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Abstract

Shape-constrained estimation techniques such as convex regression or
log-concave density estimation offer attractive alternatives to traditional
nonparametric methods. Shape-constrained estimation often has an easy-
to-optimize likelihood, no tuning parameter, and an adaptivity property
where the sample complexity adapts to the complexity of the underlying
functions. In this dissertation, we posit that shape-constrained estima-
tion has an additional advantage in that they are naturally suited to the
high-dimensional regime, where the number of variables is large relative
to the number of samples.

In the first part of this dissertation, we study high dimensional convex
regression and demonstrate that convex regression surprisingly has the
additive faithfulness property, where the additive approximation is guar-
anteed to capture all relevant variables even if the underlying function
is not additive. We propose a practical variable selection procedure for
high dimensional convex regression based on this observation. The overall
work provides a practical smoothing-free semi-parametric generalization
of the Lasso.

We generalize our work on high dimensional convex regression to
discrete choice models, in which a consumer chooses between m items
x1, ..., xm with probability proportional to exp f(xi) for a utility function
f . We show that additive faithfulness applies also in this setting. We
accordingly adapt our method to the estimation of the utility function.

In the last part, we consider the problem of learning the orientation
pattern in additive shape-constraint models. Brute force search in this
problem requires times exponential in the dimensionality. We propose
a relaxation approach, based on trend filtering and motivated by our
identifiability analysis, that is computationally efficient and effective.
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chapter 1

INTRODUCTION

Nonparametric estimation methods, such as kernel regression or random forest, are
flexible and powerful because of they impose weak assumptions on the underlying
function. Their disadvantages are that they require more time for computate and
more samples for estimate. Nonparametric methods are particularly vulnerable to
the curse of dimensionality. Their drawbacks are dramatically exacerbated when
the data is high-dimensional, i.e. when the dataset has a large number of variables
relative to the number of samples.

In parametric regression, stunning recent advances have shown that under a spar-
sity assumption, in which most variables are assumed to be uninformative, it is
tractable to identify the relevant variables and estimate the function as if the data
is low-dimensional. Some analogous results have followed for high-dimensional non-
parametric regression but there is still a large gap; there currently exist no method
for high-dimensional nonparametric regression that is as practical and theoretically
justifiable as parametric methods like the Lasso.

This thesis tackles the problem of high-dimensional nonparametric estimation
through shape constraints. Shape-constrained estimation has a rich history and
extensive research on topics such as convex or monotone regression and log-concave
density estimation. Shape-constraints differ from the usual smoothness assumptions
in several ways:

1. It is often possible to directly optimize the likelihood.

2. It is often free of tuning parameters, such as the bandwidth in kernel regression.

3. It exhibits adaptivity; the sample complexity can adapt to the complexity of
the underlying function to be learned. (Guntuboyina and Sen, 2013a; Cai and
Low, 2011)

In this thesis, we posit an additional advantage: that shape constraints
are naturally suited toward high-dimensional estimation.

We focus on monotone functions and convex/concave functions in this thesis, but
some of the analysis extends to higher orders of shape-constraints.

Shape-constraint assumptions arise naturally from real data. For example, the
income of a person is a increasing function of the education quality, the price of a

1



CHAPTER 1. INTRODUCTION 2

house is a decreasing function of the neighborhood crime level. Estimation of con-
vex functions arises naturally in several applications. Examples include geometric
programming (Boyd and Vandenberghe, 2004), computed tomography (Prince and
Willsky, 1990), target reconstruction (Lele et al., 1992), image analysis (Golden-
shluger and Zeevi, 2006) and circuit design (Hannah and Dunson, 2012). Other
applications include queuing theory (Chen and Yao, 2001) and economics, where it
is of interest to estimate concave utility functions (Meyer and Pratt, 1968). Util-
ity functions can be assumed concave because of the phenonmenon of diminishing
returns. Beyond cases where the shape-constraint assumption is natural, the shape-
constrained estimation can be attractive as a tractable, nonparamametric relaxation
of the linear model.

Shape-constrained estimation has a long history. Much of the earlier work on
isotonic regression is described by the classic “4B” text (Barlow et al., 1972). Mair
et al. (2009) too provides a good history. Research into convex regression began in
the 1950s (Hildreth, 1954) for estimation of production and Engel curves. The earlier
works were focused on the univariate case and the least square estimator’s properties
were investigated by Hanson and Pledger (1976), Groeneboom et al. (2001), Mammen
(1991), and more.

Recently, there has been increased research activity on shape-constrained estima-
tion. Guntuboyina and Sen (2013b) analyze univariate convex regression and show
surprisingly that the risk of the MLE is adaptive to the complexity of the true func-
tion. Seijo and Sen (2011) and Lim and Glynn (2012) study maximum likelihood
estimation of multivariate convex regression and independently establish its consis-
tency. Cule et al. (2010c) and Kim and Samworth (2014) analyze log-concave density
estimation and prove consistency of the MLE; the latter further show that log-concave
density estimation has minimax risk lower bounded by n−2/(d+1) for d ≥ 2, refuting a
common notion that the condition of convexity is equivalent, in estimation difficulty,
to the condition of having two bounded derivatives. Additive shape-constrained es-
timation has also been studied; Pya and Wood (2014) propose a penalized B-spline
estimator while Chen and Samworth (2014) show the consistency of the MLE.

1.1 Thesis Summary

Briefly, we study high dimensional convex regression in Chapter 2, convex utility
estimation for discrete choice model in Chapter 3, and shape-constraint pattern
selection for additive models in Chapter 4. Lastly, in Chapter 5, we discuss open
questions raised by the work in this thesis.
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Chapter 2

In Chapter 2 of the thesis, we give a practical procedure that performs variable
selection for high dimensional convex regression. Our main result is a population
level analysis showing that an additive projection can faithfully recover the set of
relevant variables of a possibly non-additive convex function under weak assumptions
on the underlying density; we refer to this phenonmenon as additive faithfulness.

Our estimation procedure is a two stage procedure where we fit an additive convex
function in the first stage and fit several decoupled univariate concave functions in the
second stage. The second concave fitting stage is un-intuitive and generally necessary
as shown in our theory. Our optimization method is a backfitting procedure where
each iteration is a quadratic program. It is computationally practical and effective
on both simulated and real data.

We also perform a finite sample analysis on our estimation procedure and prove
variable screening consistency. Whereas variable selection for general smooth func-
tions is impossible unless n = exp(s) (as proved by Comminges and Dalalyan
(2012)), we show that variable selection for convex regression is consistent even if
n = O(poly(s)) where n is the sample size and s is the number of relevant variables.

Chapter 3

Chapter 3 generalizes the work of Chapter 2 to the discrete choice model, which
is a more general form of the logistic loss. In discrete choice model, a consumer
chooses one of m items x1, ...,xm to purchase and decides on item xi with probability
proportional to exp f(xi) where f is a concave utility function.

We show that a form of additive faithfulness also holds in this setting and extend
our estimation procedure to the discrete choice model. We verify that our method
is effective in a real world dataset from a survey that we designed and conducted.

Chapter 4

Chapter 4 studies the problem of orientation pattern selection for an additive shape-
constraint model. More precisely, we fit

∑d
j=1 fj where fj could be either monotone

increasing or decreasing.
We show in the d = 2 case that the problem is identifiable and that the correct

pattern can be recovered by minimizing the L1 norm of the differences
∑n−1
i=1 |fij −

fi+1,j|. This observation motivates an estimator where we use a L1 of differences
regularization. This estimator can also be interpreted as the convex relaxation of
the computationally inefficient combinatorial search.
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1.2 Properties of Shape-Constrained Functions

We give some basic properties of monotone and convex/concave functions and then
describe simple estimation problems that involve these functions.

Monotonic Functions

A monotonic function from R to R is easy to visualize, but the notion of monotoncity
can actually be much more general.

Definition 1.2.1. Let C be a partially ordered set. A function f : C → R is
monotone increasing if f(x) ≥ f(y) if x � y.

If C = Rp, we can use the ordering that x ≥ y if xj ≥ yj for all j. f is monotone
under this ordering if and only if, for all j = 1, ..., p, for any fixed x−j, f(xj,x−j) is
a monotonic 1-dimensional function of xj. Another interesting example is if C is a
directed acyclic graph.

Classic results in real analysis state that monotone functions have a countable
number of discontinuities and that every function of bounded variation can be written
as a sum of a monotone increasing and decreasing function.

Given finite samples, the MLE (assuming Gaussian error) of monotone regression
is a finite dimensional optimization even though the set of monotone functions is
infinite dimensional.

Definition 1.2.2. (LSE for Monotone Functions)
Suppose we have samples (Xi, yi)i=1,...,n where the Xi’s are drawn from some distri-
bution on C. The least square estimator (LSE) is

min
fi

n∑
i=1

(fi − yi)2

s.t. fi ≥ fj for all (i, j) such that Xi � Xj

The well known Pool Adjacent Violator algorithm (PAVA), first described by
Ayer et al. (1955) can efficiently solve this optimization, in time O(n log n) for totally
orderedXi’s. Dykstra (1981) provides generalizations of PAVA that apply to partially
ordered sets.

The estimated function is defined only on Xi in the training set but interpolation
can be used to evaluate the estimated function on a general x.
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Convex Functions

Convex functions intuitively have a bowl-shaped graph. They have numerous equiv-
alent characterizations. We list three which are useful for us.

Definition 1.2.3. Let C ⊂ Rd be a convex set. f : C → R is convex if f(λx+ 1(1−
λ)y) ≤ λf(x) + (1− λ)f(y) for all λ ∈ [0, 1] and for all x, y ∈ C.

Equivalently, f is convex iff for every x ∈ C, there exists a subgradient ∇f(x) ∈
Rd such that f(y) ≥ f(x) +∇f(x)T(y − x).

If f is twice-differentiable, then f is convex iff the Hessian is positive semidefinite
for all x in the interior of C.

The first order characterization for one dimensional convex functions is particu-
larly simple; it says that the derivative must be non-decreasing. This simple obser-
vation is useful in reducing the computational complexity of many of our estimation
algorithms.

Convex functions are analytically nice because they are continuous on the interior
of the support and thus measurable. In fact, a classic result by Aleksandorov (1939)
shows that convex functions are almost everywhere twice differentiable.

A useful well-known property of convex functions is that the sum of a convex
and a concave function can represent any function with a bounded second derivative
(Yuille and Rangarajan, 2003). This is analogous to how any function of bounded
variation can be written as the sum of an increasing and a decreasing function.

Proposition 1.2.1. Let h : Rd → R be a twice-differentiable function with a bounded
second derivative. Then h = f + g where f is convex and g is concave.

Proof. The Hessian of h(x)+c
∑d
j=1 x

2
j is Hessian(h)+cId. Since the second derivative

of h is bounded, there exists a positive scalar c such that f(x) = h(x) + c
∑d
j=1 x

2
j is

convex. Let g(x) = −c∑d
j=1 x

2
j and the claim follows.

Analogous to the case of monotone regression, the MLE for convex regression is
a finite dimensional optimization.

min
fi,βi

1

n

n∑
i=1

(yi − fi)2

s.t.fi′ ≥ fi + βT
i (xi′ − xi)

where βi is the p-dimensional subgradient vector at xi. This optimization is a
Quadratic Program and can be solved efficiently with interior point methods. Again,
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the estimated function is defined only on Xi in the training set but we can evaluate
the estimated function on a general x with interpolation.

1.3 Background on High Dimensional Statistics

High dimensional data is, simply put, data with a large number of covariates–often
more than the number of samples. Statistical problems become challenging in this
regime and many classical methods fail entirely.

Let us first consider a linear model y = Xβ with n samples and p covariates.
When p << n, the ordinary least square estimate β̂OLS = (XTX)−1XTy forms a
good estimate of y. In the high dimensional regime where p is large, β̂OLS overfits;
its training error decreases as one uses more covariates. If p > n, β̂ cannot even be
computed since XTX is non-invertible.

For high dimensional data, it is reasonable to assume that most of the covariates
are not predictive of the output and thus irrelevant. We formalize this assumption
mathematically by assuming that β is sparse–it has only s non-zero entries where
s << p. In the vocabulary of high-dimensional statistics, we say that p is the ambient
dimension.

If the relevant variables were known a priori, then the problem is easy because
we can ignore the irrelevant variables and put the problem in the low dimensional
regime; the challenge thus is variable selection–to identify the set S of relevant vari-
ables. One approach is to search over the subsets–possibly using a greedy method
for computational efficiency–and score them with a criterion such as Mallows’s Cp,
Akaike Information Criterion, or Bayesian Information Criterion, to achieve a good
balance of both low training error and low model complexity (Hastie et al., 2009).

Another approach shows that the L1-regularized M-estimator, also known as
lasso, is effective at producing a sparse estimator β̂ whose non-zero entries approxi-
mate S. Astonishingly, it is also known that the lasso can consistently estimate the
parameters so long as s log p

n
→ 0. In other words, the ambient dimension can be

exponential in the number of samples.

β̂lasso = argmin
β

1

n

n∑
i=1

(yi − xT
i β)2 + λ‖β‖1

Figure 1.1: The lasso estimator. λ is a tuning parameter that balances training error
and sparsity of the output β̂lasso.
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It is harder to adapt nonparametric models to the high dimensional setting. One
relatively easy case is the additive model, where the p-dimensional regression function
f(x) is assumed to decompose as a sum of p univariate functions

∑p
j=1 fj(xj). In

this case, many researchers were able to derive nonparametric analogues of the lasso.
Ravikumar et al. (2009) for examples penalizes a sum of L2 norms of the component
functions:

min
f smooth

1

n

n∑
i=1

Ñ
yi −

p∑
j=1

fj(xij)

é2

+ λ
p∑
j=1

Ã
1

n

n∑
i=1

fj(xij)2

In non-additive nonparametric regression, variable selection is a notoriously diffi-
cult problem. Lafferty and Wasserman (2008) develop a greedy procedure for adjust-
ing bandwidths in a local linear regression estimator, and show that the procedure
achieves the minimax rate as if the relevant variables were isolated in advance. But
the method only provably scales to dimensions p that grow logarithmically in the
sample size n, i.e., p = O(log n). This is in contrast to the high dimensional scaling
behavior known to hold for sparsity selection in linear models using `1 penalization,
where n is logarithmic in the dimension p. Bertin and Lecué (2008) develop an
optimization-based approach in the nonparametric setting, applying the lasso in a
local linear model at each test point. Here again, however, the method only scales
as p = O(log n), the low-dimensional regime. An approximation theory approach
to the same problem is presented in DeVore et al. (2011), using techniques based
on hierarchical hashing schemes, similar to those used for “junta” problems (Mossel
et al., 2004). Here it is shown that the sample complexity scales as n > log p if one
adaptively selects the points on which the high-dimensional function is evaluated.

Comminges and Dalalyan (2012) show that the exponential scaling n = O(log p)
is achievable if the underlying function is assumed to be smooth with respect to a
Fourier basis. They also give support for the intrinsic difficulty of variable selection
in nonparametric regression, giving lower bounds showing that consistent variable
selection is not possible if n < log p or if n < exp s, where s is the number of relevant
variables. Variable selection over kernel classes is studied by Koltchinskii and Yuan
(2010).
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sparse linear 
model

sparse additive 
model

sparse general 
nonparametric model

more flexible

more practical

Figure 1.2: A summary of the sparse models.

1.4 Notation

Indexing Convention

Unless otherwise stated, we let i index samples, j, k index features. The variable p, d
will be used to represent the dimensionality and n the number of samples.
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x vector X
random variable (possibly
random vector)

x−k
vector x with k-th coordinate
removed

XS
S ⊂ {1, ..., p}, X restricted to
variables in S

X(i) i-th sample X̄ sample mean

E[· |xk] shorthand for E[· |Xk = xk] x(j)
the j-th largest entry of a vec-
tor x

L2 Lebesgue square integrable
space

L2(P )
square integrable space w.r.t.
distribution P

1n all ones vector 1S
vector 1 in set S, 0 else

‖f‖2P L2(P ): Ef(X)2 〈f, g〉n empirical inner product
1
n

∑n
i=1 f(Xi)g(Xi)

‖f‖2n empirical L2: 1
n

∑n
i=1 f(Xi)

2 C1 set of univariate convex func-
tions

C1B
univariate convex function
bounded by B

Cp1
additive function with p uni-
variate convex functions

Figure 1.3: Notations used in the dissertation
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HIGH DIMENSIONAL CONVEX REGRESSION

2.1 Introduction

In this chapter we study the problem of variable selection in multivariate convex
regression. Assuming that the regression function is convex and sparse, our goal is
to identify the relevant variables. We show that it suffices to estimate a sum of one-
dimensional convex functions, leading to significant computational and statistical
advantages. This is in contrast to general nonparametric regression, where fitting
an additive model can result in false negatives. Our approach is based on a two-
stage quadratic programming procedure. In the first stage, we fit an convex additive
model, imposing a sparsity penalty. In the second stage, we fit a concave function
on the residual for each variable. As we show, this non-intuitive second stage is in
general necessary. Our first result is that this procedure is faithful in the population
setting, meaning that it results in no false negatives, under mild assumptions on the
density of the covariates. Our second result is a finite sample statistical analysis of
the procedure, where we upper bound the statistical rate of variable screening con-
sistency. An additional contribution is to show how the required quadratic programs
can be formulated to be more scalable. We give simulations to illustrate our method,
showing that it performs in a manner that is consistent with our analysis.

While nonparametric, the convex regression problem is naturally formulated using
finite dimensional convex optimization, with no additional tuning parameters. The
convex additive model can be used for convenience, without assuming it to actually
hold, for the purpose of variable selection. As we show, our method scales to high
dimensions, with a dependence on the intrinsic dimension s that scales polynomially,
rather than exponentially as in the general case analyzed in Comminges and Dalalyan
(2012).

Related Work

Perhaps more closely related to the present work is the framework studied by Raskutti
et al. (2012) for sparse additive models, where sparse regression is considered under
an additive assumption, with each component function belonging to an RKHS. An
advantage of working over an RKHS is that nonparametric regression with a sparsity-

10



CHAPTER 2. HIGH DIMENSIONAL CONVEX REGRESSION 11

inducing regularization penalty can be formulated as a finite dimensional convex cone
optimization. On the other hand, smoothing parameters for the component Hilbert
spaces must be chosen, leading to extra tuning parameters that are difficult to select
in practice. There has also been work on estimating sparse additive models over a
spline basis, for instance the work of Huang et al. (2010), but these approaches too
require the tuning of smoothing parameters.

Chapter Outline

In the following section we give a high-level summary of our technical results, includ-
ing additive faithfulness, variable selection consistency, and high dimensional scaling.
In Section 2.3 we give a detailed account of our method and the conditions under
which we can guarantee consistent variable selection. In Section 2.4 we show how the
required quadratic programs can be reformulated to be more efficient and scalable.
In Section 2.5 we give the details of our finite sample analysis, showing that a sample
size growing as n = O

Ä
poly(s) log p

ä
is sufficient for variable selection. In Section 2.6

we report the results of simulations that illustrate our methods and theory. The full
proofs are given in a technical appendix.

2.2 Overview of Results

In this section we provide a high-level description of our technical results. The full
technical details, the precise statement of the results, and their detailed proofs are
provided in following sections.

Our main contribution is an analysis of an additive approximation for identifying
relevant variables in convex regression. We prove a result that shows when and how
the additive approximation can be used without introducing false negatives in the
population setting. In addition, we develop algorithms for the efficient implementa-
tion of the quadratic programs required by the procedure.

Faithful screening

The starting point for our approach is the observation that least squares nonpara-
metric estimation under convexity constraints is equivalent to a finite dimensional
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quadratic program. Specifically, the infinite dimensional optimization

minimize
n∑
i=1

(Yi − f(xi))
2

subject to f : Rp → R is convex

(2.2.1)

is equivalent to the finite dimensional quadratic program

minimizef,β
n∑
i=1

(Yi − fi)2

subject to fj ≥ fi + βTi (xj − xi), for all i, j.

(2.2.2)

Here fi is the estimated function value f(xi), and the vectors βi ∈ Rd represent
supporting hyperplanes to the epigraph of f . See Boyd and Vandenberghe (2004),
Section 6.5.5. Importantly, this finite dimensional quadratic program does not have
tuning parameters for smoothing the function.

This formulation of convex regression is subject to the curse of dimensionality.
Moreover, attempting to select variables by regularizing the subgradient vectors βi
with a group sparsity penality is not effective. Intuitively, the reason is that all p
components of the subgradient βi appear in every convexity constraint fj ≥ fi +
βTi (xj − xi); small changes to the subgradients may not violate the constraints.
Experimentally, we find that regularization with a group sparsity penality will make
the subgradients of irrelevant variables small, but may not zero them out completely.

This motivates us to consider an additive approximation. As we show, this leads
to an effective variable selection procedure. The shape constraints play an essential
role. For general regression, using an additive approximation for variable selection
may make errors. In particular, the nonlinearities in the regression function may
result in an additive component being wrongly zeroed out. We show that this cannot
happen for convex regression under appropriate conditions.

We say that a differentiable function f depends on variable xk if ∂xkf 6= 0 with
probability greater than zero. An additive approximation is given by

{f ∗k}, µ∗ := argmin
f1,...,fp,µ

ß
E
Å
f(X)− µ−

p∑
k=1

fk(Xk)
ã2

: Efk(Xk) = 0
™
. (2.2.3)

We say that f is additively faithful in case f ∗k = 0 implies that f does not depend on
coordinate k. Additive faithfulness is a desirable property since it implies that an
additive approximation may allow us to screen out irrelevant variables.

Our first result shows that convex multivariate functions are additively faithful
under the following assumption on the distribution of the data.
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Definition 2.2.1. Let p(x) be a density supported on [0, 1]p. Then p satisfies the
boundary flatness condition if for all j, and for all x−j,

∂p(x−j |xj)
∂xj

=
∂2p(x−j |xj)

∂x2j
= 0 at xj = 0 and xj = 1.

As discussed in Section 2.3, this is a relatively weak condition. Our first result is
that this condition suffices in the population setting of convex regression.

Theorem. (Theorem 2.3.1) Let p(x) be a positive density supported on C = [0, 1]p

that satisfies the boundary flatness property. If f is convex with a bounded second
derivative on an open set around C, then f is additively faithful under p.

Intuitively, an additive approximation zeroes out variable k when, fixing xk, every
“slice” of f integrates to zero. We prove this result by showing that “slices” of convex
functions that integrate to zero cannot be “glued together” while still maintaining
convexity.

While this shows that convex functions are additively faithful, it is difficult to
estimate the optimal additive functions. The difficulty is that f ∗k need not be a
convex function, as we show through a counterexample in Section 2.3. It may be
possible to estimate f ∗k with smoothing parameters, but, for the purpose of variable
screening, it is sufficient in fact to approximate f ∗k by a convex additive model.

Our next result states that a convex additive fit, combined with a series of uni-
variate concave fits, is faithful. We abuse notation in the next theorem and let the
notation f ∗k represent convex additive components.

Theorem. (Theorem 2.3.3) Suppose p(x) is a positive density on C = [0, 1]p that
satisfies the boundary flatness condition. Suppose that f is convex and continuously
twice-differentiable on an open set around C. and that ∂xkf , ∂xkp(x−k |xk), and
∂2xkp(x−k |xk) are all continuous as functions on C. Define

{f ∗k}pk=1, µ
∗ = arg min

{fk},µ

ß
E
Å
f(X)− µ−

s∑
k=1

fk(Xk)
ã2

: fk ∈ C1, Efk(Xk) = 0
™

(2.2.4)
where C1 is the set of univariate convex functions, and, with respective to f ∗k ’s from
above, define

g∗k = arg min
gk

ß
E
Å
f(X)− µ∗ −

∑
k′ 6=k

f ∗k′(Xk′)− gk(Xk)
ã2

: gk ∈ -C1,Egk(Xk) = 0
™
,

(2.2.5)
with -C1 denoting the set of univariate concave functions. Then f ∗k = 0 and g∗k = 0
implies that f does not depend on xk, i.e., ∂xkf(x) = 0 with probability one.
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This result naturally suggests a two-stage screening procedure for variable selec-
tion. In the first stage we fit a sparse convex additive model {f̂k}. In the second
stage we fit a concave function ĝk to the residual for each variable having a zero
convex component f̂k. If both f̂k = 0 and ĝk = 0, we can safely discard variable xk.
As a shorthand, we refer to this two-stage procedure as AC/DC. In the AC stage we
fit an additive convex model. In the DC stage we fit decoupled concave functions
on the residuals. The decoupled nature of the DC stage allows all of the fits to be
carried out in parallel. The entire process involves no smoothing parameters. Our
next result concerns the required optimizations, and their finite sample statistical
performance.

Optimization

Given samples (yi, Xi), AC/DC becomes the following optimization.

{f̂k}pk=1 = arg min
{fk∈C1}

1

n

n∑
i=1

(
yi − ȳ −

p∑
k=1

fk(Xik)

)2

+ λ
p∑

k=1

‖fk‖∞

∀k, ĝk = arg min
gk∈C1

1

n

n∑
i=1

Ñ
yi − ȳ −

∑
k′ 6=k

f̂k′(Xik′)− gk(Xik)

é2

+ λ‖gk‖∞

where ȳ is the empirical mean of y. Our estimate of the relevant variables is “S =
{k : ‖f̂k‖ > 0 or ‖ĝk‖ > 0}.

We present the optimization algorithms in Section 2.4. The convex constraints
for the additive functions, analogous to the multivariate constraints (2.2.2), are that
each component fk(·) can be represented by its supporting hyperplanes, i.e.,

fki′ ≥ fki + βki(xki′ − xki) for all i, i′ (2.2.6)

where fki := fk(xki) and βki is the subgradient at point xki. While this apparently
requires O(n2p) equations to impose the supporting hyperplane constraints, in fact,
only O(np) constraints suffice. This is because univariate convex functions are char-
acterized by the condition that the subgradient, which is a scalar, must increase
monotonically. This observation leads to a reduced quadratic program with O(np)
variables and O(np) constraints.

Directly applying a QP solver to this optimization is still computationally ex-
pensive for relatively large n and p. We thus develop a block coordinate descent
method, where in each step we solve a sparse quadratic program involving O(n)
variables and O(n) constraints. This is efficiently solved using optimization packages
such as mosek. The details of these optimizations are given in Section 2.4.
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Finite sample analysis

In Section 2.5 we analyze the finite sample variable selection consistency of AC/DC,
without assuming that the true regression function f0 is additive. Our analysis
first establishes a sufficient deterministic condition for variable selection consistency,
and then considers a stochastic setting. Our proof technique decomposes the KKT
conditions for the optimization in a manner that is similar to the now standard
primal-dual witness method (Wainwright, 2009).

We prove separate results that allow us to analyze false negative rates and false
positive rates. To control false positives, we analyze scaling conditions on the regular-
ization parameter λn for group sparsity needed to zero out irrelevant variables k ∈ Sc,
where S ⊂ {1, . . . , p} is the set of variables selected by the AC/DC algorithm in the
population setting. To control false negatives, we analyze the restricted regression
where the variables in Sc are zeroed out, following the primal-dual strategy.

Each of our theorems uses a subset of the following assumptions:

A1: XS, XSc are independent.

A2: f0 is convex with a bounded second derivative. Ef0(X) = 0.

A3: ‖f0‖∞ ≤ sB and ‖f ∗k‖∞ ≤ B for all k.

A4: The noise is mean-zero sub-Gaussian with scale σ, independent of X.

A5: The density p(x) is bounded away from 0/∞ and satisfies the boundary flatness
condition.

In Assumption A3, f ∗ =
∑
k f
∗
k denotes the optimal additive projection of f0 in the

population setting.
Our analysis involves parameters α+ and α−, which are measures of the signal

strength of the weakest variable:

α+ = inf
f∈Cp : supp(f)(supp(f∗)

ß
E
Ä
f0(X)− f(X)

ä2 − E
Ä
f0(X)− f ∗(X)

ä2™
α− = min

k∈S : g∗
k
6=0

ß
E
Ä
f0(X)− f ∗(X)

ä2 − E
Ä
f0(X)− f ∗(X)− g∗k(Xk)

ä2™
.

Intuitively, if α+ is small, then it is easier to make a false omission in the additive
convex stage of the procedure. If α− is small, then it is easier to make a false omission
in the decoupled concave stage of the procedure.

We make strong assumptions on the covariates in A1 in order to make very
weak assumptions on the true regression function f0 in A2; in particular, we do not
assume that f0 is additive. Relaxing this condition is an important direction for
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future work. We also include an extra boundedness constraint to use new bracketing
number results (Kim and Samworth, 2014).

Our main result is the following. Suppose assumptions A1-A5 hold. Let {f̂i} be
any AC solution and let {ĝk} be any DC solution, both estimated with regularization

parameter λ scaling as λ = Θ
Å
sσ̃
√

1
n

log2 np
ã

. Suppose in addition that

αf/σ̃ ≥ cB2

√
s5

n4/5
log2 np (2.2.7)

α2
g/σ̃ ≥ cB4

√
s5

n4/5
log2 2np. (2.2.8)

where σ̃ ≡ max(σ,B) and c is a constant dependent only on b, c1.
Then, for sufficiently large n, with probability at least 1− 1

n
:

f̂k 6= 0 or ĝk 6= 0 for all k ∈ S
f̂k = 0 and ĝk = 0 for all k /∈ S.

This shows that variable selection consistency is achievable under exponential
scaling of the ambient dimension, p = O(exp(cn)) for some 0 < c < 1, as for linear
models. The cost of nonparametric estimation is reflected in the scaling with respect
to s = |S|, which can grow only as o(n4/25).

