
Fast Algorithms for Querying and
Mining Large Graphs

Hanghang Tong

September 2009 
CMU-ML-09-112



  



Fast Algorithms for Querying and
Mining Large Graphs

Hanghang Tong
September 2009
CMU-ML-09-112

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Christos Faloutsos, CMU, Chair

William Cohen, CMU
Jeff Schneider, CMU

Philip S. Yu, UIC

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2009 Hanghang Tong

This research was sponsored by the Lawrence Livermore National Laboratory (DOE/NNSA) under subcontract num-
bers B580840, B526511, B573565, and B579447, the National Science Foundation under grant numbers IIS0534205
and DBI0640543, and Lehigh University under subcontract C000027761. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution, the U.S. government or any other entity.



Keywords: network analysis, querying, mining, complex user specific pattern, trend analysis,
scalability, immunization, anomaly detection, proximity, spectral analysis, low-rank-approximation.



This thesis is dedicated to my parents, Yingen Tong and Xiazhen He.



Abstract
Graphs appear in a wide range of settings and have posed a wealth of fascinating

problems. In this thesis, we focus on two types of tasks according to the interaction
with users: (1) querying (e.g.,given a social network, how to measure the closeness
between two persons? how to track it over time?) and (2) mining (e.g.,how to identify
abnormal behaviors of computer networks? In the case of virus attacks, which nodes
are the best to immunize?).

The task of querying includes three sub-tasks. In the first one, we found that many
complex user-specific patterns on large graphs can be answered by means of proximity
measurement. In other words,proximity allows us to query large graphs on the atomic
level. We support our claim by conducting three case studies (connection subgraphs,
user feedback, and gateway), all of which (despite their diversity) rely on the proximity
measurement as their building block. The proposed algorithms are operational, with
careful design and numerous optimizations. For the second sub-task, in order to adapt
the querying task to time-evolving graphs, we proposed an efficient algorithm to track
proximity on time-evolving graphs, which enables us to do trend analysis on the graph
level. The proposed algorithm is up to176xfaster than competitors and has no quality
loss. Finally, in order to handle the scalability issue in the task of querying, we devel-
oped a family of fast solutions to compute the proximity in several different scenarios.
By carefully leveraging some important properties shared by many real graphs (e.g.,
the block-wise structure, the linear correlation, the skewness of real bipartite graphs,
etc), we can often achieve orders of magnitude of speedup with little or no quality loss.

The task of mining also includes three sub-tasks. In the firstone, we proposed an
algorithm (NetShield) for immunization under the SIS model. While straight-forward
methods are computationally intractable (O(

(
n
k

)
m)), the proposed algorithm isnear-

optimal, fast (up to 7 orders of magnitude speedup), andscalable(O(nk2 + m)). In
the second sub-task, we proposed a family of example-based low-rank matrix approx-
imation methods for anomaly detection. The proposed algorithms are provably equal
to or better than the best known methods in both space and time, with the same ac-
curacy. On real data sets, it is up to112x faster than the best competitors, for the
same accuracy. Finally, we showed that graphs also provide apowerful tool to solve
some complex problems. As a case study, we proposed a generalframework to mine
complex time stamped events (e.g., to find similar time stamps, to find abnormal time
stamps and to provide interpretations for our findings, etc)by envisioning the prob-
lem as a graph analysis problem. We further proposed MT3 to handle multiple-scale
analysis, achieving up to2 orders of magnitudespeedup, with the same quality.
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Chapter 1

Introduction

1.1 Motivation

Graphs appear in a wide range of settings and account for a large portion of real word data
sets [Cha05]. For example, in sociology, the nodes are individuals and the edges represent the
interaction between two persons (e.g., collaboration, trust, contact, etc); in computer networks,
the nodes are routers or autonomous systems and edges represent the connection between two
routers/automonous systems; in user psychology, the nodesare people and items, and the edges
represent some actions between the user and the items (e.g.,the userclicks the web page, the
userrecommendssome product, etc.); in ecology, the nodes are species, and edges represent prey-
predator relationship; in biology, the nodes are proteins and the edges represent the interaction
between two proteins (e.g., both are critical for some biological process to happen).

Such graphs have posed a wealth of fascinating research questions. To name a few, given a
social network, how to measure the closeness (i.e., proximity, relevance, etc) between two persons,
and how to track it over time? Given a customer-question in a help center, who is the best expert
to route it to? How to identify abnormal behaviors of computer networks? In the case of virus
attacks, which nodes are the best to immunize? etc.

Answering these questions are critical for many real high impact applications. For example,
proximity measurement and tracking are crucial for querying/exploring large graphs, which play
an important role in on-line social networks; anomaly detection in terrorist networks as well as
computer networks is vital for national security; immunization is crucial to defend networks in the
case of a virus attack; a good immunization strategy might bealso very helpful for designing a
good k-advertisement strategy in viral marketing.

In this thesis, we address the above challenges in multiple dimensions, by focusing on two types
of tasks according to the interaction with users: querying and mining. For the task of querying, we
want to answer the complex user-specific patterns, such as Center-Piece Subgraphs (Given three
criminals, who is the master-mind?). We also want to track proximity on time-evolving graphs
(How close is author ’Smith’ to the ’KDD’ conference, and how is this changing over time?). For
the task of mining, the goal is to summarize/compress a graph, and report anomalies. For each
task, we further address three sub-tasks, which are summarized in table1.1.
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Table 1.1: Thesis Overview: Tasks

1.2 Impact, Applications and Main Contributions

We make the following key contributions in the thesis. The more detailed contributions, mapping
to the specific applications are summarized in table1.2.

1 Since node proximity is at the heart of several of the above problems, we carefully designed
node proximity algorithms, which are both fast and effective.

2 We proposed fast algorithms to numerous, real-life graph problems (center-piece subgraphs,
querying with user feedback, gateway finder, proximity tracking, immunization, and low-
rank approximation, etc).

3 We provided numerous proofs to illustrate thecorrectness(e.g., Theorem4, Theorem6,
Theorem10, etc ),accuracy(e.g., Theorem1, Theorem5, Lemma4, etc) andcomputational
complexityin big-O notations (e.g., Lemma7, Lemma12, Lemma16, Lemma17, etc) of
our algorithms

4 We conducted experiments on numerous real data sets, most of which are publicly available,
illustrating the speed and accuracy of our algorithms.

1.3 Thesis Organization

Table1.3 gives an overview of the thesis work. In the following chapters, we will describe our
work in details. We will start with proximity definitions andfast solutions in PartI, which is
the main tool for querying large graphs. Then in PartII , we present our work on querying static
graphs by three case studies. In PartIII , we address the problem of how to query dynamic graphs.
We present our work on mining graphs in PartIV and PartV. Finally, we conclude the thesis in
chapter10.
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Table 1.2: Impact, Applications and Main Contributions of Thesis Work
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Table 1.3: Thesis Overview: Organization
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Part I

Fundamentals: Proximity Definitions and
Fast Solutions
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Chapter 2

Proximity Definitions and Fast Solutions

Summary of This Chapter
Questions we want to answer:
Q1: How to quantify the closeness/ relevance between two nodes (or two groups of

nodes in the graph)?

Q2: How to compute it fast?

Our answers and contributions
A1: We suggest using random walk with restart as the basic solution, and then propose

directionality-aware proximity and their generalizations.

A2: We proposed a family of fast solutions, which achieves orders of magnitude speed
up, with little or no quality loss.

2.1 Introduction

Measuring the proximity (i.e., relevance/closeness) score between two nodes is one of the funda-
mental building blocks for querying and mining graphs [ABC+02] [LNK03] [LJM+07] [FMT04]
[PRTU05] [SQCF05]. It is the main tool behind all the querying tasks and some mining tasks of
this thesis. For example, figure (2.1-a) shows some results for the auto-captioning applicationas
in [PYFD04]. We will present more case studies in PartII .

In this chapter, we mainly focus on the following two questions:
Q1 How to define a good proximity measurement?

Q2 How to compute it fast in large graphs?
For many real graphs, the relationship between two nodes (e.g., the relationship between two

persons on a social network) often exhibits multiple-facets. Traditional graph distance measure-
ments (e.g., shortest path, maximum flow) fail to capture such characteristic. To address this issue,
we suggest use random walk with restart (RWR) as a basic proximity measurement, which is able
to summarize the multiple weighted connections between twonodes on the graphs.
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‘Jet’ ‘Plane’ ‘Runway’ ‘Texture’ ‘Candy’ ‘Background’

(a) Some captioned images by gCap [PYFD04].

(b) Underlying graph used for image caption. See details in [PYFD04].

Figure 2.1: Using proximity measurement for image caption.

In terms of computational cost, RWR requires a matrix inversion. There are two straightforward
solutions, none of which is scalable for large graphs: The first one is to pre-compute and store the
inversion of a matrix (“PreCompute” method); the second oneis to compute the matrix inversion
on the fly, say, through power iteration (“OnTheFly” method). The first method is fast at query
time, but prohibitive in terms of space (quadratic on the number of nodes on the graph), while the
second is slow at query time.

Here we propose a novel solution to this challenge. Our approach, BLIN, takes the advantage
of two properties shared by many real graphs: (a) the block-wise, community-like structure, and
(b) the linear correlations across rows and columns of the adjacency matrix. The proposed method
carefully balances the off-line pre-processing cost (boththe CPU cost and the storage cost), with
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the response quality (with respect to both the accuracy and the response time). Compared to
PreCompute, it only requires pre-computing and storing thelow-rank approximation of a large but
sparse matrix, and the inversion of some small size matrices. Compared with OnTheFly, it only
need a few matrix-vector multiplication operations in on-line response process.

The main contributions of this chapter are as follows:
• A novel, fast, and practical solution (BLIN and its derivatives, NBLIN and BB LIN);

• Theoretical justification and analysis, giving an error bound for NB LIN;

• Extensive experiments on several typical applications, with real data.
The proposed method is operational, with careful design andnumerous optimizations. Our

experimental results show that, in general, it preserves 90%+ quality, while (a) saves several orders
of magnitude of pre-computation and storage cost over PreCompute, and (b) it achieves up to 150x
speedup on query time over OnTheFly. For the DBLP author-conference dataset, with light pre-
computational and storage cost, it achieves up to 1,800x speedup withno quality loss.

The rest of this chapter is organized as follows: we review random walk with restart and analyze
its computational challenges in Section2.2; the proposed method is presented in Section2.3; the
justification and the analysis are provided in Section2.4. The experimental results are presented in
Section2.5. The related work is given in Section2.6. Finally, we conclude the paper in Section2.7.

2.2 Preliminaries

Table2.1 gives a list of symbols used in this chapter. In this Section,we first introduce random
walk with restart and explain why it is a good proximity measurement.

2.2.1 Preliminary # 1: Random Walk with Restart

One of the most popular way to measure the proximity is randomwalk with restart, which is
defined as equation (2.1) [PYFD04]: consider a random particle that starts from nodei. The
particle iteratively transmits to its neighborhood with the probability that is proportional to their
edge weights. Also at each step, it has some probabilityc to return to the nodei. The relevance
score of nodej wrt nodei is defined as the steady-state probabilityri,j that the particle will finally
stay at nodej [PYFD04].

~ri = cW̃~ri + (1− c)~ei (2.1)

Equation (2.1) defines a linear system problem, where~ri is determined by:

~ri = (1− c)(I − cW̃)−1~ei

= (1− c)Q−1~ei (2.2)

The relevance score defined by RWR has many good properties: compared with those pair-
wise metrics, it can capture the global structure of the graph [HLZ+04]; compared with those

8



Table 2.1: Symbols
Symbol Definition

W = [wi,j] the weighted graph,1 ≤ i, j ≤ n

W̃ the normalized weighted matrix associated withW

W̃1 the within-partition matrix associated with̃W
W̃2 the cross-partition matrix associated with̃W

Q the system matrix associated withW: Q = I− cW̃
D n× n matrix,Di,i =

∑
j wi,j andDi,j = 0 for i 6= j

U n× t node-concept matrix
S t× t concept-concept matrix
V t× n concept-node matrix
0 a block matrix, whose elements are all zeros
~ei n× 1 starting vector, theith element1 and0 for others
~ri = [ri,j ] n× 1 ranking vector,ri,j is the relevance score of node

j wrt nodei
c the restart probability,0 ≤ c ≤ 1
n the total number of the nodes in the graph
k the number of partitions
t the rank of low-rank approximation
m the maximum iteration number
ξ1 the threshold to stop the iteration process
ξ2 the threshold to sparse the matrix

traditional graph distances (such as shortest path, maximum flow etc), it can capture the multi-
facet relationship between two nodes [TF06].

2.2.2 Preliminary # 2: Computational Challenges

One of the most widely used ways to solve random walk with restart is the iterative method,
iterating the equation (2.1) until convergence, that is, until theL2 norm of successive estimates of
~ri is below our thresholdξ1, or a maximum iteration stepm is reached. In the chapter, we refer to
it as OnTheFly method. OnTheFly does not require pre-computation and additional storage cost.
Its on-line response time is linear to the iteration number and the number of edges1, which might
be undesirable when (near) real-time response is a crucial factor while the data set is large. A nice
observation of [SQCF05] is that the distribution of~ri is highly skewed. Based on this observation,
combined with the factor that many real graphs has block-wise/community structure, the authors
in [SQCF05] proposed performing RWR only on the partition that contains the starting pointi
(methodBlk). However, for all data points outside the partition,ri,j is simply set0. In other words,
Blk outputs a local estimation of~ri.

1Here, we storeW̃ in a sparse format.
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Table 2.2: BLIN
Input: The normalized weighted matrix̃W and the

starting vector~ei

Output: The ranking vector~ri

Pre-Computational Stage(Off-Line):
p1. Partition the graph intok partitions by METIS [KK99];
p2. DecomposẽW into two matrices:W̃ = W̃1 + W̃2 according to

the partition result, wherẽW1 contains all within-partition links and
W̃2 contains all cross-partition links;

p3. LetW̃1,i be theith partition, denoteW̃1 as equation(2.3);
p4. Compute and storeQ−1

1,i = (I− cW̃1,i)
−1 for each partitioni;

p5. Do low-rank approximation for̃W2 = USV;
p6. DefineQ−1

1 as equation (2.4). Compute and store
Λ̃ = (S−1 − cVQ−1

1 U)−1.
Query Stage (On-Line):
q1. Output~ri = (1− c)(Q−1

1 ~ei + cQ−1
1 UΛ̃VQ−1

1 ~ei).

On the other hand, it can be seen from equation (2.2) that the system matrixQ defines all the
steady-state probabilities of random walk with restart. Thus, if we can pre-compute and storeQ−1,
we can get~ri real-time (We refer to this method as PreCompute). However,pre-computing and
storingQ−1 is impractical when the dataset is large, since it requires quadratic space and cubic
pre-computation.2

On the other hand, linear correlations exist in many real graphs, which means that we can
approximateW̃ by low-rank approximation. This property allows us to approximateQ−1 very
efficiently. Moreover, this enables a global estimation of~ri, unlike the local estimation obtained by
Blk. However, due to the low rank approximation, such kind of estimation is conducted at a coarse
resolution.

2.3 Proposed Fast Solutions

2.3.1 Proposed Algorithm

In summary, the skewed distribution of~ri and the block-wise structure of the graph lead to a lo-
cal/fine resolution estimation; the linear correlations ofthe graph lead to a global/coarse resolution
estimation. In this chapter, we combine these two properties in a unified manner. The proposed
algorithm, BLIN is shown in table2.2. A pictorical description of BLIN is given in figure2.2.

2Even if we use OnTheFly to compute each column ofQ−1, the pre-computation cost isO(nm).
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W̃1 =




W̃1,1 0 ... 0

0 W̃1,2 ... 0

... ... ... ...

0 ... 0 W̃1,k


 (2.3)

Q−1
1 =




Q−1
1,1 0 ... 0

0 Q−1
1,2 ... 0

... ... ... ...
0 ... 0 Q−1

1,k


 (2.4)

2.3.2 Normalization onW

B LIN takes the normalized matrix̃W as the input. There are several ways to normalize the
weighted matrixW. The most natural way might be by row normalization [PYFD04]. Com-
plementarily, the authors in [ZBL+03] propose using the normalized graph Lapalician (W̃ =
D−1/2WD−1/2). In [TF06], the authors also propose penalizing the famous nodes before row
normalization for social network.

It should be pointed out that all the above normalization methods can be fitted into the pro-
posed BLIN. However, in this chapter, we will focus on the normalized graph Laplacian3 for the
following reasons:

• For real applications, these normalization methods often lead to very similar results. (For
cross-media correlation discovery, our experiments demonstrate that normalized graph Lapla-
cian actually outperforms the row normalization method, which is originally proposed by the
authors in [PYFD04]

• Unlike the other two methods, normalized graph Laplacian outputs the symmetric relevance
score (that isri,j = rj,i), which is a desirable property for some applications.

• The normalized graph Laplacian is symmetric, and it leads toa symmetricQ1, which will
save50% storage cost.

• It might be difficult to develop an error bound for BLIN in the general case. However, as we
will show in Section 3.3, it is possible to develop an error bound for the simplified version
(NB LIN) of B LIN, which also benefits from the symmetric property of the normalized
graph Laplacian.

2.3.3 Discussion of Partition numberk

The partition numberk balances the complexity of̃W1 andW̃2. We will evaluate different values
for k in the experiment section. Here, we investigate two extremecases ofk.

3It should be pointed out that strictly speaking,~ri is no longer a probability distribution. However, for all the
applications we cover in this chapter, it does not matter since what we need is a relevance score. On the other hand,
we can always normalized~ri to get a probability distribution.
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(a) Original weighted graph, consisting of 3 partitions, which are indicated by the dash circles.
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Q1,3 andΛ̃),which can be pre-computed and stored more efficiently.

Figure 2.2: A pictorical description of BLIN
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Table 2.3: NBLIN
Input: The normalized weighted matrix̃W and the starting vector~ei

Output: The ranking vector~ri

Pre-Computational Stage(Off-Line):
p1. Do low-rank approximation for̃W = USV;
p2. Compute and storẽΛ = (S−1 − cVU)−1.
Query Stage (On-Line):
q1. Output~ri = (1− c)(~ei + cUΛ̃V~ei).

Table 2.4: BBLIN
Input: The normalized weighted matrix̃W and the starting vector~ei

as equation(2.5)
Output: The ranking vector~ri as equation(2.5)
Pre-Computational Stage(Off-Line):
p1. Compute and storẽΛ = (I− c2MT M)−1;
Query Stage (On-Line):
q1.~ri,1 = (1− c)(~ei,1 + c2MΛ̃MT~ei,1 + cMΛ̃~ei,2)

q2.~ri,2 = (1− c)(cΛ̃MT~ei,1 + Λ̃~ei,2)
q3. Output~ri = (~ri,1, ~ri,2)

T .

First, if k = 1, we haveW̃1 = W̃ andW̃2 = 0. Then, BLIN is just equivalent to the
PreCompute method.

On the other hand, ifk = n, we haveW̃1 = 0 andW̃2 = W̃. In this case,Q1 = I and we
have the following simplified version of BLIN as in table2.3. We refer it as NBLIN.

An application of random walk with restart is neighborhood formulation in the bipartite graph [SQCF05].
Suppose there aren1 andn2 nodes for each type of objects in the bipartite graph;M is then1×n2

bipartite matrix. The normalized weighted matrix, the starting vector and the ranking vector have
the following format:

W̃ =

(
0 M

MT 0

)
~ri =

(
~ri,1

~ri,2

)
~ei =

(
~ei,1

~ei,2

)
(2.5)

As a direct application of NBLIN, we have the following fast algorithm (BBLIN) for one
class of bipartite graph whenn1 ≫ n2 as in table (2.4)

2.3.4 Low-rank approximation on W̃2

One natural choice to do low-rank approximation onW̃2 is by eigen-value decomposition4:

W̃2 = USUT (2.6)

4if the other two normalization methods are used, we can do singular vector decomposition instead.
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Table 2.5: Low Rank Approximation by Partition
Input: The cross-partition matrix̃W2 andt

Output: Low rank approximation ofW̃2: U,S,V

1. PartitionW̃2 into t partitions;
2. Construct ann× t matrixU. Theith column ofU is the sum of

all the columns ofW̃2 that belong to theith partition;
3. ComputeS = (UTU)−1;
4. ComputeV = UTW̃2.

where each column ofU is the eigen-vector of̃W2 andS is a diagonal matrix, whose diagonal
elements are eigen-values ofW̃2.

The advantage of eigen-value decomposition is that it is ‘optimal’ in terms of reconstruction
error. Also, sinceV = UT in this situation, we can save50% storage cost. However, one potential
problem is that it might lose the sparsity of original matrix̃W2. Also, whenW̃2 is large, doing
eigen-value decomposition itself might be time-consuming.

To address this issue, in this chapter, we also propose the following heuristic to do low-rank
approximation as in table2.5. Its basic idea is that, firstly, constructU by partitioningW̃2; and
then use the projection of̃W2 on the sub-space spanned by the columns ofU as the low-rank
approximation.

2.4 Justification and Analysis

2.4.1 Correctness

Here, we present a brief proof of the proposed algorithms.

Correctness of BLIN

Lemma 1. If W̃ = W̃1 + USV holds, BLIN outputs exactly the same result as PreCompute.
Proof: SinceW̃1 is a block-diagonal matrix. Based on equation (2.3) and (2.4), we have

(I− cW̃1)
−1 = Q−1

1 (2.7)

Then, based on the Sherman-Morrison lemma [PC90], we have:

Λ̃ = (S−1 − cVQ−1
1 U)−1

(I− cW̃)−1 = (I− cW̃1 − cUSV)−1

= Q−1
1 + cQ−1

1 UΛ̃VQ−1
1

~ri = (1− c)(Q−1
1 ~ei + cQ−1

1 UΛ̃VQ−1
1 ~ei)

which completes the proof of Lemma 1 � .
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It can be seen that the only approximation of BLIN comes from the low-rank approximation
for W̃2.

We can also interpret BLIN from the perspective of latent semantic/concept space.By low-
rank approximation oñW2, we actually introduce at×t latent concept space byS. Furthermore, if
we treat the original̃W as ann× n node space,U andV actually define the relationship between
these two spaces (U for node-concept relationship andV for concept-node relationship). Thus,
it can be seen that, instead of doing random walk with restarton the original whole node space,
B LIN decomposes it into the following simple steps:

(1) Doing RWR within the partition that contains the starting point (multiply~ei by Q−1
1 );

(2) Jumping from node-space to latent concept space (multiply the result of (1) byV);

(3) Doing RWR within the latent concept space (multiply the result of (2) byΛ̃);

(4) Jumping back to the node space(multiply the result of (3)by U);

(5) Doing RWR within each partition until convergence (multiply the result of (4) byQ−1
1 ).

Correctness of NBLIN

Lemma 2. If W̃ = USV holds, NBLIN outputs exactly the same result as PreCompute.

Proof: TakingW̃1 = 0 andQ1 = I, by applying Lemma 1, we directly complete the proof of
Lemma 2. which completes the proof. �

Correctness of BBLIN

Lemma 3. BB LIN outputs exactly the same result as PreCompute.

Proof: Substituting equation (2.5) into equation (2.2), we have

~ri,1 = (1− c)(I− c2MMT )−1(cM~ei,2 + ~ei,1)

~ri,2 = (1− c)(I− c2MT M)−1(cMT~ei,1 + ~ei,2)

Solving~ri,2 directly completes the proof of ’q2’ in table (2.4).
Define a new RWR, which takes 1)(cM~ei,2+~ei,1) as the new starting vector; 2)(cMMT ) as the

new normalized weighted matrix; and 3)(M(cI)MT ) as the low-rank approximation. Applying
Lemma 2 to this RWR, we complete the proof for ’q1’ in table (2.4), which in turn completes the
proof of Lemma 3. �

2.4.2 Computational and storage cost

In this section, we make a brief analysis for the proposed algorithms in terms of computational and
storage cost. For the limited space, we only provide the result for B LIN.
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On-line computational cost

It is not hard to see that, at the on-line query stage of BLIN (table2.2, step q1), we only need a few
matrix-vector multiplication operations as shown in equation (2.8). Therefore, BLIN is capable
of meeting the fast response requirement.

~r0 ← Q−1
1 ~ei

~ri ← V~r0

~ri ← Λ̃~ri

~ri ← U~ri

~ri ← Q−1
1 ~ri

~ri ← (1− c)(~r0 + c~ri) (2.8)

Pre-computational cost

The main off-line computational cost of the proposed algorithm consists of the following parts:
(1) partitioning the whole graph;

(2) inversion of eachI− cW̃1,i, (i = 1, ..., k);

(3) low-rank approximation oñW2;

(4) inversion of(S−1 −VQ−1
1 U) .

Thus, instead of solving the inversion of the originaln × n matrix, B LIN (1) invertsk + 1
small matrices (Q−1

1,i , i=1,...,k, andΛ̃); (2) computes a low-rank approximation of a sparsen × n

matrix (W̃2), and (3) partitions the whole graph.

Pre-storage cost

In terms of storage cost, we have to storek + 1 small matrices (Q−1
1,i , (i = 1, ..., k), andΛ̃), one

n × t matrix (U) and onet × n matrix (V). Moreover, we can further save the storage cost as
shown in the following:

• An observation from all our experiments is that many elements in Q−1
1,i , U andV are near

zeros. Thus, an optional step is to set these elements to be zero (by the thresholdξ2) and to
store these matrices as sparse format. For all experiments in this chapter, we find that this
step will significantly reduce the storage cost while almostnot affecting the approximation
accuracy.

• The normalized graph Laplacian is symmetric, which leads to(1) a symmetricQ−1
1,i , and

(2) U = VT , if eigen-value decomposition is used when computing the low-rank approxi-
mation5. By taking advantage of this symmetry property, we can further save 50% storage
cost.

5On the other hand, if we use partition-based low-rank approximation as in table (2.5), U andV are usually sparse
and thus can be efficiently stored
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2.4.3 Error Bound for NB LIN

Developing an error bound for the general case of the proposed methods is difficult. However, for
NB LIN (table2.3), we have the following lemma:
Lemma 4. Let ~r and ~̂r be the ranking vectors6 by PreCompute and by NBLIN, respectively. If
NB LIN takes eigen-value decomposition as low-rank approximation,‖~r−~̂r‖2 ≤ (1−c)

∑n
i=t+1

1
(1−cλi)

,

whereλi is theith largest eigen-value of̃W.
Proof: Taking the full eigen-value decomposition for̃W:

W̃ =
n∑

i=1

λi · ui · uT
i = USUT (2.9)

whereλi andui are theith largest eigen-value and the corresponding eigen-vector ofW̃, respec-
tively. U = [u1, ...un], andS = diag(λ1, ..., λn). We have:

Λ̃ = (S−1 − cUT U)−1

=

n∑

i=1

λi

(1− cλi)
· ui · uT

i (2.10)

By Lemma 2, we have:

~r = (1− c)

n∑

i=1

1

(1− cλi)
· ui · uT

i · ~ei

~̂r = (1− c)

t∑

i=1

1

(1− cλi)
· ui · uT

i · ~ei (2.11)

Thus, we have

‖~r − ~̂r‖2 = ‖(1− c)

n∑

i=t+1

1

(1− cλi)
· ui · uT

i · ~ei‖2

≤ (1− c)‖
n∑

i=t+1

1

(1− cλi)
· ui · uT

i ‖2 · ‖~ei‖2

= (1− c)

n∑

i=t+1

1

(1− cλi)
(2.12)

which completes the proof of Lemma 4. �

6Here, we ignore the low scripti of ~r and~̂r for simplicity
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Table 2.6: Summary of data sets
dataset number of nodes number of edges

CoIR 5K ≈ 774K
CoMMG ≈ 52K ≈ 354K

AP ≈ 315K ≈ 1, 834K
AC ≈ 291K ≈ 661K

2.5 Experimental Results

2.5.1 Experimental Setup

In this Section, we present the experimental results, whichare designed to answer the follow-
ing questions: how does the proposed algorithms balance between approximation quality, pre-
computational cost and on-line response time?

Data Sets

CoIR. This data set contains 5,000 images. The images are categorized into 50 groups, such
as beach, bird, mountain, jewelry, sunset, etc. Each of the categories contains 100 images of
essentially the same content, which serve as the ground truth. This is a widely used data set for
image retrieval. Two kinds of low-level features are used, including color moment and pyramid
wavelet texture feature. We use exactly the same method as in[HLZ+04] to construct the weighted
graph matrixW, which contains5, 000 nodes and≈ 774K edges

CoMMG. This data set is used in [PYFD04], which contains around 7,000 captioned images,
each with about 4 captioned terms. There are in total 160 terms for captioning. In our experiments,
1,740 images are set aside for testing. The graph matrixW is constructed exactly as in [PYFD04],
which contains54, 200 nodes and≈ 354K edges.

AP. The author-paper information of DBLP data set7 is used to construct the weighted graph
W as in equation (2.5): every author is denoted as a node inW, and the edge weight is the number
of co-authored papers between the corresponding two authors. On the whole, there are≈ 315K
nodes and≈ 1, 834K non-zero edges inW.

AC. The author-conference information of DBLP data set is used to construct the bipartite
graphM: each row corresponds to an author and each column corresponds to a conference; and
the edge weightMi,j is the number of papers that theith author publishes injth conference. On the
whole, there are≈ 291K nodes (≈ 288K authors and≈ 3K conferences) and≈ 661K non-zero
edges inM.

All the above data sets are summarized in table2.6:

7http://www.informatik.uni-trier.de/ ˜ ley/db/
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Table 2.7: Summary of typical applications with different datasets
CBIR CMCD Ceps NF

CoIR
√ √

CoMMG
√

AP
√

AC
√

Applications

As mentioned before, many applications can be built upon random walk with restart. In this chap-
ter, we test the following applications:

• Center-Piece subgraph discovery (CePS) [TF06]

• Content based image retrieval (CBIR) [HLZ+04]

• Cross-modal correlation discovery (CMCD), including automatic captioning of images [PYFD04]

• neighborhood formulation (NF) for both uni-partite graph and bipartite graph [SQCF05]

The typical data sets for these applications in the past years are summarized in table2.5.1.

Parameter Setting

The proposed methods are compared with OnTheFly, PreCompute and Blk. All these methods
share 3 parameters:c, m and ξ1. we use the same parameters for CBIR as [HLZ+04], that is
c = 0.95, m = 50 andξ1 = 0. For the rest applications, we use the same setting as [PYFD04] for
simplicity, that isc = 0.9, m = 80 andξ1 = 10−8.

For B LIN and NB LIN, we takeξ2 = 10−4 to sparsifyQ1, U, andV which further reduces
storage cost. We evaluate different choices for the remaining parameters. For clarification, in the
following experiments, BLIN is further referred as BLIN(k, t, Eig/Part), wherek is the number
of partition, t is the target rank of the low-rank approximation, and “Eig/Part” denotes the spe-
cific method for doing low-rank approximation – “Eig” for eigen-value decomposition and “Part”
for partition-based low-rank approximation. Similarly, NB LIN is further referred as NBLIN( t,
Eig/Part), and Blk is further referred as Blk(k).

For the data sets with ground truth (CoIRandCoMMG), we use the relative accuracyRelAcu
as the evaluation criterion:

RelAcu =
Âcu

Acu
(2.13)

whereÂcu andAcu are the accuracy values by the evaluated method and by PreCompute, respec-
tively.

Another evaluation criterion isRelScore,

RelScore =
t̂Scr

tScr
, (2.14)
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wheret̂Scr andtScr are the total relevance scores captured by the evaluated method and by Pre-
Compute, respectively.

All the experiments are performed on the same machine with 3.2GHz CPU and 2GB memory.

2.5.2 CoIR Results

100 images are randomly selected from the original dataset as the query images and the precision
vs. scope is reported. The user feedback process is simulated as follows. In each round of relevance
feedback (RF), 5 images that are most relevant to the query based on the current retrieval result
are fed back and examined. It should be pointed out that the initial retrieval result is equivalent to
that for neighborhood formulation (NF).RelAcu is evaluated on the first 20 retrieved images, that
is, the precision within the first 20 retrieved images. In figure (2.3) and figure (2.4), the results are
evaluated from three perspectives: accuracy vs. query time(QT), accuracy vs. pre-computational
time (PT) and accuracy vs. pre-storage cost (PS). In the figure, the QT, PT and PS costs are in log-
scale. Note that pre-computational time and storage cost are the same for both initial retrieval and
relevance feedback, therefore, we only report accuracy vs.pre-computational time and accuracy
vs. pre-storage cost for initial retrieval.

It can be seen that in all the figures, BLIN and NB LIN always lie in the upper-left zone,
which indicates that the proposed methods achieve a good balance between on-line response qual-
ity and off-line processing cost. Both BLIN and NB LIN 1) achieve about one order of magnitude
speedup (compared with OnTheFly); and 2) save one order of magnitude on pre-computational and
storage cost. For example, BLIN(50, 300, Eig) preserves 95%+ accuracy for both initial retrieval
and relevance feedback, while it 1) achieves 32x speedup foron-line response (0.09Sec/2.91Sec),
compared with OnTheFly; and 2)save 8x on storage (21M/180M)and 161x on pre-computational
cost (90Sec/14,500Sec), compared with PreCompute. NBLIN(600,Eig) preserves 93%+ accuracy
for both initial retrieval and relevance feedback, while it1) achieves 97x speedup for on-line re-
sponse (0.03Sec/2.91Sec), compared with OnTheFly; and 2)saves 10x on storage(17M/180M) and
48x on pre-computational cost (303Sec/14,500Sec), compared with PreCompute.8.

For the task of neighborhood formation (NF), figure (2.5) shows the result of RelScore vs.
scope. It can been seen that by exploring both the block-wiseand linear correlations structure
simultaneously, 1) both Blk(50) and NBLIN(50, Eig) capture most neighborhood information (for
example, they both capture about 90% score for the precisionon the first 10 retrieved images), and
2) B LIN(50, 300, Eig) captures 95%+ score over the whole scope. (The improvement becomes
even more significant with the increase of the scope).

2.5.3 CoMMG Results

For this data set, we only compare NBLIN with OnTheFly and PreCompute. The results are
shown in figure (2.6) and figure (2.7). The x-axis of figure (2.6) and figure (2.7) is plotted
in log-scale. Again, NBLIN lies in the upper-left zone in all the figures, which meansthat

8We also perform experiment on BlockRank [KHMG03]. However, the result is similar with OnTheFly. Thus, we
do not present it in this chapter.
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Figure 2.3: Evaluation onCoIR data set for CBIR. Accuracy vs. on-line cost. The proposed
methods achieves a good balance between pre-computationalcost, accuracy and on-line response
time.

NB LIN achieves a good balance between on-line quality and off-line processing cost. For ex-
ample, NBLIN(100, Eig) preserves 91.3% quality, while it 1) achieves154x speedup for on-line
response (0.029/4.50Sec), compared with OnTheFly; 2) saves 868x on storage (281/243,900M)
and 479x on pre-computational cost (46/21,951Sec), compared with PreCompute. The relative
precision/recall vs. scope is shown in figure (2.8).
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Figure 2.4: Evaluation onCoIR data set for CBIR. Accuracy vs. off-line cost. The proposed
methods achieves a good balance between pre-computationalcost, accuracy and on-line response
time.

2.5.4 AP Results

This dataset is used to evaluateCePSas in [TF06]. B LIN is used to generate 1000 candidates,
which are further fed to the original Ceps Algorithm [TF06] to generate the final center-piece
subgraphs. We fix the number of query nodes to be3 and the size of the subgraph to be20.
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Figure 2.5: Evaluation onCoIR data set for NF. x-axis is the scope and y-axis is the normalized
accuracy. Higher is better. The proposed BLIN is best.

−4 −3 −2 −1 0 1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Log Query Time (Sec)

R
el

at
iv

e 
A

cc
ur

ac
y

Relative Accuracy vs.  Query Time

OnTheFly
PreCompute
NB_Lin(60, Eig)
NB_Lin(100, Eig)
NB_Lin(200, Eig)
NB_Lin(400, Eig)

Figure 2.6: Evaluation onCoMMGdata set for CMCD. Accuracy vs. on-line cost. The proposed
B LIN achieves a good balance between accuracy vs. pre-computational and query time.

RelScore is measured by ”Important Node Score” as in [TF06]. The result is shown in figure (2.9)
and figure (2.10).

Again, B LIN lies in the upper-left zone in all the figures, which meansthat B LIN achieves a
good balance between on-line quality and off-line processing cost. For example, BLIN(100, 4000,
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Figure 2.7: Evaluation onCoMMGdata set for CMCD. Accuracy vs. off-line cost. The proposed
B LIN achieves a good balance between accuracy vs. pre-computational and query time.

Part) preserves 98.9% quality, while it 1) achieves 27x speedup for on-line response (9.45/258.2Sec),
compared with OnTheFly; 2) saves 2264x on storage (269/609,020M) and 214x on pre-computational
cost (8.7/1875Hour), compared with PreCompute.
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Figure 2.8: Precision/recall for CMCD. x-axis is the scope and y-axis is the precision/recall.
Higher is better.

2.5.5 AC Results

For this data set, the number of conferences (3K) is much less than that of the authors (228K). We
evaluate BBLIN for the following four tasks:

• C C: Given a conference, find its most related conferences

• C A: Given a conference, find its most related authors
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Figure 2.9: Evaluation onAP data set for CePS. Accuracy vs. on-line cost. The proposed BLIN
achieves a good balance between accuracy vs. pre-computational and query time.

Table 2.8: Evaluation onACfor NF
Method QT(Sec) PT(Sec) PS(M)
OnTheFly 23.97 0 6.7
PreCompute 0.001 6,990,648 626,250
BB LIN(C, A) 0.097 20.50 56
BB LIN(C, C) 0.013 20.50 56
BB LIN(A, C) 0.035 20.50 56
BB LIN(A, A) 0.13 20.50 56

• A A: Given an author, find its most related authors

• A C: Given an author, find its most related conferences

On this application, BBLIN preserves 100% accuracy for all the tasks. Thus, in table(2.8),
we only report Query time (QT), Pre-computational time (PT), and Pre-storage cost (PS). Note
that the query time for BBLIN might differ for the different tasks. For clarification,BB LIN is
further referred as BBLIN(C/A C/A). (For example, BBLIN(C, A) denotes using BBLIN for
C A task.)

As shown in table (2.8), BB LIN can achieve up to 3 orders of magnitude speedup, with
light off-line computational and storage cost (20.5Sec forpre-computation and 56M for pre-
storage). For example, it achieves 180x speedup forA A (0.13/23.98Sec) and 1,800 speedup
for C C(0.013/23.98Sec).
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Figure 2.10: Evaluation onAPdata set for CePS. Accuracy vs. off-line cost. The proposed BLIN
achieves a good balance between accuracy vs. pre-computational and query time.

2.6 Related Work

In this Section, we briefly review related work, which can be categorized into three groups: (1)
random walk related methods; (2) graph partitioning methods and (3) the methods for low-rank
approximation.

Random walk related methods.There are several methods similar to RWR, including electricity-
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based method [ZGL03], graph-based Semi-supervised learning [ZBL+03] [FMT04] and so on.
Exact solution of these methods usually requires the inversion of a matrix which is often di-
agonal dominant and of big size. Other methods sharing this requirement include regularized
regression, Gaussian process regression [RW06], and so on. Existing fast solutions for RWR
include Hub-vector decomposition based [JW03]; block structure based [KHMG03] [SQCF05];
fingerprint based [FR04], and so on. Many applications take random walk and related methods
as the building block, including PageRank [PBMW98], personalized PageRank [Hav02], Sim-
Rank [JW02], neighborhood formulation in bipartite graphs [SQCF05], content-based image re-
trieval [HLZ+04], cross modal correlation discovery [PYFD04], the BANKS system [ABC+02],
ObjectRank [BHP04], RelationalRank [GMT04], and so on.

Graph partition and clustering. Several algorithms have been proposed for graph partition
and clustering, e.g. METIS [KK99], spectral clustering [NJW01], flow simulation [FLG00], co-
clustering [DMM03], and the betweenness based method [GN]. It should be pointed out that the
proposed method is orthogonal to the partition method.

Low-rank approximation: One of the widely used techniques is singular vector decomposi-
tion (SVD) [GL96], which is the base for a lot of powerful tools, such as latentsemantic index
(LSI) [DDL+90], principal component analysis (PCA) [Jol02], and so on. For symmetric matri-
ces, a complementary technique is the eigen-value decomposition [GL96]. More recently, CUR
decomposition has been proposed for sparse matrices [AM01].

2.7 Conclusions and Discussions

Summary of This Chapter. In this chapter, we introduce random walk with restart as a proximity
measurement, and propose a fast solution for it. The main contributions of this chapter are as
follows:
• The design of BLIN and its derivative, NBLIN. These methods take advantages of the

block-wise structure and linear correlations in the adjacency matrix of real graphs, using the
Sherman-Morrison Lemma.

• The proof of an error bound for NBLIN. To our knowledge, this is the first attempt to derive
an error bound for fast random walk with restart.

• Extensive experiments are performed on several real datasets, on typical applications. The
results demonstrate that our proposed algorithm can nicelybalance the off-line processing
cost and the on-line response quality. In most cases, our methods preserve 90%+ quality,
with dramatic savings on the pre-computation cost and the query time.

• A fast solution (BBLIN) for one particular class of bipartite graphs. Our method achieves up
to 1,800x speedup with light pre-computational and storagecost, without suffering quality
loss.

