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Abstract

Classical statistics and machine learning posit that data are passively collected,
usually assumed to be independently and identically distributed. In modern data
science applications, however, many times a data analyst has control over how data
are acquired or selected. For example, in simulation/hyper-parameter optimization
the input parameter configurations can be adaptively chosen to obtain data resulting
from the carefully chosen input parameters. In sequential decision making problems,
data such as feedback or utility depend on the particular decisions which can be
adaptively and selectively made.

The main topic of this thesis is to study how selective data acquisition techniques
can be applied in estimation, optimization and/or decision making problems. Three
representative problems are studied, as we explain in more details below:

1. Computationally tractable experimental design, which studies the classi-
cal question of (optimal) experimental design in linear and generalized linear
models from a computational perspective. We design polynomial-time algo-
rithms with rigorous approximation guarantees in terms of optimality criteria,
and show an application to a 3D lightweight structure optimization problem.

2. Sample-efficient query regimes for nonparametric optimization, which tries
to understand the most sample efficient regimes to make adaptive queries to a
nonparametric function for optimization purposes. We consider three different
settings of nonparametric optimization: smooth non-convex functions in low
dimensions, high-dimensional convex functions with sparsity structures, and
convex function sequences that evolve slowly over time.

3. Dynamic assortment optimization, which studies the classical assortment op-
timization problem in revenue management from a dynamic perspective, by
combining statistical estimation of customers’ utility models and optimization
of assortments based on estimated utilities into a unified theoretical framework.

We characterize through statistical minimaxity the fundamental information-theoretic
limits of these problems as well as notions of optimality of our proposed methodolo-
gies. On the practical side, we demonstrate industrial engineering and/or operations
management applications such as lightweight structural design, dynamic pricing and
assortment planning.
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Chapter 1

Introduction

Classical statistics and machine learning posit that data are passively collected, usually assumed
to be independently and identically distributed. In modern data science applications, however,
many times a data analyst has control over how data are acquired or selected. One particular
interesting data collection scheme is selective/active data acquisition, in which a data analyst
is capable of selecting which data should be collected prior to experiments/measurements, or
updating his/her data collection as the experiments and data analysis are undergoing.

In this thesis, we concentrate on theoretical and practical aspects of selective/active data ac-
quisition for a wide range of estimation and optimization problems. The problems we considered
and results we obtained are summarized in the rest of this chapter.

1.1 Computationally tractable experimental design methods

Given a large pool of candidate design points (unlabeled data points), the problem of experimen-
tal design is to select, prior to any actual experimental/labeling procedures, a small subset of
design points on which measurements or labels are to be collected, in order to maximize statis-
tical efficiency and minimize measurement/labeling efforts. More specifically, given a pool of
data/design points X', the objective is to select aq subset X < X under resource constraints such
as | X| < k that is optimal for a given learning objective.

The experimental design problem has two aspects: the statistical question focuses on which
candidate set has the maximal statistical efficiency, and the computational question studies how
to find a good candidate set in a computationally tractable manner. While the statistical question
has been mostly well understood (at least for linear models and their variants) (Fedorov, 1972;
Pukelsheim, 2006), the computational aspect is less investigated, and computationally tractable
(polynomial running-time) methods with rigorous approximation statistical efficiency guarantees
are particularly rare.

My thesis work on the computationally tractable experimental design problem is presented
in Chapter 2. The algorithmic framework is a continuous relaxation of the discrete combinato-
rial experimental design problem, which is easy to solve using conventional convex continuous
optimization methods (Boyd & Vandenberghe, 2004; Yudin & Nemirovskii, 1983). After the
continuous relaxation, sampling based or greedy techniques are applied to “round/sparsify” con-
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tinuous solutions into discrete subsets of selected candidate design points.

Rigorous approximation guarantees are established for the proposed computationally tractable
algorithms. More specifically, we show for linear regression models that if k£ (the number of se-
lected candidate points) is at least 2(p/e?) where p is the problem dimension (i.e., number of
variables), then the proposed algorithm achieves a (1 + ¢) relative approximation of the opti-
mal statistical efficiency. We also demonstrate our methods on a real-world application of 3D
lightweight structural design as an application of our proposed methods.

1.2 Selective queries in nonparametric optimization

Many practical questions can be cast as optimization (e.g., finding the minimum value) of an
unknown function f : X — R on a known domain X < R?, through selective queries of noisy
function values f(z;) at carefully selected query points {z;},;. The examples of hyper-parameter
estimation and some experiment/simulation optimization problems fall into this framework, by
abstracting the mapping from hyper-parameter or simulation settings to performance of an algo-
rithm/experimental protocols as the unknown function f to be optimized.

Chapter 3 presents my thesis work on the nonparametric optimization question, underly three
different settings. Sec. 3.1 considers the case where domain dimension d is very small, and
derives tight local minimax rates for optimizing a smooth nonparametric function with certain
level set growth conditions. Sec. 3.2, on the other hand, focuses on settings where domain
dimension d is very large, maybe far exceeding the number of queries/experiments n allowed.
By imposing sparsity and convexity assumptions on f, the number of queries n needs only to
depend on the “intrinsic” dimension s and the logarithm of the ambient dimension d. In Sec. 3.3,
we consider a non-stationary version of the nonparametric optimization problem in which the
function to be optimized is allowed to slightly change over time. Such non-stationary settings
are useful in operations/revenue management applications such as dynamic pricing.

1.3 Dynamic assortment planning

Consider N items for sale, each associate with a known “revenue parameter” r; € [0, 1] indicating
the amount of revenue collected once a customer purchases the ith item. At each time epoch ¢,
the retailer provides an assortment of items S; € [N] to an incoming customer, and observes a
purchasing action i, € S; U {0}, indicating which item in the assortment S; is purchased by the
customer (if 7; € Sy) or no purchase is made (i; = 0), in the case that none of the items in .5; is
satisfactory to the customer.

Usually, the customer’s purchasing choice ; is governed by a probabilisitic model

1y ~ p@o('|St)a

where 6, is an underlying parameter characterizing the customer’s preferences of items. Ex-
amples include independent preference parameters v; for each ¢ € [N], or contextual models
v; = exp{z0y}. Unlike stationary settings where 6, is perfectly known and the assortment
planning problem is merely a combinatorial optimization one (see, e.g., Anderson et al. (1992);

2



Kok et al. (2008)), under dynamic settings the preference parameters 6, are unknown and have
to be inferred or estimated on the fly from customers’ purchasing actions {i;}; (Agrawal et al.,
2017a; Rusmevichientong & Topaloglu, 2012; Saure & Zeevi, 2013).

Chapter 4 describes my thesis work on the dynamic assortment planning problem. Sec. 4.1
considers the plain multinomial logit choice model and drives a surprising /V-independent regret
bound based on a novel trisection based algorithm. Sec. 4.2 studies the more complex nested logit
choice model, and finally in Sec. 4.3 a discrete choice model with contextual information of items
is studied. For all variants of discrete choice models (and the dynamic assortment optimization
problems they give rise to), rigorous regret upper bounds are proved for the policies, and regret
lower bounds are proved whenever possible to show the optimality of our proposed methods.






Chapter 2

Computationally tractable experimental design
methods

(Optimal) design of experiments is a classical topic in statistics research (Pukelsheim, 2006).
Given a large collection of design points X = {x1,xs,--- ,x,} € RP, the objective of experi-
mental design is to select a small subset {21, - - , zx} © X with & « n such that regression over
the selected subset of design points achieves the optimal statistical efficiency. The experimen-
tal design problem is particularly important in several scientific and engineering fields, where
experiments are expensive and time-consuming to carry out, and a careful experimental design
strategy is mandatory.

In this chapter, we concentrate on the computational aspects of experimental design. More
specifically, we design algorithms that are computationally tractable for very large pool of de-
sign points (large n) while still maintaining the near-optimal statistical efficiency of the selected
design subset {z1, - - - , z;}. Apart from rigorous approximation guarantees theoretically, we also
consider a real-world application of 3D lightweight structure design (Ulu et al., 2017) and show
significant improvement over existing methodologies. Finally, we study several extension of
our proposed methodologies, including the application to quantized linear regression, transfer
learning and generalized linear models.

2.1 Backgrounds and optimality criteria

Consider a linear model

y=2p+¢, (2.1)
where Z = (z,---,2,) € R¥P is the stacked design matrix consisting of selected design
points {z1, -+ , 2}, fo € R? is an unknown p-dimensional regression model to be estimated, and

& ~ Ni(0,0%1) is a centered Gaussian noise random vector.

The standard estimator of [, is the ordinary least squares (OLS) estimator, of the form B =
(Z7Z)"1ZTy. By simple algebra it is easy to check that the estimation error 3 — 3, is a centered

5



Gaussian random vector:

& -1
B—=By ~ N,(0,6°S) where X:=(Z'Z)™= <222T> : (2.2)

i=1

If the variance of 3 — 3 is to be minimized (i.e., minimizing E|| B— f3]|2), one should seek
design subset Z with the smallest tr(X~!). Another popular objective is to maximize the deter-
minant of Y., which has the advantage of being invariant with respect to unit of measurements.
We use the following definition of optimality criteria to abstract all criteria that reflect certain
aspects of desirable statistical efficiency:

Definition 1 (Optimality criteria). An optimality criterion is a function f : S} — R™ that maps
a p-dimensional positive definite matrix X to a positive real number f(X). A smaller f(X)
indicates better statistical efficiency of the corresponding selected design set Z.

Below we list several popular choices of the objective functions f:

A-optimality (Average): f4(X) = Jtr(%7");

D-optimality (Determinant): (%) = (det |X|)~1/7;

T-optimality (Trace): fr(X) = p/tr(X);

E-optimality (Eigenvalue): f5(2) = |2 op = Amax(X71);

V-optimality (Variance): fi/(X) = 237" 2% 1z

T on

G-optimality: f¢(X) = max; z, X~ lz;.
We refer the readers to (Pukelsheim, 2006) for a complete list and discussion of various
optimality criteria used in the experimental design literature.

With the formal definition of an optimality criterion f, the experimental design problem can
then be formulated as a combinatorial optimization problem

min F'(s) = min f (Z smazj) st. s; €N, 0<s; <0, Z s; < k. 2.3)
? ® i=1 '

Here, when b = 1 we operate under the “without replacement” setting in which each design
point x; in pool X can be selected at most once. On the other hand, b = k is referred to as
the “with replacement” setting in which there is no limits on the number of times each point is
selected. It is a simple exercise that the b = k problem can be reduced to the b = 1 problem
by replicating each z; for k£ times and is therefore easier. Very often, an algorithm that solves
the b = 1 instance can be easily altered to handle the b = k case without explicit replication of
design points or an increase of running time.

Instead of considering each optimality criterion separately, in our work we adopt a unified ap-
proach that applies to a wide range of optimality criteria satisfying minimal regularity conditions.
More specifically, we define “regular” criteria as follows:

Definition 2 (Regular criteria). An optimality criterion f : S; — R is regular if it satisfies the
following properties:

1. Convexity: ' f(AA+(1—X)B) < Af(A)+(1—=\)f(B)forall xe [0,1] and A, B € S;};

'This property could be relaxed to allow a proxy function g : S; — R being convex, where g(A4) < g(B) &

f(A) < f(B).



Algorithm 1 The projected entropic mirror descent algorithm for solving Eq. (2.5).

Require: function min,, F'(w) defined in Eq (2.5); 7' number of iterations, step size rules {7, }
0 = (1/n,---,1/n); t initialization
2: fort <~ 0to7 —1do N

3 Compute subgradient g e oF (w(t );

4: Update: w!™ " ocw® exp{—n,g{”}, normalized so that >
5

6

7

—_—

t+1/2) _ 1

Projection: w(®*!) <~ BOXSIMPLEXPROJECT(w(*+1/?) b/k)
: end for

. N 1 NT-1 ()
sreturnw = 5 ) g w'.

2. Monotonicity: If A < B then f(A) = f(B);

3. Reciprocal multiplicity: f(tA) = t~'f(A) forallt > 0 and A € S}.

It can be verified that all A, D, T, E, V and G-optimality are regular. Note that for D-
optimality the proxy function gp(X) = — log det(X) is considered to satisfy the convexity prop-
erty.

2.2 The continuous relaxation framework

A straightforward solution to the combinatorial optimization problem mentioned in Eq. (2.3) is
to enumerate in brute force all ( ) possible solutions of s € {0, 1}*. Such an approach would be
however too computationally expensive and inadequate for even moderately sized design pools.

An alternative approach, which is adopted as the main algorithmic framework in this chapter,
is to consider a continuous relaxation to the discrete optimization problem in Eq. (2.3):

7 € argmin F(7) = arg mln (Z X%, ) st. 0<m <D, Zm <k (24

It should be noted that any feasible solution to the original discrete optimization problem (2.3)
is also feasible for the continuously relaxed program in Eq. (2.4), and hence F(7*) < F(s*)
always holds. In addition, thanks to the first property in Definition 2, any regular optimality
criterion f leads to a continuous program in Eq. (2.4) with a convex objective and a convex
and compact feasibility region. In the rest of this section we present two efficient approaches
to optimize Eq. (2.4): the first approach formulates Eq. (2.4) as a semi-definite programming
(SDP), which can be provably solved in polynomial time (Vandenberghe & Boyd, 1996); the
second approach uses entropic mirror descent (Beck & Teboulle, 2003) to solve Eq. (2.4), which
is practically efficient.

2.2.1 The semidefinite programming (SDP) approach

For 7 € R™ define A(m) = >, 7er x/, which is a p x p positive semidefinite matrix. By

definition, f(m; X) = Y7 el A(m) e, where e; is the p-dimensional vector with only pth
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coordinate being 1. Subsequently, Eq. (2.4) is equivalent to the following SDP problem:

P n
min » #; subjectto 0 <7 <D, Zm < k, diag(By,---,Bp) =0,
™ j=1 =1

where
A(m) e; )
Bj:|: (T) t]]7 3217’p

Global optimal solution of an SDP can be computed in polynomial time (Vandenberghe &
Boyd, 1996). However, this formulation is not intended for practical computation because of
the large number of variables in the SDP system. First-order methods such as projected gradient
descent is a more appropriate choice for practical computation.

2.2.2 The entropic mirror descent approach

We first note that Eq. (2.4) can be re-formulated as
N n k
min F(w) := min f (Z wmxj) st. 0 <w; <b/k, Zwi =1, (2.5)
’ N i=1 i=1

by the change of variables w; = m;/k and noting that the >, | 7; < k constraint in Eq. (2.4) must
bind, meaning that the optimal solution 7* must satisfy > | 7 = k.

The entropic mirror descent (Beck & Teboulle, 2003) is a classical algorithm that takes into
account the geometry of high-dimensional probabilistic simplex to efficiently solve constrained
convex optimization problems. At a high level, entropic mirror descent uses the Kullbeck-Leibler
(KL) divergence .. x;log(x;/y;) as the Bregman divergence, whose proximal operator can be
evaluated in closed form as multiplicative weight updates.

We describe in Algorithm 1 how (projected) entropic mirror descent is applied to solve pro-
gram 2.5. As our problem has an extra box constraint w; < 1/k, we present in Algorithm 2 a
simple algorithm that computes such projection in O(n logn) time and the KL divergence. The
projection algorithm is (in principle similar to but) much simpler than existing algorithms that
compute projections onto simplex or L balls (Condat, 2015; Duchi et al., 2008).

2.3 Rounding techniques

In the previous section we described a continuous relaxation of the original discrete optimization
problem, and briefly explained how the continuous relaxation can be solved efficiently to obtain
a (near) optimal continuous solution 7* € [0, 1]™. In this section we describe various strategies
of “rounding” the continuous solution 7* to a discrete one s, and prove rigorous approximation
guarantees for these rounding techniques.



Algorithm 2 Projection onto the probabilistic simplex with box constraint

Require: w € A, parameter b € [1/n, 1]. >A, ={zeR":2;,>0,>, 2 =1}
Ensure: an output W e A,, such that HWIHOO < b. >w = arg minyeAn,yiéb KL(?JHW)
> where KL(y|lw) := 3, y;log &

1: Sort w in descending order: wy = we = -+ = w, > 0;

2: if w; < b then return w;

3: KLy «blog(b/w1), Z1 «—1—wi, Klgpt <0, nopt < 0, and Copy <« 05
4: for g — 2ton do

5. Ce (1-blg—1)/Zyr:

6:  if C'>0and Cw, < band (KL, + Clog(C) - Z;—y < KLqy) then
7 KLopt < KLy1 + Clog(C) - Zy—1, Nopt < Wy Copt < C;

8: end if

9: KL, < blog(b/w,), Z, <« Z;-1 — wy;

10: end for
11: Setw; « bif w; = nNopy, and w;, «— Copyw; if w; < Nopt;
12: return «’.

Algorithm 3 Sampling based experiment selection.

Input: X € R"*?, optimal solution 7*, target subset size k.

Output: S < [n], a selected subset of size at most k.

Initialization: t = 0, Sp = J, Ry = .

1. With replacement: sample i, ~ P™); set w;, = [ﬂ;’;/(k’pgtl))],

(2)
).

Without replacement: pick random ¢; ¢ R;_1; sample w; ~ Bernoulli(kpit
2. Update: S; = S;_1 U {w, repetitions of i,}, R, = Ry_1 U {i;}.

3. Repeat steps 1 and 2 until at some ¢ = T, |S7,1| > k or Ry, 1 = [n]. Output S = St.

2.3.1 Sampling based techniques

Perhaps the simplest idea of rounding 7* into a discrete solution is to sample according to an

appropriately normalized categorical distribution based on 7*. More specifically, define X, :=
XTdiag(m*)X = >  mfxa] and

P . pg.l) = a5, )/, with replacement (b = k);

P3 . p§2) =7} /k, without replacement (b = 1).
Note that both {p§-1) i_, and {pg-Q) j_; sum to one because ;7 7F = kand }7_ wix ¥, r; =
tr((Z?:l W;%’%T)Z;l) = tr(Z*Zgl) =p.

Pseudo-codes of the sampling procedure are given in Algorithm 3. The sampling procedure is
easy to understand in an asymptotic sense: it is easy to verify that IEXZI X;, = X Tdiag(m*/k)X
and E|w;,] = 1, for both with and without replacement settings. Note that ||p§t2)||OO < 1/k by
2

feasibility constraints and hence Bernoulli(kp;;”) is a valid distribution for all ¢, € [n]. For the

with replacement setting, by weak law of large numbers, XgX 5 5 X Tdiag(n*)X as k — oo

9



Algorithm 4 Greedy experiment selection.
Input: X € R"*?, Initial subset Sy S [n], target size k < |S|.
Output: S < [n], a selected subset of size k.
Initialization: ¢ = 0.
1. Find j* € S; such that tr[(X, ;«) Xs,(;+;) '] is minimized.
2. Remove j* from S;: Sy = S\{j*}.
3. Repeat steps 1 and 2 until |S;| = k. Output S=,

and hence tr[(X{ Xg)~'] & f(7*; X) by continuous mapping theorem.
The following theorem provides a rigorous, finite-sample statement of the above intuition:
Theorem 1. Suppose the following conditions hold:

with replacement : plogk/k = O(1);
without replacement : | X" |25(3,)| X% logp = O(1).

Then with probability at least 0.8 the subset S output by Algorithm 3 satisfies

F(S) <0(1)- min F(s), be{lk}

Isli<k,[s]loc <b,seN"

for all regular criteria F'.

The O(1) approximation ratio in Theorem 1 can be improved to an (1 + )-approximation if
“oversampling” is allowed. Interested readers are referred to Sec. 3.2 of Wang et al. (2017) for
details of such an improvement.

2.3.2 Greedy removal techniques for A-optimality

In this section we consider a greedy removal procedure outlined in Algorithm 4. The procedure is
specifically for the A-optimality criterion f4(3) = tr(X~') and the without replacement (b = 1)
setting.

Built upon a result from Avron & Boutsidis (2013) and an observation on the Karush-Kuhn-
Tucker (KKT) conditions of the optimization problem in Eq. (2.4), we have the following result:
Theorem 2. Let S be the output of Algorithm 4 with initial subset So = {ien]:mf >0} If
k > p and {x;}_, are independently sampled from continuous densities, then with probability 1

5 p(p+1) ) .
FalS) <1+ ——"—}- min Fa(s).
#(5) < 20k =p+1) /) lsh<ks|o<1,senn a(®)
Under a slightly stronger condition that £ > 2p, the approximation ratio 1 + 2(pk(f ;i)l) can be

simplified to 1 + O(p?/k). In addition, the approximation ratio is 1 + o(1) if p?/k — 0, meaning
that near-optimal experiment selection is achievable with computationally tractable methods if
O(p?) design points are allowed in the selected subset.

10



2.3.3 Greedy swapping techniques

In this section we introduce a general-purpose greedy swapping technique that applies to all
regular optimality criteria.

Pre-processing The first step of our technique is a pre-processing “whitening” step. Define
W= 3" mtz;x]. The pre-processing step is to whiten the design points {z;}? , by taking

T= W, (2.6)

Note that after pre-processing, the transformed data points {7}, satisfies >\ | 7% = Lyxp,

meaning that they are “whitened” to have identity sample covariance, and hence the name.

Potential functions The main component of our proposed rounding algorithm is a carefully
designed potential function ¢(u, v; Z), which measures contributions to the least eigenvalue of a
p-dimensional positive semi-definite matrix Z by swapping design points u and v.

Fix hyper-parameter o« > 0, whose values will be discussed in the next section. For any
p-dimensional positive semi-definite matrix Z define Ay := (clpx, + @Z)™? where ¢ € R is
the unique real number such that tr(Az) = 1. The potential function ¢(u, v; Z) for any pairs of
p-dimensional vectors u, v € R? are then defined as

O(u,v;Z) = ¢4 (u; Z) — ¢—(v; Z) 2.7

where
ul Ayu vl Ay

1+ 2o<uTAIZ/2u and ¢-(v; 2) 1-— QOCUTAlz/ZU.
While the definitions of the potential function ¢ seems arbitrary, its form has deep roots
in online matrix games. More specifically, the form of the intermediate matrix Ay = (cI +
aZ)2, tr(Az) = 1 corresponds to updates rules in a Follow-The-Regularized-Leader (FTRL)
(McMahan, 2011) with the matrix ¢, »-regularizer ¢)(A) = —2tr(A'?), first considered by Allen-
Zhu et al. (2015) for a related spectral sparsification problem. The potential function ¢ then falls
naturally from a regret analysis of FTRL type policies in online matrix games, summarized in
the following lemma:
Lemma 1. For any p-dimensional vectors {u;, v;}_ | and fixed positive-semidefinite matrix Z,
define Z, := Zy + Y, upuy — vgv). If further vtTAlZ/f_lvt < 1/2a holds for all t, then

6. (u; Z) = (2.8)

T
2
Amin(Z7) = Z O, ve; Zy1) — %ﬁ- 2.9

t=1

Algorithm and approximation guarantees The lower bound of least eigenvalues in Lemma
| immediately suggests a greedy swapping algorithm, which starts with an arbitrary subset Sy <
[n] of size K and repeatedly find i € Sy, j ¢ Sy for “swapping” so as to maximize ¢(Z;, 7;; Z),
where Z = >, o T/%) .

11



Algorithm 5 A swapping algorithm for rounding

Input: design points {z;}!" ,, optimal continuous solution 7*, budget k, desired accuracy ¢.
a < \/p/e; = configuration of hyper-parameters
Compute T; = W~"2x; where W = 377 wra;a]; o the whitening step
So € [n] an arbitrary subset of size k and ¢ < 1; > initialization
while \yin (3,5, Ti7]) < 1—3ecdo

Compute Ay, , = (¢, ] +aZ;_1) *suchthattr(Ay ) =1, where Z,_; = Y.

Find i; € S;_1, %ZAZQ_I:?“ < 1/2c that minimizes ¢_(T;,; Z;_1);

Find j; ¢ S;_ that maximizes ¢ (Z,; Z;_1);

Swapping update: S; = Sy 1 U {ji}\{i:}, and t «— ¢ + 1;
end while
: return S € {0, 1}" where 5; = 1 iffi € Sr.

R A A o S

—_—
— O

Detailed pseudo-codes of this greedy swapping procedure is given in Algorithm 5. Note that
the pair i, € S;_1, ji: ¢ S;—1 that maximizes ¢(Z,,, Z;,; Z;_1) can be found in O(n + k) instead of
O(nk) time by separately maximizing and minimizing ¢, (Z;,; Z,_1) and ¢_(Z;,; Z;_1) as shown
in Steps 6 and 7 in Algorithm 5, because the potential ¢ decomposes additively. In step 5 of
Algorithm 5, the unique real number ¢; € R such that tr(Az, ) = 1 can be found by a binary
search, because tr[(c;] + aZ; 1)7?] is a monotonically decreasing function in c;.

The following theorem gives approximation guarantees of Algorithm 5 when £ is not too
small compared with p.

Theorem 3. Suppose k > 5p/e? for some € € (0,1/6]. Then for any regular f, 5 € {0,1}" output
by Algorithm 5 has size Y | $; < k and satisfies

F(S)<(14+62)F(s*)=(1+6e) max F(s).

s€{0,1} 5|1 <k

2.4 Application: 3D lightweight structure optimization

We consider an application of our method to a 3D lightweight structure design problem. Most
results in this section appeared in (Wang et al., 2018) with more details.

2.4.1 Background

3D lightweight structure design is the question of carefully distributing material mass in com-
plicated 3D structures so that the resulting object has sufficient strength to withstand everyday
use. An important task is then to quantify the structural performance of an object under the
external forces it may experience during its use. Figure 2.1 from (Ulu et al., 2017) gives an
intuitive illustration of the performance of structures under external forces applied at different
locations, measured by stress distributed on the rest of the structure among which the maximum
stress defines the performance of structures under given external forces.

12
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Figure 2.1: Stress distributions on designed structures under external forces.

Suppose external forces can be applied on n possible locations for a specific structure. For
each location i € [n], the stress distribution as well as the maximum stress suffered by an unit
amount of external force can be computed by an accurate yet time consuming finite element
analysis (FEA) method. As each external force location ¢ € [n] requires an independent FEA
run, it is very desirable to select a few “representative” locations S < [n], |S| < k « n and
estimate the maximum stress outcomes of the other force locations not selected in .S.

This “location selection” problem fits well within the experimental design framework con-
sidered in this paper, and in the next two paragraphs we explain how to apply our developed
algorithm as well as its experimental performances.

2.4.2 Method

Let GG be a graph with n vertices, representing the spatial affinity of the n possible force locations
on a structure surface. The readers are referred to (Ulu et al., 2017; Wang et al., 2018) for details
of the construction of GG. Let L be the graph Laplacian matrix of GG, and X € R"*? be the top-p
eigenvectors of the graph Laplacian L. A linear regression model is used to model the maximum
stress y; induced by an unit external force applied at location i € [n] (corresponding to z; € R?
in the top eigenvectors matrix X), as

Yi = %Tﬁo + &i» (2.10)

where f3 is a p-dimensional unknown regression model and {&;}" , are noise variables.
To select a subset S < [n], |S| < k of locations, we use the algorithm proposed in the
previous sections to solve the discrete optimization problem in Eq. (2.4), restated below:

min, f (M1 siziw])  stoos;€ {011,300 s < k.

The selected subset S is then chosen as all locations with s; = 1, and FEA analysis on these
force locations is carried out to obtain their corresponding induced maximum stress y;. The
regression model [ is then estimated by ordinary least squares 3 = (3o %%, )™ (Xieq Yiti),
and predictions on the other external force locations are produced by 7; = x; B fori ¢ S. The
force locations ¢ € [n] are then ranked in descending order according to {7;}"_,, and FEA analysis
is computed again on the top ranked force locations to determine the final location i* € [n] that
yields the largest stress response y;=. More details of our algorithmic pipeline is given in (Wang
et al., 2018).

13



(a) Fertility (b) Rocking Chair (c) Shark

Figure 2.2: Example test structures with complex geometries. Fixed boundary conditions and
contact regions are indicated in blue and red, respectively.

2.4.3 Experimental settings

We evaluate the performance of our algorithm on three test structures (FERTILITY, ROCK-
INGCHAIR and SHARK) illustrated in Fig. 2.2. Descriptions and some basic statistics of the
considered structures are given in (Wang et al., 2018).

In our experiments, we consider 5 methods to sample the force locations subset S < [n],
|S| < k. We compare our proposed algorithm (abbreviated as GREEDY) with baseline meth-
ods UNIFORM and LEVSCORE, as well as the previous work K-MEANS (Ulu et al., 2017) and
SAMPLING (Wang et al., 2017).

The performance of an algorithm is evaluated by the smallest integer m required so that the
top-m ranked lists according to {¥;}I* ; include the external force location i* € [n] that actually
leads to the maximum stress a structure suffers.

2.4.4 Results and discussion

Table 2.1 reports the performance (m needed to cover i* € [n] leading to maximum stress) of
our algorithm and its competitors under variance k settings for all three different structures. In
Fig. 2.4, we plot the sub-sampled force locations (i.e., .S) of our proposed algorithm for £ = 200
point. We provide the samples obtained by the K-MEANS algorithm in Ulu et al. (2017) for
comparison. The difference in the sampling patterns between GREEDY and K-MEANS are quite
obvious from the figures.

2.5 Extensions

Our proposed methodologies can be further extended, to applications on generalized linear mod-
els, transfer learning and quantized linear regression.

2.5.1 Generalized linear models

In a generalized linear model p(x) = E[Y|x] satisfies g(u(z)) = n = 2 3, for some known link
function g : R — R. Under regularity conditions (Van der Vaart, 1998), the maximum-likelihood
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Table 2.1: Results for the three test structures. Numbers in each cell are the smallest m such that
the top ranked m force locations include the actual location i* € [n] leading to maximal stress.
Randomized algorithms (UNIFORM, LEVSCORE and SAMPLING) are run for 10 independent
trials and the median performance is reported. Best performing settings are indicated in bold.

k= 25 50 100 150 200 250 300 Total FEAs (k +m)
Fertility UNIFORM  316.5 149 785 375 985 425 39 178.5 (k = 100)
LEVSCORE 2525 545 735 685 425 31 13.5 104.5 (k = 50)
K-MEANS 237 25 61 82 57 17 16 75 (k = 50)
SAMPLING 210.5 1485 51 30 355 34 26.5 151 (k = 100)
GREEDY 12 26 13 7 11 25 33 37 (k = 25)
RockingChair UNIFORM 716 857 3855 42 1355 2695 36 192 (npr = 150)
LEVSCORE 764.5 208.5 36 36 36 36 36 136 (k = 100)

K-MEANS 4013 4400 4573 4301 4320 4620 4757 4038 (k = 25)
SAMPLING 6725 282 38.5 38 38 36 36 138.5 (k = 100)

GREEDY 36 35 208 35 36 36 36 61 (k = 25)
Shark UNIFORM 585 384 141.5 208.5 20 9 9.5 220 (npr, = 200)
LEVSCORE 478.5 9 9 9 9 9 9 59 (npr, = 50)
K-MEANS 133 102 9 9 9 9 9 109 (npr, = 100)
SAMPLING 963.5 87 9 9 9 9 9 109 (npy, = 100)
GREEDY 9 171 9 9 9 9 9 34 (npr = 25)

estimator /3, € argmaxg{> " | log p(y;|z;; B)} satisfies E|B, — Bo|2 = (1+ o(1))tr(I(X, Bo)™ ),
where I(X, () is the Fisher’s information matrix:

0% log p(yilzi; Bo) 0% log p(ys; ;) -
(X, B) = ZE S5 _—;( T)m (2.11)

)

Here both expectations are taken over y conditioned on X and the last equality is due to the
sufficiency of 7; = x 5. The experiment selection problem is then formulated to select a subset
S < [n] of size k, either with or without duplicates, that minimizes tr(1(Xg, 5y)!).

It is clear from Eq. (2.11) that the optimal subset S* depends on the unknown parameter
Bo, which itself is to be estimated. This issue is known as the design dependence problem for
generalized linear models (Khuri et al., 2006). One approach is to consider locally optimal
designs (Chernoff, 1953; Khuri et al., 2006), whgre a consistent estimate 3 of 3y is first obtained
on an initial design subset * and then 7; = z, 3 is supplied to compute a more refined design
subset to get the final estimate 3 . With the initial estimate 5 available, one may apply transform

x; — 7; defined as
21 L
% = | -E° ogp(yz,m)xi‘
on?

om;
the square-root is well-defined. All our results are valid with X = [zy,---,2,]" replaced by

o 2
Note that under regularity conditions E“L(y“m) =E (M) is non-negative and hence

Notice that a consistent estimate can be obtained using much fewer points than an estimate with finite approxi-
mation guarantee.
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KMeans - 200 Samples

Greedy - 200 Samples

Figure 2.3: Sampled force locations (S) using the K-MEANS algorithm (top row) versus our
proposed algorithm (bottom row), for £ = 100.

X = [Z1,-+,%,]" for generalized linear models. Below we consider two generalized linear
model examples and derive explicit forms of X.

Example 1: Logistic regression In a logistic regression model responses y; € {0, 1} are binary
and the likelihood model is

eni
1+em

plysng) = )" (L= (n:))" %, where () =

Simple algebra yields

~

where 7; = z/ 3.

Example 2: Poisson count model In a Poisson count model the response variable y; takes
values of non-negative integers and follows a Poisson distribution with parameter A\ = e =
e*t P The likelihood model is formally defined as

_eMi

nir
p(yzzranz):e e' ) T:O,l,Q,"'.
7!
Simple algebra yields
T; = Ve,

where 77; = z] 3.
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KMeans - 200 Samples

Greedy - 200 Samples

Figure 2.4: Sampled force locations (S) using the K-MEANS algorithm (top row) versus our
proposed algorithm (bottom row), for £ = 200.

2.5.2 Transfer learning and Delta’s method

Suppose g(f3p) is the quantity of interest, where 3, € R? is the parameter in a linear regression
model and g : R? — R™ is some known function. Let 3, = (X T.X)~'X Ty be the OLS estimate
of fy. If Vg is continuously differentiable and 6n is consistent, then by the classical delta’s
method (Van der Vaart, 1998)EHg(5n) 9(Bo)|3 = (140(1))c*tr(Vg(Bo)(X T X)'Vg(B)") =
(1 + o(1))o?tr(Go(X T X)), where Gy = Vg(B80)"Vg(Bo). If Gy depends on the unknown
parameter 3, then the design dependence problem again exists, and a locally optimal solution
can be obtained by replacing Gy in the objective function with G = Vg(B)TVg(ﬁ) for some
initial estimate B of (3.

If G is invertible, then there exists invertible p x p matrix P such that G = PPT because G
is positive definite. Applying the linear transform

~

€T; — %z = P_ll'i
we have that tr[Go(X 7 X)™] = tr[(XTX)~ '], where X = [#1,--,%,]". Our results remain
valid by operating on the transformed matrix X=XPT.

Example: prediction error. In some application scenarios the prediction error |Z B—Z Bol3
rather than the estimation error |3 — 3|2 is of interesting, either because the linear model is used
mostly for prediction or component of the underlying model 3, lack physical interpretations.
Another interesting application is the transfer learning (Pan & Yang, 2010), in which the training
and testing data have different designs (e.g., Z instead of X)) but share the same conditional
distribution of labels, parameterized by the linear model 5.

Suppose Z € R™*P is a known full-rank data matrix upon which predictions are seeked,
and define 3 7z = = —~Z TZ > 0 to be the sample covariance of Z. Our algorithmic framework
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as well as its corresponding analysis remain valid for such prediction problems with transform
xTi > i;/ z;. In particular, the guarantees for the greedy algorithm and the with replacement
sampling algorithm remain unchanged, and the guarantee for the without replacement sampling
algorithm is valid as well, except that the ||X, |, and x(Z,) terms have to be replaced by the

(relaxed) optimal sample covariance after the linear transform z; — f];/ ’z;.

2.5.3 Quantized linear regression

Consider the noiseless linear signal model
y=Xpo (2.12)

where X € R"*P is an exactly known design matrix, typically generated from certain physi-
cal procedures, and [, € R? is an unknown p-dimensional signal to be recovered. We restrict
ourselves to the “low-dimensional” setting p < n. Unlike the classical linear regression model
ubiquitous in the statistics literature, the model in Eq. (2.12) is assumed to be noiseless as no
noise variables are included in the measurement model y = X 3y. Such a model arises in various
scenarios where the signal can be expressed or well-approximated by a small number of basis
elements. We mention one specific example from the framework of signal processing on graphs
(Sandryhaila & Moura, 2014; Shuman et al., 2013), which studies signals with an underlying
complex structure that is modeled by a graph such as measurements at nodes of a network. The
band-limited model for graph signals is a linear model in which the network node measurements
y are well represented by a linear model where the features are the eigenvectors of the graph
Laplacian or adjacency matrix corresponding to the smallest/largest eigenvalues, respectively.

The measurements of y, however, can only be made up to a total of k£ binary bits and hence
cannot be perfectly accurate. Such measurement-constrained settings are ubiquitous in statisti-
cal signal processing and machine learning applications, such as brain signal sensing (Lebedev
& Nicolelis, 2006), Internet of Things (Zhou et al., 2013) and electric power grids (Nabaee &
Labeau, 2012). It is therefore important to design intelligent bit allocation algorithms such that
the recovery of signal 3, is the most accurate possible subject to given bit measurement con-
straints.

The bit allocation problem in quantized linear regression can be formulated as follows:
Problem 1 (passive bit allocation). Given exactly measured design X € R™*P and a bit budget
k€N, k = n, find a bit allocation k = (ky,--- ,k,) € N, ky + - - - + k,, < k such that the mean
square error between the recovered signal Bk and the true signal 5y is mimimized.

Suppose a bit allocation strategy k = (ki,--- ,k,) € N7 is given, such that >, , k; < n.
Let round(-) be the rounding operator towards the closest integer and U|a, b] be the uniform
distribution on interval [a, b]. The observed quantized value of y; = z 3y with k; € N, binary
bits of measurement can then be expressed as

Ui = 9~ . round [2’“‘1 (% + 5Z>] (2.13)

where M := max;<;<, |2, Bo| is a known bounded constant and § ~ U[—2"% M, 27% M] is a
dithering variable that introduces additional stochasticity to the deterministic model (2.12). The
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dithering step de-couples the statistical dependency in the quantized error and is an important
concept in the signal processing literature (Schuchman, 1964). Note also that the most significant
bit in y; indicates the sign of y;, and hence only (k; — 1) bits are available to measure the absolute
value of y;.

As the number of measure bits differ for different design points x;, the rounding (quantiza-
tion) error of each y; also differs, making the quantized linear model (2.13) similar to a linear
regression model with heteroscedastic noise. Because the noise levels are known (controlled
by the bit allocation strategy k directly), a weighted Ordinary Least Squares (OLS) estimator is
reasonable for the recovery of 3y which we define as follows:

By € argmingeg, Y. 4MFL(F — 2] B)?. (2.14)
i:ki>0

The following lemma upper bounds the mean square error of Bk Its proof is a standard
analysis of weighted OLS estimators for heteroscedastic linear models.
Lemma 2. The weighted OLS estimator [y, satisfies

~1
E|B; — Bol} < M? -t ( > 4’“1'*19:1-1:]) . (2.15)
i:k1‘>0
With Lemma 2, we can solve the following continuous optimization problem:
n ~1
min tr 4™ — Vg, m =0, |71 < k. 2.16
D e (Z( )iz, ) Il < ko (2.16)

After the continuous optimization is solved, with (approximately) optimal solution 7, a leverage
score sampling algorithm with careful rounding procedures can be used to obtain integer-valued
bit allocation. The pseudocode of the algorithm is listed in Algorithm 6, and some basic proper-
ties of Algorithm 6 are described in (Wang & Singh, 2018).

2.6 Summary and related works

The works presented in this section can be best summarized as computational aspects of ex-
perimental design. The main motivations behind the presented work is the (theoretical) compu-
tational intractability of many (optimal) experimental design problems, including even the very
basic ones such as A-optimal or D-optimal designs of discrete design point sets. Instead of study-
ing heuristic algorithms, our results fall under the framework of polynomial-time computability
in theory of computation, with rigorous approximation guarantees in terms of optimal design
objective values.

Experimental design is an old topic and we do not intend to provide a comprehensive litera-
ture review at this point. Interested readers should consult the classical references of (Chaloner
& Verdinelli, 1995; Fedorov, 1972; Pukelsheim, 2006). Related works reviewed in this section
focus primarily on computational aspects of the experimental design problem with rigorous the-
oretical/approximation guarantees.
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Algorithm 6 Bit allocation algorithm by leverage score sampling

1: Input: X € R"*P, quantization budget k, support size s < k — p, number of repetitions B.
Output: k € N” satisfying ky + --- + k, < k.
Continuous optimization: solve for 7*, the optimal solution of Eq. (2.16).
Pre-conditioning: ¥, = Y7, 4™ *a,x]; leverage scores ; = x] X7 ;.
forbe {1,---,B}do

Initialization: {wgb)}?zl = 0.

Repeat for s times: sample i; € [n] from the categorical distribution Pr[i; = i] =
piocd™ +1¢; and update wgtb) — wg) + 47 ;.

A A e

8: Define allocation k(®): & = | _(*=2) log(1-+u{") and k¥ = 0if w® = 0.
v >, log(1+w(.b)) 3 v
j:11;§.b)>0 J

9: endfor R
10: Output & in {k®}Z | with the smallest objective F'(k; X).

D-optimal designs Perhaps the most well-studied optimality criterion is D-optimality fp(3) =
det(X)/?,* whose negative logarithm (i.e., log det X) is submodular, a property that sometimes
gives rises to 1 — 1/e approximation ratio using pipage rounding (Ageev & Sviridenko, 2004).
Unfortunately, log det X can be negative and thus pipage rounding could fail to provide a con-
stant relative approximation ratio with respect to det(3) or det(X)"/”. In (Bouhtou et al., 2010),
Bouhtou et al. proposed to maximize a function h(X) := %tr(Eq) for ¢ € (0, 1], and it satisfies
lim, ,o(h(X))™Y7 = fp(X). They showed that h(X) is submodular and gave a (1 — 1/e) ap-
proximation to h(X) for every ¢ € (0, 1] using pipage rounding. This does not translate to any
bounded approximation ratio for f5 (%) because (1 — 1/€)~/? is unbounded when ¢ approaches
Zero.

Summa et al. (2015) gave a polynomial-time algorithm for a related maximum volume sim-
plex (MVS) problem in computational geometry with an O(logp) approximation ratio, which
was later improved to O(1) by Nikolov (2015); Nikolov & Singh (2016). Their results imply
an e approximation ratio in the special case of £ = p. On the other hand, Summa et al. (2015)
showed that there exists a constant ¢ > 1 such that polynomial-time c-approximation of the D-
optimality is impossible for the p = k case, unless P = NP. Therefore, additional assumptions
on k are necessary for the (1 + ¢)-approximation regime we consider in this paper.

Concurrent and independent of our work, the works of (Singh & Xie, 2017) achieved (1 +¢)-
relative approximation for the D-optimality criteria under the weaker condition that k = Q(p/e +
log(¢1)/e?). Their techniques are based on volume sampling of symmetric elementary func-
tions of matrix eigenvalues, and are less likely to be extendable to general optimality criteria
objectives. Indeed, Nikolov et al. (2018) proved a negative result showing that no continuous-
relaxation based method can possibly attain (1 + ¢) approximation for the E-optimaliy unless
k = Q(p/e?), essentially showing our theoretical analysis is the best possible one can hope for.

A/V-optimal designs For the A-optimality criterion, Avron & Boutsidis (2013) proposed a
greedy algorithm with an approximation ratio O(n/k) with respect to f(}"" , z;z; ). This ratio is
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tight for their algorithm in the worst case,’ Li et al. (2017a) further computationally accelerated
this greedy algorithm, and achieved similar approximation guarantees. Nikolov et al. (2018)
showed that the k& = Q(p/e + log(e' /&%) condition is sufficient for (1 + ¢)-approximation of
A/V-optimality as well.

Fast and subsampling least squares solvers There has been an increasing amount of work on
fast solvers for the general least-square problem ming ||y — X 3[3. Most of existing work along
this direction (Dhillon et al., 2013; Drineas et al., 2011; Raskutti & Mahoney, 2015; Woodruff,
2014) focuses solely on the computational aspects and do not consider statistical constraints such
as limited measurements of y. A convex optimization formulation was proposed in Davenport
et al. (2015) for a constrained adaptive sensing problem, which is a special case of our setting,
but without finite sample guarantees with respect to the combinatorial problem.

Popular subsampling techniques such as leverage score sampling (Drineas et al., 2008) were
studied in least square and linear regression problems (Chen et al., 2015a; Ma et al., 2015). None
of these methods achieve near minimax optimal statistical efficiency in terms of estimating the
underlying linear model 3y, since the methods can be worse than uniform sampling which has a
fairly large approximation constant for general X.

Active regression Another related area is active learning (Chaudhuri et al., 2015; Hazan &
Karnin, 2015; Sabato & Munos, 2014), which is a stronger setting where feedback from prior
measurements can be used to guide subsequent data selection. Chaudhuri et al. (2015) analyzes
an SDP relaxation in the context of active maximum likelihood estimation.

2.7 Proofs

2.7.1 Proof of Theorem 1

The following lemma is key to the proof of Theorem 1.
Lemma 3. Define Y5 = X;X g Suppose the following conditions hold:

With replacement : plogT/T = O(1);
Without replacement : |, 2k(2,)| X2 logp = O(T/n).
Then with probability at least 0.9 the following holds:
zTigz > Kp2'5,2, Vz e RP, (2.17)

where Kr = Q(T/k) for with replacement and Ky = Q(T'/n) for without replacement.

We also need to relate conditions on 7" in Lemma 3 to interpretable conditions on subset
budget k:

*In the worst case, even the exact minimum mins < f(};c5 %, ) can be indeed O(n/k) times larger than
f (ZZL:I xleT) (Avron & Boutsidis, 2013) different from the subset selection objective in Eq. (2.3). This worst-case
scenario may not always happen, but to the best our knowledge, their proof is tight in this worst case.
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Lemma 4. Let § > 0 be an arbitrarily small fixed failure probability. The with probability at
least 1 — 6 we have that T = 0k for with replacement and T’ = én for without replacement.

Proof. For with replacement we have E[ZL wy] = T and for without replacement we have
E[>." ,w,] = Tk/n. Applying Markov’s inequality on Pr[Y)] | w, > k| for T = dk and/or
T = on we complete the proof of Lemma 4. ]

Combining Lemmas 3 and 4 with 6 = 0.1 and note that 7' < k almost surely (because
wy = 1), we prove Theorem 1.

The rest of this section is devoted to proving Lemma 3. We treat the with replacement and
without replacement settings separately.

Proof of the with replacement setting For the with replacement setting, we adopt the proof
strategy of Spielman & Srivastava (2011). Define ® = diag(7*) and IT = ®2X L' X Td1/2 ¢
R™*™. The following proposition lists properties of II:
Proposition 1 (Properties of projection matrix). The following properties for 11 hold:

1. 11 is a projection matrix. That is, 11* = II.

2. Range(Il) = Range(®2X).

3. The eigenvalues of 11 are 1 with multiplicity p and 0 with multiplicity n — p.
Proof. Proof of 1: By definition, >, = X "®X and subsequently

H2 CI)I/QXE;1XTCI)I/QCI)I/QXZ;lXTCI)l/Q

= PV2X(XTOX) ' XTOoX(XToX) 19!/

P2X(XTOX)TIX Y2 = 11,

Proof of 2: First note that Range(IT) = Range(®2X ¥ !X T®'/2) < Range(®2X). For
the other direction, take arbirary v € Range(®'/2X) and express u as u = ®2Xv for some
v € RP. We then have

My = PV2XEIX Y2y
= P2X(XTOX) 'XToV2p12 Xy
PPXv=u

and hence u € Range(II).

Proof of 3: Because ¥, = X '®X is invertible, the n x p matrix ®'/2X must have full column
rank and hence ker(®'/2X) = {0}. Consequently, dim(Range(II)) = dim(Range(®/2X)) =
p—dim(ker(®'/2X)) = p. On the other hand, the eigenvalues of IT must be either 0 or 1 because
IT is a projection matrix. So the eigenvalues of II are 1 with multiplicity p and O with multiplicity
n—p.

Proof of 4: By definition,

%, Ty—1 ¥ _ ko Ty—1
IL;; = /mfa; X, win/ ) = m)w; X, ;.
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In addition, IT is a symmetric projection matrix. Therefore,
I = [IP7];; = I, 10, = [0, 3.
[]

The following lemma shows that a spectral norm bound over deviation of the projection
matrix implies spectral approximation of the underlying (weighted) covariance matrix.

Lemma 5 (Spielman & Srivastava (2011), Lemma 4). Let I1 = ®'2XY_ ' X T®'2 and W be an
n x n non-negative diagonal matrix. If |ITTWTI — TI||y < € for some € € (0,1/2) then

~

(1—eu'Su<u'Su<(1+eu Su, YueR?,

where 3, = XTOX and ¥, = X TW2oW2X.

We next proceed to find an approprlate dlagonal matrlx W and Vahdate Lemma 5. Deﬁne
wi = k:/T wi = 7] /(Tp(l)) and let S = ST | W a;,x] . Because Sp = kZ ZS, we
have that 32 §= % ZT and hence 254 gz = EZTZTZ for all z € RP. Therefore, to lower bound
the spectrum of X3 it suffices to lower bound the spectrum of 7.

Define diagonal matrix W as

T ~grls .
I’/‘[’/jj:Ztﬂwit]I[Zt ]]7 j=1,-.n.

*k
T

We have that i* = iT for this particular choice of WW.
Lemma 6. For any ¢ > 0,

~ Te?
Pr|IIVIL - 11J, > €] < 2exp{—C "t (2.18)
plogT

where C' > 0 is an absolute constant.

Proof. Define n-dimensional random vector v as *

*
J

Tw?
Pr[v: le_[j.]:p;l)7 j=1,---,n.

Let vy, --- ,v; be ii.d. copies of v and define A, = v, . By definition, ITWMII is equally
distributed with 2 3% | A,. In addition,

Zn] %I)HHT 2 =11,

“For those j with 7rj’-I= = 0, we have by definition that p;l) =0.
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which satisfies |[EA;|s = 1, and

Tw; P -
[Aell2 = fve]3 < Z W_*J”HJHS = Z (1) I3 < sup S xy w =p.

1<j<n '3 1<j<n P} I<jsn X j

Applying Lemma 95 we have that

~ Te?
Pr | [IIVIL -~ 1), > €| < 2exp ) —C- .
plogT

Set t = O(1) and equate the right-hand side of Eq. (2.18) with O(1). We then have
Pr [iT > Q(1) - i] —Q(1) if plogT/T = O(1).

Subsequently, under the condition that plog 7//T" = O(1), with probability at least 0.9 it holds
that R
Yo > UT/k)- %

which completes the proof of Lemma 3 for the with replacement setting.

Proof of the without replacement setting Define ) =X IETX Ry = Zthl T T3, T Zt Condi-
tioned on Rr, the subset S = S7 is selected randomly as a subset ofART. We can then use matrix
concentration inequalities to upper bound the discrepancy between Y.z and X .
More specifically, define independently distributed random matrices Ay, --- , Ay as
At=(wt—7r;)xit:vl, t=1,---,T.
Note that w; is a random Bernoulli variable with Pr[w, = 1] = kpz(»f) = 7. Therefore, EA; = 0.

In addition,
sup [|Aifl2 < sup |3 < |1X]%  as.,

1<t<T 1<j<n

and
T

Z ]' - 7T’Lt sztH2x74t lt

T
> EA
t=1

Noting that Zle A = 5 g— 5 7 and invoking Lemma 96, we have that

. .
pr[2§—2T||2>t\RT]<2p.exp{_ ] }

< | XI5 IZ 5]

2 2

352 | X5 + 2 X%t

Setting ¢ = O(1) - Amin(S7) we have that, if | S5 |ox(S7)| X[ logp = O(1), then with
probability at least 0.95 conditioned on Y7

Q1) -Sr <S5 <0(1) - Sp., (2.19)



It remains to establish spectral similarity between f]T and %Z*, a scaled version of XJ,.. Define
deterministic matrices Ay, --- , A,, as

1
* T .
A] = “j‘rjxj — EZ*, ] = 1,' e, N.

By definition, Z?:l A; = 0and Zt LA o(t) = ZT — Z*, where o is a random permutation from
[n] to [n]. In addition,

sup |4l < HE l2+ sup ;5 < 2|X]5,

1<j<n 1<j<n
1
+ ﬁm@)
2

2T
< = ( Z V2|2 | 3s)
n —
2
2T . 1
X5 Zﬂjxﬂf + 1403
n e ) n

2T
(||X| IS.ls + 1. )

< 7||X||§o||2*||2.

and

n

/

N
|

//\

Invoking Lemma 97, we have that

48T -
Pr [ > t] < pexp { [—X” 1X4]2 + 8\/§||X§Ot] } :
2

Sett = O(T/n) - Amin(Z«). We then have that, if | S x(2,) | X% logp = O(T/n) holds, then
with probability at least 0.95

& T
Yp— =2
n

QT/n) -, < S < O(T/n) - 5. (2.20)

Combining Egs. (2.19,2.20) and noting that |[$7! ], < O(2)1Z: 2, £(E7) < O(1)K(E,), we
complete the proof of Lemma 3 under the without replacement setting.

2.7.2 Proof of Theorem 2

We first extract the following lemma from (Avron & Boutsidis, 2013), which analyzes the perfor-
mance of the greedy removal algorithm used as a sub-routine in our Algorithm 4 when starting
from an arbitrary set Sp.

Lemma 7. Suppose S c [n] of size k is obtained by running algorithm in Algorithm 4 with an
initial subset Sy < [n), |So| = k. Both S and Sy are standard sets (i.e., without replacement).
Then

[So| —p+1

(XX <

tr [(Xg,Xs,) ']
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In (Avron & Boutsidis, 2013) the greedy removal procedure in Algorithm 4 is applied to the
entire design set Sy = [n], which gives approximation guarantee tr[(X [ X¢) '] < 3= ;’ﬁtr[(X TX) 1.
This results in an approximation ratio of 7="= +1 o by applying the trivial bound tr[(X " X)™'] <
Ming,e(0,1),y), s;<k £'(8), which is tight for a demgn that has exactly k& non-zero rows.

To further improve the approximation ratio, we consider applying the greedy removal proce-
dure with Sy equal to the support of 7*; that is, Sy = {j € [n] : 7} > 0}. Because ||7*[, < 1
under the without replacement setting, we have the following corollary:

Corollary 1. Let Sy be the support of ™ and suppose |7*|| < 1. Then

fo—p+1
F(r*) < 7o =p+1 min  F(s).
k—p+1 5:€{0,1},Y; si<k

lo—p+1

t XIX" -1 < Hﬂ- HO b
([T xg) ] < P
It is thus important to upper bound the support size ||7*||o. With the trivial bound of |7*||o < n
we recover the 7 p +1 T approximation ratio by applying Figure 4 to Sy = [n]. In order to bound

|7* [0 away from n we consider the following assumption imposed on X:
p(p+ )

Assumption 1. Define mapping ¢ : R? — Rz as ¢(x) = (§;2(0)x()))1<i<j<p where (i)
denotes the ith coordinate of a p-dimensional vector x and §;; = 1 if i = j and &;; = 2 otherwise.

Denote ¢(z) = (¢(z),1) € RZ%2+1 a5 the affine version of ¢(x). For any (P+1) + 1 distinct

rows of X, their mappings under gg are linear independent.

Assumption 1 is essentially a general-position assumption, which assumes that no
design points in X lie on a degenerate affine subspace after a specific quadratic mapping. Like
other similar assumptions in the literature (Tibshirani, 2013), Assumption 1 is very mild and
almost always satisfied in practice, for example, if each row of X is independently sampled from
absolutely continuous distributions.

We are now ready to state the main lemma bounding the support size of 7*.

Lemma 8. |7%[o < k + @ if Assumption 1 holds.

The proof of Lemma 8 is based on an interesting observation into the properties of Karush-
Kuhn-Tucker (KKT) conditions of the optimization problem Eq. (2.4), which involves a linear
system with @ + 1 variables. To contrast the results in Lemma 8 with classical rank/support
bounds in SDP and/or linear programming (e.g. the Pataki’s bound (Pataki, 1998)), note that the
number of constraints in the SDP formulation of Eq. (2.4) (see also Sec. 2.2.1) is linear in n, and
hence analysis similar to (Pataki, 1998) would result in an upper bound of ||7*||y that scales with
n, which is less useful for our analytical purpose.

