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Abstract 
 

This report introduces a data structure called T-Cube designed to dramatically improve response 
time to ad-hoc time series queries against large datasets. We have tested T-Cube on both 
synthetic and real world data (emergency room patient visits, pharmacy sales) containing 
millions of records. The results indicate that T-Cube responds to complex queries 1,000 times 
faster when compared to the state-of-the-art commercial time series extraction tools. This 
speedup has two main benefits: (1) It enables massive scale statistical mining of large 
collections of time series data, and (2) It allows its users to perform many complex ad-hoc 
queries without inconvenient delays. These benefits have been already found useful in 
applications related to practice of monitoring safety of food and agriculture, in detection of 
emerging patterns of failures in maintenance and supply management systems, as well as in the 
original application domain: bio-surveillance. 
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1 Introduction 
Time series data is abundant in many domains including finance, weather forecasting, 
epidemiology, and many others. Large scale bio-surveillance programs monitor status of 
public health against adverse events such as outbreaks of infectious diseases and 
emerging patterns in public health. They rely on data collected throughout a health 
management system (hospital records, health insurance companies records, lab test 
requests and results, issued and filled prescriptions, ambulance and emergency phone 
service calls, etc) as well as outside of it (school/workplace absenteeism, sales of non-
prescription medicines, etc). The key objective is to as early as possible and as reliably as 
possible detect such changes in statistics of the data sources which may be indicative of a 
developing public health problem. One of the challenges the users of such systems face is 
that of data overload. The actual number of e.g. daily transactions of drug sales in 
pharmacies across a sizable country may be very large.  The users need tools to enable 
timely analysis of those massive data sources. The analyses can be performed 
automatically (using data mining software), however patterns discovered that way are 
almost always subject to a careful scrutiny through a manual drill-down. In both 
scenarios, massive screening of very large collections of data must be executed really fast 
in order to make these bio-surveillance systems useful in practice.  A saving of just a few 
hours in detection time of an outbreak of a lethal infectious disease can yield enormous 
monetary and social benefits [3], [10]. 
 Most of the kinds of data mentioned above can be interpreted as time series of 
interval (e.g. daily) counts of events (such as number of certain type of drugs, e.g. anti-
diarrheals sold; number of patients reporting to emergency department with specific 
symptoms, etc). These time series can be sliced-and-diced across multiple symbolic 
dimensions such as location, gender and age group of patients, and so on. Computational 
efficiency of mining operations which one may want to apply to such data, as well as the 
efficiency of accessing interesting information in a manual drill-down mode, heavily 
depend on the efficiency of extraction of series of counts aggregated for specific values 
of these categorical dimensions. 
 This report introduces a new data structure designed to dramatically decrease the time 
of retrieval of such aggregates for any complex query which combines values of 
categorical variables. It achieves its efficiency by pre-computing and caching responses 
to all possible queries against the underlying temporal database of counts annotated with 
sets of symbolic labels, while keeping memory requirements incheck. 
 
1.1 Importance of Ad-hoc Queries against Temporal Databases 
A record of a typical transactional database contains multiple attribute-value pairs. In 
temporal databases, one of the key features is date which allows ordering entries by time 
and creating time series representations of the contents of the database. Other fields may 
be categorical (symbolic) or real-valued, or have a special type. We will focus on 
temporal databases with symbolic attributes used to characterize demographics of the 
individual entries (note that the term “demographics” is used here in its most general 
sense). The databases of our specific interest can be thought of as records of transactions 
– there is also a count component in them. Let us assume that all the attributes of the 
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transactional dataset are symbolic except of the date field. Distinct values of such 
demographic attributes are demographic values or properties. E.g. postal code (called 
“zip code” in the US) is a demographic attribute and “15213” is one of possible values it 
can assume. Also let us define a set of demographic properties (DPS) to be a set of 
assignments of demographic values, one per each demographic attribute in the data. E.g. 
in a dataset containing zip code and gender, the particular combination of its values such 
as {15213, Male} is a DPS. Most databases we encounter in practice contain between ten 
and hundred thousand unique DPSes. 
 Often, time series queries extract data corresponding to conjunctions of demographic 
attribute-value pairs. A simple query is restricted to have only one value per demographic 
attribute whereas in a complex query each attribute can take multiple values. We show 
below examples of a simple and a complex query against a dataset “ed_table” which 
contains demographic attributes such as zip code, symptom and age group. Note that the 
second example query covering Pittsburgh region can contain a couple hundred zip 
codes. Each simple or complex query may involve only a subset of all available 
demographic attributes (alternatively, the attributes not represented in such query may be 
plugged in with the complete list of their values: it would be equivalent to “do not care” 
symbol put next to that attribute name in the select statement). 
 