We remark that Comminges and Dalalyan (2012) show that, even with the
product distribution, under traditional smoothness constraints, variable selection is
achievable only if n > O(es). Here we demonstrate that convexity yields the scaling
n = O(poly(s)).

2.3 Population Level Analysis: Additive

Faithfulness

For a general regression function, an additive approximation may result in a relevant
variable being incorrectly marked as irrelevant. Such mistakes are inherent to the
approximation and may persist even in the population setting. In this section we
give examples of this phenomenon, and then show how the convexity assumption
changes the behavior of the additive approximation. We work with C = [0, 1]p

as the support of the distribution in this section but all of our results apply to
general hypercubes. We begin with a lemma that characterizes the components of
the additive approximation under mild conditions.
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Lemma 2.3.1. Let P be a distribution on C = [0, 1]p with a positive density function
p(x). Let f : C → R be in L2(P ). Let

f ∗1 , ...,f
∗
p , µ

∗ :=

argmin

{
E
Å
f(X)− µ−

p∑
k=1

fk(Xk)
ã2

: fk ∈ L2(P ), Efk(Xk) = 0, k = 1, . . . , p

}
.

With µ∗ = Ef(X),

f ∗k (xk) = E
ï
f(X)−

∑
k′ 6=k

f ∗k′(Xk′) |xk
ò
− Ef(X), (2.3.1)

and this solution is unique.

Lemma 2.3.1 follows from the stationarity conditions of the optimal solution.
This result is known, and criterion (2.3.1) is used in the backfitting algorithm for
fitting additive models. We include a proof as our results build on it.

Proof. Let f ∗1 , ..., f
∗
p , µ

∗ be the minimizers as defined; they exist since the set of mean
zero additive functions is a closed subspace of L2(P ). We first show that the optimal
µ is µ∗ = Ef(X) for any f1, ..., fk such that Efk(Xk) = 0. This follows from the
stationarity condition, which states that µ∗ = E[f(X) − ∑

k fk(Xk)] = E[f(X)].
Uniqueness is apparent because the second derivative is strictly larger than zero and
strong convexity is guaranteed.

We now turn our attention toward the f ∗k s. It must be that f ∗k minimizes

min
fk

E
Ä
f(X)− µ∗ −

∑
k′ 6=k

f ∗k′(Xk′)− fk(Xk)
ä2

(2.3.2)

subject to Efk(Xk) = 0. Fixing xk, we will show that the value

E[f(X)−
∑
k′ 6=k

f ∗k′(Xk′) |xk]− µ∗ (2.3.3)

uniquely minimizes

min
fk(xk)

∫
x−k

p(x)
Å
f(x)−

∑
k′ 6=k

f ∗k′(xk′)− fk(xk)− µ∗
ã2
dx−k. (2.3.4)
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The first-order optimality condition gives us∫
x−k

p(x)fk(xk)dx−k =
∫
x−k

p(x)(f(x)−
∑
k′ 6=k

f ∗k′(xk′)− µ∗)dx−k (2.3.5)

p(xk)fk(xk) =
∫
x−k

p(xk)p(x−k |xk)(f(x)−
∑
k′ 6=k

f ∗k′(xk′)− µ∗)dx−k (2.3.6)

fk(xk) =
∫
x−k

p(x−k |xk)(f(x)−
∑
k′ 6=k

f ∗k′(xk′)− µ∗)dx−k (2.3.7)

To prove uniqueness, suppose f̃ =
∑p
j=1 f̃j is another additive function that

achieves the same square error. Let ν ∈ [0, 1], consider E
Ä
f(X)− µ∗ − (f ∗ + ν(f̃ − f ∗))

ä2
as a function of ν. The objective is strongly convex if E(f̃−f ∗)2, and so E(f̃−f ∗)2 = 0
by the assumption that f ∗ and f̃ are both optimal solutions. By Lemma 2.7.3, we
conclude that E(f ∗j − f̃j)2 = 0 as well and thus, f ∗j = f̃j almost everywhere.

We note that E[f(X)−∑k′ 6=k f
∗
k′(Xk′)|xk]− Ef(X) has mean zero as a function

of xk, which shows that f ∗k ’s are feasible.

In the case that the distribution in Lemma 2.3.1 is a product distribution, the
additive components take on a simple form.

Corollary 2.3.1. Let p(x) be a positive density on C = [0, 1]p. Let µ∗, f ∗k (xk) be
defined as in Lemma 2.3.1. Then µ∗ = Ef(X) and f ∗k (xk) = E[f(X) |xk] − Ef(X)
and this solution is unique.

In particular, under the uniform distribution, f ∗k (xk) =
∫
f(xk,x−k)dx−k −∫

f(x)dx.

Example 2.3.1. Using Corollary 2.3.1, we give two examples of additive unfaith-
fulness under the uniform distribution—where relevant variables are erroneously
marked as irrelevant under an additive approximation. First, consider the follow-
ing function:

f(x1, x2) = sin(2πx1) sin(2πx2) (egg carton) (2.3.8)

defined for (x1, x2) ∈ [0, 1]2. Then
∫
x2
f(x1, x2)dx2 = 0 and

∫
x1
f(x1, x2)dx1 = 0 for

each x1 and x2. An additive approximation would set f1 = 0 and f2 = 0. Next,
consider the function

f(x1, x2) = x1x2 (tilting slope) (2.3.9)
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defined for x1 ∈ [−1, 1], x2 ∈ [0, 1]. In this case
∫
x1
f(x1, x2)dx1 = 0 for each x2;

therefore, we expect f2 = 0 under the additive approximation. This function, for
every fixed x2, is a zero-intercept linear function of x1 with slope x2.
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Figure 2.1: Two additively unfaithful functions. Relevant variables are zeroed out
under an additive approximation because every “slice” of the function integrates to
zero.

In order to exploit additive models in variable selection, it is important to un-
derstand when the additive approximation accurately captures all of the relevant
variables. We call this property additive faithfulness. We first formalize the concept
that a multivariate function f does not depend on a coordinate xk.

Definition 2.3.1. Let C = [0, 1]p and let f : C → R. We say that f does not depend
on coordinate k if for all x−k, f(xk,x−k) is a constant as a function of xk. If f is
differentiable, then f does not depend on k if ∂xkf(xk,x−k) is 0 for all x−k.

In addition, suppose we have a distribution P over C and the additive approxi-
mation

f ∗k , µ
∗ := argmin

f1,...,fp,µ

ß
E
ïÅ
f(X)−

p∑
k=1

fk(Xk)− µ
ã2ò

: Efk(Xk) = 0
™
. (2.3.10)

We say that f is additively faithful under P if f ∗k = 0 implies that f does not depend
on coordinate k.

Additive faithfulness is an attractive property because it implies that, in the
population setting, the additive approximation yields a consistent variable screening.
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Additive Faithfulness of Convex Functions

We now show that under a general class of distributions which we characterize below,
convex multivariate functions are additively faithful. To simplify presentation, we
restrict our attention to densities bounded away from 0/∞, that is, 0 < inf p(x) ≤
sup p(x) <∞.

Definition 2.3.2. Let p(x) be a density supported on [0, 1]p. We say that p(x)
satisfies the boundary flatness condition if for all j, for all x−j, and for all xj ∈
[0, ε) ∪ (1− ε, 1] for some arbitrarily small ε > 0, p(x−j |xj) is twice differentiable in

xj, that p(x−j |xj), ∂p(x−j |xj)∂xj
, ∂

2p(x−j |xj)
∂2xj

are bounded, and that

∂p(x−j |xj)
∂xj

=
∂2p(x−j |xj)

∂x2j
= 0 at xj = 0, xj = 1 (2.3.11)

The boundary flatness condition intuitively states that two conditional densities
p(x−j |xj) and p(x−j |x′j) are similar when xj and x′j are both close to the same
boundary point. It is thus much more general than product densities. Boundary
flatness is a weak condition because it affects only an ε-small region around the
boundary; p(x−j |xj) can take arbitrary shapes away from the boundary. Boundary
flatness also allows arbitrary correlation structure between the variables (provided
p(x) > 0). In Section 2.3, we give a detailed discussion of the boundary flatness
condition and show examples of boundary flat densities; in particular, we show that
any density supported on a compact set can be approximated arbitrarily well by
boundary flat densities.

The following theorem is the main result of this section.

Theorem 2.3.1. Let p(x) be a density supported on C = [0, 1]p and bounded away
from 0/∞ that satisfies the boundary flatness property.

Suppose f is a convex with a bounded second derivative on an open set containing
C, then f is additively faithful under p(x).

We let the domain of f be slightly larger than C for a technical reason–it is so
we can say in the proof that the Hessian of f is positive semidefinite even at the
boundary of C.

We pause to give some intuition before we present the full proof. Suppose that
the underlying density is a product density first. We know from Lemma 2.3.1 that
the additive approximation zeroes out k when, fixing xk, every “slice” of f integrates
to zero, but “slices” of convex functions that integrate to zero cannot be “glued
together” while still maintaining convexity. Since the behavior of the whole convex
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function is constrained by its behavior at the boundary, the same result holds even
if the underlying density is not a product density but merely resembles a product
density at the boundary, which is exactly the notion formalized by the boundary
flatness condition.

Proof. Fixing k and using the result of Lemma 2.3.1, we need only show that for
all xk, E[f(X) −∑k′ fk′(Xk′) |xk] − Ef(X) = 0 implies that f does not depend on
coordinate k, i.e., ∂xkf(x) = 0 for all x.

Let us use the shorthand notation that r(x−k) =
∑
k′ 6=k fk′(xk′) and assume with-

out loss of generality that µ∗ = E[f(X)] = 0. We then assume that for all xk,

E[f(X)− r(X−k) |xk] ≡
∫
x−k

p(x−k |xk)
Ä
f(x)− r(x−k)

ä
= 0. (2.3.12)

We let p′(x−k |xk) denote ∂p(x−k |xk)
∂xk

and p′′(x−k |xk) denote ∂2p(x−k |xk)
∂x2
k

and likewise

for f ′(xk,x−k) and f ′′(xk,x−k).

We differentiate with respect to xk at xk = 0, 1 under the integral. The detail
necessary to verify the validity of this operation is technical and given in Section 2.7
of the supplementary material.

∫
x−k

p′(x−k |xk)
Ä
f(x)− r(x−k)

ä
+ p(x−k |xk)f ′(xk,x−k)dx−k = 0 (2.3.13)∫

x−k
p′′(x−k |xk)

Ä
f(x)− r(x−k)

ä
+ 2p′(x−k |xk)f ′(xk,x−k) + p(x−k |xk)f ′′(xk,x−k)dx−k = 0.

(2.3.14)

By the boundary flatness condition, we have that p′′(x−k |xk) and p′(x−k |xk) are
zero at xk = x0k ≡ 0. The integral equations then reduce to the following:∫

x−k
p(x−k |x0k)f ′(x0k,x−k)dx−k = 0 (2.3.15)∫

x−k
p(x−k |x0k)f ′′(x0k,x−k)dx−k = 0. (2.3.16)

Because f is convex, f(xk,x−k) must be a convex function of xk for all x−k. Therefore,
for all x−k, f

′′(x0k,x−k) ≥ 0. Since p(x−k |x0k) > 0 by the assumption that p(x) is a
positive density, we have that ∀x−k, f ′′(x0k,x−k) = 0 necessarily.

The Hessian of f at (x0k,x−k) then has a zero at the k-th main diagonal entry. A
positive semidefinite matrix with a zero on the k-th main diagonal entry must have



CHAPTER 2. HIGH DIMENSIONAL CONVEX REGRESSION 22

only zeros on the k-th row and column; see proposition 7.1.10 of Horn and Johnson
(1990). Thus, at all x−k, the gradient of f ′(x0k,x−k) with respect to x−k must be
zero. Therefore, f ′(x0k,x−k) must be constant for all x−k. By equation 2.3.15, we
conclude that f ′(x0k,x−k) = 0 for all x−k. We can use the same reasoning for the
case where xk = x1k and deduce that f ′(x1k,x−k) = 0 for all x−k.

Because f(xk,x−k) as a function of xk is convex, it must be that, for all xk ∈ (0, 1)
and for all x−k,

0 = f ′(x0k,x−k) ≤ f ′(xk,x−k) ≤ f ′(x1k,x−k) = 0 (2.3.17)

Therefore f does not depend on xk.

Theorem 2.3.1 plays an important role in our finite sample analysis, where we
show that the additive approximation is variable screening consistent, even when the
true function is not additive.

Remark 2.3.1. We assume twice differentiability in Theorems 2.3.1 to simplify the
proof. We expect, however, that this smoothness condition is not necessary—every
convex function can be approximated arbitrarily well by a smooth convex function.

Remark 2.3.2. In Theorem 2.3.1, we do not assume a parametric form for the
additive components; the additive approximations may not be faithful if we take a
parametric form. For example, suppose we approximate a mean-zero convex function
f(X) by a linear form Xβ. The optimal linear function in the population setting
is β∗ = Σ−1Cov(X, f(X)) where Σ is the covariance matrix. Suppose the X’s are
independent, follow a symmetric distribution, have unit variance, and suppose f(x) =
x21 − E[X2

1 ], then β∗1 = E[X1f(X)] = E[X3
1 −X1E[X2

1 ]] = 0.

Boundary Flatness Examples

In this section, we give more examples of boundary flat densities (see Definition 2.3.2)
and discuss extending the notion of boundary flatness to densities with a more general
support. We first start with an sufficient condition on the joint density that ensures
boundary flatness.

Example 2.3.2. Boundary flatness is satisfied if the joint density becomes flat at
the boundary. To be precise, let p(x) be a joint density bounded away from 0/∞
with a bounded second derivative.
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Suppose also, for all j,

∂xjp(xj,x−j) = ∂2xjp(xj,x−j) = 0 at xj = 0, 1,.

It is then straightforward to show boundary flatness. One can first verify that the
derivatives of the marginal density p(xj) vanishes at xj = 0, 1 and then apply the

quotient rule on p(xj ,x−j
p(xj)

to show that ∂xjp(x−j |xj) = ∂2xjp(x−j |xj) = 0 at xj = 0, 1

as well.

The next example shows that any bounded density over a hypercube can be
approximated arbitrarily well by boundary flat densities.

Example 2.3.3. Suppose pε(x) is a bounded density over [ε, 1 − ε]p for some 0 <
ε < 1/2. Let q(x) be an arbitrary boundary flat density over [0, 1]p (one can take
the uniform density for instance). Define a mixture pλ,ε(x) = λq(x) + (1 − λ)pε(x)
where 0 < λ ≤ 1, then pλ,ε(x) is boundary flat over [0, 1]p.

Now, let p(x) be a bounded density over [0, 1]p. Let pε(x) be the density formed
from truncating p(x) in [ε, 1− ε]p. The corresponding mixture pλ,ε(x) then approxi-
mates p(x) when λ and ε are both small.

Since pλ,ε(x) remains boundary flat for arbitrarily small ε and λ, p(x) can be
approximated arbitrarily well (in L1 for example) by boundary flat densities.

In our discussion so far, we have restricted ourselves to densities supported and
positive on the hypercube [0, 1]p to minimize extraneous technical details. It may be
possible to extend the analysis to densities whose support is a convex and compact
set so long as the marginal density p(xj) > 0 for all xj in the support. A rigorous
analysis of this however is beyond the scope of this paper.

It may also possible to extend similar result to densities with an unbounded
support, by using a limit condition lim|xk|→∞

∂p(x−k |xk)
∂xk

= 0. Such a limit condition
however is not obeyed by a correlated multivariate Gaussian distribution. The next
example shows that certain convex functions are not additively faithful under certain
multivariate Gaussian distributions.

Example 2.3.4. Consider a two dimensional quadratic function f(x) = xTHx + c

with zero mean where H =

Ç
H11 H12

H12 H22

å
is positive definite and a Gaussian distribu-

tion X ∼ N(0,Σ) where Σ =

Ç
1 α
α 1

å
. As we show in Section 2.8 of the Appendix,
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the additive approximation has the following closed form.

f ∗1 (x1) =

Ç
T1 − T2α2

1− α4

å
x21 + c1

f ∗2 (x2) =

Ç
T2 − T1α2

1− α4

å
x22 + c2

Where T1 = H11 + 2H12α + H22α
2, T2 = H22 + 2H12α + H11α

2, c1, c2 are constants

such that f ∗1 and f ∗2 both have mean zero. Let H =

Ç
1.6 2
2 5

å
, then it is easy to check

that if α = −1
2
, then f ∗1 = 0 and additive faithfulness is violated, if α > 1

2
, then f ∗1

is a concave function. We take the setting where α = −0.5, compute the optimal
additive functions via numerical simulation, and show the results in Figure 2.2(a)–f ∗1
is zero as expected.

Although the Gaussian distribution does not satisfy the boundary flatness con-
dition, it is possible to approximate the Gaussian distribution arbitrarily well with
distributions that do satisfy the boundary flatness conditions. We use the similar
idea as that of Example 2.3.3.

Example 2.3.5. Let Σ be as in Example 2.3.4 with α = −0.5 so that f ∗1 = 0.
Consider a mixture λU [−(b + ε), b + ε]2 + (1 − λ)Nb(0,Σ) where Nb(0,Σ) is the
density of a truncated bivariate Gaussian bounded in [−b, b]2 and U [−(b+ ε), b+ ε]2

is the uniform distribution over a square. The uniform distribution is supported over
a slightly larger square to satisfy the boundary flatness conditions.

When b is large, ε is small, and λ is small, the mixture closely approximates
the Gaussian distribution but is still additively faithful for convex functions. Fig-
ure 2.2(b) shows the optimal additive components under the mixture distribution,
computed by numerical integration with b = 5, ε = 0.3, λ = 0.0001. True to our the-
ory, f ∗1 , which is zero under the Gaussian distribution, is nonzero under the mixture
approximation to the Gaussian distribution. We note that the magnitude Ef ∗1 (X1)

2,
although non-zero, is very small, consistent with the fact that the mixture distribu-
tion closely approximates the Gaussian distribution.

Converse to Faithfulness

It is difficult to find natural conditions under which the opposite direction of additive
faithfulness holds—conditions implying that if f does not depend on coordinate k,
then f ∗k will be zero in the additive approximation. Suppose, for example, that f is
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−5 0 5
support x

Optimal Additive Function for Gaussian Density

 

 

component 1: f*
1

component 2: f*
2

marginal density (scaled)

(a) Gaussian distribution

−5 0 5
support x

Optimal Additive Function for Boundary−Flat Density

 

 

component 1: f*
1

component 2: f*
2

marginal density (scaled)

(b) Mixture approximation

Figure 2.2: Optimal additive projection of the quadratic function described in Exam-
ple 2.3.4 under both the Gaussian distribution described in Example 2.3.4 and under
the approximately Gaussian mixture distribution described in Example 2.3.5. For
the mixture approximation, we used b = 5, ε = 0.3, λ = 0.0001 where the parameters
are defined in Example 2.3.5. This example shows the effect and the importance of
the boundary flatness conditions.

only a function of X1, X2, and that (X1, X2, X3) follows a degenerate 3-dimensional
distribution where X3 = f(X1, X2) − f ∗(X1) − f ∗2 (X2). In this case X3 exactly
captures the additive approximation error. The best additive approximation of f
would have a component f ∗3 (x3) = x3 even though f does not depend on x3.

The simplest case under which the converse holds as well is the product density.
In this case, if f does not depend on Xk, then E[f(X) − r(X−k) |Xk] = 0 for any
function r(X−k). In this section, we will generalize the product density into another
condition for which we can guarantee the converse.

Theorem 2.3.2. Let f be a function such that Ef(X) = 0. Let S0 be the set of
relevant variables of f . Let k /∈ S0 and suppose there exists k′ ∈ S0 such that Xk is
independent of XS0−{k′} conditional on Xk′. Then, f ∗k = 0.

Proof. Let r(xS0) =
∑
k∈S0

f̃k(xk) be the additive projection of f restricted to only
the relevant variables S0. We will show that it is also in fact, the additive projection
of f without the variable restriction.

Suppose k /∈ S0. Let k′ ∈ S0 be the variable such that Xk ⊥ XS0−{k′} |Xk′ .
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Then,

E

f(X)−
∑
j∈S0

f̃(Xj) |Xk


= EXk′

E
f(X)−

∑
j∈S0

f̃(Xj) |Xk′ , Xk

 ∣∣∣Xk


= EXk′

E
f(X)−

∑
j∈S0

f̃(Xj) |Xk′

 ∣∣∣Xk


= 0

The third equality follows because f(X)−∑j∈S0
f̃j(Xj) is a function of XS0 only

and thus is independent of Xk when conditioned on Xk′ . For the fourth equal-
ity, observe that

∑
j∈S0

f̃j is the additive projection of f restricted on S0 and thus,

E[f(X)−∑j∈S0
f̃j(Xj) |Xk′ ] = 0 by Lemma 2.3.1.

The theorem follows since this analysis holds for every k ∈ S0,

There is an easier way to interprete the condition in Theorem 2.3.2 using the
language of graphical models. Let G be the conditional independence graph of X,
that is, for every j, Xj ⊥ Xk |XN(j) for every k not in the Graph neighborhood N(j)
of node Xj. The condition in Theorem 2.3.2 is equivalent to saying that for every
k /∈ S0, there exists only one path in G that connects node Xk to the set of nodes
XS0 . See figure 2.3 for a visual example.

Convex Additive Models

Although convex functions are additively faithful—under appropriate conditions—
it is difficult to estimate the optimal additive functions f ∗k s as defined in equa-
tion (2.3.10). The reason is that f ∗k need not be a convex function, as example 2.3.4
and example 2.3.5 show. It may be possible to estimate f ∗k via smoothing, but we
prefer an approach that is free of smoothing parameters. Since the true regression
function f is convex, we approximate the additive model with a convex additive
model. We abuse notation and, for the rest of the paper, use the notation f ∗k to
represent convex additive fits:

{f ∗k}pk=1 = arg min
ß
E
Å
f(X)−

p∑
k=1

fk(Xk)
ã2

: fk ∈ C1, Efk(Xk) = 0
™

(2.3.18)

where C1 is the set of univariate convex functions.
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S0

Xk

Xk’

Figure 2.3: A conditional independence graph that satisfies the condition in Theo-
rem 2.3.2

If p(x) is a product density, then E[f(X) |xk] is convex in xk and the additive pro-
jection is simultaneously the convex additive projection. Thus, in this case, additive
faithfulness trivially holds for the convex additive projection. For a general boundary
flat density p(x) however, the additive projection need not be convex and we thus
cannot say anything about additive faithfulness of the convex additive projection.

Luckily, we can restore faithfulness by coupling the f ∗k ’s with a set of univariate
concave fits on the residual f − f ∗:

g∗k = arg min
ß
E
Å
f(X)−

∑
k′ 6=k

f ∗k′(Xk′)−gk(Xk)
ã2

: gk ∈ -C1,Egk(Xk) = 0
™
. (2.3.19)

Theorem 2.3.3. Suppose p(x) is a density on C = [0, 1]p bounded away from 0/∞
that satisfies the boundary flatness condition. Suppose that f is convex with a bounded
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second derivative on an open set around C. Let f ∗k and g∗k be as defined in equations
(2.3.18) and (2.3.19), then the f ∗k ’s and the g∗k’s are unique. Furthermore, f ∗k = 0
and g∗k = 0 implies that ∂xkf(x) = 0, that is, f does not depend on xk.

Before we can prove the theorem, we need a lemma that generalizes Theo-
rem 2.3.1.

Lemma 2.3.2. Suppose p(x) is a density on C = [0, 1]p bounded away from 0/∞
satisfying the boundary flatness condition. Let f(x) be a convex function with a
bounded second derivative on an open set around C. Let φ(x−k) be a bounded function
that does not depend on xk. Then, we have that the unconstrained univariate function

h∗k = arg min
fk

E
ïÄ
f(X)− φ(X−k)− hk(Xk)

ä2ò
(2.3.20)

is given by h∗k(xk) = E
î
f(X)− φ(X−k) |xk

ó
, and h∗k = 0 implies that ∂xkf(x) = 0.

Proof. In the proof of Theorem 2.3.1, the only property of r(x−k) we used was the fact
that ∂xkr(x−k) = 0. Therefore, the proof here is identical to that of Theorem 2.3.1
except that we replace r(x−k) with φ(x−k).

Proof of theorem 2.3.3. Fix k. Let f ∗k and g∗k be defined as in equation 2.3.18 and
equation 2.3.19. Let φ(x−k) ≡ ∑k′ 6=k f

∗
k′(xk′). Each f ∗k′ is convex and thus continuous

on (0, 1). f ∗k′(xk′) is defined at xk′ = 0, 1; thus, f ∗k′ must be bounded and φ(x−k) is
bounded.

We have that

f ∗k = arg min
fk

ß
E
Ä
f(X)−

∑
k′ 6=k

f ∗k′(Xk′)− fk
ä2

: fk ∈ C1, Efk(Xk) = 0
™

(2.3.21)

g∗k = arg min
gk

ß
E
Ä
f(X)−

∑
k′ 6=k

f ∗k′(Xk′)− gk
ä2

: gk ∈ -C1, Egk(Xk) = 0
™

(2.3.22)

Let us suppose that f ∗k = g∗k = 0. It must be then that

argmin
c∈R

E
Ä
f(X)− φ(X−k)− c(X2

k −m2
k)
ä2

= 0

where m2
k ≡ EX2

k ; this is because c(x2k − m2
k) is either convex or concave in xk

and it is centered, i.e. E[X2
k − m2

k] = 0. Since the optimum has a closed form

c∗ =
E
î
(f(X)−φ(X−k))(X2

k−m
2
k)

ó
EX2

k
−m2

k
, we deduce that

E
î
(f(X)− φ(X−k))(X

2
k −m2

k)
ó

= E[(f(X)− φ(X−k))X
2
k ] = E[E[f(X)− φ(X−k) |Xk]X

2
k ] = 0
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We denote h∗k(xk) = E[f(X) − φ(X−k) |xk]. f(x) and φ(x−k) are both bounded
and so h∗k(xk) is bounded as well. Therefore, h∗k is square integrable and there exists
a fourier series sn(xk) convergent to h∗k in L2. Since p(x) is bounded,

lim
n→∞

E (sn(Xk)− h∗k(Xk))
2 → 0

as well.
If we can show that Eh∗k(Xk)

2 = 0, we would apply Lemma 2.3.2 and finish the
proof. So let us suppose for sake of contradiction that Eh∗k(Xk)

2 > 0.

Let 0 < ε < 1 be fixed and let n be large enough such that E(sn(Xk)−h∗k(Xk))
2 ≤

εEh∗k(Xk)
2.

Since sn(xk) is twice-differentiable and has a second derivative bounded away
from −∞, there exist some positive scalar α such that sn(xk) + α(x2k − m2

k) has a
non-negative second derivative and is thus convex.

Because we assumed f ∗ = g∗ = 0, it must be that

argmin
c∈R

E
Å
f(X)− φ(X−k)− c

Ä
sn(Xk) + α(X2

k −m2
k)
äã2

= 0

This is because c
Ä
sn(xk) + α(x2k − m2

k)
ä

is convex for c ≥ 0 and concave for c ≤ 0
and it is a centered function.

Again, c∗ =
E[(f(X)−φ(X−k))

Ä
sn(Xk)+α(X

2
k−m

2
k)

ä
]

E
Ä
sn(Xk)+α(X

2
k
−m2

k
)

ä2 = 0, so

E[(f(X)− φ(X−k))
Ä
sn(Xk) + α(X2

k −m2
k)
ä
] = E[(f(X)− φ(X−k))sn(Xk)]

= E
ï
E[f(X)− φ(X−k) |Xk]sn(Xk)

ò
= Eh∗k(Xk)sn(Xk) = 0

where the first equality follows because E[(f(X)− φ(X−k))(X
2
k −m2

k)] = 0.

We have chosen sn such that E(h∗k(Xk)− sn(Xk))
2 ≤ εEh∗k(Xk)

2 for some ε < 1.
But, E(h∗k(Xk)− sn(Xk))

2 = Eh∗k(Xk)
2 − 2Eh∗k(Xk)sn(Xk) + Esn(Xk)

2 ≥ Eh∗k(Xk)
2.

This is a contradiction and therefore, Eh∗k(Xk)
2 = 0.

Now we use Lemma 2.3.2 with φ(x−k) = f(x)−∑k′ 6=k f
∗
k′(xk′) and conclude that

f ∗k = 0 and g∗k = 0 together imply that f does not depend on xk.
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Now we turn to uniqueness. Suppose for sake of contradiction that f ∗ and f̃ are
optimal solutions to (2.3.18) and E(f̃ − f ∗)2 > 0. f ∗ + λ(f̃ − f ∗) for any λ ∈ [0, 1]
must then also be an optimal solution by convexity of the objective and constraint.
However, the second derivative of the objective E(f−f ∗−λ(f̃−f ∗))2 with respect to
λ is 2E(f̃ − f ∗)2 > 0. The objective is thus strongly convex and E(f ∗− f̃)2 = 0. We
now apply Lemma 2.7.3 by letting φk = f ∗k − f̃k. We conclude that E(f ∗k − f̃k)2 = 0
for all k. The uniqueness of g∗ is proved similarly.

