
Towards Scalable Analysis of Images and Videos

Bin Zhao

September 2014
CMU-ML-14-102

Towards Scalable Analysis of Images and Videos

Bin Zhao

SEPTEMBER 2014
CMU-ML-14-102

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee
Eric Xing, Chair

Tom Mitchell
Alex Hauptmann
Kristen Grauman

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright c© 2014 Bin Zhao

This research was sponsored by the National Science Foundation under grant numbers DBI0640543 and IIS1115313,
the National Institutes of Health under grant number R01GM093156, the Air Force Office of Scientific Research
under grant number FA95501010247, and the Office of Naval Research under grant number N000140910758.

Keywords: Image Classification, Video Summarization, Unusual Event Detection, Sparse
Output Coding, Dynamic Sparse Coding, Online Dictionary Learning

To the memory of my grandfather (1927-2012)

iv

Abstract
With widespread availability of low-cost devices capable of photo shooting and

high-volume video recording, we are facing explosion of both image and video data.
The sheer volume of such visual data poses both challenges and opportunities in
machine learning and computer vision research.

In image classification, most of previous research has focused on small to medium-
scale data sets, containing objects from dozens of categories. However, we could
easily access images spreading thousands of categories. Unfortunately, despite the
well-known advantages and recent advancements of multi-class classification tech-
niques in machine learning, complexity concerns have driven most research on such
super large-scale data set back to simple methods such as nearest neighbor search,
one-vs-one or one-vs-rest approach. However, facing image classification problem
with such huge task space, it is no surprise that these classical algorithms, often
favored for their simplicity, will be brought to their knees not only because of the
training time and storage cost they incur, but also because of the conceptual awk-
wardness of such algorithms in massive multi-class paradigms. Therefore, it is our
goal to directly address the bigness of image data, not only the large number of
training images and high-dimensional image features, but also the large task space.
Specifically, we present algorithms capable of efficiently and effectively training
classifiers that could differentiate tens of thousands of image classes.

Similar to images, one of the major difficulties in video analysis is also the huge
amount of data, in the sense that videos could be hours long or even endless. How-
ever, it is often true that only a small portion of video contains important informa-
tion. Consequently, algorithms that could automatically detect unusual events within
streaming or archival video would significantly improve the efficiency of video anal-
ysis and save valuable human attention for only the most salient contents. Moreover,
given lengthy recorded videos, such as those captured by digital cameras on mobile
phones, or surveillance cameras, most users do not have the time or energy to edit the
video such that only the most salient and interesting part of the original video is kept.
To this end, we also develop algorithm for automatic video summarization, without
human intervention. Finally, we further extend our research on video summarization
into a supervised formulation, where users are asked to generate summaries for a
subset of a class of videos of similar nature. Given such manually generated sum-
maries, our algorithm learns the preferred storyline within the given class of videos,
and automatically generates summaries for the rest of videos in the class, capturing
the similar storyline as in those manually summarized videos.

vi

Acknowledgments
I would like to thank my advisor Eric Xing, for his guidance in picking research

problems, the tremendous help in designing milestones for the projects, his constant
encouragement and numerous helpful advices. His exceptional vision in both re-
search and real world application helped me greatly in shaping up this thesis. Eric
has provided every help I would imagine from a research advisor, and I have truly
enjoyed the experience of working with Eric.

I am indebted to Tom Mitchell, Alex Hauptmann, and Kristen Grauman for serv-
ing on my thesis committee and giving me helpful suggestions. I benefitted greatly
from Tom’s book and other publications, and his insightful suggestions and com-
ments. Alex has also served on my Data Analysis Project committee, and I am truly
grateful for his help on my research for both DAP and this thesis. Kristen’s early
work on unusual event detection is the motivation for analyzing video data in this
thesis, and I am indebted to that. I am also grateful to Li Fei-Fei, for her truly helpful
advices and suggestions in several projects we collaborated.

I learned a lot from former and current members of the SAILING Lab, and I owe
much for the wonderful research comments they provided. I want to specially thank
Gunhee Kim, Bin Shu, and Pengtao Xie for their expertise and help on projects.

I am grateful to many of CMU faculties, for their wonderful courses and talks
during my five years in CMU. Also, I would like to thank Diane Stidle, Michelle
Martin, Mallory Deptola, Sharon Cavlovich and the entire MLD staff for their help
over the years.

I owe much to my former advisor in Tsinghua University, Changshui Zhang, for
introducing me into the fascinating world of machine learning.

I want to thank my great friend and mentor, Victor Long, for all the inspiring dis-
cussions we have had, the time we spent together facing challenges, and for showing
me the potential of machine learning in a brand new field.

Lastly, and most importantly, I am extremely grateful to my family. I would not
be able to achieve anything without the constant encouragement and endless love
from mom and dad. For my wife, Ting, I find it extremely difficult to use words
to express my gratitude and appreciation for all the support and sacrifice during the
years. Thanks for making my life colorful.

viii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Thesis Statement . 3

2 Survey of Related Work 5
2.1 Large-Scale Image Classification . 5
2.2 Event Detection and Summarization of Videos 6

I Large Scale Image Classification 9

3 Large Scale Category Structure Aware Image Classification 13
3.1 Introduction . 13
3.2 Problem Formulation . 14

3.2.1 Hierarchical Structure among Image Classes 14
3.2.2 Logistic Regression with Category Structure 15
3.2.3 Tree-Guided Sparse Feature Coding . 16

3.3 Methods . 17
3.3.1 Reformulate the Penalty . 17
3.3.2 Accelerated Parallel Gradient Method 19

3.4 Experiments . 19
3.4.1 Image Features . 20
3.4.2 Evaluation Criteria . 20
3.4.3 Comparisons & Classification Results 21
3.4.4 Effects of λ and κ on the Performance of APPLET 22

3.5 Summary . 22

4 Sparse Output Coding for Scalable Visual Recognition 25
4.1 Introduction . 25
4.2 Coding . 27

4.2.1 Formulation . 27
4.2.2 Optimization . 30

4.3 Probabilistic Decoding . 32
4.3.1 Motivating Example . 34

ix

4.3.2 Formulation . 35
4.3.3 Decoding . 37

4.4 Experiments . 38
4.4.1 Data Sets and Feature Representations 38
4.4.2 Experiment Design and Evaluation . 39
4.4.3 Results . 40
4.4.4 Effect of Code Length . 43
4.4.5 Time Complexity . 43

4.5 Summary . 44

II Large Scale Video Understanding 45

5 Online Detection of Unusual Events in Videos via Dynamic Sparse Coding 49
5.1 Introduction . 49
5.2 Sparse Coding for Unusual Event Detection . 50

5.2.1 Video Representation . 50
5.2.2 The Proposed Method . 51
5.2.3 Online Dictionary Update . 54
5.2.4 Unusual Event Detection . 55

5.3 Experiments . 55
5.3.1 Subway Surveillance Video . 55
5.3.2 Unusual Event Detection in Youtube Videos 58

5.4 Summary . 63

6 Quasi Real-Time Summarization for Consumer Videos 65
6.1 Introduction . 65
6.2 Online Video Highlighting . 66

6.2.1 Video Segment Reconstruction . 67
6.2.2 Online Dictionary Update . 69
6.2.3 Importance of Dictionary . 70
6.2.4 Sanity Check . 71

6.3 Theoretical Analysis . 71
6.4 Experiments . 72

6.4.1 Experiment Design and Evaluation . 73
6.4.2 Results . 75
6.4.3 Time Complexity . 75

6.5 Summary . 81

7 Supervised Video Summarization: A Max Margin Approach 83
7.1 Introduction . 84
7.2 Supervised Video Summarization . 85

7.2.1 Problem Formulation . 87
7.2.2 Augmenting the Training Data . 87

x

7.2.3 Max Margin Video Summarization . 88
7.3 Optimization . 89

7.3.1 Constrained Concave-Convex Procedure 90
7.3.2 Cutting-Plane Algorithm . 91
7.3.3 Alternating Direction Method of Multipliers 92

7.4 Experiments . 94
7.4.1 Feature Representations . 94
7.4.2 Synthetic Videos . 96
7.4.3 Surveillance Videos . 96
7.4.4 Youtube Videos . 98

7.5 Summary . 102

III Conclusion 103

8 Discussion 105
8.1 Key Observations and Contributions . 105
8.2 Future Directions . 107
8.3 Conclusion . 110

Bibliography 111

xi

xii

List of Figures

3.1 (a) Image category hierarchy in ImageNet; (b) Overlapping group structure; (c)
Semantic relatedness measure between image categories. 14

3.2 Left: image classes with highest accuracy. Right: image classes with lowest
accuracy. 21

3.3 Classification results (flat error and hierarchical error) of APPLET with various
λ and κ. 23

4.1 (Best viewed in color) Motivation for probabilistic decoding: (Left). one possible
coding matrix for 5-class categorization, with red = +1, black = −1, and
green = 0; (Right). one test image from class Husky, with its codeword shown
in the bottom and Hamming distance with codewords for the 5 classes shown
to the left. For the second bit (highlighted in dash box), although the first node
(class Husky) is ignored during learning the bit predictor, it has a preference of
being colored black, rather than red. 34

4.2 Visualization of 6 bit prediction problems generated by the learned coding ma-
trix for ImageNet with L = 1000. Each row corresponds to a binary problem,
with the left panel showing categories composing the positive partition, and right
panel showing categories composing the negative partition. 42

5.1 (Best viewed in color) Flowchart of our approach. Given an input video se-
quence, events are defined using sliding windows (displayed as colored boxes on
the video frames). Within each sliding window, spatio-temporal interest points
are detected (not shown in the figure), and a dictionary is learned using previ-
ously seen video data. For a query event, reconstruction vectors using bases
in the dictionary are learned by solving a sparse coding optimization problem.
Typicality of the query event is then decided using these vectors. Finally, the
dictionary is updated with the addition of the query event. 50

5.2 Example spatio-temporal interest points detected with the method in [40]. 51

5.3 First row: usual event (leaving subway exit); second row: unusual event (entering
subway exit). From left to right: example frame and sliding window, reconstruc-
tion vectors for 3 cuboids, plot containing all 3 reconstruction vectors on the
same figure. 52

xiii

5.4 Dictionary learned using our approach for subway exit surveillance video. Each
row in the figure corresponds to a basis in the dictionary. Typical activities in
this dictionary include: walking to the left or right, walking towards the camera,
train leaving station, etc. 56

5.5 Unusual event detection in the subway exit surveillance video. WD: wrong di-
rection; LT: loitering; MISC: misc; FA: false alarm. The rectangle on the figure
marks the sliding window that results in the detection of unusual events. False
alarms are marked using green sub-window. 59

5.6 Dictionary learned using our approach for subway entrance surveillance data.
Each row in the figure corresponds to a basis in the dictionary. Typical activities
in this dictionary include: walking to the left or right, walking away from the
camera, etc. 60

5.7 Unusual event detection in the subway entrance surveillance video. WD: wrong
direction; NP: no payment; LT: loitering; II: irregular interactions; MISC: misc;
MISS: missed unusual event; FA: false alarm. 61

5.8 Unusual event detection results on 8 Youtube Videos. Frames of usual events, de-
tected unusual events and false alarms are shown in the first 8 rows. For frames
involving unusual events, red boxes on video frames represent patches that trig-
ger the alarm. The bottom row provides a zoom-in view of those patches, taken
from one frame (pointed by red arrows) per video. 62

6.1 (Left) 15 video segments; (Right) reconstruction error for each video segment. . . 71
6.2 (Best viewed in color and zoom-in.) Some frames of the summary video gener-

ated by LiveLight for a YouTube video showing police pulling over a black SUV
and making arrest (frames are organized from left to right, then top to bottom
in temporal order). From the summary video, we could see the following story-
line of the video: (1) Police car travels on the highway; (2) Police car pulls over
black SUV; (3) Police officer talks to passenger in the SUV; (4) Two police offi-
cers walk up to the SUV, and open the passenger side door of the SUV; (5) Police
officer makes arrest of a man in white shirt; (6) Police officer talks to passenger
in the SUV again; (7) Both police car and black SUV pull into highway traffic;
(8) Police car follows black SUV off the highway; (9) Both vehicles travel in
local traffic; (10) Black SUV pulls into local community. 77

6.3 (Best viewed in color and zoom-in) Some frames of the traffic surveillance video
and the video highlight generated by LiveLight. The video segments incorporated
in the video highlight are shown in the red bounding boxes: (1) A car travels from
right to left; (2) A car travels from left to right; (3) Two people push a bike from
right to left; (4) A person rides a bike from left to right. 78

6.4 (Best viewed in color and zoom-in) Some frames of the video highlight for sub-
way surveillance video. Besides showing people getting off the train and exiting
the station, the video highlight also captures suspicious behaviors. Specifically,
frames in purple bounding boxes show people walking in the wrong direction,
i.e., getting into the station through exit, and frames in green bounding boxes
show loitering near the exit. 79

xiv

6.5 (Best viewed in color and zoom-in) Some frames of the video highlight for air
show video. From the video highlight, we could see the following storyline
of the video: (1) The plane starts taking off; (2) The plane passes another plane
during taking off; (3) The plane takes off; (4) Other people watching the air show
caught on camera; (5) The plane performs various stunts, including flying side-
way, flying upside down, diving close to the ground, etc.; (6) The plane lands. It
should be noted that at the end of the video highlight, it seems that LiveLight did
not capture the process of landing. However, the reason for lacking such process
is because the original video does not have this part at all. 80

7.1 (Best viewed in color) Formulation of suervised video summarization. Within
a class of videos of similar nature (such as a collection of wedding videos as
shown in the figure), users provide the desired summaries for a subset of videos
to be used as training data. Based on such supervised information, a max margin
classifier Ψ is learned where those video segments incorporated into the user
generated summary are treated as positive examples, while other video segments
are utilized as negative examples. To automatically generate summary for unseen
video, i.e., testing data, the learned max margin classifier is applied to the testing
video, where any video segment with positive value for the decision function is
incorporated into the summary video. 85

7.2 (Best viewed in color) Augmenting the positive training examples with simulated
partial events. The 15 frames shown here represent a complete event of “cutting
wedding cake” from a wedding video. Besides, 3 partial events are also shown
using the red, blue and green boxes. It should be noted that much more partial
events are simulated in our max margin video summarization formulation, and
the simulated partial events are allowed to overlap. 88

7.3 (Up) 4 example synthetic videos (used as testing data in our experiment), each
constructed using 10 videos of different action classes performed by the same
person; (Down) Decision score for each video segment in the 4 testing videos.
Specifically, Video 1 is constructed as: {B, K, J, P, R, G, S, W, O, T}; Video 2
is constructed as {P, W, G, K, B, R, J, S, T, O}; Video 3 is constructed as {K,
P, O, S, W, B, T, R, S, J}; Video 4 is constructed as {T, B, O, K, W, J, S, P, S,
R}. As shown in the Down figure, GuideSum correctly identifies walk, bend and
one-hand-wave segments from all 4 testing videos, hence generating the correct
summary videos. Specifically, for Video-1, the segments with positive decision
scores are segment 1 (bend), segment 8 (walk), and segment 9 (one-hand-wave). . 95

7.4 (Best viewed in color and zoom-in.) Some frames of the summary video gener-
ated by GuideSum for a wedding video (frames are organized from left to right,
then top to bottom in temporal order). 100

7.5 (Best viewed in color and zoom-in.) Some frames of the summary video gener-
ated by GuideSum for a figure skating performance video (frames are organized
from left to right, then top to bottom in temporal order). 100

xv

7.6 (Best viewed in color and zoom-in.) Some frames of the summary video gener-
ated by GuideSum for a car racing video recorded by car mounted camera (frames
are organized from left to right, then top to bottom in temporal order). 101

xvi

List of Tables

1.1 Thesis outline. 3

3.1 Classification results (both flat and hierarchical errors) of various algorithms. . . 21

3.2 Example prediction results of APPLET and LR. Numbers indicate the hierarchi-
cal error of the misclassification, defined in Section 3.4.2. 22

4.1 Decoding strategies for error correcting output coding. 33

4.2 Data sets details. 38

4.3 Flat error comparison on flower, food and SUN data sets. 39

4.4 Hierarchical error comparison on flower, food and SUN data sets. 41

4.5 Classification accuracy on ImageNet (accuracy of approximate kNN is reported
by [136]). 42

4.6 Classification error (flat error) and time complexity (seconds) of SpOC with var-
ious code lengths. Tc is the time for learning coding matrix and decoding, and Tb
is the time for learning bit predictors. (1E7=1× 107) 43

4.7 Time complexity comparison (seconds). 44

5.1 Comparison of unusual event detection rate and false alarm rate on subway exit
surveillance data: GT stands for ground truth annotation; ST-MRF refers to the
method proposed in [65]. 57

5.2 Comparison of unusual event detection rate and false alarm rate on subway en-
trance surveillance data. 61

5.3 Comparison of unusual event detection rate and false alarm rate: online updat-
ing dictionary vs. fixed dictionary. The number before ’/’ is for subway exit
surveillance data, while the number after ’/’ is for entrance surveillance data. . . 62

6.1 Data set details. The first 15 videos are downloaded from YouTube, and the
last 5 videos are from surveillance cameras. Video length (Time) is measured in
minutes. CamMo stands for camera motion, and Zoom means camera zoom in/out. 73

6.2 T is the length (seconds) of summary video. LL: LiveLight; ES: evenly spaced
segments; CL: K-Means Clustering; DSVS: sparse reconstruction using original
video as basis [30]. 74

xvii

6.3 Processing time of LiveLight and competing algorithms (all time shown is in
minutes). Tvideo is the length of original video. T1 is the time spent on gen-
erating feature representations in LiveLight, and T2 is the combined time spent
on learning initial dictionary, video segment reconstruction and online dictio-
nary update. Ttotal = T1 + T2 is the total processing time of LiveLight, and
Ratio = Ttotal/Tvideo for all algorithms. 76

7.1 Length of both the original and summary videos (seconds) for 3 surveillance
videos used in experiments. 97

7.2 Accuracy comparison (%) across various algorithms on surveillance videos and
YouTube videos. 98

7.3 Length of both the original and summary videos (seconds) for 3 classes of YouTube
videos used in experiments. 99

xviii

Chapter 1

Introduction

The widespread availability of image / video capturing devices results in huge amount of visual
data. There are almost 8 billion images on Flickr, and more than 16 billion photos on Instagram,
a service started less than four years ago. Every minute, about 100 hours long of video is up-
loaded to YouTube, let alone the millions of surveillance cameras around the world recording
videos around the clock. Clearly, the sheer size of visual data is way beyond human processing
capability, and automatic analysis and understanding of these visual data is in great need.

1.1 Background and Motivation

With the ubiquitous installment of cameras on consumer electronics, such as smart phone, tablet,
various wearable gadgets such as smart watch and glasses, and the global deployment of surveil-
lance systems in space, air, sea, ground, and social media, the amount of unprocessed media
data in the form of text, images and videos is massive. The sheer size of the media data is way
beyond human processing capability, therefore computational means for automatic analysis, un-
derstanding, organization, and summarization of these data is greatly needed. In recent years,
machine learning technologies such as topic models, latent space analysis [139], (e.g., Principal
component analysis (PCA) [125], latent semantic indexing (LSI) [32], latent Dirichlet allocation
(LDA) [16], Sparse Coding [77]), have led to a number of breakthroughs in automatic process-
ing of large volume of textual information, to the extent that billions of text documents can be
processed to extract trending topics and story lines [2]. However, such success is not matched in
general visual data, such as images and videos. It is fair to say that much of the content in our
multimedia universe remains “dark matter” to us.

Although machine learning technologies have been successfully used to tackle quite a few
computer vision problems, the majority of these applications are in a much smaller scale than
the real world demand.
Large-Scale Image Data. Image categorization / object recognition has been one of the most
important research problems in the computer vision community. While most previous research
on image categorization has focused on medium-scale data sets – for example, a limited number
of class labels as seen in many popular benchmark data sets, there is recently a growing con-
sensus that it is necessary to build general purpose object recognizers that are able to recognize

1

many more different classes of objects. In a modern era when prevalence of social media data
and consumer-driven problems are inspiring attentions on data sets and tasks mimicking human
intelligence in real world, a new dimension of bigness of machine learning and computer vi-
sion – big task space, merits serious attention due to a lack of scalable and robust new learning
framework to meet the present and future challenges that are crumbing the decade-old classical
approaches still in service, such as kNN or one-vs-all style classification [91]. Indeed, prob-
lems involving a massive amount of possible category labels (i.e., classes), in the order of tens
or even hundreds of thousands, in addition to the large volume of data points and features, are
easily within our reach. For example, ImageNet [35] for object recognition spans a total of 21841
classes. Similarly, TinyImage [127] contains 80 million 32×32 low resolution images, with each
image loosely labeled with one of 75062 English nouns. Clearly, these are no longer artificial
visual categorization problems created for machine learning, but instead more like a human-level
cognition problem for real world object recognition with a much bigger set of objects. A natural
way to formulate this problem is a multi-class or multi-task classification, but the seemingly stan-
dard formulation on such gigantic data set poses a completely new challenge both to computer
vision and machine learning. Unfortunately, despite the well-known advantages and recent ad-
vancements of multi-class classification techniques [6, 13, 61] in machine learning, complexity
concerns have driven most research on such super large-scale data set back to simple methods
such as nearest neighbor search [18], least square regression [48], one-vs-one or one-vs-rest ap-
proach that requires learning tens of thousands of binary classifiers [82]. With such large number
of classes, it is no surprise that classical algorithms such as one-vs-rest, one-vs-one, or kNN, of-
ten favored for their simplicity [18, 112], will be brought to their knees not only because of the
training time and storage cost they incur [68], but also because of the conceptual awkwardness
of such algorithms in massive multi-class paradigms. For example, facing 21841 classes in the
ImageNet problem, should we go ahead and build 21841 classifiers each trained for 1-vs-21840
classification? Just imagine the resultant data imbalance issue at its extreme, let alone the terrible
irregularities of the decision boundaries of such classifiers. Worse still, the number of classes can
even grow further in the future.
Large-Scale Video Data. With the widespread availability, to both consumers and organizations,
of low-cost devices capable of high-volume video recording, such as digital cameras on mobile
phones, tablets, and soon, wearable gadgets such as glasses and watches; and various surveillance
cameras and monitoring devices all over the world and in space, we are inundated with billion
hours of video footage every day potentially containing events, people, and objects of context-
dependent and time-space-sensitive interests. However, even to the creators / owners of such
data, let alone all the people who are granted access for various purposes, the contents in all
these videos remain dark matter in the data universe, because watching these recorded footage
in real-time, or even playing at 2x or 4x speed is hardly possible and enjoyable. It is no surprise
that with this increasing body of video data, which are largely left unedited and unstructured,
all information therein are like trees falling in the forest — they are nearly impossible to access
unless already been seen and indexed, an undertaking too tedious and time consuming for human,
but an ideal challenge for machine intelligence.

In this thesis, we focus on developing machine learning algorithms to directly address the
large scale of both image and video data. Specifically, we discuss how to efficiently and effec-
tively train classifiers that could differentiate tens of thousands of image classes. At the same

2

Table 1.1: Thesis outline.

Part I – Large-Scale Image Classification
1. Large Scale Category Structure Aware Image Classification [149] (Chapter 3))
2. Sparse Output Coding for Scalable Visual Recognition [144] (Chapter 4)
Part II – Large Scale Video Understanding
1. Online Detection of Unusual Events in Videos via Dynamic Sparse Coding [148] (Chapter 5)
2. Quasi Real-Time Summarization for Consumer Videos [145] (Chapter 6)
3. Supervised Video Summarization: A Max Margin Approach (Chapter 7)

time, we explore how to detect interesting events from hour-long, or even endless video streams,
such as surveillance videos, and automatically generate summaries for such large videos.

1.2 Thesis Statement
The thesis statement could be summarized into a single sentence as follows:

We aim to design machine learning algorithms to automatically analyze and
understand large-scale image and video data.

Specifically, we design algorithms to address the bigness in image categorization – not only
in the form of large number of data points and/or high-dimensional features, but also the large
task space. Our proposed algorithm scales to image collections with tens of thousands of classes.
On the other hand, we also propose algorithms to address the bigness of video stream, with hours
in temporal length, or even endless, and automatically distill such videos to identify interesting
events and summarize its contents.

Consequently, this dissertation consists of two parts: (i) large scale image classification
(Part I), (ii) large scale video understanding, with emphasis on unusual event detection, unsu-
pervised video highlighting and supervised video summarization (Part II). Specifically, many
vision tasks require a multi-class classifier to discriminate multiple categories, on the order of
hundreds or thousands. Hence, Part I proposes algorithms for large scale image classification,
that efficiently learns classifiers for image collections containing tens of thousands of classes.
Part II focuses on understanding temporally long or even endless videos, by identifying interest-
ing or unusual events automatically from any video stream without the requirement of human
definition on normality or abnormality, automatically generating short trailer videos for unstruc-
tured and unedited videos, and understanding user preference through annotation on videos of
similar nature for personalized and supervised video summarization.

Table 1.1 summarizes the outline of this thesis. In order to achieve the proposed thesis state-
ment, we have completed the following projects.

Large Scale Image Classification (Part I). The main objective of the algorithms proposed in
this part is to address the bigness in categorizing large collection of images, by using information
from not only the images themselves, but also the hierarchical structure among image classes,
usually available for large scale image collection.

3

• (Chapter 3) We propose a Map-Reduce based algorithm to effectively exploit hierarchical
structure among image classes, for efficient and accurate image classification with large
number of training images, features and classes.

• (Chapter 4)We present a fast and accurate algorithm for image categorization, scalable to
problems with tens of thousands of classes, by turning high-cardinality multi-class catego-
rization into a bit-by-bit decoding problem.

Large Scale Video Understanding (Part II). The goal of the algorithms proposed in this part
is to automatically identify the interesting, unusual, salient portions of temporally long or even
endless videos, such that the computationally expensive downstream processing such as activity
recognition, object recognition, various detection tasks could focus on only small fraction of the
original video, and achieve fast understanding of long videos.
• (Chapter 5) We develop an online algorithm to automatically detect unusual events within

streaming or archival video, capable of handling long or even endless video streams, and
capturing potential concept drift in videos.

• (Chapter 6) We extend the above unusual event detection algorithm, and develop a sum-
marization algorithm that automatically compiles the most salient and informative portion
of the video data for users, by automatically scanning through video stream, in an online
fashion, to remove repetitive and uninteresting contents.

• (Chapter 7) We propose a max margin learning framework for supervised video summa-
rization, where users are asked to generate summaries for a subset of a class of videos of
similar nature. Given such manually generated summaries, our algorithm learns the pre-
ferred storyline within the given class of videos, and automatically generate summaries for
the rest of videos in the class, capturing the similar storyline in those manually summarized
videos.

Most chapters of this thesis have been published in [144, 145, 146, 147, 148, 149].

4

Chapter 2

Survey of Related Work

In this chapter, we review previous works that are related to this thesis. Specifically, we fo-
cus on the following two main directions: large-scale image classification, event detection and
summarization for video streams.

2.1 Large-Scale Image Classification

Hierarchical classification: Facing large task space, one possible alternative that is attempted
but still not popular is hierarchical classification (HC) [9, 11, 12, 22, 33, 38, 67, 151], which in
principle can reduce the number of classification decisions to O(logK), where K is the number
of leaf classes. However, HC faces remarkable difficulty in practice for large scale problems be-
cause of a number of undesirable intrinsic properties, such as sensitivity to reliability of near-root
classifiers, error propagation along the tree path, over-heterogeneity of training data for near-root
super classes, etc. Weighing the above issues with hierarchical classification, [50] introduced re-
laxed tree hierarchy, where a class can appear on both left child and right child of a node, with
the ability to at least partially avoid error propagation. However, allowing a class to appear on
both child nodes increases the computational complexity of the tree classifier. Moreover, [50]
learns the relaxed tree structure and classifiers in a unified optimization framework, via alter-
nating optimization. The fact that [50] needs to train classifiers multiple times in alternating
optimization, renders it rather expensive computationally, especially for large-scale classifica-
tion with big task space. Clearly, massive multi-class classification with the number of classes
approaching or even surpassing human cognitive capability is an important yet under-addressed
research problem, and requires new, out-of-box rethinking of classical approaches and more ef-
fective yet simple alternatives (we emphasize simplicity as for massive multi-class problems, any
computationally intense methods would immediately fall out of favor by practitioners).

Label embedding: Another line of research related to this thesis is label embedding [59,
134, 136, 143], where each class is represented by a prototype vector in some subspace, into
which all training data points are also projected. The projection is optimized such that data
points are mapped close to their corresponding class prototype. Classification is then carried out
using nearest neighbor search in the subspace. Similar to the idea of label embedding, semantic
output codes [97] learns two projections which utilize a knowledge base of semantic properties

5

of label set to extrapolate to novel classes, where the first projection maps raw-input space into a
semantic space, and then the second projection maps this semantic encoding to a class label.

Class structure aware multi-class classification: Various attempts in sharing information
across related image categories have been explored. Early approaches stem from the neural
networks, where the hidden layers are shared across different classes [23, 76]. Recent ap-
proaches transfer information across classes by regularizing the parameters of the classifiers
across classes [7, 47, 90, 96, 108, 121, 123, 126]. Common to all these approaches is that exper-
iments are always performed with relatively few classes [48]. It is unclear how these approaches
would perform on super large-scale data sets containing thousands of image categories. Some of
these approaches would encounter severe computational bottleneck when scaling up to thousands
of classes [48].

Attributes: This line of research [10, 37, 46, 69, 70, 81, 101, 110, 128, 131] employs attribute
descriptors, mid-level semantic visual concepts such as “short”, “furry”, “leg”, etc., which are
shareable across categories, to encode categorical information as image features. Each attribute
could be response map of binary classifiers, and the object recognition task is carried out by
utilizing multiple attributes as image features for training classifier. Specifically, the Meta-Class
algorithm [10] employs label tree learning [9] to learn meta-classes, which are set of classes
that can be easily separated from others. Meta-Class algorithm could be seen as generalization
of one-vs-rest, where instead of using only one class as positive data, it selects a set of classes
called Meta-Class as positive data in learning binary classifiers.

Image feature coding: Very recently, we have seen attempts in large-scale visual recognition
through feature coding [75, 82, 103]. These approaches [75, 82, 103] focus on designing high-
dimensional feature representation for images, where the classifier is trained using conventional
one-vs-rest approach. Our proposed work focuses on learning multi-class classifiers and serves as
an important complement to this line of research, in the sense that we could very easily combine
our classification method with feature representations learned in [75, 82, 103] to yield even better
results.