Discussions.In [TFGER07], we also explored another proximity definition (DAP) in order to
leverage the edge directionality, which is based on escape probability augmented with a universal
sink. There, we also two fast solutions in two different settings. We also generalized our definitions
to group proximity (to quantify how close two groups nodes are). It is interesting to point out that
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our analysis shows thatDAPcan be actually based on random walk with restart. It is worthpointing
out that in some specific scenarios/applications, we can often do better by leveraging the special
properties coded by that specific applications. We will present the details in the following few
chapters (chapters 3-6 and chapter 9).
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Chapter 3

Case Study #1: Center-Piece Subgraphs

Summary of This Chapter
Questions we want to answer:
Q: Given Q query nodes in a social network (e.g., co-authorship network), how to find

the node(s) and the resulting subgraph, that have strong connections to all or most
of the Q query nodes?

Our answers and contributions
A1: We formally formulate the problem (Center-Piece Subgraph Discovery).

A2: We proposed an effective and efficient algorithm to find CePS.

3.1 Introduction

Graph mining has been attracting increasing interest recently, for community detection, partition-
ing, frequent subgraph discovery and many more. Here we introduce and solve a novel problem,
the “Center-Piece Subgraph” (CePS) problem: GivenQ query nodes in a social network (e.g., co-
authorship network), find the node(s) and the resulting subgraph, that have strong connections to
all or most of theQ query nodes. The discovered nodes could contain a common advisor, or other
members of the research group, or an influential author in theresearch area that theQ nodes belong
to. There are multiple alternative applications, e.g., lawenforcement, gene regulatory networks.

Earlier work [FMT04] focused on the so-called “connection subgraphs”. Although the inspi-
ration for the current work, the connection subgraph algorithm can only handle the case ofQ=2.
This is exactly the major contribution of our work: we allow not only pairs of query nodes, but any
arbitrary numberQ of them.

Figure3.1gives screenshots of our system, showing our solution on a DBLP graph, withQ=4
query nodes. All 4 researchers are in data mining, but the first two (Rakesh Agrawal and Jiawei
Han) are more on the database side, while Michael Jordan and Vladimir Vapnik are more on the
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machine learning and statistical side. Figure3.1(b) gives ourCePSsubgraph, when we request
nodes with strong ties to all four query nodes. The results make sense: researchers like Daryl
Pregibon, Padhraic Smythe and Heikki Mannila are vital links, because of their cross-disciplinarity
and their strong connections with both the above sub-areas.Figure3.1(a) illustrates an important
aspect of our work, theK softAND feature, which we will discuss very soon. In a nutshell, in
a K softAND query, our method finds nodes with connections to at leastk of the query nodes
(k = 2 in Figure3.1(a)).

(a) “ K softAND query”:k = 2

(b) “ AND query”

Figure 3.1: Center-piece subgraph among Rakesh Agrawal, Jiawei Han, Michael I. Jordan and
Vladimir Vapnik.

Thus, we define the Center-Piece Subgraph problem, as follows:
Problem 1. Center-Piece Subgraph Discovery(CePS)
Given: an edge-weighted undirected graphW, Q nodes as source queriesQ = {qi} (i =

1, ..., Q), the softAND coefficientk and an integer budgetb
Find: a suitably connected subgraphH that (a) contains all query nodesqi (b) at mostb other

vertices and (c) it maximizes a “closeness” functiong(H).
By problem1, there are three requirements inCePS: (a) the resulting subgraph is small (with

less or equal thanb nodes); (b) the subgraph is reasonably connected (“connection”) and (c) the
nodes in the resulting subgraph are close to the query set (the “closeness”). We will give the
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detailed definitions of “connection” and “closeness” laterin the chapter.
Allowing Q query nodes creates a subtle problem: do we want the qualifying nodes to have

strong ties to all the query nodes? to at least one? to at leasta few? We handle all of the above
cases with our proposedK softAND queries. Figure3.1(a) illustrates the case where we want
intermediate nodes with good connections to at leastk = 2 of the query nodes. Notice that the
resulting subgraph is much different now: there are two disconnected components, reflecting the
two sub-communities (databases/statistics).

The contributions of this work are the following
• The problem definition, for arbitrary numberQ of query nodes, with careful handling of a

lot of the subtleties.

• The introduction and handling ofK softAND queries.

• EXTRACT, a novel subgraph extraction algorithm.

• The design of a fast, approximate method, which provides a6 : 1 speedup with little loss of
accuracy.

The system is operational, with careful design and numerousoptimizations, like alternative
normalization of the adjacency matrix, a fast algorithm to compute the scores forK softAND
queries.

Our experiments on a large real data set (DBLP) show that our method returns results that agree
with our intuition, and that it can be made fast (a few secondsresponse time), while retaining most
of the accuracy (about 90%).

The rest of this chapter is organized as follows: Section3.2 provides an overview of the pro-
posed method:CePS. The closeness score calculation is proposed Section3.3and its variants are
presented in the Appendix. The “EXTRACT” algorithm and the speeding up strategy are provided
in Section3.4and Section3.5, respectively. We present experimental results in Section3.6and we
review some related work in Section3.7. Finally, we conclude the chapter in Section3.8.

3.2 Proposed Method: Overview

Given the budgetb, we want to find a subgraph which (a) is reasonably connected (“connection”)
and (b) the nodes in this subgraph are close wrt the query set (“closeness”).

For the “closeness” requirement, we want to find a subgraphH which is close wrt the query
set. To this end, let us first define the closeness score for a single node in this subgraphH. More
specifically, for a given nodej inH, we have two types of closeness scores:
• Let r(i, j) be the closeness score of a given nodej wrt the queryqi;

• Let r(Q, j) be the closeness score of a given nodej wrt the query setQ.
A natural way to measure the closeness of the subgraphH wrt the query set is to measure the

closeness of the nodes it contains: the more close nodes (wrtthe source queries) it contains, the
better (in terms of closeness)H is. Thus, the goodness criterion in terms of closeness ofH can be
defined as:

g(H) =
∑

j∈H

r(Q, j) (3.1)
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By eq.3.1, a subgraph is good in terms of closeness ifg(H) is high. With the above criterion, a
straightforward way to choose the “best” (in terms of closeness) subgraph should be the one which
maximizesg(H):

H∗ = argmaxHg(H) (3.2)

However, no connection is guaranteed in this way and the resulting subgraphH might be a
collection of isolated nodes. Thus, there are two basic problems in center-piece subgraph discov-
ery: (1) how to define a reasonable closeness scorer(Q, j) for a given nodej; (2): how to quickly
find a connection subgraph maximizingg(H). Moreover, since it might be very difficult to directly
calculate the closeness scorer(Q, j), we further decompose it into two steps. The pseudo code for
the proposed method (CePS) is listed as follows:

Table 3.1: Overview ofCePS
Input : the weighted graphW, the query setQ, K softAND coefficientk and the

budgetb
Output : the resulting subgraphH
Step 1: Individual Score Calculation. Calculate the closeness scorer(i, j) for a

single nodej wrt a single query nodeqi

Step 2: Combining Individual Scores.Combine the individual scorer(i, j) to
get the closeness scorer(Q, j) for a single nodej wrt the query setQ

Step 3: “EXTRACT”. Extract quickly a connection subgraphH with budgetb
maximizing the closeness criteriag(H)

3.3 Closeness Score Calculation for a Single Node

In this Section, we deal with the closeness score calculation for a single node. That is, how to
define the closeness score of a given node wrt the query set. For clarification, whenever we say
that a node is ‘good’ in this Section, we mean that this node is‘good’ in term of closeness. Also,
we use the terms “goodness” and “closeness” interchangeably in this Section.

There are two basic concepts in closeness score calculation:
• Let ri,j be thesteady-state probabilitythat a particle will find itself at nodej, when it does

random walk with restarts (RWR) from query nodeqi.

• Let r(Q, j, k) be themeeting probability, that is, the steady-state probability that at leastk-
out-of-Q particles, doing RWR from the query nodes ofQ, will all find themselves at node
j in the steady state;k is the K softAND coefficient.

These two kinds of steady probability (ri,j andr(Q, j, k)) are the base of our closeness score
calculation (for bothr(i, j) and r(Q, j)). It’s basic idea is that: suppose there areQ random
particles doing RWR from each query node independently; then after convergency, each particle
has somesteady-state probabilitystaying at the nodej; and different particles have somemeeting
probability at the nodej. Thesteady-state probabilityand themeeting probabilityprovide some
hints on how the nodej is related with the source queries, and are used to compute the closeness
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Table 3.2: Symbols
Symbol Description

N total number of nodes in the weighted graph
m iteration step
c fly-out probability for random walk with restart
~ei N × 1 unit query vector, with all zeros except one at rowqi

W = {wi,j} the edge weighted matrix (i, j = 1, ..., N)
D = {di,j} N ×N matrix,di,i = di, anddi,j = 0 for i 6= j

di the sum of theith row of W
H the chosen center-piece subgraph
Q number of source query nodes

Q = {qi} set of query nodes (i = 1, ..., Q)
Q́ the first(Q− 1) query nodes of query setQ, Q́ = {qi}, (i = 1, .., (Q− 1))
∅ null query set, which contains no query node

r(i, j) goodness score for a single nodej wrt query nodeqi

r(Q, j) goodness score for a single nodej wrt query setQ
r(Q, (j, l)) goodness score for a single edge(j, l) wrt query setQ

ri,j steady-state probabilityof a single nodej wrt query nodeqi

R Q×N matrix of [ri,j]
r(Q, j, k) meeting probabilityof a single nodej, wrt k(k = 1, .., Q) or more of

the query nodes ofQ
r(i, (j, l)) meeting probabilityof a single edge(j, l), wrt query nodeqi

r(Q, (j, l), k) meeting probabilityof a single edge(j, l), wrt k(k = 1, .., Q) or more
of the query nodes ofQ

score of nodej. Moreover, by designing differentmeeting probability, we can get the specific
type of closeness score tailored for the specific query scenario. Table3.2 lists all the symbols and
definitions used throughout this chapter.

3.3.1 Individual score calculation

Here we want to compute the closeness scorer(i, j) of a single nodej, for a single query nodeqi.
We propose to use random walks with restart, from the query nodeqi.

Suppose a random particle starts from queryqi, the particle iteratively transmits to its neigh-
borhood with the probability that is proportional to the edge weight between them, and also at each
step, it has some probabilityc to return to nodeqi. r(i, j) is defined as thesteady-state probability
ri,j that the particle will finally state at nodei:

r(i, j) , ri,j (3.3)
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More formally, if we put all theri,j probabilities into matrix formR = [ri,j], then

RT = cRT × W̃ + (1− c)E (3.4)

whereE = [~ei](i = 1, ..., Q) is theN × Q matrix, (1− c) is the fly-out probability, and̃W is the
adjacency matrixW appropriately normalized, say, column-normalized:

W̃ = W×D−1 (3.5)

The problem can be solved in many ways - we choose the iteration method, iterating Eq.3.4
until convergence. For simplicity, in this chapter, we iterate Eq.3.4m times, wherem is a pre-fixed
iteration number.

3.3.2 Combining individual scores

Here we want to combine the individual scorer(i, j)(i = 1, ..., Q) to getr(Q, j), the closeness
score for a single nodej wrt the query setQ. We propose to use themeeting probabilityr(Q, j, k)
of random walk with restart. Furthermore, by using different softAND coefficientk, we can deal
with different types of query scenario.

The most common query scenario might be that “givenQ query nodes, find the subgraphH
the nodes of which are important/good wrt ALL queries”. In this case,r(Q, j) should be high if
and only if there is a high probability that ALL particles will finally meet at nodej:

r(Q, j) , r(Q, j, Q) =

Q∏

i=1

r(i, j) (3.6)

Eq. 3.6 actually defines a logic AND operation in terms of individualcloseness scores: the
nodej is important wrt the query setQ if and only if it is important wrt every query node. Thus,
we refer such query type as “AND query”.

A complemental query scenario is “OR query”: “givenQ queries, find the subgraphH the
nodes of which are important wrt at least ONE query”. In this case,r(Q, j) should be high if and
only if there is a high probability that at least one particlewill finally stay at nodej:

r(Q, j) , r(Q, j, 1) = 1−
Q∏

i=1

(1− r(i, j)) (3.7)

Eq. 3.7 defines a logic OR operation in terms of individual importance scores: the nodej is
important wrt the source queries if and only if it is important wrt at least one source query.

Besides the above two typical scenarios, the user might alsoask “givenQ queries, find the
subgraphH the nodes of which are important wrt at leastk(1 ≤ k ≤ Q) queries”. We refer such
query type as “K softAND query”. In this case,r(Q, j) should be high if and only if there is a
high probability that at leastk-out-of-Q particles will finally meet at nodej.

r(Q, j) , r(Q, j, k) (3.8)
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To avoid exponential enumeration (which isO(2k)), Eq.3.8can be computed in a recursive man-
ner:

r(Q, j, k) = r(Q́, j, k − 1) · r(Q, j) + r(Q́, j, k) · (1− r(Q, j)) (3.9)

wherer(Q, j, 1) = 1−∏Q
i=1 (1− r(i, j)).

Intuitively, Eq. 3.8 defines a logic operation in terms of individual importance scores that is
between logic AND and logic OR. In this chapter, we refer it aslogic K softAND: the nodej is
important wrt the source queries if and only if it is important wrt at leastk-out-of-Q source queries.

It is worth pointing out that both “AND query” and “OR query” can be viewed as special cases
of “K softAND query”: “AND query” is actually “QsoftAND query”; while “OR query” is
actually “1 softAND query”

3.3.3 Variation: normalization on W

To compute the closeness scorer(i, j) andr(Q, j), we need to construct the transition matrix̃W

for random walk with restart. A direct way is to normalizeW by column as Eq.3.5. However,
as pointed out in [FMT04], there might be the so called “pizza delivery person” problem, that is,
the node with high degree is prone to receive too much attention (receiving too high individual
closeness score in our case). To deal with this problem, we propose to normalizeW as Eq.3.10.
The normalized weighted graphW will be further used to formulate the transition matrix̃W by
Eq.3.5.

wj,l ← wj,l/(dj)
α (3.10)

for all j, l = 1, ..., N .
The motivation of normalization is as follows: for the high degree nodej, every edge(j, l)(l =

1, ...., N) is penalized by(di)
α and vice versa. The coefficientα control the penalization strength:

biggerα indicates stronger penalization. Note that the idea of penalizing the node with high degree
is similar with that of setting a universal sink node in [FMT04].

3.4 The “Extract” Algorithm

In this Section, we propose “EXTRACT” algorithm to deal withthe “connection” requirement of
CePS: what do we mean by “connection” and how to find the resulting subgraph which satisfies
the connection requirement while maximizing the goodness/closeness with the limited budgetb.

The “EXTRACT” algorithm takes as input the weighted graphW, the importance scores on
all nodes, the budgetb and the softAND coefficientk; and produces as output a small, unweighted,
undirected graphH. The basic idea is similar with the display generation algorithm in [FMT04]:
1) instead of trying to find an optimal subgraph maximizingg(H) directly, we decompose it into
finding key paths incrementally; 2) by sorting the nodes in order, we can quickly find the key paths
by dynamic programming in the acyclic graph.

However, we cannot directly apply the original display generation algorithm since it can only
deal with pair source queries (and also the resulting subgraph is sensitive to the order of the source
queries). To deal with this issue, we extend the original algorithm in the following aspects:
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(1) Instead of finding a source-source path, at each step, thealgorithm will pick up a most
promising destination nodepd; and try to find a source-destination path for each source
query node.

(2) The order (which will be used in the dynamic programming)is specified with each source
query node.

(3) Key path discovery differs with the different query types: for “AND query” the algorithm
will discover Q paths for all source nodes at each step; for “KsoftAND query”, it only
discoversk paths for the firstk source nodes; while for “OR query”, the algorithm will only
find 1 path at each step.

Before presenting the algorithm, we require the following definitions:
• SPECIFIED DOWNHILL NODE.Nodeu is downhill from nodev wrt sourceqi (v → di, u)

if r(i, v) > r(i, u);

• SPECIFIED PREFIX PATH.A specified prefix pathP (i, u) is any downhill path that starts
from sourceqi and ends at nodeu; that is,P (i, u) = (u0, u1, ..., un) whereu0 = qi, un = u,
anduj → di, uj+1;

• EXTRACTED GOODNESS.The extracted goodness is the total goodness score of the nodes
within the subgraphH: CF (H) =

∑
j∈H r(Q, j).

• EXTRACTED MATRIX.Cs(i, u) is the extracted goodness score from source nodeqi to node
u along the prefix pathP (i, u) so that:

1. P (i, u) has exactlys nodes not in the present output graphH
2. P (i, u) extracts the highest goodness score among all such paths that start fromqi and

end atu.

• ACTIVE SOURCE.ForK softAND, the source nodeqi is active wrt destination nodepd if
r(i, pd) ≥ r(k)(i, pd), wherer(k)(i, pd) is thekth largest value amongr(i, pd), (i = 1, ..., Q).
Note that the number of active source differs with the query type1: for “OR query”, there is
only one active source while for “AND query”, all sources areactive. For a specific query
type, an active sourceqi might turn into inactive when the destination nodepd changes and
vice versa.

The destination nodepd can be decided by Eq.3.11:

pd = argmaxj /∈Hr(Q, j) (3.11)

whereH is the partially built output subgraph.
In order to make the resulting subgraph to be “reasonably connected”, we want to make sure

that (1) there is at least one path that connects the destination nodepd and each query node for
AND query; and (2) there is at least one path that connects thedestination nodepd andk-out-of-Q
query nodes. In this way, not only does the algorithm select good/close nodes wrt the query set
(i.e., a destination nodepd with high r(Q, j)), but also it provides some interpretations on why
such nodes are good/close wrt the query set.

1Since both “AND query” and “OR query” can be viewed as specialcases of “KsoftAND query”, the number of
active sources is actuallyk for all query types.
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However, we do not want to find an arbitrary path to connect thedestination nodepd and
the one query node since (1) we also want to make sure that the remaining nodes (besides the
destination nodepd) in the resulting subgraph are good/close wrt the query set;and (2) the number
of total nodes in the resulting subgraph is limited by the budgetb. Therefore, we aim to find a path
from one query node and the destination nodepd which maximizes the total captured combined
scores along the path over the length of the path. Also, sincewe try to find the resulting subgraph
gradually, a new path might include some existing nodes in the current subgraph. In order to
encourage different paths to share with the same nodes sincethe budgetb is limited, we define the
length of the path is defined as the number of new nodes in this path.

In order to discover a new path between the sourceqi and the promising nodepd, we arrange
the nodes in descending order ofr(i, j)(j = 1, ..., n): {u1 = qi, u2, u3, ..., pd = un}. (note that
all nodes with smallerr(i, j) thanr(i, pd) are ignored). Then we fill the extracted matrixC in
topological order so that when we computeCs(t, u), we have already computedCs(t, v) for all
v → di, u. On the other hand, as the subgraph is growing, a new path may include nodes that are
already present in the output subgraph, our algorithm will favor such paths as in [FMT04]. The
complete algorithm to discover a single path from source node qi and the destination nodepd is
given in table3.3.

Table 3.3: Single Key Path Discovery

1. Let len be the maximum allowable path length
2. Forj ← [1, ..., n]

2.1. Letv = uj

2.2. Fors← [2, ..., len]
If v is already in the output subgraph

s′ = s
Else

s′ = s− 1
Let Cs(i, v) = maxu|u→di,v(Cs′(i, u) + r(Q, v))

3. Output the path maximizingCs(i, pd)/s, wheres 6= 0

Based on the previous preparations, theEXTRACTalgorithm can be given in table3.4.

3.5 Speeding upCePS

To computer(i, j), we have to solve a linear system. When the data set is large (or more precisely,
when the total number of the edges in the graph is large), the processing time could be long. Note
that we can directly apply the proposed BLIN in chapter2 to computer(i, j). Here, we consider
an alternative way to speed up the whole process.

Note that Eq.3.4can be solved in closed form:

RT = (1− c)(I− cW̃)−1E (3.12)
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Table 3.4: OurEXTRACTAlgorithm

1. Initialize output graphH null
2. Let len be the maximum allowable path length
3. WhileH is not big enough

3.1. Pick up destination nodepd by Eq.3.11
3.2. For each active source nodeqi wrt nodepd

3.2.1. use table3.3to discover a key pathP (qi, pd)
3.2.2. addP (qi, pd) toH

4. Output the finalH

Thus, an obvious way to speed upCePSis to pre-compute and store the matrixA = (I −
cW̃)−1, thenRT = (1 − c)AE can be computed on-line nearly real-time. However, in this way,
we have to store the wholeN ×N matrixA, which is a heavy burden whenN is big.

As suggested by [SQCF05], the goodness scorer(i, j)(j = 1, ..., N) is very skewed, that
is, most values ofr(i, j) are near zero and only a few nodes have high value. Based on this
observation, we propose to pre-partition the original weighted graphW into several partitions
and only use the partitions containing the source queries torun CePS. In this chapter, we use
METIS [KK99] as the partition algorithm.

The pseudo code for the acceleratedCePSis summarized as follows:

Table 3.5: FastCePS
Input : the weighted graphW, the query setQ, K softAND coefficientk,

the budgetb, and the number of partitionsp;
Output : the resulting subgraphH.
Step 0: pre-partitionW into p pieces (one-time cost)
Step 1: pick up partitions ofW that contain all the query nodes to construct

the new weighted graphnW

Step 2:. runCePSas in table3.1onnW

3.6 Experimental Evaluation

In this section, we demonstrate some experimental results.The experiments are designed to answer
the following questions.
• Does the proposed goodness criterion make sense?

• Does theEXTRACTalgorithm capture the most goodness score?

• Does the extra normalization step really help?

• how does the pre-partition balance the quality and responsetime?
Data Set We use the DBLP data set to evaluate the proposed method. To bespecific, the

author-paper information is used to construct the weightedgraphW: every author is denoted as a
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(a) by delivered current method (+1 voltage for Raymond and0 voltage for Soumen)

(b) by delivered current method (+1 voltage for Soumen and0 voltage for Raymond sink)

(c) by the proposed method

Figure 3.2: Connection subgraph between Soumen Chakrabarti and Raymond T. Ng.

Figure 3.3: Center-piece subgraph among Lise Getoor, George Karypis, and Jian Pei.
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node inW; and the edge weight is the number of co-authored papers between the corresponding
two authors. On the whole, there is≈ 315K nodes and≈ 1, 834K non-zero edges inW.

Source QueriesTo test the proposed algorithm, we select several people from different com-
munities to compose the source-query repository:13 people from database and mining;13 people
from statistical and machine learning;11 people from information retrieval; and11 people from
computer vision. Then the source queries are generated by randomly selecting a small number of
queries from the repository.

Parameter SettingThe re-starting coefficientc in Eq. 3.4 is set0.5 and the iteration number
m is set50 since we do not observe performance improvement with more iteration steps. The
maximum allowable path lengthlen is decided by the budgetb and the number of active sourcesk
as[b/k]. For normalization coefficientα, a parametric study is provided in Section 7.3. For other
experiments,α = 0.5.

Evaluation Criterion Firstly, the resultingg(H) can be evaluated by “Important Node Ratio
(NRatio)”. That is, “how many important/good nodes are captured byg(H)?”:

NRatio =

∑
j∈H r(Q, j)∑
j∈W

r(Q, j)
(3.13)

Complementally, we can also evaluate by “Important Edge Ratio (ERatio)”. That is, “how
many important/good edges are captured byg(H)?”:

ERatio =

∑
(j,l)∈H r(Q, (j, l))

∑
(j,l)∈W

r(Q, (j, l))
(3.14)

The goodness scorer(Q, (j, l)) of an edge(j, l) is defined similarly as the goodness score for
a node: what is the probability that the specific edge(j, l) will be traversed simultaneously by all
(or at leastk) of the particles. Firstly, we calculate the goodness scorer(i, (j, l)) for an edge(j, l)
wrt a single query nodeqi:

r(i, (j, l)) =
1

2
· (r(i, j) · W̃l,j + r(i, l) · W̃j,l) (3.15)

Based on Eq.3.15, we can easily definer(Q, (j, l)) according to the specific query type. For
example, for “AND query”,r(Q, (j, l)) can be computed as Eq.3.16; while for “OR query” and
“K softAND query”,r(Q, (j, l)) can be computed as Eq.3.17and Eq.3.18, respectively.

r(Q, (j, l)) , r(Q, (j, l), Q) =

Q∏

qi=1

r(i, (j, l)) (3.16)

r(Q, (j, l)) , r(Q, (j, l), 1) = 1−
Q∏

qi=1

(1− r(i, (j, l))) (3.17)
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r(Q, (j, l)) , r(Q, (j, l), k)

= r(Q́, (j, l), k − 1) · r(Q, (j, l)) + r(Q́, (j, l), k)

(3.18)

wherer(∅, (j, l), 0) = 1.

For all experiments except subsection 7.1, we run the proposed algorithm multiple times and
report the meanNRatio as well as meanERatio.

3.6.1 Evaluation on the goodnessg(H): case study

As we mentioned before, connection subgraph is a special case of center-piece subgraph (“AND
query” with pair source nodes ). Figure6.1 shows the connection subgraph with budget4 for
“Soumen Chakrabarti” and “Raymond T. Ng”. It can be seen thatboth our method and the deliv-
ered current method output somewhat reasonable results. Itis worth pointing out that the subgraph
by the delivered current method is very sensitive to the order of the source queries: comparing
figure6.1(a) and (b), there is only one common node (“S. Muthukrishnan”). On the other hand, if
we compare figure6.1(b) and (c), while most nodes are the same for the two methods,It is clear
that our method captures more strong connection: compared with figure6.1(b), the different node
(“H.V. Jagadish”) in figure6.1(c), 1) has more connections (4 vs. 3) with the remaining nodes and
2) has more co-authored papers with those connected neighbors than the corresponding node in
figure6.1(b) (“Zhiyuan Chen”).

Figure3.1shows an example for multi-source queries. When the user asks for2−SoftAND,
the algorithm outputs two clear cliques (figure3.1(a)), which makes some sense since “Vladimir
Vapnik” and “Michael I. Jordan” belong to statistical machine learning community; while “Rakesh
Agrawal” and “Jiawei Han” are database and mining people. Onthe other hand, if the user asks
for “AND”, the resulting subgraph shows a strong connectionwith all four queries.

Figure3.3 shows an example for “AND query”, with “George Karypis”, “Lise Getoor” and
“Jian Pei” as source nodes. All three researchers are working on graphs. The nodes of the re-
trieved “center-piece subgraph” are all database, data mining and graph mining people, forming
three groups: the nodes close to “Lise Getoor” are related tothe University of Maryland (“V.S. Sub-
rahmanian” is a faculty member there and he was the advisor of“Raymond Ng”). The nodes close
to “George Karypis” are faculty members at Minnesota (“Vipin Kumar”, “Shashi Shekar”). The
nodes close to “Jian Pei” are professors at Simon Fraser (SFU) or University of British Columbia
(UBC), which are geographically nearby, both in Vancouver:“Jiawei Han” was a faculty mem-
ber at SFU and thesis advisor of “Jian Pei” ; “Laks Lakshmanan” and “Raymond Ng” are faculty
members at UBC. Not surprisingly, the “center-pieces” of the subgraph consist of “Raymond Ng”,
“Jiawei Han”, “Laks Lakshmanan”, which all have direct, or strong indirect connections with the
three chosen query sources.
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3.6.2 Evaluation on “EXTRACT” algorithm

By the “EXTRACT” algorithm, we might miss some good/close nodes (which havehigh goodness
scores) in order to meet the requirement of “connection”. Toevaluate this potential risk, we use
bothNRatio andERatio as functions of the budgetb (HigherNRatio andERatio indicate lower
risk). Here, we fix the query type as “AND query”.

Figure3.4(a) shows the meanNRatio vs. the budgetb for different numbers of source queries;
while figure 3.4(b) shows the meanERatio vs. the budgetb for different numbers of source
queries. Note that in both cases, our method captures most ofimportant nodes as well as edges by
a small number of budgetb. For example, for2 source queries, the resulting subgraph with budget
50 captures95% important nodes and70% important edges on average; for 4 source queries, the
resulting subgraph with budget20 captures100% important nodes and70% important edges on
average. An interesting observation is that for the same budget, the subgraph with more source
queries captures higherNRatio as well asERatio than those with less source queries. This is
consistent with the intuition: generally speaking, findingpeople that are important wrt all source
queries becomes more difficult when the number of source queries increases. In other words,
r(Q, j) becomes more skewed by increasing the number of source queries.

3.6.3 Evaluation on normalization step

Here we conduct the parametric study for normalization coefficientα. The meanNRatio vs. α is
plotted in figure3.5(a); and the meaniERatio vs. α is plotted in figure3.5(b).

It can be seen that in most cases, the normalization step doeshelp to improve the performance
of the resulting subgraphg(H). For example, the normalization withα = 0.5 helps to capture
17.7% more important nodes and9.1% more important edges for 2 source queries on average;
while for 3 source queries, it captures18.1% more important nodes and7.6% more important
edges on average.

3.6.4 Evaluation on speedup strategy

For large graph, the response time for importance score calculation could be long. By pre-partition
the original graph and performing subgraph discovery only on the partitions containing the source
queries, we could dramatically reduce the response time. Onthe other hand, we might miss a few
important nodes if they do not lie in these partitions. To measure such kind of quality loss, we use
“Relative Important Node Ratio (RelRatio)”:

RelRatio =
N̂Ratio

NRatio
(3.19)

whereN̂Ratio andNRatio are “Important Node Ratio” for the subgraph by pre-partition and by
the original whole graph, respectively.

We fix the budget20 and the query scenario as “AND query”. The meanRelRatio vs. response
time is shown in figure3.6(a); and the mean response time vs. the number of partitions is shown in
figure3.6(b). It can be seen that with a little quality loss, the response process is largely speeded
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Figure 3.4: Evaluation on “EXTRACT”. The proposedCePScaptures most of important node/edge
scores.

up. For example, with≈ 10% loss, the subgraph for2 source queries can be generated within5
seconds on average; with≈ 10% quality loss, the subgraph for5 source queries can be generated
within 10 seconds on average. On the other hand, it might take40s ∼ 60s without pre-partition.
Note that in figure3.6(b), even with a small number of partitions, we can greatly reduce the mean
response time.
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Figure 3.5: Evaluation on normalization step

3.7 Related Work

Here, we make a brief review of the related work, which can be categorized into three groups: (1)
measuring the goodness of closeness; (2) measuring the goodness of connection; (3) community
mining; (4) random walk and electricity-based methods. TheproposedCePSis also related to
graph partition. For these work, please refer to Chapter2.

Measuring the goodness of closeness.Defining a good closeness score is the core for center-
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Figure 3.6: Evaluation on speeding up strategy. The proposed Fast-CePSachieves about 10x
speedup, with 90% quality preserving.

piece subgraph discovery. Here, the goal is to define a score to measure the closeness of a given
node wrt the query set. To this end, we need to define a score to measure the closeness of a given
node wrt a single query node. The two most natural measures for such purpose (i.e., the closeness
between two nodes) are shortest distance and maximum flow. However, as pointed out in [FMT04],
both measurements might fail to capture some preferred characteristics for social network. To be
specific, shortest path will suffer from high degree nodes, and also it cannot capture the multiple
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faceted relationship between two nodes on the graph; while maximum netflow does not punish the
longer connections. The closeness function for survivablenetwork [GMS93], which is the count
of edge-disjoint or vertex-disjoint paths from source to destination, also fails to adequately model
social relationship. A more related distance function is proposed in [LNK03] [PF03]. However, It
cannot describe the multi-faceted relationship in social network since center-piece subgraph aims
to discover collection of paths rather than a single path.

Measuring the goodness of connection.Another requirement inCePSis “connection”. In [FMT04],
the authors propose an delivered current based method. By interpreting the graph as an elec-
tric network, applying+1 voltage to one query node and setting the other query node0 volt-
age, their method proposes to choose the subgraph which delivers maximum current between
the query nodes. In [RMPS05], the authors further apply the delivered current based method to
multi-relational graph. However, the delivered current criterion can only deal with pairwise source
queries. Moreover, the resulting subgraph might be sensitive to the order of the query nodes (See
Figure6.1 for an example). On the other hand, as we will show very soon, connection subgraph
can actually be viewed as a special case of the proposed center-piece subgraph (“AND query” with
pair source nodes ).

The “connection” requirement is also related to Steiner tree [CLR90, LTL03], where the goal is
to find a tree of minimal weight which includes all query nodes. However, the Steiner tree cannot
directly apply in our settings for the following reasons: (1) the Steiner tree might suffer from those
high degree nodes exactly as the way the shortest path will suffer; (2) to find an exact Steiner tree
is NP-complete; and (3) Steiner tree requires to find a tree which connects to all the source nodes.
On the other hand,CePStries to find a set of inter-correlated trees to connect the query nodes in an
approximate way. By using the proposed closeness function,CePSwill avoid the high-degree node
effect. Also, in the proposed “EXTRACT” algorithm (which will be introduced Section 5), we try
to search for a set of paths, instead of searching for a tree directly (as in Steiner tree). Finally, by
introducingK softAND, we can further relax the requirement on connecting to all the source
nodes inCePS.

Community detection. Center-piece subgraph discovery is also related with community de-
tection, such as [FLGC02][GKR98][GN]. However, we cannot directly apply community detec-
tion to subgraph discovery especially when the source queries are remotely related or they lie in
different communities.

Random walk related methods.The proposed importance score calculation is based on ran-
dom walk with restart. There are many applications using random walk and related methods (See
Chapter2 for details).CePSalso relates Personized PageRank (PPR) [FR04] in the sense that PPR
defines the combined score as an approximate “OR ” query2. On the other hand, the proposedCePS
can naturally deal with different kinds of queries, from “AND ” to “OR ”, with “ K softAND
query” in-between.

2To see this, notice that the combined score is defined asr(Q, j) =
∑Q

i=1 r(i, j) in PPR.
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3.8 Conclusion and Discussions

Summary of Current Work. We have proposed the problem of “center-piece subgraphs”, and
provided fast and effective solutions. In addition to the problem definition, other contributions of
the chapter are the following:

• The introduction and handling ofK softAND queries, which includeAND andOR queries
as special cases.

• EXTRACT, a fast novel algorithm to quickly extract a subgraph with the appropriate connec-
tivity and maximum “goodness” score

• The design and implementation of a fast, approximate algorithm that brings a 6:1 speedup

• Experiments on real data (DBLP), illustrating that our algorithm and “goodness score” in-
deed derive results that agree with intuition.

Discussions and Future Work. In this chapter, we have focused on the plain graph (i.e., no at-
tributes on the nodes or edges). And also, we have restrictedto the un-directed graphs. In [TKF07],
we have generalizedCePSto the directed graphs. And in [TFGER07], we have generalizedCePS
to the attributed graphs.

In the future, we would also like to investigate this problemin the following aspects:

1. Automatic parameter tuning. For example, if the user doesnot provide theK softAND
coefficient, how can we infer the ‘optimal’k. One possible way to attach this problem is
through cross validation (by treatingCePSas a retrieval/classification tool.

2. Steiner tree andCePS. For example, how to leverage the approximate algorithms for Steiner
tree so that we can provide theoretic performance guaranteefor CePS; how to generalize the
Steiner tree byCePS(e.g., to find a set of inter-correlated, rather than one, Steiner tree; to
find the “soft” Steiner tree which connects at leastk-out-of-Q queries node etc).
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Chapter 4

Case Study #2: User Feedback

Summary of This Chapter
Questions we want to answer:
Q1: How to incorporate users like/dislike type of feedback in measuring proximity on

graphs?

Q2: How to reflect users (near) real time interest?

Our answers and contributions
A1: We proposed a novel method (iPoG) to incorporate user feedback (like/dislike) in

measuring node proximity on large graphs, enriching a broadrange of applications.

A2: We proposed a fast algorithm (Fast-iPoG) to compute the proposed proximity mea-
surement, achieving significant speedups (up to 49x).

4.1 Introduction

Most existing work on querying static graphs only considersthe link structure of the underlying
graph, ignoring any possible side information. For example, given an author-conference bipartite
graph, existing proximity measurements may answer the question: What are the most similar
conferences to KDD?However, for a particular user, s/he might have her/his own preferences:I
dislike ICML or I like SIGIR. These preferences are typically localized to a particularsearch, and
may not reflect a global sentiment by the user.

There are a wide range of scenarios where users’ feedback, both implicit or explicit, can be nat-
urally integrated as side information.1 For instance, in recommendation systems, side information
could be users’ ratings on items (e.g.,I like Kung-Fu Panda). In Blog analysis, it could be opinions
and sentiments. Additionally, for many real applications,users’ preferences can be estimated from

1In this chapter, we use the terms ‘user feedback’ and ‘side information’ interchangeably.
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click-through data. That said, it is thus important to incorporate such side information in the prox-
imity measurement so that search results are well-tailoredto reflect a user’s individual preferences.
In the earlier example, the question will then become:What are the most similar conferences to
KDD, but dissimilar to ICML?

In this chapter, we address the above challenge by proposinga novel method, called iPoG, that
incorporates such like/dislike side information in measuring node proximity on large graphs. Our
method is based on random walk with restart (RWR), where iPoGuses the side information to
refine the graph structure so that RWR is biased to avoid or to favor some specific zones on the
graph according to the users’ preferences. Additionally, iPoG inherits existing capabilities from
RWR, such as the ability to summarize themultiple facetedrelationships, to be interpreted from
the perspective ofsteady-state probability, etc. Therefore, we expect iPoG to enrich a broad-range
of applications by replacing their original proximity measurement implementation. We evaluate
iPoG in three case studies: neighborhood search, center-piece subgraph, and image caption. In all
cases, we show that iPoG naturally reflects the users’ preference and/or improves the quality of the
existing applications (e.g., boost the precision/recall of the image captions by more than 10%).

Because a straightforward implementation of iPoG requiressignificant computation, we pro-
pose a fast algorithm (Fast-iPoG) that computes the proposed proximity measurement, while rad-
ically reducing the computational overhead. Fast-iPoG achieves the performance gains by ex-
ploiting the smoothness of the graph structures with/without side information. Our experimental
results show that it achieves significant speedup (up to 49x) while maintaining high approximation
accuracy (more than 93.0%).

This chapter has three key contributions:
• A novel method (iPoG) to incorporate side information (like/dislike) in measuring node

proximity on large graphs, enriching a broad range of applications;

• A fast algorithm (Fast-iPoG) to compute the proposed proximity measurement, achieving
significant speedups (up to 49x);

• Extensive experimental evaluations on several real datasets.
The rest of this chapter is organized as follows. We introduce notations and formally define the

problem in Section4.2. We present the proposed proximity measurement in Section4.3 and the
fast algorithm in Section4.4, respectively. We provide experimental evaluations in Section 4.5and
review the related work in Section4.6. Finally, we conclude in Section4.7.

4.2 Problem Definitions

Table4.1lists the main symbols that we use throughout this chapter. We represent a general graph
by its adjacency matrix. Following the standard notation, we use capital letters for matrices (e.g.
A), lower case for vectors (e.g.a), and calligraphic fonts for sets (e.g.I). We use the symbol
“ ˜ ” to distinguish the setting with/without side information. For example,A is the normalized
adjacency matrix of the graph without side information; andÃ is the normalized adjacency matrix
of the refined graph by side information.

We represent the elements in a matrix using a convention similar to Matlab, e.g.,A(i, j) is the
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Table 4.1: Symbols
Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) element at theith row andjth column ofA
A(i, :) ith row of matrixA

A(:, j) jth column of matrixA
a,b, . . . column vectors
I,J , . . . sets (calligraphic)
n number of nodes in the graph
ni number of out links of nodei
c (1− c) is the restart probability
ri,j proximity from nodei to nodej
ri = [ri,j] ranking vector for nodei (j = 1, ..., n)
P positive setP = {x1, ..., xn+}
N negative setN = {y1, ..., yn−}
n+ number of positive nodesn+ = |P|
n− number of negative nodesn− = |N |
ei n× 1 starting vector for nodei,

whereei(i) = 1 andei(j) = 0(j 6= i)

element at theith row andjth column of the matrixA, andA(:, j) is thejth column ofA, etc.
We use a running example, depicted in Fig.5.1(a), to describe the problem statement. There,

each node represents a person (e.g., node 1 is ‘John’, node 2 is ‘Smith’, etc.) and the existence of
edge represents some social contact between the two corresponding persons (e.g., phone call). In
traditional settings of proximity measurement, the goal isto quantify the closeness (i.e., relevance)
between two nodes (the source and target) based on the link structure of the underlying graph. In
our settings, we assume the existence of side information, focusing primarily on like/dislike user
feedback as side information. In our running example, a usermight not want to see (i.e., dislike)
node 6 but favors (i.e., like) node 4.

Formally, we represent such side information by two setsP andN . The setP contains the node
indices that users like (referred to as the positive set), where the corresponding nodes are referred
as positive nodes. The setN contains the node indices that users dislike (referred as negative set),
where the corresponding nodes are referred to as negative nodes. In our running example, both
the positive setP and the negative setN contain one single element, respectively:P = {4} and
N = {6}. Our goal is to incorporate such side information to measurethe node proximity (e.g.,
the proximity from node 1 to the node 3 in our running example).

With the above notations and assumptions in mind, our problem can be formally defined as
follows:
Problem 2. (Proximity with Side Information)
Given: a weighted direct graphA, a source nodes and a target nodet, and side informationP

andN ;
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(a) the graph (node 1 is the source.)

(b) column normalized adjacency matrixA

Figure 4.1: The running example.

Find: the proximity scorẽrs,t from source nodes to target nodet.

