Table 2.9 summarizes our proposed HOMERUN method compared
to the related approaches.

Table 2.9: HOMERUN satisfies all properties listed above.

Property LS H-F
USE

HOM
ERUN

Overlapping reports ! ! "

Smoothness reconstruction ! "

Periodicity reconstruction ! "

Multiple periods (quasi-periodic) "

Automatically detects periodicity "

Non-negativity "

2.4.3 Method
In this section, we explain our proposed method HOMERUN and the algorithmic solutions asso-
ciated with it. Recollect, that the objective of reconstruction methods is finding the disaggregated
sequence x that minimizes the following problem:

min
x

‖y −Ox‖22 (2.50)

where O,x,y have the same definition as in Section 2.4.2. More advanced methods are proposed
to infuse domain knowledge, such as smoothness and periodicity, by penalizing (2.50) [77]. The
role of this penalty is to make the under-determined linear system (that has infinite number of
solution) an over-determined one, constraining the solution to adhere to some domain knowledge.
All these methods solve the problem directly by the closed form of LS using Moore-Penrose
pseudo-inverse. However, LS solution does not always give a good approximation, especially
when the number of observations is much less than the number of unknown variables.

The main idea behind our proposed method is to deal with the under-determinacy of the linear
system by solving for the coefficient vector s that represents the target sequence x in the DCT
basis as the number of non-zero coefficients is much less than the length of the sequence. The
accuracy of this reconstruction hinges on the degree of DCT energy compaction feature explained
in Section 2.4.2. Moreover, DCT involves implicit assumptions of periodicity which makes it a
good dictionary for this problem as the time sequence exhibits some degree of periodicity. A
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significant advantage of the proposed approach is that it automatically detects the prominent
periodicities in the data, as opposed to assuming that there is only one or few known periodicities
by constraining the LS as in [77]. In the rest of this section, we explain our proposed method in
the order as it was derived.
• HOMERUN-0: the basic version of our method.
• HOMERUN-N: with added non-negativity constraint.
• HOMERUN: the final and complete version of the proposed method.

HOMERUN-0: The Basic Version

DCT matrix (defined in Equation (2.43)) offers a convenient way to compute the transform and
its inverse as follows: s = Dx (Equation (2.44)) is the DCT of the time sequence x, and x =
DT s (Equation (2.45)) reconstructs the time sequence from s. The following Insight shows the
formulation of our HOMERUN-0 method.
Insight 1 The historical data disaggregation problem can be formulated in the form of Basis
Pursuit as follows:

min
s

‖s‖1
s.t. As = y

(2.51)

Rationale 1 Given Ox = y, we want to find the sparse vector that contains the DCT of the
target sequence x. Since minimizing the L1 norm promotes sparsity in the solution, we look
for the minimum ‖s‖1 that satisfies Ox = y. Replacing x by DT s, we get the problem in the
following form:

min
s

‖s‖1
s.t. ODT s = y

(2.52)

Note that (2.52) is similar to (2.51) with A = ODT .

We solve the above problem using the ADMM algorithm with the iterative updates presented
in Section 2.4.2. After we get the solution to s, the approximate solution of the target sequence
is obtained as xHOMERUN-0 = DT s.

Conflicting reports: if there is a conflict between the reports (as explained in Fig. 2.25:
where we have two reports that cover the same time period, from 1st week to 4th week, but have
different sums, 300 and 400.), then the linear system Ox = y is inconsistent. As a result, the
constraints in (2.52) can not be satisfied. We resolve this issue by the following preprocessing
step: if O ∈ RM×N is full row rank (i.e., rank(O) = M ), then there is no conflict and we
proceed with the algorithm to solve (2.52). If the rows of O have some linear dependency (i.e.,
rank(O) < M ), then we have one of two cases: a) if y ∈ span(O) (column space of O), then the
system is consistent (there is no conflict) and we proceed with the algorithm; b) if y 6∈ span(O),
then we have an inconsistent linear system. In this case, we replace y with its projection onto the
span(O), y as follows

y = projO(y) = O(OTO)−1OTy (2.53)

This orthogonal projection results in the nearest vector (set of reports) to y that is free of conflict.
Previous methods for this problem (H-FUSE and LS) provide solutions that minimize the squared
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error in case of conflicts. Assuming that flawed reports are rare (correct reports are the norm), we
would normally want to satisfy as many equations as possible, instead of using an inconsistent
solution that minimizes the squared norm of the violations but could violate all equations. This
turns out to be NP-hard however [4]. The advantage of our projection approach is that the
solution satisfies all the equations in the linear system with y, which is the closest vector to
y that belongs to the column space of O. Note that this applies to the coming optimization
formulations (HOMERUN-N, and HOMERUN).

HOMERUN-N: The Non-Negative Version

In the applications of our interest, the target sequence x is always non-negative. Therefore, we
exploit this domain knowledge by adding the constraint x ≥ 0 ⇔ DT s ≥ 0 to (2.52). The
resulting formulation becomes:

min
s
‖s‖1

s.t. ODT s = y, DT s ≥ 0
(2.54)

Statement 1 The ADMM algorithm can be adapted to solve the optimization formulation of
HOMERUN-N in Equation (2.54).
Proof Problem (2.54) is convex and we reformulate it by introducing the auxiliary variables
r, z ∈ RN as follows

min
r,s,z

I{r≥0} + ‖s‖1
s.t. ODTz = y, DTz = r, z = s

(2.55)

where, again, I is an indicator function of {r ∈ RN : r ≥ 0} defined as:

I{r≥0} =

{
0 if r ≥ 0

∞ otherwise.
To facilitate concise notation and precisely present the algorithm using only matrix algebra, we
define the following (components of u are defined and used later):

B :=




ODT

DT

I


 ; b :=




y

r

s


 ; u :=




u1

u2

u3


 , (2.56)

where I ∈ RN×N is the identity matrix. By concatenating the constraints as Bz − b = 0, it is
straightforward to see that problem (2.55) above is in the form of the ADMM form defined in
Equation (2.47) with g(z) = 0, and f(r, s) = I{r≥0} + ‖s‖1. Thus, we can derive the ADMM
iterative updates, starting by forming the augmented Lagrangian of (2.55):

Lρ(r, s, z,u) = ‖s‖1 + I{r≥0} +
ρ

2

(
‖ODTz− y + u1‖22

+ ‖DTz− r + u2‖22 + ‖z− s + u3‖22
) (2.57)

where u1 ∈ RM , u2,u3 ∈ RN are scaled versions of the dual variables, and ρ is the augmented
Lagrangian parameter. We solve for z, s, r, and u by minimizing Lρ in terms of one variable
while fixing the rest in an alternating optimization fashion. We let z be the first block update,
(s, r) is the second block update, and u is the third block update. Note that s and r can be updated
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independently since they do not appear together in one term in Lρ (hence the parenthesis below).
The solution to each block update is provided by solving the following optimization subproblems

z← argmin
z
Lρ(r, s, z,u), (2.58a)





s← arg min
s
Lρ(r, s, z,u),

r← arg min
r
Lρ(r, s, z,u),

(2.58b)

u← u + (Bz− c) (2.58c)
where the solution to z is the closed form solution of least squares via Moore-Penrose pseudo-
inverse. The solutions to s, and r are cases of the so-called proximity operator (see [56] for
details), where s is solved using the soft-thresholding and the solution to r boils down to non-
negative projection (.)+ by zeroing out the negative values. Algorithm 3 states all these updates
using linear algebraic notations. �

Algorithm 3: : HOMERUN-N (2.54)
Initialization: set k = 1 and zk, sk, rk, and uk to all zero vectors; bk as defined in (2.56);
compute the pseudo-inverse of B and save it (i.e., R = B†)
Repeat
• zk+1 = R(bk − uk)

• sk+1 = (zk+1 + uk3 − 1/ρ)+ − (−zk+1 − uk3 − 1/ρ)+
• rk+1 = (DTzk+1 + uk2)+
• update bk+1 as defined in (2.56) using sk+1 and rk+1

• uk+1 = uk + (Bzk+1 − bk+1)

• Set k := k + 1.
Until maximum number of iterations K is reached (K = 3000)

Since the same pseudo-inverse (B†) is used throughout the iterations in Algorithm 3, we
compute it once in the initialization step and cache it in a variable we call R to save computation.
After s is obtained, the approximate solution of the target sequence is xHOMERUN-N = DT s.

HOMERUN: The Final version

The main idea here is to exploit the domain knowledge of smoothness as for most cases the so-
lution sequence x = DT s should be smooth. Thus, we penalize the large differences between
adjacent timeticks by adding the smoothness penalty to HOMERUN-N, resulting in the formula-
tion of HOMERUN as follows:

min
s
‖s‖1 + 1/2‖HDT s‖22

s.t. ODT s = y, DT s ≥ 0
(2.59)

where H ∈ R(N−1)×N is a smoothness matrix with the nth row has −1 and 1 in the nth and
(n + 1)th columns, respectively. One could add a regularization (weighting) parameter λ with
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the smoothness penalty above, however, we observe that λ = 1 gives optimal or near-optimal
performance.

Although both HOMERUN and H-FUSE in [77] have the same regularizer (smoothness con-
straint), their approach to the problem is very different (i.e., same domain knowledge constraint is
added to different optimization cost functions). Again, the approach in [77] penalizes the under-
determined LS system and solve for the sequence using the closed form solution. HOMERUN

solves for s, the sparse DCT representation of the sequence using the L1 norm.
We propose to solve Equation (2.59) in a similar manner as HOMERUN-N model in the

previous section. Thus, we reformulate (2.59) as follows:
min
r,s,z

I{r≥0} + ‖s‖1 + 1/2‖HDTz‖22
s.t. ODTz = y, DTz = r, z = s

(2.60)

where r, z ∈ RN are auxiliary variables. The augmented Lagrangian of (2.60) is:
Lρ(r, s, z,u) = ‖s‖1 + I{r≥0} + 1/2‖HDTz‖22

+
ρ

2

(
‖ODTz− y + u1‖22

+ ‖DTz− r + u2‖22 + ‖z− s + u3‖22
)

(2.61)

For the same reason as λ, we set the augmented Lagrangian parameter to ρ = 1 as it gives optimal
or near-optimal performance, resulting in a parameter-free model. Recall the variables defined
in (2.56), and similarly we define:

Q :=




ODT

DT

I

HDT


 ; q :=




y

r

s

0


 ; v :=

[
u

0

]
, (2.62)

where 0 ∈ RN−1 is a vector of all zeros. Similarly, we solve for z, s, r, and u by minimizing
Lρ in (2.61) in terms of one variable while fixing the rest. We describe the implementation of
HOMERUN in what follows.

Direct Implementation of HOMERUN In Algorithm 4, we present the iterative updates that
solve the optimization problem of HOMERUN with direct implementation. These steps provide a
convenient way to understand HOMERUN using simple vector and matrix operations. Similarly,
after we obtain s, the approximate solution of the target sequence is xHOMERUN = DT s.

Accelerated Implementation of HOMERUN In this section, we analyze the complexity of
Algorithm 4, and derive a fast and memory efficient implementation of HOMERUN.

The steps in Algorithm 4 provide a convenient way to implement HOMERUN using simple
vector and matrix operations. These steps involve a one time Moore-Penrose pseudo-inverse
in the initialization step which have a complexity of O(N3), and the iterative updates consist of
matrix-vector multiplications, vector additions, and element-wise vector updates with complexity
dominated byO(nnz(O)N), where nnz(O) is the number of non-zero in the observation matrix
O. Implementing these steps directly may be acceptable with small to moderate-size data since
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Algorithm 4: : HOMERUN (2.59) (direct implementation)
Initialization: set k = 1 and zk, sk, rk, and uk to all zero vectors; bk as defined in (2.56);
qk, vk as defined in (2.62); compute the pseudo-inverse of Q and save it (i.e., W = Q†)
Repeat
• zk+1 = W(qk − vk)

• sk+1 = (zk+1 + uk3 − 1)+ − (−zk+1 − uk3 − 1)+
• rk+1 = (DTzk+1 + uk2)+
• update bk+1 as defined in (2.56) using sk+1 and rk+1

• update qk+1 as defined in (2.62) using sk+1 and rk+1

• uk+1 = uk + (Bzk+1 − bk+1) (B as defined in (2.56))
• update vk+1 as defined in (2.62) using uk+1

• Set k := k + 1.
Until maximum number of iterations K is reached (K=3000)

the matrix inversion need to be done only once. However, the direct implementation is not
recommended for large data sets. Thus, we propose accelerated steps of HOMERUN explained
in what follows.

Computing the pseudo-inverse of Q is the most time consuming step, which is used in the
update of z. We can state the update of z as

z = Q†(q− v)

= (QTQ)−1QT (q− v)

= (QTQ)−1D
(
OT (y − u1) + (r− u2) +

g∈RN︷ ︸︸ ︷
DT (s− u3)

)
︸ ︷︷ ︸

p∈RN

= (QTQ)−1Dp

=
(
DOTODT + DDT + I + DHTHDT

)−1
Dp

=
(
D(OTO + 2I + HTH)DT

)−1
Dp

= D(OTO + 2I + HTH︸ ︷︷ ︸
Z∈RN×N

)−1 DTD︸ ︷︷ ︸
I

p

= DZ−1p

(2.63)

multiplying both side by DT , we get:
DTz︸︷︷︸
t∈RN

= Z−1p (2.64)

where the second equality in (2.63) is by the pseudo-inverse equation for Q (since it is tall with
linearly independent columns due to I; Eq. (2.62)); the third and fifth equalities follow from the
definition of Q, q, and v; the sixth equality is because D is orthogonal, i.e., DDT = DTD = I;
and the seventh equality is because (ABC)−1 = C−1B−1A−1 and D−1 = DT .
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The goal of the above derivation is to reduce the computational cost of updating z. Note that
the left side of (2.64) (called t) is the inverse DCT of z – denoted as iDCT (z). Fortunately, Z has
a nice structure, it is a banded symmetric positive-definite matrix with bandwidth = 2RDmax−1,
where RDmax is the duration of the report with the maximum length. Thus, we exploit its
structure to efficiently compute the matrix inversion needed to get t as follows. We use Cholesky
decomposition, i.e., Z = LLT , where L is a lower triangular matrix with the same bandwidth
as Z. Then, at every iteration, we perform forward substitution and back substitution steps to
get t, i.e., t = (LT )−1L−1p. Moreover, we reduce the complexity by computing the required
DCT and iDCT transforms more efficiently using Fast Fourier Transform (FFT) instead of using
the matrix D (Matlab fft(.) function is more efficient than multiplying by D). The steps of the
accelerated implementation of HOMERUN are presented in Algorithm 5.

Lemma 9 For any report setting in the historical disaggregation problem, if M ≤ N , then the
total computational complexity of HOMERUN (Algorithm 5) is

O(b2N +NlogN) (2.65)
where b is the bandwidth of OTO and equal to 2RDmax − 1, and RDmax is the duration of the
longest report.

Proof 9 The cost of computing Cholesky decomposition of a banded matrix in the initializa-
tion step is O(b2N); performing the iDCT in step 1 in Algorithm 5 and DCT in step 4 cost
O(NlogN) using FFT; the matrix-vector multiplications in steps 2 and 7 have complexity of
O(nnz(O)), where nnz(O) ≤ (RDmax ×M); the rest are vector additions and element-wise
updates in (.)+ which are done with cost O(N).
Thus, the final complexity is:

O(b2N +NlogN)

The dominant term in the above final cost depends on whatever is larger, logN or b2, which
depends on the maximum report duration RDmax. �

In addition to reducing the running time, the resulting algorithmic steps above are very effi-
cient in terms of memory consumption and can handle very large amounts of data as we demon-
strate in Section 2.4.5.

2.4.4 Experiments
In this section, we explain the set up of the experiments performed to evaluate the proposed
method: datasets, baselines and metrics, and description of the input settings and configuration.

Data Sets

In order to study the performance of HOMERUN, we apply it to the data from project Tycho
[100], which includes real epidemiological time sequences spanning over more than 100 years.
We select the data about measles in NYC to be our main data set for analyzing and evaluating the
performance of the three proposed methods. Furthermore, since the effectiveness of the proposed
method hinges upon the degree of energy compaction of the DCT of the data (refer to Section
2.4.2), we explore the performance using six more data sets with different behavior. We pick the
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Algorithm 5: : HOMERUN (2.59) (accelerated implementation)
Initialization: set k = 1 and gk, pk, tk, zk, sk, rk, uk1, uk2 and uk3 to all zero vectors;
compute L from the Cholesky decomposition of Z
Repeat

1. gk+1 = iDCT (sk − uk3) %using fft in Matlab%
2. pk+1 = OT (y − uk1) + (rk − uk2) + gk+1

3. tk+1 = (LT )−1L−1pk+1 %Matlab: t = L′\(L\p)%
4. zk+1 = DCT (tk+1) % using fft Matlab%
5. sk+1 = (zk+1 + uk3 − 1)+ − (−zk+1 − uk3 − 1)+

6. rk+1 = (tk+1 + uk2)+

7. uk+1
1 = uk1 + Otk+1 − y

8. uk+1
2 = uk2 + tk+1 − rk+1

9. uk+1
3 = uk3 + zk+1 − sk+1

10. Set k := k + 1.
Until maximum number of iterations K is reached (K=3000)

intervals with the least missing values – the particular weeks used for testing for each data set
are NYC measles (from Week 51 to Week 450), CA polio from (1659 – 2058), CA rubella (2805
– 3204), CA smallpox(501 – 900), CA mumps (2756 – 3155), CA hepatitis (2653 – 3051), CA
pertussis (1649 – 2048). The behavior of the counts of each disease across these weeks is shown
in Figure 2.30 (NYC measles and CA hepatitis are shown earlier in Figures 2.26 and 2.27). We
can see here that each disease has notably different dynamic, and, as we observed, they have
different DCT with different degree of sparsity and energy compaction, which provide us with a
rich test to evaluate the performance of our method.