Let f(m; A\, A, 1) be the Lagrangian muliplier function of the without replacement formulation
(b=1)of Eq. (2.4):

A\ p) = me ZM,+ZA (m——>+u<2m—1>

(p+1)
BE=+1

Here {\;}7_, > 0, N 1", = 0 and p > 0 are Lagrangian multipliers for constraints m; > 0,
< 1land Z ™ <K, respectlvely By KKT condition, af _» = 0 and hence
o ~
- f = xIE;Q‘rL‘l = )\1_/\1+M7 Z.:17"'7n7
(97@» J—
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where 3, = X Tdiag(7*) X is a p x p positive definite matrix.

Split the index set [n] into three disjoint sets defined as A = {i € [n] : 7 = 1}, B = {i €
[n] : 0 < 7 <1}and C = {i € [n] : 7} = 0}. Note that |7*|o = |A| + |B| and |A| < k.
Therefore, to upper bound |7*||o it suffices to upper bound |B|. By complementary slackness,
for all 1 € B we have that Xz = \; = 0; that is,

x) X% = (P(x), v(3.%) =, Vie B, (2.21)

where ¢ : RP — RP(PT1/2 j5 the mapping defined in Assumption 1 and v(-) takes the upper
triangle of a symmetric matrix and vectorizes it into a ( L _dimensional vector. Assume by
way of contradiction that |B| > p(p + 1)/2 and let xl, “++, Tp(pt1)/2+1 be arbitrary distinct

@ + 1 rows whose indices belong to B. Eq. (2.21) can then be cast as a homogenous linear

system with ’% + 1 variables and equations as follows:
%(1‘1)
N R
: — '

~

¢(95p(p+1)/2+1)

Under Assumption 1, ® = [¢(xzy);- - - ; gg(xp(pﬂ)/gﬂ)r is invertible and hence both ¢(3,?) and
p must be zero. This contradicts the fact that ¥, 2 is positive definite.

2.7.3 Proof of Lemma 1

To prove Lemma | we consider the following online matrix game: let A,,, = {4 € RP*? :
A > 0,tr(A) = 1} be an action space that consists of PSD matrices of unit trace (a.k.a. density
matrices). Consider an iterative game for 7' iterations. At iteration ¢, the player chooses an
action A; € A,,; afterwards, a loss matrix F} is revealed and the player suffers loss (F}, A;) =
tr(F," A;). The goal of the player is to minimize his/her regret:

H

-1
Regret({A,} 71 : <Ft,At> = mm Z (F,U), (2.22)

t=0 Apxp t=0

which is the “excess loss” of {A4;}7' compared to the single optimal action U € A, in “hind-
sight” (knowing all the loss matrices {F}}1_").

We immediately observe that the second term mingea,,,, 3 F, Uy in (2.22) is precisely
the minimum eigenvalue of tho F,. Hence, the task of lower boundlng Amin (tho F,) can be
reduced to upper bounding the regret in Eq. (2.22).

A popular strategy to minimize regret for the player is Follow-The-Regularized-Leader (FTRL),
also known to be equivalent to Mirror Descent (MD) (McMahan, 2011). It specifies strategy A,
for player at eachround ¢ = 0,1,...,7" — 1 as follows:

At = arg Hill’l {Ad,(At 1, ) + Oé<Ft_1, A>} . (223)

PXp
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Above, a > ( is the learning rate, ¢ : RP*? — R is some differentiable regularizer function, and
Ay(A,B) = ¢(B) — ¢(A) —(Vy(A), B — A) is the so-called Bregman divergence function
associated with ).

Perhaps the most famous choice of ¢ is the matrix entropy ¢(A) = (A,log A — I), and

the resulting MD strategy is referred to as matrix multiplicative weight updates (Arora & Kale,
2007). In this paper, to achieve better regret, we adopt the less famous ¢, ,-regularizer 1)(A) =
—2tr(AY?) introduced in (Allen-Zhu et al., 2015), and call the resulting MD strategy the ¢, /2
strategy.
Remark 1. The vector version of this £, ; strategy was first introduced in (Audibert et al., 2011)
to obtain optimum regret for combinatorial prediction games. The matrix generalization of this
{1, strategy is non-trivial, and leads to optimum regret for problems related to graph sparsifi-
cation (Allen-Zhu et al., 2015), and faster algorithms for online eigenvector (Allen-Zhu & Li,
2017).

The following proposition gives an alternative closed form for the £;/; strategy. Its proof is
by careful manipulations of the definition of A;, and has implicitly appeared in Allen-Zhu et al.
(2015). We include its proof for the sake of completeness, later in this section.

Proposition 2 (closed form ¢, , strategy). Assume without loss of generality that Ay = (col +
aZy) ™2 for some ¢y € R and symmetric matrix Zy such that coI + aZy > 0. Then,

t—1 —2
At=<ct1+o¢Zo+oz2Fg> . t=1,2,..., (2.24)

£=0

where ¢; € R is the unique constant that ensures c;I + aZy + « Zz;é F, > 0and tr(A;) = 1.
At ahigh level, if Z, = 0 were the zero matrix, then Ay = \/iﬁ would be a multiple of identity.
This corresponds to the standard way to initialize the player’s strategy in online learning, and
was used in Allen-Zhu et al. (2015). In this paper, we need this more general Z; to support our
proposed swapping algorithm.
If each loss matrix F; can be rank-2 decomposed as F; = ututT - vtvtT , then we prove the
following lemma which upper bounds the total regret of the £, , strategy:
Lemma 9 (main regret lemma). Suppose F; = ututT — vtv;r for vectors u;,v; € RP, and
Ag, ..., Ar_1 € Ay, are defined according to the (), strategy with some learning rate o > 0.

Then, as long as a<Ai/2, vy < 1/2 for all t, we have for any U € A5,

T-1 T-1 T T
S RGAGESY < Anuwe) | Anoe) ) + Aw<i°’U). (2.25)
t=0

=0 1+ 204<Ai/2, wuly 11— 20(<A2/2, v )

Ay (Ao, U)
— Y

N

— b4 (ue; Zy) + o (vi; Z4) + (2.26)

~
Il
o

Remark 2. To better see why Lemma 9 is a bound on regret (2.22), we rearrange the two sides:

T
t=0

T21<F A —UY <2 Zl (Ar, weuy ) - <Ai/2, uuy ) X (Ap, vv] ) - <At1/27UtUtT> +A¢(Ao, U)
b = s 1 2 T /2 T '
t=0 = + 2a(A" g ) 1 —2a(A", vy ) @
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Our proof of Lemma 9 involves a non-classical regret analysis designed for the matrix ¢,
strategy. It is based on the closed-form expressions in Eq. (2.24). Note that a variant of Lemma
9, but only for matrices F; = w;u, (thus of rank 1) was originally presented in Theorem 3.2
of (Allen-Zhu et al., 2015). The involvement of the extra —v;v] components is, however, a
non-trivial extension and brings in extra technical difficulties.

Proof of Lemma 9. To prove this lemma we consider an equivalent “2-step” description of the
mirror descent procedure:

A, = arg r/rlli% {Ay (A1, A) + o(Foq, Ay A= arg mln A¢(At, A).

pPXp

By the so-called “tweaked analysis” of mirror descent (Rakhlin, 2009; Zinkevich, 2003), the
matrix A, defined above is identical to its original definition of arg minea,,, {Ay (A1, A) +
a(F,_;, A)}. This can also be verified by writing A, explicitly using the following claim, and
verifying that A, (in its closed form by Proposition 2) is indeed a minimizer of A¢(ﬁt, A) over
A e Ay, by taking its gradient.

Proposition 3. We have A, — (A;I{Q +alf;_) 2
The proof of Proposition 3 is given later. Since Vi)(A;) — Viy(A;_1) + aF;_; = 0 as shown
in the proof above, we have (by defining Ay = Ap)
(aFy_y, Ay = Uy = (Vip(Aimr) — VY(A), Ay — U
== qu(At,]_, U) - Aw(At, U) + A’Lﬁ(Ata At,]_)
< Ap(Ap 1, U) = Ay(A,U) + Ay(A, Ay ). (2.27)
Above, the second equality and the last inequality follow from the “three-point” equality and

the generalized Pythagorean theorem of Bregman divergence (see for example, Lemma 2.1 of
Allen-Zhu et al. (2015)). Expanding A, (A;, A;_1) by its definition gives

Ai/}(/ztht—l) = 7»U(At 1) - (N ) - <V¢(gt) Apq — ﬁt>
= —2tr(A2) + 2tr(A)) + (A, P Ay — A
= (A A + (AP = 2tr(A)
= (AP aF Ay + tr(A)%) — 2tr(A2)
= a(F_1, A1) + tr(A)?) — tr(A2). (2.28)

Combining Egs. (2.27,2.28) and telescoping from ¢ = 1 to ¢ = T we obtain

T—1 T-1
—a Y (FLUY < Ay(Ao,U) — Ay(Ap, U) + Y te(A)) — tr(4,)
t=0
T-1 N
< AY(Ao, U) + Y tr(A)2) — tr(47), (2.29)

t=0
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where the second inequality holds because Bregman divergence Aw(/wlT, U) is always non-
negative.

It remains to upper bound the “consecutive difference” tr(ﬁiﬁ) — tr(A?). Let P, =
valug v] € RP*2 and J = diag(l,—1) € R?**2, so we have aF; = P,JP. By the defini-

tion of g;fl and the Woodbury formula®,

tr(AV2) = tr [(A;l/2 + PtJPtT)*l] —tr [A?Q — AP+ PtTA}/za)*liji/Q] . (2.30)

It is crucial to spectrally lower bound the core 2 x 2 matrix (J + P, A;/>P,)~'/2 in the middle of
Eq. (2.30). For this purpose, we claim that

Proposition 4. Suppose PtTAtlﬂPt =[b d;d c] € R**? and 2a<At1/2,vtvtT> < 1. Then

—1 -1
T A1/2py—1 b d 260
(J+P A'°F) _(J+[ch Z(J-i-lo 9 .

Proposition 4 is trivially true if J > 0, but becomes less obvious when .J has negative eigen-
values. In fact, Proposition 4 is not universally true for any matrices of the form PAPT, and
specifically requires the condition that 20z<At1/ 2, vv, » < 1. We defer the proof of Proposition 4
later.

With Proposition 4, the consecutive gap tr(A; fl) — tr(4; / ?) can be bounded as

tr(AY2) — tr(AY?) = —tr [—Ai/QPt(J + PtTA§/2Pt)*1RTA2/Q]

-1
20u] A 0 1/2
< —tr | -AP T+ e prAY
B 0 200, Ay, Lo
_ A f/g“: )y A f;f; ) (2.31)
14 2alA  uufy 1 —2adA/7 v )
Plugging Eq. (2.31) into Eq. (2.29) we complete the proof of Lemma 9. [

To establish Lemma | from Lemma 9, we also need the following lemma to bound the Breg-
man divergence term A, (Ag, U):
Lemma 10. Suppose Ay = (col + aZy) 2 as in Proposition 2, then for any U € A,y ,:

Aw(A(),U) < 2\/]3+ O{<Z(),U> .

Proof. By definition of Ay, 1) and Ay, we have

Ay(Ao, U) = (A2 U + tr(AY?) — 2t0(UY?) < (eod + aZo, Uy + /1,

S(A+UCV) t=A"1 - A U(C + VAIU) 'V AL, provided that all inverses exist.
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where the last inequality holds because tr(U'/?) > 0 and tr(Aé/ ) < A/p-tr(Ay) = /p- Note
also that (I, U) = tr(U) = 1. Therefore,

Aw(Ao, U) < Oé<Z(], U> + Cco + \/]7?

Because tr(Ay) = 1, the constant ¢, (if positive) must be upper bounded by ,/p because oth-
erwise tr(Ag) < tr((col)™2) = p-cy;? < 1. Therefore, it is proved that A,(Ag,U) <
CY<Zo, U> + 2\/23 O]

Combining Lemmas 9 and 10, we complete the proof of Lemma 1.
In the rest of this section we state proofs of technical propositions that are omitted above.

Proof of Proposition 2 We first show that for any symmetric matrix Z € RP*P, there ex-
ists unique ¢ € R such that «Z + ¢l > 0 and tr[(aZ + c¢I)"?] = 1. By simple asymptotic
analysis, lim,_,_qx,...(z)+ tr[(@Z + cI)7?] = 400 and lim,, o tr[(aZ + ¢I)7?] = 0. Be-
cause tr[(aZ + c¢I)™?] is a continuous and strictly decreasing function in ¢ on the open interval
(—aAmin(Z), +0), we conclude that there must exist a unique c such that tr[(«Z + cI)72] = 1.
The range of c¢ also ensures that aZ + ¢l > 0.

We now use induction to prove this proposition. For ¢ = 0 the proposition is obviously
correct. We shall now assume that the proposition holds true for A, | (i.e., 4, 1 = (¢, 11 +
aZy + ZZ% Fg)*Q) for some ¢ > 1, and try to prove the same for A;.

The KKT condition of the optimization problem and the gradients of the Bregman divergence
Ay yields

Vi(A) — V(A1) + aFy 1 —did =0, (2.32)
where the d,/ term arises from the Lagrangian multiplier and d; € R is the unique number that
makes —V(A;_1)+aF,—d, ] < 0 (because Vi)(A;) > 0)and tr(A;) = tr((VY) (VY (A_1)+

diI — aF;_1)) = 1. Re-organizing terms in Eq. (3.110) and invoking the induction hypothesis
we have

At = (Vw)_l (VQ/J(At_l) + dtl — OéE_l)

t—1
= (Vo) ! (—ctll' —aZy—a) F+ dJ) .

=0

Because d; is the unique number that ensures A; > 0 and tr(A;) = 1, and Z; + Zz;é Fy > 0,1t
must hold that —cy,; + d; = ¢;. Subsequently, Vi (A;) = —(A;"?) = —cl —aZ —a Y L F,.
The claim is thus proved by raising both sides of the identity to the power of —2.

Proof of Proposition 3 We first show (A;ll/2 + aF;_1)? is well defined. By assumption

a4 vl ) < 1, and hence —aF,_; < av,_jv) , < A;{*. This is because for any
matrices A > 0 and B > 0, we have (A, B) = tr(A'TB) <1 = A'B<I = B< AL
Consequently, we have At__ll/2 + aF;_1 > 0 and its inverse exists.
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Next, to prove A, = (A;ll/2 +aF, ;)% is a minimizer of the convex function {A,(A; 1, A)+

~

alFy_1, A)} over all positive semi-definite matrices A, we show its gradient evaluated at A, is
zero.® Indeed,

V (Aw(Atfl, A/t) + 04<Ft,1,ﬁt>) = Vw(zzt) — V@D(Atfl) + CtFt,1

— AP+ AT 4 aF =0

—d d

semi-definite, we conclude that R is also positive semi-definite and hence can be written as
R = QQT. To prove Proposition 4, we only need to establish the positive semi-definiteness of
the following difference matrix:

bod |\ 2 0 ]\

elael) -0 2 )

2 0 bo—d ]\ 2 0 1\
o G A o I | A G

2 0 1\ % 0N ) 2 01\
_ T T
(e [V ) e (e [T 2] o) @ (o [T 2]
Here in the last equality we again use the Woodbury matrix identity. It is clear that to prove

the positive semi-definiteness right-hand side of the above equality, It suffices to show QT (J +
diag(2b,2¢)) '@ < I. By standard matrix analysis and the fact that J = diag(1, —1),

71 71
QT <J+[20b QOD Q=@T[(”O%) _(1_020)1]62
(a) (1+20)" 0 1QQ lop
<Q1: 0 0]Q$1+%'[

®) max{2b,2¢} (e
O max{2h2¢} 9
1+ 20

Proof of Proposition 4 Define R = [ b _Cd ] Because PtTAtl/ P = [ b ZZ is positive

Some steps in the above derivation require additional explanation. In (a), we use the fact that
2¢ = 2a(A? v;07) < 1, and hence (1 — 2¢)~! > 0; in (b), we use the fact that QQT =
[ _bd _Cd < 20b 200 ]; finally, (c) holds because b = 2a<At1/2,ututT> > 0, % < 1and
2c < 1. The proof of Proposition 4 is thus completed.

2.7.4 Proof of Theorem 3

The following lemma is the key result in our proof of Theorem 3:

5The convexity of this objective follows from Lieb’s concavity theorem (Bhatia, 1997; Lieb, 1973), and is already
a known fact in matrix regret minimization literatures (Allen-Zhu et al., 2015).
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Lemma 11 (main averaging lemma). For every ¢ > 0 and subset A < [n] of cardinality k,
suppose Amin(Xiep Tt} ) < 1 —15e and A = (cI + a Y.\ ;] )% where ¢ € R is the unique
number such that A > O and tr(A) = 1. Then, the following statements are true:

: (A, xix] 1—¢
= < ; 2.33
YT e 2(1(}&111/2111’1 Ty<1 1 —2a(AYV2 2] k (2.33)
(A, z; ;F> €
=V + . 2.34
Ir[l M1+ 20 (A2, T, 1) T (2.34)

Furthermore, if & = \/p/c and k = 6p/e? for some ¢ € (0,1/15), then there always exists i € A
such that 2a{ AY? ;] < 1.

In other words, Lemma 11 suggests that, as long as Apmin(X,cp i) < 1 — 15¢, we can
(Av,ziz])

simply choose i, to be the index ¢ € A, which minimizes ——57""—,
1-20(A " iz ]y

and 7, to be the index

j ¢ A; which maximizes %. Egs. (2.33) and (2.34) together imply that

A ’x‘th A y g :
et et o (235)
1+ 20[<At y Ly ]t> 1- 2a<At y Liy zt> k
In sum, either there exists some index ¢ = 0,1,...,7 — 1 such that A\pin (D0, zi%) ) >

1 — 15¢ is satisfied, or we can always find pairs (i, j;) satisfying Eq. (2.35), which implies

T “ e Te
_/\min Z .Tj.I‘j —E T —? + 2e .

JEAT t=0

Here in the last inequality we apply the choice o = /p/e. In other words, as long as T" > k/¢, it
must satisfy Apin (D Ap Ti; T) = 1—2¢, and subsequently by the reciprocal multiplicity property
we complete the proof of Theorem 3.

Proof of Lemma 11 We first state a technical proposition as follows:
Proposition 5. Suppose Z > 0 is a p-dimensional PSD matrix with A\yin(Z) < 1. Let A =
(aZ + cI)~2, where c € R is the unique real number such that A > 0 and tr(A) = 1. Then

1. (A2 . 7Y <p+ ay/p;

2. {A, Z) < \/nfa+ Auin(2).

Proof. For any orthogonal matrix U, the transform Z +— UZUT leads to X — UXU" and
X'/2 — UX'Y2UT; thus both inner products are invariant to orthogonal transform of Z. There-
fore, we may assume without loss of generality that Z = diag(oy,...,0,) for Ay = --- )\, = 0,
because Z > (. Subsequently,

p p
A 1

AP Zy =N 20 el .
o 2 izla)\i—i-c p=c Z,Zla)\i—i-c
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If ¢ > 0, then a{ A2, Z) < p and the first property is clearly true. For the case of ¢ < 0, note
that ¢ must be strictly larger than —a\,, as we established in Proposition 2. Subsequently, by the
Cauchy-Schwarz inequality,

p P 1

(AP, Z) =p—c- ), <p—covBry )

~ — (aX; +¢)?

al + ¢

Because N\, = A\pin(Z) < 1 and tr(A) = tr[(aZ + ¢I) %] = 1, we have that ¢ > —« and
V20, (@A + ¢) 2 = 1. Therefore, a{A"?, Z)) < p+ av\/p, which establishes the first property
in Proposition 5.

We next turn to the second property. Using similar analysis, we have

S z 1
2, A) = Z a)\ +c) :Za)\i—l—c_c.;(a)\i—i—c)z

i=1

p

SV Z(a)\ + ¢)? Zoz)\ + ¢)? 3 S VP

=1 z:l
Property 2 is then proved by noting that ¢ > —\,in(Z). O

Back to the proof of Lemma 11, we first show the existence of (at least one) 7 € A such that
20( A2z, a:T> < 1. Define Z = Y., z;z], and by definition A = (c] + a ), zz])? =
(aZ + cI)™2. Assume by way of contradlctlon that such ¢ does not exist. We then have

D2 A ]y = 20( AV Z) = |A] = k. (2.36)
1EA

On the other hand, because Z > 0 and \,;,(Z) < 1, invoking Proposition 5 we get
20( A 7y < 2p + 2a\/p

which contradicts Eq. (2.36) provided that o = ,/p/e and k > 4p/e. Thus, there must exist i € A
such that 2a{AY? x;z] < 1. In fact, a stronger result 3., (1 — 2a(AY? z;2])) > 0 can be
established following the above arguments.

We next proceed to prove Eq. (2.33). By definition of v/, we must have that (1—2a{AY? z;z] ))v <

(A, z;z]) for all i € A, because if 2a( A2, z;2]) = 1 the left-hand side is non-positive while
the right-hand side is always non-negative, thanks to the positive semi-definiteness of A. Subse-
quently,

DieA <A’5L’i1’z’T> < \/13/(1 + )\min(ZiEA %%T) <€ +1—15¢ - 1—¢
Yoiea (1= 2a(AV2 z;x]y) k—2p—2a,/p T E(1-13¢) T k7

where the first inequality holds because the denominator is strictly positive, and in the second
inequality we invoke Proposition 5. We have thus proved that v < (1 — ¢) /k.

V<
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Finally we prove Eq. (2.34). Define t = v + ¢/k < 1/k. To prove Eq. (2.34) it suffices to
show that 311 o 7TJ<A riely = tde a5 (14 2a(AY2 z527)), because m; = 0 for all j.
Recall that .7 | m; = k, 3.7, mjzjz] = I. We then have

Z m;(1 +2a<A1/2 T, J>) ( Zm) + 2a - Z 7rj<A1/2 T, J>

je[n\A e Je[n\A
< (k — Z 7rj> + 2 - Z mi(AY?, T5T) )
jeA j=1
= k= > 420, Ay = k= > 7; + 2atr(A?).
JEA JEA

Similarly,
Z 7Tj<A, I’].’ﬂ;r> = I — Z 7Tj$il’:, X> = tr(A) — Z ’/Tj<A, .CE].CU;F>
je[n\A JEA JEA

Note that for any p x p pos1t1ve semi-definite matrix Z > 0, tr(Z'/2) < 4/p - tr(Z) thanks to
the Holder’s inequality ’ applied to the non-negative spectrum of A 1/ 2 and that tr(A) 1 by
definition. Subsequently,

Z (A, xeJT> —t- Z (1 + 2a( A2, xjij>)

Jjeln\A je[n]\A
= Z T A, xja) )y —t <k’ = Z 7Tj> — 20t - tr(AY?)
jeA JEA
>1- Z T A,z )y —t <k = Z 7Tj> — 2at,/p
jJeEA JEA
=1—tk —2ta,/p — Z mi((A xjm) ) — 1)
JeEA
> 1 —th — 2tayp— > max{{A,z;z]) — t,0} (2.37)
JEA
>1—th—2tay/p— >, ((A,zx] ) —t) — ) max{(t — (A, z;2])), 0}
jeA jeA
> 1 —2tay/p — \/P/® — Amin (Z xw}) = Z max{(t — (A, z;z])),0}. (2.38)
JEA JEA

Here Eq. (2.37) holds because m; < 1 for all j, and in Eq. (2.38) we apply the > ;. (A4, Tir) ) <
P/ + Anin (2] JeA x]xj) property as established in Proposition 5. By the conditions that o =

Nay| + -+ + |va| < Vd-+/23 + -+ + 22 for any sequences of d real numbers 1, ..., T,

35



VP/e, t < 1/k and Ain (3 cp zjz]) < 1 — 3¢, the right-hand side of Eq. (2.38) can be lower
bounded by the simplified form of

2
Z mi {(A, xjz )y — (1 + 20(AY?, vzl )} = 25—5—2—2 max{t — (A, z;z, ),0}. (2.39)
Jje[n\A JEA

Furthermore, because (1 — 2a(A'2 2,2 ))v < (A, x;x] ) for all i € A, invoking Proposition 5
we have

Z (v — (A, 23] )) < Z 2val AV, zjx, ) <2w(p+ayp)  forall A< A
e’ ieN’
Consider A = {i € A : t — (A, z;z] ) = 0}. We then have
S maxtt — (A e ], 00 = 3 (0 — (A rga]) = (1 = WIA + 3 (v = (A, aya]))

JeEA JEA JEA

<e+ %, (2.40)

where the last inequality holds because t — v = ¢/k > 0, |A| < k, v < 1/kand o = \/p/e.
Combining Egs. (2.39) and (2.40) we arrive at

6p
Do (A ma] ) — (1 + 2aKAY? e )} > e — 2
jelnh\A

If k > 6p/e?, the right-hand side of the above inequality is non-negative, which is to be demon-
strated.

2.7.5 Proof of Lemma 2

Without loss of generality assume k; > 0 for all ¢, because for those design points with k; = 0
no information is gained and therefore these points can be excluded from the analysis. Let
w; = 4%*1 be the weight of design point z; and define W := diag(wy, - - - ,w,). The weighted
OLS estimator ﬁk then admits a closed-form expression

Be = (XTWX) ' XTWF, (2.41)

where § = (71, -+, Yn) € R™. Define ¢ := § — y. Using the linear model that y = X 3y, we have
Br — o = (XTW X)X "We. On the other hand, by the quantized error model Eq. (2.13), it
holds that E[;|X] = 0 and E[¢?| X ] < 4=+ M2 = w; ' M2, Subsequently,

E| B — Bol?

= tr [(X WX) ' X TWE(ee YW X (X"WX)™']
<Mt [(XTWX) T XTWX(X TWX)™

= M? -t [(XTWX)™].
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Chapter 3

Selective queries in nonparametric optimization

Let f : X — R be an unknown function defined on a known d-dimensional domain X < R?
with non-empty interior. The objective of optimization is to find the minimizer of f over X, or
more specifically

min f(x), (3.1)

zeX

assuming that such a minimizer exists.

Unlike the traditional optimization literature, where the objective function f to be minimized
is known and first-order or second-order of derivatives of f are readily accessible, in this chapter
we consider the case where the function f itself is unknown and therefore no derivatives of f
can be accurately evaluated. Instead, an algorithm gains information about f through n rounds
of interactive queries from a noisy oracle, and produces an estimate ¥,, € X that approximately
minimizes the unknown function f.

More specifically, at time ¢ € {1,2,--- ,n}, an algorithm picks a query point z; € X and
observes feedback

ye = flae) + &, (3.2)

where & ~ N(0, 0?) is a centered Gaussian random variable reflecting the noise in the evaluation
of f(x;) inherent from the underlying measurement procedures. The optimization error can then
be evaluated as Ef(Z,) — f* where f* = mingey f(x), reflecting the gap in function values
between the estimated minimizer Z,, and the true minimizer 2* € argmin,  f(z).

Some constraints such as smoothness or convexity are imposed on the unknown function f
(denoted as f € F) to make the approximate optimization problem information-theoretically
feasible. Nevertheless, no strong assumptions such as explicit parametric forms are assumed for
f, making the problem essentially nonparametric.

The (noisy) nonparametric optimization problem has important applications in machine learn-
ing and operations research, under the names of zeroth-order (derivative-free) optimization,
black-box optimization, Bayesian optimization, and/or simulation optimization. They can be
applied to problems such as hyper-parameter tuning in machine learning systems or search for
optimal parameters in experimental or simulation studies (Leeds et al., 2014; Nakamura et al.,
2017; Reeja-Jayan et al., 2012; Snoek et al., 2012).

We consider in this chapter three different settings of selective queries in nonparametric op-
timization. Sec. 3.1 considers very low domain dimension d, but allows the function f to be
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very flexible. On the other hand, Sec. 3.2 considers the setting of very high domain dimen-
sion d (even exceeding the total number of queries n), but places strong assumptions such as
convexity and sparsity on f. Finally, Sec. 3.3 studies the non-stationary or dynamic settings
of nonparametric optimization, in which the function f to be optimized may change over time.
Such non-stationary optimization questions have important applications in dynamic pricing and
other revenue management problems (Besbes et al., 2015).

3.1 Nonparametric optimization: local minimax rates

We consider the question of optimizing a nonparametric f : X — R over the unit cube X' =
[0, 1]¢. The optimization error of Z,, € X is evaluated by

L(Zn; f) = f(Z,) — f*  where f*:=inf f(z). (3.3)

zeX

For simplicity, the variance of the noise variables {&;}7 , in Eq. (3.2) is set as 02 = 1.

3.1.1 Local minimax rates

We use the classical local minimax analysis (Van der Vaart, 1998) to understand the fundamental
information-theoretical limits of noisy global optimization of smooth functions. On the upper
bound side, we seek (active) estimators 7,, such that

sup sup Pr[L(Z,; f) = C1- R.(fo)] < 1/4, (3.4)
f0€® fe®" | f—fol»<en(fo) |

where C'; > 0 is a positive constant. Here f € O is referred to as the reference function, and f €
©’ is the true underlying function which is assumed to be “near” fy;. The minimax convergence
rate of £(Z,,; f) is then characterized locally by R, ( fy) which depends on the reference function
fo- The constant of 1/4 is chosen arbitrarily and any small constant leads to similar conclusions.
To establish negative results (i.e., locally minimax lower bounds), in contrast to the upper bound
formulation, we assume the potential active optimization estimator ,, has perfect knowledge
about the reference function f, € ©. We then prove locally minimax lower bounds of the form

inf sup Pr[(Z,; f) = Oy - Ru(fo)] = 1/3, (3.5)
Zn fe0! | f—folw<en(fo)

where Cy > 0 is another positive constant and &,,( o), R,.(fo) are desired local convergence rates
for functions near the reference f.

Although in some sense classical, the local minimax definition we propose warrants fur-
ther discussion. We give some additional remarks on the parameters and the interpretation of
Eq. (3.4).

1. Roles of © and ©’: The reference function f; and the true functions f are assumed to
belong to different but closely related function classes © and ©'. In particular, in our paper

O < ©', meaning that less restrictive assumptions are imposed on the true underlying function

f compared to those imposed on the reference function f; on which R,, and ¢,, are based.
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2. Upper Bounds: It is worth emphasizing that the estimator Z,, has no knowledge of the
reference function f,. From the perspective of upper bounds, we an consider the simpler task
of producing fy-dependent bounds (eliminating the second supremum) to instead study the
(already interesting) quantity:

sup Pr[£(Z,; fo) = C1R.(fo)] < 1/4.
foe® Jo

As indicated above we maintain the double-supremum in the definition because fewer as-
sumptions are imposed directly on the true underlying function f, and further because it
allows to more directly compare our upper and lower bounds.

3. Lower Bounds and the choice of the “localization radius” ¢,,(f;): Our lower bounds allow
the estimator knowledge of the reference function (this makes establishing the lower bound
more challenging). Eq. (3.5) implies that no estimator Z,, can effectively optimize a function f
close to f beyond the convergence rate of R, ( f), even if perfect knowledge of the reference
function fy is available a priori. The &,(fy) parameter that decides the “range” in which
local minimax rates apply is taken to be on the same order as the actual local rate R, (fo)
in this paper. This is (up to constants) the smallest radius for which we can hope to obtain
non-trivial lower-bounds: if we consider a much smaller radius than R, (fy) then the trivial
estimator which outputs the minimizer of the reference function would achieve a faster rate
than R, (fy). Selecting the smallest possible radius makes establishing the lower bound most
challenging but provides a refined picture of the complexity of zeroth-order optimization.

3.1.2 Assumptions

We state and motivate assumptions that will be used. The first assumption states that f is locally
Holder smooth on its level sets.
(Al) There exist constants x,«, M > 0 such that f restricted on Xy, := {z € X : f(z) <
f* + K} belongs to the Holder class X*( M), meaning that f is k-times differentiable on
X . and furthermore for any z, 2’ € Xy, !

k a, _ Q, !
oo @+ )] @)~ f k>($>|<M. (3.6)

e

7=0a1+...4+aq=7 al+...+ag=k

Here k = |/ is the largest integer lower bounding v and f(*9) () := &7 f(z)/0x§" . .. dx5e.

We use ¥.¢(M) to denote the class of all functions satisfying (A1). We remark that (A1) is
weaker than the standard assumption that f on its entire domain X belongs to the Holder class
¥*(M). This is because places with function values larger than f* + x can be easily detected
and removed by a pre-processing step, as we describe in the next section.

Our next assumption concern the “regularity” of the level sets of the “reference” function f;.
Define Ly, (€) := {x € X : fo(z) < fi+¢€} asthe e-level set of fy, and pi5,(€) := A(Ly,(€)) as the
Lebesgue measure of Ly, (¢), also known as the distribution function. Define also N (Ly,(¢€),0)
as the smallest number of ¢»-balls of radius ¢ that cover Ly, (¢).

Lthe particular /., norm is used for convenience only and can be replaced by any equivalent vector norms.
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Figure 3.1: Informal illustrations of Algorithm 7. Solid blue curves depict the underlying func-
tion f to be optimized, black and red solid dots denote the query points and their responses
{(zy,y¢)}, and black/red vertical line segments correspond to uniform confidence intervals on
function evaluations constructed using current batch of data observed. The left figure illustrates
the first epoch of our algorithm, where query points are uniformly sampled from the entire do-
main X. Afterwards, sub-optimal locations based on constructed confidence intervals are re-
moved, and a shrinkt “candidate set” .Sy is obtained. The algorithm then proceeds to the second
epoch, illustrated in the right figure, where query points (in red) are sampled only from the re-
stricted candidate set and shorter confidence intervals (also in red) are constructed and updated.
The procedure is repeated until O(log n) epochs are completed.

(A2) There exist constants ¢y > 0 and Cy > 0 such that N (L, (€),6) < Co[1 + s, (e)6~%] for
all €,0 € (0, co].

We use O¢ to denote all functions that satisfy (A2) with respect to parameters C' = (cg, Cp).

At a higher level, the regularity condition (A2) assumes that the level sets are sufficiently
“regular” such that covering them with small-radius balls does not require significantly larger
total volumes. For example, consider a perfectly regular case of L, (¢) being the d-dimensional
(o ball of radius r: Ly, (¢) = {x € X : |x — 2*|2 < r}. Clearly, () = r?. In addition, the
d-covering number in {5 of Ly, () is on the order of 1 + (r/6)? =< 1 + py,(€)d ¢, which satisfies
the scaling in (A2).

When (A2) holds, uniform confidence intervals of f on its level sets are easy to construct
because little statistical efficiency is lost by slightly enlarging the level sets so that complete d-
dimensional cubes are contained in the enlarged level sets. On the other hand, when regularity of
level sets fails to hold such nonparametric estimation can be very difficult or even impossible. As
an extreme example, suppose the level set L, (¢) consists of n standalone and well-spaced points
in X: the Lebesgue measure of Ly, (¢) would be zero, but at least {2(n) queries are necessary
to construct uniform confidence intervals on Ly, (€). It is clear that such Ly, (€) violates (A2),
because N(Ly,(¢€),0) = nasd — 0% but ug () = 0.
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Algorithm 7 Successive elimination for low-dimensional nonparametric optimization

1: Parameters: o, M, 0, n

2: Output: z,, = x,, the final prediction

3: Initialization: Sy = G, 0o(x) = o0, T' = |log, n|, ng = |n/T;

4: forr=1,2,...,T do
Compute “extended” sample set S° (o, 1) defined in Eq. (3.7);
fort = (1 — 1)ng + 1 to 7n, do

Sample z; uniformly at random from S?_,(o,_1) and observe y; = f(x;) + wy;

end for
For every x € S;_4, find bandwidth h,(z) and build CTI [¢(x), u.(x)] in Eq. (3.12);
10: Sy i={r e S,y : l(x) < minges, |, u(2')}, 0-(x) := min{o,_1(x), he(z)}.
11: end for

e

3.1.3 The successive elimination algorithm

Our algorithm is based on the idea of successive elimination, which eliminates candidate points

that are proven sub-optimal. We start with a cleaner algorithm that operates under the slightly

stronger condition that K = oo in (A1), meaning that f is a-Holder smooth on the entire domain

X. The generalization to x > () being a constant is given in an additional pre-processing step.

Let G, € X be a finite grid of points in X'. We assume the finite grid G,, satisfies the following

two mild conditions:

(B1) Points in G,, are sampled i.i.d. from an unknown distribution Px on X’; furthermore, the
density px associated with Px satisfies p, < px (x) < p, for all z € X, where 0 < p, <
Do < o0 are uniform constants;

(B2) |G,| = n?¥min@1) and log |G| = O(logn).
Remark 3. Although typically the choices of the grid points GG,, belong to the data analyst, in
some applications the choices of design points are not completely free. For example, in mate-
rial synthesis experiments some environment parameter settings (e.g., temperature and pressure)
might not be accessible due to budget or physical constraints. Thus, we choose to consider less
restrictive conditions imposed on the design grid Gz,,, allowing it to be more flexible in real-world
applications.

For any subset S < G, and a “weight” function ¢ : G,, — R*, define the extension S°(p) of
S with respect to o as

S°(0) == | Bifuy(w:Gn)  where By, (2;Gn) = {z€ Gyt |2 — 20 < o(2)}. (37

ofx)
zes
The algorithm can then be formulated as two level of iterations, with the outer loop shrinking
the “active set” S; and the inner loop collecting data that reduce lengths of confidence intervals
on the active set. An intuitive illustration of our proposed algorithm is given in Fig. 3.1, and a
pseudo-code description is given in Algorithm 7.

Local Polynomial Regression We use local polynomial regression (Fan & Gijbels, 1996) to
obtain the estimate f(z). In particular, for any = € G,, and a bandwidth parameter h > 0,
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consider a least square polynomial estimate

fn € argmin Z zp € BP(x)] - (yo — glaw))?, (3.8)

gek

where Bi°(z) := {z' € X : |2’ — z||x < h} and P} denotes all polynomials of degree k on X'
To analyze the performance of fh evaluated at a certain point x € X, define mapping ¢, , :
2 (Ldy(2), o 0k, (2) where 0, ¢ 2 o> [, b3z — i), _, is the degree-)
polynomial mapping from R% to R . Also define Wy = (Ven(Te))i1<v <tz eBp(z) as the m x D
aggregated design matrix, where m = >, I[xy € BP(z)]and D = 1 +d +... +d* k = |a].

The estimate fh defined in Eq. (3.8) then admits the following closed-form expression:

Fu(2) = un(2) T (07,00 0], Ve, (3.9)

where Yy, = (yu)1<v<tzye By (x) and A is the Moore-Penrose pseudo-inverse of A.

The following lemma gives a finite-sample analysis of the error of fh(:):)
Lemma 12. Suppose [ satisfies Eq. (3.6) on B}°(x; X), maX.epr(m:x) [Ven(2)|2 < b and
%\Ifzh\lft,h > olpxp for some o > 0. Then for any 6 € (0,1/2), with probability 1 — §

|fn(@) = ()] < gMdkh“ L %7;1/5)

—_—— —
bp,5(2) sp,6(2)

=: Nps(x). (3.10)

Remark 4. by, 5(x), s,5(x) and 1, s(x) depend on x becauses o depends on U, ,, which further
depends on the sample points in the neighborhood B;°(z; X') of .
In the rest of the paper we define by, 5(x) := (bZ/U)Mdkha and s, 5(2) := by/5D In(1/5)/om

as the bias and standard deviation terms in the error of fh( ), respectlvely. We also denote

Mh,6(x) 1= by 5(x) + 5p,5(2) as the overall error in fh(a:)

Notice that when bandwidth / increases, the bias term by, s(x) is likely to increase too be-
cause of the h* term; on the other hand, with h increasing the local neighborhood B’ (x; X)
enlarges and would potentially contain more samples, implying a larger m and smaller standard
deviation term s, 5(x). A careful selection of bandwidth h balances by, s(x) and s, 5() and yields
appropriate confidence intervals on f(x), a topic that is addressed in the next section.

Bandwidth Selection and Confidence Intervals Given the expressions of bias by s(x) and
standard deviation s, () in Eq. (3.10), the bandwidth h,(z) > 0 at epoch ¢ and point z is
selected as

jie(z)

hy(z) = 3 where ji(z) := argmax {j € N,j < n’: b;/25(z) <s;m25(x)}.  (3.11)

More specifically, h;(x) is the largest positive value in an evenly spaced grid {j/n?} such that
the bias of f,(z) is smaller than its standard deviation. Such bandwidth selection is in principle
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similar to the Lepski’s method (Lepski et al., 1997), with the exception that an upper bound on
the bias for any bandwidth parameter is known and does not need to be estimated from data.

With the selection of bandwidth h,(z) at epoch ¢ and query point x, a confidence interval on
f(z) is constructed as

0i(z) := max { Pty () — nht,(@,&(x)} and u(z) := min { Frotey () +nht,(x),5(a;)}.

1<t'<t 1<t/'<t
(3.12)

Note that for any x € X, the lower confidence edge ¢;(z) is a non-decreasing function in ¢ and
the upper confidence edge u,(x) is a non-increasing function in ¢.

Pre-screening We describe a pre-screening procedure that relaxes the smoothness condition
from k = o0 to kK = (1), meaning that only local smoothness of f around its minimum values
is required. Let ny = |n/logn|, xi,...,z,, be points i.i.d. uniformly sampled from X" and

Y1, - - -, Yn, be their corresponding responses. For every grid point z € G,,, perform the following:

1. Compute f (x) as the average of all y; such that ||x; — x|, < 1/ 2d

2. Remove all z € G,, from Sy if f(z) = min,eq, f(2) + 1/ logn

Remark 5. The 1/logn term in removal condition f ( ) = mineq, f ( ) +1/log n is not impor-
tant, and can be replaced with any sequence {w,} such that lim,, , w, = 0 and lim,, o, w,n’ =
oo for any ¢ > 0. The readers are referred to the proof of Proposition 6 in the appendix for the
motivation of this term as well as the selection of the pre-screening bandwidth hy.

log n =: ho;

At a high level, the pre-screening step computes local averages of y and remove grid points
in Sy = G, whose estimated values are larger than the minimum in G,,.

To analyze the pre-screening step, we state the following proposition:

Proposition 6. Assume f € X%(M) and let S|, be the screened grid after step 2 of the pre-
screening procedure. Then for sufficiently large n, with probability 1 — O(n™') we have

min f(x) = min f(z) and S < U By (2; X), (3.13)

€S|, 2eG
v " weL;(r/2)

where L¢(r/2) = {r e X : f(x) < f* + k/2}.

To interpret Proposition 6, note that for sufficiently large n, f € X%(M) implies f being a-
Holder smooth (i.e., f satisfies Eq. (3.6)) on UxeL (/2) Bj‘f; (x; X), because x > 0 is a constant
and hg — 0 as n — o0. Subsequently, the proposmon shows that with high probability, the pre-
screening step will remove all grid points in G,, in non-smooth regions of f, while maintaining
the global optimal solution. This justifies the pre-processing step for f € X¢(M), because f is
smooth on the grid after pre-processing.

The proof of Proposition 6 uses the fact that the local mean estimation is large provided that
all data points in the local mean estimator are large, regardless of their underlying smoothness.
The complete proof of Proposition 6 is deferred to the appendix. Its proof is simple and is
deferred to the appendix.
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3.1.4 Locally minimax upper bounds

The following theorem is our main result that upper bounds the local minimax rate of noisy
global optimization with active queries.
Theorem 4. For any o, M, k, ¢y, Cy > 0 and fo € (M) n O¢, where C' = (co, Cy), define

e(fo) :=sup{e > 0: =y, (e) = n/log” n}, (3.14)

where w > 5 + d/«a is a large constant. Suppose also that €9(fy) — 0 as n — oo. Then for
sufficiently large n, there exists an estimator I,, with access to n active queries 1, . ..,x, € X,
a constant C'r > 0 depending only on o, M, k, ¢, ¢y, Cy and a constant v > 0 depending only on
a and d such that

sup sup Pr [£(Z,, ) > Crlog” n - () (fo) + n’m)] < 1/4. (3.15)
foeSg(M)nOc  fese(mM), T
1= follo <&l (fo)

Remark 6. Unlike the (local) smoothness class 3% (M/), the additional function class O that
encapsulates (A2) is imposed only on the “reference” function f; but not the true function f to
be estimated. This makes the assumptions considerably weaker because the true function f may
violate either or both (A2) while our results remain valid.

Remark 7. The estimator 7,, does not require knowledge of parameters , ¢y, Cy or €Y ( fy), and
automatically adapts to them, as shown in the next section. While the knowledge of smoothness
parameters o and M seems to be necessary, we remark that it is possible to adapt to a and
M by running O(log® n) parallel sessions of Z,, on O(logn) grids of o and M values, and then
using Q(n/ log® n) single-point queries to decide on the location with the smallest function value.
Such an adaptive strategy was suggested in Grill et al. (2015) to remove an additional condition
in Minsker (2013), which also applies to our settings.

Remark 8. When the distribution function 1z, (¢) does not change abruptly with € the expression
of eY(fy) can be significantly simplified. In particular, if for all € € (0, co] it holds that

so(e/ogn) = iy, (€)/[log ], (3.16)
then Y(f) can be upper bounded as
eY(fo) < [logn]®M - sup {e>0: e Gy (e) = n}. (3.17)

It is also noted that if /1, () has a polynomial behavior of ¢, () = €” for some constant 3 > 0,
then Eq. (3.16) is satisfied and so is Eq. (3.17).

The quantity €Y(fy) = inf{e > 0 : e~ @+, (e) > n/log”n} is crucial in determin-
ing the convergence rate of optimization error of ¥, locally around the reference function fj.
While the definition of €Y(f;) is mostly implicit and involves solving an inequality concerning
the distribution function sy, (-), we remark that it admits a simple form when sy, has a poly-
nomial growth rate similar to a local Tsybakov noise condition (Korostelev & Tsybakov, 2012;
Tsybakov, 2009), as shown by the following proposition:
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Proposition 7. Suppose yy,(€) < € for some constant 3 € [0,2 + d/a). Then €(fy) =
O(n=o/Cetd=aB)) Iy addition, if B € [0, d/a] then eV (fo)+n~? < Y(fy) = O(n=/Ca+d—af)),

We remark that the condition € [0, d/«a] was also adopted in the previous work (Minsker,
2013, Remark 6). Proposition 7 can be easily verified by solving the system ¢~ (%), fle) =
n/log”n with the condition s, () < €. We therefore omit its proof. The following two
examples give some simple reference functions f, that satisfy the pys,(e) < €’ condition in
Proposition 7 with particular values of .

Example 1. The constant function f; = 0 satisfies (A1) through (A3) with 5 = 0.
Example 2. fy € 32(M) that is strongly convex * satisfies (A1) through (A3) with 3 = d/2.

Example 1 is simple to verify, as the volume of level sets of the constant function f; = 0
exhibits a phase transition at ¢ = 0 and ¢ > 0, rendering 5 = 0 the only parameter option
for which 114,(¢) < ¢’. Example 2 is more involved, and holds because the strong convexity
of fy lower bounds the growth rate of f, when moving away from its minimum. We give a
rigorous proof of Example 2 in the appendix. We also remark that f, does not need to be exactly
strongly convex for 8 = d/2 to hold, and the example is valid for, e.g., piecewise strongly convex
functions with a constant number of pieces too.

To best interpret the results in Theorem 4 and Proposition 7, it is instructive to compare the
“local” rate n~®/(2¢+d-af) with the baseline rate n~*/ (2‘””2, which can be attained by recon-
structing f in sup-norm and producing Z,, € argmin,ey f(z). Since 5 > 0, the local con-
vergence rate established in Theorem 4 is never slower, and the improvement compared to the
baseline rate n~*/(2>+9) is dictated by /3, which governs the growth rate of volume of level sets
of the reference function f;. In particular, for functions that grows fast when moving away from
its minimum, the parameter /3 is large and therefore the local convergence rate around f;, could
be much faster than n=%/(?>¢+9)_ Theorem 4 also implies concrete convergence rates for special
functions considered in Examples 1 and 2. For the constant reference function f, = 0, Example
1 and Theorem 4 yield that R, (fo) = n~%/(2**9_ which matches the baseline rate n~*/(2+d)
and suggests that f, = 0 is the worst-case reference function. This is intuitive, because f, = 0
has the most drastic level set change at ¢ — 0" and therefore small perturbations anywhere of
fo result in changes of the optimal locations. On the other hand, if f; is strongly smooth and
convex as in Example 2, Theorem 4 suggests that R, (fy) = n~"/2, which is significantly better
than the n~%(“*% baseline rate * and also matches existing works on zeroth-order optimization
of convex functions (Agarwal et al., 2010). The faster rate holds intuitively because strongly con-
vex functions grows fast when moving away from the minimum, which implies small level set
changes. An active query algorithm could then focus most of its queries onto the small level sets
of the underlying function, resulting in more accurate local function reconstructions and faster
optimization error rate.

2A twice differentiable function fj is strongly convex if there exists ¢ > 0 such that V2 fo(z) > oI, Vx € X.
3Note that f; being strongly smooth implies & = 2 in the local smoothness assumption.
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3.1.5 Locally minimax lower bounds

We prove local minimax lower bounds that match the upper bounds in Theorem 4 up to logarith-
mic terms. As we remarked in Section 3.1.1, in the local minimax lower bound formulation we
assume the data analyst has full knowledge of the reference function f;, which makes the lower
bounds stronger as more information is available a priori.

To facilitate such a strong local minimax lower bounds, the following additional condition is
imposed on the reference function f; of which the data analyst has perfect information.

(A2’) There exist constants cj, Cf > 0 such that M(Ly,(€),0) = Chuy, ()0~ for all €,0 €
(0, ¢p], where M(Ly¢, (€),6) is the maximum number of disjoint /5 balls of radius § that
can be packed into L, ().

We denote O, as the class of functions that satisfy (A2’) with respect to parameters ' =
(ch, C}) > 0. Intuitively, (A2”) can be regarded as the “reverse” version of (A2), which basically
means that (A2) is “tight”.

We are now ready to state our main negative result, which shows, from an information-
theoretical perspective, that the upper bound in Theorem 4 is not improvable.
Theorem 5. Suppose «, co, Cy, ¢, C}, > 0 and k = 0. Denote C' = (cy, Cy) and C' = (¢}, C).
For any fy € ©¢ N O,, define

eb(fo) i=sup {e > 0: e Ty, () = n}. (3.18)

Then there exist constant M > 0 depending on o, d, C, C" such that, for any f, € X(M/2) N
@C M @C’,

inf sup P;r[ﬂ(fn; ) =zen(fo)] = (3.19)

on fexg (M),
|f = foll-o <2e5; (fo)

Wl =

Remark 9. For any f; and n it always holds that & (fo) < €Y(fo).
Remark 10. If the distribution function s, (¢) satisfies Eq. (3.16) in Remark 8, then €& (fy) >
en (fo)/[log n] .

Remark 9 shows that there might be a gap between the locally minimax upper and lower
bounds in Theorems 4 and 5. Nevertheless, Remark 10 shows that under the mild condition
of 1f,(¢) does not change too abruptly with ¢, the gap between €Y (fo) and e (fy) is only a
poly-logarithmic term in n. Additionally, the following proposition derives explicit expression
of ek (f,) for reference functions whose distribution functions have a polynomial growth, which
matches the Proposition 7 up to log n factors. Its proof is again straightforward.

Proposition 8. Suppose ji5,(€) = €° for some B € [0,2+d/a). Then ek (fy) = Q(n=o/(2atd=aB)),

The following proposition additionally shows the existence of f, € ¥ (M) N O¢ N O¢r that
satisfies /i, (¢) = €” for any values of o > 0 and 3 € [0, d/«]. Its proof is given in the appendix.
Proposition 9. Fix arbitrary o, M > 0 and (3 € [0, d/«]. There exists fo € (M) n Oc N Ocr
for k = oo and constants C' = (¢, Cy), C' = (¢}, C}) that depend only on o, 8, M and d such
that pis,(€) = €°.
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Theorem 5 and Proposition 8 show that the n~®/(**4=2#) ypper bound on local minimax

convergence rate established in Theorem 4 is not improvable up to logarithmic factors of n.
Such information-theoretical lower bounds on the convergence rates hold even if the data analyst
has perfect information of f,, the reference function on which the n=®/(a+d=28) Jocal rate is
based. Our results also imply an n~*/(**% minimax lower bound over all a-Hélder smooth
functions, showing that without additional assumptions, noisy optimization of smooth functions
is as difficult as reconstructing the unknown function in sup-norm.

Our proof of Theorem 5 also differs from existing minimax lower bound proofs for active
nonparametric models (Castro & Nowak, 2008). The classical approach is to invoke Fano’s
inequality and to upper bound the KL divergence between different underlying functions f and g
using | f — ¢, corresponding to the point x € X that leads to the largest KL divergence. Such
an approach, however, does not produce tight lower bounds for our problem. To overcome such
difficulties, we borrow the lower bound analysis for bandit pure exploration problems in (Bubeck
et al., 2009). In particular, our analysis considers the query distribution of any active query
algorithm A = (g1, ..., ¢n, ¢,) under the reference function f; and bounds the perturbation in
query distributions between f; and f using Le Cam’s lemma. Afterwards, an adversarial function
choice f can be made based on the query distributions of the considered algorithm .A.

Theorem 5 applies to any global optimization method that makes active queries. The fol-
lowing theorem, on the other hand, shows that for passive algorithms (i.e., 1, - ,z, drawn
independently at uniform from X') the n=/(@+4) optimization rate is not improvable even with
additional level set assumptions imposed on fjy. This demonstrates an explicit gap between pas-
sive and adaptive query models in global optimization problems.

Theorem 6. Suppose «, cy, Cy, ¢y, Cy > 0 and k = oo0. Denote C' = (cy, Cy) and C" = (¢}, C}).
Then there exist constant M > 0 depending on o, d, C,C" and N depending on M such that, for
any fo € X2(M/2) n Oc¢ N Ocr satisfying e (fo) < &L =: [logn/n]*/Ge+d),

inf  sup  Pr[L(Z.f) = gﬁ] =
o fena(M),
[ f=follw<28%,

foralln > N. (3.20)

W

Intuitively, the apparent gap demonstrated by Theorems 5 and 6 between the active and pas-
sive query models stems from the observation that, a passive algorithm .4 only has access to
uniformly sampled query points z1, . .., z, and therefore cannot focus on a small level set of f
in order to improve query efficiency. In addition, for functions that grow faster when moving
away from their minima (implying a larger value of (3), the gap between passive and active query
models becomes bigger as active queries can more effectively exploit the restricted level sets of
such functions.

3.2 High-dimensional derivative-free optimization

Consider optimizing an unknown function f : R? — R in very high dimensions: so high that d
even exceeds the number of queries allowed n.

In such settings, additional sparsity type assumptions are mandatory to ensure identifiability,
similar to high-dimensional regression problems in statistics (van de Geer, 2000). Such sparsity
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assumptions were reflected assumption (AS5) in the next section, which we motivate from two
real-world example applications of hyper-parameter tuning and visual stimuli optimization.

3.2.1 Assumptions and motivations

We make the following assumptions on the target function f : X — R to be optimized:

(A1) (Unconstrained convex optimization): We take X = R and assume that f is convex, i.e.
forall z,2" € X and A € [0, 1], f(Ax + (1 — N)2') < Af(x) + (1 = X\) f(2)).

(A2) (Minimizer of bounded (1-norm): We assume there exists z* € X such that f(z*) = f* =
inf,ex f(z) and |z*||; < B; x* does not have to be unique.

(A3) (Sparsity of gradients): We assume that f is differentiable and that there exist H > 0,
s « dsuch that [V f(x)|o < sand |Vf(z)|s < H forall x € X, where ||z||o and |z]|; are
the ¢y and ¢; vector norms; the support of V f(x) could potentially vary with x € X.

(A4) (Weak sparsity of Hessians): We assume that f is twice differentiable and there exists
H > 0 such that |V?f(z)||; < H for all where |A|; := Zgjzl |A;;| is the entry-wise ¢4
norm of matrix A.

(A3) and (A4) are key assumptions in our paper, which assumes the gradients of f are sparse,
and places a weaker sparsity assumption on the Hessian matrices that constrains their ¢; norm
rather than ¢, norm. We also note that, assuming |V f ()| and |V?f(z)| 4 are both bounded,
both (A3) and (A4) are implied by the following stronger but more intuitive “function sparsity”
assumption:

(AS) (Function sparsity): there exists S € [d], |S| < s and fs : RISl — R such that f(z) =
fs(zs), where x5 € RISl is the restriction of z € R? on S.