In problem2, if the target nodet is absent, we measure the proximity scorer̃s,i(i = 1, ..., n)
from the source nodes to all the other nodes in the graph. If we stack all these scores into a column
vector̃rs = [r̃s,i](i = 1, ..., n), it is equivalent to saying that we want to compute the ranking vector
r̃s for the source nodes. In this chapter, we assume that there is no overlap between the positive set
and negative set (i.e.,P ∩ N = φ.2) Also, the positive and negative side information do not need
to exist simultaneously. For example, if we only have positive side information, we can simply set
the negative set to be empty (i.e.,N = φ).

2If this does not hold, we can remove the intersection from both positive set and negative set.
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4.3 iPoG

In this section, we introduce our proximity measurement with side information, iPoG. We begin by
reviewing random walk with restart (RWR), which is a good proximity measurement for the case
where there is no side information. We, then, extend RWR to properly account for side information.

4.3.1 RWR: Proximity without Side Information

Random walk with restart (RWR) is considered one of the most successful methods for measuring
proximity and is receiving increased interest in recent years. For a given graph, RWR is defined
as follows. Consider a random particle that starts from nodei. The particle iteratively transits to
its neighbors with probabilities proportional to the corresponding edge weights. At each step, the
particle can returns to nodei with some restart probability(1−c). The proximity score from nodei
to nodej is defined as the steady-state probabilityri,j that the particle will be on nodej [PYFD04].
Intuitively, ri,j is the fraction of time that the particle starting from nodei will spend on each node
j of the graph, after an infinite number of steps.

If we stack all the proximity scoresri,j into a columnri (referred to as the ranking vector for
the nodei), the equation (4.1) gives the formal definition of RWR:

ri = cAri + (1− c)ei, (4.1)

whereA is the column normalized adjacency matrix for the graph andei is the starting vector for
nodei.

For our running example in Fig.5.1(a), its normalized adjacency matrixA is shown in Fig.5.1(b).
If we ignore any side information, by setting the correct starting vector (e.g.,e1 = [1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]′ for node 1), we can solve the corresponding ranking vector using equation (4.1).
Fig. 4.2(a) plots the ranking vector (sorted from highest to lowest)for node 1 of the running ex-
ample. The scores are consistent with our intuition: nearbynodes (e.g., nodes 9, 2 and 5) receive
higher proximity scores.

4.3.2 iPoG: Proximity with User Feedback
Basic Ideas.Our goal is to incorporate side information to measure the node proximity. Intuitively,
for a given source nodes, if positive nodes exist, the proximity score from the source node to such
positive nodes as well as their neighboring nodes should increase, compared to the case where
such side information is unavailable. In our running example, if we know node 4 belongs to the
positive setP, we expect that the proximity score from the source node 1 to node 4 to increase and
so will the proximity scores from node 1 to node 4’s neighboring nodes (e.g., node 2 and node 3).
Analogously, if negative nodes exist, the proximity scoresfrom the source node to such negative
nodes as well as their neighboring nodes should decrease, compared to the case where such side
information is unavailable. In our running example, if we know that node 6 belongs to the negative
setN , we expect the proximity score from node 1 to node 6 to decrease, and so will node 6’s
neighboring nodes (such as nodes 5 and 7).
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The basic idea of iPoG is then to use side information to refinethe original graph structure so
that the random particle (1) has higher chances of visiting the positive nodes as well as their neigh-
boring nodes, and (2) has lower chances of visiting the negative nodes as well as their neighboring
nodes.

Dealing with Positive Nodes.For each nodex in the positive set (P), we create a direct link
from the source nodes to nodex. As in the running example, we add a direct link from the source
node 1 to node 4 (See Fig.4.3(a)). In this way, whenever the random particle visits (or restarts
from) the sources, it has higher chances of visiting the nodes in the positive set. Note that we are

0 2 4 6 8 10 12
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Rank

P
ro

xi
m

ity
 S

co
re

Node 9

Node 2

Node 5

Node 13

Nodes 3,4

Nodes 6,8 Nodes 
7,  10,   11,   12

(a) without side information

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Rank

P
ro

xi
m

ity
 S

co
re

Node 9

Nodes 
8,  7,  6

Nodes 
10,  11,  12,  5

Node 13

Node 4
Node 3

Node 2

(b) with side information

Figure 4.2: Ranking vector for node 1 in the running example in Fig. 5.1. (The proximity scores
are normalized so that they sum up to 1.)
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(a) the updated graph

(b) updated column normalized adjacency matrix

Figure 4.3: Adjustment on the original graph in the running example in Fig.5.1.

also implicitly increasing the chance that the random particle will visit the neighborhood of those
positive nodes. The weight of each newly added link is set to1/(ns +n+). For example, the newly
added edge (1,4) for the running example will receive a weight of 0.25 (sincen1 = 3 andn+ = 1).

Dealing with Negative Nodes.To deal with the negative nodes, we introduce a sink into the
graph, which has no out links. For each nodey in the negative set (N ), we put a direct link
from nodey to the sink. Thus, whenever the random particle visits this node, it can go to the
sink and never comes back (since there is no out links from thesink). Therefore, this negative
nodey is penalized and its corresponding proximity score will decrease. In order to penalize the
neighborhood of nodey, we also put a direct link from its neighboring nodes to the sink. In our
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running example, besides the link from node 6 (the negative node) to the sink, we placed a link
from nodes 5 and 7 (the neighboring nodes of node 6) to the sinkrespectively (see Fig.4.3(a)).

There are two remaining questions: (1) how to choose the neighborhood of a negative node
y and (2) how to determine the weights to the sink. Let the indexof the sink node ben + 1, the
procedure is summarized in Alg.1. In Alg. 1, we use random walk with restart (on the original
graph) to determine (1) the neighborhood of the negative node y (steps 2-4), and (2) the weights
of the newly added links to the sink (steps 5-6). Notice that we eventually (step 9) discard the
last row/column (which corresponds to the sink node). We useit to simplify the description of the
proposed method without affecting the ranking vector in accord to the property of a sink node.

Algorithm 1 Add Links for One Negative Node
Require: The adjacency matrixA, the negative nodey, the neighborhood sizek andc.
Ensure: The updated adjacency matrix̃A.

1: initialize Ã = A, Ã(n + 1, :) = 0, andÃ(:, n + 1) = 0.
2: get the ranking vector for the negative nodey by ry = cAry + (1− c)ey. Let ǫ := kth largest

element inry.
3: for each nodei do
4: if ry,l ≥ ǫ then
5: setÃ(n + 1, l) = ry,i/ry,y

6: setÃ(1 : n, i) = (1− ry,i/ry,y)Ã(1 : n, i)
7: end if
8: end for
9: outputÃ = Ã(1 : n, 1 : n).

iPoG Algorithm. Based on the above preparations, the complete algorithm to measure prox-
imity with side information (iPoG) is given in Alg.2. In Alg. 2, after initialization (step 1), we first
use side information to refine the graph structure (steps 2-7for positive nodes,3 and steps 8-12 for
negative nodes). Note that in step 10, we use the sameA (i.e., the original graph) to add links for
each negative nodey. This is because we assume that all the negative nodes are obtained in a batch
mode (i.e., there is no ordering among different negative nodes). Then, we perform a random walk
with restart on the refined graph (Ã) for the source nodes (step 13) and output the corresponding
steady state probability as the proximity score (step 14). For example, Fig.4.2(b) plots the ranking
vector (sorted from highest to lowest) for node 1 of the running example with side inforamtion
(P = {4}, andN = {6}). Compared to the case without side information (Fig.4.2(a)), it can
be seen that positive node (node 4) as well as its neighborhood (nodes 2 and 3) receives higher
proximity scores; while the negative node (node 6) as well asits neighboring nodes (nodes 5 and
7) receives lowers scores.

3Note that step 3 is to insure that thesth column ofÃ sums up to 1.
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Algorithm 2 iPoG
Require: The adjacency matrixA, the source nodes and the target nodet, the side information
P andN , the neighborhood sizek, and the parameter c.

Ensure: the proximity scorẽrs,t from sources to targett.
1: initialize Ã = A

2: if n+ > 0 then
3: Ã(:, s) = ns/(ns + n+)Ã(:, s)
4: for each positive nodex in P do
5: Ã(x, s) = Ã(x, s) + 1/(ns + n+).
6: end for
7: end if
8: if n− > 0 then
9: for each negative nodey in N do

10: updateÃ by Alg. 1
11: end for
12: end if
13: solve the equatioñrs = cÃr̃s + (1− c)es.
14: outputr̃s,t = r̃s(t).

4.4 Fast-iPoG

In this section, we introduce our fast solution for iPoG. We start by reviewing NBLIN, which is a
fast algorithm to compute random walk with restart (the proximity without side information. See
Chapter2). We then extend it to include side information.

4.4.1 Background: NB LIN for RWR

According to the definition (equation (4.1)), we need to invert ann × n matrix. This operation is
prohibitively slow for large graphs. On the other hand, the iterative method (iterating equation (4.1)
until convergence) might need many iterations, which is also not efficient. In [TFP08], the authors
solve this problem using a low-rank approximation, followed by a matrix inversion of sizel × l
(wherel is the rank of the low-rank approximation) to get all possible proximity scores. Their
solution, called NBLIN, is the starting point for our fast algorithm.

Alg. 3summarizes NBLIN, where it is divided into two stages:NB LIN Pre() andNB LIN OQ().
In NB LIN Pre() (steps 1-3), a low-rank approximation is performed for the normalized adjacency
matrixA and a matrix inversionΛ is computed. Next, inNB LIN OQ() (steps 4-5), only a small
number of matrix-vector multiplications are computed to output the ranking vector.

4.4.2 Fast-iPoG

To incorporate side information, we need to solve random walk with restart in two places. First, we
process the original graphA (step 10 in Alg.4); and then we process the refined graphÃ to get the
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Algorithm 3 NB LIN
Require: The normalized adjacency matrixA, the source nodes andc.
Ensure: The ranking vector for source noders.

1: Pre-Compute Stage(NB LIN Pre())
2: do low-rank approximation forA = USV

3: pre-compute and store the matrixΛ = (S−1 − cVU)−1

4: On-Line Query Stage(NB LIN OQ())
5: outputrs = (1− c)(es + cUΛVes)

ranking vector for the source nodes (step 13 in Alg.4). If we utilize NB LIN in a straightforward
way, we have to call it twice (forA and forÃ, respectively). Unfortunately, this does not fit the
expect usage model of side information, where it needs to reflect users’ real-time interests. Imagine
a user is querying an author-conference bipartite graph, and s/he wants to knowwhich conferences
are most similar to KDD. After the system gives the initial search results, s/he might further give
her/his own preference (e.g.,dislike ICML) and expect updated search results that matches her/his
interests. This basically implies that callingNB LIN Pre() on the refined graph̃A is part of the
on-line cost, which may pose a huge threat to the system’s performance.

To deal with such challenge, we propose Fast-iPoG, which is given in Alg.4. Here, we assume
that we want the whole ranking vector for a given source nodes since a single proximity score
can be read out from such ranking vector. Also, we consider the most general case, where both
positive nodes and negative nodes are present. In Fast-iPoG, it first callsNB LIN Pre() on the
original adjacency matrixA (step 2). Then it callsNB LIN OQ() to determine the influence of
the negative nodes (steps 5-12) and partial influence (i.e.,scaling thesth column of the adjacency
matrix by a factor ofns/(ns+n+)) of positive nodes (step 13), both of which are used to updatethe
low-rank approximation (̃U andṼ) as well as matrix̃Λ (steps 14 - 21). This way, it avoids directly
calling the functionNB LIN Pre() on the refined graph̃A, where it would need to do a low-rank
approximation and a matrix inversion, both of which are not efficient as on-line costs. Finally, it
callsNB LIN OQ() twice (steps 23-24) and combines them as the final ranking result (step 25).
Note that the second call one+ (step 24) is used to compensate for the remaining influence ofthe
positive nodes (i.e., adding new links from the source to thepositive nodes).

The correctness of Alg.4 is guaranteed by theorem1. By theorem1, Fast-iPoG will not intro-
duce additional approximation errors beyond the first time it callsNB LIN Pre() on the original
graph. Therefore, Fast-iPoG is expected to obtain ranking results similar to callingNB LIN Pre()
twice (one forA and the other for̃A). On the other hand, Fast-iPoG avoids the expensive steps
(low-rank approximation oñA and a matrix inversion of sizel× l) in callingNB LIN Pre(). This,
as we will show, leads to significant on-line running cost savings.
Theorem 1. Correctness of Fast-iPoG.If A = USV holds, then Alg.4 gives the correct ranking
vector for the source nodes.
Proof: let ann× n matrix Â s.t.,

Â(:,Θ(j, 1)) = A(:,Θ(j, 1))Θ(j, 1) (j = 1 : kn− + 1)

Â(:, i) = A(:, i) if i /∈ Θ(:, 1) (4.2)
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Algorithm 4 Fast-iPoG
Require: The adjacency matrixA, the source nodes, the side informationP andN , the neigh-

borhood sizek, and the parameterc.
Ensure: the ranking vector̃rs for the sources.

1: Pre-Compute Stage
2: call [U,Λ,V] = NB LIN Pre(A, c)
3: On-Line Query (Feedback) Stage
4: initialize i0 = 1 andΘ = 0(kn−+1)×2

5: for each negative nodey inN do
6: call ry = NB LIN OQ(c,U,Λ,V, ey).
7: let ǫ := kth largest element inry.
8: for each nodei s.t.ry,i >= ǫ do
9: setΘ(i0, 1) = i andΘ(i0, 2) = 1− ry,i/ry,y

10: increasei0 by 1
11: end for
12: end for
13: setΘ(i0, 1) = s andΘ(i0, 2) = ns/(ns + n+)
14: setŨ = U andṼ = V

15: for i = 1 : kn− + 1 do
16: setX(i, :) = U(Θ(i, 1), :)
17: setY(:, i) = V(:,Θ(i, 1))(Θ(i, 2)− 1)
18: setV(:,Θ(i, 1)) = V(:,Θ(i, 1))Θ(i, 2)
19: end for
20: computeL = (I− cXΛY)−1

21: updateΛ̃ = Λ + cΛYLXΛ

22: sete+ = 0n×1, e+(P) = 1/(ns + n+)
23: call r̂s = NB LIN OQ(c, Ũ, Λ̃, Ṽ, es)
24: call u = NB LIN OQ(c, Ũ, Λ̃, Ṽ, e+)
25: outputr̃s = r̂s + cr̂s(s)/(1− c− cu(s))u

First, we will show that̂rs in step 23 gives the correct ranking vector on the matrixÂ if
A = USV holds.

By the construction of matrix̂A, we have

Â(:,Θ(j, 1)) = USV(:,Θ(j, 1))Θ(j, 1) (j = 1 : kn− + 1)

Â(:, i) = USV(:, i) if i /∈ Θ(:, 1) (4.3)

Thus, in the matrix form, we havêA = ŨSṼ, where the matrices̃U andṼ are as defined in
steps 14-19 in Alg.4.

Define the matrix̂Q = (1− c)(I− cÂ)−1. By the property of NBLIN algorithm [TFP08], we
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have

Q̂ = (1− c)(I− cÂ)−1

= (1− c)(I− cŨSṼ)−1

= (1− c)(I + cŨΛ̂Ṽ) (4.4)

whereΛ̂ = (S−1 − cṼŨ)−1.
Next, we will relateΛ̂ with the matrixΛ̃ (step 21 of Alg.4).
By the spectral representation, we have the following equation:

S−1 − cṼŨ = S−1 − c
∑

i

Ṽ(:, i)Ũ(i, :)

= S−1 − c(
∑

i

V(:, i)U(i, :) + δ) (4.5)

whereδ satisfies

δ =

kn−+1∑

j=1

V(:,Θ(j, 1))U(Θ(j, 1), :)(Θ(j, 2)− 1)

= YX (4.6)

where the matricesY andX are defined as steps 16-17 of Alg.4.
Plugging equations (6.5) and (6.6) into the matrixΛ̂ and applying Sherman-Morrison Lemma [PC90],

we have

Λ̂ = (S−1 − cṼŨ)−1

= Λ + cΛYLXΛ

= Λ̃ (4.7)

where the matrices̃Λ andL are defined as steps 20-21 of Alg.4.
Plugging equation (6.6) into equation (4.4), we can verify thêrs in step 23 satisfies:

r̂s = Q̂(:, s) (4.8)

Next, define the matrix̃Q = (1− c)(I− cÃ)−1). We will try to relateQ̃ with matrix Q̂.
By the construction of̃A andÂ, we have

Ã = Â + e+e′
s (4.9)

where vectore+ is defined as in step 22. In other words, there is only a rank-1 difference between
Ã andÂ.

Now, applying Sherman-Morrison Lemma [PC90] to Q̃, we have

Q̃ = (1− c)(I− cÃ)−1)

= (1− c)(I− cÂ− ce+e′
s)

−1)

= Q̂ + bQ̂e+e′
sQ̂

= Q̂ + buQ̂(s, :) (4.10)
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Table 4.2: Summary of data sets
dataset number of nodes number of edges

AC 421,807 1,066,816
ML 4,563 20,469

CoMMG 54,200 354,186

where vectoru is defined as in step 24 and the scaleb satisfies

b =
c

1− c− ce′
sQ̂e+

=
c

1− c− ce′
su

=
c

1− c− cu(s)
(4.11)

Putting equations (6.6), (6.8) and (4.11) together, we have that the correct ranking vector for
the source nodes on matrixÃ must satisfies:

Q̃(:, s) = Q̂(:, s) + buQ̂(s, s)

= r̂s +
cr̂s(s)

1− c− cu(s)
u

= r̃s (4.12)

wherer̃s is defined as in step 25, which completes the proof of theorem1. �

4.5 Experimental Evaluations

In this section we present experimental results. All the experiments are designed to answer the
following questions:
• Effectiveness:What data mining observations does the proposed iPoG enable?

• Efficiency:How does the proposed Fast-iPoG balance between speed and quality?

4.5.1 Experimental Setup

Data Sets.We use three datasets in our experiments, which are summarized in Table4.2.
The first data set (AC) is from DBLP.4 It is an author-conference bipartite graph, where each

row corresponds to an author and each column corresponds to aconference. An edge weight is the
number of papers that the corresponding author publishes inthe corresponding conference. On the
whole, there are 421,807 nodes (418,236 authors and 3,571 conferences) and 1,066,816 edges in
the graph.

4http://www.informatik.uni-trier.de/ l̃ey/db/
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The second data set (ML) uses author-paper information from two major machine learning
conferences (‘NIPS’, and ‘ICML’) to construct a co-authorship graph, where each node represents
an author and an edge weight is the number of co-authored papers between any two corresponding
authors. On the whole, there are 4,563 nodes and 20,469 edges.

The third data set (CoMMG) is used in [PYFD04], which contains around 7,000 captioned
images, each with about 4 captioned terms. There are in total160 terms for captioning. In our
experiments, 1,740 images are set aside for testing. The graph matrix is constructed exactly as in
[PYFD04], which contains 54,200 nodes and 354,186 edges.

Parameter Settings.There are two parameters in the proposed iPoG:c for random walk with
restart, andk for the neighborhood size of a given negative node. We setc = 0.95 (as suggested
in [TFP08]). To determinek, a parametric study has been performed5 and ProSin shows little
sensitivity tok for a large range of settings (fromk = 2 to k = 10). For the experimental results
in this paper,k is set to be 5.

Machine Configurations. For the computational cost, we report the wall-clock time. All
the experiments ran on the same machine with four 3.0GHz Intel (R) Xeon (R) CPUs and 16GB
memory, running Linux (2.6 kernel). For each experiment, werun it 10 times and report the
average.

4.5.2 Effectiveness: Case Studies

In both the proposed iPoG and the original random walk with restart, the proximity score is defined
as the steady-state probability . Therefore, we expect it toenrich a broad range of applications by
replacing the original random walk with restart with our iPoG. In this subsection, we present three
applications as case studies: neighborhood search, center-piece subgraphs, and image caption.

Neighborhood Search.By incorporating the users’ feedback, we can allow interactive neigh-
borhood search on the graph. Fig.4.4 gives one such example, where we want to find the top
10 neighbors of ‘KDD’ conferences (i.e, the 10 most similar conferences as ‘KDD’) from theAC
data set. In Fig.4.4(a), we plot the initial results when there is no side information (i.e,P = φ
andN = φ). Subjectively, the result makes sense, which reflects two major sub-communities in
‘KDD’: the AI/statistic community (e.g., ‘ICML’, ‘NIPS’, and ‘IJCAI’) and the databases commu-
nity (e.g., ‘SIGMOD’, ‘VLDB’, ‘ICDE’ etc). Then, if the usergives negative feedback on ‘ICML’
(i.e, P = φ andN = {′ICML′}), all the AI/statistic related conferences (‘NIPS’ and ‘IJCAI’)
disappear (See Fig.4.4(b)). In Fig.4.4(c), we present the updated result if the user further gives
some positive feedback on ‘SIGIR’, which is one of the major conferences on information retrieval.
Again, the result confirms the effectiveness of ProSIN: positive feedback on ‘SIGIR’ brings more
information retrieval related conferences (e.g, ‘TREC’, ‘CIKM’, ‘ECIR’,‘CLEF’, ‘ACL’, ‘JCDL’,
etc).

Center-Piece Subgraphs.The concept of connection subgraphs, or center-piece subgraphs,
was proposed in [FMT04, TF06]: Given Q query nodes, it creates a subgraphH that shows the
relationships between the query nodes. The resulting subgraph should contain the nodes that have
strong connection to all or most of the query nodes. Moreover, since this subgraphH is used for

5We skip the details of the parametric study for brevity.
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visually demonstrating node relations, its visual complexity is capped by setting an upper limit, or
abudgeton its size. These so-called connection subgraphs (or center-piece subgraphs) were proved
useful in various applications, but currently cannot handle users’ interaction (i.e, feedback).

One of the building block in the original center-piece subgraphs [TF06] is to use RWR to
measure the proximity from the query nodes to the remaining nodes on the graph. Therefore, by
replacing the original random walk with restart by the proposed iPoG, we can naturally deal with
the users’ interactions (for details of center-piece subgraph, please refer to [TF06]).

Fig. 4.5 plots an example to find the center-piece subgraphs between two researchers (‘An-
drew Mccallum’ and ‘Yiming Yang’) fromML data set. In Fig.4.5(a), we plot the initial results
when there is no side information (i.e,P = φ andN = φ). It can be seen that there are two
major connections between ‘Andrew Mccallum’ and ‘Yiming Yang’: one connection is on text
mining/information retrieval (through ‘Rebecca Hutchinson’, ‘Xuerui Wang’, ‘Tom M. Mitchell’,
‘Sean Slattery’ and ‘Rayid Ghani’), and the other connection in on AI/statistics (throught ‘John
D. Laffterty’, ‘Zoubin Ghahramani’ and ‘Jian Zhang’). Fig.4.5(b) gives the updated result if the
user gives negative feedback on ‘Tom M. Mitchell’. It can be seen that the whole connection on
text mining/information retrieval disappears, and more connection on AI/statistics (e.g. through
‘Andrew Ng’ and ‘Michael I. Jordan’) shows up.

Image Caption. Here, the goal is to assign some keywords for a given image as its text
annotation. In [PYFD04], the authors proposed a graph based solution and showed itssuperi-
ority over the traditional methods in feature space. The keyidea of [PYFD04] is to construct
an image-keyword-region graph and use RWR to measure the relevance between the test image
and the known keywords. Similar to center-piece subgraphs,replacing RWR by iPoGcan easily
incorporate side information (if available) in such process.

Fig. 4.6 presents the average precison/recall onCoMMGdata set. Here, the side-information
is simulated as following: for each test image, 5 keywords that are most relevant to the test im-

Figure 4.4: Interactive neighborhood search for ‘KDD’ conference.
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age based on the current proximity measurement are returnedfor users’ yes/no (i.e., correct/wrong
caption) confirmation. Here, we also compare two simple strategies: (1) ‘RemNeg’, where the
negative nodes are simply removed from the graph; and (2) ‘LinCom’ [HLZ+04], where the prox-
imity scores from positive/negative nodes are added/substracted from the score from the test image.
From the figure, it can be seen that our iPoG largely improves both precision/recall for image cap-
tion task by incorporating such side information. For example, it improves the precision by 13.59%
(44.02% vs. 30.43%) and the recall by 17.39% (57.54% vs. 40.15%) when the prediction length
is 4. It is interesting to notice that if we simply remove the negative nodes from the graph, it will
actually hurts the performance (‘RemNeg’). As for ‘LinCom’, it can be seen that (1) the improve-
ment is limited compared with the proposed iPoG for short prediction length; and (2) it might hurt
the performance with the increase of the prediction length.

4.5.3 Efficiency

In this subsection, we study the quality/speed trade-off ofthe proposed Fast-iPoG. We use the
CoMMGdata set (since it is the only one with ground truth among the three data sets we used in
this chapter). Here, we fix the prediction length to be 4 (the results with other prediction length
are similar and therefore skipped for brevity), and we compare the precision/recall between Fast-

(a) No feedback

(b) Negative feedback on ‘Tom M. Mitchell’

Figure 4.5: Interactive center-piece subgraphs between ‘Andrew Mccallum’ and ‘Yiming Yang’.
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iPoG and iPoG where in iPoG random walk with restart is performed by the iterative method.6

Compared with iPoG, there is one more parameter in Fast-iPoG, the rank of the low-rank approx-
imation forNB LIN Pre(). We vary this parameter from 100 to 600 (denoted as Fast-iPoG(100),
Fast-iPoG(200), etc in Fig.4.7). In order to put quality/speed in the same figure, we normalized

6An alternative choice for iPoG is to runNB LIN Pre() on A andÃ respectively. However, we find it needs
more wall-clock time but leads to lower quality compared with the iterative method. Therefore, we only compare the
proposed Fast-iPoG with that by iterative method.
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Figure 4.6: Incorporate side information for image caption.

Figure 4.7: Quality/speed trade-off of Fast-iPoG.
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(1) precision/recall by the largest value for iPoG, and (2) time by the longest value for iPoG.
From Fig.4.7, it can be seen that the proposed Fast-iPoG achieves significant speedup while

maintaining high quality. For example, Fast-iPoG(100) is 49x faster than iPoG (the most right one)
while it preserves 93.6% precision (41.2% vs. 44.0%) and 94.0% recall (54.1% vs. 57.5%); Fast-
iPoG(400) is 16x faster than iPoG while preserving 96.1% precision (42.4% vs. 44.0%) and 96.7%
recall (55.6% vs. 57.5%). Overall, Fast-iPoG is 10∼49x faster than iPoG, while preserving more
than 93.0% quality (for both precision and recall). Note that in all cases, Fast-iPoG significantly
improves the precision/recall when compared with the initial case (the left-most dashed bar). As
for the wall-clock time, iPoG need 3.7 hours to annotate all the 1,740 images, while Fast-iPoG(100)
only needs 4.5 minutes.

4.6 Related Work

In this section, we review the related work, which can be categorized into two parts (1) node
proximity and (2) matrix low rank approximation.

Node Proximity. One of the most popular proximity measurements is random walk with
restart [HLZ+04, PYFD04, TFP08], which is the baseline of iPoG. Other representative proximity
measurements include the sink-augmented delivered current [FMT04], cycle free effective con-
ductance [KNV06], survivable network [GMS93], and direction-aware proximity [TKF07]. All
these methods only consider the graph link structure and ignore the side information. Although
we focus on random walk with restart in this chapter, our approach (i.e., to use the side informa-
tion to refine the graph structure) can be applied to other random walk-based measurements, such
as [FMT04, TKF07]. In term of dealing with the side information on ranking, our work is also
related to [ACA06a], where the goal is to use partial order information to learnthe weights of dif-
ferent types of edges. In term of computation, the fast algorithm (NB LIN) for random walk with
restart in [TFP08] is most related to the proposed Fast-iPoG. Our Fast-iPoG differs from that in
[TFP08] in the sense that the graph structure in our setting keeps changing by the side information,
whereas it is fixed in [TFP08]. The core idea behind the proposed Fast-iPoG is to leveragethe
smoothness between graph structure with/without side information. In [TPYF08], the authors has
used the similar idea to track the proximity/centrality on atime-evolving skewed bipartite graph.
Other remotely related work includes [GKRT04], where the goal is to propagate the trust/distrust
to predict the trust between any two persons.

Graph proximity is an important building block in many graphmining settings. Representa-
tive work includes connection subgraphs [FMT04, KNV06, TF06], neighborhood search in bipar-
tite graphs [SQCF05], content-based image retrieval [HLZ+04], cross-modal correlation discov-
ery [PYFD04], the BANKS system [ABC+02], link prediction [LNK03], pattern matching [TFGER07],
ObjectRank [BHP04], RelationalRank [GMT04] and recommendation system [CTSP07]. Note
that for the ranking-related tasks (such as neighborhood search, image retrieval, etc.), we can also
use the linear combination strategy suggested in [HLZ+04]; the strategy includes personalized
PageRank [Hav03] and graph-based semi-supervised learning [ZBL+03] as a special case when
the negative set is absent, to incorporate like/dislike type of side information. Our experimental
evaluation on image caption task shows that although it is effective for small prediction lengths, its
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performance is not as good as the proposed iPoG and sometimesit actually hurts the performance.
What is more important, it is not clear how to use such strategy (linear combination) for more
complicated applications (such as center-piece subgraphs, pattern match etc). This is exactly one
major advantage of the proposed iPoG: it can be easily plugged into such applications by simply
replacing the original proximity measurement by our iPoG.

Low Rank Approximation. Low rank approximation [GVL89, DKM05b, AM07] plays a very
important role in graph mining. Please refer to Chapter2 for details. Notice that our Fast-iPoG is
orthogonal to the specific method of low rank approximation.

4.7 Conclusion and Discussion

Summary of This Chapter. In this chapter, we study how to incorporate like/dislike type of
side information in measuring node proximity on large graphs. Our main contributions are in two
folds. First, we proposed a novel method (iPoG) to incorporate side information in measuring node
proximity on large graphs and showed its broad applicability through various case studies. Second,
to enhance the efficiency of iPoG, we also took advantage of the smoothness of the graph structures
with/without side information and proposed a fast algorithm (Fast-iPoG). We demonstrated that
Fast-iPoG achieves significant speedup (up to 49x) in our evaluation on real datasets. Overall,
we expect the proposed algorithms to enrich a broad range of applications that receive online
feedback/side information.
Discussions.In this chapter, we have focused on the uni-partite graphs and we haveempirically
show the superiority of the proposed iPoG. In [TQJF09], we have generalized this work in two
dimensions: (1) we show that the proposed iPoG actually doesadaptive linear combination, which
explains why we would expect it performs better than alternative choices; (2) we proposed a fast
algorithm for bi-partite graphs, which achieves orders of magnitude speedup withno quality loss.
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Chapter 5

Case Study #3: Gateway

Summary of This Chapter
Questions we want to answer:
Q: What is the best gateway between a source node (or source group) and a target

node (or target group), in a network?

Our answers and contributions
A1: We proposed a novel gateway-ness score for a given sourceand target, that agrees

with human intuition. We generalize it to the case where we have a group of nodes
as the source and the target.

A2: We proposed two algorithms to find a set of nodes with the highest gateway-ness
score, which (1) are fast and scalable; and (2) lead to near-optimal results.

5.1 Introduction

What is the best gateway between a source node and a target node, in a network? This is a core
problem that appears under several guises, with numerous generalizations. Motivating applications
include the following:

1. In a corporate social network, which are the key people that bring or hold different groups
together? Or, if seeking to establish a cross-division project, who are the best people to lead
such an effort?

2. In an immunization setting, given a set of nodes that are infected, and a set of nodes we want
to defend, which are the best few ‘gateways’ we should immunize?

3. Similarly, in a network setting, which are the gateway nodes we should best defend against
an attack, to maximize connectivity from source to target.

4. Given a graph of co-workers and their skills (keywords), whom should you contact to learn

69



more about, say, Linux? You want someone reasonably close toyou and fairly well-versed
in Linux, but not your secretary or Linus Torvalds himself.

The problem has several, natural generalizations: (a) we may be interested in the topk best
gateways (in case our first few choices are unavailable); (b)we may have more than one source
nodes, and more than one target nodes, as in the immunizationsetting above; (c) we may have
a bi-partite graph with relationships (edges) between different node types, as in the last example
above. Our main contributions in this chapter are:

• A novel ‘gateway-ness’ score for a given source and target, that agrees with human intuition.
Its generalization to the case where we have a group of nodes as the source and the target;

• Two algorithms to find a set of nodes with the highest ‘gateway-ness’ score, which (1) are
fast and scalable; and (2) lead tonear-optimalresults;

• Extensive experimental results on real data sets, showing the effectiveness and efficiency of
the proposed methods.

The rest of the chapter is organized as follows: We give the problem definitions in Section 2;
present ‘gateway-ness’ scores in Section 3; and deal with the computational issues in Section 4.
We evaluate the proposed methods in Section 5. Finally, we review the related work in Section 6
and conclude in Section 7.

5.2 Problem Definitions

Table 5.1 lists the main symbols we use throughout this chapter. Here,we focus on directed
weighted graphs. We represent the graph by its normalized adjacency matrix (A). Following
standard notation, we use capital bold letters for matrices(e.g.,A), lower-case bold letters for
vectors (e.g.,a), and calligraphic fonts for sets (e.g.,S). We denote the transpose with a prime
(i.e., A′ is the transpose ofA). We use arrowed lower-case letters for paths on the graph (e.g.,
~p), which are ordered sequences. We use parenthesized superscripts to represent source/target
information for the corresponding variables. For example~p(s,t) = {s = u0, u1, ..., ul = t} is a
path from the source nodes to the target nodet. If the source/target information is clear from the
context, we omit the superscript for brevity. A sink nodei on the graph is a node without out-links
(i.e.,A(:, i) = 0). We use subscripts to denote the corresponding variable after setting the nodes
indexed by the subscripts as sinks. For example,~p

(s,t)
I is the path from the source nodes to the

target nodet, which does not go through any nodes indexed by the setI (i.e.,ui /∈ I, i = 0, ..., l).
With the above notations, our problems can be formally defined as follows:
Problem 3. (Pair-Gateway)
Given: a weighted directed graphA, a source nodes, a target nodet, and a budget (integer)k;
Find: a set of at mostk nodes which have the highest ‘gate-way-ness’ score wrt the source node

s and the target nodet.
Problem 4. (Group-Gateway)
Given: a weighted directed graphA, a group of source nodesS, a group of target nodesT , and

a budget (integer)k;
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Table 5.1: Symbols
Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) the element at theith row andjth column

of matrixA

A(i, :) theith row of matrixA

A(:, j) thejth column of matrixA
A′ transpose of matrixA
a,b, . . . column vectors
~p, ~q, . . . ordered sequences
S, T , . . . sets (calligraphic)
n number of nodes in the graph
m number of edges in the graph
g(s, t, I) the ‘Gateway-ness’ score for the subset of nodes

I wrt the sources and the targett
g(S, T , I) the ‘Gateway-ness’ score for the subset of nodes

I wrt the source groupS and the target groupT
r(s, t) the proximity score froms to t
rI(s, t) the proximity score froms to t by setting the

subset of nodes indexed byI as sinks

Find: a set of at mostk nodes which have the highest ‘gate-way-ness’ score wrt the source group
S and the target groupT .

In both Problem3(Pair-Gateway) and Problem4(Group-Gateway), there are two sub-problems:
(1) how to define the ‘gateway-ness’ score of a given subset ofnodesI; (2) how to find the subset
of nodes with the highest ‘gateway-ness’ score. In the next two sections, we present the solutions
for each, respectively.

5.3 Proposed ‘Gateway-ness’ Scores

In this section, we present our definitions for ‘Gateway-ness’. We first focus on the case of a single
sources and a single targett (Pair-Gateway). We then generalize to the case where both the source
and the target are a group of nodes (Group-Gateway)

5.3.1 Node ‘Gateway-ness’ Score

Given a single sources and a single targett, we want to measure the ‘Gateway-ness’ score for a
given set of nodesI. We first give the formal definitions in such a setting and thenprovide some
intuitions for our definitions.
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Formal Definitions. For a graphA, we can use random walk with restart to measure the
proximity (i.e., relevance/closeness) from the source node s to the target nodet, which is defined
as follows: Consider a random particle that starts from nodes. The particle iteratively transits to its
neighbors with probability proportional to the corresponding edge weights. Also at each step, the
particle returns to nodes with some restart probability(1− c). The proximity score from nodes to
nodet is defined as the steady-state probabilityr(s, t) that the particle will be on nodet [TFP08].
Intuitively, r(s, t) is the fraction of time that the particle starting from nodes will spend on nodet
of the graph, after an infinite number of steps.

Intuitively, a set of nodesI are good gateways wrts and t if they play an important role in
the proximity measure from the source to the target. Therefore, our ‘Gateway-ness’ score can be
defined as follows:

g(s, t, I) , ∆r(s, t) , r(s, t)− rI(s, t) (5.1)

whererI(s, t) is the proximity score from sources to t after setting the subset of nodes indexed by
I as sinks.

Intuitions. Here, we provide some intuition of the ‘Gateway-ness’ scoredefined by eq.(5.1),
using the running example in figure5.1.

Figure 5.1: Running example (best viewed in color)

In figure 5.1, each solid arrowed line is a path from node 1 to node 20, whichcan be de-
noted by an ordered sequence. For example, the path marked bythe red line can be denoted by
~p(1,20) = {1, 3, 4, 5, 12, 14, 20}. For each path~p(s,t) = {s = u0, u1, ..., ul = t}, we can define
its score by eq (5.2), where

∏l
i=0 A(ui−1, ui) is the probability that the random particle will tra-

verse this path, and(1− c)cl penalizes the length of the path. For example, the red path (~p(1,20) =
{1, 3, 4, 5, 12, 14, 20}), has score(1− c)c6A(3, 1)A(4, 3)A(5, 4)A(12, 5) A(14, 12)A(20, 14).

score(~p(s,t)) , (1− c)cl
l∏

i=0

A(ui−1, ui) (5.2)
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whereA is the normalized adjacency matrix of the graph.
With the above definitions for the path score, we have the following lemma:

Lemma 5. Sum of Weighted Path Scores.Let ~P be the set of all the paths from the source node
s to the target nodet, and ~Q be the set of all the paths from the source nodes to the target node
t which go through at least one node indexed by the subsetI. Let r(s, t) be the proximity score
defined by random walk with restart and g(s, t, I) be the ‘Gateway-ness’ score defined by eq.(5.1).
Then we have

r(s, t) =
∑

~p(s,t)∈~P

score(~p(s,t))

g(s, t, I) =
∑

~p(s,t)∈ ~Q

score(~p(s,t)) (5.3)

Proof: By induction, we can verify that

(1− c)(cA)k(t, s) =
∑

~p(s,t)∈~P ; length of~p(s,t)=k

score(~p(s,t)) (k = 1, 2, 3, ...) (5.4)

In other words,(1− c)(cA)k(t, s) accounts for the sum of scores of all the paths froms to t with
lengthk.

On the other hand, by Taylor expansion, we have

Q = (1− c)(I− cA)−1

= (1− c)
∞∑

k=0

(cA)k (5.5)

Sinces 6= t, we have

r(s, t) = Q(t, s)

= (1− c)

∞∑

k=0

(cA)k(t, s)

= (1− c)
∞∑

k=1

(cA)k(t, s)

=
∑

~p(s,t)∈~P

score(~p(s,t)) (5.6)

Similarly, we can show that

rI(s, t) =
∑

~p(s,t)∈~P/~Q

score(~p(s,t)) (5.7)

Therefore,

g(s, t, I) , r(s, t)− rI(s, t)

=
∑

~p(s,t)∈ ~Q

score(~p(s,t)) (5.8)
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which completes the proof. �

By eq. (5.3), the ‘Gateway-ness’ score for a given set of nodesI accounts for all the paths from
the source nodes to the target nodet which pass through one or more nodes inI. For example,
given the source node 1 and the target node 20 in figure5.1, the ‘Gateway-ness’ score forI = {2}
is the sum of the scores of all the paths from node 1 to node 20 that go through node 2 (e.g., the
green path, the yellow path, and so on).

5.3.2 Group ‘Gateway-ness’ Score

Here we consider the case where the source and/or target consist of more than one nodes. Suppose
we have a group of source nodesS and a group of target nodesT . Then, the ‘Gateway-ness’ score
for a given set of nodesI can be defined in a similar way:

g(S, T , I) ,
∑

s∈S,t∈T

∆r(s, t) ,
∑

s∈S,t∈T

(r(s, t)− rI(s, t)) (5.9)

whererI(s, t) is the proximity score froms to t by setting the subset of nodes indexed byI as
sinks (i.e., delete all out-edges, by settingA(:, i) = 0 for all i ∈ I).

Intuitively, the score defined by eq. (5.9) accounts for all the paths from the source group to
the target group1 which go through at least one node inI. For example, givenS = {1} and
T = {19, 20} in figure5.1, the group ‘Gateway-ness’ score forI = {5, 8} corresponds to all the
paths from node 1 to 19 or 20 (e.g., red, yellow and green solidlines, purple and blue dashed lines
and so on).

5.4 BASSET: Proposed Fast Solutions

In this section, we address how to quickly find a subset of nodes of the highest ‘Gateway-ness’
score. We start by showing that the straight-forward methods (referred to as ‘Com-RWR’) are com-
putationally intractable. Then, we present the proposed BASSET (BASSET-N for Pair-Gateway
and BASSET-G for Group-Gateway). For each case, we first present the algorithm and then ana-
lyze its effectiveness as well as its computational complexity.