Estimation Procedure

Theorem 2.3.3 naturally suggests a two-stage screening procedure for variable selec-
tion in the population setting. In the first stage, we fit a convex additive model.

f ∗1 , ..., f
∗
p = argmin

f1,...,fp∈C10 ,µ
E
Å
f(X)− µ−

p∑
k=1

fk(Xk)
ã2

(2.3.23)

where we denote C10 (-C10) as the set of one-dimensional convex (resp. concave)
functions with population mean zero. In the second stage, for every variable marked
as irrelevant in the first stage, we fit a univariate concave function separately on the
residual for that variable. For each k such that f ∗k = 0:

g∗k = argmin
gk∈-C10

E
Å
f(X)− µ∗ −

∑
k′
f ∗k′(Xk′)− gk(Xk)

ã2
(2.3.24)

We screen out SC , any variable k that is zero after the second stage, and output S.

Sc =
¶
k : f ∗k = 0 and g∗k = 0

©
. (2.3.25)

We refer to this procedure as AC/DC (additive convex/decoupled concave). The-
orem 2.3.3 guarantees that the true set of relevant variables S0 must be a subset of
S.

It is straightforward to construct a finite sample variable screening procedure,
which we describe in Figure 2.4. We use an `∞/`1 penalty in equation (2.3.26)
and an `∞ penalty in equation (2.3.24) to encourage sparsity. Other penalties can
also produce sparse estimates, such as a penalty on the derivative of each of the
component functions. The ‖ · ‖∞ norm is convenient for both theoretical analysis
and implementation.

After selecting the variable set “S, one can refit a low-dimensional non-additive
convex function to build the best predictive model. If refitting is undesirable for
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AC/DC Algorithm for Variable Selection in Convex Regression

Input : (x1, y1), ..., (xn, yn), regularization parameter λ.

AC Stage: Estimate a sparse additive convex model:

f̂1, ..., f̂p, µ̂ = argmin
f1,...,fp∈C10

1

n

n∑
i=1

Å
yi − µ−

p∑
k=1

fk(xik)
ã2

+ λ
p∑

k=1

‖fk‖∞ (2.3.26)

DC Stage: Estimate concave functions for each k such that ‖f̂k‖∞ = 0:

ĝk = argmin
gk∈-C10

1

n

n∑
i=1

Å
yi − µ̂−

∑
k′
f̂k′(xik′)− gk(xik)

ã2
+ λ‖gk‖∞ (2.3.27)

Output : Component functions {f̂k} and relevant variables “S where“Sc =
¶
k : ‖f̂k‖ = 0 and ‖ĝk‖ = 0

©
. (2.3.28)

Figure 2.4: The AC/DC algorithm for variable selection in convex regression. The
AC stage fits a sparse additive convex regression model, using a quadratic program
that imposes an group sparsity penalty for each component function. The DC stage
fits decoupled concave functions on the residuals, for each component that is zeroed
out in the AC stage.

whatever reason, the AC/DC outputs can also be used for prediction. Given a new
sample x, we let ŷ =

∑
k f̂k(xk) +

∑
k ĝk(xk). Note that ĝk = 0 for k such that f̂k 6= 0

in AC/DC. The next section describes how to compute this function evaluation.
The optimization in (2.3.26) appears to be infinite dimensional, but it is equiv-

alent to a finite dimensional quadratic program. In the following section, we give
the details of this optimization, and show how it can be reformulated to be more
computationally efficient.
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2.4 Optimization

We now describe in detail the optimization algorithm for the additive convex re-
gression stage. The second decoupled concave regression stage follows a very similar
procedure.

Let bdsxi ∈ Rp be the covariate, let yi be the response and let εi be the mean zero
noise. The regression function f(·) we estimate is the sum of univariate functions
fk(·) in each variable dimension and a scalar offset µ. We impose additional con-
straints that each function fk(·) is convex, which can be represented by its supporting
hyperplanes, i.e.,

fi′k ≥ fik + βik(xi′k − xik) for all i, i′ = 1, . . . , n, (2.4.1)

where fik := fk(xik) is the function value and βik is a subgradient at point xik.
This ostensibly requires O(n2p) constraints to impose the supporting hyperplane
constraints. In fact, only O(np) constraints suffice, since univariate convex functions
are characterized by the condition that the subgradient, which is a scalar, must
increase monotonically. This observation leads to the optimization

min
{fk,βk},µ

1

2n

n∑
i=1

Å
yi − µ−

p∑
k=1

fik

ã2
+ λ

p∑
k=1

‖fk‖∞

subject to for all k = 1, . . . , p:

fπk(i+1)k = fπk(i)k + βπk(i)k(xπk(i+1)k − xπk(i)k), for i = 1, . . . , n− 1
n∑
i=1

fik = 0,

βπk(i+1)k ≥ βπk(i)k for i = 1, . . . , n− 2.

(2.4.2)

Here fk denotes the vector fk = (f1k, f2k . . . , fnk)
T ∈ Rn and {πk(1), πk(2), . . . , πk(n)}

are the indices in the sorted ordering of the values of coordinate k:

xπk(1)k ≤ xπk(2)k ≤ · · · ≤ xπk(n)k. (2.4.3)

We can solve for µ explicitly as µ = 1
n

∑n
i=1 yi = ȳ. This follows from the KKT

conditions and the constraints
∑
i fik = 0.

The sparse convex additive model optimization in (2.4.2) is a quadratic program
with O(np) variables and O(np) constraints. Directly applying a QP solver for f
and β is computationally expensive for relatively large n and p. However, notice
that variables in different feature dimensions are only coupled in the squared error
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term (yi−µ−∑p
k=1 fik)

2. Hence, we can apply the block coordinate descent method,
where in each step we solve the following QP subproblem for {fk, βk} with the other
variables fixed. In matrix notation, the optimization is

min
fk,βk,γk

1

2n
‖rk − fk‖22 + λγk

such that Pkfk = diag(Pkxk)βk

Dkβk ≤ 0

− γk1n ≤ fk ≤ γk1n

1T
nfk = 0

(2.4.4)

where βk ∈ Rn−1 is the vector βk = (β1k, . . . , β(n−1)k)
T , and rk ∈ Rn is the residual

vector rk = (yi− µ̂−∑k′ 6=k fik′)
T . In addition, Pk ∈ R(n−1)×n is a permutation matrix

where the i-th row is all zeros except for the value −1 in position πk(i) and the value
1 in position πk(i + 1), and Dk ∈ R(n−2)×(n−1) is another permutation matrix where
the i-th row is all zeros except for a value 1 in position πk(i) and a value −1 in
position πk(i + 1). We denote by diag(v) the diagonal matrix with diagonal entries
v. The extra variable γk is introduced to impose the regularization penalty involving
the `∞ norm.

This QP subproblem involves O(n) variables, O(n) constraints and a sparse struc-
ture, which can be solved efficiently using optimization packages. In our experiments
we use mosek (www.mosek.com). We cycle through all covariates k from 1 to p mul-
tiple times until convergence. Empirically, we observe that the algorithm converges
in only a few cycles. We also implemented an ADMM solver for (2.4.2) (Boyd et al.,
2011), but found that it is not as efficient as this blockwise QP solver.

After optimization, the function estimate for an input vector x is, according to
(2.4.1),

f̂(x) =
p∑

k=1

f̂k(xk) + µ̂ =
p∑

k=1

max
i

ß
f̂ik + β̂ik(xk − xik)

™
+ µ̂. (2.4.5)

The univariate concave function estimation required in the DC stage is a straight-
forward modification of optimization (2.4.4). It is only necessary to modify the linear
inequality constraints so that the subgradients are non-increasing: βπk(i+1)k ≤ βπk(i)k.

Alternative Formulation

Optimization (2.4.2) can be reformulated in terms of the second derivatives. The al-
ternative formulation replaces the order constraints βπk(i+1)k ≥ βπk(i)k with positivity
constraints, which simplifies the analysis.

http://www.mosek.com/
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Define dπk(i)k as the second derivative: dπk(1)k = βπk(1)k, and dπk(i)k = βπk(i)k −
βπk(i−1)k for i > 1. The convexity constraint is equivalent to the constraint that
dπk(i)k ≥ 0 for all i > 1.

It is easy to verify that βπk(i)k =
∑
j≤i dπk(j)k and

fk(xπk(i)k) =fk(xπk(i−1)k) + βπk(i−1)k(xπk(i)k − xπk(i−1)k)
=fk(xπk(1)k) +

∑
j<i

βπk(j)k(xπk(j+1)k − xπk(j)k)

=fk(xπk(1)k) +
∑
j<i

∑
j′≤j

dπk(j′)k(xπk(j+1)k − xπk(j)k)

=fk(xπk(1)k) +
∑
j′<i

dπk(j′)k
∑

i>j≥j′
(xπk(j+1)k − xπk(j)k)

=fk(xπk(1)k) +
∑
j′<i

dπk(j′)k(xπk(i)k − xπk(j′)k).

We can write this more compactly in matrix notation as
fk(x1k)
fk(x2k)

...
fk(xnk)

 =

 (x1k − xπk(1)k)+ · · · (x1k − xπk(n−1)k)+
· · ·

(xnk − xπk(1)k)+ · · · (xnk − xπk(n−1)k)+


 dπk(1)k

· · ·
dπk(n−1)k

+ µk

≡ ∆kdk + µk (2.4.6)

where ∆k is a n×n−1 matrix such that ∆k(i, j) = (xik−xπk(j)k)+, dk = (dπk(1)k, . . . , dπk(n−1)k),
and µk = fk(xπk(1)k)1n. Because fk has to be centered, µk = − 1

n
1n1

T
n∆kdk, and

therefore

∆kdk + µk = ∆kdk −
1

n
1n1

T
n∆kdk = ∆̄kdk (2.4.7)

where ∆̄k ≡ ∆k − 1
n
1n1

T
n∆k is ∆k with the mean of each column subtracted.

The above derivations prove the following proposition, which states that (2.4.2)
has an alternative formulation.

Proposition 2.4.1. Let {f̂k, β̂k}k=1,...,p be an optimal solution to (2.4.2) and suppose

Ȳ = 0. Define vectors d̂k ∈ Rn−1 such that d̂πk(1)k = β̂πk(1)k and d̂πk(i)k = β̂πk(i)k −
β̂πk(i−1)k for i > 1. Then f̂k = ∆̄kd̂k and d̂k is an optimal solution to the following
optimization:

min
{dk∈Rn−1}k=1,...p

1

2n

∥∥∥∥Y − p∑
k=1

∆̄kdk

∥∥∥∥2
2

+ λn

p∑
k=1

‖∆̄kdk‖∞ (2.4.8)

such that dπk(2)k, . . . , dπk(n−1)k ≥ 0 (convexity).
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Likewise, suppose {d̂k}k=1,...p is a solution to (2.4.8), define β̂πk(i)k =
∑
j≤i d̂πk(j)k and

f̂k = ∆̄kd̂k. Then {f̂k, β̂k}k=1,...,p is an optimal solution to (2.4.2). ∆̄ is the n by
n− 1 matrix defined by (2.4.7).

The decoupled concave postprocessing stage optimization is again similar. Specif-
ically, suppose d̂k is the output of optimization (2.4.8), and define the residual vector

r̂ = Y −
p∑

k=1

∆̄kd̂k. (2.4.9)

Then for all k such that d̂k = 0, the DC stage optimization is formulated as

min
ck

1

2n

∥∥∥∥r̂ −∆kck

∥∥∥∥2
2

+ λn‖∆kck‖∞ (2.4.10)

such that cπk(2)k, . . . , cπk(n−1)k ≤ 0 (concavity).

We can use either the off-centered ∆k matrix or the centered ∆̄k matrix because
the concave estimations are decoupled and hence are not subject to non-identifiability
under additive constants.

2.5 Analysis of Variable Screening Consistency

Our goal is to show that variable screening consistency. That is, as n, p → ∞,
P(“S = S) approaches 0 where “S is the set of variables outputted by AC/DC in
the finite sample setting (Figure 2.4) and S is the set of variables outputted in the
population setting (2.3.25).

We divide our analysis into two parts. We first establish a sufficient determinis-
tic condition for consistency of the sparsity pattern screening procedure. We then
consider the stochastic setting and argue that the deterministic conditions hold with
high probability. Note that in all of our results and analysis, we let c, C represent
absolute constants; the actual values of c, C may change from line to line. We derived
two equivalent optimizations for AC/DC: (2.4.2) outputs f̂k, ĝk and (2.4.8) outputs
the second derivatives d̂k. Their equivalence is established in Proposition 2.4.1 and
we use both d̂k and f̂k in our analysis. We will also assume in this section that the
true regression function f0 has mean-zero and therefore, we will omit the intercept
term µ̂ from our estimation procedure.

In our analysis, we assume that an upper bound B to ‖f̂k‖∞ is imposed in the
optimization procedure, where B is chosen to also upper bound ‖f ∗k‖∞ (same B as
in Assumption A3 in Section 2.5). This B-boundedness constraint is added so that
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we may use the convex function bracketing results from Kim and Samworth (2014)
to establish uniform convergence between the empirical risk and the population risk.
We emphasize that this constraint is not needed in practice and we do not use it for
any of our simulations.

Deterministic Setting

We analyze Optimization 2.4.8 and construct an additive convex solution {d̂k}k=1,...,p

that is zero for k ∈ Sc, where S is the set of relevant variables, and show that it
satisfies the KKT conditions for optimality of optimization (2.4.8). We define d̂k for
k ∈ S to be a solution to the restricted regression (defined below). We also show
that ĉk = 0 satisfies the optimality condition of optimization (2.4.10) for all k ∈ Sc.

Definition 2.5.1. We define the restricted regression problem

min
dk

1

n

∥∥∥∥Y −∑
k∈S

∆̄kdk

∥∥∥∥2
2

+ λn
∑
k∈S
‖∆̄kdk‖∞ such that dπk(2)k, . . . , dπk(n−1)k ≥ 0

where we restrict the indices k in optimization (2.4.8) to lie in some set S which
contains the true relevant variables.

Theorem 2.5.1 (Deterministic setting). Let {d̂k}k∈S be a minimizer of the restricted
regression as defined above. Let r̂ := Y − ∑

k∈S ∆̄kd̂k be the restricted regression
residual.

Let πk(i) be a reordering of Xk in ascending order so that Xπk(n)k is the largest
entry. Let 1πk(i:n) be 1 on the coordinates πk(i), πk(i + 1), ..., πk(n) and 0 elsewhere.
Define rangek = Xπk(n)k −Xπk(1)k.

Suppose for all k ∈ Sc, for all i = 1, . . . , n, λn > rangek|32n r̂T1πk(i:n)|. Suppose

also that for all k ∈ Sc, maxi=1,...,n−1
Xπk(i+1)k−Xπk(i)k

rangek
≤ 1

16
, and rangek ≥ 1.

Then the following two statements hold.

1. Let d̂k = 0 for k ∈ Sc. Then {d̂k}k=1,...,p is an optimal solution to optimiza-
tion (2.4.8). Furthermore, any solution to the optimization program (2.4.8)
must be zero on Sc.

2. For all k ∈ Sc, the solution ĉk to optimization (2.4.10) must be zero and unique.

Theorem 2.5.1 states that the estimator produces no false positive so long as λn
upper bounds the partial sums of the residual r̂ and that the maximum gap between
ordered values of Xk is small.
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This result holds regardless of whether or not we impose the boundedness con-
ditions in optimization (2.4.8) and (2.4.10). The full proof of Theorem 2.5.1 is in
Section 2.7 of the Appendix. We allow S in Theorem 2.5.1 to be any set containing
the relevant variables; in Lasso analysis, S is taken to be the set of relevant variables;
we will take S to be the set of variables chosen by the additive convex and decou-
pled concave procedure in the population setting, which is guaranteed to contain the
relevant variables because of additive faithfulness.

Theorem 2.5.1 allows us to separately analyze the false negative rates and false
positive rates. To control false positives, Theorem 2.5.2 verifies that the conditions in
Theorem 2.5.1 hold in a stochastic setting. To control false negatives, Theorem 2.5.3
analyzes the restricted regression with only |S| variables.

The proof of Theorem 2.5.1 analyses the KKT conditions of optimization (2.4.8).
This parallels the now standard primal-dual witness technique (Wainwright, 2009).
The conditions in Theorem 2.5.1 is our analogue to the mutual incoherence con-
dition. Our conditions are much more strict however because the estimation is
nonparametric—even the low dimensional restricted regression has s(n − 1) vari-
ables.

The details of the proof are given in Section 2.7 of the Appendix.

Probabilistic Setting

In the probabilistic setting we treat the covariates as random. We adopt the following
standard setup:

1. The data X(1), . . . , X(n) ∼ P are iid from a distribution P with a density p(x)
that is supported on X = [−1, 1]p.

2. The response is Y = f0(X) + W where W is independent, zero-mean noise;
thus Y (i) = f0(X

(i)) +W (i).

3. The regression function f0 satisfies f0(X) = f0(XS0), where S0 = {1, . . . , s0} is
the set of relevant variables.

Let C1 denote the set of univariate convex functions supported on [−1, 1], and let
Cp1 denote the set of convex additive functions Cp1 ≡ {f : f =

∑p
k=1 fk, fk ∈ C1}. Let

f ∗(x) =
∑p
k=1 f

∗
k (xk) be the population risk minimizer in Cp1 ,

f ∗ = arg min
f∈Cp1

E
Ä
f0(X)− f(X)

ä2
. (2.5.1)
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f ∗ is the unique minimizer by Theorem 2.3.3. Similarly, we define -C1 as the set of
univariate concave functions supported on [−1, 1] and define

g∗k = arg min
gk∈-C1

E
Ä
f0(X)− f ∗(X)− gk(Xk)

ä2
. (2.5.2)

The ĝk’s are unique minimizers as well. We let S = {k = 1, . . . , p : f ∗k 6= 0 or g∗k 6= 0}
and let s = |S|. By additive faithfulness (Theorem 2.3.3), it must be that S0 ⊂ S
and thus s ≥ s0. In some cases, such as when XS0 , XSc0

are independent, we have
S = S0. Each of our theorems will use a subset of the following assumptions:

A1: XS, XSc are independent.

A2: f0 is convex with a bounded second derivative on an open set around [−1, 1]p.
Ef0(X) = 0.

A3: ‖f0‖∞ ≤ sB and ‖f ∗k‖∞ ≤ B for all k.

A4: W is mean-zero sub-Gaussian, independent of X, with scale σ; i.e., for all
t ∈ R, Eetε ≤ eσ

2t2/2.

A5: The density p(x) satisfies the boundary flatness condition (Definition 2.3.2),
and 0 < cl ≤ inf p(x) ≤ sup p(x) ≤ cu <∞ for two constants cl, cu.

By assumption A1, f ∗k must be zero for k /∈ S. We define α+, α− as a measure of the
signal strength of the weakest variable:

α+ = min
f∈Cp1 : supp(f)(supp(f∗)

ß
E
Ä
f0(X)− f(X)

ä2 − E
Ä
f0(X)− f ∗(X)

ä2™
(2.5.3)

α− = min
k∈S : g∗

k
6=0

ß
E
Ä
f0(X)− f ∗(X)

ä2 − E
Ä
f0(X)− f ∗(X)− g∗k(Xk)

ä2™
α+ is a lower bound on the excess risk incurred by any additive convex function
whose support is strictly smaller than f ∗. α+ is achieved by some f 6= f ∗ because
the set {f ∈ Cp1 : supp(f) ( supp(f ∗)} is a finite union of closed convex sets. α+ > 0
since f ∗ is the unique risk minimizer. Likewise, α− lower bounds the excess risk of
any decoupled concave fit of the residual f0−f ∗ that is strictly more sparse than the
optimal decoupled concave fit {ĝ∗k}; α− > 0 by the uniqueness of {g∗k} as well. These
quantities play the role of the absolute value of the smallest nonzero coefficient in the
true linear model in lasso theory. Intuitively, if α+ is small, then it is easier to make
a false omission in the additive convex stage of the procedure. If α− is small, then it
is easier to make a false omission in the decoupled concave stage of the procedure. If
X is independent, then α+ can be simplified to mink : f∗

k
6=0 Ef ∗k (X)2 and α− becomes

unnecessary.
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Remark 2.5.1. We make strong assumptions on the covariates in A1 in order to
make weak assumptions on the true regression function f0 in A2. In particular, we
do not assume that f0 is additive. An important direction for future work is to
weaken assumption A1. Our simulation experiments indicate that the procedure can
be effective even when the relevant and irrelevant variables are correlated.

Theorem 2.5.2 (Controlling false positives). Suppose assumptions A1-A5 hold. De-
fine σ̃ ≡ max(σ,B) and define rangek = Xπk(n)k −Xπk(1)k. Suppose p ≤ O

Ä
exp(cn)

ä
and n ≥ C for some positive constants C and 0 < c < cl

32
. Suppose also

λn ≥ 768sσ̃

√
log2 np

n
. (2.5.4)

Then with probability at least 1− 24
n

, for all k ∈ Sc, for all i = 1, . . . , n,

λn ≥ rangek

∣∣∣∣32

n
r̂T1(i′:n)k

∣∣∣∣, (2.5.5)

maxi′
Xπk(i′+1)k−Xπk(i′)k

rangek
≤ 1

16
, rangek ≥ 1, and both the AC solution f̂k from optimiza-

tion (2.4.8) and the DC solution ĝk from optimization (2.4.10) are zero.

The proof of Theorem 2.5.2 exploits independence of r̂ and Xk under assumption
A1; when r̂ and Xk are independent, r̂T1(i′:n) is the sum of n − i′ + 1 random
coordinates of r̂. We can then use concentration of measure results for sampling
without replacement to argue that | 1

n
r̂T1(i′:n)| is small with high probability. The

result of Theorem 2.5.1 is then used. The full proof of Theorem 2.5.2 is in Section 2.7
of the Appendix.

Theorem 2.5.3 (Controlling false negatives). Suppose assumptions A1-A5 hold. Let
f̂ be any AC solution to the restricted regression with B-boundedness constraint, and
let ĝk be any DC solution to the restricted regression with B-boundedness constraint.
Let σ̃ denote max(σ,B). Suppose

λn ≤ 768sσ̃

√
log2 np

n
(2.5.6)

and that n is sufficiently large so that, for some constant c′ > 1,

n4/5

log np
≥ c′B4σ̃2s5. (2.5.7)
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Assume that the signal-to-noise ratio satisfies

α+

σ̃
≥ cB2

Ã
s5c

1/2
u

n4/5
log2 np (2.5.8)

α2
−
σ̃
≥ cB2

Ã
s5c

1/2
u

n4/5
log2 np (2.5.9)

where c is a constant. Then with probability at least 1 − C
n

for some constant C,

f̂k 6= 0 or ĝk 6= 0 for all k ∈ S.

This is a finite sample version of Theorem 2.3.1. We need stronger assumptions
in Theorem 2.5.3 to use our additive faithfulness result, Theorem 2.3.1. The full
proof of Theorem 2.5.3 is in Section 2.7 of the appendix.

Combining Theorems 2.5.2 and 2.5.3 we obtain the following result.

Corollary 2.5.1. Suppose the assumptions of Theorem 2.5.2 and Theorem 2.5.3
hold. Then with probability at least 1− C

n

f̂k 6= 0 or ĝk 6= 0 for all k ∈ S (2.5.10)

f̂k = 0 and ĝk = 0 for all k /∈ S (2.5.11)

for some constant C.

The above corollary implies that consistent variable selection is achievable with
an exponential scaling of the ambient dimension scaling, p = O(exp(cn)) for some
0 < c < 1, just as in parametric models. The cost of nonparametric modeling
through shape constraints is reflected in the scaling with respect to the number of
relevant variables, which can scale as s = o(n4/25).

Remark 2.5.2. Comminges and Dalalyan (2012) have shown that under tradtional
smoothness constraints, even with a product distribution, variable selection is achiev-
able only if n > O(es0). It is interesting to observe that because of additive faith-
fulness, the convexity assumption enables a much better scaling of n = O(poly(s0)),
demonstrating that geometric constraints can be quite different from the previously
studied smoothness conditions.

2.6 Experiments

We perform both synthetic and real data experiments.
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Simulations

We first illustrate our methods using a simulation of the model

Yi = fo(xiS) + εi (i = 1, 2, . . . , n).

Here xi denotes data sample i drawn from some distribution P . f0 is the true
regression function. xiS is a subset of xi with dimension |S| = s, where S represents
the set of relevant variables, and εi is additive noise drawn from N (0, σ). For all

simulations, we set σ such that the signal-to-noise ratio(SNR, std(Y )
σ

) is 5. Also, for
all simulations except the sixth, we choose the set of relevant variables S uniformly
at random among all variables {1, ..., p}.

We study both the independent case where P = N(0, Ip) and the correlated case
where P is a correlated Gaussian Copula modified slightly to satisfy the boundary
flatness condition. We measure the probability of exact selection in the independent
case and the probability of screening in the correlated case. We also study both cases
where the regression function is parametric (quadratic) and cases where the regression
function is nonparametric (softmax of linear forms). In all our experiments, we mark
a variable as selected if either the AC estimate ‖f̂j‖∞ or the DC estimate ‖ĝk‖∞ is

larger than 10−6. We set λ = 0.5
√

log2 np
n

for all the simulations.
For the first three simulations, we will use the quadratic form as our true regres-

sion function.
f0(xiS) = xTiSQxiS

The matrix Q is a symmetric positive definite matrix of dimension s × s. Note
that if Q is diagonal, then the true function is convex additive; otherwise the true
function is convex but not additive.

In the first simulation (Figure 2.6a), we vary the ambient dimension p. We set
Q as one on the diagonal and 1/2 on the off-diagonal with 0.5 probability, set s = 5,
and p = 64, 128, 256 and 512. We draw X ∼ N(0, Ip). For each (n, p) combination,
we generate 100 independent trials. In Figure 2.6(a), we plot the probability of
exact support recovery. We observe that the algorithm performs consistent variable
selection even if the dimensionality is large. To give the reader a sense of the running
speed, for a data set with n = 1000 and p = 512, the code runs in roughly two minutes
on a machine with 2.3 GHz Intel Core i5 CPU and 4 GB memory.

In the second simulation (Figure 2.6b,c), we vary the sparsity of the Q matrix,
that is, we vary the extent to which the true function is non-additive. We generate
four Q matrices plotted in Figure 2.6(c), where the diagonal elements are all one
and the off-diagonal elements are 1

2
with probability α (α = 0, 0.2, 0.5, 1 for the four

cases). We show the 4 Q matrices we used in Figure 2.6(c). We fix p = 128, s = 5,
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Figure 2.5: Marginal density of the Gaussian Copula and Uniform Mixture

and X ∼ N(0, Ip). We again run the AC/DC optimization on 100 independent trials
and plot the probability of exact recovery in Figure 2.6(b). The results demonstrate
that AC/DC performs consistent variable selection even if the true function is not
additive (but still convex).

In the third, fourth, and fifth simulation, we use a correlated design. We gen-
erate X from a non-Gaussian boundary flat distribution with covariance Σ. The
distribution we used is a mixture of a uniform distribution and a Gaussian Copula.

X ∼ γU([−2, 2]p) + (1− γ)Copula(0,Σ, F )

The Gaussian Copula is a way to customize the marginal distributions of a Gaussian
random variable while maintaining the same covariance. Gaussian Copula results
when one applies a monotone transformation F−1Φ onto each of the variables of
a Gaussian random vector where Φ is the normal CDF and F is the CDF of the
new marginal distribution. In all our experiments, we set γ = 0.05 and set the
marginal CDF F so that marginal density of the Copula is bimodal and supported
on [−1.8, 1.8]. The resulting marginal density of the mixture is shown in Figure 2.5.
Notice that boundary flatness holds because the distribution is uniform in the bound-
ary area [−2, 2]p\[−1.8, 1.8]p.

In the third simulation (Figure 2.6d,e), we use the non-Gaussian distribution
described above and set the covariance Σij = ν |i−j| for ν = 0, 0.2, 0.5, 0.9. We use the
non-additive Q, same as in the first experiment, with α = 0.5 and fix p = 128, s = 5.
We measure success not through exact recovery but through faithful recovery. We say
that a trial is a successful if (1) all relevant variables were recovered and (2) fewer than
20 variables were marked as relevant overall (true sparsisty s = 5). We use the same
λ as before. The probabilities of success are computed from 40 independent trials and
plotted against various values of ν in Figure 2.6(d). Additionally, for ν = 0.5, we show
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the number of selected variables versus the sample size as a box-and-whisker plot in
Figure 2.6(e). As seen, for small to moderate correlations, AC/DC can successfully
recover the relevant variables with only a small number of false positives.

In the fourth and fifth simulation, we use a softmax function as the ground truth

f0(xiS) = log

(
K∑
k=1

exp(βT
k xiS)

)
− µ (2.6.1)

We generate random unit vectors as {βk ∈ Rs}k=1,...,K and choose µ so that f0 has
mean-zero. We set K = 7 for all the experiments.

For the fourth simulation (Figure 2.6f,g), we let f0 be the softmax function and
let X be drawn from the boundary flat mixture distribution described earlier with the
Toeplitz covariance Σij = ν |i−j| for ν = 0.5. We set s = 5 and vary p = 128, 256, 512.
We use the same faithful recovery criteria as the third simulation and plot the prob-
ability of faithful recovery against the number of samples in Figure 2.6(f). The
probabilities are computed over 30 independent trials. Also, for p = 256, we show
the number of selected variables versus the sample size as a box-and-whisker plot
in Figure 2.6(g). The softmax function is more challenging to estimate than the
quadratic function; the softmax function requires about n > 1500 to achieve the
same success probability as the quadratic function with n = 1000. Regardless, we
see that increasing the ambient dimension p does not signficantly affect the recovery
probability.