2.2 Event Detection and Summarization of Videos
Unusual event detection: Several attempts have been proposed in the literature on unsupervised
unusual event detection in videos [1, 17, 54, 80, 133, 150]. Specifically, [54, 60, 120] studies
the problem using tracking trajectories. However, even with the recent advances in tracking
techniques, reliably tracking an object in a crowded video is still a very challenging research
problem. Clustering methods [55, 150] have also been applied to detect unusual events, where the
detection is carried out by finding spatially isolated clusters. The fact that these methods only run
in batch mode severely limits their applicability. [1] proposes a simple yet effective approach that
measures typical flow directions and speeds on a grid in the video frame to detect unusual events.
This algorithm is good for detecting simple events such as moving in the wrong direction. [17]
proposes a database indexing algorithm, where the problem is formulated as composing the
new observed video data using spatio-temporal patches extracted from previous visual examples.
Regions in the query video that can be composed using large contiguous chunks of data from the
example database are considered normal. Although this algorithm shows good performance in

6

discriminating complex motions, it faces scalability issues as its time and memory complexity
is linear in the size of the example database. Finally, [65] utilizes a space-time Markov random
field to detect unusual events, where an MRF model is built for usual events and those events that
could not be described with the learned model is considered as unusual.

Video Summarization: Previous research on video summarization and abstraction has mainly
focused on edited videos, e.g., movies, news, and sports, which are highly structured [94, 129].
For example, a movie could be naturally divided into scenes, each formed by one or more shots
taken place at the same site, and each shot is further composed of frames with smooth and contin-
uous motions. However, consumer generated videos and surveillance videos lack such structure,
often rendering previous research not directly applicable.

Key frame based methods compose video summary as a collection of salient images (key
frames) picked from the original video. Various strategies haven been studied, including shot
boundary detection [41], color histogram [141], motion stability [137, 141], clustering [56],
curve splitting [34], and frame self-expressiveness [44]. However, isolated and uncorrelated still
images, without smooth temporal continuation, are not best suited to help the viewer understand
the original video. Moreover, [78] proposes a saliency based method, which trains a linear re-
gression model to predict importance score for each frame in egocentric videos [78]. However,
special features designed in [78] limit its applicability only to videos generated by wearable
cameras.

Besides picking frames from the original video, methods creating new image not present
in the original video have also been studied [4, 24, 52, 83, 106, 111, 117], where a panoramic
image is generated from a few consecutive frames having some important content. However,
the number of consecutive frames from original video used to construct such panoramic image
is limited by occlusion between objects from different frames. Consequently, these approaches
generally assume short clips with few objects.

Finally, summaries composed by a collection of video segments, have been studied for edited
videos. Specifically, [104] used scene boundary detection, dialogue analysis, and color histogram
to produce trailer for a feature film. [5] and [79] extracted important segments from sports and
news programs utilizing special characteristics of these videos, including fixed scene structures,
dominant locations, and backgrounds. Moreover, [122] and [118] utilized closed caption and
speech recognition to transform video summarization into a text summarization problem and
generated summaries using natural language processing techniques. However, the large body of
consumer generated videos and surveillance videos usually have no such special structure, nor
audio information at all.

Event Recognition: Another line of research related to this thesis is activity / event recog-
nition [53, 58, 71, 87, 95, 100, 114], such as recognizing the event of bride walking down the
aisle in wedding videos. However, in activity recognition, recognizing each unique type of ac-
tivity is treated as a separate problem, in the sense that each activity type requires a separate
set of training data, and the learning procedure aims to obtain classifier that recognizes only the
specific activity. On the other hand, in our supervised video summarization formulation, the
manually generated summary video does not differentiate different types of events. In particu-
lar, the provided summary video only indicates which portions of the original video should be
incorporated into the summary, without specific information on the event type for each segment
included in the summary. Moreover, our supervised video summarization formulation does not

7

require knowledge on the number of unique events, which is always assumed available in activity
recognition literature.

8

Part I

Large Scale Image Classification

9

Part I Large Scale Image Classification

In this part, we discuss classification methods for image collections with large numbers of
classes, huge amounts of training images, and high dimensional feature representation for each
image. Specifically, we focus on both accuracy and scalability of learning algorithms for such
large image collections.

This part consists of two chapters. First, we observe that one key characteristic for large scale
image classification is the availability of hierarchical structure among different image classes, re-
sembling how human cognitive system stores visual knowledge. Specifically, image classes in
such problems are rarely organized in a flat fashion, but instead with a taxonomical hierarchical
structure, such as a tree or DAG. This hierarchical structure could either stem from available
lexical database of English nouns, such as WordNet, or obtained through structure learning algo-
rithms [9, 38, 50, 113, 151]. This chapter studies the problem of how to effectively utilize such
hierarchical structure among image classes, for efficient and accurate image classification with
large number of training images, features and classes.

Second, we investigate even larger scale image classification problems, where the number
of image classes in the collection could reach the scale of tens of thousands or even more. Our
proposed approach is based on the error correcting output coding framework, where the opti-
mal coding matrix is learned through a sparsity constrained optimization problem, followed by
carefully designed probabilistic decoding to assign labels to testing images. The algorithm dis-
cussed in this chapter is a principled way for large-scale multi-class classification, by turning
high-cardinality multi-class categorization into a bit-by-bit decoding problem. We have shown
in experiments that this method scales up to image collections with tens of thousands of classes.

11

12

Chapter 3

Large Scale Category Structure Aware
Image Classification

One key characteristic for image classification with a large number of categories is the hierar-
chical structure among different image classes, resembling how human cognitive system stores
visual knowledge. Specifically, image classes in such problems are rarely organized in a flat
fashion, but instead with a taxonomical hierarchical structure, such as a tree or DAG. This hi-
erarchical structure could either stem from available lexical database of English nouns, such as
WordNet, or obtained through structure learning algorithms [9, 38, 50, 113, 151]. In this chap-
ter, we study the problem of how to effectively utilize such hierarchical structure among image
classes, for efficient and accurate image classification with large number of training images,
features and classes.

3.1 Introduction

Figure 3.1(a) shows an example of hierarchical structure among image classes, organized as a
tree, where leaf nodes are individual categories, and each internal node denotes the cluster of
categories corresponding to the leaf nodes in the subtree rooted at the given node. As human
cognition of complex visual world benefits from underlying semantic relationships between ob-
ject classes, we believe a machine learning system can and should leverage such information as
well for better performance. Specifically, we argue that instead of formulating the recognition
task as a flat classification problem, where each category is treated equally and independently, a
better strategy is to utilize the rich information residing in the concept hierarchy among image
categories to train a system that couples all different recognition tasks over different categories.

To the best of our knowledge, our attempt in this chapter represents an initial foray to system-
atically utilizing information residing in concept hierarchy, for multi-way classification on super
large-scale image data sets. More precisely, our approach utilizes the concept hierarchy in two as-
pects: loss function and feature selection. First, the loss function used in our formulation weighs
differentially for different misclassification outcomes: misclassifying an image to a category that
is close to its true identity should receive less penalty than misclassifying it to a totally unrelated
one. Second, in an image classification problem with thousands of categories, it is not realistic

13

(a) (b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Figure 3.1: (a) Image category hierarchy in ImageNet; (b) Overlapping group structure; (c)
Semantic relatedness measure between image categories.

to assume that all of the classes share the same set of relevant features. That is to say, a subset of
highly related categories may share a common set of relevant features, whereas weakly related
categories are less likely to be affected by the same features. Consequently, the image catego-
rization problem is formulated as augmented logistic regression with overlapping-group-lasso
regularization. The corresponding optimization problem involves a non-smooth convex objec-
tive function represented as summation over all training examples. To solve this optimization
problem, we introduce the Accelerated Parallel ProximaL gradiEnT (APPLET) method, which
tackles the non-smoothness of overlapping-group-lasso penalty via proximal gradient [27, 62],
and the huge number of training examples by Map-Reduce parallel computing [29]. Therefore,
the contributions made in this chapter are: (1) We incorporate the semantic relationships be-
tween object classes, into an augmented multi-class logistic regression formulation, regularized
by the overlapping-group-lasso penalty. The sheer size of the image data set that our formulation
is designed to tackle singles out our work from previous attempts on multi-class classification,
or transfer learning. (2) We propose a proximal gradient based method for solving the result-
ing non-smooth optimization problem, where the super large scale of the problem is tackled by
map-reduce parallel computation.

3.2 Problem Formulation

In this section, we describe the detailed formulation of our proposed category structure aware
image classification, where hierarchical structure among image classes is effectively utilized in
loss function definition and feature selection.

3.2.1 Hierarchical Structure among Image Classes

We will use the hierarchical structure in ImageNet, stemmed from WordNet, as an example.
However, it should be noted that our proposed approach could be applied to any tree structure
among image classes. Specifically, image categories in ImageNet are interlinked by several types
of relations, with the “IS-A” relation being the most comprehensive and useful [36], resulting in

14

a tree hierarchy over image categories. For example, the ’husky’ category follows a path in the
tree composed of ’working dog’, ’dog’, ’canine’, etc. In this work, we use the distance between
two nodes in the tree to define the difference between the two corresponding image categories.
Consequently, in the category hierarchy in ImageNet, each internal node near the bottom of the
tree shows that the image categories of its subtree are highly correlated, whereas the internal
node near the root represents relatively weaker correlations among the categories in its subtree.

The class hierarchy provides a measure of relatedness between image classes. Misclassifying
an image to a category that is close to its true identity should receive less penalty than misclassi-
fying it to a totally unrelated one. For example, although horses are not exactly ponies, we expect
the loss for classifying a “pony” as a “horse” to be lower than classifying it as a “car”. Instead
of using 0-1 loss as in conventional image categorization, which treats image categories equally
and independently, our approach utilizes a loss function that is aware of the category hierarchy.

Moreover, highly related image categories are more likely to share common visual patterns.
For example, in Figure 3.1(a), husky and shepherd share similar object shape and texture. Con-
sequently, recognition of these related categories are more likely to be affected by the same
features. In this work, we regularize the sparsity pattern of weight vectors for related categories.
This is equivalent to learning a low dimensional representation that is shared across multiple
related categories.

3.2.2 Logistic Regression with Category Structure

Given N training images, each represented as a J-dimensional input vector and belonging to one
of the K categories. Let X denote the J × N input matrix, where each column corresponds to
an instance. Similarly, let Y denote the N × 1 output vector, where each element corresponds
to the label for an image. Multi-class logistic regression defines a weight vector wk for each
class k ∈ {1, . . . , K} and classifies example x by y∗ = arg maxy∈{1,...,k} P (y|x,W), with the
conditional likelihood computed as

P (yi|xi,W) =
exp(wT

yi
xi)∑

k exp(wT
k xi)

(3.1)

The optimal weight vectors W∗ = [w∗1, . . . ,w
∗
K] are

W∗ = arg min
W

(
−

N∑
i=1

logP (yi|xi,W) + λΩ(W)

)
(3.2)

where Ω(W) is a regularization term defined on W and λ is the regularization parameter.

Augmented Soft-Max Loss Function

Using the tree hierarchy on image categories, we could calculate a semantic relatedness (a.k.a.
similarity) matrix S ∈ RK×K over all categories, where Sij measures the semantic relatedness of
class i and j. Using the semantic relatedness measure, the likelihood of xi belonging to category

15

yi could be modified as follows

P̂ (yi|xi,W) ∝
K∑
r=1

Syi,rP (r|xi,W) ∝
K∑
r=1

Syi,r
exp(wT

r xi)∑
k exp(wT

k xi)
∝

K∑
r=1

Syi,r exp(wT
r xi) (3.3)

Since
∑K

r=1 P̂ (r|xi,W) = 1, consequently,

P̂ (yi|xi,W) =

∑K
r=1 Syi,r exp(wT

r xi)∑K
r=1

∑K
k=1 Sk,r exp(wT

r xi)
(3.4)

For the special case where the semantic relatedness matrix S is an identity matrix, meaning each
class is only related to itself, Eq. (3.4) simplifies to Eq. (3.1). Using this modified softmax loss
function, the image categorization problem could be formulated as

min
W

N∑
i=1

[
log

(∑
r

∑
k

Sk,r exp(wT
r xi)

)
− log

(∑
r

Syi,r exp(wT
r xi)

)]
+ λΩ(W) (3.5)

Semantic Relatedness Matrix

To compute the semantic relatedness matrix S in the above formulation, we first define a metric
measuring the semantic distance between image categories. A simple way to compute semantic
distance in a structure such as the one provided by ImageNet is to utilize the paths connecting
the two corresponding nodes to the root node. Following [21] we define the semantic affinity Qij

between class i and class j as the number of nodes shared by their two parent branches, divided
by the length of the longest of the two branches

Qij =intersect(Pi, Pj)/max(length(Pi), length(Pj)) (3.6)

where Pi is the path from root node to node i and intersect(Pi, Pj) counts nodes shared by two
paths Pi and Pj . We then construct the semantic relatedness matrix

S = exp(−κ(E−Q)) (3.7)

where κ is a constant controlling the decay factor of semantic relatedness with respect to seman-
tic distance, and E = eKe>K is the K × K all-one matrix. Figure 3.1(c) shows the semantic
relatedness matrix computed with κ = 5.

3.2.3 Tree-Guided Sparse Feature Coding
In ImageNet, image categories are grouped at multiple granularity as a tree hierarchy. As illus-
trated in Section 3.2.1, the image categories in each internal node are likely to be influenced by
a common set of features. In order to achieve this type of structured sparsity at multiple levels of
the hierarchy, we utilize an overlapping-group-lasso penalty recently proposed in [66] for genetic
association mapping problem, where the goal is to identify a small number of SNPs (inputs) out
of millions of SNPs that influence phenotypes (outputs) such as gene expression measurements.

16

Specifically, given the tree hierarchy T = (V , E) over image categories, each node v ∈ V
of tree T is associated with group Gv, composed of all leaf nodes in the subtree rooted at v, as
illustrated in Figure 3.1(b). Clearly, each group Gv is a subset of the power set of {1, . . . , K}.
Given these groups G = {Gv}v∈V of categories, we define the following overlapping-group-lasso
penalty [66]:

Ω(W) =
∑
j

∑
v∈V

γv||wjGv ||2 (3.8)

where wjGv is the vector of weight coefficients {wjk, k ∈ Gv} for input j ∈ {1, . . . , J} asso-
ciated with categories in Gv, and each group Gv is associated with weight γv that reflects the
strength of correlation within the group. It should be noted that we do not require groups in G
to be mutually exclusive, and consequently, each leaf node would belong to multiple groups at
various granularity.

Inserting the above overlapping-group-lasso penalty into (3.5), we formulate the category
structure aware image categorization as follows:

min
W

N∑
i=1

[
log

(∑
r

∑
k

Sk,r exp(wT
r xi)

)
−log

(∑
r

Syi,r exp(wT
r xi)

)]
+λ
∑
j

∑
v∈V

γv||wj
Gv
||2 (3.9)

3.3 Methods
The challenge in solving problem (3.9) lies in two facts: the non-separability of W in the non-
smooth overlapping-group-lasso penalty Ω(W), and the huge number of training examples. Con-
ventionally, to handle the non-smoothness of Ω(W), we could reformulate the problem as either
second order cone programming (SOCP) or quadratic programming (QP) [124]. However, the
state-of-the-art approach for solving SOCP and QP based on interior point method requires solv-
ing a Newton system to find search direction, and is computationally very expensive even for
moderate-sized problems. Moreover, due to the huge number of samples in the training set,
off-the-shelf optimization solvers are too slow to be used.

In this work, we adopt a proximal-gradient method to handle the non-smoothness of Ω(W).
Specifically, we first reformulate the overlapping-group-lasso penalty Ω(W) into a max problem
over auxiliary variables using dual norm, and then introduce its smooth lower bound [27, 62].
Instead of optimizing the original non-smooth penalty, we run the accelerated gradient descent
method [92] under a Map-Reduce framework [29] to optimize the smooth lower bound. The
proposed approach enjoys a fast convergence rate and low per-iteration complexity.

3.3.1 Reformulate the Penalty
For referring convenience, we number the elements in the set G = {Gv}v∈V as G = {g1, . . . ,g|G|}
according to an arbitrary order, where |G| denotes the total number of elements in G. For each in-
put j and group gi associated with wjgi

, we introduce a vector of auxiliary variables αjgi
∈ R|gi|.

Since the dual norm of L2 norm is also an L2 norm, we can reformulate ||wjgi
||2 as

||wjgi
||2 = max

||αjgi
||2≤1

αT
jgi

wjgi
(3.10)

17

Moreover, define the following
∑

g∈G |g| × J matrix

A =

 α1g1 . . . αJg1

...
α1g|G| . . . αJg|G|

 (3.11)

in domain
O = {A| ||αjgi

||2 ≤ 1,∀j ∈ {1, . . . , J},gi ∈ G} (3.12)

Following [27], the overlapping-group-lasso penalty in (3.9) can be equivalently reformulated as

Ω(W) =
∑
j

∑
i

γi max
||αjgi

||2≤1
αT
jgi

wjgi
= max

A∈O
〈CWT ,A〉 (3.13)

where i = 1, . . . , |G|, j = 1, . . . , J , C ∈ R
∑

g∈G |g|×K , and 〈U,V〉 = Tr(UTV) is the inner
product of two matrices. Moreover, the matrix C is defined with rows indexed by (s,gi) such
that s ∈ gi and i ∈ {1, . . . , |G|}, columns indexed by k ∈ {1, . . . , K}, and the value of the
element at row (s,gi) and column k set to C(s,gi),k = γi if s = k and 0 otherwise.

After the above reformulation, (3.13) is still a non-smooth function of W, and this makes the
optimization challenging. To tackle this problem, we introduce an auxiliary function [27, 62] to
construct a smooth approximation of (3.13). Specifically, our smooth approximation function is
defined as:

fµ(W) = max
A∈O
〈CWT ,A〉 − µd(A) (3.14)

where µ is the positive smoothness parameter and d(A) is an arbitrary smooth strongly-convex
function defined on O. The original penalty term can be viewed as fµ(W) with µ = 0. Since
our algorithm will utilize the optimal solution W∗ to (3.14), we choose d(A) = 1

2
||A||2F so that

we can obtain the closed form solution for A∗. Clearly, fµ(W) is a lower bound of f0(W), with
the gap computed as

D = max
A∈O

d(A) = max
A∈O

1

2
||A||2F =

1

2
J |G| (3.15)

Theorem 1 For any µ > 0, fµ(W) is a convex and continuously differentiable function in W,
and the gradient of fµ(W) can be computed as ∇fµ(W) = A∗TC, where A∗ is the optimal
solution to (3.14).
According to Theorem 1, fµ(W) is a smooth function for any µ > 0, with a simple form of
gradient and can be viewed as a smooth approximation of f0(W) with the maximum gap of
µD. Finally, the optimal solution A∗ of (3.14) is composed of α∗jgi

= S(
γiwjgi

µ
), where S is the

shrinkage operator defined as follows:

S(u) =

{ u
||u||2 , ||u||2 > 1

u, ||u||2 ≤ 1
(3.16)

18

3.3.2 Accelerated Parallel Gradient Method
Given the smooth approximation of Ω(W) in (3.14) and the corresponding gradient presented
in Theorem 1, we could apply gradient descent method to solve the problem. Specifically, we
replace the overlapping-group-lasso penalty in (3.9) with its smooth approximation fµ(W) to
obtain the following optimization problem

min
W

f̃(W) = g(W) + λfµ(W) (3.17)

where

g(W) =
N∑
i=1

[
log

(∑
r

∑
k

Sk,r exp(wT
r xi)

)
− log

(∑
r

Syi,r exp(wT
r xi)

)]
(3.18)

is the augmented logistic regression loss function. The gradient of g(W) w.r.t. wk could be
calculated as follows

∂g(W)

∂wk

=
N∑
i=1

xi

[∑
q Sk,q exp(wT

k xi)∑
r

∑
q Sr,q exp(wT

r xi)
− Syi,k exp(wT

k xi)∑
r Syi,r exp(wT

r xi)

]
(3.19)

Therefore, the gradient of g(W) w.r.t. to W could be computed as

∇g(W) = [
∂g(W)

∂w1

, . . . ,
∂g(W)

∂wK

] (3.20)

According to Theorem 1, the gradient of f̃(W) is given by

∇f̃(W) = ∇g(W) + λA∗TC (3.21)

Although f̃(W) is a smooth function of W, it is represented as a summation over all train-
ing samples. Consequently, ∇f̃(W) could only be computed by summing over all N training
samples. Due to the huge number of samples in the training set, we adopt a Map-Reduce paral-
lel framework [29] to compute∇g(W) as shown in Eq.(3.19). While standard gradient schemes
have a slow convergence rate, they can often be accelerated. This stems from the pioneering work
of Nesterov in [92], which is a deterministic algorithm for smooth optimization. In this paper,
we adopt this accelerated gradient method, and the whole algorithm is shown in Algorithm 1.

3.4 Experiments
In this section, we test the performance of APPLET on a subset of ImageNet used in ILSVRC10,
containing 1.2 million images from 1000 categories, divided into distinct portions for training,
validation and test. The number of images for each category ranges from 668 to 3047. We use
the provided validation set for parameter selection and the final results are obtained on the test
set.

19

Algorithm 1 Accelerated Parallel ProximaL gradiEnT method (APPLET)
Input: X, Y,C, desired accuracy ε, step parameters {ηt}
Initialization: B0 = 0
for t = 1, 2, . . ., until convergence do

Map-step: Distribute data to M cores {X1, . . . ,XM}, compute in parallel ∇gm(Bt−1) for
Xm
Reduce-step:
(1) ∇f̃(Bt−1) =

∑M
m=1∇gm(Bt−1) + λA∗TC

(2) Wt = Bt−1 − ηt∇f̃(Bt−1)
(3) Bt = Wt + t−1

t+2
(Wt −Wt−1)

end for
Output: Ŵ = Wt

Before presenting the classification results, we’d like to make clear that the goal and contri-
butions of this work is different from the aforementioned approaches proposed in ILSVRC10.
Those approaches were designed to enter a performance competition, where heavy feature engi-
neering and post processing (such as ad hoc voting for multiple algorithms) were used to achieve
high accuracy. Our work, on the other hand, looks at this problem from a different angle, fo-
cusing on principled methodology that explores the benefit of utilizing class structure in image
categorization and proposing a model and related optimization technique to properly incorporate
such information. We did not use the full scope of all the features, and post processing schemes
to boost our classification results as the ILSVRC10 competition teams did. Therefore we argue
that the results of our work is not directly comparable with the ILSVRC10 competitions.

3.4.1 Image Features
Each image is resized to have a max side length of 300 pixels. SIFT [84] descriptors are com-
puted on 20× 20 overlapping patches with a spacing of 10 pixels. Images are further downsized
to 1

2
of the side length and then 1

4
of the side length, and more descriptors are computed. We then

perform k-means clustering on a random subset of 10 million SIFT descriptors to form a visual
vocabulary of 1000 visual words. Using this learned vocabulary, we employ Locality-constrained
Linear Coding (LLC) [132], which has shown state-of-the-art performance on several benchmark
data sets, to construct a vector representation for each image. Finally, a single feature vector is
computed for each image using max pooling on a spatial pyramid [74]. The pooled features from
various locations and scales are then concatenated to form a spatial pyramid representation of
the image. Consequently, each image is represented as a vector in a 21,000 dimensional space.

3.4.2 Evaluation Criteria
We adopt the same performance measures used in ILSVRC10. Specifically, for every image, each
tested algorithm will produce a list of 5 object categories in the descending order of confidence.
Performance is measured using the top-n error rate, n = 1, . . . , 5 in our case, and two error
measures are reported. The first is a flat error which equals 1 if the true class is not within the

20

n most confident predictions, and 0 otherwise. The second is a hierarchical error, reporting the
minimum height of the lowest common ancestors between true and predicted classes. For each
of the above two criteria, the overall error score for an algorithm is the average error over all test
images.

Table 3.1: Classification results (both flat and hierarchical errors) of various algorithms.

Flat Error Hierarchical Error
Algorithm Top 1 Top 2 Top 3 Top 4 Top 5 Top 1 Top 2 Top 3 Top 4 Top 5

LR 0.797 0.726 0.678 0.639 0.607 8.727 6.974 5.997 5.355 4.854
ALR 0.796 0.723 0.668 0.624 0.587 8.259 6.234 5.061 4.269 3.659

GroupLR 0.786 0.699 0.642 0.600 0.568 7.620 5.460 4.322 3.624 3.156
APPLET 0.779 0.698 0.634 0.589 0.565 7.208 4.985 3.798 3.166 3.012

Figure 3.2: Left: image classes with highest accuracy. Right: image classes with lowest accuracy.

3.4.3 Comparisons & Classification Results
We have conducted comprehensive performance evaluations by testing our method under differ-
ent circumstances. Specifically, to better understand the effect of augmenting logistic regression
with semantic relatedness and use of overlapping-group-lasso penalty to enforce group level fea-
ture selection, we study the model adding only augmented logistic regression loss and adding
only overlapping-group-lasso penalty separately, and compare with the APPLET method. We
use the conventional L2 regularized logistic regression [14] as baseline. The algorithms that
we evaluated are listed below: (1)L2 regularized logistic regression (LR) [14]; (2) Augmented
logistic regression withL2 regularization (ALR); (3) Logistic regression with overlapping-group-
lasso regularization (GroupLR); (4) Augmented logistic regression with overlapping-group-lasso
regularization (APPLET).

Table 3.1 presents the classification results of various algorithms. According to the classifica-
tion results, we could clearly see the advantage of APPLET over conventional logistic regression,
especially on the top-5 error rate. Specifically, comparing the top-5 error rate, APPLET outper-
forms LR by a margin of 0.04 on flat loss, and a margin of 1.84 on hierarchical loss. It should
be noted that hierarchical error is measured by the height of the lowest common ancestor in the
hierarchy, and moving up a level can more than double the number of descendants. Table 3.1
also compares the performance of ALR with LR. Specifically, ALR outperforms LR slightly when
using the top-1 prediction results. However, on top-5 prediction results, ALR performs clearly
better than LR. Similar phenomenon is observed when comparing the classification results of

21

Table 3.2: Example prediction results of APPLET and LR. Numbers indicate the hierarchical
error of the misclassification, defined in Section 3.4.2.

True class laptop linden gordon setter gourd bullfrog volcano odometer earthworm
APPLET laptop(0) live oak(3) Irish setter(2) acorn(2) woodfrog(2) volcano(0) odometer(0) earthworm(0)

LR laptop(0) log wood(3) alp(11) olive(2) water snake(9) geyser(4) odometer(0) slug(8)

GroupLR with LR. Moreover, Figure 3.2 shows the image categories with highest and lowest
classification accuracy.

One key reason for introducing the augmented loss function is to ensure that the predicted
image class falls not too far from its true class on the semantic hierarchy. Results in Table 3.2
demonstrate that even though APPLET cannot guarantee to make the correct prediction on each
image, it produces labels that are closer to the true one than LR, which generates labels far from
correct ones.

As shown in Table 3.1, a systematic reduction in classification error using APPLET shows
that acknowledging semantic relationships between image classes enables the system to dis-
criminate at more informative semantic levels. Moreover, results in Table 3.2 demonstrate that
classification results of APPLET can be significantly more informative, as labeling a “bullfrog”
as “woodfrog” gives a more useful answer than “water snake”, as it is still correct at the “frog”
level.

3.4.4 Effects of λ and κ on the Performance of APPLET

We present in Figure 3.3 how categorization performance scales with λ and κ. According to Fig-
ure 3.3, APPLET achieves lowest categorization error around λ = 0.01. Moreover, the error rate
increases when λ is larger than 0.1, when excessive regularization hampers the algorithm from
differentiating semantically related categories. Similarly, APPLET achieves best performance
with κ = 5. When κ is too small, a large number of categories are mixed together, resulting in a
much higher flat loss. On the other hand, when κ ≥ 50, the semantic relatedness matrix is close
to diagonal, resulting in treating all categories independently, and categorization performance
becomes similar as LR.

3.5 Summary
The APPLET algorithm represents the first step towards efficient large scale image classification,
with large number of training images, hundreds of thousands of features for each image, as well
as thousands of different image classes. Our proposed approach is based on the observation that
image classes in such problems are rarely organized in a flat fashion, but instead with a taxo-
nomical hierarchical structure. Our formulation effectively utilizes such hierarchical structure to

22

10
−3

10
−2

10
−1

10
0

10
1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Lambda

F
la

t
E

rr
o

r

Top−1

Top−2

Top−3

Top−4

Top−5

10
−3

10
−2

10
−1

10
0

10
1

3

4

5

6

7

8

9

10

Lambda

H
ie

ra
rc

h
ic

a
l
E

rr
o
r

Top−1

Top−2

Top−3

Top−4

Top−5

0.5 5 50 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Kappa

F
la

t
E

rr
o

r

Top−1

Top−2

Top−3

Top−4

Top−5

0.5 5 50 500
3

4

5

6

7

8

9

10

Kappa

H
ie

ra
rc

h
ic

a
l
E

rr
o

r

Top−1

Top−2

Top−3

Top−4

Top−5

Figure 3.3: Classification results (flat error and hierarchical error) of APPLET with various λ
and κ.

enforce the assumption that misclassifying an image to a category that is close to its true iden-
tity should receive less penalty than misclassifying it to a totally unrelated one, and a subset of
highly related categories may share a common set of relevant features, whereas weakly related
categories are less likely to be affected by the same features. The sheer size of the problem con-
sidered here singles out our work from any previous works on multi-way classification or transfer
learning. Empirical study using 1.2 million training images from 1000 categories demonstrates
the effectiveness and promise of our proposed approach. The next step is further scaling up to
even larger concept space, with tens or even hundreds of thousands of different classes, which
we will discuss in the next chapter.

23

24

Chapter 4

Sparse Output Coding for Scalable Visual
Recognition

This chapter proposes a multi-class classification method that is both accurate and fast when fac-
ing a large number of categories, in the order of tens or even hundreds of thousands. Specifically,
we propose sparse output coding (SpOC), a principled way for large-scale multi-class classifi-
cation, by turning high-cardinality multi-class categorization into a bit-by-bit decoding problem.
Algorithmicaly, sparse output coding is composed of two steps: efficient coding matrix learning
with scalability to tens of thousands of classes, and probabilistic decoding. Empirical results
on object recognition and scene classification demonstrate the effectiveness of our proposed ap-
proach.