We motivate Assumptions (A3), (A4) and (AS) from both theoretical and practical perspec-
tives. Theoretically, the sparsity assumption allows us to estimate the gradient at a specific point
using n < d noisy zeroth-order queries. On the other hand, (A5) is at least approximately
satisfied in many practical applications of zeroth-order optimization. For example, in hyper-
parameter tuning problems of learning systems, it is usually the case that the performance of the
system is insensitive to some hyper-parameters, essentially implying the sparsity of the gradients
and Hessians. Other examples include the optimization of visual stimuli so that certain types
of neural responses are maximized or optimizing experimental parameters (pressure, tempera-
ture, etc.) so that the resulting synthesized material has optimal quality (Nakamura et al., 2017;
Reeja-Jayan et al., 2012). For the visual stimuli optimization example, it is well known that the
hierarchical organization of the human visual system in the brain into regions such as V1, V4,
LO, IT etc. is precisely based on the neural response in these regions being sensitive to specific
subsets of low-level and higher-level features such as edges and curves. This in turn implies that
the underlying function to be optimized satisfies (AS). Finally, we remark that similar sparsity
assumptions have been considered in past work (Bandeira et al., 2012; Lei et al., 2017) to obtain
improved rates of convergence for optimization methods.
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3.2.2 The zeroth-order mirror descent framework

Mirror descent (MD) (Yudin & Nemirovskii, 1983) is a classical method in optimization when
smoothness and the domain geometry are measured in (possibly) non-Euclidean metrics. The
MD algorithm was applied to stochastic optimization with noisy first-order oracles in the papers
(Agarwal et al., 2012; Nemirovski et al., 2009) and was also studied in the work (Lan, 2012) for
strongly smooth composite functions with accelerated rates, and in the works (Ghadimi & Lan,
2012, 2013a) for strongly convex composite functions.

Let ¥ : X — R be a continuously differentiable, strictly convex function. The Bregman
divergence A : X x X — R is defined as

Ap(w,y) = 9(y) — ¥(x) = (Vi(z),y — ). (3.21)

Let | - ||, be anorm and | - |4+ be its dual norm, defined as ||z |4+ := sup{z'z : ||z, < 1}. One
important class of Bregman divergences is those that are k-strongly convex with respect to the
chosen norm, i.e. they satisfy Ay (z,y) = 5z — y|.

Many choices of 1 lead to a strongly convex Bregman divergence. In this paper we consider
the ¢, norm as choice of ¢: ¥, (x) := ﬁ |z|? for 1 < a < 2. It was proved in (Agarwal et al.,
2012; Srebro et al., 2011) that ), leads to a valid Bregman divergence that satisfies 1-strong

. . . . 1 2logd . .
convexity with respect to | - [ . For the a = 1 case, we use ¢y with @’ = 3-%% as its potential,

which satisfies Ay (z,y) = §|o —y|? with k = e.
With this setup, the MD method iteratively computes
Tyeq i= arg min {9,V f(z,) " (x — ) + Ay (z,20) },
zeX
where {n;}1_, is a sequence of step sizes and X C X is a subset of the domain X of f.

In zeroth-order optimization settings, the exact gradient V f(z;) is not available. Instead, we
use an estimated gradient g, ~ V f(x;) to replace V f(x;) in the mirror descent update rules. We
shall refer to this algorithm as zeroth-order mirror descent, whose performance (convergence
rates) would depend on the properties of the gradient estimates g;.

3.2.3 Sparse gradient estimation via the de-biased Lasso

In this section we introduce the Lasso and the de-biased Lasso gradient estimator to estimate
sparse gradients. More specifically, for any x; € X, the estimator uses n < d samples to estimate
the unknown gradient ¢; := V f(z;). The high-level idea is to consider n « d random samples
near the point z;, and to then formulate the gradient estimation problem as a biased linear re-
gression system. The Lasso procedure (and its de-biased variants) can then be applied to obtain
a consistent estimator under certain sparsity assumptions on {g;}7 ;.

Fix an arbitrary z; € X and let zy,...,2,, € {£1}¢ be m samples of i.i.d. binary random
vectors such that Pr(z;; = 1] = Pr[z;; = —1] = 1/2, where i € [n] and j € [d]. Letd > 0
be a probing parameter which will be specified later, and y; = f(x; + 021) + &1, oY =
f(zy + 02y,) + &n be m observations. Using first-order Taylor expansions with Lagrangian
remainders, the normalized g; := y;/J can be written as

o fla+dzm)+ & fw)

1)
Yi = 5 =5 +g/ 7z + §Z;Ht(ﬁia z2)zi+ 07 =+ gl zi e, (3.22)
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where iy = 01 f(2y), &; = gZZ-THt(Iii, 2))zi + 0 1¢ and Hy(ky, z;) = V2 f(x; + Kk;02;) for some
K; € (O, ].)

Eq. (3.22) shows that, essentially, the question of estimating g, = V f(x;) can be cast as
a linear regression model with design {z;}',, unknown parameters (;;,g;) € R4 and noise
variables {;} , whose bias (i.e., E[¢;|z;, x:]) goes to 0 as 6 — 0, at the expense of increasing
variance. Since g; 1s a sparse vector as a consequence of (A3), one can use the Lasso (Tibshirani,
1996) to obtain an estimate of g; and ;:

m

~ ~ ! ~
(Ge, fir) = arg min— > (; — "z — p)* + Alglls + Al (3.23)
gERd,,u,GRm i=1

where A > 0 is a regularization parameter that will be specified later.

The following lemma shows that with a carefully chosen ), g; is a good estimate of g; in both
{+ and ¢, norms.
Lemma 13. Suppose (Al) through (A4) hold. Suppose also that m = Q(s*logd), m < d and
A\ = 0~ton/logd/m + § H. Then with probability 1 — O(d~?)

~ ~ o [logd
max{|fi = pl. 5 = 90} S T o+ OH.
m

Furthermore, with probability 1 — O(d~?) it holds that ||g; — g:|1 < 25]7¢ — | co-

Lemma 13 follows by the standard ¢; and /., error bound analyses of the Lasso estimator
(Bickel et al., 2009; Lounici, 2008). However, our model has a subtle difference from the stan-
dard high-dimensional regression model in that E[e;|z;, 2] are not exactly zero. and we provide
a detailed proof in the Appendix.

Remark 11. The penalization of x4 in Eq. (3.23) is in general unnecessary as it is a single com-
ponent; however, we decide to keep this penalization term to simplify our analysis. Neither the
estimation error nor the selection of the tuning parameter A depend on knowledge of ;.
Remark 12. Lemma 13 reveals an interesting bias-variance tradeoff controlled by the “probing”
parameter > 0. When § is close to 0, the bias (reflected by E[e;|2;, x;]) resulting from the
second-order Lagrangian remainder term gz: Hi(K;, ;) z; is small; however, the variance of g; is
large because the variance of the “stochastic” noise term &;/6 increases as  — 0; on the other
hand, for large ¢ the stochastic variance is reduced but the bias from first-order approximation of
f(z;) increases.

We further introduce the de-biased Lasso estimator (Javanmard & Montanari, 2014; Van de
Geer et al., 2014; Zhang & Zhang, 2014) to reduce bias of the Lasso estimator for the purpose
of constructing confidence intervals for low-dimensional model components. In our application,
the bias-reduced gradient estimate allows stochastic noise to concentrate across epochs and leads
to improved convergence rates.

LetY; = (J1,...,%m) € R"and Z; = (21,...,2,) € R™? be the vector forms of {7;}™,
and {z;},. Since the design points z; are i.i.d. Rademacher variables, the de-biased gradient
estimator g, takes a particularly simple form:

U R
gt:=gt+EZJ(Yt—Ztgt—m-1m>. (3.24)
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Here (g, ji;) is the Lasso estimator defined in Eq. (3.23) and 1,, = (1,...,1) € R™ is the
m-dimensional vector of all ones.
Lemma 14. Suppose m = Q(s?log d). With probability 1 — O(d~?) it holds that

Gt = gt + G + V43

where (; is a d-dimensional random vector such that, for any a € R?, {(;, a) conditioned on x; is
a centered sub-exponential random variable with parameters v = \/m/2-a and o < o|al2/dm;
and vy, is a d-dimensional vector that satisfies

oslogd
om

Velleo < HS + almost surely.

Comparing Lemma 14 with the error bound obtained for the Lasso estimator g; in Lemma 13,
it is clear that the entry-wise bias (i.e., |V ]«) is reduced from O(0H + +/logd/dén) to O(6H +
slogd/dn). Such de-biasing is at the cost of inflated stochastic error (;, which means that unlike
J:» i 1s not a good estimator of g; in the ¢; or {5 norm.

3.2.4 Rates of convergence

The following theorem is the main result on the rates of convergence of our proposed zeroth-
order mirror descent algorithm with sparse gradient estimates.
Theorem 7. Suppose (Al) through (A4) hold. Suppose also that n = (s> log® d+s(1+H)?(1+

B*H*1og”d)), n < d and that we choose the parameters m := |(1 + H)\/sn), 1, = B4/ M%<,
and §; = +/slog d/m. Then with probability 1 — O(d™')

1/4
Bf () — (%) < £ w{@] + O,

where £, = 1 + 0 + 02/s, and %, is the average of all {x,}", with T' being the number of
“epochs” in which m design points are constructed. In the O(-) notation we hide polynomial
dependency on o, s, H, B and log d. The < notation does not hide any dependency on problem
dependent constants.

It is possible to further improve the convergence rates in Theorem 7 with additional smooth-
ness conditions on V2 f, with a small loss of computational efficiency. Formally, we assume:
(A6) (Hessian smoothness). There exists L > 0 such that for all =, 2’ € X,

IV2f(z) = V2f (@) < Lz — 2]l

Recall that ||Al|; = ZZ i |A;;| denotes the entry-wise ¢, norm of a matrix A.

If f is three-times differentiable, then (A6) is implied by the condition that V2 f(x)|; < L
for all x € X, where [|Al; := >}, [4ijx| is the entry-wise {; norm of a third order tensor.
However, (A6) in general does not require third-order differentiability of f.

Recall the de-biased Lasso gradient estimator §,(d) in Eqgs. (3.23,3.24) corresponding to a
probing step size of J. Under the additional condition (A6), the analysis in Lemma 14 can be
strengthened as below:
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Lemma 15. Suppose (Al) through (A4) and (A6) hold. Suppose also that n = Q(s*logd), n < d
and \ = 6 'or/logd/n + §H. Then with probability 1 — O(d~?)

~ (5 ~ ~ ~
gt((S) = 0 + §E [(ZTHtZ)Z] + Ct((S) + 6,5((5) + ’)/t(d),
where g, = Vf(x,), H, = V2f(x,); for any a € R ((,(8),a) conditioned on x, is a cen-
tered d-dimensional sub-exponential random variable with parameters v* = +/n/2 - o and
a < olallz/on; (Bi(d), ay conditioned on x; is a centered d-dimensional sub-Gaussian random
variable with parameter v < §H||a|1/v/n; 7:(9) is a d-dimensional vector that satisfies

log d log d
I508 0 | SHTA 28 Y
n

no

[ (0)lee < L0* +

Note that (;(8) and /3,(5) might be correlated conditioned on z,. Comparing Lemma 15 with
Lemma 14, we observe that the bias term ¥,(d) is significantly smaller (O(5?) instead of O(4));
while the second term SE[(z" H;z)z] is still a bias term with non-zero mean, it only depends
on ¢ and can be easily removed. This motivates the following definition of a “twice de-biased”
gradient estimator:

The twice de-biased estimator:

90" = 20:(0/2) — §:(0). (3.25)
Corollary 2. Suppose the conditions in Lemma 15 are satisfied. Then with probability 1 —
O(d2), o

G = gr =G + B+ A,
where (; = 2((6/2) — ((9), By = 2B:(5/2) — 5:(0) and ¥, = F(6/2) — Fi(0)-

The twice de-biased estimator is, in principle, similar to the “twicing” trick in nonparametric
kernel smoothing (Newey et al., 2004) that reduces estimation bias. In particular, Corollary 2
shows that the $E[(z" H;z)z] bias term is cancelled by the “twicing” trick, and the remaining
bias term 7 is an order of magnitude smaller than + in the bias term before twicing (e.g., Lemma
14). We also remark that the twice de-biased estimator §i™ does not significantly increase the
computational burden, because the method remains first-order and only (two copies of) the de-
biased gradient estimate needs to be computed.

Plugging the “twice” de-biased gradient estimator g;* into the stochastic mirror descent pro-
cedure and choosing tuning parameters 7, A, 6 and n appropriately, we obtain the following im-
proved convergence rate:

Theorem 8. Suppose (Al) through (A4) and (A6) hold. Suppose also that T = Q(s? logd +

(1+ L)%s® + H?B2(1 + L)slogd) and T < d. Let n := Bn**\/™%% n = |(1 + L)s*3V/T|
and § := (slogd/n)'3. Then with probability 1 — O(d~")

1/3
Ef(3.) — f(2*) < &,Bv/logd (W) + BT,
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Figure 3.2: Sparse quadratic optimization with identity quadratic term.
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Figure 3.3: Sparse quadratic optimization with polynomial decay of eigenvalues.

where Eg,s = (1 + 0 + 0%/s*%) and 2,, is the average of all {x,}" | with T' being the number of
epochs in which 2m design points are constructed.

As a simple illustration consider the following example:

Example 3. Consider a quadratic function f(z) = 3(z — 2*)"Q(x — 2*) with (unknown) Q > 0
being positive semi-definite and supported on S < [d] with |S| < s, meaning that Q;; = 0 if
1¢ Sorj¢S. Itiseasy to verify that f satisfies (A1) through (AS), and also (A6) with L = 0
because V2 f(x) = @, independent of z. Subsequently, applying results in Theorem 8 we obtain
a convergence rate of O(T~'/3).

More broadly, compared to Theorem 7, the stochastic mirror descent algorithm with the
twice de-biased gradient estimator (§%") has the convergence rate of O(7~'/3), which is a strict
improvement over the O(7T~'/*) rate in Theorem 7. Such improvement is at the cost of the
additional assumption of Hessian smoothness (A6); however, the optimization algorithm remains

almost unchanged and no second-order information is required at runtime.

3.2.5 Numerical results

We compare our proposed algorithm with the baseline method on synthetic function examples,
including low-dimensional zeroth-order optimization (proposed in (Flaxman et al., 2005)) as
well as the intuitive method of first doing Lasso support selection and then low-dimensional
zeroth-order optimization on the selected variables. We use GD to represent “zeroth order”
gradient descent algorithm proposed in (Flaxman et al., 2005), Lasso-GD to represent the model-
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Figure 3.4: Sparse fourth-degree polynomial optimization with identity quadratic term.

selection-then-optimize approach, and MD to represent the zeroth-order mirror descent algorithm
with sparse gradient estimates. For our synthetic function examples, we first construct a convex
low-dimensional function fs : R!¥/ — R on a uniformly chosen subset S < [d] with size s, and
then “extend” fs to f defined on the high-dimensional domain R? by f(z) = fs(zs). Functions
constructed as such naturally satisfy the sparsity assumptions (A3), (A4) and (AS5). In all plots
we start at the 1000th iterations (oracle evaluations) of all algorithms to avoid clutter caused by
the volatile burn-in phases. Thus, the starting points in the plots are slightly different for different
algorithms.

In Figure 3.2 we consider sparse quadratic optimization problem with fs(zs) = z1Qrg +
bTzs where we set Q;; = 1 and b; = 1 for i € S and other entries to 0. In Figure 3.3 we
consider sparse quadratic optimization problem with fs(zs) = z{Qx + bTxs where we set
Qi = 177 where v is the eigenvalue decay rate and b; = 1 for ¢ € S and other entries to
0. In Figure 3.4 we consider sparse degree-4 polynomial optimization problem with fg(z) =
(s —b)"Q(zs — b)|*> + (x5 — b) ' Q(xs — b) where we set Q;; = 1 and b; = 1 fori € S and
other entries to 0. All hyper-parameters are tuned by grid search. The cumulative optimization
error % Zi,; 10 f(x) — f* is reported for all algorithms and selected time epochs ¢ < n.

We observe that in all our simulation settings, the vanilla gradient descent algorithm is dom-
inated by our proposed algorithms. Our simulation results also suggest that the mirror descent
algorithm is superior to the successive component selection algorithm. MD is also easier to use in
practice as it has fewer parameters. Thus, we recommend mirror descent algorithm for practical
use.

3.2.6 Extension to /, geometry: the unconstrained case

High-dimensional derivative-free stochastic optimization arises in many scientific and engineer-
ing applications. While most of the time additional structural assumptions on the objectives or
the optimal solutions do exist, exact sparsity conditions could be too strong to hold in many cases.
In this section we discuss how the zeroth-order mirror descent framework could be extended to
cases where conditions weaker than the sparsity structural assumptions are imposed.

For p € (1,2] and = € R let |z], := (37, |#;[°)/? denote the vector-¢, norm of z, and
q=1/(1 —1/p) be the dual norm of ¢, (if p = 1 then define q¢ = <0). The following conditions
are imposed upon the objective function f : X — R as well as its minimizer z*:
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(B1) (Unconstrained optimization): X = RY;
(B2) (Bounded minima): there exists * € X such that f(z*) = minger f(x) and ||z*], < B;

(B3) (Bounded gradients): [ is differentiable on R? and furthermore sup,, |V f(z)|, < L.

The constraint |z*|, < B for p € [1, 2] is a weaker form of constraining the optimal solution
x* to be sparse. More specifically, as the norm p moves from 2 to 1, the optimal solution z*
has to be sparser in order to satisfy the more stringent constraint |2*|, < B. Nevertheless,
the condition is considerably weaker than the exact sparsity constraint (e.g., |z*/|o < $), as the
minimizer z* itself could still be dense and spread across all its components.

Our algorithmic framework is the follows:

~

1. First, we construct a smoothed version f(x) := E,.,[f(z + u)], where y is a distribution

~

supported on X = R, The smoothed function f is constructed so that |f(z) — f(z)] is

~

small, and furthermore the gradient V f(z) can be unbiasedly estimated,

2. At each iteration t, the algorithm observes y; = f(x; + v;) for some random variable v,
and construct an unbiased estimator G; € R? of g; := V f(z;) such that Eg; = g;;

3. The mirror descent update is preformed:
Ty € G g}_:gl {n:CGe, ) + Dy(w,2)}, (3.26)

where {7, } are the step sizes, and Dy (z,y) = ¥ (x) —¢(y) — (Vi (y), z —y) is a Bregman
divergence with respect to a potential function v, which is x-strongly convex with respect
to | [y (e, Dy(w,y) = Kz — y[3/2).
Let p be the density of p. The gradient estimates g; are constructed via the celebrated Stein-
Hudson identity (Hudson, 1978; Stein, 1981) which asserts that, under minimal regularity condi-
tions, for any differentiable / : R? - R,

E [h(u)Viogp(u)] = —E[Vh(u)]  where u ~ pu. (3.27)

~

Consider h(u) = f(x + u) and recall that f(z,) = E,[f(z; + u)]. Eq. (3.27) then reduces to

~

Vi(x) =E,[f(x+u)VIiogp(u)]. (3.28)

~

Hence, a natural estimator of g; = V f(x;) is

gi = (ye —y)Vlogp(us)  where y; = f(z;) + &, y = f(ve +we) + &, up ~ p. (3.29)

Remark 13. The y; term acts like a control variate to reduce variance and to avoid dependency
on the magnitude of | f(x)|.

Let p € (1,2] be the fixed norm parameter. Consider the generalized Gaussian distribution
(see, e.g., Song & Gupta (1997); Toulias & Kitsos (2014))

: h pl [zl 3.30
p(x) = p(x1,- -+ ,7a) = sz(%) where p;(z;) = WGXP{— 0o } (3.30)
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When p € (1,2], logp is differentiable everywhere, and the gradient of log p takes the form of
—Vlogp(x) = 7/6%, where T = [sgn(xq)|z1 [P, -+, sgn(xy)|rq[P!]. The gradient estimate G,
can then be written as

G = (y, —ye)d P, where u; = [sgn(ut1)|ut1|’°’1, . ,sgn(utd)|utd|p’l]. (3.31)

The following lemmas establish several properties of the gradient estimate §; (assuming (B1)
through (B3) hold):
Lemma 16. g, is an unbiased estimator of g;, meaning that Eg; = g, = va(a:t).
Lemma 17. | f(z) — f(z)| < LE,[|lu],] € L(1 + 6)6d** logd for all x € X.
Lemma 18. E, [7:)2 < E,[(20% + L?|u]?)|V1og p(u)|2] < o*(1 + 6)6~2d*log® d + L*(1 +
§)d?log* d.

Combining Lemmas 16, 17 and 18, we arrive at the following theorem on the convergence
rate of the zeroth-order mirror descent with Stein-Hudson gradient estimates, when step sizes
({n:}) and probing radius (9) are carefully selected:

Theorem 9. Suppose (Bl) through (B3) hold, and the parameters 1, = 1 and § are selected
as § = (o*B/L*n)V* . d'*r = \/B/(n x (020-2d*1og? d + L2d*log* d)). Then for
sufficiently large n, the average T,, = (3., x1)/n satisfies

1/4
Ef(z,) — f(z*) = O <[02d23L] + dQBB) . (3.32)

n n

Remark 14. Theorem 9 holds when the origin is taken as the initial point (i.e., o = 0), and
n is sufficiently large such that 6 < 1. Also, in the O(-) notation we omit poly-logarithmic
dependency on d.

Remark 15. Regardless of the values of p and q appearing in the conjugate norms that define the
boundedness of x* and V f, Eq. (3.32) has the same dependency on domain dimension d.
Remark 16. In the noiseless case ¢ = 0 much better convergence rate is reflected in Eq. (3.32);
i.e., n~ 2 instead of n~'/%. This is similar to the “two-point query” models studied in the liter-
ature (Agarwal et al., 2010; Duchi et al., 2015; Shamir, 2017) which were known to yield faster
convergence rates for the zeroth-order optimization problem.

3.2.7 Extension to /, geometry: the constrained case

One disadvantage of the Stein-Hudson’s gradient estimator is that the support of the probing
distribution 4 spans the entire R? domain, making it applicable only in unconstrained optimiza-
tion. While certain truncation arguments could be applied when constraints are present, such
approaches are quite messy and difficult to analyze.

To overcome such difficulties, in this section we consider alternative gradient estimates for
¢, geometry whose probing distribution is supported on a compact set, and are therefore more
appropriate for constrained optimization when the optimal solution z* is not too close from the
boundary.
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More specifically, let K = R? be a non-empty, compact symmetric * convex set in R%. Let
vk and o, be the uniform measure on KX and its boundary 0K, respectively. For any convex,
differentiable function f : R? — R, a “smoothed version” f : R — R is defined as

F(x) = Euwp, [f(z + 6u)], (3.33)

where § > 0 is a tuning parameter. Define also p(K) := volg ;(0K)/voly(K) and £(v) € R? the
outer normal vector at v on JK. The gradient estimate g; of V f(x;) is then defined as

at(xt) = 5_1p(K)ft(Zt)€('Ut) where 2t = T + 57)t7'Ut ~ OpK - (334)

For fixed p € (1,2] norm parameter, the convex body K is taken to be the unit ¢, ball
= {z € R?: |z|, < 1}. For such K, the outer normal vector ¢(v) is well-defined for all
v € 0K, taking the form of

[£()]i = sgn(wi) - [ul*~/oll5g ) where [ol5,",) =

d
3. e,
j=1

The following lemmas establish several properties of the gradient estimate g;, as well as the
approximation error of fin terms of the probing convex body K.
Lemma 19. For any z, € R%, V f(z,) = Eji(z,).
Lemma 20. Forany z € R% pe (1,2]andq = 1/(1—1/p),

f@) = f(@)| < 6L By [luly).

Combining Lemmas 19, 20 and using the potential function ¢)(x) = p%le\P, by standard
analysis of mirror descent algorithms ((Agarwal et al., 2012; Beck & Teboulle, 2003; Yudin &
Nemirovskii, 1983), see also Eq. (3.138)), we have the following result:

Lemma 21. Suppose (B2), (B3) hold and | f (z)| < C for all x € X. Suppose also that |x*|, < b,
and define , = (3.;_, x¢)/n. Then

R b
Bf (@) = f(a%) 5 o0 4 mancq [EGu (@) [ + 0L - Buvoio L]
b p(K)C
< — ((v)]2] + 6L.
<y PO i +

From Lemma 21, it remains to upper bound p(K) and E,,, [[[((v)[Z] as well as the selection
of appropriate values of 7 and d. This is accomplished by the following two key lemmas:
Lemma 22. For any p € (1,0), we have

- p(By)  [k(p,2(p—1))

(A +7)/p)
dooo d1/2+1/p /g(p’p)Q(P—l)/P '

L(1/p)

where K(p,r) := (3.35)

“A convex set K c R is symmetric if forallz e R, z € K «—= —zr € K.
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Lemma 23. For any pair of conjugate norms p,q € (1,0), 1/p + 1/q = 1, there exists a finite
positive constant C, such that for sufficiently large d, for K = B,

Eoonrc [[€(0)]2] < Cp - d/971P. (3.36)

Combining Lemmas 21, 22 and 23, we arrive at the following theorem:
Theorem 10. Under conditions (B2), (B3) and the assumptions that |f(z)| < C forallx € X
and x* +v e X forallv e §BY, ifn = \/B/nL? and § = /BCd/L - n~"*, we have

Ef(2,) — f(«*) < VBLd-n~"*

3.3 Non-stationary optimization with local variation criteria

In this section we consider a non-stationary setting of nonparametric optimization, in which the
underlying function f is allowed to slightly change over time.

More specifically, at each time epoch ¢ there is a different unknown function f; : X — R to be
optimized, associated with its minimizer =¥ € arg mingcy f;(x). At each time epoch ¢ a policy
(algorithm) 7 queries a specific point z; € X and receives noisy feedback f;(x;) + &, where
& ~ N(0,1). The objective is to minimize the dynamic regret (or strong regret) of {z;}1_,:

T
R™(f) :==E" ). fulz:) — fulz]). (3.37)
t=1

Apart from classical convexity and smoothness assumptions, additional conditions are re-
quired to constrain the changes between neighboring objectives f; and f;,; to make the dynamic
regret minimization problem feasible.

3.3.1 Backgrounds and assumptions

Apart from & being closed convex and fi, - - - , fr being convex and differentiable, we also make
the following additional assumptions on the domain A" and functions fi,--- , fr:
(A1) (Bounded domain): there exists constant D > 0 such that sup, .y ||z — 2’2 < D;

(A2) (Bounded function and gradient): there exists constant H > 0 such that sup,y | fi(2)| <
H and sup,cx |V fi(2)]2 < H;

(A3) (Non-empty interior): the interior of X is non-empty; that is, X° # ¢J;

(A4) (Smoothness): there exists constant L > 0 such that f;(z') < fi(x) + Vfi(z)"(2' — x) +
Lla' — 2|3 forall z,2" € X.

(A5) (Strong convexity): there exists constant M > 0 such that f;(2') > fi(z) + Vfi(x) T (2" —
z) + Y|z’ — 2|3 forall z,2" € X.
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The assumptions (A1), (A2) are standard assumptions that were imposed in previous works
on both stationary and non-stationary stochastic optimization (Agarwal et al., 2013; Besbes et al.,
2015; Flaxman et al., 2005; Shamir, 2017). The conditions (A4) and (A5) concern second-
order properties of f; and enable smaller regret rates for gradient descent algorithms. We note
that the condition M 1; < V2f,(z) < Ll;,Vx € X in (Besbes et al., 2015) (see Eq. (10) in
(Besbes et al., 2015)) is stronger and implies our (A4) and (AS) since we do not assume that
f+ 1s twice differentiable. We also consider parameters D, H, L, M in (A1)—-(AS5) and domain
dimensionality d as constants throughout the paper and omit their (polynomial) multiplicative
dependency in regret bounds.

3.3.2 Local variation criteria

We generalize the results of (Besbes et al., 2015) so that local spatial and temporal changes of
smooth and strongly convex function sequences are taken into consideration. For any measurable
function f : X — R, define

1 1/p
If]p = { (W Sx |f(“’)|pd‘”) L<p<ox (3.38)
Sup,ey | f(7)] p = o0.

Here vol(X) = §, 1dx is the Lebesgue measure of the domain X and is finite because of the
compactness of X'. We shall refer to | f|, as the L,-norm of f in the rest of this paper. (Conven-
tionally in functional analysis the L, norm of a function is defined as the unnormalized integra-

tion ({, |f(z)|Pdz) "% Nevertheless, we adopt the volume normalized definition in this paper
for convenience. The Minkowski’s inequality || f+ g/, < ||f[,+lg]l,, as well as other basic prop-

erties of L, norm, remain valid.) Also, for a sequence of convex functions fi,---, fr : X — R,
define the L, ,-variation functional of f = (f1,--- , fr) as
LTl N <)< < ;
Val"p,q(f) - <T Zt:l Hft—H - fth) I < P s 00, I < q < Q0; (3_39)
SUP <p<r1 | fre1 — fillp 1 <p<oo,q= o0

Note that in both Egs. (3.38) and (3.39) we restrain ourselves to convex norms p > 1 and g > 1.
We can then define function classes

Fpa(Vr) = 1{f : Var,,(f) < Vr}, (3.40)

which serves as the budget constraint for a function sequence f. The definition of F,, , is more
general than F, ; introduced in (Besbes et al., 2015) since it better reflects the spatial and tem-
poral locality of f in the subscripts p and q.

Example 4 (spatial locality). Let X = [0, 1]. Consider univariate piecewise cubic spline func-
tions fi(z) = > I € X] - (aya?® + bya® + ¢y + dy;), where I[-] is the indicator function,
{X;}7, is a uniform partition of X = [0,1] (ie., X; = [=}, £]) and {ay, by, ¢y, i} are
selected such that f; is strongly convex and sufficiently smooth. Also suppose that f; and f;
differ only on two neighboring pieces &; U X1, and the difference on X; U X;,; between f;

and f;;1 is uniformly bounded. Formally, f;(xz) = fii1(z) for all x € X\(X; U Xj41) and
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SUD e, |fe(T) — ft+1( )] < 0 < oo. We then have that (noting that vol(X) = 1 and
vol(X; U Xip1) = 2/m)

1/p
Ui~ fely= ([ 10 = fellan) <5 g2

Because § - (m,/2) /7 is an increasing function of p, the parameter p controls the spatial locality
of function changes between epochs. For example, for p = 1 we have that | f; — fi.1|1 = 26/m
and for p = oo we have that || f; — f; 1]l = 0. Therefore, when the number of regions m is large,
meaning that the changes in functions are local, | f; — f;11]1 is much smaller than | f; — f; 11w
and captures the concept of local spatial change of functions. In other words, when V7 is fixed
the function class F; ,(Vr) is richer (i.e., contains more functions) than ¥, ,(Vr), meaning that
more functions with local spatial variations are contained in F; ,(Vr) compared to Fo, ,(Vr).
Example 5 (temporal locality). Define 0, = || fi+1 — fi|, fort = 1,--- T —1 to be the amount of
change at epoch . Suppose a total amount of A change of functions is fixed (i.e., tT:_ll 0 = A),
and the changes are distributed uniformly across s < 7' — 1 epochs. That is, o; = A/s for s
epochsin {1,--- ;7 — 1} and §; = 0 for the other 7" — 1 — s epochs. We then have that

1/q
Var,,(f) = (%-3-5‘7) 5. (s/T)V.

Because (s/7')'/9 is an increasing function of ¢, the parameter ¢ controls the temporal locality
of function changes. For example, for ¢ = 1 we have that Var, ;(f) = 0 - s/ and for ¢ = o
we have Varpyoo( f) = 0. Therefore, when the number of changes s is small compared to 7T,
Var, ;(f) is much smaller than Var, .(f) and captures the concept of local temporal change of
functions.

3.3.3 Minimax upper bounds

We establish the following upper bounds on the worst-case regret of our designed policy, with
details to be introduced later.

Theorem 11 (Upper bound). Fix arbitrary 1 < p < coand 1 < q < co. Suppose (Al) through
(A5) hold and 0 < Vi < 1. Then there exists a computationally efficient policy m and C; > 0 as
a polynomial function of log T and log Vi such that

sup RW'(f) <C,-T- V;p/(ﬁerd).
feFp,q(Vr)

Remark 17 (On the constant (). The dependency of C'; on domain dimension d and variation

parameters p, g is of the form D%??_ which arises from our main affinity technical lemma (Lemma

44). Since d, D, and p are all treated as constants in our paper, the quantity D%?" is also a

constant. We remark that it does not depend on I' or V7, and thus will be much smaller than the
. . 1/2p/(6p+d)

main 1" -V, term.
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Remark 18 (On the term VT ). The regret bound in Theorem 11 consists of two terms. The VT
term arise from regret bounds for stationary stochastic optimization problems (i.e., V = 0),
which were proved in (Hazan & Kale, 2014; Jamieson et al., 2012). The other terms involving
polynomial dependency on V- are the main regret terms for typical dynamic function sequences
whose perturbation V7 is not too small.

Remark 19 (The role of the parameter ¢). We remark that the ¢ parameter does not affect the
optimal rate of convergence in Theorem 12 (provided that ¢ > 1 is assumed for convexity of
the norms). While this appears counter-intuitive, this is a property of our worst-case analytical
framework, as the function sequence that leads to the worst-case regret is the one that distributes
function changes | f;+1 — fi||, evenly across all ¢ € T (see for example our detailed construction
of adversarial function sequences in the online supplement), in which case the L, ,-variation
measure is the same for all g € [1, o0].

Remark 20 (On the condition Vi < 1). The condition Vi < 1 in Theorem 11 is necessary
for obtaining a non-trivial sub-linear regret. In particular, our lower bound results will show
that for V = Q(1), no algorithm can achieve sub-linear regret in either feedback models (see
Theorem 12 in the lower bound section). On the other hand, a trivial algorithm that outputs
r1 = --- = xp = x for an arbitrary zy € X leads to a linear regret.

Remark 21 (Curse of dimensionality). A significant difference between p = oo and p <
settings is the curse of dimensionality. In particular, when p < oo the (optimal) regret depends
exponentially on dimension d, while for p = oo the dependency on V7 is independent of d on the
exponent. The curse of dimensionality is a well-known phenomenon in non-parametric statistical
estimation (Tsybakov, 2009).

Remark 22 (Comparing with Besbes et al. (2015)). Besbes et al. (2015) considered the special
case of p = oo and ¢ = 1, and established the following result:

inf sup RI(f)=T-V;”* for p=o0,q=1 (3.41)
TE€PT feF, (Vi)

Note that in Eq. (3.41) we adopt a slightly different notation from Besbes et al. (2015). In
particular, the parameter V7 in our paper is 1/7" times the parameter V7 in (Besbes et al., 2015).
Such normalization is for presentation clarity only (to single out the 7" term in the regret bounds).

It is clear that our results reduce to Eq. (3.41) as p — oo. In particular, for fixed domain
dimension d we have that lim,,_,,, 2p/(6p + d) = 1/3, matching regrets in Eq. (3.41). Therefore,
the result from Besbes et al. (2015) (for strongly convex function sequences) is a special case of
our results.

3.3.4 Policy design

There are two main components in our policy design:
1. A general restarting “meta-policy” from Besbes et al. (2015), where the interval/batch
length A7 is tuned as a function of p.
2. Within each interval/batch of the meta-policy, a proper sub-policy 7 is invoked depending
on the type of the feedback.
We first describe the “meta-policy” based on a re-starting procedure (Besbes et al., 2015):
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META-POLICY (RESTARTING PROCEDURE): input parameters 7" and Ar; sub-policy ;.
1. Divide epochs {1,---,T} into J = [T'/Ar]| batches By,---, By such that B; =
{by, -+ ,b1}, Ba = {by, -+ ,bo}, etc., withb, = 1,b; = T and b, = by + 1 for { =
1,---, J—1. The epochs are divided as evenly as possible, so that | By| € {Ar, Ap+1}
forall/ =1,---,J.

2. For each batch B, ¢ = 1,--- | J, do the following:

(a) Run sub-policy 7, with b, and by, corresponding to Jogs fo,+15 7+ 1,

The key idea behind the meta-policy is to “restart” certain sub-policy 7 after A epochs.
This strategy ensures that the sub-policy 74 has sufficient number of epochs to exploit feedback
information, while at the same time avoids usage of outdated feedback. Scalings of A7 in the
meta-policy is set as Ap = V. 4/ (6p +d), which is motivated by our proof to our regret upper
bound in Theorem 11.

In the rest of this section we describe the sub-policy 74 mentioned in the meta-policy. the
classical approach is to first obtain an estimator of the gradient V f;(x,) by perturbing x, along
a random coordinate ¢; = (0,---,1,---,0) € R?. This idea originates from the seminal work
of Yudin & Nemirovskii (1983) and was applied to convex bandits problems (e.g., Besbes et al.
(2015); Flaxman et al. (2005)). Such an approach, however, fails to deliver the optimal rate of
regret when the optimal solution x} lies particularly close to the boundary of the domain X'. Here
we describe a regularized ellipsoidal (RE) algorithm from Hazan & Levy (2014), which attains
the optimal rate of regret even when z;} is very close to 0X.

The RE algorithm in Hazan & Levy (2014) is based on the idea of self-concordant barriers:

Definition 3 (self-concordant barrier). Suppose X < R? is convex and X° # (5. A convex
function ¢ : X° — R is a k-self-concordant barrier of X if it is three times continuously
differentiable on X° and has the following properties:

1. Forany {x,}*_, € X° iflim,, o ©, € OX then lim,_,q @(x,) = +o0.

2. For any z € R and x € X° it holds that |V3p(x)[2,2,2]| < 2|2"V2p(z)z*? and
12TVo(2)| < Y%z V2p(2)2|V2, where V3p(2)[2, 2, 2] = %@(m + t1z + toz +

tgz) ‘tl =to=t3=0"

It is well-known that for any convex set X < R¢ with non-empty interior X°, there exists
a r-self-concordant barrier function ¢ with k = O(d), and furthermore for bounded X' the
barrier o can be selected such that it is strictly convex; i.e., VZ¢(z) > 0 for all x € X° (Boyd
& Vandenberghe, 2004; Nesterov & Nemirovskii, 1994). For example, for linear constraints
X = {z: Az < b} with A € R™*9, a logarithmic barrier function p(z) = >.""  —log(b; — a;x)
can be used to satisfy all the above properties (note that a; denotes the i-th row of A).

We are now ready to describe the RE sub-policy that handles noisy function value feedback.
The policy is similar to the algorithm proposed in Hazan & Levy (2014), except that noisy func-

tion value feedback is allowed in our policy, while Hazan & Levy (2014) considered only exact
function evaluations. The analysis of our policy is also more involved for dealing with noise.
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SUB-POLICY 74 (RE): input parameters b,, by; constant step size 7; self-concordant barrier
¥3
1. Select zy = argminyexgo(z);
2. Fort =0tob, — b, do the following:
(a) Compute A, = (V2p(z) +nM(t + 1)1;)~'/2, where I, is the identity matrix in
Rdxd.
(b) Sample u; from the uniform distribution on the unit d-dimensional sphere S,.
(c) Select xp,4¢ = 2 + Aguy; suffer loss fy,i(7p,+¢) and obtain feedback yp,++ =
fbﬁt(xgﬁt) + &b, +t-
(d) Compute gradient estimate g; = d - Yp,+1 - A7 Yty

(e) FTRL update: 24, = argmin,cy > o {97 2 + 2|2 — 2|3} + 0 p(2).

In step 2(d), the gradient estimate §; = d - yp,+¢ - A; "uy satisfies E[G;] ~ V fy,+(y¢) by the
change-of-variable formula and the smoothness of f;,,:. In step 2(e), instead of the projected
gradient step, a Follow-The-Regularized-Leader (FTRL) step is executed to prevent y;,; from
being too close to the boundary of X'. The FTRL step is essentially a mirror descent, which uses
a regularization term (p(+) in our policy) and its associated Bregman divergence to improve the
convergence rates of optimization algorithms measured in non-standard metric. It was shown
in McMahan (2017) (Sec. 6) that the FTRL step is equivalent to mirror descent under minimal
regularity conditions. Finally, step 2(c) is a random perturbation step originally considered
in (Hazan & Levy, 2014). An important aspect of step 2(c) is the clever choice of the matrix
A;, which ensures the optimal regret bound even if the optimal solution x} is very close to the
boundary of X'. More specifically, the following proposition shows that xy, ¢ = z; + A;u; always
belongs to the domain X, justifying the correctness of policy 7.

Proposition 10. Suppose ¢ is strictly convex on X°. Then for any x € X° 6 = 0 and u € S,
x+ (V3p(x) + 61;) Vue X.

3.3.5 Minimax lower bounds

We prove the following result, establishing a lower bound of worst-case regret possible for any
policy .

Theorem 12 (Lower bound). Suppose the same conditions hold as in Theorem 11. Then there
exists a constant C'3 > 0 independent of T' and Vi such that

inf  sup R”(f) >C5-T- V;P/(GPW)_
T feFpq(Vr)

Remark 23. The constant C3 depends polynomially on d and p, ¢ in our construction of adver-
sarial problem instances. We again emphasize that this constant does not depend on either 7" or
Vr.
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3.4 Summary and related works

Optimizing a nonparametric function with access to (noisy) function evaluations only is in gen-
eral a very important questions. With different regularity conditions imposed on the objective
functions (which would certainly depend on the target application domains), the techniques,
analysis and results also differ significantly. In this section, we present our results for low-
dimensional smooth functions, high-dimensional convex functions and also dynamically chang-
ing convex functions.

Due to the very large volume of existing related works, it is certainly impossible to cover all
of them. Below we give representative works on directions that are directly related to our results.

Derivative-free optimization Derivative-free optimization (also known as blackbox/zeroth-
order optimization) is an extensively studied topic in mathematical optimization. Conn et al.
(2009) proved global convergence of first- and second-order trust-region methods for derivative-
free optimization. See also Audet & Dennis Jr (2006); Cartis et al. (2012); Conn et al. (2009);
Dodangeh & Vicente (2016); Kolda et al. (2003); Torczon (1997); Vicente & Custédio (2012)
for the study of other methods. Meanwhile, Bandeira et al. (2012, 2014); Billups et al. (2013);
Chen et al. (2018a); Conn et al. (2008a,b); Powell (2003, 2004); Scheinberg & Toint (2010) con-
sidered trust-region and local probabilistic modeling methods for high-dimensional zeroth-order
optimization problems, in which the problem dimension far exceeds the number of oracle queries
but certain sparsity structures on gradients/hessians are expected. Ghadimi & Lan (2013b) con-
sidered non-convex objective functions under the zeroth-order optimization setting.

Bandit convex optimization In the literature of bandit convex optimization, the objective func-
tion sequence is subject to constant dynamic changes and only one or two evaluations for each
function in the sequence is possible. The idea of using noisy function values subject to ran-
dom perturbations to estimate function gradients first appeared in the seminal work of (Yudin &
Nemirovskii, 1983) and was applied to bandit convex optimization problems in Flaxman et al.
(2005). Agarwal et al. (2010) obtained improved convergence rates with additional strongly
smooth/convex assumptions. Duchi et al. (2015); Shamir (2013, 2017) considered convex opti-
mization/bandit problems with noiseless zeroth-order oracles and derived nearly matching con-
vergence rates. Nesterov & Spokoiny (2017) studied the convergence rate under noisy zeroth-
order oracles. Also, Hazan & Levy (2014) used an elliptical probing distribution to study the
constrained zeroth-order optimization problem with optimal solution z* very close to the bound-
ary of feasible sets. Bubeck et al. (2017) proposed kernel based methods that attain optimal
regret bounds for bandit convex optimization without strong convexity or smoothness assump-
tions. While most works consider stationary regret only, results on dynamic regret for bandit
convex optimization also exist (Besbes et al., 2015).

Global or simulation optimization Traditionally, global optimization aims at finding the global
optima of a multi-modal function, typically at the cost of an exponential number of queries/samples
in domain dimensions. The question has a long history in the optimization research community
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(Kan & Timmer, 1987a,b) and has also received a significant amount of recent interest in statis-
tics and machine learning (Bubeck et al., 2011; Bull, 2011; Hazan et al., 2017; Malherbe et al.,
2016; Malherbe & Vayatis, 2017; Rasmussen & Williams, 2006). Many previous works (Bubeck
et al., 2011; Kleinberg, 2005) have derived rates for non-convex smooth payoffs in “continuum-
armed” bandit problems. Grill et al. (2015); Minsker (2013) studies the problem of estimating
the set of all optima of a smooth function in Hausdorff’s distance. For Holder smooth func-
tions with polynomial growth, Minsker (2013) derives an n~"/(?¢+4=25) minimax rate for o < 1
(later improved to o = 1 in his thesis Minsker (2012)), Grill et al. (2015); Minsker (2013) also
discussed adaptivity to unknown smoothness parameters. (Malherbe et al., 2016; Malherbe &
Vayatis, 2017) impose additional assumptions on the level sets of the underlying function to
obtain an improved convergence rate.

Methodology-wise, the success elimination algorithm in Sec. 3.1 is conceptually similar
to the abstract Pure Adaptive Search (PAS) framework proposed and analyzed in (Zabinsky &
Smith, 1992). The iterative procedure also resembles disagreement-based active learning meth-
ods (Balcan et al., 2009; Dasgupta et al., 2008; Hanneke, 2007) and the “successive rejection”
algorithm in bandit problems (Even-Dar et al., 2006). The intermediate steps of candidate point
elimination can also be viewed as sequences of level set estimation problems (Polonik, 1995;
Rigollet & Vert, 2009; Singh et al., 2009) or cluster tree estimation (Balakrishnan et al., 2013;
Chaudhuri et al., 2014) with active queries.

Bandit convex optimization In the literature of bandit convex optimization, the objective func-
tion sequence is subject to constant dynamic changes and only one or two evaluations for each
function in the sequence is possible. The idea of using noisy function values subject to ran-
dom perturbations to estimate function gradients first appeared in the seminal work of (Yudin &
Nemirovskii, 1983) and was applied to bandit convex optimization problems in Flaxman et al.
(2005). Agarwal et al. (2010) obtained improved convergence rates with additional strongly
smooth/convex assumptions. Duchi et al. (2015); Shamir (2013, 2017) considered convex opti-
mization/bandit problems with noiseless zeroth-order oracles and derived nearly matching con-
vergence rates. Nesterov & Spokoiny (2017) studied the convergence rate under noisy zeroth-
order oracles. Also, Hazan & Levy (2014) used an elliptical probing distribution to study the
constrained zeroth-order optimization problem with optimal solution z* very close to the bound-
ary of feasible sets. Bubeck et al. (2017) proposed kernel based methods that attain optimal
regret bounds for bandit convex optimization without strong convexity or smoothness assump-
tions. While most works consider stationary regret only, results on dynamic regret for bandit
convex optimization also exist (Besbes et al., 2015).

Online convex optimization In online convex optimization, an arbitrary convex function se-
quence fi, - - - , fris allowed, and the regret of a policy 7 is compared against the optimal station-
ary benchmark inf,cx {3/ | f;(x)} in hindsight. Unlike the bandit convex optimization setting,
in online convex optimization the full information of f; is revealed to the optimizing algorithm
after epoch ¢, which allows for exact gradient methods. It is known that for unconstrained online
convex optimization, the simplest gradient descent method attains O(+/T") regret for convex func-
tions, and O(log T') regret for strongly convex and smooth functions, both of which are optimal
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in the worst-case sense (Hazan, 2016). For constrained optimization problems, projection-free
methods exist following mirror descent or follow-the-regularized-leader (FTRL) methods (Hazan
& Levy, 2014). Hall & Willett (2015); Zinkevich (2003) considered the question of online con-
vex optimization by competing against the optimal dynamic solution sequence x7,--- ,x}. sub-
ject to certain smoothness constraints like >, |z}, — ]| < C. Jadbabaie et al. (2015); Mokhtari
et al. (2016) further imposed the constraint on both solution sequences and function sequences
in terms of L, ;-variation and showed that adaptivity to the unknown smoothness parameter V7
is possible with noiseless gradient and the information of ||f; — f;_1]«. Daniely et al. (2015);
Zhang et al. (2018) also designed algorithms that adapt to the unknown smoothness parameter,
under the model that the entire function f; is revealed after time ¢. However, the adaptation
still remains an open problem in the “bandit” feedback setting considered in our paper, in which
only noisy evaluations of f;(z;) or V f;(x;) are revealed. Under the bandit feedback setting, the
function perturbations (e.g., || fi+1 — ft/ ) cannot be easily estimated, making it unclear whether
adaptation to V7 is possible.

3.5 Proofs of results in Sec. 3.1

3.5.1 Proof of Lemma 12

We will need the following standard concentration inequality for Gaussian random vectors:
Lemma 24 ((Hsu et al., 2012)). Suppose x ~ Ny(0, I4xq) and let A be a d x d positive semi-
definite matrix. Then for all t > (),

Pr [.CL'TA:L‘ > tr(A) + 24/tr(A%)t + 2||A||Opt] <e.

Our proof closely follows the analysis of asymptotic convergence rates for series estimators in
the seminal work of Newey (1997). We further work out all constants in the error bounds to arrive
at a completely finite-sample result, which is then used to construct finite-sample confidence
intervals.

We start with as polynomial interpolation results for all Holder smooth functions in B}’ (z; X').

Lemma 25. Suppose f satisfies Eq. (3.6) on B;°(x; X). Then there exists fx € Py such that

sup | f(2) — f;(z)‘ < MdFhe. (3.42)
2eB° (x;X)
Proof. Consider
- k 6] d
THORNGOEDINDY % []Ge—ao. (3.43)
NN

j=loi+..+aq=j

By Taylor expansion with Lagrangian remainders, there exists £ € (0, 1) such that

d
L) —f@) < Y [fPe+iE—n) = @) Jl—wdl (344
/=1

ay+...tag=k
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Because f satisfies Eq. (3.6) on B{°(x; X), we have that |f(*)(z + £(2 — 2)) — f(2)] <
M - |z — z|% . Also note that |2, — 24| < |2 — x| < hforall z € B(z; X). The lemma is
thus proved. [

Using Eq. (3.9), the local polynomial estimate f, can be written as fh(z) = wx,h(z)Téh,
where
On = (¥, Ve p) "0, Yo (3.45)

In addition, because f, € Py, there exists € RP such that f,(z) = th,,(z)76. Denote

also that Iy, := (f(2v))1<r<tzyeBr @) Den = (f(zr) — ﬁ:(xt'))lst’gt,xt/eB;f () and Wy, :=
(W )1<v<teye By (x)- EQ. (3.45) can then be re-formulated as

511 = (\IIZh\IIt,h)_I\IIZh [‘Pt,ha‘f‘ A Wt,h] (3.46)

~ [1 !
. [E\yg hqft,h] [E\I’Z (A + Wt,h)] . (3.47)
Because - W, W, s > 0lpxp and Sup,cpz () [¥2(2) ]2 < b, we have that

1

PO b 1 !
16 — 0|2 < ;HAMH@ + [E\I/thlfuh] qughwt (3.48)

2

Invoking Lemma 25 we have |A; [ < Md*h®. In addition, because W; ~ Ny, (0, Lxn),
we have that

1 11 111 -
[E@Zh\ptvh] E@IthND (()%[quhxpt,h] > (3.49)

Applying concentration inequalities for quadratic forms of Gaussian random vectors (Lemma
90), with probability 1 — ¢ it holds that

1 1 Dlog(1
‘ [—\IJ hwt,h] —U,, Wi < 5D Log(1/0) (3.50)
m ’ m ’ ) am
We then have that with probability 1 — ¢ that
~ o~ b 5D log(1/6
18 — Do < L ngatne 4+ 422 1081/0) (3.51)
Op oam
Finally, noting that
[fn(@) = F@)] = |fn(@) = Fol@)| = ()T (0 — 0)] < b)), — 02 (3.52)

we complete the proof of Lemma 12.
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3.5.2 Proof of Proposition 6

To prove Proposition 6, we need the following lemma showing that the grid G,, is “‘dense” in ap-
proximating the target function f under assumptions (B1) and (B2). Define z* := arg min,cq, f(x),
fr= f(z¥)and f* = inf,cx f(2).
Lemma 26. Suppose (BI) and (B2) hold. Then with probability 1 — O(n™') the following holds:

1. Sup,cy Mingeg, |t — 2’|l = 5(n*3/min(“’1));

2. fr—fr =0

Proof. Let Hy < X be the finite subset of X such that |Hy| = N and sup, ., mingep, |[2—2'|
is maximized. By standard results of metric entropy number of the d-dimensional unit box (see
for example, (van de Geer, 2000, Lemma 2.2)), we have that sup,. y mingeg, |2—2"] < N7V,

For any z € H,, consider an {, ball B (x) or radius ,, centered at =, with 7, to be specified
later. Because the density of Px is uniformly bounded away from below on X', we have that
Px(x € B¥(x)) 2 rZ. Therefore, applying union bound over all z € H,, we have that

Py[3re Hy,G,n BX(2) = J] < N1 — )% < exp {—r?|G,| +log N}.  (3.53)

Set N = |G| and r,, = n=¥™n(*D]ogn, The right-hand side of the above inequality is then
upper bounded by O(1/n?), thanks to the assumption (A1) and that |G,,| = n3#™in(®:1) The first
property is then proved by noting that

sup min |z — ||, < sup min |z — 2’| + max min ||z — 2’| . (3.54)
zeXx v'eGn reXx v'EHn z€Hy 2'eGpn
To prove the second property, note that for any z, 2’ € X, | f(z)— f(2')| < M- |z —a' |2,

The first property then implies that f* — f* = O(n™®). O

We are now ready to prove Proposition 6. By Chernoff bound and union bound, with
probability 1 — O(n ') uniformly over all z € G,, there are 2(,/nglog®n) uniform samples
in B;?(x; X). Subsequently, by standard Gaussian concentration inequality, with probability
1 —0O(n™') we have

inf  f(z) — O(nam) < f(:c) < sup f(z) + O(nam) Ve Gy. (3.55)

ZEB}% (z;X) zeB;f(’) (z;%)

Fix arbitrary T* € arg min,eq, f(z). Because f € X%(M) for constant x and hy — 0, f
is smooth on Bj? (#*; X) and therefore SUD.epy (3%:0) f(2) < FE) + Omp™My < F(3) +
O(1/log®n) < f* + O(1/log®n), where the last inequality holds due to Lemma 26. On the
other hand, for all x € G, f(z) = f* — O(n, Y *). Therefore, for sufficiently large n we must
have f(7*) < min,eq, f(2) + 1/logn and subsequently T* € S;).

We next prove the statement that S < | ], L;(w/2) Bro (x; X). Consider arbitrary z € G, and
2 ¢ User, (/2 Bi (z; X). By definition, f(z') = f* + x/2forall 2’ € B}’ (z; X). Subsequently,
f(z) = f*+rK/2— O(nam) > f* + 1/logn for constant x > 0 and sufficiently large n, which
implies z ¢ S).
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3.5.3 Proof of Theorem 4

We prove the theorem by considering every reference function fy € X%(M) n O separately.
For simplicity, we assume x = oo throughout the proof. The 0 < x < oo can be handled by
replacing X with Sy which is the grid after the pre-screening step described in Section 3.1.3. We
also suppress dependency on d, o, M, C,p , D, in O(-), ©2(-), ©(-), 2, < and = notations. We

further suppress logarithmic terms of n in O(-) and €)(-) notations.

The following lemma is our main lemma, which shows that the active set S, in our proposed
algorithm shrinks geometrically before it reaches a certain level. To simplify notations, denote
o := 10¢q and (A2) then hold for all €, § € [0, ] for all f; € O¢.

Lemma 27. For 7 = 1,...,T define £, := max{¢ - 277, Cs[Y(fo) + n~'/?]1log® n}, where
C5 > 0 is a constant depending only on d, o, M, Py Po and C'. Then for sufficiently large n, with
probability 1 — O(n™') the following holds uniformly for all outer iterations T = 1,...,T:

S, S Ly(e,). (3.56)

Lemma 27 shows that the level <. in L f(sT) that contains S, _; shrinks geometriclly, until
the condition £, > Cs[eV(fy) + n /?]log®n is violated. If the condition is never violated,
then at the end of the last epoch 7* we have e+ = O(n~!) because 7* = logn, in which
case Theorem 4 clearly holds. On the other hand, because S, < S, ; always holds, we have
e+ < [eY(fo) + n~?] log® n which justifies the convergence rate in Theorem 4.

In the rest of this section we prove Lemma 27. We need several technical lemmas and propo-
sitions. Except for Proposition 11 that is straightforward, the proofs of the other technical lemmas
are deferred to the end of this section.

The next proposition shows that with high probability, the confidence intervals constructed
in the algorithm are truthful and the successive rejection procedure will never exclude the true
optimizer of f on G,,.