Baselines and Evaluation Metrics

We compare the performance of our method against two baselines, LS in (2.50) and H-FUSE

[77], focusing on H-FUSE since it is a state-of-the-art for this problem and has better perfor-
mance than LS. H-FUSE infuses domain knowledge to improve the reconstruction accuracy by
penalizing large differences between adjacent timeticks to promote smoothness. Using our nota-
tion, H-FUSE can be written as follows:

min
x

‖y −Ox‖22 + ‖Hx‖22 (2.66)

where H is the smoothness matrix defined in Section 2.4.3.
We use the Relative Error Difference (RED) defined below to compare the performance be-

tween the proposed and baseline methods.

RED =
RMSE(baseline)− RMSE(proposed)

max(RMSE(baseline),RMSE(proposed))
(2.67)

We use RED with the result figures in Section 2.4.5, ranging between −1 and 1. Clearly,
positive RED means that the proposed method improves the baseline and vice versa.
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Figure 2.30: Disease Time Sequences

Input Setting

The task is to reconstruct the weekly reports of each disease sequence. We generate different
aggregated reports from the weekly counts. Each report covers multiple successive timeticks. As
described earlier in Section 2.4.2, the number of weeks included in each observation is called
Report Duration (RD). The difference between the starting week of two successive reports is
the shift.

For most experiments, we generate reports with the same RD and shift values and show
the results on a wide range (RD spans from 2 to 52 weeks (1 year) with increment of 10 and
the shift span from 1 to 25 with increment of 2). Specifically, the first report (y1) includes the
weeks from 1 to RD; y2 includes weeks from (shift + 1) to (shift + 1 + RD) and so on –
refer to the example in Section 2.4.2. This methodology allows us to study the results for all ,
e.g., easy cases where RD and shift are both small, more challenging cases where RD or/and
shift are large, overlapping reports, and reports with gaps (RD < shift). We also show results
on experiments where each report covers different number of weeks (different RD) with random
starting points, thus they could be overlapped or having gaps.

2.4.5 Results

In this section, we present and analyze the experimental results in the following order: 1) effec-
tiveness of HOMERUN and its early versions (HOMERUN-0 and HOMERUN-N), 2) discussion
of the observations and findings about the performance of the proposed methods, and 3) scala-
bility to demonstrate how HOMERUN scales in terms of running time with data size.

Effectiveness

In this section, we show the performance of all three versions of the proposed method in the
same order as we explained them in Section 2.4.3. Presenting results of the earlier versions of
HOMERUN demonstrates the benefit of the added constraints (non-negativity and smoothness).
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(a) HOMERUN-0 (b) HOMERUN-N

Figure 2.31: Comparing HOMERUN-0 and HOMERUN-N versions against the baseline H-FUSE

with NYC measles data.

Performance of HOMERUN-0 We compare the reconstruction accuracy of HOMERUN-0 with
the baseline H-FUSE using NYC measles data in Figure 2.31 (a). We can see that HOMERUN-0
improves the baseline significantly for most RD values, but only with shift smaller than 3. For
small RD, H-FUSE works better than HOMERUN-0 with a large difference. This is intuitively
understandable as if each report covers only few timeticks (i.e, each report is highly localized),
then penalizing the large jumps between two adjacent timeticks is good enough to recover the
solution sequence. However, we note that HOMERUN-0 loses to H-FUSE with smaller difference
with larger RD values (e.g., RD = 52). Larger RD means less available reports, hence the
problem is more difficult. The performance of this basic version needs to be improved, which
led to deriving the more advanced versions.

Performance of HOMERUN-N In this approach, we leverage the knowledge that the patient
counts in the target sequence is always non-negative. A comparison between HOMERUN-N
and the baseline H-FUSE usin g NYC measles data is shown in Figure 2.31 (b). Adding non-
negativity constraint to HOMERUN-0 improves the accuracy significantly as it is clear from com-
paring Fig. 2.31 (a) and (b). HOMERUN-N makes a significant improvement over the baseline
for the majority of cases with the following remarks. For RD = 22, 32, 42, 52, HOMERUN-N
outperforms the baseline except for few outliers. It is therefore clear that more improvement
occurs with larger RD values. HOMERUN-N has similar behavior to HOMERUN-0 in the sense
that very large improvement happens with small shift for all durations. When RD = 2 or 12
and the shift is larger than RD, HOMERUN-N does not improve the baseline, this is consistent
with results of HOMERUN-0. Although HOMERUN-N gives encouraging results, we develop
the final version of HOMERUN seeking a consistent improvement.

Performance of HOMERUN In this section, we show the performance of the final version of
the proposed method (HOMERUN) using NYC measles and the other six data sets described in
Section 2.4.4. This model reaps the benefits of both the proposed method and the smooth recon-
struction, thus it improves the estimation error of its earlier versions and considerably outper-
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(a) Against H-FUSE (b) Against LS

Figure 2.32: HOMERUN wins. Performance of HOMERUN versus the baselines H-FUSE and
LS using NYC measles data.

forms the competing baseline methods. Figure 2.32 (a) shows comparison between HOMERUN

and the baseline H-FUSE with NYC measles data, HOMERUN is always superior with significant
improvement. Note here that generally speaking, greater improvement happens with larger RD,
which makes the problem more difficult as we have fewer observations (reports). Figure 2.32 (b)
compares HOMERUN with the baseline LS, HOMERUN vastly outperforms LS at all the input
settings (RD and shift) except for one. The reason of LS working better in this scenario is
because each report covers only two weeks (RD = 2) and each variable (week), xn, is involved
in two reports since shift = 1 (except for the first and last weeks), resulting in an easy problem
for LS solution since O is “almost" square and full rank. To give the reader an idea about the
RED versus the actual RMSE of H-FUSE and the baselines (H-FUSE and LS), we present Table
2.10, showing the RMSE at various RD and shift values (a subset of the input settings in Fig.
2.32 (a) and (b), but similar pattern with other RD values) – again, note that the improvement is
higher as RD increases.
Table 2.10: RMSE of HOMERUN and the baselines (H-FUSE and LS) using NYC measles data.

RD = 2 RD = 22 RD = 42

shift 1 7 13 19 25 1 7 13 19 25 1 7 13 19 25

HOMERUN 20.30 205.96 415.79 609.03 644.38 42.49 191.10 227.03 400.07 894.11 57.28 186.79 305.27 565.85 514.48
H-FUSE 104.23 215.38 425.56 617.27 653.45 128.38 200.22 303.56 429.02 891.49 251.27 231.20 359.86 582.33 595.05

LS 10.60 1242.5 1358.4 1402.7 1391.5 75.45 346.49 559.55 654.32 976.30 230.32 371.29 617.42 768.31 762.65

We compare HOMERUN with H-FUSE (since it is the best baseline) using the other six data
sets in Figure 2.33. Polio data set has similar results to NYC measles because their time series
have similar shapes, thus are similar in the DCT domain. HOMERUN significantly improves the
baseline whenRD is large with rubella and smallpox data sets. It also shows a large improvement
with small shift for all durations with rubella and smallpox. For data sets that do not have
very smooth time sequence (mumps, hepatitis, and pertussis), HOMERUN improves the baseline
significantly with shift smaller than 3 and performs similar to it when the shift is larger. Table
2.11 highlights the results comparing HOMERUN with the baseline H-FUSE in Fig. 2.32 (a) and
Fig. 2.33. It shows the maximum and average improvement across the different input settings
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(RD and shift values) with all the different data sets using RED percentage (RED(%)). As
we observe, the improvement is considerable and may be up to 94%.

(a) CA Polio (b) CA Rubella (c) CA Smallpox

(d) CA Mumps (e) CA Hepatitis (f) CA Pertussis

Figure 2.33: HOMERUN consistently wins. Performance of HOMERUN vs. the baseline H-
FUSE with different data sets (positive=win and negative=lose).
Table 2.11: HOMERUN wins consistently. Comparing Performance of HOMERUN and H-FUSE

using RED(%).

RED (%)
Data Name Maximum Average

NYC Measle 80.52 13.14
CA Polio 80.77 12.56

CA Rubella 87.20 8.19
CA Smallpox 93.04 9.90
CA Mumps 94.14 5.45

CA Hepatitis 91.25 4.73
CA Pertussis 88.24 4.43

So far, each single point in the result plots (or Table 2.10) corresponds to solving the problem
given aggregated reports that have the same duration/resolution (i.e., same RD). In Figure 2.34,
we compare the RMSE of HOMERUN and baselines in recovering the weekly counts of NYC
measles data, given M reports with RD values randomly drawn from the range (2 − 26) and
the starting week of each report is also random. We test the performance across different M
values ranging from 20 to 380 with increment of 10. Since the reports are drawn at random, we
repeat each experiment 20 times and take the average RMSE with each data set at a given M .
HOMERUN is always better than the baselines with 13%− 23% improvement depending on the
data.
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Figure 2.34: HOMERUN wins. RMSE of HOMERUN compared to H-FUSE and LS with reports
having different RD.

Discussion and Observations

In this section, we provide a higher level discussion about the results, and a detailed analysis of
the performance with various input settings (RD and shift). We also provide observations about
the scope of applicability that can give practitioners insights on when to expect good reconstruc-
tion using the proposed method.

Quality of the disaggregation methods in general is affected by the report configurations.
Note that as the RD and shift increase, the number of available reports (or equations in the
linear system Ox = y) decreases, resulting in a harder problem. In general, HOMERUN has
greater improvement over the baseline H-FUSE as the RD increases as can be observed in Fig.
2.32 (a), Table 2.10, and top three data in Fig. 2.33. Nevertheless, more reports/equations in the
system will constraint the solution of s, bringing it closer to the actual DCT coefficients of the
target sequence in the proposed method since the optimization problem is constrained by the lin-
ear system (Eq. (2.59)). This is also the case for the baselines (H-FUSE and LS), as the number
of equations increases, the LS solution becomes closer to the true sequence. We also have the
smoothness penalty in HOMERUN and H-FUSE to help bringing the solution closer to the true
sequence if the sequence is in fact smooth. In both models, as the number of equations decreases
(i.e., large shift and/or RD), the degree of freedom of ‖s‖1 in HOMERUN and ‖y − Ox‖22 in
H-FUSE increases, and thus the quality of the solution relies more on the smoothness penalty.
This is especially notable when shift is larger than RD, resulting in gaps between reports which
leaves some variables xn out of the constraints. In that case, the solutions produced by HOME-
RUN and H-FUSE converge, justifying the similar performance with large shift especially in
the bottom three data in Fig. 2.33.

For more analysis, we show the performance of HOMERUN using NYC measles data set with
RD spanning from 2 to 52 with increments of 2, and shift ranging from 1 to 25 with increments
of 2. In order to explain the comparison more clearly, we map the RED value (Eq. (2.67)) to the
logical value REDlogical as follows:

REDlogical =





1 RED > threshold

−1 RED < −threshold
0 else

(2.68)

where we empirically set the threshold to 0.015. In Figure 2.35, we show the REDlogical across
the different input settings. The yellow line shows when x = y, which separates reports with
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overlaps (above the line), i.e., shift < RD, from reports with gaps (below the line), i.e., shift
> RD. Blue color means HOMERUN improves the baseline H-FUSE, light gray means they
perform similarly, and red means the baseline works better. Figure 2.35 shows that HOMERUN

never loses to the baseline and the improvement happens in almost all the cells in the upper
area (overlapped reports), while it is not guaranteed in the lower part. This is because when we
have large gaps between the available reports, reconstructing a higher resolution sequence using
smoothness constraint may give the smallest error. One of the advantages of HOMERUN is that
it reaps the benefits of its own and the baseline H-FUSE.

Figure 2.35: HOMERUN almost always wins and sometimes ties. HOMERUN performance
against the baseline H-FUSE using NYC measles data.

Applicability of HOMERUN Quasi-periodicity: if the target sequence is known to have few
dominant periodicities, i.e., quasi-periodic (e.g., measles, and polio), then very few cosine func-
tions are needed to approximate it. In other words, this sequence can be accurately represented
by few DCT coefficients, i.e., its DCT is very compact and the sequence is very sparse in the
DCT domain, thus HOMERUN achieves especially good reconstruction.

The sparser the spectrum of the data, the better the performance of HOMERUN. This is be-
cause we optimize for the sparsest spectrum representation of the sequence using L1 norm. Em-
pirically, this can be observed by comparing the performance of HOMERUN when applied on data
sets with different periodicity behavior in the time domain. When the data set is quasi-periodic,
then HOMERUN improves the baseline H-FUSE significantly (e.g., measles in Fig. 2.32 (a) and
polio in Fig. 2.33 (a)). With the less periodic sequences (e.g., hepatitis in Fig. 2.33 (e)), the
accuracy of HOMERUN drops in comparison to its performance with quasi-periodic sequences,
however, it still has a better performance than the baseline H-FUSE (significant improvement
with small shift).

Smoothness: smoothness penalty has been shown to be effective for time sequences in many
applications (e.g., epidemiological data from the Tycho project). Since HOMERUN includes
smoothness term, its accuracy increases with data that exhibits higher degree of smoothness.
Similarly, this can be seen by comparing the smoothness of measles data (Fig. 2.26) and hepatitis
(Fig. 2.27) in their time domain, and their performance (Fig. 2.32 (a) and 2.33 (e)), respectively.

Non-negativity: moreover, if the data is non-negative in its nature (e.g., Tycho data set used
in this work), then adding the non-negativity constraint improves the solution and reduces the
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error, as is clear from comparing the performance of HOMERUN-0 and HOMERUN-N (Fig. 2.31
(a) and (b), respectively).

It is important to point out that the smoothness and non-negativity assumptions are flexible
in the proposed framework. For instant, if the target sequence in another application is quasi-
periodic but not smooth (e.g., climate data), then HOMERUN-0 (or HOMERUN-N if the sequence
is non-negative) can be applied and is expected to perform well.

Scalability

Experiments were performed using Matlab on a Linux server with an Intel Core i7− 4790 CPU
3.60 GHz processor and 32 GB memory. The accelerated implementation of HOMERUN follow-
ing Algorithm 5 scales linearly with the length of the time sequence (see Figure 2.24 (c)). As
clear from the comparison in Figure 2.24 (c), HOMERUN is always faster than H-FUSE. The
simple LS method also gets slower than HOMERUN as the sequence size increases, this is due to
the pseudo-inverse step in both LS and H-FUSE. We should point out here that the accelerated
implementation of HOMERUN dramatically reduces the running time of the direct implementa-
tion, while keeping the same accuracy (Algorithm 4 versus Algorithm 5). Moreover, HOMERUN

is very efficient in terms of memory and can handle very large sequences.

2.4.6 Conclusion
In this section, we proposed HOMERUN, a novel algorithm for solving historical data disaggre-
gation problem via DCT-based sparse reconstruction with non-negativity and smoothness con-
straints. We leverage the ADMM algorithm to solve the resulting optimization problem. We
demonstrated that HOMERUN outperforms the baseline methods with real data from the Tycho
project. The contributions of our work are summarized as follows:

1. Formulation: we formulate the data disaggregation problem in the form of Basis Pursuit,
add domain knowledge constraints (non-negative and smoothness), and derive the steps of
the ADMM algorithm that solve HOMERUN optimization problem.

2. Effectiveness: HOMERUN improves the competing baselines and recovers the time se-
quences with up to 94% improvement in the accuracy of the baseline methods.

3. Scalability: We derive accelerated steps of HOMERUN, which scale well and have a com-
plexity of O((2RDmax − 1)2N +NlogN).

4. Generality: HOMERUN is parameter-free, and it adapts to the input signal, i.e., it auto-
matically detects the prominent periodicities in the data without the need of assuming any
known periodicity.
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2.5 Discussions

In this section, we discuss how our methods can be extended in the future works and provide a
comparison of the methods to help users understand and use our methods appropriately.

2.5.1 How would this work for Poisson distributed data?

The Poisson distribution is a discrete probability distribution that is commonly used to model
counts of occurrences such as number of patients arriving at emergency rooms, etc. Thus it
makes more sense for modeling number of patients than continuous models such as normal
distribution.

The probability mass function of a discrete random variable X having a Poisson distribution
is given as follows:

Pr(X = k) =
λke−λ

k!
(2.69)

for Poisson parameter λ > 0, and k = 0, 1, 2, · · · , where e is Euler’s number and k! is the factorial
of k. The mean and variance of a Poisson distribution is given as E(X) = V ar(X) = λ.

Lemma 10 We can assume the number of patients Y to have a Poisson distribution. Then the
objective function becomes:

n∑

i=1

yi

(
T∑

t=1

xtAit

)
− e(

∑T
t=1 xtAit) (2.70)

where yi is the ith report, xt is the true data or the number of patients in finer granularity that
we are interested in reconstructing, A is the mixing matrix.

Proof 10 In our problem setting, we would like to model the number of patients Y to have a
Poisson distribution:

Y ∼ Poisson(λ).

Note that our information fusion problem can be formulated as a system of linear equations (Fig-
ure 2.3, equation 2.2). This makes it possible for us to utilize the Poisson regression formulation
or the Generalized Liner Models (GLM) for Poisson distribution. (This is a well-known problem
and we repeat the derivation below for the completeness [69].) Assuming that the logarithmic of
the expected value of Y is represented as a linear combination of predictor variables: A and x
or the mixing matrix and the target patient count in finer granularity in our problem setting:

log(E(yi)) = λ = x1Ai1 + x2Ai2 + · · ·+ xTAiT . (2.71)
Maximizing the likelihood of the data, we get:

max
x
L(x|y) =

n∏

i=1

λyie−λ

yi!
.
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Maximizing the log likelihood:

max
x

logL(x|y) =
n∑

i=1

yi log(λ)− λ− log(yi!)

=
n∑

i=1

yi log(λ)− λ

=
n∑

i=1

yi(x1Ai1 + · · ·+ xTAiT )− e(x1Ai1 + · · ·+ xTAiT )

=
n∑

i=1

yi

(
T∑

t=1

xtAit

)
− e(

∑T
t=1 xtAit) (2.72)

We have our objective function in equation 2.70. There is no closed form solution, but we can
use gradient descent to find x that maximizes this objective function. Note that this part is for
solving reconstruction problem only from the reports, and if we want to add regularizers, we can
repeat the steps in our previous works.

