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Abstract

Graphs appear in a wide range of settings and have posed thwéé&scinating
problems. In this thesis, we focus on two types of tasks auegrto the interaction
with users: (1) querying (e.ggiven a social network, how to measure the closeness
between two persons? how to track it over tilnafdd (2) mining (e.ghow to identify
abnormal behaviors of computer networks? In the case obwattacks, which nodes
are the best to immunizg?

The task of querying includes three sub-tasks. In the first ae found that many
complex user-specific patterns on large graphs can be aedWwgmeans of proximity
measurement. In other worggpximity allows us to query large graphs on the atomic
level We support our claim by conducting three case studies @uiion subgraphs,
user feedback, and gateway), all of which (despite theerdity) rely on the proximity
measurement as their building block. The proposed algostare operational, with
careful design and numerous optimizations. For the secaldask, in order to adapt
the querying task to time-evolving graphs, we proposed fciagit algorithm to track
proximity on time-evolving graphs, which enables us to @mtranalysis on the graph
level. The proposed algorithm is up 1@6xfaster than competitors and has no quality
loss. Finally, in order to handle the scalability issue ia thsk of querying, we devel-
oped a family of fast solutions to compute the proximity imesal different scenarios.
By carefully leveraging some important properties sharngdhany real graphs (e.g.,
the block-wise structure, the linear correlation, the gkess of real bipartite graphs,
etc), we can often achieve orders of magnitude of speedidittié or no quality loss.

The task of mining also includes three sub-tasks. In thedimst we proposed an
algorithm (NetShield) for immunization under the SIS modhile straight-forward
methods are computationally intractab@((};)m)), the proposed algorithm isear-
optimal, fast(up to 7 orders of magnitude speedup), aedlable(O(nk? + m)). In
the second sub-task, we proposed a family of example-basedaink matrix approx-
imation methods for anomaly detection. The proposed algos are provably equal
to or better than the best known methods in both space and witiethe same ac-
curacy. On real data sets, it is up 1d2xfaster than the best competitors, for the
same accuracy. Finally, we showed that graphs also provmevarful tool to solve
some complex problems. As a case study, we proposed a gémaenalwork to mine
complex time stamped events (e.g., to find similar time s&ngfind abnormal time
stamps and to provide interpretations for our findings, kbycgnvisioning the prob-
lem as a graph analysis problem. We further proposed MT3ndlkanultiple-scale
analysis, achieving up @ orders of magnitudsepeedup, with the same quality.
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Chapter 1

Introduction

1.1 Motivation

Graphs appear in a wide range of settings and account forga [aortion of real word data
sets [Cha0j. For example, in sociology, the nodes are individuals dreld@dges represent the
interaction between two persons (e.g., collaboratiorsttroontact, etc); in computer networks,
the nodes are routers or autonomous systems and edgesergptes connection between two
routers/automonous systems; in user psychology, the rer@egeople and items, and the edges
represent some actions between the user and the itemstfegiserclicks the web page, the
userrecommendsome product, etc.); in ecology, the nodes are species,dyes eepresent prey-
predator relationship; in biology, the nodes are proteimd the edges represent the interaction
between two proteins (e.g., both are critical for some lgjimal process to happen).

Such graphs have posed a wealth of fascinating researchiangesTo name a few, given a
social network, how to measure the closeness (i.e., proxinelevance, etc) between two persons,
and how to track it over time? Given a customer-question ielp benter, who is the best expert
to route it to? How to identify abnormal behaviors of computetworks? In the case of virus
attacks, which nodes are the best to immunize? etc.

Answering these questions are critical for many real higphaot applications. For example,
proximity measurement and tracking are crucial for quegigrploring large graphs, which play
an important role in on-line social networks; anomaly detecin terrorist networks as well as
computer networks is vital for national security; immurtiaa is crucial to defend networks in the
case of a virus attack; a good immunization strategy mighdlbe very helpful for designing a
good k-advertisement strategy in viral marketing.

In this thesis, we address the above challenges in multipiersions, by focusing on two types
of tasks according to the interaction with users: queryimgjmining. For the task of querying, we
want to answer the complex user-specific patterns, such ateERiece Subgraph&iven three
criminals, who is the master-mind2 We also want to track proximity on time-evolving graphs
(How close is author 'Smith’ to the 'KDD’ conference, and harhis changing over timé?For
the task of mining, the goal is to summarize/compress a grapth report anomalies. For each
task, we further address three sub-tasks, which are sueddn tablel. 1

1



Table 1.1: Thesis Overview: Tasks

Q1: Finding complex user-specific patterns, ¢.g.,
* Q1.1. Center-Piece Subgraphs Discovery (Chapter 3)
* Q1.2. Querying with User Feedback (Chapter 4)
* Q1.3. Gateway Detection (Chapter 3)

Q2: Querying over time (Chapter 6)

Q3: Scalability (Chapters 2-6, 9)

M1: Vulnerability Analysis (Chapter 7)

Mining M2: Anomaly Detection (Chapter 8)

M3: Mining Complex Time Stamped Events (Chapter 9)

Querying

1.2 Impact, Applications and Main Contributions

We make the following key contributions in the thesis. Theenetailed contributions, mapping
to the specific applications are summarized in tdbke
1 Since node proximity is at the heart of several of the abowblpms, we carefully designed
node proximity algorithms, which are both fast and effestiv

2 We proposed fast algorithms to numerous, real-life grapblpms (center-piece subgraphs,
qguerying with user feedback, gateway finder, proximity kiag, immunization, and low-
rank approximation, etc).

3 We provided numerous proofs to illustrate tt@rectnesqe.g., Theorenm, Theorems,
Theoreml0, etc ),accuracy(e.g., Theoreni, Theorenb, Lemma4, etc) andcomputational
complexityin big-O notations (e.g., Lemmg Lemmal2 Lemmal6, Lemmal7, etc) of
our algorithms

4 We conducted experiments on numerous real data sets, fivasioh are publicly available,
illustrating the speed and accuracy of our algorithms.

1.3 Thesis Organization

Table 1.3 gives an overview of the thesis work. In the following chapteve will describe our
work in details. We will start with proximity definitions anfdst solutions in Part, which is

the main tool for querying large graphs. Then in Rbrive present our work on querying static
graphs by three case studies. In RArtwe address the problem of how to query dynamic graphs.
We present our work on mining graphs in PAftand PartV. Finally, we conclude the thesis in
chapterlO.



Table 1.2: Impact, Applications and Main Contributions diegis Work

Tasks Impact and Applications Our Main Contributions
*Find common advisor *Problem  definitions for Center-Piece
Qll *Find master-mind criminal Subgraphs (CeP5)
*Find similar gene *An algorithm to find CePS
feffective and fast)
Q1 *Interactive neighbor search * A novel method (iPoG) to incorporate user
*Interactive CePS feedback in measuring node proximitv
Qlz2 *Interactive recommendation * A fast algorithm to computeiPoG
*Semi-supervised image captions (fast, little guality loss)
*Skill search *A novel ‘gatewav-ness’ score
Q1.3 | *Questionre-route *Two algorithms to find a set of nodes with
the highest “gatewav-ness’ score
(mear-optimal, fast and scalabla)
*Scale sophisticated trend analvsis to | *Novel proximitv and centralitv definitions for

Q2 time-evolving graphs time-evolving graphs
*Two fast update algorithms
mo guality loss and fast)

Q3 *Enable Q1 and Q2 tolarge graphs A familv of fast solutions to compute EWE
forders of magniitude speediup, little or no
gualitv loss)

* Immunization under SIS model *A  Novel definition to measure the

51 * Summarize graphs bv sketch ‘bridgeness’ on graphs
*An algorithm to find a set of nodes with the
highest "bridgeness’ score

(mear-optimal, fast and scalabla)
A familv of example-based low-rank

52 *Detect anomalies on graphs approximation methods
fequal accuracy; egual or batter speed and
space; easy to update; Hituitive to iiterpret)

*Find time cluster, *A generic framework to mine complex time

53 *Find abnormal time stamp stamped events

*Provide interpretation

*An efficient algorithm
analwvsis
(fast, no guality loss)

for multiple scale




Table 1.3: Thesis Overview: Organization

Types of Graphs
Tasks Static Dynamic
@ Chapter 2-5 @ Chapter 2,6
Querying
@ Chapter 2-5 @ Chapter 2,6
@ Chapter 7 @ Chapter 2,9
Mining

@ Chapter 8 @ Chapter 8




Part |

Fundamentals: Proximity Definitions and
Fast Solutions



Chapter 2

Proximity Definitions and Fast Solutions

Summary of This Chapter
- Questions we want to answer:

Q1: How to quantify the closeness/ relevance between twes¢or two groups of
nodes in the graph)?

Q2: How to compute it fast?
« Our answers and contributions

Al: We suggest using random walk with restart as the basitisal and then propose
directionality-aware proximity and their generalizaon

A2: We proposed a family of fast solutions, which achieveteos of magnitude speed
up, with little or no quality loss.

2.1 Introduction

Measuring the proximity (i.e., relevance/closeness)esbetween two nodes is one of the funda-
mental building blocks for querying and mining grapis3[C02] [LNKO3] [LIMT07] [FMTO04]
[PRTUOY [SQCFO0]. Itis the main tool behind all the querying tasks and someimgj tasks of
this thesis. For example, figurg.(-a) shows some results for the auto-captioning applica®on
in [PYFDO4. We will present more case studies in Part

In this chapter, we mainly focus on the following two quessp

Q1 How to define a good proximity measurement?

Q2 How to compute it fast in large graphs?

For many real graphs, the relationship between two nodgs (ke relationship between two
persons on a social network) often exhibits multiple-facdiraditional graph distance measure-
ments (e.g., shortest path, maximum flow) fail to capturdé snaracteristic. To address this issue,
we suggest use random walk with restart (RWR) as a basicipigxmeasurement, which is able
to summarize the multiple weighted connections betweemiwdes on the graphs.
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‘Jet’ ‘Plane’ ‘Runway’ ‘Texture’ ‘Candy’ ‘Background’

(a) Some captioned images by gCap'[FD04.

Test Image

L L XX

Keyword

(b) Underlying graph used for image caption. See details-ii HD04.

Figure 2.1: Using proximity measurement for image caption.

In terms of computational cost, RWR requires a matrix inggrsThere are two straightforward
solutions, none of which is scalable for large graphs: Thst dine is to pre-compute and store the
inversion of a matrix (“PreCompute” method); the second isrte compute the matrix inversion
on the fly, say, through power iteration (“OnTheFly” method@he first method is fast at query
time, but prohibitive in terms of space (quadratic on the banof nodes on the graph), while the
second is slow at query time.

Here we propose a novel solution to this challenge. Our ambrB LIN, takes the advantage
of two properties shared by many real graphs: (a) the bloske;\weommunity-like structure, and
(b) the linear correlations across rows and columns of tjecadcy matrix. The proposed method
carefully balances the off-line pre-processing cost (hbéhCPU cost and the storage cost), with
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the response quality (with respect to both the accuracy haddsponse time). Compared to
PreCompute, it only requires pre-computing and storinddiverank approximation of a large but
sparse matrix, and the inversion of some small size matriCesnpared with OnTheFly, it only
need a few matrix-vector multiplication operations in amelresponse process.

The main contributions of this chapter are as follows:

e A novel, fast, and practical solution (BIN and its derivatives, NBLIN and BB_LIN);

e Theoretical justification and analysis, giving an error téor NB_LIN;

e Extensive experiments on several typical applicationt)) véal data.

The proposed method is operational, with careful designramderous optimizations. Our
experimental results show that, in general, it preservési9uality, while (a) saves several orders
of magnitude of pre-computation and storage cost over Rrgdte, and (b) it achieves up to 150x
speedup on query time over OnTheFly. For the DBLP authoference dataset, with light pre-
computational and storage cost, it achieves up to 1,800dsgewithno quality loss

The rest of this chapter is organized as follows: we reviewdoen walk with restart and analyze
its computational challenges in Sectidr2, the proposed method is presented in Secidhthe
justification and the analysis are provided in Secfich The experimental results are presented in
Section2.5. The related work is given in Secti@n6. Finally, we conclude the paper in Sectidn.

2.2 Preliminaries

Table?2.1 gives a list of symbols used in this chapter. In this Sectwa first introduce random
walk with restart and explain why it is a good proximity measuent.

2.2.1 Preliminary # 1. Random Walk with Restart

One of the most popular way to measure the proximity is rane@ik with restart, which is
defined as equatior2(l) [PYFDO4: consider a random patrticle that starts from nadeThe
particle iteratively transmits to its neighborhood witte throbability that is proportional to their
edge weights. Also at each step, it has some probabilibyreturn to the nodé. The relevance
score of nodg wrt node; is defined as the steady-state probabiljtythat the particle will finally
stay at nodg [PYFDO4.

7 = cW7 + (1 — ¢)é; (2.1)
Equation 2.1) defines a linear system problem, wherés determined by:
7= (1—co)(I—-cW) g

= (1-0Q7'g (2.2)

The relevance score defined by RWR has many good propertespared with those pair-
wise metrics, it can capture the global structure of the lyfajl-Z ~04]; compared with those
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Table 2.1: Symbols

| Symbol | Definition |
W = [w;,] | the weighted graph, < i,j <n
A" the normalized weighted matrix associated vith
W, the within-partition matrix associated wily
W, the cross-partition matrix associated Wi¥i
Q the system matrix associated wiki: Q = I — ¢W
D n xnmatrix, D;; =3, w;;andD; ; = 0 fori # j
U n X t node-concept matrix
S t x t concept-concept matrix
A\ t x n concept-node matrix
0 a block matrix, whose elements are all zeros
e n x 1 starting vector, the/” elementl and0 for others
7 = [rij] | n x 1ranking vectory; ; is the relevance score of nogle
j wrt node;
c the restart probability) < ¢ < 1
n the total number of the nodes in the graph
k the number of partitions
t the rank of low-rank approximation
m the maximum iteration number
& the threshold to stop the iteration process
s the threshold to sparse the matrix

traditional graph distances (such as shortest path, mamiftaw etc), it can capture the multi-
facet relationship between two nodés-pPq.

2.2.2 Preliminary # 2. Computational Challenges

One of the most widely used ways to solve random walk witharéss the iterative method,
iterating the equatior2(1) until convergence, that is, until thie, norm of successive estimates of
7; 1S below our threshold,, or a maximum iteration stej is reached. In the chapter, we refer to
it as OnTheFly method. OnTheFly does not require pre-coatjmut and additional storage cost.
Its on-line response time is linear to the iteration numimer the number of edgéswhich might
be undesirable when (near) real-time response is a cractdrfwhile the data set is large. A nice
observation of §QCF0J is that the distribution of; is highly skewed. Based on this observation,
combined with the factor that many real graphs has blocleie@nmunity structure, the authors
in [SQCFO0Y proposed performing RWR only on the partition that conddime starting point
(methoadBlk). However, for all data points outside the partitioy), is simply se0. In other words,
Blk outputs a local estimation of.

IHere, we stordV in a sparse format.



Table 2.2: BLIN

Input: The normalized weighted matr® and the
starting vectog;

Output: The ranking vector;

Pre-Computational Stage(Off-Line):

pl. Partition the graph intb partitions by METIS KK99];

p2. Decompos&V into two matricesW = W; + W, according to
the partition result, wher&, contains all within-partition links an
W, contains all cross-partition links;

p3. LetW, ; be thei’" partition, denotéV, as equatiorf{.3);

p4. Compute and ston@;} =(I- Cwl,i)_l for each partition;

p5. Do low-rank approximation fow, = USV;

p6. DefineQ; ' as equationZ.4). Compute and store
A= (S —evQTiu)L

Query Stage (On-Line):

ql. Output; = (1—¢)(Q; ' + cQ; 'UAVQ,'é).

On the other hand, it can be seen from equatibf) that the system matri&Q defines all the
steady-state probabilities of random walk with restartuglif we can pre-compute and st&de*,
we can get; real-time (We refer to this method as PreCompute). Howeurercomputing and
storing Q! is impractical when the dataset is large, since it requitesdptic space and cubic

pre-computation?

On the other hand, linear correlations exist in many reaplggawhich means that we can
approximatéW by low-rank approximation. This property allows us to apgmmate Q! very
efficiently. Moreover, this enables a global estimatiom;ptinlike the local estimation obtained by
Blk. However, due to the low rank approximation, such kind ahestion is conducted at a coarse
resolution.

2.3 Proposed Fast Solutions

2.3.1 Proposed Algorithm

In summary, the skewed distribution gfand the block-wise structure of the graph lead to a lo-
cal/fine resolution estimation; the linear correlationghef graph lead to a global/coarse resolution
estimation. In this chapter, we combine these two propentiea unified manner. The proposed
algorithm, BLIN is shown in table2.2. A pictorical description of BLIN is given in figure2.2

2Even if we use OnTheFly to compute each colum®@of!, the pre-computation cost 3(nm).
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Wl _ 0 Wi, .. 0 (2.3)
0 0 Wlk
Qi O 0

Q- 0 Qb .. O (2.4)
0 0 Q;,ﬁ

2.3.2 Normalization onW

B_LIN takes the normalized matri¥V as the input. There are several ways to normalize the
weighted matrixW. The most natural way might be by row normalizatiéihy[F-D04. Com-
plementarily, the authors inZBL " 03] propose using the normalized graph LapaliciaN (=
D~'2WD~!/2). In [TF0{], the authors also propose penalizing the famous nodesebedav
normalization for social network.

It should be pointed out that all the above normalizationhods can be fitted into the pro-
posed BLIN. However, in this chapter, we will focus on the normatizgraph Laplaciahfor the
following reasons:

e For real applications, these normalization methods okl ito very similar results. (For
cross-media correlation discovery, our experiments destnate that normalized graph Lapla-
cian actually outperforms the row normalization methodichlis originally proposed by the
authors in PYFD0O4

e Unlike the other two methods, normalized graph Laplaciapais the symmetric relevance
score (that is; ; = r;,), which is a desirable property for some applications.

e The normalized graph Laplacian is symmetric, and it leads $gmmetrioQ;, which will
save50% storage cost.

e It might be difficult to develop an error bound forBN in the general case. However, as we
will show in Section 3.3, it is possible to develop an errouihd for the simplified version
(NB_LIN) of B_LIN, which also benefits from the symmetric property of themalized
graph Laplacian.

2.3.3 Discussion of Partition numberk

The partition numbek balances the complexity 3V, andW,. We will evaluate different values
for k£ in the experiment section. Here, we investigate two extreases of..

31t should be pointed out that strictly speaking,is no longer a probability distribution. However, for alleth

applications we cover in this chapter, it does not matteresimhat we need is a relevance score. On the other hand,
we can always normalizet to get a probability distribution.
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(b) Decompose original weighted graph into within-paotitimatrix (W), which is block-
diagonal, and cross-partition matrix, which is approxiesaby low-rank approximationl, S,
andV).

0 0 0O
0 5 gt o 8
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E I1-cW E =0 +

H H S N 071 0 % o %,j; 071 0 B
%DO 0, 0 EDUSA)( v )DO 9, 0 Qo
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(c) Approximate the inverse ¢I — ¢W) by the inversion of a few small size matric€s(;, Q1 2,
Q; 3 andA),which can be pre-computed and stored more efficiently.

Figure 2.2: A pictorical description of BIN
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Table 2.3: NBLIN
Input: The normalized weighted matr®W and the starting vecta;

Output: The ranking vector;
Pre-Computational Stage(Off-Line):

pl. Do low-rank approximation foW = USV;
p2. Compute and stork = (S~! — ¢VU)~!,
Query Stage (On-Line):

ql. Outputi; = (1 — ¢)(¢; + cUAVE).

Table 2.4: BBLIN
Input: The normalized weighted matr®W and the starting vecta;

as equatiori(.5
Output: The ranking vector; as equatiorf{.5)
Pre-Computational Stage(Off-Line):
pl. Compute and stork = (I — 2M”M)"!;
Query Stage (On-Line):
ql ’f_’;'71 = (1 — C)(e_;'71 + C2MAMT€_;'71 + CMAé;’g)
02.75 = (1 — ¢)(cAMTE 1 + A&, ,)
q3 OUtpUtT_; = (7:;71,7_’;'72)11.

First, if ¥ = 1, we haveW; = W andW, = 0. Then, BLIN is just equivalent to the
PreCompute method.

On the other hand, if = n, we haveW; = 0 andW, = W. In this caseQ; = I and we
have the following simplified version of BIN as in table2.3. We refer it as NBLIN.

An application of random walk with restart is neighborhoodiiulation in the bipartite grapts[2CF04.
Suppose there arg andn, nodes for each type of objects in the bipartite grayhis then; x n,
bipartite matrix. The normalized weighted matrix, the @y vector and the ranking vector have

the following format:
‘~7V . 0 M S 7:;71 S 6_;'71
B (MT 0) e (ﬁz) = (67-,2) (2:9)

As a direct application of NB.IN, we have the following fast algorithm (BBIN) for one
class of bipartite graph when > n, as in table 2.4)

2.3.4 Low-rank approximation on W,
One natural choice to do low-rank approximation\df is by eigen-value decomposititin

W, = USU” (2.6)

4if the other two normalization methods are used, we can dyusim vector decomposition instead.
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Table 2.5: Low Rank Approximation by Partition
Input: The cross-partition matri¥Vv, andt
Output: Low rank approximation oW,: U, S,V
1. PartitionW, into ¢ partitions;
2. Construct am x ¢t matrix U. Thei*" column ofU is the sum of]
all the columns oW, that belong to the!" partition;
3. Computes = (UTU) Y
4. ComputeV = UTW.,,

where each column d/ is the eigen-vector oW, andS is a diagonal matrix, whose diagonal
elements are eigen-valuesf,.

The advantage of eigen-value decomposition is that it isirogd’ in terms of reconstruction
error. Also, sincéV = U7 in this situation, we can sav®% storage cost. However, one potential
problem is that it might lose the sparsity of original maf,. Also, whenW, is large, doing
eigen-value decomposition itself might be time-consuming

To address this issue, in this chapter, we also propose Hogving heuristic to do low-rank
approximation as in tabl2.5. Its basic idea is that, firstly, construkt by partitioningW,; and
then use the projection 3, on the sub-space spanned by the column&/ds the low-rank
approximation.

2.4 Justification and Analysis

2.4.1 Correctness

Here, we present a brief proof of the proposed algorithms.

Correctness of BLIN

Lemma 1. If W = W; + USV holds, BLIN outputs exactly the same result as PreCompute.
Proof: SinceW| is a block-diagonal matrix. Based on equati@r8{ and @.4), we have

(I—cW,) 7t =Q;! (2.7)

Then, based on the Sherman-Morrison lemmag(, we have:

>
|

(S —evQi'u)™
(I—cW)™' = (I—c¢W,—cUSV)™!
= Q' +cQ'UAVQ;!
7= (1-0)(Qr'é +cQ'UAVQ; 'e)

—_

which completes the proof of Lemma 1 O
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It can be seen that the only approximation oL BN comes from the low-rank approximation
for W.

We can also interpret BIN from the perspective of latent semantic/concept sp&yelow-
rank approximation oW, we actually introduce &x ¢ latent concept space I8 Furthermore, if
we treat the originaW as an: x n node spacelJ andV actually define the relationship between
these two spacedJ for node-concept relationship and for concept-node relationship). Thus,
it can be seen that, instead of doing random walk with restathe original whole node space,
B_LIN decomposes it into the following simple steps:

(1) Doing RWR within the partition that contains the stagtipoint (multiply¢; by Q;);
(2) Jumping from node-space to latent concept space (rulkip result of (1) byV);

(3) Doing RWR within the latent concept space (multiply teeult of (2) byA);

(4) Jumping back to the node space(multiply the result obg3)));

(5) Doing RWR within each partition until convergence (nplit the result of (4) byQ; ).

Correctness of NBLIN

Lemma 2. If W = USV holds, NBLIN outputs exactly the same result as PreCompute.

Proof: TakingW; = 0 andQ; = I, by applying Lemma 1, we directly complete the proof of
Lemma 2. which completes the proof. O

Correctness of BBLIN

Lemma 3. BB_LIN outputs exactly the same result as PreCompute.
Proof: Substituting equatior2(5) into equation 2.2), we have

i1 = (1—c)(I—cAMMY)"HeMEe;, + € 1)
(1—c)I—M"M) H(eMTé; 1 + é0)

Ti2

Solvingr; » directly completes the proof of 'q2’ in tabl@ @).

Define a new RWR, which takes (JMe; ,+¢; 1) as the new starting vector; )MMT) as the
new normalized weighted matrix; and @I(cI)M?”) as the low-rank approximation. Applying
Lemma 2 to this RWR, we complete the proof for 'ql’ in tabke4j, which in turn completes the
proof of Lemma 3. H

2.4.2 Computational and storage cost

In this section, we make a brief analysis for the proposedrdigns in terms of computational and
storage cost. For the limited space, we only provide thdtrésuB _LIN.
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On-line computational cost

It is not hard to see that, at the on-line query stage_oiB (table 2.2, step 1), we only need a few
matrix-vector multiplication operations as shown in equa{2.8). Therefore, BLIN is capable
of meeting the fast response requirement.

7 Qe

Vry

AT

U7,

Q,'7

(1 —c)(70 + c73) (2.8)

| A B

Pre-computational cost

The main off-line computational cost of the proposed alhomni consists of the following parts:

(1) partitioning the whole graph;

(2) inversion of eacli — ¢cW 1, (i = 1, ..., k);

(3) low-rank approximation oWV,;

(4) inversion of(S~! — VQ;'U) .

Thus, instead of solving the inversion of the originak n matrix, B.LIN (1) invertsk + 1

small matrices@i}, i=1,...,k, andA); (2) computes a low-rank approximation of a spatse n
matrix (W5), and (3) partitions the whole graph.

Pre-storage cost

In terms of storage cost, we have to stére 1 small matrices(Q;}, (1=1,...,k), andA), one
n x t matrix (U) and onet x n matrix (V). Moreover, we can further save the storage cost as
shown in the following:

e An observation from all our experiments is that many elememQ;}, U andV are near
zeros. Thus, an optional step is to set these elements tabé€methe threshold,) and to
store these matrices as sparse format. For all experimeitssi chapter, we find that this
step will significantly reduce the storage cost while alnmadtaffecting the approximation
accuracy.

e The normalized graph Laplacian is symmetric, which leadgljoa symmetrid;);}, and
(2) U = VT, if eigen-value decomposition is used when computing tierlnk approxi-
matior?. By taking advantage of this symmetry property, we can frgave 50% storage
cost.

50n the other hand, if we use partition-based low-rank agpration as in tableZ.5), U andV are usually sparse
and thus can be efficiently stored

16



2.4.3 Error Bound for NB_LIN

Developing an error bound for the general case of the prapesthods is difficult. However, for
NB_LIN (table 2.3), we have the following lemma:

Lemma 4. Let 7 and 7 be the ranking vectors by PreCompute and by NBIN, respectively. If
NB_LIN takes eigen-value decomposition as low-rank approtiomal|7—|, < (1—c) >t a — 3

where), is thei™" largest eigen-value oW .
Proof: Taking the full eigen-value decomposition fov:

W =) "\-u-uf =USU" (2.9)

where)\; andu; are theit" largest eigen-value and the corresponding eigen-vect® pfespec-
tively. U = [uy, ...u,), andS = diag(\y, ..., A,). We have:

A = (S 1—cUTU)
= ol 2.10
; 1_CA g (2.10)

By Lemma 2, we have:

~, 1 -
i=1
Thus, we have
n 1 .
HT_T||2 = ||(1—C> Z (1_0)\) Us - Uy 61H2
i=t+1 v
- 1
< (1= > ui - ug 2 l€i]l2
i=t+1 (1 )")
- 1
= (1-¢ ), = (2.12)
i=t+1 v
which completes the proof of Lemma 4. O

SHere, we ignore the low scriptof 7 andr for simplicity
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Table 2.6: Summary of data sets
| dataset | number of node$ number of edges

ColR 5K ~ TT4K

CoMMG ~ 52K ~ 354K
AP ~ 315K ~1,834K

AC ~ 291K ~ 661K

2.5 Experimental Results

2.5.1 Experimental Setup

In this Section, we present the experimental results, whiehdesigned to answer the follow-
ing questions: how does the proposed algorithms balaneeebat approximation quality, pre-
computational cost and on-line response time?

Data Sets

ColR. This data set contains 5,000 images. The images are caedarito 50 groups, such

as beach, bird, mountain, jewelry, sunset, etc. Each of étegories contains 100 images of
essentially the same content, which serve as the grourtd tifiiis is a widely used data set for
image retrieval. Two kinds of low-level features are used|uding color moment and pyramid

wavelet texture feature. We use exactly the same method &$.in" 04] to construct the weighted

graph matrixW, which containg, 000 nodes andx 774K edges

CoMMG. This data set is used [y D04, which contains around 7,000 captioned images,
each with about 4 captioned terms. There are in total 160stésntaptioning. In our experiments,
1,740 images are set aside for testing. The graph m&fris constructed exactly as iR D04,
which contains4, 200 nodes andx 354K edges.

AP. The author-paper information of DBLP data $é$ used to construct the weighted graph
W as in equationd.5): every author is denoted as a noddih and the edge weight is the number
of co-authored papers between the corresponding two autkaor the whole, there are 315K
nodes andx 1, 834K non-zero edges iWV.

AC. The author-conference information of DBLP data set is ugedonstruct the bipartite
graphM: each row corresponds to an author and each column corréspora conference; and
the edge weighl, ; is the number of papers that tHe author publishes i conference. On the
whole, there arez 291 K nodes & 288 K authors andv 3K conferences) angt 661 K non-zero
edges inVI.

All the above data sets are summarized in tabte

"http:/lwww.informatik.uni-trier.de/ ~ley/db/
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Table 2.7: Summary of typical applications with differeataksets

CBIR | CMCD | Ceps| NF
ColR V v
CoMMG Vv
AP v
AC V

Applications

As mentioned before, many applications can be built upodoanwalk with restart. In this chap-
ter, we test the following applications:

Center-Piece subgraph discoveBGefS [TF0q

Content based image retrieval (CBIR)L[Z "04]

Cross-modal correlation discovery (CMCD), including anatic captioning of images-[YFD04
neighborhood formulation (NF) for both uni-partite grapiddipartite graph$QCF0%

The typical data sets for these applications in the passysma@ summarized in tabi5.1

Parameter Setting

The proposed methods are compared with OnTheFly, PreCengmat Blk. All these methods
share 3 parameters; m and&;. we use the same parameters for CBIR lds4 " 04], that is
¢ = 0.95, m = 50 and¢; = 0. For the rest applications, we use the same setting’as-D04 for
simplicity, that isc = 0.9, m = 80 and&; = 1078,

For B_.LIN and NB_LIN, we take&, = 10~ to sparsifyQ;, U, andV which further reduces
storage cost. We evaluate different choices for the remgiparameters. For clarification, in the
following experiments, BLIN is further referred as B.IN(k, ¢, Eig/Part), wheré: is the number
of partition, ¢ is the target rank of the low-rank approximation, and “EagtPdenotes the spe-
cific method for doing low-rank approximation — “Eig” for @g-value decomposition and “Part”
for partition-based low-rank approximation. SimilarlyBNLIN is further referred as NB.IN(¢,
Eig/Part), and Blk is further referred as Bilj(

For the data sets with ground trut@¢IR andCoMMG), we use the relative accuradyel Acu
as the evaluation criterion:

o
RelAcu = =22 (2.13)
Acu
whereAcu and Acu are the accuracy values by the evaluated method and by Pm@emespec-
tively.
Another evaluation criterion i&elScore,
5
RelScore = SCT, (2.14)
tSer
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wheretScr andtSer are the total relevance scores captured by the evaluatdebthahd by Pre-
Compute, respectively.
All the experiments are performed on the same machine w&GBEz CPU and 2GB memory.

2.5.2 ColR Results

100 images are randomly selected from the original dataseteaquery images and the precision
vs. scope is reported. The user feedback process is sidalafellows. In each round of relevance
feedback (RF), 5 images that are most relevant to the quessdban the current retrieval result
are fed back and examined. It should be pointed out that itial iretrieval result is equivalent to
that for neighborhood formulation (NFRel Acu is evaluated on the first 20 retrieved images, that
is, the precision within the first 20 retrieved images. Inffeg.3) and figure 2.4), the results are
evaluated from three perspectives: accuracy vs. query(@@ig, accuracy vs. pre-computational
time (PT) and accuracy vs. pre-storage cost (PS). In thedfiglve QT, PT and PS costs are in log-
scale. Note that pre-computational time and storage cegharsame for both initial retrieval and
relevance feedback, therefore, we only report accuracyke.computational time and accuracy
VS. pre-storage cost for initial retrieval.

It can be seen that in all the figures,LBN and NB_LIN always lie in the upper-left zone,
which indicates that the proposed methods achieve a goaddmbetween on-line response qual-
ity and off-line processing cost. Both BIN and NB_LIN 1) achieve about one order of magnitude
speedup (compared with OnTheFly); and 2) save one orderghitu@e on pre-computational and
storage cost. For example,IBN(50, 300, Eig) preserves 95%-+ accuracy for both initial retrieval
and relevance feedback, while it 1) achieves 32x speedumnfdine response (0.09Sec/2.91Sec),
compared with OnTheFly; and 2)save 8x on storage (21M/18M)161x on pre-computational
cost (90Sec/14,500Sec), compared with PreComputeL NB600,Eig) preserves 93%-+ accuracy
for both initial retrieval and relevance feedback, whilé@)tachieves 97x speedup for on-line re-
sponse (0.03Sec/2.91Sec), compared with OnTheFly; aagey40x on storage(17M/180M) and
48x on pre-computational cost (303Sec/14,500Sec), cadpaith PreComputg.

For the task of neighborhood formation (NF), figué&5) shows the result of RelScore vs.
scope. It can been seen that by exploring both the block-amgklinear correlations structure
simultaneously, 1) both Blk(50) and NBIN(50, Eig) capture most neighborhood information (for
example, they both capture about 90% score for the preamsidhe first 10 retrieved images), and
2) B_LIN(50, 300, Eig) captures 95%+ score over the whole scophe {mprovement becomes
even more significant with the increase of the scope).

2.5.3 CoMMG Results

For this data set, we only compare NBN with OnTheFly and PreCompute. The results are
shown in figure 2.6) and figure 2.7). The x-axis of figure Z.6) and figure 2.7) is plotted
in log-scale. Again, NBLIN lies in the upper-left zone in all the figures, which meahat

8We also perform experiment on BlockRarik{MG03]. However, the result is similar with OnTheFly. Thus, we
do not present it in this chapter.
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Relative Accuracy vs. Query Time
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Figure 2.3: Evaluation oiCoIR data set for CBIR. Accuracy vs. on-line cost. The proposed
methods achieves a good balance between pre-computatmstabccuracy and on-line response
time.

NB_LIN achieves a good balance between on-line quality andiregfprocessing cost. For ex-
ample, NBLIN(100, Eig) preserves 91.3% quality, while it 1) achieuéglx speedup for on-line
response (0.029/4.50Sec), compared with OnTheFly; 2)ss@§8x on storage (281/243,900M)
and 479x on pre-computational cost (46/21,951Sec), camdpaith PreCompute. The relative
precision/recall vs. scope is shown in figuPeg).
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Figure 2.4: Evaluation oi€olIR data set for CBIR. Accuracy vs. off-line cost. The proposed
methods achieves a good balance between pre-computatmstabccuracy and on-line response

This dataset is used to evalu&ePSas in [TF06. B_LIN is used to generate 1000 candidates,
which are further fed to the original Ceps AlgorithmHO€ to generate the final center-piece
subgraphs. We fix the number of query nodes ta3kend the size of the subgraph to be.



Evaluation on Neighbor Formulation
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Figure 2.5: Evaluation o€oIR data set for NF. x-axis is the scope and y-axis is the norealiz
accuracy. Higher is better. The proposed. Bl is best.

Relative Accuracy vs. Query Time
T T i T

1
0.95F 1
0.9 «* 1
o ¥
0.85} 1
- B OnTheFly
8 oasl *  PreCompute J
3 ® NB_Lin(60, Eig)
<075 >k NB_Lin(100, Eig)|
2 < NB_Lin(200, Eig)
§ 07 ¢ NB_LIn(400, Eig)|
0.65f J
06} J
0.55 1
05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-4 -3 -2 -1 0 1 2 3 4 5

Log Query Time (Sec)

Figure 2.6: Evaluation o€oMMG data set for CMCD. Accuracy vs. on-line cost. The proposed
B_LIN achieves a good balance between accuracy vs. pre-catiqnel and query time.

RelScore is measured by "Important Node Score” as ir)f]. The result is shown in figure2(9)
and figure 2.10.

Again, B_.LIN lies in the upper-left zone in all the figures, which meé#mat B .LIN achieves a
good balance between on-line quality and off-line processost. For example, BIN(100, 4000,
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Relative Accuracy vs. Pre-Computational Cost
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Figure 2.7: Evaluation o€@oMMG data set for CMCD. Accuracy vs. off-line cost. The proposed
B_LIN achieves a good balance between accuracy vs. pre-catiqgnel and query time.

Part) preserves 98.9% quality, while it 1) achieves 27xdppéor on-line response (9.45/258.2Sec),
compared with OnTheFly; 2) saves 2264x on storage (2693209/) and 214x on pre-computational
cost (8.7/1875Hour), compared with PreCompute.
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Evaluation on Relative Precision
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Evaluation on Relative Recall
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Figure 2.8: Precision/recall for CMCD. x-axis is the scomel -axis is the precision/recall.
Higher is better.

2.5.5 AC Results

For this data set, the number of conferenc&ds)is much less than that of the autho28§K). We
evaluate BBLIN for the following four tasks:

e C_C: Given a conference, find its most related conferences
e C_A: Given a conference, find its most related authors
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Relative Score vs. Query Time
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Figure 2.9: Evaluation oAP data set for CePS. Accuracy vs. on-line cost. The proposethB
achieves a good balance between accuracy vs. pre-congmaticdind query time.

Table 2.8: Evaluation oACfor NF
Method QT(Sec)| PT(Sec) | PS(M)
OnTheFly 23.97 0 6.7
PreCompute 0.001 | 6,990,648 626,250
BB_LIN(C, A) | 0.097 20.50 56
BB_LIN(C,C) | 0.013 20.50 56
BB_LIN(A, C) 0.035 20.50 56
BB_LIN(A, A) 0.13 20.50 56

e A_A: Given an author, find its most related authors
e A_C: Given an author, find its most related conferences

On this application, BBLIN preserves 100% accuracy for all the tasks. Thus, in t&hig,
we only report Query time (QT), Pre-computational time (Pand Pre-storage cost (PS). Note
that the query time for BB.IN might differ for the different tasks. For clarificatioBB_LIN is
further referred as BRIN(C/A C/A). (For example, BBLIN(C, A) denotes using BB.IN for
C_Atask.)

As shown in table 4.8), BB_LIN can achieve up to 3 orders of magnitude speedup, with
light off-line computational and storage cost (20.5Sec gog-computation and 56M for pre-
storage). For example, it achieves 180x speedupAfdéx (0.13/23.98Sec) and 1,800 speedup
for C_C(0.013/23.98Sec).

26



Relative Score vs. Pre-Computational Cost
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Figure 2.10: Evaluation oAP data set for CePS. Accuracy vs. off-line cost. The propos&d\B
achieves a good balance between accuracy vs. pre-congmatizdind query time.

2.6 Related Work

In this Section, we briefly review related work, which can la¢egorized into three groups: (1)
random walk related methods; (2) graph partitioning meshaad (3) the methods for low-rank
approximation.

Random walk related methods.There are several methods similar to RWR, including eleityri
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based method/GL03], graph-based Semi-supervised learnia@| “03] [FMT04] and so on.
Exact solution of these methods usually requires the immersf a matrix which is often di-
agonal dominant and of big size. Other methods sharing #gsirement include regularized
regression, Gaussian process regressioi'(jd, and so on. Existing fast solutions for RWR
include Hub-vector decomposition based\[0]; block structure based{[HMG03] [SQCFO0Y;
fingerprint basedfR04, and so on. Many applications take random walk and relatethaas
as the building block, including PageRankRHM\W9d], personalized PageRanki§v07, Sim-
Rank W02, neighborhood formulation in bipartite graphs()CF0Y, content-based image re-
trieval [HLZ"04], cross modal correlation discovery {FD04, the BANKS systemABC02],
ObjectRank BHP04, RelationalRank G\ T04], and so on.

Graph partition and clustering. Several algorithms have been proposed for graph partition
and clustering, e.g. METISK99], spectral clusteringJWO01], flow simulation [FLG0(, co-
clustering pMMO3], and the betweenness based methGd\][ It should be pointed out that the
proposed method is orthogonal to the partition method.