Proposition 11. Suppose § = 1/n*|G,,|. Then with probability 1 — O(n~1) the following holds:

1. f(z) € [ly(x),us(x)] forall1 <t <nandx € G,;

2.2y e S forall0 <7 <n

Proof. The first property is true by applying the union bound over allt = 1,... ,nand x € G,,.
The second property then follows, because /;(z}) < f* and minges._, w,(z) = f¥ forall 7. O

The following lemma shows that every small box centered around a certain sample point
x € (G, contains a sufficient number of sample points whose least eigenvalue can be bounded
with high probability under the polynomial mapping v, 5.
Lemma 28. Foranyz € G, 1 <m <nandh >0, let K, , (x),..., K} (x) ben independent
point sets, where each point set consists of m points sampled i.i.d. uniformly at random from
Bi*(z; Gp) = Gy, 0 B (). With probability 1 — O(n™") the following holds true uniformly for
all x € Gy, he {j/n*:jeN,j<n?}and K}, (), { € [n] as n — oo:

1. S0Py SUD. e o) [ (2)]2 = O(1);

2. |Bp(z;Gn)| = hd|Gn

)
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3. Omin(K} () = O(1) for all m > Q(log*n) and m < |G,
least eigenvalue of = ZzerL @ Vo n(2)en(2)".
Remark 24. 1t is possible to improve the concentration result in Eq. (3.73) using the strategies
adopted in (Chaudhuri et al., 2014) based on sharper Bernstein type concentration inequalities.
Such improvements are, however, not important in establishing the main results of this paper.
The next lemma shows that, the bandwidth h; selected at the end of each outer iteration 7
is near-optimal, being sandwiched between two quantities determined by the size of the active
sample grid S;_; := S°_, (0,_1).
Lemma 29. There exist constants C, Cy > 0 depending only on d, o, M, Py Do and C such that
with probability 1 — O(n™"), the following holds for every outer iteration 7 € {1,..., T} and all
reS;_q:

, where 0 (K}, ,, (2)) is the

Ch[Tr1no] YD) — /0 < p.(x) < hy(z) < CofProing] VP Dlogn 4+ 7/n,  (3.57)

where U1 = |G,|/|S:_1]-
We are now ready to state the proof of Lemma 27, which is based on an inductive argument
over the epochts 7 = 1,... 7.

Proof. We use induction to prove this lemma. For the base case 7 = 1, because |f — foo <
ed(fo) and eY(fo) — 0 as n — oo, it suffices to prove that S; Ly, (¢y/4) for sufficiently
large n. Because Sy = Sy = G,,, invoking Lemmas 29 and 12 we have that |u,(z) — £,(z)| =
5(71*0‘/ (2a+d)) for all x € (,, with high probability at the end of the first outer iteration 7 = 1.
Therefore, for sufficiently large n we conclude that sup ., |u(x) — £i(z)] < co/8 and hence
S1 < Lf0(50/4).

We now prove the lemma for 7 > 2, assuming it holds for 7 — 1. We also assume that n (and
hence ny) is sufficiently large, such that the maximum CI length max,eq |us(x) — ¢4 ()| after the
first outer iteration 7 = 1 is smaller than ¢y, where ¢ is a constant such that

Because ||f — follo < eY(fo) and e, 1 = C3eY(fo) log® n, for appropriately chosen constant
Cj that is not too small, we have that || f — fo| < £,_1. By the inductive hypothesis we have

S,_1 S Lf(ET_l) - Lfo(gr—l + ||f — f[)Hoo) - Lf0(2€7-_1). (3.58)
Subsequently, denoting p* | := max,es,_, 0-1(x) we have
Sroi =82, € LS, (25,21, pE_1). (3.59)

Let J,ep, Bif—l (z) be the smallest covering set of Ly, (2¢,_1), meaning that Lz (2e,_1) <
User, By (x), where B, () = {2 € X : |z — afl» < pf_,} is the {; ball of radius py_,
n T—1 T—1

centered at . By (A2), we know that |H,,| <1+ [p*_,]™%us,(2¢,_1). In addition, the enlarged
level set satisfies L5 (2e-—1,0% 1) € U,en, By« (x). Subsequently,

15021, p51) < Mol - T2 01" < gy (22m) + [2,]% (3.60)
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By Lemma 29, the monotonicity of |5,_| and the fact that p, < px(2) < pyforall z € X, we
have

Py < [ (enmr, pioy) ]/t ng VD 1og (3.61)
<[5, (26,1, p3 )t ng VD10 (3.62)
< (ps, (28,1) + [pE1]Y) (ot )no Vet 150, (3.63)

Re-arranging terms on both sides of Eq. (3.63) we have
__1 1
pr_; < max {[Mfo(%v—l)]”“l“no ***d logn, ny > log n} : (3.64)

On the other hand, according to the selection procedure of the bandwidth h,(x), we have that
Nhi(2),6(T) < Bpya),5(x). Invoking Lemma 29 we have for all z € S, that

Mhe(),6(2) < bny(),s(2) < [he(2)]” (3.65)
< [P 1mo] ¢/ D logn (3.66)
< [Py amo] ¢/ D logn (3.67)
< [p7—1]% log n. (3.68)

Here Eq. (3.66) holds by invoking the upper bound on h;(z) in Lemma 29, Eq. (3.67) holds
because U,_; > U;_o, and Eq. (3.68) holds by again invoking the lower bound on g, _;(z) in
Lemma 29. Combining Egs. (3.64,3.68) we have

« __a _1
max 1y, (z).5(r) < max{[ufo(zéfH)]mno M log?n, ng 2 logn}. (3.69)

TES_1

Recall that ng = n/logn and eY(fo) < &,_1, provided that Cj is not too small. By definition,
every £ = eV(fy) satisfies e~2+4/) ;. () < n/log® n for some large constant w > 5 + d/a.
Subsequently,

[, (26,—1)]Zo7an, 2% log? < 2e,_yn2avd log~2a+d n - ny 2+ log®n (3.70)

(w—5—d/a)a

< erq/[logn] 2ara . (3.71)

Because w > 5+ d/q, the right-hand side of Eq. (3.71) is asymptotically dominated ° by £, ;. In
addition, ny /*log n is also asymptotically dominated by &, ; because £,_; > Csn~"2log* n.
Therefore, for sufficiently large n we have

mMax N, (z),6(x) < e7-1/4. (3.72)

€S 1
Lemma 27 is thus proved. O]

SWe say {ay, } is asymptotically dominated by {b,,} if lim,,_, |a,|/|bn| = 0.
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Proof of Lemma 28 We first show that the first property holds almost surely. Recall the
definition of 1), 5, we have that 1 < [V, 1(2)]la < D - [maxi<j<ah t|z; — z;]]F. Because
|z = zlw < hforall z € B?(x), suP.epr(y) [Ven(z)llz < O(1) for all o > 0. Thus,
SUP =0 SUPzep(a) |Van(2)[2 = O(1) forall z € G,
For the second property, by Hoeffding’s inequality (Lemma 89) and the union bound, with
probability 1 — O(n™!) we have that
| By (w; G)| log n
— == — Px(z€ BY <Al 3.73
8 A Il BT o
In addition, note that Px (2 € By(x; X)) = p M(Bj(z; X)) 2 h® and Px(z € Bi(2; X)) <
P B (; X)) < h?, where A(-) denotes the Lebesgue measure on X'. Subsequently, | Bi° (z; G.,)|
is lower bounded by Q(h?|G,,| — 1/|G,|log n) and upper bounded by O(h?|G,,| + A/ |G| logn).
The second property is then proved by noting that hy = n~% and |G,,| = n3% min(e1),
We next prove the third property. Because p, < px (2) € py for all z € X, we have that

1
Bo|  a@an) AU <E| S b eale)! (3.74)
By (@) M et

< Do f Vo (2) Va0 (2) AU, i (2), (3.75)

By (z;X)

where U, 5, is the uniform distribution on B;°(x; X'). Note also that
| 0@ a0E = | b)) (3.76)
X B (z;X)
< de Yo,1(2)10,1(2) AU (2) 3.77)
x

where U is the uniform distribution on X = [0, 1]¢. The following proposition upper and lower
bounds the eigenvalues of {, 101(2)101(2) 'dU(z), which is proved in the appendix.
Proposition 12. There exist constants 0 < 1)y < Vo < o0 depending only on d, D such that

Yolpxp < J Vo.1(2)t01(2) ' AU(2) < Wolpyp. (3.78)
X
Using Proposition 12 and Egs. (3.76,3.77), we conclude that

Q(l) . [D><D < E % Z wx,h(Z’)w%h(Z)T < 0(1) . [D><D- (379)

4
ZEKh,m

Applying matrix Chernoff bound (Lemma 98) and the union bound, we have that with probability
1—-0(n™),

max | ST (2)en() B [Gea(an(a) o€ Bu@)]) <420 (380

op

72



Combining Egs. (3.79,3.80) and applying Weyl’s inequality (Lemma 99) we have

(1) — O(v/1og /) < oin(K(2)) < O(1) = O(/logn/m).  (381)

The third property is therefore proved.

Proof of Lemma 29 We use induction to prove this lemma. For the base case of 7 = 1, we
have Sy = Sy = G,, and therefore 7, ; = 1. Furthermore, applying Lemma 28 we have that for

all h = j/n?,
logn
bus(x) = h®  and  sp5(z) = 4 /hdino. (3.82)

Thus, for h selected according to Eq. (3.11) as the largest bandwidth of the form j/n?, j € N such

that by, 5(z) < sp,5(2), both by, s(x), s, 5() are on the order of ngl/@“*d) up to logarithmic terms

of n, and therefore one can pick appropriate constants C,Cs > 0 such that Cyn, Y(2ad)
o1(z) < Cong /™ log n holds for all € G,,.

We next prove the lemma for 7 > 1, assuming it holds for 7 — 1. We first establish
the lower bound part. Define p* ;| := min,ecs , 0,_1(z). By inductive hypothesis, p* ;| >
C1[Py—ano] M2+ — (7 — 1) /n. Note also that ¥,_; = ,_, because S,_; = S,_,, which holds
because S, 1 € S; o and o, 1(2) < o, 2(2) for all z. Let b} be the smallest number of the
form j*/n?, j* € [n?] such that h* > Cy[D,_ino|~®*+9) — 7/n. We then have h} < p* |
and therefore query points in epoch 7 are uniformly distributed in BZ‘% (x; G,). Subsequently,
applying Lemma 28 we have with probability 1 — O(n™!) that

logn
[hF]9Dran’

bhi’k’g(w) < Cl[h?]a and 5hf75($) = C” (383)

where C’, C" > 0 are constants that depend on d, o, M, P,:Po and C', but not C', Cs, 7 or hf. By
choosing C' appropriately (depending on C” and C") we can make by 5 (x) < ﬁhf’(;(x) holds for
all x € S, 1, thus establishing o, (z) = min{o, 1(z), hi} = C1[P;_1ne|~ Y+ — 7/n,

We next prove the upper bound part. For any h; = j;/n* where j; € [n?], invoking Lemma
28 we have that

logn

brs(z) = C'h*  and ghyg(:p)gé”\/ : (3.84)

min{h, p7_1}* - Ur_1no

where ¢’ and C” are again constants depending on d, a, M, p , p, and C, but not Cy, Cy. Note
also that p* | = Ci[V,_ong| V?+) — (1 — 1)/n = Ci[Pr_1no] "+ — 7/n, because
V.1 = U,_s. By selecting constant C; > 0 carefully (depending on C , C" and C}), we can
ensure by, 5(7) > sp,5(x) for all h = Cy[D,_1ng] YD + 7/n. Therefore, o, (7) < hi(z) <
Co[Vr_1ng) "V 2e+d) 4 7/,
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3.5.4 Proof of Theorem 5

In this section we prove the main negative result in Theorem 5. To simplify presentation, we
suppress dependency on «, d, ¢y and Cj in <, 2, =, O(-) and §2(+) notations. However, we do not
suppress dependency on C';, or M in any of the above notations.

Let ¢y : [—2,2]¢ — R* be a non-negative function defined on X’ such that ¢, € el (1) with
K = 00, Sup,cy wo(z) = Q(1) and po(z) = 0 for all |z]|s = 1. Here [a] denotes the smallest
integer that upper bounds «.. Such functions exist and are the cornerstones of the construction
of information-theoretic lower bounds in nonparametric estimation problems (Castro & Nowak,
2008). One typical example is the “smoothstep” function (see for example (Ebert, 2003))

1 N /N ON + 1
SN(m):=§xN“Z( ;n)(Njn>(—x)”, N=0,1,2,...

n=0

where Z > 0 is a scaling parameter. The smoothstep function Sy is defined on [0, 1] and

satisfies the Holder condition in Eq. (3.6) of order « = N on [0, 1]. It can be easily extended

to Sna : [~2,2]¢ — R by considering Sy 4(z) := 1/Z — Sy(alz],) where |z], = |zi| +

...+ |z4| and @ = 1/(2d). Tt is easy to verify that, with Z chosen appropriately, §N7d e (1),

SUp,ey Sna(z) = 1/Z = Q(1) and Sy 4(2) = 0 for all |z]y > 1, where M > 0 is a constant.
For any x € X and h > 0, define ¢, , : X — R* as

Mhe _
Pon(z) =1z € BY ()] - = gpo(zhm). (3.85)

It is easy to verify that o, , € X5 (M /2), and furthermore supcy ¢, 4(2) = Mh® and @, ,(z) =
0 for all z ¢ B;°(x).

Let Ly, (e (fo)) be the level set of fo at -(fo). Let H,, S Ly, (e5(fo)) be the largest packing
set such that B;?(z) are disjoint for all # € H,, and | J,.,; Bi?(z) < Ly, (e5(fo)). By (A2°) and
the definition of &( fy), we have that '

|Ha| = M(Ly, (e5(fo)), 2Vdh) 2 gy (e5(fo)) - B~ = [en (fo)PH* - nh™. (3.86)
For any = € H,,, construct f, : X — R as
fo(2) == fol2) = wan(2). (3.87)

Let F, := {f. : * € H,} be the class of functions indexed by z € H,. Let also h =
(L (fo)/M)Y* such that [, pnlle = 2e5(fo). We then have that |f, — fole < 2¢(fo) and
fz € 3 (M), because fy, p.n € 25 (M/2).

The next lemma shows that, with n adaptive queries to the noisy zeroth-order oracle y; =
f(zy) + wy, it is information theoretically not possible to identify a certain f, in F,, with high
probability.

Lemma 30. Suppose |F,| = 2. Let A, = (x1,-- -, Xn, On) be an active optimization algorithm
operating with a sample budget n, which consists of samplers x; : {(x;,y;)}'_1 — x, and an
estimator ¢y, : {(z;,y;)}, — f» € F,, both can be deterministic or randomized functions. Then

, . 1 n-supy er, | fo = foll%
inf sup Pr [fx # fz:l = - — N .

(3.88)
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Lemma 31. There exists constant M > 0 depending on o, d, ¢y, Cy such that the right-hand side
of Eq. (3.88) is lower bounded by 1/3.

Lemmas 30 and 31 are proved at the end of this section. Combining both lemmas and noting
that for any distinct f,, fr € F,, and 2z € X, max{£(2; f.), £(z; fv)} = €5(fo), we proved the
minimax lower bound formulated in Theorem 5.

Proof of Lemma 30 Our proof is inspired by the negative result of multi-arm bandit pure
exploration problems established in (Bubeck et al., 2009). For any x € H,,, define

ng =Ky [znl [z € B (x

Because B)°(z) are disjoint for z € H,,, we have },, ,; n, < n. Also define, for every x € H,,

(3.89)

po = Pr [f = fm] . (3.90)

Because > ., . = 1, by pigeonhole principle there is at most one = € H,, such that p, > 1/2.
Let x1,x5 € H, be the points that have the largest and second largest n,. Then there exists
x € {x1, x5} such that p, < 1/2 and n, < 2n/|F,|. By Le Cam’s and Pinsker’s inequality (see,
for example, (Tsybakov, 2009)) we have that

Pf’r [fx = fx] < Pf’or [fx = fx] + dry (P | P (3.91)
- 1
<Pr [ i = fx] + \/ SKL(P | P) (3.92)
1
b+ KL P 399
1 1 A, An
3 + §KL(PfO ||sz ). (3.94)

It remains to upper bound KL divergence of the active queries made by 4,. Using the
standard lower bound analysis for active learning algorithms (Castro, 2014; Castro & Nowak,
2008) and the fact that f, = f, on X\B;°(z), we have

[ P (371 my Y1: n)
KL(P7" |Pi) = E log —JoAn 2L 3.95
(PrrlPrr) = Egy a, |log sz " (x1 ) (3.95)
P i P i ((i—1)s Y1:(i—
Hz 1 Py, (?/ |x1)PAn (:Bi|x1:(i71)a y1:(i71))
[Tis: P (yilwa)
=E 1 - 3.97
fO:.An Og Hl . sz (y1|xz) ( )
Py (ys)w;
=Efya, Z log 20 (4:]) (3.98)
_:E»L‘EBh(:r) fa (yz|xl)
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<n.- sup  KL(P, ()P (12) (3.99)

2€B (2;X)
<ng - | fo— fol%- (3.100)
Therefore,
~ 1 1 1 n| fe — fol2
P[xzx]é— —nge2 < = —_ % 3.101
(rJe = o] S g PN T S 5 T T g7 (3.101)
Proof of Lemma 31 By construction, nsup; .r ||fo — foll%, < M?nh®* and |F,| = |H,| 2
[C.c-(fo)]*¥*nh~?. Note also that h = (¢/M)"* = (C_eL(fo)/M)"* because || f, — follo =
e = C.e-(fo). Subsequently,
— 2 L 2
nsupfm(;}'gC fo foHoo $ n[Qggn(fO)] _ M_d/a. (3102)
2| F] n[Ceer(fo)]? - MU=

By choosing the constant M > 0 to be sufficiently large, the right-hand side of the above
inequality is upper bounded by 1/36. The lemma is thus proved.

3.5.5 Proof of Theorem 6

The proof of Theorem 6 is similar to the proof of Theorem 5, but is much more standard by
invoking the Fano’s inequality (Tsybakov, 2009). In particular, adapting the Fano’s inequality
on any finite function class F,, constructed we have the following lemma:

Lemma 32 (Fano’s inequality). Suppose |F,| = 2, and {(x;,y;)}I-, are i.i.d. random variables.
Then

log2 +n - SUpy, 1 eF, KL(Py, ||wa,)

log |]:n| ’

inf sup Pr[fx;éfx] >1-—

(3.103)
fo fo€Fn fa

where Py, denotes the distribution of (x,y) under the law of f,.

Let F,, be the function class constructed in the previous proof of Theorem 6, corresponding
to the largest packing set H,, of L, (c%) such that Bi°(x) for all z € H,, are disjoint, where
h = (8Y/M)Y* such that |, 4] = 28t for all x € H,. Because f, satisfies (A2’), we have
that | F,| = |H,| = s, (EL)R=?. Under the condition that £¥(f;) < &, it holds that yy, (EL) >
[2L]2*4/n. Therefore,

Fal 2[5

n]2+d/a . nh_d > [gL

n

12 nardie (3.104)

Because log(n/gt) = logn and M > 0 is a constant, we have that log |F,,| = clogn for all
n = N, where ¢ > 0 is a constant depending only on o, d and N € N is a constand depending on
M.

Let U be the uniform distribution on X'. Because x ~ U and f, = f,» on X\ B;°(x), we have
that

KL(Py, | Py,,) = %L |fo(2) = fur(2)]2dU(2) (3.105)
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1
<5Prlze BY@]-fo = Joli (3.100)
< %/\ BP(z)) - [e-]? (3.107)
< hd[g{ﬁP < [glr_L]2+d/a/Md/a. (3108)

By choosing M to be sufficiently large, the right-hand side of Eq. (3.103) can be lower bounded
by an absolute constant. The theorem is then proved following the same argument as in the proof
of Theorem 5.

3.6 Proofs of results in Sec. 3.2

3.6.1 Proof of Lemma 13

We first prove a technical lemma that bounds the /., norm of error vectors.
Lemma 33. For any x € R? and z; € {+1}%, with probability 1 — O(d~3) (conditioned on x; and
zi)
o log d
Z €izi <

Ho.
5 + Ho

Proof. Let &, = £;/6 ~ N(0,02/6%). Consider the following decomposition:

5|2

The second term on the right-hand side of the above inequality is upper bounded by O(H?)
almost surely, because |z < 1 and |2, Hy(ky, z;) 2| < ||Hi (K4, 21)||1]|2:]% < H. For the first
term, because &, are centered sub-Gaussian random variables independent of z; and |z < 1,
we have that 1/m - | 3" &,2i]ew < 4/0%logd/m with probability 1 — O(d~?), by invoking
standard sub-Gaussian concentration inequalities. [

1

\

mo

i 2 +0d- sup ‘ziTHt(/ﬂ,Zz’)Zi‘ ) ||Zz||oo

1<ism

Now define § = (G, fie), 0o = (90,07 f(x)) and Z = (Z4,..., %) Where Z; = (2;,1) €

R?*!, Define alsothat Y = (i, ..., %, ). The estimator can then be written as 0 = arg Mingega+1 — ||Y—

Z0|%+ 0], where Y = Z0y + ¢, = (e1, ..., €m). We first establish a “basic inequality” type
results that are essential in performance analysis of Lasso type estimators. By optimality of 6,
we have that

1 =~ ~ 1 — 9 1 9

— Y = Z0[5 + Ao < =Y = Z6o[5 + Albols = —lel5 + All6o]1-

m m m
Re-organizing terms we obtain

MGl < N|bo]s + = (9 ‘90)T25
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On the other hand, by Holder’s inequality and Lemma 33 we have, with probability 1 — O(d~?),

~ o [logd
S||9—90||1-<3 i+Ha>.

Subsequently, if A < cy(c014/logd/m + H§) for some sufﬁciently small ¢y > 0, we have
that ||0], < 6] + 1/2||6’ — 6o/1. Multiplying by 2 and adding 10 — 6|1 on both sides of the
inequality we obtain H@ — boll; < 2(H6 ) H90||1 — ||0H ). Recall that 6 is sparse and let

2 _ R 1_
Z(0—00)"Z e < 2|0 — 0o - ‘—ZTs
m m

S=8Su ) {d + 1} be the support of 6. We then have ||(6 0o)ge + [|(60)ge ||§§ 1 = 0and
hence (6 — 6o)g |+ — (8 — o)s]i < 8 — boll1 < 2|(6 — 0)s]1. Thus,
(0= Oo)sell < 316 = o3l (3.109)

Now consider 6 that minimizes -||Y’ — Z#|3 + A|¢] ;. By KKT condition we have that

1 A
‘—ZT(Y —70)
m

DN | >~

Define & = %7T? and recall that Y = Z6, + €. Invoking Lemma 33 and the scaling of A we
have that, with probability 1 — O(d™?)

A A 1o log d
1200 — 00)]|o < = + ‘—ZTE < %4/ 8% | 5H. (3.110)

2
By definition of {Z;}[*,, we know that i]-j = 1lforallj =1,...,d+ 1 and E[ijk] =0
for j # k. By Hoeffding’s inequality (Hoeffding, 1963) and union bound we have that with
probability 1 — O(d2), |X — Iigs1yx(@+1) |0 < +/logd/m, where || - |, denotes the maximum
absolute value of matrix entries. Also note that § — 6, satisfies ||(§ —b)ge|li < 3||(§ —6o)slh
thanks to Eq. (3.109). Subsequently,

10 — Oolloo < [2(0 — o) [l + [I(Z = 1)(0 — o)
<1320 = 00) oo + |2 = Tao]€ — o]
< 20— 00)loo + 2 — Ieo - 4[I(0 — o)z
< 20 = 00)lloo + |2 — Ieo - 4(s + 1|0 — b0l
log d 2logd
s% Oi OH + 41280 15— 0o G.111)

Combining Eq. (3.111) together with the scaling m = (s*logd) we complete the proof of
Lemma 13. Note that the statement on the ¢; error ||§ — y||; is a simple consequence of the basic
inequality Eq. (3.109).
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3.6.2 Proof of Lemma 14

Before proving Lemma 14 we state a simple observation on sub-exponentiality of products of
sub-Gaussian random variables.

Lemma 34. Suppose X and Y are centered sub-Gaussian random variables with parameters v?
and v3, respectively. Then XY is a centered sub-exponential random variable with parameter
v =+/2v and a = 2v, where v = 262/e+1V1V2.

Proof. XY is clearly centered because EXY = EX -EY = 0, thanks to independence. We next
bound E[|XY|*] for k > 3 (i.e., verification of the Bernstein’s condition). Because X and Y are
independent, we have that E[| XY'|¥] = E|X|* - E[Y|*. In addition, because X is a centered sub-
Gaussian random variable with parameter 2, it holds that (E|X [*)'/* < vie'/*\/k. Similarly,
(E|X|")'* < vye'/ey/k. Subsequently,

E[XYF < (62/€V1V2)k S (62/61/11/2)k cefkl < %k! . (262/e+1V1V2)k.

where in the second inequality we use the Stirling’s approximation inequality that v/2mkk*e * <
k!. The sub-exponential parameter of XY can then be determined. ]

We use the “full-length” parameterization §t = ét + %7: (ENQ — Z@t), where ét, Z, and ENQ are
notations defined in the proof of Lemma 13 (with subscripts ¢ added to emphasize that both Z;
and Y are specific to the tth epoch in Algorithm 5). Because Y; = Z0y;+¢; (where 0y = V f(;)
and € = (g1, ..., Eum), With ;; defined in Eq. (3.22)). we have

O R o 1ot o« -
Qt = 9t + EZt (Zte()t + & — Ztet) = 90t + EZt gt + (E — [(d+1)><(d+1))(0t — HOt)u

where & = %ZTZ, Recall that e;; = &;/0 + 0z, Hi(ki, 2)2. Define b; = z Hi(k;, 2i) 2
and b = (by,...,b,). Also note that the first d components of 6, are identical to g, defined in
Eq. (3.24). Subsequently,

R 1 5 R R
Go=gi+ —Z]E+ Ezjb + [(z — Tasryxaen) (0 — 90]5)]1@. (3.112)
=Ct :;f%

In Eq. (3.112) we divide g; — g; into two terms. We first consider the term (; := m%sZtT & Ttis
clear that E[(;|7;] = 0 because E[{|x;, Z;] = 0. Now consider any d-dimensional vector a € RY,

and to simplify notations all derivations below are conditioned on z;. For any i € [m], z.a
are i.i.d. sub-Gaussian random variables with common parameter v? = ||al|3. Also, &, is a sub-

Gaussian random variable with parameter o2 and is independent of z,;a. Thus, invoking Lemma
34 we have that &zJa is a sub-exponential random variable with parameters v = a/v2 <
ollal2. Consequently, ((;,ay = —=>" &zia is a centered sub-exponential random variable

with parameters v = /m/2 - a < o|als/0/m.
We next consider the term v, = %Z; b+ (X —1)(0; — by). By Assumption (A3) we know
that |[b| < 0 H. Subsequently, by Holder’s inequality we have that

5 ~ ~
Ielloe < 1 Zill1olbloo + 1% = Lo |6 = G0l
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|
< Ho 44 )81 (U—S«/ 0gd +5(5H> .
m ) m

where the second inequality holds with probability 1 — O(d~?) thanks to Lemma 13.

3.6.3 Proof of Theorem 7

Because of the convexity of f, to prove Theorem 7 it suffices to upper bound % ZtT:Igl flzy)—f*.
We next cite the result in (Lan, 2012) that gives explicit cumulative regret bounds for mirror
descent with approximate gradients:

Lemma 35 (Lan (2012), Lemma 3). Let | - | and | - ||+ be a pair of conjugate norms, and let
Ay (-, ) be a Bregman divergence that is r-strongly convex with respect to || - . Suppose f is
H v meaning that f(y) < f(z) +V f(2)"(y—z) + Lz —yl3 for all
r,y€ X, andn < Ii/ﬁ Define g, = V f (), and let xy, . . ., x7_1 be iterations in Algorithm 5.
Then for every 0 <t < T' — 1 and any x* € X,

H-smooth with respect to | -

20| 2
. 5 o~ . 021G — gellZ
D (@es1) = F@)]+ Ay, o) < Ay, @) +0Gi—ge @ —xt>+ﬁ. (3.113)
K— 1

Adding both sides of Eq. (3.113) from ¢ = 0 tot = 7" — 1, telescoping and noting that
Ay(zp, z*) = 0, we obtain

LS ) - pay < 2 LS g 6 - ol
— ) — f(2*) < ——— + — — g1, Ty — T ———— . su — gl
T o t T’ T o gt — Gt Lt 2(k — Hr) O<t<PT/ gt = Gtlly
(3.114)
Set ||y =|-[sfora = Qfolgflfl. It is easy to verify that under Assumption (A3), the function
f satisfies
FW) = fl2) + V@) (y— o)+ Hly — =[5,
> fz) + V(@) (y - 2) + Hly - [

forall z,y € X with H < eH, because |z —y|? < d21Y)|z—y|2 < dY/sd|z—y|2? = e|z—y|?
by Holder’s inequality. In addition, by definition of Bregman divergence we have that

1 1
2(a—1) 2(a—1)
where the first inequality holds because v, (z) = 1,(0) = 0 and Vi), (z9) = V1),(0) = 0 for
a>1.

We next upper bound the = Zfz’gl@ — g, &% — ) and |G — g¢| %« terms. By Lemma 14

and sub-exponential concentration inequalities (e.g., Lemma 91), we have that with probability
1—0(d™)

- o loed logd oslogd o [logd
||gt—gt||oo<||<m+%nws—< S 2 >+H5+ S5 < S S

Ay(z0,2%) < Jz*||2 < |z*|} < [|lz*|}log d < B*logd, (3.115)

) m m m m
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uniformly over all ¢’ € {0, ..., T’ — 1}, where the last inequality holds because m = Q(s? log d).
Subsequently, by Holder’s inequality we have that

+ H?6°. (3.116)

~ _ - o%logd
sup [~ g3 < PV sup (G- gl < T
o<t<T" o<t<T"

We now consider the first term - T Gi—gi, w* =) < = Tt Xysupgeierr1 el —
x¢l|1, where X; = ((,z* — z;). By Lemma 14, we know that X,;|X;,..., X, ; is a cen-
tered sub-exponential random variable with parameters v = 1/m/2 - a < o|z* — x;]2/0y/n <
ollz*||1/6+/m. Invoking concentration inequalities for sub-exponential martingales ((Victor, 1999),
also phrased as Lemma 92 for a simplified version in the appendix) and the definition that
T’ = n/m, we have with probability 1 — O(d™')

Z <Ct7$ —$t>

0||:c [ log d N logd < olx*|| logd’
n n o n

where the last inequality holds because n > m = Q(s*log d). Thus,

log d log d
o ”H/ Ry PRl ( 4+ 2596 ) (3.117)
n om

Combining Eqgs. (3.115,3.116,3.117) with Eq. (3.114) and taking =* to be a minimizer of f on X’
that satisfies |2*||; < B, we obtain

Z<9t gt, T —$t>

T'-1

t=0
*|2log d * logd log d 2logd
< H$ ”1 0og T + O-”"L‘ ”1 0og + HI*HI HS + 0s10g +1 o~ 10g +H252
n n ) om %m
2 2
Blogdm 0B jlogd  p(ps  oslosd)  (o7l8d | s (3.118)
n n ) n om %m

with probability 1 — O(d™!), provided that n < x/2H = 1/2H.
We are now ready to prove Theorem 7. By the conditions we impose on n and the choices of
n and m, it is easy to verify that n < 1/2H, m = Q(s?logd) and m = O(n). Subsequently,

-1
1

= 2 )~ @

t=

0
<B /ml;)gd_ﬂj Im ™ 4 B /slogd /mlogd( )>

)
B
sn
(1+ H)%slog*d Y oB (1+ B(oc + H) (slog*d /4
* 1/4n1/4 *m

81

N

B

n n



2 e o 2
+ B <(1+H) slogd> (U—+O(n_1/2))
s

n

/4 o

+ O(n~?)

S(B mm+%g+0?ﬁ[U+iﬂ%T“+BW+VﬁM&%dE]

1 H)2 1/4
< (140 +0%/s)By/logd [%] +O(n~1?).

3.6.4 Proof of Lemma 15
Using the model Eq. (3.22) we can decompose g;(0) — g; as

n

9t(0) — gt = gE [(z"H;z2)z| + iZJS + o Z (2] Hyz)z — E[(2" Hy2)2]

no 2n 4
—— i=1 ,
) —5u(6)
5 o
+§E;¥guu&@—ﬂgm%+ﬁz—nw,4@ﬂw,
=)

where 5, ét and 6y, are similarly defined as in the proof of Lemma 14. The sub-exponentiality
of {(;(), a) for any a € R? is established in Lemma 14. We next consider 3;(). For any a € R?
consider (5,(8),a) = 23" Xi(a) where X;(a) = (2] Hiz) (2] a) — E[(z] H;2;)(2] a)] are
centered i.i.d. random variables conditioned on H; and z;. In addition, | X;(a)| < 2| Hy|1 ]z ]2 -
|al1] 2l < Hla|, almost surely. Therefore, X;(a) is a sub-Gaussian random variable with
parameter v = Ha|;, and hence {3,(5), a) is a sub-Gaussian random variable with parameter
v = §H||a|/+/n. Finally, for the deterministic term 7;(J), we have that

~ ) ~ ~
Fe(@)lleo < 5 sup [Hi(d2) = Hila 215 + (2 = D(0: = o)
ze{x1}d

) ~ ~
<5 sup L [0z 2l5 + % = llmax |6 = Oor]oo
ze{£1}d

1 |
< L&+ ogd <U—Sq/ 0gd+s6H>
n ) n

+s0H log d.
nd n

<167+ oslogd

3.6.5 Proof of Theorem 8

Because [ is convex, it suffices to upper bound Zggl f(zy) — f(x*), where x* € X, ||z*; <
B is a minimizer of f over X'. Using the strategy in the proof of Theorem 7, this amounts to
upper bound (with high probability) [ — g2« and & >}/ (G — g¢, 2% — ).
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For the first term, using sub-exponentiality of Z} and sub-gaussianity of Bt, we have with
probability 1 — O(d') uniformly over all ¢ € {0,...,T" — 1},

157 = gillo < MSeleo + 18t + IFe )0
logd logd log d 2logd log d
g( ced , 8 >+6H«/Og +L6% 4+ Hoy 080 | 7508
m m m om

) m
< (% + séH) logd | 152

m

A

where the last inequality holds because m = Q(s*logd). Subsequently, with probability 1 —
O(d=1)
~w 2 o’ 222 ) logd 24
sup |G = gilyx S| 5 +sO0°HT ) —— + L5 (3.119)
0<t<T'—1 0 m
For the other term Zf:'gl@}w — gy, x* — 1), again using concentration inequalities of

sub-exponential/sub-Gaussian martingales and noting that ||x* — x|z < |2* — 241 < 2B, we
have

1 T -1 1 -1 N
T ;@:W—gtax* —xy) = T ;«t + B + Ve, " — )
log d log d log d
< (% + 55H> By/ 284 L <L52 4 7508 | sy 28 ) . (3.120)
m

Subsequently, combining Egs. (3.119,3.120) with Eq. (3.114) we have

| 7= )
ﬁ;f(xt)—f(x)

B21 1 1 1
o Blogdm | (f+36H)B OgOlJr(BJrn) <L52+—08 o8d | sH Ogd)
non o om m
2 1
(2 422 ) 08 L eg (3.121)
02 m

We are now ready to prove Theorem 8. It is easy to verify that with the condition imposed
on n and the selection of 1 and m, it holds that n < 1/2H, m = Q(s*logd) and m < n/10.
Subsequently,

| T )

0

n slogd n

1/3
< Bm!/3 IOgd—i—[U( o ) +5(m_1/3)]B logd
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n slogd

B2 logd , (slogd 4/3
n m

log d Y3 flogd log d\**

< Bm!/3 Oi +oB (517: d> °8 +B(L+a)($ °8 )
g n m
3 Nood  ~
2B m 0g O(n=5/12
o s2log®d n + 0l )
/3
oBylogd o2Bylogd\ [(1+ L)s¥3]"

< (B\/logd—i— 1 27 -

B(L + o) <s2/3 log d
n

1/3
(0 —5/12
(1+ L)2 ) +O

Bylogd o2Bylogd\ [(1+ L)s31"?
S(B log d + 7Y 08E 4 TEVOE )[( +L)s ]
S S n

1+ L)\
+ Bo/logd (&) + O(n™12)

n

(1+ L)s*3
n

1/3
< (14 0+ 0%/s3)By/logd ( ) + O(n %),

3.6.6 Proof of Lemma 16

Note that under minimal regularity conditions (under regularity conditions allowing the swapping
of differentiation and integration operators, E[V logp(u)] = {p(u vp (u) du = (Vp(u)du =

V[§p(u)du] = 0, where §p(u)du = 1), E,[V log p(u )] = O and therefore ]E[ytVlogp(ut)] =
f(z)E[V log p(us)] = 0. The proposition is then immediate by Eq. (3.27).

3.6.7 Proof of Lemma 17

By the mean-value theorem, for any u € R? there exists d(u) € (0, 1) such that

|flz+u) — f(z)| =V [z + d(u)u),u). (3.122)

By definition of dual norms (also known as the Cauchy-Schwarz inequality), for any vectors a, b
and pairs of dual norms | - |, || - || it holds that [{a, b)| < |a|,|b|,. Subsequently

£+ w) — F@)] < IV £+ 6w [yl (3.123)
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Using the fact that |V f(2) |, < L for all z we have |f(z +u) — f(x)| < L|u/, for all u, and
hence

7) — £@) = Eulf @+ )~ @] S Blf@+u) = f@)] < IEJuly.  (.124)

The second inequality is implied by the following lemma, with 5 = p and r = 1.

Lemma 36. Suppose u = (uq,--- ,uq) with each component independently sampled from the
density p(u) = 2§F(1;p exp{—|ul?/pd*} for some p € (1,2]. Then for any 5,7 = 1, we have
§p1_1/pr!
Elu|; < 6"d7?log" d [1 4+ =
Il Xy
Proof. For every t > 0,
pl—l/p J\OO a7 o pl—l/p J\OO L
u| =t e ™Ay = e 7 Pdz (3.125)
Pl =1 = Sy (1)
p1 1/p o "
_— e #*dz  Vt/o =1, (3.126)
i /
where the last inequality holds because e=**/? < e=*2 forall z > 1 and p € (1, 2]. Subsequently,
using a union bound over all j € {1,--- ,d}, we have
2p1*1/P
P >tl< = —— . de . W=
Mr [HUHOO ] F(l/p) €
For any 3,7 > 1, we have
d /B
Epulul = (Z uilﬂ) < E,d"ul, (3.127)
2d 1-1/p o
[ (261og il f t”e—t/%dt] (3.128)
(1/p) 26 logd
oy 2dptTPo®
— d'8 [(25105_); d)" + 6. f 2remH Az | (3.129)
F(]'/p) 2logd

Applying integration by parts for r times, we have for all » € N that

0 a0
J 2Te Ay = 27" + QTJ e 2dy =

a a

Q0

Z 2£+ICLT_€6_G +r! J e *?dz
s (r—£—1)!

a

<2 2 ale™ <r-(2a) -e" (3.130)
=0
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Subsequently,

d 1-1/p 1
Elul; < d”” [<5 logd)” + o™+ - % -rl(logd)" - 3]

171/;37"

< 6"d"Plog" d+ 6" d /P log" d - p :

I'(1/p)

i 5p171/pr!
= 6"d"Plog" d [1 + —] : (3.131)
I'(1/p)

O

3.6.8 Proof of Lemma 18

By definition of g; and the conditional independence between y,, y; and u;, we have that

Eu g = Eu(ye — v,)?|V log p(u)|? (3.132)
= E,(f(x:) = foe + ) + & — )| Viog pluy) (3.133)
= B[ f () = f (@2 + u) > + 20°) |V log p(uy)[7. (3.134)

Here the last identity holds because &, &/ are independent of f(z;), f(z; + u;), and therefore
E|f(ze) — fae +u) + & — &° = E|f(ze) — f(ze + ue) [P+ 2E(& — ) (f (@) — flae +up)) +
El& — &1 = Elf(z) — f(as +u) P+ E|& — &> = E|f(z) — (s +ug) > + 202, because &, &y
are independent A/ (0, o) random variables.

By the mean-value theorem, for any u, there exists 6(u;) € (0, 1) such that

flxe +ug) — fe) = V(e + 6 (u)ur), ).

Again using the Cauchy-Schwarz inequality with respect to norm pair | - ||, | - |4 and the uniform
boundedness of |V f(2)||;, we have

(e +ue) — )| <V + 0(ue)un) 3wy < L2l (3.135)

We next prove the second inequality. Note that E,,[[[u]?|V log p(u)[2] = E,[|ul2|@]2]/6%>,
where |#;| = |u;|"~! Using Cauchy-Schwarz inequality, we have that

B, [[ull3 |V log p(u)[3] = Eulluly [F151/67% < A /Eullf - A/Elul /6%

Invoking Lemma 36 we complete the proof of Lemma 18.

3.6.9 Proof of Theorem 9

For any x,y € R? define P,(y) := arg min.cx{{(y, z — ) + Dy(z, z)} as the prox-mapping. The
following inequality is a classical result in mirror descent analysis.

86



Lemma 37 (Nemirovski et al. (2009), Lemma 2.1). For any u, z,y € R, it holds that

Dy (u, Py(y)) < Dy(u,x) +<{y,u —z) + y2|| (3.136)

The mirror descent update is given by x; 1 = arg min,ex{n{z, g¢(z:)) + Dy(z, z:)}. Using
the language of prox-mapping, it can be re-written as z;; = Py, (ng:(z:)). Applying Lemma 37
with u = z*, © = x; and y = ng;(x;), we have

*® * ~ * 7fH§Kx0H§
Dy(z*,x1:1) < Dy (2, 2) + n{Ge(y), ™ — x4y + — (3.137)

For simplicity denote f,(-) = E,[f(- + u)]. Because f: is convex, we have that f,(z*) >
fi(zy) + {V fi(zy), x* — ;) for any x* € X. Plugging this into the above inequality, we have
P16 )
2

Dividing both sides of the above inequality by 7, telescoping and using the fact that E[g;(z;)—
V fi(zy)] = 0, we have

E [Zn: ﬁ(xt) - J?t(m*)] < M +n- anE[”gt(mt)”i] (3.138)

il i=1

Dy(*,wr1) < Dyla®,xp) = n(fulw) = fi(x*)) + nGulw) = V fulwo), 2* — 2y +

/

On the other hand, by fi(zy) — f(x:)| < LE,|ul, and E|g:(z)]? <
E,[(20% 4+ L?||u]?)|V log p(u)|7]. Subsequently, taking z* € arg min,ex f(z), we have

[Zf ] A0 | LS8l + 1 Y Bl + L2uff) ¥ og () 2]

t=1 t=1 t=1

Note that Dy (z*, 7o) < |2*[2/2 < B when zy = 0. Applying again Lemmas 17, 18 and the
scalings of 77,  we complete the proof of Theorem 9.

3.6.10 Proof of Lemma 19

By the divergence theorem (a special case of the general Stokes theorem), for any differentiable
vector field /' : R? — R? we have

f Z mdv f (F, 0)dS, (3.139)

where dV and d.S are the volume and surface integrals on K and 0K, and ¢ denotes the outer nor-
mal vector on 0K . Defining F'(u) = f(x+0u)e; forallu € K, wheree; = (0,---,0,1,0,---,0)
is the ith standard basis vector, we have 2 = [V f(z + du)];, Zi 0 for j # ¢ and therefore

J OV f(x + ou)dV = [z + dv)l(v)dS.

0K
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Subsequently,
0 E [Vf(z+du)| = o
a(B) " a1 (0K)

The lemma is then proved by using the definition that f(z) = E,,,. [f(z + 6u)] and interchang-
ing the expectation and integration.

Epmoop Lf(z + d0)l(v)] .

3.6.11 Proof of Lemma 20

The differentiability and convexity of f can be easily verified by definition. Because f is a
local average of f, sup,cy |f(2)| < sup,er |f(z)| < C. Using the convexity of || - ||, we have

IV f(x Mg = HEVf(:L’ +ou)|q < E|Vf(x+ du)|y < L. In addition, by the mean value theorem,
for any z € R? and u € K, there exists ¢’ € (0, ) such that

f(z+ ou) = f(z) + NV f(x+ §u),u).

Because f satisfies | f(x)| < C'and |V f(z)|| < Lforall z € X', we know that |V f(x+d"u)|, <
L. Applying Holder’s inequality we have

|f(x + du) — f(2)] < OL]ull,.

Consequently,

F(@) = f(@)] < Bure| f (& + 0u) = f(2)] <L - Eumae ]

3.6.12 Proof of Lemma 21

For the sake of readability, in this section we shall use p, ¢ instead of p, q for the norm parameters
when no confusion can be caused
Recall that for all v € 0B with p € (1,0), the outer normal product /(v) is unique and has
the form - B .
(v) = (sgu(v)|or|”"" sgn(va) v, - sgn(va) [val” ")
V01 P=D 4 [0y [2=D 4 .o 4 [yg[2-D)

Let V(-) and S(-) denote the volume and surface elements on BY and dB¢. Using the diver-
gence theorem in Eq. (3.139) with F'(u) = u, we have

d % p1g(BY) = f ddV (u LdZ 6ul f (v, 0(v))dS (v) (3.140)
ds
~ [ GGt sl 2 (3.141)
. S o2
(3.142)

_ J dS(v)
=S
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Here the last identity holds because ijl |vi[? = 1 for all v € OB, by definition. Expressing the
surface integral in Eq. (3.142) using the uniform measure o' ' on 0B, we obtain

dod=t(v
d x p1a(By) = p1a-1(9By) x J L
OB

)
VSl

It remains to estimate the integration term in Eq. (3.143). However, the uniform surface
measure ag_l is complicated. To simplify the problem, we consider a closely related measure
7;1*1 on (9IB3g, conventionally referred in the literature as the cone measure (Naor, 2007; Naor &

Romik, 2003). More specifically, for any measurable A < JB¢, the cone measure 75*1 satisfies

(3.143)

VI (A) = pa({ta:a e A,0 <t < 1})/pa(BY). (3.144)
It is remarked that v/ ' = o' for p € {1,2,00}, but the two measures are in general
different for other values of p. Compared to the uniform surface measure agfl, the cone measure
7;}*1 has a relatively simple probabilistic interpretation, which was first proved in (Rachev &
Ruschendorf, 1991; Schechtman & Zinn, 1990) and also summarized in (Naor, 2007; Naor &
Romik, 2003).
Lemma 38 (Naor (2007); Naor & Romik (2003)). Let X1, --- , X4 be i.i.d. random variables
with PDF f,(x) = 1/(2T(1 + 1/p))e . Define Z := (X1/|X |, - , Xa/| X |,) as a normal-
ized d-dimensional random vector. Then for any measurable A < 0BY, Pr[Z € A] = ~v4(A).

Remark 25. Clearly Z € 6IB%Z with probability 1. The distribution of Z is commonly referred to
as the L, norm distribution (Song & Gupta, 1997), and has found wide applications in statistics
and machine learning research (Gupta & Song, 1997; Sinz & Bethge, 2010).

The cone measure 7;’*1 has several analytical advantages of the uniform surface measure
agfl. One of the most important properties of the cone measure is its equivalence to a normalized
version of X = (X,---, X,) with independent component distributions. Such independence
structure gives rises to important concentration properties.

Proposition 13. For any p,r € [1,0) let X be the random variable distributed according to f,
in Lemma 38. Then E|X|" = k(p, ).

Proof. We have that

. 1 o 1 1 (% e,
E|X|—mﬁ)t6 dt—m]—jjotp e ‘dt
_ L <7“+1) _T(@+7)/p)
F(1+1/p)p p L(l/p)

Here in the second identity we apply the change-of-variable ¢ +— ¢/ and the last equality holds
because I'(1 + 1/p) = I'(1/p)/p. The proposition is therefore proved. O
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Lemma 39. For any p,r € [1,0) let X1, - , X4 be i.i.d. random variables distributed accord-
ing to f, in Lemma 38. Then for any w € [0, 1] it holds that

Pr|(l1—d %)k d< Y |X; 45V k(p, 1) x d K(p, 2r)

> ———d .
i=1 (p’ )

(3.145)

Proof. Denote S := Y| |X;|". By Proposition 13 we know that ES = (p, ) x d. In addition,
because | X;|" are independent, we have

Var(S) = d x Var(|X;]") < d x E|X;|*" = k(p,2r) x d. (3.146)
Applying the Chebyshev’s inequality, we have that for all € > 0,

k(p,2r) x d
———

Pr[|S—ES|>¢] < (3.147)

€
Setting € = 1 (p,r) x d'+)/2 we complete the proof of Lemma 39. O

By dividing 6Bg into a regular part (on which the event in Eq. (3.145) holds) and an irregular
part (on which the event in Eq. (3.145) potentially fails), we can estimate the integration of

1/4/25; |vi]*P=1 with respect to the cone measure ¢ ' on B
Lemma 40. For any p € (1,0), we have

d 2(p—1)/p
J Vp (1+of AP gy d — oo, (3.148)
B |v1|2 P 1) — 1

Proof. Using Lemma 38, we can equivalently write u; = z;/|z|, where x, - - - , x4 are i.i.d. dis-
tributed according to f,(z) = 1/(20(1 + 1/p))e™*I". For any r € [1, o0), let A denote the event
that Eq. (3.145) occurs with parameter w. We shall set in the rest of the proof that w = 2/3.

Conditioned on the event AQ/ ® A .AQ/ 3 _py We have
d
Mlwil? = (1 £ d V)k(p,p) x d = (1+ o(1))k(p, p) x d; (3.149)

i=1

Z |2, PP7D = (1 £ d™O)r(p,2(p — 1)) x d = (1 + o(1))(p,2(p — 1)) x d.  (3.150)

Subsequently, under .A2/ ’ A2/ 2 1) We have that

d d [2(p—1)
S e n = i [l (U4 o(1)r(p,2(p — 1)) x d (3.151)
i=1

\/(Zle |z|P)2e-1)/p \/[(1 +o(1))k(p, p) x d]2e—D/p
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2(p—1
= (1+o(1)) % x P12, (3.152)

On the other hand, for all v € B satisfying ||v[|, = 1, applying Holder’s inequality the term

> v = Hv|2(p ) can be lower bounded as
Hvap = <d2(p 0w o, ) = d/r12, pe[2,0); (3.153)
HU”Q(p 1) = (Hva)p_l = 17 pPE [172] (3154)

Combining Eqgs. (3.152,3.153,3.154) and using the total expectation formula we have

p)2-1/p
J = (1ot \/ oy X AT AT AT A A
oBd |UZ|2p 1) -

+ max{d"/2 1P 1} x 4f (=AY~ A ). (3.155)

Invoking Lemma 39 with w = 2/3 and the union bound we know that v ( e A;{; D)=

1 — O(d=?/3). Also note that both (p, p) and x(p,2(p — 1)) are positive constants depending
only on p. Subsequently,

2(p—1)/p
J Q (1+o(1 4/ D) x dY?7VP 4 O(d=?) (3.156)
oBd / |uz|2(p 1) -

and the lemma is proved, because 1/2 — 1/p > —2/3 for all p € [1, o). O

Lemma 40 constructs an estimate of the integration term in Eq. (3.143) by replacing the
uniform surface measure afffl with the cone measure 7;1*1 that is easy to deal with. It remains to
show that such substitution is valid asymptotically as d — co. To this end, we cite the following
result due to Naor & Romik (2003), which shows that 0571 and *yfi’*l are close to each other in
total variation under high-dimensional settings.

Lemma 41 (Naor & Romik (2003), Theorem 2). For any p € [1,0), there exists a positive
constant ¢, > 0 depending only on p such that TV (o', 43 ) < ¢,/ V.

Combining Lemmas 40 and 41, we have that for all p € (1, c0),

d|v4=1(v) — gd (v 1
J Ol Ol <TV(ye o8 x sup (3.157)
oBd /Z?=1 |Ui|2(p71) vedBd /2?21 |Ui|2(p71)
C
< 2 x max{d/?7YP 1} = o(1) x d"/*7\/. 3.158
N { } =o0(1) (3.158)
Combining Eqgs. (3.143,3.145,3.158) we obtain
f1a—1(0BY) k(p,2(p — 1)) _
Bd _ p = 1 1 ) dl/p 1/2
p( p) Md(Bg) X ( +0( )) H(p’p)2(p71)/p X



_ K(p,2(p — 1)) 1/24+1/p

Lemma 22 is then proved.

3.6.13 Proof of Lemma 23

In this section we use the notation of p, ¢ instead of p, q for a cleaner presentation, when no
confusion will be caused. We first separate the case of p € [2, c0) that is relatively easier to prove.
For p = oo, with probability one {(v) = ¢; for some i € [d], implying E[((v)|? = E[é(v)[; = 1.
For p € |2, 00), because ¢ < 2, we can apply the Holder’s inequality to obtain

E[|¢()]2] < E[(dV9 ' 2e(v)]2)?] = d¥*t = dta e, (3.159)

where the second to last equality holds because ¢(v) is an outer normal vector and therefore
always has unit /5 norm.

We next consider the relatively more difficult case of p € (1,2). We shall again use the cone
measure fyg_l defined in Eq. (3.144) to approximate O'g_l, the uniform surface measure on 6le.
Recall that for all v € 0B, p € (1,2), £(v) is unique and [ ¢(v)| can be written as

(4, [vs] o) .
[6(v)|? = ~=E=L = o221 /1020 = 1/]v] 3 Y (3.160)

Z;i:l v | 2-1) Yllg(p-1) 2(p—1) 2(p-1)

Here the last identity holds because ¢(p — 1) = p and |v||, = 1 for all v € JB.

Under the cone measure Vg_l, the random variable v can be equivalently written as v; =
z;/|z|,, where x = (z1,--- ,z4) are i.i.d. distributed with respect to the law f,,(t) = 1/(2I'(1 +
1/p))e~'". Using the equivalent expression v = z/||z|,, Eq. (3.160) can be re-formulated as

le@)Z = 1212770/ 50=). (3.161)
Let A7 n A5,y denote the event in which Eq. (3.145) holds for r € {2(p — 1),q(p — 1)}
withw =1—-2/g=2/p—1€(0,1) forp € (1,2). We then have, under A7 n A5, ,,, that
d
D lvil = (L4 o(D)r(p, p) x d; (3.162)
i=1
d
2107 = (L4 o)l 200~ 1) x (3.163)

Subsequently, under the uniform surface measure ag_l

(1 +o(W)r(p.alp = 1)) x dPPe~P
)

, we have

s [@)3] < <oy (A 0 Ay )

G +o)sp2p—D) xd 7
+1x o0 (—(AY N A5, ) (3.164)
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< O(d"P) + 007 (—AY) + 087 (= A5, ) (3.165)
= O(dY"P) + o8N (= AY) + ol (- AS, 1) (3.166)

It remains to show that o ~'(=.Ay) and o) ' (=.Aj5,_,)) are small. By Lemma 39, we know
that the cone measure version of this claim is true. More specifically, applying Lemma 39 with
w=1-2/q€(0,1), we have

T (A (A y) = 0@ = O(dV ). (3.167)

We then need to bound the discrepancy betwee ’yg_l and 0;—1 on —A and ﬁA‘é’(%l). Unfor-

tunately, the TV (o ', 747") < ¢/ v/d bound in Naor & Romik (2003) is not strong enough
to establish the desired result. We thus resort to a stronger discrepancy result proved in Naor
(2007), summarized below:

Lemma 42 (Naor (2007), Theorem 7). For any p € (1,2), there exists an absolute constant
C > 0 such that for every measurable A < 0B,

C 100
< — 4 Jlog [ ——— ). 3.168
h s Vd \/Og (7;5‘1(14)) 109

Define o := max{(2w —1)/2w, 0} and abbreviate o (4) = o (=A%), y(A) = v 1 (-AY).
Because w € (0, 1), we have « € [0,1/2). Invoking Lemma 42 and Eq. (3.167), we have

od=1(A)

p

7 (A)

Cy(A) 100
o(A) <~(A) + Ja log (M) (3.169)
o O [ 100
— oy + L \/fy o aytog () (.170)
— O(d™) + 0(d™). \/72<1—a>(,4) log (%) 3.171)

Here the last line holds because v(A) = O(d™) and 7*(A)/v/d = O(d™), because of the
definitions thatw = 1 — 2/g = 1/p — 1/g and o > (2w — 1)/2w. Furthermore, because y(A) =
O(d*) = o(1) and 2(1 — a) > 0, we have 720~ (A)log(100/v(A)) = o(1), and therefore
a(A) = O(d™*) = O(d"/*='/7). The same reasoning and upper bound apply to o5 ' (A3, 1))
and Vg’l (ﬁA“QJ(p_l)) as well. Plugging both upper bounds into Eq. (3.166) we prove the desired
result.