For the fifth simulation (Figure 2.7), we compare the variables selected via
the AC stage and the variables selected via the DC stage. We use the softmax
regression function and X drawn from the boundary flat mixture distribution with a
Toeplitz covariance and correlation level ν = −0.7. We set s = 5, n = 500, p = 128.
We perform 30 independent trials and plot the frequency of variable selection in
Figure 2.7. The true variables are Xj for j = 5, 6, 7, 8, 9, 10. We plot the frequency
of selection among only the first 20 variables, that is, Xj for j = 1, ..., 20. We do
not plot selection frequencies for variables 21 to 128 because they are almost never
selected by either AC or DC. As can be seen, the DC stage is slightly helpful in
recovering the true variables but its effect is not significant. We thus believe that
the DC stage, though important in theory, is not as important in practice; it may
be omitted without significant detriment to the overall result.

Boston housing data

We next use the Boston housing data rather than simulated data. This data set
contains 13 covariates, 506 samples and one response variable indicating housing
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Figure 2.6: Support recovery results.
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Figure 2.7: Frequency of variable selection among the first 20 variables (Xj for
j = 1, ..., 20) in the AC stage vs. in the DC stage. The true variables are [5,6,7,8,9,10].

values in suburbs of Boston. The data and detailed description can be found on the
UCI Machine Learning Repository website1.

We first use all n = 506 samples (with standardization) in the AC/DC algorithm,
using a set of candidate regularization parameters {λ(t)} ranging from λ(1) = 0
(no regularization) to 2. For each λ(t) we obtain a function value matrix f (t) with
p = 13 columns and n = 506 rows. The non-zero columns in this matrix indicate the
variables selected using λ(t).

In Figure 2.8(a), we plot on the y-axis the norm ‖f (t)
j ‖∞ of every column j against

the regularization strength λ(t). Instead of plotting the value of λ(t) on the x-axis
however, we plot the total norm at λ(t) normalized against the total norm at λ(1):∑

j ‖f
(t)
j ‖∞∑

j ‖f (1)‖∞
. Thus, as x-axis moves from 0 to 1, the regularization goes from strong

to weak. For comparison, we plot the LASSO/LARS result in a similar way in
Figure 2.8(b). From the figures we observe that the first three variables selected by
AC/DC and LASSO are the same: LSTAT, RM and PTRATIO, consistent with previous
findings (Ravikumar et al., 2007). The fourth variable selected by AC/DC is INDUS

(with λ(t) = 0.7). We then refit AC/DC with only these four variables without
regularization, and plot the estimated additive functions in Figure 2.8(d). When
refitting, we constrain a component to be convex if it is non-zero in the AC stage
and concave if it is non-zero in the DC stage. As can be seen, these functions contain
clear nonlinear effects which cannot be captured by LASSO. The shapes of these

1http://archive.ics.uci.edu/ml/datasets/Housing

http://archive.ics.uci.edu/ml/datasets/Housing
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functions, including the concave shape of the PTRATIO function, are in agreement
with those obtained by SpAM (Ravikumar et al., 2007).

Next, in order to quantitatively study the predictive performance, we run 3 times
5-fold cross validation, following the same procedure described above—training, vari-
able selection and refitting. A plot of the mean and standard deviation of the predic-
tive mean squared error (MSE) is shown in Figure 2.8(c). Since for AC/DC the same
regularization level λ(t) may lead to a slightly different number of selected variables
in different folds and runs, the values on the x-axis for AC/DC are not necessarily
integers. The figure clearly shows that AC/DC has a lower predictive MSE than
LASSO. We also compared the performance of AC/DC with that of Additive For-
ward Regression (AFR) presented in Liu and Chen (2009), and found that they are
similar. The main advantages of AC/DC compared with AFR and SpAM are that
there are no smoothing parameters required, and the optimization is formulated as
a convex program, guaranteeing a global optimum.

2.7 Supplement: Proofs of Technical Results

Proof of the Deterministic Condition for Sparsistency

We restate Theorem 2.5.1 first for convenience. The following holds regardless of
whether we impose the B-boundedness condition (see discussion at the beginning of
Section 2.5 for definition of the B-boundedness condition).

Theorem 2.7.1. Let {d̂k}k∈S be a minimizer of the restricted regression, that is, the
solution to optimization (2.4.8) where we restrict k ∈ S. Let r̂ := Y −∑k∈S ∆̄kd̂k be
the restricted regression residual.

Let πk(i) be an reordering of Xk in ascending order so that Xπk(n)k is the largest
entry. Let 1πk(i:n) be 1 on the coordinates πk(i), πk(i + 1), ..., πk(n) and 0 elsewhere.
Define rangek = Xπk(n)k −Xπk(1)k.

Suppose for all k ∈ Sc and for all i = 1, ..., n, λn ≥ rangek|32n r̂T1πk(i:n)|, and

maxi=1,...,n−1
Xπk(i+1)k−Xπk(i)k

rangek
≥ 1

16
, and rangek ≥ 1.

Then the following are true:

1. Let d̂k = 0 for k ∈ Sc, then {d̂k}k=1,...,p is an optimal solution to optimiza-
tion 2.4.8. Furthermore, any solution to the optimization program 2.4.8 must
be zero on Sc.

2. For all k ∈ Sc, the solution to optimization 2.4.10 must be zero and unique.
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Figure 2.8: Results on Boston housing data, showing regularization paths, MSE and
fitted functions.

Proof. We will omit the B-boundedness constraint in our proof here. It is easy to
verify that the result of the theorem still holds with the constraint added in.

We begin by considering the first item in the conclusion of the theorem. We will
show that with {d̂k}k=1,..,p as constructed, we can set the dual variables to satisfy

the complementary slackness and stationary conditions: ∇dkL(d̂) = 0 for all k.
The Lagrangian is

L({dk}, ν) =
1

2n

∥∥∥∥Y − p∑
k=1

∆̄kdk

∥∥∥∥2
2

+ λ
p∑

k=1

‖∆̄kdk‖∞ −
p∑

k=1

n−1∑
i=2

νπk(i)kdπk(i)k (2.7.1)

with the constraint that νπk(i)k ≥ 0 for all k, i.

Because {d̂k}k∈S is by definition the optimal solution of the restricted regression,
it is a consequence that stationarity holds for k ∈ S, that is, ∂{dk}k∈SL(d) = 0, and
that the dual variables νk for k ∈ S satisfy complementary slackness.
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We now verify that stationarity holds also for k ∈ Sc. We fix one dimension
k ∈ Sc and let r̂ = Y −∑k′∈S ∆̄k′ d̂k′ .

To ease notational burden, let us reorder the samples {Xik}i=1,...,n in ascending
order so that the i-th sample is the i-th smallest sample. We will from here on write
Xik to denote Xπk(i)k, dik to denote dπk(i)k, etc.

The Lagrangian form of the optimization, in terms of just dk, is

L(dk, νk) =
1

2n

∥∥∥Y − ∑
k′∈S

∆̄k′dk′ − ∆̄kdk
∥∥∥2
2

+ λ‖∆̄kdk‖∞ −
n−1∑
i=2

νikdik

with the constraint that νik ≥ 0 for i = 2, ..., n− 1.
The derivative of the Lagrangian is

∂dkL(dk) = − 1

n
∆̄T
k (Y −

∑
k′∈S

∆̄k′dk′ − ∆̄kdk) + λ∆̄T
ku−

Ç
0
νk

å
where u is the subgradient of ‖∆̄kdk‖∞. If ∆̄kdk = 0, then u can be any vector whose
L1 norm is less than or equal to 1. νk ≥ 0 is a vector of Lagrangian multipliers. νk1
does not exist because dk1 is not constrained to be non-negative.

We now substitute in dk′ = d̂k′ for k′ ∈ S, dk = 0 for k ∈ Sc, and r = r̂ and show
that the u, νk dual variables can be set in a way to ensure that stationarity:

∂dkL(d̂k) = − 1

n
∆̄T
k r̂ + λ∆̄T

ku−
Ç

0
νk

å
= 0

where ‖u‖1 ≤ 1 and νk ≥ 0. It is clear that to show stationarity, we only need to
show that [− 1

n
∆̄T
k r̂ + λ∆̄T

ku]j = 0 for j = 1 and ≥ 0 for j = 2, ..., n− 1.

Define i∗ as the largest index such that Xnk−Xi∗k
Xnk−X1k

≥ 1/2. We will construct

u = (a − a′, 0, ...,−a, 0, ..., a′) where a, a′ are positive scalars, where −a lies at the
i∗-th coordinate, and where the coordinates of u correspond to the new sample
ordering.

We define

κ =
1

λn(Xnk −X1k)

î
∆T
k r̂
ó
1

a′ =
Xnk −X1k

Xnk −Xi∗k
κ+

Xi∗k −X1k

Xnk −Xi∗k

1

8

a =
Xnk −X1k

Xnk −Xi∗k
κ+

Xnk −X1k

Xnk −Xi∗k

1

8
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and we verify two facts: first that the KKT stationarity is satisfied and second,
that ‖u‖1 < 1 with high probability. Our claim is proved immediately by combining
these two facts.

Because r̂ and u are both centered vectors, ∆̄T
k r̂ = ∆T

k r̂ and likewise for u.
Therefore, we need only show that for j = 1, λ

î
∆T
ku
ó
j

=
î
1
n
∆T
k r̂
ó
j

and that for

j = 2, ..., n− 1, λ
î
∆T
ku
ó
j
≥
î
1
n
∆T
k r̂
ó
j
.

With our explicitly defined form of u, we can characterize ∆T
ku. Note that under

sample reordering, the j-th column of ∆k is (0, ..., x(j+1)k−xjk, x(j+2)k−xjk, ..., xnk−
xjk) where the first j-th entries are all 0.

∆T
ku]j =

∑
i>j

(Xik −Xjk)ui

= ui∗(Xi∗k −Xjk)δi∗≥j + un(Xnk −Xjk)

= −a(Xi∗k −Xjk)δi∗≥j + a′(Xnk −Xjk)

Simple algebra shows then thatî
∆T
ku
ó
j

=

®
(−a+ a′)(Xi∗k −Xjk) + a′(Xnk −Xi∗k) if j ≤ i∗

a′(Xnk −Xjk) if j ≥ i∗
(2.7.2)

It is straightforward to check that
î
λ∆T

ku
ó
1

= λ(Xnk −X1k)κ = 1
n

î
∆T
k r̂
ó
1
.

To check that λ[∆T
ku]j ≥ [ 1

n
∆T
k r̂]j for j > 1, we first characterize [ 1

n
∆T
k r̂]j:

[
1

n
∆T
k r̂]j =

1

n

∑
i>j

(Xik −Xjk)r̂i

=
1

n

∑
i>j

∑
j<i′≤i

gapi′ r̂i

=
1

n

∑
i′>j

gapi′
∑
i≥i′

r̂i

=
1

n

∑
i′>j

gapi′1
T
i′:nr̂

where we denote gapi′ = Xi′k −X(i′−1)k.
We pause for a second here to give a summary of our proof strategy. We leverage

two critical observations: first, any two adjacent coordinates in the vector 1
n
∆T
k r̂

cannot differ by too much. Second, we defined a, a′ such that −a + a′ = −1
8

so
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that λ∆T
ku is a sequence that strictly increases in the first half (for coordinates in

{1, ..., i∗}) and strictly decreases in the second half.
We know 1

n
∆T
k r̂ and λ∆T

ku are equal in the first coordinate. We will show that
the second sequence increases faster than the first sequence, which will imply that
the second sequence is larger than the first in the first half of the coordinates. We
will then work similarly but backwards for the second half.

Following our strategy, we first compare [λ∆T
ku]j and [ 1

n
∆T
k r̂]j for j = 1, ..., i∗−1.

For j = 1, ..., i∗ − 1, we have that

λ[∆T
ku]j+1 − λ[∆T

ku]j = λ(a− a′)gapj+1

≥ −gapj+1

1

n
1T
(j+1):nr̂

= [
1

n
∆T
k r̂]j+1 − [

1

n
∆T
k r̂]j

The inequality follows because a − a′ = 1
8

and thus λ(a − a′) ≥
∣∣∣ 1
n
1T
(j+1):nr̂

∣∣∣.
Therefore, for all j = 1, ..., i∗:

[λ∆T
ku]j ≥ [

1

n
∆T
k r̂]j

For j ≥ i∗, we start our comparison from j = n− 1. First, we claim that a′ > 1
32

.
To prove this claim, note that

|κ| =
∣∣∣∣ 1

λn

∑
i′>1

gapi′1
T
i′:nr̂

∣∣∣∣ ≤ 1

(Xkn −Xk1)2
1

32

∑
i′>1

gapi′ =
1

32
(2.7.3)

because
∑
i′>1 gapi′ = Xnk −X1k by definition and Xnk −X1k ≥ 1 by assumption of

the theorem. We note also that

Xnk −Xi∗k

Xnk −X1k

=
Xnk −X(i∗+1)k +X(i∗+1)k −Xi∗k

Xnk −X1k

≤ 1

2
+

1

16

where the inequality follows because we had assumed that
X(i+1)k−Xik
Xnk−X1k

≤ 1
16

for all
i = 1, ..., n− 1.
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So, we have

a′ =
Xnk −X1k

Xnk −Xi∗k
κ+

Xi∗k −X1k

Xnk −Xi∗k

1

8

=
Xnk −X1k

Xnk −Xi∗k

Ç
κ+

Xi∗k −X1k

Xnk −X1k

1

8

å
≥ Xnk −X1k

Xnk −Xi∗k

Ç
− 1

32
+ (

1

2
− 1

16
)
1

8

å
≥ 1

1/2 + 1/16

Ç
− 1

32
+ (

1

2
− 1

16
)
1

8

å
≥ 1

32

In the first inequality of the above derivation, we used the fact that Xi∗k−X1k

Xnk−X1k
≤ 1

2
− 1

16
.

In the second inequality, we used the fact that the quantity inside the parentheses is
positive and Xnk−X1k

Xnk−Xi∗k
≥ 1

1/2+1/16
.

Now consider j = n− 1.

[
1

n
∆T
k r̂]n−1 =

1

n
gapnr̂n ≤ gapn

λ

32
≤ λgapna

′ = λ[∆T
ku]n−1

For j = i∗, ..., n− 2, we have that

λ[∆T
ku]j − λ[∆T

ku]j+1 = λa′gapj+1

≥ gapj+1

1

n
1T
(j+1):nr̂

≥ [
1

n
∆T
k r̂]j − [

1

n
∆T
k r̂]j+1

Therefore, for j = i∗, ..., n− 2,

λ[∆T
ku]j ≥

1

n
[∆T

k r̂]j

We conclude then that λ[∆T
ku]j ≥ [ 1

n
∆T
k r̂]j for all j = 2, ..., n− 1.

We have thus verified that the stationarity equations hold and now will bound
‖u‖1.

‖u‖1 = |a− a′|+ a+ a′ ≤ 1

8
+ 2a ≤ 1

8
+ 4|κ|+ 1

2
≤ 1

8
+

1

8
+

1

2
< 1
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In the third inequality, we used the fact that |κ| ≤ 1
32

.

We have thus proven that there exists one solution {d̂k}k=1,...,p such that d̂k = 0
for all k ∈ Sc. Furthermore, we have shown that the subgradient variables uk of the
solution {d̂k} can be chosen such that ‖uk‖1 < 1 for all k ∈ Sc.

We now prove that if {d̂′k}k=1,...,p is another solution, then it must be that d̂′k = 0

for all k ∈ Sc as well. We first claim that
∑p
k=1 ∆̄kd̂k =

∑p
k=1 ∆̄kd̂

′
k. If this were not

true, then a convex combination of d̂k, d̂
′
k would achieve a strictly lower objective

on the quadratic term. More precisely, let ζ ∈ [0, 1]. If
∑p
k=1 ∆̄kd̂

′
k 6=

∑p
k=1 ∆̄kd̂k,

then ‖Y −∑p
k=1 ∆̄k

Ä
d̂k + ζ(d̂′k − d̂k)

ä
‖22 is strongly convex as a function of ζ. Thus,

it cannot be that d̂k and d̂′k both achieve optimal objective, and we have reached a
contradiction.

Now, we look at the stationarity condition for both {d̂k} and {d̂′k}. Let uk ∈
∂‖∆̄kd̂k‖∞ and let u′k ∈ ∂‖∆̄kd̂

′
k‖∞ be the two sets of subgradients. Let {νik} and

{ν ′ik} be the two sets of positivity dual variables, for k = 1, .., p and i = 1, ...n − 1.
Note that since there is no positivity constraint on d1k, we let ν1k = 0 always.

Let us define ∆̄, a n× p(n− 1) matrix, to denote the column-wise concatenation
of {∆̄k}k and d̂, a p(n−1) dimensional vector, to denote the concatenation of {d̂k}k.
With this notation, we can express

∑p
k=1 ∆̄kd̂k = ∆̄d̂.

Since both solutions (d̂,u, ν) and (d̂′,u′, ν ′) must satisfy the stationarity condi-
tion, we have that

∆̄T(Y − ∆̄d̂) + λ

Ö
∆̄T

1 u1

...
∆̄T
pup

è
− ν = ∆̄T(Y − ∆̄d̂′) + λ

Ö
∆̄T

1 u′1
...

∆̄T
pu′p

è
− ν ′ = 0.

Multiplying both sides of the above equation by d̂′,

d̂′T∆̄T(Y − ∆̄d̂) + λ
p∑

k=1

d̂′Tk ∆̄T
kuk − d̂′Tν = d̂′T∆̄T(Y − ∆̄d̂′) + λ

p∑
k=1

d̂′Tk ∆̄T
ku′k − d̂′Tν ′.

Since ∆̄d̂′ = ∆̄d̂, d̂′Tν ′ = 0 (complementary slackness), and d̂′Tk ∆̄T
ku′k = ‖f̂ ′k‖∞ (where

f̂ ′k = ∆̄kd̂
′
k), we have that

λ
p∑

k=1

d̂′Tk ∆̄T
kuk − d̂′Tν = λ

p∑
k=1

‖f̂ ′k‖∞.

On one hand, d̂′ is a feasible solution so d̂′Tν ≥ 0 and so

p∑
k=1

d̂′Tk ∆̄T
kuk ≥

p∑
k=1

‖f̂ ′k‖∞.
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On the other hand, by Hölder’s inequality,

p∑
k=1

d̂′Tk ∆̄T
kuk ≤

p∑
k=1

‖f̂ ′k‖∞‖uk‖1.

Since uk can be chosen so that ‖uk‖1 < 1 for all k ∈ Sc, we would get a contradiction
if ‖f̂ ′k‖∞ > 0 for some k ∈ Sc. We thus conclude that d̂′ must follow the same sparsity
pattern.

The second item in the theorem concerning optimization 2.4.10 is proven in ex-
actly the same way. The Lagrangian of optimization 2.4.10 is

Lcave(ck, νk) =
1

2n

∥∥∥r̂ − ∆̄kck
∥∥∥2
2

+ λ‖∆̄kck‖∞ +
p∑

k=1

n−1∑
i=2

νikcik.

with νik ≥ 0. The same reasoning applies to show that ĉk = 0 for all k ∈ Sc satisfies
KKT conditions sufficient for optimality.

Proof of False Positive Control

We note that in the following analysis the symbols c, C represent absolute constants.
We will often abuse notation and “absorb” new absolute constants into c, C; the
actual value of c, C could thus vary from line to line. We first restate the theorem
for convenience.

Theorem 2.7.2. Suppose assumptions A1-A5 hold. Define σ̃ ≡ max(σ,B). Suppose
that p ≤ O

Ä
exp(cn)

ä
and n ≥ C for some constants 0 < c < 1 and C. Define

rangek = Xπk(n)k −Xπk(1)k.

If λn ≥ 2(12 ·32)sσ̃
√

1
n

log2 np then, with probability at least 1− 24
n

, for all k ∈ Sc,
and for all i′ = 1, ..., n

λn > rangek

∣∣∣∣32

n
r̂T1πk(i′:n)

∣∣∣∣
and maxi′

Xπk(i′+1)k−Xπk(i′)k
rangek

≤ 1
16

and rangek ≥ 1.

Therefore, for all k ∈ Sc, both the AC solution f̂k from optimization 2.4.8, and
the DC solution ĝk from optimization 2.4.10 are zero.

Proof. The key is to note that r̂ and ∆k,j are independent for all k ∈ Sc, j = 1, ..., n
because r̂ is only dependent on XS.
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Fix j and i. Then r̂T1πk(i′:n) is the sum of n − i′ + 1 random coordinates of r̂.
We will use Serfling’s theorem on the concentration of measure of sampling without
replacement (Corollary 2.7.2). We must first bound ‖r̂‖∞ and 1

n

∑n
i=1 r̂i before we

can use Serfling’s results however.

Step 1: Bounding ‖r̂‖∞. We have r̂i = f0(xi) + wi − f̂(xi) where f̂(xi) =∑
k∈S ∆̄kd̂k is the convex additive function outputted by the restricted regression.

Note that both f0(xi) and f̂(xi) are bounded by 2sB. Because wi is sub-Gaussian,
|wi| ≤ σ

»
2 log 2

δ
with probability at least 1− δ. By union bound across i = 1, ..., n,

we have that ‖w‖∞ ≤ σ
»

2 log 2n
δ

with probability at least 1− δ.
Putting these observations together,

‖r̂‖∞ ≤ 2sB + σ

 
2 log

2n

δ
)

≤ 4sσ̃

 
log

2n

δ
(2.7.4)

with probability at least 1− δ, where we have defined σ̃ = max(σ,B), and assumed
that

»
log 2n

δ
≥ 1. We will eventually take δ = O(1/n) so this assumption holds

under the condition in the theorem which state that n ≥ C for some large constant
C.

Step 2: Bounding | 1
n
r̂T1|. We have that

1

n
r̂T1 =

1

n

n∑
i=1

f0(xi) + wi − f̂(xi)

=
1

n

n∑
i=1

f0(xi) + wi (f̂ is centered).

Since |f0(xi)| ≤ sB, the first term | 1
n

∑n
i=1 f0(xi)| is at most sB

»
2
n

log 2
δ

with proba-
bility at most 1− δ by Hoeffding’s inequality. Since wi is sub-Gaussian, the second
term | 1

n

∑n
i=1wi| is at most σ

»
2
n

log 2
δ

with probability at most 1− δ. Taking a union
bound, we have that

| 1
n
r̂T1| ≤ sB

 
2

n
log

4

δ
+ σ

 
2

n
log

4

δ

≤ 4sσ̃

 
1

n
log

4

δ
(2.7.5)

with probability at least 1− δ.
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Step 3: Apply Serfling’s theorem. For any k ∈ Sc, Serfling’s theorem states
that with probability at least 1− δ

∣∣∣∣ 1nr̂T1πk(i′:n)

∣∣∣∣ ≤ 2‖r̂‖∞
 

1

n
log

2

δ
+
∣∣∣∣ 1nr̂T1

∣∣∣∣
We need Serfling’s theorem to hold for all k = 1, ..., p and i′ = 1, ..., n. We also
need the events that ‖r̂‖∞ and | 1

n
r̂T1| are small to hold. Using a union bound, with

probability at least 1− δ, for all k, i′,

∣∣∣∣ 1nr̂T1πk(i′:n)

∣∣∣∣ ≤ 2‖r̂‖∞
 

1

n
log

6np

δ
+
∣∣∣∣ 1nr̂T1

∣∣∣∣
≤ 8sσ̃

 
log

6n

δ

 
1

n
log

6np

δ
+ 4sσ̃

 
1

n
log

12

δ

≤ 12sσ̃

 
1

n
log2 12np

δ

In the second inequality, we used equation (2.7.4) and equation (2.7.5) from steps 1
and 2 respectively. Setting δ = 12

n
gives the desired expression.

Finally, we note that 2 ≥ (Xπk(n)k −Xπk(1)k) since Xk ⊂ [−1, 1]. This concludes
the proof for the first part of the theorem.

To prove the second and the third claims, let the interval [−1, 1] be divided
into 64 non-overlapping segments each of length 1/32. Because Xk is drawn from
a density with a lower bound cl > 0, the probability that every segment contains
some samples Xki’s is at least 1− 64

Ä
1− 1

32
cl
än

. Let Ek denote the event that every
segment contains some samples.

Define gapi = Xπk(i+1)k−Xπk(i)k for i = 1, ..., n−1 and define gap0 = Xπk(1)k−(−1)
and gapn = 1−Xπk(n)k.

If any gapi ≥ 1
16

, then gapi has to contain one of the segments. Therefore, under
event Ek, it must be that gapi ≤ 1

16
for all i.

Thus, we have that rangek ≥ 2− 1/8 ≥ 1 and that for all i,

Xkπk(i+1) −Xkπk(i)

rangek
≤ 1/16

2− 1/8
≤ 1/16

Taking a union bound for each k ∈ Sc, the probability of that all Ek hold is at
least 1− p64

Ä
1− 1

32
cl
än

.

p64
Ä
1− 1

32
cl
än

= 64p exp(−c′n) where c′ = − log(1 − cl
32

) > cl
32

since cl < 1.
Therefore, if p ≤ exp(cn) for some 0 < c < cl

32
and if n is larger than some constant

C, 64p exp(−c′n) ≤ 64 exp(−(c′ − c)n) ≤ 12
n

.
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Taking a union bound with the event that λn upper bounds the partial sums of
r̂ and we establish the claim.

Proof of False Negative Control

We begin by introducing some notation.

Notation

If f : Rs → R, we define ‖f‖P ≡ Ef(X)2. Given samples X1, ..., Xn, we denote
‖f‖n ≡ 1

n

∑n
i=1 f(Xi)

2 and 〈f, g〉n ≡ 1
n

∑n
i=1 f(Xi)g(Xi).

Let C1 denote the set of univariate convex functions supported on [−1, 1]. Let
C1B ≡ {f ∈ C1 : ‖f‖∞ ≤ B} denote the set of B-bounded univariate convex func-
tions. Define Cs as the set of convex additive functions and CsB likewise as the set of
convex additive functions whose components are B-bounded:

Cs ≡ {f : f =
s∑

k=1

fk, fk ∈ C1}

CsB ≡ {f ∈ Cs : f =
s∑

k=1

fk, ‖fk‖∞ ≤ B}.

Let f ∗(x) =
∑s
k=1 f

∗
k (xk) be the population risk minimizer:

f ∗ = arg min
f∈Cs
‖f0 − f ∗‖2P

We let sB be an upper bound on ‖f0‖∞ and B be an upper bound on ‖f ∗k‖∞. It
follows that ‖f ∗‖∞ ≤ sB.

We define f̂ as the empirical risk minimizer:

f̂ = arg min
ß
‖y − f‖2n + λ

s∑
k=1

‖fk‖∞ : f ∈ CsB, 1T
nfk = 0

™
For k ∈ {1, ..., s}, define g∗k to be the decoupled concave population risk minimizer

g∗k ≡ argmin
gk∈-C1

‖f0 − f ∗ − gk‖2P .

In our proof, we will analyze g∗k for each k such that f ∗k = 0. Likewise, we define the
empirical version:

ĝk ≡ argmin
ß
‖f0 − f̂ − gk‖2n : gk ∈ -C1B ,1T

ngk = 0
™
.
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By the definition of the AC/DC procedure, ĝk is defined only for an index k that has
zero as the convex additive approximation.

Proof

By additive faithfulness of the AC/DC procedure, it is known that f ∗k 6= 0 or g∗k 6= 0
for all k ∈ S. Our argument will be to show that the risk of the AC/DC estimators
f̂ , ĝ tends to the risk of the population optimal functions f ∗, g∗:

‖f0 − f̂‖2P = ‖f0 − f ∗‖2P + err+(n)

‖f0 − f ∗ − ĝk‖2P = ‖f0 − f ∗ − g∗k‖2P + err−(n) for all k ∈ S where f ∗k = 0,

where the estimation errors err+(n) and err−(n) decrease with n at some rate.
Assuming this, suppose that f̂k = 0 and f ∗k 6= 0. Then when n is large enough

such that err+(n) and err−(n) are smaller than α+ and α− defined in equation (2.5.3),
we reach a contradiction. This is because the risk ‖f0 − f ∗‖P of f ∗ is strictly larger
by α+ than the risk of the best approximation whose k-th component is constrained
to be zero. Similarly, suppose f ∗k = 0 and g∗k 6= 0. Then when n is large enough, ĝk
must not be zero.

Theorem 2.7.3 and Theorem 2.7.4 characterize err+(n) and err−(n) respectively.

Theorem 2.7.3. Let σ̃ ≡ max(σ,B), and let f̂ be the minimizer of the restricted

regression with λ ≤ 768sσ̃
√

1
n

log2 np. Suppose n ≥ c1s
√
sB. Then with probability

at least 1− C
n

,

‖f0 − f̂‖2P − ‖f0 − f ∗‖2P ≤ cB2σ̃

√
s5

n4/5
log2Cnp, (2.7.6)

where c1 is an absolute constant and c, C are constants possibly dependent on b.

Proof. Our proof proceeds in three steps. First, we bound the difference of empirical
risks ‖f0 − f̂‖2n − ‖f0 − f ∗‖2n. Second, we bound the cross-term in the bound using
a bracketing entropy argument for convex function classes. Finally, we combine the
previous two steps to complete the argument.