2.5.2 Possible extension of the work
We have introduced various methods that we proposed in solving the historical reconstruction
problem. There are several possible interesting extensions to this line of work:

Extend to spatial domain: The time sequences we have worked on are 1-dimensional, the
number of patient counts at a certain location. But since we do have data available for multiple
different locations, it would be interesting to extend our method to consider space or the location
as well. We would need to consider the spatial distances between the location points, and also
determine the spread rate over the distance. In addition, we would have to apply suitable regu-
larizers such as smoothness across the spatial domain. This extension would be interesting to see
how the breakout at a location may dynamically affect the other locations.

Other applications - power grid systems: One possible application for our methods intro-
duced in this section is power grid systems. On power grids, there are several different power
meters that measure the time sequences of voltages, and currents over time. Often times, these
meters do not have the same sampling rate - one may have coarser granularity than the other. It
would be interesting to see how our method can be used to solve for the reconstruction of the
power measurements from different meters with different resolutions. One thing to note would
be that we would need a different set of regularizers suitable for this domain. We could start
with the most naive ones like smoothness and periodicity as we did in H-FUSE, and develop the
method further more with domain knowledge from the power domain.

2.5.3 Comparison of the methods
In this section, we compare the methods and suggest when to use which method.
• H-FUSE: This is the simplest signal reconstruction method. If the time sequences of your

interest evolve smoothly over time, with a known period, then the most naive method you
can try is H-FUSE.
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• GB-R: If the target sequences follow the epidemics model (SIS), then GB-R, which in-
corporates nonlinear domain knowledge from epidemiology is the better choice.

• ARES: If the target sequences are not necessarily epidemiological data, and you would like
to discover notable linear patterns in your target sequences, we suggest using ARES.

• HOMERUN: If you know that the target sequences should be non-negative and are sure
that the sequences consist of multiple periods (or wish to represent your target sequences
using sparse dictionaries), then HOMERUN is the right choice.

In Table below (repeated from Table 2.1), we summarize a few main properties of the meth-
ods.
Comparison of H-FUSE, GB-R, ARES, HOMERUN (this Table is repeated from Table 2.1 in
section 2 for convenience.)

Distinctions LSQ
H-F

USE
(2.

1)

GB-R
(2.

2)

ARES
(2.

3)

HOM
ERUN

(2.
4)

Smoothness reconstruction ! ! ! !

Periodicity reconstruction ! ! ! !

Epidemics model (SIS) !

Auto-detect linear patterns !

Auto-detect multiple periods
(quasi-periodic)

!
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Chapter 3

Brain data

3.1 BRAINZOOM: leveraging different brain scan modalities
[42]

In this section, we introduce BRAINZOOM, a signal reconstruction method that cross-leverages
multi-modal brain signals. Our experiments using a popular realistic brain signal simulator to
generate fMRI and MEG demonstrate that high spatio-temporal resolution brain imaging is pos-
sible from these two modalities. The experiments also suggest that smoothness seems to be the
best prior, among several we tried.

3.1.1 Introduction
Research in neuroimaging have resulted in the development of several techniques, viz., Elec-
troencephalograms (EEG), functional Magnetic Imaging (fMRI) [89], Magnetoencephalograms
(MEG) [30], etc. These uni-modal techniques use different mechanisms to measure human brain
activity. While EEG measures electrical activity of the brain, MEG measures magnetic fields
generated by electric currents in the brain, and fMRI measures metabolic response due to neural
activation through a blood oxygen-level dependent (BOLD) signal. Due to the diversity in the
sources of these measurements, different neuroimaging techniques often have complementary
strengths. For instance, while EEG and MEG have low spatial but high temporal resolution,
fMRI posses just the opposite – high spatial but low temporal resolution.

Combining two or more of such complementary signals to overcome limitations posed by
individual modalities has resulted in the development of several multimodal neuroimaging tech-
niques — see [13] for a recent review. They have been used for source localization and for
learning commonalities across multiple modalities, with many of these methods targeted at re-
ducing the dimension of the brain image data, or studying specific hypotheses about relationships
between imaging modalities.

However, our interest in this work lies in reconstructing super-resolution images of activity
across the brain – that is capturing the union of the information derived from each modality, not
their intersection. While super-resolution algorithms have been applied in uni-modal settings
[127], they have not been widely explored for multi-modal neuroimaging. We fill this gap by
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fMRI: High Spatial, Low Temporal Res.

MEG : Low Spatial, High Temporal Res.

BrainZoom Super-resolution Image: 
High Spatial, High Temporal Res.

Ground Truth

As for the update of W , to avoid heavy computa-
tions, we propose to perform just one simple gradient step,
where the gradient with respect to W can be calculated as

rW f = Z⇤
h
(Z⇤W )T sT

T
s

i
�Z⇤(XsT

T
s )(3.9)

+ µ(W �Z).

To ensure decrease of the cost function value, we need
to make sure that the step-size is less than one over the
Lipschitz constant of W conditioned on Z. Our selection
is

(3.10) w = 1

�⇣
�max(T sT

T
s ) max(|Z|2) + µ

⌘
,

where �max(·) computes the largest eigenvalue of the
argument matrix, and in Appendix A we prove that it
ensures decrease. Notice that �max(T sT

T
s ) only needs

to be computed once, can then saved for subsequent
iterations.

Now we turn to the update of Z, and we again pro-
pose to go just a similar gradient step to avoid heavy com-
putations. However, the regularization terms kHsZkpp,✏+
kZHtkpp,✏ are non-differentiable. To compensate this, we
first invoke the following property for the `p quasi-norm:

kAkpp,✏ 
X

i,j

p

2

�
|ãij |2 + ✏

�(p�2)/2 |aij |2 + constant,

for all Ã, and the equality holds when A = Ã. Using this
property, we define f̄(Z; W , ⌧) as

f̄(Z; W , ⌧) =kXt � ⌧T tZk2F + kXs�(Z⇤W )T sk2F
+ ⇢(kDs⇤(HsZ)k2F + kDt⇤(ZHt)k2F )(3.11)

+ µkZ �W k2F ,

where

(3.12)
Ds =

⇣
|HsZ̃|2 + ✏

⌘(p�2)/4

,

Dt =
⇣
|Z̃Ht|2 + ✏

⌘(p�2)/4

,

and Z̃ is from the previous iteration. Notice that when
p = 2, i.e., in the smoothness case, the D matrices are
simply the all one matrices, which makes f̄ = f . In the to-
tal variation case when 0 < p  1, function f̄(Z; W , ⌧)
is a smooth upperbound function for f(Z, W , ⌧) with re-
spect to Z while fixing W and ⌧ . Then we can apply a
similar gradient descent step with gradient calculated as

rZ f̄ =⌧2T T
t T tZ � ⌧T T

t Xt + µ(Z �W )

+ W ⇤
h
(Z⇤W )T sT

T
s

i
�W ⇤(XsT

T
s )(3.13)

+ HT
s

⇥
D2

s⇤(HsZ)
⇤
+
⇥
D2

t ⇤(ZHt)
⇤
HT

t ,

and step size chosen as

z = 1

�⇣
⌧2�max(T

T
t T t) + �max(T sT

T
s ) max(|W |2)

+ µ + ⇢(max(D2
s)c

2
H + max(D2

t )c
2
H)
⌘
,(3.14)

where cH is a sharp upperbound on the maximum singular
value of the H matrices

(3.15) cH =

(
4, for smoothness (3.5),
2, for total variation (3.6).

Again, in Appendix A we prove that this choice of step
size guarantees decrease of the cost function.

Summarizing (3.8)-(3.14), we propose BRAINZOOM
as the following iterative update rule

(3.16)

BRAINZOOM

⌧  tr(XT
t T tZ)/kT tZk2F

W  W � wrW f

Ds  
�
|HsZ|2 + ✏

�(p�2)/4

Dt  
�
|ZHt|2 + ✏

�(p�2)/4

Z  Z � zrZ f̄

3.4 Convergence Properties Although BRAINZOOM
is a very simple algorithm that blends alternating opti-
mization with gradient descent, it has very nice conver-
gence properties, as we show here.

Theorem 1 Let {(Z(r), W (r), ⌧ (r))}r be the solution se-
quence produced by the proposed BRAINZOOM (3.16).
We have

1) Every limit point of {(Z(r), W (r), ⌧ (r))}r is a sta-
tionary point of Problem (3.7).

2) In addition, the optimality gap between
{(Z(r), W (r), ⌧ (r))}r and a stationary point is
at most O(1/r); i.e., the algorithm approaches a
stationary point at least sub-linearly.

The proof of Theorem 1 is relegated to Appendix B.

4 Experiments
In this section, we demonstrate the effectiveness of our
BRAINZOOMwith experimental results on both simulated
dataset and real-world dataset, and support our hypotheses
on our formulated optimization problem.

1. Solution: Does our proposed problem formulation
under our hypotheses provide a better solution com-
pared to others? (other regularizers, convergence
properties, etc)

5

Figure 3.1: BRAINZOOM effectively reconstructs. BRAINZOOM effectively combines differ-
ent brain measurement modalities with complementary strengths with respect to temporal and
spatial resolution into a super-resolution, whole-brain image.

introducing BRAINZOOM, a novel method for super-resolution reconstruction of brain activity
by combining different modalities of brain imaging. A snapshot of BRAINZOOM’s capabilities
is shown in Figure 3.1. Our long term goal is to complement the missing information of each
modality, to ultimately construct the richest possible spatial-temporal summary of the underlying
neural activity.

For the experiments in this work, we employ BRAINZOOM to produce super-resolution brain
images by combining MEG/EEG and fMRI. However, we note that BRAINZOOM is more widely
applicable and may be used to create super-resolution images from other modalities as well. We
make the following contributions:

• Novel Problem Formulation: In Section 3.1.3 we formulate and solve the problem of
generating a super-resolution brain image by combining different modalities (e.g., fMRI
and MEG/EEG measurements). To the best of our knowledge, this is the first work to
rigorously formulate this task as we have, as an optimization problem with this specific
optimization objective, which takes into account the non-linearity in the fMRI measure-
ments. Our formulation is also flexible in that it can easily incorporate a variety of priors
that can help enhance the quality of reconstruction – so that one can seamlessly try out
different hypotheses and pick out the one that gives the best performance.

• Efficient Algorithm: BRAINZOOM, introduced in Section 3.1.3, uses a novel modified
alternating optimization method to solve the optimization problem mentioned above with
high scalability. Through variable splitting, BRAINZOOM is able to handle nonlinear mea-
surements. We also provide rigorous convergence analysis of the proposed method.

• Evaluation: Since the ground truth, high-resolution brain activity is not known, we cannot
test the performance of our method on real brain data. Instead, in Section 3.1.4 we use
simulated brain signals in order to test the ability of our method to recover the true solution.
We generate synthetic brain activity using the Virtual Brain (TVB) [73] simulator. TVB is
an open-source platform that creates brain activity simulations using biologically realistic
assumptions, relying on well-known neuroscience models. With TVB, we can simulate
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Hi-resolution imaging % % "

Scalability " " "

Quadratic modeling % % "

Convergence proof N/A " "

Auto-scaling % " "

Generality % % "

Table 3.1: Comparison between BRAINZOOM and other related methods along various proper-
ties. We observe that BRAINZOOM overcomes limitations of competing methods.

synthetic brain signals with similar patterns as real brain data, as well as generate multi-
modality observations such as fMRI, MEG, or EEG, at different sampling rates.

3.1.2 Background and Related Work
fMRI and MEG: The exact relationship between neural activity, observed fMRI, and observed
MEG signals is not fully understood. It is known that fMRI measures the ratio of oxygenated to
deoxygenated hemoglobin in the blood, at a spatial resolution of approximately 1 mm, and it is
widely accepted that this oxygen fluctuation is related to the convolution of local neural activity
with an impulse response that lasts for 8- 10 seconds. It is also believed that fMRI corresponds
more closely to local field potentials in the brain than to actual spiking [78]. In contrast, the MEG
device measures magnetic fields emanating from the brain, at 1 msec temporal resolution. These
magnetic fields are generated from neural currents, and are especially strong when many neurons
are spatially aligned and fire synchronously. MEG signals also depend, unlike fMRI, on the
direction of the neural currents generating these magnetic fields. There have been several studies
of the exact relationship between MEG and fMRI measures of neural activity. For example,
Kujala et al. [70] provide evidence that fMRI correlates with source-localized MEG activity in
many regions of the brain, that the exact nature of this correlation varies somewhat across the
brain, and that fMRI typically correlates best with the high frequency components of MEG.
Multi-modal Methods: In the literature, there are two main classes of methods for analyzing
multi-modal brain imaging data: those that aim to localize a few dominant ‘point’ sources of
brain activity using inverse imaging or high-resolution methods; and those that target the re-
covery of a few dominant ‘latent’ components. The latter include popular multi-modal fusion
techniques that rely on factor analysis tools, such as Independent Component Analysis (ICA)
which aims to recover statistically independent latent sources of brain activation; and Canonical
Correlation Analysis (CCA) which aims to unravel sources of co-variation in multiple ‘views’
of the brain stemming from the different modalities. Variants of PCA [27], ICA [23], and
CCA [33] have been studied for multi-modal fusion of various brain imaging modalities. See
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[12, 13, 34, 47, 76, 119, 124] for additional background on existing localization and common
component extraction methods.

The main difference between our approach and the aforementioned two broad lines of work
is that we aim to reconstruct a high spatio-temporal resolution image of the entire brain – not just
a few point or dominant sources / components.
Super-resolution in Image Processing: Super-resolution via fusing multi-modal data is also an
active research area in image processing. Specifically, fusion of remotely sensed hyper-spectral
and multi-spectral images is of great interest [79]. Both hyper- and multi-spectral images are
special images whose pixels span many frequency bands and can provide spectral information
of the materials contained in the pixels – which finds many applications in geoscience, mineral
detection, and food safety. Hyper-spectral images have very high spectral resolution but very
coarse spatial resolution, and the situation of the multi-spectral images is exactly the opposite.
Much effort has been spent on fusing these two types images that captured on the sites, to create
super-resolution data in both space and frequency. The task is very similar to ours, except that
the transformation from the virtual super-resolution image (i.e., Z) to hyper- and multi-spectral
images are both linear (to be precise, sub-sampling) [111, 135]. But in our problem, the trans-
formation from Z to fMRI is nonlinear – which poses a much more challenging optimization
problem.

3.1.3 Method

In this section, we first present assumptions behind our modeling of entire brain super-resolution
image construction from multi-modal neuroimaging data, and then formulate it as an optimiza-
tion problem. Subsequently, we discuss various priors we can add to the optimization objec-
tive. Then we propose BRAINZOOM, a highly scalable and flexible algorithmic framework that
solves the above optimization problem, while provably converging to a stationary point at least
sub-linearly, despite the fact that the problem is non-convex.

Notations & Modeling Assumptions

Viewing the brain as a 3D object, we can imagine its volume partitioned into many small 3D areas
called voxels (equivalent to pixels in a 2D image). We are interested to know the intensity of the
neural activity at each of these voxels, during a particular time frame. We start by denoting the
complete brain activity as a matrix Z, where each column of Z is the (vectorized) brain activity
at all voxels at a particular time tick, and each row of Z corresponds to the brain activity at
a particular voxel, at all recorded time ticks. However, we are not able to observe Z directly,
and resort to fMRI and MEG/EEG images as inputs. The goal of this work is to reconstruct the
high-resolution brain activity matrix Z in both spatial and temporal domain, given the MEG and
fMRI measurements.

Given the different phenomena observed by MEG and fMRI, what shall we define as the
units of our latent neural activity Z? In this work, we assume Z is a measure of the intensity of
neural activity that is linearly related to the MEG or EEG observations. Let Xt denote the high
temporal-resolution image given by MEG or EEG. It is related to Z through a linear operator Tt
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that operates on the spatial domain, possibly corrupted with noise.
Xt = TtZ (3.1)

Notice that the temporal resolution of Z is the same as that of the given MEG/EEG measure-
ments, since there is no way we can go beyond them in this dimension.

To capture the fact that fMRI is insensitive to the direction of the activity that MEG observes,
we model fMRI as dependent on a linear function of the square of the Z activity. Although this
is at best an approximation of the unknown, complex relationship between neural spiking, local
field potentials, neural currents, and observed fMRI and MEG, this model does capture some
basic properties, and it enables us to frame a well-posed problem of solving for high spatial
and temporal resolution measure of neural activity. The success of our method in a simulator
[73] of brain activity suggests that this approximation is reasonable. Let Xs be the high spatial
resolution image captured by fMRI. We model the dependence between Xs and Z through a
linear operator Ts as shown below, again possibly corrupted with noise.

Xs = σ|Z|2Ts, (3.2)
Here, σ|Z|2 is the element-wise square of Z with an unknown scaling factor σ. We note that he
spatial resolution of Z is the same as that of the given fMRI images.

Reconstructing the high-resolution brain activity matrix Z in both the spatial and temporal
domains, given the fMRI measurements Xs and MEG/EEG measurements Xt, and their corre-
sponding sensing matrices Ts and Tt, is a highly ill-posed inverse problem, since the number of
measurements we are given is much smaller than the number of unknowns we want to estimate.
One has to impose additional constraints on the neural activity to make the problem well-defined,
which will be discussed in detail in the next sections. Furthermore, considering the relationship
between the underlying neural activity Z and the fMRI measurements as a nonlinear transfor-
mation makes the problem even harder.

Problem formulation

According to the physics of multi-modal brain imaging measurements described in equations
(3.1) and (3.2), the problem of infering the super-resolution description of neural activity Z can
be formulated naively as the following optimization problem,

min
Z,σ
‖Xt−TtZ‖2F +‖Xs−σ|Z|2Ts‖2F +r(Z), (3.3)

where r(Z) is some regularization function we impose on Z to make the estimation problem
well-defined. Before we dive into different assumptions on the brain activities, let us first focus
on the second term that tries to fit the fMRI data, which is a sixth-order polynomial with respect
to σ andZ together, and makes the problem highly non-convex and seemingly difficult to tackle.