5.4.1 Computational Challenges

Here, we present the computational challenges and the way wetackle them. For the sake of suc-
cinctness, we mainly focus on BASSET-N.

There are two main computational challenges in order to find asubset of nodes with the highest
‘Gateway-ness’ score. First of all, we need to compute the proximity from the source to the target
on different graphs, each of which is a perturbed version of the original graph. This essentially
means that we cannot directly apply some powerful pre-computational method to evaluate the

1A path from the source group to the target group is a path whichstarts from a node of the source group and ends
at a node of the target group.

74



proximity from the source to the target (after setting the subset of nodes indexed byI as sinks). In-
stead, we have to rely on on-line iterative methods, whose computational complexity isO(m). The
challenges are compounded by the need to evaluate g(s, t, I) (eq. (5.1)) or g(S, T , I)(eq. (5.9)) an
exponential number of times (

(
n
k

)
). Putting these together, the straightforward way to findk nodes

with the highest ‘Gateway-ness’ score isO(
(

n
k

)
m). This is computationally intractable. Suppose

on a graph with1, 000, 000 nodes, we want to find the bestk = 5 gateway nodes. If computing
each proximity score takes0.001 seconds, then2.64× 1017 years are needed to find the gateways.
This is much longer than the age of the universe.2

To tackle such challenges, we resort to two main ideas, whichare summarized in Theorem2.
According to Theorem2, in order to evaluate the ‘Gateway-ness’ score of a given setof nodes,
we do not need to actually set these nodes as sinks and computethe proximity score on the new
graph. Instead, we can compute it from the original graph. Inthis way, we can utilize methods
based on pre-computation to accelerate the process. Furthermore, since g(s, t, I) and g(S, T , I)
are sub-modular wrtI, we can develop some greedy algorithm to avoid exponential enumeration,
and still get somenear-optimalsolution. In Theorem2, A is the normalized adjacency matrix of
the graph. It is worth pointing out that The proposed methods(BASSET-N and BASSET-G) we
will introduce are orthogonal to the specific way of normalization. For simplicity, we use column-
normalization throughout this chapter. Also,Q(I, I) is a|I|× |I|matrix, containing the elements
in the matrixQ which are at the rows/columns indexed byI. Similarly, Q(t, I) is a row vector
with length|I|, containing the elements in the matrixQ which are at thetth row and the columns
indexed byI. Q(I, s) is a column vector with length|I|, containing the elements in the matrixQ

which are at thesth column and the rows indexed byI.
Theorem 2. Core Theorem.Let A be the normalized adjacency matrix of the graph, andQ =
(1 − c)(I − cA)−1. For a given sources and targett, the ‘Gateway-ness’ score of a subset of
nodesI defined in eq.(5.1) satisfies the properties P1 and P2. For a given source groupS and
target groupT , the ‘Gateway-ness’ score of a subset of nodesI defined in eq.(5.9) satisfies the
properties P3 and P4, wheres 6= t, s, t /∈ I, S⋂T = ∅, S⋂ I = ∅, andT ⋂I = ∅.

P1. g(s, t, I) = Q(t, I)Q(I, I)−1Q(I, s);
P2. g(s, t, I) is sub-modular wrt the setI, that is, g(s, t, I⋃J ) + g(s, t, I⋂J ) ≤ g(s, t, I) +
g(s, t,J ), for any subsetsI andJ ;

P3. g(S, T , I) =
∑

s∈S,t∈T Q(t, I)Q(I, I)−1Q(I, s);
P4. g(S, T , I) is sub-modular wrt the setI, that is, g(S, T , I⋃J )+g(S, T , I⋂J ) ≤ g(S, T , I)+
g(S, T ,J ), for any subsetsI andJ .
Proof of P1: WLOG, we assume thatI = {n − k + 1, ...n}. Let A andÃ be the normalized
adjacency matrices of the graph before/after we set the subset of nodes inI as sinks. WriteA and
Ã in block form:

A =

(
A1,1 A1,2

A2,1 A2,2

)
, Ã =

(
Ã1,1 Ã1,2

Ã2,1 Ã2,2

)
=

(
A1,1 0

A2,1 0

)
(5.10)

where0 is a matrix with all zero elements.
2According to Wikipedia, (http://en.wikipedia.org/wiki/ Age of the universe), the age of the uni-

verse is about1.4× 1010 years.
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Let Q̃ = (1− c)(I− cÃ)−1. We can also writẽQ andQ in block form:

Q = (1− c)(I− cA)−1 =

(
Q1,1 Q1,2

Q2,1 Q2,2

)

= (1− c)

(
I− cA1,1 −cA1,2

−cA2,1 I− cA2,2

)−1

Q̃ =

(
Q̃1,1 Q̃1,2

Q̃2,1 Q̃2,2

)
= (1− c)

(
I− cA1,1 0

−cA2,1 I

)−1

Applying the block matrix inverse lemma [PC90] to Q̃ andQ, we get the following equations:

Q̃1,1 = (1− c)(I− cA1,1)
−1, Q̃1,2 = 0

Q̃2,1 = c(1− c)A2,1(I− cA1,1)
−1, Q̃2,2 = (1− c)I

Q1,1 = (1− c)(I− cA1,1)
−1 +

c2(I− cA1,1)
−1A1,2Q2,2A2,1(I− cA1,1)

−1

Q1,2 = c(I− cA1,1)
−1A1,2Q2,2

Q2,1 = cQ2,2A2,1(I− cA1,1)
−1 (5.11)

Therefore, we have

Q̃1,1 = Q1,1 −Q1,2Q
−1
2,2Q2,1 (5.12)

On the other hand, based on the properties of random walk withrestart [TFP08], we haver(i, j) =
Q(j, i), andrI(i, j) = Q̃(j, i),(i, j = 1, ..., n). Together with eq. (6.5), we have

g(s, t, I) = r(s, t)− rI(s, t)

= Q1,1(t, s)− Q̃1,1(t, s)

= Q1,2(t, :)Q
−1
2,2Q1,2(:, s) (5.13)

which completes the proofs of P1. �

Proof of P3: Since P1 holds, we have

g(S, T , I) =
∑

s∈S,t∈T

∆r(s, t) =
∑

s∈S,t∈T

g(s, t, I)

=
∑

s∈S,t∈T

Q(t, I)Q(I, I)−1Q(I, s) (5.14)

which completes the proofs of P3. �

Proof of P2: Let I,J ,K be three subsets andI ⊆ J . We will first prove by induction that, for
any integer powerj, the following inequality holds element-wise.

A
j
I −A

j
I

S

K ≥ A
j
J −A

j
J

S

K (5.15)
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It is easy to verify the base case (i.e.,j = 1) for eq. (5.15) holds. Next, assume that eq. (5.15)
holds forj = 1, ..., j0, and we want to prove that it also holds for the casej = j0 + 1:

A
j0+1
I −A

j0+1
I

S

K

= A
j0+1
I −A

j0
I

S

KAI + A
j0
I

S

KAI −A
j0+1
I

S

K

= (Aj0
I −A

j0
I

S

K)AI + A
j0
I

S

K(AI −AI
S

K)

≥ (Aj0
J −A

j0
J

S

K)AI + A
j0
I

S

K(AJ −AJ
S

K)

≥ (Aj0
J −A

j0
J

S

K)AJ + A
j0
J

S

K(AJ −AJ
S

K)

= A
j0+1
J −A

j0+1
J

S

K (5.16)

In eq. (5.16), the first inequality holds because of the induction assumption. The second inequality
holds becauseAI ≥ AJ ≥ 0 holds element-wise, andAI

S

K ≥ AJ
S

K ≥ 0 holds element-wise.
SinceQ̃ = (1− c)(I− cÃ)−1 = (1− c)

∑∞
j=0(cÃ)j , we have

g(s, t, I ∪ K)− g(s, t, I)

= (1− c)

∞∑

j=0

((cAI)
j − (cAI

S

K)j

≥ (1− c)
∞∑

j=0

((cAJ )j − (cAJ
S

K)j

= g(s, t,J ∪ K)− g(s, t,J ) (5.17)

Therefore, g(s, t, I) is sub-modular, which completes the proof of P2. �

Proof of P4: Since g(S, T , I) =
∑

s∈S,t∈T g(s, t, I) (In other words, g(S, T , I) is a non-negative
linear combination of sub-modular functions) , according to the linearity of sub-modular func-
tions [KG05], we have that g(S, T , I) is also sub-modular, which completes the proof of P4.�

Intuition. Here, we provide some intuition why g(s, t, I) and g(S, T , I) are sub-modular.
According to Lemma5, for a given sources and a given targett, g(s, t, I∪K)−g(s, t, I) accounts
for the scores of all the paths froms to t, which go through some nodes inK but none of the nodes
in I. Therefore, for a given setK, if we already have a bigger subsetJ , the additional benefit
(g(s, t,J ∪K)−g(s, t,J )) will be relatively small, compared to the case where we havea smaller
subsetI (g(s, t, I ∪ K) − g(s, t, I)). For example, in figure5.1, let s = 1, t = 20, andI = {5},
J = {2, 5}. Then, if we have a new subsetK = {8}, the additional benefit for subsetI accounts
for all the paths froms = 1 to s = 20 which go through node 8, but not node 5 (e.g., the green
path, etc). While the additional benefit for subsetJ is 0, since all the paths froms = 1 to t = 20
which go through node 8 must also go through some node inJ (node 2).

5.4.2 BASSET-N for Problem3

BASSET-N Algorithm

Our fast solution for Problem3 is summarized in Alg.5. In Alg. 5, after initialization (step 1), we
first pick a nodei0 with the highestr(s,i)r(i,t)

r(i,i)
(step 3). Then, in steps 4-14, we find the rest of the
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nodes in a greedy way. That is, in each outer loop, we try to findone more node while keeping the
currentI unchanged. According to P1 of theorem2, v(i) computed in step 7 is the gateway score
for the subsetJ .3 If the current subset of nodesI can completely disconnect the source and the
target (by setting them as sinks), we will stop the algorithm(step 12). Therefore, Alg.5 always
returns no more thank nodes. It is worth pointing out that in Alg.5, all the proximity scores are
computed from the original graphA. Therefore, we can utilize some powerful methods based on
pre-computation to accelerate the whole process. To name a few, for a medium size graphA (e.g.,
a few thousands of nodes), we can pre-compute and store the matrix Q = (1 − c)(I − cA)−1;
for large unipartite graphs and bipartite graphs, we can usethe NB LIN and BB LIN algorithms,
respectively [TFP08].

Algorithm 5 BASSET-N
Require: the normalized adjacency matrixA, the source nodes, the target nodet, the budgetk

and the parameterc
Ensure: a set of nodesI, where|I| ≤ k.

1: initialize I to be empty.
2: compute the proximity scorer(s, t) from the source nodes to the target nodet.
3: find i0 = argmaxi

r(s,i)r(i,t)
r(i,i)

, wherei = 1, ..., n andi 6= s, i 6= t. addi0 to I.
4: for j = 2 to k do
5: for i = 1 to n, andi 6= s, i 6= t andi /∈ I do
6: letJ = I ∪ i.
7: computev(i) = r(J , t)′r(J ,J )−1r(s,J )′

8: end for
9: if maxiv(i) ≤ r(s, t) then

10: find i0 = argmaxiv(i); addi0 to I.
11: else
12: break;
13: end if
14: end for
15: returnI

Analysis of BASSET-N.

In this subsection, we analyze the effectiveness and the efficiency of Alg.5. First, the effective-
ness of the proposed BASSET-N is guaranteed by the followinglemma. According to Lemma6,
although BASSET-N is a greedy algorithm, the results it outputs arenear-optimal.
Lemma 6. Effectiveness of BASSET-N.Let I be the subset of nodes selected by Alg.5 and
|I| = k0. Then, g(s, t, I) ≥ (1 − 1/e)max|J |=k0 g(s, t,J ), where g(s, t, I), and g(s, t,J ) are
defined by eq.(5.1).

3This is because in random walk with restart, we haver(i, j) = Q(j, i) for anyi, j [TFP08].
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Proof: It is easy to verify that the nodei0 selected in step 10 of Alg.5 satisfies
i0 = argmaxj /∈I,j 6=s,j 6=tg(s, t, I⋃

j). Also, we have g(s, t, φ) = 0, whereφ is an empty set. On
the other hand, according to Theorem2, g(s, t, I) is sub-modular wrt the subsetI. Therefore, we
have g(s, t, I) ≥ (1− 1/e)max|J |=k0 g(s, t,J ), which completes the proof. �

Next, we analyze the efficiency of BASSET-N, which is given inLemma74. We can draw
the following two conclusions, according to Lemma7: (1) the proposed BASSET-N achieves a
significant speedup over the straight-forward method (O(n ·k4) vs. O(

(
n
k

)
m)). For example, in the

graph with 100 nodes and 1,000 edges, in order to find the gateway withk = 5 nodes, BASSET-N
is more than6 orders of magnitudefaster, and the speedup quickly increases wrt the size of the
graph; (2) the proposed BASSET-N is applicable to large graphs since it is linear wrt the number
of the nodes.

Lemma 7. Efficiency of BASSET-N.The computational complexity of Alg.5 is upper bounded
byO(n · k4).

Proof: The cost for steps 1-2 is constant. The cost for step 3 isO(n). At each inner loop (steps
6-7), the cost isO(nj3 + nj2). The cost for steps 9-13 isO(n). The outer loop has no more than
k − 1 iterations. Putting these together, the computational cost for BASSET-N is:

Cost(BASSET-N)≤ n +
k∑

j=1

(nj3 + nj2 + n)

= n + nk + n
k(k + 1)(2k + 1)

6
+ n

k2(k + 1)2

4
= O(nk4) (5.18)

which completes the proof. �

5.4.3 BASSET-G for Problem4

BASSET-G Algorithm

Our fast solution for Problem4 is summarized in Alg.6. It works in a similar way as Alg.5: after
initialization (step 1), we first pick a nodei0 with the highest

∑
s∈S, t∈T

r(s,i)r(i,t)
r(i,i)

(step 3). Then,
in steps 4-14, we find the rest of the nodes in a greedy way. Thatis, in each outer-loop, we try
to find one more node while keeping the currentI unchanged. If the current subset of the nodes
I can completely disconnect the source group and the target group (by setting them as sinks), we
will stop the algorithm (step 10). As in Alg.5, all the proximity scores are computed from the
original graphA. Therefore, we can again utilize those powerful pre-computation based methods
to accelerate the whole process.

4Here, we assume that the cost to get one proximity score is constant, which can be achieved with pre-computation
methods (e.g., BLIN in Chapter2.
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Algorithm 6 BASSET-G
Require: the normalized adjacency matrixA, the source groupS, the target groupT , the budget

k and the parameterc
Ensure: a set of nodesI, where|I| ≤ k.

1: initialize I to be empty.
2: compute the proximity score

∑
s∈S, t∈T r(s, t) from the source groupS to the target groupT .

3: find i0 = argmaxi
∑

s∈S, t∈T
r(s,i)r(i,t)

r(i,i)
, wherei = 1, ..., n andi 6= s, i 6= t; addi0 to I.

4: for j = 2 to k do
5: for i = 1 to n, andi 6= s, i 6= t andi /∈ I do
6: letJ = I ∪ i.
7: computev(i) asv(i) =

∑
s∈S, t∈T r(J , t)′r(J ,J )−1r(s,J )′

8: end for
9: if maxiv(i) ≤∑

s∈S, t∈T r(s, t) then
10: find i0 = argmaxiv(i); addi0 to I.
11: else
12: break;
13: end if
14: end for
15: returnI

Analysis of BASSET-G.

The effectiveness and efficiency of the proposed BASSET-G are given in Lemma8 and Lemma9,
respectively. Similar as BASSET-N, the proposed BASSET-G is (1)near-optimal; and (2) fast and
scalable for large graphs.
Lemma 8. Effectiveness of BASSET-G.Let I be the subset of nodes selected by Alg.6 and
|I| = k0. Then, g(S, T , I) ≥ (1 − 1/e)max|J |=k0

g(S, T ,J ), where g(S, T , I), and g(S, T ,J )
are defined by eq.(5.9).
Proof: It is easy to verify that the nodei0 selected in step 10 of Alg.6 satisfies
i0 = argmaxj /∈I,j /∈S,j /∈T g(S, T , I⋃

j). Also, we have that g(S, T , φ) = 0, whereφ is an empty
set. On the other hand, according to Theorem2, g(S, T , I) is sub-modular wrt the subsetI.
Therefore, we have g(S, T , I) ≥ (1− 1/e)max|J |=k0 g(S, T ,J ), which completes the proof.�
Lemma 9. Efficiency of BASSET-G.The computational complexity of Alg.6 is upper bounded
byO(n · (max(k, |S|, |T |))4).
Proof: The cost for steps 1-2 is constant. The cost for step 3 isO(n|S||T |). At each inner loop
(steps 6-7), the cost isO(n|S||T | + nj3 + n|S||T |j2). The cost for steps 9-13 isO(n). The
outer loop has no more thank − 1 iterations. Putting these together, the computational cost for
BASSET-N is:

Cost(BASSET-G)≤ n|S||T |+
k∑

j=1

(n|S||T |+ nj3 + n|S||T |j2 + n)

= O(n(max(k, |S|, |T |))4) (5.19)
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which completes the proof. �

5.5 Experimental Evaluations

In this section we present experimental results. All the experiments are designed to answer the
following questions:
• Effectiveness:how effective are the proposed ‘Gateway-ness’ scores in real graphs?

• Efficiency:how fast and scalable are the proposed BASSET-N and BASSET-G?

5.5.1 Experimental Setup

Data sets.We used five real data sets, which are summarized in table7.2.

Table 5.2: Summary of the data sets
Name n m Weight
Karate 34 152 No

PolBooks 105 882 No
AC 421,807 2,133,632 No
AA 418,236 2,753,798 Yes

NetFlix 2,667,199 56,919,190 No

The first data set (Karate) is an un-weighted unipartite graph, which describes friendship
among the 34 members of a karate club at a US university [Zac77]. Each node is a member in
the karate club and the existence of the edge indicates that the two corresponding members are
friends. Overall, we haven = 34 nodes andm = 156 edges.

The second data set (PolBooks) is a co-purchasing book network.5 Each node is a political
book and there is an edge between two books if purchased by thesame person. Overall, we have
n = 105 nodes andm = 882 edges.

The third data set (AC) and the fourth data set (AA) are both from DBLP.6 The third data set
(AC) is an un-weighted bipartite graph. We have two types of nodes: author and conference. The
existence of the edge indicates that the corresponding author has published in the corresponding
conference. Overall, we have421, 807 nodes andm = 2, 667, 199 edges.

The fourth data set (AA) is a co-authorship network, where each node is an author andthe edge
weight is the number of the co-authored papers between the two corresponding persons. Overall,
we haven = 418, 236 nodes andm = 2, 753, 798 edges.

The last data set (NetFlix) is from the Netflix prize7. Rows represent users and columns repre-
sent movies. If a user has given a particular movie positive ratings (4 or 5), we connect them with

5http://www.orgnet.com/
6http://www.informatik.uni-trier.de/ l̃ey/db/
7http://www.netflixprize.com/
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an edge. In total, we have 2,667,199 nodes (2,649,429 users and 17,770 movies), and 56,919,190
edges.

Parameter settings and machine configurations.There is one parameter in BASSET-N
and BASSET-G, the probabilityc for random walk with restart. We setc = 0.95, as suggested
in [TFP08]. For the computational cost, we report the wall-clock time. All the experiments ran on
the same machine with four 2.4GHz AMD CPUs and 48GB memory, running Linux (2.6 kernel).
For each experiment, we run it 10 times and report the average.

5.5.2 Effectiveness

Here, we evaluate the effectiveness of the proposed ‘Gateway-ness’ scores. We first compare with
several candidate methods in terms of separating the sourcefrom the target. And then, we present
various case studies.

Quantitative Comparisons

The basic idea of the proposed ‘Gateway-ness’ scores is to find a subset of nodes which collectively
play an important role in measuring the proximity from the source node (or source group) to the
target node (or target group). Here, we want to validate thisbasic assumption. We compare it
with the following alternative choices: (a) selectingk nodes with the highest center-piece AND
score (CePS-AND) [TF06]; (b) selectingk nodes with the highest center-piece OR score (CePS-
OR) [TF06]; (c) randomly selectingk nodes (Rand); (d) randomly selectingk nodes from the
neighboring nodes of the source node and the target node (Neighbor-Rand); (e) selectingk nodes
with the highestr(s,i)r(i,t)

r(i,i)
(Topk-Ind). We randomly select a source nodes and a target nodet,8 and

then use the different methods to select a subsetI with k nodes. Figure 2 presents the comparison
results, where the x-axis is the number of nodes selected (k), and the y-axis is the normalized
decay in terms of the proximity score from the source nodes to the target nodet (r(s,t)−rI(s,t)

r(s,t)
). The

resulting curves are averaged over 1,000 randomly chosen source-target pairs. From figure5.2, we
can see that (1) the proposed BASSET-N performs best in termsof separating the source from the
target; (2)Topk-Ind, where we simply selectk nodes with highestr(s,i)r(i,t)

r(i,i)
, does not perform as

well as BASSET-N, where we want to find a subset ofk nodes whichcollectivelyhas the highest
scorer(I, t)′r(I, I)−1r(s, I)′.

Case Studies

Next, we will show some case studies, to demonstrate the effectiveness of BASSET-N and BASSET-
G.

Karate. We start withKarate graph, which is widely used in social network analysis. In
figure7.11, there are two different communities in the graph (shaded).In each community, there
are some ‘hub’ nodes (e.g., nodes 33 and 34 in the left community; and nodes 1 and 4 in the right
community). The two communities are connected by some ‘bridging nodes’ (e.g., nodes 3, 10,

8The result when source and target are a group of nodes is similar, and omitted for brevity.
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Figure 5.2: Effectiveness comparison between BASSET-N andalternatives. Normalized decay of
proximity vs.k. Higher is better. The proposed BASSET-N (red star) is the best.

19, 20). Table5.3 presents the resulting gateways of BASSET-N with the budgetk = 5 for a
few source-target pairs. The results are consistent with human intuition. The gateways either are
the local center of the community that the source/target node belongs to, or are bridging nodes
that connect the two communities when the source node and thetarget node belong to different
communities. For example, ifs = 1 andt = 33, the resulting nodes 3, 10, 11 are bridging nodes,
while node 34 is the local center for the left community. Notethat, we always return less than or
equal tok = 5 nodes. For example, ifs = 15 andt = 34, we only output one node (node 1) as the
gateway. This is because all the paths from node 15 to node 34 must go through node 1.

Table 5.3: BASSET-N onKarategraph
Source (s) Target (t) Gateways(I)

24 31 {33,34}
15 34 {1}
1 33 {3,10,11,21,34}

PolBooks. For this data set, the nodes are political books and the existence of the edge indicates
the co-purchasing (by the same person) of the two books. Eachbook is annotated by one of the
following three labels: ‘liberal’, ‘conservative’ and ‘neutral’. We pick a ‘liberal’ book (‘The Price
of Loyalty’) as the source node, and a ‘conservative’ book (‘Losing Bin Laden’) as the target node.
Then, we ran the proposed BASSET-N to find the gateway with 10 nodes. The result is presented
in table5.4. The result is again consistent with human intuition, - the resulting gateway books are
either popular books in one of the two communities (‘conservative’ vs. ‘liberal’) such as, ‘Bush
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Figure 5.3: Karate graph

country’ from ‘conservative’, ‘Back up suck up’ from ‘liberal’, etc; or those ‘neutral’ books which
are likely to be purchased by readers from both communities (e.g., ‘Sleeping with the devil’, etc).

Table 5.4: BASSET-N onPolBooksGraph. (‘c’ for ‘conservative’, ‘l’ for ‘liberal’, and ‘n’ for
‘neutral’)

Node Index Book Title Label
10 Bush country c
13 Off with their heads c
103 Back up such up l
5 Sleeping with the devil n
8 Ghost wars n
77 Plan of attack n
78 Bush at war c
59 Rise of the vulcanes c
52 Allies c
42 The Bushes c

AC. This is a bipartite graph. Given a source conference/author and a target conference/author,
we can run BASSET-N to find either the gateway conferences or the gateway authors. Table5.5
gives one such example when the source is ‘VLDB’ and the target is ‘NIPS’. Conceptually, we
treat ann1× n2 bipartite graph as a(n1 + n2)× (n1 + n2) unipartite graph, and we further restrict
the search to the desired node type. Again, we can see that theresults make sense. The resulting
gateway authors are either productive in one of the two fields: databases vs. statistics, (e.g., Prof.
Michael I. Jordan in statistics, Prof. Hector Garcia-Molina in databases, etc); or productive in
data mining (e.g., Dr. Rakesh Agrawal, Prof. Jiawei-Han), which is an intersection field between
statistics and databases. We have similar observations forthe resulting gateway conferences. For
example, ‘SIGMOD’ and ‘UAI’ are isomorphic (i.e., have verysimilar neighbor sets) to ‘VLDB’
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and ‘NIPS’, respectively; and ‘KDD’ is one major conferencein data mining, which is a highly
plausible major connection from ‘VLDB’ (databases) to ‘NIPS’ (statistics / machine learning).

Table 5.5: BASSET-N onACgraph. From the source ‘VLDB’ to the target ‘NIPS’.
Gateway Michael I. Jordan,Philip S. Yu,
Authors Jiawei Han,Geoffrey E. Hinton,

H. V. Jagadish,Christos Faloutsos,
Sebastian Thrun,Rakesh Agrawal,

Hector Garcia-Molina,Raghu Ramakrishnan
Gateway SIGMOD,ICDE,ICML, IJCAI,KDD,

Conferences AAAI,CIKM,ICANN,SAC,UAI

Table 5.6: BASSET-G onAANetwork.

(a) A group of people in ‘text’ to a group of people in ‘databases’

(b) A group of people in ‘theory ’ to a group of people in ‘bioinfomatics’

AA. We use this data set to perform case studies for the proposedBASSET-G. We choose (1)
a group of people from a certain field (e.g., ‘text’, ‘theory’, etc) as the source groupS; and (2)
another group of people in some other field (e.g., ‘databases’, ‘bioinfomatics’, etc) as the target
groupT . Then, we ran the proposed BASSET-N to find the gateway withk = 10 nodes. Table5.6
lists some results. They are all consistent with human intuition, - the resulting authors are either
productive authors in one of the two fields, or multi-disciplinary, who have close collaborations to
both the source and the target groups of authors.
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5.5.3 Efficiency

We will study the wall-clock running time of the proposed BASSET-N and BASSET-G here. Ba-
sically, we want to answer the following two questions:

1. (Speed)What is the speedup of the proposed BASSET-N and BASSET-G over the straight-
forward methods?

2. (Scalability)How do BASSET-N and BASSET-G scale with the size of the graph (n andm)?
First, we compare BASSET-N and BASSET-G with two straightforward methods: (1) ‘Com-

RWR’, where we use combinatorial enumeration to find the gateway and, for each enumeration,
we compute the proximity from thenewgraph; and (2) ‘Com-Eval’, where we use combinatorial
enumeration to find the gateway, and for each enumeration, wecompute the proximity from the
original graph. Figure5.4 and figure5.5 show the comparison on two real data sets. We can
draw the following conclusions. (1) Straightforward methods (‘Com-RWR’ and ‘Com-Eval’) are
computationally intractable even for a small graph. For example, on theKaratedata set with only
34 nodes, it takes more than20, 560 seconds and100, 000 seconds to find thek = 10 gateway
by ‘Com-Eval’ and by ‘Com-RWR’, respectively. (2) The speedup of the proposed BASSET-N
and BASSET-G over both ‘Com-Eval’ and ‘Com-RWR’ is significant - in most cases, we achieve
several (up to 6) orders of magnitudespeedups. (3) The speedup of the proposed BASSET-N and
BASSET-G over both ‘Com-RWR’ and ‘Com-Eval’ quickly increases wrt the size of the gateway
k. Note that we stop running the program if it takes more than 100,000 seconds (i.e., longer than a
day).

Next, we evaluate the scalability of the proposed BASSET-N and BASSET-G wrt the size of
the graph, using the largest data set (NetFlix). From figure5.6 and figure5.7, we can make the
following conclusions: (1) if we fix the number of nodes (n) in the graph, the wall-clock time of
both BASSET-N and BASSET-G is almostconstantwrt the number of edges (m); and (2) if we fix
the number of edges (m) in the graph, the wall-clock time of both BASSET-N and BASSET-G is
linear wrt the number of nodes (n). Therefore, they are suitable for large graphs.

5.6 Related Work

In this section, we review the related work, which can be categorized into two parts:
Betweenness centrality.The proposed ‘Gateway-ness’ scores relate to measures of between-

ness centrality, both those based on the shortest path [Fre77], as well as those based on random
walk [New05]. When the gateway set size isk = 1, the proposed ‘Gateway-ness’ scores can be
viewed asquery-specificbetweenness centrality measures. Moreover, in the proposed BASSET-
N and BASSET-G, we aim to find a subset of nodescollectively, wherein traditional betweenness
centrality, we usually calculate the score for each nodeindependently(and then might pickk nodes
with the highest individual scores).

Connection subgraphs.In the proposed BASSET-N, the idea of finding a subset of nodeswrt
the source/target is also related to the concept of connection subgraphs, such as [FMT04, KNV06,
TF06]. However, in connection subgraphs, we aim to find a subset ofnodes which havestrong
connections among themselves for the purpose of visualization. While in the proposed BASSET-
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Figure 5.4: Comparison of speed onKarategraph. Wall-clock time vs.k. Lower is better. Time
is in logarithm scale. The proposed BASSET-N and BASSET-G (red star) are significantly faster.

N, we implicity encourage the resulting subset of nodes to bedisconnected with each other so that
they are able tocollectively disconnectthe target node from the source node to the largest extent
(if we set them as sinks). It is interesting to notice that, ifwe want to find the gateway withk = 1
for BASSET-N, it can be viewed as anormalized directedversion of CePS-AND score [TF06].9

Moreover, We allow the more general case where the source/target is a group of nodes in the

9To see this, notice that in the casek = 1, in BASSET-N, we want to find the node with the highestr(s,i)r(i,t)
r(i,i) ;

while in CePS-AND [TF06], it picks the nodes with the highestr(s, i)r(t, i), wherei = 1, ..., n andi 6= s, i 6= t.
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Figure 5.5: Comparison of speed onPolBooksgraph. Wall-clock time vs.k. Lower is better. Time
is in logarithm scale. The proposed BASSET-N and BASSET-G (red star) are significantly faster.

proposed BASSET-G; however in connection subgraphs, the source/target is always a single node.

5.7 Conclusion

In this chapter, we study how to find good ‘gateway’ nodes in a graph, given one or more source
and target nodes. Our main contributions are: (a) we formulate the problem precisely; (b) we
develop BASSET-N and BASSET-G, two fast (up to6,000,000xspeedup) and scalable (linear wrt
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Figure 5.6: Scalability of BASSET. Wall-clock time vs. the size of the graph. Lower is better.
|S| = |T | = 5.

the number of the nodes in the graph) algorithms to solve it ina provably near-optimal fashion,
using sub-modularity. We applied the proposed BASSET-N andBASSET-G on real data sets to
validate the effectiveness and efficiency.
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Figure 5.7: Scalability of BASSET-G. Wall-clock time vs. the size of the graph. Lower is better.
|S| = |T | = 5.
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Part III

Querying Dynamic Graphs
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Chapter 6

Proximity Tracking

Summary of This Chapter
Questions we want to answer:
Q1: How to define a good proximity score in a dynamic setting (i.e., graphs are chang-

ing over time)?

Q2: How to incrementally track the proximity between nodes of interest, as edge are
updated?

Our answers and contributions
A1: We proposed a novel proximity and centrality score for time-evolving graphs.

A2: We proposed two fast incremental algorithms, achieving176xspeedup, without
quality loss.

6.1 Introduction

Measuring proximity (a.k.a relevance) between nodes on bipartite graphs (see [Koz92] for the
formal definition of bipartite graph) is a very important aspect in graph mining and has many real
applications, such as ranking, spotting anomaly nodes, connection subgraphs, pattern matching
and many more.

Despite their success, most existing methods are designed for static graphs. In many real set-
tings, the graphs are evolving and growing over time, e.g. new links arrive or link weights change.
Consider an author-conference evolving graph, which effectively contains information about the
number of papers (edge weights) published by each author (type 1 node) in each conference (type
2 node) for each year (timestamp). Trend analysis tools are becoming very popular. For example,
Google Trends1 provides useful insights, despite the simplicity of its approach. For instance, in the
setting of our example, a tool similar to Google Trends mightanswer questions such as “How does

1http://www.google.com/trends/
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(a) The ranking of centrality for some authors in NIPS.

(b) Philip S. Yu’s top 5 conferences at four time steps, usinga window of 5 years.

Figure 6.1: Scaling sophisticated trend analysis to time-evolving graphs. See Section6.6.3 for
detailed description of results.

the number of papers published by an author vary over time?” or “ How does the number of papers
published in a particular conference or research area (i.e., set of conferences) vary over time?”
This kind of analysis takes into account paper counts for either an author or a conference alone
or, at best, a single, specific author-conference pair. Instead, we want to employ powerful analy-
sis tools inspired by the well-established model of random walk with restart to analyze the entire
graph and provide further insight, taking into account all author-conference information so far, i.e.,
including indirect relationships among them. However, if we need to essentially incorporate all
pairwise relationships in the analysis, scalability quickly becomes a major issue. This is precisely
the problem we address in this chapter: how can we efficientlykeep track of proximity and avoid
global re-computation as new information arrives. Fig.6.1shows examples of our approach.

In this chapter, we address such challenges in multiple dimensions. In particular, this chapter
addresses the following questions:

Q1: How to define a good proximity score in a dynamic setting?

Q2: How to incrementally track the proximity scores between nodes of interest, as edges are
updated?
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Q3: What data mining observations do our methods enable?
We begin in Section 2 with the problem definition and, in Section 3, we propose our proximity

definition for dynamic bipartite graphs. We carefully design our measurements to deal with (1) the
links arriving at different time steps and (2) important properties, such as monotonicity. Proximity
will also serve as the basis of our centrality measurement inthe dynamic setting. Then, in Section
4, we study computational issues thoroughly and propose twofast algorithms, which are the core
of computing our dynamic proximity and centrality measurements. The complete algorithms to
track proximity (Track-Proximity) and centrality (Track-Centrality) are presented in Section 5. In
Section 6, we verify the effectiveness and efficiency of our proposed dynamic proximity on real
datasets.

The major contributions of this chapter can be summarized asfollows:
1: Definitions of proximity and centrality for time-evolving graphs.

2: Two fast update algorithms (Fast-Single-UpdateandFast-Batch-Update), without any qual-
ity loss.

3: Two algorithms to incrementally track centrality (Track-Centrality) and proximity (Track-
Proximity) in any-time fashion.

4: Extensive experimental case-studies on several real datasets, showing how different queries
can be answered, achieving up to15∼176xspeed-up.

6.2 Problem Definitions

Table6.1 lists the main symbols we use throughout the paper. Following standard notation, we
use capital letters for matricesM, and arrows for vectors. We denote the transpose with a prime
(i.e.,M′ is the transpose ofM), and we use parenthesized superscripts to denote time (e.g., M(t)

is the time-aggregate adjacency matrix at timet). When we refer to a static graph or, when time
is clear from the context, we omit the superscript(t). We use subscripts to denote the size of
matrices/vectors (e.g.0n×l means a matrix of sizen × l, whose elements are all zero). Also, we
represent the elements in a matrix using a convention similar to Matlab, e.g.,M(i, j) is the element
at theith row andjth column of the matrixM, andM(i, :) is theith row of M, etc. Without loss
of generality, we assume that the numbers of type 1 and type 2 objects are fixed (i.e.,n andl are
constant for all time steps); if not, we can reserve rows/columns with zero elements as necessary.

At each time step, we observe a set of new edges or edge weight updates. These represent the
link information that is available at the finest time granularity. We use thetime-slice matrix, or
slice matrix for brevity, S(t) to denote the new edges and additional weights that appear attime
stept. For example, given a set of authors and annual conferences,the number of papers that
authori publishes in conferencej during yeart is the entryS(t)(i, j). In this paper, we focus only
on the case of edge additions and weight increases (e.g., authors always publish new papers, and
users always rate more movies). However, the ideas we develop can be easily generalized to handle
other types of link updates, such as links deletions or edge weights decreases.

Given the above notion, a dynamic, evolving graph can be naturally defined as a sequence of
observed new edges and weights,S(1),S(2), . . . ,S(t), . . .. However, the information for a single
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Table 6.1: Symbols
Symbol Definition and Description

M(t) n× l time-aggregate adjacency matrix at timet
S(t) n× l slice matrix at timet
∆M(t) n× l difference matrix at time t
D

(t)
1 n× n out-degree matrix for type 1 object,

i.e. D(t)
1 (i, i) =

∑n
j=1 M(t)(i, j), and

D
(t)
1 (i, j) = 0 (i 6= j)

D
(t)
2 l × l out-degree matrix for type 2 object,

i.e.D
(t)
2 (i, i) =

∑n
j=1 M(t)(j, i), and

D
(t)
2 (i, j) = 0 (i 6= j)

I identity matrix
0 a matrix with all elements equal to 0
1 a matrix with all elements equal to 1
n, l number of nodes for type 1 and type 2

objects, respectively (n > l)
m number of edges in the bipartite graph
c (1− c) is fly-out probability for random walk

with restart (set to be 0.95 in the paper)
r
(t)
i,j proximity from nodei to nodej at timet

time slice may be too sparse for meaningful analysis, and/orusers typically want to analyze larger
portions of the data to observe interesting patterns and trends. Thus, from a sequence of slice
matrices observed so far,S(j) for 1 ≤ j ≤ t, we construct a bipartite graph by aggregating time
slices. We propose three different aggregation strategies, which place different emphasis on edges
based on their age. In all cases, we use the termtime-aggregate adjacency matrix(or adjacency
matrix for short), denoted byM(t), for the adjacency matrix of the bipartite graph at time stept.
We will introduce the aggregation strategies in the next section).

Finally, to simplify the description of our algorithms, we introduce thedifference matrix
∆M(t), which is the difference between two consecutive adjacencymatrices, i.e.,∆M(t) , M(t)−
M(t−1). Note that, depending on the aggregation strategy, difference matrix∆M(t) may or may
not be equal to the slice matrixS(t).

An important observation from many real applications is that, despite the large size of the
graphs involved (with hundreds of thousands or millions of nodes and edges), the intrinsic di-
mension (or, effective rank) of their corresponding adjacency matrices is usually relatively small,
primarily because there are relatively fewer objects of onetype. For example, on the author-
conference graph from theAC dataset (see Section 6), although we have more than 400,000 au-
thors and about 2 million edges, with only∼ 3500 conferences. In the user-movie graph from the
NetFlix dataset, although we have about 2.7 million users with more than 100 million edges, there
are only 17,700 movies. We use the termskewedto refer to such bipartite graphs, i.e.,n, m≫ l.
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With the above notation, our problems (pTrackandcTrack) can be formally defined as follows:
Problem 5. pTrack(Proximity Tracking)

Given: (i) a large,skewed time-evolving bipartite graph{S(t), t = 1, 2, ...}, and (ii) the query
nodes of interest (i, j, ...)

Track: (i) the top-k most related objects for each query node at each time step; and (ii) the
proximity score (or the proximity rank) for any two query nodes at each time step.

There are two different kinds of tracking tasks inpTrack, both of which are related to proxim-
ity. For example, in a time-evolving author-conference graph we can track “What are the major
conferences for John Smith in the past 5 years?” which is an example of task (i); or “How much
credit (importance) has John Smith accumulated in the KDD Conference so far?” which is an
example of task (ii). We will propose an algorithm (Track-Proximity) in Section 5 to deal with
pTrack.
Problem 6. cTrack(Centrality Tracking)

Given: (i) a large,skewed time-evolving bipartite graph{S(t), t = 1, 2, ...}, and (ii) the query
nodes of interest (i, j, ...)

Track: (i) the top-k most central objects in the graph, for each query node and at each time step;
and (ii) the centrality (or the rank of centrality), for eachquery node at each time step.

In cTrack, there are also two different kinds of tracking tasks, both of which are related to
centrality. For example, in the same time-evolving author-conference graph, we can track “How
influential is author-A over the years?” which corresponds to task (i); or “Who are the top-10
influential authors over the years?” which corresponds to task (ii). Note that in task (i) ofcTrack,
we do not need the query nodes as inputs. We will propose another algorithm (Track-Centrality)
in Section 5 to deal withcTrack.

For all these tasks (pTrackandcTrack), we want to provide any-time answers. That is, we
want to quickly maintain up-to-date answers as soon as we observe a new slice matrixS(t). Some
representative examples of our methods are also shown in Figure6.1.

6.3 Dynamic Proximity and Centrality: Definitions

In this section, we introduce our proximity and centrality definitions for dynamic bipartite graphs.
We begin by reviewing random walk with restart, which is a good proximity measurement for
static graphs. We then extend it to the dynamic setting by 1) using different ways to aggregate
edges from different time steps, that is to place different emphasis on more recent links; and 2)
usingdegree-preservationto achieve monotonicity for dynamic proximity.

6.3.1 Background: Static Setting

Among many others, one very successful method to measure proximity is random walk with restart
(RWR), which has been receiving increasing interest in recent years.
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For a static bipartite graph, random walk with restart is defined as follows: Consider a random
particle that starts from nodei. The particle iteratively transits to its neighbors with probability
proportional to the corresponding edge weights. Also at each step, the particle returns to nodei
with some restart probability(1− c). The proximity score from nodei to nodej is defined as the
steady-state probabilityri,j that the particle will be on nodej [PYFD04]. Intuitively, ri,j is the
fraction of time that the particle starting from nodei will spend on each nodej of the graph, after
an infinite number of steps.

