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Abstract

Today’s social and internet networks contain millions or even billions of
nodes, and copious amounts of side information (context) such as text, at-
tribute, temporal, image and video data. A thorough analysis of a social net-
work should consider both the graph and the associated side information, yet
we also expect the algorithm to execute in a reasonable amount of time on
even the largest networks. Towards the goal of rich analysis on societal-scale
networks, this thesis provides (1) modeling and algorithmic techniques for in-
corporating network context into existing network analysis algorithms based
on statistical models, and (2) strategies for network data representation, model
design, algorithm design and distributed multi-machine programming that,
together, ensure scalability to very large networks. The methods presented
herein combine the flexibility of statistical models with key ideas and em-
pirical observations from the data mining and social networks communities,
and are supported by software libraries for cluster computing based on orig-
inal distributed systems research. These efforts culminate in a novel mixed-
membership triangle motif model that easily scales to large networks with
over 100 million nodes on just a few cluster machines, and can be readily ex-
tended to accommodate network context using the other techniques presented
in this thesis.
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Chapter 1

Introductory Material

1.1 Introduction and Thesis Scope

The rapid growth of the internet, particularly social media, has led to an unprecedented
increase in the amount of network data worldwide. Already, the Yahoo Web Graph [177]
— collected in 2002 — contains in excess of one billion URLs, the Facebook social net-
work recently exceeded one billion users [85], and numerous other social networks or
online communities easily claim memberships in the millions of users [108]. Further-
more, network data gleaned from the internet are not just simple graphs, but are enriched
with additional context (multiple views) such as textual data, categorical labels and im-
ages. Networks may even be timestamped, leading to a temporal series of networks, or
can possess special organization, such as hierarchical communities and topics in online
encyclopedias and academic paper citation networks.

This thesis is focused on statistical network modeling as a means to discover the hid-
den characteristics and properties that explain a network’s observed edge structure. It must
be noted that the full range of network modeling applications is far broader — for exam-
ple, network models can be used to simulate networks, to study the process of network
formation, and to group seemingly disparate networks into related classes, amongst many
other applications in statistics, social networks, data mining, and machine learning. For
the purposes of this thesis, we are primarily concerned with two tasks that frequently oc-
cur in social media and internet studies, tasks which can be solved by knowing the hidden
characteristics and properties of massive, context-rich internet and social networks:

1. Community detection to discover broad demographic patterns and organize network
nodes into a coherent structure [178, 129]
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2. Link prediction to reconstruct missing edges in incomplete or partially-observed
networks, or to recommend existing network nodes to new users and websites [127,
14, 13]

Certainly, there are many other social media and internet-related tasks that have been stud-
ied in the literature, but are not the focus of this thesis. These include personalized content
recommendation for individual users [154, 113], user behavior prediction to understand
and manage user load on hardware infrastructure [33, 12], and characterizing the prop-
agation of ideas and information through a network in order to encourage or limit such
propagation [164, 17, 54].

Despite the opportunities, there are currently few network analysis algorithms which
are feasible for social and internet networks with millions to billions of nodes [87, 55, 173],
or that take advantage of additional data contexts [75, 31, 147, 42, 13], temporal informa-
tion [54, 74], and other kinds of network structure [75]. We now discuss the challenges
involved in both tasks.

1.1.1 How Large is a Network?

The size of a network is typically measured by the number of nodes N : for example, the
number of websites/URLs in a web graph, or the number of people in a social network.
However, the data associated with the network is not Θ (N): observe that the (dense)
adjacency matrix representation1 of the network has size N2, while the number of edges
M = D̄N , where D̄ is the average network degree. Across real social networks, D̄
exhibits high variability, ranging from < 10 to as much as 100 [85, 108].

The fact that networks contain� N data has implications for algorithm design. Even
if a network algorithm only requires constant O (1) work per adjacency matrix element
(such as [6, 121]), it must perform ω (N) total work (i.e. asymptotically more than Θ (N)).
This may still be acceptable for small networks, but is untenable for millions or billion of
nodes. On the other hand, algorithms that require O(1) work per edge will scale well as
long as the networks under study have average degree much lower than N , i.e. D̄ � N
(which is always the case for large real-world social and internet networks).

From a scalability perspective, an ideal large-scale network analysis algorithm would
require only Θ (N +M) work. Towards this end, we propose an approach to data repre-

1We emphasize the dense (rather than sparse) adjacency matrix representation, because many statistical
network models explicitly model zeros in the adjacenty matrix — thus, their computation is “dense”, i.e.
O(N2), even if they store the adjacency matrix sparsely.
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sentation, model construction and algorithm design that avoids the common edge-based-
representation of a network (e.g. adjacency matrices or adjacency lists), in favor of viewing
the network in terms of triangle motifs (also known as triads, or subgraphs of size 3). This
triangle representation has various properties that enable large-scale network analysis; in
particular, it is possible to subsample triangle motifs in a manner that approximately pre-
serves important network attributes such as the clustering coefficient, resulting in fast and
empirically accurate community detection and link prediction on networks in the N = 1
million to 100 million node range.

1.1.2 Networks in Context

One can gain a deeper understanding of a network by taking its context into account; the
context of a network encompasses the node identities (e.g. names of people in a social net-
work) as well as other “metadata” attached to these identities: text messages (e.g. tweets
on Twitter and comments on Facebook), categorical information (e.g. age, gender, hob-
bies), interaction frequencies (e.g. number of emails sent or comments posted), images
and video, and more. Most network analysis methods are focused on discovering struc-
ture solely from the graph (i.e. the nodes and edges alone), after which the researcher
is expected to interpret that structure in terms of the network context [6, 74, 129]. This
thesis will also study techniques for incorporating network context into network analysis
algorithms. By analyzing both the context and the graph, applications such as these are
enabled:

1. Discovery of network structure from both the network’s graph and context. Ex-
ample: finding overlapping social network communities characterized both by link
patterns and textual discourse [127, 75].

2. Link prediction for new nodes based only textual data. Example: citation recom-
mendation for a newly written academic paper [16, 74].

3. Treating the graph as a conduit for information flow, and studying how information
propagates through the graph. Example: propagation of viral ideas through a social
network [164, 17], or of scientific topics through academic papers [126].

4. Community detection from interaction frequencies, where interactions include ac-
tions such as retweets, emails, comments, etc.. Note that interaction frequencies
can be represented as an integer-weighted graph, thus one may also use community
detection algorithms for weighted graphs [173, 174].
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Acronym Definition
SBM Stochastic Blockmodel
MMSB Mixed-Membership Stochastic Blockmodel
ERGM Exponential Random Graph Model
MF Matrix Factorization
LDA Latent Dirichlet Allocation (a.k.a. topic model)
SVD Singular Value Decomposition
SVI Stochastic Variational Inference
MCMC Markov Chain Monte Carlo

Table 1.1: Summary of common acronyms in this chapter.

Key to these applications is the following notion: for social networks and other internet
networks, the graph itself is only a fraction of the available information. In fact, it is the
context surrounding the graph that makes the network genuinely interesting, and therefore
network analysis methods should methodically take this context into account, instead of
relegating it to post-hoc interpretation.

1.1.3 Related Work on Network Scalability and Context

Over the next few sections, we will provide a general overview of network analysis meth-
ods from the statistical, data-mining and social-science literature, which serve as the back-
ground to this thesis. Before that, we shall discuss some of these methods in light of their
algorithmic scalability and ability to incorporate network context, which we have identi-
fied as important goals for large-scale social network analysis.

In social networks: Within computer science and statistics, researchers have historically
concentrated on either algorithm scalability or ability to incorporate network context. In
the social networks literature, there has been much recent emphasis on achieving fast,
linear-time overlapping community detection, as exemplified by the GCE [105], Link [5]
and SLPA [173] algorithms. Notably, these algorithms make use of vastly different ob-
jective functions and strategies, and there is little consensus on what the “best” approach
should be — or even if there is a single best approach at all. More interestingly, none
these algorithms are statistical in nature, unlike the methods we are proposing for this
thesis. We argue for the use of statistical models, because they possess two important ad-
vantages: one, their results are easy to interpret, and two, statistical models can be easily
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adapted to handle different data representations in a principled manner, or even multiple
data types such as text and network data [126, 75, 127]. In short, statistical models offer an
easily-understood framework for incorporating network context into an algorithm. On the
other hand, algorithms such as GCE, Link or SLPA involve highly-specialized objective
functions, for which there are there are no well-understood, general-purpose principles for
incorporating multiple data types. This does not mean that incorporating network context
is impossible with these algorithms, only that is not clear how one might go about it.

In statistics and machine learning: Conversely, the statistics and machine learning
communities have emphasized network context and interpretability, but usually at the ex-
pense of scalability. The predominant statistical network models are the ERGMs (Expo-
nential Random Graph Models) [124, 84, 63], Stochastic Blockmodels [19, 11, 6, 74, 56]
and Latent Factor Models [121, 68, 78]. All of these models are popular for their ease
of interpretability, but the inference algorithms required to “solve” them generally require
O(N2) time (due to reliance on the adjacency matrix), making them patently unscalable to
large networks with N > 100, 000. Two notable recent exceptions are Gopalan et al. [56],
who applied stochastic gradient techniques to achieve linear runtime on the Mixed Mem-
bership Stochastic Blockmodel (MMSB) [6], and Parkkinen et al. [134], who designed a
“Sparse Block Model” with O(M) latent variables. Although these methods are scalable
in their own right, they still treat network edges as the basis for role/community detection.
In the latter half of this thesis, we will argue that triangular motifs are a better network
representation for this task, and design scalable network models that exploit these motifs.

The abovementioned statistical models can be easily extended to incorporate network
context. For instance, ERGMs can be modified to incorporate per-node features — such as
a person’s age, text messages, hobbies, images and so forth — in a manner that is reminis-
cent of autoregressive models [124, 84]. Nallapti et al. [127] have extended the MMSB to
incorporate text data, by essentially combining it with the LDA (Latent Dirichlet Alloca-
tion) text model [23]. The resulting hybrid model discovers network communities that are
defined in terms of network linkage patterns and textual topics, but does not scale because
inference on the MMSB part still requires O(N2) time. As for latent factor models, similar
statistical techniques can be applied to incorporate network context.

In information retrieval: More generally, the natural language processing and infor-
mation retrieval communities have extended the LDA text model with various ideas from
stochastic blockmodels, producing a variety of text-plus-network models whose primary
goal is improved topic detection from documents [127, 31, 147, 42, 13]. While these
models are scalable in that they require O(M) work on the network data, most of them
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cannot function as stand-alone network models when the text data is omitted, such as
RTM [31], Link-PLSA-LDA [127], the Author-Topic Model [147], and the Citation Influ-
ence Model [42]. The Block-LDA model [13] is a notable exception, because it uses an
existing stand-alone network model, the Sparse Block Model [134], as a component.

In data mining: Within the data mining (and machine learning) community, there are
also non-statistical ways to combine networks with their context. In particular, Matrix
Factorization (MF) methods provide a principled framework for decomposing relational
data (of which networks are but one type) into simpler “basis” components. Although
the basis components tend to be less interpretable than the probability distributions that
arise from statistical models, the optimization algorithms to perform MF are usually faster
than the inference algorithms on statistical models. In particular, the HEigen algorithm
computes the rank-k Singular Value Decomposition (SVD, a type of MF) on networks
with over N ≥ 1 billion nodes, given a cluster with 100s of Hadoop machines [87].

Furthermore, MF can be re-interpreted in a probabilistic setting, as seen in the work of
Singh & Gordon [156], who have developed a probabilistic MF framework for an arbitrary
number of relational matrices. To incorporate network context in such a coupled MF
(i.e. multiple matrix factorization) framework, one would input at least two matrices:
the adjacency matrix, and one or more matrices of nodes against their features. Whether
the resulting algorithm is scalable strongly depends on how the MF objective function
is constructed — if the objective function is dense in the adjacency matrix (i.e. work is
performed even on the zeros) such as in [169], then the algorithm requires at least Ω(N2)
work and will not finish in a realistic amount of time on N ≥ 100-million node networks,
even if a large compute cluster is used. On the other hand, if the objective function is
sparse (no work performed on adjacency matrix zeros), then one may take advantage of
existing software for distributed, large-scale coupled matrix/tensor factorization, such as
FlexiFaCT [18]. Another example of coupled MF is the linear-time PICS network analysis
algorithm, which can analyze networks with N ≈ 75k nodes [7] in about 1-2 hours.

Adjacency matrices, scalability, and triangular motifs as a solution: In fact, the size
of the (dense) adjacency matrix is a fundamental problem, and affects all Matrix Fac-
torization algorithms (probabilistic or otherwise), ERGMs, Stochastic Blockmodels, and
Latent Factor Models2. Intuitively, any reasonable algorithm should perform at least O(1)
work per element of input data, implying that network algorithms that take the adjacency

2Even if the adjacency matrix is stored sparsely, many of these algorithms are not sparse because they
treat the zeros in the matrix as data points.
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matrix as input should perform O(N2) work. There are exceptions to this rule, though:
single-membership stochastic blockmodels can be inferred in O(M) time (where M is the
number of edges) as seen in [75], while the Sparse Block Model [134] provides an alter-
native model that gives up some interpretability (relative to blockmodels) in exchange for
scalability. Alternatively, one might reduce the required work by subsampling elements of
the adjacency matrix, as seen in Gopalan et al.’s MMSB inference algorithm [56].

To achieve scalability, we shall take a completely different approach: rather than deal
with an edge-based network representation like the adjacency matrix, we instead design
algorithms based on a parsimonious triangle motif representation of the network, whose
advantages will be explored in Section 3.1. As the name suggests, this triangle motif
representation is about edge patterns seen in node triples (i, j, k), and essentially treats the
network as a hypergraph whose hyperedges are the pattern associated with a node triple
(technically, this is known as a 3-uniform hypergraph). Hypergraph representations of
networks have been studied in both the social networks [50] and statistics literature [158],
and there is empirical evidence showing that triangles and higher-order subgraphs can
accurately reveal the structure and communities within a network [122, 178].

1.1.4 Thesis Statement and Organization

We can design statistical network analysis algorithms that are scalable and
incorporate rich context.

More specifically, we wish to develop techniques for designing statistical, mixed-membership
latent space network analysis algorithms that: (1) can be applied to real-world social and
internet networks with 100s of millions, to billions, of nodes, and (2) can incorporate net-
work context in the form of node-associated features such as text data, categorical data,
and so on. While there already exist non-statistical methods that can analyze large net-
works in their context, it is still important to have statistically-motivated tools that can do
the same. The reason is that statistical models and algorithms are backed by a rich tradi-
tion of common theoretical results that other classes of tools rarely enjoy, and this theory
is crucial for the key scientific task of determining when an algorithm’s output is actually
meaningful signal, or merely noise. One of the goals of this thesis is to pave the way for
application and development of robust theoretical analysis of networks at large scales, by
showing that statistical analysis of large, contexual networks is in fact possible.

We define the key problem of this thesis as follows: given a network (represented as
an edge list or adjacency matrix) and its context (such as text data and time-stamped net-
works, which can be represented as additional matrices), we want to find a latent space

7



representation of the network nodes such that: (1) a node’s position in this latent space
corresponds to the network community (or communities) it belongs to; (2) two nodes’ la-
tent space positions can accurately predict the probability of a link between those nodes3.
In order to achieve this, we have taken a multi-disciplinary approach: we start with prin-
cipled and well-established modeling techniques from the statistics literature (e.g. mixed-
membership modeling), incorporate empirically-sound insights from the data mining and
social networks literature (such as the use of triangular motifs), and then apply distributed
systems research (for example, bounded consistency models in key-value stores) to ef-
fectively harness multi-machine clusters. We firmly believe that incorporating multiple
disciplines is not only wise, but an absolute necessity for solving the myriad challenges
that practitioners of network analysis regularly face in the Big Data era.

The remainder of Chapter 1 is devoted to background material on network analysis
methods from the statistics, data-mining, machine-learning and social-network literature;
we conclude the chapter with a summary table that compares the pros and cons of each
major family of techniques, and which we use to justify and motivate our statistical ap-
proach to large-scale network analysis. Chapter 2 covers techniques for building network
algorithms that incorporate various forms of network context: time-varying networks, hi-
erarchical organization, parameter-free (nonparametric) community detection, and textual
data at each node. Chapter 3 discusses how to build scalable, linear-time network analysis
algorithms using triangular motifs: beginning with data representation, followed by model
design, and finally inference algorithm construction. Chapter 4 further raises the limit
on scalability, by taking triangular-motif algorithms into the distributed, multi-machine
cluster setting — here, we focus on solving far-reaching distributed systems challenges
that affect not just triangular-motif algorithms, but a wide range of methods in statistics,
data mining and machine learning. The culmination of Chapters 3 and 4 is an algorithm
for mixed-membership (a.k.a. overlapping) community detection and link prediction for
networks with N ≥ 100 million nodes. We end this thesis with a short conclusion in
Chapter 5.

3The specific probabilistic models and inference/optimization procedures used to accomplish these goals
will be explained in later chapters, so as to keep this introduction at a high level.
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1.2 Statistically-Motivated Network Analysis Methods

In the statistical literature, the goal of network analysis is to estimate the parameters of a
network model, given some input network. A network model defines a probability distribu-
tion over possible networks, in the same way a Gaussian distribution defines a probability
distribution over real numbers. A network model’s parameters represent network charac-
teristics deemed to be important — for example, affinities towards various subgraphs (such
as triangles and stars) in ERGM models, inter-community link formation probabilities in
Stochastic Blockmodels, or even the Euclidean position of each network node in latent
position models. By estimating network model parameters from different networks, we
not only learn the unique characteristics of each network, but also quantify what makes
one network different from another. Moreover, once the model parameters have been esti-
mated, the network model can be used for common network tasks, such as link prediction
between nodes or network community detection.

Formally, we define networks (or graphs) as a set (V,E) of N nodes V ∈ {1, . . . , N}
and directed edges between those nodes E ∈ {1, . . . , N}2. From a statistical perspective,
networks pose special challenges compared to other types of data. Chief among these
is that the edges E are not independent and identically distributed (i.i.d.), meaning that
common statistical distributions such as the Bernoulli or the Gaussian are inappropriate.
Instead, statistical network models are used to characterize and summarize properties of
networks (V,E), or to explain how networks are formed from a set of parameters. By
fitting such models to observed networks, an analyst can quantify how two networks differ
in terms of global structure, identify individual communities within a network, or identify
unusual nodes in a network. Henceforth, we represent a network (V,E) using its N × N
adjacency matrix Y (a random variable), where

Yij =

{
1 if edge (i, j) exists
0 otherwise.

To account for the relational nature of edges, a statistical network model makes some
kind of dependence assumption about them, ranging from simple Bernoulli parameters on
each edge, to more complex log-linear models on subgraph counts. The choice of depen-
dence assumption is domain-dependent; social and internet networks may require different
assumptions from biological networks, for example. The purpose of this section is to pro-
vide a broad overview of the common statistical network models, and, by extension, the
underlying dependence assumptions.
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1.2.1 Random Graphs

Random Graph models define a distribution over adjacency matrices Y , according to the
general, exponential family form [145]

Pr (Y = y) =

(
1

κ

)
exp

{∑
A

ηAgA (y)

}
,

with the following definitions:

• Configurations A. A configuration is a structure or subgraph that may be present in
the network. More precisely, it is a particular setting of adjacency matrix elements
yij . For example, y12 = 1 is a configuration that is only present in networks y with
the edge (1, 2). More complex configurations will be introducted throughout this
section.

• Network statistics gA (y). A network statistic simply states whether the configura-
tion A is observed in the network y. In other words, gA (y) = 1 when A is observed
in y, and 0 otherwise.

• Network parameters ηA. The exponential family parameter corresponding to the
statistic gA (y). Positive values of ηA mean that the distribution favors networks y
that exhibit the configuration, and vice-versa for negative values.

• Normalization factor κ. This ensures that Pr (Y = y) is a valid probability distribu-
tion. κ may or may not be tractable to compute, depending on the model.

Bernoulli Graphs

Bernoulli random graphs use the simplest dependence assumption: all edges are indepen-
dent according to a fixed parameter, i.e.

Pr (Y = y) =

(
1

κ

)
exp

{∑
i,j

ηijyij

}
.

The only configurations in this model are theN2 edges in the graph. If the model is further
simplified by assuming all ηij are identical, we recover the Erdős–Rényi model [43], in
which a single parameter α = ηij determines the probability of every (independent) edge.
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Dyadic Models

A dyadic model is a simple generalization of Bernoulli graphs, in which every dyad — the
pair of possible edges between i and j, i.e. (i, j) and (j, i) — is independent of the others
(while two edges (i, j) and (j, i) within a dyad depend on each other). One example of a
dyadic model is:

Pr (Y = y) =

(
1

κ

)
exp

{
θ
∑
i,j

yij + ρ
∑
i,j

yijyji

}
,

where the parameter θ corresponds to single edges, and ρ corresponds to reciprocated
edges (i.e. yij = yji = 1). The p1 model of Holland and Leinhardt [80] and the p2 model
of Lazega and van Duijn [104] are also dyadic models, with more complex assumptions
than the one just shown.

Exponential Random Graph Models (p∗ models)

The Bernoulli and Dyadic models shown only concern themselves with edge interactions
yij . However, there is often a need to account for node attributes (say, the age of each
person in a social network), while higher order interactions and subgraphs (like triangles
or stars) are empirically important for modeling network phenomena such as homophily
and communities. By extending the general model introduced earlier with node attributes,
we get the exponential random graph model (also known as a p∗ or ERGM model):

Pr (Y = y) =

(
1

κ

)
exp

{
τi
∑
i

xi +
∑
A

ηAgA (y)

}
.

The configurations A can take on many forms, and a common modeling assumption is to
make all configurations of a given type share a single parameter (like how the Erdős–Rényi
model has a single parameter for all edges). Once all configurations of the same type share
a parameter, we are then concerned only with the number of times the configuration occurs
in y:

Pr (Y = y) =

(
1

κ

)
exp

{
τi
∑
i

xi +
∑
c

ηcSc (y)

}
,

where Sc counts the number of times configuration c occurs in y. Common configurations
include:
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• Edges yij and dyads yijyji, as described earlier.

• k-stars, where a single node is connected to k other nodes, and furthermore those k
nodes are not connected to each other. For example j ← i→ k is a 2-star if j and k
do not have any edges. k-stars can be further distinguished into in-stars or out-stars,
depending on whether the star edges point to the central node or otherwise. The
j ← i→ k example is then a 2-out-star.

• Triads, where three nodes are connected to each other, e.g. i → j → k → i is
a triad. Like k-stars, triads can be distinguished based upon edge direction - for
example, i→ j → k → i is a cyclic triad.

Further generalizations of the ERGM model are possible: for example, constraints can be
placed on the parameters τi and ηc, or the model can be generalized to a series of time-
varying graphs Y (t)

ij for t ∈ {1, . . . , T}.
A notable problem with ERGMs is model degeneracy [67], a model specification issue

where some parameter values result in only trivial graphs (e.g. the full graph or empty
graph) having most of the probability mass. Care must be taken during model estima-
tion to ensure that the recovered parameter values are not in fact degenerate (and hence
uninteresting).

Model Estimation

In general, maximum likelihood estimation of random graph parameters η is not tractable,
because the space of adjacency matrices Y is exponentially large, with 2N

2 possible con-
figurations. Instead, approximate estimation techniques are used:

• Maximum pseudo-likelihood [159], in which the model is transformed into the fol-
lowing conditional form:

log

[
Pr
(
Yij = 1 | yCij

)
Pr
(
Yij = 0 | yCij

)] =
∑
A(Yij)

ηAdA (y) ,

where the sum is over all configurations A containing Yij , and dA (y) is a “change
statistic”, the change in the value of the statistic gA (y) when yij changes from 1 to
0, and yCij is the complement of yij , i.e. all edges in y except yij .

12



• Markov chain Monte Carlo maximum likelihood estimation (MCMCMLE), in which
simulation is used to estimate the parameters. Given a starting set of parameter val-
ues, MCMCMLE samples random graphs Y from these parameters, and compares
them to the observed graph y in order to refine the parameter values. Further de-
tails are available in Snijders [157], Wasserman and Robins [171], and Handcock et
al. [66].

1.2.2 Latent Position Models

The random graph models described above focus on modeling counts of structures/configurations
in the observed graph. Latent position models [78] take a different, node-centric approach,
and assume that (1) each node i has an unobserved (i.e. latent) position vector zi in some
“social space” RK , (2) the positions of two nodes zi, zj explain the observed edges yij, yji,
and (3) an edges yij is conditionally independent of all other edges yab, given the latent
positions zi, zj . This gives rise to the following network model:

Pr (Y | Z,X, θ) =
∏
i 6=j

Pr (yij | zi, zj, xij, θ) ,

where y is the adjacency matrix, zi, zj are the latent position vectors of node i and j, xij
represents additional covariate information associated with the edge xij , and θ represents
the model parameters. We now discuss the different ways in which Pr (yij | zi, zj, xij, θ)
can be parameterized.

Euclidean Distance Model

One intuitive parametrization of Pr (yij | zi, zj, xij, θ) involves the Euclidean distance be-
tween zi, zj — intuitively, the closer zi and zj are, the higher the probability that yij = 1.
Specifically, we model the log odds of yij = 1 versus yij = 0, as in logistic regression:

log odds (yij = 1 | zi, zj, xij, α, β) = α + β>xij − |zi − zj| .

The probability of yij = 1 only depends on three things: (1) a constant α, (2) the value of
xij , weighted by β, and (3) the Euclidean distance |zi − zj|. The model can be generalized
by replacing the Euclidean distance |·| with any distance function that satisfies the triangle
inequality. Note that because |zi − zj| = |zj − zi|, the model is inherently symmetric, and
thus appropriate for undirected networks where yij = yji.
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Projection Models

Because the Euclidean distance model is symmetric, it is inappropriate for undirected net-
works with low reciprocity (i.e. yij 6= yji most of the time). One way to model asymmetry
is to consider similarity in terms of angle (i.e. projection of zi onto zj), rather than dis-
tance:

log odds (yij = 1 | zi, zj, xij, α, β) = α + β>xij −
z>i zj
|zj|

.

This is similar to the Euclidean distance model, except that the Euclidean distance |zi − zj|
has now been replaced by the projection z>i zj/ |zj|. The projection can be interpreted as
follows: when the latent position vectors zi, zj point in the same direction, there is a high
probability of an edge yij = 1, whereas if zi, zj point in opposite directions, then yij = 0
is more likely. Furthermore, the product zizj is normalized by the length of zj , allowing
for asymmetric interactions — if |zi| > |zj|, then yij = 1 is more likely than yji = 1
(assuming xij = xji).

Model Estimation

Compared to random graph models, latent position models have a simpler log-likelihood
function:

log Pr (Y | η) =
∑
i 6=j

ηijyij − log (1 + eηij) ,

where ηij is a function of the latent positions zi, covariates xij and parameters θ. The log-
likelihood is not concave in all unknown variables zi, θ, so it is difficult to find the global
maximum likelihood estimator (MLE) directly. An MCMC-based iterative procedure can
be used instead, where the zi’s are updated in one step, and the parameters θ are updated
in another step. Further details are available in [78].

1.2.3 Mixture and Admixture (Mixed-Membership) Models

A third class of network models treats the edges yij as being drawn from a mixture of
distributions. Such (ad)mixture models are similar to latent position models, but where
the latent position vectors zi’s now lie in the probability simplex instead of RK , and thus
carry a probabilistic interpretation. An (ad)mixture model has a general form similar to
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the latent position model:

Pr (Y | Z, θ) =
∏
i 6=j

Pr (yij | zi, zj, θ) .

Like the latent position model, the probability of yij = 1, conditioned on the latent posi-
tions zi, zj and model parameters θ, is independent of all other node positions za where
a /∈ {i, j}. A mixture model restricts the positions zi to lie at the vertices of the probability
simplex, i.e. zi ∈ {1, . . . , K}. That is to say, zi can only take one of K discrete values.
Admixture models generalize mixture models by allowing the node latent positions zi to
lie anywhere in the probability simplex, i.e. zi ∈ ∆K−1.

A major advantage of (ad)mixture models is interpretability: since the zi lie in the
probability simplex, we can interpret each zi as the cluster or community membership
of node i. For example, in a mixture model, zi = 1, zj = 2 implies that node i is in
community 1, while node j is in community 2. In an admixture model with K = 3,
zi = [0.5, 0.5, 0]T implies that node i participates equally in community 1 and 2, while
having zero membership in community 3. Because of this interpretability, mixture and
admixture network models are often used for community detection.

(Ad)mixture network models are related to classical i.i.d. mixture models, such as a
mixture of Gaussians. In a mixture of Gaussians, every datum xi is generated by first
picking one of K Gaussians, and then drawing xi from the chosen Gaussian. Mixture
network models work in an analogous fashion: every yij first picks one ofK2 distributions
(indicated by (zi, zj)), and then draws the edge outcome (0 or 1) from that distribution
(typically a Bernoulli, but alternatives exist). Unlike classical mixture models, the i.i.d.
assumption does not hold — yij is not independent of yik, because they both share an
indicator variable zi. Admixture models generalize mixture models further by assuming
every mixture indicator zi is now a mixture overK choices (as opposed to a single discrete
choice); the interpretation is that the outcome yij is drawn from a weighted combination
of the K2 distributions, rather than a single distribution.

Stochastic Blockmodels

Stochastic blockmodels [170] are network mixture models in which the K2 distributions
indicated by (zi, zj) are all Bernoulli. Thus, Pr (yij | zi, zj, θ) takes the form

Pr (yij | zi, zj, B) =
K∏
a=1

K∏
b=1

B
I[a=zi,b=zj ]
ab

= Bzj ,zj ,
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where I [condition] = 1 if condition is true and 0 otherwise, and where B is called the
K ×K stochastic blockmatrix, a matrix of K2 Bernoulli parameters, one for each of the
K2 possible values that (zi, zj) can take. Stochastic blockmodels directly generalize the
single-parameter Erdős–Rényi model: instead of assuming all edges are drawn indepen-
dently with probability α, we assume that every node has a true but unknown community
membership zi, and that the probability of an edge (i, j) is determined by the node mem-
berships zi, zj . Note that two edges yij and yk` have the same probabilities if zi = zk and
zj = z` — that is to say, only the node memberships matter.

Stochastic blockmodels are frequently employed for detecting communities in net-
works — the typical assumption in social networks is that nodes in the same community
are more likely to form edges than nodes in separate communities (an assumption known
as assortativity), and thus we expect the true blockmatrix B to have larger diagonal ele-
ments than off-diagonal elements. However, they can also be used to model disassortative
networks, in which nodes in the same community are less likely to form edges (such as
a biological food web) — this corresponds to a blockmatrix B with larger off-diagonal
elements.

Mixed Membership Stochastic Blockmodel (MMSB)

Mixed Membership Stochastic Blockmodels [6] are the admixture generalization of stochas-
tic blockmodels, where

Pr (yij | zi, zj, B) =
K∏
a=1

K∏
b=1

Bziazib
ab

Note that Airoldi et al. also place a Bayesian prior on the node mixed memberships zi,
which we will not discuss here.

While the above form makes the relationship between stochastic blockmodels and
MMSB clear, it also makes model estimation intractable. To restore tractability, auxil-
iary random variables uij→, uij← are added to further decompose the model:

Pr (Y | Z, θ) =
∏
i 6=j

Pr (yij | zi, zj, B)

=

[∏
i 6=j

Pr (yij | uij→, uij←, B) Pr (uij→ | zi) Pr (uji← | zi)

]
,
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where

Pr (yij | uij→, uij←, B) =
K∏
a=1

K∏
b=1

B
I[a=uij→,b=uij←]
ab ,

Pr (uij→ | zi) =
K∏
a=1

z
I[a=uij→]
ia .

We interpretation this augmented model as follows: rather than drawing the edge yij di-
rectly from the mixture of Bernoullis indicated by (zi, zj), we first draw uij→ ∈ {1, . . . , K}
(the donor indicator) according to Discrete (zi), and similarly draw uij← ∈ {1, . . . , K} ac-
cording to Discrete (zj). In other words, we explicitly pick a single Bernoulli indicated
by (uij→, uij←), in the same way each datum xi in a mixture of Gaussians explicitly picks
a single Gaussian. When uij→, uij← are integrated out, we recover the original admixture
model in only the variables y, z, B.

Like stochastic blockmodels, MMSB can be used to detect communities in networks.
The main advantage of MMSB is that every node can simultaneously belong to multi-
ple communities (hence the “mixed membership” moniker), meaning that MMSB can
be applied to networks where communities are assumed to overlap. As with stochastic
blockmodels, MMSB can be used to model both assortative (diagonal-dominant B) and
disassortative (off-diagonal-dominant B) networks.

Model Estimation

The log-likelihood of a mixture model (such as the stochastic blockmodel) or an admixture
model (such as MMSB) is non-concave, and furthermore the maximum likelihood estimate
(MLE) lacks a tractable analytic form. To estimate such models, two commonly-employed
procedures are (1) variational expectation-maximization, in which a simplified distribution
is used in place of the true log-likelihood [6], and (2) Markov Chain Monte Carlo (MCMC)
estimation, in which Bayesian priors are put on the quantities z, B, and a Markov Chain
is used to sample from the posterior distribution of z,B — typically, Gibbs sampling is
used [77], but other MCMC algorithms such as Metropolis-Hastings are possible.

The aforementioned estimation algorithms do not scale to large networks with many
communities K. To address networks at that scale, Stochastic Variational Inference (SVI)
algorithms, which is essentially stochastic gradient descent applied to variational expectation-
maximization, have been developed for the MMSB [57] and MMTM [179] (Yin et al.,
2013) models, allowing model estimation on networks with millions of nodes and thou-
sands of communties K.
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1.2.4 What about Scalability and Network Context?

Statistical network models are highly suited to incorporating network context: ERGMs,
for instance, have already been used to model time-varying networks [63] as well as net-
works where each node possesses multiple features or attributes [124, 84]. The same
goes for mixed-membership or admixture models: various text-cum-network models were
proposed in [127], and in this thesis, we will explore ways to incorporate time-varying
network changes, hierarchical structure, infinite (nonparametric) latent spaces, and textual
data into mixed-membership network models.

However, there has been far less discussion on how to scale statistical network models
to large networks — it is particularly telling that most of the literature deals with relatively
small networks of sizeN ≤ 10, 000. The primary barrier to scalability is that most of these
methods model the entire N × N adjacency matrix, and thus their estimation algorithms
require Ω(N2) runtime (i.e. they are asymptotically lower-bounded by N2 operations). A
few exceptions exist, such as the Poisson Model [15] and the a-MMSB variational infer-
ence algorithm [57]. In this thesis, we argue for and develop a mixed-membership network
model based on triangular features, and show that when this data representation is com-
bined with (1) a parsimonious model of triangle count statistics, (2) an efficient stochastic
inference algorithm, and (3) a well-designed distributed computation scheme, the result
is a system that can perform mixed-membership network modeling and inference over
N ≈ 100 million nodes with K = 1, 000 mixed-membership roles/communities. To the
best of our knowledge, this is the largest network instance that has been analyzed to date
via a mixed-membership network model.
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1.3 Network Analysis Methods from the Data Mining and
Social Network Literature

As a general (though certainly not absolute) rule of thumb, network analysis methods
from the data mining and social network literature are designed with a specific network
task in mind, such as community detection, or link prediction. This stands in contrast to
the model-centric philosophy in the statistics literature, where the goal of network analysis
is to learn model parameters that then specify a probability distribution over networks. In
fact, data mining and social network techniques tend to be model-agnostic, in that they
make few assumptions about the structure of the network. Ultimately however, both sta-
tistical as well as social network or data mining network analysis methods can be applied
successfully to real-world networks, as long as the user is mindful of each method’s as-
sumptions, and chooses one that is well-suited to the nature and scale of the network being
analyzed.

As in the previous section, we represent a network (V,E), consisting of N nodes V
and directed edges among those nodes E, by its N ×N adjacency matrix Y , where

Yij =

{
1 if edge (i, j) exists
0 otherwise.

1.3.1 Linkage Measures

A linkage measure `(x, y) assigns a score to each pair of nodes (x, y) in the network, which
measures the confidence that x and y should have a link between them. Linkage measures
are typically used for the link prediction problem, where the goal is to determine which
node pairs (x, y) are (1) most likely to form a link in the future (e.g. friendship formation
in social networks), or (2) should be manually linked (e.g. which papers to cite in an
academic citation network). This can be done by ranking node pairs (x, y) in descending
order of their scores `(x, y), and then picking the top R pairs for some user-chosen R.
Popular linkage measures [111] include:

• Graph distance: `(x, y) := −(length of shortest path between x, y).

• Common neighbors: `(x, y) := |N (x)∩N (y)|, whereN (x) are the neighbors of x.

• Jaccard’s coefficient: `(x, y) := |N (x)∩N (y)|
|N (x)∪N (y)| .

• Adamic/Adar: `(x, y) :=
∑

z∈N (x)∩N (y)
1

log |N (z)| .
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• Preferential attachment: `(x, y) := |N (x)| · |N (y)|.

• Katzβ: `(x, y) :=
∑∞

d=1 β
d · |pathsdx,y|, for some user-chosen β > 0, and where

pathsdx,y is the set of all length-d paths from x to y. Essentially, Katzβ does a
weighted count of the number of paths from x to y, where longer paths get exponen-
tially smaller weights.

Generally speaking, these commonly-used linkage measures perform reasonably well (i.e.
better than random guessing) over a variety of networks, though there are particular situa-
tions in which one measure may significantly outperform another [111].

1.3.2 Adjacency-matrix-based Methods

Matrix Factorization

Matrix Factorization methods decompose a matrix Y into two or more factors U, V , such
that Y ≈ U ·V . When Y is anN×N network adjacency matrix, the problem is sometimes
known as relational matrix factorization [156]. In the simplest formulation of relational
matrix factorization, the goal is to minimize the least-squares objective

min
U,V

N∑
i,j=1

‖Yij − 〈Ui·, V·j〉‖2,

where U is N × K and V is K × N for some user-chosen rank K. The factors U, V
can be used as a linkage measure `(i, j) := 〈Ui·, V·j〉, or they can be interpreted as a
2K-dimensional latent space representation where the i-th node has the latent space vec-
tor [Ui·, V

>
·i ]. Unlike the mixed-membership methods from the previous section, U, V are

real-valued matrices and thus do not carry a probabilistic interpretation. This matrix fac-
torization problem can be solved via the Alternating Least Squares algorithm, in which we
(1) directly solve forU holding V fixed (by setting the gradient ofU to zero), then (2) solve
for V keeping U fixed, and (3) repeat steps 1 and 2 until convergence. Another common
algorithm is Stochastic Gradient Descent [46], in which gradient descent is performed on
one matrix element Yij at a time.

In addition to the basic least-squares objective, there are alternative ways to formulate
the relational matrix factorization problem. For example, we may constrain U = V ,
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leaving only one factor:

min
U

N∑
i,j=1

‖Yij − 〈Ui·, U·j〉‖2.

Some formulations also use 3 factors, e.g. [160]. One can also add an `p regularizer
(typically p = 1 or 2) to encourage sparse solutions to U, V :

min
U,V

N∑
i,j=1

‖Yij − 〈Ui·, V·j〉‖2 +
N∑
i=1

K∑
k=1

λ‖Uik‖p + λ‖Vki‖p.

We can also change the loss function from the squared loss to an arbitrary function L(·, ·):

min
U,V

N∑
i,j=1

L(Yij, 〈Ui·, V·j〉)

The flexible nature of matrix factorization allows one to easily incorporate context such
as multiple time-stamped networks, attribute-valued nodal data, and textual annotation, by
simply adding new terms to the objective function. To solve arbitrary matrix factorization
problems, one can either adopt a Bayesian formulation [156], or use general-purpose op-
timization methods like Stochastic Gradient Descent [46]. In [160], the authors exploit
the sparsity of the adjacency matrix Y to design a faster, subsampling-based factorization
algorithm.

Other Methods on Adjacency Matrices

Spectral techniques analyze the Singular Value Decomposition (a type of matrix factoriza-
tion) of the network adjacency matrix Y ; for example, the “Eigenspokes” method [138]
can extract network communities from the singular vectors of Y ’s SVD, and using the
Hadoop-based SVD algorithm of Kang et al. [87] (which has O((N + M) log(N + M))
runtime where M is the number of edges), Eigenspokes can be run on graphs with over
N ≥ 1 billion nodes given a sufficiently large Hadoop cluster with 100s of machines.

A related method is Power Iteration Clustering (PIC) [112], which finds an “embed-
ding” of the adjacency matrix that is related (but not identical) to the eigenvectors from
the spectral clustering methods. The PIC algorithm repeatedly multiplies a weight vector
with the adjacency matrix until convergence, and uses the final weight vector to cluster
nodes in the network. Since the network adjacency matrix is sparse with O(M) elements,

21



the matrix-vector multiplication can be executed quickly; Lin and Cohen [112] report that
a network with N = 100k nodes and M = 100k edges can be analyzed in 3 seconds on a
single multi-core machine.

Biclustering methods [30] cluster the elements of Y along both the rows and columns
simultaneously, which allows assortative (nodes that only link among themselves) and
dis-assortative behavior (nodes that only link to other sets of nodes) to be discovered,
in a manner very similar to the stochastic blockmodels discussed in the previous section.
Latent factor models [121, 92] assume that each node i exhibits some set of hidden features
Fi (to be discovered by the algorithm), and that an edge (i, j) is probabilistically generated
based on the features Fi, Fj of both nodes.

1.3.3 Feature-based Graph Mining

Instead of focusing on edges in the adjacency matrix Y , one can also design algorithms that
exploit higher-order graph features. In Henderson et al. [72], the authors define three types
of features: local, egonet, and recursive. For a given node i, local features are computed
from the attributes and data at i, as well as any edges (i, j) that touch i. Egonet features
are computed from the node i, its neighbors j ∈ N (i), and all edges in their induced
subgraph. Finally, recursive features are computed by aggregating (e.g. taking means or
sums) the local and egonet features from a node’s neighbors j ∈ N (i). By recursing on
neighbors of neighbors, a recursive feature becomes an aggregate statistic over larger and
larger subgraphs centered on node i.

GraphLab [55] is a system for distributed multi-machine graph computation, in which
arbitrary programs can be run on each vertex of a graph. For example, a program on node i
can transform or aggregate data and intermediate values on node i, its neighbors j ∈ N (i),
and its incident edges (i, j). Thus, GraphLab not only extends the core principles behind
Henderson et al. [72] to handle arbitrary programs, but also provides a systems platform
to run such algorithms over a distributed cluster.

1.3.4 Overlapping Community Detection

While most of the aforementioned methods can perform community detection in some
form, they may not admit overlapping communities, in which a node can belong to more
than one community. Intuitively, overlapping communities arise in networks where some
nodes interact with two or more distinct groups of nodes. For example, in a social net-
work, a person may interact with both his/her work colleagues at company X and high
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school friends from school Y, and is thus a member of both community X and Y. There is
strong evidence that overlapping communities are present in many social networks [178],
which makes overlapping or “soft” community detection preferable to single-membership
or “hard” community detection.

Yang and Leskovec [178] propose local spectral clustering approaches to find (a) an
entire community given one seed node, and (b) all communities that a seed node belongs
to. However, we are interested in the more general problem of detecting all communities
that node i belongs to, for all nodes i ∈ {1, . . . , N}. A great number of methods have
been proposed to solve this problem [92, 105, 59, 139, 133, 174], yet only a few scale4 to
large networks with N ≥ 1 million nodes [57, 174]. This small set of scalable methods
includes statistical models such as a-MMSB [57] and the Poisson Model [15], as well as
non-statistical methods like SLPA [173]. In this thesis, we will present a statistical model
and distributed algorithm that performs overlapping community detection, link prediction
and latent space decomposition at N ≥ 100 million nodes and beyond.

1.3.5 What about Scalability and Network Context?

Generally speaking, network analysis methods from the data mining and social network
literature are validated on networks between N = 10, 000 to 1 million nodes, signifi-
cantly larger than most networks examined in the statistical literature. This does not mean
that all methods can reach N ≥ 100 million nodes, however — many of the algorithms,
particularly the ones based on matrix factorization and spectral decomposition, require
O(N logN) or even O(N2) computational time, which makes them intractable at very
large scales — a notable exception being the Hadoop-based HEigen SVD aglorithm of
Kang et al. [87], which was used to decompose the Yahoo Web Graph (N = 1.4 billion
nodes) on a Hadoop cluster with 100s of machines. In general, analysis of very large
networks requires (a) a linear-time O(N) (or at least near-linear time) approach, and (b)
the ability to distribute computational and memory needs over a cluster of machines. This
thesis will demonstrate an algorithm that meets both requirements.

As with the scalability issue, only some methods in this section are well-suited to in-
corporating network context such as node attributes and text. Matrix factorization methods
are perhaps the most natural fit, since the objective function is easily modified to accom-
modate new data and relational matrices [156]. The same goes for linkage measures and
graph mining algorithms: since these methods are based on features extracted from the

4Although overlapping community detection is difficult to perform at scale, we note that single-
membership community detection is much easier. For example, single-membership stochastic blockmod-
els [75] and biclustering algorithms [30] both admit linear-time solutions.
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graph, we can simply replace those features with nodal attributes. In contrast, most over-
lapping community detection algorithms do not admit easy contextualization: many of
them exploit some structural property of graphs that has no obvious feature-based ana-
logue, such as cliques [105] or speaker-listener propagation [173]. In this respect, we
argue that probabilistic overlapping community detection methods like a-MMSB [57] and
the Poisson Model [15] are preferable, as they can be extended via probabilistic modeling
to incorporate new network context, in the same way that a matrix factorization method
can be extended by adding more objective terms. This thesis will discuss several ways in
which statistical network models can be specialized to handle network context.
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Family of Network Methods Community Detection? Link Prediction? Scalable? Contextual?
Matrix Factorization [156] Overlapping Yes Varies Yes
SVD/Eigenspokes [87] Overlapping Yes N ≥ 1000m No
Overlapping Community [105, 5, 173] Overlapping No N ≈ 1− 10m No
Latent Factor Model [121, 92] Overlapping Yes N ≤ 1m Yes
Mixed-Membership Model [56, 15] Overlapping Yes N ≈ 1− 10m Yes
Our approach Overlapping Yes N ≥ 100m Yes

Table 1.2: Summary of network method families. Explanation of each column: Commu-
nity Detection: can the method detect overlapping communities? Link Prediction: can
the method perform link prediction? Scalable: largest network size analyzed. Contextual:
can the method incoporate network context, such as textual and feature data?

1.4 Summary/Comparison of Network Analysis Methods

In Table 1.2, we summarize the pros and cons of the major network analysis method fam-
ilies, and compare them to our approach. Our goal is to develop network analysis algo-
rithms that (1) support both overlapping community detection and link prediction, and (2)
are highly scalable and can incorporate network context. Other network methods excel at
some, but not all, of these requirements, and that motivates our work in this thesis.

Matrix Factorization methods [156] (in the most general sense) are highly flexible, but
not all of them are scalable — some of them have O(N2) runtime because they employ
objective functions that are dense in the adjacency matrix [169]. For MF methods that use
a sparse objective function, such as PICS [7], they can be applied to large-scale networks
by re-implementing them on top of general-purpose, distributed-parallel systems for cou-
pled MF, such as FlexiFaCT [18]. Latent Factor models [121, 92] are similar to Matrix
Factorization methods in terms of capabilities, but also require O(N2) runtime and are
thus un-scalable.

SVD-based methods are a frequently-used sub-family of MF, which scale to N ≥ 1
billion nodes using 100s of machines [87], and can be used to “chip off” small, tightly-
knit (and possibly overlapping) communities from the graph [138]; however, the standard
mathematical definition of SVD cannot be combined with network context to further en-
hance the analysis (because SVD is not a coupled matrix factorization).

A number of algorithms have been proposed specifically to perform overlapping com-
munity detection [105, 5, 173], but they cannot perform link prediction, nor is it obvious
how they can be extended to incorporate network context. Statistical Mixed-Membership
network models [56, 15] are very promising, in that their theoretical properties have been
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well-studied and characterized by the statistics community, and they meet all of our re-
quirements while falling somewhat short on scalability — the state-of-the art approaches
in this area can only reach 1-10 million nodes [56, 15].

In this thesis, we will discuss approaches that advance the state-of-the-art in statistical
Mixed-Membership network modeling, improving the scalability of such methods whilst
retaining their task flexibility and ability to incorporate context. Our most notable result
is a new Mixed-Membership model over triangle subgraphs that analyzes networks with
N ≥ 100 million nodes on hardware equivalent to just 5 high-performance Amazon EC2
instances, and can be extended to incorporate network context using other techniques de-
veloped in this thesis and the literature [127, 13].
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Chapter 2

Designing Models for Social Networks
and their Context

A social network’s context refers to information or metadata outside the graph struc-
ture. For instance, the age and gender of people in a friendship network are examples
of attribute-valued context, while the abstract of each scientific paper in a citation network
is an example of textual context. We may also regard special types of graph structure
or assumptions as part of a social network’s context: examples include time-varying net-
works where the graph structure changes over time, nonparametric assumptions that allow
the number of communities to grow or shrink as the network expands, and hierarchical
assumptions that assume the network is structured like a taxonomy (a good example being
hyperlinked encyclopedias like Wikipedia).

This chapter deals with techniques for incorporating a social network’s context into sta-
tistical latent space models and their inference algorithms. By incorporating context when
it is available, we not only improve the accuracy of latent space methods at quantitative
tasks like link prediction and community detection, but also improve the interpretability of
the latent space itself — for example, by organizing academic papers from a citation net-
work into a hierarchy, we can automatically distinguish sub-areas in one research field (say,
Immunology and Virology in Medicine) from a completely different field (say Physics).

We begin with methods for modeling time-varying networks (e.g. monthy email com-
munications), and then move on to methods for modeling hierarchally-organized networks
(e.g. food webs and academic citation networks). Finally, we conclude with methods for
incorporating textual context into latent space network models (e.g. the abstracts from
academic papers in a citation network), in order to improve the quality and interpretability
of the inferred latent space.
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2.1 Methods for Time-Varying Network Data — the dM3SB model

Social networks are dynamic, in that they may undergo systematic rewiring or experience
large topological changes over time. The dynamics of these time-evolving networks pose
many interesting questions. For instance, what are the roles played by these networked
actors? How will these roles dictate the way two actors interact? How do actors play
multiple roles (multi-functionality) in different social contexts, and how does an actor’s
set of roles evolve over time? Knowledge of actor roles provides insight into how social
communities form in networks. In particular, we might elucidate how actors with diverse
role compositions group together, and how these groupings change over time.

There is increasing interest in employing latent space models for network analysis
[78, 68]. However, most of these models assume static networks and a single, fixed role
for each actor. Hence they cannot model actor multi-functionality and role evolution over
time, making them unsuitable for analyzing complex temporal networks. Airoldi et al. [6]
proposed a Mixed Membership Stochastic Blockmodel (MMSB) that captures actor multi-
functionality, but it applies to static data only.

Recently, Xing et al. [176] have addressed temporal evolution in networks with a dy-
namic extension of MMSB, which they call dMMSB. The dMMSB places a time-evolving,
unimodal prior on all network actors; specifically, it employs a time-evolving logistic nor-
mal distribution similar to a state-space model. Although an important first step towards
dynamic network analysis, dMMSB offers very weak modeling power — because it em-
ploys a unimodal logistic normal for the role distribution of all actors, it is only applicable
to networks where the multi-functionalities of all actors follow similar, unimodal dynam-
ics. A direct solution might be to introduce a separate dynamic process for each actor,
but not only is this computationally impractical for large networks with many actors, it is
also statistically unsatisfactory from a Bayesian standpoint as the actors no longer share
any common pattern and coupling, leaving the model prone to over-fitting and unable to
support activity and anomaly detection.

This challenge naturally leads us to explore “evolving clusters” of actors — by mod-
eling dynamic processes on clusters, rather than on individuals or on the whole network,
we can increase inferential power while retaining a common, yet much more expressive
multimodal mixture model prior, for each actor. With such a prior, we can accommodate
the actors’ potentially non-stationary and heterogeneous behaviors.

Thus, in order to model both the temporal evolution and multi-modal nature of net-
works, we propose an evolving cluster of mixed membership stochastic blockmodels. Our
model employs the vanilla MMSB as the basic building block, but augments it with a
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multi-modal mixture prior to capture both the multi-functionality and the multi-modality
of the actor trajectories. We conjoin the mixture MMSB with a set of state space mod-
els, one over each mixture component, allowing the model to follow as many trajectories
as there are mixture components. Each state space trajectory corresponds to the average
evolution of the multi-functionality of a group of actors.

This evolving mixture prior over vanilla MMSB presents additional challenges to pa-
rameter learning and latent variable inference. We overcome these difficulties by devel-
oping a variational EM algorithm inspired by ideas from Ghahramani & Hinton [49] and
dMMSB [176]. Our algorithm performs approximate inference and learning efficiently.
Moreover, it is fundamentally different from dMMSB’s algorithm — the latter’s M-step
equations lack second order moments found in ours.

In our experiments, we validate our model on synthetic data, and compare our held-out
likelihood on real networks to that of dMMSB. Finally, we analyze voting data from the
United States Congress using our model.

2.1.1 Time-Evolving Network Model

We condsider a sequence of interaction networks or graphs, denoted by {G(t)}Tt=1, where
each G(t) ≡ {V , E (t)} represents the network observed at time t. We assume the set of
actors V = {1, . . . , N} is constant. Furthermore, we permit E (t) ≡ {e(t)

ij }
N,N
i,j=1, the set of

interactions between actors, to evolve with time. We ignore self edges e(t)
ii .