4.1 Introduction
For aK class problem, error correcting output coding (ECOC) [3] consists of two stages: coding
and decoding. An output code B is a matrix of size K × L over {−1, 0,+1} where each row of
B corresponds to a class y ∈ Y = {1, . . . , K}. Each column βl of B defines a partition of Y
into three disjoint sets: positive partition (+1 in βl), negative partition (−1 in βl), and ignored
classes (0 in βl). Binary learning algorithms are then used to construct bit predictor hl using
training data

Zl = {(x1, By1,l), . . . , (xm, Bym,l)} (4.1)

with Byi,l 6= 0, for l = 1, . . . , L (throughout the rest of this chapter, we use “bit predictor” to
denote the binary classifier associated with a column of the coding matrix). Clearly, classical
multi-class categorization algorithms, such as one-vs-one and one-vs-all are special cases under
the ECOC framework, with special choice of coding matrix [3]. Moreover, results in [3] suggest
that learning a coding matrix in a problem-dependent way is better than using a pre-defined one.
However, strong error-correcting ability alone does not guarantee good classification [31], since
the performance of output coding is also highly dependent on the accuracy of the individual bit
predictors. Consequently, several approaches [31, 51, 115] optimizing coding matrix and bit
predictors simultaneously have been proposed. However, the coupling of learning coding matrix
and bit predictors in a unified optimization framework is both a blessing and a curse. On the one

25

hand, it could directly assess the accuracy of each bit predictor and hence pick the coding matrix
that avoids difficult bit prediction problems; on the other hand, simultaneous optimization often
results in expensive computation, hindering these approaches from being applied to large-scale
multi-class problems. Consequently, for the sake of scalability to massive number of classes,
SpOC decouples the learning processes of code matrix and bit predictors. Therefore, the expen-
sive procedure of learning bit predictors only needs to be carried out once, instead of multiple
times in aforementioned approaches that learn code matrix and bit predictors simultaneously.
However, our proposed approach still balances error-correcting ability of the code matrix and
potential accuracy of associated bit predictors. Moreover, we also consider other properties that
could affect classification accuracy of output coding based multi-class classifier, such as corre-
lation among bit predictors, and complexity of each bit prediction problem. To the best of our
knowledge, we provide the first attempt in learning optimal code matrix that explicitly considers
multiple competing factors, and the fact that code matrix is learned without training associated
binary classifiers multiple times enables our approach applicable to massive multi-class classifi-
cation problems.

Given a test instance x, the decoding procedure finds the class y whose codeword in B
is “closest” to h(x) = (h1(x), . . . , hL(x)). For binary output coding scenario, where B ∈
{−1,+1}K×L, either Hamming distance or Euclidean distance could be adopted to measure
distance between two codewords. However, in the ternary case, where B ∈ {−1, 0,+1}K×L, the
special 0 symbol indicating ignored classes could raise problems. Specifically, previous attempts
in decoding ternary codes [45] either (1) treat “0” bits the same way as non-zero bits, or (2)
ignore those “0” bits entirely and only use non-zero bits for decoding. However, neither of the
above approaches would prove sufficient. Specifically, treating “0” bits the same way as non-zero
ones would introduce bias in decoding, since the distance increases with the number of positions
that contain the zero symbol. On the other hand, ignoring “0” bits entirely would discard great
amount of information. In our proposed framework, probabilistic decoding utilizes zero bits by
propagating labels from non-zero bits to zero ones subject to smoothness constraints, and proves
effective especially on large scale problems.

Our goal in this work is to design a multi-class classification method that is both accurate and
fast when facing a large number of categories. Specifically, we propose sparse output coding
(SpOC), which turns the original large-scale K-class classification into an L-bit code construc-
tion problem, where L = O(log(K)) and each bit can be constructed in parallel through a binary
off-the-shelf classifier; followed by a probabilistic decoding scheme to extract the class label.
Notations. Given matrix A ∈ Rm×n, we denote ‖A‖1 =

∑
i,j |Aij| as its l1 vector norm. For

square matrix A ∈ Rm×m, tr(A) is its trace. For m × n matrices A and B, we denote A � B
as their Hadamard (a.k.a., element-wise) product. For m × n matrix A and p × q matrix B, we
denote A⊗B as their Kronecker product, which is an mp× nq matrix defined as

A⊗B =

 A11B · · · A1nB
...

Am1B · · · AmnB

 (4.2)

For vector x ∈ Rn, its infinity norm is ‖x‖∞ = max{|x1|, . . . , |xn|}. Moreover, for function
f(x), its conjugate function is f ∗(y) = supx∈domf [y

>x− f(x)]. Also, ‖y‖∗ = sup‖x‖≤1 x>y is

26

the dual norm of ‖ · ‖. Finally, define sign(x) as the sign of x.

4.2 Coding

In this section, we provide details of the formulation for learning optimal code matrix for large-
scale multi-class classification, together with efficient optimization algorithm.

4.2.1 Formulation

Output coding employs a code matrix to break a potentially massive multi-class problem into a
series of binary bit predictions. Clearly, code matrix is crucial for the success of output coding,
and its suitability could be measured using several competing factors, such as error-correcting
ability, learnability of each bit predictor, and correlation between bit predictors.

As its most attractive advantage, the code matrix in output coding is usually chosen for strong
error-correcting ability. That is to say, the optimal code matrix should have maximal separation
between codewords for different classes. Besides codeword separation, since output coding is
essentially aggregating discriminative information residing in each bit, learning accurate bit pre-
dictors is also crucial for its success. However, we usually do not know whether a binary partition
can be well handled by the base bit predictor, unless a bit predictor has been learned on the par-
tition. Unfortunately, the high computational cost associated with methods optimizing coding
matrix and bit predictors simultaneously [51] renders them unfavorable in large-scale problems.
To overcome this difficulty, we propose to use the training data and structure information among
classes, to provide a measure of separability for each binary partition problem. Specifically, if
some classes are closely related but are given different codes in the l-th bit, the bit predictor hl
may not be easily learnable. However, a binary partition is more likely to be well solved if the
intra-partition similarity is large while the inter-partition similarity is small. Moreover, as output
coding predicts class label by combining information from all bits, an ideal code matrix should
have uncorrelated columns. Specifically, uncorrelated columns mean each bit predictor is focus-
ing on a unique sub-problem of the original multi-class classification, while highly correlated
columns severely limit the amount of information available at decoding. Finally, enforcing spar-
sity of the code matrix, i.e., introducing ignored classes in bit predictions, is crucial for massive
multi-class classification. In this section, we will provide details for each of the aforementioned
pieces, and formulate learning optimal code matrix as an orthogonality constrained optimization
problem.

Before presenting detailed formulation for learning code matrix, we would like to make clear
that the goal and contribution of this work is effective multi-class classification with massive
number of classes, where any complex method would fail, and simplicity prevails. As a result,
motivation for design of each piece in the optimization problem is a balance between effective-
ness and efficiency. Although there might be more sophisticated formulations of the optimization
problem, they will very likely increase computational cost, ultimately rendering the method in-
capable of handling massive multi-class classification.

27

Codeword Separation

Given an example x, an L-dimensional bit predictor h(x) = [h1(x), . . . , hL(x)] is computed.
We then predict its label y based on which row in B is “closest” to h(x). To increase tolerance of
errors occurred in bit predictions, a crucial design objective of the code matrix is to ensure that
the rows in B are separated as far from each other as possible. Hence, we propose to maximize
the distance between rows in B. Equivalently, we could minimize their inner products. Thus,
codeword correlation of B could be computed as following:

K∑
k=1

K∑
k′=1

r>k rk′ = e>K(BB>)eK = tr(B>EB) (4.3)

where tr(·) is matrix trace, r>1 , . . . , r
>
K are row vectors of code matrix B, eK ∈ RK is the all-one

vector and E = eKe>K is the K ×K all-one matrix.

Learnability of Bit Predictors

One key property of optimal code matrix is to ensure that the resulting bit prediction problems
could be accurately solved. The key motivation of our mathematical formulation is to com-
pute the following two measures using semantic relatedness matrix S (defined later in this sec-
tion) for each binary partition problem: intra-partition similarity, and inter-partition similarity.
Specifically, in each binary partition problem, both positive partition and negative partition are
composed of data points from multiple classes in the original problem. To encourage better sepa-
ration, those classes composing the positive partition should be similar to each other. The similar
argument goes for those classes composing the negative partition, but they should be dissimilar
from the former set which composes the positive partition. Specifically, separability of the l-th
binary partition problem could be measured as follows:

∑
BklBk′l>0

Skk′ −
∑

BklBk′l<0

Skk′ =
K∑
k=1

K∑
k′=1

BklBk′lSkk′ (4.4)

It should be noted that the above defined measure should subtract
∑

k Skk. However, as
∑

k Skk
is constant and will not affect optimization of B, we omit this step. Finally, learnability of all bit
predictions could be measured as

L∑
l=1

K∑
k=1

K∑
k′=1

BklBk′lSkk′=
L∑
l=1

e>K
[
βlβ

>
l �S

]
eK =e>K

[
BB>�S

]
eK = tr(BB>S)= tr(B>SB) (4.5)

where � is Hadamard (a.k.a., element-wise) product of two matrices, βl is the l-th column of B,
and we have used the fact that BB> =

∑
l βlβ

>
l and e>(A�B)e = tr(AB).

Semantic Relatedness Matrix: S measures similarity between classes, using training data
and structure information among classes. LetXi = {X(i)

1 , . . . , X
(i)
|Xi|} andXj = {X(j)

1 , . . . , X
(j)
|Xj |}

be two classes from the multi-class problem. Several approaches have been proposed to measure
similarity/distance between them, such as Hausdorff distance, match kernel [57, 98], divergence

28

between probability distributions estimated from Xi and Xj [105], or even classification accu-
racy of binary classifiers trained to separate the classes [9]. In this work, we use sum match
kernel [57], and define data similarity between Xi and Xj as

SDij =
1

|Xi|
1

|Xj|

|Xi|∑
p=1

|Xj |∑
q=1

KD(X(i)
p , X(j)

q) (4.6)

where superscript D indicates that the similarity is estimated from data (in comparison to the
similarity estimated from class structure discussed later), KD is a Mercer kernel and in this work
we use linear kernel.

Moreover, classes in massive multi-class problems are rarely organized in a flat fashion, but
instead with a taxonomical structure [22, 35], such as a tree. Besides, algorithms for learning
class structure have also been proposed [9, 151], although this is beyond the scope of this work.
Given the taxonomical structure, we define structural affinity Aij between class i and class j the
same way as in Eq. (3.6), i.e.,

Aij =intersect(Pi, Pj)/max(length(Pi), length(Pj)) (4.7)

where Pi is the path from root node to node i and intersect(Pi, Pj) counts nodes shared by two
paths Pi and Pj . We then construct structural similarity matrix

SS = exp(−κ(E−A)) (4.8)

where κ is a constant controlling the decay factor. It should be noted that although we use class
structure to define similarity, the goal of this work is not to propose yet another hierarchical
classifier. In cases without such hierarchy, other ways of defining similarity between classes
suffice as well (for example, we could simply use SD only). Finally, semantic relatedness matrix
S is the weighted sum

S = αSD + (1− α)SS (4.9)

with α ∈ [0, 1] being the weight.

Relaxation and Bit Correlation

Theoretical work [31] shows that learning discrete code matrix directly is NP-complete. Thus,
we follow [31] and allow code matrix to take real values, followed by post-processing (taking
the sign) to get the discrete code matrix.

Moreover, the power of output coding for multi-class classification stems from the fact that
the final prediction is obtained by combining information from multiple bit predictors. Conse-
quently, the more uncorrelated the bit predictors are, the more information we have at decoding
time, and hence the better classification accuracy can be expected. As an extreme example, if all
columns of the code matrix are solving the same binary separation problem, the amount of infor-
mation available at decoding time is one single bit, and it is obviously not sufficient for accurate
multi-class classification. Therefore, to ensure maximal amount of information at decoding, an
ideal code matrix should have uncorrelated columns, such that each bit predictor is tackling a

29

unique sub-problem. To minimize bit correlation, we constrain the columns in code matrix to be
orthogonal to each other, i.e.,

B>B = I (4.10)

where I is the identity matrix.

Sparse Code Matrix

For massive multi-class problems, it is crucial to introduce ignored classes, i.e., 0 in the code
matrix [3, 116]. Otherwise, every bit predictor needs to consider the entire data. As an illustrating
example, consider the ImageNet problem. With each of the 21841 classes participating in training
a bit predictor, we will likely be facing a binary partition problem where both the positive and
negative partitions are populated with data points coming from thousands of different classes.
Clearly, learning bit predictor for such binary partition will be extremely difficult, due to the
huge intra-partition dissimilarity. Therefore, to introduce ignored classes in bit predictors, we
further regularize the l1 norm of B.

Final Formulation

Combining all pieces together, optimal code matrix should have minimal codeword correlation,
maximal learnability of bit predictors, sufficient sparsity to reduce complexity of learning bit
predictors, and orthogonal columns for uncorrelated bits. Weighing the above objectives, we
propose the following formulation for learning optimal code matrix B ∈ RK×L

min
B

1

2
tr[B>(λrE− S)B] + λ1‖B‖1 (4.11)

s.t. B>B = I (4.12)

where ‖B‖1 =
∑

i,j |Bij| is its l1 vector norm, λr and λ1 are regularization parameters.
Selecting optimal parameters: It should be noted that unlike multi-class classification problems
with small task space, the sheer size of the problem SpOC is designed to handle, makes it im-
possible to perform cross-validation or leave-one-out procedures to select optimal values for the
parameters, such as α in (4.9), λr and λ1 in (4.11). Thus, our approach for parameter selection
is based on grid search, where we try several different values for each of {α, λr, λ1} and solve
problem (4.11) for optimal coding matrix. Then we compute the relative ratio among the three
components in objective function of (4.11). Finally, the optimal parameters are selected as the
group resulting in the relative ratio closest to 1. The motivation for such strategy is to ensure that
each piece in the objective function has comparable value, such that all pieces could contribute
and compete for optimal code matrix.

4.2.2 Optimization

The difficulty of solving problem (4.11) lies in the non-smoothness of the l1 regularization on B,
and the orthogonality constraint (4.12). In this work, we employ alternating direction method of

30

multipliers (ADMM) [20] to effectively reduce the l1 regularized problem into a series of l2 reg-
ularized problems, where each problem is solved using gradient descent with Cayley transform
to preserve orthogonality constraint on B and curvilinear search for optimal step size [135].

Alternating Direction Method of Multipliers

ADMM is a simple yet powerful algorithm, which takes the form of a decomposition-coordination
procedure [20], where the solutions to small local subproblems are coordinated to find a solution
to a large global problem. ADMM is first introduced in the 1970s [49], with most of the theoret-
ical results established in the 1990s [42]. Moreover, it is shown in [20] that ADMM converges to
local optimal point for non-convex optimization problems. However, until very recently, ADMM
was not widely known in the computer vision or machine learning community. For completeness,
we provide a brief review of the algorithm (for more details, see [20]). ADMM solves problems
in the form

min
x,z

f(x) + g(z), s.t.Ax + Bz = c (4.13)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. For prob-
lem (4.13), the augmented Lagrangian is formed as follows:

Lρ(x, z,y) = f(x) + g(z) + y>(Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2

2 (4.14)

where ρ>0 is called the penalty parameter. ADMM consists of the following iterations [20]

xk+1 = arg min
x

Lρ(x, z
k,yk) (4.15)

zk+1 = arg min
z

Lρ(x
k+1, z,yk) (4.16)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c) (4.17)

To solve problem (4.11), we first reformulate it as follows

min
B,Z

1

2
tr[B>(λrE− S)B] + I(B>B = I) + λ1‖Z‖1 (4.18)

s.t. B− Z = 0 (4.19)

where I(B>B = I) = 0 if constraint B>B = I is satisfied, and I(B>B = I) = +∞ otherwise.
Then ADMM solves problem (4.18) using the following iterations:

Bk+1 = arg min
B

(
f(B) +

ρ

2
‖B− Zk + Uk‖2

2

)
(4.20)

Zk+1 = Sλ1/ρ(Bk+1 + Uk) (4.21)
Uk+1 = Uk + Bk+1 − Zk+1 (4.22)

where f(B) is defined as

f(B) = tr[B>(λrE− S)B] + I(B>B = I) (4.23)

31

and S is the soft-thresholding operator defined as

Sκ(a) = max{(1− κ/|a|)a, 0} (4.24)

In the above ADMM iterations, both Z update (7.24) and U update (7.25) are trivial to compute.
The B update in (7.23) is equivalent to the following constrained optimization

min
B

1

2
tr[B>(λrE− S)B] +

ρ

2
‖B− Zk + Uk‖2

2 (4.25)

s.t. B>B = I (4.26)

Comparing the above problem with (4.11), we can see that ADMM effectively reduces an l1
regularized problem into a series of l2 regularized problems.

Solving Problem (4.25) Using Cayley Transform and Curvilinear Search

Problem (4.25) is difficult to optimize due to the orthogonality constraint (4.26) on B. In this
work, we follow state-of-the-art technique [135], and solve problem (4.25) using gradient de-
scent, with Cayley transform to preserve the orthogonality constraint and curvilinear search for
optimal step size. In each iteration of the algorithm, given current feasible solution B, the gradi-
ent of the objective function w.r.t. B could be computed as

G = (λrE− S)B + ρ(B− Zk + Uk) (4.27)

Then a skew-symmetric matrix A is computed as

A = GB> −BG> (4.28)

The next new trial point B(τ) is determined by the Crank-Nicolson like scheme [135]

B(τ) =
(
I +

τ

2
A
)−1 (

I− τ

2
A
)

B (4.29)

It is easy to verify that
B(τ)>B(τ) = B>B (4.30)

i.e., every intermediate result is feasible, as long as initial point B satisfies the orthogonality con-
straint. For fast convergence, we adopt the Barzilai-Borwein step size in curvilinear search [135]
to find optimal τ . Moreover, since (I+ τ

2
A)−1 dominates the computation in (4.29), we apply the

Sherman-Morrison-Woodbury theorem for efficient computation of matrix inverse. Theoretical
results in [135] show the above algorithm converges to local optimal point.

Finally, we present in Algorithm 2 the method for learning optimal code matrix.

4.3 Probabilistic Decoding
For large-scale multi-class categorization, a sparse output coding matrix is necessary to ensure
the learnability of each bit predictor. However, the zero bits in coding matrix also bring difficulty

32

Algorithm 2 Sparse Output Coding: Optimal Code Matrix Learning
Initialize B with randomly generated orthogonal matrix, Z = U = 0
repeat

repeat
Compute skew-symmetric matrix A
Curvilinear search for optimal step size τ
Update new trial point B(τ) as in Eq. (4.29)

until stopping criterion satisfied [135]
Z update using Eq. (7.24)
U update using Eq. (7.25)

until stopping criterion satisfied [20]

Table 4.1: Decoding strategies for error correcting output coding.

DECODING ALGORITHM OPTIMAL LABEL

HAMMING DECODING [39, 93] y∗ = argminy∈Y
∑L

l=1
1
2 (1− sgn(hl(x) ·By,l))

EUCLIDEAN DECODING [107] y∗ = argminy∈Y

√∑L
l=1(hl(x)−By,l)2

ATTENUATED EUCLIDEAN DECODING [45] y∗ = argminy∈Y

√∑L
l=1 |By,l|(hl(x)−By,l)2

LOSS-BASED DECODING [3] y∗ = argminy∈Y
∑L

l=1 loss(hl(x)By,l)

PROBABILITY-BASED DECODING [99] y∗ = argminy∈Y − log
(∏

l:By,l 6=0 P(hl(x) = By,l) +K
)

in decoding. Specifically, given an instance x, we denote the vector of predictions generated by
learned bit predictors as h(x) = (h1(x), . . . , hL(x)). The decoding procedure in output cod-
ing is to find the class y for which codeword of B is “closest” to h(x). In the simple case
where a binary coding matrix B ∈ {−1,+1}K×L is adopted, the most frequently applied decod-
ing approaches include Hamming decoding [39, 93] and Euclidean decoding [107], defined in
Table 4.1. For ternary decoding with B ∈ {−1, 0,+1}K×L, we could still apply those binary de-
coding strategies, treating 0 bits equally as non-zero ones, although we will encounter decoding
bias as illustrated later in this section. One alternative strategy proposed in the literature ignores
all zero bits in the coding matrix during decoding, and only counts the matching with non-zero
bits. One example is attenuated Euclidean decoding [45], an adaptation of the Euclidean decod-
ing strategy, which makes the measure unaffected by the zero bits of the codeword. Moreover,
Allwein et al. [3] further improves the ternary decoding strategy by replacing the Euclidean dis-
tance with loss function, as defined in Table 4.1, where hl(x)By,l corresponds to the margin and
loss(·) is a loss function that depends on the nature of the binary bit predictor. Finally, the authors
of [99] propose a probability-based decoding strategy based on the continuous output of binary
classifiers to deal with the ternary decoding. However, the probabilistic formulation in [99] only
uses non-zero bits in the code matrix, and is thus equivalent to the loss-based decoding strategy
in [3] with a logistic loss function. To sum up, although this latter group of approaches would
avoid the problem of decoding bias on 0 bits of the coding matrix, it also discards significant
amount of information, as only those non-zero bits are used for decoding.

33

Figure 4.1: (Best viewed in color) Motivation for probabilistic decoding: (Left). one possible
coding matrix for 5-class categorization, with red = +1, black = −1, and green = 0; (Right).
one test image from class Husky, with its codeword shown in the bottom and Hamming distance
with codewords for the 5 classes shown to the left. For the second bit (highlighted in dash
box), although the first node (class Husky) is ignored during learning the bit predictor, it has a
preference of being colored black, rather than red.

4.3.1 Motivating Example

As a motivating example, consider a 5-class problem in Figure 4.1. Given a test image from
class Husky, if we treat zero bits the same way as non-zero ones, both Hamming decoding and
Euclidean decoding would prefer Shepherd over Husky. However, Husky is only worse than
Shepherd as its codeword has more zero. This effect occurs because the decoding value in-
creases with the number of positions that contain the zero symbol and hence introduces bias.
This problem might not seem severe in the example shown in Figure 4.1, however, for massive
multi-class problems with large number of class labels, the bias introduced through zero bits
would significantly affect classification accuracy. On the other hand, ignoring zero bits entirely
would discard great amount of information that could potentially help in decoding the correct
class label. This is especially true when K is large, where we expect a very sparse coding matrix
to maximize learnability of each binary classifier. For example, in Figure 4.1, both classes Husky
and Tiger have only two non-zero bits in their codewords. Since we cannot always have perfect
bit predictors, classification errors on bit 1 and bit 4 would severely impair the overall accuracy.
Therefore, it is our goal in this work to effectively utilize information residing in zero bits to
effectively decode ternary output codes.

Fortunately, the semantic class similarity S computed using training data and class taxonomy,
provides venue for effectively propagating information from non-zero bits to zero ones. For the
example in Figure 4.1, class Husky is more similar to (Shepherd, Wolf) than (Fox, Tiger). The
second bit predictor in Figure 4.1 solves a binary partition of (Shepherd, Wolf) against Fox. Even
though class Husky is ignored in training for this bit, the binary partition on images from this
class will have a higher probability of being +1, due to the fact that the two positive classes in
this binary problem are closely related to class Husky. Therefore, those classes with non-zero bits

34

in the coding matrix, should effectively propagate their label to those initially ignored classes. In
this section, we propose probabilistic decoding, to effectively utilize semantic class similarity for
better decoding. Specifically, we treat each bit prediction (without loss of generality, say, the l-th
bit) as a label propagation [155] problem, where the labeled data corresponds to those classes
whose codeword’s l-th bit is non-zero, and unlabeled data corresponds to those whose l-th bit is
zero. The goal of label propagation is to define a prior distribution indicating the probability of
one class being classified as positive in the l-th binary partition. Combining this prior with the
available training data, we formulate the decoding problem in sparse output coding as maximum
a posteriori estimation.

4.3.2 Formulation
Given code matrix B ∈ {−1, 0,+1}K×L, our decoding method estimates conditional probability
of each class k given input x and L bit predictors {h1, . . . , hL}. Without loss of generality, we
assume the bit predictors constructed in the coding stage are linear classifiers, each parameterized
by a vector w as hl(x) = sign(w>l x). Define (c1, . . . , cL) ∈ {−1,+1}L as a random vector of
binary values, representing one possible codeword for instance x. The decoding problem is then
to find the class k, which maximizes the following conditional probability:

P(y = k|w1, . . . ,wL,x,µ) =
∑
{cl}

P(y = k|{wl},x,µ, {cl}) · P({cl}|{wl},x,µ)

=
∑
{cl}

P(y = k|µ, {cl})
∏
l

P(cl|wl,x)

∝
∑
{cl}

∏
l

P(cl|y = k, µkl)
∏
l

P(cl|wl,x)

=
∑
{cl}

∏
l

µclkl(1− µkl)
1−cl

∏
l

P(cl|wl,x)

=
∏
l

{µklP(cl=1|wl,x)+(1−µkl)(1−P(cl=1|wl,x))} (4.31)

where {cl} = {c1, . . . , cL}, {wl} = {w1, . . . ,wL}, and µkl ∈ [0, 1] is the parameter in Bernoulli
distribution P(cl = 1|y = k) = µkl. Moreover, given the learned bit predictors, P(cl = 1|wl,x)
could be computed using a logistic link function as follows

P(cl = 1|wl,x) =
1

1 + exp(−w>l x)
(4.32)

Therefore, in order to employ conditional probability in decoding for ternary output codes, we
need to learn the values of Bernoulli parameters {µkl}l=1,...,L

k=1,...,K , which measures the probability
of the l-th bit being +1 given the true class as y = k. Specifically, for the l-th column of the
coding matrix, those classes corresponding to +1 in the l-th bit, i.e., Bkl = 1, will have µkl = 1,
and similarly those classes corresponding to −1, i.e., Bkl = −1, will have µkl = 0. However,
originally ignored classes (those corresponding to 0 in the coding matrix) will also be likely
to have a preference on the value of the l-th bit. For the example in Figure 4.1, the second

35

bit predictor separates (Shepherd, Wolf) from Fox. Clearly, P(cl = 1|Shepherd) = P(cl =
1|Wolf) = 0 and P(cl = 1|Fox) = 1. Since class Husky is not directly involved in this binary
classification problem, a non-informative prior would put P(cl = 1|Husky) = 0.5. However,
if the true class for an instance x is Husky, this bit clearly has a much higher probability of
being −1 than +1, due to the fact that Husky is much closer to Shepherd and Wolf semantically,
than Fox. Therefore, we should have P(cl = 1|Husky) < 0.5, and in such way those classes
with non-zero values in the l-th bit effectively propagate their label through the semantic class
similarity S to those initially ignored classes.

Prior Distribution via Label Propagation

Following the motivating example in Figure 4.1, we define a prior distribution over Bernoulli
parameters µ such that labeled nodes effectively propagate their labels to those unlabeled nodes
following the class hierarchy. Since each column βl in the coding matrix will have its own la-
beling (different composition of positive classes, negative classes, and ignored classes) and label
propagation for each column is independent of others, without loss of generality, we will focus
on the l-th column. Suppose we have l̂ classes participating in learning the l-th binary classifier,
corresponding to the l̂ non-zero terms in the l-th column βl of coding matrix B. Moreover, we
also have û = K − l̂ ignored classes, corresponding to zeros in βl. Without loss of generality,
we assume the first l̂ classes are labeled as (y1, . . . , yl̂) ∈ {−1,+1}l̂. Consider a connected
graph G = (V , E) with K nodes V corresponding to the K classes, where nodes L̂ = {1, . . . , l̂}
correspond to the labeled classes, and nodes Û = {l̂ + 1, . . . , K} correspond to ignored classes.
Our task is to assign probabilities to nodes Û being labeled as positive, using label information
on nodes L̂ and the graph structure of G. Define µl = (µ1l, . . . , µKl) as labels on nodes V , where
µkl = 1 for those classes labeled as +1 and µkl = 0 for those classes labeled as −1 in the l-th
column of coding matrix B. Consequently, the value of µl on those unlabeled nodes represents
our belief of it being labeled as +1. Equivalently, the distribution of µl defines a prior on our
Bernoulli parameters, in the sense that µkl = P(cl = 1|y = k). Intuitively, we want unlabeled
nodes that are nearby in the graph to have similar labels, and this motivates the choice of the
following quadratic energy function [155]:

E(µl) =
1

2

∑
i,j

Sij(µil − µjl)2 (4.33)

where S is the semantic similarity matrix. To assign probability distribution on µl, we form
Gaussian field [155]

pC(µl) =
1

ZC
exp(−CE(µl)) (4.34)

where C is inverse temperature parameter, and

ZC =

∫
µl|∀k∈L̂:µkl=

1
2

(Bkl+1)

exp(−CE(µl))dµl (4.35)

is a normalizing constant over all possible µl constrained to βl on non-zero terms, i.e., the labeled
nodes in the graph corresponding to βl. Define diagonal degree matrix D withDii =

∑
j Sij and

36

graph Laplacian ∆ = D− S, the Gaussian field defined on µ could be equivalently formulated
as follows:

pC(µl) =
1

ZC
exp(−Cµ>l ∆µl) (4.36)

with µkl = 1 on classes labeled as +1 in βl and µkl = 0 on classes labeled as −1 in βl.
Consequently, pC(µl) defines a prior distribution on µl, following the semantic class similarity,
by clamping the labels on non-zero terms, and forcing smoothness of labels for zero terms, i.e.,
closely related classes should receive similar labels.

Parameter Learning

Given the L bit predictors learned in the coding stage of sparse output coding, and m training
data points Z = {(x1, y1), . . . , (xm, ym)}, we could calculate the conditional log-likelihood as
follows:

logP(Y |{wl},X,µ) =
m∑
i=1

L∑
l=1

log {µyilPli + (1− µyil)(1− Pli)} (4.37)

where Pli = P(cl = 1|wl,xi). Combining the above defined data likelihood with prior distribu-
tion over µ, we get the following optimization problem for learning parameters µ using MAP
estimation

min
µ

−
m∑
i=1

L∑
l=1

log {µyilPli + (1− µyil)(1− Pli)}+ C
L∑
l=1

µ>l ∆µl (4.38)

s.t. 0 ≤ µkl ≤ 1, k = 1, . . . , K, l = 1, . . . , L (4.39)
µkl = 1, if Bkl = +1 (4.40)
µkl = 0, if Bkl = −1 (4.41)

where µ = [µ1, . . . ,µL]. Clearly, µl in the above optimization problem is independent of each
other, and could therefore be optimized separately. We use projected gradient descent to solve
the above optimization problem.

4.3.3 Decoding
Given the learned Bernoulli parameters µ, the inference targets to find the label k∗ that maxi-
mizes the conditional probability:

k∗ = arg max
k

P(y = k|w1, . . . ,wL,x,µ) (4.42)

Clearly, once the Bernoulli parameters µ are obtained, decoding should take time that scales
linearly with the number of columns in the coding matrix, which could be as small as L =
O(logK). It should be noted that in order to enforce sparsity in the coding matrix, we usually
pick L = C logK, where C is a constant usually picked around 10 [3]. Still, our proposed
probabilistic decoding is very efficient, especially when K is large, making it promising for
large-scale multi-way classification. Moreover, besides decoding the most probable class label

37

Table 4.2: Data sets details.

DATA SET #CLASS #TRAIN #TEST #FEATURE

FLOWER 462 170K 170K 170006
FOOD 1308 467K 467K 170006
SUN 397 19850 19850 170006
IMAGENET 15952 2.5M 0.8M 338163

for an instance x, the probabilistic decoding approach also naturally assigns confidence to each
class, which will prove important when we not only want to generate a single label for instance x
with potentially high risk, especially when the confidence gap between several classes is small.