3.7 Proofs of results in Sec. 3.3

3.7.1 Proof of Proposition 10

For any x € X° and z € R? define |||, := /2 "V2p(x)z. The Dikin ellipsoid Wy (z) is defined
as Wi(z) := {zeR?: ||z — 2|, < 1} forall z € X°. Itis a well-known fact that W;(z) = X
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for all x € X° (Abernethy et al., 2008; Hazan & Levy, 2014; Saha & Tewari, 2011). It remains
to verify that z = = + (V2p(z) + 61;)~?u is in W, (z). To see this, note that

|2 = alz = u" (V@) + 61a) 2 V() (Vep(w) + 01a) *u
ull3 = 81(V?o(x) + 81a) Pul3 < |ulf = 1.

Hence, z € Wi (z) € X.

3.7.2 Proof of Theorem 11

Our proof of Theorem 11 is roughly divided into three steps. In the first step, we review existing
results for the RE algorithms on upper bounding the weak regret against stationary benchmarks.
In the second step, we present a novel local integration analysis that upper bounds the gap be-
tween regret against stationary and dynamic benchmarks using the L,-norm difference between
two smooth and strongly convex functions. Finally, we use a sequence of Holder’s inequality to
analyze the restarting procedure in the meta-policy described in the previous section.

Regret against stationary benchmarks. For a sequence of convex functions f = (f1,-- -, frr),
an admissible policy 7, the weak regret against any stationary point 2* € X is defined as

T T
So(fra*) = ET [Z ft(:vt)] = fil@®). (3.172)

Compared to the regret against dynamic solution sequence R™ defined in Eq. (4.28), in S™ the
benchmark solution z* is forced to be stationary among all 7" epochs, resulting in smaller regret.
In fact, it always holds that S™(f;2*) < R™(f) for any f and x* € X. In the remainder of this
section, we shall refer to S™ as the “weak regret” and R™ as the “strong regret”.

The next lemma states existing results on upper bounding the weak regret of the RE policy
for adversarial function sequences f. The lemma is a simple extension of the weak regret bound
in Hazan & Levy (2014), with similar proofs.

Lemma43. Fix 1 < T' < T. Let f = (f1,---, fr) be an arbitrary sequence of smooth and
strongly convex functions satisfying (Al) through (AS5). Suppose ¢ is a strictly convex k-self-
concordant barrier of X, with k = O(d), and n = d(H + 100+/log T)/\/2T". Then

S™(f;2*) = O(\/T"1ogT),  forall x* € X (3.173)

Recall the definition that X, := {x € X° :Vz € By(v/T), x + z € X'} is the strict interior of X
that is at least v/T apart from 0X. Also, in both results we omit dependency on o,d, D,v, H, L
and M.

We note that when using this Lemma 3.173 in our later proofs, we will replace x* in (3.173)
by z}, which the is the minimizer of f;. By Assumption (A3) and the definition of XVO/T, we have
Ty € X
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Figure 3.5: The left figure illustrates how two functions f and g can have very different L,
and L, differences (1 < p < o0). Both functions are defined on X = [0,1], with f(z) =

(z— 05)
27ree p{

zero mean and ¢® variance, [ and g are essentlally the same outside of [0.5 — 3¢,0.5 + 3¢,
leading to | f — g|l, < O(e"?) - |f — glw = O(¢~P/P), which can be arbitrarily smaller than
lf =gl =) forl <p<ooande sufﬁ01ently small. The right figure provides a graphical
explanation of the key argument in the proof of Lemma 44. It shows that when z? is far away
from zf, f; and f; would have a large difference in a neighborhood around z}, because of the
strong convexity of f; and the smoothness of f;. Since such difference is upper bounded by
| ft — f-|, on the entire domain X', one can conclude that =} and z* cannot be too far apart.

} and g = 0. Because f is the pdf of a univariate Normal distribution with

Gap between weak and strong regret By definition, the gap between S™ and R™ is indepen-
dent of policy 7:

R™(f) — th — flad), Vre{l,--- T} (3.174)

Eq. (3.174) shows that it is possible to upper bound the regret gap by the two-point difference of
each function f; evaluated at the optimal solution x} of f; and the optimal solution z* of f., for
arbitrary 7 € {1,--- ,T"}. Such differences, however, can be large as x; could be far away from
x¥ as the functions drift. In the special case of p = co, Besbes et al. (2015) observes

f(w7) = filay) = fula?) = fo(a7) + fr(27) = filay) < fola?) = fr(a7) + fr(x)) = fila?)
(3.175)

and further bounds both | f;(z*) — f-(z*)| and | f, (x]) — fi(z])| with || fy — f+||cc- Such arguments,
however, meet significant challenges in the more general setting when 1 < p < oo, because
the difference between two functions at one point can be arbitrarily larger than the L,-norm of
the difference of the two functions. We give an illustrative example in Figure 3.5, where two
functions f and g are presented, with || f — ¢|,/|f(z) — g(x)| — 0 for z = 0.5 and p < 0.

In this paper we give an alternative analysis that directly upper bounds the left-hand side of
Eq. 3.175), fi(x*) — fi(z¥) (i.e., the difference of the same function f; at two points) using
| f+ — f=|lp» The following is our key affinity lemma:
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Lemma 44. Suppose X < R% Fix1 < p < oo, t # 7 and let T}, x* be the minimizers of f; and
fr, respectively. Then under (Al) through (AS5) we have that

_ 2
C2p+d

max {|fu(a?) — fi(?) € (0,1).

fo@) = f@D))} =0 (| fe = f+l,)  where

Y

Proof. Without loss of generality we assume f;(z}) < f.(z%) throughout this proof. Define
§ = | fi— f+ 5%, We first prove that |z} —z*|5 < 2048, where C' = max{/(4D% + 2L)/M,1}.

Assume by way of contradiction that |z} — z¥|y > 2C0. For any z € X° and « € (0,1)
define X, (z) :={z + p(y —x) : 0 < p < «,y € dX}. It is easy to verify that X, (x) < X and
SUDrex, (o) 17— ]2 < oD (recall that D = sup,, ey |y —'[2 is the diameter of ). In addition,
vol(X,(z)) = a - vol(X), because X — x S a X, (z) — x], where X —z = {z — 2z : 2 € X}
is the deflation of X" by a specific vector, and similarly X, (z) —x = {z — x : z € X,(z)}. Now
set « = 0/D, and note that « < 1/2 because D > |z} — z%|o > 2C'§ > 20. By strong convexity
of f,, we have Vx € X, (x}),

M M
fr(z) = fr(x)) + 7||5L‘Z‘f —z|3 = fi(x}) + 7\\@"7’? — x| (3.176)
M MC?
> fulw?) + 5 (2C0 - 0)* = fulz}) + ;

Here Eq. (3.176) holds because f,(x¥) > fi(x}), and Eq. (3.177) is true because ||z} — z%|s >
2C6 and |z — zf |2 < aD = § < C§ for all x € X, (7). On the other hand, by smoothness of
fi» we have that

52, (3.177)

L
fi(z) < filzf) + EHI — fog < filx)) + L&? Vo e X, (zf). (3.178)

Combining Egs. (3.177,3.178) we have that, for arbitrary 1 < p < o0 and = € X, ()

p

2
MO > (MC?/2 — L)P6*, (3.179)

52) — (fia?) + L)

(o) = ) = |(tad +

provided that L < M(C?/2, which holds true because C' > /2L/M by definition. Integrating
both sides of Eq. (3.179) on X, (z}) and recalling the definition of || f, — f;|,, we have that

P __ 1 _ p 1 _ p
”ft - f‘r”p = VOl(.X) JX |ft(-1') f‘r(l’)| dx > VOl(X) JXQ($f) |ft(l’) f‘r(m)| dx
vol(X, (a7)) ps2p o 0° pg2w
MC?/2 — L)? MC?/2 — L)?
> MO LY ea_ MLy p

where the last equality holds because § = | f; — fT||;/2 and (2p +d) - r/2 = p. With C >

\/(4D/p + 2L)/M, we have that (M C?/2 — L)?/D? = 2? > 1 and hence the contradiction.
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We have now established that |z} — z*||s < 2C¢d < O(). By smoothness of f; and f,,
flaf) < ful@?) < filzf) + ngZ‘ — a7l < fila}) + O(%);
Fo03) < Fola) < () + Sl — 23 < 1) + O,
The proof of Lemma 44 is then completed by plugging in § = || f; — f- HT/ %, O

Analysis of the re-starting procedure Recall that the 7" epochs are divided into J batches
By, --- | By in the meta-policy, with each batch having either Ay or A + 1 epochs. Applying
Lemmas 43, 44 together with Eq. (3.174) we have

J
RY(f) < ) inf $ S (fy o fyiw) + Zﬂ — fulz})
=1 " t=b,
J
< Y OB/ log|By]) + | By - sup |fila?) = filaf)
=1 TEDy
T
<O(A Wﬂogm) Lo s - £
T — 1tT€B[
TlogT) Ny
<0(—ﬁ +O(Ar) oo — il | (3.180)
Ar ;1 t=2be

Here the last inequality holds because (assuming without loss of generality that b, < t < 7 < by)

[fo = Folo < 2020 I fivn = Fello < 205, [ freer = il
We next present another key lemma that upper bounds the critical summation term in Eq. (3.180)
using J, Ap and Var, ,( f). The proof is based on consecutively applying the Holder’s inequality.

Lemma 45. Suppose max<i<j |Bi| < Ap+ 1,1 < g < oo and Var, ,(f) < Vr. Then

_ '
be—1

J
Z Z ||ft+1 _ ft”p < ATT_T/Q . Jl—r/q . Tr/q . Vj{’
/=1

t=b,

Proof. By Holder’s inequality, for any d-dimensional vector = we have that

2o < 25 < d7Vale YO<B<aso. (3.181)

Apply Eq. (3.181) witha = gand 3 = Lonz = (|| fo,+1 — fo,lp, -+ > |f5, — fr,—1]lp) € RIPTL:
1/q

be—1 by—1

2 fosr = fily = 2l < 1Be= 1l < ATV | D5 L fon — fill

t=b, t=b,
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Subsequently,

_ _ T
Bi—1 Bo—1 /a

J " J
YA X M= flo | <A X e = A1) (3.182)
=1 =1

t=b, t=b,

We next consider ¥ = (¥1,---,7) € R/, where 7, = ZE‘:—QZ I fe1 — filg. Apply Eq. (3.181)
witha=1land 8 =r/qgon7Z (8 < 1because r € (0,1) and g > 1):

_ r/q a/r _
J bp—1 J by—1
2ol 0 M = il = [Frpg < TV F = TV Y0 Y e — il
=1 \ t=b, =1 t=b,

Raise both sides of the inequality to the power of r/q and note that Z;Ll Zfi’bj I fer1 = fellf =
S forn — fel§ < T - V. We then have

J fb-1 r/a J b1 r/a
Dol 2 M= £l ) < I X D M = R < TTTTVE (3.183)
(=1 \ t=b, (=1 t=b,

Combining Egs. (3.182,3.183) we proved the desired lemma. ]

We now prove Theorem 11 by combining Lemmas 43, 44 and 45 with Eq. (3.180) and setting
Aq appropriately. By Lemma 43, S™(f,, -+, f5,;23) < O(y/|Be|log T) < O(y/Arlog T) for
¢ = ¢ (x4, f;). Subsequently,

R3(f) < O(Jy/ArlogT) + O(Ay™ /4 ji=rfapr/ayy,

If Vp = O(T—(62+4)/%) then we set Ay = T, J = 1 and obtain regret O(v/T) + O(T**"V) =
O(VT). Otherwise, when Vi = w(T—E+d)/4) one selects Ap = V27 =y 4/0p+d)
and observes that A7 = o(T"). This yields a regret of O(T" - Vﬁp/(Gerd)),

3.7.3 Proof of Theorem 12

Let us first consider the simpler univariate case (d = 1). The first step is to reduce the problem of
lower bounding regret to the problem of lower bounding success probability of testing sequences
of functions, for which tools from information theory such as Fano’s lemma (Cover & Thomas,
2006; Ibragimov & Has minskii, 1981; Tsybakov, 2009; Yu, 1997) could be applied. We then
present a novel construction of two functions satisfying (A1) through (AS) and demonstrate that
such construction leads to matching lower bounds as presented in Theorem 12. Finally, we
extend the lower bound construction to multiple dimensions (d > 1) via a change-of-variable
argument and complete the proof of general cases in Theorem 12.
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Before introducing the proof we first give the definition of an important concept that measures
the “discrepancy” between two functions f, f : X — R:

X ) = inf max{ f(2) = £ (@) =} where f* = inf f(a), J* = inf f(a).
zeX zeX reX
Intuitively, x(f, fv) characterizes the best regret f(z) — f* one could achieve without knowing
whether f or f is the underlying function. This quantity plays a central role in our reduction from
regret minimization to testing problems, as well as construction of indistinguishable functions

pairs.

From regret minimization to testing Consider a finite subset © = {f1,--- , fu} < F, (V).
The following lemma shows that if there exists an admissible policy 7 that achieves small regret
over F, ,(Vr), then it leads to a hypothesis testing procedure that identifies the true function
sequence f in © with large probability:

Lemma 46. Fix 1 < p <o, 1 < ¢ < owandVy > 0. Let © < F, ,(Vr) be a finite subset of
sequences of convex functions. Suppose there exists an admissible policy T such that

1 . < .
sup R™(f) < = inf > x(fi, fo), (3.184)
FeFp.a(Ve) N
then there exists an estimator ]? such that
sup Pr [f # ﬂ <1/3, (3.185)
fee f

where Pty denotes the probability distribution parameterized by the underlying true function
sequence | € O.

The proof of Lemma 67 is technical and given later. At a higher level, when there exists
an admissible policy 7 that achieves small regret over F, ,(Vr) (and hence small regret over
© < F,,(Vr) too), then one can correctly identify the underlying function sequence f € ©
with large probability by searching all function sequences in © and selecting the one that has the
smallest regret.

Reduction to testing is a standard approach for proving minimax lower bounds in stochastic
estimation and optimization problems (Agarwal et al., 2012; Besbes et al., 2015; Raskutti et al.,
2011). Motivations behind such reduction are a well-established class of tools that provide lower
bounds on failure probability in testing problems (Ibragimov & Has minskii, 1981; Tsybakov,
2009; Yu, 1997). Let KL(P|Q) = {log 45d P denote the Kullback-Leibler divergence between

dQ
two distributions P and (). We introduce the following version of the Fano’s inequality,
Lemma 47 (Fano’s inequality). Let © = {61, - , 0y} be a finite parameter set of size M. For

each 6 € ©, let Py be the distribution of observations parameterized by 6. Suppose there exists
0 < 8 < oo such that KL.(Py| Py) < 5 forall 0,0 € ©. Then

_ B +log2

inf sup Pr [é # 9] =1 log M

(3.186)
0 oco 0
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Figure 3.6: The left figure gives a graphical depiction of functions constructed in the lower
bound, with thick solid lines corresponding to F and F}, and thin dashed lines corresponding
to Iy with intermediate values A = 0.25 and A = 0.75. For the sake of better visualization,
the regions 0 < = < vh (I;) and vh < 2 < 2v/h (I,) are greatly exaggerated. In the actual
construction both regions are very small compared to the entire domain X = [0, 1]. The right
figure shows the two constructions of function sequences f on J = 3 batches, according to
Eq. (3.190). At the beginning and the end of each batch the function is always Fj 5, while within
each batch the values of A first increase and then decrease, or vice versa, depending on the
coding ¢; € {0,1} for the particular batch. Also note that A will never be over 0.75 nor under
0.25 throughout the entire construction of the function sequence.

With Lemmas 67 and 47, the question of proving Theorem 12 is reduced to finding a “hard”
subset © < F,, ; (V) such that the minimum discrepancy inf; 7 ¢ 3T x(fi, fi) is lower bounded
and the maximum KL divergence sup, ;. KL(Py| Py) is upper bounded. More precisely, the up-
per bound on the maximum KL divergence will provide a lower bound for right hand side of Eq.
(3.186), which contradicts Eq. (3.185) in Lemma 67. Therefore, the inequality in (3.184) will
not hold, which implies a lower bound on the regret. The construction of such a “worst-case
example” O is highly non-trivial and involves complex design of cubic splines, as we explain
in Figure 3.6 and the next paragraph. Below we first give such a construction for the univariate
(d = 1) case and later extend the construction to higher dimensions.

Univariate constructions Fix X = [0,1] and 1/87% < h < 1/8. Define Fy, F} : X — R as
follows:

xQ’ <z < \/E,
Fy(x) := § Jra® —11a? + 12vha — 4h, \F z < 2vh; (3.187)

8(z — Vh)?, Wh<r<l1

Vh)?,  0<x<Vh
Fi(z) ::{ é(x \/%)27 \/E<;< . (3.188)

Further define
Fy = Fy+ )\(Fl — FO), A E [0, 1] (3.189)
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as a convex combination of Fg and F}. Figure 3.6 gives a graphical sketch of F{, F and F)\. The
key insight in the constructions of F{ and F} is to use a cubic function to connect two quadratic
functions of different curvatures, and hence allow F) to be the same on a wide region of X (in
particular [2v/h, 1]) and produce small L, difference |Fy — Fy|,. In contrast, the lower bound
construction in existing work (Besbes et al., 2015) uses quadratic functions only, which are not
capable of producing smooth functions that differ locally and therefore only applies to the special
case of p = co.

The following lemma lists some properties of F).

Lemma 48. The following statements are true for all \, . € [1/4,3/4].

1. F) satisfies (Al) through (AS) with D = 2, v = 1/64, H = 16, L = 26 and M = 2.

2. [Py = Fulo < A=l - O(h) and | F = F} |0 < A = | - O(Vh).

3 1By = Fully < A= - O(h+D/2) for all 1 < p < oo,

4. x(Fy, Fi_y) = [1/2 = \?* - h/4.

We are now ready to describe our construction of a “hard” subset © < F, ,(V7). Note that
Fpoo(Vr) € Fp (V) forall 1 < ¢ < oo due to the monotonicity of Var,, ,(f). Therefore we shall
focus solely on the ¢ = co case, whose construction is automatically valid for all 1 < g < co.

Let 1 < J < T be a parameter to be determined later, and define Ar = |T/J|. Again
partition the entire 7' time epochs into .J disjoint batches B, - - - , B, where each batch consists
of either Az or A7+ 1 consecutive epochs. Let {0, 1}” be the class of all binary vectors of length
JandletZ < {0, 1}7 be a certain subset of {0, 1}” to be specified later. The subset © € F, (V)
is constructed so that each function sequence f; € O is indexed by a unique /-dimensional binary
vector i € Z, with f; = (fi1,- -+, fir) defined as

F0.5+0.5Z/|Bj\ y =

0,1
fi-Dapte = Fors—osimyt, 4 = (1)% 1<j<J  (3.190)
L]

Fos—oseB,, 1 =
F0.25+0.5e/\Bj|a lj =

Figure 3.6 gives a visual illustration of the change pattern of f; and f; by plotting the values
of A for each function in the constructed sequences. For a particular batch B;, when i; = ¢ then
fi and f; are exactly the same within B;; on the other hand, if ¢; = 0 then f; will drift towards
the function Fp and if #; = 1 the functions f; will drift towards F, creating gaps between f;
and f; within batch B;. For regularity reasons, we constrain the A value to be within the range
of (0.25,0.75) regardless of 7; values. We also note that f; and f; always agree on the first and
the last epochs within each batch. This property makes repetition of constructions across all .J
batches possible. The following lemma lists some key quantities of interest between f; and f;:

Lemma 49. Suppose & " N (0,1) For any i,i" € {0,1} consider f; and fy as defined in
Eq. (3.190). Then the following statements are true:
1. (Variation). Var, ,(f) < Var,o(f) < O(W®HV/2 /AL, forall1 <p < wand1 < q <
0.
2. (Discrepancy). S x(fir, fire) = Au(i, ') -Q(hAT), where Ay (i, ') = ijl iy # ]
is the Hamming distance between i and i'.
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3. (KL divergence). Let P, be the distribution of { f;(x;) +& [y, with {z,}[_, S X selected
by an admissible policy ©. Then for any such policy ™ we have that

KL(PE|PF,) < Au(i,i') - O(h*Ag).

The proof of Lemma 49 is deferred later.

Finally, we describe the construction of Z < {0,1}” and the choices of J, Ay and h that
give rise to matching lower bounds. For simplicity we restrict ourselves to ./ being an even
number. The construction of Z is based on the concept of constant-weight codings, where each
code i € Z has exactly J/2 ones and .J/2 zeros, and each pair of codes 7,7 € Z have large
Hamming distance Ag(i,i') > J/16. The construction of constant-weight codings originates
from (Graham & Sloane, 1980), and Wang & Singh (2016) gave an explicit lower bound on the
size of 7, which we cite below:

Lemma 50 (Wang & Singh (2016), Lemma 9). Suppose J = 2 and J is even. There exists
a subset T < {0,1} such that Vi € T, Z;Ll i; = J/2, and ¥i,i' € I, Ag(i,i") = J/16.
Furthermore, log |Z| = 0.0625.J.

The univariate case of Theorem 12 can then be proved by appropriately setting the scalings
of h, Ar and invoking Lemmas 48, 49 and 50. Because an Q(\/T) regret lower bound for
stationary stochastic online optimization is known (see, for example, (Hazan & Kale, 2014;
Jamieson et al., 2012)), we only need to prove the lower bound with the additional assumption
that Vi = Q(T~©+)/%) More specifically, we set b = V7 and Ay = v /04D
It is easy to verify that with the additional lower bound on V7, Ar = o(T) and h = 1/T?,
and therefore the constructions are valid. A complete proof is given later after we introduce our
adversarial construction of d > 1, which includes the univariate setting (d = 1) as a special case.

Extension to higher dimensions The lower bound construction can be extended to higher
dimensions d > 1 to obtain a matching lower bound of V;p /EPtd) T for noisy gradient feedback
and Vﬁp /6D T for noisy function value feedback. Let 1 = (1,--- ,1) € R? be a d-dimensional

vector with all components equal to 1. We consider X' = {reR?: 2z >0,1Tz < 1}. Define
Fy : X — R as follows:

Fy(z):=F(1"2) + |z|3, Xe[0,1],zeX. (3.191)

Here F) is the univariate function defined in Eq. (3.189). Intuitively, the multi-variate function
I is constructed by “projecting” a d-dimensional vector x onto a 1-dimensional axis supported
on [0, 1], and subsequently invoking existing univariate construction of adversarial functions.
An additional quadratic term |x]?2 is appended to ensure the strong convexity of F', without
interfering with the structure in Fy. The following lemma lists the properties of F, which are
rigorously verified later this section.
Lemma 51. Suppose 1/8T? < h < 1/8. The following statements are true for any fixed d € N
and all \, € [1/4,3/4].

1. F satisfies (Al) through (AS) with D = 2, v = 1/168/d+ 1, H = 16v/d + 2, L =

26v/d + 2 and M = 2.
2. [Fx=Fulw < A= pl - O(h) and sup,ex [VFA(z) = V()2 < X = pl - O(Vh).
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3. |Fx—F,l, < |\—pl- OWZHD2) forall 1 < p < oo

4. X(F)\, Fl_)\) = #il (% - /\)2 - h.

The third property in Lemma 51 deserves special attention, which is a key property that
is significantly different from Lemma 48 for the univariate case, because the dependency of
|Fy — F,|, on h has an extra term involving the domain dimension d in the exponent. At a
higher level, the presence of the O(h?/(?+d)) term comes from the concentration of measure
phenomenon in high dimensions.

We then have the next corollary, by following the same construction of © < F, ,(V7) in the

univariate case and invoking Lemma 51:
Corollary 3. Suppose 1 < J < T iseven, Ay = |T/J| and 1/8T* < h < 1/8. Let T < {0,1}/
be constructed according to Lemma 50, and © = {f; : i € I}, where f; is defined in Eq. (3.190)
except that F) is replaced with its high-dimensional version Fy defined in Eq. (3.191). Then the
following holds:

1. (Variation). sup see Var, o(f) < O(h®*D/2% [Ar) forall 1 < p < o0, 1 < ¢ < .

2. (Discrepancy). inff’fe@ Zthl X(fe, fr) = QAT).

3. (KL-divergence). For all admissible policy m, sup; ;.e KL(P“HPZF) < O(h*T).

We now prove the multi-dimensional case based on Corollary 3. Set h = Vzp /6p) and

Ar accordingly such that Var,, o (f) < O(h®+9/2° /Ay = Vi This yields Ag = V, P/+)
and J = T/Ar = TV %" The KL divergence is then upper bounded by O(h*T) =
O(TV P+ Dy and log |B] = Q(J) = Q(TV ™). By carefully selecting constants in the
asymptotic notations, one can make the right-hand side of Eq. (3.186) to be lower bounded by
172. Subsequently invoking Lemma 67, we conclude that there does not exist an admissible
policy 7 such that sup ez (v;) B(f) < 1/9-inf; 7o ST x(fe, fi). The lowei bound proof is
then completed by the discrepancy claim in Corollary 3 that inf ; 7 g Zthl x(fi, fr) = QR*T) =

0 (TV;P/(@)JFC[) ) .

Proof of Lemma 67 Let 7 be a policy that attains the minimax rate. By Markov’s inequality,
with probability 2/3 it holds that

. inf ZX I f), Vf.feo. (3.192)

f.je® 5

c,o|>—l

_th xy) — fi(a]) <

Define f := arg ming g ST ft(:ct) = ft(@k), where Z} is the (unique) minimizer of fi. Let

ft* = infyey fi(z) and ff = inf,ex fi(z). Because f minimizes the “empirical” regret on

{z:}L |, it holds that
T T
Z fi(zy) * < Z fi(xe) —
t—1 t—1

Subsequently,

T

T
tZ1X ft>ft = Zig)f;max {J?t(x) - ﬁ*a fulz) = ft*}

t=1
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T
<2 (th(xt)_ft*> <§' inf ZX ft’ft

rfee 5

Therefore, we must have f = f conditioned on Eq. (3.192), which completes the proof.

Proof of Lemma 48 We verify the properties separately.

Verification of property 1: (Al) is obvious because X = [0,1]. We next focus (A3), (A4)
and (AS5). It is easy to check that if two functions f and g satisfy (A3) through (AS), then their
convex combination f + A(g — f) for A € [0, 1] also satisfies (A3) through (A5). Therefore
we only need to verify these conditions for Fy and F}, respectively. We first prove that both
Fy and F; are differentiable. Because both F{, and F) are differentiable within each piece, to
prove the global differentiablity we only need to show that the left and right function values and
derivatives of I}y and F} at x = v/h and x = 2+/h are equal. Define F(z") = lim, o+ F(x + 1),

F(z™) = limo F(z +1t), F'(z") = lim,_q+ ZEHZFE and F'(27) = lim,_,, FEHH=FE),

We then have that Fl(\/ﬁ) Fo(Wh™) = h, Fo2Vh') = Fy(2Vh) = 8h, F(Vh') =
Fy(Vh") = 2Vh. Fy(2vVh') = Fy(2vVh') = 16Vh, F(VR') = F(Vi') = 0. F{(Vh") =
F!(+/h") = 0. Therefore, both Iy and F} are differentiable on [0, 1]. It is then easy to check that
SUPg<g<; Max{|Fo(z)|, |Fi(x)|} < 8 and supy.,«; max{|Fj(x)|, |F](z)|} < 16. Therefore (A3)
is satisfied with = 16.

To verify (A4) and (AS) we need to compute the second-order derivatives of F, and Fi. By
construction, FY/(z) = Fl'(x) = 2 for x € [0,vh], F{(z) = F'(z) = 8 for 2 € [v/h,1], and
2 < F(z) < 26 for z € [vh,2v/h]. Therefore, F}y and F} satisfy (A4) and (A5) with L = 26
and M = 2. Note that Fj and I} are not twice differentiable at x = Vh and z = 2v/h: however,
this does not affect the smoothness and strong convexity of both functions.

Finally we check (A2). Let x be the unique minimizer of F\ = Fy+ A(F} — F}). Elementary
algebra yields that 2§ = Mh. Because h > 1/8T2, we know that F) satisfies (A2) with
v =1/32for A € [1/4,3/4].

Verification of property 2: Itis easy to see that | F\—F}, [, = [A\—p|-| Fo—F1 [, and || F} = F[|, <
A= pl- | Fy— F{|, forall 1 < p < oo. Thus we only need to consider A = 0 and p = 1. It is easy
to verify that | Fy — Fi | = [Fo(0) — F1(0)| = vh and |F}) — F!||o = |Fo(0)' — Fi(1)] = 2h.
Verification of property 3: Similarly we only need to consider A = 0 and ;x = 1. Because Fj
and F} only differ on [0, 24/h], we have that

2vh Lp
|Eo = Fillp, = (J |[Fo(x) — Fl(l‘)|pdl’> = O(h'/?) - | Fy = Fi[lso = O(hr*D/20).
0

Verification of property 4: We have that z¥ = \Whand Ff = F\(2%) = A\(1 — A\)h. Subse-
quently, x(Fy, Fi_\) = Fx(vVh/2) — F = (1/2 — \)? - h/4.
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Proof of Lemma 49 Fix an arbitrary interval /; for some j € {1,---,J}. Without loss of
generality assume |I;| = Ar (the extra one function in some intervals can be safely neglected as
both 7" and At are large). Then

1
sup Hft+1 - fth = A_ . O(h(2P+l)/2p)'
tEIj T

Subsequently,
Vary,(f) = . fuP |fir1 = filly = O(REPHI22 Ag).
For the discrepancy term, again fix [; for some j € {1,---,.J} such that i; # z; We then
have,

AT/Q AT/Q 2
ZX(fi,tafz’t Z (Fostt/a7s Fos—tyag) = 2 Z ( ) -Q(h) = Q(hAr).

tEI]‘

Subsequently, summing over all intervals with i; # 4/; we have that Zthl X(fies fire) = Ap(i,1)-
Q(hAT).

Finally we compute the KL divergence KL(Pf | Pf,). Lety; = fi(z:)+¢: be the random vari-
ables of the feedbacks and denote ' = (1, - ,2;) and y* = (y1,--- ,y;). For any admissible
policy 7, we have that

T T | PC(xT’yT)
KL(PF||Pf,) = Ef, » | log Pr (T, yT)
_ ]Efz log P (yT|xT) Ht 1 (xt|y 1)
Py, (y7|aT) - TTiy Prlaely'! xt ")

T rt (Y] )
— Z Ef [log —]
t=1

Pfi,,t(yt|37t)
T

< Z sup KL(PfM('|$)prﬂ,t('|$>)'

i—1 TEX

Here the third identity holds because ¢, are independent. For v, = fi(z:) + & ~ N (fi(xs), 1), it
holds that

sup KL(Py (o) Py, (-2)) = sup |fia(x) - foa@)|” = [ fis = fral% = O(h?).  (3.193)

TeX

where in the last inequality we invoke Lemma 48. Summing over ¢ = 1 to 7" we have that
KL(Pf|PF,) = O(h°T).

Proof of Lemma 51 We verify the properties separately. Verification of property 1: Because
< 1, we have that [z — yls < [r —y[; < 2 forall z,y € A and therefore X
satisfies (A1) with D = 2.
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We next verify (A3). Because F) is convex differentiable, it holds that Fy(z) = F)\(1Tx) +
|z|3 is also convex differentiable because convexity is preserved with affine transform. In partic-
ular, sup,ey Fa(2) < [Falloo +1 < 9and sup,ex [Fa(2) |2 < sup,eq [Fa(112)] [ 1] +2[2]2 <
16v/d + 2. Therefore, (A3) is satisfied with H = 16v/d + 2.

To verify (A4) and (AS), note that F, is twice differentiable except at points {z : 1Ty =
VhY U {z : 1Tz = 2¢/h}. Furthermore, V2F\(x) = FY(1Txz) - 117 + 2I,. Subsequently, on
points 2 € X where I, is twice differentiable, we have that V?F(z) < (|FY|lxvd + 2)I =
(26+/d + 2)I and V>F(x) > 2I. Therefore, (A4) and (AS) are satisfied with L = 26v/d + 2
and M = 2.

Finally we check (A2). Let 2% be the unique minimizer of F'y on X. It is clear that 2% must

take the form of 2} = (%3, --- ,¥}), which gives the smallest |z||5 without changing the value of
F\(17z). Completing the squares in I’y we have that
2
— AWh Ad
F =d(d+1 - Al ———]. 3.194
) <+>[x d+1]+ -2 (.194)

Subsequently, T} = %15. It is easy to verify that for h < 1/8, inf{t > 0 : T} + tu € XVu €

Ba(1)} = ||Z]2 = A/h/(d + 1). Therefore, for all X € [1/4,3/4] and 1/8T2 < hl < 1/8 the
condition (A2) holds with v = 1/16+/d + 1.

Verification of property 2: |[Fy—F |l = |F\—F,.| = O(h). In addition, sup,.y |V Fx(z) —
VF w2 = [F = F o - [1]2 = O(+v/'hd). Omitting the dependency on d we obtain property

Verlﬁcatlon of property 3: Define By(r) := {z e R : 2 >0, ||, < r}. Itis easy to verify that
vol(By(r1)) /vol(By(r2)) = (r1/r2)". Subsequently, for any 1 < p < oo we have that

~ 1/p
S — 1(By(2v h S —
IFo - Ful, < M NFo —Fule | = o(ner+drwy,
vol(B,4(1))
Verification of property 4: From previous derivations we know that 2} = (7}, -- ,Z}) with
T3 = 2‘[1 and Fy = infex Fa(z) = Mh(1 — 24). Subsequently,
L — (1 vh d |1
Fy,Fi_)\)=Fy|= —— Al -h.
X(Ex Fioa) A<2d+1> d+1‘
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Chapter 4

Dynamic assortment planning

Assortment planning has a wide range of applications in e-commerce and online advertising.
Given a large number of substitutable products, the assortment planning problem refers to the
selection of a subset of products (a.k.a., an assortment) offering to a customer such that the ex-
pected revenue is maximized (Agrawal et al., 2017a,b; Golrezaei et al., 2014; Kok et al., 2008;
Rusmevichientong & Topaloglu, 2012). Given N items, each associated with a revenue param-
eter | r; € [0, 1] representing the revenue a retailer collects once a customer purchases the i-th
item. The revenue parameters {r;}~, are typically known to the retailer, who has full knowledge
of each item’s prices/costs.
Usually, the customer’s purchasing choice 7; is governed by a probabilisitic model

it ~ p@o('|5t)a

where 6, is an underlying parameter characterizing the customer’s preferences of items. Ex-
amples include independent preference parameters v; for each ¢ € [N], or contextual models
v; = exp{x]6y}. Traditionally in the operations management literature, the parameters of the
customers’ choice model are fully known (assumed to be estimated from historical data), and the
assortment planning problem is merely a combinatorial optimization question. The readers are
referred to (Anderson et al., 1992; Kok et al., 2008) for some excellent surveys.

In many scenarios, customers’ choice behavior (e.g., mean utilities of products) may not be
given as a priori and cannot be easily estimated well due to the insufficiency of historical data
(e.g., fast fashion sale or online advertising). To address this challenge, dynamic assortment
planning that simultaneously learns choice behavior and makes decisions on the assortment has
received a lot of attentions (Agrawal et al., 2017a,b; Caro & Gallien, 2007; Rusmevichientong
etal., 2010; Saure & Zeevi, 2013). More specifically, in a dynamic assortment planning problem,
the seller offers an assortment to each arriving customer in a finite time horizon of length 7". The
goal of the seller is to maximize the cumulative expected revenue over 1’ periods, or equivalently,
to minimize the regret, which is defined as the gap between the expected revenue generated by
the policy and the oracle expected revenue when the mean utility for each product is known as a
priori.

In this chapter, we consider the dynamic assortment planning problem under variants of dis-
crete choice models, including the plain multinomial logit model (Sec.. 4.1), the nested logit

'The constraint 7; < 1 is without loss of generality, because it is only a normalization of revenues.
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choice model (Sec. 4.2) and a contextual choice model with linear regression modeling of con-
textual information (Sec. 4.3). For all works presented, algorithmic policy development and
theoretical regret analysis are the primarily focused aspects.

4.1 The plain multinomial logit model

Perhaps the simplest discrete choice model is the plain (or vanilla) logit choice model, which
associates with each item ¢ an independent and unknown preference parameter v; > 0. Given
assortment S < [/N], the logit choice model posits that (define vy := 0 for notational simplicity)

(%
1+ Zi’eS vir’

The logit choice model is a cornerstone model in economics decision theory (Borsch-Supan,
1990; McFadden, 1980; Williams, 1977). It is also simple that comprehensive theoretical analy-
sis can be carried out. Under model Eq. (4.1), the expected revenue the retailer could collect by
presenting an assortment S < [N] to an incoming customer can be calculated as

Pr[i|S] = ieSu{ol. @.1)

ZZ‘ TiU;
R(S) = Eivpgis)[ri] = ﬁ 4.2)
1€ 7

Suppose a policy 7 produces a sequence of assortment selections {S;}L_, over T time periods,
with sequentially arriving customers. The (cumulative) regret of the assortment sequence {S;}7_,
can be subsequently defined as

T
Regret({S;}7_,) : Z [R(S:)] where S* eargmng(S). 4.3)

We also impose the condition max; 7; < 1 throughout this section, which is only for normal-
ization purposes as the units of revenue measurement can be arbitrarily changed.

4.1.1 Popular assortments, level sets, and a potential function

For the MNL assortment selection model without capacity constraints, it is a classical result that
the optimal assortment must consist of items with the largest revenue parameters (see, e.g., Kok
et al. (2008)):

Proposition 14. There exists 0 € [0, 1] such that Ly := {i € [N] : r; = 0} satisfies R(Ly) =
R(S*).

Proposition 14 suggests that it suffices to consider “level-set” type assortments Ly = {i €
[N]:r; > 0} and finds 0 € [0, 1] that gives rises to the largest R(Ly).

Intuitively, F'() is the expected revenue obtained by providing the assortment consisting of
all items whose revenues exceed or are equal to §. The potential function plays a central role in
the development of our dynamic trisection search algorithm and item-independent regret bounds.
Similar idea of studying the expected revenue of revenue-ordered items was also considered
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Figure 4.1: Illustration of the potential function F'(#), the important quantities F* and 0*, and
their properties.

in Rusmevichientong & Topaloglu (2012). But we will derive a more comprehensive list of
properties of the potential function F' to facilitate our algorithmic development and analysis.
The derived properties in this section could also be potentially useful for solving other assortment
planning problems under the MNL.

Because item revenues r; are discrete, F’ is a piecewise-constant function as illustrated in the
left picture in Fig. 4.1, where S = {s1,--- ,s,,} are the changing points of F'. More specifi-
cally, we have the following proposition and its verification is easy from the definition and the
discretized nature of F'.

Proposition 15. There exists cg, -+ , ¢, = 0 satisfying ¢; # c;oq foralli = 0,--- ,m — 1, and
S = {Sla T 7Sm} < {ri}i]\il’ such that
m—1
F(e) =Cp - H[9 < 51] + Z Ci* ]I[S,L <0< SZ-Jrl] 4+ Cp - I[[e > Sm]7 (44)
i=1

where c,, = 0.

Define F™* := maxXo<i<m ¢; = SUpyso F'(#) as the maximum value of F. By Proposition
14, we have the following corollary saying that /™ equals the expected revenue of the optimal
assortment.

Corollary 4. ["* = R(S*).

We further establish some more refined structural properties of F'. For notational simplicity,

let F(z") := lim,_,,+ F(y) and F'(z7) := lim,_,,- F'(y).
Lemma 52. There exists 0* > 0 such that 6* = F(6*) = F*.
Lemma 53. Forany 0 = 6%, F(0) < 6 and F(0) = F(0").

Lemma 54. For any 0 < 6%, F'(0) = 6 and F(0) < F(0").

The proofs of the above lemmas are given later. Lemmas 52, 53 and 54 provide a complete
picture of the structure of the potential function F', and most importantly the relationship be-
tween F' and the central straight line F'(#) = 6, as depicted in the right picture of Fig. 4.1. In
particular, F' intersects with the y = x line at #* that attains the maximum function value F™*,
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and monotonically decreases as one moves away from 6*, meaning that F' is uni-modal. Further-
more, Lemmas 53 and 54 show that (1) F'is left-continuous; (2) F'* lies below the y = x line
to the right of §* and above the y = x line to the left of 8*. This helps us judge the positioning
of a particular revenue level 6 by simply comparing the expected revenue of R(Ly) with 6 itself,
motivating an asymmetric trisection algorithm which we describe in the next section.

4.1.2 The trisection algorithm and its regret

We propose an algorithm based on trisections of the potential function F' in order to locate level
6* at which the maximum expected revenue F* = F(6*) is attained. Our algorithm avoids
explicitly estimating individual items’ mean utilities {v;}%,, and subsequently yields a regret
independent of the number of items V.

To assist with readability, below we list notations used in the algorithm description together
with their meanings:

- a, and b,: left and right boundaries that contain #*; it is guaranteed that a, < 6* < b, with
high probability, and the regret incurred on failure events is strictly controlled;

- x, and y,: trisection points; z, is closer to a, and y. is closer to b;

- 4(y.) and w;(y;): lower and upper confidence bands for F'(y,) established at iteration ¢; it
is guaranteed that ¢;(y,) < F(y,) < u:(y,) with high probability, and the regret incurred on
failure events is strictly controlled;

- pi(y-): accumulated reward by exploring level set £, up to iteration ¢.

With these notations in place, we provide a detailed description of Algorithm 8 to facilitate
the understanding. The algorithm operates in epochs (outer iterations) 7 = 1,2,--- until a
total of 7" assortment selections are made. The objective of each outer iteration 7 is to find the
relative position between trisection points (z,,y,) and the “reference” location 6*, after which
the algorithm either moves a, to x, or b, to y., effectively shrinking the length of the interval
[a,, b,] that contains 6* to its two thirds. Furthermore, to avoid a large cumulative regret, level
set corresponding to the left endpoint a, is exploited in each time period within the epoch 7 to
offset potentially large regret incurred by exploring v .

In Steps 9 and 10 of Algorithm 8, lower and upper confidence bands [¢;(y.), u;(y,)] for
F(y,) are constructed using concentration inequalities (e.g. Hoeffding’s inequality (Hoeffding,
1963)). These confidence bands are updated until the relationship between y, and F(y,) is
clear, or a pre-specified number of inner iterations for outer iteration 7 has been reached (set to
n, := [16(y, — )2 In(T?)| in Step 8). Algorithm 9 gives detailed descriptions on how such
confidence intervals are built, based on repeated exploration of level set £, .

After sufficiently many explorations of £, _, a decision is made on whether to advance the
left boundary (i.e., a;41 < ) or the right boundary (i.e., b, .1 < y,). Below we give high-level
intuitions on how such decisions are made, with rigorous justifications presented later as part of
the proof of the main regret theorem for Algorithm 8.

1. If there is sufficient evidence that F'(y,) < v, (e.g., u¢(y,) < y,), then y, must be to the right
of 0* (i.e., y, = 6%) due to Lemma 53. Therefore, we will shrink the value of right boundary
by setting b1 < y,.

110



Algorithm 8 The trisection algorithm.

1: Input: revenue parameters rq,--- , 7, € |0, 1], time horizon T

2: Output: sequence of assortment selections Sy, Sy, -+, St € [N]
3: Initialization: ag = 0, by = 1;

4: forr=0,1,--- do

5 T, = %GT + %bT, Y, = %QT T %bT; o> trisection
6 lo(xr) = Lo(yr) = 0, up(z;) = uoyr) = 1; = initialization of confidence intervals
7 po(z:) = polyr) = 0; o> initialization of accumulated rewards
8 for t = 1to 16[(y, — z,;)"2In(T))] * do

9 if 41 (yr) < yr < ui_1(yr) then py(yy), 4(y:), ue(y-) < EXPLORE(y,,t, 1/T?);

= Explore the right midpoint y

10: elsept (y"r)) gt(yT)7 Ut (yT) < Pe-1 (yT)a ft,1 (y'r)7 Ut—1 (yT)
11: end if

12: end for

13: Exploit the left endpoint a,: pick assortment S = L, _;

14: end for

> Update trisection parameters
15: if w(yr) < yr then ary1 = ar, bri1 = yr;
16: elsea,+1 = -, brr1 = b,.
17: end if

Algorithm 9 EXPLORE Subroutine: exploring a certain revenue level ¢
1: Input: revenue level 6, time ¢, confidence level o
2: Output: accumulated revenue p;(#), confidence intervals ¢,(6) and u,(0)
3: Pick assortment S = £y(N) and observe purchasing action j € S U {0};
4: Update accumulated reward: p;(6) = p;—1(0) + 7; > 7o =0
5

: Update confidence intervals: [¢;(6),u;(0)] = 2 tge) 4/ 1og$/ %),

2. On the other hand, when u;(y,) = y,, we can conclude that x, must be to the left of 0* (i.e.,
x, < 0*). We show this by contradiction. Assuming that x. > 6%, since y, is always greater
than x, (and thus y, > 6*) and the gap between y, and F'(y,) is at least y, — z, 2, the gap will
be detected by the confidence bands and thus we will have u;(y,) < y, with high probability.
This leads to a contradiction.

Therefore, since x is to the left of 8*, we should increase the value of the left boundary by
setting a, 1 «— .

The following theorem is our main upper bound result for the (worst-case) regret incurred by
Algorithm 8.

Theorem 13. There exists a universal constant Cy > 0 such that for all parameters {v;}¥ | and

By Lemma 53, we have y, — F(y;) =y — F(2z;) = yr — 2,
3Stop whenever the maximum number of iterations 7 is reached.
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{ri}I¥, satisfying r; € [0, 1], the regret incurred by Algorithm 8 satisfies

Regret({S,;}~,) EZ R(S*) — R(S,) < C1+/TlogT. (4.5)

4.1.3 Improved regret with adaptive confidence intervals

In this section we consider a variant of Algorithm 8 that achieves an improved regret of O(\/T ).
The key idea is to use an adaptive allocation of confidence levels, by allowing larger failure
probability as more data are collected. This is because later failures result in smaller accumulated
regret. Such a strategy is motivated by the MOSS algorithm (Audibert & Bubeck, 2009) for
multi-armed bandits. However, our analysis is quite different from (Audibert & Bubeck, 2009),
involving new concentration inequalities and induction arguments tailored specifically to our
model and proposed policy.

We start with a new uniform concentration inequality for adaptively chosen confidence levels.
Lemma 55. Let Xy,---, X be i.i.d. random variables with mean i and satisfy a < X; < b
almost surely for all { € |L|. For any § € (0, 1), it holds that

1, %éx —pl < \/2(6 — )’ 1n(8/(5£))] >1- L. (4.6)

l
The proof of Lemma 55 is deferred later, based on a careful doubling argument with Ho-
effding’s maximal inequality (Hoeffding (1963), re-phrased in Lemma 93). Compared to the
classical Hoeffding’s inequality (Lemma 89) with the union bound, one notable difference is the
21n(8/(5¢)) (b—a)?
‘

Pr [Vﬁ e[L

increasing “failure probability” as ¢ increases (effectively £0 in instead of 9).
This allows the confidence intervals to be much shorter for large /.

With Lemma 55, we are ready to describe the variant of Algorithm 8, which attains the
tight regret bound. Most steps in Algorithms 8 and 9 remain unchanged, and the changes are
summarized below:

- Step 5 in Algorithm 9 is replaced with

pl6) , [2f3/(00)]
[0, w(0)] = 252 4| T

- Step 9 in Algorithm 8 is replaced with EXPLORE(y,, ¢, 1/T"); correspondingly, the number of

inner iterations is changed to n, = 8[(y, — )2 In(8T (y, — z,)?)].

The first change for improving the regret is the way how confidence intervals [¢;(0), u,(0)]
of F(0) is constructed. Instead of using fixed confidence level 1/77 as in the baseline policy, in
the revised policy varying confidence levels are employed, with “effective” failure probabilities
increase as the algorithm collects more data.

We also remark that similar confidence parameter choices were also adopted in (Audibert &
Bubeck, 2009) to remove additional log(7") factors in multi-armed bandit problems.

The following theorem shows that the algorithm variant presented above achieves an asymp-
totic regret of O(\/T), considerably improving Theorem 13 with an O(/T log T') regret bound.

4.7)
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Theorem 14. There exists a universal constant Cy > 0 such that for all parameters {v;}Y., and
{ri}I¥, satisfying v; € [0,1], the regret incurred by the variant of Algorithm 8 described above

satisfies
T

Regret({Si}{_,) = E Y | R(S*) — R(S;) < CuV/T. (4.8)

t=1

4.1.4 Lower bound: the uncapacitated setting

In this section we prove a matching lower bound of the worst-case regret attainable by any
policy 7, under the “uncapacitated setting” in which there is no capacity constraint imposed on
the provided assortments {S;}.

Theorem 15. Let N and 'T' be the number of items and the time horizon that can be arbitrary.
There exists revenue parameters r1, -+ ,rn € [0, 1] such that for any policy ,

VT
sup Regret({S;}/_,) = 381
v1, 0N =0

4.9)
Theorem 15 shows that our regret upper bounds in Theorems 13 and 14 are tight up to an
O(+/log T') term and/or numerical constants.

4.1.5 Lower bound: the capacitated setting

In the capacitated setting, capacity constraints are imposed on the supplied assortments. More
specifically, the provided assortments {S;}7_; must satisfy |S;| < K for all ¢, for some pre-
specified capacity limit ' < N. The uncapacitated setting would then be the special case of
K = N.

In the case of K' < N, the trisection algorithms we considered in the previous section will
no longer be valid, as the key popular set structure (displayed in Proposition 14) is violated
when K < N. The works of Agrawal et al. (2017a,b) considered alternative UCB or Thompson
sampling based approaches, and established regret upper bounds on the order of O(+/NT'), which
incurs an extra O(+/N) term compared to Theorems 13 and 14.

In this section, we shall prove the following result, showing that such worsened regret upper
bounds cannot be improved when the capacity constraint parameter /' is much smaller than the
total number of products V.

Theorem 16. Suppose K < N /4. There exists an absolute constant C' = 1073 independent of
N, T and K such that for all policy T,

sup  Regret({S;}_,) = C - min{vV'NT, T}. (4.10)

v1,,uN 20

Remark 26. When the revenue parameters {r;}~ ; are uniformly bounded (i.e., r; < 1 for all ),
a trivial policy that outputs an arbitrary fixed assortment attains regret O(7'), meaning that the
Q(V/NT) regret cannot be optimal when 7" « N. In the more common scenario of 7 = Q(N),
the v/NT term in Eq. (4.10) dominates, leading to an Q(v/NT) regret lower bound.
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Remark 27. In the work of Agrawal et al. (2017b), a regret lower bound of Q(,/NT/K) is
established, which matches Theorem 16 when K is a small constant but deteriorates to (/T)
when K is smaller but on the same order of V. In contrast, our result in Theorem 16 establishes
an Q(v/NT) even if K is as large as N /4.

We also remark that the “capacity constraint” X < N /4 in Theorem 15 is essential. In the
case of K = N, Theorems 13, 14, as well as previous works (Rusmevichientong et al., 2010),
establish regret upper bounds that depend logarithmically or even independent of N. In the case
of N/4 < K < N, we conjecture that the lower bound in Theorem 16 remains valid provided
that K'/N — ~ for some constant v < 1/2, by selecting constants in Eq. (4.85) more carefully. It
is, however, unclear to us how the regret will behave for v > 1/2 and we leave it as an interesting
technical open problem. We remark that for capacitated problems the X' < N /4 condition is
very weak and could be easily satisfied in practice, because at each time an incoming customer
can only be offered an assortment with much fewer items (as compared to the entire commodity
pool).

Finally, there is still a gap of O(log T") between our Theorem 16 and the regret upper bounds
established in the work of Agrawal et al. (2017a). We leave this as another interesting open
question.

4.1.6 Numerical results

We present numerical results of our proposed trisection (and its improved variant) algorithm and
compare their performance with several competitors on synthetic data.

Experimental setup. We generate each of the revenue parameters {r;}¥ | independently and
identically from the uniform distribution on [.4, .5]. For the preference parameters {v;} |, they
are generated independently and identically from the uniform distribution on [10/N,20/N],
where N is the total number of items available.

To motivate our parameter setting, consider the following three types of assortments: the
“single assortment” S = {i} for some i € N, the “full assortment” S = {1,2,--- , N}, and the
“appropriate” assortment S = {i € N : r; = 0.42}. For the single assortment S = {i}, because
the preference parameter for each item is rather small (v; < 20/N), no single assortment can
produce an expected revenue exceeding 0.5 x (20/N)/(1 + 20/N) = 10/(20 + N). For the full
assortment S = {1,2,--- , N}, because 3" | r;0; > 0.45x15/N x N = 6.75and Y., v; 5> 15
by the law of large numbers, the expected revenue of S is around 6.75/(1 4+ 15) = 0.422. Finally,
for the “appropriate” assortment S = {i € N : r; > 0.42}, we have Y, ¢ ryv; > 0.46 x 15/N x
0.8N = 5.52 and Y, qv; = 15/N x 0.8N = 12. Therefore, the expected revenue of S is
around 5.52/(1 + 12) = 0.425 > 0.422. The above discussion shows that a revenue threshold
r* € (0.4,0.5) is mandatory to extract a portion of the items {i € N : r; > r*} that attain
the optimal expected revenue, which is highly non-trivial for a dynamic assortment selection
algorithm to identify.

Comparative methods. Our trisection algorithm with O(+/T log T') regret is denoted as TRISEC,
and its improved adaptive variant (with regret O(/T)) is denoted as ADAP-TRISEC. The other
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Table 4.1: Average (mean) and worst-case (max) regret of our trisection (TRISEC.) and adaptive
trisection (ADAP-TRISEC.) algorithms and their competitors on synthetic data. NV is the number
of items and 7’ is the time horizon.

UcB THOMPSON GRS TRISEC. ADAP-TRISEC.
(N T ) mean max mean max mean max mean max mean max
(100,500) 349 38.1 128 297 109 224 7.68 7.68 1.99 1.99
(250,500) 543 562 281 495 793 342 757 7.57 223 2.23
(500,500) 734 755 490 495 7.02 434 743 743 2.23 2.23
(1000,500) 90.3 935 8.17 107 534 451 744 744 2.25 2.25

(100,1000) 73.1 782 136 279 1399 1750 8.69 8.69 3.90 3.90
(250,1000) 1137 1193 336 5.17 90.1 110.1 8.69 8.69 4.13 4.14
(500,1000) 136.8 1403 565 7.64 657 1139 938 9.38 3.80 3.80
(1000, 1000) | 160.8 1654 931 124 843 228 977 977 397 3.97

methods we compare against include the Upper Confidence Bound algorithm of Agrawal et al.
(2017a) (denoted as UCB), the Thompson sampling algorithm of Agrawal et al. (2017b) (denoted
as THOMPSON), and the Golden Ratio Search algorithm of Rusmevichientong et al. (2010) (de-
noted as GRS). Note that both UCB and THOMPSON proposed in Agrawal et al. (2017a,b) were
initially designed for the capacitated MNL model, in which the number of items each assortment
contains is restricted to be at most K < N. In our experiments, we operate both the UCB and
THOMPSON algorithms under the uncapacitated setting, simply by removing the constraint set
when performing each assortment optimization.

Most hyper-parameters (such as constants in confidence bounds) are set directly using the the-
oretical values. One exception is our improved adaptive trisection algorithm (ADAP-TRISEC),

2 1n(8£/(6£)) 0.1 ln(?/(z%))  We

in which we replace the confidence interval configuration with
observe that a smaller constant value leads to better empirical performance. Another is the
GRS algorithm: in Rusmevichientong et al. (2010) the number of exploration iterations is set
to 34In(2N)/B* where 8 = min; |R(L,;) — R(L,,)|, which is inappropriate for our “gap-
free” synthetical setting in which 5 = 0. Instead, we use the common choice of /T exploration
iterations in typical gap-independent bandit problems for GRS.

Results. In Table 4.1 we report the mean and maximum regret from 20 independent runs of
each algorithm on our synthetic data, with different settings of N (number of items) and 7" (time
horizon length). We observe that as the number of items (/V) becomes large, our algorithms
(TRISEC and ADAP-TRISEC) achieve smaller mean and maximum regret compared to their com-
petitors, and ADAP-TRISEC consistently outperforms TRISEC in all settings. Unlike UCB and
THOMPSON whose regret depend polynomial on /N, our TRISEC and ADAP-TRISEC algorithms
have no dependency on /N and hence their regret does not increase with N. Moreover, the sep-
arate exploration and exploitation structure in GRS makes its performance somewhat unstable,
which leads to a larger gap between mean and maximum regrets.
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Figure 4.2: A simple illustration of the nested logit model with a car sales example. In this
example, 9 cars are organized into M = 3 nests (Sedan, SUV and Trucks), and within each nest
there are N = 3 car makes. An incoming customer would first choose a nest for purchase (if she
makes a purchase at all), and then chooses one particular make within the nest she chooses in the
first stage. The retailer has full knowledge of the nested tree structure and the profit margins for
selling each item, but will need to learn the utility parameters of the nests and items.