Low-rank approximation: One of the widely used techniques is singular vector dec@impo
tion (SVD) [GL9€], which is the base for a lot of powerful tools, such as latsrhantic index
(LSI) [DDL 790, principal component analysis (PCA){lI0], and so on. For symmetric matri-
ces, a complementary technique is the eigen-value deconoposs196]. More recently, CUR
decomposition has been proposed for sparse matric¢égs [].

2.7 Conclusions and Discussions

Summary of This Chapter. In this chapter, we introduce random walk with restart asoxipmity
measurement, and propose a fast solution for it. The maiftribations of this chapter are as
follows:

e The design of BLIN and its derivative, NBLIN. These methods take advantages of the
block-wise structure and linear correlations in the adjagematrix of real graphs, using the
Sherman-Morrison Lemma.

e The proof of an error bound for NBIN. To our knowledge, this is the first attempt to derive
an error bound for fast random walk with restart.

e Extensive experiments are performed on several real dajasetypical applications. The
results demonstrate that our proposed algorithm can nlznce the off-line processing
cost and the on-line response quality. In most cases, ouradstpreserve 90%-+ quality,
with dramatic savings on the pre-computation cost and tleeyciime.

e Afastsolution (BBLIN) for one particular class of bipartite graphs. Our metlachieves up
to 1,800x speedup with light pre-computational and stoagg, without suffering quality
loss.

Discussions.In [TFGEROT, we also explored another proximity definitioDAP) in order to
leverage the edge directionality, which is based on escagmpility augmented with a universal
sink. There, we also two fast solutions in two differentisgt. We also generalized our definitions
to group proximity (to quantify how close two groups nodes)alt is interesting to point out that
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our analysis shows th&®AP can be actually based on random walk with restart. Itis wooihting
out that in some specific scenarios/applications, we camafo better by leveraging the special
properties coded by that specific applications. We will préghe details in the following few
chapters (chapters 3-6 and chapter 9).
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Chapter 3

Case Study #1: Center-Piece Subgraphs

Summary of This Chapter
- Questions we want to answer:

Q: Given Q query nodes in a social network (e.g., co-authprsgtwork), how to find
the node(s) and the resulting subgraph, that have strongections to all or most
of the Q query nodes?

- Our answers and contributions
Al: We formally formulate the problem (Center-Piece SupbrBiscovery).
A2: We proposed an effective and efficient algorithm to findPSe

3.1 Introduction

Graph mining has been attracting increasing interest thcéor community detection, partition-
ing, frequent subgraph discovery and many more. Here wedatre and solve a novel problem,
the “Center-Piece SubgrapliCeP3 problem: Giver() query nodes in a social network (e.g., co-
authorship network), find the node(s) and the resulting safdg that have strong connections to
all or most of thel) query nodes. The discovered nodes could contain a commasoadw other
members of the research group, or an influential author irethearch area that tiienodes belong
to. There are multiple alternative applications, e.g., émforcement, gene regulatory networks.

Earlier work [FMT04] focused on the so-called “connection subgraphs”. Althotige inspi-
ration for the current work, the connection subgraph atgorican only handle the case QE2.
This is exactly the major contribution of our work: we allowtronly pairs of query nodes, but any
arbitrary number) of them.

Figure3.1gives screenshots of our system, showing our solution onlaFD@aph, withQ)=4
guery nodes. All 4 researchers are in data mining, but thetfis (Rakesh Agrawal and Jiaweli
Han) are more on the database side, while Michael Jordan &invir Vapnik are more on the
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machine learning and statistical side. FigGt&b) gives ourCePSsubgraph, when we request
nodes with strong ties to all four query nodes. The resultkensense: researchers like Daryl
Pregibon, Padhraic Smythe and Heikki Mannila are vitaldirdecause of their cross-disciplinarity
and their strong connections with both the above sub-aféigare3.1(a) illustrates an important
aspect of our work, th&_soft AN D feature, which we will discuss very soon. In a nutshell, in
a K_softAND query, our method finds nodes with connections to at leadtthe query nodes

(k = 2in Figure3.1(a)).
Bernhard
bulmlkopl‘

(@) “ K_softAND query™: k = 2

.'::-
- -

(b) “ AND query”

Jiawei Han
'|

Figure 3.1: Center-piece subgraph among Rakesh AgravealeliHan, Michael I. Jordan and
Vladimir Vapnik.

Thus, we define the Center-Piece Subgraph problem, as &llow
Problem 1. Center-Piece Subgraph DiscoveBgPJ
Given: an edge-weighted undirected grapN, @ nodes as source querieg@ = {¢} (I =
1,...,Q), the softAND coefficierit and an integer budget
Find: a suitably connected subgragti that (a) contains all query nodeg (b) at mosth other
vertices and (c) it maximizes a “closeness” functigifi{).
By probleml, there are three requirements@ePS (a) the resulting subgraph is small (with
less or equal thah nodes); (b) the subgraph is reasonably connected (“caomn&caind (c) the
nodes in the resulting subgraph are close to the query set‘¢tbseness”). We will give the
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detailed definitions of “connection” and “closeness” latethe chapter.

Allowing @ query nodes creates a subtle problem: do we want the quegifyodes to have
strong ties to all the query nodes? to at least one? to atadefast? We handle all of the above
cases with our proposeld _soft AN D queries. Figure3.1(a) illustrates the case where we want
intermediate nodes with good connections to at léast 2 of the query nodes. Notice that the
resulting subgraph is much different now: there are twoahsected components, reflecting the
two sub-communities (databases/statistics).

The contributions of this work are the following

e The problem definition, for arbitrary numbér of query nodes, with careful handling of a

lot of the subtleties.

e The introduction and handling df _so ft AN D queries.
e EXTRACTa novel subgraph extraction algorithm.

e The design of a fast, approximate method, which providés & speedup with little loss of

accuracy.

The system is operational, with careful design and numeoptisnizations, like alternative
normalization of the adjacency matrix, a fast algorithm éanpute the scores fak _softAN D
queries.

Our experiments on a large real data set (DBLP) show that etinad returns results that agree
with our intuition, and that it can be made fast (a few secaadponse time), while retaining most
of the accuracy (about 90%).

The rest of this chapter is organized as follows: Secldprovides an overview of the pro-
posed methodCePS The closeness score calculation is proposed Seé8tiband its variants are
presented in the Appendix. ThEXTRACT algorithm and the speeding up strategy are provided
in Section3.4and SectiorB.5, respectively. We present experimental results in Se@&iéand we
review some related work in Secti@n7. Finally, we conclude the chapter in Secti®.

3.2 Proposed Method: Overview

Given the budget, we want to find a subgraph which (a) is reasonably connettedrection”)
and (b) the nodes in this subgraph are close wrt the queryctesé¢ness”).

For the “closeness” requirement, we want to find a subgfdphkhich is close wrt the query
set. To this end, let us first define the closeness score foigéesnode in this subgrapk. More
specifically, for a given nodgin H, we have two types of closeness scores:

e Letr(i, ) be the closeness score of a given ngdet the queryy;;

e Letr(Q, ) be the closeness score of a given ngdet the query sep.

A natural way to measure the closeness of the subgkapint the query set is to measure the
closeness of the nodes it contains: the more close nodesh@gvetource queries) it contains, the
better (in terms of closenesH)is. Thus, the goodness criterion in terms of closenegg can be

defined as:
g(H) =Y r(Q.)) (3.1)

JEH
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By eq.3.1, a subgraph is good in terms of closeneggH) is high. With the above criterion, a
straightforward way to choose the “best” (in terms of clesa) subgraph should be the one which
maximizesg(H):

H* = argmaxyg(H) (3.2)

However, no connection is guaranteed in this way and thdtimegsubgraphH might be a
collection of isolated nodes. Thus, there are two basiclprod in center-piece subgraph discov-
ery: (1) how to define a reasonable closeness sd@pe;) for a given nodg; (2): how to quickly
find a connection subgraph maximizin@). Moreover, since it might be very difficult to directly
calculate the closeness sco(®, j), we further decompose it into two steps. The pseudo code for
the proposed metho€PS is listed as follows:

Table 3.1: Overview o€ePS
Input: the weighted grapNV, the query seQ, K _softAN D coefficientk and the

budgeth

Output: the resulting subgrapH

Step 1: Individual Score Calculation Calculate the closeness scofe j) for a
single nodej wrt a single query node

Step 2: Combining Individual Scores.Combine the individual scorgi, j) to
get the closeness scargQ, j) for a single node wrt the query se

Step 3: “EXTRACT”. Extract quickly a connection subgraphwith budgeth
maximizing the closeness criteg@H )

3.3 Closeness Score Calculation for a Single Node

In this Section, we deal with the closeness score calculdto a single node. That is, how to
define the closeness score of a given node wrt the query setcldfdication, whenever we say
that a node is ‘good’ in this Section, we mean that this nodgasd’ in term of closeness. Also,
we use the terms “goodness” and “closeness” interchangeatilis Section.
There are two basic concepts in closeness score calculation
* Letr;,; be thesteady-state probabilitthat a particle will find itself at nodg, when it does
random walk with restarts (RWR) from query nogle

e Letr(Q, j, k) be themeeting probabilitythat is, the steady-state probability that at |dast
out-of<Q) particles, doing RWR from the query nodes®@f will all find themselves at node
j in the steady staté; is the K. softAND coefficient.

These two kinds of steady probability; ( andr(Q, j, k)) are the base of our closeness score
calculation (for bothr(i, j) andr(Q, j)). It's basic idea is that: suppose there gaandom
particles doing RWR from each query node independentlyn #feer convergency, each patrticle
has someteady-state probabilitgtaying at the nodg; and different particles have someeeting
probability at the nodej. The steady-state probabilitand themeeting probabilityprovide some
hints on how the nodg is related with the source queries, and are used to compeli@dkeness
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Table 3.2: Symbols

| Symbol | Description

N total number of nodes in the weighted graph

m iteration step

c fly-out probability for random walk with restart

€; N x 1 unit query vector, with all zeros except one at rgw

W = {w;,;} | the edge weighted matrix,(j =1, ..., N)
D ={d;;} | N x N matrix,d,;; = d;, andd, ; = 0 fori # j

d; the sum of the” row of W
H the chosen center-piece subgraph
Q number of source query nodes
Q={¢} |setofquerynodesEl,....Q)
Q the first(Q) — 1) query nodes of query s€, O = {¢;},(i=1,..,(Q — 1))
1%} null query set, which contains no query node
r(i,7) goodness score for a single nodert query nodey;
r(Q, ) goodness score for a single nodert query setQ
r(Q, (j,1)) | goodness score for a single edgel) wrt query setQ
Tij steady-state probabilitgf a single node wrt query nodey;
R @ x N matrix of [r; ;]
r(Q, 7, k) meeting probabilityf a single nodg, wrt k(k = 1, .., Q) or more of
the query nodes of

r(i,(7,1)) | meeting probabilityf a single edgéj, 1), wrt query nodey;
r(9Q, (4,1), k) | meeting probabilityf a single edg¢j, (), wrt k(k = 1, .., Q) or more
of the query nodes o

score of nodej. Moreover, by designing differemheeting probabilitywe can get the specific
type of closeness score tailored for the specific query simenkable3.2lists all the symbols and
definitions used throughout this chapter.

3.3.1 Individual score calculation

Here we want to compute the closeness se¢igj) of a single node, for a single query node.
We propose to use random walks with restart, from the quedg no

Suppose a random patrticle starts from qugnthe particle iteratively transmits to its neigh-
borhood with the probability that is proportional to the edgeight between them, and also at each
step, it has some probabilityto return to node;. (i, j) is defined as theteady-state probability
r; ; that the particle will finally state at node

’f’(l,j) é Tz',j (33)
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More formally, if we put all ther; ; probabilities into matrix forrR = [r; ;|, then
RT = cRT x W+ (1 -¢)E (3.4)

whereE = [¢]](i = 1, ...,Q) is theN x Q matrix, (1 — ¢) is the fly-out probability, andV is the
adjacency matriW appropriately normalized, say, column-normalized:

W=WxD! (3.5)

The problem can be solved in many ways - we choose the iteratethod, iterating E.4
until convergence. For simplicity, in this chapter, weaterEq.3.4m times, wheren is a pre-fixed
iteration number.

3.3.2 Combining individual scores

Here we want to combine the individual scotg, j)(i = 1, ...,Q) to getr(Q, j), the closeness
score for a single nodgwrt the query se®. We propose to use theeeting probability-(Q, j, k)
of random walk with restart. Furthermore, by using différeoftAND coefficientk, we can deal
with different types of query scenatrio.

The most common query scenario might be that “gigequery nodes, find the subgraph
the nodes of which are important/good wrt ALL queries”. listbase;(Q, j) should be high if
and only if there is a high probability that ALL particles Wihally meet at node:

r(Q.5) £7(2,5,Q) =[] r.J) (36)

i=1

Eq. 3.6 actually defines a logic AND operation in terms of individeddseness scores: the
nodej is important wrt the query s&® if and only if it is important wrt every query node. Thus,
we refer such query type as “AND query”.

A complemental query scenario is “OR query”: “givéhqueries, find the subgraph the
nodes of which are important wrt at least ONE query”. In tlisesr(Q, j) should be high if and
only if there is a high probability that at least one partieié finally stay at nodey:

Q
T(Q,])éT(Q,],l): 1—H(1—T(’L,])) (37)

i=1

Eq. 3.7 defines a logic OR operation in terms of individual impor&sscores: the nodgis
important wrt the source queries if and only if it is impottamt at least one source query.

Besides the above two typical scenarios, the user mightaskd'given() queries, find the
subgraphH the nodes of which are important wrt at least < & < ) queries”. We refer such
query type as K _soft AN D query”. In this case;(Q, j) should be high if and only if there is a
high probability that at least-out-of<) particles will finally meet at nodg.

r(Q,7) = r(Q,7,k) (3.8)
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To avoid exponential enumeration (which(%2*)), Eq. 3.8 can be computed in a recursive man-
ner:

r(Q, 5, k) =1(Q,j.k—1)-1(Q,7) +7(Q,5,k) - (1 —r(Q, 7)) (3.9)

wherer(Q,7,1) =1 —[[%, (1 — r(i, 5)).

Intuitively, Eq. 3.8 defines a logic operation in terms of individual importancerss that is
between logic AND and logic OR. In this chapter, we refer itagc K_softAND: the nodej is
important wrt the source queries if and only if it is importamt at least:-out-of-() source queries.

It is worth pointing out that both “AND query” and “OR queryan be viewed as special cases
of “K _softAND query”: “AND query” is actually “QsoftAND query”; while “OR query” is
actually “1 softAND query”

3.3.3 \Variation: normalization on W

To compute the closeness scoté, j) andr(Q, j), we need to construct the transition maf¥k
for random walk with restart. A direct way is to normali¥€ by column as Eg3.5. However,
as pointed out infMT04], there might be the so called “pizza delivery person” peof)| that is,
the node with high degree is prone to receive too much atterfteceiving too high individual
closeness score in our case). To deal with this problem, weqgse to normaliz&V as Eq.3.10
The normalized weighted gragiV will be further used to formulate the transition mati¥ by
Eqg.3.5

wjg — wir/(d;)" (3.10)

forall j,i=1,...,N.

The motivation of normalization is as follows: for the higbgiee nodg, every edgéj, 1) (I =
1,....,N) is penalized byd;)* and vice versa. The coefficientcontrol the penalization strength:
biggera indicates stronger penalization. Note that the idea of jzgng the node with high degree
is similar with that of setting a universal sink node i T04].

3.4 The “Extract” Algorithm

In this Section, we propose “EXTRACT” algorithm to deal witle “connection” requirement of
CePS what do we mean by “connection” and how to find the resultimiggsaph which satisfies
the connection requirement while maximizing the goodmdsséness with the limited budget
The “EXTRACT” algorithm takes as input the weighted graph the importance scores on
all nodes, the budgétand the softAND coefficient; and produces as output a small, unweighted,
undirected grapft. The basic idea is similar with the display generation atgor in [FMT04)]:
1) instead of trying to find an optimal subgraph maximizirig{) directly, we decompose it into
finding key paths incrementally; 2) by sorting the nodes aeorwe can quickly find the key paths
by dynamic programming in the acyclic graph.
However, we cannot directly apply the original display gatien algorithm since it can only
deal with pair source queries (and also the resulting sgbgsasensitive to the order of the source
gueries). To deal with this issue, we extend the originabiadlym in the following aspects:
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(1)

(2)
3)

Instead of finding a source-source path, at each stepaltjogithm will pick up a most
promising destination nodgd; and try to find a source-destination path for each source
guery node.

The order (which will be used in the dynamic programmiisg3pecified with each source
guery node.

Key path discovery differs with the different query tgpdor “AND query” the algorithm
will discover () paths for all source nodes at each step; forstftAND query”, it only
discoverst paths for the first: source nodes; while for “OR query”, the algorithm will only
find 1 path at each step.

Before presenting the algorithm, we require the followiedmitions:

SPECIFIED DOWNHILL NODENodew is downhill from nodev wrt sourcey; (v — d;, u)

if r(i,v) > r(i,u);

SPECIFIED PREFIX PATHA specified prefix pattP(i, ) is any downhill path that starts
from sourcey; and ends at node; that is, P (i, u) = (ug, u1, ..., u,) Whereuy = ¢;, u,, = u,
ande — di, Ujt1,

EXTRACTED GOODNESShe extracted goodness is the total goodness score of tles nod
within the subgraphtt: CF(H) = .4, 7(Q, 5)-

EXTRACTED MATRIXC,(i, u) is the extracted goodness score from source ppttenode

u along the prefix patt® (i, «) so that:

1. P(i,u) has exactly nodes not in the present output gréakh

2. P(i,u) extracts the highest goodness score among all such pattstdharomg; and
end atu.

ACTIVE SOURCH-or K _softAN D, the source nodg is active wrt destination noge! if
(i, pd) > r®) (i, pd), wherer® (i, pd) is thek?" largest value among(i, pd), (i = 1, ..., Q).
Note that the number of active source differs with the qugpg't for “OR query”, there is
only one active source while for “AND query”, all sources axive. For a specific query
type, an active sourcg might turn into inactive when the destination nqdéchanges and
vice versa.

The destination nodgd can be decided by E§.11:

pd = argmaxjgnr(Q, ) (3.11)

whereH is the partially built output subgraph.

In order to make the resulting subgraph to be “reasonablypected”, we want to make sure
that (1) there is at least one path that connects the dastinabdepd and each query node for
AND query; and (2) there is at least one path that connectddbination noded andk-out-ofQ)
guery nodes. In this way, not only does the algorithm seleod¢close nodes wrt the query set
(i.e., a destination noded with high r(Q, 7)), but also it provides some interpretations on why
such nodes are good/close wrt the query set.

1Since both “AND query” and “OR query” can be viewed as speciaies of “KsoftAND query”, the number of
active sources is actuallyfor all query types.
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However, we do not want to find an arbitrary path to connectdbstination noded and
the one query node since (1) we also want to make sure thaethaiming nodes (besides the
destination nodgd) in the resulting subgraph are good/close wrt the queryaset(2) the number
of total nodes in the resulting subgraph is limited by thedaid. Therefore, we aim to find a path
from one query node and the destination npdevhich maximizes the total captured combined
scores along the path over the length of the path. Also, sugcey to find the resulting subgraph
gradually, a new path might include some existing nodes éncilirrent subgraph. In order to
encourage different paths to share with the same nodestsi@teidgeb is limited, we define the
length of the path is defined as the number of new nodes in #tis p

In order to discover a new path between the soyr@nd the promising nodgl, we arrange
the nodes in descending orderidf, j)(j = 1,...,n): {u1 = ¢, us, us, ...,pd = u,}. (note that
all nodes with smaller (i, j) thanr(i, pd) are ignored). Then we fill the extracted matcixin
topological order so that when we computg(t, ), we have already computed, (¢, v) for all
v — d;, u. On the other hand, as the subgraph is growing, a new pathmshyde nodes that are
already present in the output subgraph, our algorithm ailbf such paths as ir-[/IT04]. The
complete algorithm to discover a single path from sourcesn@@nd the destination nogel is
given in table3.3.

Table 3.3: Single Key Path Discovery

1. Letlen be the maximum allowable path length
2. Forj <« [1,...,n]
2.1. Letv = u;
2.2. Fors < [2,...,len)]
If v is already in the output subgraph

s'=s
Else
s =s5—1

Let Cs(i,v) = mazyy—d,»(Cs (1, u) + 7(Q,v))
3. Output the path maximizing(i, pd) /s, wheres # 0

Based on the previous preparations, R 6TRACTalgorithm can be given in tabl2 4.

3.5 Speeding ugCePS

To compute-(i, 7), we have to solve a linear system. When the data set is largedi@ precisely,
when the total number of the edges in the graph is large),rbwepsing time could be long. Note
that we can directly apply the proposed BN in chapter2 to computer(i, j). Here, we consider
an alternative way to speed up the whole process.

Note that Eq3.4 can be solved in closed form:

R =(1-c¢)I—cW)'E (3.12)

39



Table 3.4: OUEXTRACTAIgorithm

1. Initialize output graptH null
2. Letlen be the maximum allowable path length
3. While’H is not big enough
3.1. Pick up destination nogel by Eq.3.11
3.2. For each active source nagevrt nodepd
3.2.1. use tabl8.3to discover a key patl(q;, pd)
3.2.2. addP(¢q;, pd) to H
4. Output the finaH

Thus, an obvious way to speed @ePSis to pre-compute and store the matdx = (I —
¢W)~!, thenR” = (1 — ¢)AE can be computed on-line nearly real-time. However, in thig,w
we have to store the whol® x N matrix A, which is a heavy burden whe¥ is big.

As suggested bygOCF03, the goodness scorgi,j)(j = 1,...,N) is very skewed, that
is, most values of-(i, j) are near zero and only a few nodes have high value. Based ®n thi
observation, we propose to pre-partition the original \Wweag graphW into several partitions
and only use the partitions containing the source querigsiidCePS In this chapter, we use
METIS [KK99] as the partition algorithm.

The pseudo code for the accelera@ePSs summarized as follows:

Table 3.5: Fas€ePS
Input: the weighted grapWV, the query se®, K _softAN D coefficientk,

the budget, and the number of partitions
Output: the resulting subgrapH.
Step 0: pre-partitionW into p pieces (one-time cost)
Step 1: pick up partitions ofW that contain all the query nodes to construct
the new weighted graphW
Step 2. runCePSas in table3.1onnW

3.6 Experimental Evaluation

In this section, we demonstrate some experimental reSuiesexperiments are designed to answer

the following questions.
e Does the proposed goodness criterion make sense?

e Does theEXTRACTalgorithm capture the most goodness score?
e Does the extra normalization step really help?

e how does the pre-partition balance the quality and respims®
Data SetWe use the DBLP data set to evaluate the proposed method. $pduific, the
author-paper information is used to construct the weiggtaghW: every author is denoted as a
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node inW; and the edge weight is the number of co-authored papersbatthe corresponding
two authors. On the whole, thereas315K nodes andx 1,834 K non-zero edges iNV.

Source QueriesTo test the proposed algorithm, we select several peophe dlifferent com-
munities to compose the source-query repositbBypeople from database and minirig; people
from statistical and machine learningt people from information retrieval; antl people from
computer vision. Then the source queries are generatechbdpmay selecting a small number of
queries from the repository.

Parameter Setting The re-starting coefficientin Eq. 3.4 is set0.5 and the iteration number
m is set50 since we do not observe performance improvement with meration steps. The
maximum allowable path lengtlan is decided by the budgétand the number of active sources
as[b/k]. For normalization coefficient, a parametric study is provided in Section 7.3. For other
experimentsy = 0.5.

Evaluation Criterion Firstly, the resulting;(H) can be evaluated by “Important Node Ratio
(N Ratio)". That is, “how many important/good nodes are captured (3y)?":

2jen"(Q:7)
EjeW T(Qv ])

Complementally, we can also evaluate by “Important EdgeoR@t Ratio)”. That is, “how
many important/good edges are captured (iy)?":

Z(jj)e?—{ T(Qv (]7 l))
E(j,l)ew r(Q, (4,1))

The goodness scoréQ, (j,1)) of an edgg7, ) is defined similarly as the goodness score for
a node: what is the probability that the specific edgé) will be traversed simultaneously by all
(or at least:) of the particles. Firstly, we calculate the goodness scgréj,[)) for an edggy, 1)
wrt a single query node:

N Ratio = (3.13)

FERatio =

(3.14)

r(i, (5.0) = 5 - (r(i.5) - Wi+ (i, 1) - W) (3.15)

Based on E@g3.15 we can easily define(Q, (j,1)) according to the specific query type. For
example, for “AND query”,»(Q, (4,1)) can be computed as E§.16 while for “OR query” and
“K _softAND query”,r(Q, (j,1)) can be computed as E8.17and Eq.3.18 respectively.

N —

r(Q, (D) £ r(Q,(3,1),Q) = [[ ri, (4.1) (3.16)
Q
r(Q,(,0) £ r(Q,(3,1),1) =1 =[] (1 =r(, (5,1)) (3.17)
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HQ.G1) £ Q.30 |
= T(Qv (]7 l)v k— 1) ) T(Qa (]v l)) + T(Qv (]7 l)v k)
(3.18)

wherer(a, (4,1),0) = 1.
For all experiments except subsection 7.1, we run the pexpakyorithm multiple times and
report the meamV Ratio as well as meay Ratio.

3.6.1 Evaluation on the goodnesg(H): case study

As we mentioned before, connection subgraph is a specialafasenter-piece subgraph (“AND
guery” with pair source nodes ). Figufel shows the connection subgraph with budgédor
“Soumen Chakrabarti” and “Raymond T. Ng”. It can be seen ltiwdlh our method and the deliv-
ered current method output somewhat reasonable resusvdirth pointing out that the subgraph
by the delivered current method is very sensitive to the oofi¢he source queries: comparing
figure6.1(a) and (b), there is only one common node (“S. Muthukrisinadn the other hand, if
we compare figuré.1(b) and (c), while most nodes are the same for the two methbidsglear
that our method captures more strong connection: compaitedigure 6.1(b), the different node
(“H.V. Jagadish”) in figure5.1(c), 1) has more connection$ys. 3) with the remaining nodes and
2) has more co-authored papers with those connected negtimn the corresponding node in
figure6.1(b) (“Zhiyuan Chen”).

Figure3.1shows an example for multi-source queries. When the userfasR— Soft AN D,
the algorithm outputs two clear cliques (figus€l(a)), which makes some sense since “Vladimir
Vapnik” and “Michael I. Jordan” belong to statistical maghiearning community; while “Rakesh
Agrawal” and “Jiawei Han” are database and mining people.ti@mother hand, if the user asks
for "AND”, the resulting subgraph shows a strong connectiath all four queries.

Figure 3.3 shows an example for “AND query”, with “George Karypis”, 4e Getoor” and
“Jian Pei” as source nodes. All three researchers are wgpikngraphs. The nodes of the re-
trieved “center-piece subgraph” are all database, datanghend graph mining people, forming
three groups: the nodes close to “Lise Getoor” are relatdtettyniversity of Maryland (“V.S. Sub-
rahmanian” is a faculty member there and he was the advis&aymond Ng”). The nodes close
to “George Karypis” are faculty members at Minnesota (“YMiiumar”, “Shashi Shekar”). The
nodes close to “Jian Pei” are professors at Simon Fraser)(8FUniversity of British Columbia
(UBC), which are geographically nearby, both in Vancouvdiawei Han” was a faculty mem-
ber at SFU and thesis advisor of “Jian Pei” ; “Laks Lakshmaaaua “Raymond Ng” are faculty
members at UBC. Not surprisingly, the “center-pieces” efshbgraph consist of “Raymond Ng”,
“Jiawei Han”, “Laks Lakshmanan”, which all have direct, tmosig indirect connections with the
three chosen query sources.

43



3.6.2 Evaluation on "EXTRACT” algorithm

By the “"EXTRACT algorithm, we might miss some good/close nodes (which légle goodness
scores) in order to meet the requirement of “connection” efaluate this potential risk, we use
both N Ratio andE Ratio as functions of the budgéi{Higher N Ratio and E' Ratio indicate lower
risk). Here, we fix the query type as “AND query”.

Figure3.4(a) shows the meaN Ratio vs. the budget for different numbers of source queries;
while figure 3.4(b) shows the meat’Ratio vs. the budgeb for different numbers of source
gueries. Note that in both cases, our method captures mospoftant nodes as well as edges by
a small number of budgét For example, foR source queries, the resulting subgraph with budget
50 capture€)5% important nodes and0% important edges on average; for 4 source queries, the
resulting subgraph with budge0 capturesl00% important nodes an@0% important edges on
average. An interesting observation is that for the samediidhe subgraph with more source
queries captures highé¥ Ratio as well ask Ratio than those with less source queries. This is
consistent with the intuition: generally speaking, findpepple that are important wrt all source
gueries becomes more difficult when the number of sourceieggi@icreases. In other words,
r(Q, j) becomes more skewed by increasing the number of sourceequeri

3.6.3 Evaluation on normalization step

Here we conduct the parametric study for normalizationfeneht . The meanV Ratio VS. « iS
plotted in figure3.5a); and the meai¥ Ratio vs. « is plotted in figure3.5b).

It can be seen that in most cases, the normalization stephaédie$o improve the performance
of the resulting subgraph(H). For example, the normalization with = 0.5 helps to capture
17.7% more important nodes aril1% more important edges for 2 source queries on average;
while for 3 source queries, it capture8.1% more important nodes and6% more important
edges on average.

3.6.4 Evaluation on speedup strategy

For large graph, the response time for importance scoreladilen could be long. By pre-partition
the original graph and performing subgraph discovery onlyhe partitions containing the source
gueries, we could dramatically reduce the response timeh®nother hand, we might miss a few
important nodes if they do not lie in these partitions. To suea such kind of quality loss, we use
“Relative Important Node RatiaHel Ratio)”:

N@o
N Ratio
where N Ratio and N Ratio are “Important Node Ratio” for the subgraph by pre-pantitamd by
the original whole graph, respectively.
We fix the budge20 and the query scenario as “AND query”. The mé&iRatio vsS. response

time is shown in figur&.6(a); and the mean response time vs. the number of partitestsown in
figure 3.6(b). It can be seen that with a little quality loss, the resgoprocess is largely speeded

RelRatio = (3.19)
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up. For example, withz 10% loss, the subgraph far source queries can be generated within
seconds on average; with 10% quality loss, the subgraph férsource queries can be generated
within 10 seconds on average. On the other hand, it might4ake~ 60s without pre-partition.
Note that in figure3.6 (b), even with a small number of partitions, we can greattiuce the mean

response time.
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3.7 Related Work

Here, we make a brief review of the related work, which candiegorized into three groups: (1)
measuring the goodness of closeness; (2) measuring thege®df connection; (3) community
mining; (4) random walk and electricity-based methods. PreposedCePSis also related to
graph partition. For these work, please refer to Chagter

Measuring the goodness of closened3efining a good closeness score is the core for center-

46



Qualisty vs. Rsponse Time
1 T T

09r

08

Mean RelRatio
o
(%]
T
L

2 Source Queries
03 ———<—— 3 Source Queries
—+—— 4 Source Queries

0.2 b
—©o—— 5 Source Queries

0.1r b

0 I I I I I
0 10 20 30 40 50 60

Mean Response Time (Sec)

(a) Quality vs Time

Rsponse Time Vs. # of Partitions
60 T

50 1

30 2 Source Queries R
—>—— 3 Source Queries
“ —+—— 4 Source Queries
20 I ——*—— 5 Source Queries

Rsponse Time (Sec)

101

0 50 100 150 200
# of Partitions

(b) Time vs Number of partitions

Figure 3.6: Evaluation on speeding up strategy. The prapésstCePSachieves about 10x
speedup, with 90% quality preserving.

piece subgraph discovery. Here, the goal is to define a soaoreasure the closeness of a given
node wrt the query set. To this end, we need to define a scoredsure the closeness of a given
node wrt a single query node. The two most natural measurasiéh purpose (i.e., the closeness
between two nodes) are shortest distance and maximum flowetsy, as pointed out iri-[VIT04],
both measurements might fail to capture some preferredctaistics for social network. To be
specific, shortest path will suffer from high degree nodes, @so it cannot capture the multiple
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faceted relationship between two nodes on the graph; whaldmum netflow does not punish the
longer connections. The closeness function for survivabtevork [5M S99, which is the count

of edge-disjoint or vertex-disjoint paths from source tstd®tion, also fails to adequately model
social relationship. A more related distance function gpased in [NKO3] [PFO0J. However, It
cannot describe the multi-faceted relationship in soad@wvork since center-piece subgraph aims
to discover collection of paths rather than a single path.

Measuring the goodness of connectiorAnother requirement i€ePSs “connection”. In FMT04],
the authors propose an delivered current based method. tBspieting the graph as an elec-
tric network, applying+1 voltage to one query node and setting the other query fodalt-
age, their method proposes to choose the subgraph whickedelnaximum current between
the query nodes. IN{MPS0Y, the authors further apply the delivered current basedatkto
multi-relational graph. However, the delivered curreiitiecion can only deal with pairwise source
gueries. Moreover, the resulting subgraph might be seadii the order of the query nodes (See
Figure6.1for an example). On the other hand, as we will show very soonnection subgraph
can actually be viewed as a special case of the proposed-geate subgraph ("AND query” with
pair source nodes ).

The “connection” requirement is also related to Steinex fre. R90, LTL03], where the goal is
to find a tree of minimal weight which includes all query noddswever, the Steiner tree cannot
directly apply in our settings for the following reasons} {ie Steiner tree might suffer from those
high degree nodes exactly as the way the shortest path W#irs(R) to find an exact Steiner tree
is NP-complete; and (3) Steiner tree requires to find a traemt¢onnects to all the source nodes.
On the other handZePStries to find a set of inter-correlated trees to connect tlegygoodes in an
approximate way. By using the proposed closeness func@ieRSwill avoid the high-degree node
effect. Also, in the proposed “EXTRACT” algorithm (which lbe introduced Section 5), we try
to search for a set of paths, instead of searching for a treettii (as in Steiner tree). Finally, by
introducing K _soft AN D, we can further relax the requirement on connecting to a&lgburce
nodes inCePS

Community detection. Center-piece subgraph discovery is also related with conitynde-
tection, such as HLGCO[GKR9{[GN]. However, we cannot directly apply community detec-
tion to subgraph discovery especially when the source gsietie remotely related or they lie in
different communities.

Random walk related methods.The proposed importance score calculation is based on ran-
dom walk with restart. There are many applications usingoamwalk and related methods (See
Chapter2 for details)CePSalso relates Personized PageRank (PPIRY[] in the sense that PPR
defines the combined score as an approximate “OR ” gu@w the other hand, the proposgdPS
can naturally deal with different kinds of queries, from “BN to “OR ", with “ K _softAN D
guery” in-between.

2To see this, notice that the combined score is defined@sj) = Z?Zl r(i,7) in PPR.
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3.8 Conclusion and Discussions

Summary of Current Work. We have proposed the problem afehter-piece subgraphsand
provided fast and effective solutions. In addition to thelppem definition, other contributions of
the chapter are the following:
e The introduction and handling &€ _so ft AN D queries, which includé N D andO R queries
as special cases.

e EXTRACT a fast novel algorithm to quickly extract a subgraph with appropriate connec-
tivity and maximum “goodness” score

e The design and implementation of a fast, approximate dlyarthat brings a 6:1 speedup

e Experiments on real data (DBLP), illustrating that our aipon and “goodness score” in-
deed derive results that agree with intuition.

Discussions and Future Work. In this chapter, we have focused on the plain graph (i.e.,tho a
tributes on the nodes or edges). And also, we have resttwted un-directed graphs. InfKF07],
we have generalize@ePSto the directed graphs. And in f GEROT, we have generalizeBePS
to the attributed graphs.
In the future, we would also like to investigate this problienthe following aspects:

1. Automatic parameter tuning. For example, if the user daggprovide theK softAND
coefficient, how can we infer the ‘optimal’. One possible way to attach this problem is
through cross validation (by treatifi@ePSas a retrieval/classification tool.

2. Steiner tree an@ePS For example, how to leverage the approximate algorithmSteiner
tree so that we can provide theoretic performance guarémt&ePS how to generalize the
Steiner tree byCePS(e.g., to find a set of inter-correlated, rather than onan8tdree; to
find the “soft” Steiner tree which connects at lelsiut-of-() queries node etc).
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Chapter 4
Case Study #2: User Feedback

Summary of This Chapter
= Questions we want to answer:
Q1: How to incorporate users like/dislike type of feedbatkneasuring proximity on
graphs?
Q2: How to reflect users (near) real time interest?
- Our answers and contributions

Al: We proposed a novel method (iPoG) to incorporate uselbieek (like/dislike) in
measuring node proximity on large graphs, enriching a braage of applications.

A2: We proposed a fast algorithm (Fast-iPoG) to compute tbpgsed proximity mea-
surement, achieving significant speedups (up to 49x).

4.1 Introduction

Most existing work on querying static graphs only considbeslink structure of the underlying
graph, ignoring any possible side information. For examgieen an author-conference bipartite
graph, existing proximity measurements may answer thetipmesWhat are the most similar
conferences to KDDPlowever, for a particular user, s/lhe might have her/his ovefigpencesi
dislike ICML or | like SIGIR These preferences are typically localized to a particsgarch, and
may not reflect a global sentiment by the user.

There are a wide range of scenarios where users’ feedbaitkinglicit or explicit, can be nat-
urally integrated as side informatiorFor instance, in recommendation systems, side information
could be users’ ratings on items (eldike Kung-Fu Panda In Blog analysis, it could be opinions
and sentiments. Additionally, for many real applicatiamsers’ preferences can be estimated from

1In this chapter, we use the terms ‘user feedback’ and ‘sifterimation’ interchangeably.
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click-through data. That said, it is thus important to inmmate such side information in the prox-
imity measurement so that search results are well-taitareeflect a user’s individual preferences.
In the earlier example, the question will then becoméhat are the most similar conferences to
KDD, but dissimilar to ICML?

In this chapter, we address the above challenge by propasiogel method, called iPoG, that
incorporates such like/dislike side information in measginode proximity on large graphs. Our
method is based on random walk with restart (RWR), where iBs€s the side information to
refine the graph structure so that RWR is biased to avoid cavorfsome specific zones on the
graph according to the users’ preferences. AdditionalgQ inherits existing capabilities from
RWR, such as the ability to summarize tmeiltiple facetedelationships, to be interpreted from
the perspective ddteady-state probabilityetc. Therefore, we expect iPoG to enrich a broad-range
of applications by replacing their original proximity measment implementation. We evaluate
iPoG in three case studies: neighborhood search, ceree-pubgraph, and image caption. In all
cases, we show that iPoG naturally reflects the users’ gre¢erand/or improves the quality of the
existing applications (e.g., boost the precision/redahe image captions by more than 10%).

Because a straightforward implementation of iPoG requsrgsificant computation, we pro-
pose a fast algorithm (Fast-iPoG) that computes the praposeimity measurement, while rad-
ically reducing the computational overhead. Fast-iPoGesels the performance gains by ex-
ploiting the smoothness of the graph structures with/witreade information. Our experimental
results show that it achieves significant speeduygpt¢ 493 while maintaining high approximation
accuracy (more than 93.0%).

This chapter has three key contributions:

¢ A novel method (iPoG) to incorporate side information (ltkslike) in measuring node

proximity on large graphs, enriching a broad range of apgibos;

e A fast algorithm (Fast-iPoG) to compute the proposed priayirmeasurement, achieving
significant speedups (up to 49x);
e Extensive experimental evaluations on several real datase
The rest of this chapter is organized as follows. We intreduatations and formally define the
problem in Sectiont.2. We present the proposed proximity measurement in Sedtidand the
fast algorithm in Sectiod.4, respectively. We provide experimental evaluations irtieel.5and
review the related work in Sectigh6. Finally, we conclude in Sectiof. 7.

4.2 Problem Definitions

Table4.1lists the main symbols that we use throughout this chapterréaffresent a general graph
by its adjacency matrix. Following the standard notatioa,uge capital letters for matrices (e.g.
A), lower case for vectors (e.g), and calligraphic fonts for sets (e.d@). We use the symbol
“ 7 to distinguish the setting with/without side informatiofror example A is the normalized
adjacency matrix of the graph without side information; @ni the normalized adjacency matrix
of the refined graph by side information.

We represent the elements in a matrix using a conventioresitoi Matlab, e.g.A (s, j) is the
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Table 4.1: Symbols

| Symbol | Definition and Description |
A, B, ... | matrices (bold upper case)
A(i, ) element at theé" row and;*" column of A
A(i,:) ™" row of matrix A
A7) 7% column of matrixA
a,b,... | column vectors
Z,7J,... | sets (calligraphic)
n number of nodes in the graph
n' number of out links of nodé
c (1 — ¢) is the restart probability
Tij proximity from nodei to nodej
r; = [r; ;] | ranking vector for node(j = 1,...,n)
P positive setP = {z1,...,x,+}
N negative setV = {y1, ..., Yn- }
nt number of positive nodes™ = |P|
n- number of negative nodes = ||
e; n x 1 starting vector for node
wheree; (i) = 1 ande;(j) = 0(j # i)

element at theé'" row and;*" column of the matrixA, andA (:, j) is the;*" column of A, etc.