In terms of σ, we notice that it is just an unknown scaling factor, and we can equivalently put
it into the first term in (3.3)

min
Z,τ
‖Xt−τTtZ‖2F +‖Xs−|Z|2Ts‖2F +r(Z),

resulting the optimal solution Z to be just a scaled version of that of (3.3), which is usually
inconsequential in practice. With respect to the term that involves |Z|2, we invoke the variable
splitting trick by introducing another variable W , and at the same time try to minimize the
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difference between Z andW in the following way
min
Z,W ,τ

‖Xt − τTtZ‖2F + ‖Xs − (Z∗W )Ts‖2F
+ µ‖Z −W ‖2F + r(Z), (3.4)

where ∗ denotes Hadamard (element-wise) multiplication. Although the resulting formulation
(3.4) is still non-convex, the idea is to alternatingly updateZ,W , and τ , so that the cost decreases
monotonically. With careful design of the algorithm, we can even claim stronger convergence
results, which will be shown (Theorem 1).

There exist a lot of commonly used priors that can be used to reconstruct high-resolution
brain signals in our formulation (3.4). In this work we consider the following possibilities:
• minimum energy: r(Z)=ρ‖Z‖2F ;
• sparsity: r(Z)=ρ‖Z‖1, the sum of absolute values;
• low rank: r(Z)=ρ‖Z‖∗, the sum of singular values;
• smoothness: r(Z)=ρ(‖HsZ‖2F + ‖ZHt‖2F ),

where matricesHt andHs have the form [17]


−1 2 −1 0 . . .

0 −1 2 −1 . . .
... . . .

−1 2 −1



, (3.5)

with appropriate sizes.
• total variation: r(Z)=ρ(‖HsZ‖pp,ε+‖ZHt‖pp,ε), similar to the smoothness regularization,

but in this case the matricesHs andHt have the form


1 −1 0 . . .

0 1 −1 . . .
... . . .

1 −1



, (3.6)

with appropriate sizes and ‖ · ‖pp,ε denotes the `p quasi-norm defined as

‖A‖pp,ε =
∑

i,j

(|aij|2 + ε)p/2, 0 < p ≤ 2.

For p = 2, this norm reduces to the normal `2 norm that is used in the smoothness reg-
ularization; for 0 < p ≤ 1, this regularization encourages the solution to be piece-wise
constant, which is something we want to promote in this case.

In the rest of this section we will design an algorithm based on the latter two regularizations,
which have similar forms but only differ in the definitions of the H matrices, for the following
reasons:

1. Because fMRI measures convolutions of |Z|2, there is an inherent sign ambiguity in the
entries of Z that are not sampled by the Tt matrix using the first three regularizations,
whereas by enforcing elements that are spatially and temporally close to each other to
have similar values, this inherent sign ambiguity can be resolved. Therefore, before real
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validations, our conjecture is that the latter two regularizations seem to be better models.

2. Computationally, the first three regularizations can be handled by very simple proximity
operators [96], thus it will be easy to modify the forth-coming algorithm to accommodate
them. The smoothness and total-variation regularization, on the other hand, are more com-
plicated to deal with—this is partly why we choose to use the `p quasi-norm rather than
the more commonly used `1 norm to promote the effect that we want in Z.

Towards this end, we formalize the problem formulation as
min
Z,W ,τ

‖Xt − τTtZ‖2F + ‖Xs − (Z∗W )Ts‖2F
+ µ‖Z −W ‖2F + ρ(‖HsZ‖pp,ε + ‖ZHt‖pp,ε), (3.7)

and we denote the cost function in (3.7) as f(Z,W , τ).

Proposed method

Based on the formulation, we propose BRAINZOOM, a highly scalable and flexible algorithmic
framework for the brain super-resolution problem based on alternating optimization.

Let us start with the update of τ , which is independent ofW , and by fixingZ, the condition-
ally optimal update of τ is

τ ← tr(XT
t TtZ)/‖TtZ‖2F . (3.8)

As for the update ofW , to avoid heavy computations, we propose to perform just one simple
gradient step, where the gradient with respect toW can be calculated as

∇W f = Z∗
[
(Z∗W )TsT

T
s

]
−Z∗(XsT

T
s ) (3.9)

+ µ(W −Z).

To ensure decrease of the cost function value, we need to make sure that the step-size is less than
one over the Lipschitz constant ofW conditioned on Z. Our selection is

w = 1

/(
λmax(TsT

T
s ) max(|Z|2) + µ

)
, (3.10)

where λmax(·) computes the largest eigenvalue of the argument matrix, and in Appendix A.1 we
prove that it ensures decrease. Notice that λmax(TsT

T
s ) only needs to be computed once, can then

saved for subsequent iterations.
Now we turn to the update of Z, and we again propose to go just a similar gradient step to

avoid heavy computations. However, the regularization terms ‖HsZ‖pp,ε + ‖ZHt‖pp,ε are non-
differentiable. To compensate this, we first invoke the following property for the `p quasi-norm:

‖A‖pp,ε ≤
∑

i,j

p

2

(
|ãij|2 + ε

)(p−2)/2 |aij|2 + constant,

for all Ã, and the equality holds whenA = Ã. Using this property, we define f̄(Z;W , τ) as
f̄(Z;W , τ) =‖Xt − τTtZ‖2F + ‖Xs−(Z∗W )Ts‖2F

+ ρ(‖Ds∗(HsZ)‖2F + ‖Dt∗(ZHt)‖2F ) (3.11)
+ µ‖Z −W ‖2F ,
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where
Ds =

(
|HsZ̃|2 + ε

)(p−2)/4
,

Dt =
(
|Z̃Ht|2 + ε

)(p−2)/4
,

(3.12)

and Z̃ is from the previous iteration. Notice that when p = 2, i.e., in the smoothness case, theD
matrices are simply the all one matrices, which makes f̄ = f . In the total variation case when
0 < p ≤ 1, function f̄(Z;W , τ) is a smooth upperbound function for f(Z,W , τ) with respect
to Z while fixing W and τ . Then we can apply a similar gradient descent step with gradient
calculated as

∇Z f̄ =τ 2T Tt TtZ − τT Tt Xt + µ(Z −W )

+W ∗
[
(Z∗W )TsT

T
s

]
−W ∗(XsT

T
s ) (3.13)

+HT
s

[
D2

s ∗(HsZ)
]

+
[
D2

t ∗(ZHt)
]
HT

t ,

and step size chosen as

z = 1

/(
τ 2λmax(T

T
t Tt) + λmax(TsT

T
s ) max(|W |2)

+ µ+ ρ(max(D2
s)c

2
H + max(D2

t )c
2
H)
)
, (3.14)

where cH is a sharp upperbound on the maximum singular value of theH matrices

cH =

{
4, for smoothness (3.5),
2, for total variation (3.6).

(3.15)

Again, in Appendix A.1 we prove that this choice of step size guarantees decrease of the cost
function.

Summarizing (3.8)-(3.14), we propose BRAINZOOM as the following iterative update rule

BRAINZOOM

τ ← tr(XT
t TtZ)/‖TtZ‖2F

W ←W − w∇W f
Ds ←

(
|HsZ|2 + ε

)(p−2)/4

Dt ←
(
|ZHt|2 + ε

)(p−2)/4

Z ← Z − z∇Z f̄

(3.16)

Convergence Properties

BRAINZOOM has very nice convergence properties, as we show here.
Theorem 1 Let {(Z(r),W (r), τ (r))}r be the solution sequence produced by the proposed BRAIN-
ZOOM (3.16). We have
1) Every limit point of {(Z(r),W (r), τ (r))}r is a stationary point of Problem (3.7).
2) The optimality gap between {(Z(r),W (r), τ (r))}r and a stationary point is at most O(1/r);
i.e., the algorithm approaches a stationary point at least sub-linearly.
The proof of Theorem 1 is relegated to Appendix A.2.
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(b) Reconstruction by BRAINZOOM

Figure 3.2: BRAINZOOM reconstructs well: (a) Ground-truth Z , and (b) reconstructed Z.

Remark. The proposed BRAINZOOM is a flexible combination between alternating optimiza-
tion and gradient descent. A clear advantage is that all the variations that people have been using
to modify the algorithm to accommodate constraints and non-linearities, by simply putting an
additional projection or proximal step. This includes the first three regularizations that we dis-
cussed in Section 3.1.3, namely, minimum energy, sparsity, and low rank. Moreover, if we have
the prior knowledge that the underlying signal Z is non-negative, we could also add a simple
projection step to zero out the negative entries. All the convergence results can be similarly
applied.

3.1.4 Experiments
We evaluate BRAINZOOM on simulated brain data. Since in real neuroscience data we do not
have access to the ground truth super-resolution brain activity, we generate realistic brain signals
using an open source framework, the Virtual Brain (TVB) [73], which is able to simulate brain
networks with biologically realistic connectivity. TVB implements several well-known neuro-
science models, and can produce brain signals with similar patterns as real brain data, as well as
generate multi-modal observations such as fMRI, MEG, or EEG, at different sampling rates.

Data preparation: In the following few lines, we describe details of the simulation. First,
we select a type of stimulus, and apply it to the brain at a location and time of choice. In this
experiment, we use a 3s pulse stimulus, with 3s delay. TVB records the response of the brain
to this stimulus, at a very high frequency, with an integration step size of 0.0625ms. From this
response we generate our Z as the temporal average of this raw data, sampled at 200ms.

We show Z in matrix form in Figure 3.2, where the horizontal axis represents time (we get
300 samples in time, over a total of 60s), and the vertical axis represents 16384 voxels (vector-
ized). Next, TVB can create multi-modality observations of this underlying signal. We sample
MEG data at 200ms, and fMRI data at 1000ms. The MEG data is produced by TVB by pro-
jecting the underlying signal to the surface of the brain, at the predefined location of 248 MEG
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Figure 3.3: MEG for 248 sensors × 300 time points, across 60s of simulation.

sensors. This projection is also encoded in our Tt matrix. The fMRI data is obtained by convolv-
ing the brain signal with a hemodynamic response function (hrf) of choice. Here, we chose the
Gamma hrf that is given by f(t) = ( t

τ
)(n−1) ∗ exp(− t

τ
)

τ(n−1)! with the default parameters suggested by
TVB. We also encode this hrf in our Ts matrix. Note that TVB applies this convolution directly
on underlying signal Z, resulting in a simple linear transformation. Since in our method we can
model a more complex relationship between fMRI and Z that TVB does not capture, and we
want to test if our algorithm can recover the underlying signal under this condition, we modify
generative process of the fMRI measurements to capture this non-linearity – i.e., we set the fMRI
signal to be the convolution of |Z|2 and the hrf described above.

Results: Using the fMRI, MEG, Ts and Tt thus constructed, we apply our algorithm to re-
cover the super-resolution brain Z. We show Z, MEG, and fMRI as space × time matrices in
Figures 3.3 and 3.4, respectively. Figure 3.2 shows our reconstructed Z, using the smoothing
regularizer. One can see that the reconstructed Z matches the ground truth very well, although
the recovering problem is a challenging under-determined non-linear inverse problem. This sug-
gests that the proposed algorithm combined with the smoothness regularization is effective in
fusing MEG and fMRI data.

We also map the above space×time matrices back to brain manifolds at different time points
and show some interesting results in Figure 3.5. Here, we present two fMRI images as in the right
column, which are recorded at time points 38.0s and 40.0s, respectively. Before 38.0s, there was
no activity in the brain (cf. the upper-left subfigure). At time point 38.0s, a stimulus is presented
at three regions of the brain, and the activity spans a duration starting from 38.0s across 40.0s.
Our recoveredZ’s at 37.9s and 39.9s – when fMRI are not recorded – are presented in the middle
column. One can see that the recovered Z’s match the true Z’s very well. This indicates that
our approach correctly interpolates the time points by using the information provided by MEG,
thereby achieving temporal super-resolution.

We also show the results obtained by using the minimal energy regularization in Figure 3.6.
It can be seen that the interpolation between 39.0s and 40.0s is not as clear as we have seen in
Figure 3.5. In addition, at the time point prior to the stimulus being present, there is an obvious
artifact (bright spot) near the right edge of the estimated brain. This suggests that under the
considered signal model, smoothness is a more promising regularizer.
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Figure 3.4: fMRI for 16384 voxels ×60 time points, across 60s of simulation.

Figure 3.5: Smoothness regularizer recovers well. True brain activity, predicted brain activity
and fMRI at two time points: when the stimulus is present (top row), and when it is absent
(bottom row). Reconstructed Z is by using the smoothness regularizer and λ = 1, 000.
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Figure 3.6: Minimal energy regularizer fails to recover. True brain activity, predicted brain
activity and fMRI at two time points: when the stimulus is present (top row), and when it is
absent (bottom row). Reconstructed Z is by using the minimal energy regularizer.

3.1.5 Conclusions

Estimating high spatial-temporal neural activity in the brain from multiple imperfect imaging
methods is a key to studying and understanding brain function. In this work we introduce BRAIN-
ZOOM, a principled algorithmic tool to address the brain activity super-resolution problem.

Our contributions are as follows:

• Novel Problem Formulation: We formulate the problem of recovering a super-resolution
image from multi-modal brain signals. To the best of our knowledge, this work is the
first to directly address the reconstruction of a super-resolution brain image for the whole
brain.

• Efficient Algorithm: We propose BRAINZOOM, an algorithmic framework that
handles non-linearity
learns the unknown scaling between multi-modal signals
incorporates a large number of regularizations
is efficient
provably converges

• Evaluation: Our experimental results on the realistic simulated data matches with intu-
ition. Both the space×time plots of the estimated super-resolution matrices and the brain-
manifold illustration show that our recovered space-time super-resolution brain matches
with the ground-truth very well.
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3.1.6 Extension of the work - epilepsy
One natural follow-up question for our BRAINZOOM work would be: ‘Can this work be extended
to model various brain disorders, e.g. epilepsy?’. The short answer is ‘maybe, with appropriate
regularizers’. Our objective function is to reconstruct the brain signals in high resolution in both
space and time, and to achieve this goal, we are enforcing smoothness across each dimension.
But BRAINZOOM is capable of incorporating various constraints as we discussed in section
3.1.3. Brain disorders such as epilepsy are known to exhibit sharp high frequency brain signals
compared to those of normal condition. Since BRAINZOOM of the final choice of the regularizer
is enforcing smoothness, BRAINZOOM as it is would not be suitable to model high frequency
signals. However, it would be interesting to try out several different regularizers to see what
would be the most appropriate one for solving for epilepsy brain signals. One suggestion would
be to enforce sparseness in the frequency domain so that we are using only a few frequency
signals to represent the brain signal, of which would be for normal signals and a few for epilepsy
signals.
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Part II

Part 2: Signal mining
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In Part I, we showed how to reconstruct time sequences from multiple sources in larger gran-
ularity. We showed methods and applications for 1-dimensional signals (historical epidemiology
data in Chapter 2) as well as high-dimensional signals (brain scans in Chapter 3). In the follow-
ing Part II, we show how to mine given signals, i.e. detecting anomalies. We will present our
methods and applications for lower-dimensionality signals in Chapter 4 (power grid signals), and
higher-dimensionality signals in Chapter 5 (aircraft signals).
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Chapter 4

Power grid data

In this Chapter, we describe the methods that we have proposed to solve the signal mining prob-
lem in power grid domain.

We introduce POWERCAST (section 4.1), and STREAMCAST (section 4.2). The methods
are introduced in increasing order of complexity. POWERCAST is applicable when we have
a history of power consumption data, and STREAMCAST further improves it by incorporating
weather components and allowing for streams of sequences.
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4.1 POWERCAST: tensor decomposition for multi-step fore-
casting [115]

In this section, we introduce POWERCAST, a tensor decomposition based signal mining method
for forecasting the electrical power demand, by carefully incorporating domain knowledge (physics
model called BIG model). POWERCAST utilizes domain expert knowledge which allows for an
intuitive interpretation of the power load. With the help of the domain knowledge, POWERCAST

is able to provide accurate prediction in multi-step ahead forecasting and extrapolations under
various what-if scenarios.

4.1.1 Introduction

The goal of the smart electrical grid is to manage the demand and supply of electricity while
maintaining both efficiency and reliability. Indeed, [5] finds that improving the reliability of the
U.S. grid could provide savings of around $49 billion per year and provide a 12% to 18% reduc-
tion in emissions, while improving efficiency could save an additional $20 billion. Toward this
goal, monitoring systems have been put in place, including Phasor Measurement Units (PMUs)
and newer high-precision micro-PMUs [117]. Using these data sources to accurately model load
behavior in the grid, as well as to forecast future power load, is important in protecting the grid
from failure and for maintaining reliability.

Our main goal is to understand how a specific service area consumes power (a university
campus, a small factory, a village or neighborhood), by studying its past behavior. Once we have
a good model for the power-consumption behavior, then we can do forecasting (how much power
will our campus/factory need tomorrow), spot anomalies (when our forecast is too far from what
actually happened), and answer “what-if” scenarios, like how much power will we need, during
spring-break on campus; or during a heat-wave, in our neighborhood.

We focus on these two problems: forecasting, and ’what-if’ scenarios. The informal defi-
nitions, are as follows. Note that alternating current (AC) (I) and voltage (V ) are modeled as
complex numbers.

Informal Problem 1 (Multi-step forecasting on power grid)
• Given: real and imaginary current (Ir(t), Ii(t)) and voltage (Vr(t), Vi(t)) of previous N

time points (t = 1, · · · , N ),
• Forecast: the electric current demand, for Nf steps in the future (i.e., guess Ir(t), Ii(t),

for t = N + 1, · · · , N +Nf )

Throughout this work, we assume that the voltage in the future, is given (Vr(t), Vi(t) for
t = N + 1, · · · , N + Nf ). This is realistic: except for rare brown-outs, power-plants try hard to
provide near-constant voltage to consumers.

In Figure 4.1, 24 step (1-day) forecasting result on Lawrence Berkeley National Laboratory
(LBNL) Open µPMU project data [117] is shown. In (a), POWERCAST (red) and POWERCAST-
S (pink) provides more accurate forecasting, following closely to the truth (black dots) while the
competitors (AR: blue, SAR:green) fail. We observe that POWERCAST is able to forecast the
the current demand with an accurate daily pattern while AR and SAR fail to consider the daily
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(a) (b)

Figure 4.1: POWERCAST forecasts accurately. (a) POWERCAST (red) and POWERCAST-S
(pink) forecasts 24 steps (1-day) on Ir (top row), and Ii (bottom row) more accurately compared
to competitors (AR: blue; SAR: green; ground truth black circles). (b) RMSE comparison of the
methods

pattern. In (b), a quantitative comparison on the forecasting accuracy is shown. POWERCAST

forecasts with 59% reduction in error, compared to the competitors.
An additional benefit of our domain-aware approach is that it can handle the what-if extrap-

olation problem:

Informal Problem 2 (’what-if’ extrapolation)
• Given the historical data, as above (real and imaginary current Ir(t), Ii(t), and voltage
Vr(t), Vi(t), t = 1, . . . , N

• Guess what will be the power demand in the future (currents Ir(t), Ii(t), t > N ), if, say,
the student population doubles on our campus (or our factory cuts production in half, etc).