Step 1. The function f̂ minimizes the penalized empirical risk by definition.
We would thus like to say that the penalized empirical risk of f̂ is no larger than
that of f ∗. We cannot do a direct comparison, however, because the empirical mean
1
n

∑
i f
∗
k (xik) is close to, but not exactly zero. We thus have to work first with the

function f ∗ − f̄ ∗. We have that

‖y − f̂‖2n + λ
s∑

k=1

‖f̂k‖∞ ≤ ‖y − f ∗ + f̄ ∗‖2n + λ
s∑

k=1

‖f ∗k − f̄ ∗k‖∞
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Plugging in y = f0 + w, we obtain

‖f0 + w − f̂‖2n + λ
s∑

k=1

Å
‖f̂k‖∞ − ‖f ∗k − f̄ ∗k‖∞

ã
≤ ‖f0 + w − f ∗ + f̄ ∗‖2n

‖f0 − f̂‖2n + 2〈w, f0 − f̂〉n + λ
s∑

k=1

Å
‖f̂k‖∞ − ‖f ∗k − f̄ ∗k‖∞

ã
≤ ‖f0 − f ∗ + f̄ ∗‖2n + 2〈w, f0 − f ∗ + f̄ ∗〉

‖f0 − f̂‖2n − ‖f0 − f ∗ + f̄ ∗‖2n + λ
s∑

k=1

Å
‖f̂k‖∞ − ‖f ∗k − f̄ ∗k‖∞

ã
≤ 2〈w, f̂ − f ∗ + f̄ ∗〉.

The middle term can be bounded since ‖f ∗k − f̄ ∗k‖∞ ≤ B; thus,

‖f0 − f̂‖2n − ‖f0 − f ∗ + f̄ ∗‖2n ≤ 2〈w, f̂ − f ∗ + f̄ ∗〉+ λsB.

Using Lemma 2.7.2, we can remove f̄ ∗ from the lefthand side. Thus with probability
at least 1− δ,

‖f0 − f̂‖2n − ‖f0 − f ∗‖2n ≤ 2〈w, f̂ − f ∗ + f̄ ∗〉+ λsB + c(sB)2
1

n
log

2

δ
. (2.7.7)

Step 2. We now upper bound the cross term 2〈w, f̂ − f ∗ + f̄ ∗〉 using bracketing
entropy.

Define G = {f−f ∗+f̄ ∗ : f ∈ CsB} as the set of convex additive functions centered
around the function f ∗− f̄ ∗. By Corollary 2.7.3, there is an ε-bracketing of G whose

log-size is bounded by logN[](ε,G, L1(P )) ≤ sK∗∗
Ä
4sBcu
ε

ä1/2
, for all ε ∈ (0, sBε3cu].

Let us suppose condition 2.7.12 holds. Then, by Corollary 2.7.4, with probability at
least 1−δ, each bracketing pair (hU , hL) is close in L1(Pn) norm, i.e., for all (hU , hL),

1
n

∑n
i=1 |hU(Xi) − hL(Xi)| ≤ ε + 2sB

…
sK∗∗(sBcu)1/2 log

2
δ

ε1/2n
. We verify at the end of the

proof that condition 2.7.12 indeed holds.
For each h ∈ G, there exists a pair (hU , hL) such that hU(Xi)−hL(Xi) ≥ h(Xi)−

hL(Xi) ≥ 0. Therefore, with probability at least 1− δ, uniformly for all h ∈ G:

1

n

n∑
i=1

|h(Xi)− hL(Xi)| ≤
1

n

n∑
i=1

|hU(Xi)− hL(Xi)| ≤ ε+ (2sB)

√
sK∗∗(sBcu)1/2 log 2

δ

ε1/2n
.

We denote εn,δ ≡ (2sB)

…
sK∗∗(sBcu)1/2 log

2
δ

ε1/2n
. Let E[ ] denote the event that for each

h ∈ G, there exists hL in the ε-bracketing such that ‖h− hL‖L1(Pn) ≤ ε+ εn,δ. Then
E[ ] has probability at most 1− δ as shown.
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Let E‖w‖∞ denote the event that ‖w‖∞ ≤ σ
»

2 log 2n
δ

. Then E‖w‖∞ has probability
at most 1 − δ. We now take an union bound over E‖w‖∞ and E[ ] and get that, with
probability at most 1− 2δ, for all h

|〈w, h− hL〉n| ≤ ‖w‖∞
1

n

n∑
i=1

|h(Xi)− hL(Xi)| ≤ σ

 
2 log

4n

δ
(ε+ εn,2δ) .

Because w is a sub-Gaussian random variable, we have that the random variables
wihL(Xi) are independent, centered, and sub-Gaussian with scale at most 2σsB.
Thus, with probability at least 1−δ, |〈w, hL〉n| ≤ 2σsB

»
1
n

log 2
δ
. Using another union

bound, we have that the event suphL |〈w, hL〉| ≤ 2σsB
√

1
n

log
2N[]

δ
has probability at

most 1− δ.
Putting this together, we have that

|〈w, h〉n| ≤ |〈w, hL〉n|+ |〈w, h− hL〉n|

| sup
h∈G
〈w, h〉n| ≤ | sup

hL

〈w, hL〉n|+ σ

 
2 log

2n

δ
(ε+ εn,2δ)

≤ 2sBσ

√
logN[] + log 2

δ

n
+ σ

 
2 log

2n

δ
(ε+ εn,δ)

≤ 2sBσ

√
sK∗∗(4sBcu)1/2 + log 1

δ

nε1/2
+ σ

 
2 log

2n

δ
(ε+ εn,δ)

≤ 2sBσ

√
sK∗∗(4sBcu)1/2 + log 1

δ

nε1/2
+ σ

 
2 log

2n

δ
ε+ 2sBσ

√
2
sK∗∗(sBcu)1/2 log 1

δ

nε1/2
log

2n

δ

≤ σ

 
2 log

2n

δ
ε+ 8sBσ

√
sK∗∗(sBcu)1/2 log2 2n

δ

nε1/2
.

On the last line, we have assumed that conditions 2.7.12 hold so that sK∗∗(sBcu)1/2

ε1/2
+

log 1/δ ≤ sK∗∗(sBcu)1/2

ε1/2
log 1/δ.

We choose ε =
(
(sB)2(sK∗∗(sBcu)1/2)

n

)2/5
. This choice of ε is a bit suboptimal but it is

convenient and it is sufficient for our results. It is easy to verify that if n ≥ c1s
√
sB

for some absolute constant c1, then ε ∈ (0, sBε3cu] for some absolute constant ε3
as required by the bracketing number statement (Corollary 2.7.3). Furthermore,
conditions (2.7.12) also hold.

In summary, we have that probability at least 1− δ,

| sup
h∈G
〈w, h〉| ≤ csBσ

√
s6/5(Bcu)2/5 log2 Cn

δ

n4/5
≤ csBσ

√
s(sBcu)1/2 log2 Cn

δ

n4/5
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where we absorbed K∗∗ into the constant c and the union bound multipliers into the
constant C.

Plugging this result into equation (2.7.7) we get that, with probability at least
1− 2δ,

‖f0 − f̂‖2n − ‖f0 − f ∗‖2n ≤ csBσ

√
s(sBcu)1/2 log2 Cn

δ

n4/5
+ λsB + c(sB)2

1

n
log

2

δ

‖f0 − f̂‖2n − ‖f0 − f ∗‖2n ≤ cB2σ

Ã
s4c

1/2
u log2 Cn

δ

n4/5
+ λsB

≤ cB2σ

Ã
s4c

1/2
u

n4/5
log2 Cn

δ
+ λsB (2.7.8)

Step 3. Continuing from equation (2.7.8), we use Lemma 2.7.1 and another
union bound to obtain that, with probability at least 1− 3δ,

‖f0 − f̂‖2P − ‖f0 − f ∗‖2P ≤ cB2σ

Ã
s4c

1/2
u

n4/5
log2 Cn

δ
+ λsB + cB3

Ã
s5c

1/2
u

n4/5
log

2

δ

≤ cB2σ̃

Ã
s5c

1/2
u

n4/5
log2 Cn

δ
+ λsB

Substituting in λ ≤ 768sσ̃
√

1
n

log2 np and δ = C
n

we obtain the statement of the
theorem.

Theorem 2.7.4. Let ĝk denote the minimizer of the concave postprocessing step

with λn ≤ 768sσ̃
√

1
n

log2 np. Let σ̃ ≡ max(σ,B). Suppose n is sufficiently large that
n4/5

log2 np
≥ c′B4σ̃2s5c1/2u where c′ ≥ 1 is a constant. Then with probability at least 1− C

n
,

for all k = 1, ..., s,

‖f0 − f ∗ − ĝk‖2P − ‖f0 − f ∗ − g∗k‖2P ≤ cB2σ̃1/2 4

Ã
s5c

1/2
u

n4/5
log2 np.

Proof. This proof is similar to that of Theorem 2.7.3; it requires a few more steps
because ĝk is fitted against f0 − f̂ instead of f0 − f ∗. We start with the following
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decomposition:

‖f0 − f ∗ − ĝk‖2P − ‖f0 − f ∗ − g∗k‖2P = ‖f0 − f̂ − ĝk‖2P − ‖f0 − f̂ − g∗k‖2P︸ ︷︷ ︸
term 1

+

‖f0 − f ∗ − ĝk‖2P − ‖f0 − f̂ − ĝk‖2P︸ ︷︷ ︸
term 2

+

‖f0 − f̂ − g∗k‖2P − ‖f0 − f ∗ − g∗k‖2P︸ ︷︷ ︸
term 3

. (2.7.9)

We now bound each of the terms. The proof proceeds almost identically to that
of Theorem 2.7.3, because convex and concave functions have the same bracketing
number.

Step 1. To bound term 1, we start from the definition of ĝk and obtain

‖y − f̂ − ĝk‖2n + λn‖ĝ‖∞ ≤ ‖y − f̂ − (g∗k − ḡ∗k)‖2n + λn‖(g∗ − ḡ∗k)‖∞
‖y − f̂ − ĝk‖2n ≤ ‖y − f̂ − (g∗k − ḡ∗k)‖2n + λnB

‖f0 − f̂ − ĝk + w‖2n ≤ ‖f0 − f̂ − (g∗k − ḡ∗k) + w‖2n + λnB

‖f0 − f̂ − ĝk‖2n − ‖f0 − f̂ − (g∗k − ḡ∗k)‖2n ≤ 2〈w, ĝk − (g∗k − ḡ∗k)〉n + λnB.

ḡ∗k = 1
n

∑n
i=1 g

∗
k(Xik); we subtract it from g∗k again so that g∗k is empirically mean-zero.

Using the same bracketing analysis as in Step 2 of the proof of Theorem 2.7.3
but setting s = 1, we have, with probability at least 1− δ,

‖f0 − f̂ − ĝk‖2n − ‖f0 − f̂ − g∗k‖2n ≤ cB2σ

Ã
c
1/2
u

n4/5
log

nC

δ
+ λnB.

The condition n ≥ c1s
√
sB in the proof of Theorem 2.7.3 is satisfied here because

we assume that n4/5 ≥ c1B
4σ̃2s5 log2 np in the statement of the theorem. Using the

uniform convergence result of Lemma 2.7.1, with probability at least 1− δ,

‖f0 − f̂ − ĝk‖2P − ‖f0 − f̂ − g∗k‖2P ≤ cB2σ

 
1

n
log

Cn

δ
+ λnB + cB3

Ã
c
1/2
u

n4/5
log

2

δ

≤ cB2σ̃

Ã
c
1/2
u

n4/5
log

C

δ
+ λnB
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Finally, plugging in λn ≤ 768sσ̃
√

1
n

log2 np, we obtain

‖f0 − f̂ − ĝk‖2P − ‖f0 − f̂ − g∗k‖2P ≤ cB2σ̃

Ã
c
1/2
u

n4/5
log

C

δ
+ csBσ̃

 
1

n
log2 np

‖f0 − f̂ − ĝk‖2P − ‖f0 − f̂ − g∗k‖2P ≤ cB2σ̃

Ã
s2c

1/2
u

n4/5
log2 Cnp

δ

with probability at least 1− δ.
Step 2. We now bound term 3.

‖f0 − f̂ − g∗k‖2P − ‖f0 − f ∗ − g∗k‖2P ≤ ‖f0 − f̂‖2P − ‖f0 − f ∗‖2P − 2〈f0 − f̂ , g∗k〉P + 2〈f0 − f ∗, g∗k〉P

≤ cB2σ̃

Ã
s5c

1/2
u

n4/5
log2 np+ 2|〈f̂ − f ∗, g∗k〉P |

≤ cB2σ̃

Ã
s5c

1/2
u

n4/5
log2 np+ 2‖f̂ − f ∗‖P‖g∗k‖P

≤ cB2σ̃

Ã
s5c

1/2
u

n4/5
log2 np+ cB

Õ
B2σ̃

Ã
s5c

1/2
u

n4/5
log2 np

≤ cB2σ̃1/2 4

Ã
s5c

1/2
u

n4/5
log2 np

with probability at least 1 − C
n

, by Theorem 2.7.3. To obtain the fourth inequality,

we used the fact that ‖f̂−f ∗‖2P ≤ ‖f0− f̂‖2P−‖f0−f ∗‖2P , which follows from the fact
that f ∗ is the projection of f0 onto the set of additive convex functions and the set
of additive convex functions is convex itself. The last inequality holds because the

conditions of the theorem stipulate n is large enough such that B2σ̃

…
s5c

1/2
u

n4/5 log2 np ≤
1. The same derivation and the same bound likewise holds for term 2.

Step 3. Collecting the results and plugging them into equation (2.7.9), we have,
with probability at least 1− 2δ:

‖f0 − f ∗ − ĝk‖2P − ‖f0 − f ∗ − g∗k‖2P ≤ cB2σ̃1/2 4

Ã
s5c

1/2
u

n4/5
log2 4np

δ

Taking a union bound across the s dimensions completes the result.
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Support Lemmas

Lemma 2.7.1. Let P be a distribution with a density p(x) which is upper bounded by
cu ≥ 1. Suppose n ≥ c1s

√
sB for some absolute constant c1. Let δ be small enough

such that log 2
δ
≥ 2. Then, with probability at least 1− δ:

sup
f∈CsB

∣∣∣∣‖f0 − f‖2n − ‖f0 − f‖2P ∣∣∣∣ ≤ cB3

Ã
s5c

1/2
u

n4/5
log

2

δ

where c1, c are some absolute constants.

Proof. Let G denote the off-centered set of convex functions, that is, G ≡ CsB − f0.
Note that if h ∈ G, then ‖h‖∞ = ‖f0 − f‖∞ ≤ 2sB. There exists an ε-bracketing of
G, and by Corollary 2.7.3, the bracketing has log-size at most logN[](ε, CsB, L1(P )) ≤
sK∗∗

Ä
4sBcu
ε

ä1/2
for all ε < ε3sBcu, for some constant ε3.

For a particular function h ∈ G, there exist an ε-bracket hU , hL. We construct
ψL ≡ min(|hU |, |hL|) and ψU ≡ max(|hU |, |hL|) so that

ψ2
L ≤ h2 ≤ ψ2

U .

If x is such that h2U(x) ≥ h2L(x), then ψ2
U(x) − ψ2

L(x) = h2U(x) − h2L(x). If x is
such that h2U(x) ≤ h2L(x), then ψ2

U(x)−ψ2
L(x) = h2L(x)− h2U(x). We can then bound

the L1(P ) norm of ψ2
U − ψ2

L as∫
(ψ2

U(x)− ψ2
L(x))p(x)dx =

∫
|h2U(x)− h2L(x)|p(x)dx

≤
∫
|hU(x)− hL(x)| |hU(x) + hL(x)|p(x)dx

≤ 4sBε

Now we can bound ‖h‖2n − ‖h‖2P as

1

n

n∑
i=1

ψL(Xi)
2 − EψU(X)2 ≤ ‖h‖2n − ‖h‖2P ≤

1

n

n∑
i=1

ψU(Xi)
2 − EψL(X)2 (2.7.10)

Since ψL(Xi)
2 and ψU(Xi)

2 are bounded random variables with upper bound (2sB)2,
Hoeffding’s inequality and union bound give that, with probability at least 1 − δ,,
for all ψL (and likewise ψU)∣∣∣∣∣ 1n

n∑
i=1

ψL(Xi)
2 − EψL(X)2

∣∣∣∣∣ ≤ (2sB)2

√
sK∗∗(4sBcu)1/2

ε1/22n
+

log 2
δ

2n
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To simplify the expression, we will suppose that sK∗∗(4sBcu)1/2

ε1/2
≥ 2 and that log 2

δ
≥ 2.

The second supposition holds by assumption in the theorem. Once we calculate
the proper values of ε, we will verify that these first supposition holds under the
assumption of the theorem also. Under these two suppositions, we have

∣∣∣∣∣ 1n
n∑
i=1

ψL(Xi)
2 − EψL(X)2

∣∣∣∣∣ ≤ (2sB)2

√
sK∗∗(sBcu)1/2 log 2

δ

ε1/2n
(2.7.11)

Plugging this into equation (2.7.10) above, we have that:

EψL(X)2 − EψU(X)2 − (2sB)2

√
sK∗∗(sBcu)1/2 log 2

δ

ε1/2n

≤ ‖h‖2n − ‖h‖2P ≤ EψU(X)2 − EψL(X)2 + (2sB)2

√
sK∗∗(sBcu)1/2 log 2

δ

ε1/2n
.

Using our bound on the L1(P ) norm of ψ2
U − ψ2

L, we have

−4sBε− (2sB)2

√
sK∗∗(sBcu)1/2 log 2

δ

ε1/2n
≤ ‖h‖2n − ‖h‖2P ≤ 4sBε+ (2sB)2

√
sK∗∗(sBcu)1/2 log 2

δ

ε1/2n

We choose ε =
(
(sB)2sK∗∗(sBcu)1/2

n

)2/5
. This choice of ε is a bit suboptimal but it

is convenient and it is sufficient for our result.
One can easily verify that ε ≤ sBε3cu when n ≥ c1s

√
sB for some absolute

constant c1, thus, the ε-bracketing number we used is valid.
One can also verify that the condition above equation 2.7.11 is satisfied.
We have then that, with probability at least 1− δ,

sup
h∈G

∣∣∣‖h‖2n − ‖h‖2P ∣∣∣ ≤ cB3

Ã
s5c

1/2
u log 2

δ

n4/5

The theorem follows immediately.

Lemma 2.7.2. Let f0 and f ∗ be defined as in Section 2.7. Define f̄ ∗ = 1
n

∑n
i=1 f

∗(Xi).
Then, with probability at least 1− 2δ,∣∣∣∣‖f0 − f ∗‖2n − ‖f0 − f ∗ + f̄ ∗‖2n

∣∣∣∣ ≤ c(sB)2
1

n
log

4

δ
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Proof. We decompose the empirical norm as

‖f0 − f ∗ + f̄ ∗‖2n = ‖f0 − f ∗‖2n + 2〈f0 − f ∗, f̄ ∗〉+ f̄ ∗2

= ‖f0 − f ∗‖2n + 2f̄ ∗〈f0 − f ∗,1〉n + f̄ ∗2

= ‖f0 − f ∗‖2n + 2f̄ ∗f̄0 − f̄ ∗2.

Now f̄ ∗ = 1
n

∑n
i=1 f

∗(Xi) is the average of n bounded mean-zero random variables and

therefore, with probability at least 1 − δ, |f̄ ∗| ≤ 4sB
»

1
n

log 2
δ
. The same reasoning

likewise applies to f̄0 = 1
n

∑n
i=1 f0(Xi).

We take a union bound and get that, with probability at least 1− 2δ,

|f̄ ∗||f̄0| ≤ c(sB)2
1

n
log

2

δ

f̄ ∗2 ≤ c(sB)2
1

n
log

2

δ

Therefore, with probability at least 1− 2δ,

‖f0 − f ∗‖2n − c(sB)2
1

n
log

2

δ
≤ ‖f0 − f ∗ + f̄ ∗‖2n ≤ ‖f0 − f ∗‖2n + c(sB)2

1

n
log

2

δ

Supporting Technical Material

Detail for Proof of Theorem 2.3.1

Let p(x−k |xk), f(x), r(x−k) be defined as in the proof of Theorem 2.3.1.
We claim that

∂xk

∫
x−k

p(x−k |xk) (f(x)− r(x−k)) dx−k =
∫
x−k

∂xk

Å
p(x−k |xk) (f(x)− r(x−k))

ã
dx−k

And likewise for the second derivative.

The first derivative of the integrand is

p′(x−k |xk) (f(x)− r(x−k)) + p(x−k |xk)f ′(xk,x−k).

f(x) is continuous and bounded and p′(x−k |xk) is bounded for all x−k and all
xk ∈ [0, ε)∪ (1− ε, 1] by boundary flatness. Thus, p′(x−k |xk)f(x) is bounded for all
x−k and all xk ∈ [0, ε) ∪ (1− ε, 1].
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r(x−k)p(x) is integrable, and since infx p(x) > 0, r(x−k) is integrable. Since
p′(x−k |xk) is bounded, r(x−k)p

′(x−k |xk) ≤ |r(x−k)|M for some constant M for all
x−k and xk ∈ [0, ε) ∪ (1− ε, 1].

f ′(xk,x−k) is continuous and thus bounded, therefore, p(x−k |xk)f ′(xk,x−k) is
bounded for all x−k and xk ∈ [0, ε) ∪ (1− ε, 1].

This verifies that, for all x−k and for all xk ∈ [0, ε)∪ (1− ε, 1], the first derivative
is less than M |r(x−k)|+C, which is integrable. By dominated convergence theorem,
we can thus exchange the derivative with the integral.

The second derivative of the integrand is

p′′(x−k |xk) (f(x)− r(x−k)) + 2p′(x−k |xk)f ′(xk,x−k) + p(x−k |xk)f ′′(xk,x−k)

We just need to remember that p′′(x−k |xk) is bounded for all x−k and xk ∈
[0, ε) ∪ (1 − ε, 1] by boundary flatness, that f ′′(xk,x−k) is bounded, and the same
argument applies.

Uniqueness of the Additive Components

Lemma 2.7.3. Let p(x) be a positive density over [0, 1]p. Let f(x) =
∑p
j=1 fj(xj)

and h(x) =
∑d
j=1 hj(xj) be two additive functions such that E(f(X) − h(X))2 =

0. Suppose also that Efj(Xj) = 0,Ehj(Xj) = 0 for all j. Then, it must be that
E(fj(Xj)− hj(Xj))

2 = 0 for all j.

Proof. Let φ(x) = f(x)− g(x) and it is clear that φ(x) =
∑d
j=1 φj(xj) with φj(xj) =

fj(xj)− hj(xj) and Eφj(Xj) = 0. It is also immediate that Eφ(X)2 = 0.

Let P be the probability measure induced by the density p(x), so that P (A) =∫
A p(x)dλ where λ is the Lebesgue measure. Since p > 0, λ(A) > 0 implies that
P (A) > 0 as well.

For sake of contradiction, let us assume that for some j, Eφj(Xj)
2 > 0. Then,

P (Aj) > 0 where Aj = {x ∈ [0, 1]p : φj(xj) > 0}. To see this, suppose that φj ≤ 0
almost surely. Then, Eφj = 0 implies that φj = 0 almost surely, contradicting the
assumption that Eφj(Xj)

2 > 0.

For j′ 6= j, define Bj′ = {x ∈ [0, 1]p : φj′(xj′) ≥ 0}. P (Bj′) > 0 because, if not,
then φj′ < 0 almost surely and that contradicts the Eφj′(Xj′) = 0 assumption.
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Since the probability measure P is absolutely continuous with respect to the
Lebesgue measure on [0, 1]p, λ(Aj) > 0. Let λ1 be the one dimensional Lebesgue
measure on [0, 1] and let A1

j = {xj ∈ [0, 1] : φj(xj) > 0}. From the fact that
λ(Aj) > 0, and that Aj = A1

j × [0, 1]p−1, λ1(A
1
j) > 0. Same reasoning show that

λ1(B
1
j′) > 0 where B1

j′ is similarly defined.

Aj ∩ (
⋂
j′ Bj′) = A1

j ×
∏
j′ B

1
j′ . Therefore, λ(Aj ∩ (

⋂
j′ Bj′)) = λ1(A

1
j)
∏
j′ λ1(Bj′) >

0. Since the density of P is positive, P (Aj ∩ (
⋂
j′ Bj′)) > 0 and since φ > 0 on this

event, we conclude that Eφ(X)2 > 0, thus giving us the desired contradiction.

Concentration of Measure

A sub-exponential random variable is the square of a sub-Gaussian random variable
Vershynin (2010).

Proposition 2.7.1. (Subexponential Concentration Vershynin (2010)) Let X1, ..., Xn

be zero-mean independent subexponential random variables with subexponential scale
K. Then

P (| 1
n

n∑
i=1

Xi| ≥ ε) ≤ 2 exp

ñ
−cnmin

Ç
ε2

K2
,
ε

K

åô
where c > 0 is an absolute constant.

For uncentered subexponential random variables, we can use the following fact.
If Xi subexponential with scale K, then Xi−E[Xi] is also subexponential with scale
at most 2K. Restating, we can set

cmin

Ç
ε2

K2
,
ε

K

å
=

1

n
log

1

δ
.

Thus, with probability at least 1− δ, the deviation is at most

K max

( 
1

cn
log

C

δ
,

1

cn
log

C

δ

)
.

Corollary 2.7.1. Let W1, ...,Wn be n independent sub-Gaussian random variables
with sub-Gaussian scale σ. Then, for all n > n0, with probability at least 1− 1

n
,

1

n

n∑
i=1

W 2
i ≤ cσ2.
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Proof. Using the subexponential concentration inequality, we know that, with prob-
ability at least 1− 1

n
,∣∣∣∣∣ 1n

n∑
i=1

W 2
i − EW 2

∣∣∣∣∣ ≤ σ2 max

( 
1

cn
log

C

δ
,

1

cn
log

C

δ

)
.

First, let δ = 1
n
. Suppose n is large enough such that 1

cn
logCn < 1. Then, we

have, with probability at least 1− 1
n
,

1

n

n∑
i=1

W 2
i ≤ cσ2

Å
1 +

 
1

cn
logCn

ã
≤ 2cσ2.

Sampling Without Replacement

Lemma 2.7.4. (Serfling (1974)) Let x1, ..., xN be a finite list, x̄ = µ. Let X1, ..., Xn

be sampled from x without replacement.
Let b = maxi xi and a = mini xi. Let rn = 1 − n−1

N
. Let Sn =

∑
iXi. Then we

have that

P(Sn − nµ ≥ nε) ≤ exp

Ç
−2nε2

1

rn(b− a)2

å
.

Corollary 2.7.2. Suppose µ = 0.

P
Ç

1

N
Sn ≥ ε

å
≤ exp

Ç
−2Nε2

1

(b− a)2

å
And, by union bound, we have that

P
Ç
| 1
N
Sn| ≥ ε

å
≤ 2 exp

Ç
−2Nε2

1

(b− a)2

å
A simple restatement is that with probability at least 1− δ, the deviation | 1

N
Sn|

is at most (b− a)
»

1
2N

log 2
δ
.

Proof.

P
Ç

1

N
Sn ≥ ε

å
= P

Ç
Sn ≥

N

n
nε

å
≤ exp

Ç
−2n

N2

n2
ε2

1

rn(b− a)2

å
.
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We note that rn ≤ 1 always, and n ≤ N always. Thus,

exp

Ç
−2n

N2

n2
ε2

1

rn(b− a)2

å
≤ exp

Ç
−2Nε2

1

(b− a)2

å
completing the proof.

Bracketing Numbers for Convex Functions

Definition 2.7.1. Let C be a set of functions. For a given ε and metric ρ (which
we take to be L2 or L2(P )), we define an ε-bracketing of C to be a set of pairs of
functions {(fL, fU)} satisfying (1) ρ(fL, fU) ≤ ε and (2) for any f ∈ C, there exist a
pair (fL, fU) where fU ≥ f ≥ fL.

We let N[](ε,C, ρ) denote the size of the smallest bracketing of C

Proposition 2.7.2. (Proposition 16 in Kim and Samworth (2014)) Let C be the set
of convex functions supported on [−1, 1]d and uniformly bounded by B. Then there
exist constants ε3 and K∗∗, dependent on d, such that

logN[](ε, C, L2) ≤ K∗∗
Ç

4B

ε

åd/2
for all ε ∈ (0, Bε3].

It is easy to extend Kim and Samworth’s result to the L1(P ) norm for a distri-
bution P with a bounded density p(x).

Proposition 2.7.3. Let P be a distribution with a density p(x) and suppose p(x) ≤
cu for some constant cu > 0. Let C, B, ε3, K∗∗ be defined as in Proposition 2.7.2.
Then,

logN[](ε, C, L1(P )) ≤ K∗∗
Ç

4Bcu
ε

åd/2
for all ε ∈ (0, Bε3cu].

Proof. Let Cε/cu be an ε/cu-bracketing with respect to the L2 norm. Because ε ∈
(0, Bε3cu], it is clear that ε/cu ∈ (0, Bε]. Then, the log-size of Cε/cu is at most

K∗∗
Ä
4Bcu
ε

äd/2
by Proposition 2.7.3.
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Let (fL, fU) ∈ Cε/cu . Then we have that:

‖fL − fU‖L1(P ) =
∫
|fL(x)− fU(x)|p(x)dx

≤
Å∫
|fL(x)− fU(x)|2dx

ã1/2 Å∫
p(x)2dx

ã1/2
≤
Å∫
|fL(x)− fU(x)|2dx

ã1/2
cu

≤ ‖fL − fU‖L2cu ≤ ε

On the third line, we used the fact that (
∫
p(x)2dx)

2 ≤ cu.