4.2 The nested multinomial logit model

In a nested multinomial logit model (Train, 2009, Chapter 9), items are organized into nests,
as depicted in Figure 4.2. We use [M] = {1,2,---, M} to denote M nests. For each nest
i € [M], denote the items in nest 7 by [N;] = {1,2,--- , N;}. Each item j € [N;] is associated
with a known revenue parameter 7;; and an unknown mean utility parameter v;;. Without loss
of generality, we assume each nest has an equal number of items, i.e., Ny = --- = Ny, = N,
because one can always add items with zero utility and revenue parameters. Let S; = 2!V be
the set of all possible assortments for nest i. Further, let {v;}icap < [0, 1] be a collection of
unknown correlation parameters for different nests. Each parameter +; is a measure of the degree
of independence among the items in nest i: a larger value of ~; indicates less correlation (see
Chapter 4 of Train (2009)).

At each time period ¢t € {1,2,--- , T}, the retailer offers the arriving customer an assortment
Si(t) e S; for every nest i € [M], conveniently denoted as S = (SY), e 7S](\Z)). The retailer

then observes a nest-level purchase option i, € [M] u {0}. If i, € [M], an item j, € [N] is
purchased within the nest 7;. On the other hand, 7; = 0 means no purchase occurs at time ¢. The
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probabilistic model for the purchasing option (i, j;) can be formulated below:

Vi(si)

]

Pri, = i|SY| =
e R e

,  where V=1, S(t Z v;; forie [M];
]GSl(t)
(4.11)
Vij : 0
39— foric[M], jeSW. (4.12)
Zj’ESi(t) Uij’

Note that when «; = 1 for all i € [M], the nested logit model reduces to the standard MNL
model.

The retailer then collects revenue 7;, ;, provided that i; # 0. The expected revenue R(S®)
given the assortment combination S can then be written as

Pr [ = jlis =i, 5] =

M
R(SW) = ZPI" lie = i|S(t)] Z rig Pr g = jlic = 1, S(t)]
i=1 jeSl.(t)
M ) (t) - (t) Yi Z ) T'ijVij
_ X RSTAS) where Ry(S") = 257 VY 413

L+ X Vi(st ) Lijes(t Vis
The objective of the seller to minimize expected (accumulated) regret, which is defined as fol-
lows:

T
Regret({SD}L ) := Z (t))], where R* = ses_ax o R(S). (4.14)

Throughout this section, we make the following boundedness assumptions on revenue and
utility parameters:

(Al) 0 <r;; <1lforallie[M]andje [N].

(A2) 0 <w;; < Cyforalli e [M]and j € [N] with some constant Cy > 1
The first boundedness assumption on revenue parameters is standard in the literature (see e.g.,
Theorem 1 in Agrawal et al. (2017a)). It is also worthwhile noting that assumption (A2) is
different from and weaker than the common assumption that no purchase (with V; = 1) is the
most frequent outcome (see e.g., Agrawal et al. (2017a,b)).

4.2.1 Assortment space reductions

For nested logit models, the complete assortment selection space (a.k.a. action space) S =
S1 xSy x- -+ xSy is extremely large, consisting of an exponential number of candidate assortment
selections (on the order of (2/V)™). Existing bandit learning approaches treating each assortment
set in S independently would easily incur a regret also exponentially large. It is thus mandatory
to reduce the number of candidate assortment sets in S.

Fortunately, existing results on the structure of optimal S show that it suffices to consider
level sets L;(0;) := {j € [N] : r;; = 0;} for each nest i. In other words, £;(6;) is the set
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of products in nest ¢ with revenue larger than or equal to a given threshold 6; > 0. Define
P, .= {L;(0;) : 6; = 0} = S, to be all the possible level sets of S; and let

P:=P; xPy x--- x Py ©S. (4.15)

The following lemma from Davis et al. (2014) and Li et al. (2015) shows that one can restrict
the assortment selections to [P without loss of any optimality in terms of expected revenue.
Lemma 56 (Davis et al. (2014); Li et al. (2015)). There exists level set threshold parameters
0F,...,0%) and S* = (L1(67),---, Ly (6%,)) € P such that the following hold:

1. R(S*) = maxges R(S) = R*;

2. 0F =R+ (1 — ) Ri(S)) forall i € [M ], where S} = L;(07).

The first item in Lemma 56 is an important structural result showing that the optimal assort-
ments are “revenue-ordered’” within each nest. The second item is a technical result, which will
be used in the proof. Compared to the original action space S, the reduced “level set” space PP is
much smaller, with each PP; consisting of NV instead of 2%V assortment candidates.

4.2.2 A nested singleton model

To facilitate the illustration of our idea, we introduce a “singleton” description of the original
nested model which we name nested singleton models. In our singleton model, we treat each
level set as a “‘singleton item” in the nested model with an aggregate random revenue (which
corresponds to the nest-level revenue in (4.13)). The introduced “nested singleton model” not
only helps simplify our algorithms’ descriptions and their analysis but also highlights our main
idea of “aggregated estimation” on a nested level. Moreover, this nested singleton model will
provide a unified description of a more sophisticated policy based on a discretization technique,
which will be introduced later.

Recall that for each nest ¢ € [M], there will be only (N + 1) distinct level sets {£;(6;) :
i€ [N]} v {L;(0)}, where L;(c0) = F corresponds to the empty assortment set. To simplify
the problem, we shall consider each level set as a singleton item, associated with a preference
parameter and a mean revenue parameter. More specifically, each nest i € [M] consists of N + 1
“singleton items”, each labeled as 6 € KC; := {r;; : j € [N]} u {0}, where the singleton ¢ in nest
i corresponds to the assortment level set £;(6). It should also be noted that § = <o corresponds to
the empty assortment. With this notation, each assortment combination S = (Sy,---,Sy) € P
can be equivalently written as

0:<01,"',0M)E’C1X---X’CM. (416)

Here 6; € K; corresponds to level set S; = L£;(0;) = {j € [N] : 7;; = 6,} being offered in nest 1.
When necessary, we will also write S;(6;) to emphasize that the assortment in nest ¢ depends on
the singleton 6,.

After presenting the customer with assortment combination S € P (or equivalently param-
eterized by 6), the retailer observes i; € [M] u {0} indicating which nest is chosen (i; = 0
means no purchase is made at time ¢) and collects revenue 7; € [0, 1], which is a random variable
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corresponding to the revenue 7;, ;, of item j; in nest 4, (if ; = 0, then r, = 0 almost surely).
In the nested singleton model, we discard the item choice j; within nest ¢;, and only record the
nest-level selection ¢; and revenue collected 7.

For any i € [M] and 0; € K;, we define u; g, := V;(5;(6;))" and ¢, 9 := R;(S;(6;)), where
Vi(Si(6;)) and R;(S;(6;)) are nest-level utility parameter and expected revenue associated with
the level set S;(0;) = L;(0;) (see definitions of V; and R; in Eq (4.11) and (4.13), respectively).
Given an assortment combination §®) = (#y,--- ,0,,) at time epoch ¢, it is easy to verify that
the random choice i; € [M] U {0}, and corresponding random revenue r; € [0, 1] satisfy the
following:

Ui 0,
M
1+ Zi':1 Ui’,ei,

Pr[i, = i|0®] = o E[ris =] = ¢ig,; e =0 a.s. ifi,=0. (4.17)

In fact, Eq. (4.17) resembles the classical plain MNL model, with two important differences.
First, the revenues collected on each purchased singleton i; are random instead of fixed, and the
mean revenue parameters {¢; ¢} are unknown and have to be estimated from random revenues
collected from purchasing events. Second, it is constrained in that at most one singleton ¢; € K;
can be offered within each nest i € [M], where in the classical plain MNL model with capacity
constraints, any M items can be combined as an assortment.

Define the expected revenue for an assortment combination 6(*) as,

R9) = S Prfi = 001 By = 1] = S iatio
= Ty =1 : Tl = 1| = —/———7—.
=1 L+ 2300 i,

The objective is to minimize the regret:

T
Regret({0V}/)) :=E > R'(0*) — R'(6"))  where R'(6*)= max R'(f). (4.18)

—1 06/C1><'“><K:]\/[

By our assumptions (A1) and (A2), it is easy to verify that ¢, o, € [0, 1] and u, 9, € [0, (NCy)7] <
[0, NCy] for all i € [M] and 6; € IC;. We also note that (NCy )" < NCly, since 7; € [0, 1] and
Cy = 1.

For a given dynamic assortment selection policy 7’ under this nested singleton model, it is
easy to construct a policy 7 under the original nested logit model simply by converting {#(V} to
their corresponding assortment combinations {S®}. Please see Algorithm 10 and the following
Proposition 16 for more details.

Proposition 16. Suppose there exists a policy 7' that attains a regret of at most /A on any instance
of the nested singleton model with |KC;| = K = N + 1 for all i € [M] and u; ¢, € |0, U] with
U < NCvy foralli € [M] and 0; € K;. Then there is a meta-policy 7 (see Algorithm 10) that
produces an assortment combination sequence {SV}T| under the original nested choice model
with regret (defined in Eq. (4.14)) at most A.

Proposition 16 is a simple consequence of Lemma 56 and we omit its proof.
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Algorithm 10 The meta-policy 7 built upon policy 7" under the nested singleton model.

: Input: a dynamic assortment planning policy 7’ under the nested singleton model.
: Output: a dynamic assortment planning policy 7 for the original nested logit model.
cfort=1,2,--- ,Tdo
Let 0¢) = (9?), S ,05\?) € Ky x -+ x Ky be the output of 7';
Produce assortment combination S®*) = (S?), I Sj(fl) ), where Si(t) = Ei(GZ@);
Observe the nest-selection i; € [M] U {0} and revenue 7, and pass i, r; to policy 7';
end for

A A o e

4.2.3 UCB-based dynamic assortment planning policies

We design dynamic planning policies under the nested logit model using an upper-confidence-
bound (UCB) approach. We focus entirely on the simpler assortment model specified in Eq. (4.17),
since it is (approximately) equivalent to the original nested logit model as shown in Proposition
16.

Our main policy is based on the idea of UCB from classical bandit algorithms (Bubeck &
Cesa-Bianchi, 2012) and repeated exploration of the same action until no-purchase happens,
which was found to be very useful for assortment planning problems (Agrawal et al., 2017a)
because it provides unbiased estimates of model parameters.

The pseudo-code of our proposed policy is given in Algorithm 11. We first explain a few
notations used in the algorithm and then describe the details of the algorithm.

- &, all iterations in epoch 7 where the same assortment combination 6 is provided. Each
epoch (corresponding to Steps 7-9 in Algorithm 11) terminates whenever the no-purchase
action is observed. In other words, one and only one “no-purchase” action ¢, = 0 appears
at the last iteration of each epoch &;.

- T(i,0): the indices of epochs in which 6 € K; is supplied in nest i; 7'(7,60) = |7 (i,0)]
denotes the cardinality of 7 (z,0);

- 7n;.: the number of iterations in the epoch 7 (i.e., &) in which an item in nest 7 is pur-
chased;

- Ti,: the total revenue collected for all iterations in £, in which an item in nest 7 is pur-
chased;

- Uiy, ggi,g, Ui g, 5@,93 estimates of u; 9, ¢; g, and their upper confidence bands.

The high-level idea of Algorithm 11 can be described as follows. The algorithm operates
in “epochs” &1, &, ---. For all iterations in each epoch &£, the same assortment combination
0 = (61,---,0) are offered and customers’ purchasing actions are observed. The 6 offered
in each epoch &, is computed by maximizing upper confidence bands of expected regrets over
all assortments. An epoch terminates whenever a “no-purchase” action is made by the arriving
customer. This epoch-based strategy (i.e., offering the same assortment until no-purchase is
observed) was first introduced by Agrawal et al. (2017a) and enjoys the favorable properties
stated in the next lemma.

Lemma 57. For each epoch &, and nest i € [M], let @ € K; be the singleton provided in
nest i. The expectations of the number of iterations and total revenues collected in which nest
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Algorithm 11 The upper confidence bound (UCB) policy for dynamic assortment planning under
the nested singleton model in Eq. (4.17).

1: Input: singleton sets Ky, - - - , Ky, upper bound U on {u; ¢}, time horizon 7.

2: Output: assortment sequences 01, ---  0) € ) x -+ x Cyy.

3: Initialization: 7 = 1, {&:}72, = @ t = 1; forevery i € [M] and 6 € ;, set T (i,0) = &,
T(i,0) =0, gb“g = qﬁw 1, g = U;p = U, forall i € [M] and 6 € K; corresponding to
the empty assortment (i.e., £;(0) = ), set %79 = ¢ip = Uip = Ui = 0;

4: while { < T do

50 00 =0« argmaxgeic, x-xky B (0), where R (0) =[S 6, .0, 1/[1 + Y0, Tig,]
6: e This optimization problem can be solved in polynomial time; see Sec. 4.2.3;
7 repeat R

8: Pick () = @ and observe i, r; in Eq. (4.17) and update &, «— &, U {thyt=t+1;

9: untili;_ 1 =0ort > T

10: for each i € [M] do

11: Compute 1; r = Y yee Wiy =i] and 7 7 = D e roll]iy = i];

12: Let 6 = 6; and update: T (i,0) « T(i,0) U {r}, T(i,0) — T(i,0) + 1

13: Update the utility and mean revenue estimates and their associated confidence bands:

ZT’ET(Z 0) Tz Tl
i = T s

~ 1 ~
i,0 T(Z,@) ZTleT(Z,Q) 07’ T 'eT (i, On, 1 ’

14: if 7'(i,0) > 96 In(2M T K) then
. ~ 96 max(u;,0,42 o) In(2MTK n
s T = min{U, B +\/ max(ii 'OTU(Z{%)) n( ) 4 1441T((2i’1\9/[)TK)},
- . -~ In2MTK)
16: ¢;p = min{l, ;9 + n(z B }
17: else _
18: Uig=U, ¢;9=1
19: end if
20: end for
21: T T+ 1,

22: end while

i is purchased (denoted by n; . and T; ;, respectively, in Algorithm 11) satisfies the following
regardless of the other offered assortments é\i/ fori' #i:

L E[ni-] = v

2. E[ri |ni-] =N, i i 6.

Proof. Simple calculations show that (see for example Corollary A.1 of Agrawal et al. (2017a))

k
~ U, 4. 1
Pr(n;, =k| = = for k=0,1,2,--- (4.19)
7 L+ ui,éx‘ L+ ui@

That is, n;, is a geometric random variable with parameter 1/(1 + u, @_). Hence, 7, » is an
K Ui K
unbiased estimator of v, ; , meaning that En; » = u; ..
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The distribution and expectation of 7, can be similarly derived, using the property that
E[F-|ie = i] = ¢,5.- O

The above properties motivate intuitive parameter estimators u; g, (Ei,g of u;p and ¢; ¢ for
0 = @, which are taken to be the sample averages of 7; » and 7; , over all epochs &, in which the
item 51 in nest ¢ is offered. It is worth noting that in those epochs, the offered singletons in nests
other than the i-th nest (i.e., the nests ¢’ for i’ # i) can be arbitrary since the distributions of 73, ,
and 7; , are independent of @»/ for i’ # 1. This key independence property enables us to combine
purchasing information of vastly different assortment combinations (provided that @ remains the
same), which forms an important aggregation strategy that avoids exponentially large regret if
assortment combinations are treated independently.

Efficient computation of 0

Our policy in Algorithm 11 involves a combinatorial optimization problem over all § € Iy x
-+ x ICps (see Step 5 in Algorithm 11). A brute-force algorithm that enumerates all such 6 takes
O(K™) time and is computationally intractable even for small M values. In this section we
introduce a computationally efficient procedure to compute 0 by using a binary search technique.
The idea behind our procedure is similar to the one (Rusmevichientong et al., 2010) introduced
for dynamic assortment optimization in capacitated MNL models.

Forany A € [0,1] and § = (0y,--- ,0)) € K1 x - -+ x k), define potential function

M
PA0) = D (g, — Mg, (4.20)
i=1
—= M b 0.Tio,
Recall the definition of R,(H) = Z;;C% in Step 5 of Algorithm 1 1. The following lemma
i=1 Wi,0;

characterizes the properties of 1, (6) and its relationship with R = MAXPE/C x - x K ps ok

Lemma 58. The following holds for all € [0, 1]:
1. If R* = ) then there exists a 0 € Ky x --- x Ky such that ¥5(0) = \; furthermore if
R* > \ then the inequality is strict;
2. IFR° < \ thenforall € Ky x -+ x K, A (0) < A, furthermore if R* < )\ then the
inequalities are strict.

(0):

Proof. Let 6* = (6%,--- ,6%,) € Ky x --- x Ky be a maximizer of R (i.e., R = R (6*)). By
definition, Zf\il(g_bw;k — ﬁ*)ﬂw;k — R.IfR" > A, then Zﬁl(q_bw;k — MU px > 2?11(%92.* _
}_%*)m,e* = R > \. Therefore ¥ (0*) = A. Furthermore, if R" > X then the last inequality in
the chain of inequalities is strict. The first property is thus proved.

We next prove the second property. Assume by way of contradiction that there exists 6 =
(01, ,00) € K1 x -+ x Ky such that ¢, (6) > A, meaning that Zf\il@ze — AN, 9, > A. Re-
arranging terms and dividing both sides by (1+ Y2 | @; 4,) we have R(0) = [>M G 0,Ti0,]/[1+
M i p,] > \. This contradicts the assumption that R® = maxgpex, ...« x,, R'(8) < \. To prove
the second half of the second property, simply replace all occurrences of > by >. ]
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Based on Lemma 58, an efficient optimization algorithm computing the maximizer 0 can
be designed by a binary search over A € [0,1]. In particular, for each fixed value of )\, the
0*(N\) = (65(N),---,05,(N) € Ky x -+ x Ky that maximizes 1, () can be found by setting
07 (\) € argmaxper, (d;9 — Mg If ¥2(6*(N)) > A, then R > )\, because otherwise it
violates the second property in Lemma 58. Similarly, if ¢, (0*(\)) < A, then B~ < ), because
otherwise it violates the second part of the first property in Lemma 58 (note that since 6*(\) is
the maximizer of 15 (6), ¥ (8*(\)) < A implies that ¢, (6) < A for all §). Thus, whether B~ > \
or R* < ) can be determined by solely comparing 1, (6*(\)) with \.

We remark that each evaluation of ¢, (6*())) takes O(M K') time, and the entire binary search
procedure takes time O(M K log(1/€)) to approximate R up to arbitrarily small error e. This is
much faster than the brute force algorithm that takes O(K™) time.

Regret analysis

Below is our main regret theorem for Algorithm 11.
Theorem 17. The assortment sequence {H(t)}thl produced by Algorithm 11 has regret (defined
in Eq. (4.18)) upper bounded as

Regret({#" ) < A/MKTlog(MKT) + MKU log> (MKT) + O(1), (4.21)

where K = |K| and U = maxX;e[y) MaXgex, Ui g-

Corollary 5. If K = |K;| = N +1 (for any i € [M]) and the meta-policy in Algorithm 10 is used
to convert Algorithm 11 into a dynamic assortment planning algorithm for the original nested
model, then

Regret({SD}L ) < A/MNTlog(MNT) + MN?Cylog? (MNT) + O(1)
O(WMNT + MN?) (4.22)

We make several remarks on the regret upper bound in Corollary 5. First, when 7" > M
and the number of items per nest NV is small, the dominating term in Eq. (4.22) is O(v M NT).
This matches the lower bound result Q(+/MT) in Theorem 18 when N is a constant. When
the number of items per nest NV is large compared to the time horizon 7', the dominating term
in Eq. (4.22) is O(M N?). We will show later in Sec. 4.2.4 how regret can be improved by
considering a ‘“discretization” approach under such large /V settings.

4.2.4 Policies with an improved N dependency

Although we are not able to provide a lower bound on the dependence of NV and derive an
optimal policy, we provide a class of policies based on a discretizing technique. This class of
policies generalizes our first policy since the first policy simply corresponds to a special case by
setting the discretization granularity to zero. In addition, by choosing an appropriate non-zero
discretization granularity, we obtain another policy with an improved regret dependence on NV
while sacrificing the dependence on 7'.
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Discretizing the singleton sets

In this section, we introduce a discretization technique to further reduce the size of the level set
space IP; in (4.15) (or equivalently, /C; in the nested singleton model introduced in Sec. 4.2.2).
Instead of considering level sets defined for thresholds § = r;; for all j € [N] so that |[I;| =
N + 1, we only include level sets whose thresholds are on a finite grid.

More specifically, let § € (0, 1) be a granularity parameter to be optimized later. Recall the
definition of the level set £;(0) = {j € [N] : r;; = 6} and we only consider level set threshold
parameters 6 that are multiples of 1/0. Let N be the set of non-negative integers and define

KS:={0:0<60<1, 0/6eN, L;(f)s aredistinct} U {00}, for ie [M] (4.23)

where each 0 I%f corresponds to a unique level set £;(6). When there are multiple 6’s leading
to the same level set, we keep any one of these 6’s in I%f and thus the level sets induced by I%f
(i.e., {£:(0) : 0 € K%}) are unique. Since duplicate assortment sets are removed in K?, we have
K% < K; and thus |[K?] < |K;| = K = N + 1. On the other hand, we also have || < |1/6] + 2
because level set thresholds in I%f must be an integer multiple of 4. On one hand, when ¢ is not
too small, the size of I%f could be significantly smaller than N. On the other hand, when § — 0,
we recover the original singleton set K;, which gives the full level sets. We shall thus define
l%f := KC; when § = 0.

The following key discretized reduction lemma shows that by restricting ourselves to I%f
instead of C;, the approximation error in terms of expected revenue can be upper bounded by 4,
which goes to zero as we take § — 0.

Lemma 59 (Discretized reduction lemma). Fix an arbitrary § € (0,1). Then

max R'(0)— max R'(0) <9,
96’C1><-“></C]u QEE?X'“XI%?\/I

where R'(0) := [0, dio.uio,]/[1 + i, ig,].

A discretization based meta-policy and regret analysis

We first present a meta-policy using the discretization technique in Algorithm 12, which connects
a dynamic assortment planning policy under the singleton nested model to the original nested
logit model. The following proposition upper bounds the regret of the proposed meta-policy, as
consequences of Lemma 59 and the fact that |[K?| < min{N,|1/6] + 2} for all i € [M] and
de[0,1).

Proposition 17. Suppose there exists a policy 7' that attains a regret of at most /A on any instance
of the nested singleton model with |K?| < min{N, |1/8| + 2} for all i € [M] and u; 4, € [0, U]
with U < NCYy forall i € [M] and 0; € /Ef Then there is a meta-policy 7 (see Algorithm 12)
that produces an assortment combination sequence { S} | under the original nested choice
model with regret (defined in Eq. (4.14)) at most A + T

We note that the extra regret 97" comes from the loss of the discretization in Lemma 59.

_Now for the nested singleton model, we invoke Algorithm 11 with the discretized singletons
K3, -+, K3, as input to construct the policy 7’. Then we obtain a class of policies parameterized
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Algorithm 12 The meta-policy 7 built upon policy 7’ and the discretization argument under the
nested singleton model.

1: Input: a dynamic assortment planning policy n’ under the nested singleton model, dis-
cretization granularity .

2: Output: a dynamic assortment planning policy 7 for the original nested logit model.

3: Construct discretized singleton sets K2, - - - , K3, in Eq. (4.23);

4: fort=1,2,--- ,Tdo

50 Letd® = (67 ... 60y e K3 x -+ x K2, be the output of 7';

6: Produce assortment combination S®) = (S%t), e ,S](\?), where Si(t) = Ei(égt));

7: Observe the nest-selection i; € [M] u {0} and revenue r;, and pass i, r; to policy 7'.
8: end for

by 6. By replacing K = |K;| in Corollary 5 with K = |K%| < min{N, |1/8] + 2}, and combing
it with Proposition 17, we obtain the following corollary on the regret under the original nested
logit model.

Corollary 6. If the meta-policy in Algorithm 12 with discretization granularity § is used to con-
vert Algorithm 11 into a dynamic assortment planning algorithm for the original nested model,
then

Regret({SP}L ) < 4/min{N, 6~} MT log(MNT)
+min{N,0 "YMNCy log*? (MNT) + 6T + O(1). (4.24)

For example, by choosing § = T3, we have Regret({S®}T_ ) = O(v/MT?3 + MNTY3).
Remark 28. In cases with many items per nest (i.e., NV is large), a small value of ¢ is desired to
balance the terms and achieve small overall regret in Eq. (4.24). Similarly, in instances with few
items per nest (i.e., IV is small), a large value of § is desired to achieve the best overall regret.

We first note that Corollary 6 is a more general result, which includes Corollary 5 as a special
case. Indeed, when § = 0 (min{N,d~ '} = N), then K = K; and Eq. (4.24) automatically
reduces to Eq. (4.22), which upper bounds the regret of our UCB policy without discretization.
On the other hand, when /N is large compared with 7', it is beneficial to set the discretization
granularity parameter 0 to be a non-zero value. In particular, by setting § = T-'/3, we obtain
a regret upper bound of O(v/MT?? + MNT'?), which is smaller than the regret bound in
Corollary 5 whenever N > T"/%. (Note that when N > T"'/3, the dominating term in Corollary 5
is O(MN?).)

4.2.5 A regret lower bound

We establish the following lower bound on the regret of any dynamic assortment planning policy
under nested logit models.

Theorem 18. Suppose the number of nests M is divisible by 4 and v, = --- = vy = 0.5.
Assume also that (Al) and (A2) hold. Then there exists a numerical constant Cy > 0 such that
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Figure 4.3: Accumulated regret of our policy with M = 5 nests, varying the number of items per
nest /V and the granularity parameter 9.

for any dynamic assortment planning policy T,

T
sup Y R* —E"[R(SW)] = CovV'MT  where R* = max R(S). (4.25)

{rijwij} o1 Se8

We note the condition that M is divisible by 4 is only a technical condition and does not
affect the main message delivered in Theorem 18, which shows necessary dependency on M
asymptotically when M is large. Our lower bound construction treats /N as a constant. In par-
. . . . M,N .
ticular, in our constructions of adversarial model parameters {r;;, vi;}; ;=;, each nest consists of
N = 3items. Since N is a constant, Eq. (4.25) cannot possibly be tight in terms of dependence
on N. The optimal dependence on N is a technically very challenging problem and we leave it

as an open problem.

4.2.6 Numerical results

We present numerical studies of our proposed policies for dynamic nested assortment planning
on synthetic data. The main focus of our simulation is the regret of our policies under various
model parameter settings of M, N, and 7', as well as the effect of the discretization granularity
d € |0, 1] on the regret.

For each nest i € [M], we generate the revenue parameters {r;;}’_, independently and iden-
tically from the uniform distribution on [0.2, 0.8] and the preference parameters {v;;}} inde-
pendently and identically from the uniform distribution on [10/N (M —1),20/N (M —1)], where
N is the number of items in each nest. The nest discounting parameters {7;}}, are generated
independently and identically from the uniform distribution on [0.5, 1].

We consider the different combinations of parameters in terms of M (i.e., the number of
nests), N (i.e., the number of items per nest), T’ (i.e., time horizon length), and ¢ (i.e., the gran-
ularity parameter in the discretized policy). We note that 6 = 0 means that no discretization
is carried out, which corresponds to the policy in Algorithms 10 and 11. For each (M, N) set-
tings, we generate model parameters {r;;, v;;, %}%ivl as described in the previous paragraph, and
then run the dynamic assortment policy for 100 independent trials. The median and maximum
accumulated regret over 71" periods are reported.

126



Table 4.2: Median (MED) and Maximum (M AX) accumulated regret (summation over 7' periods)
under various model and parameter settings. The minimum regret for each case is highlighted
using the bold font.

=0 §=1073 §=5x10"3 §=10"72 §=5x10"?
(M, N) MED MaAX MED MAX MED MAX MED MaAX MED MaAX
T = 100:
(5,100) 5.5 6.4 5.5 6.0 3.8 4.1 3.2 43 54 8.5
(10,100) 4.8 6.2 54 55 4.7 6.5 2.3 3.9 5.8 7.0
(5,250) 104 14.1 9.8 12.0 5.7 6.5 3.3 34 7.0 8.3
(10,250) 10.8  12.0 9.7 12.3 55 7.4 3.0 44 5.1 8.7
(5,1000) 220 253 16.0 182 6.2 7.5 3.2 5.0 6.9 10.9
(10,1000) 215 241 15.1 177 5.1 6.4 31 4.9 6.2 9.4
T = 500:
(5,100) 143 185 183 226 26.8 309 319 353 333 343
(10,100) 15.7 230 16.5 221 284 289 354 365 350 365
(5,250) 142 173 12.7 149 16.4 18.4 29.1  36.8 326 342
(10,250) 13.8 159 13.0 174 16.6  19.6 292 35.0 358 38.6

(5,1000) 41.1 46.1 2277 257 141 173 294 374 33.0 358
(10,1000) 393 442 21.0 272 13.7 18.7 28.0 37.0 357 415

T = 10000:

(5,100) 491.5 505.5 489.4 496.5 494.5 500.8 503.1 511.8 513.4 525.2
(10,100) 548.4 558.0 548.6 5529 529.3 534.7 5382 5443 5543 565.2
(5,250) 534.4 543.7 529.7 5439 523.4 536.1 519.7 525.5 526.1 5322

(10,250) 551.0 560.5 554.5 5633 547.4 555.2 548.6 555.1 571.6 5784
(5,1000) 669.0 704.4 570.5 584.8 538.8 552.7 5329 541.3 535.8 558.4
(10,1000) 703.5 738.2 613.1 633.6 555.7 566.3 549.9 559.5 567.2 578.6
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In Table 4.2, we compare the accumulated regret of our proposed policies with different
granularity parameters o, under a range of different parameter settings of number of nests M,
number of items per nest /V, and time horizon 7. In Figure 4.3, we further plot the accumulated
regret of our policies for time horizon when T is large (T between 10° and 107). From both
Table 4.2 and Figure 4.3, one can see a clear pattern of sub-linear accumulated regret. Moreover,
when N is small as compared to 7', a smaller discretization granularity leads to better empirical
performance; while when [V is large, a larger discretization granularity is better.

4.3 The linear contextual logit model

While many discrete choice models associate each item for sale with a single utility parameter
v, In many practical scenarios additional contextual information is available, such as their color,
brand, size, texture, as well as customers’ evolving demands. The objective of this section is to
develop principled dynamic assortment recommendation methods incorporating such contextual
information of items.

We assume that there are /N items, conveniently labeled as 1,2,--- | N. At each time ¢, a
set of time-sensitive “feature vectors” v;1, o, - -+ , vsv € RY and revenues 7, -+ ,7¢n € [0,1]
are observed, reflecting time-varying changes of items’ revenues and customers’ preferences.
A retailer, based on the features {v;;}Y, and previous purchasing actions, picks an assortment
Sy € [N] under the cardinality constraint |S;| < K to present to an incoming customer; the
retailer then observes a purchasing action ¢, € S; U {0} and collects the associated revenue r;, of
the purchased item (if 7; = 0 then no item is purchased and zero revenue is collected).

We use an MNL model with features to characterize how a customer makes choices. Let
6y € R? be an unknown time-invariant coefficient. For any S < [N], the choice model py, ;(+|5)
is specified as (let 7o = 0 and v,y = 0)

exp{vtTj 6o}
L+ 2 es exp{vgfo}
For simplicity, in the rest of the paper we use pg.(-|S) to denote the law of the purchased item

i, conditioned on given assortment S at time ¢, parameterized by the coefficient # € R?. The
expected revenue R;(S) of assortment S < [N] at time ¢ is then given by

Paoe(J]S) = Vje S u{o}. (4.26)

ZjeS T'tj eXp{Ut—EQO}
14D cs exp{v/;6o}
Note that throughout the paper, we use Eq, ;[-|S] to denote the expectation with respect to the

choice probabilities py, +(j]S) defined in Eq. (4.26).
Our objective is to design policy 7 such that the regret

Rt<S) = E907t[rtj|5] = (427)

T
Regret({S,}L,) = E” Z R(S}) — Ri(S;) where S; =arg max R(S) (4.28)
=1

SS[N],|S|<K

is minimized. Here, S} is an optimal assortment chosen when the full knowledge of choice
probabilities is available (i.e., 6, is known).
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Algorithm 13 The MLE-UCB policy for dynamic assortment optimization

1: Input: Number of pure explorations 7, constraint radius 7.
2: Output: Assortment selections {S;}7_; < [N] satisfying |S;| < K.
Pure exploration: fort = 1,--- | Tp, pick S; = {¢;} for a single product ¢, sampled uniformly
at random from {1, --- , N} and record purchasing actions (i, - ,iz,);
Compute a pilot estimator using global MLE: * € arg maxycpa Zfozl log p ¢ (iv|Sy);
fort =T, +1toT do
Observe revenue parameters {r;} ., and preference features {v;} 1, at time ¢;

[O8]

Compute local MLE @t,l € argmaxjg_g*|,<r Zi;ll log pg .+ (3¢ |Sy);
For every assortment S < [N], |S| < K, compute its upper confidence bound

R >0k

Ry(S) :=E;_ [r4;|S] + min {Lw\/ ft_l{%@_l)m@t_l|s>ft_1{2<§t_1>||op} :

t—1
I 1(0) = Z My (0]Sy); M(0]S) := Ee,t[”tjU:ﬂS] - {Eat[vtj|S]}{E9,t[vtj|5]}T5

t'=1

w = 4/dlog(pvTK);

9: Pick S, € arg maxgc[ny,s|<k R,(S) and observe purchasing action i, € S, U {0};
10: end for
Remark: the expectations admit the following closed-form expressions:

E S = 'S . Zjesrtjexp{v;ﬂ}.
0l S1 = jes o (715)15 = Ti5_oprar

E gl = S _ Zjesvtjexp{vl?;@}_
04[05151 = jes pou(71S)vy = TS onlays

T T
T N . T Yljes vejvy; expfv,; 0}
Bo,1[01j0;]S] = 2jes o (G]S) ooy = 143 e g explo 0}

4.3.1 An MLE-UCB policy and its regret

We propose an MLE-UCB policy, described in Algorithm 13.

The policy can be roughly divided into two phases. In the first pure exploration phase, the
policy selects assortments uniformly at random, consisting of only one item. The objective of
the pure exploration is to establish a “pilot” estimator of the unknown coefficient 6, i.e., a good
initial estimator for #,. For the simplicity of the analysis, we choose one item for each assortment
in this phase, which facilitates us to adapt existing analysis in the works of Filippi et al. (2010);
Li et al. (2017b) as the MNL-logit choice model reduces to a generalized linear model when
only one item is present in the assortment. In the second phase, we use a UCB-type approach
that selects S; as the assortment maximizing an upper bound R;(S;) of the expected revenue
R;(S;). Such upper bounds are built using a local Maximum Likelihood Estimation (MLE) of
0. In partAicular, in Step 5, instead of computing an MLE, we compute a local MLE, where the
estimator ¢;_, lies in a ball centered at the pilot estimator #* with a radius 7. This localization also
simplifies the technical analysis based on Taylor expansion, which benefits from the constraint
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that ét_l is not too far away from 6*.

To construct the confidence bound, we introduce the matrices ]\Z(ét_ﬂS) and I,_1(6,_,)
in Step 6 of Algorithm 13, which are empirical estimates of the Fisher’s information matrices
—E[VZlog p(:|0)] corresponding to the MNL choice model p(-|S;). The population version of
the Fisher’s information matrices are presented in Eq. (??). These quantities play an essential
role in classical statistical analysis of maximum likelihood estimators (see, e.g., (Van der Vaart,
1998)).

The proposed MLE-UCB policy has three hyper-parameters: the coefficient w > 0 that
controls the lengths of confidence intervals of R;(S), the number of pure exploration iterations
Ty, and the radius 7y in the local MLE formulation. While theoretical values of w, 7 and 7
are given in Theorem 19, which potentially depend on several unknown problem parameters, in
practice we recommend the usage of T, = max{dlog T, T"*}, w = \/dlogT and 7 = 1/K.

To establish rigorous regret upper bounds on Algorithm 13, we impose the following assump-
tions:

(Al) There exists a constant v such that |v;;|2 < v for all ¢ and j. Moreover, for all t < Tj
and j € [N], v; are i.i.d. generated from an unknown distribution with the density
satisfying that A\pin (E,0vT) = g for some constant Ay > 0;

(A2) There exists a constant p < oo such that for all ¢ € [T] and S < [N] with |S| < K,

+(315) o
5:2’]5(;%5) < pfor all ]7]’ eSu {0}

The item (A1) assumes that the contextual information vectors {v;;} in the pure-exploration
phase with ¢ < Tj are randomly generated from a non-degenerate density. It also places a stan-
dard boundedness condition on {u;;} for all time periods ¢. Note that after the pure-exploration
phase, we allow the contextual vectors {v;;} to be adversarially chosen, only subject to bounded-
ness conditions. (A2) additionally assumes a bounded ratio between the probability of choosing
any two different items in an arbitrary assortment set. We remark that if ||fy||s < C, then the
boundedness assumption in (A1) implies (A2) with p < e?max{L.Cv}

We are now ready to state our main result that upper bounds the worst-case accumulated
regret of the proposed MLE-UCB policy in Algorithm 13.

Theorem 19. Suppose that Ty = max{r*dlog T/, p*(d+log T)/(7?Xo)} and T = 1/+/ p?V2 K?
in Algorithm 13, then the regret of the MLE-UCB policy is upper bounded by

e [dﬁ og\s L prTK) + d®\: 20 2 K2 log T] + O, (4.29)

where Cy, Cy > 0 are universal constants.

In addition to universal constants, the regret upper bound established in Theorem 19 has
two terms. The first term, dv/T - log(A\g LpovTK), is the main regret term that scales as O(d\/T )
dropping logarithmic dependency. The second d?\;%p*v? K2 log T term is a minor term, because
it only scales logarithmically with the time horizon 7'. One remarkable aspect of Theorem 19 is
the fact that the regret upper bound has no dependency on the total number of items N (even in
a logarithmic term). This is an attractive property of the proposed policy, which allows /N to be
very large, even exponentially large in d and K.

While the computational task in Step 8 is quite challenging, approximation algorithms can be
developed with rigorous performance guarantees. Interested readers should refer to (Chen et al.,
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2018b, Sec. 5) for further details.

4.3.2 A regret lower bound

To complement our regret analysis in the previous section, in this section we prove a lower bound
for worst-case regret. Our lower bound is information theoretical, and therefore applies to any
policy for dynamic assortment optimization with changing contextual features.

Theorem 20. Suppose d is divisible by 4. There exists a universal constant Cy > 0 such that for
any sufficiently large T and policy T, there is a worst-case problem instance with N = K - 24

items and uniformly bounded feature and coefficient vector (i.e., |v;|o < 1 and |6y|l2 < 1 for all
i € [N, t € [T]) such that the regret of 7 is lower bounded by Cs - d\/T /K.

Theorem 20 essentially implies that the 6(d\/T ) regret upper bound established in Theorem
19 is tight (up to logarithmic factors) in 7" and d. Although there is an O(K) gap between the
upper and lower regret bounds, in practical applications K is usually small and can be generally
regarded as a constant. It is an interesting technical open problem to close this gap of O(K).

We also remark that an Q(d+/T') lower bound was established in the works of Dani et al.
(2008) for contextual linear bandit problems. However, in assortment selection, the reward func-
tion is not coordinate-wise decomposable, making techniques in the works of Dani et al. (2008)
not directly applicable.

4.3.3 Numerical results

In this section, we present numerical results of our proposed MLE-UCB algorithm. We use the
greedy swapping heuristics (proposed in (Chen et al., 2018b, Algorithm 4)) as the subroutine to
solve the combinatorial optimization problem in Step 8 of Algorithm 13.

Experiment setup. The unknown model parameter 6, € R? is generated as a uniformly ran-
dom unit d-dimensional vector. The revenue parameters {r;;} for j € [IN] are independently
and identically generated from the uniform distribution [0.5, 0.8]. For the feature vectors {v;;},
each of them is independently generated as a uniform random vector v such that |v|| = 2 and
v70y < —0.6. Here we set an upper bound of —0.6 for the inner product so that the utility param-
eters uy; = exp{v;;0p} are upper bounded by exp(—0.6) ~ 0.55. We set such an upper bound
because if the utility parameters are uniformly large, the optimal assortment is likely to pick very
few items, leading to degenerated problem instances. In the implementation of our MLE-UCB
algorithm, we simply set Ty = |VT] and w = 1/dIn(TK).

Performance of the MLE-UCB algorithm. In Figure 4.4a we plot the average regret (i.e.
regret/T") of MLE-UCB algorithm with N = 1000, K = 10,d = 5 for the first 7" = 10000 time
periods. For each experiment (in both Figure 4.4a and other figures), we repeat the experiment
for 100 times and report the average value. In Figure 4.4b we compare our algorithm with
the UCB algorithm for multinomial logit bandit (MNL-UCB) from the works of Agrawal et al.
(2017a) without utilizing the feature information. Since the MNL-UCB algorithm assumes fixed
item utilities that do not change over time, in this experiment we randomly generate one feature
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Figure 4.5: Average regret of MLE-UCB for Figure 4.6: Average regret of MLE-UCB for
various d’s. various N’s.

vector for each of the N = 1000 items and this feature vector will be fixed for the entire time
span. We can observe that our MLE-UCB algorithm performs much better than MNL-UCB,
which suggests the importance of taking the advantage of the contextual information.

Impact of the dimension size d. We study how the dimension of the feature vector impacts
the performance of our MLE-UCB algorithm. We fix N = 1000 and K = 10 and test our
algorithm for dimension sizes in 5,7,9, 11, ..., 25. In Figure 4.5, we report the average regret at
times 7" € {4000, 6000, 8000, 10000}. We can see that the average regret increases approximately
linearly with d. This phenomenon matches the linear dependency on d of the main term of the
regret Eq. (4.29) of the MLE-UCB.
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Impact of the number of items N. We compare the performance of our MLE-UCB algorithm
for the varying number of items N. We fix K = 10 and d = 5, and test MLE-UCB for N €
{1000, 2000, 3000, 4000}. In Figure 4.6, we report the average regret for the first 77 = 10000
time periods. We observe that the regret of the algorithm is almost not affected by a bigger V.
This confirms the fact that the regret Eq. (4.29) of MLE-UCB is totally independent of N.

4.4 Summary and related works

Assortment optimization plays a central role in revenue and recommendation management sys-
tems, with dynamic modeling and planning receiving much recent attention from the operations
research and operations management society, which combines statistical modeling and sequen-
tial decision making at the same time. In my works, my collaborators and I extend the seminal
works of Agrawal et al. (2017a); Rusmevichientong et al. (2010) by sharpening their regret up-
per bounds (Sec. 4.1), and considering more complex and practical assortment choice models
(Secs. 4.2, 4.3).

Below we summarize some major literature on the stationary and dynamic assortment opti-
mization problem. We also review relevant literature of online learning and bandit optimization.

Stationary and dynamic assortment planning Static assortment planning with known choice
behavior has been an active research area since the seminal work by Mahajan & van Ryzin
(2001); van Ryzin & Mahajan (1999). When the customer makes the choice according to the
MNL model, Gallego et al. (2004); Talluri & van Ryzin (2004) prove the the optimal assortment
will belong to revenue-ordered assortments. An alternative proof is provided in the work of
Liu & van Ryzin (2008). This important structural result enables efficient computation of static
assortment planning under the MNL model, which reduces the number of candidate assortments
from 2% to N and will also be used in our policy development.

Motivated by the large-scale online retailing, researchers start to relax the assumption on
prior knowledge of customers’ choice behavior. The question of dynamic optimization of assort-
ments has received increasing attention in both the machine learning and operations management
society Agrawal et al. (2017a,b); Caro & Gallien (2007); Rusmevichientong et al. (2010); Saure
& Zeevi (2013), where the mean utilities of products are unknown and have to be learnt on
the fly. Motivated by fast-fashion retailing, the work by Caro & Gallien (2007) was the first
to study dynamic assortment planning problem, which assumes that the demand for product is
independent of each other. The work Rusmevichientong et al. (2010) and Saure & Zeevi (2013)
incorporate choice models of MNL into dynamic assortment planning and formulate the problem
into a online regret minimization problem.

Assortment planning under nested logit models The nested logit model is considered as
“the most widely used member of the GEV (generalized extreme value) family” and “has been
applied by many researchers in a variety of situations” (see Chapter 4 from Train (2009)). It is
well known that the standard MNL suffers from the independence of irrelevant alternatives (I1A),
which implies proportional substitution across alternatives (see Chapter 4 from Train (2009)).
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Davis et al. (2014) proved an important structural result that the optimal assortment within
each nest is revenue-ordered, which will also be used in designing our dynamic policies. Assum-
ing that there are M nests and /N products within each nest, Li & Rusmevichientong (2014) fur-
ther proposed an efficient greedy algorithm to find an optimal assortment set with O (/N M log M)
time complexity. Kok & Xu (2011) considered the joint assortment optimization and pricing
problems with a restricted number of nests. There are several recent works on static assortment
planning under variants of nested logit models. For example, Gallego & Topaloglu (2014) stud-
ied the constrained nested logit model, Li et al. (2015) extended the popular two-level nested
logit model to a d-level nested logit model with d > 2. In addition, there are extensive re-
search on static assortment optimization for more complex choice models, e.g., a robust version
of MNL (Rusmevichientong & Topaloglu, 2012), the mixture of logit models (Bront et al., 2009;
Méndez-Diaz et al., 2014; Rusmevichientong et al., 2014), Markov chain-based choice models
(Blanchet et al., 2016), the generalized attraction model (Wang, 2013), Mallows-based choice
models (Désir et al., 2016), a multiple attempt model (Chung et al., 2019), and a general class of
choice models based on a distribution over permutations (Farias et al., 2013).

Assortment planning under contextual models Personalized assortment optimization has at-
tracted much research effort recently. By incorporating the feature information of each arriving
customer, both the static and dynamic assortment optimization problems are studied in the works
of Chen et al. (2015b) and Cheung & Simchi-Levi (2017), respectively. Other research studies
personalized assortment optimization in an adversarial setting rather than stochastic setting. For
example, Chen et al. (2016); Golrezaei et al. (2014) assumed that each customer’s choice behav-
ior is known, but that the customers’ arriving sequence (or customers’ types) can be adversarially
chosen and took the inventory level into consideration. Since the arriving sequence can be arbi-
trary, there is no learning component in the problem and both the works of Golrezaei et al. (2014)
and Chen et al. (2016) adopted the competitive ratio as the performance evaluation metric.

Unimodal bandits The assortment optimization problem with the plain logit model under the
uncapacitated setting is closely related to multi-armed bandit problems with unimodal constraints
(Agarwal et al., 2013; Combes & Proutiere, 2014; Cope, 2009; Yu & Mannor, 2011), in which
discrete or continuous multi-armed bandit problems are considered with additional unimodality
constraints on the means of the arms. Apart from unimodality, additional structures such as “in-
verse Lipschitz continuity” (e.g., |1(7) —p(j)| = L|i— j| for some constant L, where 1(i) denotes
the mean reward of the ¢-th arm) or convexity are imposed to ensure smaller regret compared to
unstructured multi-armed bandits. However, both conditions fail to hold for the revenue poten-
tial function arising from uncapacitated MNL-based assortment planning problems. In addition,
under the gap-free setting where an O(+/T') regret is to be expected, most previous works have
additional log T" terms in their regret upper bounds (except for the work of Cope (2009) which
introduces additional strong regularity conditions on the underlying functions). In the work
of Cohen-Addad & Kanade (2017), a more general problem of optimizing piecewise-constant
function is considered, without assuming a unimodal structure of the function. Consequently, a
weaker O(T?/3) regret is derived.
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Contextual bandits The assortment optimization problem with linear contextual modeling is
related to the contextual bandit problem in the bandit online learning literature, and is particularly
connected to the linear and generalized linear bandits (Abbasi-Yadkori et al., 2011; Abe et al.,
2003; Agrawal & Goyal, 2013; Auer, 2002; Chu et al., 2011; Dani et al., 2008; Filippi et al., 2010;
Li et al., 2017b; Rusmevichientong & Tsitsiklis, 2010). The assortment optimization problem
is technically not a generalized linear model and is therefore more challenging. Moreover, in
contextual bandit problems, only one arm is selected by the decision-maker at each time period.
In contrast, each action in an assortment optimization problem involves a set of items, which
makes the action space more complicated.

4.5 Proofs of results in Sec. 4.1

4.5.1 Proof of Lemma 52

Let s < s’ be the two endpoints such that F'(s*) = F(s') = F* (if there are multiple such s, s’
pairs, pick any one of them). We will prove that s < F™* < ', which then implies Lemma 52.

We first prove s < F'*. Assume by contradiction that /™ < s. Clearly s # 0 because ['* > 0.
By definition of F' and F'*, we have

D sy Tili
F*=F(s)=-—"=2= i — v, = F*. 4.30
(3 ) 1+ Zri?s, V; TESI(T )U ( )
Because F'* < s, adding we have that
di(ri— F*)ui = F* — F(s)>F*. (4.31)

=S

This contradicts with the fact that F'(s) # F(s™) and that F'* is the maximum value of F'.
We next prove F'* < s’. Assume by contradiction that /'* > s’. Removing all items corre-
sponding to r; = s’ in Eq. (4.30), we have

di(ri—F* )= F* — F(s")>F*. (4.32)

r;>s

This contradicts with the fact that F'(s'") # F(s’) and that F** is the maximum value of F.

4.5.2 Proof of Lemma 53

Because F'(0*) = #* = F* and F* is the maximum value of F', we have F'(#) < 6 forall § > 6*.
In addition, for any 6 > 6%, by definition of I’ we have
FO)—F0")=R{ieN:r,=20})—R{ieN :r; > 0}) (4.33)
_ ZT‘Z‘ZQ TiU; . ZTZ'>9 T V;
1 + Zm}@ Vi 1 + Zri>9 Ui

(4.34)
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(T + 2 g i) (D mg Tivi) — (L4 20 g vi) (20 Ti0i)

— (1+ an vi)(1 + erg ;) (4.35)

A 20 ) Qe i) — (g Vi) (50 Ti01)

- L+ 0L+, ) (4.36)
0= R0, (437)

Because 6 > F'(#) holds for all § > 6*, we conclude that § > F'(§*) also holds for all § > 6*.
Subsequently, the right-hand side of Eq. (4.37) is non-negative and therefore F'(0) > F(6%).

4.5.3 Proof of Lemma 54

If F(§) = F* for all § < 6* then the lemma clearly holds. In the rest of the proof we shall
assume that there is at least one jumping point strictly smaller than 6*. Formally, we let 0 <
51 < §9 < --- < & < 0" be all jumping points that are strictly smaller than 6*. To prove Lemma
54, it suffices to show that F'(s;) = s; and F(s;) = F(s;) forall j = 1,--- t.

We use induction to establish the above claims. The base case is 7 = t. Because F'* is the
maximum value of F, we conclude that F'(s;) < F* = F(s;"). In addition, because s; < 0* =
F* = F(s;"), invoking Eq. (4.37) we have that F'(s;) < F'(s; ). The base case is then proved.

We next prove the claim for s;, assuming it holds for s;.; by induction. By inductive hypoth-
esis, F/(sj41) = sj41 = 5;. Also, F(s]) = F(s;+1) because there is no jump points between s;
and s5;,1, and subsequently F'(s;) > s;. Invoking Eq. (4.37) we proved F(s;) < F(s]).

To prove F'(s;) = s;, define v; := (3, vi)/(1 + 2, =, vi). Itis clear that 0 < 7; < 1,
By Eq. (4.37), we have

F(sj) —sj=F(s;) = F(s]) + F(s]) — 55 (4.38)
=yl Fp)] + Fls) -3 (439
= (L=7) [F(s7) = 5] (4.40)

As we have already proved F(sj) > s;, the right-hand side of the above inequality is non-
negative and therefore F'(s;) > s;.

4.5.4 Proof of Theorem 13

We first state a simple lemma showing that the confidence bound ¢,(y,) and u;(y,) constructed
in Algorithm 8 contains F'(y,) with high probability.
Lemma 60. With probability 1 — O(T™1), £,(0) < F(0) < u(0) for all t.

Proof. Let § = 1/T? be the confidence parameter in Algorithm 9. By Hoeffding’s inequality
(Lemma 89) and the fact that 0 < F'(f) < 1 for all §, we have

o) F(@)‘ y 1n<1/5>] @4

Pr[F(0) ¢ [£:(0), u:(0)]] = Pr [ r 2t
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< 2exp {—Qt : W} <25 =2/T? (4.42)

Subsequently, by union bound the probability of F'(0) ¢ [¢(6), u:(0)] for at least one t is at most
o(T1). O

The following lemma, based on properties of the potential function /' and Lemma 60, estab-
lishes that (with high probability) the shrinkage of a, or b, are “consistent”; i.e., 8* is always
contained in [a,, b ]. Its proof is based on the intuitive two-case analysis discussed before The-
orem 13 and will be provided later.

Lemma 61. With probability 1 — O(T 1), a, < 0* < b, forallT =1,2,--- , 7, where 7y is the
last outer iteration of Algorithm 8.

Using Lemmas 60 and 61, we are able to prove the following lemma that upper bounds the
regret incurred at each outer iteration 7 using the distance between the trisection points z, and
yT'

Lemma 62. For 7 = 0,1,--- let T(7) denote the set of all indices of inner iterations at outer
iteration 7. Conditioned on the success events in Lemmas 60 and 61, it holds that

E Z R(S)) S e tlogT. (4.43)
teT (T

We are now ready to prove Theorem 13.

Proof. Recall the definition that ¢, = y, — x, for outer iterations 7 = 0, 1, - - -. Because after
each outer iteration we either set b, ., = y, or a,41 = x,, itis easy to verify thate, = (2/3)-c,_;.
Subsequently, invoking Lemma 61 and using summation of geometric series we have

T 70
EY R(S*) = R(S) £ > e, logT s e, log T, (4.44)
t=1

T7=0

where 7 is the total number of outer iterations executed by Algorithm 8. On the other hand,
because at each outer iteration 7 the revenue level a, is exploited for exactly n, = 16[(y, —
r,)"%In(T?)] times, we have

T>=2n., 2 logT (4.45)

Combining Egs. (4.44) and (4.45) we conclude that Regret({St}t D) <VTlogT. O

Proof of Lemma 61 We use induction to prove this lemma. We also conditioned on the fact
that ¢,(z,) < F(x,) < ut(xT) and ¢,(y,) < F(y,) < w(y,) for all ¢ and 7, which happens with
probability at least 1 — O(T!) by Lemma 60.

We first prove the lemma for the base case of 7 = 0. According to the initialization step
in Algorithm 8, we have a, = 0 and b, = 1. On the other hand, for any § > 0 it holds that
0 < F(0) < F* < 1. Therefore, 0 < 0* < 1 and hence a, < 0* < b, for 7 = 0.

We next prove the lemma for outer iteration 7, assuming the lemma holds for outer iteration
T—1(@.e., a1 <1r* < b,_1). According to the trisection parameter update step in Algorithm
8, the proof can be divided into two cases:
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Case 1: ui(y,—1) < yr—1. Because (;(y.—1) < F(y,—1) < ui(y,—1) always holds, we conclude
in this case that F'(y,—1) < y.—;. Invoking Lemma 54 we conclude that b, = y._; > 6*. On the
other hand, by inductive hypothesis a, = a, 1 < 6*. Therefore, a, < r* < b,.

Case 2: ui(y; 1) = y-1. In this case, the revenue level y, ; must be explored at every inner
iteration in Algorithm 8 at outer iteration 7 — 1, because u;(y, 1) is a non-increasing function
of t. Denote &, = y, — x, and n, = 16[e;2In(T?)] as the number of inner iterations in outer
iteration 7. Subsequently, the length of the confidence intervals on y,._; at the end of all inner
iterations can be upper bounded by

In(72)

1
|ut(y'r—1) - gt(y7—1)| <2 n < 55;1- (446)
Invoking Lemma 60 we then have
r—1 — T7r— r—1 — Lr—
F(yr1) 2 Y1) > iy, ) = Tt 2y, = I (4.47)

We now establish that z, | < 6%, which implies a, < 6* < b, because a, = x, 1 and
b = b;_1 = 0" by the 1nduct1ve hypothesis. Assume by contradiction that x, ; > 6*. By
Lemma 53, F(z, 1) < z, 1 and F(z, 1) = F(y,_1). Subsequently,

Yr—1 — Tr1

5 , (4.48)

which contradicts Eq. (4.47).