Handling what-if scenarios is beyond the reach of black-box methods (ARIMA etc), exactly
because it demands domain knowledge, which we carefully infuse, using the established “BIG”
model.

Our contributions are as follows:
1. Infusion of domain knowledge: Our method is domain-aware: among the many aggre-

gated load models (BIG, “PQ”, “ZIP”), we chose the first, because it allows for an accurate
and intuitive interpretation of the power load, being derived from physics-based first prin-
ciples.

2. Forecasting/What-if: The proposed POWERCAST (a) leads to more accurate forecasts
(up to 59% lower error) compared to textbook, black-box methods, and (b) it can answer
what-if scenarios that black-box methods can not.

101



3. Anomaly detection: POWERCAST can spot, and even explain, anomalies in the given time
sequences. (see section 4.1.4, Figure 4.6)

Reproducibility: Our code is open-sourced at: www.cs.cmu.edu/~hyunahs/code/
PowerCast.zip; the LBNL dataset is at: powerdata.lbl.gov/.

The structure of this section is typical: We give the background and related works (section
4.1.2), our proposed method (section 4.1.3), experiments (section 4.1.4), and conclusions (sec-
tion 4.1.5).

4.1.2 Background and Related Work

Related works

Load model for aggregated electrical demand: the BIG model Electrical load modeling
for power system analysis has been traditionally done using the constant power constant PQ
and ZIP models [92]. However, industry experience has shown that these models incorrectly
characterize load behavior [82]. Recent advances in steady-state power system simulations [19,
93] have introduced the use of physics based state variables, i.e. currents and voltages, and shown
that load behavior at a given time instance can be accurately described by a linear relationship
between current and voltage. From circuit theory, this can be represented by a parallel or series
combination of reactance (B) and conductance (G). This model captures both voltage magnitude
and angle information, in contrast to existing traditional load models [92]. Further adding a
current source (I) results in the BIG load model, which accurately captures load sensitivities to
voltage variations over a period of time [61]. The complete description of the BIG load model is
given in section 4.1.3.

Table 4.1: POWERCAST captures all of the listed properties. AR++ = ARIMA, seasonal
ARIMA etc. LDS = Linear Dynamical Systems. ‘Pattern discovery’ = concept / latent-variable
discovery.
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Time series forecasting Classical methods for time-series forecasting include the family of au-
toregression (AR)-based methods, including ARMA, exponential smoothing [21], ARIMA [16],
ARMAX [137] and ARFIMA [10] models. Seasonal ARIMA [16] incorporates pre-determined,
constant periods allowing the model to capture seasonal patterns. More recent generalizations in-
clude TBATS [35] which allows for more complex seasonality patterns. Other methods for time
series forecasting include Kalman filtering [63], Linear Dynamical Systems (LDS) [60], Hidden
Markov Models (HMMs) [74], wavelet-based methods such as AWSOM [94] and non-linear
dynamical systems such as RegimeCast [83].

In the area of modeling of aggregated load in the power grid, autoregression is an extremely
common approach due to its simplicity and interpretability [22, 58, 113, 114]. [97] uses ARMA
models and exponential smoothing for short-term load forecasting. [88] uses a two-step proce-
dure of seasonality removal, followed by ARMA with hyperbolic noise.

Tensor-based time series analysis Tensor decomposition methods, including PARAFAC de-
composition, Tucker decomposition [67, 68], multilinear principal components analysis [80], and
Bayesian tensor analysis [123] are powerful tools to understand latent factors of a target dataset.
Recent work such as Marble [52] and Rubik [131] applies tensor factorization for concept anal-
ysis with domain knowledge. In terms of time series applications, tensors have been used for
modeling multiple coevolving time series for epidemiology [85], community discovery [75], and
concept discovery [64]. [84] uses a tensor-based approach for forecasting based on complex
sequences of timestamped events. AutoCyclone [121] models seasonality in tensor datasets by
‘folding’ the data into a higher-order tensor. TensorCast [7] effectively forecasts time-evolving
networks by incorporating multiple data sources in coupled tensors.

However, all of the aforementioned methods are typically not based on electrical load models
derived from first principles, as is the case for the BIG load model, which the herein proposed
method is based on, thus allowing for more accurate forecasts and interpretable models. In
addition, our approach allows for what-if scenarios, e.g. variation of electrical load due to change
in number of people in the building.

Background

BIG model The BIG equivalent circuit model [62] is a linear representation of the current
using the voltage data follows:

Ir(t) = G(t)Vr(t)−B(t)Vi(t) + αr(t) (4.1)
Ii(t) = B(t)Vr(t) +G(t)Vi(t) + αi(t) (4.2)

By modeling the given time sequences Ir, Ii, Vr, Vi using the BIG model, we learn the BIG
parameters G,B, αr, αi that provides us with an intuitive interpretation of the aggregated con-
ductance (G) and susceptance (B) of the power grid as it varies over time. In POWERCAST, we
convert the given time sequences to the BIG domain (G,B, αr, αi) and further proceed with pat-
tern analysis and forecasting. As we will demonstrate in our analysis with experimental results
in section 4.1.4, working in the BIG domain provides more stable and interpretable analysis of
the power systems: understanding the power system (section 4.1.4), accurate forecasting and
exploration of various what-if scenarios (section 4.1.4), and anomaly detection (section 4.1.4).
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4.1.3 Method
In this work, our interest is in: 1) including the domain knowledge of the intrinsic behavior of the
campus (G,B), 2) capture the latent periodic patterns in the sequences, and 3) do forecasting.

The core parts of POWERCAST algorithm is: 1) to convert the given time sequences into the
BIG domain, and 2) forecasting in tensor structure. By converting the time sequences into the
BIG domain, we try to understand the power system (G,B value range, dynamics, ratio, etc) that
generated the sequences Ir, Ii, Vr, Vi that we observe, which enables us to do forecasting under
what-if scenarios of change in the power systems on campus. Working with tensors tells us the
long-term, and daily patterns. By performing forecasting based on the learned patterns from
the past, POWERCAST provides more stable forecasting result (section 4.1.4). In this section,
we will explain how we convert the time sequences into the BIG domain and how we analyze
tensors to do forecasting in more details.

A table of symbols that is used throughout this section is shown in Table 4.2.
Table 4.2: Symbols and definitions

Symbols Definitions

Ir, Ii, Vr, Vi given time sequences. Real and imaginary part of complex current
and voltage.

N total number of timeticks in the given time sequences. N = Nd×
Ndt

Nd number of days in the given time sequences
Ndt number of time points for each day
G,B, αr, αi BIG parameters. (conductance, susceptance, offset to Ir and Ii)
X a tensor of given time sequences Ir,Ii,Vr,Vi. X ∈ RNd×Ndt×4

Ba a tensor of BIG parameters G,B, αr, αi. Ba ∈ RNd×Ndt×4

Bb a tensor of BIG parameters G,B, αr, αi, after extension. Bb ∈
R(Nd+Nfd)×Ndt×4

Nfd number of days for forecasting
Nf number of time steps for forecasting. Nf = Nfd ×Ndt

Par auto-regression parameter
R rank for tensor decomposition
Nw, σ Parameters for Gaussian filter. (window size, standard deviation

of Gaussian)

POWERCAST algorithm Pseudocode of POWERCAST is described in Algorithm 6, where
each function will be explained in more detail. In Figure 4.2, a flowchart of the Algorithm 6 is
illustrated.

Step 1: Seq2Tensor (Tensor construction): Given four time sequences Ir(1 : N), Ii(1 :
N), Vr(1 : N), Vi(1 : N), we construct a tensor X ∈ RNd×Ndt×4 by cutting the sequences into
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Algorithm 6: POWERCAST.
Data: Ir(1 : N), Ii(1 : N), Vr(1 : N +Nf ), Vi(1 : N +Nf )

Result: Îr(N + 1 : N +Nf ), Îi(N + 1 : N +Nf )
Construct a tensor from given sequences:;
[X ] = Seq2Tensor(Ir(1 : N), Ii(1 : N), Vr(1 : N), Vi(1 : N)) ;
Covert the data to BIG domain (fit the data to BIG model):;
[Ba] = X2B(X );
Extend the tensor for forecasting:;
[Bb] = Bextension(Ba);
Recover the data from BIG domain:;
[Îr(N + 1 : N +Nf ), Îi(N + 1 : N +Nf )] =
B2Seq(Bb, Vr(N + 1 : N +Nf ), Vi(N + 1 : N +Nf ));

Figure 4.2: Flowchart of POWERCAST.

daily unit as described in Figure 4.2 “Seq2Tensor." The first, second, and third mode of the tensor
corresponds to days, hour of the day, and given time sequences, respectively. For example, if the
time sequences are hourly samples (24 points per day) for 7 days, then the dimensions of the first

105



and second modes become 7 (days) and 24 (samples per day) respectively.

Step 2: X2B (Convert the data into BIG domain): Then we convert the data tensor (X ) to
BIG domain (Ba) by fitting the data to BIG model as described in “X2B" in Figure 4.2. For fitting
the BIG parameters, as we cannot fit the BIG parameters to a single point, we consider multiple
points before and after the current timetick by apply a moving Gaussian filter to a window size
of Nw, standard deviation σ to the data.

Function fitBIG takes in [I inr , I
in
i , V

in
r , V in

i ] and fits the BIG models in equations (4.1) and
(4.2) to the given window of data, using weighted least squares fitting, using this Gaussian filter
as weights. Then we construct a new tensor Ba consisting of BIG parameters.

We next combine these fitted values into a tensor in the BIG domain whose first, second, and
third mode of the tensor corresponds to days, hour of the day, and BIG parameters, respectively.

Step 3: Bextension (Extend the tensor for forecasting): After constructing a tensor from
the given data in the BIG domain, we decompose the tensor using canonical polyadic alternating
least squares (CP_ALS) algorithm [67, 68]: Ba =

∑R
r=1 λr × ur × vr × wr. Here, u,v,w

corresponds to the hidden variables across multiple days, within a day, and among the BIG
parameters. We will refer to these hidden variables as long-term-concepts, daily-concepts, users-
profile-concepts, respectively.

After learning the tensor components, we extend the first mode of the tensor (u, correspond-
ing to days) for Nfd more points for forecasting - we conduct auto-regression on the u vector
and forecast/extend it. We learn the AR parameters for P th

ar order auto-regression AR(Par) us-
ing least squares on u. Then we use AR parameters for the extension of the u vector to get an
extended vector û: ûr(Nd + f) = c0 +

∑Par
p=1 cpûr(Nd + f − p)

From the extended components û, we can reconstruct an extended tensor, Bb =
∑R

r=1 λr ×
ûr × vr × wr with next Nfd days worth of data. A detailed steps are illustrated in Figure 4.2
“Bextension" part.

Step 4: B2Seq (Recover the data from BIG domain): Now that we have a extended tensor
Bb on BIG domain, we need to recover the Nfd days of forecast data back into the original data
domain. A detailed description of steps is illustrated in Figure 4.2 “B2Seq" part. We matricize
the tensor into four matrices and reshape each matrix into a vector in row-wise manner. We
apply the BIG equations (4.1), and (4.2) to the assumed voltage data and forecast corresponding
Ir(t), Ii(t) for the next t = N + 1, · · · , N +Nf steps.

POWERCAST-S POWERCAST-S is a variation of POWERCAST. In function Bextension, we
can use any type of forecasting function in the place of AR.

We tried applying seasonal periodicity on the long-term-concepts (u vector), but on our
dataset (which does not span over long enough period of time to capture the seasonal pattern)
POWERCAST-S did not work well. Thus we recommend users to use plain POWERCAST unless:
1) you have a long enough history of the time sequences to capture the weekly pattern, and 2)
you strongly believe that there is a seasonality in the data (weekly, monthly, seasonal, etc).
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4.1.4 Experiments

In this section we conduct experiments on the real world data to answer the following research
questions: Q1: Interpretability, Q2: Forecasting, and Q3: Anomaly detection.

Dataset description: We next give a brief explanation of the datasets we used for experiments.
All datasets are 5-tuples of the form (Vr, Vi, Ir, Ii, t).
• CMU data: The voltage and current measurements were recorded for the Carnegie Mellon

University (CMU) campus for 23 days, from July 29, 2016 to August 20, 2016. The time
sequences were sampled every hour (Ndt = 24).

• LBNL data: This is from the Lawrence Berkeley National Laboratory (LBNL) Open
µPMU project1 [117]. It spans 3 months, with sampling rate of 120Hz; but we used only
the interval (October 1, 2015 to October 8, 2015) and we down-sampled it to hourly sam-
ples (Ndt = 24). Moreover, we de-noised it using moving averages.

Experimental setup: For the parameters, we used Par = 1 for AR(Par) for extension of the
u vector, R = 2 for the tensor decomposition, and Nw = 5, σ = 0.5 for the moving Gaussian
filter. We used tensor tool box from [9] [8].

Baseline methods: As baseline methods, we conducted experiments using auto-regression
(AR) and seasonal auto-regression (SAR) for comparison with our POWERCAST. For the base-
line experiments, we assume that we do not have the domain knowledge on the power systems
such as BIG model, etc. Thus we run AR and SAR methods on the given time sequences of Ir, Ii
directly. The autoregression order for AR and SAR are determined via AIC criterion.

Q1: Interpretability

In this section we analyze the hidden variables in CMU data, and interpret the result using our
domain knowledge.

As a reminder, G can be interpreted as a component of electrical load that contributes to real
power consumption (for e.g. light bulbs), while B can be interpreted as a component of electric
load that contributes to reactive power (for e.g. lagging reactive power (+Q) is absorbed by the
motors where leading reactive power (-Q) is supplied by the capacitor) In our analysis below, we
include images of “light bulbs" and “motors" to represent one example of the sources of G and
B for more intuitive understanding.

Observations 1 (Weekly pattern in Figure 4.3 (a))
• The long-term-concepts (u vector) shows weekly periodicity accounting for the activities

across the days (drops during weekends)
• Both of the two components capture similar weekly pattern

Observations 2 (Daily pattern in Figure 4.3 (b))

1http://powerdata.lbl.gov/
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(a) long-term-concepts (b) daily-concepts (c) users-profile-concepts

Figure 4.3: (a) Weekly periodicity in long-term-concepts (u), (b) Daily pattern in daily-
concepts (v), (c) users-profile-concepts (w), on CMU data

• The daily-concepts (v vector) captures daily activity patterns throughout the day, lowest
during the night (midnight to 9am), and grows from 9am, when peaking start coming to
campus, peaking at 4pm.

• The first component, v1, shows smoother varying pattern throughout the day. We can think
of this component as the representation of the“background" activities, as it is insensitive to
the dynamics of the human activities throughout the day.

• The second component, v2, shows more dynamic changes with 1) deeper drop during the
night, 2) faster growth in early stage (logarithmic), and 3) rapid decay after the peak. This
pattern closely follows the dynamics of the expected human activities throughout the day.
We can think of this component as the representation of the “human-activity" factor.

Observations 3 (G and B factor analysis in Figure 4.3 (c))
• The users-profile-concepts (w vector) explains how much G and B account for each of the

component.
• The first component - hidden variable (left of Figure 4.3(a)) accounts for both G (e.g“light

bulbs") and B (e.g.“motors") in a close to 50-50 ratio. Combined with our interpretation
in the daily-concepts for plot (b), we can interpret the first component as the background
component that explains the background activities of theG andB (e.g. light bulbs and mo-
tors) factors that are operated independently of the dynamics of the major human factors.
(basic facilities such as air conditioning units, light bulbs, etc, that runs throughout the day
to maintain the minimum required conditions in the buildings)

• The second component (right of Figure 4.3(a)) accounts dominantly for G (e.g.“light
bulbs"). Aligned with our interpretation of the second component as accounting for the
“human-activity" factor, this tells us that G (e.g. light bulbs) is more dependent on the
dynamics of the daily activities compared to B. This is reasonable since addition of one
more person on campus may result in turning on 10 G-related facilities (e.g. light bulbs)
while it merely affects B-related facilities (e.g. motors- air-conditioner, heaters, etc) that
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are operated to maintain the background conditions regardless of the human factors.

Q2: Forecasting

In this section we demonstrate forecasting results by POWERCAST including various what-if
scenarios.

Multi-step forecasting We start by showing multi-step ahead forecasting by POWERCAST in
comparison with other competitors on two different real world datasets.
• CMU data: Comparisons on the forecasting by POWERCAST and competitors are shown

for Nf = 24 steps (Nfd = 1-day) (Figure 4.4).

(a) (b)

Figure 4.4: POWERCAST forecasts 24 steps (1-day) accurately on CMU data (a) POWER-
CAST (red) and POWERCAST-S (pink) forecasts 24 steps (Ir on the top row, and Ii on the bot-
tom row) more accurately compared to the competitors (AR: blue and SAR: green). (b) RMSE
comparison of the methods. POWERCAST achieves 41% error reduction.

In (a), we observe that POWERCAST and POWERCAST-S are able to demonstrate the daily
periodic pattern while competitors fails to correctly demonstrate daily periodicity. In (b),
a quantitative comparison is given by normalized root mean square error (RMSE) sum of
Ir, Ii forecast results in Amperes unit. The RMSE is computed as follows: RMSE(x, x̂) =√∑Nf

t=1(x(t)−x̂(t))2)∑Nf
t=1(x(t))

2

• LBNL data:
Figure 4.1 shows a similar quantitative comparison on the LBNL dataset, where POWER-
CAST also outperforms its competitors.
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What-if scenario If we know that the number of people on campus will increase by 10%
tomorrow due to a big event, how much more power do we expect? Naive forecasting methods
cannot tell us the future demand under various scenarios.