Our goal is to infer the underlying multi-functionalities and clusters that give rise to
this network sequence. We approach this problem by extending the mixed membership
stochastic blockmodel (MMSB) [6], a static network model. The idea is to place a time-
evolving (i.e. dynamic) model on top of the MMSB, allowing it to account for temporally-
evolving network dynamics. An earlier approach, the dynamic MMSB (dMMSB) [176],
used a single dynamic model to account for all network actors. Because dMMSB learns
just one dynamic process for all actors’ multi-functionalities, it is a poor statistical fit
when the multi-functionalities follow a multimodal distribution. At the other extreme, one
might contemplate placing a separate dynamic model on every actor, but then the multi-
functionalities would no longer share a common prior.

We resolve these conflicting goals by generalizing the prior on actors to a mixture of
time-evolving logistic normal distributions. This mixture prior is multi-modal and captures
correlations between roles, allowing it to fit complex data densities that the unimodal
Gaussian prior of dMMSB or the uncorrelated Dirichlet prior of MMSB cannot.
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Mixed Membership Stochastic Blockmodel (MMSB)

We begin by describing the Mixed Membership Stochastic Blockmodel [6], which serves
as the foundation for our model. The MMSB assumes that each actor vi ∈ V possesses
a latent mixture of K roles, which determine observed network interactions. This role
mixture formalizes the notion of actor multi-functionality, and we denote it by a normal-
ized K × 1 vector πi, referred to as a mixed membership or MM vector. We assume these
vectors are drawn from some prior p(π).

Given MM vectors πi, πj for actors i and j, the network edge eij is stochastically gen-
erated as follows: first, actor i (the donor) picks one role z→ij ∼ p(z|πi) to interact with
actor j. Next, actor j (the receiver) also picks one role z←ij ∼ p(z|πj) to receive the
interaction from i. Both z→ij, z←ij are K × 1 unit indicator vectors. Finally, the chosen
roles of i, j determine the network interaction eij ∼ p(e|z→ij, z←ij), where eij ∈ {0, 1}.
The specific distributions over z→ij, z←ij, eij are:

• z→ij ∼ Multinomial(πi)

• z←ij ∼ Multinomial(πj)

• eij ∼ Bernoulli(z>→ijBz←ij)

whereB is aK×K role compatibility matrix. Intuitively, the bilinear form z>→ijBz←ij
selects a single element of B; the indicators z→ij, z←ij behave like indices into B.

This generative model has two noteworthy features. First, observed relations E result
from actor latent roles interacting. In the case of social networks, the latent roles are
naturally interpretable as social functions, e.g. political party affiliations. Note that actor
i’s latent membership indicators {z→i·, z←·i} are unique to each interaction; he/she may
assume different roles for interacting with each actor.

Second, the role compatibility matrix B completely determines the affinity between
latent roles. For example, a diagonally-dominant B signifies that actors of the same role
are more likely to interact. Conversely, off-diagonal entries in B suggest interactions
between actors of different roles. The MMSB’s expressive power lies in its ability to
control the interaction strength between any pair of roles, by specifying the corresponding
entries of B.

Mixture of MMSBs (M3SB)

The actor MM prior p(π) significantly affects MMSB’s expressive power. Airoldi et al.
originally used a Dirichlet prior in MMSB [6], allowing their variational inference al-
gorithm to exploit Dirichlet conjugacy with the multinomial role indicator distribution
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p(z|π). Later, Xing et al. employed a logistic normal prior in dMMSB [176] to capture
correlations between roles, which the Dirichlet prior cannot. However, the logistic normal
prior is unimodal and cannot fit complex, multi-modal data densities.

As a step towards our final model, we extend the MMSB by making p(π) a logistic
normal mixture prior:

• ci ∼ Multinomial(δ)

• γi|ci ∼ Normal(µci ,Σci)

• πi|ci = Logistic(γi), [Logistic(γ)]k = exp{γk}∑K
l=1 exp{γl}

Whereas the original MMSB draws πi from a simple, unimodal Dirichlet prior, we are
now drawing πi from a mixture of Gaussians. This draw is a three-step process — first,
pick one of the Gaussians (our choice is indicated by ci), then make an “intermediate”
draw γi from the ci-th Gaussian, and finally apply the logistic transform to γi to get πi (the
logistic transform ensures πi lies in the probability simplex).

We call this model a mixture of MMSBs (M3SB). ci is aC×1 cluster selection indicator
for πi, where C is the number of mixture components — thus, πi is drawn from a logistic
normal distribution with mean and covariance selected by ci. ci itself is drawn from a
prior multinomial distribution δ. Like dMMSB, the M3SB accounts for role correlations
using a logistic normal distribution. However, the M3SB also has the flexibility to fit more
complex data densities, because its mixture of Gaussians prior is multi-modal. In the
sequel, we shall exploit this property to design a time-varying network model that tracks
cluster trajectories, in contrast to dMMSB which tracks a single, average trajectory.

Dynamic M3SB (dM3SB)

In a time-evolving network, the MM vectors π(t) and their prior p(t)(π) change with time,
and the goal now is to infer their dynamic trajectories. This enables detection of large-
scale network trends, e.g. a group of actors whose MM vectors π shift from one set of
roles to another. For example, if politicians change party affiliations; their MM vectors
should exhibit a shift in political roles over time.

In order to model time-evolving networks, we place a state-space model on every lo-
gistic normal distribution in the mixture prior p(π). In contrast, dMMSB only uses a single
state-space model for its prior. Let N denote the number of actors, and T the number of
time points in the evolving network. Also, letK denote the number of MMSB latent roles,
and C the number of mixture components. We begin with an outline of our generative
process; see Figure 2.1 for a graphical model representation.
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Figure 2.1: Graphical model representation of dM3SB.

1. Mixture State Space Model for MM Vectors

• µ(1)
h ∼ Normal(ν,Φ) for h = 1 . . . C. Sample mixture means for the MM prior at
t = 1.

• µ(t)
h ∼ Normal(µ(t−1),Φ) for h = 1 . . . C, t = 1 . . . T . Sample mixture means for
t > 1.

2. Mixture Component Indicators

• {c(t)
i }Ni=1 ∼ Multinomial(δ) for t = 1 . . . T . Sample mixture indicator for each MM

vector.

3. Mixed Membership Stochastic Blockmodel

• {γ(t)
i }Ni=1 ∼ Normal(µ

(t)

c
(t)
i

,Σ
c
(t)
i

) for t = 1 . . . T . Sample untransformed MM vectors

according to the mixture indicated by c(t)
i .

• π(t)
i = Logistic(γ

(t)
i ), [Logistic(γ)]k = exp{γk}∑K

l=1 exp{γl}
. Logistic transform γ

(t)
i into

MM vector π(t)
i .

• For every actor pair (i, j 6= i) and every time point t = 1 . . . T :

– z
(t)
→ij ∼ Multinomial(π

(t)
i ). Sample role indicator for the donor i.
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– z
(t)
←ij ∼ Multinomial(π

(t)
j ). Sample role indicator for the receiver j.

– e
(t)
ij ∼ Bernoulli(z

(t)>
→ijBz

(t)
←ij). Sample the interaction between actors i, j.

We refer to this model as the dynamic Mixture of MMSBs (dM3SB for short). The
general idea is to apply the state space model (SSM) used in object tracking to the MMSB
model. Specifically, the MMSB becomes the emission model to the SSM; a distinct
MMSB model is “emitted” at each time point (Figure 2.1). Furthermore, the SSM con-
tains C distinct trajectories µh, each modeling the mean trajectory for a subset of MM
vectors π(t)

i . The SSM has two parameters ν,Φ, representing the prior mean and vari-
ance of the C trajectories. Each trajectory evolves according to a linear transition model
µ

(t)
h = Aµ

(t−1)
h +w

(t)
h , where A is a transition matrix and w(t)

h ∼ Normal(0,Φ) is Gaussian
transition noise. We assume A to be the identity matrix, which corresponds to random
walk dynamics; generalization to arbitrary A is straightforward.

Each MM vector π(t)
i is then drawn from one of the C trajectories µ(t)

h . The choice of
trajectory for π(t)

i is given by the indicator vector c(t)
i , which is drawn from some prior. For

simplicity, we have used a single multinomial prior with parameter δ for all c(t)
i . Observe

that c(t)
i can change over time, allowing actors to switch clusters if that would fit the data

better. Given c(t)
i , the MM vector π(t)

i is drawn according to LN (µ
(t)

c
(t)
i

,Σ
c
(t)
i

), where the

variances Σ1, . . . ,ΣC are model parameters. LN denotes a logistic normal distribution,
the result of applying a logistic transformation to a normal distribution.

Once {π(t)
i }Ni=1 have been drawn for some t, the remaining variables z(t)

→ij, z
(t)
←ij, e

(t)
ij

follow the MMSB exactly. We assume the role compatibility B to be a model parameter,
although we note that more sophisticated assumptions can be found in the literature, such
as a state space model prior [176].

2.1.2 dM3SB Inference and Learning

Neither exact latent variable inference nor parameter learning are computationally tractable
in dM3SB. The mixture prior on π

(t)
i , a factorial Hidden Markov Model, presents the

biggest difficulty — it is analytically un-integrable, its likelihood is subject to many lo-
cal maxima, and it requires exponential time for exact inference. Moreover, its logistic
normal distribution does not admit closed-form integration with the multinomial distribu-
tion of z|π. Finally, the space of possible discrete role indicators z is exponentially large
in the number of actors N and time points T .

We address all these difficulties with a variational EM procedure [48] based on the
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Algorithm 1 Variational EM for dM3SB

Input: temporal sequence of networks {G(t)}Tt=1.
Output: variational distributions qz, qγ, qc, qµ and model parameters
B, δ, ν,Φ, {Σh}Ch=1.
Initialize parameters B, δ, ν,Φ, {Σh}Ch=1.
Sample initial values for µ(t), γ(t), c(t).
repeat

repeat
Update qz(z

(t)
i→j, z

(t)
i←j) for all i, j, t.

Update B.
Update qγ(γ

(t)
i ) for all i, t.

until convergence
Update qµ({µ(t)

h }
T,C
t,h=1).

Update ν,Φ.
Update qc(c

(t)
i ) for all i, t.

Update δ, {Σh}Ch=1.
until convergence

generalized mean field (GMF) algorithm [175], and using techniques from Ghahramani
& Hinton [49] and dMMSB [176]. Our algorithm simultaneously performs inference and
learning for dM3SB in a computationally-effective fashion, and requires O(N2K2) run-
ning time per iteration1.

Variational Inference

Let Θ = {ν,Φ, {Σh}Ch=1, δ, B} denote all model parameters. We approximate the joint
posterior p({z(t), γ(t), c(t), {µ(t)

h }Ch=1}Tt=1 | {E (t)}Tt=1; Θ) by a variational distribution over
factored marginals,

q = qµ

(
{µ(t)

h }
T,C
t,h

) T,N∏
t,i=1

qγ(γ
(t)
i )qc(c

(t)
i )

N∏
j=1

qz(z
(t)
→ij , z

(t)
←ij)

 .
qz, qγ and qc correspond to MMSB latent variables z, γ and mixture indicators c, while qµ

1In Chapters 3 and 4, we will develop network modeling techniques and strategies with running time
linear in N , thus enabling the study of very large networks.
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corresponds to the mixture ofC SSMs over time. The idea is to approximate latent variable
inference under p (intractable) with feasible inference under q. In particular, Ghahramani
& Hinton [49] have demonstrated that it is feasible to have one marginal qµ over all µs.

The GMF algorithm maxmizes a lower bound on the marginal distribution p({E (t)}Tt=1; Θ)
over arbitrary choices of qz, qγ, qc, qµ. We use the GMF solutions to the qs as the E-step
in our variational EM algorithm, and derive the M-step through direct maximization of
Θ with respect to our variational lower bound. Under GMF, the optimal solution to a
marginal q(X) for some latent variable set X is p(X|Y,Eq[φ(MBX)]), the distribution of
X conditioned on the observed variables Y and the expected exponential family sufficient
statistics (under variational distribution q) of X’s Markov Blanket variables [175]. Hence
our E-step iteratively computes q(X) := p(X|{E (t)}Tt=1,Eq[φ(MBX)]) for X = {u(t)

h }
T,C
t,h ,

γ
(t)
i , c(t)

i and {z(t)
→ij, z

(t)
←ij}. Here, we present the final E-step equations; exact derivations

can be found in the appendix to this section.

E-step for qz: From here, we drop time indices t whenever appropriate. qz is a categori-
cal distribution over K2 elements,

qz(z→ij = k, z←ij = l) ∼ Multinomial(ω(ij)) (2.1)
ω(ij)kl ∝ (Bkl)

eij(1−Bkl)
1−eij exp(〈γik〉+ 〈γjl〉)

where ω(ij) is a normalized K2 × 1 vector indexed2 by (k, l). The notation 〈X〉 denotes
the expectation of X under q; for example, the expectations of z under qz are 〈z(→ij)k〉 :=∑

l ω(ij)kl and 〈z(←ij)l〉 :=
∑

k ω(ij)kl.

E-step for qγ: qγ does not have a closed form, because the logistic-normal distribution
of γ is not conjugate to the multinomial distribution of z. We apply a Laplace approxi-
mation to qγ , making it normally distributed [176, 3]. Define Ψ(a, b, C) := exp{−1

2
(a −

2 k, l correspond to roles indicated by zi→j , zi←j .
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b)>C−1(a− b)}. The approximation to qγ is

qγ(γi) ∝Ψ(γi, τi,Λi) where (2.2)

Λi =

(
(2N − 2)Hi +

C∑
h=1

Σ−1
h 〈cih〉

)−1

,

τi = u+ Λi{
N∑
j 6=i

(〈z→ij〉+ 〈z←ji〉)

− (2N − 2) (gi +Hi(u− γ̂i))},

u =

(
C∑
h=1

Σ−1
h 〈cih〉

)−1( C∑
h=1

Σ−1
h 〈cih〉〈µh〉

)
,

γ̂i is a Taylor expansion point, and gi and Hi are the gradient and Hessian of the vector-
valued function log(

∑K
l=1 exp γi) evaluated at γi = γ̂i. We set γ̂i to 〈γi〉 from the previous

E-step iteration, keeping the expansion point close to the current expectation of γi.

E-step for qc: qc is discrete over C elements,

qc(ci = h) ∝ δh |Σh|−1/2 exp

{
−1

2
tr
[
Σ−1
h

(
〈γiγ>i 〉

−〈µh〉〈γi〉> − 〈γi〉〈µh〉> + 〈µhµ>h 〉
)] }

Note the dependency on second order moments 〈γiγ>i 〉 and 〈µhµ>h 〉. Since qγ, qµ are Gaus-
sian, these moments are simple to compute.

E-step for qµ: The GMF solution to qµ factors across clusters h:

qµ

(
{µ(t)

h }
T,C
t,h

)
:=

C∏
h=1

qµ,h

(
{µ(t)

h }
T
t

)
where (2.3)

qµ,h

(
{µ(t)

h }
T
t

)
∝

Ψ(µ
(1)
h , ν,Φ)Ob(1, h)

T∏
t=1

Ψ(µ
(t)
h , µ

(t−1)
h ,Φ)Ob(t, h),

Ob(t, h) := Ψ

(∑N
i=1〈c

(t)
ih 〉〈γ

(t)
i 〉∑N

i=1〈c
(t)
ih 〉

, µ
(t)
h ,

Σh∑N
i=1〈c

(t)
ih 〉

)
.
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Notice that factor qµ,h({µ(t)
h }Tt ) resembles a state-space model for cluster h, with “obser-

vation probability” at time t proportional to Ob(h, t). Hence the mean and covariance
of each µ can be efficiently computed using the Kalman Smoother algorithm [142]; full
derivations can be found in the Appendix to this section.

Parameter Estimation (M-step)

Given GMF solutions to each q from our E-step, we take our variational lower bound on
the log marginal likelihood, and maximize it jointly with respect to all parameters Θ. Let
S(A) := A+ A>. The parameter solutions are:

β̂kl :=

∑T,N,N
t,i,j 6=i ω

(t)
(ij)kle

(t)
ij∑T,N,N

t,i,j 6=i ω
(t)
(ij)kl

, ν̂ :=
C∑
h

〈µ(1)
h 〉
C

, δ̂ :=

T,N∑
t,i

〈c(t)
i 〉
TN

Φ̂ :=
1

TC

[
C∑
h=1

〈µ(1)
h µ

(1)>
h 〉 − S

(
〈µ(1)
h 〉ν̂

>
)

+ ν̂ν̂>

+

T∑
t=2

〈µ(t)
h µ

(t)>
h 〉 − S

(
〈µ(t)
h µ

(t−1)>
h 〉

)
+ 〈µ(t−1)

h µ
(t−1)>
h 〉

]

Σ̂h :=

∑T,N
t,i 〈c

(t)
ih 〉[〈γ

(t)
i γ

(t)>
i 〉 − S(〈γ(t)

i 〉〈µ
(t)
h 〉
>) + 〈µ(t)

h µ
(t)>
h 〉]∑T,N

t,i 〈c
(t)
ih 〉

.

In particular, our estimate of Σ̂h contains second order moments of µ. dMMSB’s
unimodal prior has a similar covariance parameter, but its M-step equation lacks the afore-
mentioned moments [176].

Our full inference and learning algorithm is summarized in Algorithm 1. This algo-
rithm interleaves the E-step and M-step equations, yielding a coordinate ascent algorithm
in the space of variational and model parameters. The algorithm is guaranteed to converge
to a local optimum in our variational lower bound, and we use multiple random restarts to
approach the global optimum. Similar to Airoldi et al. [6], we update qz, qγ and B more
often for improved convergence.

Note that each random restart can be run on a separate computational thread, mak-
ing dM3SB easily parallelizable. However, because the dM3SB model contains O(N2)
random variables (since dM3SB is derived from MMSB), its running time is also O(N2),
which limits its scalability to larger networks. Later in this thesis, we will discuss a scal-
able alternative to the core MMSB model; this alternative relies on a triangular represen-
tation of the network, and can handle networks with millions of nodes and beyond.
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Figure 2.2: Synthetic data ground truth visualization. Top Row: Adjacency matrix visualizations, be-
ginning on the left with t = 1 using random actor ordering, followed by t = 1, . . . , 5 with actors grouped
according to the ground truth. Bottom left: The role compatibility matrix B, shown as a graph. Circles
represent roles, and numbered arrows represent interaction probabilities. Bottom row: True actor MM plots
in the 3-role simplex for each t. Blue, green and red crosses denote the static MMs of the first 3 actor groups,
and the cyan circle denotes the moving MM of the last actor group.

Suitability of the Variational Approximation

Given that our true model is multimodal, our variational approximation will only be useful
if it also fits multimodal data. Historically, naive mean field approximations, such as
those used for latent space models like MMSB [6] and Latent Dirichlet Allocation [23],
approximate all latent variables with unimodal variational distributions.

Instead, we have employed a structured mean field approximation that approximates
all µs with a single, multimodal switching state-space distribution qµ(), essentially a col-
lection of C Kalman Filters. This ensures that the multimodal structure of the prior on the
MM vectors γ(t)

i is not lost. Moreover, although each qγ(γ
(t)
i ) for a given i, t is a unimodal

Gaussian, it can be fitted to any mode in qµ(), independently of qγ(γ
(t)
i ) for other i, t. This

flexibility ensures the variational posterior over all γ(t)
i s remains multimodal.

2.1.3 Experiments and Qualitative Analysis

We now validate dM3SB on synthetic and real-world data, showing that it improves over
dMMSB [176] in multiple respects. We then conduct a case study on a real-world dataset
to demonstrate dM3SB’s capabilities.

In the experiments that follow, we ran our algorithm for 50 outer loop iterations per
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Figure 2.3: Synthetic data: BIC scores and 5-fold heldout log-likelihoods for dM3SB and
dMMSB.

random restart, with 5 iterations per inner loop. We also fixed Φ = IK and δ = 1/C instead
of running their M-steps, as the former yields more stable results. For the remaining
parameters, we used their M-steps with the following initializations: Bkl ∼ Uniform(0, 1),
Σh = IK . For ν, we initialized 〈µ(1)

h 〉 ∼ Uniform([−1, 1]K) for all h and set ν to their
average. The remaining variational parameters were initialized via the generative process.

Synthetic Evaluation

Xing et al. [176] have established the advantages of a time-varying MMSB model (dMMSB)
compared to naive MMSB. In particular, when the roles are correlated, the logistic-normal
prior provides a better fit to the data than the Dirichlet prior. Moreover, for time-varying
networks, dMMSB provides a better fit than disjoint MMSBs on every time point.

In this experiment, we compare dM3SB’s performance to dMMSB, in terms of model
fit (measured by the log marginal likelihood) and in terms of actor MM recovery. We
generate data with N = 200 actors and T = 5 time points, and assume a K = 3 role
compatibility matrix B = (B1, B2, B3)>, with rows B1 = (1, .25, 0), B2 = (0, 1, .25),
B3 = (0, 0, 1). The actors are divided into 4 groups of 50, with the first three groups
having true MM vectors (.9, .05, .05), (.05, .9, .05) and (.05, .05, .9) respectively, for all
time points. The last group has MM vectors that move over time, according to the se-
quence π(1) = (.6, .3, .1), π(2) = (.3, .6, .1), π(3) = (.1, .8, .1), π(4) = (.1, .6, .3), π(5) =
(.1, .3, .6). In Figure 2.2, we visualize our generated B, MM vectors π, and networks E (t).

Thus far, we have not addressed model selection — specifically, selection of the num-
ber of roles K and the number of mixture components (clusters) C. To do so, we per-
formed a gridsearch over K ∈ {2, 3, 4, 5, 6} and C ∈ {1, 2, 3, 4, 5} on the full network,
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Table 2.1: Synthetic data: Estimation accuracy of dM3SB (K = 3, C = 4) and dMMSB
(K = 3).

dM3SB role matrix B, Total Variation 0.1083
dMMSB role matrix B, Total Variation 0.0135
dM3SB MMs π(t)

i , mean `2 difference 0.0266
dMMSB MMs π(t)

i , mean `2 difference 0.0477

using 200 random restarts per (K,C) combination. For all combinations, we observed
convergence well within our limit of 50 outer iterations. Furthermore, completing all 200
restarts for each K,C took between 8 hours (K=2, C=1) and 28 hours (K=6, C=5) on
a single processor. Since the random restarts can be run in parallel, with sufficient com-
puting power one could easily scale dM3SB to much larger time-varying networks with
thousands of actors and tens of time points.

For each (K,C) from the gridsearch, we selected its best random restart using the
variational lower bound with a BIC penalty. The best restart BIC scores are plotted in
Figure 2.3; note that dMMSB corresponds to the special case C = 1. The optimal BIC
score selects the correct number of roles K = 3 and clusters C = 4, making it a good
substitute for held-out model selection.

Next, using the BIC-optimal (K,C), we ran dM3SB on a 5-fold heldout experiment.
In each fold, we randomly partitioned the dataset’s actors into two equal sets, and used the
two corresponding subnetworks as training and test data. In each training fold, we selected
the best model parameters Θ from 100 random restarts using the variational lower bound.
We then estimated the log marginal likelihood for these parameters on the corresponding
test fold, using Monte Carlo integration with 2,000 samples. This process was repeated
for all 5 folds to get an average log marginal likelihood for dM3SB . For comparison, we
conducted the same heldout experiment for dMMSB set to K from the optimal (K,C)
pair. The average log marginal likelihood for both methods is shown in Figure 2.3, and we
see that dM3SB’s greater heldout likelihood makes it a better statistical fit to this synthetic
dataset than dMMSB.

Finally, we compared dM3SB to dMMSB in role estimation (B) and actor role recovery
(π(t)
i ), using their best restarts on the correct (K,C) (or just K for dMMSB). Table 2.1

shows, for both methods versus the ground truth, the average `2 error in π(t)
i — specifically,

we compared the ground truth to π(t)
i ’s posterior mean from either method — as well as the
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Figure 2.4: Senator/Enron data: BIC scores and 5-fold heldout log-likelihoods for
dM3SB and dMMSB.

total variation inB. dM3SB’s average `2 error in π(t)
i is significantly lower than dMMSB’s,

at the cost of a higher total variation in B. However, dM3SB’s total variation of 0.1083
implies an average difference of only 0.012 in each of the 9 entries of B, which is already
quite accurate. The fact that dM3SB accurately recovers π(t)

i confirms that its posterior
over all π(t)

i is multimodal, which validates our variational approximation.

We also note that dM3SB’s mean cluster trajectories 〈µ(t)
h 〉 accurately estimated the

four groups’ mean MM vectors, with a maximum `2 error of 0.0761 for any group h and
time t, except at t = 5 where dM3SB exchanged group 3’s trajectory with that of (moving)
group 4.

Real Data Held-Out Comparisons

We now compare dM3SB to dMMSB on two real-world data sets: a 151 actor subset of the
Enron email communications dataset [152] over the 12 months of 2001, and a 100 actor
subset of the United States Congress voting data over the 8 quarters of 2005 and 2006
(described in the next section).
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For both datasets, we first selected the optimal values of (K,C) via BIC score grid-
search with dM3SB over K ∈ {3, 4, 5, 6}, C ∈ {2, 3, 4, 5}. Our previous synthetic ex-
periment has demonstrated that model gridsearch using BIC produces good results. The
optimal values were K = 4, C = 2 for the Senator dataset, and K = 3, C = 4 for the
Enron dataset (Figure 2.4).

Using each dataset’s optimal (K,C), we next ran dM3SB on the 5-fold heldout exper-
iment discussed in the previous section, obtaining average log marginal likelihoods. For
comparison, we conducted the same heldout experiments for dMMSB set to K from the
optimal (K,C) pair.

Plots of the heldout log marginal likelihoods for dM3SB and dMMSB can be found
in Figure 2.4. On the Senator dataset, dM3SB has the higher log marginal likelihood,
implying that it is a better statistical fit than dMMSB. For the Enron dataset, both methods
have the same likelihood, showing that using dM3SB with more mixture components at
least incurs no statistical cost over dMMSB.

Case Study: US Congress Voting Data

We now apply dM3SB to qualitatively analyze a real data set, the United States 109th
Congress voting records. We shall show that dM3SB not only recovers Mixed Member-
ship (MM) vectors and a role-compatibility matrix that match our intuitive expectations
of the data, but that the MM vectors are useful for identifying outliers and other unusual
phenomena.

The Congress involved 100 senators and 542 bills spread over Jan 1st 2005 through
Dec 31st 2006. The original voting data3 is provided in the form of yes/no votes for each
senator and each bill. In order to create a time-varying network suitable for dM3SB, we
applied the method of Kolar et al. to recreate their network result in [93].

The generated time-varying network contains 100 actors (senators), and 8 time points
corresponding to 3-month epochs starting on Jan 1st 2005 and ending on Dec 31st 2006.
The network is an undirected graph, where an edge between two senators indicates that
their votes were mostly similar during that particular epoch. Conversely, a missing edge
indicates that their votes were mostly different. Our intention is to discover how the polit-
ical allegiances of different senators shifted from 2005 to 2006.

For our analysis, we used the optimal dM3SB restart from the BIC gridsearch described
in the previous held-out experiment. Recall that this optimal restart uses K = 4 roles and
C = 2 clusters. The learned MM vectors πi, compatibility matrix B, and most probable

3Available at http://www.senate.gov
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Figure 2.5: Congress voting network: Mixed membership vectors (colored bars) and most probable cluster
assignments (numbers under bars) for all 100 senators, displayed as an 8-time-point series from left-to-right.
The annotation beside a senator’s number refers to that senator’s political party (D for Democrat, R for
Republican, I for Independent) and state (as a two-letter abbreviation). The learned role compatibility matrix
is displayed at the bottom.

cluster assignments are summarized in Figure 2.5. The results are intuitive: Democratic
party members have a high proportion of Role 1, while Republican party members have
a high proportion of Role 2. Both Roles 1 and 2 interact exclusively with themselves,
reflecting the tendency of both political parties to vote with their comrades and against the
other party. The remaining two roles exhibit no interactions; senators with high propor-
tions of these roles are unaligned and unlikely to vote with either political party. Observe
that the two clusters perfectly capture party affiliations — Republican senators are almost
always in cluster 1, while Democratic senators are almost always in cluster 2.

While it is reassuring to see results that reflect a contemporary understanding of US
politics, the true value of dM3SB’s mixed-membership analysis lies in identifying outliers.
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Figure 2.6: Congress voting network 3-simplex visualizations. Colors (green, blue) denote cluster mem-
bership. Left: MM vector time-trajectory for Senator #28 (D-NJ) — Jon Corzine during time points 1-4,
and Bob Menendez during time points 5-8. Right: MM vector time-trajectory for Ben Nelson (#75, D-NE)
.

For instance, consider the Democrat Ben Nelson (#75): from t = 1 through 7, his votes
were unaligned with either Democrats or Republicans, though his votes were gradually
shifting towards Republican. At t = 8 (end 2006), his voting becomes strongly Republican
(Role 2), and he shifts from the Democrat cluster (1) to the Republican one (2). Ben
Nelson’s trajectory through the role simplex is plotted in Figure 2.6. Incidentally, Ben
Nelson was re-elected as the Senator from Nebraska in late 2006, winning a considerable
percentage of his state’s Republican vote.

Next, observe how the senator from New Jersey, #28, started off unaligned from t = 1
to 4 but ended up Democratic from t = 5 to 8; his role trajectory is also plotted in Figure
2.6. There is an interesting reason for this: the seat for New Jersey was occupied by
two senators during the Congress, Jon Corzine in the first session (t = 1 to 4), and Bob
Menendez in the second session (t = 5 to 8). Jon Corzine was known to have far-left
views, reflected in #28’s lack of both Republican and Democratic roles during his term
(the Democrat role captures mainstream rather than extremist voting behavior). Once Bob
Menendez took over, #28’s behavior fell in line with most Democrats.

Other outliers include James Jeffords (#54), the sole Independent senator who votes
like a Democrat, and three Republican senators with Democratic leanings: Lincoln Chafee
#19, Susan Collins #25, and Olympia Snowe #89.

It should be emphasized that, in the literature, there are other well-studied social net-
works apart from this Senate network [14]. At the end of Chapter 4.2, we provide quan-
titative results on more of these networks, for a different, more scalable network analysis
algorithm built upon a triangle motif representation.
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2.1.4 Appendix: Variational EM Algorithm

In this Appendix, we provide full derivations for the EM algorithm equations presented
earlier. Our goal is to find the posterior distribution of the latent variables µ, c, γ, z given
the observed sequence network E(1), . . . , E(T ), under the maximum likelihood model pa-
rameters B, δ, ν,Φ,Σ. Finding the posterior (inference) or solving for the maximum like-
lihood parameters (learning) are both intractable under our original model. Hence we
resort to a Variational EM algorithm, which locally optimizes the model parameters with
respect to a lower bound on the true marginal log-likelihood, while simultaneously find-
ing a variational distribution that approximates the latent variable posterior. The marginal
log-likelihood lower bound being optimized is

log p (E | Θ) = log

∫
X

p (E,X | Θ) dX

= log

∫
X

q (X)
p (E,X | Θ)

q (X)
dX

≥
∫
X

q (X) log
p (E,X | Θ)

q (X)
dX (Jensen’s inequality)

= Eq [log p (E,X | Θ)− log q (X)] =: L (q,Θ)

whereX denotes the latent variables {µ, c, γ, z}, Θ denotes the model parameters {B, δ, ν,Φ,Σ},
and q is the variational distribution. This lower bound is iteratively maximized with respect
to q’s parameters (E-step) and the model parameters Θ(M-step).

In principle, the lower bound L (q,Θ) holds for any distribution q; ideally q should
closely approximate the true posterior p (X | E,Θ). In the next section, we define a fac-
tored form for q and derive its optimal solution.

Variational Distribution q

We assume a factorized form for q:

q = qµ

(
µ

(1)
1 , . . . , µ

(T )
C

) T,N∏
t,i=1

[
qγ

(
γ

(t)
i

)
qc

(
c

(t)
i

) N∏
j 6=i

qz

(
z

(t)
i→j, z

(t)
i←j

)]

We now make use of Generalized Mean Field (GMF) theory (Xing et al. 2003) to deter-
mine each factor’s form. GMF theory optimizes a lower bound on the marginal distribution
p (E | Θ) over arbitrary choices of qµ, qγ, qc, qz. In particular, the optimal solution to qX
is p (X | E,Eq [φ (MBX)]), the distribution of the latent variable set X conditioned on
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the observed variables E and the expected exponential family sufficient statistics (under
q) of X’s Markov Blanket variables. More precisely, qX has the same functional form as
p (X | E,MBX), but where a variational parameter V replaces φ (Y ) for each Y ∈ MBX ,
with optimal solution V := Eq [φ (Y )]. In general, if Y ∈ MBX , then we shall use 〈φ (Y )〉
to denote the variational parameter corresponding to Y .

We begin by deriving optimal solutions to qµ, qγ, qc, qz in terms of the the variational
parameters 〈φ (Y )〉. After we have derived all factors, we will present closed-form solu-
tions to 〈φ (Y )〉. These solutions form a set of fixed-point equations which, when iterated,
converge to a local optimum in the space of variational parameters (thus completing the
E-step).

Distribution of qz qz is a discrete distribution since the zs are indicator vectors. We
begin by deriving the distribution of the zs conditioned on their Markov Blanket:

p

(
z

(t)
i→j , z

(t)
i←j | MB

z
(t)
i→j ,z

(t)
i←j

)
∝ p

(
E

(t)
ij | z

(t)
i→j , z

(t)
i←j

)
p
(
z

(t)
i→j | γ

(t)
i

)
p
(
z

(t)
i←j | γ

(t)
j

)

=

((
z

(t)
i→j

)>
Bz

(t)
i←j

)E(t)
ij
(

1−
(
z

(t)
i→j

)>
Bz

(t)
i←j

)1−E(t)
ij

K∏
k=1

 exp γ
(t)
i,k∑K

l=1 exp γ
(t)
i,l

z
(t)
i→j,k

 exp γ
(t)
j,k∑K

l=1 exp γ
(t)
j,l

z
(t)
i←j,k

∝ exp

{
E

(t)
ij log

((
z

(t)
i→j

)>
Bz

(t)
i←j

)
+
(

1− E(t)
ij

)
log

(
1−

(
z

(t)
i→j

)>
Bz

(t)
i←j

)
+
(
z

(t)
i→j

)>
γ

(t)
i +

(
z

(t)
i←j

)>
γ

(t)
j

}

The variables γ(t)
i , γ

(t)
j belong to other variational factors, and their exponential family

sufficient statistics are just γ(t)
i and γ(t)

j themselves. Hence

qz
(
z

(t)
i→j , z

(t)
i←j

)
:∝ exp

{
E

(t)
ij log

((
z

(t)
i→j

)>
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(t)
i←j
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1− E(t)
ij
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log
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(
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(t)
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(t)
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(t)
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(t)
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γ

(t)
j

〉}

with variational parameters
〈
γ

(t)
i

〉
and

〈
γ

(t)
j

〉
. We can also express qz in terms of indices

k, l:

qz
(
z

(t)
i→j = k, z

(t)
i←j = l

)
:∝ exp

{
E

(t)
ij logBk,l +

(
1− E(t)

ij

)
log
(
1−Bk,l

)
+
〈
γ

(t)
i,k

〉
+
〈
γ

(t)
j,l

〉}
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Distribution of qγ qγ is a continuous distribution. The distribution of γ(t)
i conditioned

on its Markov Blanket is

p
(
γ

(t)
i | MB

γ
(t)
i
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marginally independent of µ under q, we can take their expectations independently, hence
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with variational parameters
〈
c

(t)
i

〉
,
〈
µ

(t)
h

〉
,
〈
z

(t)
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〉
,
〈
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Laplace Approximation to qγ The term Zγ
(
γ

(t)
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)
:= log

∑K
l=1 exp γ

(t)
i,l makes the ex-

ponent analytically un-integrable, which prevents us from computing the normalizer for
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. Thus, we approximateZγ
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with its second-order Taylor expansion around
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. Because the Variational EM algorithm is

iterative, we set γ̂(t)
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]
from the previous iteration, which should keep

the point of expansion close to Eq
[
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for the current iteration. The point of this Taylor

expansion is to approximate qγ with a normal distribution — consider the exponent of qγ ,
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where const(i) denotes a constant independent of γ(t)
i , S :=

∑C
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(t)
i

)>
H

(t)
i γ

(t)
i

]
= const(2) − 1

2

(
γ

(t)
i − u

)>
S
(
γ

(t)
i − u

)
+


 N∑
j 6=i

〈
z

(t)
i→j

〉
+
〈
z

(t)
j←i

〉> − (2N − 2)

((
g

(t)
i

)>
−
(
γ̂

(t)
i

)>
H

(t)
i

) γ(t)
i − (N − 1)

(
γ

(t)
i

)>
H

(t)
i γ

(t)
i

Define A :=
(∑N

j 6=i

〈
z

(t)
i→j

〉
+
〈
z

(t)
j←i

〉)>
− (2N − 2)

((
g

(t)
i

)>
−
(
γ̂

(t)
i

)>
H

(t)
i

)
and

B := − (N − 1)H
(t)
i , so that we obtain

= const(2) − 1

2

(
γ

(t)
i − u

)>
S
(
γ

(t)
i − u

)
+Aγ

(t)
i +

(
γ

(t)
i

)>
Bγ

(t)
i

= const(2) − 1

2

(
γ

(t)
i − u

)>
S
(
γ

(t)
i − u

)
+A

(
γ

(t)
i − u+ u

)
+
(
γ

(t)
i − u+ u

)>
B
(
γ

(t)
i − u+ u

)
= const(3) − 1

2

(
γ

(t)
i − u

)>
(S − 2B)

(
γ

(t)
i − u

)
+
(
A+ 2u>B

) (
γ

(t)
i − u

)

Finally, define D := A+ 2u>B and E := S − 2B, resulting in

= const(3) − 1

2

(
γ

(t)
i − u

)>
E
(
γ

(t)
i − u

)
+D

(
γ

(t)
i − u

)
= const(4) − 1

2

(
γ

(t)
i − u

)>
E
(
γ

(t)
i − u

)
+
(
E−1D>

)>
E
(
γ

(t)
i − u

)
− 1

2

(
E−1D>

)>
E
(
E−1D>

)
= const(4) − 1

2

(
γ

(t)
i − u− E

−1D>
)>

E
(
γ

(t)
i − u− E

−1D>
)
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Hence qγ
(
γ

(t)
i

)
is approximately Normal

(
τ

(t)
i ,Λ

(t)
i

)
with variance and mean

Λ
(t)
i := E−1

=

([
C∑
h=1

Σ−1
h

〈
c

(t)
i,h

〉]
+ (2N − 2)Hi

)−1

τ
(t)
i := u+ E−1D>

= u+ Λ
(t)
i

{[
N∑
j 6=i

〈
z

(t)
i→j

〉
+
〈
z

(t)
j←i

〉]
− (2N − 2)

[
g

(t)
i +H

(t)
i

(
u− γ̂(t)

i

)]}

u :=

(
C∑
h=1

Σ−1
h

〈
c

(t)
i,h

〉)−1( C∑
h=1

Σ−1
h

〈
c

(t)
i,h

〉〈
µ

(t)
h

〉)

Distribution of qc qc is a discrete distribution. The distribution of c(t)
i conditioned on its

Markov Blanket is

p
(
c
(t)
i | MB

c
(t)
i

)
∝ p

(
γ

(t)
i | c

(t)
i , µ

(t)
1 , . . . , µ

(t)
C

)
p
(
c
(t)
i

)
∝

(
C∏
h=1

[
|Σh|−1/2

]c(t)i,h

)
exp

{
C∑
h=1

−1

2
c
(t)
i,h

(
γ

(t)
i − µ

(t)
h

)>
Σ−1
h

(
γ

(t)
i − µ

(t)
h

)}( C∏
h=1

δ
c
(t)
i,h

h

)

= exp

{
C∑
h=1

−1

2
c
(t)
i,h

(
γ

(t)
i − µ

(t)
h

)>
Σ−1
h

(
γ

(t)
i − µ

(t)
h

)
+

C∑
h=1

c
(t)
i,h log

δh

|Σh|1/2

}

= exp

{
C∑
h=1

−1

2
c
(t)
i,h

[(
γ

(t)
i

)>
Σ−1
h γ

(t)
i −

(
γ

(t)
i

)>
Σ−1
h µ

(t)
h −

(
µ

(t)
h

)>
Σ−1
h γ

(t)
i +

(
µ

(t)
h

)>
Σ−1
h µ

(t)
h

]

+

C∑
h=1

c
(t)
i,h log

δh

|Σh|1/2

}

= exp

{
C∑
h=1

−1

2
c
(t)
i,htr

[
Σ−1
h

(
γ

(t)
i

(
γ

(t)
i

)>
− µ(t)

h

(
γ

(t)
i

)>
− γ(t)

i

(
µ

(t)
h

)>
+ µ

(t)
h

(
µ

(t)
h

)>)]

+

C∑
h=1

c
(t)
i,h log

δh

|Σh|1/2

}

The variables γ(t)
1 , . . . , γ

(t)
N , µ

(t)
1 , . . . , µ

(t)
C belong to other variational factors. The suffi-

cient statistics of γ and µ are γ(t)
i

(
γ

(t)
i

)>
, µ(t)

h

(
γ

(t)
i

)>
µ

(t)
h

(
µ

(t)
h

)>
, but since γ and µ are
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marginally independent under q, we can take their expectations separately. Hence

qc
(
c
(t)
i

)
:∝ exp

{
C∑
h=1

−
1

2
c
(t)
i,htr

[
Σ−1
h

(〈
γ

(t)
i

(
γ

(t)
i

)>〉
−
〈
µ

(t)
h

〉〈
γ

(t)
i

〉>
−
〈
γ

(t)
i

〉〈
µ

(t)
h

〉>
+

〈
µ

(t)
h

(
µ

(t)
h

)>〉)]

+
C∑
h=1

c
(t)
i,h log

δh

|Σh|1/2

}

with variational parameters
〈
µ

(t)
h

(
µ

(t)
h

)>〉
,

〈
γ

(t)
i

(
γ

(t)
i

)>〉
,
〈
µ

(t)
h

〉
,
〈
γ

(t)
i

〉
. We can

also express qc in terms of indices h:

qc
(
c
(t)
i = h

)
:∝

δh

|Σh|1/2
exp

{
−

1

2
tr

[
Σ−1
h

(〈
γ

(t)
i

(
γ

(t)
i

)>〉
−
〈
µ

(t)
h

〉〈
γ

(t)
i

〉>
−
〈
γ

(t)
i

〉〈
µ

(t)
h

〉>
+

〈
µ

(t)
h

(
µ

(t)
h

)>〉)]}

Distribution of qµ qµ is a continuous distribution. The distribution of µ(1)
1 , . . . , µ

(T )
C

conditioned on its Markov Blanket is

p
(
µ

(1)
1 , . . . , µ

(T )
C | MB

µ
(1)
1 ,...,µ

(T )
C

)
∝

[
T∏
t=1

N∏
i=1

p
(
γ

(t)
i | c

(t)
i , µ

(t)
1 , . . . , µ

(t)
C

)][ C∏
h=1

p
(
µ

(1)
h

) T∏
t=2

p
(
µ

(t)
h | µ

(t−1)
h

)]

∝ exp

{
T∑
t=1

N∑
i=1

C∑
h=1

−1

2
c
(t)
i,h

(
γ

(t)
i − µ

(t)
h

)>
Σ−1
h

(
γ

(t)
i − µ

(t)
h

)
+

C∑
h=1

[
−1

2

(
µ

(1)
h − ν

)>
Φ−1

(
µ

(1)
h − ν

)
+

T∑
t=2

−1

2

(
µ

(t)
h − µ

(t−1)
h

)>
Φ−1

(
µ

(t)
h − µ

(t−1)
h

)]}

∝ exp

{
T∑
t=1

N∑
i=1

C∑
h=1

−1

2
c
(t)
i,h

[
−
(
γ

(t)
i

)>
Σ−1
h µ

(t)
h −

(
µ

(t)
h

)>
Σ−1
h γ

(t)
i +

(
µ

(t)
h

)>
Σ−1
h µ

(t)
h

]

+

C∑
h=1

[
−1

2

(
µ

(1)
h − ν

)>
Φ−1

(
µ

(1)
h − ν

)
+

T∑
t=2

−1

2

(
µ

(t)
h − µ

(t−1)
h

)>
Φ−1

(
µ

(t)
h − µ

(t−1)
h

)]}

The variables γ(1)
1 , . . . , γ

(T )
N , c

(1)
1 , . . . , c

(T )
N belong to other variational factors. The suffi-

cient statistic of γ and c is c(t)
i,h

(
γ

(t)
u

)>
, but since γ and c are marginally independent under
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q, we can take their expectations separately. Hence

qµ
(
µ

(1)
1 , . . . , µ

(T )
C

)
:∝ exp

{
T∑
t=1

N∑
i=1

C∑
h=1

−
1

2

〈
c
(t)
i,h

〉[
−
〈
γ

(t)
i

〉>
Σ−1
h µ

(t)
h −

(
µ

(t)
h

)>
Σ−1
h

〈
γ

(t)
i

〉
+
(
µ

(t)
h

)>
Σ−1
h µ

(t)
h

]

+

C∑
h=1

[
−

1

2

(
µ

(1)
h − ν

)>
Φ−1

(
µ

(1)
h − ν

)
+

T∑
t=2

−
1

2

(
µ

(t)
h − µ

(t−1)
h

)>
Φ−1

(
µ

(t)
h − µ

(t−1)
h

)]}

∝
C∏
h=1

exp

{
T∑
t=1

N∑
i=1

−
1

2

〈
c
(t)
i,h

〉[
−
〈
γ

(t)
i

〉>
Σ−1
h µ

(t)
h −

(
µ

(t)
h

)>
Σ−1
h

〈
γ

(t)
i

〉
+
(
µ

(t)
h

)>
Σ−1
h µ

(t)
h

]

−
1

2

(
µ

(1)
h − ν

)>
Φ−1

(
µ

(1)
h − ν

)
+

T∑
t=2

−
1

2

(
µ

(t)
h − µ

(t−1)
h

)>
Φ−1

(
µ

(t)
h − µ

(t−1)
h

)}

with variational parameters
〈
γ

(t)
i

〉
,
〈
c

(t)
i

〉
.

Kalman Smoother for qµ We can apply the Kalman Smoother to compute the mean and

covariance of each µ(t)
h under qµ. Let Ψ (a, b, C) := exp

{
−1

2
(a− b)>C−1 (a− b)

}
, then

with some manipulation we obtain

qµ

(
µ

(1)
1 , . . . , µ

(T )
C

)
∝

C∏
h=1

[
Ψ
(
µ

(1)
h , ν,Φ

) N∏
i=1

Ψ
(〈
γ

(1)
i

〉
, µ

(1)
h ,Σh

)〈c(1)i,h

〉]
[
T∏
t=2

Ψ
(
µ

(t)
h , µ

(t−1)
h ,Φ

) N∏
i=1

Ψ
(〈
γ

(t)
i

〉
, µ

(t)
h ,Σh

)〈c(t)i,h

〉]

∝
C∏
h=1

Ψ
(
µ

(1)
h , ν,Φ

)
Ψ

∑N
i=1

〈
c
(1)
i,h

〉〈
γ

(1)
i

〉
∑N
i=1

〈
c
(1)
i,h

〉 , µ
(1)
h ,

Σh∑N
i=1

〈
c
(1)
i,h

〉


 T∏
t=2

Ψ
(
µ

(t)
h , µ

(t−1)
h ,Φ

)
Ψ

∑N
i=1

〈
c
(t)
i,h

〉〈
γ

(t)
i

〉
∑N
i=1

〈
c
(t)
i,h

〉 , µ
(t)
h ,

Σh∑N
i=1

〈
c
(t)
i,h

〉


Notice that qµ factorizes across cluster indices h:

qµ

(
µ

(1)
1 , . . . , µ

(T )
C

)
=

C∏
h=1

qµh

(
µ

(1)
h , . . . , µ

(T )
h

)

qµh

(
µ

(1)
h , . . . , µ

(T )
h

)
:∝ Ψ

(
µ

(1)
h , ν,Φ

)
Ψ

∑N
i=1

〈
c
(1)
i,h

〉〈
γ

(1)
i

〉
∑N
i=1

〈
c
(1)
i,h

〉 , µ
(1)
h ,

Σh∑N
i=1

〈
c
(1)
i,h

〉


 T∏
t=2

Ψ
(
µ

(t)
h , µ

(t−1)
h ,Φ

)
Ψ

∑N
i=1

〈
c
(t)
i,h

〉〈
γ

(t)
i

〉
∑N
i=1

〈
c
(t)
i,h

〉 , µ
(t)
h ,

Σh∑N
i=1

〈
c
(t)
i,h

〉

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Observe that each factor qµh
(
µ

(1)
h , . . . , µ

(T )
h

)
is a linear system of the form

µ
(t+1)
h = µ

(t)
h + w

(t)
h

α
(t)
h = µ

(t)
h + v

(t)
h

where µ(t)
h are latent variables, and α(t)

h are observed variables with value α(t)
h =

∑N
i=1

〈
c
(t)
i,h

〉〈
γ

(t)
i

〉
∑N
i=1

〈
c
(t)
i,h

〉 .