If we represent the bipartite graph as a uni-partite graph with the following square adjacency
matrixW and degree matrixD:

W =

(
0n×n M

M′ 0l×l

)

D =

(
D1 0n×l

0l×n D2

)
(6.1)

then, all the proximity scoresri,j between all possible node pairsi, j are determined by the matrix
Q:

ri,j = Q(i, j)

Q = (1− c) · (I(n+l)×(n+l) − cD−1W)−1 (6.2)

Based on the dynamic proximity as in equation6.4, we define the centrality for a given source
nodes as the average proximity score from all nodes in the graph (including s itself) to s. For
simplicity, we ignore the time step superscript. That is,

centrality(s) ,

∑n+l
i=1 ri,s

n + l
(6.3)

6.3.2 Dynamic Proximity

Since centrality is defined in terms of proximity, we will henceforth focus only on the latter. In
order to apply the random walk with restart (see equation6.2) to the dynamic setting, we need to
address two subtle but important points.

The first is how to update the adjacency matrixM(t), based on the observed slice matrixS(t).
As mentioned before, usually it is not enough to consider only the current slice matrixS(t). For
example, examining publications from conferences in a single year may lead to proximity scores
that vary widely and reflect more “transient” effects (such as a bad year for an author), rather than
“true” shifts in his affinity to research areas (for example,a shift of interest from databases to data
mining, or a change of institutions and collaborators). Similarly, examining movie ratings from a
single day may not be sufficient to accurately capture the proximity of, say, two users in terms of
their tastes. Thus, in subsection 3.2.1, we propose three different strategies to aggregate slices into
an adjacency matrixM(t) or, equivalently, to updateM(t). Note, however, that single-slice analysis
can be viewed as a special case of the “sliding window” aggregation strategy.
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The second point is related to the “monotonicity” of proximity versus time. In a dynamic
setting with only link additions and weight increases (i.e., S(t)(i, j) ≥ 0, for all time stepst and
nodesi, j), in many applications it is desirable that the proximity between any two nodes does not
drop. For example, consider an author-conference bipartite graph, where edge weights represent
the number of papers that an author has published in the corresponding conference. We would like
a proximity measure that represents the total contribution/credit that an author has accumulated
in each conference. Intuitively, this score should not decrease over time. In subsection 3.2.2, we
proposedegree-preservationto achieve this property.

Updating the adjacency matrix.

As explained above, it is usually desirable to analyze multiple slices together, placing different
emphasis on links based on their age. For completeness, we describe three possible aggregation
schemes.

Global Aggregation. The first way to obtain the adjacency matrixM(t) is to simply add the
new edges or edge weights inS(t) to the previous adjacency matrixM(t−1) as follows:

M(t) =
t∑

j=1

S(j)

We call this schemeglobal aggregation. It places equal emphasis on all edges from the beginning
of time and, only in this case,∆M(t) = S(t). Next, we define schemes that place more emphasis
on recent links. For both of these schemes,∆M(t) 6= S(t).

Sliding Window. In this case, we only consider the edges and weights that arrive in the past
len time steps, where the parameterlen is the length of the sliding window:

M(t) =

t∑

j=max{1, t−len+1}

S(j)

Exponential Weighting. In this case, we “amplify” the new edges and weights at timet by an
exponential factorβj(β > 1): M(t) =

∑t
j=1 βjS(j).

Fixed degree matrix.

In a dynamic setting, if we apply the actual degree matrixD(t) to equation (6.2) at timet, the mono-
tonicity property will not hold. To address this issue, we propose to use degree-preservation [KNV06,
TKF07]. That is, we use the same degree matrixD̃ at all time steps.

Thus, our proximityr(t)
i,j from nodei to nodej at time stept is formally defined as in equa-

tion (6.4). The adjacency matrixM(t) is computed by any update method in subsection 3.2 and the
fixed degree matrix̃D is set to be a constant (a) times the degree matrix at the first time step—we
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always seta = 1000 in this chapter.

r
(t)
i,j = Q(t)(i, j)

Q(t) = (1− c) · (I(n+l)×(n+l) − cD̃−1W(t))−1

W(t) =

(
0n×n M(t)

M′(t) 0l×l

)

D̃ = a ·D(1) (6.4)

We have the following lemma for our dynamic proximity (equation (6.4)). By the lemma10, if the
actual degreeD(t)(i, i) does not exceed the fixed degreeD̃(i, i) (condition 2), then the proximity
between any two nodes will never drop as long as the edge weights in adjacency matrixM(t) do
not drop (condition 1).
Lemma 10. Monotonicity Property of Dynamic Proximity If (1) all elements in the difference
matrix ∆M(t) are non-negative; and (2)D(t)(i, i) ≤ D̃(i, i) (i = 1, 2, ..., (n + l)); then we have
r
(t)
i,j ≥ r

(t−1)
i,j for any two nodes (i, j).

Proof: First of all, sinceD(t)(i, i) ≤ D̃(i, i), we have‖cD̃−1W(t)‖k → 0 ask → ∞. Therefore,
we haveQ(t) = (1 − c)

∑∞
k=0(cD̃

−1W(t))k. On the other hand, since all elements in the differ-
ence matrix∆M(t) are non-negative, we haveW(t)(i, j) ≥W(t−1)(i, j) for any two nodes(i, j).
Therefore, we haveQ(t)(i, j) ≥ Q(t−1)(i, j) for any two nodes(i, j), which completes the proof.
�

Finally, we should point out thata, D and the non-negativity ofM are relevant only if a
monotonic score is desired. Even without these assumptions, the correctness or efficiency of our
proposed algorithms are not affected. If non-monotonic scores are permissible, none of these
assumptions are necessary.

6.4 Dynamic Proximity: Computations

6.4.1 Preliminaries: BB LIN on Static Graphs

In this section, we introduce our fast solutions to efficiently track dynamic proximity.
One problem with random walk with restart is computational efficiency, especially for large

graphs. According to the definition (equation (6.4)), we need to invert an(n + l) × (n + l) ma-
trix. This operation is prohibitively slow for large graphs. In Chapter2, we proposed BBLIN
for skewed, static bipartite graphs, with which we only needto pre-compute and store a matrix
inversion of sizel × l to get all possible proximity scores.

Based on BBLIN, we only need to pre-compute and store a matrix inversionΛ of sizel×l. For
skewed bipartite graphs (l ≪ m, n), Λ is much cheaper to pre-compute and store. For example, on
the entireNetFlixuser-movie bipartite graph, which contains about2.7M users, about18K movies
and more than100M edges (see Section 6 for the detailed description of the dataset), it takes 1.5
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Algorithm 7 GetQij
Require: The core matrixΛ, the normalized adjacency matricesMr (for type 1 objects), andMc

(for type 2), and the query nodesi andj (1 ≤ i, j ≤ (n + l)).
Ensure: The proximityri,j from nodei to nodej

1: if i ≤ n andj ≤ n then
2: q(i, j) = 1(i = j) + c2Mr(i, :) ·Λ ·Mc(:, j)
3: else ifi ≤ n andj > n then
4: q(i, j) = cMr(i, :) ·Λ(:, j − n)
5: else ifi > n andj ≤ n then
6: q(i, j) = cΛ(i− n, :) ·Mc(:, j)
7: else
8: q(i, j) = Λ(i− n, j − n)
9: end if

10: Return: ri,j = (1− c)q(i, j)

hours to pre-compute the18K × 18K matrix inversionΛ. For pre-computation stage, this is quite
acceptable.

On the other hand, in the on-line query stage, we can get any proximity scores using the func-
tion GetQij2 . This stage is also cheap in terms of computation. For example, to output a proximity
score between two type-1 objects (step 2 inGetQij ) , only one sparse vector-matrix multiplication
and one vector-vector multiplication are needed. For a proximity score between one type-1 object
and one type-2 object, only one sparse vector-vector multiplication (step 4 and step 6) is necessary.
Finally, for a proximity score between two type-2 objects (step 8), only retrieving one element in
the matrixΛ is needed. As an example, on theNetFlix dataset, it takes less than 1 second to
get one proximity score. Note that all possible proximity scores are determined by the matrixΛ

(together with the normalized adjacency matricesMr andMc). We thus refer to the matrixΛ as
the thecore matrix.

6.4.2 Challenges for Dynamic Setting

In a dynamic setting, since the adjacency matrix changes over time, the core matrixΛ(t) is no
longer constant. In other words, the steps 1-4 in BBLIN themselves become a part of the on-
line stage since we need to update the core matrixΛ(t) at each time step. If we still rely on the
straightforward strategy (i.e., the steps 1-4 in BBLIN to update the core matrix (referred to as
“Straight-Update”), the total computational complexity for each time step isO(l3 + m · l). Such
complexity is undesirable for the online stage. For example, 1.5 hours to recompute the core matrix
for theNetFlixdataset is unacceptably long.

Thus, our goal is to efficiently update the core matrixΛ(t) at time stept, based on the previous
core matrixΛ(t−1) and the difference matrix∆M(t). For simplicity, we shall henceforth assume
the use of the global aggregation scheme to update the adjacency matrix. However, the ideas can

2Note that in step 2 ofGetQij , 1(.) is the indicator function, i.e. it is 1 if the condition in(.) is true and 0 otherwise.
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be easily applied to the other schemes, sliding window and exponential weighting.

6.4.3 Our Solution 1: Single Update

Next, we describe a fast algorithm (Fast-Single-Update) to update the core matrixΛ(t) at time step
t, if only one edge(i0, j0) changes at timet. In other words, there is only one non-zero element
in ∆M(t): ∆M(t)(i0, j0) = w0. To simplify the description of our algorithm, we present the
difference matrix∆M(t) as a from-to list:[i0, j0, w0].

Algorithm 8 Fast-Single-Update

Require: The core matrixΛ(t−1), the normalized adjacency matricesMr(t−1) (for type 1 objects)
andMc(t−1) (for type 2 objects) at time stept−1, and the difference list[i0, j0, w0] at the time
stept.

Ensure: The core matrixΛ(t), the normalized adjacency matricesMr(t) andMc(t) at time stept.
1: Mr(t) = Mr(t−1), andMc(t) = Mc(t−1).
2: Mr(t)(i0, j0) = Mr(t)(i0, j0) + w0

D̃(i0,i0)

3: Mc(t)(j0, i0) = Mc(t)(j0, i0) + w0

D̃(j0+n,j0+n)

4: X = 0l×2, andY = 02×l

5: X(:, 1) = Mc(t)(:, i0), andX(j0, 2) = w0

D̃(j0+n,j0+n)

6: Y(1, j0) = c2·w0

D̃(i0,i0)
, andY(2, :) = c2 ·Mr(t−1)(i0, :)

7: L = (I2×2 −Y ·Λ(t−1) ·X)−1

8: Λ(t) = Λ(t−1) + Λ(t−1) ·X · L ·Y ·Λ(t−1)

The correctness ofFast-Single-Updateis guaranteed by the following theorem:
Theorem 3. Correctness ofFast-Single-Update. The matrixΛ(t) maintained byFast-Single-
Updateis exactly the core matrix at time stept, i.e.,Λ(t) = (I− c2Mc(t)Mr(t))−1.
Proof: first of all, since only one edge(i0, j0) is updated at timet, only theith0 row of the matrix
Mr(t) and theith0 column of the matrixMc(t) change at timet

Let V(t) = c2Mc(t) ·Mr(t), andV(t−1) = c2Mc(t−1) ·Mr(t−1). By the spectral representation
of V(t) andV(t−1), we have the following equation:

Vt = c2
n∑

k=1

Mc(t)(:, k) ·Mr(t)(k, :)

= Vt−1 + δ (6.5)

whereδ indicates the difference betweenV(t) andV(t−1). This gives us:

δ =
1∑

s=0

(−1)s · c2Mc(t)(:, i0) ·Mr(t−s)(i0, :) = X ·Y

where the matricesX andY are defined in steps 4-6 of Alg.8. Putting all the above together, we
have

Λt = (I−Vt)−1 = (I−Vt−1 −X ·Y)−1 (6.6)
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Applying the Sherman-Morrison Lemma [PC90] to equation (6.6), we have

Λ(t) = Λ(t−1) + Λ(t−1) ·X · L ·Y ·Λ(t−1)

where the2× 2 matrixL is defined in step 7 of Alg.8. This completes the proof. �

Fast-Single-Updateis significantly more computationally efficient, as shown bythe next lemma.
In particular, the complexity ofFast-Single-Updateis onlyO(l2), as opposed toO(l3 +ml) for the
straightforward method.
Lemma 11. Efficiency of Fast-Single-Update. The computational complexity of Fast-Single-
Update isO(l2).
Proof: The computational cost for step 1 isO(l2). It is O(1) for steps 2-3,O(l) for steps 4-6 and
O(l2) for steps 7-8. Putting it together, we have that the total cost for Fast-Single-Updateis O(l2),
which completes the proof. �

6.4.4 Our Solutions 2: Batch Update

In many real applications, more than one edges typically change at each time step. In other words,
there are multiple non-zero elements in the difference matrix ∆M(t). Suppose we have a total ofm̂
edge changes at time stept. An obvious choice is to repeatedly callFast-Single-Updatêm times.

An important observation from many real applications is that it is unlikely thesem̂ edges are
randomly distributed. Instead, they typically form a low-rank structure. That is, if thesêm edges
involve n̂ type 1 objects and̂l type 2 objects, we havên ≪ m̂ or l̂ ≪ m̂. For example, in an
author-conference bipartite graph, we will often add a group of m̂ new records into the database
at one time step. In most cases, these new records only involve a small number of authors and/or
conferences—see Section 6 for the details. In this section,we show that we can do a single batch
update (Fast-Batch-Update) on the core matrix. This is much more efficient than either doing m̂
single updates repeatedly, or recomputing the core matrix from scratch. The main advantage of
our approach lies on the observation that the difference matrix has low rank, and our upcoming
algorithm needs time proportional to therank, as opposed to the number of changed edgesm̂. This
holds in real settings, because when a node is modified, several of its edges are changed (e.g., an
author publishes several papers in a given conferences eachyear).

Let I = {i1, ..., in̂} be the indices of the involved type 1 objects. Similarly, letJ = {j1, ..., jl̂}
be the indices of the involved type 2 objects. We can represent the difference matrix∆M(t) as an
n̂ × l̂ matrix. In order to simplify the description of the algorithm, we define two matrices∆Mr
and∆Mc as follows:

∆Mr(k, s) =
∆M(t)(ik, js)

D̃(ik, ik)

∆Mc(s, k) =
∆M(t)(js, ik)

D̃(js + n, js + n)

(k = 1, ..., n̂, s = 1, ..., l̂) (6.7)

The correctness ofFast-Batch-Updateis guaranteed by the following theorem:
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Algorithm 9 Fast-Batch-Update

Require: The core matrixΛ(t−1), the normalized adjacency matricesMr(t−1) (for type 1 objects)
andMc(t−1) (for type 2 objects) at time stept−1, and the difference matrix∆M(t) at the time
stept

Ensure: The core matrixΛ(t), the normalized adjacency matricesMr(t) andMc(t) at time stept.
1: Mr(t) = Mr(t−1), andMc(t) = Mc(t−1).
2: define∆Mr and∆Mc as in equation (6.7)
3: Mr(t)(I,J ) = Mr(t)(I,J ) + ∆Mr
4: Mc(t)(J , I) = Mc(t)(J , I) + ∆Mc
5: let k̂ = min(̂l, n̂). let X = 0l×2k̂, andY = 02k̂×l

6: if l̂ < n̂ then
7: X(:, 1 : l̂) = Mc(t−1)(:, I) ·∆Mr
8: Y(l̂ + 1 : 2l̂, :) = ∆Mc ·Mr(t−1)(I, :)
9: X(J , 1 : l̂) = X(J , 1 : l̂) + ∆Mc ·∆Mr

10: X(J , 1 : l̂) = X(J , 1 : l̂) + Y(l̂ + 1 : 2l̂,J )
11: Y(l̂ + 1 : 2l̂,J ) = 0
12: for k = 1 : k̂ do
13: setY(k, jk) = 1, andX(jk, k + k̂) = 1
14: end for
15: setX = c2 ·X, andY = c2 ·Y
16: else
17: X(:, 1 : n̂) = Mc(t)(:, I)
18: X(J , n̂ + 1 : 2n̂) = ∆Mc
19: Y(1 : n̂,J ) = c2 ·∆Mr
20: Y(n̂ + 1 : 2n̂, :) = c2 ·Mr(t−1)(I, :)
21: end if
22: L = (I2k̂×2k̂ −Y ·Λ(t−1) ·X)−1

23: Λ(t) = Λ(t−1) + Λ(t−1) ·X · L ·Y ·Λ(t−1)

Theorem 4. Delta Matrix Inversion Theorem. The matrixΛ(t) maintained byFast-Batch-
Updateis exactly the core matrix at time stept, i.e.,Λ(t) = (I− c2Mc(t)Mr(t))−1.
Proof: Let V(t) = c2Mc(t) ·Mr(t), andV(t−1) = c2Mc(t−1) ·Mr(t−1). Similar as the proof for
theorem3, we have

V(t) = V(t−1) −X ·Y (6.8)

where the matricesX andY are defined in steps 6-21 of Alg.9.
Applying the Sherman-Morrison Lemma [PC90] to equation (6.8), we have

Λ(t) = Λ(t−1) + Λ(t−1) ·X · L ·Y ·Λ(t−1)

where the2k̂ × 2k̂ matrixL is defined in step 22 of Alg.9. This completes the proof. �
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The efficiency ofFast-Single-Updateis given by the following lemma. Note that the linear term
O(m̂) comes from equation (6.7), since we need to scan the non-zero elements of the difference
matrix ∆M(t). Compared to the straightforward recomputation which isO(l3 + ml), Fast-Batch-
Update is O(min(̂l, n̂) · l2 + m̂). Sincemin(̂l, n̂) < l always holds, as long as we havêm <
m, Fast-Single-Updateis always more efficient. On the other hand, if we dom̂ repeated single
updates usingFast-Single-Update, the computational complexity isO(m̂l2). Thus, since typically
min(̂l, n̂)≪ m̂, Fast-Batch-Updateis much more efficient in this case.

Lemma 12. Efficiency of Fast-Batch-Update. The computational complexity of Fast-Batch-
Update isO(min(̂l, n̂) · l2 + m̂).

Proof: Similar as the proof for lemma11. Note that the linear termO(m̂) comes from equa-
tion (6.7), since we need to scan the non-zero elements of the difference matrix∆M(t). And the
term ofO(min(̂l, n̂) · l2) comes from the steps 22-23 ofFast-Batch-Update. �

6.5 Dynamic Proximity: Applications

In this section, we give the complete algorithms for the two applications we posed in Section 2,
that is,Track-CentralityandTrack-Proximity. For each case, we can track top-k queries over time.
ForTrack-Centrality, we can also track the centrality (or the centrality rank) for an individual node.
For Track-Proximity, we can also track the proximity (or the proximity rank) for agiven pair of
nodes.

In all the cases, we first need the following function (i.e., Alg. 10) to do initialization. Then,
at each time step, we update (i) the normalized adjacency matrices,Mc(t) andMr(t), as well as
the core matrix,Λ(t); and we perform (ii) one or two sparse matrix-vector multiplications to get
the proper answers. Compared to the update time (part (i)), the running time for part (ii) is always
much less. So our algorithms can quickly give the proper answers at each time step. On the other
hand, we can easily verify that our algorithms give the exactanswers, without any quality loss or
approximation.

Algorithm 10 Initialization

Require: The adjacency matrix at time step 1M(1), and the parameterc.
Ensure: The fixed degree matrix̃D, the normalized matrices at time step 1Mr(1) andMc(1), and

the initial core matrixΛ(1).
1: get the fixed degree matrix̃D as equation (6.4)
2: normalize for type 1 objects:Mr(1) = D−1

1 ·M(1)

3: normalize for type 2 objects:Mc(1) = D−1
2 ·M′(1)

4: get the core matrix:Λ(1) = (I− c2Mc(1) ·Mr(1))−1

5: store the matrices:Mr(1), Mc(1), andΛ(1).
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6.5.1 Track-Centrality

Here, we want to track the top-k most important type 1 (and/or type 2) nodes over time. For
example, on an author-conference bipartite graph, we want to track the top-10 most influential
authors (and/or conferences) over time. For a given query node, we also want to track its centrality
(or the rank of centrality) over time. For example, on an author-conference bipartite graph, we can
track the relative importance of an author in the entire community.

Based on the definition of centrality (equation6.3) and the fast update algorithms we developed
in Section 4, we can get the following algorithm (Alg.11) to track the top-k queries over time. The
algorithm for tracking centrality for a single query node isquite similar to Alg.11. We omit the
details for space.

Algorithm 11 Track-Centrality(Top-k Queries)

Require: The time-evolving bipartite graphs{M(1), ∆M(t)(t ≥ 2)}, the parametersc andk
Ensure: The top-k most central type 1 (and type 2) objects at each time stept.

1: Initialization
2: for each time stept(t ≥ 1) do
3: x = 11×n ·Mr(t) ·Λ(t); andy = 11×l ·Λ(t)

4: ~r2
′ = c · x + y

5: ~r1
′ = c · ~r′2 ·Mc(t)

6: output the topk type 1 objects according to~r1
′ (larger value means more central)

7: output the topk type 2 objects according to~r2
′ (larger value means more central)

8: UpdateMr(t), Mc(t), andΛ(t) for t ≥ 2.
9: end for

In step 8 of Alg.11, we can either useFast-Single-Updateor Fast-Batch-Updateto update the
normalized matricesMr(t) andMc(t), and the core matrixΛ(t). The running time for steps 3–8
is much less than the update time (step 8). Thus,Track-Centralitycan give the ranking results
quickly at each time step. On the other hand, using elementary linear algebra, we can easily prove
the correctness ofTrack-Centrality:
Lemma 13. Correctness ofTrack-Centrality. The vectors~r1

′ and ~r2
′ in Alg. 11provide a correct

ranking of type 1 and type 2 objects at each time stept. That is, the ranking is exactly according
to the centrality defined in equation(6.3).
Proof: Based on Delta Matrix Inversion Theorems, we have that step 8of Track-Centralitymain-
tains the correct core matrix at each time step.

Apply the Sherman-Morrison Lemma [PC90] to equation (6.2), we have

Q(t) ∝

(
I + c2Mr(t)Λ(t)Mc(t) cMr(t)Λ(t)

cΛ(t)Mc(t) Λ(t)

)

(6.9)
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By equation (6.3), we have

centrality(j) ∝

n+l∑

i=1

r
(t)
i,j =

n+l∑

i=1

Q(t)(i, j)

Let ~r = [centrality(j)]j=1,...,(n+l), we have

~r′ ∝ [11×n, 11×l] ·Q(t)

∝

(
c211×nMr(t)Λ(t)Mc(t) + c11×lΛ

(t)Mc(t)

c11×nMr(t)Λ(t) + 11×lΛ
(t)

)′

=

(
c2xMc(t) + cyMc(t)

cx + y

)′

= [c~r2
′Mc(t), ~r2

′]

= [~r1
′, ~r2

′]

wherex and y are two vectors as defined in step 3 ofTrack-Centrality and ~r1,and ~r2 are two
column vectors as defined in steps 4-5 ofTrack-CentralitẏThis completes the proof. �

6.5.2 Track-Proximity

Here, we want to track the top-k most related/relevant type 1 (and/or type 2) objects for object
A at each time step. For example, on an author-conference bipartite graph evolving over time,
we want track “Which are the major conferences for John Smith in the past 5 year?” or “ Who
are most the related authors for John Smith so far?” For a given pair of nodes, we also want to
track their pairwise relationship over time. For example, in an author-conference bipartite graph
evolving over time, we can track “How much credit (a.k.a proximity) John Smith has accumulated
in KDD?”

The algorithm for top-k queries is summarized in Alg.12. The algorithm for tracking the
proximity for a given pair of nodes is quite similar to Alg.12. We omit its details for space.

In Alg. 12, again, at each time step, the update time will dominate the total computational
time. Thus by using eitherFast-Single-Updateor Fast-Batch-Update, we can quickly give the
ranking results at each time step. Similar toTrack-Proximity, we have the following lemma for the
correctness ofTrack-Proximity:
Lemma 14. Correctness ofTrack-Proximity. The vectors~r1

′ and ~r2
′ in Alg. 12provide a correct

ranking of type 1 and type 2 objects at each time stept. That is, the ranking is exactly according
to the proximity defined in(6.4).
Proof: Based on Delta Matrix Inversion Theorems, we have that step 13 of Track-Proximitymain-
tains the correct core matrix at each time step. Therefore, Alg. 7 in step 8 always gives the correct
proximity score, which completes the proof. �
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Algorithm 12 Track-Proximity(Top-k Queries)

Require: The time-evolving bipartite graphs{M(1), ∆M(t)(t ≥ 2)}, the parametersc andk, and
the source nodes.

Ensure: The top-k most related type 1 (and type 2) objects fors at each time stept.
1: Initialization
2: for each time stept(t ≥ 1) do
3: for i = 1 : n do
4: rs,i = GetQij(Λ(t),Mr(t),Mc(t), s, i, c))
5: end for
6: let ~r1 = [rs,i](i = 1, ...n)
7: for j = 1 : l do
8: rs,j = GetQij(Λ(t),Mr(t),Mc(t), s, j + n, c))
9: end for

10: let ~r2 = [rs,j](j = 1, ...l)
11: output the topk type 1 objects according to~r1

′ (larger value means more relevant)
12: output the topk type 2 objects according to~r2

′ (larger value means more relevant)
13: updateMr(t), Mc(t), andΛ(t) for t ≥ 2.
14: end for

6.6 Experimental Results

In this section we present experimental results, after we introduce the datasets in subsection 6.1.
All the experiments are designed to answer the following questions:
• Effectiveness:What is the quality of the applications (Track-CentralityandTrack-Proximity)

we proposed in this chapter?

• Efficiency: How fast are the proposed algorithms (Fast-Single-Updateand Fast-Batch-
Updatefor the update time,Track-Centralityand Track-Proximityfor the overall running
time)?

6.6.1 Data Sets.

We use five different data sets in our experiments, summarized in Table6.6.1. We verify the
effectiveness of our proposed dynamic centrality measuresonNIPS, DM, andAC, and measure the
efficiency of our algorithms using the largerACPostandNetFlixdata sets.

The first data set (NIPS) is from the NIPS proceedings3. The timestamps are publication years,
so each graph sliceM corresponds to one year, from 1987 to 1999. For each year, we have an
author-paper bipartite graph. Rows represent authors and columns represent papers. Unweighted
edges between authors and papers represent authorship. There are 2,037 authors, 1,740 papers,
and 13 time steps (years) in total with an average of 308 new edges per year.

3http://www.cs.toronto.edu/ r̃oweis/data.html
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Table 6.2: Datasets used in evaluations
Name n× l Ave.m̂ time steps
NIPS 2,037×1,740 308 13
DM 5,095× 3,548 765 13
AC 418,236×3,571 26,508 49

ACPost 418,236×3,571 1,007 1258
NetFlix 2,649,429×17,770 100,480,507 NA

TheDM, AC, andACPostdata sets are from DBLP4. For the first two, we use paper publication
years as timestamps, similar toNIPS. Thus each graph sliceS corresponds to one year.

DM uses author-paper information for each year between 1995–2007, from a restricted set of
conferences, namely the five major data mining conferences (‘KDD’, ‘ICDM’, ‘SDM’, ‘PKDD’,
and ‘PAKDD’). Similar toNIPS, rows represent authors, columns represent papers and unweighted
edges between them represent authorship. There are 5,095 authors, 3,548 papers, and 13 time steps
(years) in total, with an average of 765 new edges per time step.

ACuses author-conference information from the entire DBLP collection, between years 1959–
2007. In contrast toDM, columns represent conferences and edges connect authors to conferences
they have published in. Each edge inS is weighted by the number of papers published by the author
in the corresponding conference for that year. There are 418,236 authors, 3,571 conferences, and
49 time steps (years) with an average of 26,508 new edges at each time step.

ACPostis primarily used to evaluate the scalability of our algorithms. In order to obtain a larger
number of timestamps at a finer granularity, we use posting date on DBLP (the ‘mdate’ field in the
XML archive of DBLP, which represents when the paper was entered into the database), rather
than publication year. Thus, each graph sliceS corresponds to one day, between 2002-01-03 and
2007-08-24.ACPostis otherwise similar toAC, with number of papers as edge weights. There
are 418,236 authors, 3,571 conferences, and 1,258 time steps (days with at least one addition into
DBLP), with an average of 1,007 new edges per day.

The final data set,NetFlix, is from the Netflix prize5. Rows represent users and columns
represent movies. If a user has rated a particular movie, we connect them with an unweighted
edge. This dataset consists of one slice and we use it in subsection 6.2 to evaluate the efficiency
Fast-Single-Update. In total, we have 2,649,429 users, 17,770 movies, and 100,480,507 edges.

6.6.2 Effectiveness: Case Studies

Here, we show the experimental results for the three applications on real datasets, all of which are
consistent with our intuition.

4http://www.informatik.uni-trier.de/ l̃ey/db/
5http://www.netflixprize.com/
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Table 6.3: Top-10 most influential (central) authors up to each year. Note that the top-10 most
influential (central) authors change over years.

1987 1989 1991 1993 1995 1997 1999

Results onTrack-Centrality

We apply Alg.11to theNIPSdataset. We use “Global Aggregation” to update the adjacency matrix
M(t). We track the top-k (k = 10) most central (i.e.influential) authors in the whole community.
Table6.3lists the results for every two years. The results make sense: famous authors in the NIPS
community show up in the top-10 list and their relative rankings change over time, reflecting their
activity/influence in the whole NIPS community up to that year. For example, Prof. Terrence J.
Sejnowski (‘SejnowskiT’) shows in the top-10 list from 1989 on and his ranking keepsgoing up
in the following years (1991,1993). He remains number 1 from1993 on. Sejnowski is one of the
founders of NIPS, an IEEE Fellow, and the head of the Computational Neurobiology Lab at the
Salk institute. The rest of the top-placed researchers include Prof. Michael I. Jordan (‘JordanM’)
from UC Berkeley and Prof. Geoffrey E. Hinton (‘HintonG’) from Univ. of Toronto, well known
for their work in graphical models and neural networks, respectively. We can also track the cen-
trality values as well as their rank for an individual authorover the years. Fig.6.1(a) plots the
centrality ranking for some authors over the years. Again, the results are consistent with intuition.
For example, Michael I. Jordon starts to have significant influence (within top-30) in the NIPS
community from 1991 on; his influence rapidly increases in the following up years (1992-1995);
and stays within the top-3 from 1996 on. Prof. Christof Koch (‘Koch C’) from Caltech remains
one of the most influential (within top-3) authors in the whole NIPS community over the years
(1990-1999).

Results onTrack-Proximity.

We first report the results on theDM dataset. We use “Global Aggregation” to update the adjacency
matrix at each time step. In this setting, we can track the top-k most related papers/authors in the
data mining community for a given query author up to each year. Table.6.4 lists the top-5 most
related authors for ‘Jian Pei’ over the years (2001-2007). The results make perfect sense: (1) the
top co-author (Prof. ‘Jiawei Han’) is Prof. Jian Pei’s advisor; (2) the other top collaborators are
either from SUNY-Buffalo (Prof. Aidong Zhang), or from IBM-Watson (Drs. Philip S. Yu, Haixun
Wang, Wei Wang), which is also reasonable, since Prof. Pei held a faculty position at SUNY-
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Table 6.4: Top-5 most related authors for ‘Jian Pei’ up to each year. Note that the most related
authors for ‘Jian Pei’ change over years.

2001 2003 2005 2007

Buffalo; (3) the IBM-Watson collaboration (‘Philip S. Yu’ and ‘Haixun Wang’) got stronger over
time.
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Figure 6.2: The rank of the proximity from ‘VLDB’ to ‘KDD’ up to each year

Then, we applyTrack-Proximityon the datasetAC. Here, we want to track the proximity rank-
ing for a given pair of nodes over time. Fig.6.2 plots the rank of proximity from the ‘VLDB’
conference to the ‘KDD’ conference. We use “Global Aggregation” to update the adjacency ma-
trix. In this way, proximity between the ‘VLDB’ and ‘KDD’ conferences measures the impor-
tance/relevance of ‘KDD’ wrt ‘VLDB’ up to each year. From thefigure, we can see that the rank
of ‘KDD’ keeps going up, reaching the fifth position by 2007. The other top-4 conferences for
‘VLDB’ by 2007 are ‘SIGMOD’, ‘ICDE’, ‘PODS’ and ‘EDBT’, in this order. The result makes
sense: with more and more multi-disciplinary authors publishing in both communities (databases
and data mining), ‘KDD’ becomes more and more closely related to ‘VLDB’.

We also test the top-k queries onAC. Here, we use “Sliding Window” (with window length
len = 5) to update the adjacency matrix. In this setting, we want to track the top-k most related
conferences/authors for a given query node in the past 5 years at each time stept. Fig. 6.1(b)
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lists the top-5 conferences for Dr. ‘Philip S. Yu’. The majorresearch interest (top-5 conferences)
for ‘Philip S. Yu’ is changing over time. For example, in the years 1988-1992, his major interest
is in databases (‘ICDE’ and ‘VLDB’), performance (‘SIGMETRICS’) and distributed systems
(‘ICDCS’ and ‘PDIS’). However, during 2003-2007, while databases (‘ICDE’ and ‘VLDB’) are
still one of his major research interests, data mining became a strong research focus (‘KDD’,
‘SDM’ and ‘ICDM’).
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Figure 6.3: Evaluation ofFast-Single-Update. For both datasets, one edge changes at each time
step. The running time is averaged over multiple runs of experiments and shown in logarithmic
scale.

6.6.3 Efficiency

After initialization, at each time step, most time is spent on updating the core matrixΛ(t), as well
as the normalized adjacency matrices. In this subsection, we first report the running time for update
and then give the total running time for each time step. We usethe two largest datasets (ACPostand
NetFlix) to measure performance.

Update Time

We first evaluateFast-Single-Update. Both ACPostandNetFlix are used. For each dataset, we
randomly add one new edge into the graph and compute the update time. The experiments are run
multiple times. We compareFast-Single-Updatewith Straight-Update (which doesl × l matrix
inversion at each time step) and the result is summarized in Fig. 6.3—Note that the y-axis is in log-
scale). On both datasets,Fast-Single-Updaterequires significantly less computation: onACPost, it
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is 64x faster (0.5 seconds vs.32 seconds), while onNetFlix, it is 176x faster (22.5 seconds vs4, 313
seconds).

To evaluateFast-Batch-Update, we useACPost. Fromt = 2 and on, at each time step, we have
betweenm̂ = 1 andm̂ = 18, 121 edges updated. On average, there are 913 edges updated at each
time stept (t ≥ 2). Note that despite the large number of updated edges for some time steps, the
rank of the difference matrix (i.e.min(n̂, l̂)) at each time step is relatively small, ranging from 1 to
132 with an average of 33. The results are summarized in Fig6.4. We plot the mean update time vs.
the number (̂m) of changed edges in Fig6.4(a) and the mean update time vs. the rank (min(n̂, l̂))
of the update matrix in Fig6.4(b). Compared to the Straight-Update,Fast-Batch-Updateis again
much faster, achieving 5–32x speed-up. On average, it is 15xfaster than Straight-Update.

Total Running Time

Here, we study the total running time at each time step forTrack-Centrality. The results forTrack-
Proximity are similar and omitted for space. ForTrack-Centrality, we let the algorithm return both
the top-10 type 1 objects and the top-10 type 2 objects. We usetheNetFlix dataset with one edge
changed at each time step andACPostdataset with multiple edges changed at each time step.

We compare our algorithms (“Track-Centrality”) with (i) the one that uses Straight-Update in
our algorithms (still referred as “Straight-Update”); and(ii) that uses iterative procedure [SQCF05]
to compute proximity and centrality at each time step (referred as ‘Ite-Alg”). The results are
summarized in Fig.6.5. We can see that in either case, our algorithm (Track-Centrality) is much
faster. For example, it takes 27.8 seconds on average on theNetFlix dataset, which is 155x faster
over“Straight-Update” (4,315 seconds); and is 93x faster over “Ite-Alg” (2,582 seconds). In either
case, the update time forTrack-Centralitydominates the overall running time. For example, on the
ACPostdataset, update time accounts for more than 90% of the overall running time (2.4 seconds
vs. 2.6 seconds). Thus, when we have to track queries for manynodes of interest, the advantage
of Track-Centralityover “Ite-Alg” will be even more significant, since at each time step we only
need to do update once for all queries, while the running timeof “Ite-Alg” will increase linearly
with respect to the number of queries.

6.7 Related Work

In this section, we review the related work, which can be categorized into two parts: static graph
mining and dynamic graph mining.

Static Graph Mining. There is a lot of research work on static graph mining, including pat-
tern and law mining [AJB99, DM02, FFF99, BKM+00, New03], frequent substructure discov-
ery [XHYC05], influence propagation [KKT03], and community mining [FLGC02][GKR98][GN].

In terms of centrality, Google’s PageRank algorithm [PBMW98] is the most related. The pro-
posedTrack-Centralitycan actually be viewed as its generalization for dynamic bipartite graphs.
As for proximity, the closest work is random walk with restart [HLZ+04, PYFD04, TFP08]. The
proposedTrack-Proximityis its generalization for dynamic bipartite graphs. Other representative
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Figure 6.4: Evaluation onFast-Batch-Update.

proximity measurements on static graphs include the sink-augmented delivered current [FMT04],
cycle free effective conductance [KNV06], survivable network [GMS93], and direction-aware
proximity [TKF07]. Although we focus on random walk with restart in this paper, our fast al-
gorithms can be easily adapted to other random walk based measurements, such as [FMT04,
TKF07]. Also, there are a lot of applications of proximity measurements. Representative work
includes connection subgraphs [FMT04, KNV06, TF06], neighborhood formation in bipartite
graphs [SQCF05], content-based image retrieval [HLZ+04], cross-modal correlation discovery [PYFD04],
the BANKS system [ABC+02], link prediction [LNK03], pattern matching [TFGER07], detecting
anomalous nodes and links in a graph [SQCF05], ObjectRank [BHP04] and RelationalRank [GMT04].
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Figure 6.5: Overall running time at each time step forTrack-Centrality. For ACPost, there are
multiple edges changed at each time step; and forNetFlix, there is only one edge changed at each
time step. The running time is averaged in multiple runs of experiments and it is in the logarithm
scale

Dynamic Graph Mining. More recently, there is an increasing interest in mining time-
evolving graphs, such as densification laws and shrinking diameters [LKF05], community evolu-
tion [BHKL06], dynamic tensor analysis [STF06], and dynamic communities [CSZ+07, SFPY07].
To the best of our knowledge, there is no previous work on proximity for time-evolving graphs.
Remotely related work in the sparse literature on the topic is [MC06]. However, we have a dif-
ferent setting and focus compared with [MC06]: we aim to incrementally track the proximity and
centrality for nodes of interest by quickly updating the core matrix (as well as the adjacency ma-
trices), while in [MC06] the authors focus on efficiently using time information by adding time as
explicit nodes in the graph.

6.8 Conclusion

In this chapter, we study how to incrementally track the nodeproximity as well as the centrality
for time-evolving bipartite graphs. To the best of our knowledge, we are the first to study the node
proximity and centrality in this setting. The major contributions of the paper include:

1: Proximity and centrality definitions for time-evolving graphs.

2: Two fast update algorithms (Fast-Single-UpdateandFast-Batch-Update), that do not resort
to approximation and hence guarantee no quality loss (see Theorem4).

3: Two algorithms to incrementally track centrality (Track-Centrality) and proximity (Track-
Proximity), in any-time fashion.
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4: Extensive experimental case-studies on several real datasets, showing how different queries
can be answered, achieving up to15∼176xspeed-up.

We can achieve such speedups while providing exact answers because we carefully leverage the
fact that the rank of graph updates is small, compared to the size of the original matrix. Our exper-
iments on real data show that this typically translates to atleast an order of magnitude speedup.
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Part IV

Mining Static Graphs
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Chapter 7

Vulnerability Analysis

Summary of This Chapter
Questions we want to answer:
Q1: How to measure the vulnerability of the graph (by a singlenumber)?

Q2: Given the vulnerability measurement, how to quantify the backboneness score of a
given set of nodes in the graph, i.e., how important are they in terms of maintaining
the vulnerability of the graph?

Q3: Given the backboneness score, how to quickly detect thek nodes that collectively
exhibit the highest backboneness score on large, disk-resident graphs?

Our answers and contributions
A1: We proposed a novel vulnerability measurement for the graph, motivated from

immunology and graph loop capacity.

A2: We proposed a novel definition of backboneness score for aset of nodes, by care-
fully using the results from the theory of matrix perturbation.

A3: We proposed a near-optimal and scalable algorithm (NetShield) to find a set of
nodes with highest backboneness score, by carefully using results from the theory
of sub-modularity.

7.1 Introduction

How to measure the ‘Vulnerability’ of a given graph? (e.g.,how likely will an epidemic break
out given the strength of the virus attack?) Given a set ofk nodes in the graph, how to measure
their ‘Backboneness’ i.e.,how important are they in terms of maintaining the ‘Vulnerability’ of
the whole graph?How to quickly findk nodes with the highest ‘Backboneness’ score? This is the
core problem behind a lot of important applications. To namea few, the ‘Vulnerability’ measure
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can be used (as one of many other criteria) to evaluate the network design. In the immunization
setting, thek with the highest ‘Backboneness’ scores might be the ones we want quarantine in
order to stop an epidemic. Similarly, in the graph demolition setting, these nodes are the ones we
want to delete from the graph.