Proof of Lemma 62 This lemma upper bounds the expected regret incurred at each outer iter-
ation 7, conditioned on the success events in Lemmas 60 and 61.
We analyze the regret incurred at outer iteration 7 from exploration of v, and exploitation of
a, separately.
1. Regret from exploring y,: suppose the level set £, (N) is explored for m, < n, times at
outer iteration 7. Then we have u,,_(y,) = y,. In addition, by Lemma 60 and widths in the
constructed confidence bands /,,,_(y,) and umT (yT) we have with probability 1 —O(7 ') that

b (Yr) < F(yr) <t (y-) and |up,, (yr) — b, (y-)] < 24/ (In(T?)/2m.,. Subsequently,

lnT
F(yr) 2 b, (yr) = tm, (yr) — 2\5 —2 (4.49)

Note also that y, = a, > 0" — 3¢, = " — 3¢,; we have

InT

m,

F* — F(y,) <3, +2 (4.50)

By Lemma 52, F* = R(S*) and therefore the right-hand side of the above inequality is
an upper bound on the regret incurred by exploring revenue level y, (corresponding to the
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assortment selection £, ) once. As the exploration is carried out for . times, the total regret
for all exploration steps at revenue level x, can be upper bounded by

T
"2 < 3mees +A/Am InT < 3nye, + /A, InT < el log T, (4.51)

M [3€T +2

T

Here the last inequality holds because n, < 16e72 In(77).

2. Regret from exploiting a,: by Lemma 61, a, < 6*, and therefore F'(a,) > a,. In addition,
a, = 0* — 3¢, by the definition of .. Subsequently,

Fla,) = a, > 0" —3e, = F* — 3¢, (4.52)

Re-organizing terms on both sides of the above inequality and noting that F* = F'(S*), we

have
F(S*) — F(a,) < 3¢;. (4.53)

Therefore, the regret for each exploitation of revenue level a, (corresponding to the assort-
ment selection £, ) can be upper bounded by ¢,. Because the revenue level a, is exploited
for n, times and n, < 16¢_ 2In(T?), the total regret of exploitation of a, at outer iteration 7
can be upper bounded by

ny - 3er S 8;1 logT'. 4.54)
4.5.5 Proof of Lemma 55
Without loss of generality we assume X7, - -- , X € [0, 1] almost surely, while the general case
of Xy,--+, X € [a, b] can be dealt with by a simple re-scaling argument. Denote & := |log, L|.

Foreach /€ {1,2,4,--- 2k}, by standard Hoeffding’s inequality (Lemma 89), we have
1 < In[8/(6¢)] o0

2 4
Subsequently, by union bound and the fact that 1 + 2 + 4 + - - - + 2% < 2¥*1 < 2L, we have

M] >1- %L (4.55)

<

Pr|V/=1.24---.2% 1|2
r[ b B ) M 2€

Next consider any £ € {1,2,4,--- ,2F}. By Hoeffding’s maximal inequality (Lemma 93), we
have
Y4

14

Pr [Vi < min{{,n — ¢},
Again using union bound over all / = 1,2,4,--- ,2* and the fact that 1 + 2 + 4 + --- + 2F <

2k+1 < 91, we have
¥4 oL

(4.56)

Pr [wz 1,2,--, 2% i <min{l,n — ¢},
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Combining Egs. (4.55,4.56), we have with probability 1— L uniformly overall / = 1,2, 4,--- | 2k
and ¢ < min{¢,n — ¢} that

X0+ + X+ Xopr + o+ Xogy — (C+9) | < A/201[8/(50)].
Dividing both sides of the above inequality by (¢ + i) we complete the proof of Lemma 55.

4.5.6 Proof of Theorem 14

We first define some notations. Let 7 = 0, 1, - - - be the number of outer iterations in Algorithm
8, e, = (yr — x,) be the distance between the two trisection points at outer iteration 7, and
n, = 8[e-?In(87c?)]| be the pre-specified number of inner iterations. Recall also that 6% =
F(6*) = F* is the optimal revenue value suggested by Lemma 52.
Define the following three disjoint events that partition the entire probabilistic space:

e Event & (7): 0* < a, < by;

e Event &(7): a, < 0* < by;

e Event &(7): a, < b, < 6*.

Let 75 € N be the last outer iteration in Algorithm 8. Let also 7 (7) < [7'] be the indices of inner

iterations in outer iteration 7, satisfying |7 (7)| < 2n, almost surely. For w € {1,2,3}, 7 € N
and o, B € RT, define

V2 (a, B) =K Z > R R(S)|Eu(T), lar — 0%| = a,|F(a,) —a,| = B|. (4.57)
T'=T1 €T (/)
Intuitively, 1 («, ) is the expected regret Algorithm 8 incurs for outer iterations 7, 7+1, - - - | 79,

conditioned on the event £, (7) and other boundary conditions at the left margin a..
The following three lemmas are the central steps in our proof, which establish recurrence
relationships among % («, ), for w € {1,2,3}. The proofs are technically involved and given
later. To simplify notations, we write a,, < b, or b, = a, if there exists a universal constant
C' > 0 such that |a,| < C|b,| forall n € N.
Lemma 63 (Regretin Case 1). ¢}(c, 8) < BT+X0__ 1 supa. , AT exp{—n,A’}+0(e! log(Te2)).

Lemma 64 (Regret in Case 2). ¢2(«a, 3) < O(e; M log(Te2)) + ¢2.,(ah, B) + 2,1 (oh, B5) -
O(log(T'7)/(Te7))+Sup s, V741 (al, Bi(A)) exp{—n, AT} for parameters o, 51 (A), o, 5, o, B
that satisfy B (A) < A and ofy < 3e,.
Lemma 65 (Regret in Case 3). ¥3(a, 3) < aT.

We are now ready to complete the proof of Theorem 14 by combining Lemmas 64, 63 and
65.

Proof. We first get a cleaning expression of 1! («, 3) using Lemma 63. First note that A
A exp{—n,A?} attains its maximum on A > 0 at A = 4/1/2n.,. Also note that n, = [8c?In(87?)]
and therefore 4/1/2n, < e,. Subsequently,

70

70 70
Z sup AT exp{—n,A*} < Z e, T exp{—n,e2} < Z e, T exp{—In(Te?)}

. A>er

T T
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< 2 e, =0(,)), (4.58)
where the last asymptotic holds because {¢,} forms a geometric series. Subsequently,

Y, B) < BT + i O(e' log(Te2)). (4.59)

It remains the bound the summation term on the right-hand side of the above inequality.
Denote s, = ¢,/ In(Te%) = p~~ ln(Tp ™), where p = 2/3 We then have s, = p™~ " [1 +
In p=2(0=]s < 2(19 — 7' 4+ 1)p™ " In(1/p) for all 7' < 75. Subsequently,

70 70
Dlso < Y 27+ 1) 7 In(1/p) - $7, < O(1) - 51, (4.60)
/=T /=0
Therefore,
Ui, B) < BT + O(e ! log(Te2 ). (4.61)

We are now ready to derive the final regret upper bound by analyzing 1)2(«, 3), because the
event £ (0) always holds since 0 < 0* < 1. Applying Lemma 64 with Lemma 65 and Eq. (4.61),
we have for all 7 € {0,1,--- , 70} that

In(Te2)

T

Vr(e B) < 2,4 (0h, Bp) + O(e; log(Ter)) + O(e:T) - —5

+ sup (AT + O(e;,' log(T<e2))) exp{—n,A%}

A>e,
S w7+1(0427 B5) + O(e. 1 1log(Te?)) + sup AT exp{—n,A?}
+ O(e7,' log(T<3,)) - exp{—ne7}. (4.62)

Using the same analysis as in Eq. (4.58), we know sup,.. AT exp{—n,A%} < O(e;!) and
exp{—n,e2} < 1/(T€?). Subsequently, summing all terms 7 = 0, 1, - - - , 7y together we have

Z O(e; ' log(Te?)) + O(e;, log(Te2)) - T2
1 2
<en log(TéTO) -(1+1/(Te3,)). (4.63)
Finall > e 2 i i 2 A/ i
y, note that n,; % ¢_° and n,, < T, implying that ¢, = /1/T". Plugging the lower bound

on £, into the above inequality we have ¥2(a, 3) < +/T, which completes the proof of Theorem
14. []

Proof of Lemma 64 First analyze the expected regret incurred at outer iteration 7. by ex-

ploiting the left end-point a, (corresponding to assortment L, ) for n, iterations. Also, be-

cause a, < 0* < b, conditioned on &(7), by Lemmas 52 and 54 we have F(a,) > a, >
— b, —a,| = F(0*) — |b; — a,| = R(S*) — 3¢,. Subsequently,

Regret by exploiting L, : < 3e, -n, < e log(Te?). (4.64)
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Next we analyze the expected regret incu

tion point y, (corresponding to assortment £,

rred at outer iteration 7 by exploring the right trisec-
_). This is done by a case analysis. If y, < 6%, then

the regret incurred by exploiting £, at outer iteration 7 is again upper bounded (up to numerical
constants) by -1 log(T€?), similar to Eq. (4.64). Otherwise, for the case of y, > 6*, define

A, =y, — F(y,). By Lemma 53, we know
L, incurs a regret of no more than A;. Let

A, = 0, and also by Lemma 52, each exploration of
m, be the number of times £, is explored at outer

iteration 7. By definition of the stopping rule in Algorithm 8, we have

o

Pr[m, = /(] < Pr

= Pr

Because py is a

2In(87'/¢) -
7 7 Yr
CF(y) = A, — w] . (4.65)

sum of ¢ i.i.d. random variables with mean F'(y,) and values in [0, 1] almost

surely, applying Hoeffding’s inequality (Lemma 89) we have

Pr[m, = /(] <exp {—2 (\/EAT =

21n(87/1)) 2}

<)L if A, < 4/8In(87/¢)/¢,
~ | exp{—(AZ/2}, otherwise.
Subsequently,
Regret by exploring L, : < Z (A Pr[m, = (] < Z A, Prim, = (]
- =1

ZOl«/ T/é ZAeXp{ (22}

(4.66)
=ty
o0
loIn(T/ly) + sup A Z exp{—(A?/2} (4.67)
A>q/81n(8T/€0)/£0 f:fo
A —lyA?/2
loIn(T /b)) + sup expi—to 2/ )
N exp{—A?/2}
A A?/2
loIn(T'/ly) + sup exp{— 2/ }
Ty L exp{=A%/2}
8111 8T/€0
loIn(T'/ly) 4.68
oln(T/0) + A T T e 41n(8T/€0)} (4.68)
< Vo In(T'/by). (4.69)
Here in Eq. (4.66), {; is the smallset positive integer not exceeding n, such that A, > +/81n(87'/4y) /¢,.

(If A, < 4/81In(8T/¢y)/{, holds for all 1

< {y < n,, then the second term in Eq. (4.66) is 0 and
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one can conveniently set {5 = n, + 1 in this case.); Eq. (4.67) holds because

[logs £o] [logs £o]
«/ T/f 2]«/ T/Qj Z VI I(T)2) < A/l In(T/ly);

Eq. (4.68) holds because A +— Ae‘Ag/Q/(l — e~2°/2) is monotonically decreasing on A > 0.
Finally, because ¢y < n, and n, < e, ?log(Te?) > £,2, we have

Regret by exploring L,,. < v/n, In(T/n,) < &7 log(Te). (4.70)
Finally, we consider regret incurred at later outer iterations 7/ = 7 + 1, -- , 79. This is done

by another case analysis on the relative location of §* with respect to ., and b, 1:
- &(T+ 1) arp1 < 6% < byyq: the additional regret is upper bounded by o2, (o, 3}) for
some values of o/, 5 that are not important;

- &E(7 4+ 1) 6% < a1 < byyq: the additional regret is upper bounded by . (ah, 85) with
B < A, =y, — F(y,) and the value of o}, not important;
- &(T 4+ 1): ar41 < byy1 < 6*: the additional regret is upper bounded by ¥2 . (a4, 8) with
a5 < 3¢, and the value of 35 not important.
It remains to upper bound the probability the latter two cases above occur. & (7 + 1) occurs if
for all inner iterations ¢ € 7 (7), the exploration step fails to detect F'(y,) below y,, meaning that
oy 21n(8T/Z)

by Lemma 53 we know that A, =y, — F(y,) = e,. Using Hoeffding’s inequality, we have

>y, forall £ € {1,---  n,}. Also note that because 6* < a,1 = x; = y, — &,

Prl&(r +1)] < Pr Ve, 2 — F(y) > A, — 4| 2RET/E @]

l 14
<pr|Pm Fly,) > A, — 21n(87'/¢)
n, Ny
) 2
< exp {—2 (\/TTTAT — 21n(8T/nT)) }
< exp {—nTAg} . 4.71)

Here Eq. (4.71) holds because \/n, A, > \/n;e; = +/8In(87<2) = 24/21n(87/n,) by the

choice of n.,.
The &;(T + 1) event occurs if the exploration step in Algorithm 8 falsely detects v, > F'(y.)

21n(8T/¢)
l

at some stage £ € {1,--- ,n,}, meaning that £ + < y,. Note that because b, =

yr < 0*, by Lemma 54, we know F'(y,) > y.. By Lemma 55,

Pr[&(r +1)] = Pr | 3¢, pe - Yy — M]

¢ ;
[ 21n(8T
< Pr|3¢, %—F(yT) > M]
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In(T€%)

2
Tez

Combining all regret parts we complete the proof of Lemma 64.

n
< =< 4.72
SRS 4.72)

Proof of Lemma 63 The regret for all outer iterations after 7 (conditioned on &(7) : 0* <
ar < b;) consists of two parts: the regret from exploiting £, , for 7" > 7, and the regret from
exploring L, ,.

Forany 7" € {7,7 +1,--- , 7}, the expected regret from exploiting £,, can always be upper
bounded by O(c_,' log(T2)) by the same analysis in the proof of Lemma 64 (more specifically
the array of inequalities leading to Eqgs. (4.67) and (4.69)), regardless of the values of o and /.
This corresponds to the >.70__ O(e' log(T<?)) term in Lemma 63.

T

We next upper bound the expected regret incurred by exploring £, , for all 7/ = 7,7 +
1,---, 7. Because a, — F(a,) = 3 by the definition of 1}(c, 3), the expected regret incurred
by exploring L, ,, 7' € {7,7 + 1,--- 70} is at most ST’ assuming a, = ar11 = -+ = . It

then remains to bound the additional regret incurred by the movements of a.- in subsequent outer

iterations.
Let W = {7{,75,+-+,7,} be outer iterations at which the update rule a,,; < z, is applied.

We then have the following observations:

1. Each 7 € W would incur an additional regret upper bounded by AT, where A/ = y.» —
F(yy) = e

2. For each 7" € {r,7 + 1,--- , 7}, the probability update a, ;1 <« x, is applied is at most
exp{—n, A}, using the same analysis in the proof of Lemma 64 (more specifically the array
of inequalities leading to Eq. (4.71)).

Summarizing the above observations, by the law of total expectation the expected regret from ex-

ploring L, , at subsequent iterations 7/ > 7 can be upper bounded by 57+, __sup.. AT exp{—n,A%}.

Proof of Lemma 65 Because a, = 0* — a < 0*, by Lemma 54 we have F(a,) > a, =
0* — o = F(0*) — a. Subsequently, F'(S*) — F'(a,) < « thanks to Lemma 52. Also note that
conditioned on &;(7), the revenue levels explored or exploited at each time epoch ¢ € T(7’),
T < 7' < 79 are sandwiched between a, and #*, and therefore R(S*) — R(S;) < «. Hence,

V3 (a,B) <a-EXT__[T(r)] < oT.

4.5.7 Proof of Theorem 15

We first describe the underlying parameter values on which our lower bound proof is built. Fix

revenue parameters {r;}¥, asr; = 1,7, = 1/2and r3 = --- = ry = 0, which are known a
priori. We then consider two constructions of the unknown utility parameters {v;}% :

Po: v =1-1/4WT, vy=1, v3=---=vy =0;

P v1:1+1/4ﬁ,v2:1,v3=---=vN=O.

We note that Fy and P; also give the probability distributions that characterize the customer
random purchasing actions; and thus we will use P;[A] to denote the probability of event A
under the utility parameters specified by P; for j € {0, 1}.
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The first lemma shows that there does not exist estimators that can identify F from P; with
high probability with only 7' observations of random purchasing actions. Its proof involves
careful calculation of the Kullback-Leibler (KL) divergence between the two hypothesized dis-
tributions and subsequent application of Le Cam’s lemma to the testing question between I, and
Pl.

Lemma 66. For any estimator 12)\ € {0,1} whose inputs are T random purchasing actions
i1, ir, it holds that max;eqo.1, Pi[t # j] = 1/3.

On the other hand, the following lemma shows that, if the policy 7 can achieve a small
regret under both F, and P, then one can construct an estimator based on 7 such that with
large probability the estimator can distinguish between F, and P, from observed customers’
purchasing actions.

Lemma 67. Suppose a policy T satisfies Regret({S,}L_,) < /T /384 for both Py and P,. Then
there exists an estimator 12 € {0, 1} such that P][lz # j] < 1/4 for both j = 0 and j = 1.

Lemma 67 is proved by explicitly constructing a classifier (tester) @Z from any sequence of
low regret. In particular, for any assortment sequence {S;}_;, we construct ¢ as ¢ = 0 if
%Zthl I[1 € 5,2 ¢ 8] > 1/2and ¢ = 1 otherwise. Using Markov’s inequality and the
construction of {r;, v;}, it can be shown that if Regret({S;}7_,) > +/T/384 then W is a good
tester with small testing error. Detailed calculations and the complete proof is deferred to the
supplement.

Combining Lemmas 66 and 67 we proved our lower bound result in Theorem 15.

Proof of Lemma 66 We first state a lemma that upper bounds the KL divergence under F, and
P, for arbitrary assortment selections .S’ € S.

Lemma 68. For any S € S let Py(S) and Pi(S) be the distribution of the purchasing action
under Py and P, respectively. Then KL(FPy(S)||P1(S)) < 1/18T.

Proof of Lemma 68. 1If 1 ¢ S then Py(S) = P;(S) and therefore KL(FPy(S)|P(S)) = 0. In
addition, because v; = r; = 0 for all ¢ > 3, the items apart from 1 and 2 in S do not affect
the distribution of the purchasing action under both 7 and P,;. Therefore, it suffices to compute
KL(Py({1})| P1({1})) and KL(B({1, 2} | P, ({L,2})).

Before delving into detailed calculations, we first state a simple proposition bounding the KL
divergence between two categorical distributions. It is simple to verify.

Proposition 18. Let P and () be two categorical distributions on J items, with parameters
P, ,pyandq, - -+, qg respectively. Denote also €; := p;—q;. Then KL(P||Q) < Z}Ll £3/q;.

We first consider KL(Py({1})[P1({1})). By definition, Py(i = 1/{1}) < 1/2 — 1/24y/T and
Pili = 2|{2}] < 1/2 + 1/24/T. Also, min;_o 1 {P;(i|{1})} = 1/3. Subsequently,
1/144T 1 1
X < < .
1/3 24T 18T

KL(R({1})[P({1})) < 2 (4.73)

We next consider KL(FPy({1,2})[| P ({1,2})). Note that Py(i = 0|{1,2}) > P1(i = 0|{1,2}),
Po(i = 1[{1,2}) < Pz = 1|{1,2}) and Po(i = 2[{1,2}) > Pi(1 = 2|{1,2}). Also, Ry(i =
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11{1,2}) < 1/3—1/48VT, P(i = 1|{1,2}) = 1/3+1/48V/T and ming<;<o{ P, (i|{1,2})} = 1/4.
Subsequently,

/5767 _ 1 _ 1
1/4  ~ 48T ~ 18T

The lemma is thus proved. [

KL(R({1,2})| P ({1,2})) < 3 x

(4.74)

We are now ready to prove Lemma 66.

Proof of Lemma 66. Denote |P — Q|tv := 2sup, |P(A) — Q(A)| as the total variation norm
between P and @, and let P¥" P®T denote the distribution of {i;|S;}7_, parameterized by P,
and P;. By Pinsker’s inequality and the conditional independence of ¢; conditioned on S;, we
have

T
| P& — PP vy < \/ IKL(PET|PETY < sup o 2] [KL(A(S)IP(S)) (475
S ... s, iy

< V2T -sup A/KL(Py(S)| Pi(S)) < V2T - +/1/18T < 1/3. (4.76)
s
Using Le Cam’s inequality we have

(1= |IPE" = PR |1v) = =, (4.77)

W

N 1
1 . > =
inf max P [w #J] >3

¥
[

Proof of Lemma 67 Denote g, := 1/T -3 1[1€S,2¢ S, p1 :=1/T-3_,1[1,2 € 5],
Op = 1/T -3 1[2€S,,1¢ S, and § := 1/T -3 | 1[1,2 ¢ S;]. Because the four events
partition the entire probability space, we have oy + 1 + @2 + © = 1. In addition, it is easy to
verify that S* = {1} under P, and under P;. Subsequently,

Regret. (T) B ©0 N 2+ P

< under Fp;
T 12T 24 ’
T —
RBLW < pl —+ @2 i p under Pl'
T 48v/T 6

Using Markov’s inequality and the fact that Regret, (T) < +/7//384 under both P, and P;, we
have
0 P2+ 9 1 ] 1 [ o1 P2+ 9 1 1
P + > <- and P > S
0 [mﬁ 24 96yT] 4 "lasyT T 6 96vT | 4
Subsequently, because gy + ©1 + 2 + § = 1, we know that oy > 1/2 with probability > 2/3
under Py and g, < 1/2 with probability > 2/3 under P,. Define v as

~_ [0 ifpy=1/2;
Y= { 1 if o < 1/2. (4.79)

(4.78)

The estimator @Z then satisfies Lemma 67 by the above argument.

146



4.5.8 Proof of Theorem 16

Throughout the proof we set r; = -+ = ry = land vy,--- ,on € {1/K, (1 + ¢)/K} for some
parameter € € (0, 1/2] to be specified later. For any subset S < [/N|, we use 0 to indicate the
parameterization where v; = (1 +¢€)/K ifie Sand v, = 1/K if i ¢ S.

For the ease of presentation, we further define some notations. We use Sy to denote all
subsets of [V] of size K; that is, S € S implies |S| = K. Clearly, |Sx| = (¥). We use Ps and
Es to denote the law and expectation under the parameterization .

The first step in our proof is to show that under problem parameter g, for some fixed Sj €
Sk, any assortment selection §t € Sk that differs significantly from Sy would incur a large one-
stage regret. This is formalized in Lemma 69, which shows that, if a § portion of items differ
between S, and §t then the assortment §t incurs a one-stage regret of 2(Je). This reduces the
problem of lower bounding the regret of any policy to lower bounding the (expected) number of
times a specific item i € [ N] is offered, denoted as 1V; in our proof.

At the second step we show, through a “neighboring argument” detailed in Eq. (4.83), the
question of bounding E[N ] can be reduced to upper bounding the discrepancy between Eg [N ]
and Eg/ [N,] under two “neighboring” parameterizations fg and fs. Such an upper bound can
be established by using the Pinsker’s inequality, together with an upper bound on the Kullback-
Leibler (KL) divergence between Ps and Pg, which is stated in Lemma 70.

Finally, by appropriately setting the parameter ¢ which scales with N, T" and K (more specif-
ically, € is set to € = min{0.054/N /T, 0.5}), we complete the proof of Theorem 16.

The counting argument

We first prove the following lemma that bounds the regret of any assortment selection S, € Sk
Lemma 69. Fix arbitrary Sy € Sk and let v be the parameter associated with Og,; that is,
v; = (14 ¢€)/K forie Syand v; = 1/K fori e [N]\So, where € € (0,1/2]. For any S; € Sk, it

holds that 5
~ €
max {R,(5)} = Ro(S) > o,

where § = 1 — (|8, A So|/K).

Proof. By construction of v, it is clear that maxges, {R,(S)} = R,(S0) = (1 +€)/(2 + €). On
the other hand, R,(S;) = (1 + (1 —0)e)/(2 + (1 — d)e). Subsequently,

s~ lde 1+ (1—0)e
lgl%i({R( )}—Rv(st)_2+€_2+(1—5)6

de de

=
2+a2+(1—0)0 " 9

where the last inequality holds because 0 < € < 1/2. [l

For each assortment selection S; = [V], [S] < K, let S, 2 S, be an arbitrary subset of size
K that contains S;; that is, S, 2 S, S, = [N] and |S,| = K. For example, when |5, = K
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one may directly set S, = S,. Define N; := Z?zl I[i e §t] Using Lemma 69 and the fact that
{S;}I_, suffers less regret than {S;}._,, we have

T T
maxk tZle(S>—Rv<St) > max Es ;RU(S)—RU(S»

T ~

> Es ZR,,(S) — R,(S)) (4.80)
| K| SeSk t=1
2 M Es[N] - (4.81)
SeSK ¢S

== . (4.82)

) ( P 2 )

Here Eq. (4.80) holds because the maximum regret is always lower bounded by the average regret
(averaging over all parameterization fg for S € Sk), Eq. (4.81) follows from Lemma 69, and
Eq. (4.82) holds because Y'Y Eg[N;] = Es [Zj\; X N] — TK for any S  [N]. The lower
bound proof is then reduced to finding the largest e such that the summation term in Eq. (4.82) is
upper bounded by, say, ¢’ for some constant ¢ < 1.

Pinsker’s inequality

The major challenge of bounding the summation term on the right-hand side of Eq. (4.82) is
the > ..o E S[N | term. Ideally, we expect this term to be small (e.g., around K /N fraction of
SV Eg[N;] = KT) because S € Sk is of size K. However, a bandit assortment selection
algorithm, with knowledge of S, could potentially allocate its assortment selections so that N,
becomes significantly larger for + € S than ¢ ¢ S. To overcome such difficulties, we use an
analysis similar to the proof of Theorem 3.5 in (Bubeck & Cesa-Bianchi, 2012) to exploit the
Zi\il Es[N;] = NK property and Pinsker’s inequality (Tsybakov, 2009) to bound the discrep-
ancy in expectations under different parameterization.

Let Sﬁgl = Sk_1n {S € [N] :i¢ S} be all subsets of size X' — 1 that do not include :.
Re-arranging summation order we have

Ny N
Z Z Z —_ Z Es[Vi]
|SK| SeSy K= KH Skl SeS ieS
181 <
= Z 5 Z Egro i [NVi]- (4.83)
i=1 5es

~

Denote P = Ps and Q = Psr ;3. Also note that 0 < N; < T almost surely under both P and
Q. Using Pinsker’s inequality we have that

[Ep[Ni] — Eo[Ni]| < Y j - |PIN: = 51— QIN; = j]|



T
<T- Y |P[N; = j] - Q[N; = jl|
j=0

1
ST [P =Qllrv < T4/ 5KL(P|Q).

Here [P — Q|rv = supy |[P(A) — Q(A)| and KL(P|Q) = {(log dP/dQ)dP are the total varia-
tion and the Kullback-Leibler (KL) divergence between P and (), respectively. Subsequently,

PR

SeSk zeS

131 N
?Zm Z ESI[Ni]:|SK| Z ZES' ]

S'eSx_1 zgéS’

N
Skl (i-1) TK__T
— TK = TK = < = 4.85
K|Sk| K () N_K+1-3 (4.83)
. . K K
Here the last inequality holds because X' < N /4 and hence NTK 7 < 3£ T < % Combining

all inequalities we have that

Z Rv(S:) - Rv(St)

e [ 2T \/
> | = - KL(Ps/| Py ) |- (4.86)
9\ 3 [Sk] S; % ”

max Eg
SESK

It remains to bound the KL divergence between two “neighboring” parameterization fg and
Osupiy forall S" € Si_y and i ¢ S', which we elaborate in the next section.

KL-divergence between assortment selections

Define N; : Zt i e St] Note that because S; < S,, we have N; < N; almost surely and
hence 37V Eg[N;] < S 1]ES[ ;] = TK forall S < [N].

Lemma 70. Suppose € € (0,1/2]. Forany S’ € Sx_y andi ¢ ', it holds that KL(Ps || Psr_iy) <
]ES' [Nl] : 6362/K
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Before proving Lemma 70 we first prove an upper bound on KL-divergence between cate-
gorical distributions.
Lemma 71. Suppose P is a categorical distribution with parameters py, - - - , p;j, meaning that
P(X =j)=pjforj=0,---,J, and Q is a categorical distribution with parameters qo, - - - , q;.
Suppose also p; = q; + ¢ forall j =0,--- ,J. Then

J 2

LPIQ) < D) .

=0 0 4

Proof. We have that
J .
L(P|Q) = Y (q; + ;) log
j=0 4

(a) & 6 0 I, €2
< Y (g +e)2 © Z 5
j=0 G =0

Here (a) holds because log(1 + x) < x for all x > —1 and (b) holds because Zj:o g, =0 O
We are now ready to prove Lemma 70.

Proof. Itis clear that for any S; < [N], |S¢| < K suchthati ¢ S;, we have KL(Ps/(-|.S;) || Psrogiy (+]S)) =
0. Therefore, we shall focus only on those S; < [N] with i € S;, which happens for Eg/[V;]
epochs in expectation. Define K’ := |S;| < K and J := |S; n S’| < K — 1. Re-write the
probability of i; = j as p; = v;/(a + Je/K) and ¢; = vj/(a + (J + 1)¢/K) under Ps and

Pg/ gy, respectively, where @ = 1 + K'/K € (1,2]. We then have that

1 1
[P0 = a0 = T K ot (J+ DK S K
1+€ 1 1
‘pj_Qj‘< K |a+Je/K  a+(J+1) /K <ﬁ’
if 1<j<N,j#1;
1+e 1
‘pj_qj‘g‘EaJrJe/K_ K a+(J+1)¢/K
2 £ 1 1 1 1
T Ka+(J+ )e/K Kla+Je /K a+ (J+1)e/K
I T
K K K K? K K’
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Note that ¢go > 1/3 and ¢; > 1/(3K) for j > 1, because ¢ € (0,1/2], a € (1,2] and
J < K — 1. Invoking Lemma 71 we have that

KL(Ps (-[90) | Psrogiy (+150) < 77 + 3K -

Putting everything together

Using Holder’s inequality, we have that

Z ZVH@Py%wQ

|SK| S'eSk 1¢S’
T|Sk-i| \/
< ZIoK-1] KL(Ps | Py
KIS s 2; st Porogiy)
T
—_— KL(Ps || Psro gy
s'esKlN K+1%:,\/ (PolPsog)-

By Jensen’s inequality and the concavity of the square root, we have

1
_ KL(Pg || Psr
N K+1Z\/ S” Su{l)

¢S’
1
<, oo Y KL(Ps|Psiogy)-
J%N—K+Dm,(5”3{9

Invoking Lemma 70, we obtain

N _ K = S’ S/u{z N K n 1 e S K

<KN K+ 2&

126¢2 126Te
< -TK = .
NK N

~

Subsequently, setting ¢ = min{0.054/N/7T",0.5} the term inside the bracket on the right-hand
side of Eq. (4.86) can be lower bounded by 7'/3. The overall regret is thus lower bounded by
€T'/27 = min{0.001v NT', T//54}. Theorem 16 is thus proved.
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4.6 Proofs of results in Sec. 4.2

4.6.1 Proof of Theorem 17

The following lemma is the key step in our proof of Theorem 17, which shows that the estimates
¢i 9, Ui g concentrate around the true values ¢; g, u; p.

Lemma 72. Suppose T(i,0) > 96In(2MTK). With probability 1 — T~ uniformly over all
ie|M],0ek;andte|T|

R 96 max (g, U7 o) N(2MTK)  144In(2MTK)
— i ; 4.
T 0 — wip| < min \/ (17 0 + T(.0) ;o (4.87)
In(2MTK)
‘@a - @9‘ mm{ W} (4.88)

The following corollary is an immediate consequence of Lemma 72:

Corollary 7. With probability 1 — T, u; g > u; ¢ and g_bi,g > ¢igforallie[M],0e Ky x---x
K.

Corollary 7 shows that (with high probability) w; ¢ and Ei,g are valid upper bounds for u; ¢
and ¢; g. Our next corollary shows that R is also an upper bound for R’ at maximizers of R
and R. Recall that B () = [3, 6,60, ]/[1 + XV Wip,] and R'(0) =[S ¢i0,ui,]/[1 +
Zz‘]\i1 Ui, ]-

Corollary 8. With probability 1 — T, R (6) = R(A) and R (0*) = R'(6%), where 0,6* ¢
K1 x - x Ky are maximizers of R and R, respectively.

We now return to the proof of Theorem 17. The first step is to use the classical regret decom-
position for UCB-type policies (A denotes the success event in Corollary 8).

Regret({#®}7 ) EZ R'(0 o)

[Z R(0*) — R'(6")

A] Pr[A] + O(T) - Pr[ A7

[ T
SOM+E|DRE)-R(OD) +R (V) - R(0Y) A] (4.89)
=1
ZtT
<O +E| DR (HY) - R (6Y) A] . (4.90)
| t=1
=0 +E|D&]- (RO - R’(W))‘A] . (4.91)
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Here, () denotes any 0 in the 7-th epoch &, . We also note that Eq. (4.89) holds because
Pr[A°] < T-! and R (6*) > R'(6*), and Eq. (4.90) holds because R (§V) > R (6*), since )
is the maximizer of R at time ¢. ~ R

It remains to upper bound the discrepancy between E/(H(T)) and R'(67)) at every epoch
7. This is accomplished by the following “aggregation lemma”, which is proved in the online
supplement.
Lemma 73. With probability 1 — T, for all t € [T], i € [M] and 0 = (64, -- ,0y) €
]Cl X o X IC M>

M
®(6) - R(0)] < . [Z B Zuze 0, @-,ei)]. (4.92)

I+ Zi\il Us0; | i=1 L+ uip,

Note that E|E.| = 1+ 37 E[fi;-] = 1 + 32, u; 9, Combining Lemma 73 with Eq. (4.91)
we obtain

I3 9(7') Z 9(7')
Regret ({0 T ) )+ Z]E [Z 1 u e + ZU 9(7) 9(7) - Cbi,gl(r))

=1

A] . (4.93)

The following lemmas upper bound (asymptotically) the two terms in Eq. (4.93) separately.
Lemma 74. Conditioned on event A, it holds that

M 7.

5 Uy o
» i : %" < \/MKTlog(MTK) + MKU log*(MTK). (4.94)
U; 51

T 1=1

Lemma 75. Conditioned on event A, it holds that

M
2.2 U0 (@50 = 6,500) S /MKTlog(MTK) + MKUlog*(MTK).  (4.95)

T =1
Combining both lemmas and Eq. (4.93), we complete the proof of Theorem 17.

Proof of Lemma 72 We first prove the upper bound on |u; 9 — u; | for fixed i € [M] and
0 e K:z

Case 1: u;9 < 1. Letd > 0be a parameter to be specified later. Applying Lemma 94, we have

. nu; gb? nu; gb? 20u; ¢
Pr[|ui,9—ui,9| >5Ui79] <exp{—m} —l—exp{— 6 x 4 3 — 9

nu; 90> nu; gb>
< T — (3 — du;
=P { 16 max(1, 0) } e { py B ou 79)}

#Recall that in Algorithm 11, () does not change within the same epoch £,. We write ) 1o highlight that o)
is the maximizer of R in the 7-th epoch (see Step 5 of Algorithm 11).
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Suppose in addition that du; p < 2. Then

u .6 min{d, 6
Pr{[aie — uig| > duip] < 2exp {_nu o Ming }}

24

Equating the right-hand side of the above inequality with 1/M KT? we have, we have

5 — max { \/ 481In(2MTK) 48In(2MTK) }

’LLZ‘VQT(Z', 9) ’ uiﬁT(z’, 9)

and applying the union bound over all i € [M], § € K; and ¢ € [T], with probability 1 — 7!

) 48us s In(2MTEK)  481n(2MTK)
00— Uig| < OUip < — , 4.96
o = o] < D \/ 66 TG0 459

Note that if 7'(i,6) > 48In(2MTK) the condition du;y < 2 is met. Replacing all occur-
rences of u; ¢ in Eq. (4.96) by u; ¢ and using the fact that va + b < y/a + Vb, we have

. < 48,0 In(2MTK) N 48In(2MTK) 48|t 9 — uip| IM(2MTK)
Ui - Ui < s N )
o 7(i,0) 7(i,0) (i, 0)

_  [481i9 n(2MTK) 48 In(2MTK)
h T(i,0) T(i,0)

_l’_

48I(2MTK) /uze  48In(2MTK) [48In(2MTK)
T(i,0) T(i,0) T(i,0)

(4.97)

_  [481i9 n(2MTK) N 144In(2MTK)
h T(i,0) T,0)

Case 2: u; 9 > 1. Let ¢ € (0,1] be a parameter to be specified later. Applying Lemma 94, we
have

Prlli o — w gl > 6w o] < _ 2\ PO (g 2, _ 2 \BUMie?
* g~ ool > bl ‘*‘p{ T O A v

< 2exp{—T(i,0)6%/12}.

Equating the right-hand side of the above inequality with 1/M KT? we have

5_ | 2AQ2MTE)
B T(i,0)
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and applying the union bound over all i € [M], 6 € K; and t € [T'], with probability 1 — 71,

R 2402, In(2MTK)
‘ 1 5u, 0 < ’ -
T(i,0)

(4.98)

Note that § < 1 holds if 7(i,0) > 241n(2MTK). In addition, if T(i,0) > 96 In(2MTK)
we have |u; 9 — u; 0| < 0.5u; 9 and hence u; g9 = 0.5u; 9. Subsequently, Eq. (4.98) implies

R 9672, In(2MTK)
G0 — uip] < TG0 . (4.99)

Finally, combining Egs. (4.97,4.99) we proved the upper bound on |4; g — u; g].

We next prove the upper bound on |ggi79 — ¢ |- Recall that for each 7 € T (i, 6), 7y, is the
sum of 7, i.i.d. random variables with mean ¢;  and within range |0, 1] almost surely. Also note
that > e gy Mik = T'(4,0)U; 0. Applying Hoeffding’s inequality (Lemma 89) we have for any
0 > 0 that R

Pr| (610 — dig| > 0| < 2exp {~20% - T(i, 0)itio}

Equating the right-hand side of the above inequality with 1/M (K + 1)T? and applying the
union bound, we have with probability 1 — 7"~* uniformly over i € [M], 6 € K; and t € [T'] that

In(2MTK)

Do — dio| < o [IUZMTR) 4.100
|bi — Dio)| (i, O)fng ( )

Proof of Corollary 8 We first prove El(é) > R (@) By definition, Zﬁl(alg = El(g))ﬂiﬁi =
R (6). In addition, because R (6) is the maximizer of R , setting A = R (#) and by the second

~

property of Lemma 58 we know that ¢, (0) = X and ¢, (f) < A forall € Ky x - -+ x Ky, where
UA(0) = X1 (Bip, — Mg,

We claim that g_biﬁi > R () whenever U, 0> O.A Assumf the contrary, tEat 51.7@1_ < }_%,A(Q) =A/\
and u; 5 > 0 for some ¢ € [M]. Consider ' = (¢, ,0),) defined as 0 = oo and 0}, = 0
for all ¢/ # i. Because 5; = oo we know that ;5 = u,5 = 0. Subsequently, 2/1,\(@) =
UA(0) — (6,5 — M,5, > () = \. This contradicts the condition that ¥,(#) < A for all
el x - x Ky

Define ¢(0) := 32 (¢ig, — N)uip,, which is similar to the definition of 1/, except all oc-
currences of g_bl and w; . are replaced by their true values ¢; ., u; .. Because 51.7@_ = ﬁ,(é) for all
TUig, > 0, and ¢, , ;. are upper bounds of ¢;.,u;., we conclude that wg(é) < wA(é) = )\, imply-
ing that Z?L((bi,@ — AN, 5, < A. Re-arranging terms we have R'(6) = M G 5,u:g.1/11 +
Mg <A =R ().

We next prove R (6*) > R'(6*). Recall that R'(6*) = M Gioruigr]/[1 + P U g -
Hence, ¥9(0*) = A for A\ = R'(0*), meaning that Zi]\il(gbi,@f — A)u;gx = A. By similar analysis,
we know that ¢; gx = A for all u; g+ > 0 too. Because @, u; . are upper bounds of ¢;., u;. and
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Uz‘,e;* = 01if Ujpx = 0, we have ¢, (6*) = Z?L@i,ej‘ - )‘)ﬂi,ef = 2?11(@,9;“ - /\)Ui,ej =
Y§(6*) = A. This implies that Y} (¢, o+ — R'(0%))T, 4+ > R'(6*), and therefore R (*) =
> 5@95@,9;"]/[1 + 350 Ui g ] = R(07).

Proof of Lemma 73 To simplify notations, we shall abbreviation ¢; = ¢;4,, u; = u;e, and
&; = &y 4, Ui = Ui, We also abbreviate R’ = R'(f) and R =R ().
By definition of R’ and R , we have

M M M _— M
e p1- , Duic Ui _ Dim1 Wit
<1+Zuz> R - R (1+Zuz> [HZ?”@- 1—}—2?/11%-]

M Mo M
= 25% <ﬂi1 + 23\/4:1 g’ — ul> (¢ b;)

M M M
<> (aHZ—Mlﬁ —m-) + D uild — ) (4.101)

The first term on the right-hand side of Eq. (4.101) can be further upper bounded by

M M M _ M M _
Zg.l + Dy Ui = uic Wil + D ur) — Zz w1+ Z y_1 Uir) Z Ui
(2

(2

- 1+ Zyzl Wy 1+ Zizl U; i=1 Lt
(4.102)

Here the last inequalities holds because the Z%,:l u;uy term cancels out, and 1 + Zf\,/jzl Uy =
1+ Uz‘ =1+ Uj.

Proof of Lemma 74 Define 7', (, 0) as the size of T (¢, #) after epoch 7, and Ty(i, ) as the final
size of 7 (i, 0) when Algorithm 11 terminates (i.e., the total number of epochs in which singleton
0 € K; was offered in nest 7). Define also ug 9) to be the estimate of u, e at epoch 7. Using

Lemma 72, the expectation of the first term in Eq. (4.93) can be upper bounded by,

96 max (a7, [a,]2) In(2MTK)

U-1T(5,07) < 96 In(2MTK)} + . -
ZZ T30, 67) - (1 +uly)?
WAMEMTE) | 59) > 06 m(2MTK))
T.1,6,”)
Mo Tis) 96 max(27), [2(7]2) In(2MTK)
Z > ) U-1{e <96 In(2MTK)} + TGl
i—10eK; (=0 (1 +uip)?
L4 ln(ngTK)] 10 > 96 In(2MTK)}
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\\Mz

Z log(MTK) + \/ul oT0(i,0)log(MTK) + log To (i, 0) log(MTK) (4.103)
0ek;

< MKUlog?(MTK) + Z D \/ui,gTo(i, 0) log(MTK). (4.104)

i=10ekC;

Here Eq. (4.103) holds by plugging in upper bounds on |1’l(72 — u; 9| (Lemma 72) and noting
that, max{a,a®}/(1 + a)* S a, Yyerip 07 S A/To(i,0) andY g ;0 0 < log To(i, 0)
Eq. (4.104) holds by replacing log Ty with log( M TK ).

Applying Cauchy-Schwartz inequality and the fact that E[n; ;| = u;0,, E|E;| = 1+ZM E[n; -],
the summation term in (4.104) can be further bounded by

M=

u; 910 (7, 0) log(MTK)

M
Z Z \/Ui,oTo(i, 0)log(MTK) < A/M|K| \
i=10ek; :

:\/m\iz Z [ -] log(MTK)

Il
—_

OelC;

.

=10el; 7€T(4,0)
< /MIK]| - \/ E[|€, [[log(MTK)
= A/MKTlog(MTK).

Subsequently,

M U, 5ty — Uy 5
» f . Wi < /METlog(MTK) + MKU log*(MTK).
. U §i)

=1

Proof of Lemma 75 We first state the following result is a corollary of Lemma 72 which gives

a lower bound (with high probability) on 7'(i, )4, 9 when u; ¢ is not too small. Its proof is given

at the end of this section.

Corollary 9. With probability 1—T ! foralli € [M], 6 € K, suchthat u; g > 768 n(2MTK)/T (i,6)
and T(i,0) = 96 In(2MTK), we have T (i,0)u; o = 0.5T (i, 0)u; 9.

Proof. First consider the case of u; y > 1. By Eq. (4.98) in the proof of Lemma 72, if 7'(i, 6) >
96 In(2M T K') we have |u; g — u; 9| < 0.5u; ¢ and therefore T'(z, 0)u; 9 = 0.57 (i, 0)u; p.

In the rest of the proof we consider the case of 768 In(2MTK)/T(i,0) < u;p < 1. By
Eq. (4.96) in the proof of Lemma 72, we have

T(i,0)0ip > T(i.O)uip — /48T (0, 0)us g (2MTK) — 48 In(2MTK).

Under the condition that u; g > 768 In(2MTK')/T (i, 0), the above inequality yields T'(¢, 6)u; g >
0.5T (i, ). O
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Combining Corollary 9 with Lemma 72 and noting that @iﬁ — ¢ig| < 1 always holds, the
second term on the right-hand side of Eq. (4.93) can be upper bounded by

M To(i,0)
In(2MTEK
N3N UL < 96 m(2MTK)} + [768 n(g )
i=10ek; (=0
2In(2MTK)

Fuig 1{0 = 96 In(2MTK)}

T(Z, Q)Uiﬁ

M
<Y1 Ulog(MKT) + 4/ ui Ty (i, 0) log(MKT) + log Ty(i, 0) log (M KT).
i=1 QGICZ‘
(4.105)

Using similar derivation as in Eq. (4.94), we have

M
D) oG5 — 6, 500) S A/METlog(MTK) + MKU log?(MTK).

T 1=1

4.6.2 Proof of Lemma 59

Let 0* = (0%,--- ,0%,) € Ky x -+ x Kj be the assortment that maximizes R’. Define 52* =
|62/5] - & for all i € [M] and 6* := (6%,--- ,6%,). It is easy to verify that 6* € K2 x --- x KJ,.
Therefore, it suffices to prove that R'(6*) > R* — § where R* = R'(6*).
To simplify notations, abbreviate R; = R;(£:(67)), Vi = Vi(£:(67)), B; = Ri(L;(6)) and
V; = Vi(L£:(67)), where R;(-) and V;(-) are defined in Egs. (4.11,4.13). Denote also that z; :=
V. — V. By definition of R; and R;, we have R;V; = Zrij%;k 7ijV;; and RV, = ZW}@* 73§ Vij-
Subsequently,
RVi=RVi+ > ryvy = RVi+ 207 —9). (4.106)

* Rt
0 >7r;;=0;

Here the last inequality holds because |67 — 6*| < 4 and 29*>Tij>§* vij = ViV, = =
Subsequently,

Vo[ Re— (7 = 0)] = (Vi oy [ B = (R = )] (4.107)
[ RiVi + 2;(0} —0)
= (V; i) ‘ —R"+§ 4.108
V| A +) (4,108
R,V + 1,07
> (V4 a,)0 | 22050 pe| 4.109
(Vi + ;) Vot ] ( )

Here in Eq. (4.108) we apply Eq. (4.106), and Eq. (4.109) holds because x;/(V; + z;) < 1.
Proposition 19. For i € [M] define function h;(A) := (V;+ A)[(R;V; + A0F)/ (Vi + A) — R*].
Then h; is monotonically non-decreasing in A for A = 0.
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Proof. Note that h;(A) = (V; + A)" YR, V; + A6F) — (V; + A)7 R*. Differentiating h; with
respect to A we have

RUA) = (3 — 1) (Vi + A 2RV + A0F) + 07 (Vi + A — (Vi + A LR*. (4.110)

Using the second property of Lemma 56 that 0 > ~; R* 4+ (1 — ;) R;(SF), we have forall A > 0
that

(D) = (i = (Vi + A) 2RV + A0)) + [%R* + (1= )R] (Vi + A)

— (Vi + A R* (4.111)

= (L= (Vi + A2 [Ri(Vi + A) = RV, — A;] (4.112)
=(1—y)(V; + A2 (R, —05)A = 0. (4.113)

The proposition is then proved, because h;(A) = 0 for all A > 0. [

Invoking Proposition 19, we have that for all ¢ € [M |,

- R*] >V [R,—RY.  (4114)

Summing over i € [M] on both sides of the above inequality and using the definition that R* =
(i BV )/ (L + e Vi)

v [ffz- — (R —5)] > Y RV — | > V" |R*=R">R"—35. (4.115)
ie[M] i€[M] i€[M]

Re-organizing terms we have

M F3 E : S (3
R’(g*) - Dic1 ¢i,§jui,§;" B Zz’e[M] Ri(L:(07))Vi(Li(07)) B Zie[M] R’V

- M - 2%\ \v; Vel

1+ 255 U; g L+ Xierany Vil La(65)) 1+ e Vi

which completes the proof.

4.6.3 Proof of Theorem 18

Construction of adversarial model parameters

Let ¢ > 0 be a small positive parameter depending on M and 7', which will be specified later.
Each nest i € [M] in our construction consists of N = 3 items and is classified into two cate-
gories: “Type A” and “Type B”, with parameter configurations detailed in Table 4.3. Note that
regardless of which type of nest ¢ € [M] is, the three items in nest 7 have revenue parameters
(1+¢)/M?, (1 —¢)/M? and 1/M?. Hence it is impossible to decide the type of a nest without
observations of customers’ purchasing actions. Given the model parameters in Table 4.3, it is
easy to verify that for a Type A nest, the optimal assortment is {1, 2}, while for a Type B nest,
the optimal assortment is {1, 2, 3}.

The following lemma shows that any assortment S; that does not equal {1,2} for Type A
nests or {1,2, 3} for Type B nests incurs an 2(¢/M) regret. It is proved in the supplementary
material.
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Table 4.3: Adversarial construction of two types of nests. The revenue parameter p is set to

p=9vV2/(1+v/2) ~ 0.694774.

Type A Nest Type B Nest
Item 1 Item 2 Item 3 Item 1 Item 2 Item 3
Revenues 7;; 1 0.8 p 1 0.8 p

Preferences v;; (1 +¢€)/M?* (1—¢)/M?* 1/M? (1—¢)/M?* (1+¢)/M?* 1/M?

Lemma 76. Let U < [M] be the set of Type A nests, and by construction [M|\U are all Type B
nests. Forany S = (Sy,--- ,Sxr) € [N]M, define mi,(S) := Y,y 1{S: # {1, 284D ey USi #
{1 2,3}}. Then there exists a numerical constant C' > 0 such that for all S, R(S*) — R(S) >
mt (S) - Ce/M, where S* € arg maxg R(S) is the optimal assortment combination under U.

Reduction to average-case regret

Recall that for any policy 7, we want to show a lower bound on the worst-case regret

sup ZR* E™ [R(SD)]. (4.116)

{rijvij} t=1

Let My = M/4 be an integer (because M is divisible by 4) and S, be all (M ) subsets
of [M] with size M. Recall that in our adversarial construction, U < [M ] denotes the set of
all Type A nests and the remaining nests [M |\U are Type B. The following inequalities show a
reduction to average-case regret:

T 1 T

sup R*—FE™ R(S(t)) > sup R*—ET R(S(t)) =
o }; [R(S™)] UGSM(); UC E v & A

(4.117)
Here we use the E7; notation to emphasize that the distribution of {S®} (and hence the expec-
tation) depends on both the parameter setting (uniquely determined by the set of Type A nests
U < [M]) and the policy 7 itself.

For any i € [M] and S < [N], denote ng(i) := 3,_, 1{S] M _ g } as the random variable of
the number of times assortment S is offered in nest i. Let ET;[ng ()] be the expectation of ng(i),
with expectation taken under model parameters setting U (recall that U is the set of all Type A
nests) and policy 7. Invoking Lemma 76 and noting that 3 3 scv) Ef[ns(é)] = MT for any
U < [M] and policy 7, the right-hand side of Eq. (4.117) can be lower bounded by,

Ce
E™ S(t :|
s, 2,2 [
Ce 1 - -
:Mm Z Z Z E ‘[15 +Z Z E ‘[15

UeSy, | ieU s#{1,2} iU 5#{1,2,3}
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:% |511\4| Z ZE [ng10y(i +ZE 11{123}()]]

0 UESN[ lEU Z¢U

Ce 1
= M MT — |S | Z ZE 11{12} +ZEUC 11{123}( )]] . (4118)
Mo UES1\4 | ieU €U

Here in the last identity we replace U in the second summation (corresponding to ng; 5 33(7) with
Ue:=[MND).

To obtain a tight lower bound on the right-hand side of (4.118), we restructure it by consid-
ering subsets U’ < [M] with size My — 1, which facilitates the use of a KL divergence bound
between the probability law with the Type A nests U’ < [M] and that with the Type A nests
U = U’ v {i} (see Lemma 77 in the next subsection). More specifically, let Sy;, 1 be the col-
lection of all (" |) subsets of [A] with size My — 1, and 8§}, 1= {U € Sp,—1 i ¢ U} be
a subset of Sy;,_; excluding the ith nest. By swapping summation orders, Eq. (4.118) can be
equivalently written as

Ce .
M MT_|SM0|Z 2 Erowbaa@]+Evowmelngas ()]

1 (©)
Thue SM —1

Z Z EU’u{ } 11{1 2}( )] + E(U/U{,-})c[n{m,g}(i)]) . (4.119)

U'ES]V[ 1 Z¢U’

—Ce-T

|SM0|

Pinsker’s inequality

We upper bound Eyr 53 141,23 (7) ] and Epro giyye [1,2,3 (¢)] by comparing them with E¢ [ng (i)
and E(yrye[ng2,3,(7)]. In particular, let P} denote the probabilistic law under U and policy 7.
Then for any S < [N],

B [ns(i)] - Z j-|P3ns(i — Py [ns(i) = j]]

<T. 2 |PrIns(i) = j1 = Pi[ns(i) = 51|

7=0

L
=TI = Piyllrv < T\/ 5 min{KL(FF|157), KL(PG |1 P)} (4.120)

T .
< T\/E mm{mgx KL(Py (|91 Pw (+]5)), max KL(Pw (-]9)|| Py (-]9))}. (4.121)
Here | P — Q|rv and KL(P||@) denote the total variational distance and Kullback-Leibler diver-
gence between two probability laws P and @), Eq. (4.120) is known as the Pinsker’s inequality
(see e.g., Csiszar & Korner (2011); Tsybakov (2009)). Note that in the last term Py and Py do
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not have superscript 7, because conditioned on a particular assortment combination S the KL
divergence no longer depends on 7.

The following lemma shows that if U and W differ by only one nest, then the KL divergence
between Py and Py is small for all S = (S, -+, Sy)-
Lemma 77. Suppose [UAW| = 1, where UAW = (U\W) u (W\U) denotes the symmetric
difference between subsets U,W < [M]. Then there exists a constant C' > 0 such that for any
S = (S1,++, Su), min{KL(Py (-|S) |1 Pw (-] S), KL(Pw (-|S) | P (-]S9))}) < C'e?/M.

Invoking Lemma 77, the right-hand side of Eq. (4.121) can be further upper bounded by

T (e
TAl—- < Te?/M. 4.122
5 A S €2/ ( )
Invoking Eq. (4.119) and noting that |Syy, 1| = (MJ(‘)/[_I) = ﬁoﬁl( ) |Sw,|/3 and

M Ef[ns(i)] < MT forall " € [M] and S < [N], we have

> 3R B [As)

|SMO| UGS]W t=1
>ced |8 | )y Z (EF iy [n.2 (D] + Ewrogiyye[ng 2.3 (0)])
Mo U’ES]M 1 ’L(jéU'

Ce 1 4

> Ce T — 5 suwp o Z (Ef [ng1,2 ()] + [(EFr gy — ED) 1,2 (9)]])

U'eSmy—1 7 =
+ (]EEF ez, ()] + ‘( wotine — Efune)[n 23 ()]0

C 1 Te?

> Ce - T—{(H 2MT + — - M- O( ﬁ)) (4.123)

Setting € = co/ M /T for some sufficiently small positive constant ¢, > 0, we complete the
proof of Theorem 18.