In this section, we illustrate how POWERCAST can handle forecasting under various what-if
scenarios by adjusting G,B accordingly. We created three scenarios, assuming that we will have
{10, 20, 30}% more activities on campus for next 2 days (thus increased values forG andB); and
performed forecasting of the power demand under our scenarios. In Figure 4.5, 48 step (2-day)
ahead forecasting on CMU data under our scenarios are shown for (a) real current demand and
(b) imaginary current demand. We see that Ir and Ii increase, according to the “BIG” model
(see (a) and (b) respectively), allowing us to plan ahead. (Red, blue, green, and cyan, correspond
to {0, 10, 20, 30}% increases).

(a) (b)

Figure 4.5: POWERCAST can handle forecasting under various what-if scenarios on de-
mands for (a) Ir and (b) Ii on CMU data

Q3: Anomaly detection

In Figure 4.6 (a) Nf = 144 step forecasting (Nfd = 6 days) on CMU data is shown in solid
red along with the actual reading in black circles. We report the highest deviation from our
POWERCAST forecast, with a red vertical line. This happened on Tuesday, August 16, which
was in the middle of the 3-day new graduate student orientation, probably ≈1,000 people.

The natural follow up question is: Was the extra population the reason for this anomaly? The
answer seems ‘no’, for two reasons: extra people would mainly boost Ir, that is ‘G’ (e.g. “light
bulbs”), as our “human-activity” component showed in Figure 4.3, but we have spikes in both Ir
and Ii; the second reason is that there was no spike during the other two days of orientation.

The only explanation is that something boosted the “background” component of Figure 4.3
(e.g., “motors”, like elevators, heaters, air-conditioners), resulting in roughly equal boost to both
Ir and Ii. Does reality corroborate the conjecture? The answer is ‘yes’: the temperature on Aug.
16 spiked, to a scorching 88◦F (≈ 30.5◦C), while the surrounding days was closer to 80◦F . This
is exactly what we show in (b): POWERCAST shows that for a 10% increase in the component
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(a) Anomaly detection (b) Possible Explana-
tion

Figure 4.6: POWERCAST spots anomalies: (a) August 16, 2017 (spotted, and marked with red
stripe) was during the new graduate student orientation. (b) POWERCAST shows that a 10%
increase in activities (’B’ and ’G’), could explain this spike.

“background” (air-conditioners, etc), we get a 10% increase in both G (e.g. “light bulbs”) and B
(e.g. “motors”); the resulting answers correspond to the red line in (b), which is very close to the
ground-truth black circles.

In short, POWERCAST can not only spot anomalies, but also give hints about their cause.

Scalability

In Figure 4.7, the wall clock time for POWERCAST to run on a dataset of different number
of timeticks (N ) is plotted in black solid dots, along with a linear line in blue. The time was
measured for 24 step (1-day) forecast given past time sequences of length N = 240 − 528
timeticks (Nd = 10− 22 days) on CMU data.

4.1.5 Conclusions
We proposed POWERCAST, a novel domain-aware method to mine, understand, and forecast
the power demand of an enterprise (university, factory, neighborhood). Our contributions are as
follows:

1. Infusion of domain knowledge: We carefully picked a successful electric-power model,
“BIG”, which is derived from first-principles, and allows for intuitive interpretation of the
power system of interest.

2. Forecasting/What-if: Our domain-aware approach, coupled with the BIG model provides
(a) accurate prediction in multi-step ahead forecasting with up to 59% lower error, and
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Figure 4.7: POWERCAST scales linearly with respect to the number of timeticks (N )

(b) answers what-if scenarios, like “what will be our power demands when 80% of our
students leave campus for March-break”

3. Anomaly detection: POWERCAST can spot anomalies and explain as we show in section
4.1.4, Figure 4.6.

Reproducibility: Our code is open-sourced at: www.cs.cmu.edu/~hyunahs/code/
PowerCast.zip, and the LBNL dataset is at: powerdata.lbl.gov
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4.2 STREAMCAST: online mining of power grid time sequences
[53]

In this section, we introduce STREAMCAST for mining power grid time sequences. STREAM-
CAST allows for online mining, making it possible to handle streams of time sequences. And
by incorporating weather components into the algorithm, STREAMCAST improves forecasting
performance over POWERCAST.

4.2.1 Introduction
The smart electrical grid is a set of technologies designed to improve the efficiency and secu-
rity of power delivery. Estimates [5] suggest that reducing outages in the U.S. grid could save
$49 billion per year, reduce emissions by 12 to 18%, while improving efficiency could save an
additional $20.4 billion per year. A key part of achieving this goal is to use monitoring data to
accurately model the behavior of the grid and forecast future load requirements, especially under
extreme conditions such as changes in temperature, number of appliances in the grid, or voltage
patterns. This allows the grid to remain reliable even under adverse conditions.

A major challenge is scalability - power systems data can be both high-volume and received
in real time. This motivates us to develop fast methods that work in this online (or streaming)
setting. Rather than operating on an entire dataset at once, online algorithms allow input that
arrives over time as a continuous stream of data points. When each new data point is received,
the algorithm updates itself - for our algorithm, each update requires constant time, and bounded
memory (i.e. it does not need to remember the entire history of the time series).

Hence, our goal is an online algorithm for modelling and forecasting power consumption of
a location. The input is a stream over time of real and imaginary voltage and current values:
Informal Problem 3 (Online Model Estimation)
• Given: A continuous stream of values of real and imaginary current (Ir(t), Ii(t)), voltage

(Vr(t), Vi(t)), and temperature T (t), for t = 1, 2, · · ·

• Estimate: Time-varying parameters of a physics-based model of electrical load behavior
that accurately explains the observed values.

Our model is based on the circuit theoretic BIG model [62], which characterizes load in
the electric grid by modeling its voltage sensitivities. Importantly, the use of physics-based
models together with current and voltage state variables improves interpretability. For instance,
real power consuming loads such as light bulbs can be interpreted as the contribution of the
conductance (G) parameter, while susceptance (B), the reactive power component, represents
the contributions of motors or capacitors in the grid.

The fitted model is used to forecast future values:
Informal Problem 4 (Multi-step Forecasting)
• Given: values of current (Ir(t), Ii(t)), voltage (Vr(t), Vi(t)), and temperature T (t) for
t = 1, · · · , N , and given temperature forecasts for the next Nf time steps (i.e. for t =
N + 1, · · · , N +Nf ),
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• Forecast: voltage and current for Nf time steps in the future; i.e. (Vr(t), Vi(t)) and
(Ir(t), Ii(t)) for t = N + 1, · · · , N +Nf .

Due to our physics-based model, our algorithm can handle what-if scenarios in which the
temperatures or voltages change, which is useful for future planning.

Informal Problem 5 (What-if Scenarios)
• Given: current, voltage and temperature data, as above,
• Forecast: future values of voltage and current, under the condition that, e.g., temperature

increases by 10◦C, and voltage levels increase by 5%.

Our contributions are as follows:
1. Domain knowledge infusion: we propose a novel, Temporal BIG model that extends

the physics-based BIG model, allowing it to capture trends, seasonality, and temperature
effects.

2. Forecasting: our STREAMCAST algorithm forecasts multiple steps ahead and outperforms
baselines in accuracy by 27% or more. STREAMCAST is online, requiring linear time and
bounded memory.

3. What-if scenarios and anomaly detection: our approach accurately handles scenarios in
which the voltage levels, temperature, or number of appliances change. We also use it to
detect anomalies in a real dataset.

Reproducibility: our code is publicly available at www.andrew.cmu.edu/user/bhooi/
power.tar.

4.2.2 Background and Related Work

Related Work

The BIG model for electrical load As we mentioned in section 4.1.2, the common approach
for power grid modeling is PQ model [92]. However, a recent work BIG [62] showed that it can
successfully describe the load behavior at a given time by a linear relationship between current
and voltage.

Time series forecasting As we mentioned in section 4.1.2, commonly used textbook time-
series forecasting methods include autoregression (AR)-based methods, including ARMA, ARIMA [16],
seasonal ARIMA [16], vector autoregression (VAR) [50], and exponential smoothing (ETS)
models [134], including Holt-Winters [134].

Contrast with existing literature Other than our earlier work POWERCAST [115] (4.1), all
methods above do not use physics-based electrical models, and do not consider what-if scenarios,
while our approach does both. Compared to POWERCAST [115], our approach in STREAMCAST

(which is completely different from our tensor-based approach) additionally allows for weather
data, is an online algorithm, and produces confidence intervals.
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Table 4.3: STREAMCAST captures the listed properties. AR++ refers to ARIMA, seasonal
ARIMA etc.
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Background

BIG model (Here we repeat the description in section 4.1.2 for equations 4.1, 4.2 for the
readers’ convenience.) The BIG model [62] models the current as a linear function of the voltage,
parameterized by the BIG parameters: susceptance (B), conductance (G), and a current offset
(αr, αi). G can be interpreted as the component contributing to real power consuming loads
(e.g. due to light-bulbs), while B can be interpreted as the contribution of the reactive power
component (e.g. due to motors or capacitors):

Ir(t) = G · Vr(t)−B · Vi(t) + αr + noise
Ii(t) = B · Vr(t) +G · Vi(t) + αi + noise

(4.3)

Holt-Winters model The Holt-Winters model [134] models a univariate time series x(t) with
seasonal structure. The key idea is to model x(t) as the sum of a nonseasonal or level compo-
nent l(t) and a seasonal component s(t). The level component changes according to smooth
trends, while the seasonal component is approximately periodic with period m (e.g. m = 24 for
hourly data with daily seasonality). Smooth trends over time are modelled by a linear trend b(t),
representing the rate of change of l(t). Full details can be found in [134].

4.2.3 Method
Proposed Model

Table 4.4 shows the symbols used in this section.
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Table 4.4: Symbols and definitions

Symbols Definitions

N Number of time ticks in time sequences
Ir, Ii, Vr, Vi Real and imaginary current and voltage
B,G, αr, αi BIG parameters (susceptance, conduc-

tance, offset to Ir and Ii)
θ(t) Parameter vector (B,G, αr, αi) at time

t

y(t), X(t) BIG in linear model form; see Eq. (4.5)
θL(t) Nonseasonal part of θ(t)
θS(t) Seasonal part of θ(t)
θT (t) Trend in θL(t)
θW (t) Weather part of θ(t)
w Weather coefficients
T0 Temperature threshold
Ninit Initialization period

Proposed Dynamic BIG Model As in section 4.1.2, we use BIG model. Consider the static
BIG model in Eq. (4.3). Its parameters B,G, αr, αr can be interpreted as types of load; but
in practice, these should change over time as appliances are switched on and off, or usage lev-
els change. How do we add temporal structure to this model? A natural step is to replace
B,G, αr, αr by time series B(t), G(t), αr(t), αr(t). Eq. (4.3) becomes:

Ir(t) = G(t) · Vr(t)−B(t) · Vi(t) + αr(t) + noise
Ii(t) = B(t) · Vr(t) +G(t) · Vi(t) + αi(t) + noise

(4.4)

For notational simplicity, rewrite this equivalently as:

(
Ir(t)

Ii(t)

)

︸ ︷︷ ︸
y(t)

=

(
Vr(t) −Vi(t) 1 0

Vi(t) Vr(t) 0 1

)

︸ ︷︷ ︸
X(t)




G(t)

B(t)

αr(t)

αi(t)




︸ ︷︷ ︸
θ(t)

+ noise (4.5)

Now, changes in usage (e.g. appliances switching on and off) correspond to changes in θ(t).
What temporal patterns do we need to capture? Intuitively, some appliances follow daily sea-
sonality (e.g. lights used during working hours), while others follow slow-moving trends, e.g. a
gradual increase in load due to population growth. Hence, like in Holt-Winters, we decompose
θ(t) into a nonseasonal level part θL(t), and a seasonal part θS(t); hence, θ(t) = θL(t) + θS(t).
Here θL(t) changes according to smooth trends, while θS(t) has seasonal patterns, with period
m.

To model smooth trends (e.g. population growth), we additionally define a trend term θT (t),
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which approximates the change in θL(t) from one time tick to the next; i.e. θL(t) ≈ θL(t− 1) +
θT (t). Then, our assumptions under this model are that:
A1: y(t) ≈ X(t)(θL(t) + θS(t)) (Low noise; see (4.5))

A2: θL(t) ≈ θL(t− 1) + θT (t) (Level moves wrt. trend)

A3: θT (t) ≈ θT (t− 1) (Trends change smoothly)

A4: θS(t) ≈ θS(t−m) (Seasonality)
We will formalize these as soft constraints in our optimization objective in Section 4.2.3.

Dynamic BIG with Temperature Model Let T (t) denote the temperature at time t. When
temperature increases above a threshold, electricity demand tends to increase due to the use of air
conditioning. To capture this, we introduce weather coefficients w and a temperature thresh-
old T0: temperature over the threshold linearly adds to a weather component θW (t). Hence, we
replace assumption A1 with:
A1’: y(t) ≈ X(t)(θL(t) + θS(t) + θW (t)), where

θW (t) = w ·max(0, T (t)− T0)
The max function ensures that only temperatures above the threshold contribute to the weather
component.

Proposed Optimization Objective

We now define our optimization objective based on our assumptions A1’ to A4. All norms are
L2 norms, for later computational simplicity.

L = L1 + λL2 + µL3 + νL4, where:

L1 =
N∑

t=1

‖y(t)−X(t)(θL(t) + θS(t) + θW (t))‖2

L2 =
N∑

t=2

‖θL(t)− θL(t− 1)− θT (t)‖2

L3 =
N∑

t=1

‖θT (t)− θT (t− 1)‖2

L4 =
N∑

t=m+1

‖θS(t)− θS(t−m)‖2

(4.6)

Here λ, µ, ν > 0 are hyperparameters (which we end up tuning indirectly rather than directly;
see Section 4.2.3 ’Proposed STREAMCAST Algorithm ’). The problem to solve is then:

minimize
θL,θT ,θS ,w,T0

L (4.7)

Proposed STREAMCAST Algorithm

How do we approximately minimize L in an efficient and online manner?
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Overview In this section, we outline our proposed STREAMCAST. STREAMCAST has two
steps: 1) an offline step TEMPFIT, which takes a subset of Ninit data points, and fits w and T0;
2) an online ‘extension’ stage STREAMFIT: upon receiving each new data point at time t, this
updates θL, θT , θS according to Eq. (4.9).

Algorithm 7: STREAMCAST

input: Streams Vr, Vi, Ir, Ii
w, T0 ← TEMPFIT(Vr(1 : Ninit), Vi(1 : Ninit);

Ir(1 : Ninit), Ii(1 : Ninit));
while input at time t is received: do

Update θL(t), θT (t), θS(t) using STREAMFIT;

We will describe STREAMFIT, and TEMPFIT in the following paragraphs.

Streaming Optimization (STREAMFIT) STREAMFIT estimates θL, θT and θS for fixed tem-
perature parameters w, T0, by minimizing our objective, Eq. (4.7). Note that Eq. (4.7) could in
theory be minimized using least squares; however, this is not online, and is also much too slow
as it contains O(N) unknowns for N time points, which would then take around O(N3) time.
We would like a linear-time algorithm with constant update time per data point.

Our approach is to split up the objective over t, and take gradient update steps with respect to
the term for t = 1, 2, · · · successively. At time t, we take a gradient step with respect to only the
terms of L corresponding to time t. This allows the fitted parameters to ‘track’ the true values
over time as we perform gradient updates. Meanwhile, each update is highly efficient as it only
involves a single term of the objective function. Assume that we have fit θL, θT , θS up to time
t− 1 and are fitting them at time t. The component of L for time t is:

L(t) = ‖y(t)−X(t)(θL(t) + θS(t) + θW (t))‖2
+ λ‖θL(t)− θL(t− 1)− θT (t)‖2
+ µ‖θT (t)− θT (t− 1)‖2 + ν‖θS(t)− θS(t−m)‖2

(4.8)

To do gradient descent at time t, we start from the previously learned values and take a
gradient step. Hence, we start by assuming the previous trend (θT (t) = θT (t−1)) and seasonality
(θS(t) = θS(t − m)), while for the level we follow a ‘default extrapolation’ of starting at the
previous level and following the previous trend (θL(t) = θL(t− 1) + θT (t− 1)).

Next, we want to move in the gradient direction with respect to minimizing L. Comput-
ing the gradients of (4.8) is straightforward and results in the update equations: letting ŷ(t) =
X(t)(θL(t− 1) + θT (t− 1) + θS(t−m) + θW (t)),

θL(t) = θL(t− 1) + θT (t− 1)︸ ︷︷ ︸
default extrapolation

+αX(t)T (y(t)− ŷ(t))︸ ︷︷ ︸
gradient update

θT (t) = θT (t− 1)︸ ︷︷ ︸
previous trend

+β (θL(t)− θL(t− 1)− θT (t− 1))︸ ︷︷ ︸
gradient update

θS(t) = θS(t−m)︸ ︷︷ ︸
previous seasonality

+γ X(t)T (y(t)− ŷ(t))︸ ︷︷ ︸
gradient update

(4.9)
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α, β, γ > 0 are ‘learning-rate’ tuning parameters that replace λ, µ, ν. We will consider how
to set these, and how to initialize θL, θT and θS , in the following paragraph.

Temperature Model Optimization (TEMPFIT) In TEMPFIT, we optimize the temperature
coefficient w and threshold T0 using an alternating approach. First, fixing w and T0, we solve for
θL, θT and θS to minimize L. We then do the reverse (fixing θL, θT and θS and solving for w and
T0), until convergence, as shown in Algorithm 8. The former step of solving for θL, θT and θS
given w and T0 is done using STREAMFIT.

Algorithm 8: TEMPFIT

input: Vr, Vi, Ir, Ii
while not converged do

Solve θL, θT , θS using Eq. (4.9) (STREAMFIT);
Solve w, T0 by minimizing Eq. (4.10);

It remains to solve forw and T0 for fixed θL, θT , θS . Define r(t) = y(t)−X(t)(θL(t)+θS(t)).
Then, since changing w and T0 only affects the L1 loss term, minimizing L is equivalent to
minimizing:

L′ =
N∑

t=1

‖r(t)−X(t) · w ·max(0, T (t)− T0)‖2 (4.10)

Minimizing over w is a straightforward least squares problem. Minimizing over T0 is less
straightforward since max(0, T (t) − T0) is nonlinear in T0. However, temperature is typically
given to 0 or 1 decimal of precision (roughly the precision of most thermometers), and varies
within a fairly narrow range, e.g. 0◦C to 35◦C. Hence, it suffices to try all thresholds between
mint T (t) and maxt T (t) in intervals of 0.1◦C, and select among these to minimize L′.