In this chapter, we study this problem in multiple dimensions, by addressing the following three
questions:

Q1. How to measure the ‘Vulnerability’ of the graph (by a single number)?

Q2. Given the ‘Vulnerability’ measurement, how to quantifythe ‘Backboneness’ score of a given
set of nodes in the graph, i.e., how important are they in terms of maintaining the ‘Vulnera-
bility’ of the graph?

Q3. Given the ‘Backboneness’ score, how to quickly detect the k nodes thatcollectivelyexhibit
the highest ‘Backboneness’ score on large, disk-resident graphs?

Here, we focus on exactly these three questions. The main contributions of this chapter are as
follows:

1. A novel ‘Vulnerability’ measurement (λ) for the graph, motivated from immunology and
graph loop capacity;

2. A novel definition of ‘Backboneness’ score Br(S) for a set of nodes, by carefully using the
results from the theory of matrix perturbation;

4. A near-optimalandscalablealgorithm (NetShield) to find a set of nodes with highest ‘Back-
boneness’ score, by carefully using results from the theoryof sub-modularity.

5. Justifications, proofs and complexity analysis, showingthe intuitions, accuracy and effi-
ciency of the proposed methods.

6. Extensive experiments on several real data sets, showingthe effectiveness and efficiency of
the proposed methods. For the effectiveness, our methods (1) lead to an effective immu-
nization strategy, and (2) always give the mining results which are consistent with human
intuitions. For the efficiency, our algorithm (1) achieves significant speed-up over straight-
forward solutions (up to 7 orders of magnitude speedup); and (2) is scalable for large graphs
(linear wrt the size of the graph).

The rest of the chapter is organized as follows: We give the problem definitions in Section7.2.
We present the proposed ‘Vulnerability’ measurement and ‘Backboneness’ score in Section7.3
and Section7.4, respectively. We deal with the computational issues in Section 7.5. We evaluate
the proposed methods in Section7.6. We review the related work in Section7.7and conclude the
chapter in Section7.8.

7.2 Problem Definitions

Table7.1 lists the main symbols we use throughout this chapter. In this chapter, we focus on un-
directed un-weighted graphs. We represent the graph by its adjacency matrix. Following standard
notations, we use capital bold letters for matrices (e.g.,A), lower-case bold letters for vectors (e.g.,
a), and calligraphic fonts for sets (e.g.,S). We denote the transpose with a prime (i.e.,A′ is the
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transpose ofA), and we use parenthesized superscripts to denote the corresponding variable after
deleting the nodes indexed by the superscripts. For example, λ is the first eigen-value ofA, then
λi is the first eigen-value ofA after deleting itsi(th) row/column. We use(λi,ui) to denote theith

eigen-pair (sorted by the magnitude of the eigenvalue) ofA. When the subscript is omitted, we
refer to them as the first eigenvalue and eigenvector respectively (i.e.,λ , λ1 andu , u1).

Table 7.1: Symbols
Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) the element at theith row andjth

column of matrixA
A(i, :) theith row of matrixA

A(:, j) thejth column of matrixA
A′ transpose of matrixA
a,b, . . . column vectors
S, T , . . . sets (calligraphic)
n number of nodes in the graph
m number of edges in the graph
(λi,ui) theith eigen-pair ofA
λ first eigen-value ofA (i.e.,λ , λ1)
u first eigen-vector ofA (i.e.,u , u1)
λ(i), λ(S) first eigen-value ofA by deleting the nodei (or the set of nodes inS)
∆λ(i) eigen-drop:∆λ(i) = λ− λ(i)

∆λ(S) eigen-drop:∆λ(S) = λ− λ(S)

Br(i) ‘Backboneness’ score of nodei
Br(S) ‘Backboneness’ score of nodes inS
V(G) ‘Vulnerability’ score of the graph

With the above notations, our problems can be formally defined as follows:
Problem 7. Measuring ‘Vulnerability’

Given: A large un-directed un-weighted connected graphA;

Find: A single number V(G), reflecting the ‘Vulnerability’ of the whole graph.

Problem 8. Measuring ‘Backboneness’
Given: A subsetS with k nodes in a large un-directed un-weighted connected graphA;

Find: A single number Br(S), reflecting the ‘Backboneness’ of thesek nodes, in terms of main-
taining the ‘Vulnerability’ of the whole graph.

Problem 9. Finding Best-k Backbone Nodes
Given: A large un-directed un-weighted connected graphA with n nodes and an integerk;

Find: A subsetS ofk nodes with the highest ‘Backboneness’ score among all
(

n
k

)
possible subsets.

In the next three sections, we present the corresponding solutions respectively.
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7.3 Our Solution for Problem 7

Here, we focus on Problem7. We first present our solution and then provide some justifications.

7.3.1 Proposed ‘Vulnerability’ Score

In Problem7, the goal is to measure the ‘Vulnerability’ of the whole graph by a single number. We
propose using the first eigenvalue of the adjacency matrixA as such a measurement (eq. (7.1)):
the largerλ is, the more vulnerable the whole graph is.

V(G) , λ (7.1)

(a)λ = 1.7 (b)λ = 2.0 λ = 2.9 λ = 4.0

Figure 7.1: An illustrative example of measuring ‘Vulnerability’ of the graph

Figure7.1presents an illustrative example, where we have four graphswith 5 nodes. Intuitively,
from left to right, the vulnerability of the graph increases(i.e., for a given strength of the virus
attack, it is more likely that an epidemic will break out in the graphs on the right than those on the
left side.). We can see that the correspondingλ increases from left to right as well.

7.3.2 Justifications
Here, we provide some justifications to explain whyλ is a good measurement of the graph ‘Vul-
nerability’.

Epidemic Threshold.Our first justification is inspired by immunology.λ is closely related
to the epidemic thresholdτ of a graph under a flu-like SIR (susceptible-infected-susceptible) epi-
demic model [CWW+07], and specificallyτ = 1/λ. This means that a virus less infective than
τ will quickly get extinguished instead of lingering forever. Therefore, given the strength of the
virus (e.g., the infection rate and the death rate), it is more likely that an epidemic will break out in
a graph with largerλ).

Loop Capacity.The second, closely related reason is thatλ gives a (approximate) measure of
the total number of loops1 in the graph. Intuitively speaking, the first eigen-valueλ contributes
most (among all the other eigenvalues ) to the number of loopsof lengthl in the graph. To see that,
let LC(l) be the total number of loops with lengthl in the graph, we have the following equation:

LC(l) =
n∑

i=1

λl
i (7.2)

1A loop in the graph is a path whose starting node is the same as the ending node.
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For many real graphs, their spectrum is highly skewed [GMZ03], which meansλ ≫ λi(i =
2, ..., n). Therefore, LC(l) is roughly determined byλ (especially whenl is big): a largerλ indi-
cators that we have more loops of lengthl in the graph.

7.4 Our Solution for Problem 8

In this section, we focus on Problem8. We first present our solution, and then provide justifications.
We also discuss and compare our ‘Backboneness’ measure withsome existing node importance
measurements in the special case ofk = 1.

7.4.1 Proposed ‘Backboneness’ Score

In Problem8, the goal is to quantify the importance of a given set of nodesin terms of maintaining
the ‘Vulnerability’ of the whole graph. We propose using Br(S) defined in the following equation.

Br(S) =
∑

i∈S

2λu(i)2 −
∑

i,j∈S

A(i, j)u(i)u(j) (7.3)

Intuitively, by eq. (7.3), a set of nodesS has higher ‘Backboneness’ score if (1) each of them
has a high eigen-score (u(i)), and (2) they are dissimilar with each other (small or zeroA(i, j)).
Figure7.2shows some examples on measuring the ‘Backboneness’ score of a given set of nodes.
The bestk = 4 nodes found by our NetShield (which will be introduced very soon in the next
section) are shaded. The result is consistent with intuitions, deleting these nodes will make the
graph the least vulnerable (i.e., the remaining graphs are sets of isolated nodes in these examples).

Figure 7.2: Some examples on measuring the ‘Backboneness’ score of a given set of nodes. The
bestk = 4 nodes found by our NetShield are shaded.
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7.4.2 Justification

Here, we provide some justifications on the proposed ‘Backboneness’ score, which is summarized
in Lemma15. It says that Br(S) is a good approximation for the eigen-drop∆λ(S) when deleting
the set of nodesS from the original graphA.
Lemma 15. Let λ(S) be the (exact) first eigen-value ofÂ, whereÂ is the perturbed version ofA
by removing all of its rows/columns indexed by setS. If λ is the simple first eigen-value ofA, then
∆λ(S) = λ− λ(S) is upper bounded by Br(S) + O(

∑
j∈S ‖A(:, j)‖2), where Br(S) is computed

by eq.(7.3).
Proof: First, let us writeÂ as a perturbed version of the original matrixA:

Â = A + E, and E = F + F′ + G (7.4)

whereF(:, j) = −A(:, j) (j ∈ S andF(:, j) = 0 (j /∈ S); G(i, j) = A(i, j) (i, j ∈ S) and
G(i, j) = 0(i /∈ S, or j /∈ S).

SinceAu = λu, we have

u′F′u = u′Fu = (F′u)′u = −
∑

j∈S

λu(j)2

u′Gu =
∑

i,j∈S

A(i, j)u(i)u(j) (7.5)

Let λ̃ be the corresponding perturbed eigen-value ofλ, according to the matrix perturbation the-
ory [SS90], we have

λ̃ = λ + u′Eu + O(‖E‖2)
= λ + u′Fu + u′F′u + u′Gu + O(‖E‖2)
= λ− (

∑

j∈S

2λu(j)−
∑

i,j∈S

A(i, j)u(i)u(j))

+O(
∑

j∈S

‖A(:, j)‖2)

= λ− Br(S) + O(
∑

j∈S

‖A(:, j)‖2) (7.6)

Sinceλ(S) is the first eigen-value of̂A, we haveλ(S) ≥ λ̃. Therefore,

∆λ(S) = λ− λ(S) ≤ λ− λ̃

= Br(S) + O(
∑

j∈S

‖A(:, j)‖2) (7.7)

which completes the proof. �
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7.4.3 Comparisons in the Case ofk = 1

In literature, there are a lot of node importance scores (such as PageRank, HITS, betweenness
centrality, etc). Our ‘Backboneness’ score isfundamentallydifferent from these node importance
scores, in the sense that theyall aim to measure the importance of an individual node; whereasour
‘Backboneness’ tries tocollectivelymeasure the importance of a set of nodes.

Figure 7.3: Examples of the ‘Backboneness’ score of an individual node.(a)

Figure 7.4: Examples of the ‘Backboneness’ score of an individual node.(b)

Figure 7.5: Examples of the ‘Backboneness’ score of an individual node.(c)

Nonetheless, it is interesting to compare them in the special case ofk = 1. Figures 7.3-7.6show
some examples on measuring the ‘Backboneness’ score of an individual node. We compare it
with some possible choices: Degree (‘Deg’), Betweeness Centrality based on the shortest path
(‘Short’) [Fre77], Betweeness Centrality based on random walk (‘N.RW’) [New05], PageRank
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Figure 7.6: Examples of the ‘Backboneness’ score of an individual node.(d)

(‘PR’) [PBMW98], and abnormality score (‘ABN’) [SQCF05]. We can see that the proposed∆λ
is the only one that is always consistent with intuitions in all the settings. For each figure, the table
on the right shows some node indices (the first column) sortedaccording to human intuitions (the
most important node comes first); each of the rest columns shows the rank by the corresponding
measurement. Shaded columns are the ones that agree with intuitions (= the first column). Notice
that the proposed ‘Backboneness’ score (∆λ) is theonly one that consistently agrees with intu-
itions. Take figure7.3 as an example, intuitively, node 8 should receive a higher ‘Backboneness’
score than node 1 since node 8 connects the two communities with each other, whereas node 1 is
a local center for the left community. It can be seen that eachshortest path which goes through
node 8 between two nodes on this graph must also go through node 1. On the other hand, some
shortest paths (e.g., the shortest path between node 7 and node 2) only pass node 1 but not node 8.
Therefore, by ‘Short’, node 1 will receive a higher score than node 8 which is counter-intuitive. For
the similar reason, ‘N.RW’ will also think node 1 is more important than node 8. As for ‘PR’, its
score is more or less proportional to the degree in un-directed graphs. Therefore, ‘PR’ also ranks
node 1 higher than node 8. Lastly, as for ‘ABN’, it measures the abnormality of a given node by
looking at its neighborhood: a node is abnormal if its neighborhood is dissimilar with each other.
However, in this example, the neighborhood of node 8 (node 1 and node 9) is totally symmetric;
whereas that of node 1 (nodes 2-7 and node 8) is not. Hence, ‘ABN’ again ranks node 1 higher
than node 8.

7.5 Our Solution for Problem 9

In this section, we deal with Problem9. Here, the goal is to find a subset ofk nodes with the highest
‘Backboneness’ score (among all

(
n
k

)
possible subsets). We start by showing that the two straight-

forward methods (referred to as ‘Com-Eigs’, and ‘Com-Eval’) are computationally intractable.
Then, we present the proposed NetShield algorithm. Finally, we analyze its accuracy as well as its
computational complexity.
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7.5.1 Preliminaries

There are two obviously straight-forward methods for Problem 9. The first one (referred to as
‘Com-Eigs’) works as follows: for each possible subsetS, we delete the corresponding rows/columns
from the adjacency matrixA; compute the first eigenvalue of the new perturbed adjacencymatrix;
and finally output the subset of nodes which has the smallest eigenvalue (therefore has the largest
eigen-drop). Despite the simplicity of this strategy, it iscomputational intractable due to its combi-
natorial nature. It is easy to show that the computational complexity of ‘Com-Eigs’ isO(

(
n
k

)
·m)2.

This is computationally intractable even for small graphs.For example, in a graph with 1K nodes
and 10K edges, suppose that it takes about 0.01 second to find its first eigen-value. Then we need
about 2,615 years to find the best-5 nodes with the highest ‘Backboneness’ score!

A more reasonable (in terms of speed) way to find the best-k nodes is to evaluate Br(S), rather
than to compute the first eigen-valueλS ,

(
n
k

)
times, and pick the subset with the highest Br(S). We

refer to this strategy as ‘Com-Eval’. Compared with the straight-forward method (referred to as
‘Com-Eigs’, which isO(

(
n
k

)
·m)); ‘Com-Eval’ is much faster (O(

(
n
k

)
· k2)). However, ‘Com-Eval’

is still not applicable to real applications due to its combinatorial nature. Again, in a graph with
1K nodes and 10K edges, suppose that it only takes about 0.00001 second to evaluate Br(S) once.
Then we still need about 3 months to find the best-5 nodes with the highest ‘Backboneness’ score!

7.5.2 Proposed “NetShield” Algorithm

The proposed NetShield is given in Alg.13. In Alg. 13, we compute the first eigenvalueλ and the
corresponding eigenvectoru in step 1. In step 4, then× 1 vectorv measures the ‘Backboneness’
score of each individual node. Then, in each iteration of steps 6-17, we greedily select one more
node and add it into setS according to score(j) (step 13). Note that steps 10-12 are to exclude
those nodes that are already in the selected setS.

7.5.3 Analysis of NetShield

Here, we analyze the accuracy and efficiency of the proposed NetShield.

First, according to the following theorem, Alg.13 is near-optimalwrt ‘Com-Eval’:

Theorem 5. Effectiveness of NetShield.LetS andS̃ be the sets selected by Alg.13and by ‘Com-
Eval’, respectively. Let∆λ(S) and ∆λ(S̃) be the corresponding eigen-drops. Then,∆λ(S) ≥
(1− 1/e)∆λ(S̃).

Proof: Let I,J ,K be three sets andI ⊆ J . Define the following three sets based onI,J ,K:
S = I ∪ K, T = J ∪ K, R = I \ J .

2We assume thatk is relatively small compared withn andm (e.g., tens or hundreds). Therefore, after deletingk

rows/columns fromA, we still haveO(m) edges.
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Algorithm 13 NetShield
Require: the adjacency matrixA and an integerk
Ensure: a setS with k nodes

1: compute the first eigen-valueλ of A; let u be the corresponding eigen-vectoru(j)(j =
1, ..., n);

2: initializeS to be empty;
3: for j = 1 to n do
4: v(j) = (2 · λ2 −A(j, j)) · u(j)2;
5: end for
6: for iter = 1 to k do
7: let B = A(:,S);
8: let b = B · u(S);
9: for j = 1 to n do

10: if j ∈ S then
11: let score(j) = −1;
12: else
13: let score(j) = v(j)− 2 · b(j) · u(j);
14: end if
15: end for
16: let i = argmaxjscore(j), addi to setS;
17: end for
18: returnS.

Substituting eq.(7.3), we have

(Br(S) − Br(I))− (Br(T )− Br(J ))

= 2
∑

i∈K,j∈R

A(i, j)u(i)u(j) ≥ 0 (7.8)

⇒ Br(S)− Br(I) ≥ Br(T )− Br(J )

Therefore, the functionBr (S) is sub-modular.

Next, we can verify that nodei selected in step 16 of Alg.13satisfiesi = argmaxj /∈SBr(S ∪ j)
for a fixed setS.

Finally, it is clear that Br(φ) = 0, whereφ is an empty set. Using the property of sub-modular
functions [KG07], we have∆λ(S) ≥ (1− 1/e)∆λ(S̃). �

According to Lemma16, the computational complexity of Alg.13 is O(nk2 + m), which is
much faster than both ‘Com-Eigs’ (O(

(
n
k

)
m)) and ‘Com-Eval’ (O(

(
n
k

)
k2)).

Lemma 16. Efficiency of NetShield.The computational complexity of Alg.13 is O(nk2 + m).

Proof: The cost of step 1 isO(m), and the cost of step 2 is constant. For steps 3-5, its cost isO(n).
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For each inner loop of steps 6-17, its cost isO(n) + O(n · iter). Therefore, we have

cost(NetShield) = O(m) + O(n) +
k∑

iter=1

(n + n · iter)

= O(nk2 + m) (7.9)

which completes the proof. �

7.6 Experimental Evaluations

We present detailed experimental results in this section. All the experiments are designed to answer
the following questions:

1: (Effectiveness) How effective is the proposed Br(S) in real graphs?

2: (Efficiency) How fast and scalable is the proposed NetShield?

7.6.1 Data sets

Table 7.2: Summary of the data sets
Name n m

Karate 34 152
AA 418,236 2,753,798

NetFlix 2,667,199 171,460,874

We used three real data sets, which are summarized in table7.2. The first data set (Karate)
is a unipartite graph, which describes the friendship amongthe 34 members of a karate club at a
US university [Zac77]. Each node is a member in the karate club and the existence ofthe edge
indicates that the two corresponding members are friends. Overall, we haven = 34 nodes and
m = 156 edges.

The second data set (AA) is from DBLP.3 AA is a co-authorship network, where each node is
an author and the existence of an edge indicates the co-authorship between the two corresponding
persons. Overall, we haven = 418, 236 nodes andm = 2, 753, 798 edges. We also construct much
smaller co-authorship networks, using the authors from only one conference (e.g.,NIPS, SIGIR,
SIGMOD, etc.). For example,NIPS is the co-authorship network for the authors in the ‘NIPS’
conference. For these smaller co-authorship networks, they typically have a few thousand nodes
and up to a few ten thousand edges.

The last data set (NetFlix) is from the Netflix prize.4 This is also a bipartite graph. We have two
types of nodes: user and movie. The existence of an edge indicates that the corresponding user has

3http://www.informatik.uni-trier.de/ l̃ey/db/
4http://www.netflixprize.com/
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Table 7.3: Evaluation on the approximation accuracy of f(S). Larger is better.
k ‘KDD’ ‘ICDM’ ‘SDM’ ‘SIGMOD’

1 0.9519 0.9908 0.9995 1.0000
2 0.9629 0.9910 0.9984 0.9927
5 0.9721 0.9888 0.9992 0.9895
10 0.9726 0.9863 0.9987 0.9852
20 0.9683 0.9798 0.9929 0.9772

rated the corresponding movie. Overall, we haven = 2, 667, 199 nodes andm = 171, 460, 874

edges. This is a bipartite graph, and we convert it to a unipartite graphA: A =

(
0 B

B′ 0

)
, where

0 is a matrix with all zero entries.

7.6.2 Effectiveness

Approximation quality of Br (S)

The proposed NetShield is based on eq. (7.3). That is, we want to approximate the first eigen-value
of the perturbed matrix byλ andu. So first, let us evaluate how good this approximation is. We
construct an authorship network from one of the following conferences:‘KDD’, ‘ICDM’, ‘SDM’,
‘SIGMOD’. We then compute the linear correlation coefficient between∆λ(S) and Br(S) with
several differentk values (k = 1, 2, 5, 10, 20). The results are shown in table7.3. It can be seen
that the approximation is very good - in all the cases, the linear correlation coefficient is greater
than0.95.

Accuracy of NetShield

Here, we evaluate the accuracy of the proposed NetShield. For the Karate graph, we use the
proposed NetShield to find a set ofk nodes and check the corresponding eigen-drop (i.e., the
decrease of the first eigen-value of the adjacency matrix). We compare it with ‘Com-Eigs’, which
always gives the optimal solutions (i.e., it returns the subset that leads to the largest eigen-drop).
We also plot (1 − 1

e
) of the eigen-drop given by ‘Com-Eigs’ (green dashed curve). The result is

plotted in figure7.7. It can be seen that the proposed NetShield isnear-optimal: it is always above
the green line ((1− 1

e
) of the optimal solution) and often it is very close to the blueline (the optimal

solution).

Immunization by NetShield

The proposed ‘Vulnerability’ score of the graph is partially motivated from the epidemic thresh-
old [CWW+07]. As a consequence, the proposed NetShield leads to a natural immunization strat-
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respectively. Lower is better. The proposed NetShield is always the best. Best viewed in color.

egy for SIS (suspectable-infection-suspectable) model:5 to quarantine or delete the subset of the
5According to [CWW+07], for SIR (suspectable-infection-recovered) model, its epidemic threshold is also deter-

mined byλ. Therefore, we expect that our NetShield can also immunize for SIR model.
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Figure 7.9: Evaluation of immunization of NetShield on theKarategraph (b = 0.01 and d =
0.025). The number of infected nodes vs. the time step.b and d are the infection rate and the
recovery rate, respectively. Lower is better. The proposedNetShield is always the best. Best
viewed in color.

nodes detected by NetShield in order to prevent an epidemic from breaking out. We compare
it with the following alternative choices: (1) picking a random neighbor of a randomly chosen
node[CHbA91] (‘Aquaintance’), (2) picking the nodes with the highest eigen scoresu(i)(i =
1, ..., n) (‘Eigs’), (3) picking the nodes with the highest abnormality scores [SQCF05] (‘abnormal-
ity’), and (4) picking the nodes with the highest betweenness centrality scores [Fre77](‘Bet’). For
each method, we delete5 nodes for immunization. The result is presented in figures 7.7-7.9, which
are averaged over 10 runs. It can be seen that the proposed NetShield is always the best, - its curve
is always the lowest which means that we always have the leastnumber of infected nodes in the
graph with this immunization strategy. Note that the black curve (‘Original’) is the one without
any immunization strategy.

Case studies

Next, we will show some case studies to illustrate the effectiveness of the proposed Br(S) as a
‘Backboneness’ score of a subset of nodes.

Karate. We start with theKaratenetwork, which is widely used in social network analysis. In
figure7.11, there are two different communities in the graph (shaded).We first want to measure
the ‘Backboneness’ score for an individual node/member. The first ten nodes with the highest
individual ‘Backboneness’ scores are labeled by their ranks (for example, node 1 has the highest
‘Backboneness’ score, etc). The result is consistent with intuitions, - they are either the bridges of
the two communities (nodes 1, 3, 7 and 9), or the centers of thelocal communities (nodes 5 and
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recovery rate, respectively. Lower is better. The proposedNetShield is always the best. Best
viewed in color.

10 for the left community; nodes 2, 4, 6, and 7 for the right community). Notice that node 1 has a
higher score than node 2 although node 1 has a lower degree than node 1. This is because node 1
is the bridge between the two communities; whereas node 2 is the center only for the nodes in the
right community.

Then, we want to measure the ‘Backboneness’ score for a givenset of nodes/members. In
figure 7.11, the bestk = 5 nodes found by NetShield are shown in black. Again, the result is
consistent with intuitions. It is interesting to notice that the best subset with5 nodes (nodes 1, 2,
3, 5 and 10) is different from the first 5 nodes with the highestindividual ‘Backboneness’ scores
(nodes 1-5).

AA. We run the proposed NetShield onAA data set and return the bestk = 200 authors.
Some representative authors, to name a few, are‘Sudhakar M. Reddy’ ‘Wei Wang’ ‘Heinrich
Niemann’, ‘Srimat T. Chakradhar’, ‘Philip S. Yu’, ‘Lei Zhang’, ‘Wei Li’, ‘Jiawei Han’, ‘Srini-
vasan Parthasarathy’, ‘Srivaths Ravi’, ‘Antonis M. Paschalis’, ‘Mohammed Javeed Zaki’, ‘Lei Li’,
‘Dimitris Gizopoulos’, ‘Alberto L. Sangiovanni-Vincentelli’, ‘Narayanan Vijaykrishnan’, ‘Jason
Cong’, ‘Thomas S. Huang’, etc.We can make some very interesting observations from the re-
sult: (1) There are some multi-disciplinary people in the result. For example, Prof. Alberto L.
Sangiovanni-Vincentelli from UC Berkeley is interested in‘design technology’, ‘cad’, ‘embed-
ded systems’, and ‘formal verification’; Prof. Philip S. Yu from UIC is interested in ‘databases’,
‘performance’, ‘distributed systems’ and ‘data mining’. (2) Some people show up because they
are famous in one specific area, and occasionally have one/two papers in a remotely related area
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Figure 7.11: Karatedata set: There are two communities (shaded). The top ten nodes with the
highest individual ‘Backboneness’ scores are labeled by their ranks; the bestk = 5 nodes discov-
ered by NetShield are in black. Notice the agreement of the chosen black nodes with intuitions:
removing them would severely disconnect the karate club

(therefore, bridging two remote areas). For example, Dr. Srimat T. Chakradhar mainly focuses
on ‘cad’. But he has co-authored in a ‘NIPS’ paper. Therefore, he is critical to bridge these two
(originally) remote areas: ‘cad’ and ‘machine learning’. (3) Some people show up because they
have ambiguous names (e.g., Wei Wang, Lei Li, Lei Zhang, Wei Li, etc.). Take ‘Wei Wang’ as an
example; according to DBLP,6 there are 7 different ‘Wei Wang’s. In our experiment, we treat all of
them as one person. That is to say, it is equivalent to puttingan artificial ‘Wei Wang’ in the graph
who is bridging 7 different ‘Wei Wang’s together. These 7 ‘Wei Wang’s are in fact spread out in
quite different areas. (e.g., Wei Wang@UNC is in ‘data mining’ and ‘bio’; Wei Wang@NUS is in
‘communication’; Wei Wang@MIT is in ‘non-linear systems’.)

NetFlix. We also performed a case study on theNetFlix data set. Table7.4 shows the best
k = 10 movies found by our NetShield algorithm. The resulting movies are all popular movies
which are favored by different types of populations.

7.6.3 Efficiency

We will study the wall-clock running time of the proposed NetShield here. Basically, we want to
answer the following two questions:

1. (Speed)What is the speedup of the proposed NetShield over the straight-forward methods
(‘Com-Eigs’ and ‘Com-Eval’)?

2. (Scalability)How does NetShield scale with the size of the graph (n andm) andk?

6http://www.informatik.uni-trier.de/ ˜ey/db/indices
/a-tree/w/Wang:Wei.html
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Table 7.4: The bestk = 10 movies fromNetFlixdata set (The3th columns is the number of Oscar
awards/nominations that the corresponding movie won.)

Movie Title Genre Oscar
Pirates of the Caribbean: Action;Adventure 5

The Curse of the Black Pearl Comedy;Fantasy
Forrest Gump Comedy;Drama;Romance 6

Lord of the Rings: The Fellowship of the Ring Action;Adventure;Fantasy 4
Lord of the Rings: The Two Towers Action;Adventure;Fantasy 2

Big Doll House Drama;Mystery;Thriller 6
The Shawshank Redemption Drama 7

The Green Mile Crime;Drama;Fantasy;Mystery 4
Independence Day Action;Thriller 0

Gladiator Action;Adventure;Drama 0
The Matrix Action;Thriller 4

For the results we report in this subsection, all of the experiments are done on the same machine
with four 2.4GHz AMD CPUs and 48GB memory, running Linux (2.6kernel). If the program
takes more than 1,000,000 seconds (more than 10 days), we stop running it.
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Figure 7.12: Comparison of speed for different methods onKarate. We fixn andm and varyk
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Figure 7.15: Comparison of speed for different methods onNetFlix. For each sub-figure, we fix
n andm and varyk from 1 to 20. The time is in the logarithm scale. Our NetShield(red star) is
much faster. Lower is better.

First, we compare NetShield with ‘Com-Eigs’ and ‘Com-Eval’7. Figures7.12, 7.13, 7.14, and
7.15 show the comparison on four real data sets. We can make the following conclusions: (1)
Straight-forward methods (‘Com-Eigs’ and ‘Com-Eval’) arecomputationally intractable even for
a small graph. For example, on theKaratedata set with only 34 nodes, it takes more than 100,000
and 1,000 seconds to find the best-10 by ‘Com-Eigs’ and by ‘Com-Eval’, respectively. (2) The
speedup of the proposed NetShield over both ‘Com-Eigs’ and ‘Com-Eval’ is huge - in most cases,
we achieveseveral (up to 7) orders of magnitudespeedups! (3) The speedup of the proposed
NetShield over both ‘Com-Eigs’ and ‘Com-Eval’ quickly increases wrt the size of the graph as
well ask. (4) For a given size of the graph (fixedn andm), the wall-clock time is almost constant
- suggesting that NetShield spends most of its running time in computingλ andu.

Next, we evaluate the scalability of NetShield. From figure7.16, it can be seen that NetShield
scales linearly wrt bothn andm, which means that it is suitable for large graphs.

7.7 Related Work

In this section, we review the related work, which can be categorized into 2 parts: measuring the
importance of nodes on graphs and spectral graph analysis. For the related work on general graph

7Another possible heuristic is to delete one node with the highest eigen-scoreu(i) from thecurrentgraph; and we
repeat this procedurek times. But this method is stillk times slower than NetShield and it is not clear how close the
resulting solution is to the optimal solution.
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Figure 7.16: Evaluation of the scalability of the proposed NetShield wrt. n andm, respectively.
Our NetShield scales linearly wrtn andm.

mining, please refer to Chapter6.
Measuring Importance of Nodes on Graphs. In the literature, there are a lot of node im-

portance measurements, including betweenness centrality, both the one based on the shortest
path [Fre77] and the one based on random walk [New05], PageRank [PBMW98], HITS [Kle98].
A remotely related work is the abnormality score of a given node [SQCF05]. Our ‘Backboneness’
score isfundamentallydifferent from these node importance scores, in the sense that theyall aim
to measure the importance of an individual node; whereas our‘Backboneness’ tries tocollectively
measure the importance of a set ofk nodes. Even in the special case ofk = 1, the existing node
importance measurements all have subtle issues and occasionally disagree with intuitions, as we
showed in Section7.4, despite the fact that all these measures are successful forthe goal they were
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originally designed for. Moreover, several of these importance measurements do not scale up well
for large graphs, being cubic or quadratic wrt the number of nodesn, even if we use approxima-
tions (e.g., [MW08]). In contrast, the proposed NetShield is linear wrt the number of edges and
the number of nodes (O(nk2 + m)).

Spectral Graph Analysis. Pioneering works in this aspect can be traced back to Fiedler’s
seminar work [Fie73]. Since then, spectral graph analysis has been a very hot research topic.
Representative works include [SM97, NJW01, ZHD+01, DLJ08], etc. All of these works use the
eigen-vectors of the graph (or the graph Laplacian) to find communities in the graph. In con-
trast, relatively less works explore the strength of the spectrum (i.e., eigenvalues) in graph mining.
The two related works which motivate the adoption ofλ as ‘Vulnerability’ measure are (1) epi-
demic thresholdτ of a graph [CWW+07], where under a flu-like epidemic model, the authors
in [CWW+07] show thatτ is only determined by the first eigen-value of the adjacency matrix.
and (2) triangle counting [Tso08], where the authors shows that the numbers of the triangles in the
graph is totally determined by its spectrum. The proposed ‘Vulnerability’ measure of the graph
also relates to the second smallest eigenvalue of graph Laplacian (known as graph algebra con-
nectivity). There are two reasons why we eventually do not use graph algebra connectivity as our
‘Vulnerability’ measure: (1) implicitly, the second smallest eigenvalue of graph Laplacian mea-
sures the separability of the graph if we assume there are twocommunities in the graph (i.e., how
these two communities are connected with each other); whereasλ of the adjacency matrix does not
have such an assumption; (2) computationally, it is unclearwhether or not we can develop similar
scalable algorithms (i.e., linear wrt the size of the graph)to find a subset of nodes whose absence
creates the maximum change of graph algebra connectivity.

7.8 Conclusion

We studied the ‘Vulnerability’ of large real graphs in this chapter. Our main contributions are

1. A novel ‘Vulnerability’ measurement (λ) for the graph, motivated from immunology and
graph loop capacity;

2. A novel definition of ‘Backboneness’ score Br(S) for a set of nodes, by carefully using the
results from the theory of matrix perturbation;

4. A near-optimalandscalablealgorithm (NetShield) to find a set of nodes with the highest
‘Backboneness’ score, by carefully using the results from the theory of sub-modularity.

5. Justifications, proofs and complexity analysis, showingthe intuitions, accuracy and effi-
ciency of the proposed methods.

6. Extensive experiments on several real data sets, showingthe effectiveness and efficiency of
the proposed methods. For the effectiveness, our methods (1) lead to an effective immu-
nization strategy, and (2) always give the mining results which are consistent with human
intuitions. For the efficiency, our algorithm (1) achieves significant speed-up over straight-
forward solutions (up to 7 orders of magnitude speedup); and (2) is scalable for large graphs
(linear wrt the size of the graph).
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A promising research direction is to parallelize the current method (e.g., using Hadoop).
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Part V

Mining Dynamic Graphs
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Chapter 8

Anomaly Detection

Summary of This Chapter
Questions we want to answer:
Q: Given a large graph, how to summarize it and find anomalies?

Our answers and contributions
A: We proposed a family of novel, low rank approximation methods for static and

dynamic graphs, which is provably equal or better compared with the best known
methods in the literature, with the same accuracy.

8.1 Introduction

Graphs appear in a wide range of settings, like computer networks, the world wide web, biological
networks, social networks and many more. How can we find patterns, e.g. communities and
anomalies, in a large sparse graph? How can we track such patterns of interest if the graph is
evolving over time?

A common representation of a graph is a matrix, such as an adjacency matrix for a unipartite
graph where every row/column corresponds to a node in the graph, and every non-zero entry is
an edge; an interaction matrix for a bipartite graph where rows and columns correspond to two
different types of nodes and non-zero entries denote edges between them.

Naturally, low-rank approximations on matrices provide powerful tools to answer the above
questions. Formally, a rank-c approximation of matrixA is a matrixÃ whereÃ is of rankc and
‖Ã − A‖ is small. The low-rank approximation is usually presented in a factorized form e.g.,
Ã = LMR whereL, M, andR are of rank-c.

Depending on the properties of those matrices, many different approximations have been pro-
posed in the literature. For example, in SVD [GVL89], L andR are orthogonal matrices whose
columns/rows are singular vectors andM is a diagonal matrix whose diagonal entries are singular
values. Among all the possible rank-c approximations, SVD gives the best approximation in terms
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of squared error. However, the SVD is usually dense, even if the original matrix is sparse. Further-
more, the singular vectors are abstract notions of best orthonormal basis, which is not intuitive for
the interpretation.

Recently, alternatives have started to appear, such as CUR [DKM05b] and CMD [SXZF07],
which use the actual columns and rows of the matrix to formL andR. We call theseexample-based
low-rank approximations. The benefit is that they provide an intuitive as well as sparse representa-
tion, sinceL andR are directly sampled from the original matrix. However, theapproximation is
often sub-optimal compared to SVD and the matrixM is no longer diagonal, which means a more
complicated interaction.

Despite of the vast amount of literature on these topics, oneof the major research challenges
lies in the efficiency: (1) for a static graph, given the desired approximation accuracy, we want to
compute the example-based low-rank approximation with theleast computational and space cost;
and (2) for a dynamic graph1, we want to monitor/track this approximation efficiently over time.

To deal with the above challenges, we propose the family ofColibri methods. Adjacency ma-
trices for large graphs may contain near-duplicate columns. For example, all nodes that belong to
the same closed and tightly-connected community would havethe same sets of neighbors (namely,
the community’s members). CMD addresses the problem of duplicate elimination. However, even
without duplicates, it is still possible that the columns ofL are linearly dependent, leading to a
redundant representation of the approximating subspace, which wastes both time and space. The
main idea of our method for static graphs (Colibri-S) is to eliminate linearly dependent columns
while iterating over sampled columns to construct the subspace used for low rank approximation.
Formally, the approximatioñA = LMR whereL consists of judiciously selected columns,M

is an incrementally maintained core matrix, andR is another small matrix.Colibri-S is provably
better or equal compared to the best competitors in the literature, in terms of both speed and space
cost, while it achieves the same approximation accuracy. Inaddition, we provide an analysis of the
gains in terms of the redundancy present in the data. Furthermore, our experiments on real data
show significant gains in practice. With the same approximation accuracy,Colibri-S is up to 52×
faster than the best known competitor, while it only requires about 1/3 of the space.

For dynamic graphs, we proposeColibri-D. Again, for the same accuracy,Colibri-D is prov-
ably better or equal compared to the best known methods (including our ownColibri-S) in terms
of speed. The main idea ofColibri-D is to leverage the “smoothness”, or similarity between two
consecutive time steps, to quickly update the approximating subspace. Our experiments show that,
with the same accuracy,Colibri-D achieves up to 112× speedup over the best published competi-
tor, and is 5 times faster thanColibri-Sapplied from scratch for each time step.

The main contributions of this chapter are summarized as follows:
• A family of novel, low rank approximation methods (Colibri-S, Colibri-D) for static and

dynamic graphs, respectively;

• Proofs, and complexity analysis, showing our methods are provably equal or better compared
to the best known methods in the literature, for the same accuracy;

• Extensive experimental evaluation, showing that our methods are significantly faster, and

1In this paper, we use ‘dynamic graphs’ and ‘time-evolving graphs’ interchangeably.
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nimbler than the top competitors. See Figure8.1 for an example of the time and space
savings of ourColibri-Sover CUR and CMD [SXZF07].

Time Space
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CUR CUR
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CMD

Coribri−S

Coribri−S

Figure 8.1: Colibri-S is significantly more efficient than both CUR and CMD in terms of both
speed and space. Note that all these methods lead to the same approximation accuracy. Both speed
and space cost are normalized by the most expensive one (i.e., CUR in both cases).

The rest of this chapter is organized as follows: we introduce notation and formally define
the problems in Section8.2. We present and analyze the proposedColibri-S and Colibri-D in
Section8.3.3and Section8.4.2, respectively. We perform some case studies in Section8.5.2and
provide experimental evaluation in Section8.6.3. We review the related work in Section8.7.
Finally, we conclude in Section8.8.

8.2 Problem Definitions

Table8.2 lists the main symbols we use throughout the chapter. In thischapter, we consider the
case of bipartite graphs. Uni-partite graph can be viewed asa special case. We represent a general
bipartite graph by its adjacency matrix2. Following the standard notation, we use capital letters for
matrices (e.g.A), arrows for vectors (e.g.~aj), and calligraphic fonts for sets (e.g.I). We denote
the transpose with a prime (i.e.,A′ is the transpose ofA), and we use parenthesized superscripts to
denote time (e.g.,A(t) is the time-aggregate adjacency matrix at timet). When we refer to a static
graph or, when time is clear from the context, we omit the superscript (t). We use subscripts to
denote the size of matrices/vectors (e.g.An×l means a matrix of sizen× l). Also, we represent the
elements in a matrix using a convention similar to Matlab, e.g.,A(i, j) is the element at theith row

2In practice, we store these matrices using an adjacency listrepresentation, since real graphs are often very sparse.
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Table 8.1: Symbols
Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) the element at theith row andjth column of matrixA
A(i, :) theith row of matrixA

A(:, j) thejth column of matrixA
A′ transpose of matrixA
~a,~b, . . . column vectors
I,J , . . . sets (calligraphic)
A(t) n× l time-aggregate interaction matrix at timet

~a
(t)
j thejth column ofA(t), i.e.,~a(t)

j = A(t)(:, j)
I indices for columns sampled:I = {i1, ..., ic}
n, l number of for type 1 and type 2 objects, respectively
c sample size. i.e. the number of columns sampled
C

(t)
0 n× c initial sampling matrix, consisting ofc columns

from A(t). i.e.,C(t)
0 = A(t)(:, I)

m
(t)
0 number of edges inC(t)

0 at timet

andjth column of the matrixA, andA(:, j) is thejth column ofA, etc. With this notation, we can
define matrixC0 asC0 = A(:, I) = [A(:, i1), ...,A(:, ic)]. In other words,C0 is the sub-matrix of
A by stacking all its columns indexed by the setI.Without loss of generality, we assume that the
numbers of type 1 and type 2 objects (corresponding to rows and columns in the adjacency matrix)
are fixed, i.e.,n andl are constant for all time steps; if not, we can reserve rows/columns with zero
elements as necessary.