We use a running example, depicted in Bid(a), to describe the problem statement. There,
each node represents a person (e.g., node 1 is ‘John’, nad&@ith’, etc.) and the existence of
edge represents some social contact between the two condisg persons (e.g., phone call). In
traditional settings of proximity measurement, the go&biguantify the closeness (i.e., relevance)
between two nodes (the source and target) based on the dudtise of the underlying graph. In
our settings, we assume the existence of side informatomusing primarily on like/dislike user
feedback as side information. In our running example, a oBght not want to see (i.e., dislike)
node 6 but favors (i.e., like) node 4.

Formally, we represent such side information by two g&&éd\. The sefP contains the node
indices that users like (referred to as the positive setgrevthe corresponding nodes are referred
as positive nodes. The skf contains the node indices that users dislike (referred gative set),
where the corresponding nodes are referred to as negatilesnadn our running example, both
the positive seP and the negative sét’ contain one single element, respectivel:= {4} and
N = {6}. Our goal is to incorporate such side information to meatueenode proximity (e.g.,
the proximity from node 1 to the node 3 in our running example)

With the above notations and assumptions in mind, our proldan be formally defined as
follows:

Problem 2. (Proximity with Side Information)

Given: a weighted direct grapt\, a source node and a target node, and side informatiorP
and\V;
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(a) the graph (node 1 is the source.)

KOEB 0 0033 0 0 0025 0 0 0 N
0.33 00505 0 0 0 0O 0 0 0 0 0
0033 005 0 0 0 0 0 0 0 0 0
003305 0 0 0 0 O 0 0 0 0 0
0.33 0 0 0 005 005 0 0 0 0 0
0 0 0 0033 005 0O 0 0 0 0 0
0 0 0 0 005 005 0 0 0 0 0
0 0 0 0033 005 0 0 0 0 0 0
0.33 0 0 0 0 0 0 0 0 0505 0033
0 0 0 0 0 0 0 0 025 0 0 0033
0 0 0 0 0 0 0 0 025 0 005 0

0 0 0 0 0 0 0 0 0 005 0033
Q 0 0 0 0 0 0 0025 05 005 y

(b) column normalized adjacency matix

Figure 4.1: The running example.

Find: the proximity score’, ; from source node to target node.

In problem2, if the target node is absent, we measure the proximity scorg(i = 1,...,n)
from the source nodeto all the other nodes in the graph. If we stack all these sdate a column
vectorr, = [7;](: = 1,...,n), itis equivalent to saying that we want to compute the ragkictor
r, for the source node In this chapter, we assume that there is no overlap betvireguotsitive set
and negative set (i.eR N N = ¢.?) Also, the positive and negative side information do notchee
to exist simultaneously. For example, if we only have puesitiide information, we can simply set
the negative set to be empty (i.4/, = ¢).

2|f this does not hold, we can remove the intersection fronh Ipaisitive set and negative set.
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4.3 1PoG

In this section, we introduce our proximity measuremenksitie information, iPoG. We begin by
reviewing random walk with restart (RWR), which is a good)pnaity measurement for the case
where there is no side information. We, then, extend RWRdpeny account for side information.

4.3.1 RWR: Proximity without Side Information

Random walk with restart (RWR) is considered one of the mastessful methods for measuring
proximity and is receiving increased interest in recentrye&or a given graph, RWR is defined
as follows. Consider a random particle that starts from nodéhe particle iteratively transits to
its neighbors with probabilities proportional to the cepending edge weights. At each step, the
particle can returns to nodavith some restart probabilityl — c). The proximity score from node
to nodej is defined as the steady-state probabtijtythat the particle will be on nodg[PYFDO4.
Intuitively, r; ; is the fraction of time that the particle starting from nadell spend on each node
j of the graph, after an infinite number of steps.

If we stack all the proximity scores ; into a columnr; (referred to as the ranking vector for
the node), the equation4.1) gives the formal definition of RWR:

r; = cAr; + (1 — c)e;, (4.1)

whereA is the column normalized adjacency matrix for the graphernid the starting vector for
nodei.

For our running example in Fi§.1(a), its normalized adjacency mateis shown in Fig5.1(b).
If we ignore any side information, by setting the correcttstg vector (e.g.e; = [1,0,0,0,0,0,
0,0,0,0,0,0,0] for node 1), we can solve the corresponding ranking vectogusquation 4.1).
Fig. 4.2(a) plots the ranking vector (sorted from highest to lowéstnode 1 of the running ex-
ample. The scores are consistent with our intuition: neadxes (e.g., nodes 9, 2 and 5) receive
higher proximity scores.

4.3.2 1PoG: Proximity with User Feedback

Basic Ideas.Our goal is to incorporate side information to measure titenoximity. Intuitively,

for a given source nodg if positive nodes exist, the proximity score from the seunode to such
positive nodes as well as their neighboring nodes shouled@se, compared to the case where
such side information is unavailable. In our running examglwe know node 4 belongs to the
positive sefP, we expect that the proximity score from the source node btler to increase and
so will the proximity scores from node 1 to node 4’s neighbgmodes (e.g., node 2 and node 3).
Analogously, if negative nodes exist, the proximity scdresn the source node to such negative
nodes as well as their neighboring nodes should decreasgared to the case where such side
information is unavailable. In our running example, if weokinthat node 6 belongs to the negative
set N, we expect the proximity score from node 1 to node 6 to deeteasd so will node 6's
neighboring nodes (such as nodes 5 and 7).
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The basic idea of iPoG is then to use side information to refireoriginal graph structure so
that the random particle (1) has higher chances of visitiegbsitive nodes as well as their neigh-
boring nodes, and (2) has lower chances of visiting the negabvdes as well as their neighboring
nodes.

Dealing with Positive Nodes.For each node in the positive set®), we create a direct link
from the source nodeto nodex. As in the running example, we add a direct link from the seurc
node 1 to node 4 (See Fig.3@)). In this way, whenever the random patrticle visits (@taets
from) the source, it has higher chances of visiting the nodes in the positteNote that we are

Proximity Score
© o o9
o o o ©
~ ® © =
T T

o

o

&
T

o
o
a

Proximity Score
o
=

(b) with side information

Figure 4.2: Ranking vector for node 1 in the running examplEig. 5.1 (The proximity scores
are normalized so that they sum up to 1.)
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(a) the updated graph

33 0 0001 O 0 0025 0 0 0 \
00505 0 0 0 O 0 0 0 0 0
33 005 0 0 0 0 0 0 0 0 0
3305 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 005 0 0 0 0 0
0 0 0001 001 0 0 0 0 0 0
0 0 0 0 0 005 0 0 0 0 0
0 0 0001 001 0 0 0 0 0 0
0 0 0 0O 0 0 0 0 0505 04033
0 0 0 0 0 0 0 025 0 0 0033
0 0 0 0 0 0 0 025 0 005 0
0 0 0 0 0 0 0 0 005 0033
0 0 0 0 0 0 0025 05 005 0

(b) updated column normalized adjacency matrix

Figure 4.3: Adjustment on the original graph in the runnirgraple in Fig.5.1

also implicitly increasing the chance that the random plartwvill visit the neighborhood of those
positive nodes. The weight of each newly added link is séfte®+n™). For example, the newly
added edge (1,4) for the running example will receive a wedfjB.25 (sincex! = 3 andn™ = 1).
Dealing with Negative Nodes.To deal with the negative nodes, we introduce a sink into the
graph, which has no out links. For each nad@ the negative set\(), we put a direct link
from nodey to the sink.
sink and never comes back (since there is no out links fronsitilg. Therefore, this negative
nodey is penalized and
neighborhood of nodg, we also put a direct link from its neighboring nodes to theksiln our

Thus, whenever the random patrticle visits tloiden it can go to the

its corresponding proximity score willréase. In order to penalize the
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running example, besides the link from node 6 (the negatdento the sink, we placed a link
from nodes 5 and 7 (the neighboring nodes of node 6) to thersspectively (see Figt.3@)).

There are two remaining questions: (1) how to choose thehbeitnood of a negative node
y and (2) how to determine the weights to the sink. Let the imafetke sink node be. + 1, the
procedure is summarized in Al@. In Alg. 1, we use random walk with restart (on the original
graph) to determine (1) the neighborhood of the negativenadteps 2-4), and (2) the weights
of the newly added links to the sink (steps 5-6). Notice thateventually (step 9) discard the
last row/column (which corresponds to the sink node). Weitutsesimplify the description of the
proposed method without affecting the ranking vector iroad¢o the property of a sink node.

Algorithm 1 Add Links for One Negative Node
Require: The adjacency matriA, the negative nodg, the neighborhood sizeandc.
Ensure: The updated adjacency matix.
1: initialize A = A, A(n+1,:) = 0,andA(:,n + 1) = 0.
2: get the ranking vector for the negative nagby r, = cAr, + (1 — ¢)e,. Lete := k'™ largest
elementinr,.
: for each node do
if r,; > ethen
setA(n+1,1) =r,,/r,,
setA(1:n,i) = (1 —r,;/r,,)A(l:n,i)
end if
. end for
. outputA = A(1:n,1:n).

©ce N o krow

iPoG Algorithm. Based on the above preparations, the complete algorithne&sune prox-
imity with side information (iPoG) is given in Alg. In Alg. 2, after initialization (step 1), we first
use side information to refine the graph structure (step$a2{Jositive nodes,and steps 8-12 for
negative nodes). Note that in step 10, we use the sarfiee., the original graph) to add links for
each negative nodg This is because we assume that all the negative nodes aiaedbin a batch
mode (i.e., there is no ordering among different negatidesh Then, we perform a random walk
with restart on the refined grapAJ for the source node (step 13) and output the corresponding
steady state probability as the proximity score (step 1d) ekample, Fig4.2(b) plots the ranking
vector (sorted from highest to lowest) for node 1 of the ragnexample with side inforamtion
(P = {4}, and N = {6}). Compared to the case without side information (Big(a)), it can
be seen that positive node (nhode 4) as well as its neighbdrframes 2 and 3) receives higher
proximity scores; while the negative node (node 6) as weillsaseighboring nodes (nodes 5 and
7) receives lowers scores.

3Note that step 3 is to insure that th& column of A sums up to 1.
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Algorithm 2 iPoG

Require: The adjacency matriA, the source node and the target node the side information
P and\V, the neighborhood size and the parameter c.

Ensure: the proximity score'; ; from sources to target.

1: initialize A = A

2. if n™ > 0then

30 A(,s)=n*/(n® +nt)A(,s)

4.  for each positive node in P do
5: A(z,s) = A(x,s) + 1/(n* + n').
6: end for

7. end if

8: if n= > 0then

9: for each negative nodgin N do
10 updateA by Alg. 1
11:  end for
12: end if

13: solve the equatiof, = cAF, + (1 — c)e,.
14: outputr, ; = T,(t).

4.4 Fast-iPoG

In this section, we introduce our fast solution for iPoG. Waatsby reviewing NBLIN, which is a
fast algorithm to compute random walk with restart (the proty without side information. See
Chapter2). We then extend it to include side information.

4.4.1 Background: NBLIN for RWR

According to the definition (equatiod (1)), we need to invert an x n matrix. This operation is
prohibitively slow for large graphs. On the other hand, theative method (iterating equatiof {)
until convergence) might need many iterations, which is alst efficient. In [FP0¢, the authors
solve this problem using a low-rank approximation, follal®y a matrix inversion of sizé x [
(wherel is the rank of the low-rank approximation) to get all possiproximity scores. Their
solution, called NBLIN, is the starting point for our fast algorithm.

Alg. 3summarizes NBLIN, where itis divided into two stage&NB_LIN_Pre() andNB_LIN_OQ().
In NB_LIN _Pre() (steps 1-3), a low-rank approximation is performed for themmalized adjacency
matrix A and a matrix inversiork is computed. Next, iNB_LIN_OQ() (steps 4-5), only a small
number of matrix-vector multiplications are computed tepat the ranking vector.

4.4.2 Fast-iPoG

To incorporate side information, we need to solve randonk wéth restart in two places. First, we
process the original graph (step 10 in Alg4); and then we process the refined graplto get the
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Algorithm 3 NB_LIN
Require: The normalized adjacency matr, the source nodeandec.
Ensure: The ranking vector for source nodg
1: Pre-Compute StaggNB_LIN_Pre())
do low-rank approximation foA = USV
pre-compute and store the matix= (S~! — ¢cVU)~!
On-Line Query Stage(NB_LIN_OQ())
outputr; = (1 — ¢)(es + cUAVey)

ranking vector for the source nodéstep 13 in Alg4). If we utilize NB_LIN in a straightforward

way, we have to call it twice (foA and for A, respectively). Unfortunately, this does not fit the
expect usage model of side information, where it needs teataisers’ real-time interests. Imagine

a user is querying an author-conference bipartite grapghsére wants to knowhich conferences

are most similar to KDDAfter the system gives the initial search results, s/hehirfigrther give
her/his own preference (e.glislike ICML and expect updated search results that matches her/his
interests. This basically implies that callidng3_LIN _Pre() on the refined grapi is part of the
on-line cost, which may pose a huge threat to the systenmfernpeance.

To deal with such challenge, we propose Fast-iPoG, whiclvéngn Alg. 4. Here, we assume
that we want the whole ranking vector for a given source nodmce a single proximity score
can be read out from such ranking vector. Also, we considemnibst general case, where both
positive nodes and negative nodes are present. In Fast-iPtGt callsNB_LIN_Pre() on the
original adjacency matriXA (step 2). Then it callNB_LIN_OQ/() to determine the influence of
the negative nodes (steps 5-12) and partial influence gcaling thes" column of the adjacency
matrix by a factor of*/(n°+-n")) of positive nodes (step 13), both of which are used to uptiate
low-rank approximation andV) as well as matrixA (steps 14 - 21). This way, it avoids directly
calling the functionNB_LIN _Pre() on the refined grapA, where it would need to do a low-rank
approximation and a matrix inversion, both of which are rffitient as on-line costs. Finally, it
calls NB_LIN_OQ() twice (steps 23-24) and combines them as the final rankingtrgsep 25).
Note that the second call @an (step 24) is used to compensate for the remaining influentieeof
positive nodes (i.e., adding new links from the source tqibstive nodes).

The correctness of Algl is guaranteed by theorein By theoreml, Fast-iPoG will not intro-
duce additional approximation errors beyond the first titils NB_LIN_Pre() on the original
graph. Therefore, Fast-iPoG is expected to obtain ranléaglts similar to callindNB_LIN _Pre()
twice (one forA and the other fo). On the other hand, Fast-iPoG avoids the expensive steps
(low-rank approximation ork and a matrix inversion of sizex [) in calling NB_LIN_Pre(). This,
as we will show, leads to significant on-line running costisgs.

Theorem 1. Correctness of Fast-iPoGdf A = USV holds, then Alg4 gives the correct ranking
vector for the source node
Proof: let ann x n matrix A s.t.,

A(, ) = A(,0(,1)03,1) (j=1:kn" +1)

0,1
A(i) = A0 if ¢ 0(,1) (4.2)
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Algorithm 4 Fast-iPoG
Require: The adjacency matrixA, the source node, the side informatiorP and\V, the neigh-
borhood siz&:, and the parameter
Ensure: the ranking vectof, for the sources.
1. Pre-Compute Stage
call [U,A, V] = NB_LIN Pre(A, ¢)
On-Line Query (Feedback) Stage
initialize ip = 1 and® = Qkn +1)x2
for each negative nodgin AV do
callr, = NB_.LIN.OQ(¢, U, A, V, e,).
lete := k'™ largest element im,,.
for each nodé s.t.r,; >=edo
set® (i, 1) = i and®(ip,2) = 1 — 1/,
increase, by 1
end for
. end for
. set®(ip, 1) = s and®(ip, 2) = n®/(n®* + nt)
-setU=UandV =V
cfori=1:kn"+1do
setX(z,:) = U(O(,1),:)
setY(:,i) = V(;,0(:,1))(0(7,2) — 1)
setV(;,0(:,1)) = V(:,0(i,1))O(7,2)
. end for
: computel, = (I — ¢cXAY)™!
- updateA = A + cAYLXA
. sete;, =01 e (P)=1/(n*+n")
- call #, = NB_LIN_OQ(c, U, A,V e,)
: callu = NB_LIN.OQ(c, U,A, V. e,)
s outputr, = &y + fs(s) /(1 — ¢ — cu(s))u

©CXNOa RN
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First, we will show thatf, in step 23 gives the correct ranking vector on the mafixf
A = USV holds.

By the construction of matriA, we have

A(;,0(j,1)) = USV(:,0(;,1)0(,1) (j=1:kn" +1)
A(:i) = USV(,i) if i¢0O(1) (4.3)

Thus, in the matrix form, we havd = USV, where the matrice®/ andV are as defined in
steps 14-19 in Alg4.

Define the matrixQ = (1 — ¢)(I — ¢A)~'. By the property of NBLIN algorithm [TFP0q, we
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have
Q - (1-o@-cA)
(1—c)(I—cUSV)!
= (1-¢)(I+cUAV) (4.4)
whereA = (S~! — ¢VU) .

Next, we will relateA with the matrixA (step 21 of Alg4).
By the spectral representation, we have the following egnat

S1—¢VU = S7'— cZV(:,i)ﬁ(i, )

= S‘l—c(ZV(:,z’)U(z’,:)+6) (4.5)
where) satisfies
kn—+1
6 = > V(OE1)UO1).:)(0,2) - 1)
= Sg( (4.6)

where the matriceY andX are defined as steps 16-17 of Ag.
Plugging equation$(5) and ©.6) into the matrixA and applying Sherman-Morrison Lemnt&]9(],
we have
A = (S'=evO)!
= A+ cAYLXA
= A (4.7)
where the matriceA andL are defined as steps 20-21 of Aly.
Plugging equationd.6) into equation 4.4), we can verify thet, in step 23 satisfies:

i\'s = Q(:v S) (48)
Next, define the matriQ = (1 — ¢)(I— cA)~"). We will try to relateQ with matrix Q.
By the construction oA andA, we have
A=A +te.e (4.9)
where vectoe. is defined as in step 22. In other words, there is only a raniffdreince between
A andA. ~
Now, applying Sherman-Morrison LemmiaT9( to Q, we have

Q = (1-o-cA)™)
= (1—¢)I—cA—cee)™)
= Q+bQe€/Q
Q + buQ(s, ) (4.10)
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Table 4.2: Summary of data sets
| dataset | number of node$ number of edges

AC 421,807 1,066,816
ML 4,563 20,469
CoMMG 54,200 354,186

where vectom is defined as in step 24 and the sdatatisfies

C

b pum—

l—c— ce’sQeJr
&
1—c—celu
S — (4.11)
1 —c—cu(s) '
Putting equationst(6), (6.8) and @.11) together, we have that the correct ranking vector for
the source node on matrixA must satisfies:

Q(:,s) = Q(:,s)+buQ(s,s)

= T+ L@u

7 1—c—cu(s)

= T, (4.12)
wherer, is defined as in step 25, which completes the proof of thedrem O

4.5 Experimental Evaluations

In this section we present experimental results. All theeeixpents are designed to answer the
following questions:

e EffectivenessWhat data mining observations does the proposed iPoG éhable
e Efficiency:How does the proposed Fast-iPoG balance between speed aitg?ju

4.5.1 Experimental Setup

Data Sets.We use three datasets in our experiments, which are sunmedanZable4.2.

The first data setAC) is from DBLP? It is an author-conference bipartite graph, where each
row corresponds to an author and each column correspondtd@ence. An edge weight is the
number of papers that the corresponding author publishtegicorresponding conference. On the
whole, there are 421,807 nodes (418,236 authors and 3,%iféreaces) and 1,066,816 edges in
the graph.

*http://lwww.informatik.uni-trier.de/ ~ey/db/
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The second data seM() uses author-paper information from two major machinenieay
conferences (‘NIPS’, and ‘ICML’) to construct a co-authapsgraph, where each node represents
an author and an edge weight is the number of co-authoredgpbe®veen any two corresponding
authors. On the whole, there are 4,563 nodes and 20,469.edges

The third data setGQoMMG) is used in PYFDO04, which contains around 7,000 captioned
images, each with about 4 captioned terms. There are in16takerms for captioning. In our
experiments, 1,740 images are set aside for testing. Thod gnatrix is constructed exactly as in
[PYFDO4, which contains 54,200 nodes and 354,186 edges.

Parameter Settings.There are two parameters in the proposed iRof@r random walk with
restart, and: for the neighborhood size of a given negative node. We set).95 (as suggested
in [TFPO9). To determinek, a parametric study has been performadd ProSin shows little
sensitivity tok for a large range of settings (frotln= 2 to £ = 10). For the experimental results
in this paperf is set to be 5.

Machine Configurations. For the computational cost, we report the wall-clock timdl A
the experiments ran on the same machine with four 3.0GH% (R)eXeon (R) CPUs and 16GB
memory, running Linux (2.6 kernel). For each experiment,rwe it 10 times and report the
average.

4.5.2 Effectiveness: Case Studies

In both the proposed iPoG and the original random walk wisthenét, the proximity score is defined
as the steady-state probability . Therefore, we expectahtach a broad range of applications by
replacing the original random walk with restart with our @dn this subsection, we present three
applications as case studies: neighborhood search, gaater subgraphs, and image caption.

Neighborhood Search.By incorporating the users’ feedback, we can allow intevaateigh-
borhood search on the graph. Fig4 gives one such example, where we want to find the top
10 neighbors of ‘KDD’ conferences (i.e, the 10 most similanferences as ‘KDD’) from th&C
data set. In Fig4.4(a), we plot the initial results when there is no side infotiora(i.e, P = ¢
and\ = ¢). Subjectively, the result makes sense, which reflects tamnsub-communities in
‘KDD’: the Al/statistic community (e.g., ICML, ‘NIPS’, aad ‘IJCAI’) and the databases commu-
nity (e.g., ‘'SIGMOD’, ‘VLDB’, ‘ICDE’ etc). Then, if the usegives negative feedback on ‘ICML’
(i.e, P = ¢ and N = {'ICML’}), all the Al/statistic related conferences (‘NIPS’ andCHIl’)
disappear (See Fid.4(b)). In Fig.4.4(c), we present the updated result if the user further gives
some positive feedback on ‘SIGIR’, which is one of the magmferences on information retrieval.
Again, the result confirms the effectiveness of ProSIN: fpasfeedback on ‘SIGIR’ brings more
information retrieval related conferences (e.g, ‘'TRECIKM’, ‘ECIR’,'CLEF’, ‘ACL’, ‘JCDL,
etc).

Center-Piece Subgraphs.The concept of connection subgraphs, or center-piece apbgy
was proposed infMT04, TFO€: Given () query nodes, it creates a subgragithat shows the
relationships between the query nodes. The resulting aphghould contain the nodes that have
strong connection to all or most of the query nodes. Moreaigce this subgrapk is used for

SWe skip the details of the parametric study for brevity.
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visually demonstrating node relations, its visual comipyeis capped by setting an upper limit, or
abudgeton its size. These so-called connection subgraphs (orrepigiee subgraphs) were proved
useful in various applications, but currently cannot handlers’ interaction (i.e, feedback).

One of the building block in the original center-piece sw@pirs [[FO€ is to use RWR to
measure the proximity from the query nodes to the remainouges on the graph. Therefore, by
replacing the original random walk with restart by the pregabiPoG, we can naturally deal with
the users’ interactions (for details of center-piece saplyplease refer ta'[-0€]).

Fig. 4.5 plots an example to find the center-piece subgraphs betweaemnesearchers (‘An-
drew Mccallum’ and ‘Yiming Yang’) fromML data set. In Fig4.5a), we plot the initial results
when there is no side information (i.®, = ¢ and N = ¢). It can be seen that there are two
major connections between ‘Andrew Mccallum’ and ‘Yimingnga one connection is on text
mining/information retrieval (through ‘Rebecca Hutcton§ ‘Xuerui Wang’, “Tom M. Mitchell’,
‘Sean Slattery’ and ‘Rayid Ghani’), and the other connetiioon Al/statistics (throught ‘John
D. Laffterty’, ‘Zoubin Ghahramani’ and ‘Jian Zhang’). Fig.5b) gives the updated result if the
user gives negative feedback on “‘Tom M. Mitchell’. It can leers that the whole connection on
text mining/information retrieval disappears, and morarextion on Al/statistics (e.g. through
‘Andrew Ng’ and ‘Michael I. Jordan’) shows up.

Image Caption. Here, the goal is to assign some keywords for a given imagésaext
annotation. In PYFDO04, the authors proposed a graph based solution and showsdpi&si-
ority over the traditional methods in feature space. Theikegp of [PYFDO04 is to construct
an image-keyword-region graph and use RWR to measure tbearele between the test image
and the known keywords. Similar to center-piece subgrammacing RWR by iPoGcan easily
incorporate side information (if available) in such praes

Fig. 4.6 presents the average precison/recalCoMMG data set. Here, the side-information
is simulated as following: for each test image, 5 keywordd #re most relevant to the test im-

'ICDM' 'ICDM! 'SIGIR!
'TCML' 'SDM' 'TREC'
'SDM' "PKDD' 'CIKM'
'VLDB' 'ICDE' 'ECIR'
'ICDE' "VLDB' 'CLEF'
'SIGMOD! 'SIGMOD! 'ICDM!
WNIPS' 'PAKDD' 'JCDL'
'PKDD! 'CIKM' 'VLDB'
'TICAT 'SIGIR' 'ACL
'PAKDD' "WWW' 'ICDE'
(a) No feedback | (b) A = {*ICML'} [(©) N = {'ICML'}
P = {*SIGIR'}

Figure 4.4: Interactive neighborhood search for ‘KDD’ cengince.
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age based on the current proximity measurement are rettonaders’ yes/no (i.e., correct/wrong
caption) confirmation. Here, we also compare two simpleegias: (1) ‘RemNeg’, where the
negative nodes are simply removed from the graph; and (2Cam’ [ ], where the prox-
imity scores from positive/negative nodes are added/satisd from the score from the testimage.
From the figure, it can be seen that our iPoG largely improwdis precision/recall for image cap-
tion task by incorporating such side information. For eximipimproves the precision by 13.59%
(44.02% vs. 30.43%) and the recall by 17.39% (57.54% vs.520)When the prediction length
is 4. Itis interesting to notice that if we simply remove tregative nodes from the graph, it will
actually hurts the performance (‘RemNeg’). As for ‘LinCagnt’can be seen that (1) the improve-
ment is limited compared with the proposed iPoG for shordjoteon length; and (2) it might hurt
the performance with the increase of the prediction length.

4.5.3 Efficiency

In this subsection, we study the quality/speed trade-othefproposed Fast-iPoG. We use the
CoMMG data set (since it is the only one with ground truth among hineet data sets we used in
this chapter). Here, we fix the prediction length to be 4 (#sults with other prediction length

are similar and therefore skipped for brevity), and we complae precision/recall between Fast-

Rebecea i
Hutchinson /

1)
y,

Yiming

Andrew > 1
4/ Yang

Mccallum 1 7

. Andrew
2/ Ng
& -
\ I ‘
\\2 r d II“ "\.' o jm ((r' \‘\2 4 J
3 ‘ernando A N o / N &
 C.N.Pereira Zhu Jian Zhang

(b) Negative feedback on ‘Tom M. Mitchell’

Figure 4.5: Interactive center-piece subgraphs betweedrédw Mccallum’ and ‘Yiming Yang'.
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iPoG and iPoG where in iPoG random walk with restart is penfadt by the iterative methdd.
Compared with iPoG, there is one more parameter in Fast;iB@Gank of the low-rank approx-
imation forNB_LIN_Pre(). We vary this parameter from 100 to 600 (denoted as Fast{{(Fa{i},

Fast-iPoG(200), etc in Figl.7). In order to put quality/speed in the same figure, we nozedli

8An alternative choice for iPoG is to ruNB_LIN_Pre() on A and A respectively. However, we find it needs
more wall-clock time but leads to lower quality comparedhiiie iterative method. Therefore, we only compare the
proposed Fast-iPoG with that by iterative method.

0.4 T T
—©— Initial
0. —P— LinCom |-
—— iroG
0.35} —4 = RemNeg |
5 o0&
{7
Q
(3]
& 0.25F
c
£y
2 o2
0.15
0.1
0.05 ‘ ‘ ‘ ‘ ‘ ‘ ‘
4 6 8 10 12 14 16 18 20

Prediction Length

(a) Mean precision

T
3
x
c
[
()
=
03l & —©— Initial
4_—4' = P~ LinCom
024 < —4— iPoG
- «]- Rem Neg
01 ‘ ‘ ‘ ‘ ‘ : :
4 6 8 10 12 14 16 18 20

Prediction Length

(b) Mean recall

Figure 4.6: Incorporate side information for image caption

Figure 4.7: Quality/speed trade-off of Fast-iPoG.
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(1) precision/recall by the largest value for iPoG, and i(Rgtby the longest value for iPoG.

From Fig.4.7, it can be seen that the proposed Fast-iPoG achieves sagripeedup while
maintaining high quality. For example, Fast-iPoG(100)dzg faster than iPoG (the most right one)
while it preserves 93.6% precision (41.2% vs. 44.0%) an@%®4ecall (54.1% vs. 57.5%); Fast-
iPoG(400) is 16x faster than iPoG while preserving 96.1%igren (42.4% vs. 44.0%) and 96.7%
recall (55.6% vs. 57.5%). Overall, Fast-iPoG issM®x faster than iPoG, while preserving more
than 93.0% quality (for both precision and recall). Notet ihaall cases, Fast-iPoG significantly
improves the precision/recall when compared with theahitase (the left-most dashed bar). As
for the wall-clock time, iPoG need 3.7 hours to annotatealllt, 740 images, while Fast-iPoG(100)
only needs 4.5 minutes.

4.6 Related Work

In this section, we review the related work, which can be gateed into two parts (1) node
proximity and (2) matrix low rank approximation.

Node Proximity. One of the most popular proximity measurements is randonk wath
restart HLZ 704, PYFDO4 TFPO{, which is the baseline of iPoG. Other representative pnityi
measurements include the sink-augmented delivered ¢Jtréni 04], cycle free effective con-
ductance ENV0O6], survivable network GMS93, and direction-aware proximityl[<F07]. All
these methods only consider the graph link structure anorégthe side information. Although
we focus on random walk with restart in this chapter, our apph (i.e., to use the side informa-
tion to refine the graph structure) can be applied to othetaanwalk-based measurements, such
as [FMT04, TKFO7]. In term of dealing with the side information on ranking,rauork is also
related to PCA064], where the goal is to use partial order information to lethweights of dif-
ferent types of edges. In term of computation, the fast @lgor(NB_LIN) for random walk with
restart in [[FP0] is most related to the proposed Fast-iPoG. Our Fast-iP@@rslifrom that in
[TEPO] in the sense that the graph structure in our setting keegrsgihg by the side information,
whereas it is fixed inTFP0g. The core idea behind the proposed Fast-iPoG is to levetage
smoothness between graph structure with/without sidenmédtion. In [TPYF0{, the authors has
used the similar idea to track the proximity/centrality otinae-evolving skewed bipartite graph.
Other remotely related work includeSKRT04], where the goal is to propagate the trust/distrust
to predict the trust between any two persons.

Graph proximity is an important building block in many grapiming settings. Representa-
tive work includes connection subgraplis/[T04, KNVO6, TFO], neighborhood search in bipar-
tite graphs FQCF0Y, content-based image retrievall[Z ~04], cross-modal correlation discov-
ery [PYFDO04, the BANKS systemABC"02], link prediction [_LNK03], pattern matching[FGERO1,
ObjectRank BHP04, RelationalRank M T04] and recommendation systerm [SPO]. Note
that for the ranking-related tasks (such as neighborhoatBgimage retrieval, etc.), we can also
use the linear combination strategy suggested-in/]"04]; the strategy includes personalized
PageRankHlav0J and graph-based semi-supervised learningl] 03] as a special case when
the negative set is absent, to incorporate like/disliketgpside information. Our experimental
evaluation on image caption task shows that although iféect¥e for small prediction lengths, its
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performance is not as good as the proposed iPoG and somdtimsasally hurts the performance.
What is more important, it is not clear how to use such stya{égear combination) for more
complicated applications (such as center-piece subgrapltern match etc). This is exactly one
major advantage of the proposed iPoG: it can be easily ptlgde such applications by simply
replacing the original proximity measurement by our iPoG.

Low Rank Approximation. Low rank approximation®\V/L89, DKMO5b, AMO7] plays a very
important role in graph mining. Please refer to Chagtfar details. Notice that our Fast-iPoG is
orthogonal to the specific method of low rank approximation.

4.7 Conclusion and Discussion

Summary of This Chapter. In this chapter, we study how to incorporate like/dislikgeyof
side information in measuring node proximity on large gsapBur main contributions are in two
folds. First, we proposed a novel method (iPoG) to incorf@sale information in measuring node
proximity on large graphs and showed its broad applicafititough various case studies. Second,
to enhance the efficiency of iPoG, we also took advantageeditioothness of the graph structures
with/without side information and proposed a fast algant{Fast-iPoG). We demonstrated that
Fast-iPoG achieves significant speedup (up to 49x) in ouuatian on real datasets. Overall,
we expect the proposed algorithms to enrich a broad rangepications that receive online
feedback/side information.

Discussions.In this chapter, we have focused on the uni-partite grapdsasnhaveempirically
show the superiority of the proposed iPoG. T JJF09, we have generalized this work in two
dimensions: (1) we show that the proposed iPoG actually ddaptive linear combination, which
explains why we would expect it performs better than altevaachoices; (2) we proposed a fast
algorithm for bi-partite graphs, which achieves orders afjmtude speedup witho quality loss
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Chapter 5

Case Study #3: Gateway

Summary of This Chapter
= Questions we want to answer:

Q: What is the best gateway between a source node (or sowuap)gnd a target
node (or target group), in a network?

- Our answers and contributions

Al: We proposed a novel gateway-ness score for a given santarget, that agrees
with human intuition. We generalize it to the case where welzagroup of nodes
as the source and the target.

A2: We proposed two algorithms to find a set of nodes with tlyhést gateway-ness
score, which (1) are fast and scalable; and (2) lead to naanal results.

5.1 Introduction

What is the best gateway between a source node and a targetin@network? This is a core
problem that appears under several guises, with numeroesazations. Motivating applications
include the following:

1. In a corporate social network, which are the key peoplelitiag or hold different groups

together? Or, if seeking to establish a cross-divisiongmtpjwho are the best people to lead
such an effort?

2. In animmunization setting, given a set of nodes that deeiad, and a set of nodes we want
to defend, which are the best few ‘gateways’ we should immxei

3. Similarly, in a network setting, which are the gatewayesde should best defend against
an attack, to maximize connectivity from source to target.

4. Given a graph of co-workers and their skills (keywordd)pm should you contact to learn
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more about, say, Linux? You want someone reasonably clogeuand fairly well-versed
in Linux, but not your secretary or Linus Torvalds himself.

The problem has several, natural generalizations: (a) webmaanterested in the top best
gateways (in case our first few choices are unavailable)ywéjnay have more than one source
nodes, and more than one target nodes, as in the immunizattng above; (c) we may have
a bi-partite graph with relationships (edges) betweererdfiit node types, as in the last example
above. Our main contributions in this chapter are:

e A novel ‘gateway-ness’ score for a given source and tarjat,agrees with human intuition.
Its generalization to the case where we have a group of nadiee aource and the target;

e Two algorithms to find a set of nodes with the highest ‘gatewags’ score, which (1) are
fast and scalable; and (2) leadrtear-optimalresults;

e Extensive experimental results on real data sets, showagftectiveness and efficiency of
the proposed methods.

The rest of the chapter is organized as follows: We give tldlpm definitions in Section 2;
present ‘gateway-ness’ scores in Section 3; and deal wétltdimputational issues in Section 4.
We evaluate the proposed methods in Section 5. Finally, viewethe related work in Section 6
and conclude in Section 7.

5.2 Problem Definitions

Table 5.1 lists the main symbols we use throughout this chapter. Ha&esfocus on directed
weighted graphs. We represent the graph by its normalizggt@acy matrix A). Following
standard notation, we use capital bold letters for matr{ees., A), lower-case bold letters for
vectors (e.g.a), and calligraphic fonts for sets (e.¢). We denote the transpose with a prime
(i.e., A’ is the transpose aA). We use arrowed lower-case letters for paths on the gragh (e
p), which are ordered sequences. We use parenthesized @uptsrso represent source/target
information for the corresponding variables. For exampté) = {s = up,u1,...,uy =t} isa
path from the source nodeto the target node If the source/target information is clear from the
context, we omit the superscript for brevity. A sink naden the graph is a node without out-links
(i.e., A(:,7) = 0). We use subscripts to denote the corresponding variatde sdtting the nodes
indexed by the subscripts as sinks. For exarrﬁet,) is the path from the source noddo the
target node, which does not go through any nodes indexed by th& §eé.,u; ¢ Z,i = 0, ..., ).
With the above notations, our problems can be formally ddfasefollows:
Problem 3. (Pair-Gateway)
Given: a weighted directed grapA, a source nods, a target node, and a budget (integen);
Find: a set of at most nodes which have the highest ‘gate-way-ness’ score wrtdhece node

s and the target node
Problem 4. (Group-Gateway)
Given: a weighted directed grapA, a group of source nodeS, a group of target node%’, and

a budget (integerk;
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Table 5.1: Symbols
\ Symbol \ Definition and Description

A,B,... | matrices (bold upper case)

A(i, §) the element at thé" row and;** column
of matrix A

A(i,:) thei' row of matrix A

A7) the ' column of matrixA

A’ transpose of matrixA

a,b,... column vectors

D.q, ... ordered sequences

S,7,... | sets (calligraphic)

n number of nodes in the graph

m number of edges in the graph

a(s,t,Z) | the ‘Gateway-ness’ score for the subset of nodes
7 wrt the sources and the target
9(S,7,7) | the ‘Gateway-ness’ score for the subset of nodes
7 wrt the source group and the target group
r(s,t) the proximity score frons to ¢

r7(s,t) the proximity score frons to ¢ by setting the
subset of nodes indexed yas sinks

Find: a set of at most nodes which have the highest ‘gate-way-ness’ score wrtdhees group
S and the target grouf.
In both Problen (Pair-Gateway) and Probled{Group-Gateway), there are two sub-problems:
(1) how to define the ‘gateway-ness’ score of a given subsed@désZ; (2) how to find the subset
of nodes with the highest ‘gateway-ness’ score. In the neatsections, we present the solutions
for each, respectively.

5.3 Proposed ‘Gateway-ness’ Scores

In this section, we present our definitions for ‘Gatewayshéd/e first focus on the case of a single
sources and a single target(Pair-Gateway). We then generalize to the case where bettoilrce
and the target are a group of nodes (Group-Gateway)

5.3.1 Node ‘Gateway-ness’ Score

Given a single source and a single target we want to measure the ‘Gateway-ness’ score for a
given set of nodeg. We first give the formal definitions in such a setting and thevide some
intuitions for our definitions.
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Formal Definitions. For a graphA, we can use random walk with restart to measure the
proximity (i.e., relevance/closeness) from the sourceenoi the target nodeé, which is defined
as follows: Consider a random particle that starts from nsodéne particle iteratively transits to its
neighbors with probability proportional to the correspmigdedge weights. Also at each step, the
particle returns to nodewith some restart probabilityl — ¢). The proximity score from nodeto
nodet is defined as the steady-state probabitity, ¢) that the particle will be on nodg[TFP04.
Intuitively, r(s, t) is the fraction of time that the particle starting from nedeill spend on node
of the graph, after an infinite number of steps.

Intuitively, a set of nodeg are good gateways wst andt if they play an important role in
the proximity measure from the source to the target. Theeefour ‘Gateway-ness’ score can be
defined as follows:

o(s,t,Z7) = Ar(s,t) = r(s,t) — rz(s,t) (5.1)

whererz (s, t) is the proximity score from sourceto ¢ after setting the subset of nodes indexed by

7 as sinks.
Intuitions. Here, we provide some intuition of the ‘Gateway-ness’ sc&#ned by eqX.1),

using the running example in figubel

Figure 5.1: Running example (best viewed in color)

In figure 5.1, each solid arrowed line is a path from node 1 to node 20, wbahbe de-
noted by an ordered sequence. For example, the path markibe logd line can be denoted by
P29 = {1,3,4,5,12,14,20}. For each patp®") = {s = wg,uy,...,u; = t}, we can define
its score by eqH.2), whereHﬁ.:OA(uZ—_l, u;) is the probability that the random particle will tra-
verse this path, and — c)c! penalizes the length of the path. For example, the red pé&tf{ =
{1,3,4,5,12,14,20}), has scorél — ¢)cSA (3, 1)A(4,3)A(5,4)A(12,5) A(14,12)A(20, 14).

l
scordp™!) £ (1 — c)c' [] Aluizr, us) (5.2)

1=0
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whereA is the normalized adjacency matrix of the graph.