To complete our algorithm, we need to explain how to choose α, β, γ, and initial values
for θL(t), θT (t), θS(t). We select the former using nonlinear optimization (Levenberg-Marquadt
algorithm [81]) of L. For the latter, it can be verified that the objective L is a quadratic in these
initial values, so we solve for them using least squares. We do these in Line 2 of TEMPFIT, then
fix these values subsequently for the rest of the algorithm (Line 2-4 of STREAMCAST).

Forecasting Step (FORECAST) Given fitted model parameters up to time N , how do we fore-
cast future currents Îr(t), Îi(t), for t = N + 1, · · · , N +Nf?

We first forecast voltages V̂r(t), V̂i(t), t = N+1, · · · , N+Nf using standard univariate Holt-
Winters. Then, for k = 1, 2, · · · we forecast θ(N + k) as the sum of last estimated level θL(N),
trend θT (N), last estimated seasonality at the corresponding position θS(N −m+ 1 + ((k − 1)
mod m)), where mod is the modulo function, and temperature component w ·max(0, T (N +
k)− T0). Finally, we forecast Îr(t), Îi(t) using the BIG model, Eq. (4.4).

Extensions Anomaly Detection To detect anomalies, we compute an anomaly score at each
time. Intuitively, the larger the error between the fitted and actual values, the more anomalous
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a point is. The fitted values Îr(t), Îi(t) are obtained by plugging the learned parameters into the
BIG equations, Eq. (4.4). The real and imaginary errors are then Er(t) = Ir(t) − Îr(t), and
Ei(t) = Ii(t) − Îi(t). The anomalousness at time t is then the sum of real and imaginary errors
at time t, each in units of inter-quartile ranges (IQRs2):

anomalousness(t) =
Er(t)

IQR(Er(1 : N))
+

Ei(t)

IQR(Ei(1 : N))

While any threshold may then be used, we can follow common practice of designating deviation
of ≥ 2 × IQR as outliers, resulting in a threshold of 4 for our anomalousness score. In Section
4.2.4 we show a clear anomaly found in the LBNL dataset.

Confidence Intervals Confidence intervals allow us to provide lower and upper bounds that
contain future values, with e.g. 95% confidence. We use the past distribution of residuals, Ir(t)−
Îr(t) and Ii(t) − Îi(t), as an estimate of residuals in the future. Thus, we sample a ‘possible
future’ by repeatedly sampling from this distribution of past residuals, and treating the sampled
values as residuals at time N + 1, repeating this process for N + 2, and so on. We sample 1000
possible futures in this way. To generate (1− α) confidence intervals, we use the empirical α/2
and (1− α/2)-quantiles of these possible futures. The results are shown in Figure 4.13.

4.2.4 Experiments

We design experiments to answer the questions:
• Q1. Forecasting accuracy: how accurately does STREAMCAST forecast, based on real

data?
• Q2. Scalability: how does the algorithm scale with the data size?
• Q3. What-if scenarios: does STREAMCAST give accurate results under what-if scenarios,

and detect real anomalies in real data?
Our code and links to datasets are publicly available at www.andrew.cmu.edu/user/

bhooi/power.tar. Experiments were done on a 2.4 GHz Intel Core i5 Macbook Pro, 16 GB
RAM running OS X 10.11.2. We set Ninit to 10m (i.e. 10 days) in our experiments.

Data

We use the following two datasets:
• CMU data: (N = 648) hourly voltage and current for the Carnegie Mellon University

(CMU) campus for 23 days, from July 29, 2016 to August 20, 2016. Voltage angle is
unavailable for this data, so here Vr is the voltage magnitude and Vi = 0.

• LBNL data: (N = 3168) from the Lawrence Berkeley National Laboratory (LBNL) Open
µPMU project [117], from October 1, 2015 to October 11, 2015. The data is originally at
120Hz, but we downsample it to one sample every 5 minutes (where each new data point
is the mean of the raw data within those 5 minutes).

2The IQR is the difference between 75% and 25% quartiles, used as a more robust measure of spread compared
to standard deviation.[125]
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(a) CMU data (b) LBNL data

Figure 4.8: STREAMCAST forecasts accurately: it has at least 27% lower forecasting error
than baselines. Error bars show 1 standard deviation.

Q1. Forecasting accuracy

Baselines our baselines are ARIMA [16], Holt-Winters (ETS) [21], seasonal ARIMA [16],
PowerCast (PCAST) [115] (a recent tensor-based power grid forecasting approach), and vector
autoregression (VAR), which uses temperature data and the voltage time sequences as input.
Following standard practice, the ARIMA, SARIMA, and VAR orders are selected using AIC
(Akaike information criterion) [57], and the Holt-Winters hyperparameters are selected using
nonlinear optimization. For PowerCast, we follow the original work in setting Nw = 5, σ = 0.5.

Experimental setup In each trial, an algorithm is given the data for the first N days and fore-
casts Ir and Ii for each time point of the (N + 1)th day, where we average each algorithm’s
accuracy over N = 11, 12, · · · , 20 for CMU and N = 4, 5, · · · , 8 for LBNL. The forecasts
are compared with the true values using normalized RMSE: RMSE(x, x̂) =

√
‖x− x̂‖22/‖x‖22,

where x = [Ir Ii] contains Ir and Ii values stacked into a single vector.

Results Figure 4.8 shows that STREAMCAST outperforms the baselines in both datasets, with
at least 27% lower RMSE. The tensor-decomposition based PCAST, which is also physics-based,
is the second-best performer, suggesting that physics-based models may be beneficial for fore-
casting.

Q2. Scalability

We run STREAMCAST on a version of our CMU dataset, duplicated repeatedly so as to produce
larger datasets. We run STREAMCAST on time series of sizes as plotted on the x-axis of Figure
4.9, from around 1 million to around 40 million. The plot is parallel to the diagonal, indicating
linear growth.

STREAMCAST takes less than 4 minutes for the trial of size 40 million, making it scalable to
large datasets.
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Figure 4.9: STREAMCAST is fast and scales linearly: growth parallel to the diagonal indicates
linear growth.

Q3. What-if scenarios

Changing temperature and number of appliances: how can we forecast under the scenario
that temperature increases by 10◦C, and number of appliances increases by 20%? Such scenarios
are useful for future planning, but standard forecasting methods cannot handle them. The BIG
parameter G represents the contribution of the conductive load component (e.g. light-bulbs) and
B as the contribution of the reactive load component (e.g. motors), so we examine the results of
increasing either G, B, or temperature, and plot how the forecasts change under each scenario.

The results are shown in Figure 4.10. The left plots are for increasing G; the center plots
for changing B, and the right plots for increasing temperature. Upper plots are for Ir while
lower plots are for Ii. In each plot, the colored lines correspond to different amounts of increase:
e.g. 1.1 × G means that the amount of reactive load on campus increased by 10%. The results
show that: 1) when G is increased, only Ir increases, but not Ii; 2) when B is increased, only Ii
increases, but not Ir; 3) when temperature increases, both Ir and Ii increase. All three results are
intuitive, given that in the CMU dataset we have Vi = 0; it can be verified from (4.4) that in this
case Ir should be influenced by changes in G, but not by changes in B.

Changing voltage An important goal in practice is to ensure that the system can make accurate
predictions under changes to voltage levels. To test our model, we use an electrical system simu-
lator, SUGAR [92]. The simulator uses physics-based models for different electrical equipment:
we specify 10 motors and additional load with maximum resistance 50Ω, varying sinusoidally
with daily periodicity. SUGAR generates realistic time series currents for an electrical system
given specified input voltages Vr, Vi. In order to have a realistic voltage series, our input voltages
are the voltage series from our CMU dataset. We obtain currents (Ir, Ii) as outputs from this
simulation.

To test STREAMCAST, we fit it on (Vr, Vi, Ir, Ii), but then evaluate its RMSE on a different
(V ′r , V

′
i , I
′
r, I
′
i) in which Vr and Vi are defined in one of two ways: 1) Increase: V ′r = 1.05× Vr,

V ′i = 1.05 × Vi. 2) Decrease: V ′r = 0.95 × Vr, V ′i = 0.95 × Vi. We then obtain I ′r and I ′i from
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Figure 4.10: STREAMCAST can handle forecasting under what-if scenarios: the plots show
the results of 1) increasing G; 2) increasing B; and 3) increasing temperature.

the same electrical simulation under voltages V ′r and V ′i .
Standard forecasting methods would not work as baselines, since an electrical model is

needed to accurately predict what happens to I when V changes. Hence, we use the follow-
ing baselines: 1) PQ: this is the same as our STREAMCAST approach, but substituting the BIG
model with the more common PQ electrical model [92]. 2) PowerCast [115] as in the previous
section; 3) Window k: this fits the static BIG model (Section 4.2.2) to short time windows of
size k, where k = 2, 4, 8, 16.

Figure 4.11 shows the fit of STREAMCAST, PQ and Window4 against the true values (the
remaining methods are not plotted for visibility, but their RMSE is in Table 4.5), and Table 4.5
shows the RMSE of each method against the true values. STREAMCAST outperforms the base-
lines by a clear margin. Because PQ is a constant-power model, increases in voltage magnitude
necessarily lead to the model predicting a decrease in current of a similar magnitude. However,
in practice, both voltage and current can change in the same direction, in which case the PQ
model makes the wrong qualitative predictions. The Windowk baselines tend to overfit to near-
term behavior due to their use of windows; this explains the high variance over time in Figure
4.11.

Anomaly Detection Section 4.2.3 explains how to detect anomalies under our method; Figure
4.12 shows the results on the LBNL dataset, where our method outputs a plot (‘anomalousness’)
of the anomaly score over time. There is a large spike in anomalousness around day 2; note that
the anomaly is not at all visible from only the current time series. In the voltage time series,
however, we find a 2-second period of quick oscillations between negative and positive values
exactly at the time of the anomaly. Follow-up analysis reveals that the oscillation is likely an
error in the measuring device: the complex angle of voltage is synchronized with the rest of the
system via a GPS signal, and in case of loss of this GPS signal, we may observe oscillations
such as those in Figure 4.12, which explains why the voltage magnitude remains stable while the
angle oscillates.
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Table 4.5: STREAMCAST is accurate even under different voltage levels: here the methods
are tested on what-if scenarios with different voltage levels. Bold underline shows the best
performer. Error values are given as percentage RMSE (i.e. RMSE ×100).
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Figure 4.11: STREAMCAST accurately responds to changes in voltage: forecasts of Ir and Ii
by each method vs. true values, when voltage was increased or decreased by 5%. STREAMCAST

fits the data more accurately then baselines. RMSE results (with additional baseline methods)
are in Table 4.5.
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Figure 4.12: STREAMCAST detects an anomaly in the LBNL dataset. It corresponds to a
2-second period where voltage rapidly oscillates between negative and positive values.

Confidence Intervals Confidence intervals are useful for obtaining ranges of predictions: e.g.
when monitoring the grid. Section 4.2.3 explains how we compute them. 95% and 99% confi-
dence intervals on our CMU dataset are shown in Figure 4.13.
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Figure 4.13: STREAMCAST provides confidence intervals.

4.2.5 Conclusions
Our contributions are as follows:

1. Domain knowledge infusion: we propose a novel, Temporal BIG model that extends the
physics-based BIG model, allowing it to capture changes over time, trends, seasonality,
and temperature effects.

2. Forecasting: our STREAMCAST algorithm forecasts multiple steps ahead and outperforms
baselines in accuracy. STREAMCAST is online, requiring linear time and bounded memory.

3. What-if scenarios and anomaly detection: our approach accurately handles scenarios in
which the voltage levels, temperature, or number of appliances change. We also use it to
detect anomalies in a real dataset. Finally, STREAMCAST provides confidence intervals
for its forecasts, to assist in planning for various scenarios.

Reproducibility: our code is publicly available at www.andrew.cmu.edu/user/bhooi/
power.tar.
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Chapter 5

Aircraft data

5.1 A-MINE: coupled matrix-tensor factorization

How can we exploit side information, in addition to the multiple, co-evolving time sequences?
In this section, we introduce A-MINE, a coupled matrix-tensor factorization based signal mining
method for detecting anomalous subgroups of sensors with the aid of the side information on the
alerts.

5.1.1 Introduction

How can we tell if some sensors display anomalous behaviors in aircraft systems? Can we map
the sensors to the part of the aircraft?

Let us assume that sensor signals are recorded during every flight. So if we denote the number
of sensors, number of timeticks, and the number of flights as ns, nt, nf , then we have sensor
readings in a tensor format S ∈ Rns×nt×nf . Additional to the sensor readings, let us assume that
we are given alerts information from each flight, i.e. warnings or alerts triggered during the flight,
which may be caused by the sensor anomalities. Our goal is to detect a subgroup of anomalous
sensors with the help of the alert information. To summarize, our problem formulation is as
follows:
Informal Problem Formulation:
• Given: Sensor recordings and the alerts counts for each flights
• Detect: anomalous subgroup of sensors

In order to tackle the mining tasks, we first need to understand the nature of the data, and
design an algorithm. After exploring the dataset, we came up with some significant insights we
can use to solve our problem. These are listed below:
Insights:

1. Although sensor values may differ depending on the flight condition, sensor-sensor corre-
lation relationship does not change throughout the flight under normally operating condi-
tion.

2. Assume most of the sensors are normal, only a small subset of sensors behave anomaly.
3. Anomalous sensors can be held accountable for the types of alerts triggered for a flight.
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We discuss our approach in section 5.1.3 in greater detail.

5.1.2 Background

Tensor Factorizations

Tensors are multidimensional arrays that generalize the concept of matrices. As a consequence,
they are a popular choice in various applications including representing time-evolving relations,
such as Facebook interactions [95], sensor networks [120], EEG data for detecting the ori-
gin of epilepsy seizures [1], fMRI analysis [129], image classification [122], or heterogeneous
graph analysis [110]. When properly applied, tensor factorizations identify the underlying low-
dimensional latent structure of the data. The latent factors are then used to identify anomalies,
to estimate missing values or to understand how the data was generated in the first place. The
PARAFAC [51] (also called CP) decomposition is one of the most popular among the many
tensor factorizations flavors [67], as it factorizes a tensor into a sum of rank-1 tensors. In three
modes, the problem is usually framed as finding factor matrices A , B and C that minimize the

squared error between X and the reconstructed tensor: minA,B,C

∥∥∥X −
∑

f af ◦ bf ◦ cf

∥∥∥
2

F
.

Coupled Factorizations

We are often interested in analyzing real-world tensors when additional information is available
from distinct sources. For example, in an aircraft sensor data, we might have additional flight
information available such as whether a flight was normal/abnormal, weather conditions, routes
taken, etc, which we wish to incorporate when analyzing the sensor signals for multiple flights.

Coupled Matrix-Tensor Factorizations is a natural extension to the standard tensor factoriza-
tion formulation. For instance, the factorization of a third-order tensor X coupled with a matrix
M on its first mode can be obtained by minimizing

min
A,B,C,D

∥∥∥X − X̂
∥∥∥
2

F
+ λ

∥∥∥M− M̂
∥∥∥
2

F
(5.1)

where λ is a parameter representing the strength of the coupling for this task, i.e., how important
M is to improve the prediction. An illustration of the coupled matrix-tensor factorization is
shown in Figure 5.1, where the modes are color-coded. In this simple example, the first mode of
the tensor X in red is coupled with the second mode of the additional information matrix M in
red as well.

Figure 5.1: A coupled matrix-tensor factorization example
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Many techniques have been proposed to solve this non-negative optimization problem, such
as projected Stochastic Gradient Descent (SGD) [11] (i.e., additive update rules) and multiplica-
tive update rules. Most of this work extends Lee and Seung’s multiplicative matrix updates
formulae [71] for matrices, notably the simple extension for tensors [133] and the many coupled
extensions, e.g. Generalized Tensor Factorization [112, 138].

5.1.3 Method
One of the insights we have on the aircraft sensor systems data is that the absolute values of
the sensor readings change from flight to flight depending on the flight condition. For example,
altitude sensor readings would be different for flights taking different paths or routes. Thus we
cannot simply use the raw sensor readings as the input to our algorithm. From our first insight,
even though the absolute values may vary across different flights, the sensor-sensor correlation
relationships do not change across the flights. Thus, we reform our input data into correlation
matrices. Let X ∈ Rns×ns×nf be a tensor of sensor-sensor correlation matrices of ns continuous
sensors for nf flights.

In addition to the sensor readings, we also have the alerts triggered for each flight. Let us
denote the number of alert categories or the ‘ATA chapters’ as na, then we have the message
matrix for the flights, M ∈ Rnf×na . Mij denotes the number of alerts triggered for the j − th
alert type during the i− th flight.

The matrix M and the tensor X share a mode, the flight mode. So we propose to factorize
M and the tensor X using coupled tensor factorization algorithm.

min
A,B,C,D

1

2
||X − C − D||2F +

1

2
||M−CDT ||2F (5.2)

where C,D are the common and difference tensors: C =
∑R

r=1 ar ◦ ar ◦ Ir, and D =
∑R

r=1 br ◦
br ◦cr. Here, C is a tensor that captures normal sensor-sensor correlations, andD is a tensor that
captures subtle anomalous sensor-sensor correlations that can be factorized with M in coupled
manner: M =

∑R
r=1 cr ◦ dr, sharing the cr factors or the latent factors for the flight mode.

Figure 5.2: Tensor-matrix formulation
We are assuming that majority of normal sensor-sensor correlation would be captured by the

common tensor C and subtle subgroups of anomalous sensors that break away from the normal
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sensor-sensor correlation would be captured by the difference tensor D, which is factorized in a
coupled manner with M, the alerts information matrix.

In Figure 5.2, an illustration of matrix-tensor factorization is shown. The high level idea
is to separate the data tensor X into two separate tensors that captures normal, and abnormal
activities respectively, where the abnormal tensor is to be coupled with the additional matrix of
alerts information. Here, the shared mode is denoted in light blue color.