Furthermore, w(t)
h ∼ N (0,Φ), v(t)

h ∼ N
(

0,Ξ
(t)
h

)
with Ξ

(t)
h = Σh∑N

i=1

〈
c
(t)
i,h

〉 , and µ
(1)
h ∼

N (ν,Φ). Hence the distribution of each µ(t)
h under qµ is Gaussian, and its mean and co-

variance can be computed using the Kalman Smoother equations

µ̂
(t+1)|(t)
h = µ̂

(t)|(t)
h

P
(t+1)|(t)
h = P

(t)|(t)
h + Φ

K
(t+1)
h = P

(t+1)|(t)
h

(
P

(t+1)|(t)
h + Ξ

(t+1)
h

)−1

µ̂
(t+1)|(t+1)
h = µ̂

(t+1)|(t)
h +K

(t+1)
h

(
α

(t+1)
h − µ̂(t+1)|(t)

h

)
P

(t+1)|(t+1)
h =

(
I−K(t+1)

h

)
P

(t+1)|(t)
h

and

L
(t)
h = P

(t)|(t)
h

(
P

(t+1)|(t)
h

)−1

µ̂
(t)|(T )
h = µ̂

(t)|(t)
h + L

(t)
h

(
µ̂

(t+1)|(T )
h − µ̂(t+1)|(t)

h

)
P

(t)|(T )
h = P

(t)|(t)
h + L

(t)
h

(
P

(t+1)|(T )
h − P (t+1)|(t)

h

)(
L

(t)
h

)>

Thus µh has mean µ̂(t)|(T )
h and covariance P (t)|(T )

h under qµ.
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E-Step: Solutions to Variational Parameters

In the E-step, we find locally optimal variational parameters for each factor of q. The
solutions to the continuous parameters are

〈
µ

(t)
h

〉
= µ̂

(t)|(T )
h〈

µ
(t)
h

(
µ

(t)
h

)>〉
= Eqµ

[
µ

(t)
h

(
µ

(t)
h

)>]
= Vqµ

[
µ

(t)
h

]
+ Eqµ

[
µ

(t)
h

]
Eqµ

[
µ

(t)
h

]>
= P

(t)|(T )
h + µ̂

(t)|(T )
h

(
µ̂

(t)|(T )
h

)>
〈
γ

(t)
i

〉
= τ

(t)
i〈

γ
(t)
i

(
γ

(t)
i

)>〉
= Eqγ

[
γ

(t)
i

(
γ

(t)
i

)>]
= Vqγ

[
γ

(t)
i

]
+ Eqγ

[
γ

(t)
i

]
Eqµ

[
γ

(t)
i

]>
= Λ

(t)
i + τ

(t)
i

(
τ

(t)
i

)>
while the solutions to the discrete parameters are

〈
c

(t)
h,i

〉
= q

(
c

(t)
i = h

)
〈
z

(t)
(i→j),k

〉
=

K∑
l=1

qz

(
z

(t)
i→j = k, z

(t)
i←j = l

)
〈
z

(t)
(i←j),l

〉
=

K∑
k=1

qz

(
z

(t)
i→j = k, z

(t)
i←j = l

)

These solutions are used to update the variational parameters in each factor of q. Note that
they form a set of fixed-point equations that converges to a local optimum in the space
of variational parameters. Hence the E-step involves iterating these equations until some
convergence threshold has been reached.
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M-Step

In the M-step, we maximizeL (q,Θ) with respect to the model parameters Θ = {B,Σ, δ, ν,Φ}.
Recall that

L (q,Θ) := Eq [log p (E,X | Θ)− log q (X)]

Note that the variational distribution q is not actually a function of the model parameters
Θ; the model parameters that appear in the q’s optimal solution come from the previous
M-step, similar to regular EM. Hence it suffices to maximize

L′ (q,Θ) := Eq [log p (E,X | Θ)] = Eq

log

 T,N∏
t,i=1

N∏
j 6=i

p
(
E

(t)
i,j | z

(t)
i→j , z

(t)
i←j ;B

)
p
(
z

(t)
i→j | γ

(t)
i

)
p
(
z

(t)
i←j | γ

(t)
j

)
 T,N∏
t,i=1

p
(
γ

(t)
i | c(t)i , µ

(t)
1 , . . . , µ

(t)
C ; Σ1, . . . ,ΣC

)
p
(
c
(t)
i ; δ

)
(

C∏
h=1

p
(
µ

(1)
h ; ν,Φ

) T∏
t=2

p
(
µ

(t)
h | µ

(t−1)
h ; Φ

))]

= Eq

 T,N∑
t,i=1

N∑
j 6=i

log p
(
E

(t)
i,j | z

(t)
i→j , z

(t)
i←j ;B

)
+Eq

 T,N∑
t,i=1

N∑
j 6=i

log p
(
z

(t)
i→j | γ

(t)
i

)
p
(
z

(t)
i←j | γ

(t)
j

)
+Eq

 T,N∑
t,i=1

log p
(
γ

(t)
i | c(t)i , µ

(t)
1 , . . . , µ

(t)
C ; Σ1, . . . ,ΣC

)
+Eq

 T,N∑
t,i=1

log p
(
c
(t)
i ; δ

)
+Eq

[
C∑
h=1

log p
(
µ

(1)
h ; ν,Φ

)
+

C∑
h=1

T∑
t=2

log p
(
µ

(t)
h | µ

(t−1)
h ; Φ

)]

Maximizing B Consider the B-dependent terms in L′ (q,Θ),

Eq

 T,N∑
t,i=1

N∑
j 6=i

log p
(
E

(t)
i,j | z

(t)
i→j , z

(t)
i←j ;B

)
=

T,N∑
t,i=1

N∑
j 6=i

Eq
[
log p

(
E

(t)
i,j | z

(t)
i→j , z

(t)
i←j ;B

)]

=

T,N∑
t,i=1

N∑
j 6=i

∑
z
(t)
i→j

∑
z
(t)
i←j

qz

(
z

(t)
i→j , z

(t)
i←j

)
log p

(
E

(t)
i,j | z

(t)
i→j , z

(t)
i←j ;B

)
(zs indep. of other latent vars under q)
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Since z(t)
i→j, z

(t)
i←j are indicator variables, we index their possible values with k ∈ {1, . . . , K}

and l ∈ {1, . . . , K} respectively:

=

T,N∑
t,i=1

N∑
j 6=i

K,K∑
k,l=1

qz

(
z

(t)
i→j = k, z

(t)
i←j = l

)
log p

(
E

(t)
i,j | z

(t)
i→j = k, z

(t)
i←j = l;B

)

=

T,N∑
t,i=1

N∑
j 6=i

K,K∑
k,l=1

qz

(
z

(t)
i→j = k, z

(t)
i←j = l

)(
E

(t)
i,j logBk,l +

(
1− E(t)

i,j

)
log (1−Bk,l)

)
(2.5)

Setting the first derivative wrt Bk,l to zero yields the maximizer B̂k,l for L′ (q,Θ):

0 =
∂

∂Bk,l

T,N∑
t,i=1

N∑
j 6=i

K,K∑
k′,l′=1

qz

(
z

(t)
i→j = k′, z

(t)
i←j = l′

)(
E

(t)
i,j logBk′,l′ +

(
1− E(t)

i,j

)
log (1−Bk′,l′)

)

0 =

T,N∑
t,i=1

N∑
j 6=i

qz

(
z

(t)
i→j = k, z

(t)
i←j = l

)(E(t)
i,j

Bk,l
−

1− E(t)
i,j

1−Bk,l

)

0 =

T,N∑
t,i=1

N∑
j 6=i

qz

(
z

(t)
i→j = k, z

(t)
i←j = l

)(
E

(t)
i,j −Bk,l

)

B̂k,l := Bk,l =

∑T,N
t,i=1

∑N
j 6=i qz

(
z

(t)
i→j = k, z

(t)
i←j = l

)
E

(t)
i,j∑T,N

t,i=1

∑N
j 6=i qz

(
z

(t)
i→j = k, z

(t)
i←j = l

)
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Maximizing Σ Consider the Σ1, . . . ,ΣC-dependent terms in L′ (q,Θ),

Eq

[
T,N∑
t,i=1

log p
(
γ

(t)
i | c

(t)
i , µ

(t)
1 , . . . , µ

(t)
C ; Σ1, . . . ,ΣC

)]

=

T,N∑
t,i=1

Eq
[
log p

(
γ

(t)
i | c

(t)
i , µ

(t)
1 , . . . , µ

(t)
C ; Σ1, . . . ,ΣC

)]

=

T,N∑
t,i=1

Eq

log
C∏
h=1

(
(2π)−K/2 |Σh|−1/2 exp

{
−1

2

(
γ

(t)
i − µ

(t)
h

)>
Σ−1
h

(
γ

(t)
i − µ

(t)
h

)})c(t)i,h
=

T,N∑
t,i=1

C∑
h=1

Eq
[
c

(t)
i,h log

(
(2π)−K/2 |Σh|−1/2

)
− 1

2
c

(t)
i,h

(
γ

(t)
i − µ

(t)
h

)>
Σ−1
h

(
γ

(t)
i − µ

(t)
h

)]

=

T,N∑
t,i=1

C∑
h=1

− log
(

(2π)K/2 |Σh|1/2
)
Eq
[
c

(t)
i,h

]
−1

2
Eq
[
c

(t)
i,htr

[
Σ−1
h

(
γ

(t)
i

(
γ

(t)
i

)>
− µ(t)

h

(
γ

(t)
i

)>
− γ(t)

i

(
µ

(t)
h

)>
+ µ

(t)
h

(
µ

(t)
h

)>)]]
Since c, µ, γ are independent of each other (and other latent variables) under q,

=

T,N∑
t,i=1

C∑
h=1

− log
(

(2π)
K/2 |Σh|1/2

)〈
c
(t)
i,h

〉
(2.6)

−1

2

〈
c
(t)
i,h

〉
tr

[
Σ−1
h

(〈
γ

(t)
i

(
γ

(t)
i

)>〉
−
〈
µ

(t)
h

〉〈
γ

(t)
i

〉>
−
〈
γ

(t)
i

〉〈
µ

(t)
h

〉>
+

〈
µ

(t)
h

(
µ

(t)
h

)>〉)]
where we have defined 〈X〉 := Eq [X], and the solutions to 〈X〉 are from E-Step: So-

lutions to Variational Parameters. Setting the first derivative wrt Σh to zero yields the
maximizer Σ̂h for L′ (q,Θ):

0 = ∇Σh

T,N∑
t,i=1

C∑
h=1

− log
(

(2π)K/2 |Σh|1/2
)〈

c
(t)
i,h

〉
−

1

2

〈
c
(t)
i,h

〉
tr

[
Σ−1
h

(〈
γ

(t)
i

(
γ

(t)
i

)>〉
−
〈
µ

(t)
h

〉〈
γ

(t)
i

〉>
−
〈
γ

(t)
i

〉〈
µ

(t)
h

〉>
+

〈
µ

(t)
h

(
µ

(t)
h

)>〉)]

0 =

T,N∑
t,i=1

−
1

2

〈
c
(t)
i,h

〉
Σ−1
h +

1

2

〈
c
(t)
i,h

〉
Σ−1
h

(〈
γ

(t)
i

(
γ

(t)
i

)>〉
−
〈
γ

(t)
i

〉〈
µ

(t)
h

〉>
−
〈
µ

(t)
h

〉〈
γ

(t)
i

〉>
+

〈
µ

(t)
h

(
µ

(t)
h

)>〉)
Σ−1
h

0 =

T,N∑
t,i=1

−
〈
c
(t)
i,h

〉
Σh +

〈
c
(t)
i,h

〉(〈
γ

(t)
i

(
γ

(t)
i

)>〉
−
〈
γ

(t)
i

〉〈
µ

(t)
h

〉>
−
〈
µ

(t)
h

〉〈
γ

(t)
i

〉>
+

〈
µ

(t)
h

(
µ

(t)
h

)>〉)

Σ̂h := Σh =

∑T,N
t,i=1

〈
c
(t)
i,h

〉(〈
γ

(t)
i

(
γ

(t)
i

)>〉
−
〈
γ

(t)
i

〉〈
µ

(t)
h

〉>
−
〈
µ

(t)
h

〉〈
γ

(t)
i

〉>
+

〈
µ

(t)
h

(
µ

(t)
h

)>〉)
∑T,N
t,i=1

〈
c
(t)
i,h

〉
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Maximizing δ Consider the δ-dependent terms in L′ (q,Θ),

Eq

[
T,N∑
t,i=1

log p
(
c

(t)
i ; δ

)]

=

T,N∑
t,i=1

Eq

[
log

C∏
h=1

δ
c
(t)
i,h

h

]

=

T,N∑
t,i=1

C∑
h=1

Eq
[
c

(t)
i,h log δh

]

=

T,N∑
t,i=1

C∑
h=1

〈
c

(t)
i,h

〉
log δh

=

(
T,N∑
t,i=1

〈
c

(t)
i

〉)>
log δ (2.7)

where
〈
c

(t)
i,h

〉
:= Eq

[
c

(t)
i,h

]
, and the solution to

〈
c

(t)
i,h

〉
is from E-Step: Solutions to Varia-

tional Parameters. Taking the first derivative with respect to δ1, . . . , δC−1,

∂

∂δh

T,N∑
t,i=1

C∑
h′=1

〈
c

(t)
i,h′

〉
log δh′ =

T,N∑
t,i=1

∂

∂δh

〈
c

(t)
i,h

〉
log δh +

∂

∂δh

〈
c

(t)
i,C

〉
log

(
1−

C−1∑
h′=1

δh′

)

=

T,N∑
t,i=1

〈
c

(t)
i,h

〉
δh

−

〈
c

(t)
i,C

〉
1−

∑C−1
h′=1 δh′

By setting all the derivatives to zero and performing some manipulation, we obtain the
maximizer δ̂ for L′ (q,Θ):

δ̂ =

∑T,N
t,i=1

〈
c

(t)
i

〉
TN
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Maximizing ν,Φ Consider the ν,Φ-dependent terms in L′ (q,Θ),

Eq

[
C∑
h=1

log p
(
µ

(1)
h ; ν,Φ

)
+

C∑
h=1

T∑
t=2

log p
(
µ

(t)
h | µ

(t−1)
h ; Φ

)]

=
C∑
h=1

Eq
[
log p

(
µ

(1)
h ; ν,Φ

)]
+

C∑
h=1

T∑
t=2

Eq
[
log p

(
µ

(t)
h | µ

(t−1)
h ; Φ

)]
We begin by maximizing wrt ν, which only requires us to focus on the first term:

C∑
h=1

Eq
[
log p

(
µ

(1)
h ; ν,Φ

)]
=

C∑
h=1

Eq
[
log

(
(2π)

−K/2 |Φ|−1/2
exp

{
−1

2

(
µ

(1)
h − ν

)>
Φ−1

(
µ

(1)
h − ν

)})]

=

C∑
h=1

Eq
[
log
(

(2π)
−K/2 |Φ|−1/2

)
− 1

2

((
µ

(1)
h

)>
Φ−1µ

(1)
h −

(
µ

(1)
h

)>
Φ−1ν − ν>Φ−1µ

(1)
h + ν>Φ−1ν

)]

Dropping terms that do not depend on ν,

=
C∑
h=1

Eq
[
−1

2

(
−
(
µ

(1)
h

)>
Φ−1ν − ν>Φ−1µ

(1)
h + ν>Φ−1ν

)]

=
C∑
h=1

1

2

〈
µ

(1)
h

〉>
Φ−1ν +

1

2
ν>Φ−1

〈
µ

(1)
h

〉
− 1

2
ν>Φ−1ν

where
〈
µ

(1)
h

〉
:= Eq

[
µ

(1)
h

]
, and the solution to

〈
µ

(1)
h

〉
is from E-Step: Solutions to

Variational Parameters. Setting the first derivative wrt ν to zero yields the maximizer ν̂
for L′ (q,Θ):

0 = ∇ν

C∑
h=1

1

2

〈
µ

(1)
h

〉>
Φ−1ν +

1

2
ν>Φ−1

〈
µ

(1)
h

〉
− 1

2
ν>Φ−1ν

0 =
C∑
h=1

Φ−1
〈
µ

(1)
h

〉
− Φ−1ν

ν̂ := ν =

∑C
h=1

〈
µ

(1)
h

〉
C
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We now substitute ν = ν̂ and consider the Φ-dependent terms in L′ (q,Θ):

Eq

[
C∑
h=1

log p
(
µ

(1)
h ; ν̂,Φ

)
+

C∑
h=1

T∑
t=2

log p
(
µ

(t)
h | µ

(t−1)
h ; Φ

)]

=

C∑
h=1

Eq
[
log p

(
µ

(1)
h ; ν̂,Φ

)]
+

C∑
h=1

T∑
t=2

Eq
[
log p

(
µ

(t)
h | µ

(t−1)
h ; Φ

)]

=

C∑
h=1

− log
(

(2π)K/2 |Φ|1/2
)
−

1

2
Eq
[(
µ

(1)
h − ν̂

)>
Φ−1

(
µ

(1)
h − ν̂

)]

+

C∑
h=1

T∑
t=2

− log
(

(2π)K/2 |Φ|1/2
)
−

1

2
Eq
[(
µ

(t)
h − µ

(t−1)
h

)>
Φ−1

(
µ

(t)
h − µ

(t−1)
h

)]

= −TC log
(

(2π)K/2 |Φ|1/2
)
−

C∑
h=1

1

2
tr

[
Φ−1

(〈
µ

(1)
h

(
µ

(1)
h

)>〉
− ν̂

〈
µ

(1)
h

〉>
−
〈
µ

(1)
h

〉
ν̂> + ν̂ν̂>

)]
(2.8)

−
C∑
h=1

T∑
t=2

1

2
tr

[
Φ−1

(〈
µ

(t)
h

(
µ

(t)
h

)>〉
−
〈
µ

(t−1)
h

(
µ

(t)
h

)>〉
−
〈
µ

(t)
h

(
µ

(t−1)
h

)>〉
+

〈
µ

(t−1)
h

(
µ

(t−1)
h

)>〉)]

where 〈X〉 := Eq [X]. The solutions to
〈
µ

(1)
h

〉
,

〈
µ

(t)
h

(
µ

(t)
h

)>〉
,

〈
µ

(t−1)
h

(
µ

(t−1)
h

)>〉
are

from E-Step: Solutions to Variational Parameters. The remaining expectations are〈
µ

(t)
h

(
µ

(t−1)
h

)>〉
=

〈
µ

(t−1)
h

(
µ

(t)
h

)>〉>
= P

(t)|(T )
h

(
L

(t−1)
h

)>
+
〈
µ

(t)
h

〉〈
µ

(t−1)
h

〉>
where P and L are from Kalman Smoother for qµ. Setting the first derivative wrt Φ to
zero yields the maximizer Φ̂ for L′ (q,Θ):

0 = ∇Φ − TC log
(

(2π)K/2 |Φ|1/2
)
−

C∑
h=1

1

2
tr

[
Φ−1

(〈
µ

(1)
h

(
µ

(1)
h

)>〉
− ν̂

〈
µ

(1)
h

〉>
−
〈
µ

(1)
h

〉
ν̂> + ν̂ν̂>

)]

−
C∑
h=1

T∑
t=2

1

2
tr

[
Φ−1

(〈
µ

(t)
h

(
µ

(t)
h

)>〉
−
〈
µ

(t−1)
h

(
µ

(t)
h

)>〉
−
〈
µ

(t)
h

(
µ

(t−1)
h

)>〉
+

〈
µ

(t−1)
h

(
µ

(t−1)
h

)>〉)]

0 = −
TC

2
Φ−1 +

C∑
h=1

1

2
Φ−1

(〈
µ

(1)
h

(
µ

(1)
h

)>
−
〈
µ

(1)
h

〉
ν̂> − ν̂

〈
µ

(1)
h

〉>
+ ν̂ν̂>

〉)
Φ−1

+

C∑
h=1

T∑
t=2

1

2
Φ−1

(〈
µ

(t)
h

(
µ

(t)
h

)>〉
−
〈
µ

(t)
h

(
µ

(t−1)
h

)>〉
−
〈
µ

(t−1)
h

(
µ

(t)
h

)>〉
+

〈
µ

(t−1)
h

(
µ

(t−1)
h

)>〉)
Φ−1

0 = −TCΦ +

C∑
h=1

〈
µ

(1)
h

(
µ

(1)
h

)>〉
−
〈
µ

(1)
h

〉
ν̂> − ν̂

〈
µ

(1)
h

〉>
+ ν̂ν̂>

+

C∑
h=1

T∑
t=2

〈
µ

(t)
h

(
µ

(t)
h

)>〉
−
〈
µ

(t)
h

(
µ

(t−1)
h

)>〉
−
〈
µ

(t−1)
h

(
µ

(t)
h

)>〉
+

〈
µ

(t−1)
h

(
µ

(t−1)
h

)>〉

Φ̂ := Φ =

∑C
h=1

〈
µ

(1)
h

(
µ

(1)
h

)>〉
−
〈
µ

(1)
h

〉
ν̂> − ν̂

〈
µ

(1)
h

〉>
+ ν̂ν̂>

TC

+

∑C
h=1

∑T
t=2

〈
µ

(t)
h

(
µ

(t)
h

)>〉
−
〈
µ

(t)
h

(
µ

(t−1)
h

)>〉
−
〈
µ

(t−1)
h

(
µ

(t)
h

)>〉
+

〈
µ

(t−1)
h

(
µ

(t−1)
h

)>〉
TC
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Computing the Variational Lower Bound L (q,Θ)

The marginal likelihood lower bound L (q,Θ) can be used to test for convergence in the
Variational EM algorithm. It also functions as a surrogate for the true marginal likelihood
p (E | Θ); this is useful when taking random restarts, as it enables us to select the highest
likelihood restart. Recall that

L (q,Θ) = Eq [log p (E,X | Θ)− log q (X)]

= Eq

 T,N∑
t,i=1

N∑
j 6=i

log p
(
E

(t)
i,j | z

(t)
i→j , z

(t)
i←j ;B

)+ Eq

 T,N∑
t,i=1

N∑
j 6=i

log p
(
z

(t)
i→j | γ

(t)
i

)
p
(
z

(t)
i←j | γ

(t)
j

)
+Eq

 T,N∑
t,i=1

log p
(
γ

(t)
i | c

(t)
i , µ

(t)
1 , . . . , µ

(t)
C ; Σ1, . . . ,ΣC

)+ Eq

 T,N∑
t,i=1

log p
(
c
(t)
i ; δ

)
+Eq

[
C∑
h=1

log p
(
µ

(1)
h ; ν,Φ

)
+

C∑
h=1

T∑
t=2

log p
(
µ

(t)
h | µ

(t−1)
h ; Φ

)]

−Eq
[
log qµ

(
µ

(1)
1 , . . . , µ

(T )
C

)]
− Eq

 T,N∑
t,i=1

log qγ

(
γ

(t)
i

)
−Eq

 T,N∑
t,i=1

log qc

(
c
(t)
i

)− Eq

T,N,N∑
t,i,j=1

log qz

(
z

(t)
i→j , z

(t)
i←j

)
It turns out that we cannot compute L (q,Θ) exactly because of term 2, but we can lower

bound the latter to produce a lower bound Llower (q,Θ) on L (q,Θ).

Closed forms for terms 1,3,4,5 are in eqs (2.5,2.6,2.7,2.8) respectively. We shall now
provide closed forms for terms 6,7,8,9, as well as the aforementioned lower bound for
term 2.

Lower Bound for Term 2

Eq

 T,N∑
t,i=1

N∑
j 6=i

log p
(
z

(t)
i→j | γ

(t)
i

)
p
(
z

(t)
i←j | γ

(t)
j

)

=

T,N∑
t,i=1

N∑
j 6=i

Eq

log

K∏
k=1

 exp γ
(t)
i,k∑K

l=1 exp γ
(t)
i,l

z
(t)
i→j,k

 exp γ
(t)
j,k∑K

l=1 exp γ
(t)
j,l

z
(t)
i←j,k


=

T,N∑
t,i=1

N∑
j 6=i

K∑
k=1

Eq

[
z

(t)
i→j,kγ

(t)
i,k − z

(t)
i→j,k log

K∑
l=1

exp γ
(t)
i,l + z

(t)
i←j,kγ

(t)
j,k − z

(t)
i←j,k log

K∑
l=1

exp γ
(t)
j,l

]
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Since z, γ are independent of each other under q,

=

T,N∑
t,i=1

N∑
j 6=i
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Applying Jensen’s inequality to the log-sum-exp terms,
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where Λi is defined in Laplace Approximation to qγ .
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2.2 Methods for Hierarchically-structured Network Data
— the MSCB model

How do complex networks and their self-organization arise from coordinated interactions
and information sharing among the actors? One way to tap into this question is to un-
derstand the latent structures over actors which lead to the formation and organization of
these networks. In particular, we are interested in uncovering the functional/sociological
communities of network actors, and their influence on network connections. We consider
a community to be a group of actors that share a common theme, like a clique of foot-
ball fans in a social network, or an ecosystem of dependent organisms in a biological food
web. Our objective is to gain a deeper understanding of the relationships within and among
these communities, so as to shed insight into the network topology.

More specifically, we seek to address three important aspects4 of network modeling
and community discovery:

1. Hierarchy — not all communities are equal: a community can contain sub-communities,
or be contained by super-communities. This is a natural way to structure the latent
space of actors.

2. Multiscale Granularity — we must distinguish between coarse or generic associa-
tions that may occur in a large super-community, as opposed to fine grained interac-
tions that occur within or among small, closely-interconnected sub-communities5.

3. Assortativity/Disassortativity — some communities have strong within-community
interactions and weak cross-community interactions (assortativity), yet others may
exhibit the reverse (disassortativity).

These aspects are not independent, but are strongly interrelated. As an example, con-
sider an oceanic food web (Figure 2.7), a directed network with species as actors and
predator-prey relationships as edges. This network exhibits hierarchy: cold-blooded ani-
mals and mammals are large super-communities that can be sub-divided into smaller sub-
communities, such as sharks and squid, or toothed whales and pinnipeds. These sub-
communities can in turn be divided into even smaller communities (not shown). The ideas

4Modeling of networks in their context (node attributes and time-varying data) is addressed in the other
sections of this chapter.

5Here, communities are allowed to overlap in the sense that large super-communities wholly subsume
smaller ones, following the definition of a hierarchy. For modeling networks where communities are ex-
pected to partially overlap, please refer to Chapters 3 and 4.
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of hierarchy and network should not be confused with each other. The hierarchy is an
organization of actors in some latent space learned from the observed network.

Next, the predator-prey relationships in the ocean are multiscale. Consider a sperm
whale: it occasionally eats fish, which are common prey for many oceanic animals. Hence,
this “sperm whale, fish” interaction is generic. Moreover, sperm whales usually eat giant
squid, which are prey specific to them (making this interaction fine-grained). It is impor-
tant to differentiate between such interactions of different scale.

Finally, the toothed whale sub-community demonstrates both assortative and disas-
sortative behavior. Many toothed whales feed on small fish and seals, which are cross-
community interactions. However, whales such as orcas feed on other whales, which are
within-community interactions.

We propose a nonparametric Multiscale Community Blockmodel (MSCB) that presents
a unified approach to address these three concerns. Using the nested Chinese Restaurant
Process [22] as a nonparametric structural prior, our model learns the structure of the hier-
archy from the data without requiring the branching factor at each node to be prespecified.
Moreover, by exploiting latent space ideas from Blei et al. [23] and Airoldi et al. [6], we
uncover the coarse/fine-grained interactions that underlie the network. Finally, our model
builds upon the blockmodel concept [170, 6] to integrate assortativity and disassortativity
into our hierarchy.

Comparison to Existing Work

Existing methods for graph clustering and inferring community structure do not adequately
capture the three aspects we have described. Methods such as Girvan and Newman [52],
Hoff et al. [78], Handcock et al. [68], Krause et al. [96] and Guimera and Amaral [62]
cannot discover disassortative communities characterized by weak within-community and
strong cross-community interactions. Furthermore, they do not explicitly model organiza-
tional structure — and by extension, multiscale granularity of interactions. These methods
do not meet any of our criteria, and are unsuited for our purposes.

The Mixed Membership Stochastic Blockmodel (MMSB) [6] aims to discover the mul-
tiple latent roles played by each actor in the network, while employing a blockmodel to ac-
commodate both disassortative and assortative types of interactions. The multi-role mem-
berships discovered by MMSB are similar, but not identical, to our notion of coarse/fine-
grained interactions. Furthermore, MMSB does not induce a hierarchical structure over
the actors. These considerations prevent MMSB from modeling the organized network
phenomena that our model is designed to explore. Another example of a latent space
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Figure 2.7: Illustration of an oceanic food web as a set of nested communities (Left), and the correspond-
ing hierarchy of communities (Right). Vertices in the network represent individual species, and directed
edges represent predator-prey relationships (not all shown). Solid edges are fine-grained, specific interac-
tions, while dashed edges are coarse-grained and generic to a large community.

model is Miller et al.’s link prediction model [121], which allows each actor to take on
multiple binary features in an infinite-dimensional space. Like MMSB, this model does
not learn a structure over its latent space, and therefore cannot replicate our model’s ability
to discover community hierarchies.

On the other hand, methods such as Clauset et al. [36], Radicchi et al. [141] and the
infinite stochastic blockmodel [90] explicitly model some form of organizational structure.
However, they do not permit actors to have multiple kinds of interactions, which precludes
them from learning the kind of multiscale interactions we have described. Roy et al. [148]
generalize the infinite relational model [91] for hierarchical group discovery, and extend
their work to the nonparametric setting with Mondrian Processes [161]. However, their
models are limited to binary hierarchies. Our model assumes no limit on the hierarchy’s
branching factor, which is more realistic for certain networks.

2.2.1 A Multiscale, Hierarchical Network Model

In the sequel, we describe the different aspects of the model, beginning with the hierar-
chy and then proceeding to network edge generation. We use the oceanic food web in
Figure 2.7 as a running example.
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The Community Hierarchy

In our model, the hierarchy is a tree where each node is a community. The root of the
tree is designated as level 0. Nodes closer to the root represent large super-communities,
(e.g. the “cold-blooded animals” and “mammals” in Figure 2.7), while those closer to the
leaves represent finer-grained sub-communities (e.g. “toothed whales” or “sharks”).

Each actor is associated with a single path of super-sub communities in the hierarchy
(which we call its path ci). This path delineates a sequence of communities from coarse to
fine. For example, a sperm whale could have the path [mammal, toothed whale].

Selecting the number of branches at every tree node a priori can be daunting because of
the huge number of possibilities. One might consider using heuristic methods that guess
at the number of such children, but doing so would defeat the purpose of employing a
probabilistic model.

We solve this problem by adopting a nonparametric Bayesian prior on paths through
trees, the nested Chinese Restaurant Process (nCRP) [22], which automatically selects
the number of branches based on the data. The generative process for the nCRP works
according to the following metaphor: Actor 1 chooses his tree path first, followed by actor
2, and so on. Consider actor i. He begins at the root, then with probability n(1)

x,i−1/(i −
1 + γ) he selects branch x of the tree, and with probability γ/(i− 1 + γ), he picks a new
branch. n(1)

x,i−1 is the number of actors before i that chose branch x at level 1, and γ is
a hyperparameter dictating the probability that an actor will start a new branch. Higher
values of γ will increase the width of the hierarchy.

Actor i continues this process as he descends the tree. When picking a branch at level k,
with probability n(k)

y,i−1/(n
(k−1)
i−1 +γ) he selects branch y, and with probability γ/(n(k−1)

i−1 +γ)

he starts a new branch. Here, n(k−1)
i−1 counts the number of actors 1, . . . , i − 1 having the

same path as actor i up to (and including) level k − 1. Out of these actors, n(k)
y,i−1 is the

number that picked branch y (at level k). This sequence of branch choices defines the path
of actor i, and the union of all these paths forms the hierarchy. In our model, we limit the
hierarchy to a maximum depth of K. We now provide a formal definition for the nCRP:

Nested Chinese Restaurant Process The nested Chinese Restaurant Process (nCRP) [22]
is an extension of the regular Chinese Restaurant Process (CRP), a recursively-defined
prior over positive integers. For concreteness, we shall use the first level of each actor
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path, ci1, to define the CRP:

P(ci1 = x | c1:(i−1),1) =

{
|{j<i | cj1=x}|

i−1+γ
x ∈ {c1:(i−1),1}

γ
i−1+γ

x is the smallest positive integer not in {c1:(i−1),1}
(2.9)

where γ > 0 is a “concentration” parameter that controls the probability of drawing new
integers, and for conciseness we define c1:(i−1),1 ≡ (c11, . . . , c(i−1)1). The nCRP is es-
sentially a hierarchy of CRP priors, beginning with a single CRP prior at the top level.
With each unique integer x seen at the top-level prior, we associate a child CRP prior with
|{i | ci1 = x}| observations, resulting in a two-level tree of CRP priors. We can repeat this
process ad infinitum on the newly-created child priors, resulting in an infinite-level tree of
CRP priors, though we only use a K-level nCRP. All CRP priors in the nCRP share the
same concentration parameter γ.

Now we can finish describing our generative process: for each actor i ∈ N , we can
sample ci ∼ nCRP(γ) using the recursive nCRP definition:

P(cik = x | c1:(i−1), ci,1:(k−1)) =
|{j<i | cj,1:(k−1)=ci,1:(k−1)∧cjk=x}|
|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x ∈ {cjk | (j < i) ∧ cj,1:(k−1) = ci,1:(k−1)}

γ

|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x is the smallest positive integer not in the above set.
(2.10)

Multiscale Membership

In order to enable multiscale granularity on the interactions, we associate each actor i with
a Multiscale Membership (MM) vector θi. The MM vector is a K-dimensional multino-
mial that encodes an actor’s tendencies to interact as a member of the different super- and
sub- communities along his/her path of depth K. Consider two toothed whales: dolphins
and sperm whales. Both have the same path in the tree, [mammal, toothed whale], yet
both behave very differently. A dolphin’s diet mainly consists of fish, which are common
prey for many mammals. Thus it has a high probability of interacting as a member of the
mammal super-community, although it occasionally chooses prey that are more specific to
its species.

A sperm whale on the other hand barely eats fish, and thus rarely interacts as a member
of its super-community. Instead, it eats giant squid, a more specific prey uncommon to
most mammals. As a result, a sperm whale has a higher probability of participating in
fine-grained interactions, instead of coarse ones like the dolphin does.
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Like the mixed membership vector of the MMSB [6], which allows an actor to have
a distribution over roles, our Multiscale Membership vector allows an actor to have a dis-
tribution over communities. However, there is a key difference: in MMSB, an actor may
have a distribution over all possible latent roles, whereas in our model, an actor’s Multi-
scale Membership vector is a distribution over only the set of super and sub-communities
along the actor’s path. This is because allowing an actor to have a distribution over all
communities in the hierarchy can render the hierarchy virtually meaningless: a dolphin
could simultaneously be in the shark and toothed whale communities, which is unrealistic.

The Multiscale Membership vectors θi are drawn from a two-parameter stick break-
ing process Stick(m,π) [22]. The stick breaking prior makes it more intuitive to bias
interactions toward coarser or finer levels compared to a Dirichlet prior with either a sin-
gle parameter (which is not expressive enough), or K − 1 parameters (which may be too
expressive). The parameter m > 0 influences the mean of θi, and π > 0 influences its
variance. Because the hierarchy is only learnt up to depth K, we truncate the Stick(m,π).
We now provide a formal definition of the two-parameter stick breaking process:

Stick Breaking Processes Stick breaking constructions work as follows: Consider a
stick of length 1. Draw Vi1 ∼ Beta(mπ, (1 − m)π). Let θi1 = Vi1 and let 1 − θi1
be the remainder of the stick after chopping off this length Vi1. To calculate the length
θi2, draw Vi2 ∼ Beta(mπ, (1 − m)π) and chop off this fraction of the remainder of the
stick, giving θi2 = Vi2(1 − Vi1). Thus Vik is the fraction to chop off from the stick’s
remainder, and θik is the length of the kth stick that was chopped off. In general, we draw
Vik ∼ Beta(mπ, (1 − m)π) from k = 1 to k = ∞ and the corresponding {θik}∞k=1 is
defined below:

θik = Vik

k−1∏
u=1

(1− Viu) (2.11)

This process is known as the two-parameter GEM distribution [22] (although we refer to
it as Stick(m,π)) and draws from Stick(m,π) are denoted as θi ∼ Stick(m,π). m >
0 influences the mean of θi, and π > 0 influences its variance. Because the hierarchy
is only learnt up to depth K, we truncate the Stick(m,π) distribution at level K. The
stick breaking prior makes it more intuitive to bias interactions toward coarser or finer
levels compared to a Dirichlet prior with either a single parameter (which is not expressive
enough), or K − 1 parameters (which may be too expressive).
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Figure 2.8: Graphical model for MSCB.

Network Edge Generation

At this point, we shall introduce some notation. Let E be the N × N adjacency ma-
trix of observed network edges, where Eij corresponds to the directed edge or interac-
tion/relationship from actor i to j. In the context of our food web, the actors are sea
creatures like dolphins and sperm whales, and the edges represent predator-prey interac-
tions. A value of Eij = 1 indicates that the interaction is present, while Eij = 0 indicates
absence, and we ignore self-edges Eii.

We introduce our generative process for network edges:

• For each actor i ∈ {1, . . . , N}

– Sample i’s path ci ∼ nCRP(γ).

– Sample i’s MM θi ∼ Stick(m,π).

• To generate the network, for each directed edge Eij :

– Sample donor level z→ij ∼ Multinomial(θi).

– Let6 h = ci[z→ij ].

– Sample receiver level z←ij ∼ Multinomial(θj).

– Let h′ = cj [z←ij ].

– Sample the edge Eij ∼ Bernoulli(SB(h, h′)). We shall explain the meaning of SB
later.

6Formally, h is the community at level z→ij on path ci.
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The basic idea is as follows: for every directed edge Eij , both actor i (the donor) and
actor j (the receiver) pick communities h and h′ from their respective paths ci, cj , accord-
ing to their MM vectors θi, θj . The communities h, h′ are then used to select a community
compatibility parameter SB(h, h′), which in turn generates Eij ∼ Bernoulli(SB(h, h′)).
Note that the arrow in z→ij or z←ij denotes donor or receiver respectively, not edge direc-
tion between i and j.

Community Compatibility Matrices B

We now discuss the SB() function. Intuitively, the compatibility from h to h′ is high if
actors from h often interact with actors from h′. Conversely, a low compatibility indi-
cates that actors from h rarely interact with actors from h′. Thus, it is natural to define
compatibility to be a Bernoulli parameter in [0, 1], where 1 indicates perfect compatibility.
This notion of compatibility is what allows our model to account for both assortative and
disassortative behavior. (For example, strong assortative interactions correspond to high
compatibility parameters when h = h′).

There are many ways to associate compatibility parameters with pairs of communities
h, h′. Our goal is to meaningfully integrate compatibility with the hierarchy and multiscale
interactions over communities. A first attempt might be to ignore the hierarchy, and place
a full H × H compatibility matrix over all community pairs h, h′, which is analogous to
the blockmatrix of MMSB [6]. However, this formulation does not capture the multiscale
nature of interactions, because there is no connection between the compatibility parameter
for h, h′ and those communities’ levels in the hierarchy.

Instead, we restrict the compatibility parameters by defining a compatibility matrix
for each sibling group (a set of children under the same parent) in the hierarchy. Each
sibling group’s compatibility matrix defines the interaction probability between every pair
of siblings in that group — refer to Figure 2.9 for an illustration. Since the number of
hierarchy nodes is not pre-specified, the number and size of the sibling group compatibility
matrices must be determined automatically from the data. We shall address this issue when
we describe our inference procedure.

When the interacting communities h, h′ share the same parent, we simply choose the
appropriate entry from their sibling group matrix. However, if h, h′ do not share the same
parent, then we invoke the following coarsening procedure:

1. Recall that h = ci[z→ij] and h′ = cj[z←ij].

2. Find zmin = min(z→ij, z←ij).
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Figure 2.9: Sibling groups in the hierarchy, and their associated community compatibility matrices B.

3. If hcoarse = ci[zmin] and h′coarse = cj[zmin] are in the same sibling group, then
we look up its compatibility matrix entry Bhcoarse,h′coarse . We then generate Eij ∼
Bernoulli(Bhcoarse,h′coarse).

4. Otherwise, hcoarse, h′coarse have zero compatibility, and we generate Eij = 0.

Essentially, if actor i picks a community at a deeper level than actor j, then i coarsens up
along his path to the same level as j. We can now formally define the SB() function from
the previous section:

SB(h, h′) =


Bhcoarse,h′coarse

hcoarse and h′coarse have same parent
0 otherwise

h = ci[z→ij] h′ = cj[z←ij]

hcoarse = ci[zmin] h′coarse = cj[zmin]

zmin = min(z→ij, z←ij).

For brevity, we define the shorthand SijB := SB(h, h′).

Finally, a Beta(λ1, λ2) prior is placed over every community compatibility parameter
Bhcoarse,h′coarse . This adds the following step to our generative process:

• For each hcoarse, h′coarse:

– Sample Bhcoarse,h′coarse ∼ Beta(λ1, λ2).

Increasing λ1 will bias the model towards having more edges, whereas increasing λ2

biases the model towards having fewer edges. Intuitively, λ1 is the number of fake edges
we are willing to assume, while λ2 is our assumed number of fake non-edges.

A graphical model representation of our generative process can be found in Figure
2.16.
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2.2.2 Collapsed Gibbs Sampler Inference

Exact inference on our model is intractable, so we derive a collapsed Gibbs sampling
scheme for posterior inference, with O(N2H) running time7 per iteration (where H is the
number of currently-discovered hierarchy nodes). The compatibility matrices B present
a challenge since they can change in number/size as nodes are added and deleted dur-
ing the sampling process (because the hierarchy structure is not prespecified). To finesse
this issue, we analytically integrate them out using the conjugacy between the Beta and
Bernoulli distributions; this adds dependence among interactions that implicitly share a
compatibility parameter.

For faster mixing, the θi’s are also integrated out. Thus, the only variables that need to
be explicitly sampled are the levels z and the paths c. The sampling equations are provided
below.

Sampling Levels The distribution of z→ij conditioned on all other variables is

P(z→ij | c, z−(→ij),E, γ,m, π, λ1, λ2)

∝ P(Eij, z→ij | c, z−(→ij),E−(ij), γ,m, π, λ1, λ2)

= P(Eij | c, z,E−(ij), γ,m, π, λ1, λ2)P(z→ij | c, z−(←ij),E−(ij), γ,m, π, λ1, λ2)

= P(Eij | c, z,E−(ij), λ1, λ2)P(z→ij | zi,(−j),m, π) (2.12)

where E−(ij) is the set of all edges except Eij , and zi,(−j) = {z→i·, z←·i} \ z→ij . The first
term, for a particular value of z→ij , is equal to

First term =

{
Γ(a+b+λ1+λ2)

Γ(a+λ1)Γ(b+λ2)
· Γ(a+Eij+λ1)Γ(b+(1−Eij)+λ2)

Γ(a+b+1+λ1+λ2)
SijB 6= 0

0 otherwise

a =
∣∣{(x, y) | (x, y) 6= (i, j), SxyB = SijB, Exy = 1

}∣∣
b =

∣∣{(x, y) | (x, y) 6= (i, j), SxyB = SijB, Exy = 0
}∣∣ (2.13)

In Eq. 2.13, we have applied a standard result for integrating out the Beta-distributed com-
patibility matrices B; consequently, the interactions Eij , which were originally Bernoulli
with parameter B, now follow a compound distribution called the Beta-Binomial8. As a

7In Chapters 3 and 4, we will develop network modeling techniques and strategies with running time
linear in N , thus enabling the study of very large networks.

8More generally, this distribution is known as the Dirichlet-Multinomial; the Beta-Binomial refers to the
1-dimensional case. Refer to [125, 123] for the closed-form solutions to integrating out the Beta/Dirichlet
random variable, which we have applied in Eq 2.13 and 2.17.
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result, z→ij depends on the interactions Exy that share Eij’s compatibility parameter at
this point in the sampling process.

The second term is computed by conditioning on the stick-breaking lengths V1, ..., VK
associated with z→ij:

P(z→ij = k | zi,(−j),m, π) = E
[
I(z→ij = k) | zi,(−j),m, π

]
(2.14)

= E
[
E
[
I(z→ij = k) | Vi1, ..., Vik, zi,(−j),m, π

]]
= E

[
Vik

k−1∏
u=1

(1− Viu) | zi,(−j),m, π

]

= E[Vik | zi,(−j),m, π]
k−1∏
u=1

E[(1− Viu) | zi,(−j),m, π]

=
mπ + #[zi,(−j) = k]

π + #[zi,(−j) ≥ k]

k−1∏
u=1

(1−m)π + #[zi,(−j) > u]

π + #[zi,(−j) ≥ u]

Since we have limited the maximum depth to K, we simply ignore the event z→ij > K,
and renormalize the distribution of z→ij over the domain {1, . . . , K}. The distribution
of z←ij is derived in similar fashion. The runtime complexity of sampling a single zij is
O(K), where K is the (fixed) depth of our hierarchy. Hence the total runtime for all z is
O(N2K).

Sampling Paths The distribution of ci conditioned on all other variables is

P(ci | c−i, z,E, γ,m, π, λ1, λ2)

∝ P(ci,E(i·),(·i) | c−i, z,E−(i·),−(·i), γ,m, π, λ1, λ2)

= P(E(i,·),(·,i) | c, z,E−(i·),−(·i), γ,m, π, λ1, λ2)P(ci | c−i, z,E−(i·),−(·i), γ,m, π, λ1, λ2)

= P(E(i·),(·i) | c, z,E−(i·),−(·i), λ1, λ2)P(ci | c−i, γ) (2.15)

where E(i·),(·i) = {Exy | x= i or y= i} is the set of edges Exy that depend on ci, and
E−(i·),−(·i) is its complement. The second term can be computed using the recursive nCRP
definition

P(cik = x | c1:(i−1), ci,1:(k−1), γ) =
|{j<i | cj,1:(k−1)=ci,1:(k−1)∧cjk=x}|
|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x ∈ {cjk | (j < i) ∧ cj,1:(k−1) = ci,1:(k−1)}

γ

|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x is the smallest positive integer not in the above set.
(2.16)
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Figure 2.10: Simulation Results. Figures 2.10(a), 2.10(b), 2.10(c), and 2.10(d) show quantitative re-
sults. Figures 2.10(e), 2.10(f), 2.10(g) 2.10(h) illustrate results for one on-diagonal (assortative) network,
and Figures 2.10(i), 2.10(j), 2.10(k) , 2.10(l) illustrate results for one off-diagonal (disassortative) network.
2.10(e) and 2.10(i) are the original networks for these two cases (black indicates edge). The numbers inside
hierarchy nodes are actor counts (nodes of size < 5 are not shown). See text for details.

while the first term, for a particular value of ci, is

First term =

{∏
B∈B(i,·),(·,i)

Γ(gB+hB+λ1+λ2)
Γ(gB+λ1)Γ(hB+λ2) ·

Γ(gB+rB+λ1)Γ(hB+sB+λ2)
Γ(gB+hB+rB+sB+λ1+λ2) ∀Exy ∈ E(i·),(·i), SxyB 6= 0

0 otherwise

gB =
∣∣{(x, y) | Exy ∈ E−(i·),−(·i), SxyB = B,Exy = 1

}∣∣
hB =

∣∣{(x, y) | Exy ∈ E−(i·),−(·i), SxyB = B,Exy = 0
}∣∣

rB =
∣∣{(x, y) | Exy ∈ E(i·),(·i), SxyB = B,Exy = 1

}∣∣
sB =

∣∣{(x, y) | Exy ∈ E(i·),(·i), SxyB = B,Exy = 0
}∣∣ (2.17)

where B(i·),(·i) is the set of community compatibility parameters Bh,h′ associated with
some edge in E(i·),(·i). Similar to Eq. (2.13), Eq. (2.17) is a consequence of integrating
out B for all interactions E associated with actor i. The runtime for a single ci is O(NH),
where H is the number of hierarchy nodes. Hence the time to sample all c is O(N2H).

2.2.3 Quantitative Results

Simulation

We first evaluate our model’s ability to recover hierarchies on simulated data. Our focus is
to examine how our model’s ability to model both assortative (within-community) interac-
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tions and disassortative (cross-community) interactions differentiates it from a traditional
hierarchical clustering algorithm.

Our experiments explore the effect of different compatibility matrices B. We first ex-
plore an on-diagonal B, whose diagonal elements are much larger than the off-diagonals
(strong assortative interactions). We also investigate an off-diagonal B, whose off-diagonal
elements are larger (strong disassortative interactions). For either B type, we experimented
with maximum hierarchy depths K = 2 and 3. For the K = 2 simulations, the number of
actors N was 150, while for K = 3 we used 300 actors.

We compare our approach to hierarchical spectral clustering (denoted HSpectral). For
spectral clustering, it is unclear how the number of clusters at each node would be selected,
so we give it the number of 1st-level branches as an advantage (and then let it do a binary
split at the deeper levels). For our model, we fix m = π = λ1 = λ2 = .5 and search over
γ = {.01, .1, .5, 1, 1.5, 2}, picking the value that maximizes the marginal likelihood. We
calculate the F1 score at each level k, F1k = 2∗Precision∗Recall

Recall+Precision
where Recall = TP

TP+FN
,

and Precision = TP
TP+FP

. TP is true positive count (actors that should be in the same
cluster, up to depth k), FP is false positive count, TN is true negative count, and FN is
false negative count. The total F1 score is computed by averaging the F1k scores for each
level.

Note that spectral clustering is, by mathematical definition, only capable of recovering
assortative communities, hence we expect HSpectral to perform well on the assortative
experiments, but not on the disassortative ones. This is a notable advantage of blockmodel-
based algorithms like our MSCB, and to the best of our knowledge, MSCB is the only
blockmodel-based network algorithm that can recover hierarchies containing an arbitrary
number of nodes, and with arbitrary branching factor at each node.

Figure 2.10 illustrates our results as a function of the number of branches at the first
level of the generated tree. As one can see, in Figure 2.10(a) and Figure 2.10(b), when B
is strongly on-diagonal, our algorithm performs well, but a little worse than HSpectral (we
attribute this to the fact that HSpectral is given the number of level 1 branches, which is an
advantage). A specific example for K = 2 is shown in Figures 2.10(e), 2.10(f), 2.10(g),
2.10(h), on which both models performed reasonably well.

However, when B is strongly off-diagonal (implying strong cross-community inter-
actions), HSpectral performs poorly. This is because, by formulation, spectral clustering
cannot recover a disassortative community. On the other hand, our method still gives good
results (Figure 2.10(c), Figure 2.10(d)). A K = 2 example is shown in Figures 2.10(i),
2.10(j), 2.10(k), 2.10(l) where our model performs accurately while HSpectral essentially
divides the actors randomly and performs poorly. Thus our model successfully captures
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Figure 2.11: Held-out marginal likelihoods for our model and MMSB. Dotted lines show our model’s
error bars.

a variety of community interactions that traditional clustering methods cannot. Moreove,
it can also recover the actor-specific multi-scale interaction levels for a richer network
analysis.

Real Data Held-out Validation

Having evaluated how our model compares to a traditional hierarchical clustering method
without a latent space, we now seek to compare it to latent space models that do not
account for hierarchical structure. Since our latent space is integrated with the hierarchy,
it is not possible to compare to a “non-hierarchical version” of our model. MMSB [6]
seems the best choice for comparison, since it has analogous (but different) notions to our
multi-scale membership and community compatibility in a non-hierarchical setting.

We use two real-world datasets, a 75-species food web of grass-feeding wasps [40, 37],
and the 9/11 hijacker network consisting of 62 terrorists [97, 37]. Our choices reflect
two common modes of interaction seen in real-world network data: edges in the food
web denote predator-prey relationships, while edges in the terrorist network reflect social
cohesion. The food web could be represented as a hierarchy where different branches
reflect different trophic levels (e.g. parasite, predator or prey), while the terrorist network
could be interpreted as an organization chart. In the following experiments, we compare
our model to MMSB using held-out marginal likelihood; models with higher likelihood
imply a better fit to the data.

For each dataset, we generated 5 sets of training and test subgraphs; each train/test pair
was obtained by randomly partitioning the actors into two equal sets, and keeping only the
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Figure 2.12: Grass network: Top Left: Inferred hierarchy of communities, with community trophic
level counts at the bottom. Top Right: Multiscale Membership vectors for each actor. Bottom: Original
network. Edges show interacting communities (edge head/tail colors match assumed hierarchy underlying
the interactions) and interaction level (1 = solid, 2 = dashed) inferred by our model. Node shapes represent
annotated trophic levels (see legend in bottom right).

edges within each partition. With each train/test pair, we first used the training subgraph to
select an appropriate prior on the community compatibility parameters B, by performing
a gridsearch over (λ1, λ2) ∈ {.1, .3, .5, .7, .9}2 according to the log marginal likelihood.
The remaining parameters were fixed to γ = 1,m = π = 0.5, as we found our results to
be relatively insensitive to them. Using the best gridsearch parameters, we then estimated
the log marginal likelihood on the corresponding test subgraphs, averaging over them to
obtain our model’s average held-out likelihood. This entire procedure was conducted for
maximum hierarchy depths K = 2 and 3. The procedure for MMSB was similar, except
that we used 100 random restarts of the MMSB variational EM algorithm on the training
subgraphs to select the best parameters. MMSB also requires the number of latent roles
R as a tuning parameter, so we repeated the experiment for each 2 ≤ R ≤ 20. For either
algorithm, log marginal likelihoods were estimated using 10,000 importance samples.
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Figure 2.13: HEP network: Inferred hierarchy of communities, with the most frequent title keywords at
the bottom. Community positions (circles) show the number of papers.

The results are shown in Figure 2.11. On both datasets, our model’s held-out likelihood
for either value ofK is superior to MMSB for allR. Notably, MMSB’s likelihood peaks on
both datasets at R = 2, but selecting so few roles will lead to an extremely coarse network
analysis. In contrast, our model automatically recovers a suitable level of hierarchical
complexity and enables rich interpretations of the data — as we shall demonstrate next.

2.2.4 Real Data Qualitative Analysis

In this section, we apply our model to interpret two real-world networks. We demon-
strate that our model recovers the three network aspects we seek: hierarchy, multiscale
granularity, and assortativity/disassortativity.

For both experiments, we use the optimal parameters from a held-out gridsearch sim-
ilar to the previous section. We then ran our Gibbs sampler for 10,000 burn-in iterations,
and took 500 samples. In order to account for posterior spread, we report a “consensus”
sample that is analogous to an average. We generated this consensus sample by counting
the number of times each pair of actors shared the same community hierarchy position,
over all samples. Actors that shared positions in > 50% of all samples were assigned to
the same path in the consensus. For levels z→ij and z←ij , we simply took the mode over all
samples. In a final post-processing step to reduce visual clutter, we merged bottom-level
(i.e. level-2) communities with ≤ 5 actors into one community under the same parent.

Grass-Feeding Wasp Parasitoids Food Web

We begin with the earlier grass dataset, consisting of 75 species in a food web, and
in which interactions represent predator-prey relationships. This dataset annotates each
species with its position or “trophic level” in the food web: grass, herbivore, parasitoid,
hyper-parasitoid (parasites that prey on other parasites), and hyper-hyper parasitoid. We

80



ran our Gibbs sampler on the full network to infer the community hierarchy and ac-
tor Multiscale Memberships. The model parameters were chosen via gridsearch over
(λ1, λ2) ∈ {.1, .3, .5, .7, .9}2, according to the marginal log likelihood (estimated using
10,000 importance samples). In line with the held-out experiments, we fixed the remain-
ing parameters to γ = 1,m = 0.5, π = 0.5. Finally, the hierarchy depth was set to K = 2.
We ran our Gibbs sampler using the optimal parameters λ1 = 0.1, λ2 = 0.5 for 10,000
iterations of burn-in, and took 100 samples with a lag time of 5 iterations. A plateauing log
complete likelihood plot revealed that our sampler coverged well before the last iteration.

Our Gibbs sampler’s inferred community hierarchy and Multiscale Membership (MM)
vectors are reported in Figure 2.12. We also show the original network, where each inter-
action Eij = 1 has been augmented with its associated community and interaction level
(missing links Eij = 0 are not shown). Trophic level annotations are shown in the hierar-
chy as counts, and in the network as node shapes.

In general, the level 1 super-communities separate the trophic levels. For example,
community 3 contains all grass species, 2 contains most herbivores, and 1 contains most
parasitoids. Note that the trophic levels form a set of disassortative communities, e.g.
herbivores feed on grasses, but not on other herbivores. In contrast, Clauset et al.’s
method, which assumes assortative communities, did not recover this structure in their
experiments [37].

The smaller super-communities are still more interesting: for instance, the herbivore in
super-community 6 is the sole prey of the parasitoids in super-community 4, which justifies
its separation from the other herbivores in super-community 2. Moreover, community 5
solely contains the two apex parasitoids with the largest and 2nd-largest range of prey
species.

At level 2, the communities are separated by more subtle criteria than just trophic lev-
els. The herbivores in community 2.2 are the sole prey of species 42 and 41 in community
1.1, while community 1.2 contains another apex parasitoid with an especially large range
of prey species. In both cases, our model has separated these auxiliary food webs from the
main web.

We now investigate the Multiscale Memberships recovered by our model. The MM
vectors in Figure 2.12 show the frequency at which each species interacts as a member of
a particular super- or sub-community. Most species identify at the super-community (i.e.
generic) level, though some occasionally identify at the sub-community level. Our results
show that level 2 interactions occur only within super-communities, hence they account for
fine-grained, within-community interactions. For example, the within-community links in
community 4, as well as the links from species 65 in sub-community 1.2 to other members
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Figure 2.14: HEP network: Adjacency matrix, permuted according to the communities in Figure 2.13.

of community 1, are all level 2 interactions. Note that we have not shown interaction levels
for missing links, and a number of these are accounted for by level 2 interactions (e.g. in
community 1).