With the above definitions for the path score, we have thevotig lemma:
Lemma 5. Sum of Weighted Path Scores.et P be the set of all the paths from the source node
s to the target node, and @ be the set of all the paths from the source nede the target node
t which go through at least one node indexed by the subséketr(s,t) be the proximity score
defined by random walk with restart antsgt, 7) be the ‘Gateway-ness’ score defined by(&dL).

Then we have
r(s;t) = Y scorep!)
plsteP
g(s,t.I) = Y  scorgp*") (5.3)
pseq
Proof: By induction, we can verify that

(1—c)(cA)(t,s) = > scorép™") (k=1,2,3,...) (5.4)

pls:eP; length ofpls:t) =k

In other words{1 — ¢)(cA)¥(¢, s) accounts for the sum of scores of all the paths frotm ¢ with
lengthk.

On the other hand, by Taylor expansion, we have
Q = (1-9I-cA)”

o0

= (1-¢)) (cA) (5.5)

k=0
Sinces # t, we have

r(s,t) = Q(t,s)
= (1-0¢)) (cA)*(ts)

k=0
= (1-0)) (cA)(t,s)
k=1
= ) scordjpt*") (5.6)
peeP
Similarly, we can show that
rz(s,t)= »  scordp®") (5.7)
poeP/Q

Therefore,
g(‘Sv t7I) 2 I'(S, t) - rI<S t)
= ) scordj*") (5.8)

plseqd
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which completes the proof. 0J

By eq. 6.9), the ‘Gateway-ness’ score for a given set of naflescounts for all the paths from
the source node to the target nodé which pass through one or more nodeginFor example,
given the source node 1 and the target node 20 in figLirehe ‘Gateway-ness’ score fér= {2}
is the sum of the scores of all the paths from node 1 to node &Qyththrough node 2 (e.g., the
green path, the yellow path, and so on).

5.3.2 Group ‘Gateway-ness’ Score

Here we consider the case where the source and/or targesicoinmore than one nodes. Suppose
we have a group of source nodgsnd a group of target nod€s Then, the ‘Gateway-ness’ score
for a given set of nodes can be defined in a similar way:

9S8, 7.7) & > Ar(s,t) & > (x(s,t) —rz(s, 1)) (5.9)

seSteT seSteT

whererz(s, t) is the proximity score frons to ¢ by setting the subset of nodes indexedZbgs
sinks (i.e., delete all out-edges, by settii¢, i) = 0 for all i € 7).

Intuitively, the score defined by eds.) accounts for all the paths from the source group to
the target groupwhich go through at least one nodedn For example, givels = {1} and
7 = {19,20} in figure5.1, the group ‘Gateway-ness’ score for= {5, 8} corresponds to all the
paths from node 1 to 19 or 20 (e.qg., red, yellow and green $iokd, purple and blue dashed lines
and so on).

5.4 BASSET: Proposed Fast Solutions

In this section, we address how to quickly find a subset of sadd¢he highest ‘Gateway-ness’
score. We start by showing that the straight-forward mestjoeferred to as ‘Com-RWR’) are com-
putationally intractable. Then, we present the propose®8RAT (BASSET-N for Pair-Gateway
and BASSET-G for Group-Gateway). For each case, we firseptdke algorithm and then ana-
lyze its effectiveness as well as its computational comiptex

5.4.1 Computational Challenges

Here, we present the computational challenges and the wagakée them. For the sake of suc-
cinctness, we mainly focus on BASSET-N.

There are two main computational challenges in order to fsubaet of nodes with the highest
‘Gateway-ness’ score. First of all, we need to compute tbaiprity from the source to the target
on different graphs, each of which is a perturbed versiorhefdriginal graph. This essentially
means that we cannot directly apply some powerful pre-cdatipmal method to evaluate the

1A path from the source group to the target group is a path wétiahis from a node of the source group and ends
at a node of the target group.
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proximity from the source to the target (after setting thiesst of nodes indexed lyas sinks). In-
stead, we have to rely on on-line iterative methods, whosgatational complexity i®)(m). The
challenges are compounded by the need to evalyate, @) (eq. 6.1)) or g(S,7,7Z)(eq. 6.9) an
exponential number of time:éZ()). Putting these together, the straightforward way to fimibdes
with the highest ‘Gateway-ness’ score(%(ﬁ)m). This is computationally intractable. Suppose
on a graph withl, 000, 000 nodes, we want to find the befst= 5 gateway nodes. If computing
each proximity score takés001 seconds, theR.64 x 10'7 years are needed to find the gateways.
This is much longer than the age of the univetse.

To tackle such challenges, we resort to two main ideas, wdnielssummarized in Theorein
According to Theoren?, in order to evaluate the ‘Gateway-ness’ score of a giverosabdes,
we do not need to actually set these nodes as sinks and cothpyteoximity score on the new
graph. Instead, we can compute it from the original graphthis way, we can utilize methods
based on pre-computation to accelerate the process. Fudhe since (s,¢,Z) and dS,7,7)
are sub-modular wrf, we can develop some greedy algorithm to avoid exponentiaheration,
and still get som@ear-optimalsolution. In Theoren2, A is the normalized adjacency matrix of
the graph. It is worth pointing out that The proposed metH@#sSSET-N and BASSET-G) we
will introduce are orthogonal to the specific way of normatian. For simplicity, we use column-
normalization throughout this chapter. AI$Q(Z,7) is a|Z| x |Z| matrix, containing the elements
in the matrixQ which are at the rows/columns indexed By Similarly, Q(¢,Z) is a row vector
with length|Z|, containing the elements in the matfixwhich are at the™" row and the columns
indexed byZ. Q(Z, s) is a column vector with lengt}¥|, containing the elements in the matfx
which are at the" column and the rows indexed Hy
Theorem 2. Core Theorem.Let A be the normalized adjacency matrix of the graph, &hd-

(1 —¢)(I —cA)~!. For a given sources and targett, the ‘Gateway-ness’ score of a subset of
nodesZ defined in eq(5.1) satisfies the properties P1 and P2. For a given source giwnd
target group7, the ‘Gateway-ness’ score of a subset of nafiekefined in eq(5.9) satisfies the
properties P3 and P4, where# ¢, s,t ¢ Z,S(\7T =0,S(Z = 0, andT (" Z = 0.

P1. gs,t.7) = Q(t.7)Q(Z,7)7'Q(Z, 5);
P2. g(s,t,Z) is sub-modular wrt the séf, that is, ds,t,Z|JJ) +9(s,t,Z(J) < d(s,t,Z) +
a(s,t,J), for any subsetg and 7;
P3. QS,T,I) = Ese&teT Q(t’I)Q(IvI)_IQ(Iv 3);
P4. S, 7,7)issub-modularwrtthe sét, thatis, S, 7,7 J J)+9(S,7.Z\J) < 9(S,7,7)+

q(S8,7,J), for any subsetg and.7.

Proof of P1: WLOG, we assume thaf = {n — k + 1,..n}. Let A and A be the normalized
adjacency matrices of the graph before/after we set theesobsodes i as sinks. WriteA and

A in block form:
A, A\ % A, A, A, O
A — ) ’ A — ~ ~ — ) 5.10
<A2,1 A2,2> ’ <A2,1 A272> (A2,1 0) ( )
where0 is a matrix with all zero elements.

2According to Wikipedia, iittp:/en.wikipedia.org/wiki/ Age.of_the_universe), the age of the uni-
verse is about.4 x 10'° years.
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LetQ = (1 — ¢)(I — cA)~'. We can also writ€) andQ in block form:

) ) B 1 ( Qi1 Que
Q = (1-0(I-cA) _<Q2,1 Q2,2)

I- CA1 1 —CA1 2 -
= (1-2¢) ’ ’
—CA2’1 I-— CA272
~ ~ -1

A Qi1 Q 2) (I —cAq, 0)

— Pt L =(1—=c¢ )
@ (Qz,l Q20 ( ) —cAy; 1

Applying the block matrix inverse lemma{-9(] to Q andQ, we get the following equations:

Qi = (1-o)I—-cAi)™, Q=0
Q2,1 c(1—c)Ag (I —cAyp), Q2,2 =(1-01
Q. = (1-o- CA1,1)_1 +
(I — CAl,l)_1A1,2Q2,2A2,1(I - CA1,1)_1
Qi = c(I- CA1,1)_1A1,2Q2,2
Qo1 = cQo2A0 (I — CAl,l)_1 (5.11)

Therefore, we have

Q1,1 = Q11— Q1,2Q2_7%Q2,1 (5.12)

On the other hand, based on the properties of random walkrestart [ FP0g, we haver(i, j) =

Q(j,7), andrz (i, j) = Q(j,12),(¢,5 = 1, ...,n). Together with eq.g.5), we have

9(s,t,Z) = r(s,t) —rz(s,t)
= Qui(t,s) — Ql,l(t7 s)
= Qua2(t,)Q55Qua(:,5) (5.13)

which completes the proofs of P1. O
Proof of P3: Since P1 holds, we have

9S8, 7.7) = > Ar(s,t)= > ost,T)

seS;teT seS;teT
= ) QtDQEZ.1)'Q(Z,s) (5.14)
seSteT
which completes the proofs of P3. O

Proof of P2: LetZ, 7, K be three subsets atdC 7. We will first prove by induction that, for
any integer powey, the following inequality holds element-wise.

A — AL > AL - AT (5.15)
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It is easy to verify the base case (ije= 1) for eq. 6.19 holds. Next, assume that e&.15
holds forj = 1, ..., jo, and we want to prove that it also holds for the case j, + 1:
jo+1 jo+1
AP — AT
= AP — A A+ AT AL — AT

(AY — Af ) Az + Ao (Az — Azk)

> (AR — A% AL+ AL (As — Agyk)
> (A?jo - A?;U}C)Aj + A?;UK(AJ - AJUIC)
= ADt - A?JSK (5.16)

In eq. 6.16), the first inequality holds because of the induction assionpThe second inequality
holds becausd; > A ; > 0 holds element-wise, anll7 | jx > A > 0 holds element-wise.
SinceQ = (1 —¢)(I—cA)™" = (1 —¢) 3272 (cA)’, we have
9(s,t,ZUK) — g(s,1,7)

o0

= (1-0)) ((cA7)’ = (cAzyx)

7=0
> (1-0)) ((cAy) = (cAgyx)
j=0
= g(sa L, JU IC) - g(S, L, \7) (517)
Therefore, @s, t,Z) is sub-modular, which completes the proof of P2. O

Proof of P4: Since dS,7,7) = 3,57 9(s,,Z) (In other words, ¢S, 7, 7) is a non-negative
linear combination of sub-modular functions) , accordinghe linearity of sub-modular func-
tions [KG05], we have that ¢S, 7, Z) is also sub-modular, which completes the proof of P4l

Intuition. Here, we provide some intuition why(g¢,7Z) and dS,7,Z) are sub-modular.
According to Lemm@, for a given source and a given target g(s,t,ZUK) —g(s, t,Z) accounts
for the scores of all the paths frogito ¢, which go through some nodesAhbut none of the nodes
in Z. Therefore, for a given sé€, if we already have a bigger subs@&t the additional benefit
9(s,t, TUK) —g(s, t, J)) will be relatively small, compared to the case where we lzesmaller
subsetZ (g(s,t,Z UK) — g(s,t,Z)). For example, in figuré.1, lets = 1, t = 20, andZ = {5},
J = {2,5}. Then, if we have a new subsiét= {8}, the additional benefit for subsétaccounts
for all the paths frons = 1 to s = 20 which go through node 8, but not node 5 (e.g., the green
path, etc). While the additional benefit for subgets 0, since all the paths from= 1tot = 20
which go through node 8 must also go through some nodg (node 2).

5.4.2 BASSET-N for Problem3
BASSET-N Algorithm

Our fast solution for Problerfi is summarized in AlgS. In Alg. 5, after initialization (step 1), we
first pick a node, with the highes (Sj()fi()”) (step 3). Then, in steps 4-14, we find the rest of the
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nodes in a greedy way. That is, in each outer loop, we try todimelmore node while keeping the
currentZ unchanged. According to P1 of theor@yw (i) computed in step 7 is the gateway score
for the subset7.? If the current subset of nod€scan completely disconnect the source and the
target (by setting them as sinks), we will stop the algoriiistep 12). Therefore, Algh always
returns no more thah nodes. It is worth pointing out that in Ald, all the proximity scores are
computed from the original graph. Therefore, we can utilize some powerful methods based on
pre-computation to accelerate the whole process. To naee, &dr a medium size graph (e.g.,

a few thousands of nodes), we can pre-compute and store thix @a= (1 — ¢)(I — cA)™;

for large unipartite graphs and bipartite graphs, we carthes@&B_LIN and BB_LIN algorithms,
respectively T FP09.

Algorithm 5 BASSET-N
Require: the normalized adjacency matri, the source node, the target node, the budget
and the parameter
Ensure: a set of nodeg, where|Z| < k.
1: initialize Z to be empty.
2: compute the proximity scongs, t) from the source nodeto the target node
3: findig = argma>z<W, wherei = 1,...,n andi # s,7 # t. addig to Z.

r(i,i)
4: for j =2tokdo

5. fori=1ton,andi # s,i # tandi ¢ Z do
6 let 7 =7 Ui.
7: computev (i) = r(J,t)r(T,T) 'r(s, T)
8: end for
9: if maxv(i) <r(s,t)then

10: find io = argmaxv(i); addi, to Z.

11: else

12: break;

13:  endif

14: end for

15: returnZ

Analysis of BASSET-N.

In this subsection, we analyze the effectiveness and thaegftiy of Alg.5. First, the effective-
ness of the proposed BASSET-N is guaranteed by the follov@mgna. According to Lemme@,

although BASSET-N is a greedy algorithm, the results it atg@renear-optimal

Lemma 6. Effectiveness of BASSET-NLet 7 be the subset of nodes selected by Algnd

|Z| = ko. Then, @s,t,7) > (1 — 1/e)maxy—x, 9(s,t, J), where gs,¢,Z), and (s, t,J) are

defined by eq5.1).

3This is because in random walk with restart, we hegiej) = Q(j,) for anyi, j [TFPO4.
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Proof: It is easy to verify that the nodg selected in step 10 of Al satisfies
io = argmaX,r . ..,9(s,t,Z{Jj). Also, we have ¢s,¢,¢) = 0, whereg is an empty set. On
the other hand, according to Theor@ny(s, t,Z) is sub-modular wrt the subsét Therefore, we
have gs,t,7) > (1 — 1/e)max |k, 9(s, t, J), which completes the proof. O
Next, we analyze the efficiency of BASSET-N, which is givenLemma7*. We can draw
the following two conclusions, according to Lemma(1) the proposed BASSET-N achieves a
significant speedup over the straight-forward mett@gh(- k*) vs. O((})m)). For example, in the
graph with 100 nodes and 1,000 edges, in order to find the ggtetith £ = 5 nodes, BASSET-N
is more tharb orders of magnitudéaster, and the speedup quickly increases wrt the size of the
graph; (2) the proposed BASSET-N is applicable to large lggagince it is linear wrt the number
of the nodes.

Lemma 7. Efficiency of BASSET-N.The computational complexity of Alg.is upper bounded
by O(n - k*).
Proof: The cost for steps 1-2 is constant. The cost for step(3(tg). At each inner loop (steps

6-7), the cost i) (nj* + nj?). The cost for steps 9-13 i3(n). The outer loop has no more than
k — 1 iterations. Putting these together, the computationdlfoo8BASSET-N is:

k
Cost(BASSET-N)< n + Y (nj® + nj* + n)
j=1

2 2
ke PEFDEESD) k (k;4+1)

= O(nk") (5.18)

which completes the proof. O

5.4.3 BASSET-G for Problem4
BASSET-G Algorithm

Our fast solution for Probler is summarized in Alg6. It works in a similar way as Algb: after
initialization (step 1), we first pick a nodg with the highesd ¢ .+ r(sr’?ifi()"’t) (step 3). Then,

in steps 4-14, we find the rest of the nodes in a greedy way. i§hat each outer-loop, we try
to find one more node while keeping the curréninchanged. If the current subset of the nodes
7 can completely disconnect the source group and the targapdby setting them as sinks), we
will stop the algorithm (step 10). As in Ald, all the proximity scores are computed from the
original graphA. Therefore, we can again utilize those powerful pre-comfpan based methods

to accelerate the whole process.

“Here, we assume that the cost to get one proximity score &ta@ot) which can be achieved with pre-computation
methods (e.g., BIN in Chapter2.
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Algorithm 6 BASSET-G
Require: the normalized adjacency mat, the source groufs, the target groufl’, the budget
k and the parameter
Ensure: a set of nodeg, where|Z| < k.
1: initialize Z to be empty.
2: compute the proximity score_ s . r(s,t) from the source groug to the target grouf.
3: find iy = argmax > s jor “S05, wherei = 1,...,n andi # 5,1 # t; addig to Z.
4: for j =2tokdo

5. fori=1ton,andi # s,i # tandi ¢ Z do
6 let 7 =7 Ui.
7: computev (i) asv(i) = Y- cs o7 (T 1) (T, T) 'x(s, T)
8: end for
9: ifmaxv(i) <) cs e (s, t) then

10: find iy = argmaxv (:); addi, to Z.

11: else

12: break;

13:  endif

14: end for

15: returnZ

Analysis of BASSET-G.

The effectiveness and efficiency of the proposed BASSETe@aen in Lemma and LemmeD,
respectively. Similar as BASSET-N, the proposed BASSE§-@3)near-optimaj and (2) fast and
scalable for large graphs.

Lemma 8. Effectiveness of BASSET-GLet 7 be the subset of nodes selected by Algnd
|Z| = ko. Then, 4S,7,7) > (1 — 1/e)maxy—x, 9(S,7,J), where ¢S,7,7), and dS,7,7)
are defined by e(5.9).

Proof: Itis easy to verify that the nodig selected in step 10 of Ald satisfies

iy = argma>_§¢z,j¢s,j¢,[g(8,T,IUj). Also, we have that @, 7,¢) = 0, where¢ is an empty
set. On the other hand, according to Theor&ny(S,7,7) is sub-modular wrt the subs#t
Therefore, we have(§,7,Z) > (1 — 1/e)max -k, 9(S, 7, J), which completes the proof]
Lemma 9. Efficiency of BASSET-G.The computational complexity of Al§.is upper bounded
by O(n - (maxk, S|, |T1))").

Proof: The cost for steps 1-2 is constant. The cost for step3(igS||7|). At each inner loop
(steps 6-7), the cost i©(n|S||T| + nj® + n|S||T|j%). The cost for steps 9-13 i9(n). The
outer loop has no more than— 1 iterations. Putting these together, the computational fows
BASSET-N is:

k
Cost(BASSET-GX n[S||T|+ Y _(n[S]|T| + nj® + n|S||T|5° + n)
j=1

= O(n(max(k, S|, |71))") (5.19)
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which completes the proof. U

5.5 Experimental Evaluations

In this section we present experimental results. All theeeixpents are designed to answer the
following questions:
e Effectivenesshow effective are the proposed ‘Gateway-ness’ scores Irgraphs?

e Efficiency:how fast and scalable are the proposed BASSET-N and BASSET-G

5.5.1 Experimental Setup

Data sets.We used five real data sets, which are summarized in faBle

Table 5.2: Summary of the data sets

| Name | n | m | Weight |
Karate 34 152 No
PolBooks 105 882 No
AC 421,807 2,133,632 No
AA 418,236 2,753,798 Yes
NetFlix 2,667,199 | 56,919,190 No

The first data setKarate) is an un-weighted unipartite graph, which describes &#ip
among the 34 members of a karate club at a US universiy []. Each node is a member in
the karate club and the existence of the edge indicatesttaatmo corresponding members are
friends. Overall, we have = 34 nodes andn = 156 edges.

The second data seP@lBook$ is a co-purchasing book netwotkEach node is a political
book and there is an edge between two books if purchased Isathe person. Overall, we have
n = 105 nodes andn = 882 edges.

The third data setAC) and the fourth data sefAf) are both from DBLP. The third data set
(AC) is an un-weighted bipartite graph. We have two types of spdathor and conference. The
existence of the edge indicates that the correspondingabts published in the corresponding
conference. Overall, we havel, 807 nodes andn = 2,667, 199 edges.

The fourth data se¥A) is a co-authorship network, where each node is an authathenetlge
weight is the number of the co-authored papers between thedwesponding persons. Overall,
we haven = 418, 236 nodes andn = 2, 753, 798 edges.

The last data set\NetFlix) is from the Netflix prizé. Rows represent users and columns repre-
sent movies. If a user has given a particular movie posittiags (4 or 5), we connect them with

Shttp://www.orgnet.com/

Shttp://www.informatik.uni-trier.de/ ~ey/db/
"http:/lwww.netflixprize.com/
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an edge. In total, we have 2,667,199 nodes (2,649,429 userk7a770 movies), and 56,919,190
edges.

Parameter settings and machine configurations. There is one parameter in BASSET-N
and BASSET-G, the probability for random walk with restart. We set= 0.95, as suggested
in [TFPO]. For the computational cost, we report the wall-clock tirA# the experiments ran on
the same machine with four 2.4GHz AMD CPUs and 48GB memonping Linux (2.6 kernel).
For each experiment, we run it 10 times and report the average

5.5.2 Effectiveness

Here, we evaluate the effectiveness of the proposed ‘Gatewss’ scores. We first compare with
several candidate methods in terms of separating the sboroghe target. And then, we present
various case studies.

Quantitative Comparisons

The basic idea of the proposed ‘Gateway-ness’ scores istafsnbset of nodes which collectively
play an important role in measuring the proximity from theis@ node (or source group) to the
target node (or target group). Here, we want to validate hlasic assumption. We compare it
with the following alternative choices: (a) selectihgnodes with the highest center-piece AND
score (CePS-AND)TF04; (b) selectingk nodes with the highest center-piece OR score (CePS-
OR) [TFO]; (c) randomly selecting: nodes (Rand); (d) randomly selectikgnodes from the
neighboring nodes of the source node and the target nodgl{bl@i-Rand); (e) selectingnodes
with the hlghesfM(Topk Ind). We randomly select a source nedind a target node® and
then use the dlfferent methods to select a subseith £ nodes. Figure 2 presents the comparison
results, where the x-axis is the number of nodes seleégdaqd the y-axis is the normalized
decay in terms of the proximity score from the source notiethe target node(%) The
resulting curves are averaged over 1,000 randomly chosenestarget pairs. From flguEe2, we
can see that (1) the proposed BASSET-N performs best in tefseparating the source from the
target; (2)Topk-Ind, where we simply seldchodes with hlghesw does not perform as
well as BASSET-N, Where we want to find a subset:afodes Whlch:ollectlvelyhas the highest
scorer(Z,t)r(Z,Z) 'r(s,Z).

Case Studies

Next, we will show some case studies, to demonstrate thete#aess of BASSET-N and BASSET-
G.

Karate We start withKarate graph, which is widely used in social network analysis. In
figure7.11, there are two different communities in the graph (shaded@ach community, there
are some ‘hub’ nodes (e.g., nodes 33 and 34 in the left contynamd nodes 1 and 4 in the right
community). The two communities are connected by some dgiongl nodes’ (e.g., nodes 3, 10,

8The result when source and target are a group of nodes isasimild omitted for brevity.
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Figure 5.2: Effectiveness comparison between BASSET-Nadtednatives. Normalized decay of
proximity vs. k. Higher is better. The proposed BASSET-N (red star) is ttst. be

19, 20). Table5.3 presents the resulting gateways of BASSET-N with the budget 5 for a
few source-target pairs. The results are consistent withamuintuition. The gateways either are
the local center of the community that the source/targeermelongs to, or are bridging nodes
that connect the two communities when the source node anthitipet node belong to different
communities. For example, if = 1 and¢ = 33, the resulting nodes 3, 10, 11 are bridging nodes,
while node 34 is the local center for the left community. Nibiat, we always return less than or
equal tok = 5 nodes. For example, # = 15 andt = 34, we only output one node (node 1) as the
gateway. This is because all the paths from node 15 to nodeu34go through node 1.

Table 5.3: BASSET-N oiarategraph
| Source) | Target(t) | Gateways(Z) |

24 31 (33,34
15 34 1
1 33 {3,10,11,21,3%

PolBooks For this data set, the nodes are political books and théegxis of the edge indicates
the co-purchasing (by the same person) of the two books. Baak is annotated by one of the
following three labels: ‘liberal’, ‘conservative’ and ‘n&ral’. We pick a ‘liberal’ book (‘The Price
of Loyalty’) as the source node, and a ‘conservative’ botkging Bin Laden’) as the target node.
Then, we ran the proposed BASSET-N to find the gateway withdés. The result is presented
in table5.4. The result is again consistent with human intuition, - #&ufting gateway books are
either popular books in one of the two communities (‘conatve’ vs. ‘liberal’) such as, ‘Bush
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Figure 5.3: Karate graph

country’ from ‘conservative’, ‘Back up suck up’ from ‘libal’, etc; or those ‘neutral’ books which
are likely to be purchased by readers from both communiéigs,('Sleeping with the devil’, etc).

Table 5.4: BASSET-N orPolBooksGraph. (‘c’ for ‘conservative’, ‘I’ for ‘liberal’, and ‘n’ for
‘neutral’)

| Node Index | Book Title | Label |

10 Bush country c
13 Off with their heads C
103 Back up such up I
5 Sleeping with the devi| n
8 Ghost wars n
77 Plan of attack n
78 Bush at war C
59 Rise of the vulcanes C
52 Allies C
42 The Bushes C

AC. This is a bipartite graph. Given a source conference/aathd a target conference/author,
we can run BASSET-N to find either the gateway conferencebegateway authors. Tabie5
gives one such example when the source is ‘VLDB’ and the tagg@lIPS’. Conceptually, we
treat ann; x ny bipartite graph as én; + ns) x (n; + no) unipartite graph, and we further restrict
the search to the desired node type. Again, we can see thedghks make sense. The resulting
gateway authors are either productive in one of the two fieldsabases vs. statistics, (e.g., Prof.
Michael I. Jordan in statistics, Prof. Hector Garcia-Malim databases, etc); or productive in
data mining (e.g., Dr. Rakesh Agrawal, Prof. Jiawei-Har)iclv is an intersection field between
statistics and databases. We have similar observatioriedaesulting gateway conferences. For
example, ‘SIGMOD’ and ‘UAI’ are isomorphic (i.e., have vesimilar neighbor sets) to ‘VLDB’

84



and ‘NIPS’, respectively; and ‘KDD’ is one major conferennedata mining, which is a highly
plausible major connection from ‘VLDB’ (databases) to ‘I$'Hstatistics / machine learning).

Table 5.5: BASSET-N oAC graph. From the source ‘VLDB'’ to the target ‘NIPS’.
Gateway Michael I. Jordan,Philip S. Yu,
Authors Jiawei Han,Geoffrey E. Hinton,
H. V. Jagadish,Christos Faloutsos,
Sebastian Thrun,Rakesh Agrawal,
Hector Garcia-Molina,Raghu Ramakrishnan
Gateway SIGMOD,ICDE,ICML, IJCAI,KDD,
Conferences AAAI,CIKM,ICANN,SAC,UAI

Table 5.6: BASSET-G oAA Network.

Source Group Target Group Gateway (k=10)

Tom M. Mitchell, David J. Dewitt, Sunita Sarawagi, Christos Faloutsos,
William W. Cohen, Hector Garcia- James P. Callan, Yiming Yang,
Jaime G. Carbonell Molina, Rakesh Agrawal, Andrew Y. Ng,

H. V. Jagadish Rich Caruana, Andrew Mccallum,
Chengxiang Zhai, Sebastian Thrun,

(a) A group of people in ‘text’ to a group of people in ‘databsis

Source Group Target Group Gateway (k=10)
Manuel Blum, Vipin Kumar, Philip S. Yu, Mihalis Yannakakis,
Christos H. Papadimitriou ‘Wei Wang, Hui Xiong, , Prabhakar Raghavan,
George Karypis, Sally A. Goldman, Jiawei Han,
Mohammed J. Zaki Moni Naor, Mitsunori Ogihara,
Richard M. Karp, HongjunLu

(b) A group of people in ‘theory ’ to a group of people in ‘biéomatics’

AA. We use this data set to perform case studies for the pro®@A&88ET-G. We choose (1)
a group of people from a certain field (e.g., ‘text’, ‘theqrgtc) as the source groufy and (2)
another group of people in some other field (e.g., ‘databa$esinfomatics’, etc) as the target
group? . Then, we ran the proposed BASSET-N to find the gateway with10 nodes. Tabl&.6
lists some results. They are all consistent with human tiotui - the resulting authors are either
productive authors in one of the two fields, or multi-dismiply, who have close collaborations to
both the source and the target groups of authors.
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5.5.3 Efficiency

We will study the wall-clock running time of the proposed B3T-N and BASSET-G here. Ba-
sically, we want to answer the following two questions:

1. (Speed)What is the speedup of the proposed BASSET-N and BASSET-Gtbeestraight-

forward methods?
2. (Scalability)How do BASSET-N and BASSET-G scale with the size of the grapdmndm)?

First, we compare BASSET-N and BASSET-G with two straigiviard methods: (1) ‘Com-
RWR’, where we use combinatorial enumeration to find thewgayeand, for each enumeration,
we compute the proximity from theewgraph; and (2) ‘Com-Eval’, where we use combinatorial
enumeration to find the gateway, and for each enumeratiorcowgute the proximity from the
original graph. Figure5.4 and figure5.5 show the comparison on two real data sets. We can
draw the following conclusions. (1) Straightforward meted’‘Com-RWR’ and ‘Com-Eval’) are
computationally intractable even for a small graph. Fomai, on theKarate data set with only
34 nodes, it takes more th&0, 560 seconds and00, 000 seconds to find thé = 10 gateway
by ‘Com-Eval’ and by ‘Com-RWR’, respectively. (2) The speapdof the proposed BASSET-N
and BASSET-G over both ‘Com-Eval’ and ‘Com-RWR’ is signifita in most cases, we achieve
several (up to 6) orders of magnitudpeedups. (3) The speedup of the proposed BASSET-N and
BASSET-G over both ‘Com-RWR’ and ‘Com-Eval’ quickly inciess wrt the size of the gateway
k. Note that we stop running the program if it takes more thah @ seconds (i.e., longer than a
day).

Next, we evaluate the scalability of the proposed BASSETAN BASSET-G wrt the size of
the graph, using the largest data 9¢eiFlix). From figure5.6 and figure5.7, we can make the
following conclusions: (1) if we fix the number of nodes) (n the graph, the wall-clock time of
both BASSET-N and BASSET-G is almastnstantwrt the number of edgesr(); and (2) if we fix
the number of edgesr() in the graph, the wall-clock time of both BASSET-N and BASSE is
linear wrt the number of nodes:j. Therefore, they are suitable for large graphs.

5.6 Related Work

In this section, we review the related work, which can begateed into two parts:

Betweenness centrality.The proposed ‘Gateway-ness’ scores relate to measures$voddre
ness centrality, both those based on the shortest patf7]], as well as those based on random
walk [New05. When the gateway set sizefis= 1, the proposed ‘Gateway-ness’ scores can be
viewed asguery-specifibetweenness centrality measures. Moreover, in the prddBaSSET-

N and BASSET-G, we aim to find a subset of nodeBectively wherein traditional betweenness
centrality, we usually calculate the score for each nadependentlyand then might pick nodes
with the highest individual scores).

Connection subgraphs.In the proposed BASSET-N, the idea of finding a subset of naaes
the source/target is also related to the concept of cororestibgraphs, such asi\iT04, KNVOG,
TFOg. However, in connection subgraphs, we aim to find a subsebdés which havetrong
connections among themselves for the purpose of visu@izaiVhile in the proposed BASSET-
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Figure 5.4: Comparison of speed Karategraph. Wall-clock time vsk. Lower is better. Time
is in logarithm scale. The proposed BASSET-N and BASSETed tar) are significantly faster.

N, we implicity encourage the resulting subset of nodes tdibeonnected with each other so that
they are able teollectively disconnedhe target node from the source node to the largest extent
(if we set them as sinks). It is interesting to notice thatyéf want to find the gateway with = 1

for BASSET-N, it can be viewed asrormalized directedrersion of CePS-AND scorel [F06].°
Moreover, We allow the more general case where the sourgetts a group of nodes in the

9To see this, notice that in the cake= 1, in BASSET-N, we want to find the node with the highé@tjgﬂ#;
while in CePS-AND [F04, it picks the nodes with the highests, i)r (¢, ), wherei = 1,...,n andi # s, # t.
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proposed BASSET-G; however in connection subgraphs, tinesharget is always a single node.

5.7 Conclusion

In this chapter, we study how to find good ‘gateway’ nodes imagpl, given one or more source
and target nodes. Our main contributions are: (a) we fortaulae problem precisely; (b) we
develop BASSET-N and BASSET-G, two fast (upgt®00,000xspeedup) and scalabléengar wrt
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the number of the nodes in the graph) algorithms to solve & provably near-optimal fashion,
using sub-modularity. We applied the proposed BASSET-NBASSET-G on real data sets to
validate the effectiveness and efficiency.
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Chapter 6

Proximity Tracking

Summary of This Chapter
- Questions we want to answer:
Q1: How to define a good proximity score in a dynamic settitey,(graphs are chang-
ing over time)?
Q2: How to incrementally track the proximity between nodémterest, as edge are
updated?
- Our answers and contributions
Al: We proposed a novel proximity and centrality score fordievolving graphs.

A2: We proposed two fast incremental algorithms, achieviigx speedup, without
quality loss.

6.1 Introduction

Measuring proximity (a.k.a relevance) between nodes oarbip graphs (seekpz97 for the
formal definition of bipartite graph) is a very important aspin graph mining and has many real
applications, such as ranking, spotting anomaly nodesyexiion subgraphs, pattern matching
and many more.

Despite their success, most existing methods are designedtitic graphs. In many real set-
tings, the graphs are evolving and growing over time, e.g. limks arrive or link weights change.
Consider an author-conference evolving graph, which @ffely contains information about the
number of papers (edge weights) published by each authme (tynode) in each conference (type
2 node) for each year (timestamp). Trend analysis toolsecerhing very popular. For example,
Google Trendsprovides useful insights, despite the simplicity of its a@zh. For instance, in the
setting of our example, a tool similar to Google Trends magigwer questions such addw does

Ihttp://www.google.com/trends/
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Figure 6.1: Scaling sophisticated trend analysis to tinmveng graphs. See Sectidgh6.3for
detailed description of results.

the number of papers published by an author vary over tinoe?How does the number of papers
published in a particular conference or research area (iset of conferences) vary over time?
This kind of analysis takes into account paper counts fdreeian author or a conference alone
or, at best, a single, specific author-conference pairefstwe want to employ powerful analy-
sis tools inspired by the well-established model of randaatkwvith restart to analyze the entire
graph and provide further insight, taking into account athar-conference information so far, i.e.,
including indirect relationships among them. However, € need to essentially incorporate all
pairwise relationships in the analysis, scalability glydiecomes a major issue. This is precisely
the problem we address in this chapter: how can we efficieiyp track of proximity and avoid
global re-computation as new information arrives. Big.shows examples of our approach.

In this chapter, we address such challenges in multiple miwas. In particular, this chapter
addresses the following questions:

Q1: How to define a good proximity score in a dynamic setting?

Q2: How to incrementally track the proximity scores betweenewdf interest, as edges are
updated?
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Q3: What data mining observations do our methods enable?

We begin in Section 2 with the problem definition and, in S&t8, we propose our proximity
definition for dynamic bipartite graphs. We carefully desayr measurements to deal with (1) the
links arriving at different time steps and (2) importantedies, such as monotonicity. Proximity
will also serve as the basis of our centrality measuremetfitarilynamic setting. Then, in Section
4, we study computational issues thoroughly and proposdastalgorithms, which are the core
of computing our dynamic proximity and centrality measueaits. The complete algorithms to
track proximity (Track-Proximity and centrality {rack-Centrality are presented in Section 5. In
Section 6, we verify the effectiveness and efficiency of awppsed dynamic proximity on real
datasets.

The major contributions of this chapter can be summarizédlimsvs:

1: Definitions of proximity and centrality for time-evolhgrgraphs.

2: Two fast update algorithm&d4st-Single-UpdatandFast-Batch-Updatg without any qual-
ity loss.

3: Two algorithms to incrementally track centralityréck-Centrality and proximity {Track-
Proximity) in any-time fashion.

4: Extensive experimental case-studies on several reaselst showing how different queries
can be answered, achieving uplfe~176xspeed-up.

6.2 Problem Definitions

Table 6.1 lists the main symbols we use throughout the paper. Follpwtandard notation, we
use capital letters for matricéd, and arrows for vectors. We denote the transpose with a prime
(i.e., M is the transpose d¥1), and we use parenthesized superscripts to denote timeN&(d
is the time-aggregate adjacency matrix at titheWhen we refer to a static graph or, when time
is clear from the context, we omit the supersciipgt We use subscripts to denote the size of
matrices/vectors (e.d),,«; means a matrix of size x [, whose elements are all zero). Also, we
represent the elements in a matrix using a convention gitoildlatlab, e.g.M(i, j) is the element
at thei*® row and;*® column of the matriXM, andM(s, :) is thei*™® row of M, etc. Without loss
of generality, we assume that the numbers of type 1 and tyg®ezts are fixed (i.e and/ are
constant for all time steps); if not, we can reserve rowsitwis with zero elements as necessary.

At each time step, we observe a set of new edges or edge wgidatas. These represent the
link information that is available at the finest time gramitja We use theime-slice matrix or
dice matrix for brevity, S® to denote the new edges and additional weights that appe¢anet
stept. For example, given a set of authors and annual conferettoes)umber of papers that
authori publishes in conferencgduring yeatrt is the entryS® (i, j). In this paper, we focus only
on the case of edge additions and weight increases (e.ggrawlways publish new papers, and
users always rate more movies). However, the ideas we degatobe easily generalized to handle
other types of link updates, such as links deletions or edggiws decreases.

Given the above notion, a dynamic, evolving graph can berallyulefined as a sequence of
observed new edges and weigts), S ... S® . .. However, the information for a single
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Table 6.1: Symbols
\ Symbol\ Definition and Description

M® n x | time-aggregate adjacency matrix at time
S n x 1 slice matrix at time

AM® | n x [ difference matrix at time t

DY) n x n out-degree matrix for type 1 object,

ie. D" (i,i) = 3", MO (i, j), and

Dy (i, j) = 0 (i # j)

DY I x | out-degree matrix for type 2 object,
i.e DY (i,i) = Y0 MW (3, i), and

Dy (i, j) = 0 (i # j)

I identity matrix

0 a matrix with all elements equal to 0

1 a matrix with all elements equal to 1

n,l number of nodes for type 1 and type 2
objects, respectively(> ()

m number of edges in the bipartite graph

c (1 — ¢) is fly-out probability for random walk
with restart (set to be 0.95 in the paper)
r; proximity from nodei to nodej at timet

time slice may be too sparse for meaningful analysis, andfers typically want to analyze larger
portions of the data to observe interesting patterns amdi$re Thus, from a sequence of slice
matrices observed so f#7) for 1 < j < t, we construct a bipartite graph by aggregating time
slices. We propose three different aggregation strategieish place different emphasis on edges
based on their age. In all cases, we use the tema-aggregate adjacency matiigr adjacency
matrix for short), denoted bI(*), for the adjacency matrix of the bipartite graph at time step
We will introduce the aggregation strategies in the nextiser

Finally, to simplify the description of our algorithms, waetioduce thedifference matrix
AM®  which is the difference between two consecutive adjaceratyices, i.e. AM®) £ M®) —
M(=1_ Note that, depending on the aggregation strategy, difterenatrixAM® may or may
not be equal to the slice matri?".

An important observation from many real applications is tligespite the large size of the
graphs involved (with hundreds of thousands or millions ofles and edges), the intrinsic di-
mension (or, effective rank) of their corresponding adjagyematrices is usually relatively small,
primarily because there are relatively fewer objects of type. For example, on the author-
conference graph from th&C dataset (see Section 6), although we have more than 400,000 a
thors and about 2 million edges, with only3500 conferences. In the user-movie graph from the
NetFlix dataset, although we have about 2.7 million users with nt@e 100 million edges, there
are only 17,700 movies. We use the teskewedo refer to such bipartite graphs, i.e,;,m > .
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With the above notation, our problensTfackandcTrack can be formally defined as follows:
Problem 5. pTrackProximity Tracking)

Given: (i) a large,skewed time-evolving bipartite gragh¥,¢ = 1,2,...}, and (ii) the query
nodes of interesti(7, ...)