• All senior patients having respiratory complaints (example of a simple query): 
SELECT date, count(*) FROM ed_table  
WHERE age_group in (senior) AND syndrome in (respiratory) 
GROUP BY date; 
 

• All child patients in Pittsburgh region with fever or headache (a complex query): 
SELECT date, count(*) FROM data  
WHERE zip code IN (15213, 15232,… 15237, …, 15215) AND symptom IN 
(fever, headache) AND age_group IN (child) 
GROUP BY date; 

 
 Even for databases with all demographic attributes indexed separately, simple queries 
require aggregation at run time which could become expensive. The number of just 
simple queries is exponential in the number of demographic attributes and their arities. 
The number of possible complex queries is very much higher than that as the exponential 
factor is doubled. It is thus not practical to pre-compute and store the answers to all 
possible queries in a straightforward fashion. Database management (DBM) systems 
often provide tools to pre-cook materialized views and use stored procedures which help 
to quickly answer a (usually small and predefined) subset of all possible complex queries. 
Those DBM techniques fail in the ad-hoc scenarios, where the user queries are not known 
in advance. 
 We are aware of at least two good examples of practical settings in which ad-hoc 
querying capability is needed. Firstly, take a database used by public health officials for 
bio-surveillance. These officials perform disease outbreak monitoring on a daily basis. It 
often involves investigation of alerts of possible problems flagged by the automated 
outbreak detection systems. For such investigations, the health officials need to execute 
large numbers of complex ad-hoc queries in order to extract data needed for 
interpretation of the alerts and/or for isolating their likely causes, while differentiating 
real outbreaks from false alarms. Such investigations need to be executed in a timely 
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fashion, and long waits for data extracts are not acceptable. Secondly, automated 
statistical analyses or data mining procedures executed against such databases require 
access to a large number of different projections of data, if they are to comprehensively 
and purposively screen for possible indications of public health problems. Long waits for 
the corresponding extracts may (and often do) render such systems impractical as both of 
the example usage cases heavily rely on quick responses to complex queries. The users 
would dramatically benefit if caching responses to all possible queries in advance was 
available. 
 Still, data cubes typically require in order of one second or more to respond to each 
complex query.  This latency is a substantial inconvenience to the users who want to 
execute multiple queries in an online fashion; data cubes are far too slow for statistical 
analyses requiring execution of millions of complex queries, which would take days of 
processing time. 
 