At each time step, we observe a set of new edges, with associated edge weights. While there
are multiple choices to update the adjacency matrix (e.g. sliding window, exponential forgetting
etc), we use global aggregation for simplicity: once an edgeappears at some time stept, the corre-
sponding entry of the adjacency matrix is updated and the edge is never deleted or modified. This
assumption facilitates presentation, but our methods can naturally apply to other update schemes.

With the above notations and assumptions, our problems can be formally defined as follows:

Problem 10. (Static Case.)Low rank approximation for static sparse graphs

Given: A large, static sparse graphAn×l, and sample sizec;

Find: Its low-rank approximation structure efficiently. That is,find three matricesLn×c̃,Mc̃×c̃,
andRc̃×l such thatAn×l ≈ Ln×c̃Mc̃×c̃Rc̃×l, wherec̃ ≤ c.

Problem 11. (Dynamic Case.)Low rank approximation for dynamic sparse graphs

Given: A large, dynamic sparse graphA(t)
n×l, for t = 1, 2, . . ., and the sample sizec;

Track: Its low-rank approximation structure over time efficiently. That is, to find three matrices
L(t),M(t), andR(t) for each time stept such thatA(t)

n×l ≈ L
(t)

n×c̃(t)
M

(t)

c̃(t)×c̃(t)
R

(t)

c̃(t)×l
, where

c̃(t) ≤ c.
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8.3 Colibri-S for Static Graphs

(a) SVD (b) CUR

(c) CMD (d)Colibri-S

Figure 8.2: A pictorial comparison for different methods. To construct the same subspace, SVD
will use all the data points (dark ones); CUR will use a subsetof data point with possibly a lot
duplications (the number besides the arrow is the number of duplicate copies); CMD will remove
the duplicate the columns in CUR; and ourColibri-S will further remove all linearly dependent
columns which is most efficient in both speed and space. For illustrative purpose, we set the
approximation accuracy of each method to be always 100% in this example.

In this section, we address Problem10and introduce ourColibri-Sfor static graphs. After some
necessary background in subsection8.3.1, we present the algorithm in subsection8.3.2, followed
by the proofs and complexity analysis in subsection8.3.3.
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8.3.1 Preliminaries

Here, we want to decompose the adjacency matrixAn×l of a static graph into three matrices:Ln×c̃,
Mc̃×c̃, andRc̃×l. The goal is to achieve a good balance between efficiency and approximation
quality. For the quality, we want̃A = LMR to approximate the original adjacency matrixA

as well as possible. Throughout the paper, we use the Frobenius norm ofÃ − A to measure the
approximation error. As for efficiency, we want to (1) keep the matricesL andR small (̃c ≪ l)
and sparse, to save space; and (2) compute the decompositionusing minimal running time.

The best known methods to achieve such balance are CUR [DKM05b] and its improved ver-
sion, CMD [SXZF07]. The key idea behind CUR and CMD is to sample some columns ofA

with replacement, biased towards those with larger norms3; and then to use the projection of the
original adjacency matrixA into the subspace spanned by these sampled columns as the lowrank
approximation of the matrixA. As shown in [DKM05b], such procedures provably achieve an
optimal approximation. Additionally, the matricesL andR by CUR/CMD are usually very sparse,
thus the CUR/CMD decomposition is shown to be much faster than standard SVD.

8.3.2 Algorithm

Our algorithm shares the same high-level principle as CUR and CMD. That is, we want to sample
some columns of the matrixA and then projectA into the subspace spanned by these columns.
As we show later, our method achieves exactly the same approximation accuracy as CUR/CMD,
but it is equal or better compared to CUR/CMD in terms of both space and time.

If we concatenate all the sampled columns into a matrixC0, we can useC0(C
′
0C0)

†C′
0A

as the approximation of the original adjacency matrixA, where(C′
0C0)

† is the Moore-Penrose
pseudo-inverse of the square matrixC′

0C0.
However, the sampled columns inC0 may contain duplicates (or near duplicates)—for exam-

ple, all nodes that belong to the same closed and tightly-connected community would have the
same sets of neighbors (namely, the community’s members). CMD essentially performs duplicate
elimination. However, more generally, the columns ofC0 may be unequal but linear dependences
may still be present. In other words, the columns ofC0 form a redundantor overcompletebasis.
This is clearly not efficient in terms of space. Moreover, if we keep these redundant columns, we
have to estimate the pseudo-inverse of a larger matrix, which adversely affects running time as
well.

The heart ofColibri-S is to iteratively construct the desired subspace, eliminate these redundant
columns in the process. Algorithm14 shows the full pseudocode.

There are three stages in algorithm14. First (steps 1-2), we samplec columns of matrixA
with replacement, biased towards those with higher norms, exactly as CUR does (first step in Fig-
ure.8.3). Then, we try to select linearly independent columns from the initially sampled columns
and build theM matrix (referred to as the “core matrix”): after an initialization step (step 3), we
iteratively test if a new columnA(:, ik) is linearly dependent on the current columns ofL (steps
5-7). If so, we skip the columnA(:, ik). Otherwise, we appendA(:, ik) into L and update the

3In [DKM05b, SXZF07], the authors also suggest simultaneously sampling columns and rows. Our method can be
naturally generalized to handle this case. For simplicity,we focus on sampling columns only.

145



Algorithm 14 Colibri-S for Static Graphs
Require: The adjacency matrixAn×l, toleranceǫ, and the sample sizec
Ensure: Three matricesLn×c̃, Mc̃×c̃, andRc̃×l, wherec̃ ≤ c.

1: Compute column distribution forx = 1, ..., l: P (x) =
∑

i A(i, x)2/
∑

i,j A(i, j)2;
2: Samplec columns fromA based onP (x). LetI = {i1, ..., ic} be the indices of these columns.
3: Initialize L = [A(:, i1)]; M = 1/(A(:, i1)

′ ·A(:, i1))
4: for k = 2 : c do
5: Compute the residual:~res = A(:, ik)− LML′A(:, ik)
6: if ‖ ~res‖ ≤ ε‖A(:, ik)‖ then
7: Continue;
8: else
9: Compute:δ = ‖ ~res‖2; and~y = ML′A(:, ik)

10: Update the core matrixM: M←
(
M + ~y′~y/δ −~y/δ
−~y′/δ 1/δ

)

11: ExpandL: L← [L, A(:, ik)]
12: end if
13: end for
14: ComputeR = L′A.

core matrixM (steps 9-11). Note that if the new columnA(:, ik) is linearly independent wrt the
current columns inL (i.e., if ‖ ~res‖ > ε‖A(:, ik)‖), we can use the residual~res computed in step
5 to update the core matrixM in step 9. Conversely, we use the core matrixM to estimate the
residual and test linear dependence of the new column (step 5). In this way, we simultaneously
prune the redundant columns and update the core matrix. The last step in Figure.8.3 shows the
final L obtained after eliminating the redundant columns fromC0. Finally, we define theR matrix
to beL′A.4

8.3.3 Proofs and Analysis

Here we provide the proofs and the performance analysis ofColibri-S. We also make a brief com-
parison with the state-of-art techniques, such as CUR/CMD.

Proof of Correctness forColibri-S

We have the following theorem for the correctness of Alg.14:
Theorem 6. Correctness ofColibri-S. Let the matrixC0 contain the initial sampled columns from
A(i.e. C0 = A(:, I)). With toleranceǫ = 0, the following facts hold for the matricesL andM in
Alg. 14:

4Note that whileL is sparse since it consists of a subset of the original columns from A, the matrixR is the
multiplication of two sparse matrices and is not necessarily sparse. In order to further save space, we can use a
randomized algorithm [DKM05a] to approximateR. This can be naturally incorporated into Alg.14. However, it is
an orthogonal to what we are proposing in this paper. For simplicity, we will useR = L′A throughout this paper.

146



P1: the columns ofL are linearly independent;
P2: L shares the same column space asC0;
P3: the core matrixM satisfiesM = (L′L)−1.

Proof. First, we will prove ‘P3’ in Theorem6 by induction. The base case (step 3 of Alg.14) is
obviously true.

For the induction step of ‘P3’, let us suppose that (1)M = (L′L)−1 holds up to thekth
1 (2 ≤

k1 ≤ c) iteration; and (2)L will be expanded next in thekth
2 iteration (k1 < k2 ≤ c).

Let L̃ = (L A(:, ik2)). We have

L̃′L̃ =

(
L′

A(:, ik2)
′

)
×

(
L A(:, ik2)

)

=

(
L′L L′A(:, ik2)

A(:, ik2)
′L A(:, ik2)

′A(:, ik2)

)
(8.1)

DefineM̃ =

(
M + ~y′~y/δ −~y/δ
−~y′/δ 1/δ

)
, where~y andδ are defined in Alg.14.

SinceM = (L′L)−1 by inductive hypothesis, it can be verified that~res is the residual if we
project the columnA(:, ik2) into the column space ofL. Based on the orthogonality property of
the projection, we have

δ = ‖ ~res‖2
= ~res′( ~res + LML′A(:, ik2))

= ~res′A(:, ik) (8.2)

Now, applying the Sherman-Morrison lemma [PC90] to the matrixL̃′L̃ in the form of eq.8.1,
based on eq.8.2, we can verify thatM̃ = (L̃′L̃)−1 holds, which completes the proof of ‘P3’.

Next, let us prove ‘P1’ in Theorem6 by induction. Again, the base case for ‘P1’ is obviously
true (step 3 of Alg.14).

For the induction step for ‘P1’, let us suppose that (1) all the columns inLn×ĉ are linearly
independent up to thekth

1 iteration(2 ≤ ĉ ≤ k1 ≤ c); and (2)L will be expanded next in the
kth

2 iteration (k1 < k2 ≤ c). We only need to prove thatA(:, ik2)) is linear independent wrt the
columns in the currentL matrix.

By ‘P3’, the ~res computed in step 5 is the exactly the residual if we project the column
A(:, ik2)) into the column space spanned by the currentL matrix. Since we decide to expand
L by A(:, ik2)), with toleranceǫ = 0, it must be true that the residual satisfiesres > 0 (step 8). In
other words, the columnA(:, ik2)) is not in the column space ofL.

Now, suppose thatA(:, ik2)) is linearly dependent to the columns in the currentL matrix. The
columnA(:, ik2)) must lie in the column space ofL. This is contra-positive, which completes the
proof of ‘P1’.

Finally, from ‘P1’, for each column~u ∈ {C0 − L} (steps 5-7 of Alg.14), there must exist a
vector~β = (β1, ..., βc̃)

′ = ML′~u, such that~u = L~β holds. In other words,~u must be in the column
space ofL. Therefore, removing the column~u fromL will not change the column space ofL. This
completes the proof of ‘P2’. �
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Notice thatColibri-S iteratively finds the linearly independent set of columns (i.e., the matrix
L). For the same initially sampled columns (C0), it might lead to a differentL matrix if we use
a different order in the index setI. However, based on Theorem 1, this operation will not affect
the subspace spanned by the columns of the matrixL since it is always the same as the subspace
spanned by the columns of the matrixC0. Therefore, it will not affect the approximation accuracy
for the original matrixA.

Efficiency of Colibri-S

We have the following lemma for the speed of Alg.14.

Lemma 17. Efficiency ofColibri-S. The computational complexity to outputM andL in Alg. 14
is bounded byO(cc̃2 + cm̃), wherec̃, m̃ are the number of columns and edges in the matrixL,
respectively; andc is the number of columns inC0.

Proof. In thekth iteration of Alg.14, suppose there arêk columns and̂m edges in the matrixL.
We havêk ≤ k andm̂ ≤ m̃.

We assume thatL andA are stored as adjacency lists, since they are sparse, andM is stored as
a full matrix, since it is usually dense. With this storage format, it is easy to verify that the cost of
thekth iteration (ignoring constant factors) of Alg.14 is k̂2 + m̂.

Let us first consider the time cost for all thesec̃ columns inL. Notice that each time we expand
one such column, the size ofM will increase by exactly1 × 1. Therefore, the total running time
(again, ignoring factors) for expanding these columns in Alg. 14 is:

time1 =

c∑

k=2,A(:,ik)∈L

(k̂2 + m̂)

≤
c̃−1∑

i=1

(i2 + m̃)

≤
c̃−1∑

i=1

(i2) + c̃m̃)

= O(c̃3 + c̃m̃) (8.3)

Next, let us consider the time cost for all these(c − c̃) redundant columns. For each of those
columns, we havêk ≤ c̃ andm̂ ≤ m̃. Therefore, the total running time for eliminating these(c− c̃)
columns is:

time2 =
c∑

k=2,A(:,ik)∈{C0−L}

(k̂2 + m̂)

≤
c−c̃∑

i=1

(c̃2 + m̃)

= O(cc̃2 − c̃3 + (c− c̃)m̃) (8.4)
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Putting eq.8.3and8.4together, we get that the total running time for steps 4–13 ofAlg. 14 is:

time = time1 + time2

= O(cc̃2 + cm̃) (8.5)

which completes the proof of Lemma17. �

Comparison with CUR/CMD

Next we compareColibri-Sagainst the state-of-art techniques, i.e. CUR [DKM05b] and CMD [SXZF07].
We compare with respect to accuracy, time and space cost.

Lemma 18 (ACCURACY). Using the same initial sampled columnsC0, Alg. 14 has exactly the
same approximation accuracy as CUR [DKM05b] and CMD [SXZF07].

Proof. DefineÃ asÃ = LMR. By Theorem6, the matrixÃ satisfiesÃ = L(L′L)−1L′A. In
other words,̃A is the projection of the matrixA into the column space ofL. On the other hand,
by Theorem6, the matrixL has the same column space asC0, i.e.,Ã = C0(C

′
0C0)

†C′
0A, which

is exactly how CUR/CMD [DKM05b, SXZF07] tries to approximate the original matrixA. �

Lemma 19(SPACE). Using the same initial sampled columnsC0, Alg.14 is better than or equal
to CUR in [DKM05b] and CMD in [SXZF07] in terms of space.

Proof. Notice thatL is always a subset ofC0. On the other hand, if there exist duplicate columns
in C0, they will appear only once inL. �

Lemma 20 (TIME). Using the same initial sampled columnsC0, Alg. 14 is faster than, or equal
to CUR ([DKM05b]) and CMD ([SXZF07]).

Proof. By Lemma17, the computational complexity of Alg.14 at the worst case is the same as
the original CUR method in [DKM05b] (O(cm) for multiplying C′

0 andC0 together; andO(c3)
for the Moore-Penrose pseudo-inverse ofC′

0C0. Also notice that̃c ≤ c andm̃ ≤ m). On the other
hand, if there exist duplicate columns inC0, we can always remove them before step 3 in Alg.14
and then CMD in [SXZF07] will degenerate to CUR [DKM05b]. �

In particular, the complexity is proportional to the squareof the “true” dimensionalitỹc of the
approximating subspace. Since, as we shall see in the experimental evaluation, in real datasetsc̃
is significantly smaller thanc, this translates to substantial savings in computation time as well as
space.

INTUITION. The intuition behind the above proofs and savings is shown inFigure8.2, which
gives a pictorial comparison of ourColibri-S with SVD/CUR/CMD. Figure8.2 shows that: (1)
SVD (Figure8.2(a)) uses all data points (dark ones) and the resultingL matrix is dense. (2) CUR
(Figure8.2(b)) uses sampled columns (dark ones) but there may be many duplicate columns (the
number next to each arrow stands for the multiplicity) The resultingL matrix of CUR is sparse but
it has totally 16 columns. (3) CMD (Figure8.2(c)) removes the duplicate columns in CUR and the
resultingL (with 6 columns) is more compact. (4) OurColibri-S (Figure8.2(d)) further removes
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Figure 8.3: Illustration of notation and process forColibri-S. Shaded columns are part of initial
sample, dark shaded columns are linearly independent amongthose.

all the linearly dependent columns and the resultingL only contains 2 sparse columns. Therefore,
while all these four methods leads to the same subspace,Colibri-S is most efficient in both time
and space.

8.4 Colibri-D for Dynamic Graphs

In this section, we deal with Problem11and proposeColibri-D for dynamic, time-evolving graphs.
Our goal is to find the low rank approximation structure of theadjacency matrix at each time step
t efficiently. As for static graphs, we first give the algorithmin subsection8.4.1and then provide
theoretical justification and analysis in subsection8.4.2.

8.4.1 Algorithm

Conceptually, we could call Alg.14 to output the low rank approximation for each time stept. In
this way, we will have to compute the core matrixM, which is the most expensive part in Alg.14,
for each time step from the scratch. On the other hand, if the graph changes “smoothly” between
two consecutive time steps (i.e., the number of affected edges is reasonably small) then, intuitively,
we do not expect its low rank approximation structure to change dramatically. This is exactly the
heart of ourColibri-D. We want to leverage the core matrixM(t) to quickly get the core matrix
M(t+1) in the next time step, given that the graph changes “smoothly” from time stept to (t + 1).

For simplicity, we assume that the indices of the initial sampled columnsC(t)
0 are fixed. That

is, we will fix the index setI = {i1, ..., ic} over time, and we will always use the projection of the
adjacency matrixA(t) in the columns space ofC(t)

0 = A(t)(:, I) as the low rank approximation of
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A(t) for each time step5. Note that even if we use the same initial column indices, thecontent of
matrixC

(t)
0 keeps changing over time and so does the subspace it spans. Our goal is to efficiently

update the non-redundant basis for the subspace spanned by the columns ofC(t)
0 over time. Note

that in Figure.8.4, the column indices ofC(t+1)
0 are exactly the same as those forC

(t)
0 in Figure.8.3.

However, in this example, the contents of columns 3 andl − 2 have changed.
The basic idea of our algorithm for dynamic graphs is as follows: once the adjacency matrix

A(t+1) at time step(t + 1) is updated, we will update the matrixC(t+1)
0 . Then, we will try to

identify those linearly independent columnsL(t+1) within C
(t+1)
0 as well as the core matrixM(t+1).

To reduce the computational cost, we will leverage the core matrix from the current time stepM(t)

to updateL(t+1) as well asM(t+1), instead of computing them from the scratch. Finally, we will
update theR matrix asR(t+1) = L(t+1)′A(t+1).

Next, we will describe how to updateL(t+1) andM(t+1) at time stept + 1. At time stept,
we might find some redundant columns inC

(t)
0 which are linearly dependent wrt the remaining

columns inC(t)
0 . In Figure.8.3, these were columns 4 and 9. We split the indices setI into two

disjoint subsets:J (t) andK(t), as shown in Figure.8.3. We require thatI = J (t)∪K(t), andL(t) =

A(t)(:,J (t)). In other words,J (t) corresponds to those columns inC
(t)
0 that are actually used to

construct the subspace; andK(t) corresponds to those redundant columns inC
(t)
0 . Notice that even

though we fix the index setI over time, the subsetsJ (t) andK(t) change over time. Updating the
matrixL(t) is equivalent to updating the subsetJ (t). To simplify the description of the algorithm,
we further partitionJ (t) into two disjoint subsetsJ (t)

a andJ (t)
b , such thatJ (t) = J (t)

a ∪ J (t)
b . We

require thatA(t)(:,J (t)
a ) = A(t+1)(:,J (t)

a ); andA(t)(:,J (t)
b ) 6= A(t+1)(:,J (t)

b ). In other words,
J (t)

a corresponds to those unchanged columns inL from t to (t + 1), while J (t)
b corresponds to

those changed columns fromt to (t + 1). These sets are shown in Figure.8.4 on the left: notice
that their union isI(t) from Figure.8.3.

With the above notations, the complete pseudocode to updatethe low rank approximation from
time stept to (t + 1) is given in Alg.15.

Comparing Alg.15 with its static version (Alg.14), the main differences are (1) we do not
need to test the linear dependence and build our core matrix from the scratch if the subsetJa

is not empty (steps 3–9), since the columns inJa are guaranteed to be linearly independent; (2)
furthermore, if the change inI is relatively small (i.e. | J (t)

a |>| J (t)
b |), we do not need to

initialize our core matrixM(t+1) from the scratch. Instead, we can leverage the information in
M(t) to do fast initialization (steps 6–8). These strategies, aswill be shown in the next subsection,
will dramatically reduce the computational time, while thewhole algorithm will give exactly the
same low rank approximation as if we had called Alg.14 for time step(t + 1). After we initialize
the core matrixM(t+1) (after step 9), we will recursively test the linear dependence for each column
in K(t) andJ (t)

b and possibly incorporate them to expand the core matrixM(t+1), which is very
similar to what we do for the static graphs in Alg.14.

In our running example of Figure.8.3and8.4, since columns 7 and 10 were linearly indepen-
dent at timet and they have remained unchanged, we can safely initializeL(t+1) to include these.
However, since columns 3 andl − 2 have changed, we need to re-test for linear independence. In

5How to update the indices setI over time is beyond the scope of this paper.
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Algorithm 15 Colibri-D for Dynamic Graphs

Require: The adjacency matricesA(t) andA(t+1), the indices setI = J (t) ∪ K(t), toleranceǫ,
and the core matrixM(t) at time stept

Ensure: Three matricesL(t+1), M(t+1), andR(t+1); and updated indices partitionI = J (t+1) ∪
K(t+1).

1: SetJ (t)
a andJ (t)

b based onA(t) andA(t+1);
2: Initialize L(t+1) = A(:,J (t)

a ); K = J (t)
b ∪ K(t)

3: if | J (t)
a |≤| J (t)

b | then
4: Compute:M(t+1) = (L(t+1)′L(t+1))−1

5: else
6: Compute:Λ = M(t)(J (t)

b ,J (t)
b )−1

7: Compute:∆ = M(t)(J (t)
a ,J (t)

b )ΛM(t)(J (t)
b ,J (t)

a )

8: Compute:M(t+1) = M(t)(J (t)
a ,J (t)

a )−∆

9: end if
10: for each indexk in K do
11: Compute the residual:~res = A(t+1)(:, k)− L(t+1)M(t+1)L(t+1)′A(t+1)(:, k)
12: if ‖ ~res‖ ≤ ε‖A(t+1)(:, k)‖ then
13: Continue;
14: else
15: Compute:δ = ‖ ~res‖2; and~y = M(t+1)L(t+1)′A(t+1)(:, k)

16: Update the core matrixM(t+1): M(t+1) ←
(
M(t+1) + ~y′~y/δ −~y/δ
−~y′/δ 1/δ

)

17: ExpandL(t+1): L(t+1) ← [L(t+1), A(t+1)(:, k)]
18: end if
19: end for
20: ComputeR(t+1) = L(t+1)′A(t+1);
21: UpdateJ (t+1) andK(t+1).

this example, it turns out that 3 is still linearly independent, whereasl − 2 is not any more. Addi-
tionally, some of the columns that were previously excludedas linearly dependent (e.g., 4 and 9)
may now have become linearly independent, so we need to re-test those as well. In this example,
it turns out that they are still redundant.

8.4.2 Proofs and Analysis

Correctness ofColibri-D

We have the following lemma for the correctness of Alg.15:

Lemma 21. Correctness ofColibri-D. Let the matrixC0 contain the initial sampled columns from
A(t+1) (i.e. C0 = A(t+1)(:, I)). With toleranceǫ = 0, the following facts hold for the matrices
L(t+1) andM(t+1) in Alg. 15:

152



P1: the columns ofL(t+1) are linearly independent;
P2: L(t+1) shares the same column space asC0;
P3: the core matrixM(t+1) satisfiesM(t+1) = (L(t+1)′L(t+1))−1.

Proof. : For ‘P3’, the proof is the same as the proof of ‘P3’ in Theorem6.
For ‘P1’ we prove it by induction. First (base case), notice thatL(t+1) in step 2 is a subset of

L(t), according to Theorem6, the columns inL(t+1) must be linear independent with each other.
Then, for the induction step (the same procedure as the proofof ‘P1’ in Theorem6), we can show
that every time we expandL(t+1) (steps 15-17), the new column must be linearly independent with
the currentL(t+1). Therefore, the columns inL(t+1) is always linearly independent with each other.

For ‘P2’, by the proof of ‘P1’, we know that for each columnu which we skip (steps 11-13),
it can be expressed as a linear combination of the current columns inL(t+1). In other words,u is
linearly redundant with respect toL(t+1). Therefore,C0 andL(t+1) share the same column space,
which completes the proof. �

By Lemma21 and Theorem6, the three matricesL(t+1), M(t+1), andR(t+1) produced by
Alg. 15 are exactly the same as if we had called Alg.14 for time step(t + 1) from the scratch.
Therefore, we have the following corollary:

Corollary 7. Using the same index setI of initial sampled columns for all time steps, Alg.15 has
exactly the same approximation accuracy as Alg.14, CUR [DKM05b] and CMD [SXZF07].

Efficiency of Colibri-D

Since the three matricesL(t+1), M(t+1), andR(t+1) by Alg. 15 are exactly the same as if we had
called Alg.14 for time step(t + 1), we have the following corollary for the space cost of Alg.15:

Corollary 8. Using a fixed indices setI of initial sampled columns, the space cost of Alg.15 is
the same as Alg.14 and it is equal or better compared to CUR [DKM05b] and CMD [SXZF07].

We have the following lemma about the speed of Alg.15.

Lemma 22. Efficiency of Colibri-D. Let r1 =| J (t)
a |, r2 =| J (t)

b | and r3 =| K(t) |. The
computational complexity of Alg.15 is bounded byO(max(r1, r2, r3)

3 + (r2 + r3)m̃
(t+1)), where

m̃(t+1) is number of edges in the matrixL(t+1).

Proof. : The cost of steps 1-2 is constant. The cost of steps 3-9 isO(max(r1, r2, r3)
3). For the cost

of steps 10-19, we can show that (same as the proof of Lemma17), it is O((r2+r3)m̃
(t+1)). Putting

them together, we have that the total cost of Alg.15isO(max(r1, r2, r3)
3+(r2+r3)m̃

(t+1)), which
completes the proof. �

In terms of speed, the difference between Alg.15 and Alg.14 lies in the different way of ini-
tializing the matrixM(t+1) (steps 3–9 of Alg.15). More specifically, ifr1 ≤ r2, the computational
cost for initializingM(t+1) is asymptotically the same for both algorithms—both are O(r3

1). On
the other hand, ifr1 > r2, we only needO(r2

1r2) for Alg. 15 while Alg. 14 still requiresO(r3
1).

Based on this fact as well as Lemma17, we have the following corollary.
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K       =                   l

(t+1)                 {3, 7, 10, ... }I         =            

I   =                     {7, 10, ... }a I  =             l         {3, ...,   −2}b
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Figure 8.4: Illustration of notation and process forColibri-D—compare with Figure.8.3. Shaded
and dark shaded columns as in Figure.8.3, shaded and filled columns are those from the previous
timestep that contain at least one new entry.

Corollary 9. Using a fixed setI of initial sampled columns, the running time of Alg.15 is equal
or better compared to Alg.14, CUR [DKM05b] and CMD [SXZF07].

To summarize, if we fix the index setI of initial sampled columns for all time steps, the
proposed Alg.15 will produce the low rank approximation at each time stept with the same
accuracy as CUR/CMD and our own Alg.14 for static graphs. For both speed and space cost, it is
always equal or better than CUR/CMD as well as our Alg.14.

8.5 Applications: Case Studies

As mentioned before, low rank approximations constitute a powerful tool to mining both static
and dynamic graphs. Notice that our algorithms can achieve the same approximation accuracy as
CUR/CMD. Thus, in principle, we can do whatever CUR/CMD can do, only that our methods will
probably be much faster and nimbler. Next, we present two examples as case studies: community
tracking (subsection8.5.1) and anomaly detection (subsection8.5.2).

8.5.1 Community Tracking

The low rank approximation of the adjacency matrixA(t) often reveals the community structure in
the graphs. Therefore, by tracking the low rank approximation ofA(t) over time (t = 1, 2, . . .), we
can monitor the community structure (see Figure8.5).

There are numerous graph partitioning and community detection algorithms. We believe that
several of them would benefit from a good, low-rank approximation. To illustrate the ability of
Colibri to find and monitor communities, among the many choices, we use Algorithm16. Here we
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applyColibri-D to a sequence of the adjacency matricesA(t) for each time stept ≥ 1. Note that, in
contrast to CUR/CMD, the columns inL(t) are linearly independent, which serve as basis vectors.
The projections onto the basis vectors give us the low-dimensional feature vectors for each nodes,
aka the columns ofML. We then perform k-means on them to generate the clustering result.

Algorithm 16 Community Tracking over Time

Require: The adjacency matrixA(t)(t = 1, 2, ...), sample sizec andε
Ensure: The community at each timet for the given graph.

1: for t = 1, 2, ... do
2: if t == 1 then
3: set the low rank approximation forA1 by Alg. 14. Let the output of Alg.14beL(t), M(t)

andR(t);
4: else
5: Update low rank approximation forAt by Alg. 15. Let the output of Alg.15beL(t), M(t)

andR(t);
6: end if
7: Let X = M(t)R(t); andk be the number of columns inL(t);
8: Treat each column inX as a feature vector for the corresponding node.
9: Use k-means to clusterX into k clusters.

10: end for

Note that Alg.16 assumes that the number of communities equals the number of columns in
the matrixL(t). In practice, given the sample sizec, we can control the number of communities by
choosing differentε 6= 0. In this way, we also want to eliminate those ‘nearly linearly dependent’
columns in the matrixL(t).

Figure8.5gives an example of applying Alg.16 to a synthetic dataset, a sequence of so-called
“Cavemen” graphs. These graphs are almost block-diagonal,and their name comes from social
networks, where a group of hypothetical cavemen tend to knowalmost everybody else in their
cave, but few cavemen from the other cave(s). We present the results for three time steps. Each
sub-figure in the left column is the original adjacency matrix at that time step, and the sub-figure in
the right column is the clustering result (the adjacency matrix after re-ordering the nodes belonging
to the same clustering together). We set the sample sizec = 15 andε = 0.5 6. Alg. 16 naturally
tracks the evolution of the communities over time: it startswith two large communities; then a
third one emerges, and then the middle community is absorbedin the first one.

8.5.2 Anomaly Detection

We can also useColibri to detect anomalies in the graphs. In [SXZF07], the authors discussed
various ways to detect anomaly network traffic by CMD. The basic idea is to examine the re-
construction error. For example, a large reconstruction error for a specific row often indicates
abnormal source hosts (e.g. port scanners who send traffic tomany different hosts). Similarly,

6How to choose an optimalε in the general case is outside the scope of this paper.
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(a) t = 1
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(b) t = 2.
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(c) t = 3.

Figure 8.5: An example of applying Alg.16 to a dynamic Caveman graph. The sub-figures in the
left column are the original adjacency matricesM(t) with permutation. The sub-figures in the right
column are the adjacency matrices after reordering by ourColibri. With the sample sizec = 15,
andε = 0.5, we can track the evolution of the communities over time.

156



a large reconstruction error for a specific column often implies abnormal destination hosts (e.g.
targets of distributed denial of service attacks (DDoS)). Furthermore, a large reconstruction error
for the whole adjacency matrix might indicate some global anomaly (e.g. the onset of worm-like
hierarchical scanning activities).

SinceColibri shares the exactly same reconstruction error as CMD, it is able to detectall these
abnormal behaviors as CMD does. Figure8.6presents such an example. We plot the reconstruction
accuracy for a given column (i.e. destination host) for the Network Traffic data over 20 hours. We
manually inject the anomalies into the given column in the13th hour (marked by the dashed circle),
exactly as in [SXZF07]. From Figure8.6 we see a clear drop of the reconstruction accuracy for
the given destination host, exactly at the time we injected the anomaly (the13th hour). Note that
while bothColibri and CMD will output exactly the same curve if we use the same initial sampled
columns,Colibri is often significantly faster, as we show next.
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Figure 8.6: An example of applyingColibri to detect abnormal destination hosts. A big drop in
the reconstruction accuracy (marked by dash circle), whichis found by ourColibri, corresponds
to the exact time step when we inject the anomalies.

8.6 Experimental Evaluations

Here we give experimental results for the proposedColibri. Our evaluation mainly focuses on (1)
the reconstruction accuracy, (2) the running time and (3) the space cost. After a brief introduction
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of the datasets and the evaluation criteria, we give the results for Colibri-S in subsection8.6.2, and
for Colibri-D in subsection8.6.3.

8.6.1 Experimental Setup

We use a network traffic dataset from the backbone router of a class-B university network. We
create a traffic matrix for every hour, with the rows and columns corresponding to the IP sources
and IP destinations. We turn the matrix into a binary matrix,that is, a ’1’ entry means that there is
some TCP flow from the corresponding IP source to the destination within that hour. In short, we
ignore the volume of such traffic. Overall there are 21,837 different source/destination pairs, 1,222
consecutive hours and 22.8K edges per hour, on average.

Let Ã = LMR. We use the standard reconstruction accuracy to measure theapproximation
quality (exactly as in [SXZF07]), to estimate theSSE, the sum-squared-error, with sample size
c=1,000 for both rows and columns:

Accu = 1− SSE

= 1−
∑

i,j

(A(i, j)− Ã(i, j))2/(
∑

i,j

A(i, j)2) (8.6)

For a given low rank approximation{Ln×c̃, Mc̃×c̃, Rc̃×l}, the matricesL andR are usually
sparse, and thus we store them as adjacency lists. In contrast, the matrixM is usually dense, and
we store it as a full matrix. Thus, the space cost is:

SPCost = NNZ(L) + NNZ(R) + c̃2 (8.7)

whereNNZ(.) is the number of non-zero entries in the matrix.
For the computational cost, we report the wall-clock time. All the experiments ran on the same

machine with four 2.4GHz AMD CPUs and 48GB memory, running Linux (2.6 kernel). For each
experiment, we run it 10 times and report the average.

Notice that for both Theorem 1 and Lemma 5, we require the toleranceε = 0. In our experi-
ments, we find by changingε to be a small positive number (e.g.,ε = 10−6), it does not influence
the approximation accuracy (up to 4 digits precision), while it makes the proposed algorithms more
numerically stable7. Therefore, for all the experiments we reported in this paper, we useε = 10−6

for bothColibri-SandColibri-D.

8.6.2 Performance ofColibri-S

Here, we evaluate the performance of ourColibri-S for static graphs, in terms of speed and space.
We compareColibri-Sagainst the best published techniques, and specifically against CUR [DKM05b]

and CMD [SXZF07]. For brevity and clarity, we omit the comparison against SVD, because

7this is an implementation detail. We omit the detailed discussion due to the space limit. How to choose an optimal
ε is out-of the scope of this paper.
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CMD [SXZF07] was reported to be significantly faster and nimbler than SVD, with savings up to
100 times.

We aggregate the traffic matrices within the first 100 hours and then ignore the edge weights as
the target matrixA. Totally, there are 158,805 edges in this graph. We vary the sample sizec from
1,000 to 8,000, and study how the accuracy changes with the running time and space cost for all
three methods.

Figure8.7plots the mean running time vs. the approximation accuracy.Notice that the y-axes
is in the logarithm scale.Colibri-S is significantly faster than both CUR and CMD, by 28x∼353x
and 12x∼52x respectively.
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Figure 8.7: Running time vs. accuracy. OurColibri-S (in green squares) is significantly faster than
both CUR and CMD, for the same approximation accuracy. Note that the y-axis is in logarithmic
scale.

With respect to space cost, CUR is always the most expensive among the three methods and
therefore we use it as the baseline. Figure8.8 plots the relative space cost of CMD andColibri-
S, vs. the approximation accuracy. Again,Colibri-S outperforms both CUR and CMD. Overall,
Colibri-S only requires 7.4%∼28.6% space cost of CUR, and 28.6%∼59.1% space cost of CMD
for the same approximation accuracy.

The reader may be wondering what causes all these savings. The answer is the reduction in
columns kept: inColibri-S we only keep those linearly independent columns, and discard all the
other of thec columns that CUR chooses (and keeps). This idea eventually leads to significant
savings. For example, with a sample size ofc = 8, 000 (the number of columns that CUR will
keep), CMD discards duplicates, keeping on the average only3, 220 unique columns, andColibri-
S further discards the linearly dependent ones, eventually keeping only1, 101. And, thanks to our
Theorem6, the columns thatColibri-Sdiscards have no effect on the desired subspace, and neither
on the approximation quality.
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Figure 8.8: Relative space cost ofColibri-S and CMD, versus accuracy. Space costs are normal-
ized by the space of CUR.Colibri-S consistently requires a fraction of the space by CUR/CMD,
for same accuracy.

8.6.3 Performance ofColibri-D

We use the same aggregated traffic matrix as in subsection8.6.2; and initialize the algorithm by a
sample sizec = 2, 000 (which gives an average accuacy of 93.8%). Then, we randomlyperturb
r out of these 2,000 sampled columns and update the low rank approximation of the updated
adjacency matrix. SinceColibri-D has the same space cost asColibri-S, we only present the
results on the running time.

We compare ourColibri-D against both CMD and against our ownColibri-S We apply CMD
andColibri-S for each (static) instance of the graph and report the wall-clock times. For visual
clarity, we omit the comparison against CUR, since it is consistently slower than both CMD and
Colibri-Son static graphs, as shown in subsection8.6.2.

Figure8.9 plots the wall-clock time of CMD,Colibri-S andColibri-D, versusr (the number
of updated columns).Colibri-D is 2.5x∼112x faster than CMD. Even compared against our own
Colibri-S Colibri-D is still about 2x∼5x faster. The computational savings ofColibri-D over
Colibri-S come from the Sherman-Morrison Lemma: if the graph evolves smoothly, Colibri-D
leverages the low rank approximation of the previous time step, and does a fast (but exact) update.
We repeat that all three methods haveidenticalapproximation accuracy, if they use the same initial
sampled columns.
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Figure 8.9: Performance for dynamic graphs: Speed versus number of updated columns.Colibri-
D (in green squares) is 2.5x∼112x faster than the best published competitor (CMD); and also faster
than our ownColibri-S, applied on each individual graph instance.

8.7 Related Work

In this section, we briefly review the related work on matrix low rank approximation. For the
related work on general graph mining, please refer to Chapter 6.

For static graphs, the most popular choices include SVD/PCA[GVL89, KAS98] and random
projection [Ind00]. However, these methods often ignore the sparseness of many real graphs and
therefore often need huge amount of space and processing time (See [SXZF07] for a detailed
evaluation). More recently, Drineas et al [DKM05b] proposed the CUR decomposition, which
partially deals with the sparsity of the graphs. CUR is proved to achieve an optimal approximation
while maintain the sparsity of the matrix. Sun et al [SXZF07] further improve CUR by removing
the duplicate columns/row in the sampling stage. Their method, named as CMD, is shown to
produce the same approximation accuracy, but it often requires much less time and space. Our
method (Colibri-S) further improves the efficiency in speed and space by leveraging the linear
correlation among different sampled columns. As a result, our method saves the computational
time and space cost, while it outputs exactly the same low rank approximation as CUR/CMD.

The worst-case computational complexity of CUR, CMD andColibri is linear to the size of
the matrix. A more accurate CUR approximation has been proposed in [DMM07], but it requires
SVD operation on the whole matrix as a preprocessing step which is often too expensive for many
large scale applications.

For dynamic graphs, a lot of SVD based techniques have been proposed, such as multiple time
series mining [GGK03, PSF05], dynamic tensor analysis [STF06], incremental spectral cluster-
ing [NXC+07] etc. As for the static graphs, these methods might suffer from the loss-of-sparsity
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issue for large sparse graphs despite their success in the general cases. Sun et al [SXZF07] deal
with this issue by applying their CMD method independently for each time step. However, how
to make use of the smoothness between two consecutive time steps to do even more efficient com-
putation is not exploited in [SXZF07]. This is exactly the unique feature of ourColibri-D, - it
leverages such smoothness to do fast update while maintaining the sparseness of the resulting low
rank approximation.

8.8 Conclusion

In this chapter, we propose the family ofColibri methods to do fast mining on large static and
dynamic graphs. The main contributions of the paper are:

• A family of novel, low rank approximation methods (Colibri-S, Colibri-D) for static and
dynamic graphs, respectively:Colibri-Ssaves space and time by eliminating linearly depen-
dent columns;Colibri-D builds onColibri-S, and performs incremental updates efficiently,
by exploiting the “smoothness” between two consecutive time steps.

• Proofs and complexity analysis, showing our methods are provably equal or better compared
to the best known methods in the literature, while maintaining exactly the same accuracy;

• Extensive experimental evaluation, showing that our methods are significantly faster and
nimbler than the state of the art (up to112 times faster). See Figure8.1 for comparisons
against CUR [DKM05b] and CMD [SXZF07].
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Chapter 9

Mining Complex Time-Stamped Events

Summary of This Chapter
Questions we want to answer:
Q: How to mine complex time-stamped events (e.g., find similar time stamps, abnor-

mal time stamps as well as the interpretations for our findings)?
Our answers and contributions
A1: We proposed a generic framework (T3) to mine complex time-stamped events.
A2: We developed an efficient algorithm (MT3) for multiple scale analysis.

9.1 Introduction

In many real applications, data sets are often collected at different time stamps. At each time stamp,
we might observe a set of events, where each event consists ofa set of entities. Furthermore, each
entity can have its own attributes. For example, in social networks, we might observe activities
(events) at each day (time), where each activity involves a set of different people (entities) – each
with his/her own attributes (e.g., job title). Another example is the yearly DBLP data sets, where a
time stamp is ‘publish year’; an event is a ‘paper’; and entities are ‘author,’ ‘conference,’ etc.