Track: (i) the top4 most related objects for each query node at each time steg;(@nthe
proximity score (or the proximity rank) for any two query egdt each time step.

There are two different kinds of tracking taskspifirack both of which are related to proxim-
ity. For example, in a time-evolving author-conferencepfrave can track What are the major
conferences for John Smith in the past 5 yeansBich is an example of task (i); ortffow much
credit (importance) has John Smith accumulated in the KDIhf€@nce so far? which is an
example of task (ii). We will propose an algorithirgck-Proximity in Section 5 to deal with
pTrack
Problem 6. cTrackCentrality Tracking)

Given: (i) a large,skewed time-evolving bipartite gragh®,¢ = 1,2,...}, and (ii) the query
nodes of interesti(7, ...)

Track: (i) the top£ most central objects in the graph, for each query node andelh &me step;
and (ii) the centrality (or the rank of centrality), for eaciuery node at each time step.

In cTrack there are also two different kinds of tracking tasks, bdthvbich are related to
centrality. For example, in the same time-evolving auttmmference graph, we can trackdw
influential is author-A over the yearsAvhich corresponds to task (i); oM/ho are the top-10
influential authors over the yearsWhich corresponds to task (ii). Note that in task (i)afrack
we do not need the query nodes as inputs. We will propose enathorithm Track-Centrality
in Section 5 to deal witleTrack

For all these tasksgp{lrackand cTrack, we want to provide any-time answers. That is, we
want to quickly maintain up-to-date answers as soon as wereds new slice matri$®). Some
representative examples of our methods are also shown imefgL

6.3 Dynamic Proximity and Centrality: Definitions

In this section, we introduce our proximity and centraligfiditions for dynamic bipartite graphs.
We begin by reviewing random walk with restart, which is a gigooximity measurement for

static graphs. We then extend it to the dynamic setting bysijgudifferent ways to aggregate
edges from different time steps, that is to place differenpleasis on more recent links; and 2)
usingdegree-preservatiorio achieve monotonicity for dynamic proximity.

6.3.1 Background: Static Setting

Among many others, one very successful method to measuxaptpis random walk with restart
(RWR), which has been receiving increasing interest innmegears.
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For a static bipartite graph, random walk with restart isrdtias follows: Consider a random
particle that starts from node The particle iteratively transits to its neighbors witlopability
proportional to the corresponding edge weights. Also ahetep, the particle returns to node
with some restart probabilityl — ¢). The proximity score from nodeto nodej is defined as the
steady-state probability; ; that the particle will be on nodg [PYFDO4. Intuitively, r; ; is the
fraction of time that the particle starting from nodeill spend on each nodgof the graph, after
an infinite number of steps.

If we represent the bipartite graph as a uni-partite gragh thie following square adjacency
matrix W and degree matrilo:

Dl 0n><l
D= 6.1
(len D2 ) ( )
then, all the proximity scores ; between all possible node paitg are determined by the matrix

Q:

Tij = Q(iuj)
Q = (1-0) Tptpyxmery — D'W)™! (6.2)

Based on the dynamic proximity as in equattod, we define the centrality for a given source
nodes as the average proximity score from all nodes in the graptiu@ing s itself) to s. For
simplicity, we ignore the time step superscript. That is,

E:L:-i_ll Ti,s

centrality(s) £ =T (6.3)
n

6.3.2 Dynamic Proximity

Since centrality is defined in terms of proximity, we will feeforth focus only on the latter. In
order to apply the random walk with restart (see equadi@hto the dynamic setting, we need to
address two subtle but important points.

The first is how to update the adjacency malvik®, based on the observed slice masi¥ .
As mentioned before, usually it is not enough to considey timé current slice matri$). For
example, examining publications from conferences in alsigigar may lead to proximity scores
that vary widely and reflect more “transient” effects (sustadad year for an author), rather than
“true” shifts in his affinity to research areas (for examplahift of interest from databases to data
mining, or a change of institutions and collaborators). iirty, examining movie ratings from a
single day may not be sufficient to accurately capture thgipnty of, say, two users in terms of
their tastes. Thus, in subsection 3.2.1, we propose thfieeatfit strategies to aggregate slices into
an adjacency matrixI®) or, equivalently, to updaf®I®. Note, however, that single-slice analysis
can be viewed as a special case of the “sliding window” aggjreq strategy.
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The second point is related to the “monotonicity” of proxiynversus time. In a dynamic
setting with only link additions and weight increases (iS" (i, ) > 0, for all time stepg and
nodesi, j), in many applications it is desirable that the proximityvae@en any two nodes does not
drop. For example, consider an author-conference bipagtaph, where edge weights represent
the number of papers that an author has published in thespameling conference. We would like
a proximity measure that represents the total contribitredit that an author has accumulated
in each conference. Intuitively, this score should not éase over time. In subsection 3.2.2, we
proposedegree-preservatioto achieve this property.

Updating the adjacency matrix.

As explained above, it is usually desirable to analyze migltslices together, placing different
emphasis on links based on their age. For completeness, seeloethree possible aggregation
schemes.

Global Aggregation. The first way to obtain the adjacency math&® is to simply add the
new edges or edge weightsSif) to the previous adjacency mat (¢~ as follows:

t
M® — Z g
j=1

We call this schemglobal aggregation|t places equal emphasis on all edges from the beginning
of time and, only in this case\M® = S® . Next, we define schemes that place more emphasis
on recent links. For both of these schem&31®) £ S®),

Sliding Window. In this case, we only consider the edges and weights thaedrrithe past
len time steps, where the parameter is the length of the sliding window:

t

M® — Z g )

j=max{1, t—len+1}

Exponential Weighting. In this case, we “amplify” the new edges and weights at tirbg an
exponential factop? (3 > 1): M® = 37| 378V,

Fixed degree matrix.

In a dynamic setting, if we apply the actual degree mdiri& to equation §.2) at timet, the mono-
tonicity property will not hold. To address this issue, wegse to use degree-preservatiérf/06,
TKF07]. That s, we use the same degree mabiat all time steps.

Thus, our proximityr{") from nodei to node; at time step’ is formally defined as in equa-

tion (6.4). The adjacency matrikI®) is computed by any update method in subsection 3.2 and the
fixed degree matrid is set to be a constani)(times the degree matrix at the first time step—we
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always set: = 1000 in this chapter.

= QY )

QY = (1-0¢) (Lpspx(msn — DWW
0 M®
(- nxn
w <M/(t) lez)
D = a-DW (6.4)

We have the following lemma for our dynamic proximity (eqaat(6.4)). By the lemmal0, if the
actual degre® (i, i) does not exceed the fixed degi®éi, i) (condition 2), then the proximity
between any two nodes will never drop as long as the edge tsdigladjacency matridI® do
not drop (condition 1).
Lemma 10. Monotonicity Property of Dynamic Proximity If (1) all elements in the difference
matrix AM® are non-negative; and (A" (i,7) < D(i,i) (i = 1,2,...,(n + 1)); then we have
il > 7'~ for any two nodesi( ).
Proof: First of all, sinceD® (i,7) < D(i, 1), we have||cD"W®|* — 0 ask — oo. Therefore,
we haveQ® = (1 —¢) 3232 (cD~'W®)k. On the other hand, since all elements in the differ-
ence matrixAM® are non-negative, we haW/ () (;, j) > W1 (4, j) for any two nodesgi, 5).
Therefore, we hav®® (i, j) > Q1 (i, 5) for any two nodesi, j), which completes the proof.
0

Finally, we should point out that, D and the non-negativity oM are relevant only if a
monotonic score is desired. Even without these assumptibasorrectness or efficiency of our
proposed algorithms are not affected. If non-monotonicesc@re permissible, none of these
assumptions are necessary.

6.4 Dynamic Proximity: Computations

6.4.1 Preliminaries: BB.LIN on Static Graphs

In this section, we introduce our fast solutions to effidigtriack dynamic proximity.

One problem with random walk with restart is computatiorfaciency, especially for large
graphs. According to the definition (equatidh4)), we need to invert afn + [) x (n + 1) ma-
trix. This operation is prohibitively slow for large graphi Chapter2, we proposed BBR.IN
for skewed, static bipartite graphs, with which we only néggre-compute and store a matrix
inversion of siz€ x [ to get all possible proximity scores.

Based on BBLIN, we only need to pre-compute and store a matrix inveradiasf sizel x [. For
skewed bipartite graphs & m, n), A is much cheaper to pre-compute and store. For example, on
the entireNetFlixuser-movie bipartite graph, which contains akibat)/ users, about8 X' movies
and more than00M edges (see Section 6 for the detailed description of thesdd}ait takes 1.5
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Algorithm 7 GetQij
Require: The core matrixA, the normalized adjacency matridek: (for type 1 objects), andic
(for type 2), and the query nodéand; (1 <i,j < (n+1)).
Ensure: The proximityr; ; from nodei: to nodej
1: if i <nandj < nthen

2 q(i,j) =1 =j) +AMr(i,2) - A - Mc(:, j)
3: elseifi < nandj > nthen

4 q(i,7) = cMr(i,:) - A(:,j —n)

5: elseifi > nandj < nthen

6:  q(i,j) = cA(i —n,:) - Me(:, j)

7. else

9: end if

10: Return: r;; = (1 — ¢)q(4, )

hours to pre-compute thi8 X' x 18 K matrix inversionA. For pre-computation stage, this is quite
acceptable.

On the other hand, in the on-line query stage, we can get anymity scores using the func-
tion GetQij? . This stage is also cheap in terms of computation. For ex@rtpbutput a proximity
score between two type-1 objects (step BetQij) , only one sparse vector-matrix multiplication
and one vector-vector multiplication are needed. For aipribx score between one type-1 object
and one type-2 object, only one sparse vector-vector nighijion (step 4 and step 6) is necessary.
Finally, for a proximity score between two type-2 objecte|s8), only retrieving one element in
the matrixA is needed. As an example, on tNetFlix dataset, it takes less than 1 second to
get one proximity score. Note that all possible proximitgres are determined by the matrix
(together with the normalized adjacency matridds andMc). We thus refer to the matriA as
the thecore matrix

6.4.2 Challenges for Dynamic Setting

In a dynamic setting, since the adjacency matrix changes towe, the core matribA® is no
longer constant. In other words, the steps 1-4 inIBR themselves become a part of the on-
line stage since we need to update the core makfik at each time step. If we still rely on the
straightforward strategy (i.e., the steps 1-4 in BB\ to update the core matrix (referred to as
“Straight-Update”), the total computational complexity ach time step i©(1*> +m - 1). Such
complexity is undesirable for the online stage. For exarpkhours to recompute the core matrix
for the NetFlix dataset is unacceptably long.
Thus, our goal is to efficiently update the core matki¥ at time steg, based on the previous

core matrixA®~1) and the difference matridAM®. For simplicity, we shall henceforth assume
the use of the global aggregation scheme to update the adjao@atrix. However, the ideas can

2Note that in step 2 dBetQij, 1(.) is the indicator function, i.e. it is 1 if the condition {r) is true and O otherwise.
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be easily applied to the other schemes, sliding window apdmential weighting.

6.4.3 Our Solution 1: Single Update

Next, we describe a fast algorithfgst-Single-Updaieto update the core matrix(*) at time step

t, if only one edg€iy, jo) changes at timeé. In other words, there is only one non-zero element
in AM®: AM® (ig, jo) = wo. To simplify the description of our algorithm, we preseng th
difference matrixAM® as a from-to list{ig, jo, wo).

Algorithm 8 Fast-Single-Update

Require: The core matrixA ‘Y, the normalized adjacency matridek: = (for type 1 objects)
andMc“~Y (for type 2 objects) at time step- 1, and the difference listo, jo, wo at the time
stept.

Ensure: The core matrixA®), the normalized adjacency matridek”’ andMc'” at time step.

1: 1\/[ = M=V andl\/[c(t) = Mc!V,

22 M (%7]0) MI‘ <Z0’j0> - ﬁ(%?io)

3 M ( o, 0) = Mc )(j(]’iO) + m

4: X 0lx2, andY =02

5: X(:,1) = Mc(:, ig), andX (j, ) Botnorn)
6: Y(1,jo) = Diﬂf andY (2,:) = ¢ - MV (i, )
7. L = (szz -Y- A(t b X>_1

g A(t) _ A(t_l) + A(t—l) X L-Y- A(t—l)

The correctness dfast-Single-Updatas guaranteed by the following theorem:
Theorem 3. Correctness ofFast-Single-Update. The matrix A maintained byFast-Single-
Updateis exactly the core matrix at time stepi.e., A®) = (I — 2McMr®)-1
Proof: first of all, since only one edg@, jo) is updated at time, only thei{* row of the matrix
Mr® and thei? column of the matridMc® change at time

Let VD = 2Mc® - Mr®, andV¢- = 2Mc~Y . Mr*~Y, By the spectral representation
of VD andV {1 we have the following equation:

Vio= 2> Mc( k) - Me(k, )

= V&l (6.5)

whereé indicates the difference betwedH? andV¢~1). This gives us:
1
0= (=1)"-McW(:ip) - MrI(ig,:) = X - Y
s=0
where the matriceX andY are defined in steps 4-6 of Al§. Putting all the above together, we
have

Al=(I-V)=(I-V'-X.Y)"! (6.6)
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Applying the Sherman-Morrison LemmBa€9(] to equation §.6), we have
AD = AC-D L ACD X T, Y ACD

where the2 x 2 matrix L is defined in step 7 of Alg8. This completes the proof. OJ
Fast-Single-Updates significantly more computationally efficient, as showriliynext lemma.

In particular, the complexity dfast-Single-Updates only O (%), as opposed t@ (2 +ml) for the

straightforward method.

Lemma 11. Efficiency of Fast-Single-Update. The computational complexity of Fast-Single-

Update isO(I?).

Proof: The computational cost for step 1G51?). Itis O(1) for steps 2-3()(!) for steps 4-6 and

O(1?) for steps 7-8. Putting it together, we have that the total fiod=ast-Single-Updates O(1?),

which completes the proof. 0J

6.4.4 Our Solutions 2: Batch Update

In many real applications, more than one edges typicallpgbat each time step. In other words,
there are multiple non-zero elements in the differenceimaM® . Suppose we have a total6f
edge changes at time stepAn obvious choice is to repeatedly cBist-Single-Updateé: times.

An important observation from many real applications ig tha unlikely thesen edges are
randomly distributed. Instead, they typically form a loank structure. That is, if thesg edges
involve 7, type 1 objects and type 2 objects, we havé < r or [ < . For example, in an
author-conference bipartite graph, we will often add a grotr new records into the database
at one time step. In most cases, these new records only anecdvnall number of authors and/or
conferences—see Section 6 for the details. In this seottershow that we can do a single batch
update Fast-Batch-Updateon the core matrix. This is much more efficient than eithengon
single updates repeatedly, or recomputing the core matim scratch. The main advantage of
our approach lies on the observation that the differenceixnaas low rank, and our upcoming
algorithm needs time proportional to trenk, as opposed to the number of changed edge§his
holds in real settings, because when a node is modified,aledMats edges are changed (e.g., an
author publishes several papers in a given conferencesyeach

LetZ = {i1, ..., i, } be the indices of the involved type 1 objects. SimilarlyJet= {ji, ..., j;}
be the indices of the involved type 2 objects. We can reptaberdifference matrbAM® as an
A x [ matrix. In order to simplify the description of the algorithwe define two matriceAMr
andAMc as follows:

AM(t) (Zka js)

AMy(k,5) = ~Ml
D(Z]ka)
(t)
AMc(s, k) = ~AM Us. i)
D(js +n, js +n)
(k=105 = 1,..1) (6.7)

The correctness dfast-Batch-Updatés guaranteed by the following theorem:
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Algorithm 9 Fast-Batch-Update

Require: The core matrixA~1) | the normalized adjacency matridek: = (for type 1 objects)
andMc!"~Y (for type 2 objects) at time step- 1, and the difference matriaM©® at the time
stept

Ensure: The core matrixA(®), the normalized adjacency matridekr” andMc'” at time step.

1: Mr® = Mr(=Y, andMc® = McY,
defineAMr andAMc as in equationq.7)
Oz, 7)=MrD(T,T) + AMr
T, T) =Mc(T,T)+ AMc

let k = min(l, 0). let X = 0,,,;, andY = 0, ,

if [ < n then
X(:,1:1) = Mc*V(:,7) - AMr
Y(+1:2l,:) = AMc-Mr(Z,")
X(J,1:1) =X(J,1:1)+ AMec- AMr
X(J,1:0)=X(T,1:)+Y([(+1:20,7)
Y((+1:2,7)=0
for k=1:kdo

setY (k, j,) = 1, andX (jp, k + k) = 1

end for
setX =c2-X,andY =¢%-Y

. else
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Theorem 4. Delta Matrix Inversion Theorem. The matrix A®) maintained byFast-Batch-
Updateis exactly the core matrix at time stegp.e., A® = (I — 2McMr®)-!

Proof: Let V) = ¢2Mc® - Mr®, andV (-1 = C2Mc(t D Mr(®=Y, Similar as the proof for
theorem3, we have

v =vE _X.Yy (6.8)

where the matriceX andY are defined in steps 6-21 of Al§.
Applying the Sherman-Morrison LemmB&€9(] to equation §.8), we have

AD = ACD L ACD T,y ACD

where the2k x 2k matrix L is defined in step 22 of AlgP. This completes the proof. OJ
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The efficiency ofast-Single-Updatis given by the following lemma. Note that the linear term
O(m) comes from equatiors(7), since we need to scan the non-zero elements of the differen
matrix AM®). Compared to the straightforward recomputation whic® (& + ml), Fast-Batch-
Updateis O(min(l, 1) - 12 4+ ). Sincemin(l, i) < 1 always holds, as long as we haye <
m, Fast-Single-Updatés always more efficient. On the other hand, if weridlaepeated single
updates usingast-Single-Updatethe computational complexity i8(mi?). Thus, since typically
min(1, i) < 1, Fast-Batch-Updatés much more efficient in this case.

Lemma 12. Efficiency of Fast-Batch-Update. The computational complexity of Fast-Batch-
Update isO(min(l, i) - 12 + m).
Proof: Similar as the proof for lemmal. Note that the linear term) (/) comes from equa-

tion (6.7), since we need to scan the non-zero elements of the differevatrix AM® . And the
term of O(min(l, 1) - 1?) comes from the steps 22-23Edist-Batch-Update O

6.5 Dynamic Proximity: Applications

In this section, we give the complete algorithms for the tywpleations we posed in Section 2,
that is, Track-Centralityand Track-Proximity For each case, we can track tbprueries over time.
ForTrack-Centrality we can also track the centrality (or the centrality rank)dio individual node.
For Track-Proximity we can also track the proximity (or the proximity rank) fogiaen pair of
nodes.

In all the cases, we first need the following function (i.elg.AL0) to do initialization. Then,
at each time step, we update (i) the normalized adjacencsiaesMc® andMr®, as well as
the core matrix A); and we perform (ii) one or two sparse matrix-vector muitiglions to get
the proper answers. Compared to the update time (parth@yunning time for part (ii) is always
much less. So our algorithms can quickly give the proper ansat each time step. On the other
hand, we can easily verify that our algorithms give the eaastwers, without any quality loss or
approximation.

Algorithm 10 Initialization

Require: The adjacency matrix at time stegM (), and the parameter

Ensure: The fixed degree matrik, the normalized matrices at time step/fr™) andMc", and
the initial core matrixA ("),

get the fixed degree matri? as equation.4)

normalize for type 1 objectdvirV) = D7 . M®

normalize for type 2 objectdvic) = D;! . M/

get the core matrixA® = (I — 2McV - Mr()~?

store the matriceMrV, Mc®, andA®,
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6.5.1 Track-Centrality

Here, we want to track the top-most important type 1 (and/or type 2) nodes over time. For
example, on an author-conference bipartite graph, we watratk the top-10 most influential
authors (and/or conferences) over time. For a given quettg nee also want to track its centrality
(or the rank of centrality) over time. For example, on an attonference bipartite graph, we can
track the relative importance of an author in the entire camity.

Based on the definition of centrality (equati®®) and the fast update algorithms we developed
in Section 4, we can get the following algorithm (AldL) to track the topt queries over time. The
algorithm for tracking centrality for a single query nodejiste similar to Alg.11. We omit the
details for space.

Algorithm 11 Track-Centrality(Topk Queries)
Require: The time-evolving bipartite grapHgM "), AM® (¢ > 2)1, the parametersandk
Ensure: The topk most central type 1 (and type 2) objects at each timeistep

1: Initialization

2: for each time step(t > 1) do

3 x=1yy, Mr® . A®: andy =1, - A®

4
5
6: output the tork type 1 objects according t§’ (larger value means more central)
7:  output the tork type 2 objects according t§’ (larger value means more central)
8: UpdateMr®, Mc®, andA® fort > 2.
9: end for

In step 8 of Alg.11, we can either usBast-Single-Updater Fast-Batch-Updatéo update the
normalized matricedIr® andMc', and the core matrid®). The running time for steps 3-8
is much less than the update time (step 8). THuack-Centralitycan give the ranking results
quickly at each time step. On the other hand, using elemeliterar algebra, we can easily prove
the correctness dirack-Centrality
Lemma 13. Correctness offrack-Centrality. The vectors;’ ands’ in Alg. 11 provide a correct
ranking of type 1 and type 2 objects at each time gtephat is, the ranking is exactly according
to the centrality defined in equatidh.3).

Proof: Based on Delta Matrix Inversion Theorems, we have that stpréack-Centralitymain-
tains the correct core matrix at each time step.

Apply the Sherman-Morrison Lemma&{9( to equation §.2), we have

QY o I+AMrOA®OMc®  cMrWA®
CAOMD A®
(6.9)
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By equation 6.3), we have

n+l n—+l

centrality(j) oc ZTZ(? = Z Q" (i, )
i=1

1=1

Let 7 = [centrality(j)];—1

-----

(n+1), We have

7_1 & [11Xn7 11><l] : Q(t)
A11MrO AOMe® 4 c1;, AOMc®Y’
Cllngr(t)A(t) + 11><lA(t)
~ (EaMc + eyMc? '
B cr +vy
= [ersMc®?, 73]

7', 7%]

wherex andy are two vectors as defined in step 3Toack-Centrality andrj,andr; are two
column vectors as defined in steps 4-Sddck-Centralityrhis completes the proof. OJ

6.5.2 Track-Proximity

Here, we want to track the top-most related/relevant type 1 (and/or type 2) objects foedbj
A at each time step. For example, on an author-conferenaathiggraph evolving over time,
we want track Which are the major conferences for John Smith in the pastb¥eor “Who
are most the related authors for John Smith so faFdr a given pair of nodes, we also want to
track their pairwise relationship over time. For examptean author-conference bipartite graph
evolving over time, we can trackHow much credit (a.k.a proximity) John Smith has accumdlate
in KDD?”

The algorithm for topk queries is summarized in Ald.2. The algorithm for tracking the
proximity for a given pair of nodes is quite similar to Alg2. We omit its details for space.

In Alg. 12, again, at each time step, the update time will dominate dted tomputational
time. Thus by using eitherast-Single-Updater Fast-Batch-Updatewe can quickly give the
ranking results at each time step. Similaiftack-Proximity we have the following lemma for the
correctness ofrack-Proximity

Lemma 14. Correctness offrack-Proximity. The vectorsy’ ands3’ in Alg. 12 provide a correct
ranking of type 1 and type 2 objects at each time stephat is, the ranking is exactly according
to the proximity defined i(6.4).

Proof: Based on Delta Matrix Inversion Theorems, we have that s3egf Track-Proximitymain-
tains the correct core matrix at each time step. Therefdige,7An step 8 always gives the correct
proximity score, which completes the proof. O
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Algorithm 12 Track-Proximity(Topk Queries)
Require: The time-evolving bipartite grapHaM (), AM® (¢ > 2)}, the parametersandk, and
the source node.
Ensure: The top%x most related type 1 (and type 2) objects §at each time step
1: Initialization
2: for each time step(t > 1) do
3: fori=1:ndo

4: re; = GetQij (AW, Mr® Mc", 5,1, ¢))

5. end for

6: letri =[rsi(i =1,..n)

7. forj=1:1do

8: r.; = GetQij(A®, Mr) Mc® s, j +n,c))
9: end for

10:  letry = [ry;](j =1,...0)

11:  output the togk type 1 objects according t§’ (larger value means more relevant)
12:  output the tofk type 2 objects according @’ (larger value means more relevant)
13:  updateMr®, Mc®, andA® for ¢ > 2.

14: end for

6.6 Experimental Results

In this section we present experimental results, after Wwediuce the datasets in subsection 6.1.
All the experiments are designed to answer the followingstjaes:
e EffectivenesswWhat is the quality of the application$rack-Centralityand Track-Proximity
we proposed in this chapter?

e Efficiency: How fast are the proposed algorithnm@asét-Single-Update and Fast-Batch-
Updatdor the update timeTrack-Centralityand Track-Proximityfor the overall running
time)?

6.6.1 Data Sets.

We use five different data sets in our experiments, sumndhiizdable6.6.1. We verify the
effectiveness of our proposed dynamic centrality measam@dPS DM, andAC, and measure the
efficiency of our algorithms using the larg@€PostandNetFlix data sets.

The first data setNIPS is from the NIPS proceedingsThe timestamps are publication years,
so each graph slich1 corresponds to one year, from 1987 to 1999. For each yearawe dn
author-paper bipartite graph. Rows represent authors @lndhas represent papers. Unweighted
edges between authors and papers represent authorshipe arkee2,037 authors, 1,740 papers,
and 13 time steps (years) in total with an average of 308 ng@sper year.

Shttp://www.cs.toronto.edu/ ~roweis/data.html
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Table 6.2: Datasets used in evaluations

Name n xl Ave.n time steps
NIPS 2,037x1,740 308 13
DM 5,095« 3,548 765 13
AC 418,236<3,571 26,508 49

ACPost  418,236<3,571 1,007 1258

NetFlix 2,649,42%17,770 100,480,507 NA

TheDM, AC, andACPostdata sets are from DBI*PFor the first two, we use paper publication
years as timestamps, similarfMdPS Thus each graph slice corresponds to one year.

DM uses author-paper information for each year between 1985~2rom a restricted set of
conferences, namely the five major data mining conferen&&, ‘ICDM’, ‘'SDM’, ‘PKDD’,
and ‘PAKDD’). Similar toNIPS rows represent authors, columns represent papers andgimea
edges between them represent authorship. There are 5,0@618,548 papers, and 13 time steps
(years) in total, with an average of 765 new edges per tinge ste

AC uses author-conference information from the entire DBLURecton, between years 1959—
2007. In contrast tdM, columns represent conferences and edges connect audloorsférences
they have published in. Each edgesirs weighted by the number of papers published by the author
in the corresponding conference for that year. There are2868uthors, 3,571 conferences, and
49 time steps (years) with an average of 26,508 new edgeslatiaze step.

ACPostis primarily used to evaluate the scalability of our algamits. In order to obtain a larger
number of timestamps at a finer granularity, we use postitg@aDBLP (the ‘mdate’ field in the
XML archive of DBLP, which represents when the paper wasredténto the database), rather
than publication year. Thus, each graph skceorresponds to one day, between 2002-01-03 and
2007-08-24.ACPostis otherwise similar taAC, with number of papers as edge weights. There
are 418,236 authors, 3,571 conferences, and 1,258 time (&tays with at least one addition into
DBLP), with an average of 1,007 new edges per day.

The final data setNetFlix, is from the Netflix prizé. Rows represent users and columns
represent movies. If a user has rated a particular movie,omeexrt them with an unweighted
edge. This dataset consists of one slice and we use it in clutrs®.2 to evaluate the efficiency
Fast-Single-Updaten total, we have 2,649,429 users, 17,770 movies, and 80587 edges.

6.6.2 Effectiveness: Case Studies

Here, we show the experimental results for the three agitsion real datasets, all of which are
consistent with our intuition.

*http://lwww.informatik.uni-trier.de/ ~ey/db/
Shttp://www.netflixprize.com/
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Table 6.3: Top-10 most influential (central) authors up tohegear. Note that the top-10 most
influential (central) authors change over years.

1987 1989 1991 1993 1995 1997 1999
"abbott L' F— "Hinton &' "Sejnowski T' | 'seijnowski T' | "Sejnowski T' | "Sejnowski T’
"Burr_DT ———— "koch Cf "Koch C' "Jordan M "Jordan M' "Koch_C°
"Denker J' resaure G "Bower g "Hinton &' "Hinton &' "Koch ¢ "Tordan M’
'dcofield C P 'Sejno;ski T "Mozer M 'Koch_CT "Hinton G 'Hinton G'
"Bower_J7 "Mead 7 ‘Lecun ¥' "LeCun_¥' "Mozer M "Mozer M’ "Mozer M’
"Brown_H' "Tenorio M' "Mozer M' "Denker I’ "Bengio ¥ "Dayan_ 2’ "Dayan_F’
"Carley L' "Sejnowski T 'Denke;_J' "Bower J' 'Lippmaﬁn_R' "Bengio_Y' "singh_3’
8 asm st "Lippmann R’ "Waibel n* "Kawato M’ "LeCun Y° "Barto AT 'Bengio ¥'
'Chover J7 "Touretzky D' ’Moody_E' "Waibel A’ "Waibel A "Tresp_V' 'Tresp_V'
"Eeckman_F' "Koch_C” "Lippmann_R' 'Simard B’ "Simard BT "Moody J* "Moody_J"

Results onTrack-Centrality

We apply Alg.11to theNIPSdataset. We use “Global Aggregation” to update the adjaceradrix
M®, We track the tops (k = 10) most central (i.e.influential) authors in the whole comityn
Table6.3lists the results for every two years. The results make séas®us authors in the NIPS
community show up in the top-10 list and their relative raugjs change over time, reflecting their
activity/influence in the whole NIPS community up to that yelgor example, Prof. Terrence J.
Sejnowski (‘Sejnowskil’) shows in the top-10 list from 1989 on and his ranking kegpsg up
in the following years (1991,1993). He remains number 1 f&®83 on. Sejnowski is one of the
founders of NIPS, an IEEE Fellow, and the head of the Comjuunalt Neurobiology Lab at the
Salk institute. The rest of the top-placed researchersidecProf. Michael I. Jordan (‘Jordavi’)
from UC Berkeley and Prof. Geoffrey E. Hinton (‘Hintd®’) from Univ. of Toronto, well known
for their work in graphical models and neural networks, eespely. We can also track the cen-
trality values as well as their rank for an individual autlower the years. Figs.1(a) plots the
centrality ranking for some authors over the years. Ag&ia results are consistent with intuition.
For example, Michael I. Jordon starts to have significanti@rfte (within top-30) in the NIPS
community from 1991 on; his influence rapidly increases mfthllowing up years (1992-1995);
and stays within the top-3 from 1996 on. Prof. Christof Kotfo¢h_C’) from Caltech remains
one of the most influential (within top-3) authors in the w®IIPS community over the years
(1990-1999).

Results onTrack-Proximity.

We first report the results on tiEV dataset. We use “Global Aggregation” to update the adjgcenc
matrix at each time step. In this setting, we can track thektopost related papers/authors in the
data mining community for a given query author up to each.y€able.6.4 lists the top-5 most
related authors for ‘Jian Pei’ over the years (2001-200Te fiesults make perfect sense: (1) the
top co-author (Prof. ‘Jiawei Han’) is Prof. Jian Pei’'s advis(2) the other top collaborators are
either from SUNY-Buffalo (Prof. Aidong Zhang), or from IBM/atson (Drs. Philip S. Yu, Haixun
Wang, Wei Wang), which is also reasonable, since Prof. Pei &daculty position at SUNY-
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Table 6.4: Top-5 most related authors for ‘Jian Pei’ up tchegear. Note that the most related
authors for ‘Jian Pei’ change over years.

2001 2003 2005 2007

P R R P . T TTq 1 T . .
Jiawel Han Jiawel Han Jlawel Han "Jiawei Han'

"Behzad Mortazavi-Asl' "Behzad Mortazavi-Asl’ 'Hellixun_[ﬂang' "Haixun_Wang'
"Hongjun Lu’ 'Aidong_zhang' 'I\.ldong_zhang' "Philip §. Yu'
"Meichun Hsu’ "Philip_&5. ¥u' "Philip_5. ¥u' "Wei Wang'
"Shiwel Tang’ "Hongjun_Lu’ "Wel Wang' 'Aidong_ Zhang”

Buffalo; (3) the IBM-Watson collaboration (‘Philip S. Yuha ‘Haixun Wang’) got stronger over
time.

Rank of Proximity from VLDB to KDD
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Figure 6.2: The rank of the proximity from ‘VLDB’ to ‘KDD’ upd each year

Then, we applyfrack-Proximity on the dataseAC. Here, we want to track the proximity rank-
ing for a given pair of nodes over time. Fif.2 plots the rank of proximity from the ‘VLDB’
conference to the ‘KDD’ conference. We use “Global Aggremétto update the adjacency ma-
trix. In this way, proximity between the ‘VLDB’ and ‘KDD’ coierences measures the impor-
tance/relevance of ‘KDD’ wrt ‘VLDB’ up to each year. From tRigure, we can see that the rank
of ‘KDD’ keeps going up, reaching the fifth position by 2007heTother top-4 conferences for
‘VLDB'’ by 2007 are ‘SIGMOD’, ‘ICDE’, ‘PODS’ and ‘EDBT’, in this order. The result makes
sense: with more and more multi-disciplinary authors mlftig in both communities (databases
and data mining), ‘KDD’ becomes more and more closely relédeVLDB'.

We also test the tog-queries onAC. Here, we use “Sliding Window” (with window length
len = 5) to update the adjacency matrix. In this setting, we wantdok the topk most related
conferences/authors for a given query node in the past 5ydagach time step Fig. 6.1(b)
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lists the top-5 conferences for Dr. ‘Philip S. Yu'. The majesearch interest (top-5 conferences)
for ‘Philip S. Yu’ is changing over time. For example, in theays 1988-1992, his major interest
is in databases (‘ICDE’ and ‘VLDB’), performance (‘SIGMET&S’) and distributed systems
(‘ICDCS’ and ‘PDIS’). However, during 2003-2007, while datses (‘ICDE’ and ‘VLDB’) are
still one of his major research interests, data mining becanstrong research focus (‘KDD’,
‘SDM’ and ‘ICDM’).
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Figure 6.3: Evaluation ofFast-Single-UpdateFor both datasets, one edge changes at each time
step. The running time is averaged over multiple runs of erpents and shown in logarithmic
scale.

6.6.3 Efficiency

After initialization, at each time step, most time is spemupdating the core matrix ), as well
as the normalized adjacency matrices. In this subsectiefirst report the running time for update
and then give the total running time for each time step. Weheséwvo largest dataset8CPostand
NetFlix) to measure performance.

Update Time

We first evaluatd-ast-Single-UpdateBoth ACPostand NetFlix are used. For each dataset, we
randomly add one new edge into the graph and compute theeupiaiet. The experiments are run
multiple times. We comparBast-Single-Updatevith Straight-Update (which dodsx [ matrix
inversion at each time step) and the result is summarized)iroB—Note that the y-axis is in log-
scale). On both dataset@st-Single-Updateequires significantly less computation: AGPost it
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is 64x faster((.5 seconds vs32 seconds), while oNetFlix, it is 176x fasterf2.5 seconds v4, 313
seconds).

To evaluatd-ast-Batch-Updatenve useACPost From¢ = 2 and on, at each time step, we have
betweenn = 1 andm = 18, 121 edges updated. On average, there are 913 edges updateH at eac
time stept (t > 2). Note that despite the large number of updated edges foe siome steps, the
rank of the difference matrix (i.enin(7, Z)) at each time step is relatively small, ranging from 1 to
132 with an average of 33. The results are summarized i Big\e plot the mean update time vs.
the numberi{:) of changed edges in Fig4(a) and the mean update time vs. the ramkn( 7, Z))
of the update matrix in Fi§.4(b). Compared to the Straight-Updakast-Batch-Updates again
much faster, achieving 5-32x speed-up. On average, it isasber than Straight-Update.

Total Running Time

Here, we study the total running time at each time steffack-Centrality The results fofrack-
Proximity are similar and omitted for space. Foack-Centrality we let the algorithm return both
the top-10 type 1 objects and the top-10 type 2 objects. WeheddetFlix dataset with one edge
changed at each time step al@Postdataset with multiple edges changed at each time step.
We compare our algorithmsTrack-Centrality) with (i) the one that uses Straight-Update in
our algorithms (still referred as “Straight-Update”); gnjithat uses iterative procedure QCF0j
to compute proximity and centrality at each time step (reféras ‘Ite-Alg”). The results are
summarized in Fig6.5. We can see that in either case, our algoritAma¢k-Centrality is much
faster. For example, it takes 27.8 seconds on average dvetidix dataset, which is 155x faster
over“Straight-Update” (4,315 seconds); and is 93x faster tite-Alg” (2,582 seconds). In either
case, the update time forack-Centralitydominates the overall running time. For example, on the
ACPostdataset, update time accounts for more than 90% of the évenaling time (2.4 seconds
vs. 2.6 seconds). Thus, when we have to track queries for maags of interest, the advantage
of Track-Centralityover “Ite-Alg” will be even more significant, since at eacimé step we only
need to do update once for all queries, while the running tifriféte-Alg” will increase linearly
with respect to the number of queries.

6.7 Related Work

In this section, we review the related work, which can begaieed into two parts: static graph
mining and dynamic graph mining.

Static Graph Mining. There is a lot of research work on static graph mining, iniciggat-
tern and law mining AJB99, DM02, FFF99 BKM 00, New0d, frequent substructure discov-
ery [XHYCO05], influence propagation{K T03], and community miningffLGCOZ[ GKRIF[ GN].

In terms of centrality, Google’s PageRank algorithia®[VI\Wod] is the most related. The pro-
posedTrack-Centralitycan actually be viewed as its generalization for dynamiatife graphs.
As for proximity, the closest work is random walk with restail.Z 04, PYFDO04 TFP0g. The
proposedrrack-Proximityis its generalization for dynamic bipartite graphs. Otlemresentative
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Figure 6.4: Evaluation oRast-Batch-Update

proximity measurements on static graphs include the sirgkreented delivered currerit[[/T04],

cycle free effective conductanc&lfl\VO6], survivable network G\VS93, and direction-aware
proximity [TKFO7]. Although we focus on random walk with restart in this papmir fast al-
gorithms can be easily adapted to other random walk basedurezaents, such as |/ T04,
TKFO7]. Also, there are a lot of applications of proximity measuests. Representative work
includes connection subgraphs\T04, KNVO6, TFO€, neighborhood formation in bipartite
graphs FQCF0J, content-based image retrievall[Z ~ 04], cross-modal correlation discovery{FD04,
the BANKS systemABC 07, link prediction [_[NK03], pattern matching[FGEROT, detecting
anomalous nodes and links in a graph)fCF0%, ObjectRank BHP04 and RelationalRank} M T04].
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time step. The running time is averaged in multiple runs @esxnents and it is in the logarithm
scale

Dynamic Graph Mining. More recently, there is an increasing interest in miningetim
evolving graphs, such as densification laws and shrinkiagndiers [[KF05], community evolu-
tion [BHKLOE], dynamic tensor analysi$[I 04, and dynamic communitie§[sZ 07, SFPY01.

To the best of our knowledge, there is no previous work onipmiy for time-evolving graphs.
Remotely related work in the sparse literature on the tap{e/iCO6]. However, we have a dif-
ferent setting and focus compared withC06]: we aim to incrementally track the proximity and
centrality for nodes of interest by quickly updating theecaratrix (as well as the adjacency ma-
trices), while in [VICO6] the authors focus on efficiently using time information laglang time as
explicit nodes in the graph.

6.8 Conclusion

In this chapter, we study how to incrementally track the npaimity as well as the centrality
for time-evolving bipartite graphs. To the best of our knegde, we are the first to study the node
proximity and centrality in this setting. The major contrilons of the paper include:

1: Proximity and centrality definitions for time-evolvingaphs.

2: Two fast update algorithm&4st-Single-UpdatandFast-Batch-Update that do not resort
to approximation and hence guarantee no quality loss (seer&md).

3: Two algorithms to incrementally track centralityréck-Centrality and proximity {Track-
Proximity), in any-time fashion.
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4: Extensive experimental case-studies on several reaselst showing how different queries
can be answered, achieving uplfs~176xspeed-up.
We can achieve such speedups while providing exact answeesibe we carefully leverage the
fact that the rank of graph updates is small, compared tazleeo$ the original matrix. Our exper-
iments on real data show that this typically translates teat an order of magnitude speedup.
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Chapter 7

Vulnerability Analysis

Summary of This Chapter
- Questions we want to answer:
Q1: How to measure the vulnerability of the graph (by a simgimber)?