2 Related Work 
Standard approach to handling ad-hoc queries in commercial databases is to use On-Line 
Analytical Processing (OLAP). The idea relies on data cubes: cached data structures 
extracted from (usually only parts of) the original data and constructed in a form allowing 
for fast ad-hoc querying of pre-selected subsets of aggregated data [1]. For the sake of 
brevity we do not review the details of OLAP technology here, but these methods are 
known to suffer from long build times (typically hours for the databases of sizes and 
complexities similar to those used to illustrate results in this report) and large memory 
requirements (causing the need to rely on high-end database servers). Additionally, as we 
have observed empirically, data cubes still typically require in the order of one second or 
longer for responding to a complex query on the datasets which we tested.  Such latency 
is a substantial inconvenience to the users who want to execute multiple queries in an 
online fashion. It also hampers statistical analyses which may require millions of 
complex queries. That could take days of processing time using industry-standard OLAP 
data cubes. More details and illustrative examples can be found in [3]. 
 There are different types of implementations of data cubes based on how counts are 
stored internally. Relational OLAP (ROLAP) stores all counts in the data cube in the 
form of a relational table. Multi-dimensional OLAP (MOLAP) directly stores the counts 
as a multi-dimensional array (hence the response to any simple query can be obtained in 
constant time which makes them faster than ROLAP counterparts, but  their memory 
requirements grow exponentially with the number of dimensions in data). A few other 
popular variants of data cube implementations include: Hybrid-OLAP (HOLAP) and 
Hierarchical OLAP.  HOLAP combines the benefits of ROLAP (reasonable memory 
requirements) and MOLAP (faster response time).  Idea of HOLAP follows intuition that 
the data cubes built at higher abstraction levels are denser than those build at the lower 
levels, and they often use MOLAP at coarser levels and ROLAP at finer levels. 
Hierarchical OLAP is used when the various values of a demographic attribute in data are 
connected to each other using some hierarchy.  For e.g. date attribute can be split into 
year, month, or day and then aggregations at year or month level could be obtained using 
data cubes. Irrespective of the implementation, the goal of data cubes is to respond to 
simple and complex queries against large databases as fast as possible. With growing 
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demand for data mining and statistical analyses against large databases, innovation work 
has been focusing on improving data cube performance [7],[8],[9]. 
 Data cubes are closely related to another technology which originated from computer 
science research: Cached Sufficient Statistics. Similarly to data cubes, cached statistics 
structures pre-compute answers to queries, but they are designed cover all possible future 
queries (not just pre-selected subsets), and they aim at efficiency of not only data 
retrieval, but also their (most often in-memory) representations. AD-Trees are very good 
examples of such data structures. 
 AD-Tree [2] (All-Dimensional Tree) is designed to efficiently represent counts of all 
possible co-occurrences among multiple attributes of symbolic data. This is very 
important in many scenarios involving statistical modeling of such data, where most 
operations require computing aggregate counts, ratios of counts or their products.  Quick 
access to counts of arbitrary subsets of demographic properties is essential for overall 
performance of analytic tools which rely on them. AD-Trees have been shown to 
dramatically speed-up notoriously expensive machine learning algorithms including 
Bayesian Network learning [2], Empirical Bayesian Screening, Decision Tree learning 
and Association Rule learning [5]. The attainable speedups range from one to four orders 
of magnitude with respect to previously known efficient implementations. These 
efficiencies are attainable at moderate memory requirements, which are easy to control. 
Moore describes in [2] the details of the structure, its construction algorithm as well as 
fundamental characteristics of the AD-Trees. There are also dynamic implementations of 
AD-Trees [6] which help grow the structure on demand and which can be more memory 
efficient than fundamental implementations. AD-Trees are the best of the existing 
solutions to symbolic data representation when it comes to very quickly responding to ad-
hoc queries against large datasets. 
 
3 T-Cube 
T-Cube (Time series Cube) is an in-memory data structure designed for very fast retrieval 
and analysis of additive data streams such as e.g. time series of counts. It is a derivative 
of the idea of AD-trees. We show how the AD-Trees can be easily and efficiently 
extended to the domain of time series analysis. T-Cube consists of two main components: 
D-Cache and AD-Tree (note that because AD-Tree is designed to work with symbolic 
data, the T-Cube is applicable to temporal datasets with symbolic demographic 
attributes). 
 D-Cache is represented as a two-dimensional matrix with rows containing one DPS (a 
set containing one value per each demographic feature) and columns corresponding to the 
subsequent values of the time variable. Table 1 below shows an example structure of a D-
Cache built for a retail transaction dataset whose entries have two demographic attributes 
(color and size of a t-shirt) and which covers ‘T’ days of sales record. The result of any 
time series query (simple or complex) against such dataset is an aggregated time series 
over the rows (or DPSes) of the D-Cache that match the query. Hence, using D-Cache, 
the query response time is linear in the number of distinct DPSes in the data. It can be 
slow if the number of rows in the D-cache is large. 
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Table 1. D-Cache data structure for the example retail database. 