5.1.4 Experiments

Synthetic data experiments

To check if our method seems reasonable, we conducted a simple synthetic data experiment. We
assumed that there are five parts in the aircraft system where each part consist of 10 sensors with
high correlations, making 50 sensors in total. For each group of sensor, we designed the sensor
pattern to look distinct from one another, and added random noise to generate 10 sensor readings
for each group. In total, we generate a sensor reading of 100 time ticks, for 120 flights.

In Figure 5.3, we show the result of what our method captured.

Figure 5.3: Visualization of the result
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In the top row, we remind what our method does: we haveX data tensor, and we are assuming
it is a sum of two tensors: Common and difference tensors in C and D.

We generated 3 anomalous flights in pink, blue, and green slices (flights).
In the second row, we show a slice for the normal flight, say f1. This is what the observed

correlation looks like, and it learned that the dominant common pattern throughout the flight is 5
groups of sensors with strong correlation, and nothing captured inD slice (because it is a normal
flight).

Third row in pink box shows the pink slice (f6 slice) of above tensors: We see that the data
given to us had a subgroup of sensors that had zeroed-out correlation with other sensors in the
group. And this subgroup of sensors with abnormal correlation was captured in D slice.

And same goes for the blue slice, f16 and the green slice f24. D slices captured the subgroup
of sensors that were corrupted as shown in the slices of the data tensor X .

Real-world data experiments

In this section, we share experimental results on the real-world dataset. We apply our method on
NASA dataset1 that is publicly available. NASA dataset consists of records of sensor signals for
multiple flights. There are 180 sensors, sampled at varying sampling rate (0.25-16). Among 180
sensors, we select continuous sensors, which comprises of 94 sensors. Then we normalize the
lengths of signals to 1,000 time points by re-sampling the signals, by decimation down-sampling
technique, i.e. if we are targeting for a time sequence of length 10 given 100, we keep only
every 10th sample. At the end of the pre-processing, we have 94 sensors recorded for 1,000 time
points, for 50 flights.

We injected anomalies as follows. Total number of alerts were set to two, where each alert
was triggered for two randomly selected consecutive flights. For each alert, one sensor was
randomly selected to be perturbed to mimic anomalous behavior by replacing the signal with
white noise. We repeat and try ten different anomaly injections and averaged the performance
over ten trials.

There are mainly three components in our method: 1) working in the correlation space instead
of raw sensor signals, 2) separating common and difference tensors, and 3) applying coupled
matrix-tensor factorization for extracting sensor subgroups responsible for the alerts. The most
naive method one could try in solving this problem would be using the sensor signals itself
instead of working in the correlation space, without assuming common and difference tensors
separately. Here, the modes of the input tensor would be (sensors, time, flights). We will denote
this method as ’CMTF’. From our experiments, this method did not prove to be a good choice
for solving our problem. One could think of ’A-MINE-0’ where we still feed the sensor signals
as given to us (not correlations, but a tensor of modes (sensors, time, flights)) but learning two
separate tensors of common and difference tensors. (This was the first model that we tried to
solve this problem, which did not quite work out well, which led us to improve even further,
to come up with our final proposed method, A-MINE.) Finally, our proposed method A-MINE

would be where we work on the correlation space of sensor signals and separate it into two
tensors: common and difference tensors.

1https://c3.nasa.gov/dashlink/resources/664/
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In Figure 5.4, ROC curve for A-MINE-0 and A-MINE is shown. We varied the threshold for
detecting anomalies in the slices of difference tensor to compute the ROC curves. We repeated
10 experiments and averaged the curves.

Figure 5.4: ROC curve for A-MINE-0 and A-MINE

The AUCs (Area Under the Curve) for A-MINE-0 and A-MINE were 0.82 and 0.87, respec-
tively. From this experiment, we could confirm that our intuition on A-MINE algorithm to more
effectively solve the problem was correct: working in the correlation space of the sensors instead
of the raw signals.

Figure 5.5: Examples from NASA dataset. Each row shows - slices from X , X̂ , C,D.in order.
First row is an illustration, second row is an example of a normal flight, and the third row is an
example of an anomalous flight.

In Figure 5.5, we show some examples of result on NASA dataset. In the second row, we
show slices from tensors X , X̂ , C,D for a normal flight. We see that D slice did not capture any
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sensors. In the third row, we show the slices for an anomalous flight. This anomalous flight had
sensor 63 perturbed. In the first column of the third row, we can see that in the slice X , there
is a broken correlation for sensor 63, where there shows white lines crossing through the a large
group sensors (indicated with a red arrow). Our proposed method successfully captured this
sensor 63 in the D slice (white line striking through the sensor 63, indicated with a red arrow) in
the last column of the third row.

5.1.5 Conclusion
In this section, we described the aircraft mining problem that we are interested in. We shared our
insights on the aircraft sensor signals data, and proposed an algorithm to learn normal sensor-
sensor correlations and detect subtle anomalous sensor subgroups. Our proposed method consists
of three parts: 1) working in correlation space, 2) learning two separate tensors, common and
difference tensors, and 3) utilizing coupled matrix-tensor factorization. From our experimental
results on NASA dataset, we showed that our proposed method improved anomaly detection
performance compared to naively applying coupled matrix-tensor factorization with or without
learning two separate tensors.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis, we discussed our works on two different tasks: 1) signal reconstruction and 2)
signal mining in various applications.
• Signal reconstruction:

1. Historical epidemiological records: Reconstructing finer granularity of patient counts
from multiple sources of reports in different granularities.

2. Brain scans: Reconstructing finer brain scan images from two different modalities of
different resolution, i.e. MEG and fMRI.

• Signal mining:
1. Power grid: Learning latent features utilizing the domain knowledge, and forecasting

and detecting anomalies in the power consumption data.
2. Aircraft systems: Detecting anomalies in a large-scale aircraft sensor system corre-

sponding to specific alerts.
In Chapters I and II, we have demonstrated our works on signal reconstruction and mining.

We have proposed novel problem formulations and algorithms to tackle the problems, and share
our insights on the real world data we are dealing with. From our experimental results, we
showcase that our insights and proposed algorithms perform well, yielding some meaningful and
interesting results for further analysis.

6.2 Future directions

Infusing domain knowledge

In our signal reconstruction works, we have been working on the historical epidemiology and
brain domains. As we have shown, signal reconstruction requires additional information on the
data, i.e. domain knowledge. While it is crucial to introduce appropriate domain knowledge for
the task, it is often not straight-forward to incorporate it into the machine learning techniques. It
would facilitate applications of our algorithms if we provide more principled way of incorporat-
ing domain knowledge into the algorithms.
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Handling high dimensionality

As we have experienced in our previous works, signal mining usually deals with large datasets
with high dimensions. High dimensionality causes machine learning algorithms to behave in the
unexpected manners, resulting in bad performances. Therefore, it is of great interest to come up
with effective algorithms that can efficiently handle high dimensional datasets. We expect that
extension of our algorithms appropriate for high dimensional data would help them broaden their
applications.

Visualization and summarization

Datasets we deal with usually consist of high dimensionality and long-length time sequences.
Because of its size and also complexity, it is often very difficult to understand the data just by
looking at it. Also, when analyzing experimental results, it is sometimes hard to interpret the
result other than the numbers. Therefore, it is important that we make algorithms that can do
sense-making. We expect that effective visualization and summarization of data would benefit
the users’ easy understanding of the data.

136



Appendix A

BRAINZOOM supplementary materials

Here proofs were done by one of our collaborators, Xiao Fu1. We place the proofs here to make
the thesis self-contained.

A.1 Step size choices.

In this appendix we show that the step sizes chosen for BRAINZOOM leads to monotonic decrease
of the cost function of (3.7). The idea is to simply show that the selected step sizes are smaller
than the reciprocal of the respective Liptchitz constants of the conditional functions while fixing
the other variables. We show that for the step size ofZ, and that ofW follow similar arguments.

The Liptchitz constant is the supremum of the spectral norm of the Hessian matrix of a
function—for quadratic functions, it boils down to the spectral norm of Hessian. To derive it, let
us first write the Z-subproblem 3.11 in the vectorized form

f̄(z;w, τ) = ‖xt − τ T̄tz‖2 + ‖xs − T̄sDiag(w)z‖2

+ρ
(
‖Diag(ds)H̄sz‖2 + ‖Diag(dt)H̄tz‖2

)
(A.1)

+µ‖z −w‖2,
where the lowercase letters are vectorized versions of the matrices denoted by the uppercase
letters, and

T̄t = I ⊗ Tt, T̄s = Ts ⊗ I,
H̄s = I ⊗Hs, H̄t = Ht ⊗ I.

The Hessian matrix can easily be calculated as
∇2
zf̄ = τ 2T̄ Tt T̄t + Diag(w)T̄ Ts T̄sDiag(w) (A.2)

+ρH̄T
s Diag(d2

s)H̄s + ρH̄T
t Diag(d2

t )H̄t + µI,

a summation of several individual matrices. An upperbound on the spectral norm of ∇2
zf̄ is the

sum of the individual spectral norms. Furthermore, we invoke the following properties on the

1http://people.oregonstate.edu/ fuxia/
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matrix spectral norm:
‖AB‖ ≤ ‖A‖‖B‖,

‖A⊗B‖ = ‖A‖‖B‖.
Then we have that

‖∇2
zf̄‖ ≤ τ 2λmax(T

T
t Tt) + max(w2)λmax(T

T
t Tt)

+ρ
(
max(d2

s)‖Hs‖2 + max(d2
t )‖Ht‖2

)
+ µ.

Finally, we show that ‖Hs‖ and ‖Ht‖ are upperbounded by cH defined in (3.15), by taking the
total variation regularization as an example, assuming its size is(n−1)×n.

The definition of matrix spectral norm is
‖H‖ = max

‖u‖=1
‖Hu‖.

Assume Ĥ is obtain by adding one more row into H , then we trivially have ‖H‖ ≤ ‖Ĥ‖.
Consider Ĥ to be the following circulant matrix

Ĥ =




1 −1 0 . . .

0 1 −1 . . .
... . . .

1 −1

−1 0 . . . 0 1



,

it can be diagonalized by the n-point discrete Fourier transform (DFT) matrix Φ
Ĥ = ΦDiag(ĥ)Φ∗,

where ĥ is the DFT of first row of Ĥ . Because Φ has orthogonal columns, by rotating the
elements of ĥ to be non-negative real, this becomes the singular value decomposition of Ĥ , and
the largest absolute value of ĥ is the spectral norm of ‖Ĥ‖. By the definition of DFT,

ĥ = 1 + [ 1 e−i/n e−i2/n ... e−i(n−1)/n ]T ,

therefore we trivially have max(|ĥ|) ≤ 2, thus
‖H‖ ≤ 2

Similarly, for the smoothness regularization, ‖H‖ ≤ 4.

A.2 Proof of Theorem 1

Two claims were made in Theorem 1. Here we separate them into two propositions, and prove
them individually.

Proposition 1 Let {(Z(r),W (r), τ (r))}r be the solution sequence produced by the proposed
BRAINZOOM (3.16), then every limit point of {(Z(r),W (r), τ (r))}r is a stationary point of Prob-
lem (3.7).

Proof We prove that BRAINZOOM described in (3.16) falls into the framework of successive
upper-bound minimization (BSUM) [101]. As a result, every limit point is a stationary point,
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according to [101, Theorem 2]. To do so, we re-write the algorithm as
τ (r+1) ← arg min

τ
f(Z(r),W (r), τ),

W (r+1) ← arg min
W

uw(W ;Z(r),W (r), τ (r+1)),

Z(r+1) ← arg min
Z
uz(Z;W (r+1),Z(r), τ (r+1)),

where the arg min’s are uniquely defined, function uz is an auxiliary function that satisfies that
∀Z̃, W̃ , τ̃ ,

uz(Z; Z̃, W̃ , τ̃) ≥ f(Z, W̃ , τ̃),∀Z
uz(Z̃; Z̃, W̃ , τ̃) = f(Z̃, W̃ , τ̃),

∇Zuz(Z̃; Z̃, W̃ , τ̃) = ∇Zf(Z̃, W̃ , τ̃),

and similarly for uw.

For the update of τ , it is a scalar least-squares problem, and the minimizer is unique as long
as ‖TtZ‖2F 6= 0, which can be guaranteed as long as the regularization parameter ρ is not too big.

As for the auxiliary function with respect to Z, we define it as

uz(Z; Z̃, W̃ , τ̃) = f̄(Z̃, W̃ , τ̃) +
〈
∇Z f̄(Z̃, W̃ , τ̃),Z − Z̃

〉
+

1

2z
‖Z − Z̃‖2F .

As we have shown in Appendix A.1 ’Step-size choices’ section, 1/z is larger than the Lipschitz
constant of f̄ when fixingW and τ , therefore

uz(Z; Z̃, W̃ , τ̃) ≥ f̄(Z; W̃ , τ̃) ≥ f(Z, W̃ , τ̃).

It is also easy to see that the function value and gradient also coincides with that of f with respect
to Z̃. Furthermore, uz is strongly convex, implying the minimizer is unique.

Similarly, and with simpler derivations, we have that uw also satisfies the sharp upperbound
requirements and the minimizer is unique. Invoking [101, Theorem 2], every limit point of
BRAINZOOM is a stationary point. �

Proposition 2 In addition to Proposition 1, the optimality gap between {(Z(r),W (r), τ (r))}r
and a stationary point is at most O(1/r); i.e., the algorithm approaches a stationary point at
least sub-linearly.

Proof For the τ -subproblem, because
τ (r+1) = tr(XT

t TtZ
(r))/‖TtZ(r)‖2F ,

we have that
f(Z(r),W (r), τ (r))− f(Z(r),W (r), τ (r+1)) (A.3)

= ‖Xt − τ (r)TtZ(r)‖2F − ‖Xt − τ (r+1)TtZ
(r)‖2F

=
1

‖TtZ(r)‖2F
(
∂τf(Z(r),W (r), τ (r))

)2

= t(r)
(
∂τf(Z(r),W (r), τ (r))

)2
,

where we define t(r) = 1/‖TtZ(r)‖2F
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For theW -subproblem, we have the following inequality:
f(Z(r),W (r+1), τ (r+1)) (A.4)

≤ f(Z(r),W (r), τ (r+1)) +
L
(r)
w

2
‖W (r) −W (r+1)‖2F

+
〈
∇Zf(Z(r),W (r), τ (r+1)),W (r+1) −W (r)

〉
.

We also notice that

W (r+1) = arg min
W

1

2w(r)
‖W −W (r)‖2F

+
〈
∇W f(Z(r),W (r), τ (r+1)),W −W (r)

〉
, (A.5)

which means 〈
∇W f(Z(r),W (r), τ (r+1)),W (r+1) −W (r)

〉

+
1

2w(r)
‖W (r+1) −W (r)‖2F ≤ 0, (A.6)

therefore
f(Z(r),W (r), τ (r+1))− f(Z(r),W (r+1), τ (r+1))

≥
(

1

2w(r)
− L

(r)
w

2

)
‖W (r+1) −W (r)‖2F . (A.7)

On the other hand, sinceW (r+1) is the minimizer of (A.5), by the first order optimality condition,
we have

∇W f(Z(r),W (r), τ (r+1))− 1

w(r)
(W (r+1) −W (r)) = 0.

In sum,
f(Z(r),W (r), τ (r+1))−f(Z(r),W (r+1), τ (r+1)) (A.8)

≥
(
w(r)

2
− L

(r)
w

2w(r)2

)
‖∇W f(Z(r),W (r), τ (r+1))‖2F .

Similarly for Z, we can show that
f(Z(r),W (r+1), τ (r+1))−f(Z(r+1),W (r+1), τ (r+1)) (A.9)

≥
(
z(r)

2
− L

(r)
z

2z(r)
2

)
‖∇Zf(Z(r),W (r+1), τ (r+1))‖2F .

Combining (A.3), (A.8), and (A.9), we obtain
f(Z(r),W (r), τ (r))− f(Z(r+1),W (r+1), τ (r+1))

≥ t(r)
(
∂τf(Z(r),W (r), τ (r))

)2
(A.10)

+

(
w(r)

2
− L

(r)
w

2w(r)2

)
‖∇W f(Z(r),W (r), τ (r+1))‖2F

+

(
z(r)

2
− L

(r)
z

2z(r)
2

)
‖∇Zf(Z(r),W (r+1), τ (r+1))‖2F .
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To show the convergence rate, let us define

φ(r) =
(
∂τf(Z(r),W (r), τ (r))

)2

+ ‖∇W f(Z(r),W (r), τ (r+1))‖2F
+ ‖∇Zf(Z(r),W (r+1), τ (r+1))‖2F

One can see that
φ(r) → 0 =⇒

(
∂τf(Z(r),W (r), τ (r))

)2 → 0

‖∇W f(Z(r),W (r), τ (r+1))‖2F → 0

‖∇Zf(Z(r),W (r+1), τ (r+1))‖2F → 0

which implies a stationary point is attained. Let us assume that the first time φ(r) < ε requires T
iterations. Then, summing up (A.10) over r = 1, ..., T , we have

f(Z(1),W (1), τ (1))− f(Z(T ),W (T ), τ (T ))

≥
T∑

r=1

t(r)
(
∂τf(Z(r),W (r), τ (r))

)2

+
T∑

r=1

(
w(r)

2
− L

(r)
w

2w(r)2

)
‖∇W f(Z(r),W (r), τ (r+1))‖2F

+
T∑

r=1

(
z(r)

2
− L

(r)
z

2z(r)
2

)
‖∇Zf(Z(r),W (r+1), τ (r+1))‖2F .

≥
T∑

r=1

cφ(r) (A.11)

where

c = min
r

{
t(r),

(
w(r)

2
− L

(r)
w

2w(r)2

)
,

(
z(r)

2
− L

(r)
z

2z(r)
2

)}
.

The above implies
f(Z(1),W (1), τ (1))− f(Z(T ),W (T ), τ (T ))

T
≥ cφ(r),

and so

φ(r) ≤ 1

T

(
f(Z(1),W (1), τ (1))− f(Z?,W ?, τ ?)

c

)
,

where Z?,W ?, τ ? denote a global optimal solution of Problem (3.7). This completes the proof.
�
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