Q2: Given the vulnerability measurement, how to quantig/lackboneness score of a
given set of nodes in the graph, i.e., how important are thégrms of maintaining
the vulnerability of the graph?

Q3: Given the backboneness score, how to quickly detedt tiwes that collectively
exhibit the highest backboneness score on large, disdeesgraphs?

- Our answers and contributions
Al: We proposed a novel vulnerability measurement for treplgr motivated from
immunology and graph loop capacity.
A2: We proposed a novel definition of backboneness score $et af nodes, by care-
fully using the results from the theory of matrix perturloati

A3: We proposed a near-optimal and scalable algorithm (Net®) to find a set of
nodes with highest backboneness score, by carefully usswgdts from the theory
of sub-modularity.

7.1 Introduction

How to measure the ‘Vulnerability’ of a given graph? (elgow likely will an epidemic break
out given the strength of the virus attagk@iven a set of nodes in the graph, how to measure
their ‘Backboneness’ i.ehow important are they in terms of maintaining the “Vulneli&yg of

the whole graph™ow to quickly findk nodes with the highest ‘Backboneness’ score? This is the
core problem behind a lot of important applications. To naniew, the ‘Vulnerability’ measure
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can be used (as one of many other criteria) to evaluate theorletlesign. In the immunization
setting, thek with the highest ‘Backboneness’ scores might be the ones aveé guarantine in
order to stop an epidemic. Similarly, in the graph demaiisetting, these nodes are the ones we
want to delete from the graph.

In this chapter, we study this problem in multiple dimensidry addressing the following three
guestions:

Q1. How to measure the ‘Vulnerability’ of the graph (by a $engumber)?

Q2. Given the ‘Vulnerability’ measurement, how to quanttig ‘Backboneness’ score of a given
set of nodes in the graph, i.e., how important are they ingevfimaintaining the ‘Vulnera-
bility’ of the graph?

Q3. Given the ‘Backboneness’ score, how to quickly deteekthodes thatollectivelyexhibit
the highest ‘Backboneness’ score on large, disk-residaipig?

Here, we focus on exactly these three questions. The mainilmations of this chapter are as
follows:
1. A novel ‘Vulnerability’ measurement\j for the graph, motivated from immunology and
graph loop capacity;
2. A novel definition of ‘Backboneness’ score(Bi for a set of nodes, by carefully using the
results from the theory of matrix perturbation;

4. Anear-optimalandscalablealgorithm (NetShield) to find a set of nodes with highest ‘Bac
boneness’ score, by carefully using results from the thebsub-modularity.

5. Justifications, proofs and complexity analysis, showng intuitions, accuracy and effi-
ciency of the proposed methods.

6. Extensive experiments on several real data sets, shahengffectiveness and efficiency of
the proposed methods. For the effectiveness, our methddsad to an effective immu-
nization strategy, and (2) always give the mining resultsctviare consistent with human
intuitions. For the efficiency, our algorithm (1) achievagngicant speed-up over straight-
forward solutionsiip to 7 orders of magnitude speeduand (2) is scalable for large graphs
(linear wrt the size of the graph).

The rest of the chapter is organized as follows: We give tbblpm definitions in Section.2
We present the proposed ‘Vulnerability’” measurement aratkBoneness’ score in Secti@r3
and Sectiorv .4, respectively. We deal with the computational issues ini&e@.5. We evaluate
the proposed methods in Sectiow. We review the related work in Section7 and conclude the
chapter in Sectiof.8.

7.2 Problem Definitions

Table7.1lists the main symbols we use throughout this chapter. Bi¢hapter, we focus on un-
directed un-weighted graphs. We represent the graph bgjasency matrix. Following standard
notations, we use capital bold letters for matrices (&\J, Jower-case bold letters for vectors (e.g.,
a), and calligraphic fonts for sets (e.g:). We denote the transpose with a prime (i&’,is the
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transpose ofA), and we use parenthesized superscripts to denote thesgonding variable after
deleting the nodes indexed by the superscripts. For exampdethe first eigen-value oA, then
M is the first eigen-value oA after deleting its™ row/column. We usé);, u;) to denote the"
eigen-pair (sorted by the magnitude of the eigenvaluel olWhen the subscript is omitted, we
refer to them as the first eigenvalue and eigenvector respcti.e., A £ \; andu £ u,).

Table 7.1: Symbols
\ Symbol \ Definition and Description \
A, B, ... | matrices (bold upper case)
A(i,j) | the element at thé" row and;"
column of matrixA
A(i,:) | thei row of matrix A
A(:,7) | thej™ column of matrixA

A’ transpose of matriA

a,b,... | column vectors

S,7,... | sets (calligraphic)

n number of nodes in the graph

m number of edges in the graph
(A, u;) | the:i™ eigen-pair ofA

A first eigen-value ofA (i.e., A £ \,)
u first eigen-vector oA (i.e.,u £ u,)

MDA | first eigen-value ofA by deleting the nodé(or the set of nodes i)
AN(i) eigen-drop AX(i) = A — A®

ANS) | eigen-dropAX(S) = A — AS)

Br(i) ‘Backboneness’ score of node

Br(S) ‘Backboneness’ score of nodessh

V(G) ‘Vulnerability’ score of the graph

With the above notations, our problems can be formally ddfasefollows:
Problem 7. Measuring ‘Vulnerability’
Given: A large un-directed un-weighted connected graygh
Find: A single number \(), reflecting the ‘Vulnerability’ of the whole graph.

Problem 8. Measuring ‘Backboneness’
Given: A subsetS with k£ nodes in a large un-directed un-weighted connected graph

Find: A single number BiS), reflecting the ‘Backboneness’ of thgsaodes, in terms of main-
taining the ‘Vulnerability’ of the whole graph.

Problem 9. Finding Best-k Backbone Nodes
Given: A large un-directed un-weighted connected grapkvith n nodes and an intege;

Find: A subses of k£ nodes with the highest ‘Backboneness’ score amon@)atbossible subsets.
In the next three sections, we present the corresponding@asd respectively.
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7.3 Our Solution for Problem 7

Here, we focus on Probleih We first present our solution and then provide some justifina.

7.3.1 Proposed ‘“Vulnerability’ Score

In Problem?, the goal is to measure the ‘Vulnerability’ of the whole dndyy a single number. We
propose using the first eigenvalue of the adjacency mairas such a measurement (eg.1):
the larger\ is, the more vulnerable the whole graph is.

V(G) 2\ (7.1)

0,0, 0,0,0

@\=1.7 (0)) = 2.0 N=29 =40

Figure 7.1: An illustrative example of measuring ‘Vulnerability’ otlgraph

Figure7.1presents an illustrative example, where we have four gragth$ nodes. Intuitively,
from left to right, the vulnerability of the graph increadee., for a given strength of the virus
attack, it is more likely that an epidemic will break out irethraphs on the right than those on the
left side.). We can see that the correspondingcreases from left to right as well.

7.3.2 Justifications
Here, we provide some justifications to explain whis a good measurement of the graph ‘Vul-
nerability’.

Epidemic Threshold.Our first justification is inspired by immunology is closely related
to the epidemic threshold of a graph under a flu-like SIR (susceptible-infected-spsbke) epi-
demic model CW\W*07], and specificallyr = 1/A. This means that a virus less infective than
7 will quickly get extinguished instead of lingering forevérherefore, given the strength of the
virus (e.g., the infection rate and the death rate), it iseniely that an epidemic will break out in
a graph with largen).

Loop Capacity.The second, closely related reason is thgives a (approximate) measure of
the total number of loogsin the graph. Intuitively speaking, the first eigen-valieontributes
most (among all the other eigenvalues ) to the number of lobjength/ in the graph. To see that,
let LC(1) be the total number of loops with lengtin the graph, we have the following equation:

n
LC(l) =) N (7.2)
i=1
1A loop in the graph is a path whose starting node is the sanfeeaaniding node.
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For many real graphs, their spectrum is highly skewedZ03], which means\ > \;(i =
2,...,n). Therefore, LQ!) is roughly determined by (especially wheri is big): a larger\ indi-
cators that we have more loops of lengih the graph.

7.4 Our Solution for Problem 8

In this section, we focus on Problegn\We first present our solution, and then provide justifiaaio
We also discuss and compare our ‘Backboneness’ measuresavite existing node importance
measurements in the special casé ef 1.

7.4.1 Proposed ‘Backboneness’ Score

In Problem8, the goal is to quantify the importance of a given set of nadésrms of maintaining
the ‘Vulnerability’ of the whole graph. We propose using 8y defined in the following equation.

Br(S) =) 2xu(i)® — Y A(i, j)u(i)u(j) (7.3)

= ijES

Intuitively, by eq. 7.3), a set of nodes$ has higher ‘Backboneness’ score if (1) each of them
has a high eigen-scora(i)), and (2) they are dissimilar with each other (small or zA1@, j)).
Figure7.2 shows some examples on measuring the ‘Backboneness’ dcagiven set of nodes.
The bestt = 4 nodes found by our NetShield (which will be introduced veopss in the next
section) are shaded. The result is consistent with innsti@eleting these nodes will make the
graph the least vulnerable (i.e., the remaining graphseiseod isolated nodes in these examples).

Figure 7.2: Some examples on measuring the ‘Backboneness’ score oéra gt of nodes. The
bestt = 4 nodes found by our NetShield are shaded.
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7.4.2 Justification

Here, we provide some justifications on the proposed ‘Bacs&hess’ score, which is summarized
in Lemmalb. It says that B(S) is a good approximation for the eigen-drdp\(S) when deleting
the set of nodes§ from the original graph.

Lemma 15. Let \() be the (exact) first eigen-value Af, whereA is the perturbed version of
by removing all of its rows/columns indexed bySetf \ is the simple first eigen-value &f, then
AX(S) = A — A®) is upper bounded by BS) + O(3_ .5 [|A(:, /)[|?), where B(S) is computed
by eq.(7.3).

Proof: First, let us writeA as a perturbed version of the original matsix

A=A+E, andE=F+F +G (7.4)

whereF(:,j) = —A(;,5) (j € SandF(:,j) =0 (j ¢ S); G(i,7) = A(4,j) (4,5 € S) and
G(i,j)=0(i ¢ S,orj ¢ S).
SinceAu = \u, we have
uFu = uFu=(Fulu= —Z)\u(j)2
JES
WGu = > A(iju(iu()) (7.5)

ijeS

Let X be the corresponding perturbed eigen-valué cdiccording to the matrix perturbation the-
ory [SS9(, we have

A = A+ uEu+O(|E|?
= A+ uFu+ uFu+uGu+O(|E|?

= A= 2x() - > A uliu(y))

jes ijes
+O(Y 1A
jes
= A=Br(S) + 0> IAGIIP) (7.6)
jes

SinceA® is the first eigen-value ok, we have\© > X. Therefore,

AMS) = A=A <X -]
Br(S) + O IAG, /)IIP) (7.7)

JjES

which completes the proof. O
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7.4.3 Comparisonsinthe Case of = 1

In literature, there are a lot of node importance scoresh(siscPageRank, HITS, betweenness
centrality, etc). Our ‘Backboneness’ scorduadamentallydifferent from these node importance
scores, in the sense that thedl{/aim to measure the importance of an individual node; whesaas
‘Backboneness’ tries toollectivelymeasure the importance of a set of nodes.

Deg |Short | N.RW | PR | o7 [ABN
1
2
3

Deg | Short | N.RW | PR i |ABN

-P-ww»—\E‘

o BN B N
Blw|r |~
Blw|r |~
P T R
P T R

Figure 7.4: Examples of the ‘Backboneness’ score of an individual n(ige.

Rank

Deg (Short | N.RW | PR ABN

w | m »—\E"

Figure 7.5: Examples of the ‘Backboneness’ score of an individual nfije.

Nonetheless, itis interesting to compare them in the speas® ofk = 1. Figures 7.3-7.6show
some examples on measuring the ‘Backboneness’ score ofdandual node. We compare it
with some possible choices: Degree (‘Deg’), Betweenesdr@léy based on the shortest path
(‘Short’) [ ], Betweeness Centrality based on random walk (‘N.RWir[j/05, PageRank
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Deg |Short | N.RW | PR | o7 |ABN

Figure 7.6: Examples of the ‘Backboneness’ score of an individual n(it)e.

(‘PR’) [PEMW9Y, and abnormality score (‘ABN")$QCF0J. We can see that the proposac

is the only one that is always consistent with intuitionsliritee settings. For each figure, the table
on the right shows some node indices (the first column) s@tedrding to human intuitions (the
most important node comes first); each of the rest columnsstite rank by the corresponding
measurement. Shaded columns are the ones that agree wittoirg (= the first column). Notice
that the proposed ‘Backboneness’ scate\] is theonly one that consistently agrees with intu-
itions. Take figurer.3 as an example, intuitively, node 8 should receive a highackBoneness’
score than node 1 since node 8 connects the two communitieeach other, whereas node 1 is
a local center for the left community. It can be seen that edudntest path which goes through
node 8 between two nodes on this graph must also go through ho®n the other hand, some
shortest paths (e.g., the shortest path between node 7 de®honly pass node 1 but not node 8.
Therefore, by ‘Short’, node 1 will receive a higher scoraithade 8 which is counter-intuitive. For
the similar reason, ‘N.RW’ will also think node 1 is more infant than node 8. As for ‘PR’, its
score is more or less proportional to the degree in un-gicegtaphs. Therefore, ‘PR’ also ranks
node 1 higher than node 8. Lastly, as for ‘ABN’, it measuresdbnormality of a given node by
looking at its neighborhood: a node is abnormal if its nemhlood is dissimilar with each other.
However, in this example, the neighborhood of node 8 (nodedlnede 9) is totally symmetric;
whereas that of node 1 (nodes 2-7 and node 8) is not. Henc&y''ABain ranks node 1 higher
than node 8.

7.5 Our Solution for Problem 9

In this section, we deal with Proble®n Here, the goal is to find a subsetiofiodes with the highest
‘Backboneness’ score (among é;gl) possible subsets). We start by showing that the two straight
forward methods (referred to as ‘Com-Eigs’, and ‘Com-Eyvale computationally intractable.
Then, we present the proposed NetShield algorithm. Finaltyanalyze its accuracy as well as its
computational complexity.
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7.5.1 Preliminaries

There are two obviously straight-forward methods for Peabb. The first one (referred to as
‘Com-Eigs’) works as follows: for each possible subSgtve delete the corresponding rows/columns
from the adjacency matriA ; compute the first eigenvalue of the new perturbed adjaceratyix;

and finally output the subset of hodes which has the smaligshealue (therefore has the largest
eigen-drop). Despite the simplicity of this strategy, it@snputational intractable due to its combi-
natorial nature. Itis easy to show that the computationadglexity of ‘Com-Eigs’ isO( (Z) -m)?2.

This is computationally intractable even for small graphsr example, in a graph with 1K nodes
and 10K edges, suppose that it takes about 0.01 second td¢dfifidt eigen-value. Then we need
about 2,615 years to find the best-5 nodes with the higheski@meness’ score!

A more reasonable (in terms of speed) way to find the best-ksimto evaluate BS), rather
than to compute the first eigen-valyg, (Z) times, and pick the subset with the highest®Br. We
refer to this strategy as ‘Com-Eval’. Compared with theigtraforward method (referred to as
‘Com-Eigs’, which isO((}) - m)); ‘Com-Eval’ is much faster@((}) - k?)). However, ‘Com-Eval
is still not applicable to real applications due to its conatorial nature. Again, in a graph with
1K nodes and 10K edges, suppose that it only takes about@L.G@&2zond to evaluate B%) once.
Then we still need about 3 months to find the best-5 nodes wéthighest ‘Backboneness’ score!

7.5.2 Proposed “NetShield” Algorithm

The proposed NetShield is given in Alg3. In Alg. 13, we compute the first eigenvalueand the
corresponding eigenvectarin step 1. In step 4, the x 1 vectorv measures the ‘Backboneness’
score of each individual node. Then, in each iteration gist& 17, we greedily select one more
node and add it into s&f according to scor@) (step 13). Note that steps 10-12 are to exclude
those nodes that are already in the selected set

7.5.3 Analysis of NetShield

Here, we analyze the accuracy and efficiency of the propostghield.
First, according to the following theorem, Al§j3 is near-optimaiwrt ‘Com-Eval’:
Theorem 5. Effectiveness of NetShield_etS andS be the sets selected by Algand by ‘Com-

Eval’, respectively. Lef\\(S) and AX(S) be the corresponding eigen-drops. Thex(S) >
(1—1/e)AXNS).

Proof: LetZ, 7, K be three sets arii C 7. Define the following three sets basedBn7, K:
S=TUK, T=JUK, R=T\J.

2We assume thaik is relatively small compared with andm (e.g., tens or hundreds). Therefore, after deleting
rows/columns fromA, we still haveO(m) edges.
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Algorithm 13 NetShield
Require: the adjacency matriA and an integek:
Ensure: a setS with £ nodes

1: compute the first eigen-valug of A; let u be the corresponding eigen-vectafj)(j =

1,...,n);

2: initialize S to be empty;
3: for j=1tondo
4 v(j) = (2- N = A(5,7)) - u(h)*
5. end for
6
7
8
9

: for iter=1to k do

letB = A(;,S);
letb =B - u(S);
for j=1tondo
10: if j € Sthen
11: let scoréj) = —1;
12: else
13: let scoréj) = v(j) —2-b(j) - u(y);
14: end if
15:  end for
16: leti = argmaxscore;), addi to setS;
17: end for
18: returns.

Substituting eq4.3), we have

(Br(S) — Br(Z)) — (Br(7) —Br(J))
= 2 Y A(i,juliju(j) =0 (7.8)
1€EX,JER

= Br(S)—Br(Z) > Br(7) — Br(J)

Therefore, the functioBr (S) is sub-modular.

Next, we can verify that nodeselected in step 16 of Ald.3 satisfies = argmax, sBr(S U j)
for a fixed setS.

Finally, it is clear that Bf¢) = 0, whereg is an empty set. Using the property of sub-modular
functions KGO7], we haveAA(S) > (1 — 1/e)AX(S). O

According to Lemmal6, the computational complexity of Ald.3is O(nk? + m), which is
much faster than both ‘Com-Eigg)( (;)m)) and ‘Com-Eval’ O((})k?)).

Lemma 16. Efficiency of NetShield. The computational complexity of Alg3is O(nk? + m).
Proof: The cost of step 1 i®(m), and the cost of step 2 is constant. For steps 3-5, its co&tis.
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For each inner loop of steps 6-17, its cosbi&) + O(n - iter). Therefore, we have

k
cos{NetShield) = O(m)+ O(n)+ Z (n 4+ n -iter)
iter=1

= O(nk*>+m) (7.9)

which completes the proof. 0J

7.6 Experimental Evaluations

We present detailed experimental results in this sectidithé experiments are designed to answer
the following questions:

1: (EffectivenegsHow effective is the proposed BS) in real graphs?
2: (Efficiency How fast and scalable is the proposed NetShield?

7.6.1 Data sets

Table 7.2: Summary of the data sets

| Name | n | m |
Karate 34 152
AA 418,236 2,753,798

NetFlix 2,667,199 | 171,460,874

We used three real data sets, which are summarized in TablelThe first data setiarate)
is a unipartite graph, which describes the friendship antbeg34 members of a karate club at a
US university Fac77. Each node is a member in the karate club and the existenttee@ddge
indicates that the two corresponding members are frienderal), we haven = 34 nodes and
m = 156 edges.

The second data seAAd) is from DBLP? AAis a co-authorship network, where each node is
an author and the existence of an edge indicates the corabthdetween the two corresponding
persons. Overall, we have= 418, 236 nodes anan = 2, 753, 798 edges. We also construct much
smaller co-authorship networks, using the authors frony onke conference (e.gNIPS, SIGIR,
SIGMOD, etc.). For exampleNIPSis the co-authorship network for the authors in the ‘NIPS’
conference. For these smaller co-authorship networky, tthecally have a few thousand nodes
and up to a few ten thousand edges.

The last data seNetFlix) is from the Netflix prize! This is also a bipartite graph. We have two
types of nodes: user and movie. The existence of an edgeaitedithat the corresponding user has

Shttp://www.informatik.uni-trier.de/ ~ey/db/
*http:/lwww.netflixprize.com/
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Table 7.3: Evaluation on the approximation accuracy§ff Larger is better.
| k |['KDD’ | ICDM' [ ‘SDM’ | ‘SIGMOD’
1 |0.9519| 0.9908 | 0.9995| 1.0000
2 | 0.9629| 0.9910| 0.9984| 0.9927
5 ]0.9721| 0.9888 | 0.9992| 0.9895
10 | 0.9726| 0.9863 | 0.9987| 0.9852
20 | 0.9683| 0.9798 | 0.9929| 0.9772

rated the corresponding movie. Overall, we have: 2,667,199 nodes andn = 171, 460, 874

edges. This is a bipartite graph, and we convert it to a utiipagraphA: A = (1(3), ]3) , Where

0 is a matrix with all zero entries.

7.6.2 Effectiveness
Approximation quality of Br (S)

The proposed NetShield is based on &3)( That is, we want to approximate the first eigen-value
of the perturbed matrix byx andu. So first, let us evaluate how good this approximation is. We
construct an authorship network from one of the followingfevences:KDD’, ‘ICDM’, ‘'SDM’,
‘SIGMOD’. We then compute the linear correlation coefficient betwaeuiS) and Bi(S) with
several different values £ = 1,2, 5,10, 20). The results are shown in table3. It can be seen
that the approximation is very good - in all the cases, thedircorrelation coefficient is greater
than0.95.

Accuracy of NetShield

Here, we evaluate the accuracy of the proposed NetShield.thedarate graph, we use the
proposed NetShield to find a set bfnodes and check the corresponding eigen-drop (i.e., the
decrease of the first eigen-value of the adjacency matri¢) cévhpare it with ‘Com-Eigs’, which
always gives the optimal solutions (i.e., it returns thesatlthat leads to the largest eigen-drop).
We also plot { — %) of the eigen-drop given by ‘Com-Eigs’ (green dashed curvud)e result is
plotted in figure7.7. It can be seen that the proposed NetShielteiar-optimal it is always above

the green line((l — %) of the optimal solution) and often it is very close to the Hine (the optimal
solution).

Immunization by NetShield

The proposed ‘Vulnerability’ score of the graph is partiathotivated from the epidemic thresh-
old [CWW™07]. As a consequence, the proposed NetShield leads to a hiatananization strat-
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egy for SIS (suspectable-infection-suspectable) modelguarantine or delete the subset of the

SAccording to [CWW07), for SIR (suspectable-infection-recovered) model, iglemic threshold is also deter-
mined by\. Therefore, we expect that our NetShield can also immuriz&fR model.
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Figure 7.9: Evaluation of immunization of NetShield on tKarategraph ¢ = 0.01 andd =
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nodes detected by NetShield in order to prevent an epidemin breaking out. We compare
it with the following alternative choices: (1) picking a dom neighbor of a randomly chosen
node[CHbA91] (‘Aquaintance’), (2) picking the nodes with the highesgjen scoreai(i)(i =
1,...,n) (‘Eigs’), (3) picking the nodes with the highest abnormatitores fQCF0% (‘abnormal-
ity"), and (4) picking the nodes with the highest betweesrmntrality scores{re77(‘Bet’). For
each method, we delebaodes for immunization. The result is presented in figurés//™, which
are averaged over 10 runs. It can be seen that the propos8tibldtis always the best, - its curve
is always the lowest which means that we always have the ieesber of infected nodes in the
graph with this immunization strategy. Note that the blagkve (‘Original’) is the one without
any immunization strategy.

Case studies

Next, we will show some case studies to illustrate the dffeness of the proposed @) as a
‘Backboneness’ score of a subset of nodes.

Karate We start with theKarate network, which is widely used in social network analysis. In
figure 7.1, there are two different communities in the graph (shaded.first want to measure
the ‘Backboneness’ score for an individual node/membere fliist ten nodes with the highest
individual ‘Backboneness’ scores are labeled by their sgifide example, node 1 has the highest
‘Backboneness’ score, etc). The result is consistent withitions, - they are either the bridges of
the two communities (nodes 1, 3, 7 and 9), or the centers dbtte#¢ communities (nodes 5 and
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10 for the left community; nodes 2, 4, 6, and 7 for the right owmity). Notice that node 1 has a
higher score than node 2 although node 1 has a lower degmre@dicie 1. This is because node 1
is the bridge between the two communities; whereas nodehisdnter only for the nodes in the
right community.

Then, we want to measure the ‘Backboneness’ score for a geenf nodes/members. In
figure 7.11, the bestt = 5 nodes found by NetShield are shown in black. Again, the tesul
consistent with intuitions. It is interesting to notice tiiae best subset with nodes (nodes 1, 2,
3, 5 and 10) is different from the first 5 nodes with the highedividual ‘Backboneness’ scores
(nodes 1-5).

AA We run the proposed NetShield @A data set and return the best= 200 authors.
Some representative authors, to name a few, '@oelhakar M. Reddy’ ‘Wei Wang’ ‘Heinrich
Niemann’, ‘Srimat T. Chakradhar’, ‘Philip S. Yu’, ‘Lei Zhgh ‘Wei Li’, ‘Jiawei Han’, ‘Srini-
vasan Parthasarathy’, ‘Srivaths Ravi’, ‘Antonis M. Pastifa‘Mohammed Javeed Zaki’, ‘Lei L',
‘Dimitris Gizopoulos’, ‘Alberto L. Sangiovanni-Vincetite ‘Narayanan Vijaykrishnan’, ‘Jason
Cong’, ‘Thomas S. Huang’, etcWe can make some very interesting observations from the re-
sult: (1) There are some multi-disciplinary people in theute For example, Prof. Alberto L.
Sangiovanni-Vincentelli from UC Berkeley is interested‘diesign technology’, ‘cad’, ‘embed-
ded systems’, and ‘formal verification’; Prof. Philip S. Mo UIC is interested in ‘databases’,
‘performance’, ‘distributed systems’ and ‘data mining2) (Some people show up because they
are famous in one specific area, and occasionally have ameépers in a remotely related area
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Figure 7.11: Karatelata set: There are two communities (shaded). The top teeshaith the
highest individual ‘Backboneness’ scores are labeled by tlanks; the best = 5 nodes discov-
ered by NetShield are in black. Notice the agreement of tlsarh black nodes with intuitions:
removing them would severely disconnect the karate club

(therefore, bridging two remote areas). For example, Dm&r T. Chakradhar mainly focuses
on ‘cad’. But he has co-authored in a ‘NIPS’ paper. Therefbeeis critical to bridge these two
(originally) remote areas: ‘cad’ and ‘machine learning3) Some people show up because they
have ambiguous names (e.g., Wei Wang, Lei Li, Lei Zhang, Wegtic.). Take ‘Wei Wang’ as an
example; according to DBLPthere are 7 different ‘Wei Wang'’s. In our experiment, we tiadbof
them as one person. That is to say, it is equivalent to pustingrtificial ‘Wei Wang'’ in the graph
who is bridging 7 different ‘Wei Wang’s together. These 7 iWdang’s are in fact spread out in
quite different areas. (e.g., Wei Wang@UNC is in ‘data mghend ‘bio’; Wei Wang@NUS is in
‘communication’; Wei Wang@MIT is in ‘non-linear system§y’.

NetFlix. We also performed a case study on dhetFlix data set. Tablg.4 shows the best
k = 10 movies found by our NetShield algorithm. The resulting nesvare all popular movies
which are favored by different types of populations.

7.6.3 Efficiency

We will study the wall-clock running time of the proposed Skteld here. Basically, we want to
answer the following two questions:
1. (SpeedWhat is the speedup of the proposed NetShield over the Btriogvard methods
(‘Com-Eigs’ and ‘Com-Eval’)?
2. (Scalability)How does NetShield scale with the size of the graplaridm) andk?

Shttp://www.informatik.uni-trier.de/ ~ey/db/indices
la-tree/lw/Wang:Wei.html
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Table 7.4: The best = 10 movies fromNetFlix data set (Th&" columns is the number of Oscar
awards/nominations that the corresponding movie won.)

| Movie Title | Genre | Oscar |
Pirates of the Caribbean: Action;Adventure 5
The Curse of the Black Pearl Comedy;Fantasy
Forrest Gump Comedy;Drama;Romance 6
Lord of the Rings: The Fellowship of the Ring Action;Adventure;Fantasy 4
Lord of the Rings: The Two Towers Action;Adventure;Fantasy 2
Big Doll House Drama;Mystery;Thriller 6
The Shawshank Redemption Drama 7
The Green Mile Crime;Drama;Fantasy;Mystery 4
Independence Day Action;Thriller 0
Gladiator Action;Adventure;Drama 0
The Matrix Action;Thriller 4

For the results we report in this subsection, all of the expents are done on the same machine
with four 2.4GHz AMD CPUs and 48GB memory, running Linux (Xké&rnel). If the program
takes more than 1,000,000 seconds (more than 10 days), preustoing it.
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First, we compare NetShield with ‘Com-Eigs’ and ‘Com-EVaFigures7.12,7.13 7.14 and
7.15show the comparison on four real data sets. We can make tloaviiody conclusions: (1)
Straight-forward methods (‘Com-Eigs’ and ‘Com-Eval’) a@mputationally intractable even for
a small graph. For example, on tkaratedata set with only 34 nodes, it takes more than 100,000
and 1,000 seconds to find the best-10 by ‘Com-Eigs’ and by “‘Gwal’, respectively. (2) The
speedup of the proposed NetShield over both ‘Com-Eigs’ @uai-Eval’ is huge - in most cases,
we achieveseveral (up to 7) orders of magnitud@eedups! (3) The speedup of the proposed
NetShield over both ‘Com-Eigs’ and ‘Com-Eval’ quickly iases wrt the size of the graph as
well ask. (4) For a given size of the graph (fixedandm), the wall-clock time is almost constant
- suggesting that NetShield spends most of its running tme®mputing\ andu.

Next, we evaluate the scalability of NetShield. From figur&§ it can be seen that NetShield
scales linearly wrt bothh andm, which means that it is suitable for large graphs.

7.7 Related Work

In this section, we review the related work, which can begaieed into 2 parts: measuring the
importance of nodes on graphs and spectral graph analysish&related work on general graph

’Another possible heuristic is to delete one node with thiadstieigen-score(i) from thecurrentgraph; and we
repeat this proceduretimes. But this method is stilt times slower than NetShield and it is not clear how close the

resulting solution is to the optimal solution.
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mining, please refer to Chaptér

Measuring Importance of Nodes on Graphs.In the literature, there are a lot of node im-
portance measurements, including betweenness centraditii the one based on the shortest
path [-re77 and the one based on random walkejv0q, PageRank PBMW9d, HITS [Kle98).
A remotely related work is the abnormality score of a givedenfr QCF0%. Our ‘Backboneness’
score isftundamentallydifferent from these node importance scores, in the semgehayall aim
to measure the importance of an individual node; wherea®Baakboneness’ tries toollectively
measure the importance of a setkofiodes. Even in the special casekof= 1, the existing node
importance measurements all have subtle issues and ocatigidisagree with intuitions, as we
showed in Sectiof.4, despite the fact that all these measures are successthefgoal they were
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originally designed for. Moreover, several of these imance measurements do not scale up well
for large graphs, being cubic or quadratic wrt the numberaafesn, even if we use approxima-
tions (e.g., /WO08]). In contrast, the proposed NetShield is linear wrt the banof edges and
the number of nodegX(nk? + m)).

Spectral Graph Analysis. Pioneering works in this aspect can be traced back to Fisdler
seminar work fie7d. Since then, spectral graph analysis has been a very heanas topic.
Representative works includ&[197, NJW01, ZHD 01, DLJ0{, etc. All of these works use the
eigen-vectors of the graph (or the graph Laplacian) to finghroanities in the graph. In con-
trast, relatively less works explore the strength of thespen (i.e., eigenvalues) in graph mining.
The two related works which motivate the adoption\ads ‘Vulnerability’ measure are (1) epi-
demic threshold- of a graph C\WW+07], where under a flu-like epidemic model, the authors
in [CWW™07] show thatr is only determined by the first eigen-value of the adjaceneyrim
and (2) triangle countingi[s00g, where the authors shows that the numbers of the triangliei
graph is totally determined by its spectrum. The proposadn®fability’ measure of the graph
also relates to the second smallest eigenvalue of graplatiapl (known as graph algebra con-
nectivity). There are two reasons why we eventually do netgraph algebra connectivity as our
‘Vulnerability’ measure: (1) implicitly, the second smeadk eigenvalue of graph Laplacian mea-
sures the separability of the graph if we assume there areawomnunities in the graph (i.e., how
these two communities are connected with each other); \abaref the adjacency matrix does not
have such an assumption; (2) computationally, it is uncldsether or not we can develop similar
scalable algorithms (i.e., linear wrt the size of the graplf)nd a subset of nodes whose absence
creates the maximum change of graph algebra connectivity.

7.8 Conclusion

We studied the ‘Vulnerability’ of large real graphs in thisapter. Our main contributions are

1. A novel ‘Vulnerability’ measurement\j for the graph, motivated from immunology and
graph loop capacity;

2. A novel definition of ‘Backboneness’ score(B for a set of nodes, by carefully using the
results from the theory of matrix perturbation;

4. A near-optimalandscalablealgorithm (NetShield) to find a set of nodes with the highest
‘Backboneness’ score, by carefully using the results froentheory of sub-modularity.

5. Justifications, proofs and complexity analysis, showthmg intuitions, accuracy and effi-
ciency of the proposed methods.

6. Extensive experiments on several real data sets, shahengffectiveness and efficiency of
the proposed methods. For the effectiveness, our methddsad to an effective immu-
nization strategy, and (2) always give the mining resultsciviare consistent with human
intuitions. For the efficiency, our algorithm (1) achievegg#icant speed-up over straight-
forward solutionsifp to 7 orders of magnitude speeduand (2) is scalable for large graphs
(linear wrt the size of the graph).
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A promising research direction is to parallelize the curraethod (e.g., using Hadoop).
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Mining Dynamic Graphs
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Chapter 8

Anomaly Detection

Summary of This Chapter
- Questions we want to answer:
Q: Given a large graph, how to summarize it and find anomalies?
- Our answers and contributions

A: We proposed a family of novel, low rank approximation nueth for static and
dynamic graphs, which is provably equal or better comparéhl thve best known
methods in the literature, with the same accuracy.

8.1 Introduction

Graphs appear in a wide range of settings, like computerorksythe world wide web, biological
networks, social networks and many more. How can we find pestes.g. communities and
anomalies, in a large sparse graph? How can we track sudrmmf interest if the graph is
evolving over time?

A common representation of a graph is a matrix, such as aceug matrix for a unipartite
graph where every row/column corresponds to a node in thghgiand every non-zero entry is
an edge; an interaction matrix for a bipartite graph whevesrand columns correspond to two
different types of nodes and non-zero entries denote edgesbn them.

Naturally, low-rank approximations on matrices providevedul tools to answer the above
questions. Formally, a rankapproximation of matrixA is a matrixA whereA is of rankc and
|A — Al| is small. The low-rank approximation is usually presente ifactorized form e.g.,
A = LMR whereL, M, andR are of ranke.

Depending on the properties of those matrices, many diftexpproximations have been pro-
posed in the literature. For example, in SVD\[L89], L. andR are orthogonal matrices whose
columns/rows are singular vectors amtis a diagonal matrix whose diagonal entries are singular
values. Among all the possible rarlkapproximations, SVD gives the best approximation in terms
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of squared error. However, the SVD is usually dense, evdrwibtiginal matrix is sparse. Further-
more, the singular vectors are abstract notions of besboottmal basis, which is not intuitive for
the interpretation.

Recently, alternatives have started to appear, such as CURI)5b] and CMD [SXZF07,
which use the actual columns and rows of the matrix to fbramdR.. We call thesexample-based
low-rank approximationsThe benefit is that they provide an intuitive as well as spegpresenta-
tion, sincelL andR are directly sampled from the original matrix. However, #pproximation is
often sub-optimal compared to SVD and the malvixs no longer diagonal, which means a more
complicated interaction.

Despite of the vast amount of literature on these topics,afriee major research challenges
lies in the efficiency: (1) for a static graph, given the dediapproximation accuracy, we want to
compute the example-based low-rank approximation witHgast computational and space cost;
and (2) for a dynamic graphwe want to monitor/track this approximation efficientlyeotime.

To deal with the above challenges, we propose the famiyadibri methods. Adjacency ma-
trices for large graphs may contain near-duplicate colurikos example, all nodes that belong to
the same closed and tightly-connected community would tleveame sets of neighbors (namely,
the community’s members). CMD addresses the problem ofchiplelimination. However, even
without duplicates, it is still possible that the columnslofre linearly dependent, leading to a
redundant representation of the approximating subspauehwastes both time and space. The
main idea of our method for static graphao(ibri-S) is to eliminate linearly dependent columns
while iterating over sampled columns to construct the sabsused for low rank approximation.
Formally, the approximatiod = LMR whereL consists of judiciously selected columné]
is an incrementally maintained core matrix, dds another small matrixColibri-Sis provably
better or equal compared to the best competitors in thatitez, in terms of both speed and space
cost, while it achieves the same approximation accuracgdttition, we provide an analysis of the
gains in terms of the redundancy present in the data. Funtbrer, our experiments on real data
show significant gains in practice. With the same approxmnaccuracyColibri-Sis up to 52«
faster than the best known competitor, while it only regaimbout 1/3 of the space.

For dynamic graphs, we propo€elibri-D. Again, for the same accuradgplibri-D is prov-
ably better or equal compared to the best known methodufiimay our ownColibri-S) in terms
of speed. The main idea @olibri-D is to leverage the “smoothness”, or similarity between two
consecutive time steps, to quickly update the approxirgairbspace. Our experiments show that,
with the same accuracgolibri-D achieves up to 112 speedup over the best published competi-
tor, and is 5 times faster tha@olibri-S applied from scratch for each time step.

The main contributions of this chapter are summarized dovst

e A family of novel, low rank approximation method€glibri-S, Colibri-D) for static and
dynamic graphs, respectively;

e Proofs, and complexity analysis, showing our methods aregtnly equal or better compared
to the best known methods in the literature, for the sameracgu

e Extensive experimental evaluation, showing that our nedhere significantly faster, and

1In this paper, we use ‘dynamic graphs’ and ‘time-evolvinggirs’ interchangeably.
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nimbler than the top competitors. See Fig@é for an example of the time and space
savings of ouColibri-S over CUR and CMD $XZF07.

CUR CUR
100% -

80% -

60% -

40% -

CMD

20% -
CMD

Coribri-S
Coribri-S

0% -
Time Space

Figure 8.1: Colibri-S is significantly more efficient than both CUR and CMD in ternishoth
speed and space. Note that all these methods lead to the ppma&ienation accuracy. Both speed
and space cost are normalized by the most expensive oné€UR in both cases).

The rest of this chapter is organized as follows: we intredootation and formally define
the problems in SectioB.2. We present and analyze the proposgzalibri-S and Colibri-D in
Section8.3.3and SectiorB.4.2 respectively. We perform some case studies in Se&ibr2and
provide experimental evaluation in Secti8r6.3 We review the related work in Sectidh?7.
Finally, we conclude in Sectio®.8.

8.2 Problem Definitions

Table 8.2 lists the main symbols we use throughout the chapter. Inctegter, we consider the
case of bipartite graphs. Uni-partite graph can be viewetdlsggecial case. We represent a general
bipartite graph by its adjacency maftixollowing the standard notation, we use capital letters fo
matrices (e.gA), arrows for vectors (e.gi;), and calligraphic fonts for sets (e.g). We denote
the transpose with a prime (i.€\, is the transpose dk), and we use parenthesized superscripts to
denote time (e.gA® is the time-aggregate adjacency matrix at tihé/Vhen we refer to a static
graph or, when time is clear from the context, we omit the sag®t (¢). We use subscripts to
denote the size of matrices/vectors (eAg,.; means a matrix of size x [). Also, we represent the
elements in a matrix using a convention similar to Matlaf,,&\ (i, j) is the element at th&" row

2In practice, we store these matrices using an adjacencgfisesentation, since real graphs are often very sparse.
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Table 8.1: Symbols

| Symbol | Definition and Description |
A,B,... | matrices (bold upper case)
A(i,j) | the element at thé" row and;*" column of matrixA
A(i,:) | thei’ row of matrix A
A(:,j) | thej™ column of matrixA
A’ transpose of matriA
a@.b,... |column vectors
Z,J,... | sets (calligraphic)
A® n x [ time-aggregate interaction matrix at tirhe
6§t) the j*" column of A®), i.e.,ay) =AD(, 9)
7 indices for columns sampled: = {i1, ..., .}
n, [ number of for type 1 and type 2 objects, respectively
c sample size. i.e. the number of columns sampled
Cg) n x c initial sampling matrix, consisting af columns
from A®. i.e.,C{" = AO(: T)
m” number of edges i€} at timet

and;'" column of the matrixA, andA (:, j) is the;"™ column of A, etc. With this notation, we can
define matrixCy, asCy = A(:,Z) = [A(:,41), ..., A(:,7.)]. In other wordsC, is the sub-matrix of
A by stacking all its columns indexed by the ge¥Vithout loss of generality, we assume that the
numbers of type 1 and type 2 objects (corresponding to rod€alumns in the adjacency matrix)
are fixed, i.e.n and/ are constant for all time steps; if not, we can reserve ravisens with zero
elements as necessary.