4.4 Experiments

In this section, we test the performance of sparse output coding on two data sets: ImageNet [35]
for object recognition, and SUN database [138] for scene recognition.

4.4.1 Data Sets and Feature Representations

Details of the data sets used in our experiments are provided in Table 4.2.
Object recognition on ImageNet. We start with two subtrees in ImageNet, with the root node
being “flower” and “food”, respectively. The flower image collection contains a total of 0.34
million images covering 462 categories, and the food data set contains a total of 0.93 million
images covering 1308 categories. For both data sets, we randomly pick 50% of images from
each class as training data, and test on the remaining 50% images. Besides, we also carry out
experiment on the entire ImageNet data. Specifically, we follow the same experimental protocols
specified by [9, 136], where the data set is randomly split into 2.5 million images for training,
0.8 million for validation, and 0.8 million for testing, removing duplicates between training,
validation and test sets by throwing away test examples which had too close a nearest neighbor
in training or validation set [9].
Scene recognition on SUN database. The SUN database is by far the largest scene recognition
data set, with 899 scene categories. We use 397 well-sampled categories to run the experi-
ment [138]. For each class, 50 images are used for training and the other 50 for test.
Feature representations. For flower, food and SUN data sets, we employ the same feature rep-
resentation for images as in [82]. Specifically, we compute SIFT [84] descriptors for each image,
and then run k-means clustering on a random subset of 1 million SIFT descriptors to form a visual
vocabulary of 8192 visual words. Using the learned vocabulary, we employ Locality-constrained
Linear Coding (LLC) [82] for feature coding. Finally, a single feature vector is computed for
each image using max pooling on a spatial pyramid [82]. Similar feature engineering is per-
formed on the large ImageNet data set, but with a dictionary containing 16384 visual words,
resulting in 338163 dimensional feature representation for each image.

38

Table 4.3: Flat error comparison on flower, food and SUN data sets.
FLOWER (%) FOOD (%) SUN (%)

ALGORITHM TOP 1 TOP 5 TOP 10 TOP 1 TOP 5 TOP 10 TOP 1 TOP 5 TOP 10
OVR 72.77 39.95 27.43 75.02 46.59 34.23 83.38 69.72 61.83
RDOC 86.91 54.78 40.87 88.93 67.47 56.86 88.24 75.09 70.45
RSOC 87.12 53.69 39.04 86.52 66.88 57.45 88.11 75.12 71.83
SPECOC 78.63 47.75 35.91 81.94 58.12 45.70 85.91 72.63 64.38
SPOC-H 72.92 38.77 26.82 72.91 43.56 30.80 83.06 70.54 64.05
HIESVM-1 76.19 – – 82.76 – – 87.60 – –
RELAXTREE 72.57 – – 73.86 – – 81.09 – –
ECT 71.84 – – 73.52 – – 82.75 – –
LET 73.48 40.21 28.13 74.18 45.03 32.46 83.69 69.78 61.97
SPOC 69.73 34.35 24.08 70.98 43.28 29.00 81.78 68.65 61.26

4.4.2 Experiment Design and Evaluation

We use one-vs-rest (OVR), one of the most widely applied frameworks for multi-class classi-
fication, to serve as a baseline. It is interesting to compare against OVR since it is adopted
as the major workhorse in several winning systems for multi-class object recognition competi-
tion [75, 82, 112]. Moreover, we also compare with three output coding based multi-class clas-
sification methods: (1) random dense code output coding (RDOC) proposed in [3] where each
element in the code matrix is chosen at random from {−1,+1}, with probability 1/2 for −1 and
+1 each; (2) random sparse code output coding (RSOC) in [3], where each element in the code
matrix is chosen at random from {−1, 0,+1}, with probability 1/2 for 0, and probability 1/4
for −1 and +1 each; (3) spectral output coding (SpecOC) proposed in [142], which builds dense
output codes for multi-class classification, using spectral decomposition of the graph Laplacian
constructed to measure class similarities. Moreover, to test the impact of probabilistic decoding
on SpOC, we report results of SpOC using a simple Hamming distance based decoding strategy,
denoted as SpOC-H. The third group of methods we compare with are hierarchical classifiers, a
popular alternative to large-scale multi-class problems. Specifically, the first hierarchical classi-
fier (HieSVM-1) follows a top-down approach, and trains a multi-class SVM at each node in the
class hierarchy [68]. We have also tried a second hierarchical classification method (HieSVM-2)
adopting the strategy in [33], where the hierarchical classifier is learned in a unified optimization
framework. However, (HieSVM-2) runs into out of memory problems on all three data sets. Fi-
nally, we also compare against the relaxed tree classifier (relaxTree) [50], which learns relaxed
tree hierarchy and corresponding classifiers in a unified framework via alternating optimization.
Furthermore, we report results of two multi-class classification methods designed for problems
with a large number of classes: (1) error-correcting tournaments (ECT) [12] which also reduces
multi-class problem into a series of binary classifications; (2) label embedding tree (LET) [9]
which learns a tree structure of classes by optimizing the overall tree loss, and performs multi-
class classification via label embedding. Finally, for the largest data set in our empirical study,
the ImageNet data set, we also report published accuracies to put our results into context (ideally,
we would re-run those algorithms on our machines, however, due to the sheer size of the data,

39

such computation is very expensive). To ensure a fair comparison on the large ImageNet data,
we also report the results of SpOC using the same features as adopted in [9], known as visual
terms, a high-dimensional sparse vector of color and texture features. We denote the results of
SpOC using visual terms for image features, as SpOC-VT.

For all algorithms except label embedding tree and relaxed tree classifier, we train linear
SVM using averaged stochastic gradient descent [19]. For output coding based methods, we
set code length L = 200 for flower and SUN, L = 300 for food, and L = 1000 for ImageNet.
Data similarity matrix SD is pre-computed with linear kernel and α = 0.5. For RDOC and
RSOC, 1000 random coding matrices are generated for each scenario and the one with the largest
minimum pair-wise Hamming distances between all pairs of codewords and does not have any
identical columns is chosen. To decode the label for OVR using learned binary classifiers, we
pick the class with the largest decision value. For RDOC, RSOC, SpecOC and SpOC-H, we pick
the class whose codeword has minimum Hamming distance with the codeword of test data point.
Specifically, for decoding in RSOC and SpOC-H, we test both strategies of treating zero bits the
same way as non-zero ones and ignoring zero bits entirely, and report the best result of these
two methods. Finally, for error-correcting tournaments (a.k.a. filter trees), we use the label tree
structure learning method in [9] to learn a binary tree among classes, because we cannot use the
given tree structure associated with data sets as ECT requires a binary tree.

Performance is measured using flat error and hierarchical error. For every data point, each
algorithm will produce a list of 10 classes in the descending order of confidence (except HieSVM-
1, relaxTree and ECT, which only provide the most confident class label), based on which the
top-n flat error is computed, n = 1, 5, 10 in our case. Specifically, flat error equals 1 if the
true class is not within the n most confident predictions, and 0 otherwise. On the other hand,
hierarchical error reports the minimum height of the lowest common ancestors between true and
predicted classes, using the given class hierarchical structure associated with the data sets. For
each of the above two error measures, the overall error score for an algorithm is the average error
over all test data points.

4.4.3 Results
Classification results for various algorithms are shown in Tables 4.3 to 4.5. For the ImageNet
data, as the sheer size of the data renders it very expensive to run competing algorithms, we only
provide accuracies of our method and relaxTree in Table 4.5. However, we also compare with
the accuracies reported in [9] using label embedding tree and [136] using learning to rank (L2R).
Moreover, as feature engineering is crucial for image classification, we also report ensemble
results in [136], combining multiple feature representations, such as spatial and multiscale color
and texton histograms, and generating the final classification as an average of 10 separate models.

From results in Table 4.3 and Table 4.4, we have the following observations. (1) SpOC
systematically outperforms OVR. More interestingly, OVR classifier consists of more than 1300
binary classifiers on food data set, while SpOC only involves 300 bit predictors. Although previ-
ous work has shown better results with OVR than output coding on small scale problems [112],
with the number of classes increasing to thousands or tens of thousands, and hierarchical struc-
ture among classes, output coding with a carefully designed code matrix could outperform OVR,
while maintaining cheaper computational cost, due to the error-correcting property introduced in

40

Table 4.4: Hierarchical error comparison on flower, food and SUN data sets.

FLOWER FOOD SUN
OVR 1.95 3.26 1.15
RDOC 2.35 4.39 1.23
RSOC 2.38 4.10 1.24
SPECOC 2.27 4.02 1.21
SPOC-H 1.99 2.97 1.15
HIESVM-1 2.34 3.42 1.28
RELAXTREE 1.89 3.04 1.02
ECT 1.87 2.89 1.12
LET 1.98 3.09 1.16
SPOC 1.69 2.92 1.06

the code matrix. (2) Both SpOC and OVR beat RDOC and RSOC, revealing the importance of en-
forcing learnability of each bit predictor, since randomly generated code matrix could very likely
generate difficult binary separation problems. (3) SpOC performs better than SpecOC, which
employs a dense code matrix. The margin between SpOC and SpecOC is even more severe
on food, revealing the importance of having ignored classes in each bit predictor. (4) SpOC-H
generates inferior results than SpOC across the board, indicating the necessity of probabilistic
decoding to handle zero bits in the code matrix. (5) SpOC and OVR both outperform HieSVM-1,
where errors made in the higher level of the class hierarchy get propagated into the lower levels,
with no mechanism to correct those early errors. However, the error-correcting property in SpOC
introduces robustness to errors made in bit predictors. Results for HieSVM-2 are not available
as it runs into out of memory problems on all three data sets. (6) SpOC is comparable with re-
laxTree on SUN data set, but outperforms it on the other two data sets. Though relaxTree defers
the decision on some difficult classes to lower level nodes, hence achieving better accuracy than
conventional hierarchical classifier such as HieSVM-1, it still lacks the robustness or error cor-
recting ability introduced by the coding matrix in SpOC. More interestingly, relaxTree involves
multiple iterations of learning base classifiers due to the adoption of alternating optimization, and
we will compare its time complexity against SpOC later this section. (7) SpOC beats both ECT
and LET, both of which involve expensive procedure of learning optimal semantic class structure
from data, while SpOC simply utilizes the class structure associated with the data set.

According to results in Table 4.5 for the large ImageNet data set, we see that SpOC clearly
outperforms OVR, consistent with results reported on other data sets. It is interesting that SpOC
also clearly beats relaxTree, revealing the importance of error correcting ability in real large-scale
multi-class problems. Moreover, comparison with numbers reported in [9] and [136] shows that
SpOC also outperforms label embedding tree and learning to rank on the large ImageNet task.
Also, using the same features as [9], SpOC-VT clearly beats label embedding tree [9] with a
significant margin, revealing the effectiveness of our proposed sparse output coding approach.
Finally, SpOC result is comparable with the accuracy of ensemble method, where classification
is obtained by combining various kinds of features and averaging over 10 separate models.

Finally, we visualize the coding matrix learned for the large ImageNet data set using our

41

Table 4.5: Classification accuracy on ImageNet (accuracy of approximate kNN is reported
by [136]).

ACCURACY

OVR 2.27%
APPROXIMATE KNN 1.55%
LET [9] 2.54%
L2R [136] 6.14%
ENSEMBLE [136] 10.03%
RELAXTREE 5.28%
SPOC-VT 9.15%
SPOC 9.46%

proposed algorithm. Due to the sheer size of the task space, we cannot show the entire coding
matrix or the entire bit predictor, as each bit predictor usually involves thousands of original
classes. Consequently, we randomly selected 6 bit predictors and show randomly picked classes
from both positive and negative partitions. Specifically, Figure 4.2 shows the composition of
positive partition and negative partition for several bit predictors, and we could already see the
similarity within each partition, and distinction between the two partitions.

Figure 4.2: Visualization of 6 bit prediction problems generated by the learned coding matrix for
ImageNet with L = 1000. Each row corresponds to a binary problem, with the left panel showing
categories composing the positive partition, and right panel showing categories composing the
negative partition.

Remarks on how to interpret our ImageNet result. It is widely acknowledged in the vi-
sion community [75, 82] that feature engineering is an important alternative source for boosting

42

Table 4.6: Classification error (flat error) and time complexity (seconds) of SpOC with various
code lengths. Tc is the time for learning coding matrix and decoding, and Tb is the time for
learning bit predictors. (1E7=1× 107)

L = 100 L = 200 L = 300 L = 400
Top 1 (%) 74.71 69.73 68.82 68.79
Top 5 (%) 41.28 34.35 33.70 33.82
Top 10 (%) 30.12 24.08 22.83 22.76
Tc (seconds) 106.4 175.3 237.1 398.6
Tb (seconds) 1.72E7 3.24E7 4.89E7 6.49E7

image classification accuracy. Recently, with a standard OVR classifier system but sophisticated
feature engineering that learns feature representations using deep network with 1 billion trainable
parameters, strong results surpassing what we report here have been published [75]. However,
it should be noted that our work focuses on techniques of training superior massive multi-class
classifiers under any given features, and the work of designing state-of-the-art feature representa-
tion for images, should not be be viewed as competing efforts, but rather, complementary. Indeed
we expect that one can directly apply SpOC on top of a superior feature representations learned
in previous works to yield even better results. In fact, applying SpOC on feature representations
learned in [82] already beats most state-of-the-art results on ImageNet data set. The superior
result in [75] using deep learning for feature design should not discredit SpOC’s value as a prin-
cipled way for massive multi-class classification, as the two approaches focus on different stages
in the image classification pipeline. We consider combining SpOC with feature representations
learned in [75] as an interesting future work once that feature representations on ImageNet are
made publicly available.

4.4.4 Effect of Code Length
In this section, we investigate the effect of code length on classification accuracy of SpOC.
Specifically, we test SpOC on the flower data set with various code lengths and report classi-
fication errors in Table 4.6. According to Table 4.6, classification error of SpOC decreases as
the code length increases, as stronger error-correcting ability is accompanied with longer codes.
However, the fact that L = 200 performs almost as well as L = 400 demonstrates that SpOC
usually requires much less bit predictors compared to the number of classes in the multi-class
classification problem.

4.4.5 Time Complexity
We also report computational time of SpOC on the flower data set with various code lengths
in Table 4.6. Specifically, computational time for SpOC consists of three parts: (1) time for
learning output coding matrix, (2) time for training bit predictors, and (3) time for probabilistic
decoding. We implement SpOC using MATLAB 7.12 on a 3.40 GHZ Intel i7 PC with 16.0 GB
main memory. Bit predictors are trained in parallel on a cluster composed of 200 nodes. Time for

43

Table 4.7: Time complexity comparison (seconds).

FLOWER FOOD SUN
OVR 1.68E8 2.63E8 1.71E7
ECT 5.60E7 8.07E7 4.28E6
LET 5.26E7 8.02E7 4.15E6
RELAXTREE 1.30E8 2.41E8 1.09E7
SPOC 3.24E7 5.02E7 3.72E6

training bit predictors is the summation of time spent on each node of the cluster. According to
Table 4.6, time for learning code matrix and probabilistic decoding is almost negligible compared
to the time spent on training bit predictors.

Moreover, we also compare the time complexity of SpOC with that of OVR, ECT, LET and
relaxTree. According to Table 4.7, the total CPU time of SpOC is systematically shorter than
OVR, which is expected as SpOC requires training much less binary classifiers than OVR, and
each bit predictor in SpOC only involves a subset of classes from the original problem, while
each binary classifier in OVR is trained using data from all classes in the multi-class problem.
This again reveals the advantage of SpOC over the widely popular OVR on massive multi-class
classification. Moreover, SpOC is also more efficient than ECT and LET. One possible reason
could be the expensive tree learning procedure involved in both ECT and LET, while the time
spent on learning optimal code matrix in SpOC is negligible compared to the time of training bit
predictors. Finally, SpOC clearly takes less computational time than relaxTree, which requires
multiple iterations of learning base classifiers due to the alternating optimization approach in
learning relaxed tree classifier.

4.5 Summary
To conclude this chapter, we summarize our main contributions as follows. (1) We propose an
approach for large-scale visual recognition, with scalability to problems with tens of thousands
of classes. SpOC is robust to errors in bit predictors, simple to parallel, and its computational
time scales sub-linearly with the number of classes. (2) We propose efficient optimization based
on alternating direction method of multipliers, where each sub-problem is solved using gradient
descent with Cayley transform to preserve orthogonality constraint and curvilinear search for op-
timal step size. (3) We propose probabilistic decoding to effectively utilize semantic similarity
between visual categories for accurate decoding. (4). We provide promising empirical results,
tested on ImageNet with around 16, 000 classes. The fact that SpOC takes less bit predictors than
one-vs-rest multi-class classification while achieving better accuracy, renders our proposed ap-
proach especially promising when scaling up to human cognition level multi-class classification.

44

Part II

Large Scale Video Understanding

45

Part II Large Scale Video Understanding

Now we turn our attention from categorizing large collection of image data to understanding
temporally long or even endless video sequences. As is often the case, one of the major difficul-
ties in video analysis is the huge amount of data, while it is often true that only a small portion of
video contains important information. Consequently, algorithms that could automatically detect
unusual events within streaming or archival video, or generate short summary for the originally
long video, would significantly improve the efficiency of video analysis and save valuable hu-
man attention or concentrate downstream processing (such as various tasks of detection, action
recognition, etc.) on only the most salient contents. Unusual event detection and automatic video
summarization are the keys to unlock the huge amount of video sequences.

This part consists of three chapters. First, we provide a framework of using sparse coding and
online re-constructibility to detect unusual events in videos. A query video segment is projected
onto a set of sparse coding bases conceptually constituting usual events, which are learned and
updated realtime by the algorithm, where the reconstruction error is obtained. An unusual event
in a video is detected as those segments whose reconstruction errors are significantly higher than
the majority of the other (usual event) segments of the video. To our knowledge, we offer the
first treatment of unusual event detection in this sparse re-constructibility framework.

Second, we develop a method that offers the following function and alike: “I only have 1
minute for this hour-long video, tell me where/what to watch”. That is, it automatically compiles
the most salient and informative portion of the video for users, by automatically scanning through
video stream, in an online fashion, to remove repetitive and uninteresting contents. The summary
generated by our proposed method is a short video itself, revealing the essence of the original
video, just like a “trailer”.

Third, we address the challenging problem in video summarization regarding the gap between
the automated characterization of the important video segments and the human perception about
the importance of a segment, since purely unsupervised video summarization could potentially
miss some of these key components, or incorporate unimportant events. Specifically, within a
class of videos of similar nature, such as a collection of wedding videos, users are asked to gen-
erate summaries for a subset of this class of videos. Given such manually generated summaries,
our proposed method aims to learn the preferred storyline within the given class of videos. Then,
it will automatically generate summaries for the rest of videos in the class, capturing the similar
storyline in those manually summarized videos.

47

48

Chapter 5

Online Detection of Unusual Events in
Videos via Dynamic Sparse Coding

One of the major difficulties in video analysis is the huge amount of data. However, it is often true
that only a small portion of video contains important information. Consequently, algorithms that
could automatically detect unusual events within streaming or archival video would significantly
improve the efficiency of video analysis and save valuable human attention for only the most
salient contents.

5.1 Introduction

In this chapter, we provide a framework of using sparse coding [77] and online re-constructibility
to detect unusual events in videos. A query video segment is projected onto a set of sparse
coding bases conceptually constituting usual events, which are learned and updated realtime by
the algorithm, where the reconstruction error is obtained. An unusual event in a video refers
to those segments whose reconstruction errors are significantly higher than the majority of the
other (usual event) segments of the video. To our knowledge, we offer the first treatment of
unusual event detection in this sparse re-constructibility framework. Compared to previous work
that are either model-based [65, 80, 133], or clustering or saliency based [17, 55, 150], our
proposed dynamic sparse coding framework is built upon a rigorous statistical principle, offering
the following advantages: 1) It makes no prior assumptions of what unusual events may look like,
hence no need to obtain prior models, templates, knowledge of the clusters; 2) It is completely
unsupervised, leveraging only on the assumption that an unusual event is unlikely to occur in the
small initial portion of a video; and 3) Our learning algorithm continues to learn and updates its
bases dictionary as the algorithm observes more data, avoiding any issues with concept drift.

Figure 5.1 provides a flowchart of the proposed unusual event detection approach. Specif-
ically, given a video sequence, the proposed method employs a sliding window along both the
spatial and temporal axes to define an event. As the sliding window scans along the spatial and
temporal axes, the video is broken into a set of events, each represented by a group of spatio-
temporal cuboids. The task of unusual event detection is therefore formulated as detecting un-
usual group of cuboids residing in the same sliding window. A dictionary is first learnt from the

49

Figure 5.1: (Best viewed in color) Flowchart of our approach. Given an input video sequence,
events are defined using sliding windows (displayed as colored boxes on the video frames).
Within each sliding window, spatio-temporal interest points are detected (not shown in the fig-
ure), and a dictionary is learned using previously seen video data. For a query event, reconstruc-
tion vectors using bases in the dictionary are learned by solving a sparse coding optimization
problem. Typicality of the query event is then decided using these vectors. Finally, the dictio-
nary is updated with the addition of the query event.

video using sparse coding and later updated in an online fashion as more data become available.
Given the learned dictionary, a reconstruction weight vector is learned for each query event and
a typicality measure is computed from the reconstruction vectors. The proposed algorithm only
needs to scan through the video once, and online updating of the learned dictionary makes the
algorithm capable of handling concept drift in the video sequence. Finally, using sparse cod-
ing enables the algorithm to robustly discriminate between truly unusual events and noisy usual
events.

It should be noted that the definition of unusual events is rather subjective. In this thesis, we
define unusual events as those incidences that occur very rarely in the entire video sequence [1,
17, 54, 80, 133, 150].

5.2 Sparse Coding for Unusual Event Detection
In this section, we provide details of the proposed unsupervised algorithm for unusual event
detection.

5.2.1 Video Representation

The proposed unusual event detection algorithm adopts a representation based on spatio-temporal
cuboids (though it should be noted that the proposed approach could be applied over a variety
of video descriptors), to detecte salient points within the video and describe the local spatio-
temporal patch around the detected interest points. There have been several attempts in de-
tecting spatio-temporal interest points in video sequences [15, 40, 73]. Here, we adopt the
spatio-temporal interest points detected using the method in [40], and describe each detected

50

Figure 5.2: Example spatio-temporal interest points detected with the method in [40].

interest point with histogram of gradient (HoG) and histogram of optical flow (HoF). This spatio-
temporal interest point based feature representation will be used throughout the rest of this the-
sis. Figure 5.2 provides several frames from the video data used in this chapter and the detected
spatio-temporal interest points within these frames.

5.2.2 The Proposed Method
Given a video sequence, the proposed approach employs a sliding window along both the spatial
and temporal axes to define an event. Consequently, as a video is represented as a set of cuboids,
those cuboids residing in a sliding window define an event. As the sliding window scans along
the spatial and temporal axes, the video is broken into a set of events, each represented by a
group of spatio-temporal cuboids. Specifically, the video is represented as X = {X1, . . . ,Xm},
with each event Xi composed of a group of cuboids, i.e., Xi = {X1

i , . . . ,X
ni
i }, where ni is the

total number of cuboids within the sliding window.

A Sparse Coding Formulation

In this work, detecting unusual events in video is formulated as a sparse coding problem. The
basic idea for our approach is to represent the knowledge of usual events using the learned dictio-
nary D, whose columns are bases for reconstructing signals. Different from conventional settings
of sparse coding, where the input signal is a vector, the input signal in unusual event detection
is an event, composed of a group of cuboids Xi = {X1

i , . . . ,X
ni
i }. Therefore, the basic unit of

input signal is no longer a vector, but instead a group of vectors, with both spatial and temporal
location information. In addition to sparsity of the reconstruction weight vectors, we also need to
consider the relationships between these weight vectors imposed by the neighborhood structure
of cuboids that define the event.

Given dictionary D (details about learning D will be provided later in this section), we define
the following objective function that measures the typicality of an event Xi = {X1

i , . . . ,X
ni
i }

and a specific choice of reconstruction weight vectors αi = {α1
i , . . . ,α

ni
i }:

J(Xi,αi,D) =
1

2

∑
j

||Xj
i −Dαj

i ||22 + λ1

∑
j

||αj||1 + λ2

∑
j,k

Wjk||αj
i −αk

i ||22 (5.1)

where subscripts j and k run through {1, . . . , ni} and λ1, λ2 are regularization parameters. We
now discuss in details of each term in Eq. (5.1).

51

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

0 20 40 60 80 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 5.3: First row: usual event (leaving subway exit); second row: unusual event (entering
subway exit). From left to right: example frame and sliding window, reconstruction vectors for
3 cuboids, plot containing all 3 reconstruction vectors on the same figure.

Reconstruction error. The first term in Eq. (5.1) is the reconstruction error. For a usual
event, this term should be small, due to the assumption that the learned dictionary represents
knowledge in the previously seen video data. A small reconstruction error means the information
within the newly observed event Xi has appeared in early part of the video, which agrees with
our definition of usual events.

Sparsity regularization. The second term is the sparsity regularization. Enforcing sparsity
for reconstructing usual events is necessary due to the fact that dictionary D is learned to maxi-
mize the sparsity1 of reconstruction vectors for usual events in the video. On the other hand, for
unusual events, although it is possible that a fairly small reconstruction error could be achieved,
we would expect using a large amount of video fragments for this reconstruction, resulting in a
dense reconstruction weight vector. Figure 5.3 presents the reconstruction weight vectors for 2
events in the video: the first event is usual, and the second is unusual. Results in Figure 5.3 show
that the reconstruction vectors for usual event are sparse, while the ones for unusual event are
dense.

Smoothness regularization. The third term is the smoothness regularization, where W ∈
Rn1×n1 is the adjacency matrix of {X1

i , . . . ,X
ni
i }, with large value corresponding to neighboring

cuboids and small value corresponding to far apart cuboids. This regularization is based on
the fact that similar motions at neighboring patches are more likely to be involved in a usual
event. Consequently, it should be of higher probability for similar reconstruction weight vectors
being assigned to neighboring cuboids in a usual event. The adjacency matrix W adopted in this
chapter is the Gaussian RBF kernel function:

Wjk=exp

[
−||xj−xk||

2

2σ2
− ||yj−yk||

2

2σ2
− ||tj−tk||

2

2τ 2

]
(5.2)

where (xj, yj) and tj are spatial and temporal locations of the jth cuboid, σ and τ are variances
of the Gaussian function. In the last column of Figure 5.3, where all 3 reconstruction vectors

1In this chapter, we define sparsity as the number of zero elements in a vector.

52

are plotted on the same image, usual event shows a significant amount of overlap, while the
reconstruction vectors for unusual event becomes even denser.

In summary, our sparse coding scheme presented above encapsulates the following intuitions
for what we would think of usual and unusual events. Given a dictionary of bases corresponding
to usual events, a usual event should be reconstructible from a small number of such bases, in
a way that the reconstruction weights change smoothly over space/time across actions in such
events. On the other hand, an unusual event is either not reconstructible from the dictionary of
usual events with small error, or, even if it is reconstructible, it would necessarily build on a
combination of a large number of bases in the dictionary, and possibly in a temporal-spatially
non-smooth fashion. Crucial to this technique, is the ability to learn a good dictionary of bases
representing usual events, and being able to update the dictionary online to adapt to changing
content of the video, which we discuss in detail in next section.

Different from conventional sparse coding, where the bases in dictionary are fixed after train-
ing, the dictionary in our dynamic sparse coding framework is updated online to adapt to chang-
ing content of the video.

Optimization

The objective function J(Xi,αi,D) of Eq. (5.1) measures the typicality of event Xi with any
reconstruction weight vector αi and any dictionary D. The lower J is, the more likely an event
Xi is normal. As both αi and D are latent variables introduced in the formulation, to properly
measure the typicality of an event Xi, we need to adopt the optimal weight vector α∗i and dic-
tionary D∗ which minimize the objective function for the given event Xi. Specifically, assume
there are m events in the video defined using the sliding window, i.e., X = {X1, . . . ,Xm}, the
optimal reconstruction weight vector α∗i and dictionary D∗ are learned by solving the following
optimization problem

(α∗1, . . . ,α
∗
m,D

∗) = arg min
α1,...,αm,D

m∑
i=1

J(Xi,αi,D) (5.3)

subject to proper constraints discussed later. A close look into the above optimization problem
reveals that the problem is convex with respect to the coefficients α = {α1, . . . ,αm} of the
sparse decomposition when the dictionary D is fixed, and also convex with respect to D when
α is fixed. However, it is not jointly convex with respect to D and α. A natural solution is to
alternate between these two variables, minimizing one while clamping the other. We note that
this alternating optimization algorithm converges to local optimum. With the learned dictionary
D∗, given a newly observed event X′, the algorithm learns the optimal reconstruction weight
vector α′ for this event. Consequently, J(X′,α′,D∗) measures the typicality of event X′. An
event X′ is detected as unusual if its corresponding J(X′,α′,D∗) is larger than certain threshold.

Learning Reconstruction Weight Vector (α) with Fixed D. With dictionary D fixed,
reconstruction weight vectors for different events are independent. Therefore, they could be
optimized independently. Specifically, for event Xi = {X1

i , . . . ,X
ni
i }, the corresponding opti-

53

mization problem is as follows

min
α1

i ,...,α
ni
i

1

2

∑
j

||Xj
i −Dαj

i ||22 + λ1

∑
j

||αj||1 + λ2

∑
j,k

Wjk||αj
i −αk

i ||22 (5.4)

Except for the second term, both two other terms in the objective function are convex quadratic
functions of αi. For the above L1 regularized convex function, the objective is not continuously
differentiable. Consequently, the most straightforward gradient-based methods are difficult to
apply [77]. Various approaches have been proposed to solve this problem: generic QP solvers
(e.g., CVX), interior point method [26], a modification of least angle regression (LARS) [43]
and grafting [102]. In this chapter, we adopt the feature-sign search algorithm introduced in [77]
to solve the above L1 regularized optimization method.

Learning Dictionary (D) with Fixed α. With fixed coefficients α, the optimization prob-
lem for dictionary D is as follows

min
D

1

2m

m∑
i=1

∑
j=1,...,ni

||Xj
i−Dαj

i ||22 (5.5)

s.t. D ∈ Rm×k (5.6)
∀j = 1, . . . , k, dTj dj ≤ 1 (5.7)

The constraint in (5.7) is introduced to prevent terms in D from being arbitrarily large, which
would result in arbitrarily small values of α [77]. The above optimization problem is a least
squares problem with quadratic constraints. In this work, we solve this problem using Lagrange
dual.

5.2.3 Online Dictionary Update
As we stated in Section 5.1, one contribution of our work is to automatically learn the video dic-
tionary and perform ongoing learning as we continue to observe the sequence. Unlike previous
work where a model for usual events is first learned using training data [1, 17, 65], our fully
unsupervised framework can be much more practical in real-world scenarios.