Day1 Day2 ... DayT

(Red, Small) 10 15 ... 20 
(Red, Large) 5 1 ... 7 

... ... ... ... ... 
(Blue, Medium) 7 5 ... 9 
(Green, Small) 5 4 ... 10 

 
 

(red) 

(red,medium) 

(*,*) 

(small) 

(medium) 

(large)

(blue) (green)

Size 

(green,medium)

Size Size

SizeColor 

 
 

Figure 1. Fully-developed AD-Tree for the example retail database. 
 
 
 The goal of using the AD-Tree structure is to reduce the query response time from 
linear to logarithmic in the number of rows in D-Cache. We build the AD-Tree using the 
rows in D-cache that contain the different DPSes present in the data. Usually, each data 
node of the AD-Tree [2] contains a single count of occurrences corresponding to the 
particular DPS. In T-Cube representation, the data node consists of a series of T counts. 
This time series is the result of summation of corresponding counts across all the rows in 
D-Cache that match the current AD-Tree data node. These matching rows are called a 
leaf-list for the corresponding data node. As we go from the top to the bottom of the tree, 
the sizes of leaf-lists decrease and in fully developed trees the leaf nodes have leaf-lists of 
size one pointing to a single row in the D-Cache. Therefore such AD-Tree combined with 
the D-Cache store responses to all possible atomic time series queries against the 
underlying database. Figure 1 depicts the fully developed AD-Tree representation of the 
t-shirt database shown in Table 1. The data nodes with time series are shown as circles 
with shaded bars and the vary nodes over demographic attributes are depicted with 
rectangles. Note that answering more general as well as complex time series queries can 
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be accomplished very quickly by navigating the AD-Tree and performing simple 
arithmetic operations on the vectors of counts pointed to by the traversed data nodes. The 
attainable efficiencies are analogous to those reported in the fundamental Ad-Tree paper 
[2].  
 
4 Empirical Evaluation 
 
4.1 Data 
 
We tested T-Cube on three different datasets: two real-world and one synthetic. All the 
datasets used in the experiments consisted of records collected over the period of one 
year, with counts aggregated daily. The datasets vary in the number of records (volume), 
number of demographic attributes (dimensionality) and the number of distinct values of 
each attribute (arity). Even though the first two datasets are related to the domain of bio-
surveillance, their size and characteristics are similar to data that can be found in other 
domains: a few attributes of high arity (zip codes, business names, etc.) and many 
attributes of low arity (gender, company sizes, etc.). 
 
4.1.1  Chief Complaint Data (ED) 
Emergency room chief complaint (ED) dataset contains hospital emergency room patient 
visit records from four US states (PA, NJ, OH and UT). Each record consists of the 
following attributes: visit Date, Syndrome, patient’s home Zip Code, Age Group, Gender 
and Count. The patient’s home Zip Code has 21,179 distinct values. Note that even 
though the involved hospitals are located in one of the four states listed above, the 
patients come from all over the country. Attribute Syndrome represents the chief 
complaint reported by the patient and has 8 distinct values (such as: Respiratory, 
Gastrointesitnal, Constitutional, etc.). Attribute Age Group could take one of the three 
values: Adult, Child and Unknown. Similarly attribute Gender could also take three 
values: Male, Female, and Unknown. The dataset had approximately 3.4 million records 
and it does not contain personal information of the patients as well as any means of 
identifying the involved individuals. There is a total of 120,604 DPSes in the ED data. 
 