It is also simple to extend the bracketing number result to additive convex func-
tions. As before, let CsB be the set of additive convex functions with s components,
each component of which is bounded by B.

Corollary 2.7.3. Let P be a distribution with a density p(x) and suppose p(x) ≤ cu.
Let B, ε3, K

∗∗ be defined as in Proposition 2.7.2. Then,

logN[](ε, CsB, L1(P )) ≤ sK∗∗
Ç

4sBcu
ε

å1/2

for all ε ∈ (0, sBε3cu].

Proof. Let f ∈ Cs. We can construct an ε-bracketing for f through ε/s-bracketings
(with respect to the L1(P ) norm) for each of the components {fk}k=1,...,s:

fU =
s∑

k=1

fUk fL =
s∑

k=1

fLk

It is clear that fU ≥ f ≥ fL. It is also clear that ‖fU − fL‖L1(P ) ≤
∑s
k=1 ‖fUk −

fLk‖L1(P ) ≤ ε.

The following result follows from Corollary 2.7.3 directly by a union bound.

Corollary 2.7.4. Let X1, ..., Xn be random samples from a distribution P and sup-
pose P has a density p(x) bounded by cu. Let 1 > δ > 0. Let Csε be an ε-bracketing
of CsB with respect to the L1(P )-norm whose size is at most N[](ε, Cs, L1(P )). Let
ε ∈ (0, sBε3cu].

Then, with probability at least 1− δ, for all pairs (fL, fU) ∈ Csε , we have that

1

n

n∑
i=1

|fL(Xi)− fU(Xi)| ≤ ε+ εn,δ
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where

εn,δ ≡ 2sB

√
logN[](ε, Cs, L1(P )) + log 2

δ

2n
= 2sB

√
sK∗∗(4sBcu)1/2

ε1/22n
+

1

2n
log

2

δ
.

Proof. Noting that |fL(Xi) − fU(Xi)| is at most 2sB and that there are at most
N[](ε, Cs, L1(P )) pairs (fL, fU), the inequality follows from a direct application of a
union bound and Hoeffding’s Inequality.

To make the expression in this corollary easier to work with, we derive an upper
bound for εn,δ. Suppose

sK∗∗(4sBcu)
1/2

ε1/2
≥ 2 and log

2

δ
≥ 2. (2.7.12)

Then we have that

εn,δ ≤ 2sB

√
sK∗∗(4sBcu)1/2 log 2

δ

2ε1/2n
= 2sB

√
sK∗∗(sBcu)1/2 log 2

δ

ε1/2n

2.8 Gaussian Example

Let H be a positive definite matrix and let f(x1, x2) = H11x
2
1 +2H12x1x2 +H22x

2
2 + c

be a quadratic form where c is a constant such that E[f(X)] = 0. Let X ∼ N(0,Σ)
be a random bivariate Gaussian vector with covariance Σ = [1, α;α, 1]

Proposition 2.8.1. Let f ∗1 (x1) + f ∗2 (x2) be the additive projection of f under the
bivariate Gaussian distribution. That is,

f ∗1 , f
∗
2 ≡ argmin

f1,f2

ß
E (f(X)− f1(X1)− f2(X2))

2 : E[f1(X1)] = E[f2(X2)] = 0
™

Then, we have that

f ∗1 (x1) =

Ç
T1 − T2α2

1− α4

å
x21 + c1

f ∗2 (x2) =

Ç
T2 − T1α2

1− α4

å
x22 + c2

where T1 = H11 + 2H12α + H22α
2 and T2 = H22 + 2H12α + H11α

2 and c1, c2 are
constants such that E[f ∗1 (X1)] = E[f ∗2 (X2)] = 0.
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Proof. By Lemma 2.3.1, we need only verify that f ∗1 , f
∗
2 satisfy

f ∗1 (x1) = E[f(X)− f ∗2 (X2) |x1]
f ∗2 (x2) = E[f(X)− f ∗1 (X1) |x2].

Let us guess that f ∗1 , f
∗
2 are quadratic forms f ∗1 (x1) = a1x

2
1 + c1, f

∗
2 (x2) = a2x

2
2 + c2

and verify that there exist a1, a2 to satisfy the above equations. Since we are not
interested in constants, we define ' to be equality up to a constant. Then,

E[f(X)− f ∗2 (X2) |x1]
' E[H11X

2
1 + 2H12X1X2 +H22X

2
2 − a2X2

2 |x1]
' H11x

2
1 + 2H12x1E[X2 |x1] +H22E[X2

2 |x1]− a2E[X2
2 |x1]

' H11x
2
1 + 2H12αx

2
1 +H22α

2x21 − a2α2x21
' (H11 + 2H12α +H22α

2 − a2α2)x21.

Likewise, we have that

E[f(X)− f 2
1 (X1) |x2] ' (H22 + 2H12α +H22α

2 − a1α2)x22.

Thus, a1, a2 need only satisfy the linear system

T1 − a2α2 = a1

T2 − a1α2 = a2

where T1 = H11 + 2H12α +H22α
2 and T2 = H22 + 2H12α +H11α

2. It is then simple
to solve the system and verify that a1, a2 are as specified.



chapter 3

HIGH DIMENSIONAL CONCAVE UTILITY ESTIMATION

3.1 Introduction

Many human behaviors can be modeled as a consumer selecting one item to purchase
from among a set of alternatives. Examples include buying a product on Amazon,
choosing the bus or car for commuting Ortuzar and Willumsen (1994), deciding where
to buy a house Nechyba and Strauss (1998), and even choosing where to commit a
crime Bernasco and Block (2009). The discrete choice model (DCM) originated
in econometrics McFadden (1973) as a general method to model such finite choice
problems. The DCM measures the attractiveness of item i to consumer n by a utility
function f(xi, sn) where xi, sn are feature vectors of the item and the consumer,
respectively. The consumer is more likely to pick item i over the alternatives if
the utility f(xi, sn) is higher. The utility function in the DCM is estimated from a
dataset of purchases; each purchase consists of a consumer, a set of items, and the
consumer’s choice from that set. The AI and machine learning communities have in
recent years rediscovered the DCM as a form of preference learning Fürnkranz and
Hüllermeier (2010); Chu and Ghahramani (2005).

Because it has become easier to extract and store information digitally, the num-
ber of features in a modern dataset is often large, possibly larger than the number
of samples. Variable selection becomes important, where an estimation technique
must select and use only a small set of relevant variables to avoid the well known
curse of dimensionality. Variable selection among the item features xi is especially
important in the DCM, as people tend to make decisions based on a few important
cues or factors Shah and Oppenheimer (2008). Good variable selection methods give
insight into how consumers make choices.

We assume that the utility function V (xi, sn) is decomposed as f(xi) +h(sn) and
focus on the estimation of f(xi). We suppose f(xi) obeys certain shape-constraints,
mainly concavity. We do not assume that f is additive, but we show that for the
purpose of screening out irrelevant variables, it is safe to approximate the possibly
non-additive f with an additive concave model, followed by a sequence of decoupled
convex models to catch non-concave residuals.

We prove that this procedure, in the population setting, is faithful in that it will
not erroneously mark a relevant variable as irrelevant. The assumptions we make

73
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on the underlying density are mild, and do not restrict correlations between the
variables. This is in contrast to linear models where, if the true function is non-
linear, one must make stronger covariance structure assumptions in order to provide
the same guarantee. While estimation of a low-dimensional concave utility function
for the DCM is studied by Matzkin using parametric distributional assumptions
Matzkin (1991), we are unaware of previous results on variable selection in the DCM
in the high dimensional nonparametric setting that we study in this paper.

The utility function is often assumed to be linear Nechyba and Strauss (1998);
McFadden et al. (1978) but a concavity assumption is less restrictive. In many
economics applications, the concavity assumption is popular and natural because
of the law of diminishing returns. For example, Nechyba and Strauss Nechyba and
Strauss (1998) represent the attractiveness of a community in the DCM with features
such as per-pupil school spending. The law of diminishing returns in this case states
that once a school spends enough per pupil, further spending will be less effective
and thus effect a smaller increase in a household’s utility.

Though our estimation method is a nonparametric generalization of the linear
model, it requires no additional tuning parameters, such as the smoothing band-
width that makes local polynomial methods difficult. Concavity (and other similar
shape-constraints) thus offers an attractive computational compromise between a
parametric and fully nonparametric model. We formulate a convex optimization in
the infinite dimensional constraint space of concave functions, which reduces to a
finite dimensional space of piecewise linear functions.

3.2 Discrete Choice Model

In discrete choice model, each consumer n chooses one item out of a set An of
alternatives based on the utility-maximization principle: each item i ∈ An has a
utility Uni and the consumer chooses item i if Uni ≥ Unj for all j ∈ An (ties broken
arbitrarily). The utility Uni is unobservable but is assumed to equal a function of
some observable features of the items and of the consumer plus noise

Uni = Vni + εni = V (xi, sn) + εni.

The vector xi denotes features of item i, sn denotes features of consumer n, and εni
denotes the noise term. The probability of consumer n choosing item i depends on
the assumptions on the distribution of the noise vector εn = (εn1, ..., εn|An|).

Pni = P(Uni > Unj,∀j 6= i) = P(Vni + εni > Vnj + εnj,∀j 6= i)
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For example, εn ∼iid Gaussian yields the probit model, ε ∼iid extreme value yields
the logit model. In this paper, we consider the logit model, also known as the
Bradley-Terry model. The probability consumer n chooses item i under the logit
model has the expression:

Pni =
exp(Vni)∑

j∈An exp(Vnj)
=

exp(V (xi, sn))∑
j∈An exp(V (xj, sn))

We follow the standard assumption that the representative utility function V (xi, sn)
is decomposed additively as f(xi) + h(sn) and focus on the estimation of f(xi), sim-
ilar to Chu and Ghahramani Chu and Ghahramani (2005). The results in this paper
hold regardless of how one chooses to model h(sn).

We assume that f(xi) is concave, which is strictly more general than the usual
linear assumption. Concavity is justified by the principle of diminishing returns
present in many economics applications. 1 We can then model the consumer choices
by

P(consumer n chooses i | An) =
exp(f(xi) + h(sn))∑

j∈An exp(f(xj) + h(sn))

The unknown f , α, h can be estimated from a dataset of purchases. We represent
each purchase by a vector yn = (yni)i∈An ; yni = 1 iff consumer n chooses item i. For
notational simplicity, we assume that each consumer makes exactly one purchase. It
is straightforward to extend the model to cases where each consumer makes multiple
purchases.

Given N purchases, the likelihood under the logit DCM is 1
N

∑N
i=1 `(yn |XAn , sn)

where

`(yn|XAn , sn) =
∑
i∈An

yni(f(xi) + h(sn))− log(
∑
i∈An

exp (f(xi) + h(sn))

3.3 Additive Faithfulness

Let d1 and d2 denote the number of features in xi and zi respectively. In the high-
dimensional setting where d1 and d2 are large, it is necessary to select a small subset
S1 ⊂ {1, .., d1} and S2 ⊂ {1, ..., d2} such that f(xi) ≈ f(xS1,i) where xS1,i is the
restriction of the vector xi to coordinates in S1.

1our results readily apply to the estimation of h(sn) in the cases where h can be assumed
concave.



CHAPTER 3. HIGH DIMENSIONAL CONCAVE UTILITY ESTIMATION 76

The lasso effectively tackles high-dimensional problems by adding an `1 penalty
on the linear coefficients to the likelihood maximization. The natural extension for
high-dimensional concave function estimation is to add to the likelihood a group `1
penalty on the subgradients of f :

minimize
f ,β,γ,h

−
N∑
n=1

`(yn|XAn , sn) + λ
d1∑
k=1

||βk.||∞

subject to fj ≤ fi + βTi (xj − xi), for all i, j

where fi is the estimated function value f(xi) and the vector βi ∈ Rd1 is the
subgradient at xi.

This convex optimization problem has O(Mp) variables and O(M2) constraints,
leading to a potentially cumbersome and computationally inefficient method. In
the following section, we will use additive functions to approximate f(·) and argue
that concave functions are additively faithful with respect to variable selection, un-
der very mild conditions. The resulting variable selection framework is much more
computationally efficient.

Additive Faithfulness of Concave Functions

The additive approximation to a multivariate function f is a sum of one-dimensional
functions fk such that

∑d
k=1 fk(xk) approximates f(x). In general, if the true model

is non-additive, an additive approximation may introduce false negatives and cause
potential misspecification problems. However, we show that concave functions have
an unique property: as long as the true function we approximate is concave and
monotone on the boundary, we can safely mark as irrelevant any variable that is
zeroed out by the optimization algorithm. In other words, it is faithful in terms of
variable selection under an additive approximation. Before giving our main result,
which makes this precise, we begin with a lemma that characterizes the components
of the optimal additive approximation.

For notational simplicity, we suppose that |An| = m for all n. We assume that
each purchase, which comprises

Ä
{xi}mi=1, sn

ä
, is iid drawn from some distribution F

with density p. For this section, we use k to index features, i, j to index items, and
n to index consumers.

Lemma 3.3.1. Let F be a distribution on [0, 1]md with a positive density p. Let
f : [0, 1]d → R be an integrable true function of the items. Define the following for
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any fixed h:

{f ∗k}dk=1 = arg min
{fk}

d1
k=1

E

− m∑
i=1

YiV (xi, sn) + log

Ñ
m∑
j=1

exp (V (xj, sn))

é (3.3.1)

where V (xi, sn) =
d1∑
k=1

fk(xki) + h(sn)

Yi |x, sn ∼ Bernoulli

(
exp(f(xi) + h(sn))∑m
j=1 exp(f(xj) + h(sn))

)
.

Then f ∗k satisfies

E

 exp(f ∗k (xki) + φ(x−k,i, sn))∑m
j=1 exp(f ∗k (xkj) + φ(x−k,j, sn))

− exp (f(xki,x−k,i) + h(sn))∑m
j=1 exp (f(xkj,x−k,j) + h(sn))

∣∣∣∣∣∣xki
 = 0,

(3.3.2)
where φ(x−k,i, sn) =

∑
k′ 6=k fk′(xk′i) + h(sn). Furthermore, this solution is unique.

This lemma follows from the fact that

E

− m∑
i=1

YiV (xi, sn) + log

Ñ
m∑
j=1

exp (V (xj, sn))

é =

∫
−

m∑
i=1

(
d∑

k=1

fk(xik)

)
exp(f(xi))∑m
i=1 exp(f(xi))

p({xi}mi=1)d{xi}mi=1

+
∫

log
m∑
i=1

exp

(
d∑

k=1

fk(xik)

)
p({xi}mi=1)d{xi}mi=1

and a standard KKT argument.
Lemma 3.3.1 states the intuitive fact that the first moment conditional on xki

under the true model must equal that of the optimally fitted f ∗k . We now give our
main result and the accompanying assumptions.

Definition 1. Let f : [0, 1]d → R be an integrable function, f is boundary monotone
if for all k and all x−k

∂xkf ≥ 0 or ∂xkf ≤ 0 at the boundary xk = 0 and xk = 1

Definition 2. Let p(x) be a density supported on [0, 1]md, p satisfies the boundary-
points condition, if

∂

∂xki
p(x−k,i, {xl}l 6=i |xj,i) = 0 at xji = 0 and xji = 1, for any x−j,i, {xl}l 6=i
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Theorem 3.3.1. (Additive Faithfulness) Let p be a positive mixed density supported
on [0, 1]md that satisfies the boundary-points property (definition 2). Suppose f is
concave, boundary-monotone (definition 1) and differentiable.

Fix arbitrary h, let {f ∗k}d1k=1 be the optimal additive components as defined in
equation 3.3.1. Then f ∗k = 0 implies that ∂xkf(x) = 0, that is, f does not depend on
feature k.

Theorem 3.3.1 is the main theoretical result of this paper. It states that even
if the true function f is not additive, the additive approximation yields no false
negatives. We defer the proof to section 3.6 of the appendix.

It is important to note that additive faithfulness does not rely on any restric-
tions of the correlation structure between the covariates. The only distributional
assumption we make is the mild boundary-point condition (definition 2). We allow
the density to behave arbitrarily in the interior of the support. In contrast, in linear
regression where β∗ = Σ−1E[Xf(X)], we would need to restrict the covariance to
make the same faithfulness guarantee.

The boundary monotone condition (definition 1) is reasonable in applications
where the concavity assumption is natural. With respect to some features, such as
the per-pupil school spending in Nechyba and Strauss Nechyba and Strauss (1998),
the utility function is monotone and thus boundary monotone as well. Boundary
monotone condition also holds for features of which people want more when there is
too little (one boundary point) and less when there is too much (the other bound-
ary point). For instance, people distrust extremely cheap items and refrain from
extremely expensive items.

Theorem 3.3.1 does not give a way to estimate whether f ∗k = 0. The next section
tackles this problem.

Concave Additive Model

Since the true function f is concave, it is natural to consider a concave additive
model. For notational simplicity, we omit h(sn) in this section.

{f̃ ∗k}dk=1 = arg min
f̃k∈−C1

E

− m∑
i=1

Yi

(
d∑

k=1

f̃k(xki)

)
+ log

m∑
j=1

exp

(
d∑

k=1

f̃k(xkj)

)
where we use C1,−C1 to denote the set of univariate convex and concave functions
respectively.
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Concave additive components f̃ ∗k are not additively faithful, but we can restore
faithfulness by coupling the f̃ ∗k ’s with a set of convex functions:

g∗k = arg min
gk∈C1

E

− m∑
i=1

Yi (gk(xki) + φ(x−k,i)) + log

Ñ
m∑
j=1

exp (gk(xkj) + φ(x−k,j))

é
where φ(x−k,i, zi) =

∑
k′ 6=k f̃

∗
k′(xk′i).

Theorem 3.3.2. Suppose p(x) is a mixed positive density on C, where C ⊂ Rmd is a
compact set and p(x) satisfies the boundary-points condition. Suppose that ∂xkif(xi),
∂2xkif(xi), ∂xkip(x−k,i, {xj}j 6=i |xki), and ∂2xkip(x−k,i, {xj}j 6=i |xki) are all continuous

on C. Then f̃ ∗k = 0 and g∗k = 0 only if f does not depend on xk, i.e. ∂xkf(x) = 0
with probability 1.

We defer the proof of theorem 3.3.2 to section 3.6 of the appendix. Theorem 3.3.2
states that if a covariate is relevant, then at least one of the optimal concave and con-
vex functions that minimizes the negative likelihood should be nonzero. Therefore,
if we fit 0 for both the convex and concave component, we can safely zero out the
corresponding variable and claim it as irrelevant. Intuitively, the convex ĝ∗k “catches”
any non-concave residual that f̃ ∗k could not capture.

3.4 Estimation Procedure

Theorem 3.3.2 motivates a two stage procedure for variable selection. In the first
stage, we fit a sparse additive concave function under the logistic DCM framework.
We then separately fit a convex function on the residuals for each dimension.

Importantly, we do not introduce tuning parameters for smoothing the function.
Such smoothing parameters are essential to most nonparametric estimation methods,
but are typically very difficult to set. In particular, there is no easy way to optimally
adjust smoothing parameters in a traditional additive model, based for example
on kernel regression or smoothing splines. This is a key attraction of the shape-
constrained approach.

Given sample {xni, sn,yn}n=1,...N
i∈An , the following procedure, referred to as AC/DC(additively

concave/decoupled convex), is performed.
AC Stage: Compute, jointly

f̂1, . . . , f̂d1 , γ̂, ĥ = argmin
f1,...,fd1∈−C

1,γ,h

− 1

N

N∑
n=1

`(yn |XAn , sn) + λ
p∑

k=1

‖βk·‖∞ (3.4.1)
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where `(yn|XAn , sn) =
∑
i∈An

yni“V (xi, sn)− log(
∑
j∈An

exp(“V (xj, sn))“V (xi, sn) =
∑
k

fk(xki) + h(sn)

and βk· are the corresponding subgradients of fk(·).
DC Stage: Compute, separately, for each k where ||βk·||∞ = 0

ĝk = argmin
gk∈C1

− 1

N

N∑
n=1

`(yn |XAn , sn) + λ‖β̃k·‖∞ (3.4.2)

where β̃k· are the corresponding subgradients of gk(·). We then output as the set of
continous relevant variables {k : ‖βk·‖∞ > 0 or ‖β̃k·‖∞ > 0} and of discrete relevant
variables {k′ : γk′ 6= 0}

We adopted an `∞/`1 penalty in 3.4.1 and the `∞ penalty in 3.4.2 to encourage
sparsity. In the AC stage (3.4.1), any estimation method for h can be used.

Optimization

We describe the optimization algorithm only for the additive concave logistic regres-
sion stage, the second decoupled convex logistic regression stage is a straightforward
modification. We observe that a univariate concave function is characterized by
non-increasing subgradients. So we form our optimization problem as

minimize
f ,β,γ,h

−
N∑
n=1

`(yn |XAn , sn) + λ1
d1∑
k=1

||βk.||∞

subject to fk(i+1) = fk(i) + βk(i)(xk(i+1) − xk(i))
M∑
i=1

fki = 0, βk(i+1) ≤ βk(i), (∀k, i)

(3.4.3)

`(yn |XAn , sn) ≡
∑
i∈An

yni(
d1∑
k=1

fk(xki)− log(
∑
j∈An

exp(
d1∑
k=1

fk(xkj) + hn))

where {(1), (2), . . . , (M)} is a reordering of {1, 2, . . . ,M} such that xk(1) ≤ xk(2) ≤
. . . ≤ xk(n). We use the centering constraints

∑M
i=1 fk(xki) = 0 for identifiability.

Motivated by the shooting algorithm for the lasso Friedman et al. (2010), we solve
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optimization 3.4.3 with block coordinate descent. When estimating f (or γ), we itera-
tively select a dimension k, fix all fk′ (or γk′) for k′ 6= k, and optimize {fk(xki)}i=1,...,M

(or γk). For each iteration, we apply Newton’s method and solve a sequence of
quadratic programs. We use the optimization software MOSEK to solve the in-
termediate QPs in our implementation. In the cases where hn = h(sn) must be
estimated as well, we would iterate between (f , β),h in an outer loop and, depending
on choice of model for h(sn), any appropriate optimization algorithm can be used to
optimize h in a step of the outer loop.

The estimated function can be evaluated on an input item xj with the equa-
tion f(xj) =

∑d1
k=1 fk(xkj) =

∑d1
k=1 mini{fki + βki(xkj − xki)} For univariate convex

function estimation, we modify the linear inequality so that the subgradients are
non-decreasing: βk(i+1) ≥ βk(i).

3.5 Experiment

We evaluate AC/DC on both synthetic data experiments as well as a novel survey
dataset. For all of our experiments we do not consider consumer features, i.e., we
omit the h(sn) term.

Simulation

For the M items, we generate continuous feature vectors x1, ...,xM ∼ P where the
distribution P = cN̄(0,Σ) + (1− c)U is a mixture between a multivariate Gaussian
distribution thresholded to lie in [−b, b]p1 and an uniform distribution supported on
[−b′, b′]p1 where b′ > b to fulfill the boundary condition. By “thresholded”, we mean
that if the Gaussian sample is greater than b, then we set it equal to b. The discrete
feature vectors z1, ..., zM are generated similarly, except that we discretize the vectors
by setting a continuous value to zero if it is less than 0.

The true utility function is taken to be the sum of a piecewise linear function of
the continuous features xS1 and a linear function of the discrete features zS2 , where
the piecewise linear function is guaranteed to be concave and S1, S2 represent the
corresponding active feature sets with |S1| = |S2| = 3. In the simulations, we take
Σij = ν |i−j| for various ν’s, and pick the set of active features at random to create
varying amounts of correlation between relevant and irrelevant variables. In addition,

we always set λ1 =
√

log(Np1)
N

and λ2 = 0.3
√

log(Np1)
N

.
In the first simulation, we fix ν = 0.3. We vary N = 100, 200, . . . , 700, p1 =

20, 50, 100, 200. For each (N, p1), we generate 50 independent datasets and apply
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AC/DC procedure to infer the function estimates f ,subgradients β, and discrete
coefficients γ. We declare correct support recovery, if for ∀k ∈ S1, ‖βk·‖∞ > 10−6,
∀k /∈ S1, ‖βk·‖∞ < 10−6 and for ∀k′ ∈ S2,|γk′ | > 10−6, ∀k′ /∈ S2,|γk′| < 10−6. We
show the plot of correct support recovery probability versus differnt combinations of
N and p1 in figure 3.1(a). As can be seen, the ACDC algorithm achieves higher
support recovery rate as sample size increases even when p is large.

In the second simulation, we fix p1 = 15 and investigate the robustness of the
ACDC algorithm over different correlation structures. N varies from 100, 200, . . . , 700
and ν varies from 0, 0.2, 0.5, 0.7. As before, we generate 50 data sets and compute
the probability of correct support recovery for each combination of N and ν. The re-
sults are shown in figure 3.1(b) and demonstrate that ACDC can still select relevant
variables well for design of moderate correlation.
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Survey Data

This dataset consists of 530 surveys we gave to the students and staff at our uni-
versity. Each survey contains three options, each of which is a hypothetical living
arrangement that consists of a job and an apartment in some neighborhood within
some city. We ask the respondents to choose the one they most prefer. Each living
arrangement is described on the survey by three types of information: personal level,
city level, and neighborhood level. The personal level information are yearly salary,
monthly rent, and commute time. The city level information are year round tempera-
ture, population, robbery rate, and diabetes rate. The neighborhood level information
are average income, unemployment rate, and the percent of college graduates.

We created the surveys by gathering information on 68 US cities and a total of
148 zipcode regions (which we call neighborhoods) within those cities. The informa-
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Figure 3.1: Variable selection accuracy on survey data.
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tion is gathered from www.city-data.com. We generate each living arrangement by
randomly selecting a city and a zipcode region and then generating a random salary,
rent, and commute time based on the average in that zipcode neighborhood. The
reader can find examples of the survey as well as more detail about how we made
the surveys in section 3.7.

Feature selection evaluation. In addition to the features shown on the survey,
we collected various other features of the cities and zipcode regions we used. These
additional features are July humidity level, January snowfall, April sunshine rate,
% households gay/lesbian, % households unmarried, elevation, air quality index, and
% voted Obama in 2008. Because these features were not shown on the survey
and not known to the respondents, they are by construction irrelevant to the survey
responses. These irrelevant features are, however, correlated with the survey features
(Figure 3.1(a)).

We evaluate AC/DC by taking random subsamples of the data, performing vari-
able selection, and measuring how often the features shown on the survey are marked
as relevant. We compare AC/DC against the sparse standard logistic DCM where
we let f(xi) = βTxi and apply the `1 penalty on β. The regularization parame-
ters are selected so that on average 9.5 features are selected. From the 400 surveys
in the training data, we took 94 random subsamples of 200 surveys and performed
both AC/DC and sparse linear model on these subsamples. In addition to the raw
features, we also added some interaction terms among the relevant variables.

The results are shown in Figure 3.2 and Table 3.1(a). AC/DC outperforms the
linear model in choosing features that are relevant to the survey. We included %dia-
betes as a feature on the survey though it is unlikely to play a part in a respondent’s
decision process. Thus, in the second row of Table 3.1(a), we exclude %diabetes as
a relevant variable. Not surprisingly, the two features selected with 100% frequency
are salary and a rent-times-commute interaction term.

Heldout likelihood evaluation. To ensure that the concavity assumption is
reasonable and that we are not overfitting to the training data, we also evaluate the
log-likelihood of our estimated model on a heldout dataset of 114 surveys. These
surveys use information only from cities that do not appear in any of the training
data surveys. We use the top 3 or the top 8 features in selection process and refit an
additive concave model, unregularized, on the training data, using only those features
(likewise with the sparse linear model). For features whose monotoncity in the utility
is obvious, we also add a monotone constraint when refitting. Table 3.1(b) shows
that concave monotone model performs slightly better. Though the improvement
is small, the concave monotone model using 3 features achieves the same likelihood
as the linear model using 8 features. We show two examples of the fitted functions
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Figure 3.2: Variable selection frequency for survey data

in Figure 3.1(b). Both salary and the relative rent (rent / average income) exhibit
concavity.
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3.6 Proofs

Proof of Theorem 3.3.1

For simplicity, we omit the consumer function h(sn) in the proofs.

Proof. (of Theorem 3.3.1) We want to show that f ∗k = 0⇒ ∂
∂xk

f = 0.

Now we assume that for all xki, (3.3.2) holds:

E
ñ

exp(f ∗k (xki) + φ(x−k,i))∑m
i=1 exp(f ∗k (xki) + φ(x−k,i))

− exp(f(xki,x−k,i))∑m
i=1 exp(f(xki,x−k,i))

|xki
ô

= 0

Note that f ∗k (xki) = f ∗k (xkj) for all i, j. Differentiating with respect to xki under
the integral gives:

∫
p′(x−k,i, {xj}j 6=i |xki)

[
exp(φ(x−k,i))∑m
j=1 exp(φ(x−k,j))

− exp (f(xki,x−k,i))∑m
j=1 exp (f(xj))

]

+ p(x−k,i, {xj}j 6=i |xki)
exp(f(xki,x−k,i))f

′(xki,x−k,i)
∑
j 6=i exp (f(xkj,x−k,j))Ä∑m

j=1 exp (f(xkj,x−k,j))
ä2 dx−(k,i) = 0

We use the shorthand dx−(k,i) to represent
∏
k′,j′ : (k,j)6=(k,i) dxk′j′ . That is, we integrate

with respect to all variables except xki.
If p satisfies the boundary-points condition, then, at xki = 0/1, the integral

equation reduces to:∫
p(x−k,i, {xj}j 6=i |xki)

exp(f(xki,x−k,i))f
′(xki,x−k,i)

∑
j 6=i exp(f(xkj,x−k,j))Ä∑m

j=1 exp(f(xkj,x−k,j))
ä2 dx−(k,i) = 0

Recall that f is boundary-monotone, so without loss of generality we can assume
that f ′(xki,x−k,i) ≥ 0 for xij = 0/1. Also, since we assumed that the density p is
positive, p(x−k,i{xj}j 6=i |xki) > 0. So we have f ′(xki,x−k,i) = 0 at xki = 0/1 for all
x−k,i.