Specifically, the above formulation needs initial training data to learn the dictionary. In video
surveillance, it is often challenging to obtain such suitable training data. Even if we were pro-
vided with a set of training data, we postulate that the bases dictionary learned from the training
data is not necessarily optimal for detecting unusual events in new query videos. We therefore
propose an online dictionary learning algorithm in this section that requires no training data
other than the video sequence itself. Our idea is to first learn an initial dictionary using an initial
portion of the video, and update this learned dictionary using each newly observed event.

Assume the algorithm has observed t-th event in the video, the optimal dictionary is the
solution of the following optimization problem

min
D∈C

1

2t

t∑
i=1

∑
j=1,...,ni

||Xj
i−Dαj

i ||22 (5.8)

54

where C = {D ∈ Rm×k : dTj dj ≤ 1, ∀j = 1, . . . , k}. Ideally, to solve this problem, we would
need all t events {X1, . . . ,Xt}. However, storing these events requires huge space and solving
the optimization problem from scratch is time consuming. Therefore, the online algorithm we
propose here aims to finding the optimal dictionary Dt given Dt−1 and Xt. Specifically, we use
projected first order stochastic gradient descent, consisting of the following update [88]:

Dt = ΠC

[
Dt−1 −

η

t
∇Dl(Xt,Dt−1)

]
(5.9)

where l(Xt,Dt−1) = 1
2

∑
j=1,...,nt

||Xj
t−Dt−1α

j
t ||22, η is the learning rate, ΠC is the orthogonal

projection onto C.

5.2.4 Unusual Event Detection
As briefly mentioned in previous section, given a newly observed event X′ and the current dictio-
nary D∗, the proposed algorithm learns the corresponding optimal reconstruction weight vector
α′. X′ is detected as an unusual event if the following criterion is satisfied

J(X′,α′,D∗) > ε̂ (5.10)

where ε̂ is a user defined threshold that controls the sensitivity of the algorithm to unusual events.
Combining everything together, Algorithm 3 presents our unusual event detection method.

Algorithm 3 Unusual event detection using sparse coding
Input: video data, learning rate η, threshold ε̂
Learn initial dictionary using first N frames in video
repeat

Use sliding window to obtain event Xt

Learn optimal reconstruction vectors αt for event Xt by solving Eq. (5.4) with D = Dt−1

if J(Xt,αt,Dt−1) > ε̂ then
Fire alarm for event Xt

end if
Update dictionary D with Eq. (5.9)

until reach the end of video

5.3 Experiments
In this section, we show the empirical performance of the proposed unusual event detection
algorithm, both qualitatively and quantitatively.

5.3.1 Subway Surveillance Video
The first 2 data sets are video sequences taken from surveillance camera at a subway station, with
one camera monitoring the exit and the other monitoring the entrance. In both videos, there are

55

roughly 10 people walking around in a typical frame, with a frame size of 512×384. The videos
are provided by courtesy of Adam et al. [1] and we compare quantitatively the detection results
of our approach against the method in [65].

Subway Exit

The subway exit surveillance video is 43 minutes long with 64901 frames in total. To ensure a
fair qualitative comparison, we follow the same definition of unusual events used in [65] for the
same data set, though it should be noted that the definition of unusual events is rather subjective.
Specifically, 3 types of unusual events are defined in the subway exit video: (a) walking in the
wrong direction (WD); (b) loitering near the exit (LT) and (c) misc, including suddenly stop and
look around, janitor cleaning the wall, someone gets off the train and gets on again very soon.
Totally, 19 unusual events are defined as ground truth.

We use a sliding window of size 80 × 80 pixels along x and y axes, and 40 frames along t
axis in our approach. The fist 5 minutes of the video, same as in [65], is used to build initial
dictionary. Before providing the unusual event detection results, we first show the dictionary
learned using our approach in Figure 5.4. Specifically, Figure 5.4 visualizes randomly selected

Figure 5.4: Dictionary learned using our approach for subway exit surveillance video. Each row
in the figure corresponds to a basis in the dictionary. Typical activities in this dictionary include:
walking to the left or right, walking towards the camera, train leaving station, etc.

10 bases in the learned dictionary (the size of the learned dictionary is 100). We observe that the
learned bases of the dictionary reflects our intuition about what common and usual events are in
this video: people walking towards the camera (exiting the subway), walking to the left or right,
train leaving station, etc.

56

Table 5.1: Comparison of unusual event detection rate and false alarm rate on subway exit
surveillance data: GT stands for ground truth annotation; ST-MRF refers to the method pro-
posed in [65].

WD LT MISC Total FA
GT 9 3 7 19 0

ST-MRF [65] 9 3 7 19 3
Ours 9 3 7 19 2

Table 5.1 provides quantitative results on unusual event detection accuracy and false alarm
rate. We follow the same annotation used in [65], where a frame range is defined for each unusual
event. For evaluation, once the algorithm detects at least one frame in the annotated range, the
detection is counted as correct. On the other hand, false alarm is also measured in the same way:
at least one frame is fired outside the annotated range, then it is counted as false alarm2. Figure
5.5 shows the detection results on the subway exit data, including the correct detections, and false
alarms. Our method can detect an unusual event even within a crowded scene with occlusions
(e.g., Figure 5.5(d)). Also, we can see that our method captures the unusual event caused by
fine scale irregular motion (e.g., Figure 5.5(k)), or abnormal event resulted by irregular temporal
ordering of activities (e.g., Figure 5.5(j)). We also illustrate two false alarms detected by our
algorithm (Figure 5.5(o) & (p)). Curiously, looking closer into the video, these two events are
indeed “unusual”: Figure 5.5(o) is due to the first appearance of a child, and Figure 5.5(p) is due
to the action of a man stopping near the exit and looking back. They are missed in ground truth
annotations, hence labeled as FA in evaluation.

Time Complexity: We implement our algorithm using MATLAB 7.0 on a 2.60GHZ Intel
CoreTM2 Duo PC with 2.0GB main memory. Learning initial dictionary took about 20 minutes.
For each sliding window, learning reconstruction vectors took 0.2 seconds on average. In each
frame, there are roughly 10 sliding windows being tested for unusual events. Consequently,
unusual event detection in each frame was done in about 2 seconds.

Subway Entrance

The subway entrance video is 1 hour 36 minutes long with 144249 frames in total. 66 unusual
events are defined, covering 5 different types: (a) walking in the wrong direction (WD); (b) no
payment (NP); (c) loitering (LT); (d) irregular interactions between people (II) and (e) misc,
including sudden stop, running fast.

We use the same sliding window as in subway exit video, and the fist 15 minutes for training
as in [65]. Figure 5.6 shows the dictionary learned by our approach, where we randomly select 12
bases out of 200 in the dictionary. This dictionary shows activities such as people walking to the
left or right, walking away from the camera, which are usual events in this video. Quantitative
comparison results with [65] are shown in Table 5.2, where our approach achieves higher de-
tection rate and fewer false alarms. Moreover, as reported in [65], the approach in [1] fails to
detect abnormal activities with irregular temporal orderings, such as Figure 5.5(j), people getting

2There are other evaluation metrics which could also be reasonable. We use this evaluation metric to be able to
compare with [65].

57

off the train and getting back quickly. Also, the method in [1] results in an order magnitude
more false alarms than [65]. Moreover, the clustering-based method [150] cannot detect events
happening at a fine local scale, such as Figure 5.7(e) & (f). Therefore, while achieving slightly
better qualitative performance than [65], our method also clearly outperforms the methods in [1]
and [150] by a large margin.

Figure 5.7 displays unusual events detected using our approach. Our method not only detects
abnormalities in a fine scale (e.g., Figure 5.7(e) & (f)), but also unusual events caused by irregular
interactions between people (e.g., Figure 5.7(j)). Moreover, we can see that our method could
correctly detect abnormal activities where both usual and unusual events occur in the same frame
(e.g., Figure 5.7(g)).

Analysis Experiment: Online Update of the Learned Dictionary

In our approach, the learned dictionary is updated after observing each new event using projected
stochastic gradient descent. In this section, we compare the results of our algorithm with the
method using initially learned dictionary throughout the entire video sequence. Specifically, in
the subway exit surveillance data, the second method learns an initial dictionary using the first
5 minutes of video and keep this dictionary fixed in the entire detection process. Similarly, in
the subway entrance video data, the second method employs the fixed dictionary learned from
first 15 minutes of video. Table 5.3 compares the detection accuracy and false alarms of the
two methods. The method using fixed dictionary generally gives more false alarms than our
approach. This result underscores our contribution in developing an online learning framework
to update the bases dictionary. Without the online updates, the Fixed Dictionary method shows
the inability for adapting to the changing contents of the video, resulting in a much greater error
rate.

5.3.2 Unusual Event Detection in Youtube Videos
The above experiment has demonstrated our model’s superiority in unusual event detection in
surveillance videos, where the camera is fixed and the environment is relatively controlled. But
our framework is a general approach that makes no assumptions of the cameras, the types of
environment, or the contents of the video. In this section, we apply our method to a number
of videos “in the wild”, highlighting its application to a wide range of data. We downloaded a
number of videos from YouTube. As Figure 5.8 shows, these videos have very different camera
motion (rotation, zoom in/out, fast tracking, slow motion, etc.), contains different categories of
targets (human, vehicles, animals, etc.) and covers a wide variety of activities and environmental
conditions (indoor, outdoor).

For each of the 8 Youtube videos, we use approximately the first 1/5 of video data to learn an
initial dictionary, and display detected unusual events in Figure 5.8. With no model assumptions
of what is unusual, no need for templates, no supervision or training, our method could correctly
detect abnormal activities in these real world low-quality videos.

58

Figure 5.5: Unusual event detection in the subway exit surveillance video. WD: wrong direction;
LT: loitering; MISC: misc; FA: false alarm. The rectangle on the figure marks the sliding window
that results in the detection of unusual events. False alarms are marked using green sub-window.

59

Figure 5.6: Dictionary learned using our approach for subway entrance surveillance data. Each
row in the figure corresponds to a basis in the dictionary. Typical activities in this dictionary
include: walking to the left or right, walking away from the camera, etc.

60

Figure 5.7: Unusual event detection in the subway entrance surveillance video. WD: wrong
direction; NP: no payment; LT: loitering; II: irregular interactions; MISC: misc; MISS: missed
unusual event; FA: false alarm.

Table 5.2: Comparison of unusual event detection rate and false alarm rate on subway entrance
surveillance data.

WD NP LT II MISC Total FA
GT 26 13 14 4 9 66 0

ST-MRF [65] 24 8 13 4 8 57 6
Ours 25 9 14 4 8 60 5

61

Table 5.3: Comparison of unusual event detection rate and false alarm rate: online updating
dictionary vs. fixed dictionary. The number before ’/’ is for subway exit surveillance data, while
the number after ’/’ is for entrance surveillance data.

Correct Detection False Alarm
Fixed D 17/54 8/12

Ours 19/60 2/5

Figure 5.8: Unusual event detection results on 8 Youtube Videos. Frames of usual events, de-
tected unusual events and false alarms are shown in the first 8 rows. For frames involving unusual
events, red boxes on video frames represent patches that trigger the alarm. The bottom row pro-
vides a zoom-in view of those patches, taken from one frame (pointed by red arrows) per video.

62

5.4 Summary
We propose an unsupervised algorithm to automatically detect unusual events from a video se-
quence. A query video segment is projected onto a set of sparse coding bases learned by the
algorithm, to obtain the reconstruction vectors. Typicality is then computed based on these re-
construction vectors. Moreover, the sparse coding bases are updated dynamically in an online
fashion, to capture possible concept drift in video contents. Experimental results on two real
world surveillance videos and several Youtube videos demonstrate the effectiveness of the pro-
posed algorithm.

63

64

Chapter 6

Quasi Real-Time Summarization for
Consumer Videos

In this chapter, we attempt to develop a method that offers the following function and alike: “I
only have 1 minute for this hour-long video, tell me where/what to watch”. That is, it automati-
cally compiles the most salient and informative portion of the video for users, by automatically
scanning through video stream, in an online fashion, to remove repetitive and uninteresting con-
tents. Our method differs from some previous attempts to video summarization that eliminate
completely the time axis, and show a synopsis of the video by collecting a few key frames which
are selected either arbitrarily, or according to some importance criteria [44, 78, 141]. Such key
frame representation loses the dynamic aspect of video and is uninteresting to watch. More
importantly, taking merely frames as the unit of content in a video omits much important infor-
mation such as suspicious behaviors to be recognized automatically by a machine, and therefore
compromises the quality of the summary. On the other hand, the summary generated by our
proposed method is a short video itself, revealing the essence of the original video, just like a
“trailer”. In this chapter, we refer to those unstructured and unedited videos as consumer videos,
in contrast to movies, news or sports videos which are often edited by human or having special
structure (such as shot, scene, etc.).

6.1 Introduction

We propose onLIne VidEo highLIGHTing (LiveLight), a principled way of online generation of
a short video summarizing the most important and interesting contents of a potentially very long
video. Specifically, LiveLight scans through the video stream, divided into a collection of video
segments temporally. After processing the first few segments, it starts to build its own dictionary,
which will be kept updated and refined later. Given a new video segment, LiveLight attempts to
employ its current version of dictionary to sparsely reconstruct this previously unseen segment,
using group sparse coding [8]. A small reconstruction error of the new video segment reflects
that its content is already well represented in the current dictionary, further suggesting video
segments containing similar contents have been observed in early part of the video. Hence, this
segment is excluded from the summary, and the algorithm moves on to next segment. On the

65

other hand, if the new video segment cannot be sparsely reconstructed, i.e., a high reconstruction
error is suffered, indicating unseen contents from previous video data, our method incorporates
this video segment into the summary, and updates the dictionary according to the newly included
video data. This process continues until the end of the video is reached. In summary, our method
sequentially scans the video stream once, learns a dictionary to summarize contents seen in the
video and updates it after encountering video data that could not be explained using current
dictionary. A summary video is then constructed as a combination of two groups of video seg-
ments: (1) the first few segments used to learn initial dictionary, capturing background and early
contents of the video; (2) video segments causing dictionary update, suggesting unseen and in-
teresting contents. Moreover, as the entire process is carried out online, LiveLight could handle
hours or even endless video data, ubiquitous in consumer videos.

6.2 Online Video Highlighting

Given an unedited and unstructured consumer video, online video highlighting starts with tem-
poral segmentation, breaking original video into segments. Such temporal segmentation should
ensure minimum variation, and consistency of objects, view and dynamics within each seg-
ment. Unlike structured videos, where shot boundary detection could be employed for temporal
segmentation, most consumer videos do not even have such shot boundary, but instead with
continuous camera movement. Therefore, we choose to evenly divide the original video into
segments, each with a constant length of 50 frames (roughly 1 ∼ 2 seconds). Such short tem-
poral length ensures the consistency within each segment. These video segments are the base
units in LiveLight, in the sense that a few selected ones will compose the final summary video.
A key component in LiveLight is the dictionary, which summarizes the contents of seen video.
Specifically, a dictionary is initially learned using video segments at the beginning of the input
video, with group sparse coding. After dictionary initialization, LiveLight scans through the rest
of the video segments following temporal order, and attempts to reconstruct each video segment
using the learned dictionary. Those video segments with reconstruction error higher than certain
threshold are considered to contain interesting contents unprecedented in previous video, and are
included into the summary video. Moreover, the dictionary is updated accordingly to incorporate
the newly observed video contents, such that similar video segments seen later will suffer much
smaller reconstruction error. On the other hand, those video segments that could be well recon-
structed using the current dictionary are excluded from the summary, as small reconstruction
error suggests its content is already well represented in the current dictionary, further indicating
video segments containing similar contents have been observed in early part of the video. Hence,
the dictionary represents the knowledge about previously seen video contents, and is updated in
an online fashion to incorporate newly observed contents. Algorithm 4 provides the work flow
of LiveLight, where X0 = {X1, . . . ,Xm} is used to learn initial dictionary with m� K, and ε0
is a pre-set threshold parameter controlling length of the summary video.

66

Algorithm 4 Online Video Highlighting (LiveLight)
input Video X composed of temporal segments {X1, . . . ,XK}
output Short video Z summarizing most important and interesting contents of X

1: Learn initial dictionary D using X0 = {X1, . . . ,Xm} via group sparse coding and initialize
Z = X0

2: for all Video segments Xk ∈ {Xm+1, . . . ,XK} do
3: Reconstruct video segment Xk using current dictionary D and compute reconstruction

error εk
4: if εk is larger than pre-set threshold ε0 then
5: Update dictionary D using Xk and incorporate Xk into summary video Z = Z ∪Xk

6: end if
7: end for

6.2.1 Video Segment Reconstruction
The basic idea for our approach is to represent the knowledge of previously observed video seg-
ments using the learned dictionary D, whose columns (a.k.a. atoms) are bases for reconstructing
future video segments. Given learned dictionary D (details of learning initial dictionary will be
provided later in this section), LiveLight attempts to sparsely reconstruct query video segment
using its atoms. Specifically, sparse reconstruction indicates both small reconstruction error
and small footprint on the dictionary, i.e., using as few atoms from the dictionary as possible.
Consequently, video summarization is formulated as a sparse coding problem, seeking linear
decomposition of data using a few elements from a dictionary learned in online fashion.

We adopt the same feature representation for video data as used in Chapter 5. Specifically, we
utilize the spatio-temporal interest points detected using the method in [40], and describe each
detected interest point with histogram of gradient (HoG) and histogram of optical flow (HoF).
The feature representation for each detected interest point is then obtained by concatenating the
HoG feature vector and HoF feature vector. Finally, each video segment is represented as a
collection of feature vectors, corresponding to detected interest points, i.e., Xk = {x1, . . . ,xnk

},
where nk is the number of interest points detected in video segment Xk.

Different from conventional settings of sparse coding, where input signal is a vector, the input
signal in our problem is a video segment, represented as a group of vectors Xk = {x1, . . . ,xnk

}.
Therefore, our goal is to effectively encode groups of instances in terms of a set of dictionary
atoms D = {dj}|D|j=1, where |D| is the size of the dictionary, i.e., number of atoms in D. Specifi-
cally, given learned dictionary D, LiveLight seeks sparse reconstruction of the query segment X,
as follows

min
A

1

2

1

|X|
∑
xi∈X

∥∥∥∥∥∥xi −
|D|∑
j=1

αi
jdj

∥∥∥∥∥∥
2

2

+ λ

|D|∑
j=1

‖αj‖2 (6.1)

where A = {α1, . . . ,α|X|}, αi ∈ R|D| is the reconstruction vector for interest point xi ∈ X,
and |X| is the number of interest points detected within video segment X. The first term in
(6.1) is reconstruction cost. If video segments similar to X have been observed before, this
term should be small, due to the assumption that the learned dictionary represents knowledge

67

in the previously seen video data. The second term is the group sparsity regularization. Since
dictionary D is learned to sparsely reconstruct previously seen video segments, if X contains
no interesting or unseen contents, it should also be sparsely reconstructible using few atoms in
D. On the other hand, if contents in X have never been observed in previous video segments,
although it is possible that a fairly small reconstruction cost could be achieved, we would expect
using a large amount of video fragments for this reconstruction, resulting in dense reconstruction
weight vectors. Moreover, the special mixed `1/`2 norm of A used in the second term regularizes
the number of dictionary atoms used to reconstruct the entire video segment X. This is more
preferable over conventional `1 regularization, as a simple `1 regularizer only ensures sparse
weight vector for each interest point xi ∈ X, but it is highly possible that different interest points
will have very different footprint on the dictionary, i.e., using very different atoms for sparse
reconstruction. Consequently, reconstruction for the video segment X could still involve large
number of atoms in D. On the other hand, the `1/`2 regularizer ensures a small footprint of
the entire video segment X, as all interest points within segment X are regularized to use the
same group of atoms for reconstruction. Moreover, the tradeoff between accurate reconstruction
and compact encoding is controlled by regularization parameter λ. Finally, we denote the value
of (6.1) with optimal reconstruction matrix A as ε, which is used in Algorithm 4 to decide if
segment X should be incorporated into the summary video.

Consequently, LiveLight encapsulates the following intuitions for what we would think of
a video summary. Given a dictionary optimized to sparsely reconstruct previously seen video
contents, a new segment exhibiting similar contents seen in previous video data should be re-
constructible from a small number of such atoms. On the other hand, a video segment unveiling
contents never seen before is either not reconstructible from the dictionary of previous video
segments with small error, or, even if it is reconstructible, it would necessarily build on a com-
bination of a large number of atoms in the dictionary. Crucial to this technique, is the ability
to learn a good dictionary of atoms representing contents seen in previous video segments, and
being able to update the dictionary online to adapt to changing content of the video, which we
discuss in detail later in this section.

Optimization

To find the optimal reconstruction vectors {αi} for interest points in X, we need to solve problem
(6.1). We employ alternating direction method of multipliers (ADMM) [20] to carry out such
optimization, due to its efficiency. Specifically, ADMM consists of the following iterations:

∀i : αi
k+1 =

[
D>D

|X|
+ ρI

]−1 [
D>xi
|X|

+ ρ(zik − uik)

]
(6.2)

∀j : zj,k+1 = Sλ/ρ(αj,k+1 + uj,k) (6.3)
∀i : uik+1 = uik + αi

k+1 − zik+1 (6.4)

and alternates among the above updates until convergence, where ρ > 0 is called the penalty
parameter, I ∈ R|D|×|D| is the identity matrix, S is the soft-thresholding operator defined as
Sκ(a) = max{(1 − κ/|a|), 0}a, A = {α1, . . . ,α|X|}, Z = {z1, . . . , z|X|} = {z>1 , . . . , z>|D|}>,
U = {u1, . . . ,u|X|}, index i runs through {1, . . . , |X|}, index j runs through {1, . . . , |D|} and

68

k is the iteration counter. Both Z update (6.3) and U update (6.4) are trivial to compute. The A
update in (6.2) can be accelerated via techniques such as warm start, caching factorization and
fast matrix inversion as discussed in [20].

Learning Initial Dictionary

In this section, we discuss how to learn an initial dictionary, necessary to launch the LiveLight
algorithm. Specifically, we would like a learning method that facilitates both induction of new
dictionary atoms and removal of dictionary atoms with low predictive power. To achieve this
goal, we again apply `1/`2 regularization, but this time to dictionary atoms. The idea for this
regularization is that uninformative dictionary atoms will be regularized towards 0, effectively
removing it from the dictionary. Given first few video segments X0 = {X1, . . . ,Xm}, we for-
mulate learning optimal initial dictionary as follows

min
D,{A1,...,Am}

1

m

∑
Xk∈X0

J(Xk,Ak,D) + γ

|D|∑
j=1

‖dj‖2 (6.5)

where J(Xk,Ak,D) is the objective function in (6.1), and γ balances sparse reconstruction
quality and dictionary size. Though non-convex to D and {A1, . . . ,Am} jointly, (6.5) is convex
w.r.t. {A1, . . . ,Am} when D is fixed, and also convex w.r.t. D with fixed {A1, . . . ,Am}.
A natural solution is to alternate between these two variables, optimizing one while clamping
the other. Specifically, with fixed dictionary D, each Ak ∈ {A1, . . . ,Am} can be optimized
individually, using optimization method described in the previous section. On the other hand,
with fixed {A1, . . . ,Am}, optimizing dictionary D can be similarly solved via ADMM.

6.2.2 Online Dictionary Update
As LiveLight scans through the video, segments that cannot be sparsely reconstructed using cur-
rent dictionary, indicating unseen and interesting contents, are incorporated into the summary
video. However, all following occurrences of similar contents appearing in later video segments,
should ideally be excluded. Consequently, it is crucial to update the dictionary such that those
video segments already included in the summary video should no longer result in large recon-
struction error. Assume the current version of summary is Zt, composed of t video segments
{Xk}tk=1, then the optimal dictionary is the solution of the following problem

min
D

f(D) = min
A1,...,At

1

t

∑
Xk∈Zt

J(Xk,Ak,D) + γ

|D|∑
j=1

‖dj‖2 (6.6)

where we need to store feature representations {Xk}tk=1 for all t segments in Zt. This might
not cause problem for short videos, however, for hours of videos, especially surveillance videos
running endlessly, storing these feature representations requires huge space. Moreover, solving
the above optimization problem from scratch using alternating optimization for each dictionary
update, is extremely time consuming, and would hinder the algorithm from applicable to real

69

world consumer videos. Therefore, LiveLight employs online learning for approximate and effi-
cient dictionary update [89]. Specifically, instead of optimizing dictionary D and reconstruction
coefficients {A1, . . . ,At} simultaneously, LiveLight aggregates the past information computed
during the previous steps of the algorithm, namely the reconstruction coefficients {Â1, . . . , Ât}
computed using previous versions of dictionary, and only optimizes D in problem (6.6). There-
fore, the online dictionary update seeks to solve the following approximate optimization problem

min
D

f̂(D) =
1

t

∑
Xk∈Zt

J(Xk, Âk,D) + γ

|D|∑
j=1

‖dj‖2 (6.7)

It is easy to see that f̂(D) upper bounds f(D) in problem (6.6). Moreover, theoretical analysis
shown in the next section guarantees that f̂(D) and f(D) converges to the same limit and conse-
quently f̂(D) acts as a surrogate for f(D). Moreover, it is easy to show that problem (6.7) could
be equivalently reformulated as follows

min
D

1

2t
T r(D>DPt)−

1

t
T r(D>Qt) + γ

|D|∑
j=1

‖dj‖2 (6.8)

where Tr(·) is matrix trace, Pt and Qt are defined as

Pt =
t∑

k=1

∑
αi∈Ak

αiαi>, Qt =
t∑

k=1

∑
αi∈Ak

xiα
i> (6.9)

Therefore, there is no need to store {Âk}tk=1 or {Xk}tk=1, as all necessary information is stored
in Pt and Qt. Finally, problem (6.8) could be efficiently solved using ADMM.

6.2.3 Importance of Dictionary

Very recently, there have been attempts employing the idea of sparse reconstruction for video
summarization [30, 44]. However, those approaches use the entire video itself as basis for recon-
struction, instead of learning and updating a dictionary as concise summary of video contents.
Using the entire video as reconstruction basis [30, 44], significantly increases the complexity of
optimization and computational time, as shown later in the experiments, the approach in [30]
takes nearly 10 times more CPU time than LiveLight on the same videos. Such heavy computa-
tional footprint hinders those approaches from being applied in temporally long consumer videos
(actually, [30, 44] only used videos with at most several minutes in their empirical study). More-
over, [30, 44] have to see the entire video before starting to generate summary, eliminating the
possibility of real-time summarization. On the other hand, the dictionary learned and updated in
LiveLight concisely summarizes the contents of seen video, significantly reduces computational
cost, and captures any concept drift in video streams.

70

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Video Segment ID

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

walk
bend
walk

Figure 6.1: (Left) 15 video segments; (Right) reconstruction error for each video segment.

6.2.4 Sanity Check

We use synthetic video to perform sanity check on LiveLight. Specifically, we use two types of
video sequences from Weizmann action recognition data [53], i.e., walk and bend. The synthetic
video is constructed by combining 5 walk sequences, followed by 5 bend sequences, and 5 more
walk sequences. Details of this synthetic video are shown in Figure 6.1. LiveLight learns initial
dictionary using the first walk sequence, and carries out reconstruction and online dictionary
update on the rest 14 video sequences. There are 2 clear peaks in Figure 6.1, corresponding to
the third walk sequence, which is the first occurrence of walking from left to right (the first and
second sequences are both walking from right to left), and the first bend sequence. Moreover,
the reconstruction error for the fourth walk sequence, which also shows walking from left to
right, is significantly smaller then the third walk sequence, indicating the dictionary has learned
the contents of walking to the right, through online dictionary update. Finally, the last 5 walk
sequences all result in small reconstruction errors, even after LiveLight has just observed 5 bend
sequences, showing that the dictionary retains its knowledge about walk.

6.3 Theoretical Analysis
We first study the convergence property of online dictionary update. Specifically, we have the
following theorem,
Theorem 2 Denote the sequence of dictionaries learned in LiveLight as {Dt}, where D1 is the
initial dictionary. Then f̂(D), defined in (6.7), is the surrogate function of f(D), defined in (6.6),
satisfying
(1) f(D)− f̂(D) converges to 0 almost surely;
(2) Dt obtained by optimizing f̂ is asymptotically close to the set of stationary points of (6.6)
with probability 1

71

Theorem 2 guarantees that f̂(D) could be used as a proper surrogate for f(D), such that we
could optimize (6.7) to obtain the optimal dictionary efficiently, instead of solving the much
more time-consuming optimization problem (6.6).

Next, we study the generalization ability of LiveLight on unseen video segments. Specifi-
cally, as LiveLight scans through the video sequence, the dictionary is learned and updated only
using video segments seen so far. Consequently, the dictionary is optimized to sparsely recon-
struct contents in seen video segments. It is crucial for LiveLight to also be able to sparsely
reconstruct unseen video segments, composed of contents similar to video segments seen be-
fore. This property is called generalization ability in statistical machine learning terminology.
Specifically,

Theorem 3 Assume data points X (i.e., video segments) are generated from unknown probability
distribution P . Given t observations {X1, . . . ,Xt}, for any dictionary D, and any fixed δ > 0,
with probability at least 1− δ

EX∼PJ
∗(X,D)− 1

t

t∑
k=1

J∗(Xk,D) ≤ ε(t, δ) (6.10)

where J∗(X,D) = minA J(X,A,D) is the minimal reconstruction error for X using dictionary
D, as defined in (6.1), and ε(t, δ) = o(ln t/

√
t) is a small constant that decreases as t increases.

The above theorem is true for any dictionary D, and obviously also true for the dictionary learned
in LiveLight. Therefore, Theorem 3 guarantees that if dictionary D has small reconstruction er-
ror on previously seen video segments, it will also result in small reconstruction error for unseen
video segments with similar contents. It should be noted that in LiveLight, the dictionary is
learned in an online fashion, and a new dictionary is learned whenever a new video segment is
incorporated into the summary video. Consequently, to correctly understand the implication of
the above theorem, we should apply it to each dictionary learned through the online learning pro-
cess. Specifically, assume the current version of summary is Zt, composed of t video segments
{Xk}tk=1, and the updated optimal dictionary is Dt. Theorem 3 proves that if dictionary Dt has
small reconstruction error on previously seen video segments (up until time point t), it will also
result in small reconstruction error for unseen video segments with similar contents. Since the
above logic is true for any dictionary Dt learned in the online process, it guarantees we could
use the sparse re-constructibility to filter out events similar to previously seen video segments.

6.4 Experiments

We test the performance of LiveLight on more than 12 hours of consumer videos, including both
YouTube videos and surveillance videos. The 20 videos in our data set span a wide variety of
scenarios: indoor and outdoor, moving camera and still camera, with and without camera zoom
in/out, with different categories of targets (human, vehicles, planes, animals etc.) and covers a
wide variety of activities and environmental conditions. Details about the data set are provided
in Table 6.1.