4.1.2 Over-The-Counter Data (OTC) 
Over-the-counter (OTC) data contains the volumes of daily medication sales collected at 
more than 10,000 pharmacies throughout the U.S. The data has been geographically 
aggregated to the level of a zip code in order to preserve the privacy of the individual 
store operations. Each record contains the following attributes: purchase Date, store Zip 
Code, medicine Category, sale Promotion, and Count. This data covers 8,119 distinct Zip 
Codes. Category represents the class of medicine (e.g. cough/cold remedies, baby/child 
electrolytes, etc.) and it has 23 different values. Binary information about the occurrence 
of store promotions on medications is provided in the attribute Promotion as ‘Y’ or ‘N’. 
Attribute Count represents the quantity sold. The dataset has 356,545 DPSes in it.  
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4.1.3 Binary Synthetic Data (SYN) 
The real datasets encountered in our research have only a few demographic attributes 
(ED has four and OTC has three). In order to evaluate the utility of T-Cube in a more 
general setting, we have created a sparse binary synthetic data (SYN). It has a large 
number of attributes: 32. They include: Date, Count, Zip Code, and 29 binary 
demographic attributes. Each of the 29 binary attributes were 95% sparse, i.e. they took 
the value of ‘0’ 95% of the time in all the records. Each record has the Zip Code 
randomly assigned from the pool of 10,000 values. Attribute Date spanned one year. 
Attribute Count took values randomly selected from the range of 5 to 10. 12 million 
records have been generated in such a way, resulting in 4.5 million DPSes in the data. 
 
4.2 Results 
This section reviews the experiments performed to empirically evaluate performance of 
T-Cube. First, we discuss the T-Cube building time and memory utilization. We then 
present ways of controlling exponential memory requirements of the underlying AD-Tree 
structure: attribute ordering, controlling tree depth, and the use of efficiencies stemming 
from a special treatment of the most-common-values of demographic attributes. The 
effects on performance have been measured with regard to simple queries and using a 
system with AMD Opteron 242 Dual processor CPU (1,600 MHz) and 16GB of memory. 
The system was running on CentOS 4 x86_64 operating system. 
 
4.2.1 Build Time and Memory Utilization 
Figure 2 shows the D-Cache and AD-Tree build times for all three datasets. The build 
time for D-Cache ranges between approximately 3 and 15 minutes whereas it only takes a 
few seconds to build the corresponding fully developed AD-Trees. It was not possible to 
build an AD-Tree for SYN dataset because it required a large amount of memory which 
exceeded the capacity of the test-bed system. These results indicate that most of the time 
needed to build a T-Cube is spent on building the D-Cache, and most of that time is spent 
accessing the data from the disk. Once all the DPS time series derived from data are 
stored in the D-Cache, construction of the AD-Tree is fast. Since the D-Cache structure is 
build only once for a given data set, we only pay the price once, upfront.  
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Figure 2. Build time of D-Cache and AD-Tree. 
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Figure 3. Memory utilization by D-Cache and AD-Tree. 

 
 
 

Table 2. Summary of building time and memory utilization  
(with use of fully developed AD-Trees). 

 Building Time (secs) Memory (MB) 
 D-Cache AD-Tree D-Cache AD-Tree 
ED 124 16 36 676 
OTC 944 26 77 1116 
SYN 913 - 808 - 

 
 

 Figure 3 depicts memory utilization of D-Cache and AD-Tree for all three datasets. 
Here, the AD-Trees are much more resource hungery than the D-Caches. For instance to 
represent the ED dataset, we need only 36MB of memory to store D-Cache but the fully 
developed AD-Tree requires 676MB space (approximately 20 times more). This is due to 
the fact that the memory requirement of AD-Tree is exponential in the number DPSs 
present in the data. Again, for SYN dataset, AD-Tree required more than 16GB of 
memory and hence the corresponding result was not available. Note that the demand for 
memory is proportional to the length of the represented time series with respect to both 
D-Caches and AD-Trees.  
 Table 2 summarizes the memory consumption and build time results obtained using 
basic implementation of AD-Trees. The following sections review ways of reducing 
demand for memory at the cost of longer query response times. 
 
4.2.2 Ordering of Demographic Attributes 
The AD-Tree structure is inherently unbalanced: its left part is deeper than the right one. 
We have found empirically that expanding the lack of balance even further by arranging 
the demographic attributes in decreasing order of their arity leads to AD-Trees with lower 
numbers of nodes in total. This heuristic will make the attribute of the highest arity the 
root node of the tree, and the attributes of the lowest arities will end up deep in the tree. 
Intuitively, it would help conserve memory by preventing the attributes with high arities 
from being represented multiple times as children in the deeper parts of the structure. 
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According to this heuristic, we would arrange the ED dataset demographic attributes in 
the following order: patient home Zip Code, Syndrome, Age Group, and Gender. 
 Table 3 compares the memory requirements resulting in use of the above described 
heuristic vs. its direct opposite. It is clear that arranging attributes in decreasing order of 
their arities saves memory as compared to arranging them in the increasing order of 
arities, and there is no discernable effect on the query response time. We could save 
nearly 200MB of memory to represent the ED data while using 140 thousand less AD-
Tree nodes. However, the savings were not sufficient to allow for representing the SYN 
dataset within the 16GB of memory. 
 