How can we analyze time in such a complex context. For example, are there any two time
stamps that look similar with each other? Can we find any abnormal time stamp whose behavior is
very different from other time stamps? How can we interpret our findings? Furthermore, how can
we do such analysis on multiple scales in an efficient way?

In this chapter, we address the above challenges in multipledimensions. First in a single scale,
our method (T3) can automatically group time stamps into meaningful clusters as well as spot
the abnormal stamps. For each cluster/abnormal time stamp,it also outputs the selective subsets
of events/entities/attribute values as their interpretations. Here, the main idea is (1) to adopt a
graph representation for the data sets at different time stamps and (2) to explore the proximity
among different nodes (time/events/entities/ attribute values), based on this we will find clusters
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and anomalies as well as their interpretations. Our experiments on several real data sets demon-
strate that T3 always outputs results (i.e., clusters and anomalies as well as their interpretations)
that are consistent with human intuitions. Furthermore, wepropose MT3 to allow efficient analy-
sis on multiple scales. Here, the key idea is to explore the “smoothness” (i.e., redundancy) among
different scales. Our experiments show that MT3 leads to exactly the same results (i.e,no quality
loss), but achieves significant speed-ups (up to2 orders of magnitude).

The main contributions of this chapter are summarized as follows:

• A generic framework (T3) to mine complex time-stamped events in complex context
• An efficient algorithm (MT3) for multiple scale analysis
• Power of our approach illustrated by extensive experimentson several real datasets

The rest of this chapter is organized as follows. We begin in Section 2 with the formal problem
definition. We present T3 for the single scale analysis and MT3 for the multiple scale analysis
in Section 3 and Section 4, respectively. The experimental results are reported in Section 5. We
review the related work in Section 6 and conclude the chapterin Section 7.

9.2 Problem Definition

In this section, we first introduce our notations and data representation, and then give the formal
problem definitions.

Table9.2 lists the main symbols we use throughout this chapter. Following standard notation,
we use calligraphic letter for sets (e.g.,O1 is the set of all time stamps), capital bolded letters for
matrices (e.g.,W), and lower case bolded letters for vectors (e.g.,g). We denote the transpose
with a prime (i.e.,W′ is the transpose ofW), and we use superscripts to denote the indices for
object types (e.g.,Os is thesth type of object) and the indices for block matrices (e.g.,Wx,y is a
block matrix of the matrixW). For matrix/vector, we use the subscript to represent the size of the
matrix/vector (e.g.0k×l means a matrix of sizek × l, whose elements are all zero). If the size of a
matrix/vector is clear from the context, we omit such subscripts. Also, we represent the elements
in a matrix using a convention similar to Matlab, e.g.,W(i, j) is the element at theith row andjth

column of the matrixW, andW(i, :) is theith row of W, etc.
In our setting, the datasets are collected at different timestamps. At each time stamp, we

observe a set of events, where each event consists of a set of entities. Furthermore, each entity
may or may not have its own attributes. For example, in the running example in Table9.2(a), we
observe 9 events (e1, ..., e9), each of which is a social event (e.g.,e1 is a ‘technical meeting’,e2 is
a ‘football game’, etc). The events are spreaded among 6 timestamps (t1, ..., t6), each of which
is a day (e.g.,t1 is ‘Monday’, t2 is ‘Tuesday’, etc). Furthermore, each event involves 2 entities
(b1, ..., b8), each of which is a person (e.g.,b1 is ‘John’,b2 is ‘Smith’, etc) .

To simplify the description, we refer to ‘time’, ‘event’, each type of ‘entity’, and each ‘attribute’
as one type of object, respectively. If we havep types of entities (in the running example,p = 1),
and q types of attributes (in the running example,q = 0), we define the following object set
Ox(x = 1, ..., 2 + p + q), where the first type of object is always ‘time’; the second type of object
is always ‘event’; each of the nextp objects is one type of ‘entity’; and each of the nextq objects
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Table 9.1: Symbols

Symbol Definition and Description

O1 the ‘time’ object:O1 = {t1, ..., tn1}
O2 the ‘event’ object:O2 = {e1, ..., en2}
Ox the(x− 2)th ‘entity’ object:Ox = {b(x−2)

1 , ..., b
(x−2)
nx }, (x = 3, ..., 2 + p)

Oy the(y − 2− p)th ‘attribute’ object:Oy = {a(y−2−p)
1 , ..., a

(y−2−p)
ny },

(y = 3 + p, ..., 2 + p + q)
Wx,y the adjacency matrix (nx × ny) from thexth object to theyth object

(x, y = 1, ..., 2 + p + q)
Dx,y the degree matrix:Dx,y(i, i) =

∑
j Wx,y(i, j) andDx,y(i, j) = 0(i 6= j)

W = [Wx,y] the overall adjacency matrix (n× n)
0 a matrix with all elements equal to 0
I an identity matrix
p the number of different types of entities
q the number of different types of attributes
nx the number of instances for thexth type of object (x = 1, ..., 2 + p + q)
n the number of total instances (n =

∑2+p+q
x=1 nx)

sx the number of objects connected to thexth type of object
z the number of clusters for time stamps
ri,j the proximity score from nodej to nodei
c (1− c) is the restart probability for random walk with restart (c = 0.95 in this chapter.)
ttP = [ri,j] the time-to-time proximity matrix (n1 × n1, andi, j = 1, ..., n1)
toP = [ri,j] the time-to-others proximity matrix ((n− n1)× n1, andi = 1, ..., n− n1, j = 1, ..., n1)
f the aggregation function (n1 × 1 vector)
g the cluster membership function (n1 × 1 vector)

is one type of ‘attribute’. For the running example in Table9.2(a), we have 3 types of objects in
the object setOx(x = 1, 2, 3). They are ‘time’, ‘event’, and ‘entity’, respectively. (There is no
‘attribute’ in this example.) Each object type has a set of instances. For example, the instances for
the ‘time’ object (O1) are different time stamps (e.g.,t1, t2, ...).

In this chapter, we use a graph representation for the whole dataset covering all time stamps.
To be specific, we treat each instance for each type of object as a node in the graph. For exam-
ple, Table9.2(b) gives the graph representation for the original time-stamped datasets (depicted
in Table9.2(a)) – where each time stamp, each event instance, and each entity instance is rep-
resented as a single node in the graph. Furthermore, the relationship between different types of
objects are modeled by the adjacency matrices (Wx,y(x, y = 1, ..., 2 + p + q)). For example,
we can useW1,2 to model the relationship between the ‘time’ object and ‘event’ object, where
W1,2(i, j) = 1 iff the jth event happens at theith time stamp;W1,2(i, j) = 0 otherwise. Similarly,
we can useW2,2+x(x = 1, .., p) to model the relationship between the ‘event’ object and thexth
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‘entity’ object, whereW2,2+x(i, j) = 1 iff the ith event involves thejth instance of thexth type of
entity; W2,2+x(i, j) = 0 otherwise. We can useW2+x,2+p+y(x = 1, ..., p, y = 1, ..., q) to model
the relationship between thexth type of ‘entity’ object theyth type of ‘attribute’ object, where
W2+x,2+p+y(i, j) = 1 iff the ith instance of thexth type of ‘entity’ has thejth attribute value of
the yth type of ‘attribute’;W2+x,2+p+y(i, j) = 0 otherwise. For the running example, two such
adjacency matrices (W1,2 andW2,3) are enough to model all the relationships (see Table9.2(c)).

If we always reserve the firstn1 rows/columns for the time nodes; the nextn2 rows/columns for
the event nodes; followed by rows/ columns for entity nodes and attribute nodes respectively; we
can defineW = Wx,y (x, y = 1, ..., 2+p+ q) as the overall adjacency matrix for the whole graph.
Note that if there is no relationship between thexth and theyth objects, the corresponding block
matrix Wx,y = 0. Also, by this notation, we allow additional relationship within the same type
of object. For example, if we want to consider the continuousproperty of time, we can put extra
links between consecutive time nodes, which will lead to a non-zero block matrixW1,1. For the
running example in Table9.2, its overall adjacency matrixW has the following format (Eq. (9.1)):

W =




0 W1,2 0

(W1,2)′ 0 W2,3

0 (W2,3)′ 0


 (9.1)

With the above notation, our datasets can be denoted by the object setOx(x = 1, ..., 2 + p + q)
together with the overall adjacency matrixW. Our goal is to find (1) similar/anomalous time
stamps and (2) their interpretations. In this chapter, we define an anomalous time stamp as a special
time cluster, which contains a single time stamp. Therefore, we define the cluster membership
functiong as ann1×1 vector, and each element ing as an integer between1 andz (z is the cluster
number for time stamps), indicating to which cluster it belongs. To provide an interpretation for
each time cluster, we want to select a representative subsetof instances from each type of object
(except ‘time’ object). Thus, our problem (The Single Scale Analysis) can be formally defined as
follows:

Problem 12. The Single Scale Analysis

Given: The datasets collected at different time stamps:{Ox,W}(x = 1, .., 2 + p + q).
Find: (i) The cluster membership functiong for time stamps (as well as the cluster numberz);

and (ii) for each time cluster, a representative subset of instances from each type of object
(except ‘time’ object).

For example, Figure9.1(a) shows the output of the proposed T3 (for the single scale analysis)
applied to the datasets we list in Table9.2, where we find 2 clusters of time stamps ({t1, t2} and
{t4, t5, t6}) and 1 abnormal time stamp (t3). Therefore, our cluster membership function satisfies:
g = [1, 1, 3, 2, 2, 2]′. For each time cluster as well as the abnormal time stamp, we also output
a representative subset of the entity nodes as its interpretations.1

Besides the finest scale, we might also want to do the same analysis (i.e., to find the time
cluster/anomaly as well as their interpretations) on some coarser scale. To this end, we introduce

1For the sake of simplicity, the representative events are not shown in the figure.
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(a) Original data sets

(b) Graph representation (c) Adjacency matrices

Table 9.2: A running example: notations and representationillustration.

the aggregation functionf , which is ann1 × 1 vector. For example, if we aggregate the time by
every two time stamps for the datasets in Table9.2, the aggregation function~u is a6 × 1 vector:
f = [1, 1, 2, 2, 3, 3]′. Also, letg̃ be the cluster membership function andz̃ be the cluster number
at the aggregated scale, respectively. With this notation,our problem (The Multiple Scale Analysis)
can be formally defined as follows:

Problem 13. The Multiple Scale Analysis

Given: (i) The datasets collected at different time stamps:
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Figure 9.1: The outputs for the running example in Table9.2.

{Ox,W}(x = 1, .., 2 + p + q); and (ii) the aggregation functionf .
Find: (i) The cluster membership functioñg for time stamps (as well as the cluster numberz̃);

and (ii) for each time cluster at aggregated scale, a representative subset of instances from
each type of object (except ‘time’ object).

For example, Figure9.1(b) shows the output of the proposed MT3 applied to the datasets in
Table9.2if we aggregate the time by every two time stamps. Notice thatin this case, the abnormal
time stamp (i.e.,t3 at the finest scale) disappears.
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9.3 T3 for Single Scale Analysis

In this section, we propose T3 to address Problem12. We first give an overview of the proposed
algorithm (T3), and then introduce each component of T3 in detail.

9.3.1 Overview of T3

Alg. 17 gives the overview of the proposed T3 for single scale analysis. In T3, we first construct
the graph representationW from the original raw datasets as introduced in Section 2 (step 1).
Then (step 2), we will compute two proximity matrices from the adjacency matrixW: the time-
to-time proximity matrix (ttP) and the time-to-others proximity matrix (toP). The time-to-time
proximity matrix (ttP) will be used to find the time cluster membership functiong (step 3); while
the time-to-others proximity matrix (toP) will be used to find the representative subset of instances
as the interpretations for time cluster (step 4).

Algorithm 17 Overview of T3
1: construct the graphW from the raw datasets
2: compute the proximity matricesttP andtoP

3: find time cluster membership functiong based onttP
4: find the interpretation for each time cluster based ontoP

9.3.2 Compute the Proximity matrices

The key point in T3 is to construct two proximity matrices (ttP andtoP), based on which we will
find the time cluster membership functiong and its interpretations, respectively.

Alg. 18 lists detailed procedures to compute these two proximity matrices. Overall, we adopt
the well-studied model of random walk with restart [HLZ+04, PYFD04, TFP06] for this purpose
(steps 7-12). Suppose a random particle starts from the timenodej, the particle iteratively trans-
mits to its neighborhood with the probability that is proportional to the edge weight between them;
and also at each step, it has some probability (1− c) to return to the starting nodej. The proximity
scoreri,j is defined as the steady-state probability that the particlewill finally stay at nodei. A
subtle point in computing the proximity matrices is how to normalize the original adjacency matrix
W. In Alg. 18, we propose to normalize it by object type (steps 1-7). That is, suppose the random
particle stays at some node of typex and overall there aresx different types of objects connected
to thexth type of object; then at the next step, the particle will have equal chance (1

sx
) to jump to

each ofsx types of objects.

9.3.3 Find Time Clusters

Here, we want to find the cluster membership functiong for time stamps based on the time-
to-time proximity matrixttP. The algorithm is listed in Alg.19. We use a spectral clustering
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Algorithm 18 Compute the Proximity MatricesttP andtoP

Require: the adjacency matrixW andc
Ensure: the proximity matricesttP andtoP

1: for x = 1 : 2 + p + q do
2: for y = 1 : 2 + p + q do
3: normalize by object type:Wx,y ← 1

sx
· (Dx,y)−1 ·Wx,y

4: end for
5: end for
6: setW← [Wx,y]
7: for j = 1 : n1 do
8: let e = 0n×1; then sete(j) = 1
9: solver from the equationr = cW′r + (1− c)e

10: setttP(:, j) = r(1 : n1)
11: settoP(:, j) = r(n1 + 1 : n)
12: end for

Algorithm 19 Find the Time Cluster
Require: the time-to-time proximity matrixttP
Ensure: the cluster membership functiong

1: do eigen value decomposition forttP; let {λ1, ..., λn1} be the eigen values forttP (from
largest to smallest) and{v1, ...,vn1} be the corresponding eigen vectors

2: find the cluster numberz = argmaxi(λi−1 − λi)
3: let V = [v1, ...,vz]
4: treat each row ofV as a data point inz-dimensional space
5: use k-means to findz clusters onV and output the corresponding cluster membership function

g

algorithm.2 In Alg. 19, we first use the eigen-gap [?] (step 2) to choose cluster numberz. Then,
we treat the firstz eigen vectors as the embedding of the time nodes in thez-dimensional space
(steps 3-4) and run k-means to find the final cluster membership functiong (step 5).

As mentioned before, if we find some cluster which contains a single time stamp, we flag it as
the abnormal time stamp.

One benefit of using spectral clustering method is that we canuse the first few eigen vectors as
the embedding of the time stamps in some low dimensional space. For example, we can visualize
the time stamps by plotting its first two eigen vectors in Fig.9.1 for the running example.

2Notice that our framework is orthogonal to the specific clustering methods. We can plug in any clustering algo-
rithm that takes a proximity matrix between nodes as input. For example, we could transfer the time-to-time proximity
matrix ttP to be the normalized graph Laplacian and find its eigen-decomposition instead (step 1). Alternatively, we
can normalize each row ofV to have the unit length in step 3 as suggested in [NJW01].
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9.3.4 Find Interpretations for Time Clusters

For each time cluster, we want to select a representative subset of instance nodes from each type
of object (except the ‘time’ object) as the interpretationsfor that time cluster.

Suppose we want to find the interpretations for the time clusteru (u = 1, ..., z). Let r̄(j, u) be
the average proximity score from the time clusteru to the instance nodej:

r̄(j, u) =

∑n1

i=1 I(g(i) = u)toP(j, i)∑n1

i=1 I(g(i) = u)
(9.2)

whereI(.) is an indicator function, which is 1 if the condition in the parenthesis is true and 0
otherwise.

Based on̄r(j, u), we can define the representative scorer(j, u) for each instance nodej w.r.t.
the given time clusteru as follows:

r(j, u) = r̄(j, u)
z∏

w=1,w 6=u

(1− r̄(j, w)) (9.3)

The intuition of Eq. (9.3) is that we want to find the nodej which is close to the time clusteru
(higherr̄(j, u) is better) and far away from other time clusters (lowerr̄(j, w)(w 6= u) is better) on
average. Finally, we can output a subset of instance nodes with high representative scoresr(j, u)
from each type of object as the interpretations for the time clusteru.

9.4 MT3 for Multiple scale Analysis

In this section, we propose MT3 to address Problem13. Conceptually, we can apply T3 for each
scale of interest independently. Here, the challenge is to make the analysis on the coarser scales as
efficient as possible, given that we have already done the analysis at the finest scale.

In Alg. 17, the computational bottleneck lies in step 2 – i.e., to compute the two proximity
matricesttP and toP. For example, our experiments show that the time for this step usually
accounts for more than 95% of the overall running time of the algorithm. Therefore, our goal in
Multiple Scale Analysisis to efficiently update these two proximity matrices (˜ttP and ˜toP) at the
aggregated scale, given that we have already computed the proximity matrices (ttP andtoP) at
the finest scale.

We introduce the following vectorhn1×1, whereh(i) := number of event/entity/attribute nodes
connected to the time nodei at the finest scale. Suppose that we will haveñ1 time stamps at the
aggregated scale (i.e.,ñ1 = max(f)). Alg. 20gives the detailed procedure to update the proximity
matrices. In Alg.20, after we get the overall normalized adjacency matrixW̃ at the aggregated
scale (step 1), we set up two transformation matricesT1 andT2 (steps 2-9). Then (steps 10-12), we
need two matrix inversions (onen1×n1 in step 10 and onẽn1× ñ1 in step 11) to get the proximity
matrices ( ˜ttP and ˜toP) at the aggregated scale. Note that in many real applications the number
of time nodes at the finest scale is usually much smaller compared to the total nodes in the graph
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Algorithm 20 Update the Proximity Matrices
Require: the proximity matricesttP andtoP, the normalized adjacency matrixW at the finest

scale, the aggregation functionf andc;
Ensure: the proximity matrices ˜ttP and ˜toP at the aggregated scale.

1: set up the normalized adjacency matrixW̃ = [W̃x,y] at the aggregated scale.
2: initialize the transformation matrices:T1 = 0ñ1×n1 , andT2 = 0n1×ñ1

3: for ĩ = 1 : ñ1 do
4: find time stamps at the finest scale:J = {i : g(i) = ĩ}
5: for eachi ∈ J do
6: setT1(̃i, i) = h(i)/

∑
i∈J h(i)

7: setT2(i, ĩ) = 1
8: end for
9: end for

10: setΛ = In1×n1 − cW′
1,1 − (1− c)(ttP)−1

11: update ˜ttP = (1− c)(Iñ1×ñ1 − cW̃′
1,1 −T′

2ΛT′
1)

−1

12: update ˜toP = toP(ttP)−1T′
1

˜ttP

(i.e.,n1 ≪ n). Typically,n1 (the number of time nodes at the finest scale) is up to a few thousand
whereasn (the total nodes in the graph) could be up to a few hundred thousand. For example, in
theDBLPdataset, we only have about 49 among 988,947 time nodes at thefinest scale. Therefore,
we can efficiently update the proximity matrices at the aggregated scale by Alg.20.

The correctness of Alg.20 is guaranteed by the following theorem:

Theorem 10.The proximity matrices˜ttP and ˜toP by Alg.20are correct. That is, they are exactly
the same as we apply Alg.18 to the adjacency matrix̃W.

Proof. To simplify the description, we re-write the normalized adjacency matrix as the following
2× 2 block form:

W =

(
A1,1 A1,2

A2,1 A2,2

)
, W̃ =

(
Ã1,1 Ã1,2

Ã2,1 Ã2,2

)
(9.4)

where

A1,1 = W1,1, Ã1,1 = W̃1,1

A1,2 = [W1,y], Ã1,2 = [W̃1,y] (y = 2, ..., 2 + p + q)

A2,1 = [Wx,1], Ã2,1 = [W̃x,1] (x = 2, ..., 2 + p + q)

A2,2 = [Wx,y], Ã2,2 = [W̃x,y] (x, y = 2, ..., 2 + p + q)

(9.5)

Notice that only time nodes change before/after the aggregation, we have,

Ã2,2 = A2,2 (9.6)
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Furthermore, we can verify the following equations hold forthe two off-diagonal blocks in
Eq. (9.4):

Ã1,2 = T1A
1,2

Ã2,1 = A2,1T2 (9.7)

Define the following matrix inversion:

Q = (I− cW)−1

=

(
Q1,1 Q1,2

Q2,1 Q2,2

)

Q̃ = (I− cW̃)−1

=

(
Q̃1,1 Q̃1,2

Q̃2,1 Q̃2,2

)
(9.8)

By the property of random walk with restart [TFP06], we have the following equations for the
proximity matrices:

ttP = (1− c)(Q1,1)′, toP = (1− c)(Q1,2)′

˜ttP = (1− c)(Q̃1,1)′, ˜toP = (1− c)(Q̃1,2)′ (9.9)

Now, apply block matrix inversion lemma [PC90] to Eq. (9.8). Together with Eq. (9.4)-(9.9),
we have

1

1− c
(ttP)′ = (I− cW1,1 − c2A1,2(I −A2,2)−1A2,1)−1

(toP)′ = c(ttP)′A1,2(I −A2,2)−1

1

1− c
( ˜ttP)′ = (I− cW̃1,1 − c2T1A

1,2(I −A2,2)−1A2,1T2)
−1

( ˜toP)′ = c( ˜ttP)′T1A
1,2(I −A2,2)−1 (9.10)

In Eq. (9.10), we have four equations for four unknown variables (˜ttP, ˜toP, A1,2(I−A2,2)−1A2,1,
andA1,2(I −A2,2)−1). Solving this well-defined linear system, we have

˜ttP = (1− c)(I− cW̃′
1,1 −T′

2ΛT′
1)

−1

˜toP = toP(ttP)−1T′
1

˜ttP (9.11)

whereΛ = I− cW′
1,1 − (1− c)(ttP)−1, which completes the proof of theorem10. �

Based on Alg.20, the complete algorithm forMultiple Scale Analysisis given in Alg.21.
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Algorithm 21 MT3 for Multiple Scale Analysis
Require: the proximity matricesttP andtoP, the normalized adjacency matrixW at the finest

scale, the aggregation functionf andc
Ensure: (i) the cluster membership functioñg at the aggregated scale; and (ii) for each time cluster

at aggregated scale, a representative subset of instances from each type of object (except ‘time’
object)

1: update the proximity matrices̃ttP and ˜toP by Alg. 20
2: find the cluster membership functioñg by Alg. 19
3: for each time cluster̃u in g̃, compute the representative scorer(j, ũ) for each instancej by

˜toP and Eq. (9.3); and output a representative subset of instances from eachtype of object
(except ‘time’ object) based onr(j, ũ)

9.5 Experimental Results

In this section, we introduce four real data sets and presentour experimental results. All of the
experiments are designed to answer the following questions:

• effectiveness:What is the quality of T3 and MT3 proposed in this chapter?
• efficiency:How fast are the proposed algorithms?

9.5.1 Data Sets

Table 9.3: Datasets used in our evaluations
Dataset name p q n1 n m

NIPS 1 0 13 3,900 11,460
CIKM 2 1 15 3,299 10,228
DBLP 2 0 49 988,947 5,216,722

DeviceScan 2 0 294 114,540 684,276

We use four real data sets, which are summarized in Table 3. For each data set, Table9.5.1lists
the number of different types of ‘entity’ objects (p), the number of different types of ‘attribute’
objects (q), the number of time nodes in the finest scale (n1), the number of nodes (n) and edges
(m) in the whole graph in the finest scale. We verify the effectiveness of the proposed T3 and MT3
on NIPS, CIKM, andDeviceScan, and measure the efficiency of our algorithms using the larger
DBLP andDeviceScandata sets.

The first data set (NIPS) is from the NIPS proceedings.3 The time stamps are publication
years, from 1987 to 1999. We treat paper as ‘event’ object andauthor as ‘entity’ object; there is no
‘attribute’ object in this data set. Overall, there are 13 time nodes, 1,740 paper nodes, 2,037 author
nodes, and 11,460 edges at the finest scale.

3http://www.cs.toronto.edu/ r̃oweis/data.html
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TheCIKM data set is constructed from the CIKM proceedings.4 Again, time stamps are publi-
cation years, from 1993 to 2007. (Notice that we do not include papers from CIKM 1992 since the
session information for that year is not available.) We treat paper as ‘event’ object. For this data
set, we have two types of ‘entity’ objects: the authors of thepaper and the session name where the
paper is presented during the conference. For the session name, we further extract 158 keywords
as its attribute. Overall, there are 15 time nodes, 952 papernodes, 1,895 author nodes, 279 session
nodes, 158 keyword nodes, and 10,228 edges at the finest scale.

The DBLP data set is constructed from all the papers in the DBLP.5 Again, time stamps are
publication years, from 1959 to 2007. We treat paper as ‘event’ object. For this data set, we
have two types of ‘entity’ objects: the authors of the paper and the conference where the paper
is published. There is no additional ‘attribute’ object forthis data set. Overall, there are 49 time
nodes, 567,090 paper nodes, 418,236 author nodes, 3,571 conference nodes, and 5,216,722 edges
at the finest scale.

The DeviceScanis from MIT reality mining project.6 Here, the ‘event’ object is blue tooth
device scanning persons, and the time stamps are the day whensuch scanning events happen, from
Jan. 1, 2004 to May. 5, 2005. For this data set, we have two types of ‘entity’ objects: the blue tooth
device and the person to be scanned; there is no additional ‘attribute’ object. Overall, there are 294
time nodes, 114,046 scanning nodes, 103 device nodes, 97 person nodes, and 684,276 edges at the
finest scale.

9.5.2 Effectiveness: Case Studies

Here, we show the experimental results for the three real data sets, all of which are consistent with
our intuition.

Table 9.4: The interpretations forNIPSdata set.

Fig. 9.2 gives the embedding of the time nodes forNIPS data set using the first two eigen

4http://www.informatik.uni-trier.de/ l̃ey/db
/conf/cikm/

5http://www.informatik.uni-trier.de/ l̃ey/db/
6http://reality.media.mit.edu/
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Figure 9.2: The embedding for the time nodes ofNIPSdata set.

vectors (v1 andv2) of toP, which reveal a line shape of time over publication years. Using T3,
we find two time clusters (green circles vs. red dots in Fig.9.2) as well as their interpretations in
Table 4. From Fig.9.2and Table 4, we can see that while NIPS is a relatively stable community on
the whole (e.g., the majority representative authors do notchange over years), there is a topic shift
from early 1990s (mainly on ‘neural network’ and ‘neural information processing’) to late 1990s
(mainly on ‘statistical learning’).

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

1993

1994

1995
19961997

19981999

2000

2001

2002
2003

2004 2005
2006 2007

First eigen vector v
1

S
ec

on
d 

ei
ge

n 
ve

ct
or

 v
2

Figure 9.3: The embedding for the time nodes ofCIKM data set.
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Fig. 9.3 gives the embedding of the time nodes forCIKM data set using the first two eigen
vectors (v1 andv2) of toP, which reveal a line shape of time over publication years as for the
NIPSdata set. Using T3, we find two time clusters (green circles vs. red dots in Fig.9.3) as well
as their interpretations in Table 5. (For simplicity, we do not show the representative papers in the
table.) From Fig.9.3 and Table 5, we can see that while there are quite a lot of research interest
in deductive databases and rule systems in the CIKM community in 1990s, attention has shifted to
XML, statistical learning, language, etc since 2000.

Table 9.5: The interpretation forCIKM data set.

Fig. 9.4 shows the results of applying the proposed MT3 to theDeviceScandata set on two
different scales: (a) daily scale and (b) monthly scale. From Fig. 9.4(a), it can be seen that, there
are two time clusters on the daily scale. We found that one time cluster (green circles) corresponds
to semester breaks as well as holidays; and the other cluster(red dots) corresponds to the week
days during the semester. On the other hand, we found an abnormal time stamp (red dot, which is
Apr. 2004) on the monthly scale (Fig.9.4(b)). This might be due to the spring break in Apr. 2004.

9.5.3 Efficiency

Here, we study the wall-clock time of the proposed MT3 using two relatively larger data sets:
DeviceScanandDBLP. For these results, all of the experiments are done on the same machine with
four 2.4GHz AMD CPUs and 48GB memory, running Linux (2.6 kernel). We vary the aggregation
length (e.g., aggregate by every 2 time stamps, by every 3 time stamps, etc) and compare the wall-
clock time by the proposed MT3 and that by applying T3 to each of the aggregated scale from
scratch (referred to as the ‘straight-forward’ method).

Figure.9.5 shows the results. Notice that time is in logarithm scale. Itcan be seen that the
proposed MT3 is much more efficient. For example, it is 120x faster (6.1 seconds vs. 734 seconds)
for DeviceScandata set if we aggregate the time by every three time stamps (Fig. 4.7(a)); and it is
263x faster (6.0 seconds vs. 1,603 seconds) forDBLPdata set if we aggregate the time by every two
time stamps (Fig.4.7(b)). Overall, the proposed MT3 is 25x-263x faster than the straight-forward
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Figure 9.4: The embedding for the time nodes ofDeviceScandata set.

method. We would like to emphasize that such speed-ups are totally free, i.e., the proposed MT3
leads to exactly the same outputs as we apply T3 to each aggregated scale from scratch.

9.6 Related Work

In this section, we review the related work, which can be categorized into three parts: graph mining,
proximity measurement on graphs and relational learning.

Graph Mining. There exists a lot of research on static graph mining (refer to Chapter6 for
detailed reviews). It is worth pointing out that in these work, the focus is on utilizing the time
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Figure 9.5: Comparison on wall-clock time

information to better understand other nodes (event/entity/attribute) in the graphs; while in T3 and
MT3 we focus on the other side of the problem, i.e., to better understand time itself based on other
information (event/entity/attribute).

Measuring Proximity on Graphs. One of the most widely used proximity measurement on
graphs is random walk with restart (refer to Chapter2 for detailed reviews). Notice that the
fast algorithms to compute the proximity measurements designed for querying, such as the one
in [TFP06], do not apply in our settings since the pre-computational time for these algorithms will
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flood the overall running time of T3 and MT3.
Also, there are a lot of applications of proximity measurements (again, refer to Chapter2 for

detailed reviews). The most related works are [PYFD04, BHP04, ACA06b, AC07] in the sense
that they all use a graph representation for the dataset(s).However, these approaches mainly focus
on querying with or without learning; while T3 and MT3 are focusing on mining time in the context
of complicated events.

Relational Learning. Sharan and Neville [SN07] present a two-step approach for incorpo-
rating temporal information on links (e.g., co-authorshipand citation) into a relational classifier.
First, they summarize the time-varying interaction as weights on links of a static summary graph.
The summarization uses an exponential weighting scheme [CPV01]. Second, they incorporate
these link weights into a relational Bayes classifier. Theirapproach requires a summary parameter
(θ), that needs to be either provided by the user or tuned by the learning algorithm. Furthermore,
their approach cannot handle temporally-varying attributes. Our approach do not require a user-
provided parameter and can handle time associated with any aspect of an event.

9.7 Conclusion

In this chapter, we study how to find patterns in a collection of time-stamped, complex events. Our
main contributions are the following:

1. We propose to treat each time-stamp as a node in a carefullyconstructed graph. This opens
the door for the vast arsenal of graph mining algorithms (PageRank, graph partitioning,
proximity analysis, CenterPiece Subgraphs, etc). We show how the proposed T3 can au-
tomatically group the time stamps into meaningful clusters, spot anomalies, and provide
interpretations.

2. We propose MT3 to handle multiple scale analysis, achieving up to2 orders of magnitude
speedups.

3. Finally, we verify the effectiveness as well as the efficiency of T3 and MT3 with experiments
on several real datasets.

A promising research direction is to extend the T3 and MT3 to include additional continuous
attributes, like geographical coordinates.
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Part VI

Conclusion and future directions
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Chapter 10

Conclusion and Future Work

10.1 Summary of Contributions

Graphs appear in a wide range of settings and have posed a wealth of fascinating problems. Ac-
cording to the interaction with users, the research focus ofthis thesis work lies in two parts: (1)
querying and (2) mining. The main contributions of the thesis can be summarized as follows:

Querying Graphs:

• Complex User-Specific Patterns.We found that many complex user-specific patterns on
large graphs can be answered by means of proximity measurement. In other words,proxim-
ity allows us to query large graphs on the atomic levels. We support our claim by conduct-
ing three case studies (center-piece subgraphs (chapter 3), user feedback (chapter 4), and
gateway (chapter 5)), all of which (despite the difference in applications) rely on proximity
measurement as their building block.
Impact/Results.The proposed algorithms are operational, with careful design and numerous
optimizations. They led to 3 patents pending. The proposed algorithms for bothCePSand
user feedback are to be deployed into a real product (Cyano) in IBM [ QSJ08].

• Proximity Tracking. We proposed an efficient algorithmpTrack(chapter 6) to track prox-
imity on time-evolving graphs.
Impact/Results.It enables us to do trend analysis on the graph level. The proposed algorithm
(pTrack) is up to176xfaster than competitors and has no quality loss (Theorem4). This work
won theBest Paperaward in SIAM-DM 2008.

• Fast Proximity Computations. We developed a family of fast solutions (FastRWR) (chap-
ters 2-6,9) to compute proximity in several different scenarios. The idea is to carefully lever-
age some important properties shared by many real graphs (e.g., the block-wise structure,
the linear correlation, the skewness of real bipartite graphs, etc)
Impact/Results.We can often achieve orders of magnitude (up to 6,000,000x) speedup with
little (e.g., Theorem1, Lemma6, etc) or no quality loss (e.g., Lemma2, Theorem10, etc).
One of these works [TFP06] won theBest Research Paperaward in ICDM 2006.
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Mining Graphs:

• Vulnerability Analysis. We proposed an algorithm NetShield (chapter 6) for immunization
under the SIS (susceptible-infection-susceptible) model.
Impact/Results.While straight-forward methods are computationally intractable (O(

(
n
k

)
m)),

the proposed algorithm isnear-optimal(Theorem5), fast (up to 7 orders of magnitude
speedup), andscalable(O(nk2 + m)) .

• Anomaly Detection.We proposed a family of example-based low-rank matrix approxima-
tion methodsColibri (chapter 7) for anomaly detection.
Impact/Results.The proposed algorithms are provably equal to or better thanthe best known
methods with respect to both space and time (e.g., Lemma17, etc), with the same accuracy
(e.g., Theorem6, Lemma18, etc). On real data sets, it is up to112x faster than the best
competitors, for the same accuracy.

• Mining Complex Time-Stamped Events.We show that graphs also provide a very pow-
erful tool to solve some complex problems. As a case study (chapter 9), we proposed a
general framework (T3) to mine complex time stamped events, by formulating the problem
as a graph analysis problem. We further proposed MT3 to handle multiple-scale analysis.
Impact/Results.The proposedT3 is able to find similar time stamps, find abnormal time
stamps and provide interpretations for our findings. The proposed MT3 achieves up to2
orders of magnitudespeedup, with the same quality (Theorem10).

10.2 Vision for the Future

In the thesis, we show that graphs provide a very powerful andunified tool to handle data het-
erogeneity, with an intuitive user interface. On themselves, graphs pose a wealth of fascinating
research questions and high-impact applications. It is my belief that graphs will continue to play
an even more important role in our lives, - more and more real applications will rely on graphs;
much richer types of graphs will show up; and the scales of real-world graphs will continue to
grow.

My long-term research goal is to help the user to betterunderstandandutilize large real graph
data sets. More specifically, there are three closely related dimensions of this research goal:

G1. (Querying) Given a graph (say, a social network), how to help the user tofind things accord-
ing to his/her particular interest?

G2. (Mining ) Given a graph, how to succinctly describe it, and report anomalies?
G3. (Scalability) How to scale our querying and mining algorithms to large graphs, spanning

multiple machines?

Along the way to fulfill this research goal, our research focus will span on the following five
aspects, which are separated in medium term goal (M1-M3) andlong term goal (L1-L2).

M1. Design new algorithms for recommendations on large graphs.
M2. Design new algorithms for immunization.
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M3. Improve the usability of graph querying and mining results, by giving interpretation and
summarization of querying and mining results.

L1. Address the scalability issue.
L2. Address rich types of data, specifically weighted graphs, attributed graphs, time-evolving

graphs, and geo-coded graphs.

Answering these questions are critical for many high-impact applications. Among others, our
motivating applications are:

• (Social Networks) Effective querying and recommendation tools are playing an important
role in on-line social network sites, - with hundreds of millions of users [LH08].

• (Security) Graph querying algorithms can help to find suspicious subgraphs (e.g., master-
mind criminal in law enforcement [CAW+06], money-laundering ring in financial fraud [MBA+09],
suspicious communication patterns, etc).

• (Epidemiology) A good immunization strategy might help to prevent an epidemic from out-
breaking with the lowest cost [CWW+07].

• (E-commerce/Viral Marketing) A good immunization strategy can also help to spot the ‘best’
customers for advertisement (‘k-advertisement’) in viralmarketing, which can largely im-
prove the revenue [DR01].

• (Communication networks) Graph mining algorithms can helpto detect abnormal behaviors
in both computer networks and phone networks (e.g., port scanning, router mis-configuration,
telemarketing, etc)

The relationship between these applications and our long term research goal is summarized in
table10.1.

Table 10.1: Applications of Long Term Research Goals

Social Security Epidemiology E-commerce Communication
Networks Networks

G1: Querying X X

G2: Mining X X X X

G3: Scalability X X X X X

In the thesis, we have made the first step towards such long term goal. For example, we have
designed several algorithms to find complex user-specific patterns on large graphs. For the SIS
(susceptible-infection-susceptible) model, we have designed a near-optimal immunization strategy.
We can detect one specific type of anomaly (linear correlation) from large graphs, using ourCol-
ibri . We have shown that graphs usually provide a friendly user interface, and that example-based
methods are promising for interpreting the mining results.For all the algorithms we proposed in
the thesis, they are scalable (linear with respect to the size of the graph or better).

Next, we will present our medium term plan and long term plan,respectively. These steps, and
their relationship with the thesis work, are summarized in table10.2.
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Table 10.2: Vision for the Future

10.2.1 Medium Term Plan

In the near future, we will focus on the following three tasks, all of which are built on the thesis
work:

M1: Broad Spectrum Recommendation Systems

A large portion of the thesis work focuses on querying large graphs. In other words, if the user
knows what s/he exactly wants, we are now in a better positionin helping them to find such things
(e.g., center-piece subgraphs, gateway, etc). In the next step, we would like to help the user to find
things that s/he might not (or partially) know, where recommendation plays a crucial role.

While most of the existing work focuses on relevance (i.e., find things that are most relevant
to the user’s interest), there are other important aspects in recommendation, e.g., novelty, diversity
etc. For example, our preliminary work in [OTF09] shows that by taking into account the novelty
in recommendation, we can broaden user’s horizon.

Here, our ultimate goal is to provide the user a subset of items which covers the broad spec-
trum of his/her interest (e.g., relevance, diversity and novelty). In order to achieve this goal, we
need to work on‘broad spectrum recommendation’, where we aim tocollectivelyfind the whole
recommended subset, instead of a list ofindividual items.

M2: Immunization

In the thesis, we have designed a very promising immunization algorithm for SIS (susceptible-
infection-susceptible) model. We will generalize our workto (1) immunize under other types of
virus propagation models (e.g., SIR (susceptible-infection-recovery), or the mixture of SIS and
SIR, etc); (2) immunize in the case the graph structure is changing over time).

M3: Interpretation of Querying and Mining Results
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Most real data sets do not have labels. It usually takes a lot of time for the analyst to check/understand
the mining results. Therefore, it is important to generate aconcise and intuitive explanation for
the user to better understand the mining results. In the thesis (chapter 8), we show that a few
representative examples are usually very helpful to interpret the querying and mining results (e.g.,
communities, anomalies, etc).

We will continue on this line of research to further improve the usability of mining results.
Here, the two main research questions we will address are (1)how to select a few examples/nodes
as ‘basis’; (2) how to use the selected examples to interpretthe remaining nodes (e.g., by a sparse
nonnegative linear combination).

10.2.2 Long Term Plan

In the long run, we will focus on the following two directions, all of which are common to both
G1 (querying) and G2 (mining):

L1: Scalability

As the scale of the real data continues to grow, scalability is a ‘never-ending’ question in large
graph mining. Here, we will deal with this issue through the following two orthogonal efforts:
(1) continue to design scalable (linear or better) algorithms on a single machine; (2) explore map-
reduce type abstractions for large scale computation on graphs, where the challenge is how to
de-couple the computation among different machines.

L2: Rich Types of Graph Data

Most existing algorithms work on plain undirected graphs. We plan to extend our work to
graphs with attributes (both on nodes and edges), time-evolving graphs, directed weighted graphs.
As the main tool for analyzing single plain graphs is matrix algebra, in order to extend our al-
gorithms to such types of graphs, we need to simultaneously analyze multiple inter-correlated
matrices or to analyze tensor (the generalization of matrices). On the other hand, although graphs
account for a large portion of real data sets, there are othertypes of data sets (e.g., spatial, tempo-
ral, etc). In the thesis (chapter 9), we show that we can handle complex time-stamped events by
envisioning the problem as a graph analysis problem. We willcontinue on this line of research.
Ideally, we would like to develop a unified model to handle such complex data (the mixture of
relational, temporal and spatial data).
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