Because f(xki,x−k,i) as a function of xki is concave, it must be that, for all
xki ∈ (0, 1) and for all x−k,i:

0 = f ′(1,x−k,i) ≤ f ′(xki,x−k,i) ≤ f ′(0,x−k,i) = 0

Therefore, f does not depend on xk.
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Proof of Theorem 3.3.2

Proof. From Theorem 3.3.1, it suffices to show that f ∗k = 0.
Now suppose f̃ ∗

′
k = g∗

′
k = 0. First consider the univariate function hk(xki) = δe−xki ,

where δ ∈ R. hk(xki) is convex and decreasing if δ > 0, concave and increasing if
δ < 0. Since f̃ ∗k = g∗k = 0, then

arg min
δ∈R

{
E
[
−

m∑
i=1

Yi
Ä
δe−xk + φ(x−k,i)

ä
+ log

(
m∑
i=1

exp(δe−xki + φ(x−k,i))

)]}

= arg min
δ∈R

{
E
[
log

(
m∑
i=1

exp(δe−xki + φ(x−k,i))

)
−

m∑
i=1

pi(δe
−xki + φ(x−k,i))

]}
= 0

where

pi =
exp(f(xi))∑m
j=1 exp(f(xj))

Recall that the objective function is convex in δ, the stationary condition gives us:

E
[
m∑
i=1

e−xki
(

exp(δe−xki + φ(x−k,i))∑m
j=1 exp(δe−xkj + φ(x−k,i))

− exp(f(xi))∑m
j=1 exp(f(xj))

)]
= 0

δ∗ = 0
=⇒ E

[
m∑
i=1

e−xki
(

exp(φ(x−k,i))∑m
j=1 exp(φ(x−k,i))

− exp(f(xi))∑m
j=1 exp(f(xj))

)]
= 0

It is not hard to prove that f ∗k (xki) has lower bounded derivatives f ∗
′
k (xki) and

f ∗
′′
k (xki). Then we can always find an η such that e−xki + ηf ∗k (xki) is convex and

non-increasing. Therefore, by a similar argument, we have

E
[
m∑
i=1

(e−xki + ηf ∗k (xki))

(
exp(φ(x−k,i))∑m
j=1 exp(φ(x−k,j))

− exp (f(xi)))∑m
j=1 exp(f(xj))

)]
= 0

=⇒ E
[
m∑
i=1

f ∗k (xki)

(
exp(φ(x−k,i))∑m
j=1 exp(φ(x−k,j))

− exp (f(xi)))∑m
j=1 exp(f(xj))

)]
= 0

=⇒ E

 m∑
i=1

f ∗k (xki)E

( exp(φ(x−k,i))∑m
j=1 exp(φ(x−k,j))

− exp (f(xi)))∑m
j=1 exp(f(xj))

) ∣∣∣∣∣∣xki
 = 0

Recall that f ∗k (xki) is a unique function that satisfies

E

 exp(f ∗k (xki) + φ(x−k,i))∑m
j=1 exp(f ∗k (xkj) + φ(x−k,j))

− exp (f(xi)))∑m
j=1 exp(f(xj))

∣∣∣∣∣∣xki
 = 0.
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Then we have

E

 m∑
i=1

f ∗k (xki)E

( exp(φ(x−k,i))∑m
j=1 exp(φ(x−k,j))

− exp(f ∗k (xki) + φ(x−k,i))∑m
j=1 exp(f ∗k (xkj) + φ(x−k,j))

) ∣∣∣∣∣∣xki
 = 0

=⇒ E
[
m∑
i=1

f ∗k (xki)

(
exp(φ(x−k,i))∑m
j=1 exp(φ(x−k,j))

− exp(f ∗k (xki) + φ(x−k,i))∑m
j=1 exp(f ∗k (xkj) + φ(x−k,j))

)]
= 0

=⇒ E
[
m∑
i=1

f ∗k (xki) exp(φ(x−k,i))
∑
j 6=i exp(φ(x−k,j)) (exp(f ∗k (xkj)− exp(f ∗k (xki)))∑m

j=1 exp(φ(x−k,j))
∑m
j=1 exp(f ∗k (xkj) + φ(x−k,j))

]
= 0

Note that

m∑
i=1

f ∗k (xki) exp(φ(x−k,i))
∑
j 6=i

exp(φ(x−k,j)) (exp(f ∗k (xkj)− exp(f ∗k (xki)))

=
m∑
i=1

∑
j 6=i

f ∗k (xki) exp(φ(x−k,i) + φ(x−k,j)) (exp(f ∗k (xkj)− exp(f ∗k (xki)))

=
∑
i<j

exp(φ(x−k,i) + φ(x−k,j))
Å
f ∗k (xki)− f ∗k (xkj)

ãÅ
exp(f ∗k (xkj)− exp(f ∗k (xki))

ã
≤ 0 since

Å
f ∗k (xki)− f ∗k (xkj)

ãÅ
exp(f ∗k (xkj)− exp(f ∗k (xki)

ã
≤ 0

and
m∑
j=1

exp(φ(x−k,j))
m∑
j=1

exp(f ∗k (xkj) + φ(x−k,j)) > 0.

Thus we haveÅ
(f ∗k (xki)− f ∗k (xkj)

ãÅ
exp(f ∗k (xkj))− exp(f ∗k (xki))

ã
= 0, for all i 6= j

i.e. f ∗k (xki) = f ∗k (xkj), for all i 6= j.
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[1] bridgeport orlando columbus jacksonville dallas

[6] charlotte reno portland durham denver

[11] jersey_city paradise spokane rockford chesapeake

[16] chicago cambridge austin seattle raleigh

[21] allentown berkeley philadelphia pittsburgh boston

[26] san_diego las_vegas lynn atlanta richmond

[31] cincinnati warren madison houston san_antonio

[36] miami fremont nyc albany la

[41] newark vancouver sf detroit aurora

[46] stamford ann_arbor springfield grand_rapids elizabeth

[51] eugene milwaukee cleveland new_haven dc

[56] boulder henderson buffalo

Figure 3.3: List of the cities used in the training dataset surveys.

3.7 Survey Detail

Figure 3.5 shows examples of surveys we handed out to respondents. Each survey
contains three random living arrangements. The living arrangements are sampled
randomly from a large collection that we generated from actual city and zipcode
region data. To generate a living arrangement, we take the following steps:

1. We select a random city and a random zipcode region. All features of the living
arrangement except salary, commute time, and rent are simply the features of
the selected city and the zipcode region.

2. We generate a random salary s = sbase·cadj·cnoise where sbase ∼ Unif{69K, 80K}.
cadj =

Å
national average income
region average income

ã0.15
is the regional wealth adjustment; richer regions

yield higher salaries. cnoise ∼ N(0, 0.152) is a Gaussian multiplier noise.

3. We generate a random rent r = rbasecnoise where rbase is the average rent of the
zipcode region and cnoise ∼ N(0, 0.152) is a Gaussian multiplier noise.
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[1] kansas minneapolis baltimore phoenix fort_wayne

[6] indianapolis manchester st_louis st_paul norfolk

Figure 3.4: List of the cities used in the test dataset surveys.
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• Gender: (circle one): M F Other N/A

• Major: Social Science Physical Science Math/Stats Language Biology Economics Other Undecided

You have just completed your Bachelor’s degree. You have a choice of three different jobs in three different locations in the US. All other considera-
tions being equal, which one of the following living situations do you most prefer?

Situation A Situation B Situation C
Salary 69,000$ 79,000$ 88,000$

Rent 690$ 710$ 760$

Commute Time 28 min 24 min 26 min

Temperature

City Population
(Chicago: 3,000,000)

837,000 1,550,000 603,000

City Robbery Rate
(per 100,000) (New York City: 250)

163 519 159

Diabetes Rate
(national: 11%)

10.4% 10.4% 7.0%

Neighborhood Income
(national: 44,000)

41,000$ 23,000$ 56,000$

Neighbor. %College Grad
(national: 32%)

10.6% 11.5% 54.7%

Neighbor. %Unemploy
(national: 8.1%)

11.2% 17.6% 10.3%

Response
(check one)

Survey ID: 1

1

• Gender: (circle one): M F Other N/A

• Major: Social Science Physical Science Math/Stats Language Biology Economics Other Undecided

You have just completed your Bachelor’s degree. You have a choice of three different jobs in three different locations in the US. All other considera-
tions being equal, which one of the following living situations do you most prefer?

Situation A Situation B Situation C
Salary 84,000$ 76,000$ 64,000$

Rent 1,100$ 1,500$ 870$

Commute Time 12 min 34 min 26 min

Temperature

City Population
(Chicago: 3,000,000)

165,000 636,000 2,710,000

City Robbery Rate
(per 100,000) (New York City: 250)

103 303 498

Diabetes Rate
(national: 11%)

8.2% 8.0% 8.4%

Neighborhood Income
(national: 44,000)

57,000$ 61,000$ 54,000$

Neighbor. %College Grad
(national: 32%)

22.1% 49.7% 36.1%

Neighbor. %Unemploy
(national: 8.1%)

10.2% 6.5% 7.5%

Response
(check one)

Survey ID: 2

1

Figure 3.5: Example surveys



chapter 4

SHAPE-CONSTRAINT PATTERN SELECTION

4.1 Introduction

A major advantage of shape-constrained estimation is that there are no smoothing
parameters. But, one does have to choose between two possible orientations. For
instance, either an increasing function could be used or a decreasing one, either a
convex function could be used or a concave one. The appropriate choice of orientation
is clear in some applications but in general non-obvious. This choice becomes espe-
cially difficult in situations with model misspecification where the true underlying
function may not be exactly increasing or decreasing but may be well approximated
by either an increasing or a decreasing function.

In this section, we study the problem of finding the orientation pattern in shape-
constrained estimation. We focus on regression with an additive model where the
true condition mean f0(x) = E[y |X = x] is modeled as a sum of p univariate
functions

∑p
j=1 fj(xj). The problem is to determine, for each j, whether fj should

be a monotone increasing function or a decreasing one. We consider monotoncity in
our analysis but some of the ideas will apply to other shape-constraints as well.

There is an easy solution to this problem in the low-dimensional regime where
p is small–try everything! There are 2p possible patterns in total and one could try
them all and select the pattern that provides the best fit. This brute force search
strategy becomes inpractical once p becomes moderate (≥ 20).

We propose, in this chapter, a convex relaxation approach that scales to high
dimensions. The idea is this: the brute search can be thought of an optimization
with discrete variables where each component fj(xj) = cjf

incr
j (xj) + (1− cj)fdecr

j (xj)
where cj ∈ {0, 1}, f incr

j is an increasing function and fdecr
j is a decreasing function.

Our approach is motivated by the observation that we can relax cj to be a continuous
variable in [0, 1] and add a regularization that encourages cj to tend toward either 0
or 1. This approach is equivalent to additive trend filtering and also naturally arise
out of our analysis of the identifiability of the additive shape-constraint model.

92
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Related Work

Several works have studied additive shape-constrained estimation. Mammen and Yu
(2007) propose an additive isotone model and show its estimation consistency. Chen
and Samworth (2014) give an estimator for general shape-constraints and general lin-
ear model. Pya and Wood (2014) propose a smooth additive shape-constrained model
based on constraining the basis coefficients of an additive B-spline model. Fang and
Meinshausen (2012) study high-dimensional additive isotone regression and derive
a backfitting optimization scheme where each iteration is a soft-thresholded PAVA.
They also propose additive trend filtering but they do not analyze its performance
in the pattern selection problem.

4.2 Setting

Definition 4.2.1. Let f : Rd → R. We say that f is an additive mixed mono-
tone function (Add-MM) if f(x) =

∑d
j=1 cjfj(xj) where cj ∈ {−1,+1} and fj is a

monotone increasing function.

The vector c = (c1, ..., cd) represent the increasing/decreasing pattern. cj = 1
implies that the j-th component is increasing and −1 if decreasing.

Let Y be a response. We want to model Y by the best additive mixed monotone
function. In population setting, the problem is

min
cj ,fj

E

Ñ
Y −

d∑
j=1

cjfj(Xj)

é2

s.t. fj monotone increasing, Efj(Xj) = 0

cj ∈ {−1,+1}

We have added a mean-zero constraint to eliminate an obvious source of non-
identifiability: clearly, for any constant a, f1 + f2 = (f1 − a) + (f2 + a). In finite
sample, the optimization becomes



CHAPTER 4. SHAPE-CONSTRAINT PATTERN SELECTION 94

min
cj ,fj

1

n

n∑
i=1

Ñ
Yi −

d∑
j=1

cjfj(Xij)

é2

(4.2.1)

s.t. fj monotone increasing,
n∑
i=1

fj(Xij) = 0 (4.2.2)

cj ∈ {−1,+1} (4.2.3)

We can change the monotone increasing constraint to be the convexity constraint
to get an additive mixed convex/concave model. We will focus on the monotone case
for this section.

We can state optimization 4.2.1 in a more convenient way. We observe that fj
depends on the Xij’s only through their ordering–any two vectors Xj, X

′
j give rise to

the same fj so long as they have the same ordering. We will denote fij = fj(Xσ(i)j)
where σ(i) is the index of the i-th smallest element of Xj.

Let Pj ∈ Rn×n be a permutation matrix that corresponds to the σ−1 permutation
so that Pj(i, i

′) = 1 iff i = σ(i′). Therefore, (Pjfj)i =
∑n
i′=1 Pj(i, i

′)fj(Xσ(i′)j) =
fj(Xij). With this new notation, we can write

min
cj ,fj
‖Yi −

d∑
j=1

cjPjfj‖2n (4.2.4)

s.t. for all j, for all i = 1, ..., n− 1, fij ≤ fi+1,j (4.2.5)

for all j,
n∑
i=1

fij = 0 (4.2.6)

cj ∈ {−1,+1} (4.2.7)

This optimization program is nonconvex because the variable cj is discrete. The
brute force approach is to try all 2p combinations of patterns. Much effort will go
toward an efficient method to reformulate and solve this problem. But first, it is
worthwhile to understand the properties of this model more.

4.3 Identifiability

We want to know whether the model is identifiable and whether it is tractable. Both
of these questions turned out to be difficult.
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Identifiability is the following question: could there exist two solutions c, f and
c′, f ′ such that c 6= c′ but

∑p
j=1 cjPjfj =

∑p
j=1 c

′
jPjf

′
j. Another way of asking the

same question is to say, suppose that the linear system

p∑
j=1

cjPjfj = y (4.3.1)

n∑
i=1

fij = 0 for all j (4.3.2)

is solvable for one set of c, f , could there be another solution with a different pattern
c?

It is not hard to see that the model is non-identifiable. We will need to again set
up some new notations before proceeding.

For any fj satisfying the monotone increasing constraint, we can write fj = Sβj
where βj is a (n − 1)-dimensional vector and βj ≥ 0 and S is an n × n − 1 matrix.
Intuitively, βj is the discrete first derivative and S is the zero-mean partial sum
operator. (Sv)i = v1 + v2 + ...+ vi− 1

n

∑n
i=1

∑i
i′=1 vi′ , where we subtract the mean in

the last term.
As a side note, S is the pseudo-inverse to the first difference matrix D where D

is (n − 1) × n and (Dv)i = vi+1 − vi. If S does not have the centering adjustment,
then DS = In−1 still, but SD is no longer symmetric.

In this notation, the linear system of equations 4.3.1 is equivalent to
∑p
j=1 PjSβj =

y where βj ≥ 0 if cj = 1 and βj ≤ 0 if cj = −1, which is in turn equivalent to

p∑
j=1

PjSβj = y ⇔
p∑
j=1

DPjSβj = Dy. (4.3.3)

The new system has n − 1 equations–one fewer than the original–because the fj’s
and y must have mean zero and thus there is one redundant degree of freedom.
With n − 1 equations and p(n − 1) unknowns, the system is therefore hopelessly
under-determined without the sign constraints imposed by c. Even with the sign
constraints, the system is still ill-defined and even worse, the system may admit
multiple solutions with inconsistent sign patterns.

Example 4.3.1. Suppose p = 2. Let the rank of X1 be (1, 2, 3) and the rank of X2

be (3, 1, 2). We let y = (−4, 0, 4). For reader’s convenience, we represent fij by the
notation f ji .
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The linear system, in the form of Equation 4.3.1, is

f 1
1 + f 2

3 = −4

f 2
1 + f 2

1 = 0

f 3
1 + f 2

2 = 4

We transform to the first difference variables β1 and β2 using the identity f 1
1 =

−µ1, f
1
2 = β1

1 − µ1, f
1
3 = β1

1 + β1
2 − µ1 and µ1 = 1

3
(β1

1 + (β1
1 + β1

2)).

−µ1 + (β2
1 + β2

2 − µ2) = −4

β1
1 − µ1 + (−µ2) = 0

β1
1 + β1

2 − µ1 + (β2
1 − µ2) = 4

The linear system, in the form of Equation 4.3.3, is

β1
1 + (−β2

1 − β2
2) = 4

β1
2 + β2

1 = 4

There are two sets of solutions to this system that have different sign patterns.

β1 = (2, 5) β1 = (6, 3)

β2 = (−1,−1) β2 = (1, 1)

Not all hope is lost with this example however. We can still give a form of
identifiability in the p = 2 case.

Theorem 4.3.1. Let P1, P2 be arbitrary permutation matrices. Suppose

P1Sβ1 + P2Sβ2 = P1Sβ
′
1 + P2Sβ

′
2

. If β1 ≥ 0 and β′1 ≤ 0, then there exists a solution (β′′1 , β
′′
2 ) such that β′′1 = 0.

Furthermore, ‖β′′1‖1 + ‖β′′2‖1 ≤ ‖β1‖1 + ‖β2‖1 and ‖β′1‖1 + ‖β′2‖1.

Intuitively, the theorem states that the solution that minimizes L1 norm of the
difference vector β1, β2 does have an identifiable pattern.

This theorem follows immediately from the following Lemma.

Lemma 4.3.1. Let P1, P2 be arbitrary permutation matrices. Suppose there exists a
solution (β′1, β

′
2), β′1, β

′
2 ≥ 0, to the linear system

P1Sβ1 + P2Sβ2 = y
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Then, the solution (β′′1 , β
′′
2 ) to the following optimization program:

min
β1,β2
‖β1‖1 + ‖β2‖1 (4.3.4)

s.t. P1Sβ1 + P2Sβ2 = y

satisfies β′′1 ≥ 0 and β′′2 ≥ 0.

The lemma assumes that both component functions are increasing. This can be
done without loss of generality because if β′2 ≤ 0, then we can replace P2 with the
its reverse permutation matrix P ′2. P2Sβ

′
2 = P ′2reverse(Sβ′2) and reverse(Sβ′2) is an

increasing sequence.
Lemma 4.3.1 readily implies Theorem 4.3.1. We can take β′′1 , β

′′
2 to be the solution

that minimizes the L1 norm and Lemma 4.3.1 would imply that β′′1 ≥ 0 and β′′1 ≤ 0.
We will need some preparation before we can prove Lemma 4.3.1.

Definition 4.3.1. v ∈ Rn is an alternating sign vector if all entries of v are either
+c,−c, 0 for some constant c, and, if vi, vi′ = −c, then there must exist some i <
i′′ < i′ such that vi′ = +c and vice versa. If c = 1, then we call v the alternating sign
unit vector.

Let v, v′ be two alternating sign vectors. We say that v, v′ are concordant if there
does not exist any i such that vi > 0 and v′i < 0 or vi < 0 and v′i > 0.

Intuitively, v is an alternating sign vector if it looks like (+c,−c,+c,−c, ...) with
the zeroes removed. The sum of all the vi’s is either +c,−c, or 0.

Proposition 4.3.1. For any permutation matrix P , the columns of DPS are con-
cordant alternating sign vectors. Furthermore, if v is an alternating sign vector, then
DPSv is also an alternating sign vector.

Proof. (of Proposition 4.3.1)
Suppose P is associated with permutation π. We first prove that

(DPS)ij =


1 if π(i) ≤ j and π(i+ 1) > j
−1 if π(i) > j and π(i+ 1) ≤ j
0 else

. From here, it is not hard to see that a column of DPS must be an alternating sign
vector. Suppose the columns are not concordant, then there exists i, j, j′ such that
(DPS)ij > 0 and (DPS)ij′ < 0. Then, π(i) ≤ j and π(i) > j′ and so j′ < j. But,
π(i+ 1) > j and π(i+ 1) ≤ j′ and so j′ > j. This is a contradiction.
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To prove above identity, note that row i of DP is of the form −eπ(i) + eπ(i+1)

and column j of S is a of the form (−n−j
n
, ...,−n−j

n
, j
n
, ..., j

n
) with j negative elements

followed by n− j positive elements.
Therefore,

(DPS)ij = (eT
i DP )(Sej) = (−eπ(i) + eπ(i+1))

T(−n− j
n

, ...,−n− j
n

,
j

n
, ...,

j

n
)

The identity follows immediately.
We now focus on the second part of the proposition. Let v ∈ Rn be an alternating

sign vector. Let the non-zero entries of v be vi1 , ..., vim . We can partition {1, ..., n} =
S+ ∪ S− where we allocate a contiguous block vit+1, ..., vit+1 ∈ S+ if vit+1 > 0 and
vit < 0, else we allocate it in S−.

For the first block (1, ..., vi1), we allocate it in S+ if vi1 > 0, else S−. For the last
block (vim+1, ..., vn), we allocate it in S+ if vim < 0, else S−.

Let k = |S−| and let τ be any permutation such that τ(i) ≤ k for all i ∈ S− and
τ(i) > k for all i ∈ S+. At least one such τ exists because we defined k = |S−|. Let
Pτ be the permutation matrix associated with τ , then, by our previous identity, it is
easy to verify that v is the k-th column of DPτS.

DPS(DPτS) = DP (SD)PτS

= DP (In +
1

n
1n1

T
n)PτS

= DPPτS +
1

n
D1n1

T
nS

= D(PPτ )S

Since PPτ is another permutation matrix, the columns of DPS(DPτS) must be
altnerating sign vectors. Therefore, DPSv is an alternating sign vector.

Proof. (of Lemma 4.3.1)
Suppose the conditions of the theorem hold. We will show that the solution to the
following optimization program is equivalent to that of Optimization 4.3.4:

min
β1,β2
‖β1‖1 + ‖β2‖1 (4.3.5)

s.t. P1Sβ1 + P2Sβ2 = y

β1 ≥ 0, β2 ≥ 0
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Let (β∗1 , β
∗
2) be the solution 4.3.5. Suppose it is not a solution to 4.3.4, then,

because 4.3.4 is a convex program, there exists an arbitrarily small perturbation
(v1, v2), both Rn−1, such that

‖β∗1 + v1‖1 + ‖β∗2 + v2‖1 < ‖β∗1‖1 + ‖β∗2‖1 (4.3.6)

This is because we can set v1 = γ(β′′1 − β∗1) and v2 = γ(β′′2 − β∗2) where (β′′1 , β
′′
2 ) is

a solution to 4.3.4 and γ is an arbitrarily small positive constant. We will suppose
that γ is small enough such that |v1i| < |β∗1i| and |v2i| < |β∗2i|.

The proof will proceed in three steps. In the first step, we show that 4.3.6 cannot
hold if we choose v1, v2 to be alternating sign vectors (Definition 4.3.1).

In the second step, we show that if v1, v2 are positive linear combinations of
concordant alternating sign vectors, then 4.3.6 cannot hold. In the third step, we
show that any vector can be written as a positive linear combination of concordant
alternating sign vectors and thus show that 4.3.6 cannot hold for any (v1, v2).

Step 1. We let S1 and S2 denote the indices of the non-zero coordinates of β∗1 and
β∗2 respectively. Let v̄1, v̄2 be alternating sign unit vectors and let v1 = cv̄1, v2 = cv̄2
where c < |β∗i1| for all i ∈ S1 and c < |β∗i2| for all i ∈ S2.

‖β∗1 + v1‖1 =
∑
i∈S1

(β∗i1 + vi1) +
∑
i/∈S1

|vi1|

= ‖β∗1‖1 +
∑
i∈S1

vi1 +
∑
i/∈S1

vi1 + 2
∑

i/∈S1, vi1<0

(−vi1)

= ‖β∗1‖1 + 1Tv1 + 21T
Sc1
v1−

We define v1− as a vector representing the negative part of v1. vi,1− = |vi1| if
vi1 < 0, else vi,1− = 0. The first equality of the derivation follows because ‖v1‖∞ <
mini∈S1 |β∗i1| by assumption. We can perform similar reasoning on β∗2 and get that

‖β∗1‖1 + ‖β∗2‖1 − ‖β∗1 + v1‖1 − ‖β∗2 + v2‖1 = −1Tv1 − 1Tv2 − 21T
Sc1
v1− − 21T

Sc2
v2−

First, suppose both 1T
Sc1
v1− and 1T

Sc2
v2− are both 0. Then β∗1 + v1 and β∗2 + v2 are

both non-negative vectors. By definition of β∗1 , β
∗
2 as a solution to 4.3.5, it must be

then that ‖β∗1‖1 + ‖β∗2‖1 − ‖β∗1 + v1‖1 − ‖β∗2 + v2‖1 ≤ 0.
Therefore, we may assume without loss of generality that 1T

Sc1
v1− ≥ c. Because

v1 is an alternating sign vector, 1Tv1 ≥ −c. Therefore,

−1Tv1 − 1Tv2 − 21T
Sc1
v1− − 21T

Sc2
v2− ≤ 2c− 2c ≤ 0
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Step 2.
Let v1 = λu+ (1− λ)w where λ ∈ [0, 1] and u,w are concordant alternating sign

vectors. Therefore, if vi1 < 0, then ui ≤ 0 and wi ≤ 0. If vi1 > 0, then ui ≥ 0 and
wi ≥ 0. Thus, |vi1| = λ|ui|+ (1− λ)|wi|.

Let us suppose as before that ‖v1‖∞ < mini∈S1 |β∗i1|, then,

‖β∗1 + v1‖1 =
∑
i∈S1

(β∗i1 + vi1) +
∑
i/∈S1

|vi1|

= λ
∑
i∈S1

(β∗i1 + ui) + (1− λ)
∑
i∈S1

(β∗i1 + wi) + λ
∑
i/∈S1

|ui|+ (1− λ)
∑
i/∈S1

|wi|

= λ‖β∗1 + u‖1 + (1− λ)‖β∗1 + w‖1
≥ ‖β∗1‖1

It is straightforward to do the same analysis for a convex combination of any
finite number of concordant components. The same analysis also holds for β∗2 .

Step 3. Let v1 and v2 be arbitrary vectors such that

‖v1‖∞ ∨ ‖v2‖∞ < min
i∈S1

|β∗i1| ∧min
i∈S2

|β∗i2| (4.3.7)

Let DP1Sv1 +DP2Sv2 = 0 so that (β∗1 + v1, β
∗
2 + v2) is a feasible solution. Then,

v1 = −DPT
1 P2Sv2 by multiplying both sides by the full ranked matrix DPT

1 S.
Let τ be the permutation that represent the ordering of Sv2. That is, (Sv2)τ(1)

is the smallest entry, (Sv2)τ(2) is the second smallest entry, etc.

Then, DPτSv2 = ~λ ≥ 0. Therefore, v2 = DPT
τ S

~λ. Because the columns of DPT
τ S

are concordant alternating sign vectors, v2 can be written as a convex combination
of concordant alternating sign vectors.

v1 shares a similar decomposition v1 = −DPT
1 P2Sv2 = −DPT

1 P2P
T
τ S

~λ.
Let Ei2 and Ei1 be the i-th column of DPT

τ S and −DPT
1 P2P

T
τ S respectively.

DP1SEi1 +DP2SEi2 = DP1S(−DPT
1 P2P

T
τ S)ei +DP2S(DPT

τ S)ei = 0

We have shown that v1 = E1
~λ and v2 = E2

~λ where each pair of columns of
Ei1, Ei2 satisfy DP1SEi1 +DP2SEi2 = 0. Therefore, by what we have shown in Step
1 and Step 2, it must be that

‖β∗1‖1 + ‖β∗2‖1 ≤ ‖β∗1 + v1‖1 + ‖β∗2 + v2‖1
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We have established identifiability for the d = 2 case: the pattern is unique
and is recovered by the sign pattern of the solution that minimizes L1-norm of the
differences, as shown in Lemma 4.3.1.

Remark 4.3.1. Lemma 4.3.1 does not exactly apply when d > 2. Let us be
more precise. Suppose there exists β′1, ..., β

′
p ≥ 0 such that

∑p
j=1DPjSβ

′
j = y. If

β′′1 , β
′′
2 , ...β

′′
p satisfies

∑
DPjS β

′′
j = y and minimzies

∑p
j=1 ‖β′′p‖1, it is no longer guar-

anteed that β′′j ≥ 0 as well. Instead, using randomly generated permutations Pj’s,
what we observe empirically is that β′′j may have small negative entries but 1Tβ′′j is
still overwhelmingly positive. A rigorous analysis of this is an important direction of
future work.