Table 3. Effects of ordering demographic attributes. 

 Memory (MB) #nodes 
 Increasing Decreasing Increasing Decreasing 
ED 875 676 484k 346k 
OTC 1049 1039 565k 552k 
SYN - - - - 

 
 
4.2.3 Controlling Depth of the Tree 
The root node of the AD-Tree represents the aggregate time series that matches all 
combinations of the demographic properties, i.e. the leaf list of the root node is as large 
as the number of rows in the D-Cache. A complete tree keeps growing until the leaf 
nodes represent exactly one DPS each, at which point such nodes directly point to the 
individual and distinct D-Cache rows. The data node leaves in the fully grown AD-Tree 
will have leaf list size equal to 1. 
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Figure 4. Memory utilization at different r-values. 
 
 
 To reduce the memory requirement, we can set a lower bound on the leaf list size of 
all data nodes in the tree, call it r-value. A data node is further expanded only if its leaf 
list size is greater than r-value. Larger r-values will correspond to smaller trees and hence 
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lower memory usage. Note that with r-value > 1, the AD-Tree leaves will point to 
multiple rows in the D-Cache. Hence, queries that invoke more specific time series will 
have to sequentially scan the D-Cache rows which can be done in linear time, and it will 
reduce the expected speed of query response. Figures 4 and 5 depict memory 
requirements and query response times for different r-values. 
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Figure 5. Average (simple) query response times for different r-values. 
 

 For ED data, the memory requirement falls from 676MB to 38MB (almost 20 times) 
when the r-value is changed from 1 to 100 (Figure 4). Similar effect can be seen for OTC 
data. Note that the figures do not show results for SYN dataset as it still needed more that 
16BG of memory even when using r-value = 10,000. 
 

Table 4. Sample dataset for Figure 6. 

Date Gender Place Count
2006/01/01 M 100 4 
2006/01/01 M 300 3 
2006/01/01 F 300 1 
2006/01/01 M 200 3 
2006/01/01 F 400 2 
2006/01/02 M 200 1 
2006/01/02 F 400 4 
2006/01/02 M 300 2 
2006/01/02 F 300 5 
2006/01/02 M 200 6 
2006/01/03 M 200 2 
2006/01/03 F 300 1 
2006/01/03 M 100 4 
2006/01/03 F 300 2 
2006/01/03 F 400 3 

r-value 
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 Figure 5 shows the T-Cube query response time to simple queries as a function of the 
tree size. Each presented result is the average response time over 1,000 randomly 
generated simple queries. Note that changing r-value from 1 to 100 drastically reduces 
memory requirements at a marginal difference in response time. 
 
4.2.4 Exploiting Most Common Values 
It is possible to further reduce memory requirements by exploiting redundancies in the 
AD-Tree structure. Moore and Lee [2] have shown that it is possible to remove one vary 
node together with the corresponding sub-tree from under each dimension nodes, and still 
be able to recover all the counts which were represented in the complete tree. Typically, 
the greatest possible savings in terms of the number of nodes in the tree can be attained if 
the sub-trees removed correspond to the most common value of the attribute under 
consideration.  
 

(300)  =  (*,*) – (100) – (200) – (400) 
(M, 300)  =  (300) – (F, 300) 
(F, 400)  =  (F,*) – (F, 300) 

 

(M,100) 

(*,*) 

 

(M,200) (M,300) (F,300) (F,400)

(M,*) (F,*) 

(100) 

(200) 

(300) 

Place

(400) PlacePlace

Gender

 
 

Figure 6. Illustration of the Most-Common-Value method. 
 