72

Table 6.1: Data set details. The first 15 videos are downloaded from YouTube, and the last 5
videos are from surveillance cameras. Video length (Time) is measured in minutes. CamMo
stands for camera motion, and Zoom means camera zoom in/out.

Video Time Frames CamMo Zoom
CarRace 34.00 61133 Yes No
FirefighterSave 21.53 38714 Yes Yes
MonsterTruck 50.85 91430 Yes No
StockCar 38.91 69963 Yes No
SpeedBoat 64.03 115249 Yes Yes
DogSwimming 20.08 36106 No No
PetEvent 33.63 60472 Yes Yes
HorseTraining 20.67 37171 Yes No
ShowJumping 20.73 31087 Yes Yes
Snorkeling 21.92 39463 Yes No
DisneyParade 29.10 50694 Yes No
ShamuShow 21.08 37845 Yes No
BoatTour 28.36 51043 Yes Yes
AirShow 12.04 21626 Yes Yes
PolicePullOver 46.58 83761 Yes No
SubwayExit 43.27 64902 No No
SubwayEntrance 96.17 144249 No No
Mall-1 55.44 83156 No No
Mall-2 39.98 59969 No No
Mall-3 60.35 90525 No No

6.4.1 Experiment Design and Evaluation

We compare LiveLight with several other methods, including evenly spaced segments and K-
means clustering [30] using the same features as our method. Specifically, after the temporal
segmentation of the original video, evenly divided into segments each with a constant length of
50 frames, evenly spaced segments computes the number of segments N via dividing the length
of ground truth summary video by the length of each video segment, i.e., 50 frames, then select
N segments starting from the first segment with even space between any two segments. Those
evenly spaced segments are then concatenated to compose the summary video for the evenly
spaced segments method. For the K-means clustering method, we first group the collection
of video segments from the original video into N clusters, using K-means clustering, where
N is computed the same way as in the evenly spaced segments method. Then for each center
of the N clusters, we find the segment from the original video that has minimum distance to
that cluster center. Finally, the summary video for K-means clustering method is composed by
concatenating the N video segments with minimum distance to the N cluster centers. We also
compare with the DSVS algorithm proposed in [30], state-of-the-art method for unsupervised
video summarization, using the 50-frame video segments as basic units in the algorithm. It is
shown in [30] that DSVS already beats color-histogram based method [109] and motion-based

73

Table 6.2: T is the length (seconds) of summary video. LL: LiveLight; ES: evenly spaced seg-
ments; CL: K-Means Clustering; DSVS: sparse reconstruction using original video as basis [30].

T LL(%) ES(%) CL(%) DSVS(%)
CarRace 60.7 59.80 40.53 44.98 58.04
FirefighterSave 59.4 66.84 38.22 52.53 55.83
MonsterTruck 61.6 54.38 42.05 49.35 46.36
StockCar 60.2 61.30 35.55 40.03 48.36
SpeedBoat 59.3 75.55 45.03 59.53 77.07
DogSwimming 62.2 79.10 42.93 54.34 64.57
PetEvent 61.9 58.32 36.51 54.12 43.93
HorseTraining 60.3 66.17 54.06 53.90 60.63
ShowJumping 60.6 46.86 39.93 37.13 44.22
Snorkeling 60.4 60.10 37.58 62.09 56.83
DisneyParade 58.5 67.69 39.49 62.56 67.17
ShamuShow 59.0 61.36 34.75 21.02 48.75
BoatTour 59.9 59.28 33.89 40.57 50.93
AirShow 36.8 85.33 49.46 74.46 72.29
PolicePullOver 61.7 91.41 30.63 60.45 76.75
SubwayExit 89.1 91.87 21.55 47.70 85.03
SubwayEntrance 92.1 80.56 42.56 43.65 73.85
Mall-1 89.7 94.98 37.46 57.08 85.40
Mall-2 88.4 96.83 43.67 61.99 87.72
Mall-3 92.0 88.26 38.70 58.59 81.99
Average - 72.30 39.23 51.80 64.29

method [85]. As explained above, parameters for various algorithms are set such that the length
of generated summary videos are the same as ground truth summary video. For LiveLight, we fix
the number of atoms in dictionary to 200, though better performance is possible with fine tuning
of parameters.

For each video in our data set, three judges selected segments from original video to compose
their preferred version of summary video. The final ground truth is then constructed by pooling
together those segments selected by at least two judges. Following [30], to quantitatively deter-
mine the overlap between algorithm generated summary and ground truth, both video segment
content and time differences are considered. More precisely, we augment the ground truth sum-
mary video via potentially extending each segment by 2 seconds before and after it. Specifically,
the ground truth summary video is composed by a series of video segments from the original
video. For the i-th video segment in the ground truth summary video, we look at the video con-
tents 2 seconds before it. If this 2 seconds of video contents show similar scene content and
motion pattern as the i-th video segment, we add it into the augmented ground truth. We perform
the same procedure for the video contents 2 seconds after the i-th video segment. Consequently,
the final augmented ground truth summary video contains the original user generated ground
truth summary video, and those 2 seconds of video contents which are showing similar scene

74

content and motion pattern as their corresponding ground truth video segment. Final accuracy is
computed as the ratio of the number of overlapped frames between the augmented ground truth
summary video and algorithm generated summary video, divided by the length of the original
ground truth summary video.

6.4.2 Results
According to the quantitative comparison provided in Table 6.2, we have following observations:
(1) LiveLight achieves highest accuracy on 18 out of 20 videos, and in most cases beats competing
algorithms with a significant margin; (2) On the 5 surveillance videos, both LiveLight and DSVS
outperform other two algorithms, showing the advantage of sparse reconstruction based methods
on summarizing surveillance videos; (3) Averaged across 20 videos, LiveLight outperforms the
state-of-the-art summarization method DSVS by 8%, revealing the advantage of LiveLight.

Besides quantitative measures, we also show the automatically generated summary (“trailer”)
for YouTube video PolicePullOver (more summary videos are provided in Figure 6.3, Figure 6.4,
and Figure 6.5). As shown in Figure 6.2, the summary video captures the entire story line of this
near hour long video, achieving more than 40 times compression in time without losing seman-
tic understandability of the summary video. Moreover, the background in this video involves
various cars passing in both directions, and it is interesting that LiveLight is not affected by this
background motion.

6.4.3 Time Complexity
LiveLight is implemented using MATLAB 7.12 on a 3.40 GHZ Intel Core i7 PC with 16.0 GB
main memory. Table 6.3 compares the processing time of various algorithms, with the following
observations: (1) The last column under LiveLight shows the ratio between its computational
time and video length. For all videos, this ratio is less than 2, and for 6 videos even less than
1. Thus, with MATLAB implementation on a conventional PC, LiveLight already achieves near
real-time speed, further revealing its promise in real world video analysis applications; (2) Live-
Light is nearly 10 times faster than DSVS, revealing the advantage of learning and updating
dictionary in an online fashion, instead of using original video as basis for sparse reconstruction.

75

Table 6.3: Processing time of LiveLight and competing algorithms (all time shown is in minutes).
Tvideo is the length of original video. T1 is the time spent on generating feature representations
in LiveLight, and T2 is the combined time spent on learning initial dictionary, video segment
reconstruction and online dictionary update. Ttotal = T1 + T2 is the total processing time of
LiveLight, and Ratio = Ttotal/Tvideo for all algorithms.

Video LiveLight EvenlySpaced Clustering DSVS
Tvideo T1 T2 Ttotal Ratio Ttotal Ratio Ttotal Ratio Ttotal Ratio

CarRace 34.00 42.73 10.18 52.91 1.56 0.52 0.02 114.03 3.35 636.7 18.73
FirefighterSave 21.53 27.26 8.54 35.80 1.66 0.51 0.02 78.92 3.67 434.8 20.20
MonsterTruck 50.85 60.23 11.60 71.83 1.41 0.59 0.01 162.23 3.19 783.3 15.40
StockCar 38.91 51.95 10.08 62.03 1.59 0.50 0.01 150.59 3.87 672.2 17.27
SpeedBoat 64.03 39.65 9.31 48.96 0.76 0.54 0.01 102.56 1.60 460.2 7.19
DogSwimming 20.08 5.16 6.93 12.09 0.60 0.53 0.03 33.46 1.67 174.7 8.70
PetEvent 33.63 34.27 8.24 42.51 1.26 0.60 0.02 101.77 3.03 516.2 15.35
HorseTraining 20.67 9.82 7.64 17.46 0.84 0.56 0.03 34.84 1.69 271.8 13.15
ShowJumping 20.73 23.33 7.57 30.90 1.49 0.55 0.03 79.72 3.85 247.2 11.93
Snorkeling 21.92 28.30 9.13 37.43 1.71 0.54 0.03 88.19 4.02 536.6 24.48
DisneyParade 29.10 37.53 9.48 47.01 1.62 0.49 0.02 123.96 4.26 535.9 18.42
ShamuShow 21.08 17.91 7.83 25.74 1.22 0.55 0.03 51.46 2.44 399.0 18.93
BoatTour 28.36 25.56 9.13 34.69 1.22 0.50 0.02 80.48 2.84 379.8 13.39
AirShow 12.04 8.37 7.24 15.61 1.30 0.31 0.03 42.34 3.52 225.0 18.68
PolicePullOver 46.58 16.07 8.33 24.40 0.52 0.56 0.01 53.24 1.14 493.3 10.59
SubwayExit 43.27 14.46 6.67 21.13 0.49 0.75 0.02 148.8 3.44 558.6 12.91
SubwayEntrance 96.17 41.30 9.55 50.85 0.53 0.84 0.01 304.15 3.16 1299.1 13.51
Mall-1 55.44 51.02 9.93 60.95 1.10 0.82 0.02 139.23 2.51 646.4 11.66
Mall-2 39.98 33.49 8.95 42.44 1.06 0.80 0.02 94.75 2.37 436.5 10.92
Mall-3 60.35 58.02 10.31 68.33 1.13 0.78 0.01 137.20 2.27 698.4 11.57

76

Figure 6.2: (Best viewed in color and zoom-in.) Some frames of the summary video generated
by LiveLight for a YouTube video showing police pulling over a black SUV and making arrest
(frames are organized from left to right, then top to bottom in temporal order). From the summary
video, we could see the following storyline of the video: (1) Police car travels on the highway;
(2) Police car pulls over black SUV; (3) Police officer talks to passenger in the SUV; (4) Two
police officers walk up to the SUV, and open the passenger side door of the SUV; (5) Police
officer makes arrest of a man in white shirt; (6) Police officer talks to passenger in the SUV
again; (7) Both police car and black SUV pull into highway traffic; (8) Police car follows black
SUV off the highway; (9) Both vehicles travel in local traffic; (10) Black SUV pulls into local
community.

77

Figure 6.3: (Best viewed in color and zoom-in) Some frames of the traffic surveillance video
and the video highlight generated by LiveLight. The video segments incorporated in the video
highlight are shown in the red bounding boxes: (1) A car travels from right to left; (2) A car
travels from left to right; (3) Two people push a bike from right to left; (4) A person rides a bike
from left to right.

78

Figure 6.4: (Best viewed in color and zoom-in) Some frames of the video highlight for subway
surveillance video. Besides showing people getting off the train and exiting the station, the video
highlight also captures suspicious behaviors. Specifically, frames in purple bounding boxes show
people walking in the wrong direction, i.e., getting into the station through exit, and frames in
green bounding boxes show loitering near the exit.

79

Figure 6.5: (Best viewed in color and zoom-in) Some frames of the video highlight for air show
video. From the video highlight, we could see the following storyline of the video: (1) The
plane starts taking off; (2) The plane passes another plane during taking off; (3) The plane takes
off; (4) Other people watching the air show caught on camera; (5) The plane performs various
stunts, including flying side-way, flying upside down, diving close to the ground, etc.; (6) The
plane lands. It should be noted that at the end of the video highlight, it seems that LiveLight did
not capture the process of landing. However, the reason for lacking such process is because the
original video does not have this part at all.

80

6.5 Summary
In this chapter, we propose LiveLight to generate short video summarizing the most important
and interesting contents, of a potentially very long video, and enable viewer to understand the
video without watching the entire sequence. Theoretical analysis is provided, focusing on online
dictionary update convergence, and generalization ability to unseen video segments. We sum-
marize our main contributions as follows. (1) We propose a principled way of generating short
video highlight of a potentially very long video, summarizing its most important and interesting
contents while eliminating repetitive events, enabling viewer to understand the video without
watching the entire sequence. (2) We propose an online dictionary update method, enabling our
method to generate highlights on-the-fly. (3) We provide theoretical analysis of the proposed
method, guaranteeing convergence of the online dictionary update and generalization ability to
unseen video segments. (4) We demonstrate the effectiveness of LiveLight on real-world data,
including both surveillance videos and YouTube videos, achieving near real-time speed on all
tested videos.

The purely unsupervised formulation for video summarization in this chapter enables wide
applicability of LiveLight. However, in videos recording certain events with clear definition of a
storyline, such as a wedding video, human guidance on the video summarization process could
be valuable, in order to avoid missing important piece of the storyline, to including unimportant
segments. Therefore, in next chapter, we study video summarization in the supervised setting,
where user generated ground truth annotation of summary video is provided for a subset of
videos, and we propose an algorithm to automatically learn the preferred storyline and generate
summary for videos of similar nature.

81

82

Chapter 7

Supervised Video Summarization: A Max
Margin Approach

As discussed in previous chapter, video summarization, whose goal is to concisely present the
storyline of the original video through removing significant portion of the original video that
are deemed uninteresting or repetitive, has become not only a popular research topic in com-
puter vision, but also a highly-anticipated tool for unlocking video data. However, despite the
recently increasing interests on video summarization for consumer videos, almost all previous
attempts have taken an unsupervised formulation, that is, only the video itself is used in de-
ciding which portion should be kept in the summary. Albeit being generally applicable to any
video stream, unsupervised video summarization has serious limitations. Specifically, most un-
supervised video summarization algorithms aim at picking out unique and non-repetitive video
segments to construct the summary video. However, uniqueness is not necessarily the optimal
criterion for selecting video segments. For example, in a video captured by a hand-held device,
if the user accidently drops the camera while recording, there will be a rather unique segment
recorded during the process of camera being dropped. In most scenarios, such segments would
be regarded as noise, and users would expect such accidental segments be deleted since they
are not key components of the storyline in the original video. However, under the unsupervised
video summarization framework, due to the uniqueness of such accidental segments, they would
be deemed as highly interesting and very likely to be included into the final summary video.
On the other hand, selecting most unique segments does not guarantee the constructed summary
video could illustrate the storyline of the original video. For example, when summarizing wed-
ding videos, users would expect a storyline consisting of events such as bride walking down the
aisle, ring exchange, couple’s first dance and cutting the wedding cake, included in the summary
video. Unsupervised video summarization could possibly miss one or a few of such key events,
and hence generating an incomplete summary video. Finally, given the same video, different
users might have various preferences of which events should be incorporated into the summary
video, unfortunately, unsupervised video summarization cannot utilize such information for per-
sonalized video summarization.

Clearly, some gap might exist between the automated unsupervised characterization of the
important video segments and the human perception about the importance of a segment, and
purely unsupervised video summarization could potentially miss some of these key components,

83

or incorporate unimportant events. Therefore, it is beneficial to have users generate their pre-
ferred summaries, and use such manually composed ideal summary video as supervised infor-
mation for summarizing future videos characterizing similar events. Specifically, within a class
of videos of similar nature, such as a collection of wedding videos, users could provide the de-
sired summaries for a subset of videos. Based on such supervised information, the summaries
for other videos in the same class are automatically generated. Such technique not only captures
the user perception through the process of supervised learning, but also provides an algorithmic
framework for generation of personalized video summary.

7.1 Introduction
In this chapter, we propose GUIded viDEo SUMmarization (GuideSum) for supervised video
summarization (problem formulation shown in Figure 7.1), where users are asked to generate
summaries for a subset of a class of videos of similar nature. Given such manually generated
summaries, GuideSum aims to learn the preferred storyline within the given class of videos of
similar nature. Then, GuideSum will automatically generate summaries for the rest of videos
in the class, capturing the similar storyline in those manually summarized videos. One clear
challenge in supervised video summarization lies in the fact that the number of unique events
in the storyline is unknown, since the only supervised information is the summary video itself,
without semantic labeling on each segment included into the summary. Moreover, while some
videos present the entire sequence of certain events, others might only have partial events. Take
the wedding videos as an example, some videos could show the entire process of couple cut-
ting the wedding cake, others might only show the cake without actually cutting it. Therefore,
the algorithm should understand not only entire sequence, but also partial sequences. Weighing
the above challenges, our proposed GuideSum algorithm is formulated as a max margin clas-
sification problem, where those segments incorporated into the summary video are treated as
positive training data, and segments excluded from the summary are considered as negative ex-
amples. In particular, GuideSum employs an `1/`2 regularization on the set of weight vectors
to automatically select the optimal number of unique events, and augments the set of positive
training examples by including not only full sequence but also partial sequences of each unique
event, enabling understanding of partial events. Mathematically, GuideSum is formulated as an
`1/`2 regularized max margin optimization problem, with exponential number of constraints.
We utilize the cutting plane algorithm to effectively handle the huge number of constraints and
ADMM to efficiently solve the `1/`2 regularized optimization problem. Experimental results on
a collection of surveillance and YouTube videos are provided to demonstrate the effectiveness of
GuideSum.

Our main contributions in this chapter are as follows. (1) We propose a principled way of
generating short summary video of a potentially very long video, leveraging information from
not only the original video itself, but also user generated summaries for videos capturing events
of similar nature (such as a set of wedding videos), filling the gap between the automated char-
acterization of the important video segments and the human perception about the importance of
a segment. (2) In our formulation, the supervised information required is only the user generated
summary video, with no requirement on semantic labeling for each segment incorporated into

84

Training	
 Data:	
 original	
 video	
 +	
 ground	
 truth	
 selec5on	
 of	
 video	
 segments	
 for	
 summary	
 	

Tes5ng	
 Data:	
 original	
 video	

Training	
 Video	
 1	
 +	
 Ground	
 Truth	

Training	
 Video	
 2	
 +	
 Ground	
 Truth	

Training	
 Video	
 3	
 +	
 Ground	
 Truth	

Posi6ve	
 examples	
 (+):	
 video	
 segments	
 in	

ground	
 truth	
 summary	

Nega6ve	
 examples	
 (-­‐):	
 other	
 video	
 segments	

Learn	
 decision	
 func6on	
 Ψ:	
 Ψ(+)>0	
 &	
 Ψ(-­‐)<0	

+
-­‐

Training	

Tes6ng	
 Ψ	

Figure 7.1: (Best viewed in color) Formulation of suervised video summarization. Within a
class of videos of similar nature (such as a collection of wedding videos as shown in the figure),
users provide the desired summaries for a subset of videos to be used as training data. Based on
such supervised information, a max margin classifier Ψ is learned where those video segments
incorporated into the user generated summary are treated as positive examples, while other video
segments are utilized as negative examples. To automatically generate summary for unseen
video, i.e., testing data, the learned max margin classifier is applied to the testing video, where
any video segment with positive value for the decision function is incorporated into the summary
video.

the summary video, making the process of collecting supervised information much simpler and
rendering our proposed approach more practical. (3) We propose a max margin learning for-
mulation for supervised video summarization, capable of automatically determining the optimal
number of unique events in the summary video, and understanding not only full event but also
partial events. (4) We demonstrate the effectiveness of GuideSum on real-world data, including
both surveillance videos and YouTube videos, achieving a significant margin on summarization
accuracy over state-of-the-art video summarization algorithms on all tested videos.

7.2 Supervised Video Summarization
For the vast majority of consumer generated videos recording events or life moments of special
interests, there is usually an embedded storyline in the visually complicated video. For example,
in wedding videos, the storyline could start with bride walking down the aisle, followed by the
exchange of vows, ring ceremony, then couple’s first dance, and cutting the wedding cake. The
motivation for video summarization is to remove uninteresting events and retain only the most
salient and important segments for the storyline, so that people could save significant amount of

85

time by watching only the summary video, which is much shorter than the original video, but
at the mean time keeps all crucial segments that are key to the flow of the storyline. Clearly,
unsupervised video summarization algorithms are prone to missing some of these key compo-
nents, or incorporating unimportant events, due to the lack of knowledge about which events are
key to the storyline. Consequently, serious gap exists between automated characterization of the
important video segments and the human perception about the importance of a segment. Weigh-
ing the above issue with unsupervised video summarization, the motivation for our proposed
max margin video summarization algorithm is to bridge the gap between machine perception
of video segment importance and user preference on the storyline, with minimal requirement of
supervised information.

Within a class of videos of similar nature, such as a collection of wedding videos, a naive way
of incorporating user input as supervised information, is to ask users to identify each component
of the storyline from the video sequence, and then use event recognition to separately identify
each component of the storyline in the testing video. For example, a user might be asked to
label out the video segment corresponding to ring ceremony from a wedding video. Though
such supervised information could potentially boost the accuracy of video summarization, it also
has serious limitations. To begin with, a crucial prerequisite for such formulation is the clear
definition of key components in the storyline (for wedding videos: bride walking down the aisle,
exchange of vows, ring ceremony, first dance and cutting wedding cake). This might be possible
for certain events where a clearly defined storyline is well known, such definition might not be
readily available for the vast majority of videos. Secondly, compared with manually generating
a summary video for a given input video sequence, identifying separately each component in
the storyline is a much more challenging task for users, and it sometimes even requires expert
knowledge on the event depicted in the collection of videos. For example, for non-experts of
figure skating, it might be difficult to tell the difference between Axel jump, Lutz jump and Flip
jump, but it is rather common sense that they should all be incorporated into the summary video
as they are the exciting moments in a figure skating performance. On the other hand, if the
ground truth event annotation treats those segments as the same event (e.g. Jump), the internal
difference between those segments could significantly hinder the accuracy of event recognition
and hence affect the performance of video summarization. Finally, separately identifying each
component in the storyline will result in multiple event recognizers, which could significantly
slow the summarization of unseen testing videos. Specifically, to summarize an unseen video,
each event recognizer needs at least one pass through the video, resulting in multiple passes
through the testing video for summarization. With a complicated storyline with large number of
components, those multiple passes could render the algorithm impractical.

Weighing the above considerations, in this chapter, we use a much weaker form of supervi-
sion: instead of asking users to separately label out each component of the storyline, we only
need users to generate their preferred summary video, with no requirement on assigning seman-
tic label to each component in the summary. Specifically, for the wedding video example, the
only supervised information required is which segments should be incorporated into the sum-
mary, without any knowledge on which segment shows bride walking down the aisle, or which
segment corresponds to the ring ceremony. Even more interestingly, the total number of unique
events in the storyline is also unknown. Though lacking semantic information on each seg-
ment incorporated into the summary video, our formulation of supervised video summarization

86

is more practical and applicable to a much wider collection of videos.
One clear challenge in our formulation of supervised video summarization lies in the lack

of knowledge on the number of unique events in the storyline. If the number of unique events
is set too large, it could mean that each individual segment in the summary video is treated
as a unique event, and the learned classifier cannot discover the similarities among multiple
appearances of the same event (such as bride walking down the aisle segments from different
wedding videos), rendering the supervised video summarization algorithm into a simple pattern
matching trick, with rather weak generalization ability to unseen videos. On the other hand, if the
number of unique events is set too small, various types of segments could end up being treated as
the same event. The significant internal difference between those segments could make learning
classifier very challenging and hinder the performance of later summarization. Therefore, how to
properly select the number of unique events in the summary video automatically is an important
yet challenging problem. Moreover, while some videos present the entire sequence of certain
events, others might only have partial events. For example, some videos could contain the entire
event of couple cutting the wedding cake and sharing a price together, others might only show
the cake without the cutting and sharing part. If the learned video summarization model can only
recognize full event, it will miss similar events with only partial segments in the testing video,
hence resulting in incomplete summary video. Therefore, the algorithm should understand not
only entire sequence, but also partial sequences. In the rest of this section, we will provide details
on formulating supervised video summarization into a max margin classification problem.

7.2.1 Problem Formulation
Let (X1,Y1), . . . , (Xn,Yn) be the set of training video sequences and their associated ground
truth annotations for the summary. Specifically, suppose in video Xi, there are mi video seg-
ments incorporated into the summary, then we have Yi = ∪mi

k=1y
k
i where yki = [ski , e

k
i] consists

of two numbers indicating the start and the end of i-th component in the desired summary video
for Xi. For any interval y = [s, e], define Xy as the segment of X from frame s to e. More-
over, define Ψ(Xy) as the output of video summarizer, which has positive response for those
segments included in the summary video, and negative values for other excluded segments, i.e.,
Ψ(Xy) > 0 for any y ⊂ Y and Ψ(Xy) < 0 for any y 6⊂ Y. In testing, the learned video
summarizer Ψ is applied to any video segment from the testing video X and output summary
will be computed as Y = ∪y:Ψ(Xy)>0 y. To avoid trivial selection of too short or too long video
segments, we further constrain bound the length of segments using lmin and lmax such that only
segment with length lmin ≤ |y| ≤ lmax will be tested using the learned video summarizer and
Y = ∪y:lmin≤|y|≤lmax,Ψ(Xy)>0 y.

7.2.2 Augmenting the Training Data
In the above formulation for supervised video summarization, a key assumption is that both the
training videos and testing videos are recording events of similar nature, such as a collection of
wedding videos. It is the similar nature between training data and testing data that enables the
use of the manually generated storyline for training videos to summarize testing video. However,
a key challenge in such formulation is the internal variation among different videos, though they

87

Figure 7.2: (Best viewed in color) Augmenting the positive training examples with simulated
partial events. The 15 frames shown here represent a complete event of “cutting wedding cake”
from a wedding video. Besides, 3 partial events are also shown using the red, blue and green
boxes. It should be noted that much more partial events are simulated in our max margin video
summarization formulation, and the simulated partial events are allowed to overlap.

are recording events of similar nature. In the wedding video example, the training videos could
show the complete sequence of couple cutting the wedding cake and sharing a piece together,
while the testing video might only have partial sequence showing the cutting part. If our trained
model can only recognize complete event, it might not identify the partial occurrence of the
similar events in the testing video, rendering the summary video missing crucial component.

To enable the learned video summarizer to recognize both complete event and various pos-
sible partial events, we propose to augment the training data by introducing simulated partial
events into the set of positive examples [58]. Figure 7.2 illustrates our idea of augmenting the
training data. Specifically, given training video sequence X and its associated ground truth an-
notation for the summary Y = ∪mk=1y

k, where each yk is a separate component in the manually
generated summary. For each event yk, we simulate the following set of partial events contained
in yk with bounded length

ỹk = {y|y ⊂ yk, lmin ≤ |y| ≤ lmax} (7.1)

Consequently, we define Ỹ as the augmented summary containing both the components in Y and
augmented partial events, i.e., Ỹ = ∪mk=1ỹ

k. The decision function Ψ should therefore generate
positive response to not only the original complete events, but also simulated partial events, i.e.,
Ψ(Xy) > 0 for any y ⊂ Ỹ.

7.2.3 Max Margin Video Summarization
Let g(Xy) be the feature vector for video segment Xy (details on g(·) will be discussed in the
experiments section). For each training video Xy, multiple types of events are included in the

88

ground truth summary Y, such as bride walking down the aisle, ring ceremony, cutting the wed-
ding cake, etc., in the wedding video example. In max margin video summarization, we define
a separate linear decision function for each type of such events. Assume the total number of
unique events in the collection of videos recording events of similar nature is K, GuideSum
defines K linear decision functions {f(Xy; wk, bk)}Kk=1 with f(Xy; wk, bk) = w>k g(Xy) + bk.
Then for positive training examples, at least one of {f(Xy; wk, bk)}Kk=1 should generate posi-
tive response. On the other hand, for negative training examples, all {f(Xy; wk, bk)}Kk=1 will
have negative values. Therefore, the decision function Ψ(Xy) of GuideSum could be defined as
follows:

Ψ(Xy) = max
k

(
w>k g(Xy) + bk

)
(7.2)

As we discussed early in this section, a key challenge in max margin video summarization
is properly setting the number of unique events K in the collection of videos. Specifically, we
would like a learning method that facilitates both induction of new event type and removal of
event types with low predictive power. To achieve this goal, we apply `1/`2 regularization on the
set of weight vectors {w1, . . . ,wK}. The idea for this regularization is that uninformative weight
vectors will be regularized towards 0, effectively removing it from the set of decision functions.
Therefore, max margin video summarization is formulated as the following optimization prob-
lem:

min
{wk,bk}Kk=1

K∑
k=1

‖wk‖2 + C

 n∑
i=1

∑
yp
i ∈Yi

ξpi +
n∑
i=1

δi

 (7.3)

s.t. ∀i = 1, . . . , n, ∀ypi ⊂ Yi, ∀y ⊂ ỹpi , max
k

(
w>k g(Xy) + bk

)
≥ 1− ξpi

|ypi |
|y|

(7.4)

∀i = 1, . . . , n, ∀y 6⊂ Ỹi, ∀k = 1, . . . , K, −(w>k g(Xy) + bk) ≥ 1− δi (7.5)

where the superscript p corresponds to positive training examples, and all video segments y
considered in constraints (7.4) and (7.5) satisfy the length constraint lmin ≤ |y| ≤ lmax. In
constraint (7.4), each slack variable ξpi is scaled by the fraction of partial event y in the complete
event ypi . This will effectively enforce a tighter constraint on complete event, while the shorter
the partial event, the looser the constraint will be. Algorithm 5 summarizes our proposed max
margin video summarization algorithm GuideSum.

7.3 Optimization
The difficulty in optimization problem (7.3) lies in the following three aspects: (1) the constraints
in (7.4) are non-convex; (2) augmentation on training data results in huge number of constraints
in (7.4) and (7.5); (3) the `1/`2 regularization in the objective function. In this section, we pro-
vide details on solving problem (7.3), where the non-convexity of constraints is handled by Con-
strained Concave-Convex Procedure (CCCP), we then use Cutting Plane algorithm to reduce
the huge number of constraints into a much smaller subset, and the `1/`2 regularized problem is
efficiently solved by Alternating Direction Method of Multipliers (ADMM).

89

Algorithm 5 Guided Video Summarization (GuideSum)
input Training videos and associated ground truth annotations for the summary

(X1,Y1), . . . , (Xn,Yn); Testing video X
output Short video Y summarizing storyline of testing video X

1: Solve optimization problem (7.3) for optimal parameters {w1, . . . ,wK , b1, . . . , bK} of the
decision function Ψ(·), and initialize Y = ∅.