High-Energy Physics Citation Network

Finally, we consider a 1,000-paper subgraph of the arXiv high-energy physics citation
network, taken from the 2003 KDD Cup [88]. We constructed this subgraph by subsam-
pling papers involved in citations from Jan 2002 through May 2003. We applied the same
parameter selection and post-processing as the previous dataset; the optimal gridsearch
parameters were (λ1 = 0.7, λ2 = 0.5). Each of the 25 parameter combinations required
less than 6 hours to test on a single processor core. We ran our Gibbs sampler for 10,000
iterations of burn-in, and took 10 samples with a lag time of 50 iterations. Our Gibbs sam-
pler finished execution in just under 23 hours on a single processor, demonstrating that our
algorithm scales to networks with thousands of actors.

The inferred community hierarchy is shown in Figure 2.13, where each sub-community
has been annotated with its papers’ most frequent title words9. We also show the adjacency
matrix in Figure 2.14, permuted to match the order of inferred communities.

As expected, our model learns communites reflecting specific areas of study (an as-
sortative network). The giant 810-paper level 2 community has a sparse citation pattern,
implying that its papers are not specific to any research topic. This is confirmed by the top
3 keywords: ‘theory’, ‘field’ and ‘quantum’, which are general to physics research. The
other level 2 communities under the same parent are more focused, with specific physical
concepts like ‘supergravity’, ‘string’ and ‘pp-wave’. This is also reflected in the adjacency

9While this output is reminiscent of topic models, our model is not a topic model. The hierarchy is learnt
only from the citation network, without the paper contents.
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matrix, which is denser among these communities. The remaining super-communities
form a dense sub-network mostly separated from the rest, implying narrower research foci.
In particular, three of the sub-communities involve the title keyword “tachyon”, which is
absent from the giant level 1 community.
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2.3 Methods for Hierarchical, Text-Annotated Network
Data — the Topicblock Model

Real-world networks are frequently accompanied by side information, such as attribute-
valued data (e.g. age, gender and ethnicity in social networks comprised of people) or
textual information (e.g. contents of webpages or abstracts of scientific papers). In this
section, we focus on techniques to incorporate textual information into network models, in
order to achieve the following goals: (1) more accurate recovery of network structures such
as communities and roles — in this specific case, we focus on hierarchical organization
amongst network nodes; (2) improved prediction of missing links in the network; and (3)
more easily interpreted network structures — for example, being able to annotate each
hierarchical position with a succinct, descriptive text label.

Network models that incorporate textual side information are especially pertinent to
information retrieval needs. From an information retrieval perspective, as the quantity of
online documents continues to increase, there is also a need for organizational structures
to help readers find the content that they need. Libraries have long employed hierarchical
taxonomies such as the Library of Congress System10 for this purpose; a similar approach
was taken in the early days of the Web, with portal sites that present the user with a
hierarchical organization of web pages. The key advantage of such taxonomies is that the
logarithmic depth of tree structures permits fine-grained distinctions between thousands of
“leaf” subtopics, while presenting the user with at most a few dozen choices at a time. The
user can recursively drill down to a very fine-grained categorization in an area of interest,
while quickly disregarding irrelevant topics at the coarse-grained level. A partial example
of a hierarchical taxonomy for Wikipedia is shown in Figure 2.15.

Manual curation of taxonomies was possible when membership was restricted to books
or a relatively small number of web publishers, but becomes increasingly impractical as the
volume of documents grows. This has motivated research towards inducing hierarchical
taxonomies automatically from data [172, 22]. However, these existing solutions rely
exclusively on a single modality, usually text. This can be problematic, as content is often
ambiguous — for example, the words “scale” and “chord” have very different meanings
in the contexts of computer networks and music theory.

As a solution, we propose to build taxonomies that incorporate the widely available
metadata of links between documents. Such links appear in many settings: hyperlinks
between web pages, citations between academic articles, and social network connections
between the authors of social media. Network metadata can disambiguate content by in-

10http://www.loc.gov/catdir/cpso/lcco

84

http://www.loc.gov/catdir/cpso/lcco


14675 Wikipedia 
people, called, made, time, 

title, world, cite, thumb, years 

2953 History 
war, empire, world, army, 
germany, german, roman, 

british, battle, military 

2545 Culture 
movie, series, film, 

television, show, american, 
born, movies, made 

2512 Geography 
city, river, area, island, south, 
province, north, population, 

part 

1985 Science 
animals, called, water, 
plants, species, body, 

live, food, found, plant 

1610 Modern 
united, president, states, 

party, government, 
minister, state, law 

242 Medieval 
king, england, henry, 

prince, edward, queen, 
son, died, duke, marry 

910 Religious 
church, god, christian, jesus, 
book, religion, catholic, bible, 

religious, holy, christianity 

22 Japanese 
sword, samurai, blade, long, 

japanese, handle, japan, 
warriors, swords, weapon, length 

966 Professional 
team, hockey, won, played, 

league, season, cup, nhl, 
player, games 

32 Amateur 
olympic, games, olympics, summer, 

committee, winter, international, 
held, athletes, sports, events 

237 Soccer 
football, club, team, 

played, league, stadium, 
austria, cup, austrian, won 

arsenal_f.c. 
goalkeeper 

liverpool_f.c. 
uefa_champions_league 

235 Wrestling/Hockey 
wrestling, wwe, world, championship, 

event, entertainment, professional, 
wrestlemania, wrestled, brand 

list_of_calgary_flames_players 
royal_rumble 
vezina_trophy 

owen_hart 

2154 Sports 
news, work, born, 

american, united, org 
 

228 Racing 
formula, race, racing, team, 
grand, championship, prix, 

world, chess, circuit 

japanese_grand_prix 
lewis_hamilton 

race_track 
singapore_grand_prix 

35 Baseball 
baseball, league, major, mlb, 

award, york, pitcher, 
american, runs, home, series 

second_baseman 
Baseball 

babe_ruth 
new_york_yankees 

17 Reality TV 
season, show, shown, 
reality, players, cbs, 

tribes, filmed, tribe, vote 

survivor:_thailand 
survivor:_borneo 
survivor:_palau 

total_drama_island 

and more . . . 

and more . . . 

and more . . . 

Figure 2.15: An example 4-level topic hierarchy built from Wikipedia Simple English. We annotate
each topic with its number of documents, a manually-chosen label describing the topic, and a list of highly
ranked-words according to TF-IDF. The dotted lines in the hierarchy show parent and child topics (only
the children of some parents are shown). For the bottom level topics, we also provide the names of some
Wikipedia documents associated with them. The associated network data is shown in Figure 2.18.

corporating an additional view which is often orthogonal to text. For example, we can
avoid conflating two documents that mention “scales” and “chords” if they exist in com-
pletely different network communities; analagously, we can group documents which share
network properties, even if the text is superficially different.

We have incorporated these ideas into a network model called TopicBlock, which uses
both text and network data to induce a hierarchical taxonomy for a document collection.
This requires meeting three technical challenges:

• Challenge 1: Combining the disparate representations of text and network
data. Network and text content have very different underlying representations. We
propose a model in which both the text and network are stochastic emissions from a
latent hierarchical structure. The inference task is to find the latent structure which
is likely to have emitted the observed data. On the text side we use the machin-
ery of hierarchical latent topic models [22], a coarse-to-fine representation in which
high-level content is generated from shared nodes near the root of the hierarchy,
while more technical information is generated from the detailed subtopics at the
leaves. On the network side, we employ a hierarchical version of the stochastic
block model [81], in which links are emissions from Bernoulli distributions associ-
ated with nodes in the hierarchy.
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• Challenge 2: Selecting the appropriate granularity. The problem of identifying
model granularity is endemic for latent structure models [162], but it is particulary
vexing in the hierarchical setting. A flat mixture model or topic model requires only
a single granularity parameter (the number of clusters or topics), but a hierarchy
requires a granularity parameter at each non-terminal. Furthermore, the ideal gran-
ularity is not likely to be identical across the hierarchy: for example, the nuclear
physics topic may demand fewer subtopics than the cephalopods topic. TopicBlock
incorporates a Bayesian nonparametric prior which lets the data speak for itself, thus
automatically determining the appropriate granularity at each node in the hierarchy.

• Challenge 3: Scaling the network analysis. In network data, the number of possi-
ble links grows quadratically with the number of nodes. This limits the scalability
of many previous techniques [6, 127]. In contrast, TopicBlock’s complexity scales
linearly with the number of nodes and the depth of the hierarchy. This is possible
due to the hierarchically-structured latent representation, which has the flexibility to
model link probabilities finely where necessary (at the leaf level), while backing off
to a coarse representation where possible (between nodes in disparate parts of the
hierarchy).

We apply TopicBlock to two datasets. The first is Simple English Wikipedia, in which
documents on a very broad array of subjects are connected by hyperlinks. The second is
the ACL Anthology [20], a collection of scientific research articles, in which documents
are connected by citations. TopicBlock yields hierarchies which are coherent with re-
spect to both text and relational structure, grouping documents which share terms and also
contain dense relational patterns. In the ACL Anthology data, we evaluate the capability
of TopicBlock to recommend citation links from text alone. In the Wikipedia data, we
evaluate TopicBlock’s ability to identify the correct target of a hyperlink that is lexically
ambiguous.

Related work

There is substantial prior work on hierarchical document clustering. Early approaches
were greedy, using single-link or complete-link heuristics [172]. This yields a dendrogram
of documents, in which a root node is decomposed in a series of binary branching deci-
sions until every leaf contains a single document. We prefer flatter trees with fewer non-
terminals, which are more similar to manually-curated hierarchies.11 Other work on hier-
archical clustering includes top-down techniques for iteratively partitioning the data [182],

11e.g., the Open Directory Project, http://www.dmoz.org
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search-based incremental methods [149], probabilistic modeling of manually-created tax-
onomies [135], and interactive exploration [39].

The splitting and merging decisions that characterize most hierarchical clustering al-
gorithms can be made on the basis of Bayesian hypothesis tests [71]. However, our work
more closely relates to Bayesian generative models over the document content, as we fo-
cus on inducing a latent structure that provides a likely explanation for the observed text
and links. Hierarchical latent Dirichlet allocation (hLDA) is a prototypical example of
such an approach: each document sits on a path through a hierarchy with unbounded tree-
width, and the text is generated from a mixture of multinomials along the path. We extend
hLDA by incorporating network data, enabling a better understanding of the relationship
between these two modalities. Adams et al. [1] present a hierarchical topic model which
differs from hLDA in that documents can be located at any level, rather than exclusively at
leaf nodes. Because all content for each document is generated from the hierarchy node at
which it sits, the generative distributions must be formed by chaining together conjugate
priors, requiring more complex inference.

In the purely-network setting without text, clustering is also called “community de-
tection”12 [101]. In this setting, graph-based approaches such as normalized-cut [153]
(which we discussed in previous sections) are fast and deterministic, but often require
the desired number of clusters to be specified in advance, and do not easily generalize
to hierarchical models. SHRINK [83] induces a hierarchical clustering that prioritizes
high modularity, while tolerating hubs and outliers that violate the traditional hierarchical
structure. However, our work is more closely related to probabilistic approaches, which
provide a principled way to combine content and network structure. Clauset et al. show
that hierarchical community discovery can be obtained using a Monte Carlo sampling al-
gorithm; the generative model assigns a link probability at each node in the hierarchy, and
the sampling moves then converge on a stationary distribution centered on a hierarchy with
high likelihood of generating the observed links [37]. However, this model is restricted to
dendrograms, or binary trees, which are unlike the flatter hierarchies produced by human
curators.

An alternative line of work on network clustering begins with the Stochastic Block
Model (SBM) [81]. The SBM is a generative model in which nodes are partitioned into
communities, which in turn determine the link probabilities. This idea was extended in the
mixed-membership stochastic blockmodel (MMSB) [6], where each node has a mixed-
membership vector over possible “roles”; an additional pair of latent variables selects the

12 While “community detection” is our preferred term to describe network clustering, in this particular
section, we are dealing with tasks that, historically, are more closely related to Natural Language Processing
and Information Retrieval research. Hence we use the terminology common in those domains.
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roles that are relevant for each potential network connection. The multiscale community
block model (MSCB) places this idea in a non-parametric hierarchical setting: each doc-
ument is associated with a path through a hierarchy, and the roles correspond to levels on
the path [73]. Both the MSCB and MMSB assign latent variables to every potential link,
so that each sampling pass requires O(N2) complexity in the number of nodes.

A key feature of TopicBlock is that we merge text and network data, with the goal
of inducing a more robust hierarchy and enabling applications in which the two modali-
ties can help to explain each other. Mei et al. combine latent topic models with network
information by compiling the network into a regularizer that encourages the topic propor-
tions of linked documents to be similar [120]. This approach encodes the network into the
structure of the generative model, so it does not permit probabilistic inferences about the
likelihood of additional network connections. Topic-sensitive PageRank [69] takes a dif-
ferent notion of “topic,” seeding each topic with documents from the top-level categories
of the manually-curated Open Directory Project hierarchy. This method is designed to
support information retrieval, and does not permit probabilistic modeling of new content
or unseen links. Unlike both of these approaches, TopicBlock is generative over both text
and links.

Much of the prior work on joint generative models of text and links falls into two
classes. In one class, the identity of the target and/or source of the link is encoded as a
discrete random variable [38, 127, 61, 119, 147]. Such models permit probabilistic infer-
ence within the documents in the training set, but they are closed to outside documents; it
is not possible to use the text of an unseen document to predict who will link to it. In the
second class of models, each link is a binary random variable generated from a Bernoulli
distribution that is parametrized by the topical similarity of the documents. In the Rela-
tional Topic Model (RTM), the link probability is a function of the topical similarity [32]
(Liu et al. extend the RTM by incorporating a per-document “community” membership
vector [114]). The RTM treats non-edges as hidden data, so its complexity is linear in
the number of edges, and thus less than the O(N2) required by the blockmodel variants.
Such a model is encouraged to assign arbitrarily high likelihood to the observed links,
leading to instability in the parameter estimates, which must be corrected by a regulariza-
tion heuristic. In contrast, we model both edges and non-edges probabilistically, achieving
sub-quadratic complexity by limiting the flexibility of the link probability model.

2.3.1 Infinite, Hierarchical, Text-Annotated Network Model

TopicBlock treats document text and relational links as emissions from a latent hierarchy,
which has fixed depth L but a nonparametric branching factor at each non-terminal. Each
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document is represented as a complete path through the hierarchy, with words generated
from a mixture across levels in the path, and links generated directly from the paths. We
now present the model in detail. A summary of the hypothesized generative process is
presented in Table 2.2, and a plate diagram is shown in Figure 2.16.

Latent hierarchy

Each document’s position in the hierarchy is denoted by anL×1 vector of integers ri ∈ ZL,
which we call a path. The path is interpreted as follows: ri1 denotes the hierarchy branch
taken by document i from level 0 (the implicit root, denoted by r0) to level 1, ri2 denotes
the branch taken from level 1 to level 2 relative to ri1 (the branch just taken), and so forth.
Example: ri = (2, 1, 3, . . . ) says that entity i is reached by taking the 2nd branch from the
root, then the 1st branch at the node we just arrived at, followed by the 3rd branch at the
next node, etc. The set of all paths ri fully determines the shape of the hierarchy.

The nested Chinese Restaurant Process (nCRP) provides a suitable Bayesian prior
for non-parametric hierarchies [22]. Each path is obtained by making a series of draws
from standard Chinese Restaurant Processes associated with each node in the hierarchy.
This prior displays the “rich-get-richer” property: at each level, a draw is likely to follow
branches taken by previous documents; however, there is always a possibility of choosing
a new branch which has never been taken before. Blei et al. [22] show that this model per-
mits collapsed sampling in a way that follows naturally from the original Chinese Restau-
rant Process.

Generating words and links

We assume that each document i ∈ {1, . . . , N} is associated with two kinds of observed
data. The first is a collection of words w, where wik denotes the k-th word associated with
document i, and Mi is the total number of word tokens in document i. The second type of
observation is a collection of directed links to other documents, referred to as a network.
This network is given as an N × N adjacency matrix E, such that Eij = 1 denotes the
presence of a (directed) link from document i to document j, while Eij = 0 denotes its
absence. We ignore self-links Eii.

Every node in the hierarchy represents a distribution over words and links; documents
whose path contains a hierarchy node h can draw their words and links from the distribu-
tions in h. More formally, every hierarchy node h is associated with two distributions. For
the text, we define a set of vocabularies βh which generate words wik; specifically, βh is a
V -dimensional multinomial parameter representing a distribution over words, as in LDA.
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Figure 2.16: Graphical model illustration

For the links, we define a set of link-density probabilities Φh. Here, Φh is the probability of
generating a link between documents whose paths both contain hierarchy node h. In cases
where two document paths share multiple hierarchy nodes, we take h to be the deepest
shared node, which may be the root of the tree.

Words Document text is generated from a bag-of-words model, in which each word is
produced by some node along the document’s path through the hierarchy. On this view,
some words will be general and could appear in any document (these words are drawn
from the root) while others will be specific (these are drawn from a leaf). This encour-
ages a hierarchy in which the most similar documents are grouped at the leaf level, while
moderately similar documents are grouped at coarser levels of the hierarchy.

More formally, the words for document i are generated from a mixture of the β dis-
tributions found along the path ri, including the implicit root. Each word wik associated
with document i can be generated by any of the path nodes ri1, . . . , riL or the root r0. The
specific path node chosen to generate wik is given by a level indicator zik ∈ {0, . . . , L},
for example, zik = 3 means that wik is generated from the vocabulary βh associated with
the hierarchy node at (ri1, ri2, ri3). These level indicators zik are drawn from (L + 1)-
dimensional multinomial parameters πi, which we refer to as level distributions. Intu-
itively, these represent document i’s preference for shallower or deeper hierarchy levels.
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Links The generative model for links between documents is motivated by the intuition
that the non-terminals of the hierarchy represent progressively more specific communities
of documents. While one might explicitly model the link probability between, say, or-
ganic chemistry and ancient Greek history (as distinct from the likelihood of links from
organic chemistry to ancient Roman history), a much simpler and more tractable model
can be obtained by using the hierarchical structure to abstract this relationship. We make
the simplifying assumption that relations between communities in disparate parts of the
hierarchy can be summarized by their deepest common ancestor. As a result, the number
of parameters grows linearly rather than quadratically with the number of non-terminals.

More formally, each nonterminal h has an associated Bernoulli parameter Φh, which
indicates the link-likelihood between documents that share h as their deepest common
ancestor. We define S(ri, rj) as a function that selects the deepest shared Φh between the
paths ri, rj:

SΦ(ri, rj) := Φh (2.18)

h := (ri1, . . . , riω), ω := arg max
k≥0

I(ri,1:k = rj,1:k),

so that,
P (E | r,Φ) =

∏
i,j 6=i

SΦ(ri, rj)
Eij (1− SΦ(ri, rj))

1−Eij .

The likelihood is a product over all N2 potential links, but as we will see, it can be
computed in fewer than O(N2) steps. Note that SΦ(ri, rj) will select the root parameter
Φr0 when ri and rj are completely different.

Parameters

TopicBlock has four parameter types: the paths ri, level distributions πi, word probabilities
βh, and the link probabilities Φh. Each parameter is drawn from a suitable prior: the
paths ri are drawn from a depth-L nCRP(γ); the level distributions πi are drawn from
Dirichlet(α); the topics βh are drawn from a symmetric Dirichlet(ηk) (where k is the depth
of node h); and the link probabilities Φh are drawn from Beta(λ1, λ2). The hyperparameter
γ > 0 is an L×1 vector, while α, η > 0 are (L+1)×1 vectors, and λ1, λ2 > 0 are scalars.

2.3.2 Nonparametric Inference

Exact inference on our model is intractable, so we derive a collapsed Gibbs sampler for
posterior inference [144]. We integrate out π, β and Φ for faster mixing (collapsed sam-
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• Draw the hierarchy — for each entity i:

– Path ri ∼ nCRP(γ)

– Word level distribution πi ∼ Dirichlet(α)

• Draw hierarchy node parameters — for each node h:

– Word probabilities βh ∼ Dirichlet(ηdepth(h))

– Link probabilities Φh ∼ Beta(λ1, λ2)

• Draw text — for each entity i and word k:

– Word level zik ∼ Multinomial(πi)

– Word wik ∼ Multinomial(βh),
where h is the hierarchy node at (ri,1, . . . , ri,zik)

• Draw network — for each pair of entities i and j 6= i:

– Link Eij ∼ Bernoulli(SΦ(ri, rj)), where SΦ() is defined in Section 2.3.1

Table 2.2: The generative process for TopicBlock’s model of text and relational connections

pling for topic models was introduced in [60]), so we need sample only the paths r and
word levels z. We present the sampling distributions for these parameters now.

Word levels z The sampling distribution of zik is

P(zik | r, z−(ik),E,w)

∝ P(wik, zik | r, z−(ik),E,w−(ik))

= P(wik | r, z,w−(ik))P(zik | zi,(−k)) (2.19)

where zi,(−k) = {zi·}\zik and w−(ik) = {w.}\wik. The first term represents the likelihood;
for a particular value of zik, it is

P(wik | r, z,w−(ik)) =
ηzik + awik

V ηzik +
∑V

v=1 av
, (2.20)

av = |{(x, y) | (x, y) 6= (i, k), zxy = zik,

(rx1, . . . , rxzxy) = (ri1, . . . , rizik), wxy = v
}∣∣ .

In plain English, av is the number of words wxy equal to v (excluding wik) and coming
from hierarchy position (ri1, . . . , rizik). Thus, we are computing the empirical frequency
of emitting word v, smoothed by level zik’s symmetric Dirichlet prior ηzik .
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The second term represents the prior on zik:

P(zik | zi,(−k)) =
αzik + #[zi,(−k) = zik]∑L
`=1 α` + #[zi,(−k) = `]

. (2.21)

Paths r The sampling distribution for the path ri is

P(ri | r−i, z,E,w) (2.22)

∝ P(ri,E(i·),(·i),wi | r−i, z,E−(i·),−(·i),w−i)

= P(E(i·),(·i) | r,E−(i·),−(·i))P(wi | r, z,w−i)P(ri | r−i)

where wi = {wi·} is the set of tokens in document i, and w−i is its complement. E(i,·),(·,i) =
{Exy | x = i ∨ y = i} is the set of all links touching document i and E−(i,·),−(·,i) is its
complement. In particular, the set E(i,·),(·,i) is just the i-th row and i-th column of the
adjacency matrix E, sans the self-link Eii.

Equation 2.22 decomposes into three terms, corresponding to link likelihoods, word
likelihoods, and the path prior distribution respectively. The first term represents the link
likelihoods for all links touching document i. These likelihoods are Bernoulli distributed,
with a Beta prior; marginalizing the parameter Φ yields a Beta-Bernoulli distribution,
which has an analytic closed-form:∏

Φ∈Φ(i·),(·i)

Γ(A+B+λ1+λ2)
Γ(A+λ1)Γ(B+λ2) ·

Γ(A+C+λ1)Γ(B+D+λ2)
Γ(A+B+C+D+λ1+λ2) (2.23)

Φ(i·),(·i) ={Φh |∃(x, y)[Exy∈E(i·),(·i), S
xy
Φ =Φh]}

A =
∣∣{(x, y) | Exy∈E−(i·),−(·i), SxyΦ =Φ, Exy=1

}∣∣
B =

∣∣{(x, y) | Exy∈E−(i·),−(·i), SxyΦ =Φ, Exy=0
}∣∣

C =
∣∣{(x, y) | Exy∈E(i·),(·i), SxyΦ =Φ, Exy=1

}∣∣
D =

∣∣{(x, y) | Exy∈E(i·),(·i), SxyΦ =Φ, Exy=0
}∣∣

where Φ(i·),(·i) is the set of all link probability parameters Φh touched by the link set
E(i,·),(·,i). Observe that only those Φh along path ri (or the root) can be in this set, thus it
has size |Φ(i·),(·i)| ≤ L+ 1. Also, note that the terms A,B,C,D depend on Φ. The second
term of Equation 2.22 represents the word likelihoods:

L∏
`=1

Γ(V η`+
∑V
v=1 G`,v)∏V

v=1 Γ(G`,v+η`)
·
∏V
v=1 Γ(G`,v+H`,v+η`)

Γ(V η`+
∑V
v=1G`,v+H`,v)

(2.24)

G`,v = |{(x, y) | x 6= i, zxy = `,

(rx1, . . . , rx`) = (ri1, . . . , ri`), wxy = v}|
H`,v = |{y | ziy = `, wiy = v}|
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where V is the vocabulary size. G`,v is just the number of words in w−i equal to v and
coming from hierarchy position (ri1, . . . , ri`). H`,v is similarly defined, but for words in
wi.

The third term of Equation 2.22 represents the probability of drawing the path ri from
the nCRP. As previously discussed in Section 2.2, the exhangeability of the nCRP allows
us to draw each path ri one at a time, conditioned on all previously drawn paths. Moreover,
we can further decompose the drawing of a single path ri over each level at a time, starting
from the the top. From Section 2.2, recall the recursive nCRP equation over paths ri and
depths `:

P(ri` = x | r−i, ri,1:(`−1)) = (2.25)
|{j 6=i | rj,1:(`−1)=ri,1:(`−1),rj`=x}|
|{j 6=i | rj,1:(`−1)=ri,1:(`−1)}|+γ` if x is an existing branch,

γ`

|{j 6=i | rj,1:(`−1)=ri,1:(`−1)}|+γ` if x is a new branch

This equation gives the probability of path ri taking branch x at depth `. At step ` in
the path, the probability of following an existing branch is proportional to the number
of documents already in that branch, while the probability of creating a new branch is
proportional to γ`.

Hyperparameter Tuning The hyperparameters γ, α, η, λ1, λ2 significantly influence the
size and shape of the hierarchy. We automatically choose suitable values for them by en-
dowing γ, α, η with a symmetric Dirichlet(1) hyperprior, and λ1, λ2 with an Exponential(1)
hyperprior. Using the Metropolis-Hastings algorithm with these hyperpriors as proposal
distributions, we sample new values for γ, α, η, λ1, λ2 after every Gibbs sampling iteration.

Linear time Gibbs sampling

To be practical on larger datasets, each Gibbs sampling sweep must have runtime linear
in both the number of tokens and the number of 1-links Eij = 1. This is problematic
for standard implementations of generative network models such as ours, because we are
modeling the generative probability of all 1-links and 0-links. The sufficient statistics for
each Φh are the number of 1-links and 0-links, and these statistics must be updated when
we resample the paths ri. Naı̈vely updating these parameters would take O(N) time since
there are 2N − 2 links touching document i. It follows that a Gibbs sampling sweep over
all ri would require O(N2) quadratic runtime.
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The solution is to maintain an augmented set of sufficient statistics for Φh. Define
h ⊆ ri to be true if path ri passes through node h. Then the augmented sufficient statistics
are:

1. Uh,i =
∑

j 6=i(Eij + Eji)I(h ⊆ ri, h ⊆ rj), the number of 1-links touching document i and
drawn from Φh and its descendants.

2. Uh =
∑

i,j EijI(h ⊆ ri, h ⊆ rj), the number of 1-links drawn from Φh and its hierarchy
descendants.

3. uh =
∑

h′∈children(h) Uh′ , the number of 1-links drawn from Φh’s descendants only.

4. Th =
∑

i I(h ⊆ ri), the number of documents at h and its descendants.

5. th =
∑

h′∈children(h) Th′ , the number of documents at h’s descendants only.

The number of 0- or 1-links specifically at Φh is given by

#[1-links at h] = Uh − uh (2.26)
#[0-links at h] = [(Th)(Th − 1)− (th)(th − 1)]− (Uh − uh)

Before sampling a new value for document i’s path ri, we need to remove its edge set
E(i,·),(·,i) from the above sufficient statistics. Once ri has been sampled, we need to add
E(i,·),(·,i) back to the sufficient statistics, based on the new ri. Algorithms 2, 3 perform
these operations efficiently; observe that they run in O(PiL) time where Pi is the number
of 1-links touching document i. Letting P be the total number of 1-links in E, we see that
a Gibbs sampler sweep over all ri spends O(PL) time updating Φh sufficient statistics,
which is linear in P .

The remaining work for sampling ri boils down to (1) calculating existing and new
path probabilities through the hierarchy, and (2) updating sufficient statistics related to the
vocabularies β. Calculating the path probabilities requires O(HLV ) time, where H is the
number of hierarchy nodes and V is the vocabulary size; updating the vocabularies requires
O(MiL) time where Mi is the number of tokens wik belonging to document i. Thus, the
total runtime required to sweep over all ri is O(PL + NHLV + ML) where M is the
total number of tokens w. Treating L,H, V as constants and noting that N ≤ M , we see
that sampling all ri is indeed linear in the number of tokens M and number of 1-links P .
We also need to sample each word level zik, which takes O(L) time (including sufficient
statistic updates) for a total of O(ML) linear work over all z. Finally, the hyperparameter
tuning steps require us to compute the probability of all tokens w and links E given the
paths r and word levels z, which can be performed in at most linear O(PL + ML) time.
Since we only update the hyperparameters once after every Gibbs sampling sweep, our
total runtime per sweep remains linear.
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Algorithm 2 Removing document i from sufficient statistics of Φh

Let h0, . . . , hL be the hierarchy nodes along ri.
Let A be a temporary variable.
for ` = L . . . 0 do

if ` < L then
uh` ← uh` − (A− Uh`+1

)
th` ← th` − 1

end if
A← Uh` (Store the original value of Uh`)
Uh` ← Uh` − Uh`,i
Th` ← Th` − 1
for j s.t. j ∈ Neighbors(i) and h` ⊆ rj do
Uh`,j ← Uh`,j − I(Eij = 1)− I(Eji = 1)
Uh`,i ← Uh`,i − I(Eij = 1)− I(Eji = 1)

end for
end for

We contrast our linear efficiency with alternative models such as the Mixed-Membership
Stochastic Block Model (MMSB [6]) and Pairwise Link-LDA [127]. The inference tech-
niques presented in those papers are quadratic in the number of nodes, so it would be very
difficult for serial implementations to scale to the 104 node datasets that we handle in this
section.

2.3.3 Evaluation

Data

We evaluate our system on two corpora: Wikipedia and the ACL Anthology. The Wikipedia
dataset is meant to capture familiar concepts which are easily comprehended by non-
experts; the ACL Anthology dataset tests the ability of our model to build reasonable
taxonomies for more technical datasets. We expect different network behavior for the two
datasets: a Wikipedia page can contain an arbitrary number of citations, while research ar-
ticles may be space-limited, and can only cite articles which have already been published.
Thus, the ACL dataset may fail to include many links which would seem to be demanded
by the text, but were omitted due to space constraints or simply because the relevant article
had not yet been published. The Wikipedia dataset poses its own challenges, as some links
are almost completely unrelated to document topical content. For example, the article on
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Algorithm 3 Adding document i to sufficient statistics of Φh

Let h0, . . . , hL be the hierarchy nodes along ri.
Let A be a temporary variable.
for ` = L . . . 0 do

if ` < L then
uh` ← uh` + (Uh`+1

− A)
th` ← th` + 1

end if
for j s.t. j ∈ Neighbors(i) and h` ⊆ rj do
Uh`,j ← Uh`,j + I(Eij = 1) + I(Eji = 1)
Uh`,i ← Uh`,i + I(Eij = 1) + I(Eji = 1)

end for
A← Uh` (Store the original value of Uh`)
Uh` ← Uh` + Uh`,i
Th` ← Th` + 1

end for

Wikipedia ACL Anthology
documents 14,675 15,032
tokens 1,467,500 2,913,665
links 134,827 41,112
vocabulary 10,013 2,505

Table 2.3: Basic statistics about each dataset

DNA contains a link to the article on Switzerland, because DNA was first isolated by a
Swiss scientist.

Simple English Wikipedia Our first dataset is built from Wikipedia; our goal is to use
the text and hyperlinks in this dataset to induce a hierarchical structure that reflects the
underlying content and connections. We chose this dataset because the content is written
at a non-technical level, allowing easy inspection for non-experts. The dataset supports
the evaluation of link resolution (defined in Section 2.3.3).

There is previous work on modeling the topics underlying Wikipedia data [61, 136].
Gruber et al. [61] constructed a small corpus of text and links by crawling 105 pages
starting from the page for the NIPS conference, capturing 799 in-collection links. Our goal
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was a much larger-scale evaluation; in addition, we were concerned that a crawl-based
approach would bias the resulting network to implicitly reflect a hierarchical structure
(centered on the seed node) and an unusually dense network of links.

Instead of building a dataset by crawling, we downloaded the entire “Simple English”
Wikipedia, a set of 133,462 articles written in easy-to-read English. Many of these doc-
uments are very short, including placeholders for future articles. We limited our corpus
to documents that were at least 100 tokens in length (using the LingPipe tokenizer [9]),
and considered only articles (ignoring discussion pages, templates, etc.). This resulted
in a corpus of 14675 documents. The link data includes all 152,674 in-collection hyper-
links; the text data consists of the first 100 tokens of each document, resulting in a total of
1,467,500 tokens. We limited the vocabulary to all words appearing at least as frequently
as the 10,000th most frequent word, resulting in a total vocabulary of 10,013. We apply a
standard filter to remove stopwords [110].

ACL Anthology Our second dataset is based on the scientific literature, which contains
both text and citations between documents. The ACL anthology is a curated collection
of papers published in computational lingusitics venues, dating back to 1965 [20]. We
downloaded the 2009 release of this dataset, including papers up to that year, for a total
of 15,032 documents. Taxonomy induction on research corpora can serve an important
function, as manually-curated taxonomies always risk falling behind new developments
which may splinter new fields or unite disparate ones. As noted above, we use the entire
ACL Anthology dataset from 1965 to 2009. We limit the vocabulary to 2,500 terms, and
limit each document to the first 200 tokens — roughly equivalent to the title and abstract
— and remove stopwords [110].

There is substantial previous work on the ACL Anthology, including temporal and bib-
liometric analysis [65, 140], citation prediction [16], and recognition of latent themes [64]
and influence [47, 126]. However, none of this work has considered the problem of induc-
ing hierarchical structure of the discipline of computational linguistics.

Our quantitative evaluation addresses the citation-prediction task considered by Bethard
and Jurafsky [16]. Following their methodology, we restrict our quantitative analysis to
the 1,739 journal and conference papers from 2000 to 2009. Our version of the corpus is a
more recent release, so our data subset is very similar but not identical to their evaluation
set.
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Quantitative Analysis — Overview

We present a series of quantitative and qualitative evalutions of TopicBlock’s ability to
learn accurate and interpretable models of networked text. Our main evaluations test the
ability of TopicBlock to predict and resolve ambiguous links involving heldout documents.

System Details For all experiments, we use an L = 2 hierarchy (root plus two levels)
unless otherwise stated. We initialize TopicBlock’s document paths r by using a Dirichlet
Process Mixture Model (essentially a one-level, text-only TopicBlock with no shared root)
in a recursive clustering fashion, which provides a good starting hierarchy. From there,
we ran our Gibbs sampler cum Metropolis-Hastings algorithm for 2,500 passes through
the data or for 7 days, whichever came first; our slowest experiments completed at least
1,000 passes. All experiments were run with 10 repeat trials, and results were always ob-
tained from the most recent sample. We selected the best trial according to experimentally-
relevant criteria: for the qualitative analyses (Section 2.3.3), we selected according to sam-
ple log-likelihood; in the citation prediction task we employed a development set; in the
link resolution task we show the results of all trials.

Quantitative Analysis — Citation Prediction

Our citation prediction evaluation uses the induced TopicBlock hierarchy to predict out-
going citation links from documents which were not seen during training time. For this
evaluation, we use the 1,739-paper ACL subset described earlier. Citation prediction has
been considered in prior research; for example, Bethard and Jurafsky present a supervised
algorithm that considers a broad range of features, including both content and citation in-
formation [16]. We view our approach as complementary; our hierarchical model could
provide features for such a discriminative approach. He et al. attack the related problem
of recommending citations in the context of a snippet of text describing the purpose of the
citation [70], focusing on concept-based relevance between citing and cited documents.
Again, one might combine these approaches by mining the local context to determine
which part of the induced hierarchy is most likely to contain the desired citation.

Metric We evaluate using mean average precision, an information retrieval metric de-
signed for ranking tasks [117]. The average precision is the mean of the precisions at the
ranks of all the relevant examples; mean average precision takes the mean of the aver-
age precisions across all queries (heldout documents). This metric can be viewed as an
approximation to the area under the precision-recall curve.
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Systems We divided the 1,739-paper ACL subset into a training set (papers from 2000-
2006), a development set (2006-2007), and a heldout set (2008-2009). For each experi-
ment we conducted 10 trials, using the following procedure:

1. build a topic hierarchy from the training set using TOPICBLOCK,
2. fit the development set text to the learnt hierarchy, and predict development links,
3. retrieve the trial with the highest mean average precision over development set links,
4. fit the heldout set text to that trial’s hierarchy, and predict heldout links,
5. compute mean average precision over heldout set links.

In essence, the development set is being used to select the best-trained model with respect
to the citation prediction task. The final predictions were obtained by inferring each test
document’s most appropriate hierarchy path r given only its text, and then using the path
r to predict links to training documents according to our network model.

Baselines To evaluate the contribution of jointly modeling text with network structure,
we compare against hierarchical latent Dirichlet allocation (HLDA) [22], a closely-related
model which ignores network structure. We use our own implementation, which is based
on the TOPICBLOCK codebase. As HLDA does not explicitly model links, we postfit a
hierarchical blockmodel to the induced hierarchy over the training data; this hierarchy is
learnt only from the text. Thus, the comparison with HLDA directly tests the contribution
of network information to the quality of the hierarchy, over what the text already provides.
After postfitting the blockmodel, we fit the development and heldout sets as described
earlier.

We can also isolate the contribution of network information to the hierarchy, by learn-
ing the shape of the hierarchy based on network contributions but not text. After learning
the hierarchy’s shape (which is defined by the paths r) this way, we postfit text topics to
this hierarchy by running hLDA while keeping the paths r fixed. Then we fit the develop-
ment and heldout sets as usual. This approach can be viewed as a hierarchical stochastic
blockmodel, so we name the system HSBM.

Note that HLDA and HSBM are in fact ablations of TOPICBLOCK — HLDA is TOP-
ICBLOCK with the network model disabled, while HSBM is TOPICBLOCK with the text
model disabled. Hence the HLDA and HSBM baselines also serve as an ablation study
for TOPICBLOCK, allowing us to assess the relative contributions of the text and network
parts of the TOPICBLOCK model.

Next, we consider a simpler text-only baseline, predicting links based on the term
similarity between the query and each possible target document; specifically, we use the
TF-IDF measure considered by Bethard and Jurafsky [16]. For a fair comparison, we use
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System Text? Network? Hierarchical? MAP
TOPICBLOCK x x x 0.137
HLDA x x 0.117
HSBM x x 0.112
IN-DEGREE x 0.0731
TF-IDF x 0.0144

Table 2.4: Results on the citation prediction task for the ACL Anthology data. Higher
scores are better. Note that HLDA is equivalent to TOPICBLOCK without the network
component, while HSBM is equivalent to TOPICBLOCK without text.

the same text which was available to TopicBlock and hLDA, which is the first 200 words
of each document.

Finally, we consider a network-only baseline, where we rank potential documents in
descending order of IN-DEGREE. In other words, we simply predict highly cited docu-
ments first.

There have been other works on citation prediction with text and network data [120,
69]; our focus is not on the citation prediction task itself, but on methods that organize net-
worked documents into hierarchies (our justification being that hierarchies are desireable
in themselves, as they are easy for humans to parse and interpret), as well as simple base-
lines such as TF-IDF and IN-DEGREE. Our experiments are meant to show that, when it
comes to learning hierarchies, joint training on text and network data yields better hierar-
chies (in the sense that they have better citation prediction accuracy), compared to learning
hierarchies on text data alone or network data alone.

Results As shown in Table 2.4, TOPICBLOCK achieves the highest MAP score of all
methods, besting the hierarchies trained using only text (HLDA) or only the network
(HSBM). Because HLDA and HSBM are ablations of TOPICBLOCK (with the network or
text parts of the model disabled, respectively), this result demonstrates that inducing hier-
archies from text and network modalities jointly yields quantitatively better performance
than post-hoc fitting of one modality to a hierarchy trained on the other. In addition, all
hierarchy-based methods beat the TF-IDF and IN-DEGREE baselines by a strong margin,
validating the use of hierarchies over simpler, non-hierarchical alternatives.
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Quantitative Analysis — Link Resolution

Wikipedia contains a substantial amount of name ambiguity, as multiple articles can share
the same title. For example, the term “mac” may refer to the Media Access Control ad-
dress, the luxury brand of personal computers, or the flagship sandwich from McDonalds.
The link resolution task is to determine which possible reference article was intended by
an ambiguous text string. In our Wikipedia data, there were 88 documents with the same
base name, such as “scale (music)” and “scale (map)”, and there were 435 references to
such articles. These references were initially unambiguous, but we removed the brack-
eted disambiguation information in order to evaluate TOPICBLOCK’s ability to resolve
ambiguous references.
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Figure 2.17: Wikipedia link resolution accuracy, plotted against proportion of links which
could be resolved by the hierarchy. The fact that hLDA and Cosine similarity barely
outperform random guessing demonstrates that training from text alone will not yield a
hierarchy that is coherent with the network structure. In contrast, joint training on both text
and network modalities (as TopicBlock does) significantly improves link disambiguation.

Systems We run TOPICBLOCK to induce a hierarchy over the training documents, and
then learn the best paths r for each of the 88 ambiguous documents according to just their
text. Then, for each of the 435 ambiguous references to the 88 target documents, we
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select the target with the highest link probability to the query document. If two targets are
equally probable, we select the one with the highest text similarity according to TF-IDF.
This experiment was conducted 10 times, and all results are shown in Figure 2.17. We
also compare against HLDA, which is run in the same way as TOPICBLOCK but trained
without network information, using hierarchy path similarity instead of link probability to
rank query documents. Finally, as a baseline we consider simply choosing the target with
the highest TEXT SIMILARITY.

Metric The evaluation metric for this task is accuracy: the proportion of ambiguous
links which were resolved correctly. In most cases the ambiguity set included only two
documents, so more complicated ranking metrics are unnecessary.

Results We performed ten different runs of TOPICBLOCK and HLDA. In each run, a
certain number of links could not be resolved by the hierarchy, because the target nodes
were equally probable with respect to the query node — in these cases, we use the TF-
IDF tie-breaker described above. Figure 2.17 plots the accuracy against the proportion of
links which could be resolved by the hierarchy. As shown in the figure, TOPICBLOCK

is superior to the TEXT SIMILARITY baseline on all ten runs. Moreover, the accuracy
increases with the specificity of the hierarchy with regard to the ambiguous links — in
other words, the added detail in these hierarchies coheres with the hidden hyperlinks. In
contrast, HLDA is rarely better than the cosine similarity baseline (which in turn is barely
better than random guessing), and does not improve in accuracy as the hierarchy specificity
increases. These points demonstrate that training from text alone will not yield a hierarchy
that coheres with network information, while training from both modalities improves link
disambiguation.

Qualitative Analysis

We perform a manual analysis to reveal the implications of our modeling decisions and
inference procedure for the induced hierarchies, showcasing our model’s successes while
highlighting areas for future improvement. Note that while the quantitative experiments
in the previous section required holding out portions of the data, here we report topic
hierarchies obtained by training on the entire dataset.

Wikipedia Figure 2.15 shows a fragment of the hierarchy induced from the Simple En-
glish Wikipedia Dataset. Unlike our other experiments, we have used an L = 3 (root plus
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Figure 2.18: The network block matrix for the Simple English Wikipedia data.

3 levels) hierarchy here to capture more detail. We have provided the topic labels manu-
ally; overall we can characterize the top level as comprised of: history (W1), culture (W2),
geography (W3), sports (W4), biology (W5), physical sciences (W6), technology (W7), and
weapons (W8). The subcategories of the sports topic are shown in the figure, but the other
subcategories are generally reasonable as well: for example biology (W5) divides into non-
human and human subtopics; history (W1) divides into modern (W1.1), religious (W1.2),
medieval (W1.3), and Japanese (W1.4). While a manually-created taxonomy would likely
favor parallel structure and thus avoid placing a region (Japan) and a genre (religion) along-
side two temporal epochs (modern and medieval), TopicBlock chooses an organization that
reflects the underlying word and link distributions.

Figure 2.18 shows the link structure for the Wikipedia data, with the source of the link
on the rows and the target on the columns. Documents are organized by their position in
the induced hierarchy. Topic 1 has a very high density of incoming links, reflecting the
generality of these concepts and their relation to many other documents. Overall, we see
very high link density at the finest level of detail (indicated by small dark blocks directly
on the diagonal), but we also see evidence of hierarchical link structure in the larger shaded
blocks such as culture (W2) and physical science (W6).
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Figure 2.19: 3-level topic hierarchy built from the ACL Anthology.

ACL Anthology The full ACL anthology hierarchy is shown in Figure 2.19, which gives
the top words corresponding to each topic, by TF-IDF.13 As before, the topic labels are pro-
vided by us; for simplicity we have chosen to focus on an L = 2-level hierarchy. The top-
level categories include both application areas (interactive systems (A1) and information
systems (A2)) as well as problem domains (discourse and semantics (A4); parsing (A6);
machine translation (A8)). These areas are often close matches for the session titles of rele-
vant conferences such as ACL.14 At the second level, we again see coherent topical group-
ings: for example, the children of information systems include popular shared tasks such
as named-entity recognition (A2.1), summarization (A2.3), and question answering (A2.4);
the children of discourse and semantics (A4) include well-known theoretical frameworks,
such as centering theory and propositional semantics (not shown here).

Occasionally, seemingly related topics are split into different parts of the tree. For ex-
ample, the keywords for both topics A3 and A6.1 relate to syntactic parsing. Nonetheless,
the citation links between these two topics are relatively sparse (see Figure 2.20), reveal-
ing a more subtle distinction: A3 focuses on representations and rule-driven approaches,
while A6.1 includes data-driven and statistical approaches.

As in the Wikipedia data, the network diagram (Figure 2.20) reveals evidence of hier-
archical block structures. For example, A2 contains 4101 links out of 4.4 million possible,

13Specifically, we multiplied the term frequency in the topic by the log of the inverse average term fre-
quency across all topics [21].

14http://www.acl2011.org/program.utf8.shtml
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Figure 2.20: The network block matrix for the ACL Anthology Data. Blocks correspond-
ing to links within/between A3 and A6.1 have been delineated by black rectangles. There
are 2190 and 2331 citation links within A3 and A6.1 respectively, but only 343 links be-
tween them.
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a density of 9.3 ∗ 10−4. This is substantially larger than the background density 1.8 ∗ 10−4,
but less than subtopics such as A2.1, which has a density of 6.4∗10−3. We observe similar
multilevel density for most of the high-level topics, except for interactive systems (A1),
which seems to be more fractured. One of the densest topics is machine translation (A8),
an area of computational linguistics which has become sufficiently distinct as to host its
own conferences.15

One could obtain more parallel structure by imposing a domain-specific solution for
research papers, such as Gupta and Manning’s work on identifying the “focus, technique,
and domain” of each article [64]; of course, such a solution would not necessarily gen-
eralize to Wikipedia articles or other document collections. While parallel structure is
desirable, it is often lacking even in taxonomies produced by human experts. For example,
a similar critique might be leveled at the sessions associated with a research conference,
or even the ACM taxonomy.16

15http://www.amtaweb.org/
16http://www.computer.org/portal/web/publications/acmtaxonomy
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Chapter 3

Modeling and Algorithmic Techniques
for Scaling to Larger Social Networks

Designing network analysis methods that scale to large networks is challenging for a vari-
ety of reasons: for one, graph data scales super-linearly in the number of nodes N — typ-
ically, the number of edges M � N , and the network adjacency matrix has N2 elements.
For another, the number of variables in the method’s state space may grow super-linearly
not just in N but also in K, the number of communities or latent space dimensions as-
sumed to be in the data. Since the the inference algorithms must touch every variable of the
state space, a super-linear state space quickly becomes computationally intractable at even
modest network scales. A good example of these challenges can be seen in the Mixed-
Membership Stochastic Blockmodel [6], a popular latent space network algorithm that,
because of its O(N2K2) runtime, is infeasible for networks with N > 100, 000 nodes or
K > 100 latent roles/communities. Finally, even when the data representation, modeling
and inference scalability challenges have been solved, we often find that a single machine
is still insufficient for very large networks with N > 100 million nodes. Hence, we must
turn to designing systems for distributed-parallel execution of these network methods.

To address these challenges, in this chapter we introduce our key data representation,
modeling and inference algorithm techniques, which we shall use to construct scalable
and efficient statistical models and inference algorithms for network analysis. By the end
of this chapter, we will have designed and validated a mixed-membership network model
for overlapping community detection and link prediction, which can handle networks with
N > 1 million nodes and K > 100 communities on a single multicore machine (as op-
posed to the N ≈ 10, 000 and K ≈ 100 network models previously seen in the Statistics
and Machine Learning literature). In the next and final chapter of this thesis, we will
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develop the distributed computation systems and distributed algorithmic techniques nec-
essary for realizing these models at N > 100 million and K > 1, 000 societal-level scales.
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3.1 Triangle Motifs for Scalable Network Modeling

We begin by introducing the concept of triangle motifs (Figures 3.1 and 3.2), which, in
this thesis, are the foundation to achieving accurate yet scalable network analysis. Trian-
gle motifs are subgraphs of 3 vertices that contain ≥ 2 edges (the “open” and “closed”
triangles), which have historically played an important role in network analysis within
many domains. After describing these triangle motifs, we will describe how to use them
to construct statistical, mixed-membership network models. Such models can be used for
latent space decomposition (in which the each network node is re-represented by a fea-
ture vector), as well as overlapping community detection and link prediction, among other
tasks. For example, in overlapping community detection, the goal is to find the set of net-
work communities that each vertex i belongs to. A vertex can belong to more than one
network community, which makes overlapping community detection particularly suited
for analyzing social networks, in which actors are expected to belong to multiple social
groups.

Throughout this section, I shall consider undirected networks over N vertices (such as
friendship networks), and I shall use the term “1-edge” to refer to edges that exist between
two vertices, and the term “0-edge” to refer to missing edges.

3.1.1 Triangle Motifs and their Properties

A triangle motif Eijk over 3 vertices i < j < k is simply the type of subgraph exhibited
by those 3 vertices. There are 4 basic classes of triangle motifs (Figure 3.2), distinguished
by their number of 1-edges: full-triangle ∆3 (three 1-edges), 2-triangle ∆2 (two 1-edges),
1-triangle ∆1 (one 1-edge), and empty-triangle ∆0 (no 1-edges). The total number of
triangles, over all 4 classes, is Θ(N3). However, the goal is not to account for all 4 classes;
instead, I shall focus on ∆3 and ∆2 while ignoring ∆1 and ∆0. There are three key
motivations for this:

1. In the network literature, the most commonly studied “network motifs” [122], de-
fined as patterns of significantly recurring inter-connections in complex networks,
are the three-node connected subgraphs (namely ∆3 and ∆2) [122, 155, 95, 107,
130].

2. Since the full-triangle and 2-triangle classes are regarded as the basic structural el-
ements of most networks [155, 122, 95, 107, 130], one naturally expects them to
characterize most of the community structure in networks. In particular, the ∆3
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and ∆2 triangle motifs preserve almost all 1-edges from the original network: ev-
ery 1-edge appears in some triangle motif ∆2,∆3, except for isolated 1-edges (i.e.
connected components of size 2), which are less interesting from a large-scale com-
munity detection perspective.

3. For real networks, which have far more 0- than 1-edges, focusing only on ∆3 and
∆2 greatly reduces the number of triangle motifs, via the following lemma:

Lemma 1. The total number of ∆3’s and ∆2’s is upper bounded by
∑

i
1
2
(Di)(Di − 1) =

Θ(
∑

iD
2
i ), where Di is the degree of vertex i.

Proof. Let Ni be the neighbor set of vertex i. For each vertex i, form the set Ti of tuples
(i, j, k) where j < k and j, k ∈ Ni, which represents the set of all pairs of neighbors of
i. Because j and k are neighbors of i, for every tuple (i, j, k) ∈ Ti, Eijk is either a ∆3

or a ∆2. It is easy to see that each ∆2 is accounted for by exactly one Ti, where i is the
center vertex of the ∆2, and that each ∆3 is accounted for by three sets Ti, Tj and Tk, one
for each vertex in the full-triangle. Thus,

∑
i |Ti| =

∑
i

1
2
(Di)(Di − 1) is an upper bound

of the total number of ∆3’s and ∆2’s.

By modifying the preceding argument slightly, we can also show that 1
3

∑
i |Ti| lower

bounds the total number of ∆3’s and ∆2’s.

For networks with low maximum degree D, Θ(
∑

iD
2
i ) = Θ(ND2) is typically much

smaller than Θ(N2), allowing triangle models to scale to larger networks than edge-based
models. However, real-world networks often feature a high maximum degree due to
power-law behavior. For such networks, we shall use two sampling-based techniques to
keep algorithmic runtimes within reason.

3.1.2 Subsampling Triangular Motifs for High-Degree Networks

δ-subsampling Triangles before Model Construction

The first subsampling technique, δ-subsampling, is based on the idea that we can use
a smaller subsample of triangles as input to a statistical network model, rather than the
full network. Unlike a naive sampling procedure where triangles are picked uniformly
at random, δ-subsampling guarantees that every node will have a minimum number of
triangles touching it. This ensures that there will be enough data samples per node to
properly infer all node mixed-membership vectors.