4.4 Estimation

Motivated by Theorem 4.3.1 and Remark 4.3.1 where L1 norm of the difference
is an important quantity to minimize, we propose the following generalized Lasso
estimation procedure for pattern selection:

min
βj
‖y −

d∑
j=1

PjSβj‖22 + λ
d∑
j=1

‖βj‖1 (4.4.1)

Let us reformulate this optimization to get a better intuitive understanding. Ob-
serve that we can decompose Sβj = Sβj,+ + Sβj,− = fj + gj where βj,+ contains the
positive entries of βj and βj,− contains the negative entries. Therefore, fj is increas-
ing and gj is decreasing. It is clear then that ‖βj‖1 = fnj − f1j + g1j − gnj because
fnj, g1j are the largest entries of the sequences fj, gj and f1j, gnj are the smallest
entries.

Therefore, the optimization is equivalent to

min
fj ,gj

1

2n

n∑
i=1

Ñ
yi −

d∑
j=1

(Pj(fj + gj))i

é2

+ λ
d∑
j=1

(fnj − f1j + g1j − gnj) (4.4.2)

s.t. for i = [1, n− 1], for all j, fi+1,j ≥ fij, gi+1,j ≤ gij

for all j,
n∑
i=1

fij = 0,
n∑
i=1

gij = 0
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Backfitting Algorithm for Additive Trend Filtering

Input : (X1, y1), ..., (Xn, yn), regularization parameter λ

Initialization: Set vectors f̂j, ĝj as all 0 for j = 1, ..., p.

Repeat until convergence, for j = 1, ..., p:

Set yres = y −∑j′ 6=j Pj′(f̂j′ + ĝj′).

Do trend filter update:

f̂j, ĝj = argmin
fj ,gj

1

n

∥∥∥yres − Pj(fj + gj)
∥∥∥2
2

+ λt(fnj − f1j + g1j − gnj) (4.4.3)

s.t.∀i, fij ≤ fi+1,j, gij ≥ gi+1,j

Output: patternj = +1 if ‖f̂j‖∞ > ‖ĝj‖∞, and −1 if ‖ĝj‖∞ > ‖f̂j‖∞.

Figure 4.1: Backfitting algorithm for additive trend filtering. Any solver can be
used at 4.4.3. λt can be iteration dependent so long as λt → λ. We suggest λt =
λ
Ä
1 + e−at+b

ä
for 0 < a ≤ 1/2 and b ≥ 5.

This procedure is an additive 0-th order trend filtering (Tibshirani et al., 2014).
(0-th order trend filtering is precisely this optimization with d = 1) A solution from
4.4.2 is also a solution to 4.4.1 with the transformation βj,+ = Dfj and βj,− = Dgj.

4.4.2 can be interpreted as the convex relaxation of the mixed integer Add-MM
program (4.2.1). Instead of forcing either fj or gj to be zero, we instead allow both
to be non-zero but promote sparsity with the Lasso like penalty.

Optimization

To solve optimization 4.4.2, we propose a backfitting scheme. At every iteration, we
update a single fj, gj and fix all other fj′ , gj′ ’s. The optimization at each iteration
is a quadratic program and can be solved via QP software such as MOSEK. For
our experiments, we instead use the R package glmgen (Arnold et al. (2014)), which
implements an ADMM algorithm described by Ramdas and Tibshirani (2014).
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4.5 Pattern Selection Consistency

In this section, we analyze the pattern selection consistency of additive trend filtering
(figure 4.1). More precisely, we want to show that the estimated pattern is equal to
the true pattern with probability convergent to 1.

under the following stochastic assumptions:

A1 We suppose that the true regression function is additive

yi = f ∗1 (xi1) + f ∗2 (xi2) + ...f ∗d (xid) + εi

where each additive component f ∗j is, without loss of generality, monotone in-
creasing. If f ∗j is decreasing, we can analyze −xj instead so that fj is increasing.

A2 We suppose that X is drawn from a positive product density. That is, Xj, Xj′

are independent for j 6= j′.

A3 εi is an independent subgaussian random variable with scale σ.

A4 ‖f ∗j ‖∞ ≤ B for some constantB. We suppose that the constraints ‖fj‖∞, ‖gj‖∞ ≤
B are also added onto optimization 4.4.2.

A5 Let α ≤ minj Ef
∗
j (Xj)

2. We suppose that α > 0.

A1 can be weakened: if the true regression function f(x) = E[y |X = x] is non-
additive, then we can compare our finite sample estimate against the population
setting additive projection of f(x) instead.

A2 is a strong assumption. However, our experiments show that our estimator is
effective even when X has significant correlation. Extending the consistency analysis
to correlated data is an important direction of future work.

In A4, we suppose that the estimation procedure has extra B-bounded con-
straints. This is entirely to make the theoretical analysis convenient; we do not
use these constraints in the experiments.

A5 defines the signal level of this problem. Larger α implies easier pattern selec-
tion.
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Our analysis considers a restricted form of optimization 4.4.2 where we force
gj = 0:

min
fj

1

2n

n∑
i=1

Ñ
yi −

d∑
j=1

(Pjfj)i

é2

+ λ
d∑
j=1

(fnj − f1j) (4.5.1)

s.t. for i = 1, ..., n− 1, for all j, fi+1,j ≥ fij

for all j,
n∑
i=1

fij = 0

Our analysis proceeds in two parts. In the first part, we show that the solution f̂j
of the restricted optimizatio 4.5.1, along with ĝj = 0, is also the solution to the full

optimization 4.4.2. This shows that ‖ĝj‖∞ is not greater than ‖f̂j‖∞. In the second

part, we show that ‖f̂j‖∞ > 0.

Part One

In this part, our goal is to show that the output f̂j, ĝj of optimization 4.4.2 satisfy
that ĝj = 0 with high probability.

The KKT theorem gives a standard set of conditions for optimality. But, given the
special structure of Optimization 4.4.2, it will be convenient to transform the KKT
conditions into an equivalent set of conditions on the partial sums of the derivatives.

Theorem 4.5.1. Suppose y has mean zero. (fj, gj) are the output of optimiza-
tion 4.4.2 if and only if for all j = [1, p], for all t < n,

1

n

t∑
i=1

(
PT
j

(
d∑

k=1

Pk(fk + gk)− y
))

i

≤ λ equal if ftj < ft+1,j

1

n

t∑
i=1

(
PT
j

(
d∑

k=1

Pk(fk + gk)− y
))

i

≥ −λ equal if gtj > gt+1,j

For t = n, 1
n

∑n
i=1

Ä
PT
j

Ä∑d
k=1 Pk(fk + gk)− y

ää
i

= 0.

Proof. We take the Lagrangian of Optimization 4.4.2. Let αij and α′ij be non-negative
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Lagrangian multipliers.

L(f, g, α, α′) =
1

2n

n∑
i=1

Ñ
yi −

d∑
j=1

(Pj(fj + gj))i

é2

+ λ
d∑
j=1

(fnj − f1j + g1j − gnj)

+
p∑
j=1

n−1∑
i=1

αij(fij − fi+1,j) +
p∑
j=1

n−1∑
i=1

α′ij(gi+1,j − gij) + µj
n∑
i=1

fij + µ′j

n∑
i=1

gij

We differentiate this with respect to fj:

∂L(f, g, α, α′)

∂fj
=

1

n
PT
j

(
d∑

k=1

Pk(fk + gk)− y
)

+ λ(en − e1) + ᾱj − αj + µj1n

The vector ᾱj = (αj, 0) and αj = (0, αj). For illustration, the first couple of
terms are

(ᾱj − αj)1 = α1j

(ᾱj − αj)2 = α2j − α1j

...

(ᾱj − αj)n = −αnj

Therefore, the t-th partial sum
∑t
i=1(ᾱj − αj)i = αtj for t < n. The partial sum

is 0 for t = n.
KKT states that ∂L(f,g,α,α′)

∂fj
= 0, therefore, all partial sums of ∂L(f,g,α,α′)

∂fj
must also

be zero. The partial sums of λ(en − e1) is (−λ,−λ, ..., 0). The partial sums of the
derivative is then, for t < n,

1

n

t∑
i=1

(
PT
j

(
d∑

k=1

Pk(fk + gk)− y
))

i

− λ+ αtj = −µj = 0

µj = 0 because, if we let t = n, we have that 1
n

∑n
i=1

Ä
PT
j

Ä∑d
k=1 Pk(fk + gk)− y

ää
i

=
−µj. y is assumed to have mean zero in the theorem and fk, gk for k all have mean
zero because of primal feasibility and therefore, µj = 0.

Since αij = 0 if fi+1,j > fij, the part of the theorem regarding fj follows. The
statement regarding gj can be worked out in exactly the same fashion.



CHAPTER 4. SHAPE-CONSTRAINT PATTERN SELECTION 106

Let us without loss of generality focus on j = 1 and suppose that P1 = I. Let us
also plug in the expression for y. Theorem 4.5.1 then states that

1

n

t∑
i=1

(
f1 + g1 − f ∗1 +

d∑
k=2

Pk(fk + gk − f ∗k ) + ε

)
i

≤ λ

1

n

t∑
i=1

(
f1 + g1 − f ∗1 +

d∑
k=2

Pk(fk + gk − f ∗k ) + ε

)
i

≥ −λ

1
n

∑t
i=1 εi can be shown to be at most

»
1
n

with high probability. If we assume
that the Xk’s are independent and that fk + gk−f ∗k are bounded, then

∑d
k=2 Pk(fk +

gk−f ∗k ) behaves like an independent noise and its partial sums can be shown to have

magnitude at most
√

d
n
.

If we treating
∑d
k=2 Pk(fk + gk − f ∗k ) as noise, we can show that f1, g1 is pattern

consistent.

Proposition 4.5.1. Suppose that maxt | 1n
∑t
i=1 εi| ≤ σ

√
log(1/δ)

2n
with probability at

least 1− δ.
Suppose also that maxt

∣∣∣ 1
n

∑t
i=1

Ä∑d
k=2 Pk(fk + gk − f ∗k )

ä
i

∣∣∣ ≤ dB
√

log(1/δ)
2n

with prob-
ability at least 1− δ.

Then, if λ ≥ (dB+σ)
√

log(2/δ)
2n

, we have that g1 = 0 with probability at least 1−δ.

Proof. Take optimization (4.4.2) and hold fj, gj fixed for j > 1. Suppose we now
hold g1 = 0 and solve for f1. If the solution we get satisfies the KKT condition for
jointly optimizing both f1, g1, then we can say that g1 = 0 even if we do not hold it
to be zero.

If we solve for f1 while holding g1 = 0, we know that [todo! elaborate] the first
KKT statement in Theorem 4.5.1 holds, that for all t < n− 1.

1

n

t∑
i=1

(
f1 − f ∗1 +

d∑
k=2

Pk(fk + gk − f ∗k ) + ε

)
i

≤ λ equal if ftj > ft+1,j

For t = n, we have that 1
n

∑n
i=1

Ä
f1 − f ∗1 +

∑d
k=2 Pk(fk + gk − f ∗k ) + ε

ä
i

= 0. Since
fk, gk, f

∗
k , ε are all assumed to have mean zero, it must be that

∑n
i=1(f1− f ∗1 )i = 0 as

well.
We need to prove the second statement:

1

n

t∑
i=1

(
f1 − f ∗1 +

d∑
k=2

Pk(fk + gk − f ∗k ) + ε

)
i

> −λ
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We claim that for all t, 1
n

∑t
i=1(f1 − f ∗1 )i ≥ 0. Suppose for sake of contradiction

that this is not true and let t be the first instance on which 1
n

∑t
i=1(f1 − f ∗1 )i < 0. It

is obvious then that f1t − f ∗1t < 0.
Suppose f1t′ = f1t for all t′ > t, then f1t′ − f ∗1t′ < f1t − f ∗1t < 0. This implies that∑n

i=1(f1−f ∗1 )i < 0. This is a contradiction because KKT implies that
∑n
i=1(f1−f ∗1 )i =

0.
So, there must exist a t′ > t such that t′ is the smallest index where f1t′ > f1t.

Then, f1t′ > f1,t′−1 and therefore, 1
n

∑t′−1
i=1

Ä
f1 − f ∗1 +

∑d
k=2 Pk(fk + gk − f ∗k ) + ε

ä
i

=
λ. Moving terms around, we have

1

n

t′−1∑
i=1

(f1 − f ∗1 )i = λ− 1

n

t′−1∑
i=1

(
d∑

k=2

Pk(fk + gk − f ∗k ) + ε

)
i

≥ λ− d
√
c2 log(2/δ)

n
−
√
c1 log(2/δ)

n
w.p. at least 1− δ

≥ 0

Since f1,t′−1 = f1t by definition of t′, we have that
∑t′−1
i=1 (f1 − f ∗1 )i ≤ ∑t

i=1(f1 −
f ∗1 )i < 0. We have reached another contradiction.

Proposition 4.5.2. Suppose the estimated fj, gj satisfies ‖fj‖∞, ‖gj‖∞ ≤ B for
some constant B. Then, we have, with probability at least 1− 1

n
that

max
t

∣∣∣∣∣ 1n
t∑
i=1

εi

∣∣∣∣∣ ≤ σ

 
1

2n
log2 2n

max
t

∣∣∣∣∣∣ 1n
t∑
i=1

Ñ∑
j′ 6=j

Pj′
Ä
fj + gj − f ∗j

äé
i

∣∣∣∣∣∣ ≤ 3dB

 
1

2n
log 2np for all j

Proof. We first prove the first inequality. Because εi is subgaussian with scale σ,
with probability at least 1− 1

n
, we have that |varepsiloni| ≤ σ

√
log 2n for all i.

Then, we apply Serfling’s concentration for replacing without replacement (Corol-
lary 2.7.2) with a union bound and immediately derive the first inequality.

The second inequality follows similarly. Because ‖fj‖∞, ‖gj‖∞ ≤ B,

max
i

∣∣∣∣∣∣
Ñ∑
j′ 6=j

Pj′(fj′ + gj′ − f ∗j′)
é
i

∣∣∣∣∣∣ ≤ 3dB

. We apply Serfling’s theorem again with a union bound and get the second inequality.
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Combining Proposition 4.5.1 and Proposition 4.5.2, we have the following pattern
selection consistency result.

Theorem 4.5.2. Suppose assumptions A1-A4 hold. Let σ̃ = max(σ,B).

Suppose λ ≥ 3dσ̃
√

1
2n

log2 2np. Let f̂j, ĝj be the output of 4.4.2, then, we have,

with probability at least 1− 1
n

, that

for all j, ĝj = 0

Part Two

Our goal in this part is to show that the output f̂j of optimization 4.5.1 satisfies

‖f̂j‖∞ > 0 with high probability.
The key is to observe that the set of bounded additive monotone functions has

a bounded bracketing entropy and therefore, similar to the false positive analysis of
AC/DC (Theorem 2.7.3, we will show that the population risk E(f̂) − f ∗)2 → 0 as
n → ∞. If f̂j = 0 for some j, then E(f̂ − f ∗)2 ≥ α > 0 where α is the signal level
defined in Assumption A5. This gives us a contradiction and we can thus conclude
that f̂j 6= 0 for all j.

Proposition 4.5.3. Suppose assumptions A1-A4 hold. Let σ̃ = max(σ,B).

Let f̂j be the output of the restricted optimization 4.5.1 with λ ≤ cdσ̃
√

1
n

log2 c′np.

Then, with probability at least 1− 1
n

, we have that

E

Ñ
d∑
j=1

f ∗j (Xj)− f̂j(Xj)

é2

≤ c′′B2σ̃

√
d6

n2/3
log2 c′nd

where c, c′, c′′ are absolute constants.

The proof of Proposition 4.5.3 is identical to that of Theorem 2.7.3 in Chapter
2. We need only the following bracketing number result.

Proposition 4.5.4. LetM1
B be the set of univariate monotonic increasing functions

bounded by B and let P be a distribution over R. Then, we have that the bracketing
entropy of M1

B is bounded by

logN[](ε,M1
B, L1(P )) ≤ 2KB

ε

for some constant K.
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Let Md
B = {f =

∑d
j=1 fj : fj ∈ M1

B} be the set of additive bounded monotone
functions and let P be a distribution over Rd. Then,

logN[](ε,Md
B, L1(P )) ≤ 2KBd2

ε

Proof. The first result is well known (Van der Vaart and Wellner (1996)). The
second result is derived from the first result. We observe that we can construct an ε
bracketing of Md

B by taking d different ε
d
-bracketings of M1

B.

Proposition 4.5.3 along with Lemma 2.7.3 give the following theorem:

Theorem 4.5.3. Suppose assumptions A1-A5 hold. Let σ̃ = max(σ,B).

Let f̂j be the output of 4.5.1 with λ ≤ cdσ̃
√

1
n

log2 c′np.
Suppose n is large enough such that

c′′
d6

n2/3
log2 c′nd ≤ α

for some constants c′, c′′. Then, we have that, with probability at least 1 − 1
n

,

‖f̂j‖∞ > 0.

Combining the Two Steps

Suppose Theorem 4.5.2 holds, then the solution to 4.5.1 is also a solution to 4.4.2.
Therefore, we can combine Theorem 4.5.2 and Theorem 4.5.3 to get the following
result:

Corollary 4.5.1. Suppose assumptions A1-A5 hold. Let σ̃ = max(σ,B). Let f̂j, ĝj

be the output of 4.4.2 with λ = Θ
(
dσ̃
√

1
n

log2 nd
)
. Suppose n is large enough such

that

c′′
d6

n2/3
log2 c′nd ≤ α.

for some constants c′, c′′. Then, with probability at least 1 − 1
n

, we have that ĝj = 0

and f̂j 6= 0 and therefore,

‖f̂j‖∞ > ‖ĝj‖∞
The above result is a preliminary theoretical justification of why additive trend

filtering can be used for pattern selection. The rate d6

n2/3 is clearly suboptimal and
many of the assumptions are clearly stronger than they need to be, as shown in our
experiments.
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4.6 Experiment

We perform experiments with the proposed pattern selection procedure on both
synthetic and real data.

Synthetic Data

We first test pattern selection accuracy and predictive accuracy with simulated data.
Our X is Gaussian with a covariance Σ. y is generated as yi = f(xi) + εi where εi
is an independent normal noise and f is additive f =

∑d
j=1 fj. Each fj is randomly

selected as one of the following four increasing functions or its negative, which is a
decreasing function.

1. Exponential. fj(xj) = aexj − b, a, b are set so that fj is mean zero, ‖fj‖∞ ≤ 3.

2. Negative reverse of the exponential. fj(xj) = −(ae−xj − b)

3. Single step. fj(xj) = −a if xj < 0.7 and fj(xj) = 1 − a if xj ≥ 0.7 where a is
chosen so that fj has mean zero.

4. Double step. fj(xj) is a sum of two step functions, one with threshold at 0 and
one with threshold at 0.7.

For our experiment, Σ is generated as cDZTZD + (1 − c)1d1
T
d where Z is a

Gaussian random matrix (Zij’s are iid Gaussian), and D is a diagonal matrix such
that DZTZD has 1’s on the diagonal. c ∈ [0, 1] is a knob we can turn to adjust
the level of correlation; larger c leads to a lower level of correlation. We set c = 2/3
in all of our experiments. The standard deviation of noise εi is chosen so that the
signal-to-noise ratio is 4.

We compare additive trend filtering against two baseline methods. The first
baseline method is the OLS linear fit: we take simply the sign of the linear fit
(XTX)−1XTy as the estimated pattern. The second baseline method is a naive
method based on marginal regression: for each j, we compare y(n) and y(1) where (n)
is the index of the largest entry of Xj and (1) is the index of the smallest entry. We
say that fj is increasing if y(n) ≥ y(1) and decreasing otherwise.

For each trial, we generate X, y as described and run additive trend filtering
as well as the linear estimator and the naive estimator. We select λ for additive
trend filtering via 4-fold cross validation where we choose the λ that minimizes
the CV predictive error. We plot the percentage of pattern recovery errors of all
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three methods as well as the predictive errors of additive trend filtering and linear
regression. Each point on the plot shows the average of 15 independent trials.

Figure 4.2 shows how the pattern recovery error and predictive error vary with
the sample size. As can be seen, additive trend filtering overperforms the baseline
methods. Furthermore, the pattern recovery errors of the linear method and the
naive method do not decrease significantly with increasing sample size. Figure 4.3
shows how pattern recovery error and predictive error vary with the dimensionality.
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Figure 4.2: Experimental result where n varies from 100 to 600. p = 100. The left
plot shows pattern recovery error (random guess yields 0.5). The right plot shows
predictive R2 error.
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Figure 4.3: Experimental result where p varies from 40 to 200. n = 400. The left
plot shows pattern recovery error (random guess yields 0.5). The right plot shows
predictive R2 error.

Real Data

We use the Boston housing dataset from the UC Irvine repository to evaluate the ef-
fectiveness of our proposed pattern selection method. Because we do not the ”true”
orientation pattern in the Boston housing data, we cannot report pattern recov-
ery accuracy. We instead report the predictive accuracy of a model built from the
learned orientation. More precisely, we first perform pattern selection and then refit a
shape-constrained model according to the selected pattern. We compare against the
predictive accuracy of an additive spline model. The predictive accuracy is measured
through R2 over 50 random subsamples.

The dataset itself has about 500 data points and 13 features, not including the
median housing price–the quantity we predict. We discard 2 discrete features and
keep the remaining 11. We perform two sets of experiments, one with training data
size n = 400 and one with training data size n = 100. In each trial, we randomly
select the n training data pointsto learn the model and evaluate the model on the
remaining data points to measure predictive R2. We plot the accuracy averaged from
all the trials.

We perform the experiments with both the monotone shape-constraint and the
convex/concave shape-constraint. Figure 4.4 shows the result for n = 400 training
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data points; shape-constrained methods perform slightly worse but are more stable.
The real advantage of shape-constrained methods appears in the n = 100 case,
shown in Figure 4.5, where additive B-spline model overfits and the shape-constrained
models are still able to achieve reasonable predictive accuracy.

R2 +/- sd
monotone 0.75 +/- 0.05

convex/concave 0.77 +/- 0.065
B-splines 0.79 +/- 0.09

Figure 4.4: Boston experiment results for n = 400 training data.

R2 +/- sd
monotone 0.66 +/- 0.06

convex/concave 0.65 +/- 0.012
B-splines 0.35 +/- 0.750

Figure 4.5: Boston experiment results for n = 100 training data.



chapter 5

DISCUSSION

We have studied variable selection for a sparse convex/concave function. We show, for
both the regression setting and the discrete choice model setting, that a procedured
based on a shape-constrained additive model is effective theoretically and practically.
Our analysis supposes that the underlying function satisfies the shape-constraint
assumptions but our method is useful even with model misspecification. Indeed, the
goal of the dissertation is to demonstrate that estimators based on high dimensional
shape-constrained models can be a practical generalization of popular methods like
the lasso. Shape-constrained estimators have no smoothing bandwidth and are easily
interpretable; they are, in a sense, as easy to use as the lasso. In instances where the
underlying function is significantly nonlinear, shape-constrained estimator presents
a good alternative to linear models–it is an easy way to trade off model simplicity to
improve model fitness.

One caveat of using shape-constrained estimation under model misspecification
is that one can no longer choose an orientation (increasing vs decreasing, convex vs
concave, etc) by prior knowledge and intuition. This becomes a problem if the num-
ber of possible orientation patterns explode exponentially with the dimensionality.
Chapter 4 of the dissertation aims to rectify this problem by proposing a method to
automatically select an orientation pattern for additive shape-constrained models.

In this concluding chapter, we first discuss specific open questions relevant to
our work. We then list two general directions of future work in line with our goal
of making high dimensional shape-constrained estimation a practical alternative to
linear models.

5.1 Loose Ends

Our analyses in each of the chapters have many loose ends. These questions are
important toward establishing a more complete theoretical justification of high di-
mensional shape-constrained estimation.

114
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Chapter 2

A minor question in our population level analysis is whether one could prove additive
faithfulness without the twice-differentiability asumption on the convex function f0.
A more important question is whether the converse to additive faithfulness holds
under conditions more general than those discussed in section 2.3.

Our finite-sample analysis has much room for improvement. The current rate,
s5 log2 np
n4/5 , is likely suboptimal. More delicate proof technique is necessary to achieve a

better rate. The independent assumption (Assumption A1 in section 2.5 is restrictive.
It remains an open question what is the nonparametric analogue of mutual incoher-
ence (Wainwright, 2009). Such a condition would remove the reliance on the inde-
pendence assumption from Theorem 2.5.2. Our assumption that ‖f̂k‖∞, ‖ĝ‖∞ ≤ B
is unsatisfactory. We conjecture that these bounds hold automatically with high
probability but a mathematical proof is still beyond our reach.

Chapter 3

Real decision problems often involve discrete varibles such as binary variables and
count variables. To make our estimator more practical, we need to incorporate
discrete variables into our model and we need to analyze conditions under which
additive faithfulness holds even with extraneous discrete variables.

On the theoretical side, the finite sample properties of our estimator is still un-
known. It would be reasonable to assume that n, the number of consumers, and
m, the number of items, must both be larger in order to achieve variable selec-
tion consistency. But, it is not obvious how s the sparsity level and p the ambient
dimensionality feature in the rate.

Chapter 4

As described in the last paragraph of section 4.3, we do not yet understand identi-
fiability for dimension greater than two. Theorem 4.3.1 does not hold exactly when
d > 2: we observe empirically that the L1 minimizing solution β̂j’s may not have

the perfect sign pattern but the output functions f̂j = Sβ̂j approximately follow
the correct orientation. This observation is based on randomly generated covariate
permutation matrices Pj’s. Adversarially generated Pj’s may not exhbit any degree
of identifiability.

Our pattern selection consistency result is preliminary. Our proof technique criti-
cally relies on the assumption that the covariates Pj’s are independent. Independence
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is an easy setting under which naive pattern selection methods such as marginal re-
gression are also consistent and effective. The truly interesting setting–one which
demonstrates the advantages of our proposed method–is that of correlated covari-
ates. Indeed, simulations show that additive trend filtering can retrieve the correct
pattern even with moderate degree of correlation.

5.2 Future Directions

We propose two directions of future work, the goal of which is to provide shape-
constrained estimation with greater applicability. The first is to study the estimation
of high-dimensional log-concave densities–which is a very general class of densities.
The second is to improve the computational efficiency, possibly making the compu-
tation adaptive to the complexity of the output.

Log-concave Density Estimation

Log-concave density is of the form p(x) = exp f(x) where f is a concave function.
This class of densities include many commonly seen models such as the Gaussian,
Laplace, and (for certain parameter settings) Dirichlet distributions. Initially pro-
posed by Grenander (1956) for univariate densities, log-concave density estimation
has since been extended to the multivariate regime (Cule et al., 2010b), with an
established rate of convergence (Cule et al., 2010a; Kim and Samworth, 2014).

Log-concave density estimation suffers from the curse of dimensionality. The
maximum likelihood estimation algorithm proposed by Cule et al. (2010b) becomes
inpractical when d becomes moderately large–on the order of d = 10, n = 500. The
rate of convergence of the MLE is n−1/(d−1) for d ≥ 4 (Kim and Samworth, 2014)
and slows down exponentially with the dimensionality. Minimax rate, established by
Kim and Samworth (2014) also, shows the high-dimensional estimation is impossible
without some notion of sparsity.

A reasonable notion of sparsity for a density is that of a sparse conditional in-
dependence graph. This notion of sparsity, in the case of the multivariate Gaussian
distribution, corresponds to a sparse inverse covariance matrix. For log-concave den-
sity, one possible way to enforce this sparsity assumption is to say that f(x) =∑
j fj(xj) +

∑
j,k fjk(xj, xk) where fjk = 0 for most (j, k) pairs; Clifford-Hammersley

theorem directly implies that the conditional independence graph must be sparse.
The difficulty is to have such a decomposition, enforce concavity, and promote spar-
sity all at the same time.
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One approach we attempted is to generalize the regression based neighborhood
search methods of Meinshausen and Bühlmann (2006). The idea is to replace a high-
dimensional linear regression with a high-dimensional convex or concave regression
instead. Unfortunately, this procedure is difficult to justify theoretically. It is both
unclear whether the condition first moments satisfy any natural shape-constraints
and whether the conditional first moments of a log-concave density correspond to
the conditional graph structure.

Computational Efficiency

Lasso is the standard method for high-dimensional predictive modeling in a large
part because it is fast. Rapid advances in clever algorithms and technologies have
made computation feasible for millions and even billions of variables. In light of the
popularity of lasso, high-dimensional shape-constrained estimation–though practical
for n, p on the order of thousands–must be faster before it can be useful.

One important open question is whether a fast algorithm exists for univariate
convex regression, like the pool-adjacent violators algorithm (PAVA) for monotone
regression. PAVA has a O(n) runtime because, for monotone function fitting, the
data can be segmented in a greedy way. It is unclear whether a O(n) algorithm exists
for fitting a convex function.

With the exception of the linear runtime of PAVA, it seems impossible for non-
parametric models to have computational efficiency on par with parametric models.
Additive convex models for instance have O(np) variables in the optimization vs.
O(p) variabels for linear models. Yet, there is hope because the fitted functions in
shape-constrained estimation are often simple: in case of convex regression, the fitted
function is piece-wise linear often with few number of pieces. This is a form of spar-
sity. And just as lasso algorithms are faster if the fitted parameter vector is sparse,
it is an interesting to ask whether optimization algorithms for shape-constrained
estimation can be made faster if the fitted function is simple.
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