2: for all video segments Xy ⊂ X with lmin ≤ |y| ≤ lmax do
3: Compute decision function Ψ(Xy) as (7.2)
4: if Ψ(Xy) > 0 then
5: Incorporate y into summary video Y = Y ∪ y
6: end if
7: end for

7.3.1 Constrained Concave-Convex Procedure

The concave-convex procedure [140] is a method for solving non-convex optimization problem
whose objective function could be expressed as a difference of convex functions. It can be viewed
as a special case of variational bounding [63] and related techniques including lower(upper)
bound maximization(minimization) [86], surrogate functions and majorization [72]. While in [140]
the authors only considered linear constraints, [119] proposed a generalization, the constrained
concave-convex procedure (CCCP), for problems with a concave-convex objective function un-
der concave-convex constraints.

Assume we are solving the following optimization problem [119]

min
z

f0(z)− g0(z) (7.6)

s.t. fi(z)− gi(z) ≤ ci i = 1, . . . , n

where fi and gi are real-valued convex functions on a vector space Z and ci ∈ R for all i =
1, . . . , n. Denote by T1{f, z}(z′) the first order Taylor expansion of f at location z, that is
T1{f, z}(z′) = f(z) + ∂zf(z)(z′ − z), where ∂zf(z) is the gradient of the function f at z. For
non-smooth functions, it can be easily shown that the gradient ∂zf(z) would be replaced by the
subgradient [28]. Given an initial point z0, the CCCP computes zt+1 from zt by replacing gi(z)
with its first-order Taylor expansion at zt, i.e. T1{gi, zt}(z), and setting zt+1 to the solution to
the following relaxed optimization problem

min
z

f0(z)− T1{g0, zt}(z) (7.7)

s.t. fi(z)− T1{gi, zt}(z) ≤ ci i = 1, . . . , n

The above procedure continues until zt converges, and [119] proved that the CCCP is guaranteed
to converge to local optimum.

Specifically, the objective function in (7.3) is convex, the constraint (7.4) is, though non-
convex, a difference between two convex functions. Hence, we can solve problem (7.3) with the
constrained concave-convex procedure. Notice that while maxk

(
w>k g(Xy) + bk

)
is convex, it

90

is a non-smooth function of {wk, bk}Kk=1. To use the CCCP, we need to replace the gradients by
the subgradients [28]:

∂wk
max
k

(
w>k g(Xy) + bk

)∣∣∣
wk=wt

k

=

{
g(Xy) if k = arg maxp

(
wt>
p g(Xy) + btp

)
0 otherwise

(7.8)

∂bk max
k

(
w>k g(Xy) + bk

)∣∣∣
bk=btk

=

{
1 if k = arg maxp

(
wt>
p g(Xy) + btp

)
0 otherwise

(7.9)

Given an initial point {w0
k, b

0
k}Kk=1, define k∗ = arg maxk

(
wt>
k g(Xy) + btk

)
, the CCCP com-

putes {wt+1
k , bt+1

k }Kk=1 from {wt
k, b

t
k}Kk=1 by replacing maxk

(
w>k g(Xy) + bk

)
in the constraint

with its first-order Taylor expansion at {wt
k, b

t
k}Kk=1, i.e.

max
k

(
wt>
k g(Xy) + btk

)
+ g(Xy)

>(wk∗ −wt
k∗) + (bk∗ − btk∗) = w>k∗g(Xy) + bk∗ (7.10)

By substituting the above first-order Taylor expansion (7.10) into problem (7.3), we obtain the
following:

min
{wk,bk}Kk=1

K∑
k=1

‖wk‖2 + C

 n∑
i=1

∑
yp
i ∈Yi

ξpi +
n∑
i=1

δi

 (7.11)

s.t. ∀i = 1, . . . , n, ∀ypi ⊂ Yi, ∀y ⊂ ỹpi , w>k∗g(Xy) + bk∗ ≥ 1− ξpi
|ypi |
|y|

(7.12)

∀i = 1, . . . , n, ∀y 6⊂ Ỹi,∀k = 1, . . . , K, −(w>k g(Xy) + bk) ≥ 1− δi(7.13)

where k∗ = arg maxk
(
wt>
k g(Xy) + btk

)
. Following the CCCP, the obtained solution {wk, bk}Kk=1

from problem (7.11) is then used as {wt+1
k , bt+1

k }Kk=1 and the iteration continues until conver-
gence. Specifically, Algorithm 6 provides details on using CCCP to solve problem (7.3).

Algorithm 6 Solve Problem (7.3) Using CCCP
Initialize {w0

k, b
0
k}Kk=1 with random values

repeat
Find {wt+1

k , bt+1
k }Kk=1 as the solution to problem (7.11)

until stopping criterion satisfied [119]

7.3.2 Cutting-Plane Algorithm
In each iteration of CCCP, we need to solve problem (7.11). Due to the augmentation of train-
ing data by introducing simulated partial events as positive examples, and the large collection
of negative examples, the huge number of constraints in problem (7.11) poses great challenge.
In this section, we propose to use cutting plane algorithm, which targets to find a small subset
of constraints from the whole set of constraints in problem (7.11) that ensures a sufficiently ac-
curate solution. Specifically, the cutting plane altorithm [64, 130] constructs a nested sequence
of successively tighter relaxations of problem (7.11), and has been theoretically proven to find a

91

polynomially sized subset of constraints, with which the solution of the relaxed problem fulfills
all constraints from problem (7.11) up to a precision of ε. That is to say, the remaining exponen-
tial number of constraints are guaranteed to be violated by no more than ε, without the need for
explicitly adding them to the optimization problem [130]. The cutting plane algorithm starts with
an empty constraint subset Ω, and it computes the optimal solution to problem (7.11) subject to
the constraints in Ω. The algorithm then finds the most violated constraint in problem (7.11) and
adds it into the subset Ω. In this way, we construct a successive strengthening approximation of
the original problem by a cutting plane that cuts off the current optimal solution from the feasible
set [64]. The algorithm stops when no constraint in (7.11) is violated by more than ε.

Here, the feasibility of a constraint is measured by the corresponding value of ξpi and δi,
therefore, the most violated constraint is the one that would result in the largest values for those
slack variables. Specifically, for each training video (Xi,Yi), with mi separate components
{ypi }

mi
p=1 in the ground truth annotation Yi, we define mi constraint subsets Ωp

i and Ω−i . Then for
any ypi ∈ Y, the most violated constraint from (7.12) is the one that would result in the largest
ξpi . In order to fulfill all constraints in problem (7.12), the minimum value of ξpi is as follows

ξp∗i = max
y⊂ỹp

i

|y|
|ypi |

[
1− (w>k∗g(Xy) + bk∗)

]
(7.14)

Therefore, the most violated constraint to be added into Ωp
i is the one causing ξpi = ξp∗i . Similarly,

the most violated constraint to be added into Ω−i is the one causing δi to reach the following value

δ∗i = max
k,y 6⊂Ỹi

[
1 + (w>k g(Xy) + bk)

]
(7.15)

Assume the current working constraint sets are {{Ωp
i }
mi
p=1,Ω

−
i }ni=1, cutting plane algorithm solves

the following problem

min
{wk,bk}Kk=1

K∑
k=1

‖wk‖2 + C

 n∑
i=1

∑
yp
i ∈Yi

ξpi +
n∑
i=1

δi

 (7.16)

s.t. ∀i = 1, . . . , n, ∀ypi ⊂ Yi, ∀y ∈ Ωp
i , w>k∗g(Xy) + bk∗ ≥ 1− ξpi

|ypi |
|y|

(7.17)

∀i = 1, . . . , n, ∀(k,y) ∈ Ω−i , −(w>k g(Xy) + bk) ≥ 1− δi (7.18)

Algorithm 7 summarizes the cutting plane algorithm for solving problem (7.11).

7.3.3 Alternating Direction Method of Multipliers
To solve problem (7.16) under working constraint set {{Ωp

i }
mi
p=1,Ω

−
i }ni=1, we first reformulate it

as follows

min
{wk,bk,zk}Kk=1

K∑
k=1

‖zk‖2 + C

 n∑
i=1

∑
yp
i ∈Yi

ξpi +
n∑
i=1

δi

+ I
(
{wk, bk}Kk=1 ∈ Γ

)
(7.21)

s.t. ∀k = 1, . . . , K : wk − zk = 0 (7.22)

92

Algorithm 7 Solve Problem (7.11) Using Cutting Plane Algorithm
Initialize Ωp

i = Ω−i = ∅, and set precision parameter ε
repeat

Solve problem (7.16) under the current working constraint set {{Ωp
i }
mi
p=1,Ω

−
i }ni=1

for i = 1, . . . , n; p = 1, . . . ,mi do
Select the most violated constraint using (7.14)
if the selected constraint is violated by more than ε:

w>k∗g(Xy) + bk∗ < 1− (ξpi + ε)
|ypi |
|y|

(7.19)

then
Add the selected constraint into Ωp

i

end if
end for
for i = 1, . . . , n do

Select the most violated constraint using (7.15)
if the selected constraint is violated by more than ε:

− (w>k g(Xy) + bk) < 1− (δi + ε) (7.20)

then
Add the selected constraint into Ω−i

end if
end for

until no constraint is violated by more than ε

where Γ is the set of feasible {wk, bk}Kk=1 for constraints (7.17) and (7.18), I is indicator function
such that I({wk, bk}Kk=1 ∈ Γ) = 0 if {wk, bk}Kk=1 satisfies constraints (7.17) and (7.18), and
I({wk, bk}Kk=1 ∈ Γ) = +∞ otherwise. Then ADMM solves problem (7.21) using the following
iterations:

{wt+1
k , bt+1

k }
K
k=1 = arg min

{wk,bk}Kk=1

(
f({wk, bk}Kk=1) +

ρ

2

K∑
k=1

‖wk − ztk + utk‖2
2

)
(7.23)

zt+1
k = S1/ρ(w

t+1
k + utk), ∀k = 1, . . . , K (7.24)

ut+1
k = utk + wt+1

k − zt+1
k , ∀k = 1, . . . , K (7.25)

where f({wk, bk}Kk=1) is defined as

f({wk, bk}Kk=1) = C

 n∑
i=1

∑
yp
i ∈Yi

ξpi +
n∑
i=1

δi

+ I
(
{wk, bk}Kk=1 ∈ Γ

)
(7.26)

and S is the soft-thresholding operator defined as

Sκ(a) = max{(1− κ/|a|)a, 0} (7.27)

93

In the above ADMM iterations, both zk update (7.24) and uk update (7.25) are trivial to compute.
The {wk, bk} update in (7.23) is equivalent to the following constrained optimization problem

min
{wk,bk}Kk=1

ρ

2

K∑
k=1

‖wk − ztk + utk‖2
2 + C

 n∑
i=1

∑
yp
i ∈Yi

ξpi +
n∑
i=1

δi

 (7.28)

s.t. ∀i = 1, . . . , n, ∀ypi ⊂ Yi, ∀y ∈ Ωp
i , w>k∗g(Xy) + bk∗ ≥ 1− ξpi

|ypi |
|y|

(7.29)

∀i = 1, . . . , n, ∀(k,y) ∈ Ω−i , −(w>k g(Xy) + bk) ≥ 1− δi (7.30)

Comparing the above problem with (7.16), we can see that ADMM effectively reduces an `1/`2

regularized problem into a series of `2 regularized problems. Specifically, problem (7.28) is a
conventional SVM-type optimization problem, and can be efficiently solved using Stochastic
Gradient Descent [19].

Finally, since both cutting plane algorithm and ADMM are guaranteed to converge to global
optimum, while CCCP guarantees convergence to local optimum, our proposed optimization
algorithm for GuideSum is guaranteed to converge to local optimum of problem (7.3).

7.4 Experiments
This section describes our experiments on various videos, including synthetic data, surveillance
videos, and YouTube videos for various scenarios.

7.4.1 Feature Representations
We adopt the same feature representation for video data as used in Chapter 5. Specifically, we
utilize the spatio-temporal interest points detected using the method in [40], and describe each
detected interest point with histogram of gradient (HoG) and histogram of optical flow (HoF).
The feature representation for each detected interest point is then obtained by concatenating the
HoG feature vector and HoF feature vector. Finally, feature vectors for detected interest points
in the training videos are clustered using k-means to create a codebook of D words (the value
of D is determined according to the complexity of the videos). Subsequently, each interest
point is represented by the ID of the corresponding codebook entry, and each video segment is
represented by the histogram of words associated with interested points inside the segment.

94

1 2 3 4 5 6 7 8 9 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Video Segment ID

D
e
c
is

io
n
 S

c
o
re

 f
o
r

S
u
m

m
a
ry

zero−line

Video−1

Video−2

Video−3

Video−4

Figure 7.3: (Up) 4 example synthetic videos (used as testing data in our experiment), each con-
structed using 10 videos of different action classes performed by the same person; (Down) Deci-
sion score for each video segment in the 4 testing videos. Specifically, Video 1 is constructed as:
{B, K, J, P, R, G, S, W, O, T}; Video 2 is constructed as {P, W, G, K, B, R, J, S, T, O}; Video 3 is
constructed as {K, P, O, S, W, B, T, R, S, J}; Video 4 is constructed as {T, B, O, K, W, J, S, P, S,
R}. As shown in the Down figure, GuideSum correctly identifies walk, bend and one-hand-wave
segments from all 4 testing videos, hence generating the correct summary videos. Specifically,
for Video-1, the segments with positive decision scores are segment 1 (bend), segment 8 (walk),
and segment 9 (one-hand-wave).

95

7.4.2 Synthetic Videos

We first validate the performance of GuideSum on a synthetically generated data set of 9 video
sequences. Specifically, we use videos from the ten different action categories from Weizmann
action recognition data [53], i.e., walk (W), run (R), jump (J), gallop sideways (G), bend (B),
one-hand-wave (O), two-hands wave (T), jump in place (P), jumping back (K) and skip (S). For
each of the ten action classes, 9 different people are asked to perform the action and record
the video. The 9 videos in the synthetic data set are constructed by concatenating all action
videos performed by the same person, in random order. Example video sequences are shown
in Figure 7.3. To formulate the supervised video summarization problem, we identify 3 action
classes, i.e., walk, bend, one-hand-wave, as the events included in the ground truth annotation
for summary videos. We randomly select 5 video sequences as training data, and test on the rest
4 synthetic videos. Figure 7.3 shows the decision score for all 4 testing videos, where GuideSum
clearly generates the correct summary videos, including only video segments corresponding to
walk, bend, and one-hand-wave, i.e., the 3 action classes identified as components of the ground
truth summary video. Moreover, in the experiment, we set K = 10, much larger than the correct
number of action types 3. More interestingly, in the summarization model learned by GuideSum,
the number of non-zero weight vectors in {wk}10

k=1, is equal to the correct number of action
types in the ground truth annotation for summary videos, i.e., 3. Therefore, GuideSum not only
generates the correct summary for testing videos, but also correctly identifies the true number of
unique “components” in the summary video.

7.4.3 Surveillance Videos

We collect 3 videos recorded by a surveillance camera monitoring a shopping mall [1]. Important
events which should be incorporated into the summitry video include: (1) person running fast in
the mall; (2) person holding a strange sign near the surveillance camera.

The same performance measure used in Chapter 6 is adopted in this section. Specifically, for
each video in our data set, three judges selected segments from original video to compose their
preferred version of summary video. The final ground truth is then constructed by pooling to-
gether those segments selected by at least two judges. Following [30], to quantitatively determine
the overlap between algorithm generated summary and ground truth, both video segment con-
tent and time differences are considered. More precisely, we augment the ground truth summary
video via potentially extending each segment by 2 seconds before and after it. Specifically, the
ground truth summary video is composed by a series of video segments from the original video.
For the i-th video segment in the ground truth summary video, we look at the video contents 2
seconds before it. If this 2 seconds of video contents show similar scene content and motion pat-
tern as the i-th video segment, we add it into the augmented ground truth. We perform the same
procedure for the video contents 2 seconds after the i-th video segment. Consequently, the final
augmented ground truth summary video contains the original user generated ground truth sum-
mary video, and those 2 seconds of video contents which are showing similar scene content and
motion pattern as their corresponding ground truth video segment. Final accuracy is computed
as the ratio of the number of overlapped frames between the augmented ground truth summary
video and algorithm generated summary video, divided by the length of the original ground truth

96

Table 7.1: Length of both the original and summary videos (seconds) for 3 surveillance videos
used in experiments.

Surveillance Video #1 #2 #3
Original 3326 2399 3621

Summary 89.7 88.4 92.0

summary video. To enable fair comparison across several video summarization algorithms, pa-
rameters for various algorithms are set such that the length of generated summary videos are the
same as ground truth summary video. For example, in GuideSum, we rank the decision scores
for all video segments in the testing video, and select the top ranked video segments, whose com-
bined length is the same as the ground truth annotation for summary, to construct the summary
video. Details on the length of original and summary videos are provided in Table 7.1.

We compare GuideSum with several other methods. Due to the lack of video summarization
algorithms capable of utilizing supervised information, we compare against several popular un-
supervised video summarization methods, including evenly spaced segments, K-means cluster-
ing [30], the DSVS algorithm proposed in [30], and LiveLight [145], state-of-the-art method for
unsupervised video summarization. It is shown in [30] that DSVS already beats color-histogram
based method [109] and motion-based method [85]. The above unsupervised video summariza-
tion algorithms are set up the same way as in Chapter 6. Specifically, we first apply temporal
segmentation of the original video, evenly divided into segments each with a constant length
of 50 frames. Evenly spaced segments computes the number of segments N via dividing the
length of ground truth summary video by the length of each video segment, i.e., 50 frames, then
select N segments starting from the first segment with even space between any two segments.
Those evenly spaced segments are then concatenated to compose the summary video for the
evenly spaced segments method. For the K-means clustering method, we first group the collec-
tion of video segments from the original video into N clusters, using K-means clustering, where
N is computed the same way as in the evenly spaced segments method. Then for each center
of the N clusters, we find the segment from the original video that has minimum distance to
that cluster center. Finally, the summary video for K-means clustering method is composed by
concatenating the N video segments with minimum distance to the N cluster centers. For the
DSVS algorithm, we use the 50-frame video segments as basic units in the algorithm. Besides
the above collection of unsupervised video summarization algorithms, our problem formulation
also bares similarity to the problem of event detection / recognition. Therefore, we also compare
against state-of-the-art event detection method, max margin early event detection (MMED) [58].
Due to the lack of differentiation among different types of events, MMED has to treat all video
segments identified in the ground truth annotation as the target event. The intrinsic difference
between video segments in the ground truth summary video could pose great challenge to the
performance of MMED. On the other hand, our GuideSum is designed to handle different types
of events in the ground truth summary videos. For both GuideSum and MMED, we use 2 videos
and their associated ground truth annotation as training data, and test on the 3rd video. For all
algorithms, the reported accuracy is the averaged score across 3 videos in the data set.

According to the quantitative comparison provided in Table 7.2, we see that GuideSum

97

Table 7.2: Accuracy comparison (%) across various algorithms on surveillance videos and
YouTube videos.

EvenSpace K-Means DSVS LiveLight MMED GuideSum
Surveillance 39.94 59.22 85.04 93.36 96.26 97.84

Wedding 41.99 32.78 44.10 52.38 66.07 83.43
FigureSkating 23.65 28.61 51.44 56.73 72.30 86.79

CarRacing 38.01 46.92 59.33 61.42 71.27 82.45

achieves higher accuracy than the entire collection of unsupervised video summarization algo-
rithms. This should not come as a surprise, since GuideSum could effectively utilize the super-
vised information provided in ground truth annotation for summary video in the training data.
Moreover, GuideSum is slightly more accurate than the state-of-the-art event detection method
MMED. The relatively small margin between GuideSum and MMED is due to the simplicity
of the surveillance videos, as the events incorporated into the ground truth summary video are
mainly corresponding to people running fast in the mall, hence reducing the complicated sum-
marization problem into almost a single event detection problem.

7.4.4 Youtube Videos
Besides surveillance videos, with fixed camera and relatively controlled environment, a more
interesting application of GuideSum is summarizing YouTube videos. In this section, we apply
our method to 3 scenarios of videos: (1) wedding videos; (2) figure skating videos; and (3) car
racing videos. Our motivation for selecting those 3 groups of videos is the clear definition of
storyline or exciting moments. For example, in wedding videos, there is a clear storyline as
already discussed in previous sections; in figure skating videos, a clear definition of exciting
moments include the various types of spinning moves and jumping stunts; for car racing videos,
the storyline and exciting moments include starting, passing, pit stop and finishing.

For each of the 3 scenarios, we collect 10 videos from YouTube, and acquire ground truth
annotation for summary video in the same fashion as in previous section on surveillance videos.
For each scenario, in GuideSum and MMED, we randomly split the 10 videos into two sets A
and B, each containing 5 videos. We first train on set A, and test on B, then reverse the order,
i.e., train on B and test on A. Average accuracy over the entire 10 videos (each video is used
as testing data once) is calculate, and compared with averaged accuracy of the collection of
unsupervised video summarization algorithms. Details on the length of original and summary
videos are provided in Table 7.3.

As shown in Table 7.2, GuideSum achieves much higher accuracy than all other competing
algorithms. Besides outperforming the group of unsupervised video summarization algorithms
due to its capability of effectively utilizing supervised information, GuideSum also beats MMED
by a significant margin. The reasons for this superiority over MMED lies in the complexity
of YouTube videos, where the ground truth summary video contains segments corresponding to
several different types of events. For example, in the wedding videos, the ground truth annotation
of summary video contains events such as bride walking down the aisle, ring ceremony, couple’s
first dance, and cutting the wedding cake. The significant difference among those segments pose

98

Table 7.3: Length of both the original and summary videos (seconds) for 3 classes of YouTube
videos used in experiments.

Video Class Video #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Wedding
Original 2644 556 5852 1359 3001 1398 4275 3152 2452 2385

Summary 74.9 63.2 131.0 67.5 81.2 58.4 109.3 75.8 61.0 64.9

FigureSkating
Original 527 522 560 479 515 382 403 504 496 570

Summary 41.0 45.5 42.7 45.1 49.2 43.8 41.6 52.0 47.7 56.3

CarRacing
Original 2334 2143 1704 1404 1782 1604 1795 1619 1240 1356

Summary 39.5 26.4 28.9 25.4 29.3 32.0 45.8 27.1 23.1 30.4

serious challenge for any event detection method, including MMED. Therefore, we can see that
GuideSum is especially suited for videos depicting complicated events, such as wedding, parties,
racing and various sports events.

Besides quantitative measures, we also show the summary videos automatically generated by
GuideSum for the 3 scenarios. Specifically, Figure 7.4 shows frames taken from the summary
video generated by GuideSum for a testing wedding video. From Figure 7.4, we can clearly see
the following storyline: (1) bride gets ready in the dressing room; (2) bride walks down the aisle;
(3) exchange of vows and the ring ceremony; (4) couple’s first dance; (5) cutting the wedding
cake and sharing a piece. Similarly, Figure 7.5 shows the automatically generated summary
video for a figure skating video, where the summary video focuses on the exciting moments of
the skating sequence, including (1) various spinning moves; (2) different types of jumping stunts;
(3) the finishing move in the skating program. Finally, the summary video for car racing video is
shown in Figure 7.6, which includes both the storyline and exciting moments of car racing: (1)
standing start; (2) passing or being passed by other cars; (3) possibly running out of the circuit;
(4) crossing the finish line. After the automatic summarization by GuideSum, a user could then
focus only on a small portion of the usually very long racing videos, without missing the exciting
moments.

99

Figure 7.4: (Best viewed in color and zoom-in.) Some frames of the summary video generated
by GuideSum for a wedding video (frames are organized from left to right, then top to bottom in
temporal order).

Figure 7.5: (Best viewed in color and zoom-in.) Some frames of the summary video generated
by GuideSum for a figure skating performance video (frames are organized from left to right,
then top to bottom in temporal order).

100

Figure 7.6: (Best viewed in color and zoom-in.) Some frames of the summary video generated
by GuideSum for a car racing video recorded by car mounted camera (frames are organized from
left to right, then top to bottom in temporal order).

101

7.5 Summary
GuideSum effectively utilizes user generated ground truth annotation for summary video, to sig-
nificantly boost the accuracy of video summarization on videos of similar nature. Specifically,
we formulate supervised video summarization as a max margin learning problem, where video
segments selected into the ground truth summary video are treated as positive examples, and
the remaining excluded video segments are used as negative examples. Moreover, GuideSum
augments the set of positive examples by simulating partial events from the ground truth sum-
mary video, enabling correct identification of not only full sequence of events, but also par-
tial sequences. Efficient optimization framework based on CCCP, Cutting Plane algorithm and
ADMM is provided to solve the optimization problem in GuideSum. Finally, experimental results
on both synthetic data and real world data, including surveillance videos and YouTube videos are
provided to demonstrate the effectiveness of GuideSum in utilizing supervised information for
accurate video summarization.

102

Part III

Conclusion

103

Chapter 8

Discussion

This dissertation presents a considerable step towards understanding large scale image collection
and temporally long or even endless video sequences. We believe that with the ever increasing
amount of digital contents generated by consumers and institutions, this direction of research
becomes more important in both algorithmic development and real world application. In this
chapter, we summarize the contributions and key observations of our work again, and discuss
future research directions that go beyond our current achievement.

8.1 Key Observations and Contributions
As the concluding remarks of this thesis, we recapitulate the key observations and contributions.

Large Scale Image Classification
• Our work represents an initial foray to systematically utilizing information residing in hi-

erarchical structure among image classes, for multi-way classification on super large-scale
image data sets. First, the loss function used in our formulation weighs differentially for
different misclassification outcomes: misclassifying an image to a category that is close
to its true identity receives less penalty than misclassifying it to a totally unrelated one.
Second, in an image classification problem with thousands of categories, it is not realistic
to assume that all of the classes share the same set of relevant features. That is to say, a
subset of highly related categories may share a common set of relevant features, whereas
weakly related categories are less likely to be affected by the same features. Consequently,
our method utilizes an overlapping-group-lasso penalty to achieve this type of structured
sparsity at multiple levels of the hierarchy. Computationally, we propose a proximal gra-
dient based method for solving the resulting non-smooth optimization problem, where the
super large scale of the problem is tackled by map-reduce parallel computation.

• We then study even more challenging image classification problem, where the number
of image classes in the collection could be tens of thousands or even more. Facing such
challenge, our proposed sparse output coding method effectively breaks a multi-class clas-
sification problem with huge concept space into a two-step procedure: learning optimal
coding matrix to assign codeword for each class in the original problem, followed by prob-

105

abilistic decoding to assign labels via maximum a posteriori criterion to testing images.
Effectiveness of sparse output coding is demonstrated on large scale image categorization,
with images from nearly 16 thousand classes. The fact that sparse output coding takes less
bit predictors than one-vs-rest multi-class classification while achieving better accuracy,
renders our proposed approach especially promising when scaling up to human cognition
level multi-class classification.

Large Scale Video Understanding
• We propose a fully unsupervised dynamic sparse coding approach for detecting unusual

events in videos based on online sparse re-constructibility of query signals from an atom-
ically learned event dictionary, which forms a sparse coding bases. Based on an intuition
that usual events in a video are more likely to be reconstructible from an event dictionary,
whereas unusual events are not, our algorithm employs a principled convex optimization
formulation that allows both a sparse reconstruction code, and an online dictionary to be
jointly inferred and updated. Our algorithm is completely unsupervised, making no prior
assumptions of what unusual events may look like and the settings of the cameras. The fact
that the bases dictionary is updated in an online fashion as the algorithm observes more
data, avoids any issues with concept drift. Experimental results on hours of real world
surveillance video and several Youtube videos show that the proposed algorithm could
reliably locate the unusual events in the video sequence, outperforming state-of-the-art
methods.

• Based on our work on unusual event detection, we propose a principled way of generat-
ing short video highlight summarizing the most important and interesting contents of a
potentially very long video, which is costly both time-wise and financially for manual pro-
cessing. Specifically, our method learns a dictionary from given video using group sparse
coding, and updates atoms in the dictionary on-the-fly. A highlight of the given video
is then generated by combining segments that cannot be sparsely reconstructed using the
learned dictionary. The online fashion of our proposed method enables it to process arbi-
trarily long videos and starts generating highlights before seeing the end of the video, both
attractive characteristics for practical applications. Theoretical analysis of the proposed
method, together with experimental results on hours of surveillance and YouTube videos
are provided, demonstrating the effectiveness of our method.

• We propose a supervised video summarization algorithm to address the gap between the
automated characterization of the important video segments and the human perception
about the importance of a segment. Specifically, purely unsupervised approaches could
potentially miss some of the key components, or incorporate unimportant events. On the
other hand, in our proposed max margin video summarization approach, users are asked to
generate summaries for a subset of a class of videos of similar nature. Given such manually
generated summaries, our method learns the preferred storyline within the given class of
videos, and automatically generates summaries for the rest of videos in the class, capturing
the similar storyline as in those manually summarized videos. Our algorithm is capable
of automatically selecting the optimal number of unique events in the summary video and
understanding not only full but also partial events. Experimental results on a collection of

106

surveillance and YouTube videos demonstrate its effectiveness.

Although we have focused our discussion and study on visual data in this thesis, i.e., images
and videos, our proposed algorithms could easily go beyond vision problems. For example, the
sparse output coding framework could be readily applied to large scale text categorization, for
learning classifiers capable of separating hundreds of thousands of text categories. Moreover, the
unusual event detection algorithm could be applied to many other types of time series data, such
as speech, financial market data, etc., for anomaly detection.

8.2 Future Directions

In this dissertation, we have proposed a set of algorithms for categorizing large collection of im-
age data, and automatically detecting and summarizing the most salient and information-bearing
portions of temporally long or even endless videos. In spite of their significant achievement for
a wide range of novel and challenging problems, we believe much remains to be done along
this line of research. Here, we propose several ideas for future projects to explore further the
extension of our approach.

Learning mid-level image descriptors through latent space model

Besides training effective classifiers for separating tens of thousands of image classes, learn-
ing feature representations for images is also a crucial piece in successful understanding of large
scale image collection. The first possible work along this line could focus on developing algo-
rithms for learning mid-level image descriptors (features) based on corpus-wide visual-semantic
knowledge and predictive latent-space representation.

It is widely accepted that designing proper features plays crucial role in several image un-
derstanding tasks, including recognition, identification, detection, etc. Most previous works em-
ployed low-level features, with examples such as SIFT, HOG, GIST, which capture the local
characteristic of images. Then classifiers are learned based on those low-level features for in-
ferring the high-level category labels. However, it is hardly sufficient to use only local gradient
distribution (such as SIFT or HOG) for high-level image understanding. We believe it is cru-
cial to bridge the gap between low-level features extracted from local patches of the original
image and its categorical label. Specifically, we propose to use latent space model as means for
learning mid-level representation of images. Based on such latent space model, a classifier will
be learned. Consequently, we propose to develop algorithms for supervised latent space model
and object-oriented dictionary learning from images, to provide basis for learning semantically
meaningful mid-level image features. Specifically, current state-of-the-art image representation
approaches only take into account the visual aspects of image data, but ignores all categorical
information associated with training data. Consequently, image feature representation and clas-
sifier learning are formulated as two separated optimization frameworks. Our goal is to unify
these two intrinsically closely correlated steps, and formulate them into a unified optimization
framework, such that we could discover the optimal latent space model and dictionary for image
representation, tailored towards accurate image classification.