The δ-subsampling procedure proceeds as follows: for every vertex iwith degreeDi >
δ, where δ is a user-chosen threshold, sample 1

2
δ(δ− 1) triangles without replacement and
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1 - 1 1 0 0 

2 1 - 0 1 1 

3 1 0 - 1 0 
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Figure 3.1: Three different representations of the same network: as a graph, as an adja-
cency matrix, and as a list of 2-edge and 3-edge triangle motifs.
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Figure 3.2: Four types of triangle motifs: (a) full-triangle; (b) 2-triangle; (c) 1-triangle; (d)
empty-triangle. For mixed-membership community detection, I only focus on full-
triangles and 2-triangles.

uniformly at random from Ti. Intuitively, this is similar to capping the network’s maximum
degree at Ds = δ, since a node with degree δ would have exactly 1

2
δ(δ−1) triangles. Note

that this subsampling procedure can choose a given full-triangle ∆3 in three different ways
(by starting with any of the nodes), and I let a given ∆3 associated with vertices i, j and k
appear in the final subsample only if it has been subsampled from at least one of Ti, Tj and
Tk. In other words, to obtain the set of all subsampled triangles ∆2 and ∆3, I simply take
the union of subsampled triangles from each Ti, discarding those full-triangles duplicated
in the subsamples. The time complexity of this procedure is O(Nδ2) in expectation, since
it takes O(1) amortized expected time to produce each sample1.

1Note that we can check if a triangle is ∆3 or ∆2 by looking up a hash table containing all edges in the
network; this lookup also has amortized time complexity O(1). The constant factor to the time complexity
depends on the storage medium: if the edge hash table is stored in memory or on a solid-state drive (which
have low random access latencies), then the constant factor will be small. However, if the edge hash table
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One might ask why we need to subsample individual triangles, rather than simply
counting the number of ∆3 and ∆2 that touch each node [166]. The reason is that our
soon-to-be-introduced triangular network model actually requires the node identities of
each triangle, i.e. for every triangle that touches a node i, we need to know the other two
participants j and k. Intuitively, the model uses the overlapping communities detected
for j, k to update the overlapping communities for i — therefore the model must treat a
triangle on nodes (i, j, k) differently from a triangle on nodes (i, a, b) (where a 6= j and
b 6= k). Hence a simple count of ∆3 and ∆2 at node i will not suffice.

Although this node-centric subsampling does not preserve all properties of a network,
such as the distribution of node degrees, it approximately preserves some of the local
network properties at each vertex. Specifically, the “local” clustering coefficient (LCC) of
each vertex i, defined as the ratio of #(∆3) touching i to #(∆3,∆2) touching i, is well-
preserved. This immediately follows from the fact that we subsample the ∆3 and ∆2’s
at i uniformly at random, though it should be noted that the LCC has a small upwards
bias2 since each ∆3 may also be sampled by the other two vertices j and k. Therefore, we
expect that performing community detection on the subsampled triangles will be nearly as
accurate as on the original set of triangles, and this is confirmed by our experiments.

Note that there exist other subsampling strategies [106, 167] meant to preserve various
network properties, such as degree distribution, diameter, and inter-node random walk
times. In my triangle model, the main property of interest is the distribution over ∆3 and
∆2, in the same way latent factor models and MMSB are concerned with distributions over
0- and 1-edges. Thus, subsampling strategies that preserve ∆3/∆2 distributions (such as
δ-subsampling) would be appropriate for the triangle model being discussed. In contrast,
0/1-edge subsampling for MMSB and latent factor models is difficult: most networks are
sparse, with almost N2 0-edges but � N2 1-edges. Hence, subsampling only Θ(N) 0-

is stored on a spinning hard drive, then the constant factor will be high, especially if the δ-subsampling
access pattern happens to exhibit poor locality of reference. In the next chapter, we implemented an on-the-
fly variant of δ-subsampling that stores the edge hash table on a spinning hard drive, using highly efficient
disk database software backed by an in-memory cache. Under this setup, we found that the δ-subsampling
disk access time was not a bottleneck to the algorithm; the algorithm running time increased by at most
10% compared to using a fully in-memory δ-subsampling implementation. Nevertheless, for maximum
efficiency, we recommend either storing the edge hash table fully in-memory, or on a solid state drive.

2 The triangles can also be subsampled in an unbiased manner: for each sample, first pick a node i
with probability proportional to 1

2Di(Di − 1), where Di is the degree of i. Then, pick two neighbors of i
uniformly at random, call them j, k. If i, j, k form a 2-triangle ∆2, keep the sample. If they form a 3-triangle
∆3, reject the sample with probability 2

3 , otherwise keep it. While this strategy is unbiased, it does require
O(logN) amortized time per sample (because choosing the initial node i entails an O(logN) binary search
over all N nodes), making it asymptotically more expensive than the biased strategy. Nevertheless, given
that log2 109 ≈ 30, this strategy is likely still feasible even on networks with billions of nodes.

114



and 1-edges tends to produce samples with very few (if any) 1-edges at all.

Subsampling Triangles within Stochastic Variational Inference

Stochastic Variational Inference (SVI) [79] is an optimization-based inference technique
for probabilistic models, that subsamples data samples within the optimization procedure
itself, instead of pre-sampling data samples to be input to the model. Because SVI con-
verges to the same variational posterior as standard variational inference, it essentially
allows the user to trade off between computation time and posterior accuracy by simply
running more optimization iterations — in contrast, if the data were pre-subsampled, the
inference would have to be repeated from the beginning if the user wanted to use more
samples to improve accuracy.

We shall provide a more formal treatment of SVI in a later section — for now, we
briefly explain how we exploit triangle subsampling within SVI. In regular variational in-
ference, the optimization proceeds via coordinate descent on an objective function (specifi-
cally, the variational lower bound to the log-likelihood function, as will be explained later):
f(x, θ, γ) where x are the input data, θ are the model random variables and parameters,
and γ are the variational parameters used to perform the variational approximation. In
mixed-membership models, f() can be additively decomposed across data points, so that
f(x, θ, γ) =

∑M
a=1 fa(xa, θ, γ) where a indexes the data points. In the context of triangu-

lar motif modeling, the data points xa are the triangular motifs, each of which is associated
with 3 vertices i < j < k.

SVI makes use of the fact that E[f(x, θ, γ)] = E[fa(xa, θ, γ)], and similarly for their
gradients ∇E[f(x, θ, γ)] = ∇E[fa(xa, θ, γ)]. In other words, we can perform gradient
descent on the terms of the objective fa() that correspond to a single data point xa, instead
of the full objective f(), and still converge to the same set of local optima in expectation.
This allows each gradient descent step to be O(1) instead of O(M), but at the cost of
greatly increased variance in the gradient steps, so that far more iterations are required
for convergence. As we shall see later however, in practice the total number of “data
passes” or “sweeps” (the number of times the inference algorithm touches all data points)
is significantly lower in SVI (usually 2-5 passes) than regular variational inference (usually
≥ 10 passes).

Like δ-subsampling, our SVI triangle motif subsampling is also node-centric: we draw
triangles in a manner such that, upon algorithm termination, every node has touched some
minimum number of triangles — which is important for getting accurate posteriors for
each node mixed-membership vector. Again, we stress that uniform triangle subsampling
does not achieve this property — because high-degree nodes touch far more triangles than
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low-degree ones, uniform triangle subsampling will infer more accurate posteriors for
high-degree nodes at the expense of low-degree ones.
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3.2 Scalable Network Modeling with a Mixed-Membership
Statistical Model of Triangle Motifs — the MMTM
model

Network analysis methods such as MMSB [6], ERGMs [157], spectral clustering [131]
and latent feature models [121] require the adjacency matrix A of the network as input,
reflecting the natural assumption that networks are best represented as a set of edges taking
on the values 0 (absent) or 1 (present). This assumption is intuitive and reasonable, but
it imposes a quadratic Θ(N2) runtime cost for community detection in both the single-
membership or admixture (mixed-membership) settings. By representing the input net-
work as a bag of triangular motifs — by which we mean vertex triples with 2 or 3 edges
— one can design novel models for mixed-membership community detection that outper-
form models based on the adjacency matrix representation.

The main advantage of the bag-of-triangles representation lies in its huge reduction
of computational cost for certain network analysis problems, with little or no loss of out-
come quality. In the traditional edge representation, if N is the number of vertices, then
the (dense) adjacency matrix has size Θ(N2) — thus, any network analysis algorithm
that touches every element must have Ω(N2) runtime complexity. For probabilistic net-
work models, this statement applies to the cost of approximate inference. For example,
the Mixed Membership Stochastic Blockmodel (MMSB) [6] has Θ(N2) latent variables,
implying an inference cost of Ω(N2) per iteration. Looking beyond, the popular p∗ or Ex-
ponential Random Graph models [157] are normally estimated via MCMC-MLE, which
entails drawing network samples (each of size Θ(N2)) from some importance distribu-
tion. Finally, latent factor models such as [121] only have Θ(N) latent variables, but the
Markov blanket of each variable depends on Θ(N) observed variables, resulting in Ω(N2)
computation per sweep over all variables. With an inference cost of Ω(N2), even modestly
large networks with only∼ 10, 000 vertices are infeasible, to say nothing of modern social
networks with millions of vertices or more.

On the other hand, as we have argued earlier, the number of 2- and 3-edge triangular
motifs is upper-bounded by Θ(

∑
iD

2
i ), where Di is the degree of vertex i. For networks

with low maximum degree, this quantity is � N2, allowing us to construct more par-
simonious models with faster inference algorithms. Moreover, for networks with high
maximum degree, one can subsample Θ(Nδ2) of these triangular motifs in a node-centric
fashion, where δ is a user-chosen parameter. Specifically, we assign triangular motifs to
nodes in a natural manner, and then subsample motifs only from nodes with too many of
them. In contrast, MMSB and latent factor models rely on distributions over 0/1-edges (i.e.
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edge probabilities), and for real-world networks, these distributions cannot be preserved
with small (i.e. o(N2)) sample sizes because the 0-edges asymptotically outnumber the
1-edges.

A triangular representation does not preserve all information found in an edge repre-
sentation — for instance, isolated edges (connected components of size 2) are not pre-
served in this representation. Nevertheless, we argue that one should represent complex
data objects in a task-dependent manner, especially since computational cost is becoming
a bottleneck for real-world problems like analyzing web-scale network data. The idea of
transforming the input representation (e.g. from network to bag-of-triangles) for better
task-specific performance is not new. A classic example is the bag-of-words represen-
tation of a document, in which the ordering of words is discarded. This representation
has proven effective in natural language processing tasks such as topic modeling [23],
even though it eliminates practically all grammatical information. Another example from
computer vision is the use of superpixels to represent images [29, 45]. By grouping ad-
jacent pixels into larger superpixels, one obtains a more compact image representation,
in turn leading to faster and more meaningful algorithms. When it comes to networks,
triangular motifs (Figure 3.2) are already of significant interest in biology [122], social
science [155, 95, 107, 130], and data mining [165, 151, 94]. In particular, 2- and 3-edge
triangular motifs are central to the notion of transitivity in the social sciences — if we
observe edges A-B and B-C, does A have an edge to C as well? Transitivity is of spe-
cial importance, because high transitivity (i.e. we frequently observe the third edge A-C)
intuitively leads to stronger clusters with more within-cluster edges. In fact, the ratio of 3-
edge triangles to connected vertex triples (i.e. 2- and 3-edge triangular motifs) is precisely
the definition of the network clustering coefficient [130], which is a popular measure of
cluster strength.

In this section, our task is as follows: given a network (represented as an edge list
or adjacency matrix) without context, and a desired number of communities K, we want
to find K-dimensional vectors θi for all network nodes i ∈ {1, . . . , N}. Together, all
θi’s reveal the overlapping community structure of the entire network — specifically, (1)
0 ≤ θi,k ≤ 1 is the extent to which node i belongs in community k, and (2)

∑
k θi,k = 1,

i.e. θi is a probability distribution over communities. We shall achieve this by formulating
a probabilistic model over the triangles in the network, and finding the values of θi that
maximize the probability of the model.
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Figure 3.3: How mixed-membership roles from three nodes i, j, k are used to generate the
triangle motif Ei,j,k.

3.2.1 Triangular Network Model

High-level Overview

Given a network, now represented by triangle motifs ∆3 and ∆2, the goal is to perform
overlapping community detection for each network vertex i. In particular, we want to
assign each vertex i to a mixture over communities, as opposed to traditional single-
membership community detection, which assigns each vertex to exactly one commu-
nity. By taking a mixed-membership approach, one gains many benefits over single-
membership models, such as outlier detection, improved visualization, and better inter-
pretability [23, 6].

To construct this mixed-membership network model based on triangle motifs, which
we call MMTM for Mixed Membership Triangle Model, we first need to establish some
notation. Recall that we are concerned only with 2- and 3-edge triangle motifs ∆3,∆2.
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For each triplet of vertices i, j, k ∈ {1, . . . , N} , i < j < k, if the subgraph on i, j, k
is a 2-triangle with i, j, or k at the center, then let Eijk = 1, 2 or 3 respectively. In
other words, Eijk denotes the type of triangle motif on vertices i, j, k. If the subgraph on
i, j, k is a full-triangle, then let Eijk = 4. Whenever the subgraph on i, j, k is a 1-edge
or an empty-triangle, we simply discard it (i.e. Eijk is not part of the model). Next, we
assumeK latent communities, and that each vertex takes some probability distribution (i.e.
mixed-membership) over them. The observed 2- and 3-edge triangles {Eijk} are generated
according to (1) the distribution over community-memberships at each vertex, and (2) a
tensor of triangle generation probabilities, containing different triangle probabilities for
different combinations of communities. Figure 3.3 provides an example of this process.

More formally, each vertex i is associated with a community mixed-membership vec-
tor θi ∈ ∆K−1 restricted to the (K − 1)-simplex ∆K−1. This mixed-membership vector
θi is used to generate community indicators si,jk ∈ {1, . . . , K}, each of which repre-
sents the community chosen by vertex i when it is forming a triangle with vertices j and
k. The probability of observing a triangle motif Eijk depends on the community-triplet
si,jk, sj,ik, sk,ij , and a tensor of multinomial parameters B. Let x, y, z ∈ {1, . . . , K} be
the values of si,jk, sj,ik, sk,ij , and assume WLOG that x < y < z3. Then, Bxyz ∈ ∆3

represents the probabilities of generating the 4 triangle motifs4 among vertices i, j and k.
In detail, Bxyz,1 is the probability of the 2-triangle whose center vertex has community x,
and analogously for Bxyz,2 and community y, and for Bxyz,3 and community z; Bxyz,4 is
the probability of the full-triangle.

Complete Model Details

In the previous section, we presented the MMTM generative process for the special case
x < y < z, where x, y, z are the ordered values of the community indices si,jk, sj,ik, sk,ij
belonging to a triangle Eijk. To fully define the MMTM model, we also need to address
the remaining cases x = y = z, x = y < z, and x < y = z. But for the purpose of
understanding, let us begin with the generative process for the subcase x < y < z:

3 The cases x = y = z, x = y < z and x < y = z require special treatment, due to ambiguity cased by
having identical communities. We will cover these cases in the following section.

4 It is possible to generate a set of triangles that does not correspond to a network, e.g. a 2-triangle
centered on i for (i, j, k) followed by a 3-triangle for (j, k, `), which produces a mismatch on the edge
(j, k). This is a consequence of using a bag-of-triangles model, just as the bag-of-words model in Latent
Dirichlet Allocation can generate sets of words that do not correspond to grammatical sentences. In practice,
this is not an issue for either this model or LDA, as both models are used for mixed-membership recovery,
rather than data simulation.
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Order Conditional probability of Eijk ∈ {1, 2, 3, 4}
si,jk < sj,ik < sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3, Bxyz,4])
si,jk < sk,ij < sj,ik Discrete([Bxyz,1, Bxyz,3, Bxyz,2, Bxyz,4])
sj,ik < si,jk < sk,ij Discrete([Bxyz,2, Bxyz,1, Bxyz,3, Bxyz,4])
sj,ik < sk,ij < si,jk Discrete([Bxyz,3, Bxyz,1, Bxyz,2, Bxyz,4])
sk,ij < si,jk < sj,ik Discrete([Bxyz,2, Bxyz,3, Bxyz,1, Bxyz,4])
sk,ij < sj,ik < si,jk Discrete([Bxyz,3, Bxyz,2, Bxyz,1, Bxyz,4])

Table 3.1: Conditional probabilities of Eijk given si,jk, sj,ik and sk,ij . We define x, y, z to
be the ordered (i.e. sorted) values of si,jk, sj,ik, sk,ij . Note that this table applies only to
cases where x < y < z.

• Triangle tensor Bxyz ∼ Dirichlet (λ) for all x, y, z ∈ {1, . . . , K}, where x < y < z

• Community admixture vectors θi ∼ Dirichlet (α) for all i ∈ {1, . . . , N}

• For each triplet (i, j, k) where i < j < k,

– Community indices si,jk ∼ Discrete (θi), sj,ik ∼ Discrete (θj), sk,ij ∼ Discrete (θk).

– Generate the triangular motif Eijk based on Bxyz ∈ ∆3 and how the values of
si,jk, sj,ik, sk,ij happen to be ordered; see Table 3.1 for the exact conditional
probabilities. There are 6 entries in Table 3.1, corresponding to the 6 possible
orderings of si,jk, sj,ik, sk,ij .

The cases x = y = z, x = y < z, and x < y = z, however, are more difficult to handle
due to isomorphisms in labeled graphs. To understand why, we note two points: (1) in
these 3 cases, some of the community indices are equal and therefore indistinguishable; (2)
the 2-triangles ∆2 are asymmetric: the center vertex is not equivalent to the two peripheral
vertices (though the peripheral vertices are equivalent to each other). In turn, these points
imply that certain 2-triangles that would otherwise be distinct under x < y < z, become
indistinguishable under x = y = z, x = y < z, or x < y = z.

To illustrate, consider the 2-triangle whose center vertex has community index x.
When x < y < z, the 2-triangle’s community structure could look like either y − x − z,
or the isomorphism z − x − y (since the peripheral vertices are symmetric). This un-
derscores an important point: we are really interested in generating the equivalence class
{(y − x − z), (z − x − y)}, rather than a specific instance within this class. Notice that
such isomorphisms on peripheral vertices are implicitly covered by our triangular repre-
sentation Eijk ∈ {1, 2, 3, 4}, because the 2-triangle cases 1, 2, 3 are defined only by their
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Figure 3.4: Graphical model representation for full MMTM, our admixture model over
triangular motifs.

center vertex. However, if we now suppose that x = y < z, then the equivalence class
grows to {(y − x− z), (z − x− y), (x− y − z), (z − y − x)}, i.e. we cannot distinguish
the 2-triangle with x in the center from that with y in the center (because x = y). If we go
further and let x = y = z, then the equivalence class grows to encompass all 6 orderings
of x, y, z, i.e. {(y−x− z), (z−x− y), (x− y− z), (z− y−x), (x− z− y), (y− z−x)}.

Our solution to the isomorphism problem is simple: we first draw a triangle equiv-
alence class for i, j, k. This equivalence class is denoted by Cijk, which is a subset of
{1, 2, 3, 4}. That is to say, Cijk is a set containing the values of Eijk that fall in the equiv-
alence class. Then, we draw a specific triangular motif Eijk uniformly at random from the
equivalence class Cijk. The 4 cases are as follows:

1. When x < y < z, there are 4 equivalence classes, so we have Bxyz ∈ ∆3, i.e. the
3-simplex. Here, Bxyz,1, Bxyz,2, Bxyz,3 represent the 2-triangle probabilities (for tri-
angles centered on x, y, z respectively), and Bxyz,4 represents the full-triangle prob-
ability.

2. When x = y < z, it turns out there are only 3 equivalence classes, so Bxyz ∈ ∆2.
Now, Bxyz,1, Bxyz,2 represent the 2-triangle probabilities (for triangles centered on
x = y and z respectively), and Bxyz,3 represents the full-triangle probability.

3. The case x < y = z is almost identical to x = y < z. The only difference is that
Bxyz,1 represents the 2-triangle probability for triangles centered on x, and Bxyz,2

represents the 2-triangle probability for triangles centered on y = z.
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4. Finally, when x = y = z, there are only 2 equivalence classes, and Bxyz ∈ ∆1.
Here, Bxyz,1 represents the probability of generating a 2-triangle (regardless of the
center vertex’s community), and Bxyz,2 represents the full-triangle probability.

With the structure of Bxyz in mind, our full generative model over triangular motifs is as
follows; see Figure 3.4 for a graphical model representation.

• Triangle tensor elements Bxyz, where x, y, z ∈ {1, . . . , K} and x ≤ y ≤ z. All the
Dirichlet distributions are symmetric, so we only need one scalar parameter λ.

– When x < y < z, draw Bxyz ∈ ∆3 according to Bxyz ∼ Dirichlet (λ)

– When x = y < z, draw Bxyz ∈ ∆2 according to Bxyz ∼ Dirichlet (λ)

– When x < y = z, draw Bxyz ∈ ∆2 according to Bxyz ∼ Dirichlet (λ)

– When x = y = z, draw Bxyz ∈ ∆1 according to Bxyz ∼ Dirichlet (λ) (equiv-
alent to Beta(λ, λ))

• Community admixture vectors θi ∼ Dirichlet (α) for all i ∈ {1, . . . , N}

• For each triplet (i, j, k) where i < j < k,

– Community indices si,jk ∼ Discrete (θi), sj,ik ∼ Discrete (θj), sk,ij ∼ Discrete (θk).

– Generate the triangle equivalence class Cijk based on Bxyz and how the values
of si,jk, sj,ik, sk,ij happen to be ordered; see Table 3.2 for the exact conditional
probabilities. There are 13 entries in Table 3.2.

– Generate the triangular motif Eijk ∈ Cijk: draw Eijk uniformly at random
from the set of elements in Cijk. In the case where all three community indices
si,jk, sj,ik, sk,ij are distinct, each equivalence class Cijk is a singleton, and the
corresponding generative process is consistent with the description in the main
text.

Modeling Community Assumptions via the Conditional Probability Distributions of
Cijk

The MMTM, as just described, does not assume communities should have mostly ∆3 mo-
tifs (full triangles) rather than ∆2 (2-edge triangles). In other words, it does not assume that
communities are characterized by a high clustering coefficient. Because this assumption
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Order Conditional probability distribution over classes Cijk Possible classes Cijk (each being a set of Eijk values)

si,jk < sj,ik < sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3, Bxyz,4]) {1}, {2}, {3}, {4}
si,jk < sk,ij < sj,ik || {1}, {3}, {2}, {4}
sj,ik < si,jk < sk,ij || {2}, {1}, {3}, {4}
sj,ik < sk,ij < si,jk || {2}, {3}, {1}, {4}
sk,ij < si,jk < sj,ik || {3}, {1}, {2}, {4}
sk,ij < sj,ik < si,jk || {3}, {2}, {1}, {4}
si,jk = sj,ik < sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3]) {1, 2}, {3}, {4}
si,jk = sk,ij < sj,ik || {1, 3}, {2}, {4}
sj,ik = sk,ij < si,jk || {2, 3}, {1}, {4}
si,jk < sj,ik = sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3]) {1}, {2, 3}, {4}
sj,ik < si,jk = sk,ij || {2}, {1, 3}, {4}
sk,ij < si,jk = sj,ik || {3}, {1, 2}, {4}
si,jk = sj,ik = sk,ij Discrete([Bxyz,1, Bxyz,2]) {1, 2, 3}, {4}

Table 3.2: Full table of conditional probabilities of Cijk given si,jk, sj,ik and sk,ij . We de-
fine x, y, z to be the ordered (i.e. sorted) values of si,jk, sj,ik, sk,ij . This table is structured
differently from Table 3.1: within each row, for each element of the discrete distribution
(which is the probability for some equivalence class Cijk), we give the value of the cor-
responding equivalence class Cijk (which is a set of elements Eijk ∈ {1, 2, 3, 4}). For
example, suppose that si,jk = sj,ik < sk,ij and we draw the first element of the discrete
distribution (with probability Bxyz,1), then Cijk = {1, 2}, i.e. the equivalence class of
triangles centered on vertex i (Eijk = 1) or j (Eijk = 2).

is common in network analysis, we show how to modify the MMTM to better match this
assumption. The MMTM experiments that follow make use of this high CC modification.

Our approach to incorporating the high CC assumption is simple: we just modify the
distributions Cijk | si,jk, sj,ik, sk,ij, B (the distribution of triangular equivalence classes
given community assignments). The basic idea is to prevent 2-edge triangles ∆2 from re-
ceiving community assignments of the form a−b−a, where the peripheral nodes have the
same community a, but the middle node has a different community b. These assignments
are undesirable as they put nodes that do not share edges into the same community; by
preventing these assignments from occuring, we force the model to choose other assign-
ments such as a− a− b or a− b− c that do not contradict the high clustering coefficient
assumption. To implement this idea, we set the generative probability of certain equiva-
lence classes Cijk to zero, which in turn causes the undesirable values of si,jk, sj,ik, sk,ij to
have zero posterior probability5 — refer to Table 3.3 for a full explanation.

5In our experiments with the MMTM Gibbs sampler, we found that the high CC assumption significantly
improved convergence speed and community detection accuracy, compared to experiments that did not use
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Order Conditional probability distribution over classes Cijk Possible classes Cijk (each being a set of Eijk values)

si,jk < sj,ik < sk,ij Discrete([Bxyz,1, Bxyz,2, Bxyz,3, Bxyz,4]) {1}, {2}, {3}, {4}
si,jk < sk,ij < sj,ik || {1}, {3}, {2}, {4}
sj,ik < si,jk < sk,ij || {2}, {1}, {3}, {4}
sj,ik < sk,ij < si,jk || {2}, {3}, {1}, {4}
sk,ij < si,jk < sj,ik || {3}, {1}, {2}, {4}
sk,ij < sj,ik < si,jk || {3}, {2}, {1}, {4}
si,jk = sj,ik < sk,ij NormalizedDiscrete([Bxyz,1, 0, Bxyz,3]) {1, 2}, {3}, {4}
si,jk = sk,ij < sj,ik || {1, 3}, {2}, {4}
sj,ik = sk,ij < si,jk || {2, 3}, {1}, {4}
si,jk < sj,ik = sk,ij NormalizedDiscrete([0, Bxyz,2, Bxyz,3]) {1}, {2, 3}, {4}
sj,ik < si,jk = sk,ij || {2}, {1, 3}, {4}
sk,ij < si,jk = sj,ik || {3}, {1, 2}, {4}
si,jk = sj,ik = sk,ij Discrete([Bxyz,1, Bxyz,2]) {1, 2, 3}, {4}

Table 3.3: Modified table of conditional probabilities ofCijk, incorporating the assumption
that communities should have a high clustering coefficient (“high CC” MMTM). Specif-
ically, we set the probability of generating particular values of Cijk to zero whenever ex-
actly two of si,jk, sj,ik, sk,ij are equal. Refer to the second column of the table for full
details; any differences with the “regular” MMTM in Table 3.2 are highlighted in red.
In particular, “NormalizedDiscrete” refers to a discrete distribution that first normalizes
its parameters to sum to 1. These changes ensure that the posterior distribution over
si,jk, sj,ik, sk,ij has zero probability mass on “bad” community assignments that do not
favor a high within-community clustering coefficient, for example a − b − a on 2-edge
motifs ∆2.

In general, the Cijk | si,jk, sj,ik, sk,ij, B table can be modified to suit other kinds of
community assumptions. Importantly, we are not restricted to merely preventing specific
classes Cijk from being generated, rather, we are free to place any discrete distribution
over the possible Cijk’s. For the aforementioned high CC assumption, we simply used
distributions that gave certain classes Cijk zero probability.

3.2.2 Gibbs Sampler Inference

We adopt a collapsed, blocked Gibbs sampling approach, where θ, B and C have been
integrated out. Thus, only the community indices s need to be sampled. For each triplet

the high CC assumption (we do not show these experiments). In the next section, we shall introduce an
improved version of the MMTM model, which does not require the high CC assumption for good community
detection performance.
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(i, j, k) where i < j < k,

P (si,jk, sj,ik, sk,ij | s−ijk,E, α, λ) ∝
P (Eijk|E−ijk, s, λ)P (si,jk | si,−jk, α)P (sj,ik | sj,−ik, α)P (sk,ij | sk,−ij, α) ,

where s−ijk is the set of all community memberships except for si,jk, sj,ik, sk,ij , and si,−jk
is the set of all community memberships of vertex i except for si,jk. The last three terms are
predictive distributions of a multinomial-Dirichlet model, with the multinomial parameter
θ marginalized out:

P (si,jk | si,−jk, α) =
# [si,−jk = si,jk] + α

# [si,−jk] +Kα
.

The first term P (Eijk|E−ijk, s, λ) is another multinomial-Dirichlet predictive distribution,
and its exact form depends on how the values of si,jk, sj,ik, sk,ij happen to be ordered, as
well as whether we are using the “regular” MMTM (Table 3.2) or the “high clustering
coefficient” MMTM (Table 3.3). All experiments in the main text were performed with
the “high CC” MMTM.

Regular MMTM

Letting x, y, z be the ordered values of si,jk, sj,ik, sk,ij ,

1. When x < y < z,

P (Eijk|E−ijk, s, λ) =
Q1f1 +Q2f2 +Q3f3 +Q4f4 + λ

Q1 +Q2 +Q3 +Q4 + 4λ

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z and center node having com x]

Q2 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z and center node having com y]

Q3 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z and center node having com z]

Q4 = # [E−ijk = 4 with node communities x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3} and its center node has com x]

f2 = I[Eijk ∈ {1, 2, 3} and its center node has com y]

f3 = I[Eijk ∈ {1, 2, 3} and its center node has com z]

f4 = I[Eijk = 4]
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2. When x = y < z,

P (Eijk|E−ijk, s, λ) =
1
2
(Q1 + λ)f1 + (Q2 + λ)f2 + (Q3 + λ)f3

Q1 +Q2 +Q3 + 3λ

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z and center node having com x or y]

Q2 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z and center node having com z]

Q3 = # [E−ijk = 4 with node coms x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3} and its center node has com x or y]

f2 = I[Eijk ∈ {1, 2, 3} and its center node has com z]

f3 = I[Eijk = 4]

3. When x < y = z,

P (Eijk|E−ijk, s, λ) =
(Q1 + λ)f1 + 1

2
(Q2 + λ)f2 + (Q3 + λ)f3

Q1 +Q2 +Q3 + 3λ

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z and center node having com x]

Q2 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z and center node having com y or z]

Q3 = # [E−ijk = 4 with node coms x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3} and its center node has com x]

f2 = I[Eijk ∈ {1, 2, 3} and its center node has com y or z]

f3 = I[Eijk = 4]

4. When x = y = z,
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P (Eijk|E−ijk, s, λ) =
1
3
(Q1 + λ)f1 + (Q2 + λ)f2

Q1 +Q2 + 2λ

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z]

Q2 = # [E−ijk = 4 with node coms x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3}]
f2 = I[Eijk = 4]

High Clustering Coefficient MMTM

Letting x, y, z be the ordered values of si,jk, sj,ik, sk,ij ,

1. Same as “regular” MMTM.

2. When x = y < z,

P
(
Eijk|E−ijk, s, λ

)
=

{ 1
2

(Q1+λ)f1+(Q3+λ)f3
Q1+Q3+2λ

if Eijk = 4 or Eijk ∈ {1, 2, 3} and its center node has com x or y

0 otherwise (i.e. Eijk ∈ {1, 2, 3} and its center node has com z)

where

Q1 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z and center node having com x or y]

Q3 = # [E−ijk = 4 with node coms x, y, z]

and

f1 = I[Eijk ∈ {1, 2, 3} and its center node has com x or y]

f3 = I[Eijk = 4]

3. When x < y = z,

P
(
Eijk|E−ijk, s, λ

)
=

{ 1
2

(Q2+λ)f2+(Q3+λ)f3
Q2+Q3+2λ

if Eijk = 4 or Eijk ∈ {1, 2, 3} and its center node has com y or z

0 otherwise (i.e. Eijk ∈ {1, 2, 3} and its center node has com x)
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where

Q2 = # [E−ijk ∈ {1, 2, 3} with node coms x, y, z and center node having com y or z]
Q3 = # [E−ijk = 4 with node coms x, y, z]

and

f2 = I[Eijk ∈ {1, 2, 3} and its center node has com y or z]
f3 = I[Eijk = 4]

4. Same as “regular” MMTM.

3.2.3 Overlapping Community Recovery: Performance, Scalability

The precise definition of network community has been a subject of much debate, and
various notions of community [6, 129, 131, 121, 73] have been proposed under different
motivations. The MMTM, too, conveys another notion of community based on mem-
bership in full triangles ∆3 and 2-triangles ∆2, which are key aspects of network clus-
tering coefficients. With these facts in mind, we shall compare the MMTM against an
adjacency-matrix-based statistical model, MMSB, in order to determine how well they
recover multiple community memberships6 from synthetic networks generated under dif-
ferent assumptions.

Moreover, we shall also demonstrate that MMTM leads to faster inference, particularly
when δ-subsampling triangles (as described in Section 3.1). Intuitively, the performance of
the MMTM inference algorithm will depend on (a) the degree distribution of the network,
and (b) the “degree limit” δ used in subsampling the network. One should expect MMTM
to yield better results as δ increases, because the proportion of vertices that do not have to
be subsampled (i.e. degree Di ≤ δ) increases. Notably, the experiments will show that
subsampling provides good performance even when the network contains a few vertices
with very large degree Di (a characteristic of many real-world networks).

Synthetic networks with overlapping communities We evaluated the performance of
MMTM and MMSB [6] on multiple synthetic networks, according to how well their in-
ference algorithms recovered each vertex’s mixed-membership vector θi. To generate the
networks, we first createdN = 4, 000 community mixed-membership vectors θi of dimen-
sionality K = 5 (i.e. 5 possible communities), and then generated the network according
to one of several models:

6 Also known as mixed-membership or overlapping community membership.
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#0,1-edges #1-edges max(Di) #∆3,∆2 δ = 20 δ = 15 δ = 10 δ = 5
MMSB 7,998,000 55,696 51 1,541,085 749,018 418,764 179,841 39,996
Latent position q 56,077 51 1,562,710 746,979 418,448 179,757 39,988
Biased scale-free q 60,000 231 3,176,927 497,737 304,866 144,206 35,470
Pure membership q 55,651 44 1,533,365 746,796 418,222 179,693 39,986

Table 3.4: Number of edges, maximum degree, and number of 3- and 2-edge triangles
∆3,∆2 for each N = 4, 000 synthetic network, as well as #triangles when subsampling
at various degree thresholds δ. MMSB inference is linear in #0,1-edges, while MMTM’s
inference is linear in #∆3,∆2.

1. The Mixed Membership Stochastic Blockmodel [6], an admixture generalization
of the stochastic blockmodel. The probability of a link from i to j is θiBθj for some
block matrix B, and we convert all directed edges into undirected edges. In our
experiments, we use a B with on-diagonal elements Baa = 1/80, and off-diagonal
elements Bab = 1/800. These values of B are lower than typically seen in the
literature, because they are intended to replicate the 1-edge density of real-world
networks with size around N = 4, 000.

2. A simplex Latent position model, where the probability of a link between i, j is
γ(1− 1

2
||θi − θj||1) for some scaling parameter γ. In other words, the closer that θi

and θj are, the higher the link probability. Note that 0 ≤ ||θi − θj||1 ≤ 2, because
θi and θj lie in the simplex. We choose γ = 1/40, again to reproduce the 1-edge
density seen in real networks.

3. A “Biased” scale-free model that combines the preferred attachment model [89]
with a mixed-membership model. Specifically, I generated M = 60, 000 1-edges as
follows: (a) pick a vertex i with probability proportional to its degree; (b) randomly
pick a destination community k from θi; (c) find the set Vk of all vertices v such that
θvk is the largest element of θv (i.e. the vertices that mostly belong to community
k); (d) within Vk, pick the destination vertex j with probability proportional to its
degree. The resulting network exhibits both a block diagonal structure, as well as a
power-law degree distribution. In contrast, the other two models have binomial (i.e.
Gaussian-like) degree distributions.

The vertex community mixed-memberships θi were generated as follows:

1. Divide the N = 4, 000 vertices into 5 groups of size 800. Assign each group to a
(different) dominant community k ∈ {1, . . . , 5}.

2. Within each group:

130



(a) Pick 160 vertices to have mixed-membership in 3 communities: 0.8 in the
dominant community k, and 0.1 in two other randomly chosen communities.

(b) The remaining 640 vertices have mixed-membership in 2 communities: 0.8 in
the dominant community k, and 0.2 in one other randomly chosen community.

Thus, every vertex has a dominant community, and one or two other minor communi-
ties. Using these θi’s, we generated one synthetic network for each of the three models
described.

Finally, we generated a fourth “pure membership” network under the MMSB model,
using “pure” θi’s with exactly one community membership. This network represents the
special case of single-community membership. Network statistics for all 4 networks can
be found in Table 3.4.

Inference settings For our MMTM7, we used our collapsed, blocked Gibbs sampler for
inference. The hyperparameters were fixed at α, λ = 0.1 and K = 5, and we ran each
experiment for 2,000 iterations. For evaluation, we estimated all θi’s using the last sample.

With MMSB, we opted not to use the variational inference algorithm of [6], because
we wanted our experiments to be, as far as possible, a comparison of models rather than
inference techniques. To accomplish this, we derived a collapsed, blocked Gibbs sampler
for the MMSB model, with added Beta hyperparameters λ1, λ2 on each element of the
block matrix B. The mixed-membership vectors θi (πi in the MMSB paper) and blockma-
trix B were integrated out, and we Gibbs sampled each edge (i, j)’s associated commu-
nity indicators zi→j, zi←j in a block fashion. Hence, this MMSB sampler uses the exact
same techniques as our MMTM sampler, ensuring that we are comparing models rather
than inference strategies. Furthermore, its per-iteration runtime is still Θ(N2), equal to
the original MMSB variational algorithm. All experiments were conducted in exactly the
same manner as with MMTM, with the MMSB hyperparameters fixed at α, λ1, λ2 = 0.1
and K = 5.

Evaluation scheme We scored the output of MMTM and MMSB according to
∑

i ||θ̂i−
θi||2, the sum of `2 distances of each estimate θ̂i from its true value θi. These results were
taken under the most favorable permutation for the θ̂i’s, in order to avoid the permutation
non-identifiability issue. Each experiment was repeated 5 times. To investigate the effect

7As explained in Section 3.1.1, we first need to preprocess the network adjacency list into the ∆3,∆2

triangle representation. The time required is linear in the number of ∆3,∆2 triangles, and is insignificant
compared to the actual cost of MMTM inference.
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Figure 3.5: Mixed-membership community recovery task: Cumulative `2 errors and run-
time per trial for MMSB, MMTM and MMTM with δ-subsampling, on N = 4, 000 syn-
thetic networks.

of δ-subsampling triangles (Section 3.1), we also repeated every MMTM experiment under
four different values of δ: 20, 15, 10 and 5. The triangles were subsampled prior to running
the MMTM algorithm.

Community recovery results Figure 3.5 plots the cumulative `2 error for each exper-
iment, as well as the time taken per trial. On all 4 networks, the full MMTM model
performs better than MMSB — even on the MMSB-generated network! MMTM also
requires less runtime for all but the biased scale-free network, which has a much larger
maximum degree than the others (Table 3.4). Furthermore, δ-subsampling is effective:
MMTM with δ = 20 runs faster than full MMTM, and still outperforms MMSB while
approaching full MMTM in accuracy. The runtime benefit is most noticable on the biased
scale-free network, underscoring the need to subsample real-world networks with high
maximum degree.

Scalability Experiments Although the preceding N = 4, 000 experiments appear fairly
small, in actual fact, they are close to the feasible limit for adjacency-matrix-based models
like MMSB. To demonstrate this, we generated four networks with sizesN ∈ {1000, 4000,
10000, 40000} from the MMSB generative model. The generative parameters for the N =
4, 000 network are identical to the earlier community recovery experiments, while the
parameters for the other three network sizes were adjusted to maintain the same average
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Figure 3.6: Per-iteration runtimes for
MMSB, MMTM and MMTM with δ-
subsampling, on synthetic networks with
N ranging from 1,000 to 40,000, but with
constant average degree.

Figure 3.7: N = 281, 903 Stanford web
graph, MMTM mixed-membership visual-
ization.

degree8. We then ran the MMSB, MMTM, and MMTM with δ-subsampling inference
algorithms on all 4 networks, and plotted the average per-iteration runtime in Figure 3.6.

The figure clearly exposes the scalability differences between MMSB and MMTM.
The δ-subsampled MMTM experiments show linear runtime dependence on N , which is
expected since the number of subsampled triangles is O(Nδ2). The full MMTM experi-
ment is also roughly linear — though we caution that this is not necessarily true for all net-
works, particularly high maximum degree ones such as scale-free networks. Conversely,
MMSB shows a clear quadratic dependence on N . In fact, the MMSB N = 40, 000 exper-
iment was omitted because the latent variables would not fit in memory, and even if they
did, the extrapolated runtime would have been unreasonably long.

In later sections, we will show that MMTM (with some improvements) can accurately
model large real-world networks with high maximum degree (and not just low degree
networks).

8Note that the maximum degree still increases with N , because MMSB has a binomial degree distribu-
tion.
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3.2.4 A Larger Network Demonstration
Since the δ-subsampled MMTM algorithm has O(N) runtime complexity9, it should nat-
urally scale to larger networks than the synthetic ones we just discussed. To demon-
strate this, we ran the MMTM inference algorithm with δ = 20 on the SNAP Stanford
Web Graph10, containing N = 281, 903 vertices (webpages) and 2, 312, 497 1-edges.
There were approximately 4 billion 2- and 3-edge triangles ∆3,∆2, which I reduced to
11, 353, 778 via δ = 20-subsampling. Note that the vast majority of triangles are as-
sociated with exceptionally high-degree vertices, which are few in number. Using δ-
subsampling limits the number of triangles that come from such vertices, thus making
the network feasible for MMTM. The inference algorithm converged within 19 hours.

The recovered mixed-membership vectors θi are visualized in Figure 3.7. Because the
θi lie in the 4-simplex ∆4, they are difficult to visualize in two dimensions. To overcome
this, Figure 3.7 uses position and color to communicate θi. Every vertex i is displayed
as a circle ci, whose size is proportional to the network degree of i. The position of ci is
equal to a convex combination of the 5 pentagon corners’ (x, y) coordinates, where the
coordinates are weighted by the elements of θi. In particular, circles ci at the pentagon’s
corners represent single-membership θi’s, while circles on the lines connecting the corners
represent θi’s with mixed-membership in 2 communities. All other circles represent θi’s
with mixed-membership in ≥ 3 communities. Furthermore, each circle ci’s color is also
a θi-weighted convex combination, this time of the RGB values of 5 colors: blue, green,
red, cyan and purple. The colors help to distinguish between vertices with 2 versus 3
or more communities: for example, even though the largest circle sits on the blue-red
line (which initially suggests mixed-membership in 2 communities), its dark green color
actually comes from mixed-membership in 3 communities: green, red and cyan.

Most high-degree vertices (large circles) are found at the pentagon’s corners, leading
to the intuitive conclusion that the five communities are centered on hub webpages with
many links. Interestingly, the highest-degree vertices are all mixed-membership, suggest-
ing that these webpages (which are mostly frontpages) lie on the boundaries between the
communities. Finally, if one focuses on the sets of vertices near each corner, one can see
that the green and red sets have distinct degree (i.e. circle size) distributions, suggesting
that those communities may be functionally different from the other three.

In Chapter 4.2, we will show that MMTM accurately recovers ground-truth communi-
ties from large real-world networks.

9Our full runtime complexity is O(M + Nδ2K3): it takes O(M) time to read in the original M -edge
network, O(Nδ2) time to perform δ-subsampling, and the actual inference algorithm takes O(Nδ2K3) time
per iteration (where K is the number of roles/communities).

10Available at http://snap.stanford.edu/data/web-Stanford.html
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3.3 Towards Larger Networks via Model Parsimony and
Stochastic Inference — the PTM model

In the previous section, we introduced MMTM, a mixed-membership network model
based on triangular motifs. By using these triangular motifs in conjuction with intelli-
gent subsampling, the MMTM model allows for O(N) inference time on networks, as
opposed to O(N2) for adjacency-matrix-based models like MMSB. However, to perform
latent space analysis on million-node (or larger) real social networks with many distinct
latent roles [178], one must design inferential mechanisms that scale linearly not just in
the number of vertices N , but also in the number of communities or latent roles K. In this
respect, MMTM falls short, as its blocked, collasped Gibbs sampler requires O(NK3)
inference time once K is taken into account.

How does one design a network analysis model and inference algorithm that is scal-
able in both N and K? At a high level, we argue that the following three principles are
crucial for successful large-scale inference: (1) succinct but informative representation
of networks; (2) parsimonious statistical modeling; (3) scalable and parallel inference al-
gorithms. Existing approaches (including MMTM) [6, 56, 76, 77, 121] are limited in that
they consider only one or two of the above principles, and therefore can not simultaneously
achieve scalability and sufficient accuracy. For example, the mixed-membership stochas-
tic blockmodel (MMSB) [6] is a probabilistic latent space model for edge representation
of networks. Its batch variational inference algorithm has O(N2K2) time complexity and
hence cannot be scaled to large networks. The a-MMSB [56] improves upon MMSB by
applying principles (2) and (3): it reduces the dimension of the parameter space from
O(K2) to O(K), and applies a stochastic variational algorithm for fast inference. Funda-
mentally, however, the a-MMSB still depends on the O(N2) adjacency matrix represen-
tation of networks, just like the MMSB. The a-MMSB inference algorithm mitigates this
issue by downsampling zero elements in the matrix, but is still not fast enough to handle
networks with N ≥ 100, 000.

We now present a scalable approach to both latent space modeling and inference al-
gorithm design that encompasses all three aforementioned principles for large networks.
Specifically, we build our approach by starting with the MMTM bag-of-triangles represen-
tation of networks [77], and then apply principles (2) and (3) to create a fast inference pro-
cedure that has time complexity O(NK). In Section 3.3.2, we propose the parsimonious
triangular model (PTM), in which the dimension of the triangle-generating parameters
only grows linearly in K (unlike MMTM’s O(K3) tensor of triangle parameters). This
dramatic reduction is principally achieved by sharing parameters among certain group-
ings of communities or latent roles. Then, in Section 3.3.3, we develop a fast stochastic

135



natural gradient ascent algorithm for performing variational inference, where an unbiased
estimate of the natural gradient is obtained by subsampling a “mini-batch” of triangular
motifs. Instead of adopting a fully factorized, naive mean-field approximation, which we
find performs poorly in practice, we pursue a structured mean-field approach that captures
higher-order dependencies between model variables. These new developments all com-
bine to yield an efficient inference algorithm that usually converges after 2 passes on each
triangular motif (or up to 4-5 passes at worst), and achieves competitive or improved accu-
racy for latent space recovery and link prediction on synthetic and real networks. Finally,
in Section 3.3.4, we demonstrate that our PTM inference algorithm converges and infers a
K = 100-role latent space on a 1M-node Youtube social network in just 4 hours, using a
single machine with 8 threads.

3.3.1 Triangular Representation of Networks

We briefly recap the key concepts in scalable triangular motif modeling of networks. The
idea is to represent a network succinctly as a bag of triangular motifs [77]. Each triangular
motif is a connected subgraph over a vertex triple containing 2 or 3 edges (called open
triangle and closed triangle respectively). Empty and single-edge triples are ignored. Al-
though this triangular format does not preserve all network information found in an edge
representation, these three-node connected subgraphs are able to capture a number of in-
formative structural features in the network. For example, in social network theory, the
notion of triadic closure [155, 58] is commonly measured by the relative number of closed
triangles compared to the total number of connected triples, known as the global clustering
coefficient or transitivity [128]. The same quantity is treated as a general network statistic
in the exponential random graph model (ERGM) literature [124]. Furthermore, the most
significant and recurrent structural patterns in many complex networks, so-called “network
motifs”, turn out to be connected three-node subgraphs [122].

Most importantly of all, triangular modeling requires much less computational cost
compared to edge-based models, with little or no degradation of performance for latent
space recovery [77]. In networks with N vertices and low maximum vertex degree D,
the number of triangular motifs Θ(ND2) is normally much smaller than Θ(N2), allowing
us to construct more efficient inference algorithms scalable to larger networks. For high-
maximum-degree networks, the triangular motifs can be subsampled in a node-centric
fashion as a local data reduction step. For each vertex i with degree higher than a user-
chosen threshold δ, uniformly sample

(
δ
2

)
triangles from the set composed of (a) its adja-

cent closed triangles, and (b) its adjacent open triangles that are centered on i. Vertices
with degree≤ δ keep all triangles from their set. It has been shown that this δ-subsampling

136



(si,jk, sj,ik, sk,ij) Equivalence classes Conditional probability of Eijk ∈ {1, 2, 3, 4}

x = si,jk = sj,ik = sk,ij {1, 2, 3}, {4} Discrete
([Bxxx,1

3
,
Bxxx,1

3
,
Bxxx,1

3
, Bxxx,2

])
x = si,jk = sj,ik 6= sk,ij {1, 2}, {3}, {4} Discrete

([Bxx,1

2
,
Bxx,1

2
, Bxx,2, Bxx,3

])
x = si,jk = sk,ij 6= sj,ik {1, 3}, {2}, {4} Discrete

([Bxx,1

2
, Bxx,2,

Bxx,1

2
, Bxx,3

])
x = sj,ik = sk,ij 6= si,jk {2, 3}, {1}, {4} Discrete

([
Bxx,2,

Bxx,1

2
,
Bxx,1

2
, Bxx,3

])
sk,ij 6= si,jk 6= sj,ik {1, 2, 3}, {4} Discrete

([B0,1

3
,
B0,1

3
,
B0,1

3
, B0,2

])

Table 3.5: Equivalence classes and conditional probabilities of Eijk given si,jk, sj,ik, sk,ij (see text for
details).

procedure can approximately preserve the distribution over open and closed triangles, and
allows for much faster inference algorithms (linear growth in N) at a small cost in accu-
racy [77].

In what follows, we assume that a preprocessing step has been performed — namely,
extracting and δ-subsampling triangular motifs (which can be done in O(1) time per sam-
ple, and requires < 1% of the actual inference time) — to yield a bag-of-triangles repre-
sentation of the input network. For each triplet of vertices i, j, k ∈ {1, . . . , N} , i < j < k,
let Eijk denote the observed type of triangular motif formed among these three vertices:
Eijk = 1, 2 and 3 represent an open triangle with i, j and k in the center respectively, and
Eijk = 4 if a closed triangle is formed. Because empty and single-edge triples are dis-
carded, the set of triples with triangular motifs formed, I = {(i, j, k) : i < j < k,Eijk =
1, 2, 3, or 4}, is of size O(Nδ2) after δ-subsampling [77].

3.3.2 Parsimonious Triangular Model

Given the input network, now represented as a bag of triangular motifs, our goal is to
make inference about the latent position vector θi of each vertex i ∈ {1, . . . , N}. We
take a mixed-membership approach: each vertex i can take a mixture distribution over K
latent roles governed by a mixed-membership vector θi ∈ ∆K−1 restricted to the (K − 1)-
simplex. Such vectors can be used for performing community detection and link predic-
tion, as demonstrated in Section 3.3.4. Following a design principle similar to the Mixed-
Membership Triangular Model (MMTM) [77], our Parsimonious Triangular Model (PTM)
is essentially a latent-space model that defines the generative process for a bag of trian-
gular motifs. However, compared to the MMTM, the major advantage of the PTM lies in
its more compact and lower-dimensional nature that allows for more efficient inference al-
gorithms (see Global Update step in Section 3.3.3). The dimension of triangle-generating
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parameters in the PTM is just O(K), rather than O(K3) in the MMTM (see below for
further discussion).

To form a triangular motif Eijk for each triplet of vertices (i, j, k), a triplet of role
indices si,jk, sj,ik, sk,ij ∈ {1, . . . , K} is first chosen based on the mixed-membership vec-
tors θi, θj, θk. These indices designate the roles taken by each vertex participating in this
triangular motif. There are O(K3) distinct configurations of such latent role triplet, and
the MMTM uses a tensor of triangle-generating parameters of the same size to define the
probability of Eijk, one entry Bxyz for each possible configuration (x, y, z). In the PTM,
we reduce the number of such parameters by partitioning the O(K3) configuration space
into several groups, and then sharing parameters within the same group. The partitioning
is based on the number of distinct states in the configuration of the role triplet: 1) if the
three role indices are all in the same state x, the triangle-generating probability is deter-
mined by Bxxx; 2) if only two role indices exhibit the same state x (called majority role),
the probability of triangles is governed by Bxx, which is shared across different minor-
ity roles; 3) if the three role indices are all distinct, the probability of triangular motifs
depends on B0, a single parameter independent of the role configurations. This sharing
yields just O(K) parameters B0, Bxx, Bxxx, x ∈ {1, . . . , K}, allowing PTM to scale to far
more latent roles than MMTM. A similar idea was proposed in a-MMSB [56], using one
parameter ε to determine inter-role link probabilities, rather than O(K2) parameters for all
pairs of distinct roles, as in the original MMSB [6].

Once the role triplet (si,jk, sj,ik, sk,ij) is chosen, some of the triangular motifs can be-
come indistinguishable. To illustrate, in the case of x = si,jk = sj,ik 6= sk,ij , one cannot
distinguish the open triangle with i in the center (Eijk = 1) from that with j in the center
(Eijk = 2), because both are open triangles centered at a vertex with majority role x, and
are thus structurally equivalent under the given role configuration. Formally, this con-
figuration induces a set of triangle equivalence classes {{1, 2}, {3}, {4}} of all possible
triangular motifs {1, 2, 3, 4}. We treat the triangular motifs within the same equivalence
class as stochastically equivalent; that is, the conditional probabilities of events Eijk = 1
and Eijk = 2 are the same if x = si,jk = sj,ik 6= sk,ij . All possible cases are enumerated
as follows (see also Table 3.5):

1. If all three vertices have the same role x, all three open triangles are equivalent and the induced
set of equivalence classes is {{1, 2, 3}, {4}}. The probability of Eijk is determined by Bxxx ∈
∆1, where Bxxx,1 represents the total probability of sampling an open triangle from {1, 2, 3}
and Bxxx,2 represents the closed triangle probability. Thus, the probability of a particular open
triangle is Bxxx,1/3.