At each time step, we observe a set of new edges, with assd@dge weights. While there
are multiple choices to update the adjacency matrix (eidingl window, exponential forgetting
etc), we use global aggregation for simplicity: once an exjggears at some time steghe corre-
sponding entry of the adjacency matrix is updated and the edigever deleted or modified. This
assumption facilitates presentation, but our methods aturally apply to other update schemes.

With the above notations and assumptions, our problemse#&orimally defined as follows:
Problem 10. (Static Case.).ow rank approximation for static sparse graphs
Given: A large, static sparse grapA,,;, and sample size

Find: Its low-rank approximation structure efficiently. That isyd three matriced., .z, Mzy:,
andR;,; such thatA,,; ~ L,,«:M;:.:R:x;, Wheree < c.

Problem 11. (Dynamic Case.).ow rank approximation for dynamic sparse graphs
Given: A large, dynamic sparse graph(t) fort =1,2,..., and the sample size

nxl?

Track: Its low-rank approximation structure over time efficientljhat is, to find three matrices
L® M®, andR® for each time step such thatA”), ~ L ™"  RY  where

nx &) T TE) () T Ed)
e < ¢,
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8.3 Caolibri-Sfor Static Graphs
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Figure 8.2: A pictorial comparison for different method® donstruct the same subspace, SVD
will use all the data points (dark ones); CUR will use a sulo$etata point with possibly a lot
duplications (the number besides the arrow is the numbeuptichte copies); CMD will remove
the duplicate the columns in CUR; and dDolibri-S will further remove all linearly dependent
columns which is most efficient in both speed and space. kgstiative purpose, we set the
approximation accuracy of each method to be always 100%sreample.

In this section, we address Problé®and introduce ou€olibri-Sfor static graphs. After some
necessary background in subsectioB.1, we present the algorithm in subsecti®®i.2 followed
by the proofs and complexity analysis in subsecBdh 3
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8.3.1 Preliminaries

Here, we want to decompose the adjacency marjx; of a static graph into three matricds, . ;,
M:xz andRe;. The goal is to achieve a good balance between efficiency ppb@mation
quality. For the quality, we wanA = LMR to approximate the original adjacency matAx
as well as possible. Throughout the paper, we use the Fradbenrm ofA — A to measure the
approximation error. As for efficiency, we want to (1) keep thatriced. andR small ¢ < ()
and sparse, to save space; and (2) compute the decompeosit@minimal running time.

The best known methods to achieve such balance are CURID5b] and its improved ver-
sion, CMD [SXZF07. The key idea behind CUR and CMD is to sample some columnA of
with replacement, biased towards those with larger néransd then to use the projection of the
original adjacency matriXA into the subspace spanned by these sampled columns as thenllow
approximation of the matriA. As shown in PKMO5b], such procedures provably achieve an
optimal approximation. Additionally, the matricksandR by CUR/CMD are usually very sparse,
thus the CUR/CMD decomposition is shown to be much faster si@ndard SVD.

8.3.2 Algorithm

Our algorithm shares the same high-level principle as CURGMD. That is, we want to sample
some columns of the matriA and then projec into the subspace spanned by these columns.
As we show later, our method achieves exactly the same ajppatinn accuracy as CUR/CMD,
but it is equal or better compared to CUR/CMD in terms of bqtace and time.

If we concatenate all the sampled columns into a maftix we can useC,(C;,C,)'C,A
as the approximation of the original adjacency matixwhere (C{C,)' is the Moore-Penrose
pseudo-inverse of the square maw@yC,.

However, the sampled columns @y may contain duplicates (or near duplicates)—for exam-
ple, all nodes that belong to the same closed and tightiyecied community would have the
same sets of neighbors (namely, the community’s membeMp €ssentially performs duplicate
elimination. However, more generally, the columng®fmay be unequal but linear dependences
may still be present. In other words, the columnggfform aredundantor overcompletdasis.
This is clearly not efficient in terms of space. Moreover, € lkeep these redundant columns, we
have to estimate the pseudo-inverse of a larger matrix, twadversely affects running time as
well.

The heart ofColibri-Sis to iteratively construct the desired subspace, elireittase redundant
columns in the process. Algorithfidl shows the full pseudocode.

There are three stages in algoritd@ First (steps 1-2), we samptecolumns of matrixA
with replacement, biased towards those with higher norregtly as CUR does (first step in Fig-
ure.8.3). Then, we try to select linearly independent columns framinitially sampled columns
and build theM matrix (referred to as the “core matrix”): after an initadtion step (step 3), we
iteratively test if a new columr (:, i) is linearly dependent on the current columnd.ofsteps
5-7). If so, we skip the columm (:, ;). Otherwise, we append (:, i) into L and update the

3In [DKMO5b, SXZF07, the authors also suggest simultaneously sampling cadtand rows. Our method can be
naturally generalized to handle this case. For simplieiyfocus on sampling columns only.
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Algorithm 14 Colibri-Sfor Static Graphs
Require: The adjacency matriA,, .;, tolerance:;, and the sample size
Ensure: Three matriced,,, .z, Mzxz andR;,;, wheree < c.
1: Compute column distribution far = 1, ..., 1: P(z) = >, A(i,x)?/ 32, A3, §)*
2: Samplec columns fromA based orP(x). LetZ = {i1, ..., i.} be the indices of these columns.
3: Initialize L = [A(:,41)]; M = 1/(A(:,41) - A(:,11))
4: fork=2:cdo
Compute the residualés = A(:,ix) — LML'A(:, i)
if [|rés|| < el|A(:, )] then
Continue;
else
Compute:d = ||rés||?; andy = ML/A(:, i)
M+ y'y/6  —y/d
—7/5 1/6 )

© @ NoT

10: Update the core matrivl: M «— (

11: ExpandL: L « [L, A(:, )]
12 endif

13: end for

14: ComputeR = L/A.

core matrixM (steps 9-11). Note that if the new colun{(:, i;) is linearly independent wrt the
current columns irL. (i.e., if ||rés|| > ¢||A(:,ix)||), we can use the residuafs computed in step
5 to update the core matrixI in step 9. Conversely, we use the core malvixto estimate the
residual and test linear dependence of the new column (3tefm 3his way, we simultaneously
prune the redundant columns and update the core matrix. aghetep in Figure3.3 shows the
final L obtained after eliminating the redundant columns fi©gm Finally, we define th& matrix
to bel/A.*

8.3.3 Proofs and Analysis

Here we provide the proofs and the performance analysiotbri-S. We also make a brief com-
parison with the state-of-art techniques, such as CUR/CMD.

Proof of Correctness forColibri-S

We have the following theorem for the correctness of Alg.

Theorem 6. Correctness ofolibri-S. Let the matrixC, contain the initial sampled columns from
A(i.e. Cy = A(:,7)). With tolerance: = 0, the following facts hold for the matricdsand M in
Alg. 14:

“Note that whileL is sparse since it consists of a subset of the original cotufrom A, the matrixR. is the
multiplication of two sparse matrices and is not necessaplarse. In order to further save space, we can use a
randomized algorithmjJKMO05z2] to approximateR. This can be naturally incorporated into Altd. However, it is
an orthogonal to what we are proposing in this paper. Forlgiihp we will use R = L’ A throughout this paper.
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P1: the columns oL are linearly independent;
P2: L shares the same column spacd&as
P3: the core matriXM satisfiesM = (L'L)~.

Proof. First, we will prove ‘P3’ in Theorent by induction. The base case (step 3 of Alg) is
obviously true.

For the induction step of ‘P3’, let us suppose that§1)= (L/L)~! holds up to the:!"(2 <
k, < c) iteration; and (2)L will be expanded next in the)" iteration ¢; < ky < ¢).

LetL = (L A(:,ix,)). We have

Ui = () % ([ AG)

_ L'L L/A(:7ik2)
N <A(:’ik2)/L A(:vik2)/A(:7ik2)) (81)

M+ gy/6 /o
-4/ 1/6
SinceM = (L'L)~! by inductive hypothesis, it can be verified thak is the residual if we
project the columm (:, ix,) into the column space df. Based on the orthogonality property of
the projection, we have

DefineM = ( ) wherey andj are defined in Algl4.

§ = |rés|?
= 7rés'(rés + LML/A(:, i,))
= rés’A(:, i) (8.2)

Now, applying the Sherman-Morrison lemniafo( to the matrixL'L in the form of eqs.],
based on ed.2, we can verify thaM = (I/L)~* holds, which completes the proof of ‘P3".

Next, let us prove ‘P1’ in Theorerd by induction. Again, the base case for ‘P1’ is obviously
true (step 3 of Alg14).

For the induction step for ‘P1’, let us suppose that (1) a#l dolumns inL,,.. are linearly
independent up to the!" iteration(2 < ¢ < k; < ¢); and (2)L will be expanded next in the
ki iteration ¢, < ko < c). We only need to prove thak(:,1,)) is linear independent wrt the
columns in the currerit matrix.

By ‘P3’, the rés computed in step 5 is the exactly the residual if we projeet ¢blumn
A(:,ix,)) into the column space spanned by the curdernatrix. Since we decide to expand
L by A(:,i,)), with tolerance = 0, it must be true that the residual satisfies > 0 (step 8). In
other words, the columA.(:, i, )) is not in the column space &f.

Now, suppose thaA (:,ix,)) is linearly dependent to the columns in the curfemhatrix. The
columnA(:, i, )) must lie in the column space &f This is contra-positive, which completes the
proof of ‘P1".

Finally, from ‘P1’, for each columm € {Cy, — L} (steps 5-7 of Alg14), there must exist a
vectord = (4, ..., :)) = ML/, such thati = L holds. In other words} must be in the column
space olL.. Therefore, removing the columifrom L will not change the column spacebf This
completes the proof of ‘P2’. O
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Notice thatColibri-Siteratively finds the linearly independent set of columna. (ithe matrix
L). For the same initially sampled columnS), it might lead to a differenL. matrix if we use
a different order in the index st However, based on Theorem 1, this operation will not affect
the subspace spanned by the columns of the mhtgince it is always the same as the subspace
spanned by the columns of the mat€. Therefore, it will not affect the approximation accuracy
for the original matrixA.

Efficiency of Colibri-S

We have the following lemma for the speed of Algl.

Lemma 17. Efficiency ofColibri-S. The computational complexity to outguk andL in Alg. 14
is bounded byO(cc* + cm), whereé, m are the number of columns and edges in the mdtrix
respectively; and is the number of columns i@,.

Proof. In the k" iteration of Alg. 14, suppose there afecolumns andhn edges in the matrik..
We havek < k andm < 7.

We assume thdt and A are stored as adjacency lists, since they are spars@/asdtored as
a full matrix, since it is usually dense. With this storageriat, it is easy to verify that the cost of
the k" iteration (ignoring constant factors) of Alg4 s k2 + 7.

Let us first consider the time cost for all theseolumns inL. Notice that each time we expand
one such column, the size B will increase by exactlyi x 1. Therefore, the total running time
(again, ignoring factors) for expanding these columns ig. Al is:

[

time, = Z (K + )

IA
7

—I_I\D
E

< Z(ﬁ)%m)
= O(& +om) (8.3)

Next, let us consider the time cost for all theése- ¢) redundant columns. For each of those
columns, we havé < ¢andm < m. Therefore, the total running time for eliminating thése ¢)
columnsiis:

[

timey, = Z (];‘2 +m)
kZQ,A(:,ik)G{Co—L}
< D (& +m)
=1
= O(ct® =&+ (c—&)m) (8.4)
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Putting eq8.3and8.4together, we get that the total running time for steps 4—-18lgf 14 is:

time = time; + timey

= O(cé* + cm) (8.5)

which completes the proof of LemniZ. 0J

Comparison with CUR/CMD

Next we compar€olibri-Sagainst the state-of-art techniques, i.e. CUR}05b] and CMD [SXZF07.
We compare with respect to accuracy, time and space cost.

Lemma 18 (ACCURACY). Using the same initial sampled colum@g, Alg. 14 has exactly the
same approximation accuracy as CURHMO5H and CMD [SXZFOT.

Proof. DefineA asA = LMR. By Theoremg, the matrixA satisfiesA = L(L'L)"'L/A. In
other words A is the projection of the matriA into the column space d. On the other hand,
by Theoren®b, the matrixL has the same column spaces e, A= Cy(CyCy)'C} A, which
is exactly how CUR/CMD [DKMO05b, SXZF07 tries to approximate the original matrix. [

Lemma 19(SPACE) Using the same initial sampled colum@g, Alg. 14 is better than or equal
to CUR in [DKMO5H and CMD in [SXZFOTin terms of space.

Proof. Notice thatL is always a subset &,. On the other hand, if there exist duplicate columns
in Cy, they will appear only once ii. 0J

Lemma 20(TIME). Using the same initial sampled colum@g, Alg. 14 is faster than, or equal
to CUR ([DKMO5H) and CMD ([SXZFOT).

Proof. By Lemmal7, the computational complexity of Alg.4 at the worst case is the same as
the original CUR method in(jKM05h] (O(cm) for multiplying C{, and C, together; and)(c?)

for the Moore-Penrose pseudo-invers€®iC,. Also notice that < ¢ andm < m). On the other
hand, if there exist duplicate columns@, we can always remove them before step 3 in Mg.
and then CMD in §XZF07 will degenerate to CURIPKMO5D]. O

In particular, the complexity is proportional to the squaf¢he “true” dimensionality: of the
approximating subspace. Since, as we shall see in the exgraal evaluation, in real dataseéts
is significantly smaller than, this translates to substantial savings in computatioe tswell as
space.

INTUITION. The intuition behind the above proofs and savings is shovigare8.2, which
gives a pictorial comparison of o@olibri-S with SVD/CUR/CMD. Figure8.2 shows that: (1)
SVD (Figure8.2(a)) uses all data points (dark ones) and the resultingatrix is dense. (2) CUR
(Figure8.2(b)) uses sampled columns (dark ones) but there may be mantigate columns (the
number next to each arrow stands for the multiplicity) Theuteng L matrix of CUR is sparse but
it has totally 16 columns. (3) CMD (Figu&2(c)) removes the duplicate columns in CUR and the
resultingLL (with 6 columns) is more compact. (4) OGolibri-S (Figure8.2(d)) further removes
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Figure 8.3: lllustration of notation and process @uolibri-S. Shaded columns are part of initial
sample, dark shaded columns are linearly independent athosg.

all the linearly dependent columns and the resullingnly contains 2 sparse columns. Therefore,
while all these four methods leads to the same subspaaéyri-S is most efficient in both time
and space.

8.4 Caolibri-D for Dynamic Graphs

In this section, we deal with Probleii and propos€olibri-D for dynamic, time-evolving graphs.
Our goal is to find the low rank approximation structure of dldgacency matrix at each time step
t efficiently. As for static graphs, we first give the algoritimsubsectior8.4.1and then provide
theoretical justification and analysis in subsectiof2

8.4.1 Algorithm

Conceptually, we could call AldL4 to output the low rank approximation for each time stem
this way, we will have to compute the core mathik, which is the most expensive part in Aliy,
for each time step from the scratch. On the other hand, if thplgchanges “smoothly” between
two consecutive time steps (i.e., the number of affecte@edgreasonably small) then, intuitively,
we do not expect its low rank approximation structure to ¢geatramatically. This is exactly the
heart of ourColibri-D. We want to leverage the core matiA() to quickly get the core matrix
M+ in the next time step, given that the graph changes “smdbiifign time stept to (¢ + 1).

For simplicity, we assume that the indices of the initial péed columnsC((f) are fixed. That
is, we will fix the index sef = {i,, ..., .} over time, and we will always use the projection of the

adjacency matrixA ® in the columns space &.” = A®(:, 7) as the low rank approximation of
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A® for each time step Note that even if we use the same initial column indices cthetent of
matrix Cg) keeps changing over time and so does the subspace it spango&bis to efficiently
update the non-redundant basis for the subspace spannbd bgltmns ngt) over time. Note
thatin Figure8.4, the column indices dTJ((fH) are exactly the same as those@ff‘) in Figure.8.3.
However, in this example, the contents of columns 3/ar® have changed.

The basic idea of our algorithm for dynamic graphs is as valoonce the adjacency matrix
A at time step(t + 1) is updated, we will update the matr(Z((f“). Then, we will try to
identify those linearly independent columié+!) within C/™ as well as the core matrix(+1),

To reduce the computational cost, we will leverage the catimfrom the current time stelpl®
to updateL*1 as well asM(“*+Y instead of computing them from the scratch. Finally, we wil
update théR matrix asR(‘+1) = L+ A+,

Next, we will describe how to updafie“t!) andM®*1 at time stept + 1. At time stept,
we might find some redundant columnsﬁlﬁt) which are linearly dependent wrt the remaining
columns ianf). In Figure.8.3, these were columns 4 and 9. We split the indiceZseto two
disjoint subsets7 ) andK®, as shown in Figure8.3. We require tha = 7® UK®, andL® =
A®(:, 7®). In other words,7® corresponds to those columns@j}” that are actually used to
construct the subspace; akif) corresponds to those redundant column@ﬁﬁ. Notice that even
though we fix the index séf over time, the subsetg® and®) change over time. Updating the
matrix L) is equivalent to updating the subsgt). To simplify the description of the algorithm,
we further partition7® into two disjoint subsets” and.7,"”, such that7® = 7" U 7. We
require thatA® (-, 7.7y = A, 75, and AO(;, 7Y £ A (. 79). In other words,
T corresponds to those unchanged columnk iinom ¢ to (¢ + 1), while jb(t) corresponds to
those changed columns frofro (¢ + 1). These sets are shown in FiguBe4 on the left: notice
that their union iZ® from Figure.8.3.

With the above notations, the complete pseudocode to uguatew rank approximation from
time stept to (¢ + 1) is given in Alg.15.

Comparing Alg.15 with its static version (Algl4), the main differences are (1) we do not
need to test the linear dependence and build our core matmm the scratch if the subsgf,
is not empty (steps 3-9), since the columngjinare guaranteed to be linearly independent; (2)
furthermore, if the change if is relatively small (i.e. | T |>| jb(t) ), we do not need to
initialize our core matrixM (Y from the scratch. Instead, we can leverage the information i
M® to do fast initialization (steps 6-8). These strategiesyiide shown in the next subsection,
will dramatically reduce the computational time, while tlkole algorithm will give exactly the
same low rank approximation as if we had called Algfor time step(¢ + 1). After we initialize
the core matridM(“+1) (after step 9), we will recursively test the linear deperdsior each column
in K and 7" and possibly incorporate them to expand the core matkk), which is very
similar to what we do for the static graphs in Algt.

In our running example of Figur&.3and8.4, since columns 7 and 10 were linearly indepen-
dent at timet and they have remained unchanged, we can safely initikliZz&) to include these.
However, since columns 3 aid- 2 have changed, we need to re-test for linear independence. In

SHow to update the indices s&tover time is beyond the scope of this paper.
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Algorithm 15 Colibri-D for Dynamic Graphs

Require: The adjacency matriceA® and A**tY, the indices sef = J® U K®, tolerance,
and the core matrid1®) at time stept

Ensure: Three matriced.*™!), M+Y andR+Y; and updated indices partitich= 7" U
IC(Hl).

1: Set7.” and 7" based om ) and A (+1);

2: Initialize LY = A(:, 74, K = 7P U KO

3 if | 7 |<| 7 | then

4:  Compute:M+D = (LEHDLE+D)~1

5: else

6:  Compute:A = MO (7", 7)1

7. Compute:A = MO (7 7 AMO (71, 78

8 ComputeM®+1) = M® (7 79y — A

9: end if

10: for each index: in K do

11:  Compute the residuates = A (k) — LEFDMEDLED ACD (2 k)
12 if ||r@s| < | AC(, k)| then

13: Continue;

14: else

15: Compute:d = ||rés||?; andyy = MUEFDLED ACHD(: F)

. N (E+1) - t+1 M(t+1) + ?7?]/6 _?7/6
16: Update the core matrixI(+D: M+D ( 75 1/ )
17: ExpandL(+D: LEHD  [LEHD - ACHD(: )]

18: endif
19: end for

20: ComputeR 1) = L+ A (D)
21: Update7 “+1 and 1),

this example, it turns out that 3 is still linearly indepentjevhereag — 2 is not any more. Addi-
tionally, some of the columns that were previously excludsdinearly dependent (e.g., 4 and 9)
may now have become linearly independent, so we need taréhtese as well. In this example,
it turns out that they are still redundant.

8.4.2 Proofs and Analysis
Correctness ofColibri-D
We have the following lemma for the correctness of Alg.

Lemma 21. Correctness ofColibri-D. Let the matrixC, contain the initial sampled columns from
A (i.e. Cy = AUV(: 7)), With tolerance: = 0, the following facts hold for the matrices
LD and M+ in Alg. 15:

152



P1: the columns oL*Y are linearly independent;
P2: L+ shares the same column space(a)s ,
P3: the core matridM*+! satisfiegM(+1) = (LEFD' L)1

Proof. : For ‘P3’, the proof is the same as the proof of ‘P3’ in Theorgm

For ‘P1’ we prove it by induction. First (base case), notteatL(‘*") in step 2 is a subset of
L®, according to Theorerf, the columns irL.**?) must be linear independent with each other.
Then, for the induction step (the same procedure as the pfoBi.’ in Theorem6), we can show
that every time we expard®*!) (steps 15-17), the new column must be linearly independiht w
the curreniL+), Therefore, the columns ib**+Y is always linearly independent with each other.

For ‘P2’, by the proof of ‘P1’, we know that for each colunarwhich we skip (steps 11-13),
it can be expressed as a linear combination of the currentrowd inL“+). In other wordsy is
linearly redundant with respect Id**"). Therefore C, andL(*") share the same column space,
which completes the proof. 0J

By LemmaZ21 and Theorens, the three matricef.**?, M(+1) and R*+Y) produced by
Alg. 15 are exactly the same as if we had called Ald.for time step(t + 1) from the scratch.
Therefore, we have the following corollary:

Corollary 7. Using the same index sétof initial sampled columns for all time steps, Alg has
exactly the same approximation accuracy as Alg.CUR [DKMO5H and CMD [SXZFOT.

Efficiency of Colibri-D

Since the three matricds“t"), M1 andR+Y by Alg. 15 are exactly the same as if we had
called Alg.14 for time step(t + 1), we have the following corollary for the space cost of Al§:

Corollary 8. Using a fixed indices séft of initial sampled columns, the space cost of Alf.s
the same as Ald.4 and it is equal or better compared to CUREMO5H and CMD [SXZFOT.

We have the following lemma about the speed of Alg.

Lemma 22. Efficiency of Colibri-D. Letr; =| J” |, r, =| 7" | andrs =| K® |. The
computational complexity of Alg5is bounded by) (max(ry, ra,75)° + (ro + r3)m*), where
m**1) is number of edges in the matdix‘*+Y.

Proof. : The cost of steps 1-2 is constant. The cost of steps 3%isax(r,, 75, 73)°). For the cost

of steps 10-19, we can show that (same as the proof of Letmmi is O((r,+r5)m**V). Putting
them together, we have that the total cost of Alfjis O (max(ry, 12, 73)° + (5 +75)m+D), which
completes the proof. O

In terms of speed, the difference between Alg.and Alg.14 lies in the different way of ini-
tializing the matrixM*+1) (steps 3—-9 of Alg15). More specifically, ifr; < r,, the computational
cost for initializingM®+1) is asymptotically the same for both algorithms—both arte;@ On
the other hand, if; > r, we only need)(r?r,) for Alg. 15 while Alg. 14 still requiresO(r3).
Based on this fact as well as Lemrh@ we have the following corollary.
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Figure 8.4: lllustration of notation and process €wlibri-D—compare with Figure3.3. Shaded
and dark shaded columns as in Figue, shaded and filled columns are those from the previous
timestep that contain at least one new entry.

Corollary 9. Using a fixed sef of initial sampled columns, the running time of Ald is equal
or better compared to Ald.4, CUR [DKMO5H and CMD [SXZFOT.

To summarize, if we fix the index sét of initial sampled columns for all time steps, the
proposed Alg.15 will produce the low rank approximation at each time stepith the same
accuracy as CUR/CMD and our own Algy for static graphs. For both speed and space cost, it is
always equal or better than CUR/CMD as well as our Alg.

8.5 Applications: Case Studies

As mentioned before, low rank approximations constituteaegyful tool to mining both static
and dynamic graphs. Notice that our algorithms can achleyesame approximation accuracy as
CUR/CMD. Thus, in principle, we can do whatever CUR/CMD canahly that our methods will
probably be much faster and nimbler. Next, we present twagkes as case studies: community
tracking (subsectiof.5.1) and anomaly detection (subsecti®®.?).

8.5.1 Community Tracking

The low rank approximation of the adjacency mati%) often reveals the community structure in
the graphs. Therefore, by tracking the low rank approxiomatif A*) over time ¢ = 1,2,...), we
can monitor the community structure (see Figars).

There are numerous graph partitioning and community deteelgorithms. We believe that
several of them would benefit from a good, low-rank approxioma To illustrate the ability of
Colibri to find and monitor communities, among the many choices, welgorithm16. Here we
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applyColibri-D to a sequence of the adjacency matrikesfor each time step > 1. Note that, in
contrast to CUR/CMD, the columns Id? are linearly independent, which serve as basis vectors.
The projections onto the basis vectors give us the low-dgioeal feature vectors for each nodes,
aka the columns aM L. We then perform k-means on them to generate the clustezsgtr

Algorithm 16 Community Tracking over Time
Require: The adjacency matriA® (¢t = 1,2, ...), sample size ands
Ensure: The community at each timefor the given graph.

1. fort=1,2,...do

2. ift == 1then

3: set the low rank approximation fax' by Alg. 14. Let the output of Alg14beL®  M®

andR®;
else

Update low rank approximation fak! by Alg. 15. Let the output of Alg15beL®, M®
andR®;

6: endif

7:  LetX = M®OR®:; andk be the number of columns k;

8: Treat each column X as a feature vector for the corresponding node.

9: Use k-means to clustéX into k clusters.
10: end for

Note that Alg.16 assumes that the number of communities equals the numbeturhas in
the matrixLL®. In practice, given the sample sizewe can control the number of communities by
choosing different # 0. In this way, we also want to eliminate those ‘nearly lingal&pendent’
columns in the matriL.®.

Figure8.5gives an example of applying Alg6to a synthetic dataset, a sequence of so-called
“Cavemen” graphs. These graphs are almost block-diagandltheir name comes from social
networks, where a group of hypothetical cavemen tend to kalomost everybody else in their
cave, but few cavemen from the other cave(s). We presentthdts for three time steps. Each
sub-figure in the left column is the original adjacency meatithat time step, and the sub-figure in
the right column is the clustering result (the adjacencymatter re-ordering the nodes belonging
to the same clustering together). We set the samplecsizel5 ands = 0.5 ©. Alg. 16 naturally
tracks the evolution of the communities over time: it stavith two large communities; then a
third one emerges, and then the middle community is absonbibe first one.

8.5.2 Anomaly Detection

We can also us€olibri to detect anomalies in the graphs. ®{ZF07, the authors discussed
various ways to detect anomaly network traffic by CMD. Theib#dea is to examine the re-
construction error. For example, a large reconstructioardor a specific row often indicates
abnormal source hosts (e.g. port scanners who send traffi@hy different hosts). Similarly,

SHow to choose an optimalin the general case is outside the scope of this paper.
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Figure 8.5: An example of applying Ald.6 to a dynamic Caveman graph. The sub-figures in the
left column are the original adjacency matridds" with permutation. The sub-figures in the right
column are the adjacency matrices after reordering byGamlibri. With the sample size = 15,
ande = 0.5, we can track the evolution of the communities over time.
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a large reconstruction error for a specific column often iegphbnormal destination hosts (e.g.
targets of distributed denial of service attacks (DDoS)yitkermore, a large reconstruction error
for the whole adjacency matrix might indicate some globalmaaly (e.g. the onset of worm-like
hierarchical scanning activities).

SinceColibri shares the exactly same reconstruction error as CMD, itéstalnletectll these
abnormal behaviors as CMD does. Fig8répresents such an example. We plot the reconstruction
accuracy for a given column (i.e. destination host) for tlevidrk Traffic data over 20 hours. We
manually inject the anomalies into the given column initBé hour (marked by the dashed circle),
exactly as in fXZF07. From Figure8.6 we see a clear drop of the reconstruction accuracy for
the given destination host, exactly at the time we injeckedanomaly (thé 3™ hour). Note that
while bothColibri and CMD will output exactly the same curve if we use the santaisampled
columns Colibri is often significantly faster, as we show next.

©
©

0.85}

Reconstruction Accuracy

0.8

Time

Figure 8.6: An example of applyinGolibri to detect abnormal destination hosts. A big drop in
the reconstruction accuracy (marked by dash circle), wisdbund by ourColibri, corresponds
to the exact time step when we inject the anomalies.

8.6 Experimental Evaluations

Here we give experimental results for the propo€etibri. Our evaluation mainly focuses on (1)
the reconstruction accuracy, (2) the running time and (@)sfiace cost. After a brief introduction
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of the datasets and the evaluation criteria, we give thdtesfeu Colibri-S in subsectior8.6.2 and
for Colibri-D in subsectior8.6.3

8.6.1 Experimental Setup

We use a network traffic dataset from the backbone router ¢dss-@8 university network. We
create a traffic matrix for every hour, with the rows and cahsmaorresponding to the IP sources
and IP destinations. We turn the matrix into a binary mathaf is, a '1’ entry means that there is
some TCP flow from the corresponding IP source to the degimaiithin that hour. In short, we
ignore the volume of such traffic. Overall there are 21,8%édint source/destination pairs, 1,222
consecutive hours and 22.8K edges per hour, on average.

Let A = LMR. We use the standard reconstruction accuracy to measuepgieximation
guality (exactly as in$XZF07), to estimate thesSE, the sum-squared-error, with sample size
¢=1,000 for both rows and columns:

Accu = 1-—SSE
= 1= (AG,§) = AG,5)°/O_ A6 )) (8.6)
i i
For a given low rank approximatiofL,,«z;, Mzxz, Réx;}, the matriced. andR are usually

sparse, and thus we store them as adjacency lists. In conb@snatrixM is usually dense, and
we store it as a full matrix. Thus, the space cost is:

SPCost = NNZ(L) + NNZ(R) + & (8.7)

whereNNZ(.) is the number of non-zero entries in the matrix.

For the computational cost, we report the wall-clock tim#.tlhe experiments ran on the same
machine with four 2.4GHz AMD CPUs and 48GB memory, runningux (2.6 kernel). For each
experiment, we run it 10 times and report the average.

Notice that for both Theorem 1 and Lemma 5, we require thedatges = 0. In our experi-
ments, we find by changingto be a small positive number (e.g.= 1079), it does not influence
the approximation accuracy (up to 4 digits precision), @itimakes the proposed algorithms more
numerically stablé Therefore, for all the experiments we reported in this pape uses = 10~¢
for both Colibri-S andColibri-D.

8.6.2 Performance ofColibri-S

Here, we evaluate the performance of Qaiibri-S for static graphs, in terms of speed and space.
We compareColibri-Sagainst the best published techniques, and specificallpsigaUR [DKMO5b]
and CMD [5XZF07. For brevity and clarity, we omit the comparison againstC§\because

"this is an implementation detail. We omit the detailed dsseon due to the space limit. How to choose an optimal
¢ is out-of the scope of this paper.
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CMD [SXZF07 was reported to be significantly faster and nimbler than SWth savings up to
100 times.

We aggregate the traffic matrices within the first 100 houdsthan ignore the edge weights as
the target matrixA.. Totally, there are 158,805 edges in this graph. We varydhgpse size: from
1,000 to 8,000, and study how the accuracy changes with tiveng time and space cost for all
three methods.

Figure8.7 plots the mean running time vs. the approximation accunsoyice that the y-axes
is in the logarithm scaleColibri-Sis significantly faster than both CUR and CMD, by 2853x
and 12x-52x respectively.

100,000
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- +-CUR _*
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Figure 8.7: Running time vs. accuracy. @Lolibri-S (in green squares) is significantly faster than
both CUR and CMD, for the same approximation accuracy. Nwéethe y-axis is in logarithmic
scale.

With respect to space cost, CUR is always the most expensiea@ the three methods and
therefore we use it as the baseline. Fig8ré&plots the relative space cost of CMD a@alibri-

S vs. the approximation accuracy. Agaolibri-S outperforms both CUR and CMD. Overall,
Colibri-S only requires 7.4%28.6% space cost of CUR, and 28.6%8.1% space cost of CMD
for the same approximation accuracy.

The reader may be wondering what causes all these savingsaridwer is the reduction in
columns kept: inColibri-S we only keep those linearly independent columns, and disaththe
other of thec columns that CUR chooses (and keeps). This idea eventaatisito significant
savings. For example, with a sample sizecof 8,000 (the number of columns that CUR will
keep), CMD discards duplicates, keeping on the average3o2Bp unique columns, an@olibri-
Sfurther discards the linearly dependent ones, eventuakyping onlyl, 101. And, thanks to our
TheorenB, the columns thatolibri-S discards have no effect on the desired subspace, and neither
on the approximation quality.
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Figure 8.8: Relative space cost@blibri-S and CMD, versus accuracy. Space costs are normal-
ized by the space of CURColibri-S consistently requires a fraction of the space by CUR/CMD,
for same accuracy.

8.6.3 Performance ofColibri-D

We use the same aggregated traffic matrix as in subse®io? and initialize the algorithm by a
sample size: = 2,000 (which gives an average accuacy of 93.8%). Then, we randpertyrb
r out of these 2,000 sampled columns and update the low rantoxppation of the updated
adjacency matrix. Sinc€olibri-D has the same space cost@glibri-S, we only present the
results on the running time.

We compare ou€olibri-D against both CMD and against our o@olibri-S We apply CMD
and Colibri-S for each (static) instance of the graph and report the wadkctimes. For visual
clarity, we omit the comparison against CUR, since it is cstestly slower than both CMD and
Colibri-S on static graphs, as shown in subsectah 2

Figure 8.9 plots the wall-clock time of CMD(Colibri-S and Colibri-D, versusr (the number
of updated columns)Colibri-D is 2.5x%-112x faster than CMD. Even compared against our own
Colibri-S Colibri-D is still about 2x-5x faster. The computational savings ©blibri-D over
Colibri-S come from the Sherman-Morrison Lemma: if the graph evolvesathly, Colibri-D
leverages the low rank approximation of the previous tinep,stnd does a fast (but exact) update.
We repeat that all three methods hadenticalapproximation accuracy, if they use the same initial
sampled columns.
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Figure 8.9: Performance for dynamic graphs: Speed versubeuof updated columngolibri-
D (in green squares) is 2.5X.12x faster than the best published competitor (CMD); asd faster
than our owrColibri-S, applied on each individual graph instance.

8.7 Related Work

In this section, we briefly review the related work on mataxlrank approximation. For the
related work on general graph mining, please refer to Cha&pte

For static graphs, the most popular choices include SVD/PGA_89, KAS98] and random
projection [nd0(. However, these methods often ignore the sparseness of rmahgraphs and
therefore often need huge amount of space and processieg(8se £X2F07 for a detailed
evaluation). More recently, Drineas et al{M05b] proposed the CUR decomposition, which
partially deals with the sparsity of the graphs. CUR is ptbieeachieve an optimal approximation
while maintain the sparsity of the matrix. Sun et@ak|ZF07] further improve CUR by removing
the duplicate columns/row in the sampling stage. Their mdtmamed as CMD, is shown to
produce the same approximation accuracy, but it often regunuch less time and space. Our
method Colibri-S) further improves the efficiency in speed and space by lguegathe linear
correlation among different sampled columns. As a resuit,roethod saves the computational
time and space cost, while it outputs exactly the same low agproximation as CUR/CMD.

The worst-case computational complexity of CUR, CMD &ulibri is linear to the size of
the matrix. A more accurate CUR approximation has been meghon [DMIMO7], but it requires
SVD operation on the whole matrix as a preprocessing stephwhioften too expensive for many
large scale applications.

For dynamic graphs, a lot of SVD based techniques have begoged, such as multiple time
series mining GGKO03 PSFO0Y, dynamic tensor analysiss[[ 04, incremental spectral cluster-
ing [NXC*07] etc. As for the static graphs, these methods might sufenfthe loss-of-sparsity
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issue for large sparse graphs despite their success in tlegaeases. Sun et @& {ZF07] deal
with this issue by applying their CMD method independentlly éach time step. However, how
to make use of the smoothness between two consecutive &pe tst do even more efficient com-
putation is not exploited ingXZF07. This is exactly the unique feature of o@olibri-D, - it
leverages such smoothness to do fast update while maimgetimé sparseness of the resulting low
rank approximation.

8.8 Conclusion

In this chapter, we propose the family @blibri methods to do fast mining on large static and
dynamic graphs. The main contributions of the paper are:

e A family of novel, low rank approximation method€glibri-S, Colibri-D) for static and
dynamic graphs, respectivel@olibri-S saves space and time by eliminating linearly depen-
dent columnsColibri-D builds onColibri-S, and performs incremental updates efficiently,
by exploiting the “smoothness” between two consecutive tateps.

e Proofs and complexity analysis, showing our methods areginly equal or better compared
to the best known methods in the literature, while maintajréxactly the same accuracy;

e Extensive experimental evaluation, showing that our mithare significantly faster and
nimbler than the state of the art (up 142 times faster). See Figui&1 for comparisons
against CURIPKMO05h] and CMD [SXZF07.
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Chapter 9

Mining Complex Time-Stamped Events

Summary of This Chapter
= Questions we want to answer:
Q: How to mine complex time-stamped events (e.g., find siniiitae stamps, abnor-
mal time stamps as well as the interpretations for our finglifg
- Our answers and contributions
Al: We proposed a generic framework (T3) to mine complex istaanped events.
A2: We developed an efficient algorithm (MT3) for multipleage analysis.

9.1 Introduction

In many real applications, data sets are often collecteiffateht time stamps. At each time stamp,
we might observe a set of events, where each event consastsabfof entities. Furthermore, each
entity can have its own attributes. For example, in socialvagks, we might observe activities
(events) at each day (time), where each activity involvest @kdifferent people (entities) — each
with his/her own attributes (e.g., job title). Another exaeis the yearly DBLP data sets, where a
time stamp is ‘publish year’; an event is a ‘paper’; and egitire ‘author,” ‘conference,’ etc.

How can we analyze time in such a complex context. For exanapéethere any two time
stamps that look similar with each other? Can we find any ababtime stamp whose behavior is
very different from other time stamps? How can we interptetfondings? Furthermore, how can
we do such analysis on multiple scales in an efficient way?

In this chapter, we address the above challenges in muttiplensions. First in a single scale,
our method (T3) can automatically group time stamps intommedul clusters as well as spot
the abnormal stamps. For each cluster/abnormal time stémlgp outputs the selective subsets
of events/entities/attribute values as their interpretat Here, the main idea is (1) to adopt a
graph representation for the data sets at different timasdaand (2) to explore the proximity
among different nodes (time/events/entities/ attribwki®s), based on this we will find clusters
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and anomalies as well as their interpretations. Our exparison several real data sets demon-
strate that T3 always outputs results (i.e., clusters andhafies as well as their interpretations)
that are consistent with human intuitions. Furthermorepvepose MT3 to allow efficient analy-
sis on multiple scales. Here, the key idea is to explore theotthness” (i.e., redundancy) among
different scales. Our experiments show that MT3 leads totgxthe same results (i.@0 quality
los9, but achieves significant speed-ups (u tarders of magnitude

The main contributions of this chapter are summarized dovst

e A generic framework (T3) to mine complex time-stamped ev@mtomplex context
¢ An efficient algorithm (MT3) for multiple scale analysis
e Power of our approach illustrated by extensive experimentseveral real datasets

The rest of this chapter is organized as follows. We begireictiSn 2 with the formal problem
definition. We present T3 for the single scale analysis an®NbF the multiple scale analysis
in Section 3 and Section 4, respectively. The experimeptallts are reported in Section 5. We
review the related work in Section 6 and conclude the chapt8ection 7.

9.2 Problem Definition

In this section, we first introduce our notations and dataesgntation, and then give the formal
problem definitions.