One possible idea along this line is to learn mid-level image representations using sparse

107

topical coding [152], a non-probabilistic formulation of topic models for discovering latent rep-
resentations of large collections of data. More precisely, sparse topical coding aims at learning
both a dictionary and sparse representation of image features using the learned dictionary, where
the dictionary terms will have the semantic meaning of an object, while the “word” corresponds
to a feature of the object. Due to its non-probabilistic formulation, optimization over sparse top-
ical coding will be efficient. Also, it will be intuitive and natural to integrate the sparse topical
coding with supervised classifier learning, such as sparse output coding proposed in Chapter 4,
in a unified framework, for simultaneous optimization over the latent feature representation and
classifier learning.

Coupling recognition for different categories

Chapter 3 represents an initial foray into systematically utilizing the correlation among image
classes for better classification. We propose to further explore the coexistence pattern across
various objects, and couple the recognition of different categories of images. Specifically, related
contents (e.g., a tent and a tribe man) are not predicted independently, but jointly through a model
that leverages on label-structures such as WordNet, ImageNet, or other man-made ontologies. In
this example, the recognition of a tent should give higher prior probability of a tribe man in the
neighborhood of the tent, and vice versa. Consequently, the successful recognition rate of a tent
and a tribe man should be higher than recognizing them separately.

Clearly, it is crucial to automatically extract those spatial coexistence patterns among various
objects. To achieve such goal, based on our previous work of using sparse topical coding [147] as
mid-level feature representation, we plan to define a Markov Random Field (MRF) over hidden
topic assignment of super-pixels in an image to enforce the spatial coherence between neighbor-
ing regions, such that the MRF captures co-existing patterns among objects (such as tent and
tribe man). Building an MRF on top of sparse topical coding gives the model ability to measure
not only single object characteristic, but also inter-object correlation. Consequently, this model
will assign higher probability to objects more likely to appear in close proximity, such as a tent
and a tribe man, than less likely to co-exist objects such as a tent and a boat.

Cross-modal annotator

Images are sometimes accompanied by correlated text information, serving as the tag or
annotation for such image, with the purpose of illustrating contents within the image. While we
have mainly focused on mining information from images alone, it is also effective to combine
the analyses of image and associated text in a unified subspace model. Specifically, instead of
building latent space models for image and corresponding text separately, such as separate topic
models for image and text, we could also build a unified subspace model for image and text, since
they are closely correlated. The purpose of such unified model is to encourage the subspace
model to leverage information from both image and text, such that the classification/detection
task not only utilizes information from the visual data alone, but also from the textual data.

Specifically, we plan to start with the supervised multi-view restricted Boltzmann machine
model, as an initial attempt to fuse information from both visual data and textual data. Upon
successful investigation of the multi-view RBM model [25], we plan to dive deeper into models
such as infinite SVM for multi-class classification, and infinite latent SVM for simultaneous

108

classification and feature selection [153, 154].

High-level feature representation for video summarization

Most interesting videos are centered around human activities. However, representing human
actions in videos is hard because of the variation in visual appearance caused by changes in
clothing, pose, articulation and occlusion. In this thesis, we use spatio-temporal interest points
as feature representation for human activity. One potential problem with such representation is
it totally ignores any structural information between those interest points. We argue that a better
feature representation for video understanding is to define motion units that are tightly clustered
both in configuration space (as might be parameterized by the locations of various joints), and in
appearance space (as might be parameterized by pixel values in an image patch).

Supervised video summarization without original video

In Chapter 7, our formulation of supervised video summarization assumes the availability
of not only the manually generated summary video, but also the original video, from which
segments are selected to construct the summary. However, such original video might not always
be readily available. For example, we can easily download professionally edited videos showing
a person surfing in the ocean, but it could be difficult to obtain the original amateur footage
based on which the edited video is generated. Given a new footage of surfing, one interesting
task is to summarize it in a similar fashion as the professionally edited video. This task could
be formulated as a classification problem where we are only given positive data points. Besides
the lack of negative training data, the fact that the number of unique events in such collection of
videos is unknown, also makes this supervised video summarization formulation interesting and
challenging.

Cross event type video summarization

The video summarization algorithms proposed in Chapter 6 and Chapter 7 could be seen as
the two extreme schemes of video summarization applications. Specifically, in Chapter 6, we
assume no human intervention or guidance, and the algorithm uses motion and appearance in-
formation in the video to select unique video segments to be included into the summary. On
the other hand, in Chapter 7, we formulate video summarization as a complicated event recog-
nition problem, where the event types are intrinsically defined in the training videos and their
annotations, and the algorithm aims at finding same events from the testing videos. We believe
in real world video summarization applications, a framework between these two extreme cases
might also be valuable. Specifically, given manually generated annotations as in Chapter 7, it is
interesting to see how such supervised information could be effectively utilized in summarizing
a different but related event type. For example, given wedding videos and manually generated
annotations, cross event type video summarization could be used to summarize a collection of
commencement videos. Clearly, wedding videos and commencement videos are different, with
their own unique storylines. However, we can still observe the underlying shared characteristics
of these two types of events. Specifically, in commencement videos, the video segments showing
students walking towards the altar share similar characteristics with the bridal walking down the

109

aisle event in wedding videos. The reception of diploma might bear similar motion or appear-
ance characteristics as the ring ceremony in wedding videos. Clearly, this is no longer a straight
forward event recognition formulation, but a transfer of supervised information from one event
type to another related but different event class.

8.3 Conclusion
In this dissertation, we identify the practical needs of machine learning based tools to unlock the
huge collection of image and video data, generated by consumers and institutions. From these
new challenges, we derive the thesis statement, which we would like to restate here as follows.

We aim to design machine learning algorithms to automatically analyze and
understand large-scale image and video data.

We categorize the required technologies into two research directions, which are (i) separating
huge collection of images into large scale hierarchical class structure, (ii) automatic detection of
salient and information-bearing portions from long videos, and generating summary / highlight
videos with or without human guidance. All developed algorithms are aligned to accomplish
the proposed research goal. We hope that this thesis can inspire others to pursue more interest-
ing and practical projects at both algorithmic development and real world application towards
understanding large scale image and video data.

110

Bibliography

[1] A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. Robust real-time unusual event detec-
tion using multiple fixed-location monitors. PAMI, 30:555 – 560, 2008. 2.2, 5.1, 5.2.3,
5.3.1, 5.3.1, 7.4.3

[2] A. Ahmed, Q. Ho, C. H. Teo, J. Eisenstein, A. Smola, and E. P. Xing. Online inference
for the infinite topic-cluster model: Storylines from streaming text. In Proceedings of the
14th International Conference on Artifical Intelligence and Statistics (AISTAT) 2011. 1.1

[3] E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying approach
for margin classifiers. JMLR, 1:113–141, 2001. 4.1, 4.1, 4.2.1, 4.1, 4.3, 4.3.3, 4.4.2

[4] A. Aner and J. Kender. Video summaries through mosaic-based shot and scene clustering.
In ECCV, 2002. 2.2

[5] N. Babaguchi. Towards abstracting sports video by highlights. In ICME, 2000. 2.2

[6] B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning.
JMLR, 4:83–99, 2003. 1.1

[7] E. Bart and S. Ullman. Cross-generalization: learning novel classes from a single example
by feature replacement. In CVPR, 2005. 2.1

[8] S. Bengio, F. Pereira, Y. Singer, and D. Strelow. Group sparse coding. In NIPS, 2009. 6.1

[9] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class tasks.
In NIPS, 2010. 2.1, I, 3, 4.2.1, 4.2.1, 4.4.1, 4.4.2, 4.4.3, 4.4.3, 4.5

[10] A. Bergamo and L. Torresani. Meta-class features for large-scale object categorization on
a budget. In CVPR, 2012. 2.1

[11] A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin, and A. Strehl. Conditional probability
tree estimation analysis and algorithms. In UAI, 2009. 2.1

[12] A. Beygelzimer, J. Langford, and P. Ravikumar. Error-correcting tournaments. In ALT,
2009. 2.1, 4.4.2

[13] A. Binder, K.-R. Mller, and M. Kawanabe. On taxonomies for multi-class image catego-
rization. IJCV, pages 1–21, 2011. 1.1

[14] C. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc.,
2006. 3.4.3

[15] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as space-time
shapes. In ICCV, 2005. 5.2.1

111

[16] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, January 2003. 1.1

[17] O. Boiman and M. Irani. Detecting irregularities in images and in video. In ICCV, 2005.
2.2, 5.1, 5.2.3

[18] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image
classification. In CVPR, 2008. 1.1

[19] L. Bottou. Large-scale machine learning with stochastic gradient descent. In COMPSTAT,
2010. 4.4.2, 7.3.3

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and sta-
tistical learning via the alternating direction method of multipliers. Found. Trends Mach.
Learn., 3(1):1–122, 2011. 4.2.2, 4.2.2, 4.2.2, 2, 6.2.1, 6.2.1

[21] A. Budanitsky and G. Hirst. Evaluating wordnet-based measures of lexical semantic re-
latedness. Comput. Linguist., 32:13–47, March 2006. 3.2.2

[22] L. Cai and T. Hofmann. Hierarchical document categorization with support vector ma-
chines. In CIKM, 2004. 2.1, 4.2.1

[23] R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997. 2.1

[24] Y. Caspi, A. Axelrod, Y. Matsushita, and A. Gamliel. Dynamic stills and clip trailers. Vis.
Comput., 22(9):642–652, 2006. 2.2

[25] N. Chen, J. Zhu, and E. Xing. Predictive Subspace Learning for Multi-view Data: a Large
Margin Approach. In NIPS, 2010. 8.2

[26] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing, 20(1):33 – 61, 1998. 5.2.2

[27] X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. P. Xing. Smoothing proximal gradient
method for general structured sparse learning. In UAI, 2011. 3.1, 3.3, 3.3.1, 3.3.1

[28] P. M. Cheung and J. T. Kowk. A regularization framework for multiple-instance learning.
In Proceedings of the 23rd International Conference on Machine Learning, 2006. 7.3.1,
7.3.1

[29] C. Chu, S. Kim, Y. Lin, Y. Yu, G., A. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In NIPS. 2007. 3.1, 3.3, 3.3.2

[30] Y. Cong, J. Yuan, and J. Luo. Towards scalable summarization of consumer videos via
sparse dictionary selection. TMM, 14(1):66–75, 2012. (document), 6.2.3, 6.4.1, 6.2, 6.4.1,
7.4.3

[31] K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass
problems. Machine Learning, 2:265–292, 2002. 4.1, 4.2.1

[32] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society of Information Science, 41(6):391–
407, 1990. 1.1

[33] O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. In ICML,
2004. 2.1, 4.4.2

112

[34] D. DeMenthon, V. Kobla, and D. Doermann. Video summarization by curve simplifica-
tion. In ACM MM, 1998. 2.2

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, 2009. 1.1, 4.2.1, 4.4

[36] J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image
categories tell us? In ECCV, 2010. 3.2.1

[37] J. Deng, A. Berg, and L. Fei-Fei. Hierarchical semantic indexing for large scale image
retrieval. In CVPR, 2011. 2.1

[38] J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei. Fast and balanced: Efficient label tree
learning for large scale object recognition. In NIPS, 2011. 2.1, I, 3

[39] T. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. JAIR, 2:263–286, 1995. 4.1, 4.3

[40] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-
temporal features. In VS-PETS, 2005. (document), 5.2.1, 5.2, 6.2.1, 7.4.1

[41] F. Dufaux. Key frame selection to represent a video. In ICIP, 2000. 2.2

[42] J. Eckstein and D. Bertsekas. On the douglas-rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55(1):
293–318, 1992. 4.2.2

[43] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of
Statistics, 32(2), 2004. 5.2.2

[44] E. Elhamifar, G. Sapiro, and R. Vidal. See all by looking at a few: Sparse modeling for
finding representative objects. In CVPR, 2012. 2.2, 6, 6.2.3

[45] S. Escalera, O. Pujol, and P. Radeva. On the decoding process in ternary error-correcting
output codes. PAMI, 32(1):120–134, 2010. 4.1, 4.1, 4.3

[46] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes.
In CVPR, 2009. 2.1

[47] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. PAMI, 28:
594–611, 2006. 2.1

[48] R. Fergus, H. Bernal, Y. Weiss, and A. Torralba. Semantic label sharing for learning with
many categories. In ECCV, ECCV’10, 2010. 1.1, 2.1

[49] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational prob-
lems via finite element approximation. Computers and Mathematics with Applications, 2
(1):17–40, 1976. 4.2.2

[50] T. Gao and D. Koller. Discriminative learning of relaxed hierarchy for large-scale visual
recognition. In ICCV, 2011. 2.1, I, 3, 4.4.2

[51] T. Gao and D. Koller. Multiclass boosting with hinge loss based on output coding. In
ICML, 2011. 4.1, 4.2.1

[52] D. Goldman, B. Curless, D. Salesin, and S. Seitz. Schematic storyboarding for video
visualization and editing. In SIGGRAPH, 2006. 2.2

113

[53] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as space-time
shapes. PAMI, 29(12):2247–2253, 2007. 2.2, 6.2.4, 7.4.2

[54] A. Basharatand A. Gritai and M. Shah. Learning object motion patterns for anomaly
detection and improved object detection. In CVPR, 2008. 2.2, 5.1

[55] R. Hamid, A. Johnson, S. Batta, A. Bobick, C. Isbell, and G. Coleman. Detection and
explanation of anomalous activities: Representing activities as bags of event n-grams. In
CVPR, 2005. 2.2, 5.1

[56] A. Hanjalic and H. Zhang. An integrated scheme for automated video abstraction based
on unsupervised cluster-validity analysis. IEEE TSCVT, 9:1280–1289, 1999. 2.2

[57] D. Haussler. Convolution kernels on discrete structures. Technical report, 1999. 4.2.1

[58] M. Hoai and F. De la Torre. Max-margin early event detectors. IJCV, 107(2):191–202,
2014. 2.2, 7.2.2, 7.4.3

[59] D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed
sensing. In NIPS, 2009. 2.1

[60] W. Hu, X. Xiao, Z. Fu, and D. Xie. A system for learning statistical motion patterns.
PAMI, 28:1450 – 1464, 2006. 2.2

[61] L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A convex formulation. In
NIPS, 2008. 1.1

[62] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchi-
cal dictionary learning. In ICML, 2010. 3.1, 3.3, 3.3.1

[63] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. Machine Learning, 37:183–233, 1999. 7.3.1

[64] J. E. Kelley. The cutting-plane method for solving convex programs. Journal of the Society
for Industrial Applied Mathematics, 8:703–712, 1960. 7.3.2

[65] J. Kim and K. Grauman. Observe locally, infer globally: A space-time mrf for detecting
abnormal activities with incremental updates. In CVPR, 2009. (document), 2.2, 5.1, 5.2.3,
5.3.1, 5.3.1, 5.1, 5.3.1, 5.3.1, 5.3.1, 2, 5.2

[66] S. Kim and E. Xing. Tree-guided group lasso for multi-task regression with structured
sparsity. In ICML, 2010. 3.2.3

[67] D. Koller and M. Sahami. Hierarchically classifying docuemnts using very few words. In
ICML, 1997. 2.1

[68] A. Kosmopoulos, E. Gaussier, G. Paliouras, and S. Aseervatham. The ecir 2010 large
scale hierarchical classification workshop. SIGIR Forum, 44(1):23–32, 2010. 1.1, 4.4.2

[69] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. Attribute and simile classifiers for face
verification. In ICCV, 2009. 2.1

[70] C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by
between-class attribute transfer. In CVPR, 2009. 2.1

[71] T. Lan, Y. Wang, and G. Mori. Discriminative figure-centric models for joint action local-
ization and recognition. In ICCV, 2011. 2.2

114

[72] K. Lange, D.R. Hunter, and I. Yang. Optimization transfer using surrogate objective func-
tions. Jounal of Computational and Graphical Statistics, 9:1–59, 2000. 7.3.1

[73] I. Laptev. On space-time interest points. IJCV, 64:107 – 123, 2005. 5.2.1

[74] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories. In CVPR, 2006. 3.4.1

[75] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and A. Ng.
Building high-level features using large scale unsupervised learning. In ICML, 2012. 2.1,
4.4.2, 4.4.3

[76] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proc. IEEE, 86:2278–2324, 1998. 2.1

[77] H. Lee, A. Battle, R. Rajat, and A. Ng. Efficient sparse coding algorithms. In NIPS, 2007.
1.1, 5.1, 5.2.2, 5.2.2

[78] Y. Lee, J. Ghosh, and K. Grauman. Discovering important people and objects for egocen-
tric video summarization. In CVPR, 2012. 2.2, 6

[79] B. Li and I. Sezan. Event detection and summarization in american football broadcast
video. In SPIE Storage ad Retrieval for Media Databases, 2002. 2.2

[80] J. Li, S. Gong, and T. Xiang. Global behaviour inference using probabilistic latent seman-
tic analysis. In BMVC, 2008. 2.2, 5.1

[81] L. Li, H. Su, E. Xing, and L. Fei-Fei. Object bank: A highlevel image representation for
scene classification and semantic feature sparsification. In NIPS, 2010. 2.1

[82] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang. Large-scale image
classification: fast feature extraction and svm training. In CVPR, 2011. 1.1, 2.1, 4.4.1,
4.4.2, 4.4.3

[83] D. Liu, G. Hua, , and T. Chen. A hierarchical visual model for video object summarization.
PAMI, 2009. 2.2

[84] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60:91–110,
2004. 3.4.1, 4.4.1

[85] J. Luo, C. Papin, and K. Costello. Towards extracting semantically meaningful key frames
from personal video clips: from humans to computers. TCSVT, 19(2):289–301, 2009.
6.4.1, 7.4.3

[86] S. P. Luttrell. Partitioned mixture distributions: An adaptive bayesian network for low-
level image processing. In IEEE Proceedings on Vision, Image and Signal Processing,
volume 141, pages 251–260, 1994. 7.3.1

[87] Z. Ma, Y. Yang, Z. Xu, S. Yan, N. Sebe, and A. Hauptmann. Complex event detection via
multi-source video attributes. In CVPR, 2013. 2.2

[88] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding.
In ICML, 2009. 5.2.3

[89] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and
sparse coding. JMLR, 11:19–60, 2010. 6.2.2

115

[90] E. Miller, N. Matsakis, and P. Viola. Learning from one example through shared densities
on transforms. In CVPR, 2000. 2.1

[91] T. Mitchell. Machine Learning. McGraw-Hill, Inc., 1997. 1.1

[92] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1

k2
). Doklady AN SSSR (translated as Soviet. Math. Docl.), 269:543–547,

1983. 3.3, 3.3.2

[93] N. Nilsson. Learning Machines. McGraw-Hill, 1965. 4.1, 4.3

[94] J. Oh, Q. Wen, J. lee, and S. Hwang. Video abstraction. Video Data Mangement and
Information Retrieval, pages 321–346, 2004. 2.2

[95] S. Oh, J. Rehg, T. Balch, and F. Dellaert. Learning and inferring motion patterns using
parametric segmental switching linear dynamic systems. IJCV, 77(1–3):103–124, 2008.
2.2

[96] A. Opelt, A. Pinz, and A. Zisserman. Incremental learning of object detectors using a
visual shape alphabet. In CVPR, 2006. 2.1

[97] M. Palatucci, D. Pomerleau, G. Hinton, and T. Mitchell. Zero-shot learning with semantic
output codes. In NIPS, 2009. 2.1

[98] M. Parsana, S. Bhattacharya, C. Bhattacharyya, and K. Ramakrishnan. Kernels on at-
tributed pointsets with applications. In NIPS, 2007. 4.2.1

[99] A. Passerini, M. Pontil, and P. Frasconi. New results on error correcting output codes of
kernel machines. IEEE TNN, 15(1):45–54, 2004. 4.1, 4.3

[100] A. Patron-Perez, M. Marszalek, A. Zisserman, and I. Reid. High five: Recognising human
interactions in tv shows. In BMVC, 2010. 2.2

[101] G. Patterson and J. Hays. Sun attribute database: Discovering, annotating, and recognizing
scene attributes. In CVPR, 2012. 2.1

[102] S. Perkins and J. Theiler. Online feature selection using grafting. In ICML, 2003. 5.2.2

[103] F. Perronnin, J. Sanchez, and T. Mensink. Improving the fisher kernel for large-scale
image classification. In ECCV, 2010. 2.1

[104] S. Pfeiffer, R. Lienhart, S. Fischer, and W. Effelsberg. Abstracting digital movies automat-
ically. Journal of Visual Communication and Image Representation, 7(4):345–353, 1996.
2.2

[105] B. Póczos, L. Xiong, and J. Schneider. Nonparametric divergence estimation with appli-
cations to machine learning on distributions. In UAI, 2011. 4.2.1

[106] Y. Pritch, A. Rav-Acha, A. Gutman, and S. Peleg. Webcam synopsis: Peeking around the
world. In ICCV, 2007. 2.2

[107] O. Pujol, P. Radeva, and J. Vitria. Discriminant ecoc: A heuristic method for application
dependent design of error correcting output codes. PAMI, 25(6):1001–1007, 2006. 4.1,
4.3

[108] A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image classification with
sparse prototype representations. In CVPR, 2008. 2.1

116

[109] Z. Rasheed and M. Shah. Detection and representation of scenes in videos. TMM, 7(6):
1097–1105, 2005. 6.4.1, 7.4.3

[110] M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable discrimina-
tive binary codes. In ECCV, 2012. 2.1

[111] A. Rav-Acha, Y. Pritch, and S. Peleg. Making a long video short. In CVPR, 2006. 2.2

[112] R. Rifkin and A. Klautau. In defense of one-vs-all classification. JMLR, 5:101–141, 2004.
1.1, 4.4.2, 4.4.3

[113] R. Salakhutdinov, A. Torralba, and Josh Tenenbaum. Learning to share visual appearance
for multiclass object detection. In CVPR, 2011. I, 3

[114] S. Satkin and M. Hebert. Modeling the temporal extent of actions. In ECCV, 2010. 2.2

[115] R. Schapire. Using output codes to boost multiclass learing problems. In ICML, 1997. 4.1

[116] R. Schapire and Y. Freund. Boosting: Foundations and Algorithms. Adaptive Computa-
tion and Machine Learning Series. Mit Press, 2012. 4.2.1

[117] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summarizing visual data using bidi-
rectional similarity. In CVPR, 2008. 2.2

[118] M. Smith and T. Kanade. Video skimming and characterization through the combination
of image and language understanding. In CVPR, 1997. 2.2

[119] A. J. Smola, S.V.N. Vishwanathan, and T. Hofmann. Kernel methods for missing vari-
ables. In AISTATS, 2005. 7.3.1, 7.3.1, 6

[120] C. Stauffer and E. Grimson. Learning patterns of activity using real-time tracking. PAMI,
22:747 – 757, 2000. 2.2

[121] E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Learning hierarchical models of
scenes, objects, and parts. In CVPR, 2005. 2.1

[122] C. Taskiran, A. Amir, D. Ponceleon, and E. Delp. Automated video summarization using
speech transcripts. In SPIE, 2002. 2.2

[123] J. Tenenbaum and W. Freeman. Separating style and content with bilinear models. Neural
Computation, 12:1247–1283, 2000. 2.1

[124] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness
via the fused lasso. Journal of the Royal Statistical Society Series B, pages 91–108, 2005.
3.3

[125] M. Tipping and C. Bishop. Probabilistic principal component analysis. Journal of the
Royal Statistical Society, Series B, 61:611–622, 1999. 1.1

[126] A. Torralba, K. Murphy, and W. Freeman. Sharing features: efficient boosting procedures
for multiclass object detection. In CVPR, 2004. 2.1

[127] A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. PAMI, 30:1958–1970, 2008. 1.1

[128] L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using
classemes. In ECCV, 2010. 2.1

117

[129] B. Truong and S. Venkatesh. Video abstraction: A systematic review and classification.
ACM Trans. Multimedia Comput. Commun. Appl., 3(1), 2007. 2.2

[130] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for
structured and interdependent output variables. JMLR, 6:1453–484, 2005. 7.3.2

[131] G. Wang, D. Hoiem, and D. Forsyth. Learning image similarity from flickr using stochas-
tic intersection kernel machines. In ICCV, 2009. 2.1

[132] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding
for image classification. In CVPR, 2010. 3.4.1

[133] X. Wang, X. Ma, and E. Grimson. Unsupervised activity perception by hierarchical
bayesian models. In CVPR, 2007. 2.2, 5.1

[134] K. Weinberger and O. Chapelle. Large margin taxonomy embedding for document cate-
gorization. In NIPS, 2008. 2.1

[135] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, pages 1–38, 2012. 4.2.2, 4.2.2, 4.2.2, 4.2.2, 2

[136] J. Weston, S. Bengio, and N. Usunier. Wsabie: scaling up to large vocabulary image
annotation. In IJCAI, 2011. (document), 2.1, 4.4.1, 4.4.3, 4.4.3, 4.5

[137] W. Wolf. Key frame selection by motion analysis. In ICASSP, 1996. 2.2

[138] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In CVPR, 2010. 4.4, 4.4.1

[139] Eric P. Xing. Topic models, latent space models, sparse coding, and all that: A system-
atic understanding of probabilistic semantic extraction in large corpus. In ACL (Tutorial
Abstracts), 2012. 1.1

[140] A. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:
915–936, 2003. 7.3.1

[141] H. Zhang. An integrated system for content-based video retrieval and browsing. Pattern
Recognition, 30(4):643–658, 1997. 2.2, 6

[142] X. Zhang, L. Liang, and H. Shum. Spectral error correcting output codes for efficient
multiclass recognition. In ICCV, 2009. 4.4.2

[143] Y. Zhang and J. Schneider. Maximum margin output coding. In ICML, 2012. 2.1

[144] B. Zhao and E. Xing. Sparse output coding for large-scale visual recognition. In CVPR,
2013. 1.1, 1.2

[145] B. Zhao and E. Xing. Quasi real-time summarization for consumer videos. In CVPR,
2014. 1.1, 1.2, 7.4.3

[146] B. Zhao and E. Xing. Hierarchical feature hashing for fast dimensionality reduction. In
CVPR, 2014. 1.2

[147] B. Zhao, L. Fei-Fei, and E. Xing. Image segmentation with topic random fields. In ECCV,
2010. 1.2, 8.2

[148] B. Zhao, L. Fei-Fei, and E. Xing. Online detection of unusual events in videos via dynamic

118

sparse coding. In CVPR, 2011. 1.1, 1.2

[149] B. Zhao, L. Fei-Fei, and E. Xing. Large-scale category structure aware image categoriza-
tion. In NIPS, 2011. 1.1, 1.2

[150] H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity in video. In CVPR, 2004.
2.2, 5.1, 5.3.1

[151] D. Zhou, L. Xiao, and M. Wu. Hierarchical classification via orthogonal transfer. In
ICML, 2011. 2.1, I, 3, 4.2.1

[152] J. Zhu and E.P. Xing. Sparse topical coding. arXiv preprint arXiv:1202.3778, 2012. 8.2

[153] J. Zhu, N. Chen, and E. Xing. Infinite svm: a dirichlet process mixture of large-margin
kernel machines. In ICML, 2011. 8.2

[154] J. Zhu, N. Chen, and E. Xing. Infinite latent svm for classification and multi-task learning.
In NIPS, 2011. 8.2

[155] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields
and harmonic functions. In ICML, 2003. 4.3.1, 4.3.2, 4.3.2

119

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
www.ml.cmu.edu

	1 Introduction
	1.1 Background and Motivation
	1.2 Thesis Statement

	2 Survey of Related Work
	2.1 Large-Scale Image Classification
	2.2 Event Detection and Summarization of Videos

	I Large Scale Image Classification
	3 Large Scale Category Structure Aware Image Classification
	3.1 Introduction
	3.2 Problem Formulation
	3.2.1 Hierarchical Structure among Image Classes
	3.2.2 Logistic Regression with Category Structure
	3.2.3 Tree-Guided Sparse Feature Coding

	3.3 Methods
	3.3.1 Reformulate the Penalty
	3.3.2 Accelerated Parallel Gradient Method

	3.4 Experiments
	3.4.1 Image Features
	3.4.2 Evaluation Criteria
	3.4.3 Comparisons & Classification Results
	3.4.4 Effects of and on the Performance of APPLET

	3.5 Summary

	4 Sparse Output Coding for Scalable Visual Recognition
	4.1 Introduction
	4.2 Coding
	4.2.1 Formulation
	4.2.2 Optimization

	4.3 Probabilistic Decoding
	4.3.1 Motivating Example
	4.3.2 Formulation
	4.3.3 Decoding

	4.4 Experiments
	4.4.1 Data Sets and Feature Representations
	4.4.2 Experiment Design and Evaluation
	4.4.3 Results
	4.4.4 Effect of Code Length
	4.4.5 Time Complexity

	4.5 Summary

	II Large Scale Video Understanding
	5 Online Detection of Unusual Events in Videos via Dynamic Sparse Coding
	5.1 Introduction
	5.2 Sparse Coding for Unusual Event Detection
	5.2.1 Video Representation
	5.2.2 The Proposed Method
	5.2.3 Online Dictionary Update
	5.2.4 Unusual Event Detection

	5.3 Experiments
	5.3.1 Subway Surveillance Video
	5.3.2 Unusual Event Detection in Youtube Videos

	5.4 Summary

	6 Quasi Real-Time Summarization for Consumer Videos
	6.1 Introduction
	6.2 Online Video Highlighting
	6.2.1 Video Segment Reconstruction
	6.2.2 Online Dictionary Update
	6.2.3 Importance of Dictionary
	6.2.4 Sanity Check

	6.3 Theoretical Analysis
	6.4 Experiments
	6.4.1 Experiment Design and Evaluation
	6.4.2 Results
	6.4.3 Time Complexity

	6.5 Summary

	7 Supervised Video Summarization: A Max Margin Approach
	7.1 Introduction
	7.2 Supervised Video Summarization
	7.2.1 Problem Formulation
	7.2.2 Augmenting the Training Data
	7.2.3 Max Margin Video Summarization

	7.3 Optimization
	7.3.1 Constrained Concave-Convex Procedure
	7.3.2 Cutting-Plane Algorithm
	7.3.3 Alternating Direction Method of Multipliers

	7.4 Experiments
	7.4.1 Feature Representations
	7.4.2 Synthetic Videos
	7.4.3 Surveillance Videos
	7.4.4 Youtube Videos

	7.5 Summary

	III Conclusion
	8 Discussion
	8.1 Key Observations and Contributions
	8.2 Future Directions
	8.3 Conclusion

	Bibliography