2. If only two vertices have the same role x (majority role), the probability of Eijk is governed by
Bxx ∈ ∆2. Here, Bxx,1 and Bxx,2 represent the open triangle probabilities (for open triangles
centered at a vertex in majority and minority role respectively), and Bxx,3 represents the closed
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triangle probability. There are two possible open triangles with a vertex in majority role at the
center, and hence each has probability Bxx,1/2.

3. If all three vertices have distinct roles, the probability of Eijk depends on B0 ∈ ∆1, where
B0,1 represents the total probability of sampling an open triangle from {1, 2, 3} (regardless of
the center vertex’s role) and B0,2 represents the closed triangle probability.

To summarize, the PTM assumes the following generative process for a bag of trian-
gular motifs:

• Choose B0 ∈ ∆1, Bxx ∈ ∆2 and Bxxx ∈ ∆1 for each role x ∈ {1, . . . ,K} according to
symmetric Dirichlet distributions Dirichlet(λ).

• For each vertex i ∈ {1, . . . , N}, draw a mixed-membership vector θi ∼ Dirichlet (α).

• For each triplet of vertices (i, j, k) , i < j < k,

− Draw role indices si,jk ∼ Discrete (θi), sj,ik ∼ Discrete (θj), sk,ij ∼ Discrete (θk).

− Choose a triangular motif Eijk ∈ {1, 2, 3, 4} based on B0, Bxx, Bxxx and the configuration
of (si,jk, sj,ik, sk,ij) (see Table 3.5 for the conditional probabilities).

It is worth pointing out that, similar to the MMTM, our PTM is not a generative model
of networks per se since (a) empty and single-edge motifs are not modeled, and (b) one can
generate a set of triangles that does not correspond to any network, because the generative
process does not force overlapping triangles to have consistent edge values. However,
given a bag of triangular motifs E extracted from a network, the above procedure defines
a valid probabilistic model p(E | α, λ) and we can legitimately use it for performing
posterior inference p(s,θ,B | E, α, λ). We stress that our goal is latent space inference,
not network simulation.

3.3.3 Scalable Stochastic Variational Inference

In this section, we present a stochastic variational inference algorithm [79] for perform-
ing approximate inference under our model. Although it is also feasible to develop such
algorithm for the MMTM [77], the O(NK3) computational complexity precludes its ap-
plication to large numbers of latent roles. However, due to the parsimoniousO(K) param-
eterization of the PTM, our efficient algorithm has only O(NK) complexity.

We adopted a structured mean-field approximation method, in which the true posterior
of latent variables p(s,θ,B | E, α, λ) is approximated by a partially factorized distribution
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q(s,θ,B),

q(s,θ,B) =
∏

(i,j,k)∈I

q(si,jk, sj,ik, sk,ij | φijk)
N∏
i=1

q(θi | γi)
K∏
x=1

q(Bxxx | ηxxx)
K∏
x=1

q(Bxx | ηxx)q(B0 | η0),

where I = {(i, j, k) : i < j < k,Eijk = 1, 2, 3, or 4} and |I| = O(Nδ2). The strong
dependencies among the per-triangle latent roles (si,jk, sj,ik, sk,ij) suggest that we should
model them as a group, rather than completely independent as in a naive mean-field ap-
proximation11. Thus, the variational posterior of (si,jk, sj,ik, sk,ij) is the discrete distribu-
tion

q(si,jk = x, sj,ik = y, sk,ij = z)
.
= qijk(x, y, z) = φxyzijk , x, y, z = 1, . . . ,K. (3.1)

The posterior q(θi) is a Dirichlet(γi); and the posteriors of Bxxx, Bxx, B0 are parameter-
ized as: q(Bxxx) = Dirichlet(ηxxx), q(Bxx) = Dirichlet(ηxx), and q(B0) = Dirichlet(η0).

The mean field approximation aims to minimize the KL divergence KL(q ‖ p) between
the approximating distribution q and the true posterior p; it is equivalent to maximizing a
lower bound L(φ,η,γ) of the log marginal likelihood of the triangular motifs (based on
Jensen’s inequality) with respect to the variational parameters {φ,η,γ} [168].

log p(E | α, λ) ≥ Eq[log p(E, s,θ,B | α, λ)]− Eq[log q(s,θ,B)]
.
= L(φ,η,γ). (3.2)

To simplify the notation, we decompose the variational objective L(φ,η,γ) into a global
term and a summation of local terms, one term for each triangle (see the following section
for details).

L(φ,η,γ) = g(η,γ) +
∑

(i,j,k)∈I

`(φijk,η,γ). (3.3)

The global term g(η,γ) depends only on the global variational parameters η, which gov-
ern the posterior of the triangle-generating probabilities B, as well as the per-node mixed-
membership parameters γ. Each local term `(φijk,η,γ) depends on per-triangle parame-
ters φijk as well as the global parameters. Define L(η,γ)

.
= maxφ L(φ,η,γ), which is

the variational objective achieved by fixing the global parameters η,γ and optimizing the
local parameters φ. By equation (3.3),

L(η,γ) = g(η,γ) +
∑

(i,j,k)∈I

max
φijk

`(φijk,η,γ). (3.4)

11 We tested a naive mean-field approximation, and it performed very poorly. This is because the tensor
of role probabilities q(x, y, z) is often of high rank, whereas naive mean-field is a rank-1 approximation.
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Algorithm 4 Stochastic Variational Inference
1: t = 0. Initialize the global parameters η and γ.
2: Repeat the following steps until convergence.

(1) Sample a mini-batch of triangles S.
(2) Optimize the local parameters qijk(x, y, z) for all sampled triangles in parallel by (3.12).
(3) Accumulate sufficient statistics for the natural gradients of η,γ (and then discard qijk(x, y, z)).
(4) Optimize the global parameters η and γ by the stochastic natural gradient ascent rule (3.7).
(5) ρt ← τ0(τ1 + t)−κ, t← t+ 1.

Stochastic variational inference is a stochastic gradient ascent algorithm [24] that maxi-
mizes L(η,γ), based on noisy estimates of its gradient with respect to η and γ. Whereas
computing the true gradient∇L(η,γ) involves a costly summation over all triangular mo-
tifs as in (3.4), an unbiased noisy approximation of the gradient can be obtained much more
cheaply by summing over a small subsample of triangles. With this unbiased estimate of
the gradient and a suitable adaptive step size, the algorithm is guaranteed to converge to a
stationary point of the variational objective L(η,γ) [143]. In our setting, the most natural
way to obtain an unbiased gradient of L(η,γ) is to sample a “mini-batch” of triangular
motifs at each iteration, and then average the gradient of local terms in (3.4) only for these
sampled triangles. Formally, let m be the total number of triangles and define

LS(η,γ) = g(η,γ) +
m

|S|
∑

(i,j,k)∈S

max
φijk

`(φijk,η,γ), (3.5)

where S is a mini-batch of triangles sampled uniformly at random. It is easy to verify that
ES[LS(η,γ)] = L(η,γ), hence∇LS(η,γ) is unbiased: ES[∇LS(η,γ)] = ∇L(η,γ).

Exact Local Update. To obtain the gradient ∇LS(η,γ), one needs to compute
the optimal local variational parameters φijk (keeping η and γ fixed) for each sampled
triangle (i, j, k) in the mini-batch S; these optimal φijk’s are then used in equation (3.5)
to compute ∇LS(η,γ). Taking partial derivatives of (3.3) with respect to each local term
φxyzijk and setting them to zero, we get for distinct x, y, z ∈ {1, . . . , K},

φxyzijk ∝ exp
{
Eq[logB0,2]I[Eijk = 4]+Eq[log(B0,1/3)]I[Eijk 6= 4]+Eq[log θi,x+log θj,x+log θk,x]

}
.

(3.6)
See the following section for the update equations of φxxxijk and φxxyijk (x 6= y).

O(K) Approximation to Local Update. For each sampled triangle (i, j, k), the exact
local update requires O(K3) work to solve for all φxyzijk , making it unscalable. To enable
a faster local update, we replace qijk(x, y, z | φijk) in (3.1) with a simpler “mixture-of-
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deltas” variational distribution,

qijk(x, y, z | δijk) =
∑
a

δaaaijk I[x = y = z = a] +
∑

(a,b,c)∈A

δabcijk I[x = a, y = b, z = c],

where A is a randomly chosen set of triples (a, b, c) with size O(K), and
∑

a δ
aaa
ijk +∑

(a,b,c)∈A δ
abc
ijk = 1. In other words, we assume the probability mass of the variational

posterior q(si,jk, sj,ik, sk,ij) falls entirely on the K “diagonal” role combinations (a, a, a)
as well as O(K) randomly chosen “off-diagonals” (a, b, c). Conveniently, the δ update
equations are identical to their φ counterparts (see Eq. (3.12)), except that we normalize
over the δ’s instead of all (a, b, c) ∈ K ×K ×K.

In our implementation, we generateA by picking 3K combinations of the form (a, a, b),
(a, b, a) or (a, a, b), and another 3K combinations of the form (a, b, c), thus mirroring the
parameter structure of B. Furthermore, we re-pick A every time we perform the local up-
date on some triangle (i, j, k), thus avoiding any bias due to a single choice of A. We find
that this approximation works as well as the full parameterization in (3.1), yet requires
only O(K) work per sampled triangle. Note that any choice of A yields a valid lower
bound to the true log-likelihood; this follows from standard variational inference theory.

Global Update. We appeal to stochastic natural gradient ascent [10, 150, 79] to
optimize the global parameters η and γ, as it greatly simplifies the update rules while
maintaining the same asymptotic convergence properties as classical stochastic gradient.
The natural gradient ∇̃LS(η,γ) is obtained by a premultiplication of the ordinary gradient
∇LS(η,γ) with the inverse of the Fisher information of the variational posterior q. See
the following section for the exact forms of the natural gradients with respect to η and γ.
To update the parameters η and γ, we apply the stochastic natural gradient ascent rule

ηt+1 = ηt + ρt∇̃ηLS(ηt,γt), γt+1 = γt + ρt∇̃γLS(ηt,γt), (3.7)

where the step size is given by ρt = τ0(τ1 + t)−κ. To ensure convergence, the τ0, τ1, κ
are set such that

∑
t ρ

2
t <∞ and

∑
t ρt =∞ (Section 3.3.4 has our experimental values).

The global update only costs O(NK) time per iteration due to the parsimonious O(K)
parameterization of our PTM.

Our full inferential procedure is summarized in Algorithm 4. Within a mini-batch S,
steps 2-3 can be trivially parallelized across triangles. Furthermore, the local parameters
qijk(x, y, z) can be discarded between iterations, since all natural gradient sufficient statis-
tics can be accumulated during the local update. This saves up to tens of gigabytes of
memory on million-node networks, which is crucial seeing as most desktop and server
machines, as of the time of writing, have between 8GB to 256GB of memory.
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Equations for Stochastic Variational Inference

Exact form of the variational lower bound. We adopted a structured mean-field
approximation method, in which the true (but intractable) posterior of latent variables
p(s,θ,B | E, α, λ) is approximated by a partially factorized distribution q(s,θ,B),

q(s,θ,B) = q(s | φ)q(θ | γ)q(B | η)

=
∏
i<j<k

q(si,jk, sj,ik, sk,ij | φijk)
N∏
i=1

q(θi | γi)
K∏
x=1

q(Bxxx | ηxxx)

K∏
x=1

q(Bxx | ηxx)q(B0 | η0).

(3.8)

The variational lower bound of the log marginal likelihood of the triangular motifs based
on this variational distribution is

log p(E | α, λ) ≥ Eq[log p(E, s,θ,B | α, λ)]− Eq[log q(s,θ,B)]
.
= L(φ,η,γ) (3.9)

= Eq[log p(B0 | λ)]− Eq[log q(B0 | η0)] +

K∑
x=1

{
Eq[log p(Bxx | λ)]− Eq[log q(Bxx | ηxx)]

}
+

K∑
x=1

{
Eq[log p(Bxxx | λ)]− Eq[log q(Bxxx | ηxxx)]

}
+

N∑
i=1

{
Eq[log p(θi | α)]− Eq[log q(θi | γi)]

}
+
∑
i<j<k

{
Eq[log p(si,jk | θi) + log p(sj,ik | θj) + log p(sk,ij | θk)] + Eq[log p(Eijk | si,jk, sj,ik, sk,ij ,B)]

}
−
∑
i<j<k

Eq[log q(si,jk, sj,ik, sk,ij | φijk)].

The first two lines of (3.9) represent the global terms g(γ,η) that depend only the global
variational paramters γ and η, whereas the last two lines are a summation of the local
terms `(φijk,γ,η), one for each triangle.

Exact local update. For each sampled triangle (i, j, k) in a mini-batch, we update the
O(K3) entries of the tensor parameters φijk as per the equations that will soon follow, and
then renormalize them to sum to one. If using the O(K) approximation to the local update
(which all our experiments use), then the update equations remain exactly the same, except
that (1) we simply zero out entries (a, b, c) that are neither a = b = c nor in A, and (2)
we renormalize the remaining entries (a, b, c) such that either a = b = c or (a, b, c) ∈ A
amongst themselves. This follows because the “mixture-of-deltas” variational distribution
is simply a categorical or multinomial distribution with some elements constrained to zero.
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• For x ∈ {1, . . . ,K},

φxxxijk ∝ exp
{
Eq [logBxxx,2]I[Eijk = 4]+Eq [log(Bxxx,1/3)]I[Eijk 6= 4]+Eq [log θi,x]+Eq [log θj,x]+Eq [log θk,x]

}
.

(3.10)
• For x, y ∈ {1, . . . ,K} and x 6= y,

φxxyijk ∝ exp
{
Eq [logBxx,3]I[Eijk = 4] + Eq [logBxx,2]I[Eijk = 3] + Eq [log(Bxx,1/2)]I[Eijk = 1 or 2] (3.11)

+ Eq [log θi,x] + Eq [log θj,x] + Eq [log θk,x]
}
.

• For distinct x, y, z ∈ {1, . . . ,K},

φxyzijk ∝ exp
{
Eq [logB0,2]I[Eijk = 4] + Eq [log(B0,1/3)]I[Eijk 6= 4] + Eq [log θi,x] + Eq [log θj,x] + Eq [log θk,x]

}
.

(3.12)

The update equations for φxyxijk and φyxxijk are similar to φxxyijk , thus we omit their details.

Global update. The natural gradient ∇̃LS(η,γ) with respect to η is

• For x ∈ {1, . . . ,K},

∇̃ηxxx,1LS(η,γ) = λ+
m

s

 ∑
(i,j,k)∈S

qijk(x, x, x)I[Eijk 6= 4]

− ηxxx,1, (3.13)

∇̃ηxxx,2LS(η,γ) = λ+
m

s

 ∑
(i,j,k)∈S

qijk(x, x, x)I[Eijk = 4]

− ηxxx,2. (3.14)

• For x ∈ {1, . . . ,K},

∇̃ηxx,1LS(η,γ) = λ+
m

s

[ ∑
(i,j,k)∈S

∑
y:y 6=x

(
qijk(x, x, y)I[Eijk = 1, 2] + qijk(x, y, x)I[Eijk = 1, 3] (3.15)

+ qijk(y, x, x)I[Eijk = 2, 3]

)]
− ηxx,1,

∇̃ηxx,2LS(η,γ) = λ+
m

s

[ ∑
(i,j,k)∈S

∑
y:y 6=x

(
qijk(x, x, y)I[Eijk = 3] + qijk(x, y, x)I[Eijk = 2] (3.16)

+ qijk(y, x, x)I[Eijk = 1]

)]
− ηxx,2,

∇̃ηxx,3LS(η,γ) = λ+
m

s

[ ∑
(i,j,k)∈S

∑
y:y 6=x

(
qijk(x, x, y) + qijk(x, y, x) + qijk(y, x, x)

)
I[Eijk = 4]

]
− ηxx,3.

(3.17)

• For the sole η0 parameter:

∇̃η0,1LS(η,γ) = λ+
m

s

 ∑
(i,j,k)∈S

∑
(x,y,z):x 6=y 6=z

qijk(x, y, z)I[Eijk 6= 4]

− η0,1, (3.18)

∇̃η0,2LS(η,γ) = λ+
m

s

 ∑
(i,j,k)∈S

∑
(x,y,z):x 6=y 6=z

qijk(x, y, z)I[Eijk = 4]

− η0,2. (3.19)

144



The natural gradient ∇̃LS(η,γ) with respect to γ is, for each i = 1, . . . , N and x =
1, . . . , K,

∇̃γi,xLS(η,γ) = α+
m

s

[ ∑
(j,k):(i,j,k)∈S

∑
y,z

qijk(x, y, z)+
∑

(j,k):(j,i,k)∈S

∑
y,z

qjik(y, x, z)+
∑

(j,k):(j,k,i)∈S

∑
y,z

qjki(y, z, x)

]
−γi,x.

(3.20)

3.3.4 Experimental Validation

We demonstrate that our stochastic variational algorithm achieves latent space recovery
accuracy comparable to or better than prior work, but in only a fraction of the time. In
addition, we perform heldout link prediction and likelihood lower bound (i.e. perplex-
ity) experiments on several large real networks, showing that our approach is orders of
magnitude more scalable than previous work.

Generating Synthetic Data

We use two latent space models as simulators for our experiments — the MMSB model
[6] (which the MMSB batch variational algorithm solves for), and a model that produces
power-law networks from a latent space. The MMSB model produces networks with
“blocks” of nodes characterized by high edge probabilities, whereas the Power-Law model
produces “communities” centered around a high-degree hub node. We show that our al-
gorithm rapidly and accurately recovers latent space roles based on these two notions of
node-relatedness.

For both models we synthesized ground truth role vectors θi’s to generate networks
of varying difficulty. We generated networks with N ∈ {500, 1000, 2000, 5000, 10000}
nodes, with the number of roles growing as K = N/100, to simulate the fact that large
networks can have more roles. These networks were generated in two styles: “easy”
networks where each θi contains 1 to 2 nonzero roles, and “hard” networks with 1 to 4
roles per θi. More details follow.

Latent Space Models.

1. MMSB: LetB be aK×K symmetric block matrix, the probability of an edge from
i to j is θTi Bθj . We symmetrize the resulting network, converting all directed edges
into undirected ones.
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Synthetic Data — Statistics for the largest (N = 10, 000) networks
Network Nodes N Edges M Degree mean/median/max 2,3-Tris (δ = 50) Frac. of 3-Tris Roles K

MMSB easy 10K 279K 55.9/56/81 11.0M 0.060 100
MMSB hard 10K 282K 56.4/56/85 11.2M 0.047 100

Power-Law easy 10K 200K 40/41/126 5.2M 0.31 100
Power-Law hard 10K 200K 40/39/176 5.5M 0.23 100

Table 3.6: Synthetic Data Experiments. Statistics for the largest (N = 10, 000) networks.

2. Power-Law latent space model: LetM be the number of edges in the network. We
generate all M edges by repeating the following procedure: (a) pick a vertex i with
probability proportional to its degree; (b) draw a destination role x ∼ Discrete(θi);
(c) find the set Vx of all vertices v such that θvx is the largest element of θv (breaking
ties at random); (d) within Vx, pick the destination vertex j with probability pro-
portional to its degree, and generate the undirected edge (i, j). If (i, j) is already
present, we repeat the procedure.

The MMSB model produces networks with “blocks” of nodes characterized by high edge
probabilities, whereas the Power-law model produces “communities” centered around a
high-degree hub node. We show that our algorithm rapidly and accurately recovers latent
space roles based on these two notions of node-relatedness.

Ground Truth Role Vectors. For both models, we synthesized ground truth role
vectors θi’s to generate networks of varying difficulty. We generated networks with N ∈
{500, 1000, 2000, 5000, 10000} nodes, with the number of roles growing as K = N/100
(i.e. linear in N ). We set the ground truth θi’s as follows: first, we divided the nodes into
K groups of size 100. For the x-th group, we set 90 vectors θi’s to have mass 1 in role
x, i.e. θix = 1. The remaining 10 vectors θi’s were set to have mass 0.5 in role x, and
0.5 in another randomly chosen role. This forms a latent space where 90% of the nodes
have pure-membership, and 10% have mixed-membership between 2 roles. We call these
networks “MMSB easy” and “Power-Law easy”, respectively.

We also created a second, more challenging series of networks (we call them “hard”)
using role vectors with heavier mixing. These roles were constructed as follows: for the
x-th group, we set 80 vectors θi’s to have mass 1 in role x, 10 vectors θi’s to have 0.5 mass
in role x and 0.5 mass in 1 other random role, and 10 vectors θi’s to have 0.25 mass in role
x and 0.25 mass in 3 other random roles. The resulting latent space has nodes with up to
4 roles.
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In total, we generated 20 networks: 5 sizes × 2 models × 2 sets of role vectors;
summary statistics for the 4 largest N = 10, 000 networks can be found in Table 3.6. For
networks under the Power-Law model, we generated M = 20N edges (so the average
degree is 40). As for networks under the MMSB model, we used a block matrix B with
diagonal elements set to 0.2, and off-diagonal elements set to 0.001. Under this B, the
ratio of intra-role to inter-role edges decreases as (N,K) increase — from approximately
20 : 1 at (N = 1000, K = 10), to 2 : 1 at (N = 10000, K = 100). This means that the
larger MMSB networks are “noiser”, making it harder to distinguish between nodes in the
same role and nodes in different roles. As our results will show, this makes community
membership recovery more challenging for all baselines.

Latent Space Recovery from Synthetic Data

Task and Evaluation. Given one of the synthetic networks, the task is to recover estimates
θ̂i’s of the original latent space vectors θi’s used to generate the network. Because we are
comparing different algorithms (with varying model assumptions) on different networks
(generated under their own assumptions), we standardize our evaluation by thresholding
all outputs θ̂i’s at 1/8 = 0.125 — although there are a total K roles or communities in
each network, we know that every node participates in no more than 4 roles (i.e. the true
θi has at most 4 nonzeros); thus, the threshold 0.125 allows us to capture all 4 roles even
under the presence of noise (whereas a threshold of 1/4 = 0.25 cannot capture all 4 roles
unless they all have exactly 0.25 weight). Note that the choice of threshold is essentially a
precision-recall tradeoff – higher thresholds increase precision at the expense of recall, and
vice-versa. We use Normalized Mutual Information (NMI) [99, 174], a commonly-used
measure of overlapping cluster accuracy, to compare the θ̂i’s with the true θi’s (thresholded
similarly). In other words, we want to recover the set of non-zero roles.

Competing Algorithms and Initialization. We tested the following algorithms:

• Our PTM stochastic variational algorithm. We used δ = 50 subsampling12 (i.e.
(

50
2

)
= 1225

triangles per node), hyperparameters α = λ = 0.1, and a 10% minibatch size with step-size
τ0(τ1 + t)κ, where τ0 = 100, τ1 = 10000, κ = −0.5, and t is the iteration number. Our
algorithm has a runtime complexity of O(Nδ2K). Since our algorithm can be run in parallel, we
conduct all experiments using 4 threads — compared to single-threaded execution, we observe
this reduces runtime to about 40%.

• MMTM collapsed blocked Gibbs sampler, according to [77]. We also used δ = 50 subsam-
pling. The algorithm has O(Nδ2K3) time complexity, and is single-threaded.

12 We chose δ = 50 because almost all our synthetic networks have median degree ≤ 50. Choosing δ
above the median degree ensures that more than 50% of the nodes will receive all their assigned triangles.
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Link Prediction on Synthetic and Real Networks
Network Type Synthetic Dictionary Biological arXiv Collaboration Internet Social

Name MMSB Power-law Roget Odlis Yeast GrQc AstroPh Stanford Youtube
Nodes N 2.0K 2.0K 1.0K 2.9K 2.4K 5.2K 18.7K 282K 1.1M

Edges 40K 40K 3.6K 16K 6.6K 14K 200K 2.0M 3.0M

Our Method AUC 0.93 0.97 0.65 0.81 0.75 0.82 0.86 0.94 0.71
MMSB Variational AUC 0.91 0.94 0.72 0.88 0.81 0.77 — — —

Table 3.7: Link Prediction Experiments, measured using AUC. Our method performs similarly to MMSB
Variational on synthetic data. MMSB performs better on smaller, non-social networks, while we per-
form better on larger, social networks (or MMSB fails to complete due to lack of scalability). Roget, Odlis
and Yeast networks are from Pajek datasets (http://vlado.fmf.uni-lj.si/pub/networks/
data/); the rest are from Stanford Large Network Dataset Collection (http://snap.stanford.
edu/data/).

• PTM collapsed blocked Gibbs sampler. Like the above MMTM Gibbs, but using our PTM
model. Because of block sampling, complexity is still O(Nδ2K3). Single-threaded.

• MMSB batch variational [6]. This algorithm has O(N2K2) time complexity, and is single-
threaded.

All these algorithms are locally-optimal search procedures, and thus sensitive to ini-
tial values. In particular, if nodes that are really from two different roles/communities
are grouped together into a single role/community during initialization, then it is unlikely
that any of the algorithms will discover that the nodes actually belong to two different
roles/communities. For this reason, we provide all algorithms with a fixed initialization
containing some ground truth information (the same initialization is given to every algo-
rithm) — for every role k, we randomly pick 2 (out of the 100) nodes who are truly in role
k according to the ground truth, and correctly initialize those nodes to role k (specifically,
we set θi,k close to 1). The remaining network nodes are then assigned to completely ran-
dom roles. To put it another way, we seed 2% of the nodes with one of their true roles, and
let the algorithms proceed from there13.

Recovery Accuracy. Results of our method, MMSB Variational, MMTM Gibbs
and PTM Gibbs are in Figure 3.8. Note that as the number of nodes N increases, so
does the total number of communities to be detected, K = N/100. Our method exhibits
high accuracy (i.e. NMI close to 1) across almost all networks, validating its ability to
recover latent roles under a range of network sizes N and roles K. On the “MMSB hard”
networks, our method’s accuracy drops slightly on larger networks — this is expected, as

13 In general, one might not have any ground truth roles or labels to seed the algorithm with. For such
cases, our algorithm can be initialized as follows: rank all nodes according to the number of 3-triangles they
touch, and then seed the topK nodes with different roles x. The intuition is that “good” roles may be defined
as having a high ratio of 3-triangles to 2-triangles among participating nodes.
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Latent space recovery on Synthetic Power-Law and MMSB Networks
Accuracy vs MMSB, MMTM Runtime Full vs Mini-Batch
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Figure 3.8: Synthetic Experiments. Left/Center: Latent space recovery accuracy (measured using
Normalized Mutual Information) and runtime per data pass, per role (i.e. community) for our method and
baselines. With the MMTM/PTM Gibbs and MMSB Variational algorithms, the larger networks did
not complete within 12 hours. The runtime plots for MMSB easy and Power-Law easy experiments are
very similar to the hard experiments, so we omit them. Right: Convergence of our stochastic variational
algorithm (with 10% minibatches) versus a batch variational version of our algorithm. On N = 1, 000
networks, our minibatch algorithm converges within 1-2 data passes.

we designed the larger networks to be more difficult to recover communities from (refer
to the earlier paragraph on Ground Truth Role Vectors for a detailed explanation).

In contrast, MMSB Variational exhibits degraded performance with increasing N
(and thus K) even after converging, while MMTM/PTM Gibbs converge to and become
stuck in local minima (even after many iterations and trials), without reaching a good
solution14. We believe our method maintains high accuracy due to its parsimonious O(K)
parameter structure — compared to MMSB Variational’s O(K2) block matrix and
MMTM Gibbs’s O(K3) tensor of triangle parameters. Having fewer parameters may lead
to better parameter estimates, and better task performance.

Runtime. On the larger networks, MMSB Variational and MMTM/PTM Gibbs
did not even finish execution due to their high runtime complexity. This can be seen in
the runtime graphs, which plot the time taken per data pass15, per role (i.e. we show the

14 With more generous initializations (20 out of 100 ground truth nodes per role), MMTM/PTM Gibbs
converge correctly. In practice however, this is an unrealistic amount of prior knowledge to expect. We
believe that more sophisticated MCMC schemes may fix this convergence issue with MMTM/PTM models.

15One data pass is defined as performing variational inference on m triangles, where m is equal to the
total number of triangles. This takes the same amount of time for both the stochastic and batch algorithms.
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runtime per data pass divided by K). By N = 5, 000, all 3 baselines require orders of
magnitude more time than our method does at N = 10, 000. Recall that K = O(N),
and that our method has time complexity O(Nδ2K)16, while MMSB Variational has
O(N2K2), and MMTM/PTM Gibbs has O(Nδ2K3) — hence, our method runs in O(N2)
on these synthetic networks, while the others run in O(N4). This highlights the need for
network methods that are linear in N and K. Note that the runtime graphs show the time
taken per data pass, per role (i.e. we have divided the runtime by K), and also note that
δ is fixed for MMTM and PTM. Hence our PTM variational method should show a linear
O(N) trend — which is indeed the case.

Convergence of stochastic vs. batch algorithms. We also demonstrate that our
stochastic variational algorithm with 10% mini-batches converges much faster to the cor-
rect solution than a non-stochastic, full-batch implementation. The convergence graphs in
Figure 3.8 plot NMI as a function of data passes, and show that our method converges to
the (almost) correct solution in 1-2 data passes. In contrast, the batch algorithm takes 10
or more data passes to converge.

Heldout Link Prediction on Real and Synthetic Networks

We compare MMSB Variational and our method on a link prediction task, in which
10% of the edges are randomly removed (set to zero) from the network, and, given this
modified network, the task is to rank these heldout edges against an equal number of ran-
domly chosen non-edges. For MMSB, we simply ranked according to the link probability
under the MMSB model. For our method, we ranked possible links i− j by the probabil-
ity that the triangle (i, j, k) will include edge i − j, marginalizing over all choices of the
third node k and over all possible role choices for nodes i, j, k. Table 3.7 displays results
for a variety of networks, and our triangle-based method does better on larger social net-
works than the edge-based MMSB. This matches what has been observed in the network
literature [178], and further validates our triangle modeling assumptions.

Note that this link prediction experiment is not intended as a comprehensive evaluation
of link prediction algorithms; it is meant to show how our method (PTM) compares to the
closely-related MMSB model — specifically, that PTM is better at link prediction on larger
networks, while MMSB is better on smaller networks. We acknowledge there are other
link prediction algorithms, which are not the focus of this study.

16For our method and all baselines, we have excluded the O(M) cost of reading in the input network, as it
requires negligible time compared to the actual inference. Also note that once the network has been loaded,
δ-subsampling for PTM and MMTM takes O(Nδ2) time, independent of the number of edges M .
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Real World Networks — Convergence on Heldout Data

Real Networks — Statistics, Experimental Settings and Runtime
Name Nodes Edges δ 2,3-Tris (for δ) Frac. 3-Tris Roles K Threads Runtime (10 data passes)

Brightkite 58K 214K 50 3.5M 0.11 64 4 34 min
Brightkite || || || || || 300 4 2.6 h

Slashdot Feb 2009 82K 504K 50 9.0M 0.030 100 4 2.4 h
Slashdot Feb 2009 || || || || || 300 4 6.7 h

Stanford Web 282K 2.0M 20 11.4M 0.57 5 4 10 min
Stanford Web || || 50 25.0M 0.42 100 4 6.3 h

Berkeley-Stanford Web 685K 6.6M 30 57.6M 0.55 100 8 15.2 h
Youtube 1.1M 3.0M 50 36.0M 0.053 100 8 9.1 h

Table 3.8: Real Network Experiments. All networks were taken from the Stanford Large Network
Dataset Collection; directed networks were converted to undirected networks via symmetrization. Some
networks were run with more than one choice of settings. Runtime is the time taken for 10 data passes
(which was more than sufficient for convergence on all networks, see Figure 3.9).

Real Networks — Heldout lower bound of our method
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Figure 3.9: Real Network Experiments. Training and heldout variational lower bound (equiva-
lent to perplexity) convergence plots for all experiments in Table 3.8. Each plot shows both lower
bounds over 10 data passes (i.e. 100 iterations with 10% minibatches). In all cases, we observe con-
vergence between 2-5 data passes, and the shape of the heldout curve closely mirrors the training
curve (i.e. no overfitting).

Finally, we demonstrate that our approach is capable of scaling to large real-world
networks, achieving convergence in a fraction of the time reported by recent work on
scalable network modeling. Table 3.8 lists the networks that we tested on, ranging in size
from N = 58K to N = 1.1M. With a few exceptions, the experiments were conducted
with δ = 50 and 4 computational threads. In particular, for every network, we picked δ
to be larger than the average degree, thus minimizing the amount of triangle data lost to
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subsampling. Figure 3.9 plots the training and heldout variational lower bound for several
experiments, and shows that our algorithm always converges in 2-5 data passes.

We wish to highlight two experiments, namely the Brightkite network for K = 64,
and the Stanford network for K = 5 (the first and fifth rows respectively in Table 3.8).
Gopalan et al. ([56]) reported convergence on Brightkite in 8 days using their scalable
a-MMSB algorithm with 4 threads, while Ho et al. ([77]) converged on Stanford in 18.5
hours using the MMTM Gibbs algorithm on 1 thread. In both settings, our algorithm is
orders of magnitude faster — using 4 threads, it converged on Brightkite and Stanford in
just 12 and 4 minutes respectively, as seen in Figure 3.9.
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Chapter 4

Distributed Computation Systems for
Analysis of Societal-Scale Networks

Having covered the triangular motif data representation, model formulation, and inference
algorithms needed for linear-time mixed-membership analysis of networks at the N ≈ 1-
million-node and K ≈ 100-community scale, we now turn to the distributed computation
systems that are required to analyze networks at the N ≈ 100-million-node and K ≈
1000-community scale. One motivation for switching to distributed (i.e. multi-machine)
computation is runtime: at those network scales, even the Parsimonious Triangular Model
(PTM) parallel algorithm from last chapter would take hundreds of days to finish on a 4-
core desktop machine. The other, perhaps less obvious, motivation is the memory required
by such a large model: N = 100 million mixed-membership vectors of length K = 1000
naively requires O(NK) = 400GB of storage1, excluding other algorithmic overheads.
As of this writing, most server machines have anywhere from 8GB to 256GB of RAM,
with most research clusters falling on the low end of that spectrum. By distributing the
model storage over multiple machines and fetching parts as needed over the network, we
avoid having to store the model on disk, which can decrease algorithm speed by an order
of magnitude or more.

Even so, designing parallel algorithms that will run efficiently on a distributed cluster
is a nontrivial affair. For one, the inter-machine network bandwidth between two ma-
chines is several orders of magnitude smaller than the CPU-RAM interface within a single

1However, if we make the reasonable assumption that a node cannot belong to more communities than
its degree, then we can lower the memory upper bound to O(M) rather than O(NK). This requires the
mixed-membership vectors to be stored in a sparse data structure — later in this chapter, we shall discuss
memory reduction strategies that make use of sparsity.
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machine, while the time taken to send messages is several orders of magnitude larger.
Thus, frequent communication and synchronization of model variables will greatly slow
down the algorithm, unless care is taken to minimize and prioritize network traffic. For
another, machines in a distributed cluster rarely perform identically, even if their speci-
fications are exactly the same. Multiple factors contribute to this issue: physical factors
such as vibrations and high air temperatures affecting the performance of hard drives, hu-
man factors such as users running other jobs on the same machines (not uncommon in
a shared academic or industrial cluster), and software factors such as the “machine” be-
ing virtualized (and thus sharing the underlying hardware with other virtual machines) or
running background processes such as the Hadoop Distributed File System. Such uneven
machine performance is not only hard to predict in advance, but also creates efficiency
problems for many parallel algorithms, which typically assume that every worker machine
must perform the same amount of work in a given iteration, before exchanging updates. If
one machine happens to be 50% slower during the first iteration, then the performance of
the entire distributed system drops in half, since every machine must wait for the laggard
to finish. The following iteration, it might be another machine that ends up 25% slower,
and so forth. Without a strategy for dealing with such transient stragglers, the distributed
algorithm is doomed to run every iteration at a fraction of the cluster’s total capacity.

In Section 4.1, we shall describe a general-purpose distributed computation system,
Stale Synchronous Parallel (SSP), for running parallel iterative algorithms efficiently un-
der the aforementioned conditions. Central to SSP is the notion that iterative algorithms
(such as the parallel PTM stochastic variational algorithm from last chapter) can theo-
retically and empirically tolerate a limited amount of error, and this flexibility can be
exploited to address network inefficiences and uneven machine performance. Importantly,
SSP applies not just to the network algorithms in this thesis, but to a broad range of sta-
tistical, data-mining and machine learning algorithms such as Matrix Factorization, Topic
Modelling, and LASSO Regression. Section 4.1 is thus fully self-contained, and can be
understood without reference to the rest of this thesis.

Finally, in Section 4.2, we present the capstone of this thesis: a new inference algo-
rithm for the PTM model that not only supercedes the stochastic variational algorithm
from last chapter in both speed and memory efficiency, but can also harness an entire dis-
tributed cluster to enable analysis of societal-scale,N > 100-million-node andK > 1000-
community networks. We validate this algorithm on real-world networks with ground-
truth communities, and demonstrate how it can be harnessed to analyze overlapping com-
munities in an N ≈ 100-million node internet webgraph.
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4.1 Speeding up Distributed Machine Learning through
a Stale Synchronous Parallel Parameter Server

Modern applications awaiting next generation machine intelligence systems have posed
unprecedented scalability challenges. These scalability needs arise from at least two as-
pects: 1) massive data volume, such as societal-scale social graphs [85, 177] with up to
hundreds of millions of nodes; and 2) massive model size, such as the Google Brain deep
neural network [41] containing billions of parameters. Although there exist means and
theories to support reductionist approaches like subsampling data or using small mod-
els, there is an imperative need for sound and effective distributed ML methodologies for
users who cannot be well-served by such shortcuts. Recent efforts towards distributed
ML have made significant advancements in two directions: (1) Leveraging existing com-
mon but simple distributed systems to implement parallel versions of a limited selection
of ML models, particularly those that can be shown to have strong theoretical guarantees
under parallelization schemes such as cyclic delay [103, 2], model pre-partitioning [46],
lock-free updates [132], bulk synchronous parallel [26], or even no synchronization [183].
While these schemes are simple to implement, they may under-exploit the full comput-
ing power of a distributed cluster. (2) Building high-throughput distributed ML archi-
tectures or algorithm implementations that feature significant systems contributions but
relatively less theoretical analysis, such as GraphLab [115], Spark [181], Pregel [116],
and YahooLDA [4].

While the aforementioned works are significant contributions in their own right, a natu-
rally desirable goal for distributed ML is to pursue a system that (1) can maximally unleash
the combined computational power in a cluster of any given size (by spending more time
doing useful computation and less time waiting for communication), (2) supports infer-
ence for a broad collection of ML methods, and (3) enjoys correctness guarantees. In this
section, we explore a path to such a system using the idea of a parameter server [137, 4],
which we define as the combination of a shared key-value store that provides a centralized
storage model (which may be implemented in a distributed fashion) with a synchronization
model for reading/updating model values. The key-value store provides easy-to-program
read/write access to shared parameters needed by all workers, and the synchronization
model maximizes the time each worker spends on useful computation (versus communi-
cation with the server) while still providing algorithm correctness guarantees.

Towards this end, we propose a parameter server using a Stale Synchronous Parallel
(SSP) model of computation, for distributed ML algorithms that are parallelized into many
computational workers (technically, threads) spread over many machines. In SSP, workers
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can make updates δ to a parameter2 θ, where the updates follow an associative, commu-
tative form θ ← θ + δ. Hence, the current true value of θ is just the sum over updates
δ from all workers. When a worker asks for θ, the SSP model will give it a stale (i.e.
delayed) version of θ that excludes recent updates δ. More formally, a worker reading θ at
iteration c will see the effects of all δ from iteration 0 to c− s− 1, where s ≥ 0 is a user-
controlled staleness threshold. In addition, the worker may get to see some recent updates
beyond iteration c − s − 1. The idea is that SSP systems should deliver as many updates
as possible, without missing any updates older than a given age — a concept referred to as
bounded staleness [163]. The practical effect of this is twofold: (1) workers can perform
more computation instead of waiting for other workers to finish, and (2) workers spend less
time communicating with the parameter server, and more time doing useful computation.
Bounded staleness distinguishes SSP from cyclic-delay systems [103, 2] (where θ is read
with inflexible staleness), Bulk Synchronous Parallel (BSP) systems like Hadoop (work-
ers must wait for each other at the end of every iteration), or completely asynchronous
systems [4] (workers never wait, but θ has no staleness guarantees).

We implement an SSP parameter server with a table-based interface, called SSPtable,
that supports a wide range of distributed ML algorithms for many models and applica-
tions. SSPtable itself can also be run in a distributed fashion, in order to (a) increase
performance, or (b) support applications where the parameters θ are too large to fit on
one machine. Moreover, SSPtable takes advantage of bounded staleness to maximize ML
algorithm performance, by reading the parameters θ from caches on the worker machines
whenever possible, and only reading θ from the parameter server when the SSP model
requires it. Thus, workers (1) spend less time waiting for each other, and (2) spend less
time communicating with the parameter server. Furthermore, we show that SSPtable (3)
helps slow, straggling workers to catch up, providing a systems-based solution to the “last
reducer” problem on systems like Hadoop (while we note that theory-based solutions are
also possible). SSPtable can be run on multiple server machines (called “shards”), thus di-
viding its workload over the cluster; in this manner, SSPtable can (4) service more workers
simultaneously, and (5) support very large models that cannot fit on a single machine. Fi-
nally, the SSPtable server program can also be run on worker machines, which (6) provides
a simple but effective strategy for allocating machines between workers and the parameter
server.

Our theoretical analysis shows that (1) SSP generalizes the bulk synchronous parallel
(BSP) model, and that (2) stochastic gradient algorithms (e.g. for matrix factorization

2 For example, the parameter θ might be the topic-word distributions in LDA, or the factor matrices in a
matrix decomposition, while the updates δ could be adding or removing counts to topic-word or document-
word tables in LDA, or stochastic gradient steps in a matrix decomposition.

156



or topic models) under SSP not only converge, but do so at least as fast as cyclic-delay
systems [103, 2] (and potentially even faster depending on implementation). Furthermore,
our implementation of SSP, SSPtable, supports a wide variety of algorithms and models,
and we demonstrate it on several popular ones: (a) Matrix Factorization with stochastic
gradient descent [46], (b) Topic Modeling with collapsed Gibbs sampling [4], and (c)
Lasso regression with parallelized coordinate descent [26]. Our experimental results show
that, for these 3 models and algorithms, (i) SSP yields faster convergence than BSP (up
to several times faster), and (ii) SSP yields faster convergence than a fully asynchronous
(i.e. no staleness guarantee) system. We explain SSPtable’s better performance in terms of
algorithm progress per iteration (quality) and iterations executed per unit time (quantity),
and show that SSPtable hits a “sweet spot” between quality and quantity that is missed by
BSP and fully asynchronous systems.

4.1.1 Stale Synchronous Parallel Model of Computation

We begin with an informal explanation of SSP: assume a collection of P workers, each
of which makes additive updates to a shared parameter x ← x + u at regular intervals
called clocks. Clocks are similar to iterations, and represent some unit of progress by an
ML algorithm. Every worker has its own integer-valued clock c, and workers only commit
their updates at the end of each clock. Updates may not be immediately visible to other
workers trying to read x — in other words, workers only see effects from a “stale” subset
of updates. The idea is that, with staleness, workers can retrieve updates from caches on
the same machine (fast) instead of querying the parameter server over the network (slow).
Given a user-chosen staleness threshold s ≥ 0, SSP enforces the following bounded stal-
eness conditions (see Figure 4.1 for a graphical illustration):

• The slowest and fastest workers must be ≤ s clocks apart — otherwise, the fastest
worker is forced to wait for the slowest worker to catch up.

• When a worker with clock c commits an update u, that u is timestamped with time c.

• When a worker with clock c reads x, it will always see effects from all u with timestamp
≤ c− s− 1. It may also see some u with timestamp > c− s− 1 from other workers.

• Read-my-writes: A worker p will always see the effects of its own updates up.

Since the fastest and slowest workers are≤ s clocks apart, a worker reading x at clock
c will see all updates with timestamps in [0, c− s− 1], plus a (possibly empty) “adaptive”
subset of updates in the range [c − s, c + s − 1]. Note that when s = 0, the “guaranteed”
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Figure 4.1: Bounded Staleness under the SSP Model

range becomes [0, c − 1] while the adaptive range becomes empty, which is exactly the
Bulk Synchronous Parallel model of computation. Let us look at how SSP applies to an
example ML algorithm.

An example: Stochastic Gradient Descent for Matrix Problems

The Stochastic Gradient Descent (SGD) [103, 46] algorithm optimizes an objective func-
tion by applying gradient descent to random subsets of the data. Consider a matrix com-
pletion task, which involves decomposing an N ×M matrix D into two low-rank matrices
LR ≈ D, where L,R have sizes N × K and K × M (for a user-specified K). The
data matrix D may have missing entries, corresponding to missing data. Concretely, D
could be a matrix of users against products, with Dij representing user i’s rating of prod-
uct j. Because users do not rate all possible products, the goal is to predict ratings for
missing entries Dab given known entries Dij . If we found low-rank matrices L,R such
that Li· · R·j ≈ Dij for all known entries Dij , we could then predict Dab = La· · R·b for
unknown entries Dab.

To perform the decomposition, let us minimize the squared difference between each
known entry Dij and its prediction Li· ·R·j (note that other loss functions and regularizers
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are also possible):

min
L,R

∑
(i,j)∈Data

∥∥∥∥∥Dij −
K∑
k=1

LikRkj

∥∥∥∥∥
2

. (4.1)

As a first step towards SGD, consider solving Eq (4.1) using coordinate gradient descent
on L,R:

∂OMF

∂Lik
=

∑
(a,b)∈Data

δ(a = i) [−2DabRkb + 2La·R·bRkb] ,
∂OMF

∂Rkj
=

∑
(a,b)∈Data

δ(b = j) [−2DabLak + 2La·R·bLak]

where OMF is the objective in Eq(4.1), and δ(a = i) equals 1 if a = i, and 0 otherwise.
This can be transformed into an SGD algorithm by replacing the full sum over entries (a, b)
with a subsample (with appropriate reweighting). The entries Dab can then be distributed
over multiple workers, and their gradients computed in parallel [46].

We assume that D is “tall”, i.e. N > M (or transpose D so this is true), and partition
the rows of D and L over the processors. Only R needs to be shared among all processors,
so we let it be the SSP shared parameter x := R. SSP allows many workers to read/write
to R with minimal waiting, though the workers will only see stale values of R. This
tradeoff is beneficial because without staleness, the workers must wait for a long time
when reading R from the server (as our experiments will show). While having stale values
of R decreases convergence progress per iteration, SSP more than makes up by enabling
significantly more iterations per minute, compared to fully synchronous systems. Thus,
SSP yields more convergence progress per minute, i.e. faster convergence.

Note that SSP is not limited to stochastic gradient matrix algorithms: it can also be
applied to parallel collapsed sampling on topic models [4] (by storing the word-topic and
document-topic tables in x), parallel coordinate descent on Lasso regression [26] (by stor-
ing the regression coefficients β in x), as well as any other parallel algorithm or model
with shared parameters that all workers need read/write access to. Our experiments will
show that SSP performs better than bulk synchronous parallel and asynchronous systems
for matrix completion, topic modeling and Lasso regression.

4.1.2 SSPtable: an Efficient SSP System

An ideal SSP implementation would fully exploit the leeway granted by SSP’s bounded
staleness property, in order to balance the time workers spend waiting on reads with the
need for freshness in the shared data. This section describes our initial implementation
of SSPtable, which is a parameter server conforming to the SSP model, and that can be
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Figure 4.2: Cache structure of SSPtable, with multiple server shards

run on many server machines at once (distributed). Our experiments with this SSPtable
implementation shows that SSP can indeed improve convergence rates for several ML
models and algorithms, while further tuning of cache management policies could further
improve the performance of SSPtable.

SSPtable follows a distributed client-server architecture. Clients access shared param-
eters using a client library, which maintains a machine-wide process cache and optional
per-thread3 thread caches (Figure 4.2); the latter are useful for improving performance,
by reducing inter-thread synchronization (which forces workers to wait) when a client
ML program executes multiple worker threads on each of multiple cores of a client ma-
chine. The server parameter state is divided (sharded) over multiple server machines, and
a normal configuration would include a server process on each of the client machines. Pro-
gramming with SSPtable follows a simple table-based API for reading/writing to shared
parameters x (for example, the matrix R in the SGD example of Section 4.1.1):

• Table Organization: SSPtable supports an unlimited number of tables, which are di-
vided into rows, which are further subdivided into elements. These tables are used to
store x.

• read row(table,row,s): Retrieve a table-row with staleness threshold s. The
user can then query individual row elements.

• inc(table,row,el,val): Increase a table-row-element by val, which can be

3 We assume that every computation thread corresponds to one ML algorithm worker.
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negative. These changes are not propagated to the servers until the next call to clock().

• clock(): Inform all servers that the current thread/processor has completed one
clock, and commit all outstanding inc()s to the servers.

Any number of read row() and inc() calls can be made in-between calls to
clock(). Different thread workers are permitted to be at different clocks, however,
bounded staleness requires that the fastest and slowest threads be no more than s clocks
apart. In this situation, SSPtable forces the fastest thread to block (i.e. wait) on calls to
read row(), until the slowest thread has caught up. To maintain the “read-my-writes”
property, we use a write-back policy: all writes are immediately committed to the thread
caches, and are flushed to the process cache and servers upon clock().

To maintain bounded staleness while minimizing wait times on read row() oper-
ations, SSPtable uses the following cache protocol: Let every table-row in a thread or
process cache be endowed with a clock rthread or rproc respectively. Let every thread
worker be endowed with a clock c, equal to the number of times it has called clock().
Finally, define the server clock cserver to be the minimum over all thread clocks c. When
a thread with clock c requests a table-row, it first checks its thread cache. If the row is
cached with clock rthread ≥ c − s, then it reads the row. Otherwise, it checks the process
cache next — if the row is cached with clock rproc ≥ c − s, then it reads the row. At
this point, no network traffic has been incurred yet. However, if both caches miss, then
a network request is sent to the server (which forces the thread to wait for a reply). The
server returns its view of the table-row as well as the clock cserver. Because the fastest and
slowest threads can be no more than s clocks apart, and because a thread’s updates are
sent to the server whenever it calls clock(), the returned server view always satisfies
the bounded staleness requirements for the asking thread. After fetching a row from the
server, the corresponding entry in the thread/process caches and the clocks rthread, rproc
are then overwritten with the server view and clock cserver.

A beneficial consequence of this cache protocol is that the slowest thread only per-
forms costly server reads every s clocks. Faster threads may perform server reads more
frequently, and as frequently as every clock if they are consistently waiting for the slowest
thread’s updates. This distinction in work per thread does not occur in BSP, wherein every
thread must read from the server on every clock. Thus, SSP not only reduces overall net-
work traffic (thus reducing wait times for all server reads), but also allows slow, straggler
threads to avoid server reads in some iterations. Hence, the slow threads naturally catch
up — in turn allowing fast threads to proceed instead of waiting for them. In this manner,
SSP maximizes the time each machine spends on useful computation, rather than waiting.
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4.1.3 Theoretical Analysis of SSP

We now show that the SSP model strictly limits the maximum error in the ML model
parameters seen by each worker. This “key SSP result” can be used to prove convergence
for ML algorithms running under SSP — in particular, we will derive the convergence
of Stochastic Gradient Descent (SGD) under SSP; the proof involves substituting the key
SSP result into the regret-based analysis of Langford et al. [103].

Let us begin with a formal definition of SSP, as well as the notion of “bounded stal-
eness”. Formally, the SSP model supports operations x ← x ⊕ (z · y), where x,y are
members of a ring with an abelian operator ⊕ (such as addition), and a multiplication
operator · such that z · y = y′ where y′ is also in the ring. In the context of ML, we
shall focus on addition and multiplication over real vectors x,y and scalar coefficients z,
i.e. x ← x + (zy); such operations can be found in the update equations of many ML
inference algorithms, such as gradient descent [46], coordinate descent [26] and collapsed
Gibbs sampling [4]. In what follows, we shall informally refer to x as the “system state”,
u = zy as an “update”, and to the operation x← x + u as “writing an update”.

We assume that P workers write updates at regular time intervals (referred to as
“clocks”). Let up,c be the update written by worker p at clock c through the write op-
eration x← x + up,c. The updates up,c are a function of the system state x, and under the
SSP model, different workers will “see” different, noisy versions of the true state x. Let
x̃p,c be the noisy state read by worker p at clock c, implying that up,c = G(x̃p,c) for some
function G. We now formally re-state bounded staleness, which is the key SSP condition
that bounds the possible values x̃p,c can take:

SSP Condition (Bounded Staleness): Fix a staleness s. Then, the noisy state x̃p,c is
equal to

x̃p,c = x0 +

c−s−1∑
c′=1

P∑
p′=1

up′,c′


︸ ︷︷ ︸

guaranteed pre-window updates

+

[
c−1∑

c′=c−s
up,c′

]
︸ ︷︷ ︸

guaranteed read-my-writes updates

+

 ∑
(p′,c′)∈Sp,c

up′,c′


︸ ︷︷ ︸

best-effort in-window updates

, (4.2)

where Sp,c ⊆ Wp,c = ([1, P ] \ {p}) × [c − s, c + s − 1] is some subset of the updates u
written in the width-2s “window”Wp,c, which ranges from clock c − s to c + s − 1 and
does not include updates from worker p. In other words, the noisy state x̃p,c consists of
three parts:

1. Guaranteed “pre-window” updates from clock 0 to c− s− 1, over all workers.
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2. Guaranteed “read-my-writes” set {(p, c − s), . . . , (p, c − 1)} that covers all “in-
window” updates made by the querying worker4 p.