Table9.2lists the main symbols we use throughout this chapter. #aohlg standard notation,
we use calligraphic letter for sets (e.@)! is the set of all time stamps), capital bolded letters for
matrices (e.g.W), and lower case bolded letters for vectors (e2g., We denote the transpose
with a prime (i.e.,W’ is the transpose 0W), and we use superscripts to denote the indices for
object types (e.gQ? is thes'" type of object) and the indices for block matrices (€W is a
block matrix of the matriXW). For matrix/vector, we use the subscript to representiteecs the
matrix/vector (e.g0,,; means a matrix of size x [, whose elements are all zero). If the size of a
matrix/vector is clear from the context, we omit such suipssr Also, we represent the elements
in @ matrix using a convention similar to Matlab, e Wi, j) is the element at th&" row and;*
column of the matriX, andW (4, :) is thei'® row of W, etc.

In our setting, the datasets are collected at different staenps. At each time stamp, we
observe a set of events, where each event consists of a setitefe Furthermore, each entity
may or may not have its own attributes. For example, in th@inghexample in Tabl®.2(a), we
observe 9 eventg{, ..., eg), €ach of which is a social event (e.g,is a ‘technical meeting’; is
a ‘football game’, etc). The events are spreaded among 6dtamaps (i, ..., ts), each of which
is a day (e.g.7; is ‘Monday’, t, is ‘Tuesday’, etc). Furthermore, each event involves 2tiesti
(b1, ..., bg), each of which is a person (e.@;,is ‘John’, b, is ‘Smith’, etc) .

To simplify the description, we refer to ‘time’, ‘event’, eatype of ‘entity’, and each ‘attribute’
as one type of object, respectively. If we havgpes of entities (in the running exampje= 1),
and g types of attributes (in the running example,= 0), we define the following object set
O*(z =1,...,2+ p+ q), where the first type of object is always ‘time’; the secongktyf object
is always ‘event’; each of the nextobjects is one type of ‘entity’; and each of the nexdbjects
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Table 9.1: Symbols

| Symbol | Definition and Description

O! the ‘time’ object:O! = {t,,....t,,}

0? the ‘event’ objectO? = {e4, ..., e,, }

O* the (z — 2)™ ‘entity’ object: O = {5\, . b} (2 =3,...,2+p)

oY the (y — 2 — p)™ ‘attribute’ object: 0¥ = {a{V ™", . all >},
(y=3+p,..,2+p+q)

Wy the adjacency matrixi, x n,) from thez* object to they*" object
(z,y=1,....,24+p+q)

D*Y the degree matrixD™¥(i, 1) = >, W*¥(i, j) andD*¥(, j) = 0(i # j)

W = [W*¥] | the overall adjacency matrix.(x n)

0 a matrix with all elements equal to 0

I an identity matrix

P the number of different types of entities

q the number of different types of attributes

Ny the number of instances for thé" type of object{ = 1,...,2 4+ p + q)

n the number of total instances & S22 n,)

Sy the number of objects connected to ttié type of object

z the number of clusters for time stamps

Tij the proximity score from nodgto node:

c (1 — ¢) is the restart probability for random walk with restartf 0.95 in this chapter.)

ttP = [r;;] | the time-to-time proximity matrixi¢; x ny, andi, j =1, ..., ny)

toP = [r; ;] | the time-to-others proximity matriX¢ —n;) x ny, andi =1,....n —nq,j = 1,...,nq)

f the aggregation functiom( x 1 vector)

g the cluster membership function;(x 1 vector)

is one type of ‘attribute’. For the running example in Tabl&a), we have 3 types of objects in
the object seD*(x = 1,2,3). They are ‘time’, ‘event’, and ‘entity’, respectively. (j€re is no
‘attribute’ in this example.) Each object type has a set sfances. For example, the instances for
the ‘time’ object (0') are different time stamps (e.d;, t», ...).

In this chapter, we use a graph representation for the whaikesdt covering all time stamps.
To be specific, we treat each instance for each type of obgeatraode in the graph. For exam-
ple, Table9.2(b) gives the graph representation for the original tinsevgied datasets (depicted
in Table9.2a)) — where each time stamp, each event instance, and etishiestance is rep-
resented as a single node in the graph. Furthermore, therslhip between different types of
objects are modeled by the adjacency matridd&8¢(z,y = 1,...,2 + p + ¢)). For example,
we can uséW? to model the relationship between the ‘time’ object and rgvebject, where
W12(i, j) = 1iffthe j*® event happens at thi& time stampW (i, j) = 0 otherwise. Similarly,
we can uséW?22**(z = 1,.., p) to model the relationship between the ‘event’ object and:ithe
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‘entity’ object, whereW2+¢ (i, j) = 1 iff the i'® event involves thg'" instance of the:'" type of
entity; W222(;_j) = 0 otherwise. We can us&?t2(z = 1, ... p,y = 1,...,q) to model
the relationship between the" type of ‘entity’ object they'" type of ‘attribute’ object, where
W2re2tpHy(i 5) = 1 iff the i*" instance of ther™™ type of ‘entity’ has thej*® attribute value of
the y'" type of ‘attribute’; W2+=:2trtu(; j) = ( otherwise. For the running example, two such
adjacency matrice¥ 12 andW??) are enough to model all the relationships (see Tall)).

If we always reserve the first; rows/columns for the time nodes; the nextrows/columns for
the event nodes; followed by rows/ columns for entity nodes @tribute nodes respectively; we
can defineW = WY (z,y = 1, ..., 2+ p+q) as the overall adjacency matrix for the whole graph.
Note that if there is no relationship between tH& and they'" objects, the corresponding block
matrix W*¥ = 0. Also, by this notation, we allow additional relationshijitiin the same type
of object. For example, if we want to consider the continuonegperty of time, we can put extra
links between consecutive time nodes, which will lead to a-nero block matrixW'!. For the
running example in Tabl@.2, its overall adjacency matri¥v has the following format (Eq9(1)):

0 W12 0
W= |[(W2y o w23 (9.1)
0 (W2,3)/ 0

With the above notation, our datasets can be denoted by jeet@etO”(x = 1,...,2+ p+q)
together with the overall adjacency matiWx. Our goal is to find (1) similar/anomalous time
stamps and (2) their interpretations. In this chapter, iimd@n anomalous time stamp as a special
time cluster, which contains a single time stamp. Therefare define the cluster membership
functiong as ann; x 1 vector, and each elementgras an integer betwedrandz (z is the cluster
number for time stamps), indicating to which cluster it Iogls. To provide an interpretation for
each time cluster, we want to select a representative sobsettances from each type of object
(except ‘time’ object). Thus, our probleriilfe Single Scale Analy3isan be formally defined as
follows:

Problem 12. The Single Scale Analysis

Given: The datasets collected at different time stamf@@*, W}(z =1,...2 +p+ ¢).

Find: (i) The cluster membership functi@nfor time stamps (as well as the cluster numbgr
and (ii) for each time cluster, a representative subset sfances from each type of object
(except ‘time’ object).

For example, Figur®.1(a) shows the output of the proposed T3 (for the single saaéyais)
applied to the datasets we list in TalSle2, where we find 2 clusters of time stamgd$,(¢.} and
{t4,15,ts}) and 1 abnormal time stamp;). Therefore, our cluster membership function satisfies:
g =11, 1, 3, 2, 2, 2|'. For each time cluster as well as the abnormal time stamp)seeatput
a representative subset of the entity nodes as its intetjpes!

Besides the finest scale, we might also want to do the samgsanédl.e., to find the time
cluster/anomaly as well as their interpretations) on soo@ser scale. To this end, we introduce

1For the sake of simplicity, the representative events aremmwn in the figure.
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Time Steps Events Entities

51 =1 by, bz

€2 b, bs
t2 €3 by, bs

€a bs, by
ts €5 by, bs
s Eg bs, bs

g7 b, by
ts =H b, by
tg ey by, bg

(a) Original data sets

event

10000000

M

001

000010
Wi=|000001100 | time

000000 0

Loo0o

110000007 =~
01100000
01100000
00110000 event
W* =|ooo011000 >
00001100
00000110
[00000O01L]

(b) Graph representation (c) Adjacency matrices

Table 9.2: A running example: notations and representdtigsiration.

the aggregation functiofi which is ann; x 1 vector. For example, if we aggregate the time by
every two time stamps for the datasets in Téhl& the aggregation functiodi is a6 x 1 vector:
f=1[1,1, 2, 2, 3, 3. Also, letg be the cluster membership function anble the cluster number
at the aggregated scale, respectively. With this notationproblem The Multiple Scale Analysis
can be formally defined as follows:

Problem 13. The Multiple Scale Analysis

Given: (i) The datasets collected at different time stamps:
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(b) The aggregated scale (by every two time stamps)

Figure 9.1: The outputs for the running example in Tabz

{0, W}z =1,..,2+ p+ q); and (ii) the aggregation functiofi.

Find: (i) The cluster membership functi@gnfor time stamps (as well as the cluster numbgr
and (ii) for each time cluster at aggregated scale, a repnégtive subset of instances from
each type of object (except ‘time’ object).

For example, Figur®.1(b) shows the output of the proposed MT3 applied to the dttase
Table9.2if we aggregate the time by every two time stamps. Noticeiththtis case, the abnormal
time stamp (i.e.t3 at the finest scale) disappears.
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9.3 T3 for Single Scale Analysis

In this section, we propose T3 to address Probl&nWe first give an overview of the proposed
algorithm (T3), and then introduce each component of T3 taitle

9.3.1 Overview of T3

Alg. 17 gives the overview of the proposed T3 for single scale amalys T3, we first construct
the graph representatiow’ from the original raw datasets as introduced in Section &p(49.
Then (step 2), we will compute two proximity matrices frone #djacency matri¥V: the time-
to-time proximity matrix ¢tP) and the time-to-others proximity matrixdP). The time-to-time
proximity matrix ¢tP) will be used to find the time cluster membership funcigofstep 3); while

the time-to-others proximity matrix 6 P) will be used to find the representative subset of instances
as the interpretations for time cluster (step 4).

Algorithm 17 Overview of T3
1: construct the grapNV from the raw datasets
2: compute the proximity matricas P andtoP
3: find time cluster membership functignbased ontt P
4: find the interpretation for each time cluster basedeR

9.3.2 Compute the Proximity matrices

The key pointin T3 is to construct two proximity matrices® andtoP), based on which we will
find the time cluster membership functigrand its interpretations, respectively.

Alg. 18lists detailed procedures to compute these two proximitirioes. Overall, we adopt
the well-studied model of random walk with restart [Z 04, PYFDO04 TFPO{] for this purpose
(steps 7-12). Suppose a random patrticle starts from thertode, the particle iteratively trans-
mits to its neighborhood with the probability that is projamal to the edge weight between them;
and also at each step, it has some probability ) to return to the starting node The proximity
scorer; ; is defined as the steady-state probability that the pantdldinally stay at nodei. A
subtle point in computing the proximity matrices is how temalize the original adjacency matrix
W. In Alg. 18, we propose to normalize it by object type (steps 1-7). Thauppose the random
particle stays at some node of typand overall there are, different types of objects connected
to thez'" type of object; then at the next step, the particle will hagaat chance;%) to jump to
each ofs,, types of objects.

9.3.3 Find Time Clusters

Here, we want to find the cluster membership funcigofor time stamps based on the time-
to-time proximity matrixttP. The algorithm is listed in Alg19. We use a spectral clustering
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Algorithm 18 Compute the Proximity Matriceg P andtoP
Require: the adjacency matriXV andc
Ensure: the proximity matricestP andtoP
1. forx=1:2+p+qgdo
2. fory=1:24+p+qdo
3 normalize by object typeW =¥ « L . (D®¥)~!. W=
4: end for ’
5. end for
6: setW «— [W*Y]
7
8
9

:for j=1:n;do
lete = 0,,»1; then sek(j) =1
solver from the equatiom = cW'r + (1 — ¢)e
10:  setttP(:,j) =r(1:nq)
11:  settoP(:,j) =r(ny+1:n)
12: end for

Algorithm 19 Find the Time Cluster
Require: the time-to-time proximity matrixtP
Ensure: the cluster membership functi@n
1: do eigen value decomposition fotP; let {\;, ..., \,,} be the eigen values fartP (from
largest to smallest) anfv,, ..., v,,, } be the corresponding eigen vectors
find the cluster number = argmax;(\;_1 — \;)
letV = [vq, ..., v,]
treat each row oV as a data point in-dimensional space
use k-means to find clusters oV and output the corresponding cluster membership function

g

algorithm? In Alg. 19, we first use the eigen-gap][(step 2) to choose cluster numberThen,
we treat the first eigen vectors as the embedding of the time nodes intiienensional space
(steps 3-4) and run k-means to find the final cluster memhefahctiong (step 5).

As mentioned before, if we find some cluster which containsgles time stamp, we flag it as
the abnormal time stamp.

One benefit of using spectral clustering method is that weusarthe first few eigen vectors as
the embedding of the time stamps in some low dimensionaksgaar example, we can visualize
the time stamps by plotting its first two eigen vectors in Big.for the running example.

°Notice that our framework is orthogonal to the specific @usg methods. We can plug in any clustering algo-
rithm that takes a proximity matrix between nodes as inpat.example, we could transfer the time-to-time proximity
matrix ttP to be the normalized graph Laplacian and find its eigen-deosition instead (step 1). Alternatively, we
can normalize each row &f to have the unit length in step 3 as suggestedifi//01].
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9.3.4 Find Interpretations for Time Clusters

For each time cluster, we want to select a representativeesath instance nodes from each type
of object (except the ‘time’ object) as the interpretatiorsthat time cluster.

Suppose we want to find the interpretations for the time etus{u = 1, ..., z). Let#(j,u) be
the average proximity score from the time clustdo the instance nodg

Yl — )toP(d
T = I i) = ) 2

wherel(.) is an indicator function, which is 1 if the condition in therpathesis is true and 0
otherwise.

Based on:(j, u), we can define the representative scarg u) for each instance nodew.r.t.
the given time clustet as follows:

z

r(u) =7(Gw) [ 1=7(,w)) 9.3)

w=1,w#u

The intuition of Eq. 9.3 is that we want to find the nodewhich is close to the time cluster
(higherr(j, u) is better) and far away from other time clusters (lowr, w)(w # u) is better) on
average. Finally, we can output a subset of instance nodbdwgh representative scoregj, u)
from each type of object as the interpretations for the titasterw.

9.4 MTS3 for Multiple scale Analysis

In this section, we propose MT3 to address Probl&inConceptually, we can apply T3 for each
scale of interest independently. Here, the challenge isakerthe analysis on the coarser scales as
efficient as possible, given that we have already done thgsiaat the finest scale.

In Alg. 17, the computational bottleneck lies in step 2 — i.e., to commphe two proximity
matricesttP andtoP. For example, our experiments show that the time for thip stially
accounts for more than 95% of the overall running time of tiger@hm. Therefore, our goal in
Multiple Scale Analysits to efficiently update these two proximity matricés® andtoP) at the
aggregated scale, given that we have already computed akarpty matrices {tP andtoP) at
the finest scale.

We introduce the following vectdt,,, 1, whereh(i) := number of event/entity/attribute nodes
connected to the time nodeat the finest scale. Suppose that we will haydime stamps at the
aggregated scale (i.6.; = max(f)). Alg. 20 gives the detailed procedure to update the proximity
matrices. In Alg.20, after we get the overall normalized adjacency mathkixat the aggregated
scale (step 1), we set up two transformation matriceandT, (steps 2-9). Then (steps 10-12), we
need two matrix inversions (ong x n; in step 10 and ong; x 7 in step 11) to get the proximity
matrices {tP andtoP) at the aggregated scale. Note that in many real applicatios number
of time nodes at the finest scale is usually much smaller cozdpta the total nodes in the graph
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Algorithm 20 Update the Proximity Matrices

Require: the proximity matricestP andtoP, the normalized adjacency mati¥X at the finest

scale, the aggregation functiérandc;

Ensure: the proximity matricestP andté]ff at the aggregated scale.

1

=
N B O

NI AEWODN

. set up the normalized adjacency matwk = [WW] at the aggregated scale.
initialize the transformation matrice¥®; = 05, xn,, andTs = 0, x4,
fori=1:7, do
find time stamps at the finest scal@:= {i : g(i) =1}
for eachi € J do
setTy(i,7) = h(i)/ >_,., h(i)
setTy(4,4) = 1
end for
end for
setA =1, .y, — Wi, — (1 —¢)(ttP)™!
. updatettP = (1 — ¢)(I;, xa, — CW’M — T,AT)) ™!
. updatetoP = toP(ttP)~' T, ttP

(i.e.,ny < n). Typically,n; (the number of time nodes at the finest scale) is up to a fewstal

whereas: (the total nodes in the graph) could be up to a few hundredstrmadl For example, in
the DBLP dataset, we only have about 49 among 988,947 time nodesfaiélsescale. Therefore,
we can efficiently update the proximity matrices at the aggted scale by AlgR0.

The correctness of Al@20is guaranteed by the following theorem:

Theorem 10. The proximity matricestP andtoP by Alg.20are correct. That s, they are exactly
the same as we apply Al§8to the adjacency matrixVv.

Proof. To simplify the description, we re-write the normalizedamjncy matrix as the following
2 x 2 block form:

ALl AL2 5 Al,l A1,2
W = (A2,1 A2,2)7 W = <A271 AQQ) (94)

where

AL — WL AL — W
A2 = W Al2 — [Wl’y] (y=2,..,24+p+q)

A = (WS A =W (z=2,...24p+q)
A%? = (WY, A22 — [ny] (x,y=2,...,24+p+q)
(9.5)
Notice that only time nodes change before/after the aggjegave have,
A22 — A22 (9.6)
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Furthermore, we can verify the following equations hold fiee two off-diagonal blocks in
Eqg. 0.4):

A1,2 _ T1A1’2
A% = A?'T, (9.7)

Define the following matrix inversion:
Q = I-cW)!
Ql,l Q1,2
= (Qz,l Q2’2>
Q = I-cW)™!
Ql,l Q1,2
= (Qz,l Q2,2 (9.8)
By the property of random walk with restartffP04g, we have the following equations for the

proximity matrices:

ttP = (1—¢)(QYY, toP = (1 —¢)(Q"?)

ttP = (1—¢)(QY), toP = (1 —¢)(Q"“?) (9.9)

Now, apply block matrix inversion lemm#&{9( to Eq. ©.8). Together with Eq.9.4)-(9.9),
we have

1 i J(ttP) = (I WL — 2AL2([ — A22)7IAZ)7!
(toP) = c(ttP)AY (I — A%
] i ~(66P)" = (I—cW"! = *T AM(] — A%%) T ARIT,) ™!
(W) = (P TIAN( - A ©.10)

In Eq. ©.10), we have four equations for four unknown variabled, toP, A12(1—A22)~1A21,
andA2(I — A*?)~1). Solving this well-defined linear system, we have

ttP = (1—¢)(I— W}, — THAT))™
toP = toP(ttP)'T/ttP (9.11)

whereA =1 — c¢W/, — (1 — ¢)(ttP)~", which completes the proof of theoreim. O
Based on Alg20, the complete algorithm fdvlultiple Scale Analysig given in Alg.21.
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Algorithm 21 MT3 for Multiple Scale Analysis

Require: the proximity matricestP andtoP, the normalized adjacency mati¥X at the finest
scale, the aggregation functiérandc

Ensure: (i) the cluster membership functi@nat the aggregated scale; and (ii) for each time cluster
at aggregated scale, a representative subset of instannesdch type of object (except ‘time’

object)

1: update the proximity matricesP andtoP by Alg. 20

2: find the cluster membership functigrby Alg. 19

3: for each time clustet in g, compute the representative sce(g, ) for each instanceg by
toP and Eq. 9.3); and output a representative subset of instances from typehof object
(except ‘time’ object) based ofij, )

9.5 Experimental Results

In this section, we introduce four real data sets and pres@néxperimental results. All of the

experiments are designed to answer the following questions

o effectivenessWhat is the quality of T3 and MT3 proposed in this chapter?

e efficiency:How fast are the proposed algorithms?

9.5.1 Data Sets

Table 9.3: Datasets used in our evaluations

Datasetname p | g | ny n m
NIPS 10| 13| 3,900 11,460
CIKM 21| 15| 3,299 10,228
DBLP 2| 0| 49 | 988,947| 5,216,722

DeviceScan| 2 | 0 | 294 | 114,540, 684,276

We use four real data sets, which are summarized in Tablerdéh data set, Tab8e5.1lists
the number of different types of ‘entity’ objects)( the number of different types of ‘attribute’
objects §), the number of time nodes in the finest scalg)(the number of nodes:J and edges
(m) in the whole graph in the finest scale. We verify the effesi®ss of the proposed T3 and MT3
on NIPS CIKM, andDeviceScanand measure the efficiency of our algorithms using the targe

DBLP andDeviceScamlata sets.

The first data setNIPS is from the NIPS proceedings.The time stamps are publication
years, from 1987 to 1999. We treat paper as ‘event’ objectaititbr as ‘entity’ object; there is no
‘attribute’ object in this data set. Overall, there are h3dinodes, 1,740 paper nodes, 2,037 author

nodes, and 11,460 edges at the finest scale.

Shttp://www.cs.toronto.edu/

~roweis/data.html

174



The CIKM data set is constructed from the CIKM proceedifidgyain, time stamps are publi-
cation years, from 1993 to 2007. (Notice that we do not inelpdpers from CIKM 1992 since the
session information for that year is not available.) Wettpeger as ‘event’ object. For this data
set, we have two types of ‘entity’ objects: the authors ofithper and the session name where the
paper is presented during the conference. For the sessioa, nee further extract 158 keywords
as its attribute. Overall, there are 15 time nodes, 952 papdes, 1,895 author nodes, 279 session
nodes, 158 keyword nodes, and 10,228 edges at the finest scale

The DBLP data set is constructed from all the papers in the DBIBain, time stamps are
publication years, from 1959 to 2007. We treat paper as ®wject. For this data set, we
have two types of ‘entity’ objects: the authors of the papst the conference where the paper
is published. There is no additional ‘attribute’ object fbis data set. Overall, there are 49 time
nodes, 567,090 paper nodes, 418,236 author nodes, 3,5&tammre nodes, and 5,216,722 edges
at the finest scale.

The DeviceScaris from MIT reality mining projecf. Here, the ‘event’ object is blue tooth
device scanning persons, and the time stamps are the dayswblescanning events happen, from
Jan. 1, 2004 to May. 5, 2005. For this data set, we have twatyfgentity’ objects: the blue tooth
device and the person to be scanned; there is no additidtréde’ object. Overall, there are 294
time nodes, 114,046 scanning nodes, 103 device nodes, 8dhpaodes, and 684,276 edges at the
finest scale.

9.5.2 Effectiveness: Case Studies

Here, we show the experimental results for the three realsis, all of which are consistent with
our intuition.

Time Cluster Selected Papers Selected Authors
1987 Presynaptic Neural Information Processing Sejnowski T
1968 Phasor Neural Networks Hinton G
1989 FPhase Transitions in Neural Networks Mozer M
1580 The Hopfield Model with Multi-TLewvel Neurons Moody J
1591 Temporal Patterns of Activity in Neural Networks Koch_a

Mapping cClassifier Systems Into Neural Networks Jordan M
1962 Digital Boltzmann VLSI for Constraint Satisfaction and Learning | Sejnowski T
15653 Sparse Code Shrinkage, Denoising by Nonlinsar Maximum Jordan M
15¢4 Likelihood Estimation Hinton G
15685 Efficient Bpproaches to Gaussian Process Classification, Koch C
1996 Image Representations for Facial Expression Coding Williams C
1997 Experiences with Bayesian TLearning in a Real World Zpplication Dayan_P -
1998 Spectral Cues in Human Scund Localization, Maass W
1865 L Polygonalline Blgorithm for Constructing Principal Curves Sollich P

Table 9.4: The interpretations fbHPSdata set.

Fig. 9.2 gives the embedding of the time nodes MIPS data set using the first two eigen

4http://lwww.informatik.uni-trier.de/ ~ey/db
/conf/cikm/
Shttp://www.informatik.uni-trier.de/ ~ey/db/

Shttp://reality.media.mit.edu/
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Figure 9.2: The embedding for the time nodedNtPSdata set.

vectors ¢; andvsy) of toP, which reveal a line shape of time over publication yearsny3 3,
we find two time clusters (green circles vs. red dots in Big) as well as their interpretations in
Table 4. From Fig9.2and Table 4, we can see that while NIPS is a relatively stadtencunity on
the whole (e.g., the majority representative authors dahange over years), there is a topic shift
from early 1990s (mainly on ‘neural network’ and ‘neuraldmhation processing’) to late 1990s
(mainly on ‘statistical learning’).
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Figure 9.3: The embedding for the time node€tKM data set.
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Fig. 9.3 gives the embedding of the time nodes @IKM data set using the first two eigen
vectors §; andv,) of toP, which reveal a line shape of time over publication yearsoagife
NIPSdata set. Using T3, we find two time clusters (green circlesed dots in Fig9.3) as well
as their interpretations in Table 5. (For simplicity, we di show the representative papers in the
table.) From Fig9.3 and Table 5, we can see that while there are quite a lot of res@aterest
in deductive databases and rule systems in the CIKM commimit990s, attention has shifted to
XML, statistical learning, language, etc since 2000.

Time Cluster Selected Sessions Selected Authors Selected Keywords

deductive & rule systems elke rundensteiner | knowledge

1953 query_proaegsing_ danigl_miranker system

1554 knowledge representation & expert systems andreas_henrich unstructured

19895 object-oriented databases il-yeol song rule

1996 access_to_unstrﬁctured_information scott_bf_huffman transaction

1997 deductive databases ling liu object-oriented

1998 document processing robert j. hall document

1998 logical & deductive databases jian tang deductive
tools for realizing intelligent systems ibrahim kamel ai

2000 #ml schemas: integration_and translation james p. callan web

2001 classification javed a. aslam cluster

2002 language models '.\.'._brﬁce:croft classification

2003 corpus_linguistics marius_pasca languags

2004 high-dimensional indexing james allan xml

2005 Semistru\:tured_dgta philiﬁ_s ._¥yu similarity

2006 data warehousing and olap anton leuski stream

2007 text classification and categorization george karypis learn
summarization and corpus analysis charles clarke mobile

Table 9.5: The interpretation f@IKM data set.

Fig. 9.4 shows the results of applying the proposed MT3 to BlewiceScardata set on two
different scales: (a) daily scale and (b) monthly scalentFig. 9.4(a), it can be seen that, there
are two time clusters on the daily scale. We found that one tiluster (green circles) corresponds
to semester breaks as well as holidays; and the other clgistedots) corresponds to the week
days during the semester. On the other hand, we found anrabhttime stamp (red dot, which is
Apr. 2004) on the monthly scale (Fig.4(b)). This might be due to the spring break in Apr. 2004.

9.5.3 Efficiency

Here, we study the wall-clock time of the proposed MT3 usiwg telatively larger data sets:
DeviceScamandDBLP. For these results, all of the experiments are done on the samnhine with
four 2.4GHz AMD CPUs and 48GB memory, running Linux (2.6 kdynWe vary the aggregation
length (e.g., aggregate by every 2 time stamps, by every8dtamps, etc) and compare the wall-
clock time by the proposed MT3 and that by applying T3 to edcthe aggregated scale from
scratch (referred to as the ‘straight-forward’ method).

Figure.9.5 shows the results. Notice that time is in logarithm scalecalt be seen that the
proposed MT3 is much more efficient. For example, it is 12@xdia(6.1 seconds vs. 734 seconds)
for DeviceScamlata set if we aggregate the time by every three time stanigs4F(a)); and it is
263x faster (6.0 seconds vs. 1,603 secondd)RIrP data set if we aggregate the time by every two
time stamps (Figd.7(b)). Overall, the proposed MT3 is 25x-263x faster than thaight-forward

177



0.151

0.1f
0.05F
>N
S
°© or
[0
>
g
& -0.05¢
(]
2
s -0.1f
[&]
5]
n
-0.15F
-0.2f
-0.25 O, s )
0 0.05 0.1 0.15
First eigen vector v,
(a) on daily scale
1-
08l @ 4 Apr. 2004 is anomaly
.~ 06F
g
|53
£ oaf
c
(3]
k=2
[}
- 02F
s
3
n oF
-0.2
_04 L L L L L L J
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

First eigen-vector v,

(b) on monthly scale

Figure 9.4: The embedding for the time nodePeliceScamlata set.

method. We would like to emphasize that such speed-ups taléytivee, i.e., the proposed MT3
leads to exactly the same outputs as we apply T3 to each aggdegcale from scratch.

9.6 Related Work

In this section, we review the related work, which can beg@iged into three parts: graph mining,
proximity measurement on graphs and relational learning.

Graph Mining. There exists a lot of research on static graph mining (refé€Chapter6 for
detailed reviews). It is worth pointing out that in these kyahe focus is on utilizing the time
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information to better understand other nodes (eventigatitibute) in the graphs; while in T3 and
MT3 we focus on the other side of the problem, i.e., to bettelenstand time itself based on other
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Figure 9.5: Comparison on wall-clock time

information (event/entity/attribute).

Measuring Proximity on Graphs. One of the most widely used proximity measurement on
graphs is random walk with restart (refer to Chapieior detailed reviews).
fast algorithms to compute the proximity measurementsgaesi for querying, such as the one
in [TFPO4], do not apply in our settings since the pre-computatioinae for these algorithms will
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flood the overall running time of T3 and MT3.

Also, there are a lot of applications of proximity measuratagagain, refer to Chaptérfor
detailed reviews). The most related works afeY D04 BHP04 ACAO6D, ACO7] in the sense
that they all use a graph representation for the dataset@syever, these approaches mainly focus
on querying with or without learning; while T3 and MT3 are iesing on mining time in the context
of complicated events.

Relational Learning. Sharan and NevilleNO7 present a two-step approach for incorpo-
rating temporal information on links (e.g., co-authorsaip citation) into a relational classifier.
First, they summarize the time-varying interaction as Weg@n links of a static summary graph.
The summarization uses an exponential weighting scheme/(1. Second, they incorporate
these link weights into a relational Bayes classifier. Tepproach requires a summary parameter
(9), that needs to be either provided by the user or tuned byetimaihg algorithm. Furthermore,
their approach cannot handle temporally-varying attebutOur approach do not require a user-
provided parameter and can handle time associated withsggchof an event.

9.7 Conclusion

In this chapter, we study how to find patterns in a collectibtinee-stamped, complex events. Our
main contributions are the following:

1. We propose to treat each time-stamp as a node in a caretuitructed graph. This opens
the door for the vast arsenal of graph mining algorithms éRamk, graph partitioning,
proximity analysis, CenterPiece Subgraphs, etc). We shmwthe proposed T3 can au-
tomatically group the time stamps into meaningful clustepgot anomalies, and provide
interpretations.

2. We propose MT3 to handle multiple scale analysis, achgeup to2 orders of magnitude
speedups.

3. Finally, we verify the effectiveness as well as the efficieof T3 and MT3 with experiments
on several real datasets.

A promising research direction is to extend the T3 and MT3tude additional continuous
attributes, like geographical coordinates.
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Part VI

Conclusion and future directions
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Chapter 10

Conclusion and Future Work

10.1 Summary of Contributions

Graphs appear in a wide range of settings and have posed thwééscinating problems. Ac-
cording to the interaction with users, the research focuisfthesis work lies in two parts: (1)
guerying and (2) mining. The main contributions of the teesin be summarized as follows:

Querying Graphs:

e Complex User-Specific PatternsWe found that many complex user-specific patterns on
large graphs can be answered by means of proximity measotemether wordsproxim-
ity allows us to query large graphs on the atomic levéle support our claim by conduct-
ing three case studies (center-piece subgraphs (chaptes&)feedback (chapter 4), and
gateway (chapter 5)), all of which (despite the differentapplications) rely on proximity
measurement as their building block.

Impact/ResultsThe proposed algorithms are operational, with carefulgfeand numerous
optimizations. They led to 3 patents pending. The propofgatithms for bothCePSand
user feedback are to be deployed into a real prodiigag in IBM [ QSJO0§.

e Proximity Tracking. We proposed an efficient algorithpTrack (chapter 6) to track prox-
imity on time-evolving graphs.
Impact/Resultslt enables us to do trend analysis on the graph level. Theggexpalgorithm
(pTrack) is up tol76xfaster than competitors and has no quality loss (Thedierhis work
won theBest Papeaward in SIAM-DM 2008.

e Fast Proximity Computations. We developed a family of fast solutionBastRWR (chap-
ters 2-6,9) to compute proximity in several different sc@® The idea is to carefully lever-
age some important properties shared by many real grapis tfge block-wise structure,
the linear correlation, the skewness of real bipartite gsaptc)

Impact/ResultsWe can often achieve orders of magnitudp {o 6,000,000xspeedup with
little (e.g., Theoreni, Lemmas, etc) or no quality loss (e.g., Lemn2Za TheoremlO, etc).
One of these worksI[-P0§ won theBest Research Papaward in ICDM 2006.
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Mining Graphs:

e Vulnerability Analysis. We proposed an algorithm NetShield (chapter 6) for immuiona
under the SIS (susceptible-infection-susceptible) model
Impact/ResultsWhile straight-forward methods are computationally iotadle O((Z)m)),
the proposed algorithm isear-optimal(Theoremb5), fast (up to 7 orders of magnitude
speedup), andcalable(O(nk? + m)) .

e Anomaly Detection.We proposed a family of example-based low-rank matrix axipra-
tion method<Colibri (chapter 7) for anomaly detection.

Impact/ResultsThe proposed algorithms are provably equal to or betterttiabest known
methods with respect to both space and time (e.g., Lefifmatc), with the same accuracy
(e.g., Theoren®, Lemmalsg, etc). On real data sets, it is up 1d2xfaster than the best
competitors, for the same accuracy.

e Mining Complex Time-Stamped Events.We show that graphs also provide a very pow-
erful tool to solve some complex problems. As a case studgpten 9), we proposed a
general frameworkT3) to mine complex time stamped events, by formulating thélem
as a graph analysis problem. We further proposed MT3 to kandltiple-scale analysis.
Impact/Results.The proposed 3 is able to find similar time stamps, find abnormal time
stamps and provide interpretations for our findings. Thepsed MT3 achieves up @
orders of magnitudepeedup, with the same quality (Theor&f).

10.2 Vision for the Future

In the thesis, we show that graphs provide a very powerfulanified tool to handle data het-
erogeneity, with an intuitive user interface. On themseh\ggaphs pose a wealth of fascinating
research questions and high-impact applications. It is eligbthat graphs will continue to play
an even more important role in our lives, - more and more rpplieations will rely on graphs;
much richer types of graphs will show up; and the scales dfwedd graphs will continue to
grow.

My long-term research goal is to help the user to betteterstancandutilize large real graph
data sets. More specifically, there are three closely @ @taensions of this research goal:

G1. Querying) Given a graph (say, a social network), how to help the uskndthings accord-
ing to his/her particular interest?

G2. (Mining) Given a graph, how to succinctly describe it, and repornaalges?

G3. (Scalability) How to scale our querying and mining algorithms to largepbsa spanning
multiple machines?

Along the way to fulfill this research goal, our research fuull span on the following five
aspects, which are separated in medium term goal (M1-M3)argiterm goal (L1-L2).

M1. Design new algorithms for recommendations on largetlygap
M2. Design new algorithms for immunization.
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M3. Improve the usability of graph querying and mining résuby giving interpretation and
summarization of querying and mining results.

L1. Address the scalability issue.

L2. Address rich types of data, specifically weighted gragitsibuted graphs, time-evolving
graphs, and geo-coded graphs.

Answering these questions are critical for many high-imp@plications. Among others, our
motivating applications are:

e (Social Networks) Effective querying and recommendatimpig are playing an important
role in on-line social network sites, - with hundreds of mifls of usersI[HOg].

e (Security) Graph querying algorithms can help to find suspg subgraphs (e.g., master-
mind criminal in law enforcement{A\W *06], money-laundering ring in financial frautYBA ~ 09,
suspicious communication patterns, etc).

¢ (Epidemiology) A good immunization strategy might help teyent an epidemic from out-
breaking with the lowest cost[/\/\W"07].

¢ (E-commerce/Viral Marketing) A good immunization strat@gn also help to spot the ‘best’
customers for advertisement (‘k-advertisement’) in virerketing, which can largely im-
prove the revenue[R0O1].

e (Communication networks) Graph mining algorithms can helgetect abnormal behaviors
in both computer networks and phone networks (e.g., porirsng, router mis-configuration,
telemarketing, etc)

The relationship between these applications and our lamg tesearch goal is summarized in
table10.1

Table 10.1: Applications of Long Term Research Goals

Social | Security | Epidemiology | E-commerce| Communication
Networks Networks
G1: Querying v v
G2: Mining v v v v
G3: Scalability v v v v v

In the thesis, we have made the first step towards such longgeal. For example, we have
designed several algorithms to find complex user-specitieies on large graphs. For the SIS
(susceptible-infection-susceptible) model, we havegiesi a near-optimal immunization strategy.
We can detect one specific type of anomaly (linear corrgifimm large graphs, using o@ol-
ibri. We have shown that graphs usually provide a friendly uderface, and that example-based
methods are promising for interpreting the mining resufist all the algorithms we proposed in
the thesis, they are scalable (linear with respect to theedfithe graph or better).

Next, we will present our medium term plan and long term ptaspectively. These steps, and
their relationship with the thesis work, are summarizedlrig¢10.2
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Table 10.2: Vision for the Future

Plans Step 1 Step 2 Step 3

Goals (thesis work)| (medium term) (long term)

Gl1 Chapter2-6 | Recommendation Querying rich types of data

(Querying) Interpretable querying
G2 Chapter 7-9 | Immunization Mining rich types of data
(Mining) Interpretable mining

G3 Chapter2-9 | O(E) or better Scalable on Map-Reduce

(Scalability) (a single machine) | Scalable on rich types of data

10.2.1 Medium Term Plan

In the near future, we will focus on the following three tasil$ of which are built on the thesis
work:

M1: Broad Spectrum Recommendation Systems

A large portion of the thesis work focuses on querying langgbs. In other words, if the user
knows what s/he exactly wants, we are now in a better pogitibelping them to find such things
(e.g., center-piece subgraphs, gateway, etc). In the megxtwe would like to help the user to find
things that s/he might not (or partially) know, where recoemahation plays a crucial role.

While most of the existing work focuses on relevance (i.ed things that are most relevant
to the user’s interest), there are other important aspececommendation, e.g., novelty, diversity
etc. For example, our preliminary work i] F09 shows that by taking into account the novelty
in recommendation, we can broaden user’s horizon.

Here, our ultimate goal is to provide the user a subset ofgtetmich covers the broad spec-
trum of his/her interest (e.g., relevance, diversity andelty). In order to achieve this goal, we
need to work oribroad spectrum recommendatignvhere we aim taollectivelyfind the whole
recommended subset, instead of a lisinafividual items.

M2: Immunization

In the thesis, we have designed a very promising immuniaatigorithm for SIS (susceptible-
infection-susceptible) model. We will generalize our wéok(1) immunize under other types of
virus propagation models (e.g., SIR (susceptible-inéectecovery), or the mixture of SIS and
SIR, etc); (2) immunize in the case the graph structure iagimg over time).

M3: Interpretation of Querying and Mining Results
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Most real data sets do not have labels. It usually takes dimhe for the analyst to check/understand
the mining results. Therefore, it is important to generat®mcise and intuitive explanation for
the user to better understand the mining results. In thasl{esapter 8), we show that a few
representative examples are usually very helpful to imétijhe querying and mining results (e.qg.,
communities, anomalies, etc).

We will continue on this line of research to further improwe tusability of mining results.
Here, the two main research questions we will address afeo{d Yo select a few examples/nodes
as ‘basis’; (2) how to use the selected examples to intetpeatemaining nodes (e.g., by a sparse
nonnegative linear combination).

10.2.2 Long Term Plan

In the long run, we will focus on the following two directigrall of which are common to both
G1 (querying) and G2 (mining):

L1: Scalability

As the scale of the real data continues to grow, scalabdity‘never-ending’ question in large
graph mining. Here, we will deal with this issue through tb#dwing two orthogonal efforts:
(1) continue to design scalable (linear or better) algargton a single machine; (2) explore map-
reduce type abstractions for large scale computation ophgravhere the challenge is how to
de-couple the computation among different machines.

L2: Rich Types of Graph Data

Most existing algorithms work on plain undirected graphse jlan to extend our work to
graphs with attributes (both on nodes and edges), timesengpgraphs, directed weighted graphs.
As the main tool for analyzing single plain graphs is matigeara, in order to extend our al-
gorithms to such types of graphs, we need to simultaneounslyze multiple inter-correlated
matrices or to analyze tensor (the generalization of medjicOn the other hand, although graphs
account for a large portion of real data sets, there are tgpes of data sets (e.g., spatial, tempo-
ral, etc). In the thesis (chapter 9), we show that we can learalinplex time-stamped events by
envisioning the problem as a graph analysis problem. Weawiltinue on this line of research.
Ideally, we would like to develop a unified model to handletrsaomplex data (the mixture of
relational, temporal and spatial data).
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