Proof of Lemma 76 Forany U < [M], S < {1,2,3} and S = (Sy,---,Su) € [3]¥, define
m%},s(s) = ey {5 = S} and similarly m?]c,s(s) 1= Deu 11Si = S}. Denote also S* =
(S§,---,S5) as the optimal assortment combination, in which S; = {1,2} for all : € U and
S; = {1,2,3} forall i ¢ U. Let also Ry(-), Vu(+), Rye(-), Vie(-) be revenue and preference
of assortment selections in nests of Type A (Ry(-) and Vi (+)) or Type B (Ry-(-) and Vye(-)),
respectively. Recall that |U| = M /4 and |U¢| = 3M /4. We then have

RU({L 2})VU({17 2})1/2 ) M/4 + RUC({L 2, 3})VUC({17 2, 3})1/2 ) 3‘]\/[/4
1+ Vy({1,2H)Y2 - M /4 + Vie({1,2,3})12 - 3M /4
Ssciza Ms(9) - Ru(S)Vu(S)"” + miye 5(S) - Rye(S)Vi(5)"?
- I+ ZSg{l,Q,g} mgvs(S) ’ VU(S)l/2 + m?]c,s(s) ’ VUC(S)l/2 '

R(S*) — R(S) =

(4.124)
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We next list the values of Vi;(+), Ry (+), Vie(+) and Ry<(+) under our adversarial construction,
shown in Table 4.3.

S=g: Vu(S)"* =0, Ry(S) =0, Vie(S)"* =0, Rye(S)=0;

S=y W= Y R =1 Vi = Y R - 1
S=1{2}: Vy(S)Y?= \/? Ry(S) = 0.8, Vye(S)¥2 = \/? Rye(S) = 0.8;
S=(3): Ve(9) = . Ru(S)=p. VeelS)? = < Rue(S) = p:
S={1,2}: V(9)V?= */Mi Ry(S) = .9+ .16, Vye(S)Y? = %,RUC(S) —.9— le
S=(13): V(o) = VEEE py(s) = LEIYE
Vel = Y8 py(s) = L2,
S=a): V(s = YEE Ry(e) = B
Vor(s)1 = VA2 gy = SR
S=(23): Vo) = Y2 Ry(s) = LETAE2
Vie(S)V/2 = \/Mg Rye(§) = 2B P =2 +§_ 2

Plugging the values of Vi (+), Ry (+), Vie(+), Rye(:) into R(S*) — R(S), and taking ¢ — 0F,
by detailed algebraic calculations we proved the lemma.

Proof of Lemma 77 By symmetry we may assume without loss of generality that W = U v
{ig} for some i ¢ U. The random variables observable are (i, j) where i € [M | u {0} indicates
the nest in which a purchase is made (if no purchase is made theni = 0) and j € [N] = {1, 2,3}
is the particular item purchased in nest ¢ (if ¢ = 0 simply define j = 0 with probability 1). The
KL divergence KL(Py(:|S)|Pw (:]S)) can then be written as

KL(Py (15 15) = B0 lon 23 | = <8 [l 2| B [on 5 |

(4.125)

We next upper bound the first term on the right-hand side of Eq. (4.125). By the nested
model, the nest-level purchase action i € [M] u {0} follows a categorical distribution of M + 1
categories, parameterized by probabilities p = (pg,--- ,py) under U and ¢ = (qo, - ,qm)
under V. By elementary algebra (see for example Lemma 3 in (Chen & Wang, 2018)), KL(p|q)
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can be upper bounded as

KL(p|q) = sz log Z |pz —al

Note that U and IV only differ in nest 7¢. Using the nested model description and ; = 0.5, it
is easy to verify that |p; — ¢;| < ¢/M fori € {0,i0}, |pi — ¢ < ¢/M?*ifi ¢ {0,140}, o = (1)
and ¢; = 1/M for all i > 1. Subsequently,

KL(plq) < €/M. (4.126)

We proceed to upper bound the second term on the right-hand side of Eq. (4.125). Because
U and W only differ in nest 7y, this term is non-zero only if ¢« = ¢3. Conditioned on i = 1,
it is easy to verify that KL(Py(+|io, Si, )| Pw (+|io, Siy)) < €2 for all S;; < [N]. In addition,
max{Py(ig|S), Pw(io|S)} < 1/M. Subsequently,

—E; |1
v log Py (jli, S)

] — Pu(io]S) - KL(Py(-Jio, Sio)| P (ioy Si)) < €/M. (4.127)

Combining Egs. (4.126,4.127) we complete the proof of Lemma 77.

4.7 Proofs of results in Sec. 4.3

4.7.1 Proof of Theorem 17

The proof is divided into four steps. In the first step, we analyze the pilot estimator 6* obtained
from the pure exploration phase of Algorithm 13, and show as a corollary that the true model
6y is feasible to all subsequent local MLE formulations with high probability (see Corollary 10).
In the second step, we use an e-net argument to analyze the estimation error of the local MLE.
Afterwards, we show in the third step that an upper bound on the estimation error 6;_; — 6
implies an upper bound on the estimation error of the expected revenue R;(S), hence showing
that R;(S) are valid upper confidence bounds. Finally, we apply the elliptical potential lemma,
which also plays a key role in linear stochastic bandit and its variants, to complete our proof.

Analysis of pure exploration and the pilot estimator

Our first step is to establish an upper bound on the estimation error ||§*—6||» of the pilot estimator
0*, built using pure exploration data. It should be noted that in the pure exploration phase (¢ €
{1,---,Ty}), the assortments {S;}/°, only consist of one item. Therefore the observation model
reduces to a standard generalized linear model with the sigmoid function o(z) = 1/(1 + ¢ %) =
e”/(1 + €”) as the link function, which is essentially a logistic regression model of observing 1
if the customer makes a purchase.

Because the choice model in the pure exploration phase reduces to a generalized linear model,
we can cite existing works to upper bound the error |6* — 6, . In particular, the following lemma
is cited from (Li et al., 2017b, Eq. (18)), adapted to our model and parameter settings.
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Lemma 78. With probability 1 — 0 it holds that

To
1
0% — 002 < where kK = ———— and V = Z Utyitv;t. (4.128)

)\mm(v) 26(1 + IO) t=1

Proof. Because the noise in a logistic regression model is clearly centered and sub-Gaussian
with parameter at most 1/4, it only remains to check (Li et al., 2017b, Assumption 1), that
inf |z, <1,j0—00)s<1 0" (210) = & = 2e(1 + p) where o(z) = 1/(1 + ™) is the sigmoid link
function. Because o'(z) = o(x)(1 — o(z)), we have o/(2760) = (1 — pg) = 0.5ps where
oo = min{pe(1), 1 —pe(1)} and pp(1) = o(270) = 1/(1 + exp{—=xT6}). By (A2), we know that
©a, = 1/(1 + p). Subsequently, for any ||z < 1 and ||§ — 6y|2 < 1, we have

1 1 1 1 1
= = = — = .
=TT exp{—x70} 1+4+exp{—a2T(0—0y)}exp{—a2T6y} ~ el+exp{zTby}  e(l+p)
Lemma 78 is then an immediate consequence of (Li et al., 2017b, Eq. (18)). [l

The following corollary immediately follows Lemma 78, by lower bounding Ap,;, (V') using
standard matrix concentration inequalities.
Corollary 10. There exists a universal constant Cy > 0 such that for arbitrary T € (0,1/2], if
Ty = Comax{r?dlog T /N, p*(d+1og T)/(T%X\o)} then with probability 1—O(T 1), |0* —6y |2 <
T.

Proof. Denote A := E zz’ and A := V/T, = T LT 2, i/, Clearly EA = A. In addition,
because ||vy;]la < v almost surely, v;; are sub-Gaussian random variables with parameter 2. By
standard concentration inequalities (see, e.g., (Vershynin, 2012, Proposition 2.1)), we have with
probability 1 — O(T2) that |A — All, < dl,‘op—fT. Hence, if Ty > Cov?dlog T/A\2 for some

sufficiently large universal constant Cy, we have |A — Allop < 0.5Xg = Amin(A) and therefore
Amin(V) = ToAmin(A) = 0.5T5 ). The corollary then immediately follows Lemma 78. O

The purpose of Corollary 10 is to establish a connection between the number of pure ex-
ploration iterations 7 and the critical radius 7 used in the local MLE formulation. It shows a
lower bound on Tj in order for the estimation error |6* — 6|, to be upper bounded by 7 with
high probability, which certifies that the true model 6y is also a feasible local estimator in our
MLE-UCB policy. This is an important property for later analysis of local MLE solutions 6; ;.

Analysis of the local MLE

The following lemma upper bounds a Mahalanobis distance between @t and 6. For convenience,
we adopt the notation that ;g = 0 and vy = 0 for all ¢ throughout this section. We also define

t
L) = > My(9), (4.129)

t'=1

Mt’(e) = —Eeo,t'[vgInge,t’(ﬂSt’)]
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Ego t [Ut’ ?}t/ ] {E90 t’vt’] }{]Eg t/?}tlj} {Ee,t’vt’j}{Eeo,t’vt’j}T + {Eﬁ,t’vt’j}{EQ,t’vt’j}T

where Ey - denotes the expectation evaluated under the law j ~ pg(-|Sy); that is, pgp (j|Sy) =
eXP{Ut' 9}/(1 + Zkes, eXp{%T 0}) for j € Sy and gy (j|Sy) = 0 for j & Sp.

Lemma 79. Suppose 7 < 1/4/8pv?K?2. Then there exists a universal constant C' > 0 such that
with probability 1 — O(T ™) the following holds uniformly over all t = Ty, --- , T — 1:

(6, — 00) T1,(60) (6, — 6y) < C - dlog(pvTK). (4.130)

Remark 29. For 0 = 0, the expression of My () can be simplified as My (6y) = Eq, ¢/[vejv,. j] —

{Eoo.0vr;}{Eop, 000}
We next state the proof of Lemma 79. For any 6 € R? define

pet’(j|5t’) . pet'(j|5t')
fo(6) :=E ,/[mg’—. = Y b lflSe) log AL
"0 " Pao.v (715) jeS,yuio} ror 1) Poo.v (415)

By simple algebra calculations, the first and second order derivatives of f, with respect to ¢
can be computed as

Vo fu(0) = Ea,, t'[Ut' ] - Eg ¢ [Ut’ i (4.131)
Vi fv(0) = —Eg v [vejvp;] + {Egy pve;H{Eopvr;} T
+ {Ee,t’vt’j}{an,t’Uﬂj} - {Eg}t/’l)t/j}{Eatrvt/j}T. (4.132)

In the rest of the section we drop the subscript in Vy, V2, and the V, V2 notations should always
be understood as with respect to 6.

Define F(6) := Y_, f«(0). It is easy to verify that —F}(6) is the Kullback-Leibler di-
vergence between the conditional distribution of (i1, - - - ,4;) parameterized by 6 and 6, respec-
tively. Therefore, F;(6) is always non-positive. Note also that Fi(6y) = 0, VF,(6) = 0,
V2 fu(0) = —My(6) and VQFt(Q) = —1,(6). By Taylor expansion with Lagrangian remainder,
there exists 0, = afy + (1 — Oz)Qt for some a € (0, 1) such that

1 ~
F(Br) = =501 = 00) 18.) (B, — 60). (4.133)

Our next lemma shows that, if 6, is close to 6, (guaranteed by the constraint that 16, — 0% <
7), then I;(6;) can be spectrally lower bounded by I;(6y). It is proved in the supplementary
material.

Lemma 80. Suppose 7 < 1/4/8pv? K2 Then 1,(6;) > 11,(6,) for all t.
Proof. Because @ is a feasible solution of the local MLE, we know Hét — 0% < 7. Also by
Corollary 10 we know that |6* — 6|l < 7 with high probability. By triangle inequality and the

definition of §; we have that |[§; — 0y, < 27.
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To prove I,(6;) > 11,(6) we only need to show that My (6;) — My (6y) < 2 My () for all
1 <t < t. This reduces to proving

{Eg, v vvj — B vvei g, pov; — Egyvves} | < %EGOJ’ [(verj = Egy wves)(vej — Egoovw) ']
(4.134)
Fix arbitrary Sy < [N], |Sy| = J < K and for convenience denote x,---,z; € R?
as the feature vectors of items in Sy (i.e., {vy;}jes,). Let also py,(j) and pg,(j) be the prob-
ability of choosing action j € [.J] corresponding to x; parameterized by 6, or f,. Define
T = Z;}:lpgo(j)xj, w; = x; — T and §; := pg,(j) — pe,(j). Recall also that 2y = 0 and
wy = —x. Eq. (4.134) is then equivalent to

J J T 1 J
{Z 5jwj} {2 5jwj} < Z P, (f)wjw] . (4.135)
J=0 Jj=0 Jj=0

Let L = span{w;}/_, and H € R"*? be a whitening matrix such that 7 (3 ; pg, (j)wjw; ) H" =
I}« 1, where I, is the identity matrix of size L. Denote @; := Hw,. We then have Z}]:o Doy (])UNJJQT)]T =
I1 1. Eq. (4.135) is then equivalent to

2
1

< - 4.136

5 ( )

J
2,05
7=0

On the other hand, by (A2) we know that py,(j) > 1/pK forall j and therefore |, |2 < +/pK
for all j. Subsequently, we have

J
2, 05
j=0

Recall that 6; = pg, (i) — pg, (i) where po(i) = exp{z{0}/(1 + 3 ,cg, exp{z;0}). Simple
algebra yields that Vpy(i) = pe(i)[z; — Eox;], where Egz; = > ;s po(j)z;. Using the mean-

2

2

J 2
< <max|5j|-z mj||2> < max |0;|? - pK2. (4.137)
J =0 J

2

value theorem, there exists §, = &0, + (1 — &)6, for some & € (0, 1) such that

d; = {Vopg, (i), 0; — o) = Py, (i) — By, 5,0, — Oo). (4.138)
Because ||x4;]|2 < v almost surely for all ¢ € [T'] and i € [ N], we have

max |6,]? - pK? < 4-max |23 - |0 — Oolf3 - pK* < 4pr* K - 72 (4.139)
J 7

The lemma is then proved by plugging in the condition on 7. [

As a corollary of Lemma 80, we have
1 -~ ~
Fi(6,) < _Z(Qt —00) " I,(00) (0, — 6y). (4.140)
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On the other hand, consider the “empirical” version }?}(0) =Y, o (0), where

Dot (it’ |St’)

A/ 0) :=lo - .
ft ( ) Dot/ (Zt’|5t’)

(4.141)

It is easy to verify that F(6,) = 0 remains true; in addition, for any fixed 6 € R%, {F,(6)},
forms a martingale * and satisfies EF;(6) = F,(6) for all ¢. This leads to our following lemma,
which upper bounds the uniform convergence of F}(6) towards F;(6) for all || — 6,|| < 27
Lemma 81. Suppose T < 1/+/8p*v2K?. Then there exists a universal constant C' > 0 such
that with probability 1 — O(T ™) the following holds uniformly for all t € {Ty + 1,--- ,T} and
160 — o2 < 27

E,(0) — Fi(0)] < C’[dlog(pI/TK )+ /B0 |dlog(pyTK)] (4.142)

|2 < 27. Define

Do (j|5t') 2

. (4.143)
p@o,t' (.] |Stl)

t
M = max|ftr( ) and V= Z E; o0t

t'<t
t'=1

log

Using an Azuma-Bernstein type inequality (see, for example, (Fan et al., 2015, Theorem A),
(Freedman, 1975, Theorem (1.6))), we have

‘}AQ(Q) — F,(0)] < Mlog(1/6) + 4/V?log(1/6)  with probability 1 — 4. (4.144)

The following lemma upper bounds M and V? using F;(6) and the fact that 6 is close to 6.
It will be proved right after this proof.
Lemma 82. If 7 < 1/4/8p2v2K? then M < 1 and V? < 8|F(0)|.

Corollary 11. Suppose T satisfies the condition in Lemma 82. Then for any || — 6y|o < 27

|EL(0) — Fi(0)] < log(1/8) + +/|Fi(0)[log(1/3)  with probability 1 — 4. (4.145)

Our next step is to construct an e-net over {# € R? : [§—60;|» < 27} and apply union bound on
the constructed e-net. This together with a deterministic perturbation argument delivers uniform
concentration of F;(#) towards F;(0).

For any € > 0, let H(e) be a finite covering of {# € R? : |0 — Oylo < 27} in || - |2 up
to precision e. That is, supjg_g,|,<2- MiNgex() |6 — 0l < €. By standard covering number
arguments (e.g., (van de Geer, 2000)), such a ﬁnlte covering set H(¢€) exists whose size can be
upper bounded by log |H(¢)| < dlog(7/€). Subsequently, by Corollary 11 and the union bound,
we have with probability 1 — O(T~!) that

|EL(0) — F(0)] < dlog(T/e) ++/|F(0)|dlog(T/e) YTy <t <T,0eH(e). (4.146)

3{ X} }x forms a martingale if E[ X} 1| Xy, , Xx] = X} for all k.
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On the other hand, with probability 1 — O(T!) such that Eq. (4.138) holds, we have for
arbitrary |0 — ¢'||2 < e that

o (j|Sv)
por (7| Sw)
|P9 v (j|St’) — Por v (j|St’)|

\ﬁ}(@) —F@)| <t sup log

t'<t,jeS, u{0}

< t- sup 2 - ! (4147)
t'<t,jeS, u{0} Por 1 (jSw)
<2pTK - sup  |pow(jSy) — peorw (4] Sv) (4.148)
t'<t,jeS, {0}
<2pTK - sup 4oy 310 0]
t'<t,je[N]
< pTK -V -« (4.149)

Here Eq. (4.147) holds because log(1 + x) < xz; Eq. (4.148) holds because py (j|Sy) >
oo (J|st) — |per v (4] Se) — peo.w (4]Sw)| = 1/2pK thanks to (A2) and Eq. (4.139).

Combining Egs. (4.146,4.149) and setting ¢ = 1/(pv*TK) we have with probability 1 —
O(T') that

|EL(0) — Fi(0)| < dlog(pvTK) + v/|F(0)|dlog(pvTK) VT <t < T, [0 — 6ol < 27
(4.150)
which is to be demonstrated in Lemma 81.

In the rest of the proof we prove Lemma 82.We first derive an upper bound for M. By (A2),
we know that py, (j|St/) > 1/pK for all j. Also, Egs. (4.138,4.139) shows that |pg (j|Sy) —
oo (7|S)| < 4?72 1 72 < 1/4/8pv2 K we have |pg.y (j]Si) — g, (7|Sw)| < 0.5pgq v (j15)
and therefore | f, (0)] < log®2 < 1.

We next give upper bounds on V2. Fix arbitrary ¢/, and for notational simplicity let p; =
Do, (J|Sy) and ¢; = pgv(j|Sy). Because log(1 + z) < z for all z € (—1, ), we have

Z Dj log® (1 + pj)
Pj

JjESu{0}

o (4]Se) [

@G =p)’ 415
peo,t'(ﬂsﬂ) Z @ )

j€S, u{0} Pj

N

Ej~90,t' log

On the other hand, by Taylor expansion we know that for any = € (—1, o), there exists T € (0, x)
such that log(1 + z) = x — 2%/2(1 + T)%. Subsequently,

Po,v (j]Sw) ] ( g —pj)
—fu(0) = —E; g |log LX) log (1+ 5P 4.152
ft( ) j~00,t [ gpg()’t/(l”St/) Z pj g p] ( )

jeS,u{0}
5 p<(Qj_pj_ 1 Iqj—pjlg) (4.153)
J 5 H |
jeS,u{0} Dj 2(1+9;)* P
1 (Qj _pj)2
. . (4 —pj)” (4.154)
2(1 + max; |p; — q;|/p;)? jesg{O} bs

Here 6; € (0, (¢; — p;)/p;) and the last inequality holds because . p; = >, ¢; = 1.
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By Egs. (4.138) and (4.139), we have that |¢; — p;|* < 402 - 7. In addition, (A2) implies
that p; > 1/pK for all j. Therefore, if 7 < 1/4/4p?>v2K? we have |p; — ¢;|/p; < 1 for all j and

hence )
P, (j|Se q; — ;)
E;g,.¢ |log Lgt) Z M < 8|fy(0)]. (4.155)
p907t/(]| t/) jESt/U{O} p.j
Summing over all # = 1,--- ,¢ and noting that fy () is always non-positive, we complete the
proof of Lemma 82. O

We are now ready to prove Lemma 79. By Eq. (4.142) and the fact that ﬁt(@) <0< Ft(GAt),
we have

IF,(6,)] < |Fy(6,) — Fi(6,)] < dlog(owTK) + \/ |F,(6,)|dlog(pvTK). (4.156)

Subsequently, R
|Fy(0,)] < dlog(pvNT). (4.157)

~

In addition, because F;(6;) < 0, by Eq. (4.140) we have
1 ~ ~ ~
— 5(@ —00)T1,(00) (0, — 0y) = Fy(6,) = dlog(pvTK). (4.158)
Lemma 79 is thus proved.

Analysis of upper confidence bounds

The following technical lemma shows that the upper confidence bounds constructed in Algorithm
13 are valid with high probability. Additionally, we establish an upper bound on the discrepancy
between R;(S) and the true value R;(S) defined in Eq. (4.27).
Lemma 83. Suppose 7 satisfies the condition in Lemma 79. With probability 1 — O(T™') the
following holds uniformly for allt > Ty and S < [N], |S| < K such that

L Ri(S) = Ri(S);

2. [Ru(S) = Ru(S)| < min{1, o/ 11,242 (00) My(60] ) I (60) o

At a higher level, the proof of Lemma 83 can be regarded as a “finite-sample” version of the
classical Delta’s method, which upper bounds estimation error of some functional ¢ of parame-
ters, i.e., | (0;_1) — ¢(6o)| using the estimation error of the parameters themselves 6;_; — 6.

We now state the proof of Lemma 83. Without explicit clarification, all statements are con-
ditioned on the success event in Lemma 79, which occurs with probability 1 — O(T1) if 7 is
sufficiently large and satisfies the condition in Lemma 79.

We present below a key technical lemma in the proof of Lemma 83, which is an upper bound
on the absolute value difference between Ry(S) = Eg,,[ry;|S] and R,(S) = Ej,_ ,[ry]5]

using I,_,(0p) and M;(6o|S), where I, 1(0) = 3,_, My(0) and My(0) = Eg, s [vejv,] —
{Eﬁo,t’vt’j}{EG,t’vt’j}T — {Eg’trvt/j}{E907t/Ut/j}T + {Eg’trvt/j}{Eggt/Ut/j}T. This key lemma can be
regarded as a finite sample version of the celebrated Delta’s method (e.g., (Van der Vaart, 1998))

used widely in classical statistics to estimate and/or infer a functional of unknown quantities.
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Lemma 84. Forallt > Tyand S < [N, |S| < K, it holds that | R,(S)—R,(S)| < +/d1og(pvTK)-

\/\\1;11/2(90)Mt(90|5)[;11/2 (00) | ops where in < notation we only hide numerical constants.

Below we state our proof of Lemma 84. Fix S < [N]. We use PR;(0) = Eg¢|r] =
[2 s 7t exp{v0}/[1 + X s expiv/;0}] to denote the expected revenue of assortment S at
time ¢, evaluated using a specific model # € R. Then

Yjes Tt exp{oj0} (1 + 3 g exp{vf04)? — (3 jes ey exp{v;0}) (X cs exp{v,;0})
(1 + Xjes exp{v];0})
= Eg ¢[115015] — {Eo,e715 1 {Eo 101} (4.159)

VoR:(0) =

By the mean value theorem, there exists 6;_; = 0 + &(6,—, — 0,) for some & € (0, 1) such
that

|R(S) = Ri(S)] = |Pu(01-1) — 9(00)| = [(VIR(0:-1), 01 — 00)]

— A/ Brr = ) T[VRD ) VR D) N Brr — ). (4.160)

Recall that VR, (0,—1) = B [rvi]—{B;_ rosHEg_ v} = By [(re—Eg_ o) (vy—
Ej,_, +v1j)]- Subsequently, by Jenson’s inequality and the fact that r4; € [0, 1] almost surely,

V‘ﬁt(at_l)V%t(gt_l)T < Egt_ht [(rtj — ]Egt_htrtj)Q('Utj — ]Egt_htvtj)(vtj — Egt_l,tvtj>T]

< E; [(Utj - Egt—htvtj)(vtj - Egt_l’tvtj)—r] = ]\//Tt(at,ﬂS) (4161)

Or—1,t

Define ]\/4\,5(0|S) = Eg[(vij — Egvi;)(vyj — Egyvyy) '], where S € [N] is the assortment
supplied at iteration ¢. Combining Eqgs. (4.160,4.161) with Lemma 79, we have

‘ét(s) - Rt(s)‘ < Vdlog(pvNT) - \/Hltfl(eo)*l/z]\//z(gtfl|S)[t71(90)71/2Hop~ (4.162)

It remains to show that ]\Z(@,JS) and M,(0y|S) are close, for which we first recall the
definitions of both quantities:

M(0:-115) = B, |, [(Utj —Ej,_ vei) (v — Eét,l,tvtj)T] ;
My(00]S) = By s vijvf] — {Eay v HEso 100} T = Mi(00] S)-
The next lemma shows that under suitable conditions ]\//E(gt,ﬂS) is close to ]\Z(QO|S) =

My (6]S), implying that M, (6,|S) < M,(6,_1|S) < 4M,(6o|S). It is proved in the supplemen-
tary material.

Lemma 85. Suppose 7 < 1/+/8p*v?K2. Then 1 M,(6|5) < ]\/4\,5(575_1|S) < AM;(6y|S) for all t,
S and 0.
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Proof. Define M,(0|S) := Eg, +[(vij — Egsvi5)(vij — Egsvi5)T], where only the outermost ex-
pectation is replaced by taking with respect to the probability law under ¢,. Denote also w; :=
U5 — E97tvtj. Then Mt(9|S) = Z] pgmt(])ﬁj]ﬁj]—r and Mt(9|S) — Mt(0|S) = Z] 5]@]@;, where
d; = po,t(4) — pot(j). By Eq. (4.138) and the fact that ||vyll2 < v, |0 — Op|l2 < 7, we have

max |6;] < VA2 - 7. (4.163)
J
On the other hand, by (A2) we know that min; pg, +(j) = 1/pK and therefore
S o 1 o
Mt(9|5) = ;peo,tijjT = p—K;ijjT. (4.164)

Combining Eqs. (4.163,4.164) and the fact that M,(0|S) — ]\/4\15(9|S) = >, 0;W;W; , we have
M,(0)S) — ]\2(9|S) < M(0]S)/2 and ]\//Tt(6|5) — M(0|S) < M(0|S)/2, provided that 7 <

—~

1/4/8p?v2K2. This also implies 21, (0]S) < M,(6]S) < 2M(6]5).

We next prove that $M,(6o]S) < M(6]S) < 2M,(6]S) which, together with $M,(6]S) <
M,(6]S) < 2M(6]S) established in the previous section, implies Lemma 85. Recall the defini-
tions that

Mt(90|5) = Eeo,t [(Utj - EGgJWj)(“tj - Eeo,tvtj)T] ;
Mt(9|5) = Eeo,t [(Utj - Ee,tvtj)(vtj - Ee,tvtj)T] .
Adding and subtracting Eg ;vy;, Eg, +v¢; terms, we have
T(015) - M(0o]S)
= Egj ¢ [(Utj — Ky 1015 + Egy 105 — Eo 1v15) (V5 — Egy 1015 + Egy 1015 — Ee,tvtj)T]
— Egy 1 [(Utj - EGg,t'Utj)(Utj - ]Eeo,tvtj)T]
= Eg, ¢ [(Eeo,tvtj - ]Ee,t’l/tj)(vtj - an,tvtj)T] + Egq 1 [(Utj - Eeo,tvtj)(Eeo,tUtj - EG,tUtj)T]
+ (Eoo,tvej — Egpv15) (Egy cvij — Ee,tvtj)T
= (Eeo,tvtj - Ee,tvtj)(Eeo,tvtj - Ee,tvt]’)T-
By Eq. (4.134) in the proof of Lemma 80, we have that

1 1
(Ego,evt; — Egqvi;) (B vy — Egavy) " < §E90,t[(vtj — Egy,0015) (v — Bgpavy) '] = §Mt(90|5 )

provided that 7 < 1/4/8p?v2K?, thus implying £ M (6o]S) < M(0]S) < 2M,(6o|9). O
As a consequence of Lemma 85, the right-hand side of Eq. (4.162) can be upper bounded by

v/ dlog(pvTK) - \/4||It_1 (00) =2 My(60|S) I1—1(00) =2 op-

Lemma 84 is thus proved. We are now ready to prove Lemma 83. By Lemma 84, we know
that with high probability

|R:(S) — Ry(S)| < v/dlog(pwTK) - \/ 111 (00) V2 M (0o|S) L1 (00) " Y2|op  (4.165)

172




In addition, by Lemma 85 and the fact that [6,_, — 6o, < 7 thanks to the local MLE
formulation, we have {1, (6p]S) < ]\//Tt(HAt,1|S) < 4M;(6p|S) and subsequently I, 1(6y) <
ft_l(ét_l) < 41,_1(6y) because I,_;(-) and I,_(-) are summations of My(-) and ]\Zr() terms.
Setting w = +/dlog(pvT K ) we proved that R;(S) = R;(S). The second property of Lemma 83
can be proved similarly, by invoking the spectral similarities between /;_ (), My(-) and I,_y (),
My (-).

The elliptical potential lemma

Let S} be the assortment that maximizes the expected revenue R;(-) (defined in Eq. (4.2_7)) at
time period ¢, and S; be the assortment selected by Algorithm 13. Because R;(S) < R(S)
for all S' (see Lemma 83), we have the following upper bound for each term in the regret (see
Eq. (4.28)):

Ri(S7) — Ri(Si) < (Ri(SF) — Ri(Sy)) + (Ri(Se) — Ri(S)) < Re(Se) — Ri(S),  (4.166)

where the last inequality holds because R;(S7) — R;(S;) < 0 (note that S; maximizes R;(-)).
Subsequently, invoking Lemma 83 and the Cauchy-Schwarz inequality, we have

T T
D1 Ri(S}) — Ri(S) < y/dlog(pvTK) - >’ wnin{l,\\1;1{2<90>Mt<eo|st>1:1/%90)Hop}
t=Tph+1 t=Tpo+1
T
<\ dTlog(prTK) - 37 min{L, |I2{(00) Mi (0] S) I (60) 3, ). (4.167)
t=Tp+1

The following lemma is a key result that upper bounds ZtT:TO 1 min{1, HI:{ 2(6) My (60| S) I, Y *(6,) 120}
It is usually referred to as the elliptical potential lemma and has found many applications in con-
textual bandit-type problems (see, e.g., Dani et al. (2008); Filippi et al. (2010); Li et al. (2017b);
Rusmevichientong et al. (2010)).
Lemma 86. It holds that

I det [T(QO)
. —1/2 —1/2
2, minl, |17 (60) Mi(Bol SOI{ (B0) 5} < 4log o=

t=Tp+1

< dlog(Aytpv).

Proof. Denote A; := [,;11/ *(60) M, (0|5, I:l/ ?(0,) as d-dimensional positive semi-definite ma-
trices with eigenvalues sorted as oy (A;) = -+ - = 04(A:) = 0. By simple algebra,

T T
> mind1, |52 (00) Mi(0o| ST (00)[2,) = D) min{1, 04(A))?)
t=To+1 t=Tp+1
T T
< ) 2log(l+01(A)°) < ) 4log(l+ o1(Ay)). (4.168)
t=Tp+1 t=To+1
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On the other hand, note that I;(6y) = I,_1(00)+M;(60]S:) = I;_1(00)Y*[Laxa+A]L—1(00) 2.
Hence,

d
log det I,(6p) = logdet I, 1 () + > log(1 + 0;(A;)). (4.169)

j=1

Comparing Egs. (4.168) and (4.169), we have

i min{1, | ,_* (60) My (60| S:) I,2* (80) |2, } < 41o gw (4.170)
t=Tp+1 o det Ir,(6o)’

which proves the first inequality in Lemma 86.
We next prove the second inequality in Lemma 86. Because assortments have size 1 through-
out the pure exploration phase (t < 1), we have

I7,(69) Zpeot]t — pooa () vrvl, = Hpg Z VL 4.171)
t=1

where the last inequality holds thanks to assumption (A2), which implies py, (j:) € [1/(1 +
p), p/(1+p)]. In addition, by the proof of Corollary 10, with high probability A (3112, v1, v,) =
0.5Tp g, where Ay > 0 is a parameter specified in assumption (A1). Therefore,

det I, (6o) = [Toro/p%]%. (4.172)

On the other hand, because max; ; |v;j ]2 < v we have I7(6y) < T - v* and subsequently
det I (6p) < [V*T]%. (4.173)
Combining Eqgs. (4.172) and (4.173) we proved the second inequality in Lemma 86. [

We are now ready to give the final upper bound on Regret({S;}]_,) defined in Eq. (4.28).
Note that the total regret incurred by the pure exploration phase is upper bounded by 7, because
the revenue parameters 7;; are normalized so that they are upper bounded by 1. In addition, as
the failure event of R;(S) < R.(S) for some S occurs with probability 1 — O(T~!), the total
regret accumulated under the failure event is O(T~') - T' = O(1). Further invoking Eq. (4.167)
and Lemma 86, we have

T
Regret({S,}i_,) < Ty + O(1) +E Y Ry(S}) — Ri(S)
t=To+1
vidlogT — p*(d+logT)
< 0O(1
<O(1)+ ¥ + =

< O1) + N2 p"* K2 log T + dV'T -log(\y ' pv TK). (4.174)

+ dVT -log(\g ' pvTK)
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4.7.2 Proof of Theorem 2(

At a higher level, the proof of Theorem 20 can be divided into three steps (separated into three
different sub-sections below). In the first step, we construct an adversarial parameter set and re-
duce the task of lower bounding the worst-case regret of any policy to lower bounding the Bayes
risk of the constructed parameter set. In the second step, we use a “counting argument” similar to
the one developed in the work of Chen & Wang (2018) to provide an explicit lower bound on the
Bayes risk of the constructed adversarial parameter set, and finally we apply Pinsker’s inequality
(see, e.g., (Tsybakov, 2009)) to derive a complete lower bound.

Adversarial construction and the Bayes risk

Let € € (0, 1/d+/d) be a small positive parameter to be specified later. For every subset W < [d],
define the corresponding parameter 0y, € R as [fy/]; = e for all i € W, and [0y ]; = 0 for all
1 ¢ W. The parameter set we consider is

00 = {0y : WeWyu} = {0w: W [d], W] =d/4}. (4.175)

Note that d/4 is a positive integer because d is divisible by 4, as assumed in Theorem 20. Also,
to simplify notation, we use W to denote the class of all subsets of [d] whose size is k.

The feature vectors {v;;} are constructed to be invariant across time iterations ¢. For each ¢
and U € W4, K identical feature vectors vy are constructed as (recall that K is the maximum
allowed assortment capacity)

[og]i = 1/Vd for ieU; [yl =0 for i¢U. (4.176)

It is easy to check that with the condition € € (0,1/+/d), < land |vy|e < 1 for all
W,U € Wgy4. Hence the worst-case regret of any policy 7 can be lower bounded by the worst-
case regret of parameters belonging to ©, which can be further lower bounded by the “average”
regret over a uniform prior over O:

T
sup E7y > R(S;) — R(S) = > max B, Z R(S; ) — R(S))
v, t=1

> Els, Z R(Sp,,) — R(Sh). 4.177)

|Wd/4| Wewy d/4

Here S; is the optimal assortment of size at most K that maximizes (expected) revenue
under parameterization ¢. By construction, it is easy to verify that Sj = consists of all K items
corresponding to feature vy,. We also employ constant revenue parameters ry; = 1 forall ¢ € [T,
i€ [N].

The counting argument

In this section we drive an explicit lower bound on the Bayes risk in Eq. (4.177). For any
sequences {S;}7 | produced by the policy 7, we first describe an alternative sequence {S;}7_,
that provably enjoys less regret under parameterization fy,, while simplifying our analysis.
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Let vy, - -+ , vy, be the distinct feature vectors contained in assortment S, (if S; = (J then
one may choose an arbitrary feature vy) with Uy, - -+, Ur, € Wy Let U* be the subset among
Uy, - -+, U that maximizes {vy=, Oy ), where 0y is the underlying parameter. Let §t be the
assortment consisting of all K items corresponding to feature v;;. We then have the following
observation:

Proposition 20. R(S,) < R(S,) under 6yy.

Proof. Because r;; = 1 in our construction, we have R(S;) = (3_jcq, u5)/(1 + Xjcq, ;) Where
u;j = exp{v; Oy} under Oy . Clearly R(S) is a monotonically non-decreasing function in u;. By

replacing all v; € S, with vy« € gt, the u; values do not decrease and therefore the Proposition
holds true. [

To simplify notation we also use ﬁt to denote the unique U* € Wy, in §t, We also use Ey
and Py to denote the law parameterized by 6y and policy 7. The following lemma gives a lower
bound on R(S;) — R(Sj, ) by comparing it with V.

Lemma 87. Suppose ¢ € (0,1/d\/d) and define § := d/4 — |U, ~ W|. Then

o€

R(S;,) — R(G) > 20

Proof. Letv = vy and ¥ = vy, be the corresponding feature vectors. Then

K exp{v0y} K exp{0 "0y}
1+ Kexp{oTOy} 1+ Kexp{0'0y}
Klexp{v 0w} — exp{070w}]

(14 Kexp{oTow})(1 + K exp{0T0w})
_ exp{v fw} — exp{B bw}
g 2Ke '

R(S;,) — R(S) =

Here the last inequality holds because max(exp{v 0y}, exp{0 0y }) < e. In addition, by
Taylor expansion we know that 1 + z < ¢” < 1 + x + z?/2 for all = € [0, 1]. Subsequently,

) 5y o (=0)T0w — (@T0w)?/2 _ de/Vd — (Vde)*/2
R(S;,) - R(3) = e > o .

Finally, noting that de?/2 < d¢/2v/d provided that € € (0,1/dv/d), we finish the proof of
Lemma 87. []

Define random variables N; := ST 1ie U,}. Lemma 87 immediately implies

T
~ € dT ~
Ew Y R(S5,) — RS = ——— [ S = S EW[N]). YW e Wy 4.178
W (S ) = RS 4K\/&<4 2, Ewl ]) @/4 (4.178)
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Denote Wy, == {IW € Wy i € W}and Wy == {W < [d] : [W| = d/4 - 1}.
Averaging both sides of Eq. (4.178) with respect to all W € Wy, and swapping the summation
order, we have

! RS e 1 a7 N

WeWy,4 t=1 EWy/4

€ dT 1 ~
== Ew [N
akVd | 4 Wl Z 2, EwlN]

€ dT 1 N
_ at Ew o[ Ni]
4K\/& 4 |Wd/4| WEV%Ml 1¢ZI/V { }

€ dT |Wd/4,1| ~
—— = - max ) EwoulV;
4K\/8 4 |Wd/4| WeWa a1 1,2 Wt }[ ]

€ dT |Wd/4—1| ~ N N
T v wibax ) EwlNi] + EwoNi] = EwlNi] )
AKVd \ 4 [ Wayal Wer/41i¢zV;/ wlNi] woti[NVi] wVi]

WV

Note that for any fixed W, 3,y Ew[N;] < 20 Ew [Ni] < dT/4. Also, [Wapaal/[Wapa| =

(d/fq)/ (d74) = 3;;% < 1/3. Subsequently,

1 S € dr ~ -
Wl = R(S3,)—R(S:) = — —  max Ewoi[Ni] — Ew|[N]] ] -
Wayal We%m W; ( HW) (Sy) AR ( 6 womss . 7,¢ZI/V| woti [Ni] wl ]|>

(4.179)
Pinsker’s inequality

In this section we concentrate on upper bounding |Ey [N;] = Ew[N;]| for any W e Waa—1.
Let P = Py and Q = Py denote the laws under 6y and 0y (3, respectively. Then

[Er[N)] ~ Eo[Ni]| < X - |PIN: = 7] - QIN; = ]

=
I
=y

T
<T->|P[N; = j] - Q[
j=0

1
<T-|P—Qlrv < T4/ 3KL(P|Q),

where | P—Q| v = sup, |P(A)—Q(A)|is the total variation distance between P, Q, KL(P|Q) =
{(logdP/dQ)dP is the Kullback-Leibler (KL) divergence between P, (), and the inequality

|P — Q|ltv < 4/3KL(P|Q) is the celebrated Pinsker’s inequality.
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For every i € [d] define random variables N; := 3, % Yoopes, 117 € U}. The next lemma
upper bound the KL divergence:
Lemma 88. Forany W € Wyy_1 and i € [d], KL(Pw | Pwogy) < Cki - Ew[N;] - €2/d for some
universal constant Cky, > 0.

Proof. Fix atime ¢ with policy’s assortment choice Sy, and define n;(S;) := >, g, 1{i € U}/K.
Let {p;};es,of0y and {g;}jes, {0y be the probabilities of purchasing item j under parameterization
Ow and Oy, 3, respectively. Then

bj —4q b
KL Pron(50) = 3 pytoa 2 < Yott ,J<Z'J . @180
jEStU{O}

where the only inequality holds because log(1 + z) < z for all z > —1. Because ¢; = ¢ /(1 +
Ke) = 1/(2Ke?) forall j € S; U {0}, Eq. (4.180) is reduced to

KL(Pyy (-|S) [ Pwoiy (150) < 26°K - > |pj — g5 4.181)
jeSru{0}

We next upper bound |p; — ¢;| separately. First consider j = 0. We have
1 1
L+ Zjest exp{vaé’W} L+ ZjeSt eXP{’UjTQWU{i}}

1
< s 2 ) o) (Ow — Owogsy)
(1+ K/e)? J;t‘ J |

- 2Kn;(S;)e/Vd - 8627%(5%)6.
(1+ K/e)? KVd

Ip; —q;] =

Here the first inequality holds because ¢* < 1 + 2z for all z € [0, 1].
For j > 0 corresponding to v; = vy where i ¢ U, we have

p; — q;| = exp{vffw} B eXp{UEQWu{i}}
T L+ Xes, expiv/Ow} 1+ exp{v]Owog}
< 1 1
ST+ Y exp{oTOw}t 1+ o exp{v] o)
jes, CXPU; Yw jes, EXPUV; Yw ot}

8en;(Sy)e
< —F.
Kv/d

Here the first inequality holds because exp{v;;0w} = exp{v0w g} < 1, since i ¢ U.
For j > 0 corresponding to v; = vy and ¢ € U, we have

eplolfw)  explogfwo)
1+ ZjeSt eXp{UJTGW} 1+ ZjeSt eXp{U;FGWU{i}}

Ipj — ;| =
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1 1
L+ Y g, exp{v/ 0w} 143 g explv] Owopy )
1
1+ ZjeSt exp{vaHW}
8e%n;(S;)e € 1 8e2n;(Sy)e 2ee
S——~5 t—F=- . < + :
K+d Vd 1+ K/e Kd K+/d

Combining all upper bounds on |p; — ¢;| and Eq. (4.181), we have

< expiv, o} -

+ | expfo, 0w} — expfo, Owog} -

128¢%n;(S;)%e? Rede?
KL(Py (-0 | P (-15)) < 262K - l (Se) ]

ey (1+ K) + Kn;(S) - 7
< ni(S;)€e?/d.

Here the last inequality holds because n,(S;) < 1. Note also that N; = Y | n;(S;) by
definition, and subsequently summing over all ¢t = 1 to 7" we have

KL(P | Pwogy) < Ew[Ni] - €/d,
which is to be demonstrated. ]

Combining Lemma 88 and Eq. (4.179), we have

Tl % Bw X R(S,) - RS) > (dFT ~T %V Oakw N d) |

WGWd/4 t=1

Further using Cauchy-Schwartz inequality, we have

d

Z \/CKLEw[NZ]€2/d < \/g . i CKLEw[Ni]EQ/d,

i=1 i=1

which is further upper bounded by v/d - \/Cky Te2/4 because 3¢ | By [N;] < dT/4. Subse-
quently,

1 ‘ e (dT )
E R(Sp..) — R(S:) = — —T+\/C{dTe? ), (4.182)
[ Wayal We;m W; (55,,.) (St) IV ANG KL

where Cj = Ckp/4. Setting € = 4/d/144C},; T we complete the proof of Theorem 20.
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Chapter 5

Conclusion and discussion

In this thesis, we study various problmes under the general theme of selective data acquision
in learning and decision making. In this ending chapter, we summarize the main conceptual
findings from this thesis, and also discuss potential future directions for extending the presented
thesis work.

5.1 Benefits of selective or active data acquisition

Using selective or interactive data collection schemes to improve data efficiency has a long
history in statistics and machine learning research (Balcan et al., 2009; Cohn et al., 1996; Fe-
dorov, 1972; Hanneke et al., 2014; Pukelsheim, 2006; Settles, 2009; Tong & Koller, 2001; Wu
& Hamada, 2011). Intuitively, by focusing data collection to regions that are most informative
about the underlying data generation procedure, the efficiency of the data analysis procedures is
much improved. Rigorous theoretical justification also exist, mostly targeting active regression
or classification problems (Balcan et al., 2010; Balcan & Long, 2013; Castro & Nowak, 2008;
Hanneke et al., 2014; Krishnamurthy, 2015; Wang, 2011; Wang & Singh, 2016).

In this thesis work, we study the benefits of selective or active data acquisition schemes be-
yond their traditional applications in statistical regression and classification. Our theoretical and
empirical results re-affirm the benefits of selective data acquisition for problems like nonpara-
metric optimization and/or dynamic assortment optimization.

More specifically, for optimizing an unknown, non-convex smooth function in low dimen-
sions, our theoretical results show a polynomial gap of the optimal convergence rates (sample
complexity) between passive and interactive query schemes when the objective functions have
a non-trivial level set growth (Theorems 4, 5 and 6) via localized minimax analysis, whose
importance we will also discuss in the next subsection. For dynamic assortment optimization,
our results on regret upper bounds (Theorems 13, 14, 17 and 19) emphasize the importance of
combining statistical estimation (of customers’ utility model parameters) and combinatorial op-
timization (of assortments) at the same time in order to achieve the minimum regret possible over
T' sequentially arriving customers. This latter point is also discussed in Sec. 5.3 later.
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5.2 Importance of optimality and minimax analysis

In this thesis, Optimality of our proposed methods is studied using the minimax framework
(Ibragimov & Has’minskii, 1981; Korostelev & Tsybakov, 2012; Tsybakov, 2009) and its vari-
ants from the statistics literature, which lower bounds the worst-case error or regret any al-
gorithm/policy will incur. While such analysis leads to negative results based on worst-case
scenarios, its importance should not be undermined as new insights are generated through such
minimax analysis. Below we mention two examples.

First, for the problem of global optimization of smooth non-convex functions, our minimax
analysis (together with corresponding upper bounds and algorithms) establishes a clear separa-
tion between passive and interactive schemes. Such a separation would not be possible without
rigorous optimality analysis of the proposed algorithms. In addition, we remark that for this par-
ticular question the classical global minimax analysis will not separate passive and interactive
schemes either, as the worst-case function over all smooth functions is the same for both query
schemes. To overcome this difficulty, a local variant of minimax analysis is adopted in order to
prove a difference in convergence rates for objective functions with non-trivial level set growth.

Second, analysis of optimal regret plays an important role in revealing some surprising phase
transitions of problem complexity when only very subtle changes in the problem settings are
present. For example, in Sec. 3.3 where optimization of non-stationary convex function se-
quences is studied, a single change in the norms of how function variation is measured gives
rises to the curse-of-dimensionality phenomenon, which is not visible when the most restrictive
p = oo norm is used. Another example concerns dynamic assortment optimization under the
plain MNL model: results in Theorems 13, 14 and 16 together reveal a surprising phase transi-
tion between the uncapacitated case (/X = N) with no /N-dependency and the capacitated case
(K < N/4) with v/N-dependency. Such unexpected phenomena would be counter-intuitive
without rigorous optimality analysis matching upper bounds of proposed algorithms.

5.3 Unification of data analysis and decision making

Many fundamental tasks in operations and revenue management involve decision making and
optimization, such as the optimization of commodity assortments for online or offline display
(Davis et al., 2014; Gallego et al., 2004; Kok et al., 2008; Li & Rusmevichientong, 2014; Maha-
jan & van Ryzin, 2001; Talluri & van Ryzin, 2004; van Ryzin & Mahajan, 1999), the determi-
nation of optimal pricing of items (Bitran & Caldentey, 2003; Elmaghraby & Keskinocak, 2003;
Talluri & Van Ryzin, 2006) and stochastic assignments of sequentially arriving jobs to workers
or kidneys to patients under medical management settings (Bertsimas et al., 2013; Derman et al.,
1972; Su & Zenios, 2005; Zenios et al., 2000).

Traditionally, the above-mentioned decision making problems are solved with environmental
parameters and settings fully specified, by resorting to greedy or dynamic programming (DP)
type methods. Unfortunately, the more common practical scenario is when the modeling param-
eters are unknown a priori, which have to be estimated either offline from historical data or online
simultaneously from sequentially made decisions. The uncertainty in the estimated parameters
also brings unique challenges to existing algorithms originally designed for full-information set-
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tings. One particular challenge is the instability of most dynamic programming methods, in
which even a small estimation error in the model parameters might incur large deviation from
the optimal policy in a DP formulation (Goldenshluger & Zeevi, 2017).

To overcome the difficulties DP-type algorithms face, regret minimization arises as a power-
ful unified framework for simultaneous estimation and decision making. While the concept of
regret (and its optimality) has been very common in multi-armed and contextual bandit problems
(Abbasi-Yadkori et al., 2011; Audibert et al., 2011; Auer, 2002; Bubeck & Cesa-Bianchi, 2012;
Chu et al., 2011; Filippi et al., 2010; Li et al., 2017b; Rusmevichientong & Tsitsiklis, 2010), its
study in more general operations management questions remains a relatively new area and has
attracted significant recent research efforts (Agrawal et al., 2017a,b; Caro & Gallien, 2007; El-
maghraby & Keskinocak, 2003; Rusmevichientong et al., 2010). Our results in Chapter 4 further
extend such efforts to more complex and practical revenue management models, and we envision
a much wider range of problems that could benefit from similar ideas and treatments, which we
elaborate in more details in the next subsection.

5.4 Future directions

Based on the thesis presented, my future work would extend the learning-while-doing framework
for operations research and management problems by combining both the perspectives of asymp-
totic regret analysis and exact policy optimization. Below are two major directions I would like
to pursue in the near future.

5.4.1 Regret analysis for dynamic programming with partial information

Traditionally, when full information about the environment is available, the optimal strategy
of a sequential decision making problem can be obtained by solving a (stochastic) dynamic
programming. When only partial information is available, however, such an approach becomes
less practical as dynamic programming is generally sensitive to small perturbation (estimation
error) of the decision process parameters. For such settings, asymptotic regret analysis might be
a more appropriate framework.

One such example is the question of assigning sequentially arriving jobs to awaiting work-
ers, which is a classical question in operations research, with important applications in kidney
exchange systems (Bertsimas et al., 2013; Derman et al., 1972; Su & Zenios, 2005; Zenios et al.,
2000). When the difficulty levels of arriving jobs (or qualities of available kidneys) are stochastic
and follow a known probability distribution, exactly optimal allocation policies can be found by
dynamic programming (Derman et al., 1972). It is an interesting question to study the allocation
problem when the underlying distribution of arriving jobs is unknown and have to be learnt from
observations of previously assigned matches.

5.4.2 POMDP and reinforcement learning

The results presented in this thesis on dynamic assortment planning with unknown utility mod-
els (Chapter 4), as well as previous works of Agrawal et al. (2017a,b); Rusmevichientong et al.
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(2010), all took a regret minimization approach by first developing an online assortment rec-
ommendation policy and then proving upper bounds on its regret. When possible, information-
theoretical lower bounds are proved to establish the (asymptotic) optimality of the proposed
policies.

When prior information about the customers’ utility models is available, existing regret based
approaches might be too conservative as they typically only consider the worst-case regret. Par-
tially observable Markov decision processes (POMDPs, (Astrom, 1965; Kaelbling et al., 1998))
present a more flexible framework for the modeling and solving of dynamic assortment opti-
mization questions, by representing the unknown utility model parameters as unobserved states.
Approximate computation techniques such as the ones introduced in the works of Fukuda (2004);
Zhang (2010) could also be applied.
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Appendix A

Useful inequalities

A.1 Scalar concentration inequalities

Lemma 89 (Hoeffding (1963)). Suppose X, ..., X, are i.i.d. random variables such that a <

X; < balmost surely. Then for any t > 0,
>t <2 nt’
<2expy———— ¢ -
Pl 20— a)

|

Lemma 90 (Hsu et al. (2012)). Suppose = ~ Ny(0, I4xq) and let A be a d x d positive semi-
definite matrix. Then for all t > (),

Pr [xTAx > tr(A) + 24/t (A2 + 2||A||opt] <et,

1 n
EZX"_EX

=1

Lemma 91 (Bernstein’s inequality). Suppose X is a sub-exponential random variable with pa-
rameters v and .

2exp {—t?/2v%}, 0<t<v?/a;

Pr HX _EX‘ > t] S { 2exp {—t/2a}, t>1*a.

The following lemma is a simplified version of Theorem 1.2A in (Victor, 1999) (note that the
original form in (Victor, 1999) is one-sided; the two-sided version below can be trivially obtained
by considering — X7, ..., —X,, and applying the union bound).

Lemma 92 (Bernstein’s inequality for martingales). Suppose X, ..., X,, are random variables

such that E[X;| X1, ..., X; 1] = 0and E[ X7 |Xy,..., X; 1] < o’ forallt = 1,...,n. Further
assume that E[|X;[* X1, ..., X; 1] < LkloV*=2 for all integers k = 3. Then for all t > 0,

j=1

t2
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The following lemma is the Hoeffding’s maximal inequality, by Hoeffding (1963).
Lemma 93 (Hoeffding’s maximal inequality). Let Xi,--- , X,, be i.i.d. random variables with
mean . and satisfy a < X; < b almost surely for all i € |n]. Then for any t > 0,

, : 2t
Pr[Vze[n],Xl—i—---—i—Xi)z-/JJ—i—t]<exp{—m}. (A.1)

The following result is cited from Theorem 5 of (Agrawal et al., 2017a).
Lemma 94 (Concentration of geometric random variables (Agrawal et al., 2017a)). Suppose

Xy, -+, X, are i.i.d. geometric random variables with parameters p > 0, meaning that Pr[ X; =
k]l = (1 —p)pfork =0,1,2,---. Define i := EX; = (1 — p)/p. Then

nud? .
1 & exp —Mﬁ} ; ifp<l,
Pr [—ZXZ- > (1 +5)u] < s i _
" i=1 exXp T 6(14+pu)2 (3 o 1+p) } ’ lf:u = 17 NS (07 1)7
nd> 24 .
1n €xp __L(S__&)}u l.f/vL<17
Pr [_ )(Z < (1 . (S)M] < 6;1642#22 1+up .
nis exp —m}, ifp =1

A.2 Matrix/vector concentration inequalities

Lemma 95 (Rudelson & Vershynin (2007)). Let x be a p-dimensional random vector such that
|lz|2 < M almost surely and |Exx ||y < 1. Let 1, - - ,x, be i.i.d. copies of x. Then for every

te(0,1)
Pr[

where C' > (0 is some universal constant.
Lemma 96 (Corollary 5.2 of Mackey et al. (2014)). Let (Yy)r>1 be a sequence of random d-
dimensional Hermitian matrices that satisfy

nt?
>t <2 —C——,
, ] exp{ M2logn}

1 n
— Z vix, — Brw'
nia

EY, =0 and |Yi[|a <R a.s.

Define X = Y, Yi. The for any t > 0,

t2
302 + 2Rt

D EY?

k=1

Pr[||X||2>t]<d-exp{ } for o* =

2

Lemma 97 (Corollary 10.3 of Mackey et al. (2014)). Let Ay, - -- , A, be a sequence of determin-
istic d-dimensional Hermitian matrices that satisfy

1<k<n

Z Ay =0 and  sup |Agl2 <R
=1
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Define random matrix X = Z;nzl Ay for m < n, where o is a random permutation from [n]
to [n]. Then for all t > 0,

t2
1202 + 4v/2Rt

Pr (| X2 = t] <dexp{— } for o2 ="
n

>
k=1

2

Lemma 98 (Tropp (2015), simplified). Suppose A1, ..., A, are i.i.d. positive semidefinite ran-
dom matrices of dimension d and | A;|op < R almost surely. Then for any t > 0,

nt?
>t <2exps — .

P -
g SR?

1 n
ﬁ;Ai—EA

op

A.3 Other inequalities

Lemma 99 (Wey!’s inequality). Let A and A+ E be dxd matrices with oy, . ..,05and oy, . .., d)
being their singular values, sorted in descending order. Then maxi<i<q |0; — 0} < | Eop-
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