3. Best-effort “in-window” updates Sp,c from the width-2swindow5 [c−s, c+s−1] (not
counting updates from worker p). An SSP implementation should try to deliver as
many updates from Sp,c as possible, but may choose not to depending on conditions.

Notice that Sp,c is specific to worker p at clock c; other workers at different clocks will
observe different S . Also, observe that SSP generalizes the Bulk Synchronous Parallel
(BSP) model:

BSP Corollary: Under zero staleness s = 0, SSP reduces to BSP. Proof: s = 0 implies
[c, c+ s− 1] = ∅, and therefore x̃p,c exactly consists of all updates until clock c− 1. �

Our key tool for convergence analysis is to define a reference sequence of states xt,
informally referred to as the “true” sequence (this is different and unrelated to the SSPtable
server’s view):

xt = x0 +
t∑

t′=0

ut′ , where ut := ut mod P ,bt/P c.

In other words, we sum updates by first looping over workers (t mod P ), then over clocks
bt/P c. We can now bound the difference between the “true” sequence xt and the noisy
views x̃p,c:

Lemma 1: Assume s ≥ 1, and let x̃t := x̃t mod P ,bt/P c, so that

x̃t = xt −

[∑
i∈At

ui

]
︸ ︷︷ ︸

missing updates

+

[∑
i∈Bt

ui

]
︸ ︷︷ ︸
extra updates

, (4.3)

where we have decomposed the difference between x̃t and xt into At, the index set of
updates ui that are missing from x̃t (w.r.t. xt), and Bt, the index set of “extra” updates in x̃t
but not in xt. We then claim that |At|+|Bt| ≤ 2s(P−1), and furthermore, min(At∪Bt) ≥
max(1, t− (s+ 1)P ), and max(At ∪ Bt) ≤ t+ sP .

4 This is a “read-my-writes” or self-synchronization property, i.e. workers will always see any updates
they make. Having such a property makes sense because self-synchronization does not incur a network cost.

5 The width 2s is only an upper bound for the slowest worker. The fastest worker with clock cmax has a
width-s window [cmax − s, cmax − 1], simply because no updates for clocks ≥ cmax have been written yet.
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Proof: Comparing Eq. (4.3) with (4.2), we see that the extra updates obeyBt ⊆ St mod P ,bt/P c,
while the missing updates obeyAt ⊆ (Wt mod P ,bt/P c\St mod P ,bt/P c). Because |Wt mod P ,bt/P c| =
2s(P − 1), the first claim immediately follows. The second and third claims follow from
looking at the left- and right-most boundaries ofWt mod P ,bt/P c. �

Lemma 1 basically says that the “true” state xt and the noisy state x̃t only differ by at
most 2s(P − 1) updates ut, and that these updates cannot be more than (s + 1)P steps
away from t. This is the “key SSP result” alluded to earlier, and we can use it to prove
convergence bounds for various algorithms. In this thesis, we shall focus on stochastic
gradient descent SGD, following the techniques in Langford et al. [103].

Analysis of Stochastic Gradient Descent under SSP

Suppose we want to find the minimizer, call it x∗, of a convex function f(x) =
∑T

t=1 ft(x),
via gradient descent on one component ∇ft at a time. We assume the components ft are
also convex. In the SGD setting, each component ft is the problem objective function
restricted to the t-th random subsample of the data points. T is the total number of sub-
samples to be processed by the algorithm.

Let the update function be ut := −ηt∇ft(x̃t), where x̃t is the noisy SSP worker view
of x defined in Lemma 1, and the step size is ηt = σ√

t
with σ = F

L
√

2(s+1)P
for cer-

tain constants F,L. Next, define D (x‖x′) := 1
2
‖x− x′‖2 to be the distance between x

and x′. Finally, assume that ‖∇ft (x)‖ ≤ L for all t (i.e. ft are L-Lipschitz), and that
maxx,x′∈X D (x‖x′) ≤ F 2 (the optimization problem has bounded diameter).

Theorem 1 (SGD under SSP): We claim that

R[X] :=
T∑
t=1

ft(x̃t)− f(x∗) ≤ 4FL
√

2(s+ 1)PT ,

where R[X] is the total error or regret in the objective, as accumulated over all the T data
subsamples. For ease of interpretation, we can divide both sides by T to obtain

1

T
R[X] :=

1

T

T∑
t=1

ft(x̃t)− f(x∗) ≤ 4FL

√
2(s+ 1)P

T
,

where 1
T
R[X] is the average error or regret at each of the T data subsamples. Since the

RHS shrinks to zero as T → ∞, and since the RHS upper bounds 1
T
R[X], Theorem 1
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basically states that the average error 1
T
R[X] also converges to zero — in other words, the

SGD optimization is converging (in expectation) at rate O(T−1/2). Intuitively, this means
that the noisy SSP worker views x̃t eventually become “close enough” to the true view x∗.

Note that Theorem 1 is similar to the result in Langford et al. [103], except that (1)
their result only applies to fixed-delay systems (whereas SSP involves random delays), (2)
their fixed delay τ has been replaced by our staleness upper bound 2(s + 1)P , and (3)
we have shown convergence based on the noisy SSP worker views x̃t rather than a true
sequence xt. Furthermore, because the constant factor 2(s + 1)P is only an upper bound
to the number of erroneous updates, SSP’s rate of convergence has a potentially tighter
constant factor than Langford et al.’s fixed staleness system. The key contribution of our
analysis was to show that SSP’s error can be bounded in a way that admits the use of
Langford et al.’s proof technique.

Proof of Theorem 1: The analysis closely follows Langford et al. [103], except that we
use Lemma 1 in place of certain bounds. First,

R [X] :=
T∑
t=1

ft (x̃t)− ft (x∗)

≤
T∑
t=1

〈∇ft (x̃t) , x̃t − x∗〉 (ft are convex)

=
T∑
t=1

〈g̃t, x̃t − x∗〉 .

where we have defined g̃t := ∇ft (x̃t). The high-level idea is to show that R [X] ≤
o (T ), which implies Et [ft (x̃t)− ft (x∗)] → 0 and thus convergence. First, we shall say
something about each term 〈g̃t, x̃t − x∗〉.

Lemma 2: If X = Rn, then for all x∗,

〈x̃t − x∗, g̃t〉 =
1

2
ηt ‖g̃t‖2 +

D (x∗‖xt)−D (x∗‖xt+1)

ηt
+

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

Proof:
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D (x∗‖xt+1)−D (x∗‖xt) =
1

2
‖x∗ − xt + xt − xt+1‖2 − 1

2
‖x∗ − xt‖2

=
1

2
‖x∗ − xt + ηtg̃t‖2 − 1

2
‖x∗ − xt‖2

=
1

2
η2
t ‖g̃t‖

2 − ηt 〈xt − x∗, g̃t〉

=
1

2
η2
t ‖g̃t‖

2 − ηt 〈x̃t − x∗, g̃t〉 − ηt 〈xt − x̃t, g̃t〉

Expand the last term:

〈xt − x̃t, g̃t〉 =

〈[
−
∑
i∈At

ηig̃i +
∑
i∈Bt

ηig̃i

]
, g̃t

〉
= −

∑
i∈At

ηi 〈g̃i, g̃t〉+
∑
i∈Bt

ηi 〈g̃i, g̃t〉

Therefore,

D (x∗‖xt+1)−D (x∗‖xt) =
1

2
η2
t ‖g̃t‖

2 − ηt 〈x̃t − x∗, g̃t〉 − ηt

[
−
∑
i∈At

ηi 〈g̃i, g̃t〉+
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]
D (x∗‖xt+1)−D (x∗‖xt)

ηt
=

1

2
ηt ‖g̃t‖2 − 〈x̃t − x∗, g̃t〉+

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

〈x̃t − x∗, g̃t〉 =
1

2
ηt ‖g̃t‖2 +

D (x∗‖xt)−D (x∗‖xt+1)

ηt
+

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]
.

This completes the proof of Lemma 2. �

Back to Theorem 1: Returning to the proof of Theorem 1, we use Lemma 2 to expand
the regret R[X]:
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R [X] ≤
T∑
t=1

〈g̃t, x̃t − x∗〉 =
T∑
t=1

1

2
ηt ‖g̃t‖2 +

T∑
t=1

D (x∗‖xt)−D (x∗‖xt+1)

ηt

+
T∑
t=1

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

=
T∑
t=1

[
1

2
ηt ‖g̃t‖2 +

∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

+
D (x∗‖x1)

η1

− D (x∗‖xT+1)

ηT
+

T∑
t=2

[
D (x∗‖xt)

(
1

ηt
− 1

ηt−1

)]

We now upper-bound each of the terms:

T∑
t=1

1

2
ηt ‖g̃t‖2 ≤

T∑
t=1

1

2
ηtL

2 (Lipschitz assumption)

=
T∑
t=1

1

2

σ√
t
L2

≤ σL2
√
T ,

and,

D (x∗‖x1)

η1

− D (x∗‖xT+1)

ηT
+

T∑
t=2

[
D (x∗‖xt)

(
1

ηt
− 1

ηt−1

)]

≤ F 2

σ
+ 0 +

F 2

σ

T∑
t=2

[√
t−
√
t− 1

]
(Bounded diameter)

=
F 2

σ
+
F 2

σ

[√
T − 1

]
=

F 2

σ

√
T ,

167



and,
T∑
t=1

[∑
i∈At

ηi 〈g̃i, g̃t〉 −
∑
i∈Bt

ηi 〈g̃i, g̃t〉

]

≤
T∑
t=1

[|At|+ |Bt|] ηmax(1,t−(s+1)P )L
2

(from Lemma 1: min (At ∪ Bt) ≥ max (1, t− (s+ 1)P ))

= L2

(s+1)P∑
t=1

[|At|+ |Bt|] η1 +
T∑

t=(s+1)P+1

[|At|+ |Bt|] ηt−(s+1)P

 (split the sum)

= L2

(s+1)P∑
t=1

[|At|+ |Bt|]σ +
T∑

t=(s+1)P+1

[|At|+ |Bt|]
σ√

t− (s+ 1)P


≤ σL2

(s+1)P∑
t=1

2s (P − 1) +
T∑

t=(s+1)P+1

2s (P − 1)
1√

t− (s+ 1)P


(from Lemma 1: |At|+ |Bt| ≤ 2s(P − 1))

≤ 2σL2s (P − 1)
[
(s+ 1)P + 2

√
T − (s+ 1)P

] (
Note that

b∑
i=a

1

2
√
i
≤
√
b− a+ 1

)
≤ 2σL2s (P − 1)

[
(s+ 1)P + 2

√
T
]

≤ 2σL2 [(s+ 1)P ]2 + 4σL2 (s+ 1)P
√
T .

Hence,

R [X] ≤
T∑
t=1

〈g̃t, x̃t − x∗〉 ≤ σL2
√
T + F 2

√
T

σ
+ 2σL2 [(s+ 1)P ]2 + 4σL2 (s+ 1)P

√
T .

If we set the initial step size σ = F
L
√

2κ
where κ = (s+ 1)P , then

R [X] ≤ FL
√
T√

2κ
+ FL

√
2κT +

√
2FLκ3/2 + 2FL

√
2κT

= FL
√

2κT

[
3 +

1

2κ
+

κ√
T

]
.

Assuming T large enough that 1
2κ

+ κ√
T
≤ 1, we get

R [X] ≤ 4FL
√

2κT .
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This completes the proof of Theorem 1. �

As a final point of comparison between our Theorem 1 and Langford et al. [103], in
the latter paper, the error between xt and x̃t comprises exactly τ terms, where τ is the
fixed-delay parameter of their system. Under our SSP however, that same error contains at
most 2(s + 1)P terms, meaning that the actual convergence rate can be improved (by up
to a constant factor) with a good SSP implementation. We also note that Theorem 1 does
not address the other key feature of SSPtable, namely that workers spend less time waiting
for the network, due to caching. In practice, while increasing the staleness of SSPtable
decreases the per-iteration convergence rate (as Theorem 1 suggests), it also increases the
number of iterations executed per unit time. The result is faster convergence with increased
staleness, up to a point.

4.1.4 Experimental Validation

We show that the SSP model outperforms fully-synchronous models such as Bulk Syn-
chronous Parallel (BSP) that require workers to wait for each other on every iteration, as
well as asynchronous models with no model staleness guarantees. The general experimen-
tal details are:

• Computational models and implementation: SSP, BSP and Asynchronous6. We
used SSPtable for the first two (BSP is just staleness 0 under SSP), and implemented
the Asynchronous model using many of the caching features of SSPtable (to keep the
implementations comparable).

• ML models (and parallel algorithms): LDA Topic Modeling (collapsed Gibbs sam-
pling), Matrix Factorization (stochastic gradient descent) and Lasso regression (coor-
dinate gradient descent). All algorithms were implemented using SSPtable’s parameter
server interface. For TM and MF, we ran the algorithms in a “full batch” mode (where
the algorithm’s workers collectively touch every data point once per clock()), as
well as a “10% minibatch” model (workers touch 10% of the data per clock()). Due
to implementation limitations, we did not run Lasso under the Async model.

• Datasets: Topic Modeling: New York Times (N = 100m tokens, V = 100k terms,
K = 100 topics), Matrix Factorization: NetFlix (480k-by-18k matrix with 100m
nonzeros, rank K = 100 decomposition), Lasso regression: Synthetic dataset (N =
500 samples with P = 400k features7).

6 The Asynchronous model is used in many ML frameworks, such as YahooLDA [4] and HogWild! [132].
7This is the largest data size we could get the Lasso algorithm to converge on, under ideal BSP conditions.
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• Data Partitioning: For all three ML algorithms (topic modeling, matrix factorization
and Lasso regression), we partition data statically and equally over worker threads. In
other words, if there are N data points and P threads, then every thread gets N/P
data points. For topic modeling, a data point is one document. For matrix factoriza-
tion, a data point is one row of the input matrix8. Lasso is an exception — since it is a
coordinate-parallel algorithm, we partition over input dimensions (columns) rather than
data samples (rows). Note that SSP does not require static partitioning; dynamic strate-
gies for load balancing are possible, and will likely improve algorithm performance
further. We use static partitioning only to limit the number of experimental factors.

• Compute cluster: Multi-core blade servers connected by 10 Gbps Ethernet, running
VMware ESX. We use one virtual machine (VM) per physical machine. Each VM is
configured with 8 cores (either 2.3GHz or 2.5GHz each) and 23GB of RAM, running
on top of Debian Linux 7.0.

Convergence Speed. Figure 4.3 shows objective vs. time plots for the three ML algo-
rithms, over several machine configurations. We are interested in how long each algorithm
takes to reach a given objective value, which corresponds to drawing horizontal lines on
the plots. On each plot, we show curves for BSP (zero staleness), Async, and SSP for the
best staleness value ≥ 1 (we generally omit the other SSP curves to reduce clutter). In all
cases except Topic Modeling with 8 VMs, SSP converges to a given objective value faster
than BSP or Async. The gap between SSP and the other systems increases with more
VMs and smaller data batches, because both of these factors lead to increased network
communication — which SSP is able to reduce via staleness.

Computation Time vs Network Waiting Time. To understand why SSP performs bet-
ter, we look at how the Topic Modeling (TM) algorithm spends its time during a fixed
number of clock()s. In the 2nd row of Figure 4.3, we see that for any machine configu-
ration, the TM algorithm spends roughly the same amount of time on useful computation,
regardless of the staleness value. However, the time spent waiting for network commu-
nication drops rapidly with even a small increase in staleness, allowing SSP to execute
clock()s more quickly than BSP (staleness 0). Furthermore, the ratio of network-to-
compute time increases as we add more VMs, or use smaller data batches. At 32 VMs

8We did this to ensure we had full control over the locality of L table row accesses (since every row
of the input matrix corresponds to one row of L). However, it should be noted that this strategy causes
unbalanced worker loads when the input matrix’s rows exhibit a power-law distribution of nonzero elements.
Alternatively, one could simply partition the input matrix’s nonzeros equally across workers, which fixes the
load imbalance, but at the expense of poorer locality over L table row accesses.
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and 10% data minibatches, the TM algorithm under BSP spends six times more time on
network communications than computation. In contrast, the optimal value of staleness,
32, exhibits a 1:1 ratio of communication to computation. Hence, the value of SSP lies
in allowing ML algorithms to perform far more useful computations per second, com-
pared to the BSP model (e.g. Hadoop). Similar observations hold for the MF and Lasso
applications (graphs not shown for space reasons).

Iteration Quantity and Quality. The network-compute ratio only partially explains
SSP’s behavior; we need to examine each clock()’s behavior to get a full picture. In
the 3rd row of Figure 4.3, we plot the number of clocks executed per worker per unit time
for the TM algorithm, as well as the objective value at each clock. Higher staleness values
increase the number of clocks executed per unit time, but decrease each clock’s progress
towards convergence (as suggested by our theory); MF and Lasso also exhibit similar be-
havior (graphs not shown). Thus, staleness is a tradeoff between iteration quantity and
quality — and because the iteration rate exhibits diminishing returns with higher staleness
values, there comes a point where additional staleness starts to hurt the rate of convergence
per time. This explains why the best staleness value in a given setting is some constant
0 < s < ∞ — hence, SSP can hit a “sweet spot” between quality/quantity that BSP
and Async do not achieve. Automatically finding this sweet spot for a given problem is a
subject for future work.

Scalability with N machines Figure 4.5 shows how SSP scales with the number of ma-
chines used9, on the topic modeling problem with a fixed dataset (NYtimes) and staleness
(10). By using more machines, the algorithm reaches a given log-likelihood value (i.e.
solution quality) more quickly; this can be seen by looking at the horizontal gridlines. For
the settings given in the figure, the algorithm reaches a given log-likelihood about 10 times
more quickly on 32 machines, compared to a single machine. This means that, on average,
every doubling of machines yields a 1.6-times speedup (for up to 32 machines).

9 We intentionally omit graphs that plot speedup versus the number of processors in each machine,
because intra-machine communication was not a bottleneck compared to inter-machine network communi-
cation.
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Topic Modeling: Convergence
8 VMs 32 VMs 32 VMs, 10% minibatches
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Topic Modeling: Computation Time vs Network Waiting Time
8 VMs 32 VMs 32 VMs, 10% minibatches

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

0 2 4 16 32 48 

Se
co

n
d

s 

Staleness 

Time Breakdown: Compute vs Network 
LDA 8 machines, Full data 

Network waiting time 

Compute time 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

0 2 4 6 8 

Se
co

n
d

s 

Staleness 

Time Breakdown: Compute vs Network 
LDA 32 machines, Full data 

Network waiting time 

Compute time 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

0 8 16 24 32 40 48 

Se
co

n
d

s 

Staleness 

Time Breakdown: Compute vs Network 
LDA 32 machines, 10% data 

Network waiting time 

Compute time 

Figure 4.3: Experimental results: SSP, BSP and Asynchronous parameter servers running Topic Modeling, Matrix
Factorization and Lasso regression (continued in Figure 4.4). The Convergence graphs plot objective function (i.e.
solution quality) against time. For Topic Modeling, we also plot computation time vs network waiting time, as well
as how staleness affects iteration (clock) frequency (Quantity) and objective improvement per iteration (Quality).
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Topic Modeling: Iteration Quantity and Quality Lasso: Convergence
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Matrix Factorization: Convergence
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Figure 4.4: Experimental results: Continuation of Figure 4.3.

173



-1.4E+09 

-1.3E+09 

-1.2E+09 

-1.1E+09 

-1E+09 

-9E+08 

-8E+08 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Lo
g-

Li
ke

lih
o

o
d

 

Time 

Topic Modeling: 1-32 machine scalability 
(NYtimes dataset, staleness = 10, 1k docs per core per iteration) 

32 machines (256 cores) 

16 machines (128 cores) 

8 machines (64 cores) 

4 machines (32 cores) 

2 machines (16 cores) 

1 machine (8 cores) 

Figure 4.5: SSP scalability plot

4.1.5 Related Work and Discussion

The idea of staleness has been explored before: in ML academia, it has been analyzed in
the context of cyclic-delay architectures [103, 2], in which machines communicate with
a central server (or each other) under a fixed schedule (and hence fixed staleness). Even
the bulk synchronous parallel (BSP) model inherently produces stale communications, the
effects of which have been studied for algorithms such as Lasso regression [26] and topic
modeling [4]. Our work differs in that SSP advocates bounded (rather than fixed) staleness
to allow higher computational throughput via local machine caches. Furthermore, SSP’s
performance does not degrade when parameter updates frequently collide on the same
vector elements, unlike asynchronous lock-free systems [132]. We note that staleness has
been informally explored in the industrial setting at large scales; our work provides a first
attempt at rigorously justifying staleness as a sound ML technique.

Distributed platforms such as Hadoop and GraphLab [115] are popular for large-scale
ML. The biggest difference between them and SSPtable is the programming model —
Hadoop uses a stateless map-reduce model, while GraphLab uses stateful vertex programs
organized into a graph. In contrast, SSPtable provides a convenient shared-memory pro-
gramming model based on a table/matrix API, making it easy to convert single-machine
parallel ML algorithms into distributed versions. In particular, the algorithms used in our
experiments — LDA, MF, Lasso — are all straightforward conversions of single-machine
algorithms. Hadoop’s BSP execution model is a special case of SSP, making SSPtable
more general in that regard; however, Hadoop also provides fault-tolerance and distributed
filesystem features that SSPtable does not cover. Finally, there exist special-purpose tools
such as Vowpal Wabbit [102] and YahooLDA [4]. Whereas these systems have been tar-
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geted at a subset of ML algorithms, SSPtable can be used by any ML algorithm that toler-
ates stale updates.

The distributed systems community has typically examined staleness in the context
of consistency models. The TACT model [180] describes consistency along three dimen-
sions: numerical error, order error, and staleness. Other work [163] attempts to classify
existing systems according to a number of consistency properties, specifically naming the
concept of bounded staleness. The vector clocks used in SSPtable are similar to those
in Fidge [44] and Mattern [118], which were in turn inspired by Lamport clocks [98].
However, SSPtable uses vector clocks to track the freshness of the data, rather than causal
relationships between updates. [35] gives an informal definition of the SSP model, moti-
vated by the need to reduce straggler effects in large compute clusters.

In databases, bounded staleness has been applied to improve update and query per-
formance. LazyBase [34] allows staleness bounds to be configured on a per-query basis,
and uses this relaxed staleness to improve both query and update performance. FAS [146]
keeps data replicated in a number of databases, each providing a different freshness/performance
tradeoff. Data stream warehouses [53] collect data about timestamped events, and pro-
vide different consistency depending on the freshness of the data. Staleness (or fresh-
ness/timeliness) has also been applied in other fields such as sensor networks [82], dy-
namic web content generation [8], web caching [27], and information systems [25].
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4.2 Triangle Modeling and Inference at Societal Scales

In Chapter 1, we identified four steps towards building network analysis algorithms that
work at massive scales:

1. Choosing a data representation that is compact, yet preserves information about the
network.

2. Constructing a parsimonious statistical model that accounts for the important struc-
ture of the network.

3. Designing an efficient, parallelizable, linear-time inference algorithm to estimate the
model’s variables.

4. Building a software platform to distribute the inference algorithm across many multi-
core worker machines, in order to tackle networks so large that the model does not
fit in one machine’s memory, and would take years to infer on a single processor
core.

In Chapter 3, we systematically addressed the first three steps, resulting in the Parsimo-
nious Triangular Model (PTM) — a model for mixed-membership community detection
and link prediction in large networks — and its O(NK)-time (per iteration) stochastic
variational inference algorithm. Because the challenges of step four are common to many
statistical, data mining and machine learning applications, earlier in this chapter, we built
a Parameter Server — a software library that efficiently synchronizes model variables and
parameters across many worker machines — and validated its effectiveness on a range of
common applications.

In spite of these achievements, network analysis at N ≥ 100 million nodes is not a
simple matter of implementing the PTM inference algorithm on top of the SSPtable Pa-
rameter Server (henceforth simply referred to as “the PS”) described earlier. At such data
scales, many hitherto trivial aspects of programming, such as data loading and storage,
become significant challenges in their own right. For example, the largest network to
be presented in this section, a N ≈ 100-million-node web graph with 1.9 billion edges,
requires 30GB just to store the edge list — nevermind the δ-subsampled triangle repre-
sentation, which (at first glance) demands O(δ2N) additional memory on top of the edge
list! As of 2014, most server-class machines feature anywhere from 16GB to over 128GB
of memory, with the vast majority of machines falling on the lower end of that spectrum.
Clearly, we cannot afford to waste 30GB just storing the network in memory, which makes
a hard-disk-backed database system a necessity. There is also the matter of model storage:
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if we were to run that N = 100-million-node network with K = 1, 000 communities, the
PTM model would contain NK = 100 billion floating-point variables, with a raw storage
cost of 400GB — over 10 times the size of the edge list!

With that in mind, this section’s purpose is to discuss the numerous challenges that a
distributed, Parameter-Server-based version of PTM must overcome to reach such scales,
and then provide appropriate modeling and algorithmic solutions to each challenge. Hence-
forth, we shall refer to the final inference algorithm as the Societal-Scale Triangular model
Inference algorithm (SSTI), reflecting its usability on social networks the size of entire so-
cieties or countries (100s of millions of people or more).

4.2.1 Challenges at Scale with Triangular Modeling, and Solutions

We briefly review the Parsimonious Triangular Model inference algorithm from Chap-
ter 3.3:

1. Data Loading: Load the network from disk, and store it in two forms: (1) an adja-
cency list representation: for each node i ∈ {1, . . . , N}, we store its set of neighbors
Ni, and (2) a dictionary of edges, so we can test if edge (i, j) exists in constant time.

2. δ-subsampling: Randomly draw 1
2
δ(δ − 1) triangles for each node i ∈ {1, . . . , N}.

Each triangle is sampled in the following manner: we draw two neighbors j, k ∈ Ni
from the adjacency list, and then check if edge (j, k) exists using the edge dictionary.
If edge (j, k) exists, we have drawn a 3-triangle, otherwise, we have drawn a 2-
triangle. These δ-subsampled triangles will be used to perform stochastic variational
inference later.

3. Model Creation: Allocate space for the variational parameters (VPs) of the mixed-
membership vectors θi, and the triangle generation probabilities B. We do not need
to allocate space for the VPs of triangle motif variables si, sj, sk, because we deter-
mine them through fixed-point iteration given the VPs of θ, B — thus, the previous
values of si, sj, sk do not need to be kept around.

4. SVI Inference: Run the stochastic variational inference (SVI) algorithm, which
alternates between updating the VPs for a chosen subsample of triangle motif role
indicators (si, sj, sk), and then updating all VPs for θi and B. Because the VPs
for triangle motif role indicators (si, sj, sk) are conditionally independent of each
other given θi and B, we can parallelize over the triangle motifs. By intelligently
maintaining sufficient statistics from the VPs for (si, sj, sk), we can update the VPs
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for θi and B very quickly in parallel. For all practical purposes, the SVI algorithm’s
running time is just the time taken to update the VPs for si, sj, sk in parallel.

5. Model Output: Output the maximum a posteriori values of θi and B to disk.

We now discuss the challenges each step presents when we are analyzing very large net-
works on a distributed compute cluster.

1. Data Loading: For very large networks with N ≥ 100 million nodes and M ≥ 1
billion edges, the adjacency list and dictionary of edges both require 10s of gigabytes of
storage, and can easily exceed the memory capacity of a single machine. Clearly, we
cannot afford to store the entire adjacency list and edge dictionary in memory.

Our solution is to convert the network to a hard-disk-based dictionary (key-value) data
structure, such as levelDB10. Although hard disk data structures are generally slower than
memory, this is not a problem for the PTM inference algorithm, as the time spent updating
the VPs dominates the time taken to subsample triangles by far. We store 3 types of
information in the hard disk dictionary, along with miscellaneous statistics such as N and
M :

1. Edge dictionary: For each edge (i, j) in the network, we store the pair (i, j) as a
key in the dictionary.

2. Adjacency list: For each node i in the network, we store its a-th neighbor, say, node
j, with key (i, a) and value j.

3. Degree list: For each node i in the network, we store its degree |Ni|, with key i and
value |Ni|.

In this manner, we exploit modern hard drives with terabytes of storage, and thus avoid
storing the network in limited machine memory. The cost to convert a network edge
list with M edges to this hard disk dictionary is O(M) (for hash-based dictionaries) or
O(M logM) (for tree-based dictionaries).

2. δ-subsampling: Storing Θ(Nδ2) triangles in memory is infeasible when N is very
large: for example, when N = 100 million and δ = 50, we would have to store 250 billion
triangles — over a terabyte of storage! As with the adjacency list and edge dictionary, we

10https://code.google.com/p/leveldb/
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simply cannot afford to store this much data in memory — in fact, we might not even want
to store it on a hard drive.

Rather than δ-subsampling in advance, we exploit the fact that the SVI algorithm is
already stochastic in nature, and integrate δ-subsampling with the SVI procedure. Instead
of picking a set of triangle motifs in advance, we modify the SVI procedure as follows:

• For each node i = 1 to N in parallel:

– For c = 1 to C:11

∗ δ-subsample one triangle motif touching i.
∗ Solve the VPs for the triangle motif’s role indicators (si, sj, sj), and then

use it to accumulate sufficient statistics for updating the VPs of B and
θi, θj, θk later.
∗ Discard the triangle motif.

• For each node i = 1 to N in parallel:

– Update the VP for θi (by using the accumulated sufficient statistics).

• Update the VPs for B (by using the accumulated sufficient statistics).

• Repeat until convergence.

The idea is to conduct SVI over “all triangles” (we shall explain this precisely in a bit),
rather than a pre-selected δ-subsample. This strategy has two major advantages: (1) we
no longer need to explicitly store triangles, which saves a tremendous amount of memory,
and (2) since SVI is now being performed over a much larger set of triangles, the new
algorithm is more accurate than the old δ-subsampling version.

3. Model Creation: At first glance, the VPs of all θi’s require NK floating point values
to store. For example, if N = 100 million and K = 1000, we would need 100 billion
4-byte floating point values (400GB). However, although the Parameter Server (PS) dis-
cussed in the previous section can evenly distribute the memory load over all participating
machines, because the PS is fundamentally a caching system, it requires additional mem-
ory overhead in order to maintain high performance. Thus, the final memory requirements

11 We can set C = 1
2δ(δ − 1) to match δ-subsampling, or use any arbitrary value. In our experiments,

we use C = 1 and show that this choice is not only fast, but also yields accurate overlapping community
detection.
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are many times higher than NK × (4 bytes) — if we started with 400GB of θi VPs, we
would actually need > 10 terabytes of memory across all machines.

In order to decrease memory usage to practical levels, we exploit the ground-truth
observation that most nodes only belong to a few communities — in other words, the
mixed-membership θi’s and their VPs are extremely sparse. Therefore, we use dictionary
data structures to store all θi VPs, while actively removing elements that are close to
zero (and hence insignificant to the SVI algorithm). Although dictionaries require more
memory per element than simple arrays, this is more than outweighed by the memory
savings gained by reducingK = 1000 elements to< 10 nonzero elements. In this manner,
we lower the memory required by the θi VPs to a small fraction — for example, we were
able to run an N = 100-million-node network with K = 1000 using just 500GB of
memory spread across 5 machines12.

4. SVI Inference: As discussed earlier, by integrating δ-subsampling into SVI’s stochas-
tic sampling, we not only eliminate the memory issue, but also improve the accuracy of
SVI (since it now operates on the full distribution of triangles).

However, the new SVI algorithm still requires O(NK) running time per iteration13,
which in practice remains very expensive for large N and K. In the following subsection,
we shall discuss strategies to reduce the running time further.

5. Model Output: We have already discussed how the θi VPs naively require NK ×
(4 bytes) to store, and how we may avoid those storage costs by using dictionary data
structures (which are sparse).

In order to keep the model output compact and save disk space, we also output the θi
VPs in a sparse, dictionary-like format. The VPs forB are extremely small by comparison,
so they require no special treatment.

4.2.2 Societal-Scale Triangular Model (SSTM)

We now formally describe the data representation, statistical generative model, and stochas-
tic variational inference algorithm for the Societal-Scale Triangular Model (SSTM), a re-
finement of the Parsimonious Triangular Model (PTM, see Chapter 3.3) that scales to

12i.e. 100GB per machine, which fits into high-memory 244GB Amazon EC2 cloud compute instances.
13 Assuming that C, the number of triangles sampled per node per iteration, is constant. Also note that

there is no O(M) factor (where M is the number of edges): we only query 3NC edges from the hard disk
dictionary every iteration (C triangles per each of the N nodes, and each triangle involves 3 edge queries).
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N ≥ 100 million nodes and K ≥ 1000 latent roles. While SSTM and PTM share the
same generative model, their data representations and SVI algorithms are markedly differ-
ent, particularly in the way triangles are stored and subsampled.

SSTM Data Representation

Given anN×N symmetric network adjacency matrix Y , SSTM first creates the adjacency
list representation A = {N1,N2, . . . ,NN}, whereNi is the set of neighbors of node i. As
discussed earlier, we assume that Y and A are stored on each machine’s hard disk in the
form of dictionary data structures.

Now, the idea is to approximate the network by NC triangles, by drawing N vectors of
C triangles (with replacement) from the network (similar to the bootstrap from statistics).
Each vector, denoted by Trisi, is associated with a different node i, and only contains 2-
or 3-triangles that touch node i. We draw each of the C elements of Trisi according to a
procedure we call SSTM-Sample:

SSTM-Sample:

1. Draw two neighbors j 6= k from node i’s neighbors Ni.

2. If Yjk = 1, we have drawn a 3-edge triangle Eijk = 4 (following the PTM triangle
numbering system14 discussed in Chapter 3.3). Otherwise, Yjk = 0, and we have
drawn a 2-edge triangle (centered on i) Eijk = 1.

For example, say we are given the following N = 4 adjacency matrix:

Y =


0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 .

If C = 4, we might draw these 4 triangles at node 1:

Tris1 = [E123 = 1, E134 = 4, E124 = 1, E123 = 1].

There are two important points to note about this representation. First, notice that triangles
can repeat: E123 = 1 occurs twice in Tris1. Second, triangles can be represented in

14Eijk = 1, 2 or 3 represents a 2-triangle with center node i, j or k respectively, whileEijk = 4 represents
a 3-triangle.

181



multiple ways by the PTM triangle numbering system: for instance, the triangle E123 = 1
has five other representations: E132 = 1, E213 = 2, E231 = 3, E312 = 2, E321 = 3. This
explains why we do not appear to draw Eijk = 2 or 3 for Trisi: the sampling procedure
always makes i the center node, so Eijk = 1 or 4 only. We shall now discuss other salient
details of the SSTM data representation:

Implicit representation of triangles: For scalability and storage reasons, SSTM never
explicitly stores all NC triangles — rather, we only store the adjacency matrix Y and
adjacency list A, and draw triangles for each Trisi as and when they are needed by the
SVI algorithm (and discard them after use). While this is technically an approximation,
the error is negligible when C is very large (which is always the case for large networks).

Differences with PTM: Unlike the PTM, triangles can be repeated in SSTM: observe
that E123 = 1 appears twice in the example above. Furthermore, we do not require Eijk’s
indices i, j, k to be sorted; for example, E341 = 4 is a valid triangle. In these respects, the
SSTM data representation differs from PTM — a notable consequence of SSTM is that a
node with only two neighbors will get to draw the same number of triangles C as a node
with a million neighbors (whereas in PTM, the 2-neighbor node draws only one triangle).

This bootstrap-like data representation is necessary to avoid a subtle variance issue that
arises when Stochastic Variational Inference is used naively: if we had instead drawn 2-
and 3-triangles without replacement, the set of sampled triangles would be dominated by
triangles touching high-degree nodes, whereas low-degree nodes would be touched by rel-
atively few triangles (because, to begin with, low-degree nodes participate in fewer trian-
gles than high-degree nodes) — we say that the low-degree nodes are “under-represented”
by the sampled triangles. Because the low-degree nodes are under-represented in the tri-
angle sample, the SVI algorithm will also select mini-batches that under-represent low-
degree nodes, or even fail to represent certain nodes outright. This presents a serious
problem: for each of these un-represented nodes i, the SVI algorithm will then compute
stochastic natural gradients (for the VPs γi) that are equal to the uniform Dirichlet prior
(because the minibatch has no triangles touching node i). Thus, with high probability, the
mixed-memberships θi of low-degree nodes will be estimated as uninformative uniform
distributions, which is obviously undesirable. Our bootstrap-like data representation, in
conjunction with our SVI minibatch selection procedure, avoids this issue by increasing
the representation of low-degree nodes.
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Choosing C: For the NC triangles to accurately represent of the network, we need to set
C high enough. We choose C = 1

N
X where X :=

∑N
i=1

1
2
|Ni|(|Ni|−1) — in other words,

we set C to be the (approximate) average number of 2- and 3-edge triangles per node15. To
keep inference times reasonable while maintaining high accuracy, we employ Stochastic
Variational Inference (SVI) [79], where each inference iteration only uses C � C of the
triangles touching a given node i (our experiments used C = 1). On large networks, we
observed that the SVI algorithm converges using only a small fraction of the C triangles,
i.e. it does not need to touch every triangle.

SSTM Generative Model

Given NC triangles as described in our data representation, we assume they were gen-
erated by the following SSTM generative model, where K is the user-chosen number of
roles/communities:

• Draw the 2K+1 PTM triangle generation parameters Bxxx, Bxx, B0 as follows:
ChooseB0 ∈ ∆1,Bxx ∈ ∆2 andBxxx ∈ ∆1 for each role x ∈ {1, . . . , K} according
to symmetric Dirichlet distributions Dirichlet(λ). Here, ∆n is the n-simplex, and λ
is a user-chosen hyperparameter (we use λ = 0.1).

• For each node i ∈ {1, . . . , N}:

– Draw node i’s mixed-membership vector θi ∼ Dirichlet (α), where α is a
user-chosen hyperparameter (we use α = 0.1).

• For each of the NC triangles Eijk in {Tris1,Tris2, . . . ,TrisN}:

– Draw role indices si,jk ∼ Discrete (θi), sj,ik ∼ Discrete (θj), sk,ij ∼ Discrete (θk).

– Draw the triangular motif Eijk ∈ {1, 2, 3, 4} based on B0, Bxx, Bxxx and the
configuration of (si,jk, sj,ik, sk,ij). Refer to Table 3.5 of Chapter 3.3 for the
conditional probabilities 16.

15 Recall from Chapter 3 that the total number of 2- and 3-edge triangles in the network, N∆, is bounded
by X

3 ≤ N∆ ≤ X , where X :=
∑N
i=1

1
2 |Ni|(|Ni| − 1). Hence, C = 1

NX is technically an upper bound to
the average number of 2- and 3-triangles per node. Note that 1

NX can be extremely large — for example,
our N ≈ 100-million-node web graph experiment had 1

NX ≈ 330000.
16At first glance, it may seem odd that the SSTM data representation only has Eijk = 1 or 4, while our

generative process can produce Eijk ∈ {1, 2, 3, 4}. As we explained in the data representation subsection,
this is merely an artifact of the way SSTM indexes triangles: observe thatE213 = 1 is equivalent toE123 = 2
and E312 = 3.
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This SSTM generative model is basically identical to the PTM generative model in Chap-
ter 3.3. The key difference is that SSTM tries to model all triangles in the network (of
which there are approximately NC), rather than just a small δ-subsample of Nδ2 trian-
gles (which is what PTM does). This is possible because SSTM avoids storing triangles
explicitly, and only samples them when needed by the SVI algorithm.

SSTM Stochastic Variational Inference

In order to infer the posterior distributions of SSTM’s N mixed-membership vectors θi
and the 2K + 1 triangle generation parameters Bxxx, Bxx, B0, we employ a Stochastic
Variational Inference (SVI) procedure, in which we formulate a variational lower bound
to the true model log-likelihood, and optimize this lower bound via stochastic coordinate
ascent. Like the PTM SVI algorithm, the SSTM SVI algorithm can be parallelized as long
as the parallel workers have access to all variational parameters (VPs). We ensure this by
storing all variational parameters in the Parameter Server (PS), which we described earlier
in this chapter. Perhaps the biggest advantage to using a PS is that we can perform SVI
even when the VPs are too big to fit on a single machine’s memory — the PS takes care of
this issue by distributing the VPs across all worker machines, thus lowering the memory
required by each machine.

Following the PTM, we approximate the true posterior p(s,θ,B | E, α, λ) by a fac-
tored distribution,

q(s,θ,B) =
∏

(i,j,k)∈I

q(si,jk, sj,ik, sk,ij | φijk)
N∏
i=1

q(θi | γi)
K∏
x=1

q(Bxxx | ηxxx)

K∏
x=1

q(Bxx | ηxx)q(B0 | η0).

With slight abuse of notation, I = {Tris1,Tris2, . . . ,TrisN} is the collection of all NC tri-
anglesEijk, and the notation (i, j, k) ∈ I is used to represent the node indices of each (pos-
sibly repeated) triangle Eijk in I . Note that we are using a joint factor q(si,jk, sj,ik, sk,ij |
φijk) over the indicators si,jk, sj,ik, sk,ij — as we argued in Section 3.3, a fully factored
distribution q(si,jk)q(sj,ik)q(sk,ij) makes for an extremely poor rank-1 approximation that
does not work well in practice.

As with the PTM, the SSTM variational approximation aims to minimize the KL di-
vergence KL(q ‖ p) between the approximating distribution q and the true posterior p; it is
equivalent to maximizing a lower bound L(φ,η,γ) of the log marginal likelihood of the
triangular motifs (based on Jensen’s inequality) with respect to the variational parameters
{φ,η,γ} [168]:

log p(E | α, λ) ≥ Eq[log p(E, s,θ,B | α, λ)]− Eq[log q(s,θ,B)]
.
= L(φ,η,γ).
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SSTM’s lower bound maximization strategy is identical to PTM in all but a few aspects,
and we refer the reader to Section 3.3 for the details. Here, we shall focus on the places
where SSTM is improved compared to PTM.

SSTM Stochastic Mini-batches: In PTM, we obtained stochastic, unbiased gradients
of L(η,γ) by sampling a “mini-batch” of |S| triangular motifs at each iteration, and aver-
aging their local term gradients. For SSTM, we instead use mini-batches of NC triangles
(where C � C): conceptually, we are sampling C triangles from each of the length-C vec-
tors Tris1,Tris2, . . . ,TrisN . Practically, as we discussed in the data representation subsec-
tion, we never actually store the vectors Trisi — instead, we directly draw a mini-batch of
NC triangles via the SSTM-Sample procedure, and discard those triangles after the iter-
ation. This implicit representation strategy, while not perfectly equivalent to drawing the
vectors Tris1,Tris2, . . . ,TrisN beforehand, is nevertheless highly advantageous because it
allows SSTM to tackle networks with billions to trillions of triangles, without consuming
an unreasonable amount of memory.

Compared to PTM, the SSTM mini-batch strategy has two advantages: (1) SSTM
ensures that every node i touches≥ C triangles at each iteration, unlike PTM mini-batches
that may fail to touch some nodes i, leading to a useless zero-weight update for γi; (2)
SSTM makes parallelization much easier, since we can simply assign each vector Trisi to
a different parallel worker, which then draws C triangles Eijk from that vector.

Formally, we define the SSTM mini-batch lower bound as

Lminibatch(η,γ) = g(η,γ) +
NC
NC

∑
(i,j,k)∈minibatch

max
φijk

`(φijk,η,γ), (4.4)

where g(η,γ) are global terms discussed in Section 3.3, and minibatch is a mini-batch
of NC triangles, constructed by SSTM-Sampling C triangles from each node i. In our
experiments, we will show that setting C = 1 works well in practice.

Fast SSTM Local Triangle Update for si,jk, sj,ik, sk,ij: Recall that, to estimate the
gradient ∇LS(η,γ), one needs to compute the optimal local variational parameters φijk
(keeping η and γ fixed) for each sampled triangle (i, j, k) in the mini-batch minibatch;
these optimal φijk’s are then used to estimate the gradient∇LS(η,γ). For example, when
the role assignments si,jk = x, sj,ik = y, sk,ij = z ∈ {1, . . . , K} are distinct, by taking
partial derivatives with respect to each local term φxyzijk and setting them to zero, we get

φxyzijk ∝ exp
{
Eq[logB0,2]I[Eijk = 4]+Eq[log(B0,1/3)]I[Eijk 6= 4]+Eq[log θi,x+log θj,x+log θk,x]

}
.
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The cases φxxxijk and φxxyijk (x 6= y) are covered in Section 3.3. However, computing this local
update for one triangle (i, j, k) requires O(K3) work (because there are K3 variational
parameters φxyzijk ), which is highly unscalable. In the PTM, we overcame this by switching
to a “mixture-of-deltas” variational distribution:

qijk(x, y, z | δijk) =
K∑
a=1

δaaaijk I[x = y = z = a] +
∑

(a,b,c)∈A

δabcijk I[x = a, y = b, z = c],

where |A| contains only O(K) triples (a, b, c), chosen according a specific strategy (see
Section 3.3 for details). The rationale is that, empirically, most of the probability mass
will be concentrated on “diagonal” cases x = y = z, whereas the majority of cases
x 6= y 6= z 6= x will have close to zero mass. Hence, the mixture-of-deltas variational
distribution essentially focuses computation on the cases that are a priori likely to have
significant probability mass. As a consequence, each PTM local update iteration can be
completed using only O(K) work17, ensuring scalability to large K.

SSTM extends the mixture-of-deltas idea further, by using an even smaller subset of
cases x, y, z. We base our strategy on the following insight: a role combination (si,jk =
x, sj,ik = y, sk,ij = z) must have near-zero posterior mass if q(θi,x) ≈ 0 and q(θj,y) ≈ 0
and q(θk,z) ≈ 0, i.e. (x, y, z) is highly unlikely according to the current variational poste-
rior estimate of θi, θj, θk. Moreover, it is an empirical fact that most nodes only participate
in a small number of communities or roles18 — this implies that the true posterior of each
q(θi) is highly sparse, especially when we use a very large number of roles K ≥ 1000. We
thus conclude that most diagonal role combinations x = y = z are highly unlikely, and
we can determine many of these unlikely combinations in advance.

Following this insight, we use the following mixture-of-deltas variational distribution
for SSTM:

qijk(x, y, z | δijk) =
∑

(a,b,c)∈A

δabcijk I[x = a, y = b, z = c],

whereA is the set of “chosen role triples”, whose probabilities sum to 1, i.e.
∑

(a,b,c)∈A δ
abc
ijk =

1. We wish to pick the role triples in A to exploit the above insight, yet at the same time,
we also need to pick some role triples uniformly at random to limit bias. Thus, we employ
the following selection algorithm:

SSTM-ChooseLocalVP:
17Because there are only O(K) variational parameters to update, and each of them takes O(1) time. See

O(K) Approximation to the Local Update in Chapter 3.3 for details.
18 In most of our evaulation datasets, more than 90% of nodes have ≤ 10 ground truth communities.
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1. Find the U0 largest roles in each of q(θi), q(θj) and q(θk), and put them into a set
Rcore (which will be of size |Rcore| ≤ 3U0). In our experiments, we use U0 = 10
(see the earlier footnote for justification).

2. PickU1 roles uniformly at random from {1, . . . , K}, and put them into a setRrandom.
In our experiments, we use U1 = K/10.

3. Combine both sets: R = Rcore ∪Rrandom.

4. Generate |R| diagonal role combinations Adiag = {(a, a, a) for all a ∈ R}.

5. Generate 3|R| off-diagonal role combinations Aoff . Each combination is generated
as follows: first draw a ∈ R uniformly at random, then draw b ∈ R where b 6= a.
Finally, draw o uniformly at random from {1, 2, 3}. If o = 1, add (a, a, b) to Aoff .
Otherwise, if o = 2, add (a, b, a), and if o = 3, add (b, a, a).

6. Generate 3|R| off-off-diagonal rolle combinations Aoffoff . Each combination is
generated as follows: first draw a ∈ R uniformly at random, then draw b ∈ R where
b 6= a, and finally draw c ∈ R where a 6= c 6= b. Add (a, b, c) to Aoffoff .

7. Combine all three sets to get A = Adiag ∪ Aoff ∪ Aoffoff .

As with the PTM, we re-selectA every time we perform the local update on some triangle
Eijk, even when we have seen the triangle before — this is to avoid bias from using the
same A repeatedly. Note that any choice of A yields a valid lower bound to the true log-
likelihood, and thus constitutes a proper variational inference algorithm; this result follows
from standard variational inference theory. Finally, the update equations for δabcijk are prac-
tically identical to those for φabcijk from the “full” PTM variational distribution (Eq. (3.12)
in Section 3.3). The only difference is in normalization: we now normalize each δabcijk over
all (a, b, c) ∈ A, rather than all possible roles (a, b, c) ∈ {1, . . . , K}3.

Compared to the PTM mixture-of-deltas, SSTM-ChooseLocalVP requires far fewer
variational parameters while still maintaining high accuracy (as our experiments will show).
In particular, our choices of U0 = 10 and U1 = K/10 allow the SSTM inference algorithm
to be almost 10 times faster than PTM when K is large (e.g. K ≥ 1000).

Memory Management As discussed in Section 4.2.1, we use sparse dictionary data
structures to store all θi VPs γi, thus keeping memory usage within reasonable bounds. In
order to keep the γi’s from becoming too dense (and thus consuming too much memory),
we perform two approximations:
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1. We zero out elements of γi that are already close to zero (defined as being ≤ 2α,
where α is the Dirichlet hyperparameter for θi).

2. During the global update for each γi, we only commit the U0 = 10 largest vector
elements (i.e. roles) in the gradient of γi, and zero out the rest. Again, the rationale is
that, empirically, most nodes exhibit fewer than 10 roles/communities, so it sufficies
to keep the 10 most significant roles per node while truncating the rest.

These approximations greatly lower the memory required to store the γi’s, and empirically,
we observed that they have almost no impact on community detection performance. With
these approximations, we were able to analyze an N = 100-million-node network with
K = 1000 roles, using only 500GB of memory spread across 5 machines19.

4.2.3 Overlapping Community Detection — Performance versus other
Scalable Network Algorithms

The SSTM, being a mixed-membership model that outputs a normalized latent space vec-
tor θi for every node i, is well-suited to the tasks of overlapping community detection and
link prediction. We have already discussed and evaluated strategies for link prediction in
Chapter 3.3 on the PTM, the predecessor algorithm to the SSTM — here, we shall focus on
the overlapping community detection task, using real-world networks with ground truth.

Although there is no clear consensus on what defines a network community, it is gen-
erally accepted that a community is a subset of nodes who share a (sometimes unobserved)
social characteristic, such as people being in the same school, social club or workplace.
The assumption, then, is that nodes interact more frequently with other nodes in the same
community (giving rise to the observed network adjacency matrix Y ), a phenomenon re-
ferred to as homophily. Because people can have multiple social characteristics, commu-
nities frequently overlap in real-world networks [178]; hence, it is widely accepted that
overlapping community detection reveals more realistic network structures than single-
membership or hard clustering algorithms [174]. In order to evaluate SSTM on the over-
lapping community detection task, we shall treat each node’s θi as a probability vector
over K communities in the network, and evaluate how well θ1, θ2, . . . , θN match up with
the known ground truth communities.

19 In other words, 100GB per machine. Machines with this RAM capacity are readily available from
cloud compute providers such as Amazon EC2.
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Network # nodes N # edges M Edge density M/N2 Fraction of closed triangles
DBLP 317,080 1,049,866 1.044× 10−5 0.1283
Amazon 334,863 925,872 8.257× 10−6 0.07925
Youtube 1,134,890 2,987,624 2.320× 10−6 0.002081
Livejournal 3,997,962 34,681,189 2.170× 10−6 0.04559

Table 4.1: Basic statistics for the networks with ground truth overlapping communities
used in our evaluation. “Fraction of closed triangles” is defined as the number of connected
triples of nodes (3-triangles), divided by the number of (undirected) length-2 paths.

Ground Truth Data

Large real-world social networks with ground truth communities are scarce, and it has been
common practice to evaluate overlapping community detection algorithms using synthetic
benchmarks such as Lancichinetti-Fortunato-Radicchi (LFR) [100]. Recently however,
Yang and Leskovec [178] have constructed ground truth communities for several social
networks, whose sizes ranged from N = 300k to 65m nodes20, by using the publicly
availabe metadata associated with each network (for example, self-declared interest or
hobby groups in social networks such as Friendster). The number of constructed commu-
nities ranged from as low as K ≈ 8000 in an N ≈ 1.1m-node graph, to K ≈ 6.3m in an
N ≈ 3m-node graph; however, not all of the communities were crisp and well-defined.
Thus, Yang and Leskovec also provide the 5000 “highest-quality” communities in each
network, where a community’s quality is measured by averaging over well-known com-
munity scoring functions such as conductance, modularity, and triangle-participation-ratio
(to name a few) — the idea being that communities that score well on all functions are
very likely to be of high quality.

Note that all triangular motif models discussed in this thesis — MMTM, PTM, and
now SSTM — work by finding groups of nodes with a high clustering coefficient (ratio
of 3-triangles to 2-and-3-triangles). Hence, the triangular motif models are similar in
principle to the triangle-participation-ratio scoring function used by Yang and Leskovec,
and therefore we expect SSTM to perform best on the ground truth networks whose top
communities exhibit good triangle-participation-ratio scores.

Table 4.1 provides basic statistics for all networks used in this evaluation; the statistics
are taken from the original, directed form of each network. When SSTM loads a network,
it converts the network to undirected form (because SSTM is an undirected model of tri-
angle motifs). Some of the baselines are able to exploit directed networks, thus we always

20The networks and their ground truth are available at http://snap.stanford.edu/data/.
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provide the original directed network when running each baseline.

Triangles versus Edges: At this juncture, we wish to highlight two columns in Ta-
ble 4.1: observe that the “edge densities” are much closer to zero than the “fraction of
closed triangles”. This fact has statistical implications: algorithms that are based on the
stochastic blockmodel, such as a-MMSB [57], associate each community with its internal
edge density, modeled as a Bernoulli parameter. In a similar vein, our SSTM basically
associates communities with their internal triangle densities, modeled as multinomial pa-
rameters. The accuracy of stochastic blockmodel algorithms depends on the difference
p−q√
p

between internal community edge densities p versus the edge density between com-
munities q — if this difference is too small, accurate community recovery is unlikely [11].
We conjecture that a similar principle holds for SSTM — in order for SSTM to work,
communities need to have a significantly higher internal fraction of closed triangles.

For these reasons, stochastic blockmodel algorithms are unlikely to recover large com-
munities, because such communities are likely to be edge-sparse, with very small internal
edge densities p that are barely larger than the inter-community edge density q. In con-
trast, we believe that SSTM is more likely to correctly recover large communities, since
the fraction of closed triangles is, to some degree, independent of network edge sparsity
— to illustrate this point, if we choose some edge density D ≤ 0.5, we can construct (a)
communities with edge densityD and whose fraction of closed triangles is 0 (by creating a
bipartite subgraph), as well as (b) communities with edge density D and whose fraction of
closed triangles is 1 (by creating disjoint cliques within the subgraph). Later, we will em-
pirically show that SSTM recovers large communities, which go undetected by stochastic
blockmodels such as a-MMSB.

Evaluating Communities using Normalized Mutual Information (NMI)

The top 5000 ground truth overlapping communities for each network are provided as hard
assignments of nodes to communities: that is to say, a node is either in a community, or
it is not (no partial membership). Mathematically, each of the top 5000 communities is
just a set of nodes, and each node {1, . . . , N} might be in zero, one, or more than one of
these sets. Two issues must be addressed before the SSTM and baseline outputs can be
evaluated against the ground truth:

First, because SSTM outputs normalized, continuous-valued mixed-membership vec-
tors θi that represent soft community assignments, we must threshold to obtain hard com-
munity assignments that can be compared to the ground truth. In the ground truth data,
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more than 90% of nodes have ≤ 10 ground truth communities, which motivated us to use
a threshold of 0.1: in other words, we say that community k contains node i if θi,k ≥ 0.1;
this allows us to detect up to 10 communities per node. This procedure outputs K sets
of nodes (hereby referred to as “community node-sets”), where the k-th set contains all
nodes belonging to community k. We also apply this thresholding procedure to any base-
lines that output soft community assignments; baselines that output hard assignments are
left as-is.

The second issue is that the top 5000 ground truth communities only cover a small
fraction of the network21, leaving many nodes unassigned to any community. However,
SSTM (and all the baselines) always assigns every node to at least one community, so we
need to ensure that the NMI evaluation does not take into account nodes that are outside
the top 5000 ground truth communities. Hence, we postprocessed the hard community
assignments output by SSTM and the baselines: for each node i that is not found in the
top 5000 ground truth communities, we removed all occurrences of node i from all K
community node-sets. In this manner, the community node-sets output by SSTM and
the baselines are restricted to only those nodes found within the top 5000 ground truth
communities22.

We are now ready to discuss Normalized Mutual Information (NMI) [100]. NMI mea-
sures how well the ground truth community node-sets align with the community node sets
output by SSTM and the baselines, on a scale of 0 to 1 where 1 represents perfect align-
ment. Let the number of nodes in the top 5000 ground truth communities be n (which
is ≤ N , the total number of nodes in the network), and let Xk be an indicator random
variable for the event that “a randomly chosen node will be found in the k-th ground truth
community”:

P (Xk = 1) =
(# nodes in ground truth community k)

n
, P (Xk = 0) = 1− P (Xk = 1).

In similar fashion, let Y` be an indicator random variable for the event that “a randomly
chosen node will be found in the `-th output community”:

P (Y` = 1) =
(# nodes in output community `)

n
, P (Yk = 0) = 1− P (Yk = 1).

21 Originally, each network had anywhere from 8000 to over 6 million communities.
22This pruning procedure is necessary because (1) the top 5000 communities only cover a (sometimes very

small) fraction of the network, (2) MMTM and the baselines assign every node to at least one community (so
they cover the whole network), and (3) NMI scores are not meaningful when comparing two network covers
with vastly different node counts (as would be the case here). The pruning does mean that the NMI scores
mostly reflect the recall performance of each method, while downplaying precision. Note that this pruning
is a fair procedure because (1) we also perform it for the baselines, and (2) like MMTM, the baselines assign
every node to at least one community, so they are not disfavored by pruning.
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Note that the number of ground truth communitiesK does not have to equal L, the number
of output communities. Finally, we need to define probabilities for joint events P (Xk, Y`),
where, for example (Xk = 1, Y` = 1) represents the event that “a randomly chosen node
will be found in both the k-th ground truth community and the `-th output community”:

P (Xk = 1, Y` = 1) =
(# nodes in ground truth com. k AND output com. `)

n

P (Xk = 0, Y` = 1) =
(# nodes in output com. ` BUT NOT ground truth com. k)

n

P (Xk = 1, Y` = 0) =
(# nodes in ground truth com. k BUT NOT output com. `)

n

P (Xk = 0, Y` = 0) =
(# nodes in NEITHER ground truth com. k NOR output com. `)

n
.

Using the distributions P (Xk), P (Y`) and P (Xk, Y`), we define the entropies H(Xk),
H(Y`) and H(Xk, Y`), as well as the conditional entropy H(Xk | Y`) = H(Xk, Y`) −
H(Y`). Next, we define the entropy of Xk with respect to all Y ,

H(Xk | Y ) = min
`∈{1,2,...,L}

H(Xk | Y`),

in other words, the best matching between Xk and any Y`. This is in turn used to define
the normalized conditional entropy of X with respect to Y ,

H(X | Y ) =
1

K

K∑
k=1

H(Xk | Y )

H(Xk)
,

and similarly for H(Y | X). We can finally define the NMI between the ground truth and
output communities:

NMI(X | Y ) = 1− 1

2
[H(X | Y ) +H(Y | X)],

which is a symmetric measure of how well X and Y match, in the range [0, 1]. An NMI
of 1 corresponds to a perfect matching.

Intuitively, NMI tries to find, for each ground truth community k, its best-matching
output community ` (and vice versa). Note that multiple ground truth communities k may
get matched with the same output community `; NMI performs a greedy matching. Once
ground truth communities have been matched with output communities, the matching is
scored using entropies.
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Initialization for SSTM

The SSTM stochastic variational inference (SVI) algorithm searches for a local maximum
in a highly non-concave variational objective function. In principle, this makes it sensi-
tive to the choice of initialization or seeding — a property shared by other overlapping
community detection algorithms [174]. If the intialization is close enough to the true com-
munity structure, then SSTM should be able to find the correct communities. However,
a completely random initialization will often merge many neighboring communities into
one giant community, which is undesirable.

To address this issue, we conduct SSTM initialization systematically, in two steps.
First, networks are usually provided as a simple list of edges (i, j), and it is frequently
the case that the node indices are not contiguous in the range [1, N ]. This is inconve-
nient from a programming perspective, so we renumber the node indices according to this
SSTM-CANONIZE algorithm:

1. Initialize MAP to an empty dictionary. When the algorithm terminates, MAP[i]=a
where i is an old node index, and a is its new node index.

2. Initialize COUNT=1

3. For each edge (i,j) in the edge list:

(a) If i not in MAP, then assign MAP[i]=COUNT and COUNT=COUNT+1.

(b) If j not in MAP, then assign MAP[j]=COUNT and COUNT=COUNT+1.

4. For each edge (i,j) in the edge list:

(a) Output the re-indexed edge (MAP[i],MAP[j]).

This algorithm is linear-time in the number of edges M , and executes in < 10min for
all ground-truth networks we tested on. In addition to making the node indices con-
tiguous, SSTM-CANONIZE serves one more purpose: empirically, it creates many se-
quences of contiguous node indices a, a + 1, a + 2, . . . , a + b such that a has an edge to
a + 1, a + 2, . . . , a + b — thus, nodes with close-by indices are often in the same com-
munity. We speculate this happens because, for real world networks, the input edge list
is never randomly ordered, but rather tends to group adjacent edges together23. When

23This occurs when, for example, an adjacency matrix is converted to an edge list by scanning the rows
one at a time (since edges from row i have the same source node i).
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SSTM-CANONIZE encounters adjacent edges whose nodes have not been seen before, it
gives those nodes contiguous indices a, a+ 1, a+ 2, . . . , a+ b.

The second step of our SSTM initialization is to take advantage of the aforementioned
sequences, by simply assigning communities to continuous blocks of node indices: the first
N/K nodes are seeded to community 1, the second N/K nodes are seeded to community
2, and so on. Seeding is accomplished by setting the γi (the variational parameters to θi)
accordingly: in order to seed node i to community k, we set γi,k = S, where S is the seed
value. We use S = 10K in our experiments, and set the remaining non-seeded elements
of γi to small, randomly-generated numbers close to 1.

We wish to emphasize that this SSTM initialization procedure is systematic, cheap,
and requires no prior knowledge about the input network — from the user’s point of view,
it is completely automatic and costs almost nothing. Furthermore, it is highly effective on
all the ground-truth networks we tested on, as our experiments will show.

Other variational parameters: For the variational parameters (VPs) η corresponding
to the triangle-generating probabilities B, we initialize them as follows: [ηxxx,1, ηxxx,2] =
[1, 3], and [ηxx,1, ηxx,2, ηxx,3] = [2, 1, 1] and [η0,1, η0,2] = [3, 1]. This reflects the intu-
ition that within-community interactions ηxxx are likely to be 3-triangles, whereas inter-
community interactions ηxx, η0 are likely to be 2-triangles. Note that the VPs for the
triangle role indicators s do not require initialization, as we do not need to store them in
the first place. This is because the VPs for s are solved through fixed-point iteration (given
the current values of γ, η).

Finally, we fix the θ, B hyperparameters to α = λ = 0.1, and use C = 1 triangle motif
per node, per iteration (so the minibatch size is NC = N triangle motifs per iteration).

Step-sizes for SSTM

At each iteration t of the SSTM SVI algorithm, we apply the stochastic natural gradient
ascent rule

ηt+1 = ηt + ρt∇̃ηLminibatch(ηt,γt), γt+1 = γt + ρt∇̃γLminibatch(ηt,γt),

where the step size is given by ρt = τ0(τ1+t)−κ, and the natural gradient ∇̃Lminibatch(η,γ)
is obtained by pre-multiplying the the ordinary gradient∇Lminibatch(η,γ) with the inverse
of the Fisher information of the variational posterior q. To ensure convergence, the step
size parameters τ0, τ1, κ are set such that

∑
t ρ

2
t <∞ and

∑
t ρt =∞. The specific values

we used are τ0 = 50, τ1 = 10000 and κ = 0.5.

194



Termination Criterion for SSTM

We monitor the convergence of SSTM by computing the variational mini-batch lower
bound at each iteration,

Lminibatch(η,γ) = g(η,γ) +
NC
NC

∑
(i,j,k)∈minibatch

max
φijk

`(φijk,η,γ).

This mini-batch lower bound serves as an approximation to the full lower boundL(φ,η,γ);
we never compute the full lower bound as it involves all NC triangles, which is computa-
tionally prohibitive and would dominate the cost of running the SVI algorithm.

In our overlapping community detection experiments, we terminate SSTM whenLminibatch

decreases for the first time (normally, Lminibatch should always be increasing). This sig-
nifies that the SVI algorithm is beginning to oscillate, and will not make much further
progress. All experiments terminated within 200 iterations under this criterion (using
C = 1 triangle motif per node, per iteration); in other words, SSTM SVI only had to
process < 200N triangles in total, which is essentially linear in N and therefore scalable.

Baselines

For comparison with SSTM, we selected baseline algorithms that (1) are able to perform
overlapping community detection24, and (2) are scalable enough to analyzeN ≈ 1m nodes
in at most a few days. These two criteria greatly narrow the list of candidate baselines:
many non-SVD Matrix-Factorization-based network algorithms require O(N2) runtime
and are thus unscalable [156], while many other algorithms from the social networks lit-
erature also do not reach N ≈ 1m nodes [57].

We consider 4 overlapping community detection algorithms that are known to be
highly scalable:

1. a-MMSB: The assortative Mixed-Membership Stochastic Blockmodel (a-MMSB) of
Gopalan et al. [56, 57], for which single-machine C code is available at https://
github.com/premgopalan/svinet. Requires the number of communities
K to be input as a parameter. We used the “link-sampling” scheme, as recommended
by the a-MMSB paper and user manual.

24 We do not consider methods that detect disjoint communities, as the ground truth network commu-
nities do in fact overlap significantly — hence, disjoint community detection methods are philosophically
inappropriate (because their disjoint assumption is false here), and would not score highly anyway.
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2. PM: The Poisson Model of Ball et al. [15]; we used the single-machine C code
provided by the authors. Requires the number of communities K to be input as a
parameter.

3. SLPA: The Speaker-Listener Propagation Algorithm (SLPA) of Xie et al. [173],
for which single-machine Java code is available at https://sites.google.
com/site/communitydetectionslpa/ganxis under the name GANXiS.
Automatically detects the number of communities in the network, given a threshold
r ∈ [0, 1] We found that the NMI score did not vary significantly with the choice of
r, so we fixed r = 0.25 for all experiments.

4. SVD+M: A baseline that first applies a rank-K Singular Vector Decomposition (SVD)
to the adjacency matrix, and then extracts communities from the singular vectors
using modularity as a stopping criterion, as proposed in [138]. As code from the au-
thor was unavailable, we wrote our own single-machine MATLAB implementation,
based on the multi-threaded svds() sparse low-rank SVD function.

Both a-MMSB and the Poisson Model are edge-based mixed-membership statistical mod-
els, and thus closely related to SSTM (which is a triangle-based mixed-membership sta-
tistical model). SLPA is a message-passing algorithm, in which community labels are
propagated along edges until convergence, while SVD+M is a matrix factorization algo-
rithm based on the Singular Value Decomposition (SVD). All algorithms were run with
their default settings, unless otherwise stated. For algorithms that require K, the number
of communities, to be provided as input (which includes SSTM), we repeated the experi-
ments for different values of K: 5000, 10000, 15000 and 20000.

Although these baselines are only single-machine, most of them are able to analyze
networks with millions of nodes and thousands of communities in at most a few days.
From a scalability perspective, the main advantage of SSTM is its ability to make use of
distributed cluster machines, which allowed us to analyze an N ≈ 100m-node network
with K = 1000 communities in under two days on 5 machines.

NMI Results

In the experiments that follow, we used server machines equipped with 128GB RAM and
2 Intel Xeon E5-2450 8-core processors, for a total of 16 CPU cores per machine running
at 2.10GHz. We ran the distributed-parallel SSTM SVI algorithm using 4 such machines,
for a net total of 64 cores/worker threads and 512GB distributed RAM. The baselines
a-MMSB, Poisson Model and SLPA are all single-machine and single-threaded, while
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NMI Time to convergence
Network C = 1 C = 10 C = 1 C = 10
DBLP, N = 317k nodes
K = 5000 0.439 0.451 15min 2.8h
K = 10000 0.506 0.505 18min 1.5h
K = 15000 0.542 0.535 26min 2.1h
K = 20000 0.559 0.553 30min 3.1h
Amazon, N = 335k nodes
K = 5000 0.790 0.791 38min 3.4h
K = 10000 0.758 0.771 18min 1.4h
K = 15000 0.743 0.752 24min 2.2h
K = 20000 0.733 0.739 31min 3.2h
Youtube, N = 1.1m nodes
K = 20000 0.433 0.434 7.6h 93h

Table 4.2: SSTM NMI performance and runtime for C = 1 vs C = 10. Using C = 1
results in much faster convergence, while NMI scores remain similar to C = 10.

SVD+M is single-machine but multithreaded; we run all algorithms using one machine
with 128GB RAM.

Why C = 1 for SSTM SVI? First, we justify why we set SSTM’s SVI mini-batches to
C = 1 triangle per node (for a total of N triangles per minibatch). Table 4.2 shows NMI
scores and runtimes for C = 1 vs 10. Observe that using C = 1 yields 5-10x faster time-
to-convergence than C = 10, while maintaining comparable NMI scores. Essentially,
these results tell us that the SVI stochastic gradients computed using C = 1 triangles-
per-node are nearly as accurate as those computed using C = 10 triangles-per-node —
in other words, larger mini-batches provide little additional benefit over smaller ones, yet
require far more computational time. Based on these results, we use C = 1 throughout all
remaining experiments.

SSTM NMI scores versus baselines: Table 4.3 shows NMI scores and runtimes for
SSTM versus the other 4 baselines: a-MMSB, Poisson Model (PM), SLPA and SVD+M.
There are several points we wish to highlight. First, SSTM finishes execution in a fraction
of the time taken by any other baseline, thanks to its distributed-parallel implementation
that allows the full use of all 64 CPU cores on 4 machines. In fact, none of the baselines
finished execution on the N = 4m-node, M = 35m-edge Livejournal network within
our experimental limit of 5 days, and the SVD+M algorithm was not able to finish any
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experiment within 5 days25. Given a larger compute cluster, we expect SSTM to finish
even more quickly, allowing even the largest networks to be analyzed in a matter of hours.

Second, SSTM’s SVI algorithm is memory-efficient, thanks to our distributed-shared-
memory Parameter Server architecture (Section 4.1) for sharing variational parameters,
and our use of sparse data structures to hold the variational parameters γi. In particular,
the largest K = 20000 Livejournal experiment only required 24GB of RAM on each of
the 4 machines (for a total of 96GB). This is in contrast to the a-MMSB algorithm, which
ran out of memory on much smaller experiments, even though the machine had 128GB
RAM.

Third, SSTM clearly beats the other mixed-membership statistical models (a-MMSB
and PM) in NMI scores, which provides evidence that triangular motif modeling leads to
more accurate overlapping community detection than edge-based adajcency matrix mod-
eling. Although SSTM has lower NMI scores than SLPA (a message-passing algorithm),
SSTM finishes execution in far less time (when given a distributed compute cluster), al-
lowing it to scale to much larger networks. Furthermore, SSTM also outputs real-valued,
mixed-membership vectors for fine-grained analysis of communities, and is naturally ca-
pable of link prediction (as explained in Section 3.3) — neither of which SLPA supports.

25 High-rank SVDs are not cheap to compute on MATLAB. The call to svds() alone took 4 days to com-
plete on the smallest DBLP network (N = 317k nodes) for just K = 5000, despite being a multithreaded
implementation. Furthermore, svds() simply ran out of memory on many of the larger experiments (de-
spite having 128GB RAM).
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NMI Time to completion
Network SSTM a-MMSB PM SLPA SVD+M SSTM a-MMSB PM SLPA SVD+M
DBLP, N = 317k nodes
K = 5000 0.439 0.379 0.251 0.581 DNF 15min 17.4h 8.9h 2.6h > 5 days
K = 10000 0.506 0.437 0.294 (16874 coms) DNF 18min 48h 18h > 5 days
K = 15000 0.542 OOM 0.322 OOM 26min OOM 51h OOM
K = 20000 0.559 OOM 0.341 OOM 30min OOM 96h OOM
Amazon, N = 335k nodes
K = 5000 0.790 0.750 0.483 0.867 DNF 38min 31h 4.4h 3.2h > 5 days
K = 10000 0.758 OOM 0.548 (29021 coms) DNF 18min OOM 11h > 5 days
K = 15000 0.743 OOM 0.571 OOM 24min OOM 22h OOM
K = 20000 0.733 OOM 0.576 OOM 31min OOM 31h OOM
Youtube, N = 1.1m nodes
K = 5000 0.374 OOM 0.129 0.424 OOM 2.2h OOM 76h 21h OOM
K = 10000 0.422 OOM DNF (5972 coms) OOM 3.2h OOM > 5 days OOM
K = 15000 0.456 OOM DNF OOM 3.9h OOM > 5 days OOM
K = 20000 0.433 OOM DNF OOM 7.6h OOM > 5 days OOM
Livejournal, N = 4.0m nodes
K = 20000 0.743 OOM DNF DNF OOM 63h OOM > 5 days > 5 days OOM

Table 4.3: NMI performance and runtime for SSTM and baselines. “OOM” means the algorithm ran out of memory
and failed, while “DNF” means the algorithm did not finish within a reasonable amount of time (defined as 5 days of
continuous computation). Note that the SLPA algorithm automatically selects K, the number of communities, thus
we report only one score per network (with the # of detected communities in parentheses).
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Figure 4.6: Youtube network: Size of the largest 50 communities from SSTM and each
baseline (run with K = 1000 communities), plotted on a logarithmic scale.

SSTM community sizes versus baselines: Why does SSTM, a triangular motif statisti-
cal model, have better NMI scores than a-MMSB and PM, which are edge-based statistical
models? At the beginning of this section, we conjectured that this is because stochas-
tic blockmodels like a-MMSB cannot detect large communities, which are highly sparse
(near-zero edge density); thus, under an edge-based statistical model, large communities
would be indistinguishable from the rest of the network. Figure 4.6 provides evidence to
support this conjecture: for the Youtube network with N = 1.1m nodes and K = 1000
communities26, we plot the sizes of the largest 50 raw (non-postprocessed) communities
detected by SSTM, a-MMSB, PM and SLPA.

We observed that SSTM and SLPA detect several very large communities contain-
ing over 50k nodes (the largest SSTM community contained approximately 512k nodes),
whereas a-MMSB and PM are unable to form communities larger than 10k nodes. On
the other hand, the vast majority of SSTM and SLPA communities are also much smaller
than a-MMSB’s and PM’s — in other words, the distribution of SSTM and SLPA commu-
nity sizes is far more skewed than a-MMSB’s and PM’s. We hypothesize that the better
NMI performance of SSTM and SLPA is partly due to their ability to detect larger/smaller
communities, relative to a-MMSB and PM.

26We could not use the 4m-node Livejournal network because a-MMSB ran out of memory and failed
even with 128GB RAM, despite only using K = 1000 communities.
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4.2.4 Analyzing a 101-million-node Web Graph with SSTM

To demonstrate SSTM’s ability to handle societal-scale graphs, we shall use it to ana-
lyze the 101-million-node, 2043-million-edge Web Data Commons Subdomain/Host web
graph27. This web graph was constructed from the Common Crawl 2012 web corpus28,
which originally contained 3.5 billion web pages and 128 billion hyperlinks. The 3.5 bil-
lion web pages were aggregated by their subdomain29 or host, resulting in a new graph
with 101 million nodes/subdomains. An edge was drawn between two subdomains if at
least one hyperlink was found between their aggregated pages, resulting in 2043 million
directed edges. SSTM treats the network as an undirected, unweighted graph.

We aim to show that (1) SSTM executes in a reasonable amount of time on this 101-
million-node graph, and that (2) the SSTM node mixed-membership vectors θi reveal in-
teresting insights about the web graph’s structure and communities.

Experimental Settings

Our distributed-parallel SSTM SVI algorithm finished execution on the N = 101-million-
node Subdomain/Host graph in just 37.3 hours, using K = 1000 overlapping communi-
ties. We point out that this result is 25 times bigger than the largest mixed-membership-
modeling experiment reported in the literature, where Gopalan and Blei ran the a-MMSB
algorithm on an N ≈ 4m patent network using K = 1000, in 2013 [57].

We used SSTM SVI settings that were mostly identical to the ground-truth experi-
ments, with the following exceptions:

Number of machines: We used 5 machines with 16 cores and 128GB RAM, configured
identically to the 4 machines used in the ground truth experiments. The extra machine was
needed because SSTM SVI ran out of memory on 4 machines.

Choice of C, the approximate average number of triangles per node: In the Subdo-
main/Host web graph, the total number of 2-triangles and 3-triangle N∆ is somewhere
between 11 trillion (1012) and 33 trillion30. Initially, we tried to set NC ≈ 33 trillion as

27http://webdatacommons.org/hyperlinkgraph/
28http://commoncrawl.org/
29 A subdomain is an internet host name with 3 or more levels. For example, www.cmu.edu and

www.ml.cmu.edu are considered to be two distinct subdomains.
30Following the bound X

3 ≤ N∆ ≤ X , where X :=
∑N
i=1

1
2 |Ni|(|Ni| − 1).
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per our ground-truth experiments, i.e. C ≈ 330000. However, this led to numeric overflow
issues with our 32-bit floating point libraries for the log-gamma and digamma functions
(which SSTM SVI requires).

To overcome this issue, we set C to one-thousandth smaller, C ≈ 330. Because the
SSTM SVI algorithm merely treats C as a reweighting factor (see Eq. 4.4), choosing a
smaller value of C has little impact on the quality of overlapping communities detected by
SSTM. Note that we still use a mini-batch size of C = 1 triangle per node.

Termination Criterion: On such a large network, SSTM SVI may take a long time be-
fore the lower bound starts oscillating (which was our termination criterion for the ground-
truth experiments). In practice however, SVI algorithms still produce accurate results even
when stopped early: for example, the a-MMSB SVI algorithm achieves good results at
90% convergence to the true lower bound [56]; our own experiments on SSTM SVI also
confirm that early stopping yields NMI scores similar to our full termination criterion.

For the Subdomain/Host graph in question, we observed that by iteration t = 50, the
lower bound was only changing at the 5th significant figure (relative to the first few itera-
tions). We thus concluded that the SSTM SVI algorithm was no longer making meaningful
progress, and stopped the algorithm at t = 50 iterations.

Zeroing out elements of γi to maintain sparsity: The Subdomain/Host graph requires
N × K = 100 billion (109) variational parameters γi,k, which would require terabyes of
memory if stored in a dense fashion (once all algorithmic overheads have been accounted
for). In order to keep the γi sparse enough to fit on our 5 machines with 640GB total RAM,
at the end of every iteration, we zeroed out any elements γi,k that were < 10 (whereas the
ground-truth experiments used a zeroing threshold of < 2α = 0.2).

We justify this higher zeroing threshold by arguing that it does not materially affect
the set of communities detected through thresholding the final mixed-membership vectors
θi. The reason is that, at SSTM SVI termination, the vast majority of nodes i exhibited
a “total mass” of

∑
a γi,a > 100 — thus any zeroed-out element γi,k < 10 would have

been normalized to a mixed-membership value of θi,k := γi,k/(
∑

a γi,a) < 0.1 (assuming
we did not zero out that element in the first place). Such elements γi,k would not have
been detected as being part of community k, because our community detection threshold
is θi,k ≥ 0.1. Therefore, the higher zeroing threshold of < 10 has little impact on the
detected communities.
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Figure 4.7: Subdomain/Host Web Graph: log-log plot of community “masses” (the soft-
valued equivalent of the number of nodes in a community) versus community rank. We
also plot the best-fitting power law equation as a red line.

Disconnected nodes: The SSTM SVI algorithm ignores “triangle-disconnected nodes”
(defined as nodes that do not participate in at least one 2- or 3-triangle), and we do not con-
sider them in our analysis. Note that triangle-disconnected nodes are either (a) completely
isolated from the rest of the network, or (b) part of an isolated edge/2-clique. In either
case, they are easily detected structures that are uninteresting from a community detection
standpoint.

Results and Analysis

We begin our analysis with high-level, basic statistics about the communities. In Fig-
ure 4.7, we plot the “total mass” of each community in descending order; where the to-
tal mass is obtained by treating the final mixed-membership vectors θi,k as an N × K
real-valued matrix (without community detection thresholding), and summing over the K
columns. Thus, column k’s sum accounts for all partial memberships in community k, and
is essentially a soft-valued way to count the number of nodes in each community.

The most striking feature of Figure 4.7 is the “giant core” with a mass of approximately
71m nodes; far above the second largest community with approximately 166k nodes. This
giant core is not a community in the typical sense of a small, close-knit set of nodes, but
most likely represents the “core” of the web graph [109]. Prominent, high-degree websites
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c # nodes that are members of exactly c communities
1 73,392,188
2 657,460
3 45,961
4 8,458
5 1,981
6 244
7 11
8 1
9 0
10 0

Table 4.4: Subdomain/Host Web Graph: Number of nodes that are part of exactly c com-
munities, after thresholding at θi,k ≥ 0.1. About 1/4 of the network nodes are triangle-
disconnected (not part of any 2- or 3-triangle), and do not belong to any community.

such as youtube.com, en.wikipedia.org, twitter.com and google.com are part of this core.
We note that the community masses mostly follow a power law distribution with exponent
−1.031, excepting the largest 5 or so communities.

Table 4.4 counts the number of nodes that are members of exactly c communities,
for each value of c. We place a node i in community k if its mixed-membership vector
satisfies θi,k ≥ 0.1 (see the ground-truth section for our justification). About 25 million
nodes were triangle-disconnected (isolated from the network), and therefore not part of
any community. The remaining nodes were mostly single membership (73 million), with
less than 1% (700 thousand) participating in two or more communities — in other words,
regions of community overlap make up just a small fraction of the network.

Exploring the Largest Communities: What are the communities detected by SSTM
like? To identify significant nodes associated with each community k, we compute a score
sk(i) = θi,k × Ni for each node i, i.e. its membership in community k multiplied by its
node degree. We then sort sk(1), . . . , sk(N) in descending order, and report the top ranked
nodes. In this manner, we obtain nodes that are both significant (high-degree), and have
substantial membership in community k (high θi,k).

Table 4.5 shows the top-scoring 10 nodes from the largest 5 communities, as well as the
fraction of 3-triangles in each community31. As mentioned earlier, the giant core (largest

31In the SSTM model, the fraction of 3-triangles in community k is just the parameter Bkkk,2, which is
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community) is dominated by well-known websites like youtube.com and google.com, and
has a much lower fraction of 3-triangles (0.062) than the other communities — which
implies that the giant core is much sparser. The 2nd to 5th largest communities are:

• Community 2: Mostly “online stores” that focus on specific products (kitchenware,
phones, cars). These are not real online stores: the entries all link to eBay auction
pages. Moreover, the community memberships θi.k of the top 10 nodes are all perfect
(1.0), which suggests that these sites (1) form a tight clique, and (2) are probably
copies of each other. Likely, these sites are meant to increase the visibility of certain
eBay auctions — essentially, a form of search engine optimization. It is unclear
whether the auctions themselves are fraudulent or not.

• Community 3: Dominated by webpages from Lycos/Tripod, two related companies
in the search and website creation business. Also contains w3schools.com, a site
that provides instructions for website creation. The top websites in this community
do not appear suspicious.

• Community 4: Spanish-language websites, particularly Hispavista, an internet firm
based in Spain. The top websites in this community do not appear suspicious.

• Community 5: Dominated by blackmagic.org/com, a website that maintains a large
list of websites crawled from the internet in 2006. It is likely that blackmagic.org/com
acts as a hub for the other nodes in the community, which all have much smaller
scores sk(i). The extremely high fraction of 3-triangles (0.985) suggests that the
nodes in this community all link to each other (such as the skimium.* nodes). Thus,
the community may in fact be a full clique, or perhaps several full cliques connected
by one or two bridge nodes. Other works have shown that such clique-like patterns
in webgraphs are highly indicative of fraud [87]; a cursory look at the websites in
this community reveals that many of them are near-exact copies of each other. At
the least, we believe there is something dishonest going on here.

Previous work suggests that unusual connected components in web graphs can result from
organizations duplicating websites across multiple domain names: for example, compa-
nies selling internet domain names, or companies producing pornographic websites [86].
Community 2 appears to fit this observation, and it is not the only one: in the remaining
995 communities, we observed numerous other communities whose top 10 nodes had very
similar subdomain names (suggesting website duplication).

also output by the SSTM SVI algorithm.
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Other work [109] points out that small, tight-knit communities in social graphs often
feature only a few links to the rest of the network, whereas larger communities tend to be
more well-integrated into the giant core. Our SSTM output suggests that, in web graphs,
community size does not always correlate with core integration — for example, the 2nd
largest community contains high-degree nodes that are highly isolated from the giant core.
We speculate that this stems from the economics of internet domain names — once an
organization has purchased a second-level domain (e.g. google.com), that domain can be
used to host any number of websites at the subdomain level (e.g. images.google.com,
mail.google.com). Consequently, it is trivial for organizations to create many similar-
looking websites that share similar second-level domain names, creating the illusion of
a large community of websites that grew in isolation. Aggregating web pages by their
second-level domain may eliminate this phenomenon to a large extent.

Exploring Significant Nodes with Multiple Communities: The Subdomain/Host web
graph contains about 700k websites that are in 2 or more communities (see Table 4.4);
we now explore how these websites relate to the network. In Table 4.6, we show the 50
highest-degree websites with ≥ 2 communities (after thresholding at θi,k ≥ 0.1). The
most immediate observation is that almost all these websites have partial membership in
the giant core (community k = 1), though the extent of membership varies considerably.

Consider the highest-degree website in the list, wordpress.org (the epynomous blog-
ging software), which has a small membership (0.11) in the 25-th largest community. Ap-
plying the same methods used to construct Table 4.5, we find that the top 10 nodes in that
community include several domains of hostgator.com, a website hosting business. Further
inspection reveals that the wordpress forums frequently recommend hostgator.com to host
wordpress-powered blogs, and similarly, the hostgator support pages explain how to set up
a wordpress blog on hostgator itself. Notably, hostgator.com has half-membership (0.54)
in the 25-th community, with the other half (0.46) going to the giant core.

Now consider hispavista.com, a Spanish internet portal (mentioned earlier) that domi-
nates the 4th largest community. Unlike wordpress.org, which is an English-language site,
hispavista.com only has small membership (0.12) in the giant core, presumably because
Spanish-language websites are unlikely to link to English-language ones. The table con-
tains several more Spanish websites such as tu.tv, globedia.com and trabajos.com, again
with high membership in the 4th community and small membership in the giant role. Note
that Spanish websites are not the only language-centric community represented in the top
50: the *.skyrock.com subdomains are French sites, with high membership in two com-
munities (20th and 72nd) that are populated mostly by other *.skyrock.com subdomains.

The *.deviantart.com subdomains (an art and subculture website) represent the “mid-
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k-th largest community Fraction of 3-triangles Website Membership θi,k Score sk(i)
1 0.062 youtube.com 0.96 2906030.5

(mass 71038.3k) wordpress.org 0.89 2102190.9
en.wikipedia.org 0.93 1899359.3

gmpg.org 0.92 1638740.7
tumblr.com 0.94 1096803.3
twitter.com 0.95 1057107.2
flickr.com 1.00 931931.7

serebella.com 1.00 757930.4
google.com 0.92 738368.1

top20directory.com 1.00 691007.1
2 0.604 kitchensnstuff.com 1.00 163675.0

(mass 165.7k) shopping.mia.net 1.00 105814.0
thenichestorebuilder.com 1.00 57502.3

generator.mia.net 1.00 56772.0
phone.mia.net 1.00 53360.0

seekwonder.com 1.00 44767.9
hostinglizard.com 1.00 44496.5

corvette-auction.com 1.00 43633.9
gotomeeting.mia.net 1.00 43611.0
cashadvance.mia.net 1.00 43587.9

3 0.481 tripod.lycos.com 0.69 697557.6
(mass 88.7k) w3schools.com 0.99 499886.4

domains.lycos.com 0.99 476899.0
club.tripod.com 0.13 63429.6

wired.com 0.37 46150.2
search.lycos.com 0.94 29350.7
news.lycos.com 0.94 20329.7
moreover.com 0.15 613.1
metallica.com 0.09 421.4

google-pagerank.net 0.56 407.8
4 0.695 hispavista.com 0.80 156246.8

(mass 69.7k) dominios.hispavista.com 0.94 138596.5
inmobiliaria.hispavista.com 0.93 138045.6

globedia.com 0.87 134000.4
galeon.com 0.84 133910.6

neopolis.com 0.94 133033.7
trabajos.com 0.89 132235.4

horoscopo.hispavista.com 0.95 131548.8
paginasamarillas.hispavista.com 0.95 131476.2

software.hispavista.com 0.94 131310.0
5 0.985 blackmagic.org 0.60 103660.8

(mass 65.2k) blackmagic.com 0.60 102844.9
opera.com 0.04 2265.0
skimium.fr 0.88 1289.3

skimium.co.uk 0.97 1181.0
skimium.es 0.97 1167.6
skimium.nl 0.96 1140.9
skimium.it 0.94 1137.8
skimium.be 0.94 1111.3

inetgiant.com 0.24 665.6

Table 4.5: Subdomain/Host Web Graph: The 10 highest-scoring nodes in each of the
largest 5 communities by mass (mass is the effective number of nodes in the community).
The score sk(i) is computed as θi,k × N (i), i.e. the mixed membership of node i in
community k times node i’s degree. For each community, we also report the fraction of 3-
triangles (number of 3-triangles divided by number of 2-and-3-triangles). A quick look at
the websites in communities 2 and 5 reveals suspicious behavior (see main text for details).
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Website Degree Mixed-Memberships
wordpress.org 2357237 1 (0.89), 25 (0.11)

tripod.lycos.com 1011478 1 (0.23), 3 (0.69)
mp3shake.com 549123 1 (0.87), 95 (0.12)

vimeo.com 507043 1 (0.82), 50 (0.18)
staff.tumblr.com 480171 1 (0.86), 159 (0.14)
club.tripod.com 474609 1 (0.87), 3 (0.13)

phpbb.com 403009 1 (0.52), 21 (0.47)
livejournal.com 348078 1 (0.61), 51 (0.26), 123 (0.11)
deviantart.com 323761 1 (0.62), 12 (0.37)

muro.deviantart.com 299839 1 (0.62), 12 (0.38)
forum.deviantart.com 299685 1 (0.60), 12 (0.40)
today.deviantart.com 299544 1 (0.60), 12 (0.40)

groups.deviantart.com 299532 1 (0.60), 12 (0.40)
critiques.deviantart.com 299523 1 (0.61), 12 (0.39)

forumactif.com 276542 1 (0.20), 10 (0.77)
blogdiario.com 264486 1 (0.84), 4 (0.16)

forum.forumactif.com 253807 1 (0.17), 10 (0.79)
worddetector.com 215259 1 (0.52), 107 (0.25), 69 (0.18)

free-press-release.com 213401 1 (0.13), 32 (0.42), 31 (0.39)
flash-screen.com 213357 32 (0.41), 31 (0.37)

help.forumotion.com 202146 1 (0.15), 21 (0.57), 48 (0.25)
tistory.com 201958 1 (0.21), 36 (0.69)

skyrock.com 201219 1 (0.17), 72 (0.19), 20 (0.63)
hispavista.com 195780 1 (0.12), 4 (0.80)

oas.skyregie.com 195718 1 (0.18), 20 (0.63), 72 (0.19)
tradeshow.free-press-release.com 194652 1 (0.10), 32 (0.43), 31 (0.41)

linkedin.com 193149 1 (0.85), 397 (0.10)
weather.com 187430 1 (0.19), 7 (0.79)
xanga.com 186170 1 (0.53), 58 (0.38)

lequipe-skyrock.skyrock.com 181483 1 (0.14), 20 (0.63), 72 (0.23)
fr.skyrock.com 181004 1 (0.13), 20 (0.62), 72 (0.24)

newsmusic.skyrock.com 180736 1 (0.13), 20 (0.63), 72 (0.24)
honneurs.skyrock.com 180728 1 (0.14), 72 (0.25), 20 (0.62)

videos.skyrock.com 180727 1 (0.14), 20 (0.63), 72 (0.23)
gadgets.skyrock.com 180726 1 (0.13), 20 (0.63), 72 (0.24)

forumotion.com 177836 1 (0.19), 21 (0.70)
blackmagic.org 171559 1 (0.40), 5 (0.60)
blackmagic.com 171312 1 (0.40), 5 (0.60)

multiply.com 170555 1 (0.62), 79 (0.38)
typepad.com 160727 1 (0.68), 118 (0.31)
galeon.com 159280 1 (0.16), 4 (0.84)

eventbrite.com 157270 1 (0.35), 28 (0.61)
tu.tv 157007 1 (0.14), 63 (0.18), 4 (0.68)

globedia.com 153540 1 (0.13), 4 (0.87)
help.eventbrite.com 152737 1 (0.34), 28 (0.62)

itunes.apple.com 148464 1 (0.86), 182 (0.13)
trabajos.com 148380 1 (0.11), 4 (0.89)

onlinecopypastejobs.291701.free-press-release.com 146165 1 (0.12), 32 (0.55), 31 (0.31)
youyube.64948.free-press-release.com 146164 32 (0.57), 31 (0.32)

goldbullmarket.1191981.free-press-release.com 146157 32 (0.57), 31 (0.32)

Table 4.6: Subdomain/Host Web Graph: Mixed-memberships of the 50 highest-degree
websites that are members of at least 2 communities. The Mixed-Memberships are ex-
pressed as “k (θi,k)” tuples, where k means the k-th largest community, and θi,k is the
website’s mixed-membership in that community.
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dle ground”, being 60% in the giant role and 40% in the 12th community. The 12th com-
munity appears inconsistent at first glance — in addition to the deviantart subdomains,
it contains various download sites (downloadatoz.com, iphonehdwallpapers.com) and hu-
mor sites (haliboo.com) that are filled with spam and automatic redirects. Since deviantart
is a site that hosts user-generated content, we hypothesize that these spam sites were posted
onto deviantart pages, in order to target the users of that community. Anecdotal searches
on deviantart reveal that spam has been an ongoing concern for many years now.

In fact, our 50 highest-degree websites list already contains a few suspicious sites:
flash-screen.com and the *.free-press-release.com subdomains mostly did not meet the
θi,k ≥ 0.1 threshold for inclusion in the giant role, but instead occupy the 31st and 32nd
communities, which are mostly filled with other free-press-release subdomains. These
belong to a company that purports to make press releases over the internet, with the osten-
sible goal of allowing businessmen to promote their company or product launches — in
all likelihood, the company is probably a Search Engine Optimization (SEO) provider.
Nonetheless, their subdomains are notable for having an extremely high degree (over
140k!), almost certainly from copying the same website across all their subdomains (on-
linecopypastejobs..., youyube... and goldbullmarket... are good examples that are still
accessible as of May 2014).

These examples and others lead us to hypothesize that the highest-degree multiple-
community websites are usually “border” or “gateway” nodes between the giant core
(community 1) and some peripheral community (centered on topics such as webhost-
ing, foreign languages, or just spam). Our observations are consistent with the “core-
periphery” structure of the internet reported in [109, 86], though we are unable to confirm
if the “directed bow-tie” structure reported in [28] holds (because SSTM does not consider
edge direction).

4.2.5 Appendix: SSPtable Parameter Server scalability

To confirm that the SSPtable Parameter Server (Section 4.1) speeds up SSTM execution
when given more machines, we plot convergence curves (i.e variational lower bound ver-
sus time) in Figure 4.8, for 2 to 6 machines. If we define the convergence rate as the time
taken to reach a lowerbound value of −2 × 1010, then we observe that 2 machines took
18k seconds, 4 machines took 9.5k seconds, and 6 machines took just under 8k seconds.
To put it another way, the SSPtable Parameter Server registered a 1.9-times speedup going
from 2 to 4 machines, and a 2.3-times speedup going from 2 to 6 machines.

When we increased the SSPtable staleness to 10 (up from 0, which is Bulk Syn-
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Figure 4.8: Scalability of SSTM under the SSPtable Parameter Server, using 2, 4 and
6 machines (16 cores per machine), and with staleness 0 or 10. Results for 1 machine
are omitted because SSTM ran out of memory and failed. We used the N = 4m-node
Livejournal network with K = 5000 communities.

chronous Parallel mode), there was no performance improvement for 2 and 4 machines,
and a very slight (though unlikely to be statistically significant) performance improvement
for 6 machines. In order to understand why this is the case, first recall that the SSP con-
sistency model is designed to reduce network bottlenecks that would slow down the Bulk
Synchronous Parallel (BSP) model — however, if BSP is not bottlenecked to begin with (as
is the case here), then SSP will have no effect. As to why there is no network bottleneck at
6 machines, we have observed that each SSTM iteration requires significantly more com-
putation than network communication, compared with the LDA and Matrix Factorization
applications discussed in Section 4.1) (recall that LDA exhibited a severely-bottlenecked
1:6 compute-to-network ratio at 32 machines).

However, should we deploy SSTM at 10s or 100s of machines, we expect that SSTM
will eventually become bottlenecked by the network, and therefore some staleness will
definitely be required to achieve further speedup. We shall leave the testing of this hypoth-
esis to a future experiment with N = 1b nodes, which will require ≥ 50 machines. For
the purposes of this chapter however, there is no need for 50 machines, given that we have
shown it only takes 5 machines to analyzeN ≤ 100m nodes withK ≈ 1000 communities.
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Network Nodes N Edges M Number of (non-overlapping) communities K
karate 34 156 2

polbooks 105 882 3
dolphin 62 318 2
football 115 1226 10

msp 4324 37254 2
ag 1222 33428 2

senate 98 9506 2
umbc 404 4764 2

mgemail 280 1344 55
citeseer 2114 7396 6

cora 2485 10138 7

Table 4.7: Statistics for the small networks studied in Balasubramanya et al. [14]. We
perform NMI community detection experiments on these networks using SSTM and the
a-MMSB baseline.

4.2.6 Appendix: Performance on small networks

While we have shown that SSTM performs well at N = 1m to 100m nodes, one might
ask whether it works just as well for small networks with N ≤ 1000 nodes. In general,
we do not expect this to be the case: SSTM was designed to capture structural features
of communities in large networks (triangle ratios and clustering coefficients), and large
networks are structrually very different from smaller ones [109]. In other words, SSTM’s
assumptions match the nature of large networks, but not small ones. Nevertheless, for
the sake of completeness, we provide community detection NMI scores for some small
networks used in [14], which are listed in Table 4.7. These networks differ from the large-
scale networks studied in this section, in two ways:

1. The communities in these small networks are non-overlapping (disjoint).

2. These small networks can be quite different from each other: (1) their nodes, edges
and community labels can have very different semantics from network to network,
and (2) those semantics are often quite different from the large networks studied
earlier. Consequently, these small networks are also highly varied in their commu-
nity structures (which means SSTM may not be an appropriate model for them).
For example, in the polbooks network, nodes represent books and edges represent
co-purchasing behavior (books are labeled as “liberal”, “conservative” or “neutral”
based on viewpoint). However, the football network has very different semantics: it
represents American colleges as nodes, football games between colleges as edges,
and game conferences as community labels.
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Network Nodes N Edges M K SSTM NMI a-MMSB NMI
karate 34 156 2 0.149 FAIL

polbooks 105 882 3 0.021 0.312
dolphin 62 318 2 0.009 FAIL
football 115 1226 10 0.539 0.405

msp 4324 37254 2 0.012 0.093
ag 1222 33428 2 0.010 0.386

senate 98 9506 2 0.673 0.862
umbc 404 4764 2 0.000 0.321

mgemail 280 1344 55 0.668 0.581
citeseer 2114 7396 6 0.006 0.027

cora 2485 10138 7 0.053 0.057

Table 4.8: Small networks: NMI scores for SSTM and a-MMSB.

Experimental setup: Our NMI experiments on these small networks are similar to the
large-scale NMI evaluation in Section 4.2.3, except for these differences: (1) instead of
using a termination criterion, we simply ran every network for 100 iterations; (2) we used
C = 10 (instead of C = 1) triangles per node, per iteration to improve the stability
of the SSTM SVI algorithm small scales; (3) since the networks have non-overlapping
communities, we set our detection threshold at θi,k ≥ 0.5 (so that every node gets exactly
one community); (4) because the number of communities K is small, we do not use the
SSTM features that are designed to reduce computational and memory costs in high-K
networks32; (6) we give SSTM the true number of communities K, with one exception:
SSTM cannot detect exactly K = 2 communities33, so we use K = 3 for all networks
with only 2 communities.

We use the a-MMSB SVI algorithm as a baseline for comparison — as we shall see,
at these small scales, SSTM is no longer clearly better than stochastic blockmodels like
a-MMSB. Because these networks are small, both SSTM and a-MMSB completed in at
most a few minutes on one processor core; therefore we do not report runtimes.

Results and Discussion: Table 4.8 shows the NMI scores for SSTM and a-MMSB34; we
observed two trends: (1) for most of the networks where both SSTM and a-MMSB score
≤ 0.5, a-MMSB does significantly better; (2) for networks where at least one method
scores≥ 0.5, there is no clear leader, with SSTM performing better on 2 out of 3 networks
(football and mgemail), and a-MMSB performing better on the third network (senate).

32Specifically, we set U0 = K and U1 = 0 in SSTM-ChooseLocalVP, and we do not use any of the
techniques described under Memory Management in Section 4.2.2.

33This is an “edge case” limitation of our SSTM implementation. While it is possible to handle K = 2 as
a special case, we do not as our focus is on high-N , high-K networks.

34a-MMSB failed on some networks due to a bug, these are indicated by the text “FAIL”.
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These observations suggest that (a) SSTM and a-MMSB have fairly similar assumptions
about how communities should look like; (b) for the few small networks that match these
assumptions well, SSTM performs similarly to a-MMSB (unlike large networks where
SSTM has a clear advantage); (c) for the majority of the small networks (which do not
match these assumptions), a-MMSB performs better (though perhaps not well enough to
be useful), while SSTM can fail outright. As we have explained earlier, the structure of
small networks is quite different from large ones, so it is not surprising that SSTM (which
is designed for large networks) cannot perform as well in this setting.

Note that Balasubramanyan et al. [14] also tested various community detection meth-
ods on the networks in Table 4.7, and their results show that no one method could beat
the rest on ≥ 50% of all networks; in other words, there is no “single best method”. We
believe this is because the networks in Table 4.7 are highly varied, and therefore the nature
of their communities differs significantly from network to network. From this evidence as
well as our earlier results, we suspect that it is very difficult to design a single community
detection algorithm that performs universally well on all small networks.
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Chapter 5

Conclusions and Future Work

The key contributions of this thesis are:

1. New techniques (building blocks) for incorporating network context — textual data,
time-varying networks and hierarchical structure — into statistical mixed-membership
network models;

2. A new triangular motif data representation, network model, and distributed stochas-
tic inference algorithm for statistical mixed-membership analysis of very large net-
works beyond N ≈ 100 million nodes;

3. We demonstrated the utility of these new context and scalability techniques by per-
forming overlapping community detection and link prediction on contextual and
very large networks respectively — this affirms our thesis statement that statistical
network modeling is viable for massive, context-rich social and internet networks;

In particular, the Societal-Scale Triangular Model (SSTM) presented in Chapter 4.2 per-
forms better at overlapping community recovery than existing mixed-membership net-
work models, while reaching network scales that, to the best of our knowledge, exceed all
known results in the statistical network modeling literature. Because SSTM is a mixed-
membership model, it is naturally amenable to the context-incorporating techniques devel-
oped in Chapter 2 and elsewhere in the literature. It is in this sense that we claim our thesis
statement to be fulfilled: “We can design statistical network analysis algorithms that are
scalable and incorporate rich context”.

Beyond this claim, there are certainly aspects of network analysis that this thesis does
not address. For one, we have yet to incorporate network context into the SSTM model,
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in order to analyze very large networks in their context. Because large networks are struc-
turally very different from small ones [109], we believe that the future task of interpreting
large networks in their context will also present unique theoretical and systems challenges
that are absent at smaller scales. It is our hope that such methods will be of great use in
charting out the structure of today’s large social networks and web graphs.

Our work on triangular motif modeling does not come with the same depth of theoreti-
cal analysis present in the stochastic blockmodel literature, such as consistency and identi-
fiability guarantees [19, 11]. A major challenge to this goal is our treatment of the network
as a collection of triangular features associated with each node, in the spirit of other sta-
tistical Machine Learning algorithms such as Latent Dirichlet Allocation (which relies on
a “bag of words” representation of document corpora) [23]. This re-representation adds
an extra layer of complexity that complicates analysis; we speculate that the right starting
point would be to analyze a “full triangular model” over all N3 0-, 1-, 2- and 3-edge-triads
in a network — even though such a model is clearly impractical, it would still provide
insight into the restricted models (on only 2 and 3-edge-triads) that we have been using.
Ideally, such analysis would provide conditions under which communities can be recov-
ered from a triangular motif model: for example, we conjecture that the probability of
3-edge-triads in “diagonal” role combinations x = y = z has to be bounded away from
the probability of 3-edge-triads in “off-diagonal” role combinations x 6= y 6= z 6= x1

Finally, we believe there is an opportunity to extend the concept of triangular motif
modeling to directed and/or weighted graphs, which frequently occur in communication
networks (e.g. email or tweet frequencies between people) and biological networks (where
each pair of genes is given an association score). It is definitely possible to construct a new
“vocabulary” of triangular motifs for the directed and weighted cases, though it is an open
question whether new network models over such motifs can still be made scalable; many
of the scalability techniques developed in this thesis make use of specific properties of
2- and 3-edge undirected triads: for example, we can enumerate all 2- and 3-edge triads
touching node i by simply picking all possible pairs of neighbors j, k. The scalability of
directed and weighted triangular motif models will depend on how well one can discover
and exploit such properties.

1 Much like how stochastic blockmodels require p, the blockmatrix’s diagonal elements, to be bounded
away from q, the off-diagonal elements, in order for communities to be recoverable [11].
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lock-free approach to parallelizing stochastic gradient descent. In Neural Informa-
tion Processing Systems (NIPS), 2011.

228
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