 
 Figure 6 illustrates this idea using an AD-Tree built for the sample dataset shown in 
Table 4. The nodes (M,*), (F, 400), (300) and everything below them can be removed 
from the tree. Any query that requires accessing the counts from the removed portions of 
the tree can be served by re-computing the missing numbers using the data stored in the 
remaining nodes. These re-calculations may require some navigation through the tree and 
a few basic arithmetic operations based on the fact that the sum of the counts 
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corresponding to any sub-tree must be equal to the counts attributed to that sub-tree by its 
parent node. So, to retrieve the counts corresponding to the missing sub-tree one only 
needs to subtract the sum of the counts attributed to the existing nodes from the sum 
stored at the root. For instance, the count of records for a given day stored in the dataset 
shown in Table 4 which correspond to Place = 300 can be restored as the total count of 
records on that day (which is stored in the root node of the tree) less the sum of the same 
day counts represented in the nodes corresponding to Place = 100, Place = 200, and 
Place = 400. Having figured out that number, one can also re-compute other removed 
entries, such as the count of male patients reporting from the area 300, (M, 300), as the 
difference between the count for Place = 300 and the count of female patients from that 
area, (F, 300), which happens to be represented in the tree. 
 So indeed it is possible to remove one child from each vary node and not lose any 
information. It leads to substantial savings in memory requirements at modest increase in 
the average query response time. The extra time is required to re-compute the missing 
counts whenever necessary. The most-common-value (MCV) trick results in immense 
memory savings for datasets with demographic attributes having skewed distribution of 
their distinct values (such as SYN dataset). It may not be as beneficial when the values of 
demographic attributes are distributed more uniformly. For instance, if the MCV trick is 
applied to a vary node with 10,000 children each having an equally long leaf list, then we 
will have to add 10,000 time series at run time to respond to the MCV child query, which 
can be computationally expensive. In order to control such effects, we introduce a 
parameter called MCV fraction (γ) that is the ratio of the leaf list size of the MCV node 
and the leaf size of its parent vary node. The T-Cube algorithm will apply the MCV trick 
only if the observed ratio is higher than the MCV fraction threshold. This parameter helps 
to balance the memory savings against the average query response time. For γ > 1.0, the 
MCV trick will never be used. And for γ = 0.0, the MCV trick will be used always.  
 Figure 7 summarizes the observed memory savings for different values of γ. With the 
MCV trick, we can finally fit the T-Cube for SYN dataset into the main memory of the 
test machine (recall that its 29 binary attributes are 95% percent sparse and they have 0 as 
the MCV). It requires only about 100MB of memory as compared to more than 16GB it 
needed before. ED and OTC datasets also show savings in memory but not as significant 
as using the tree-depth method. This is because the values of demographic attributes are 
almost uniformly distributed in those data sets. 
 Figure 8 shows the effect of varying γ on the average simple query response time 
(depicted at a logarithmic scale in the graph). The response times against SYN dataset are 
the slowest (~50 milliseconds), because most of the randomly generated queries involve 
MCV values which require an extra time to be re-computed. For ED and OTC datasets, γ 
= 0.4 seems to be a reasonable value to pick when both memory and response time are 
considered. 
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Figure 7. Memory savings attainable with the MCV method.  
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Figure 8. Average (simple) query response time when using the MCV method. 
 

4.2.5 Responding to Complex Queries 
T-Cubes can be built in minutes even for large data sets. Their memory requirements can 
be controlled and traded for response time in order to trim them to the manageable levels 
(of a few hundreds megabytes required to store AD-Trees for all of the considered three 
datasets). Also, the average response time to a simple query can be maintained within a 
fraction of a millisecond. 
 We define complex queries as those which are not strictly conjunctive, but allow each 
demographic attribute to take multiple values simultaneously. A query which requests 
counts for 1,000 Zip Codes is more complex than the one which only requests it for 10 of 
them. Let us define complexity of a query, β, as the fraction of possible unique values of 
an attribute which can be present in the complex query. Values of β belong to the range 
of [0,1], and the higher they are the higher complexity of a query. 
 Figure 9 shows the performance of T-Cube at different values of β (the results are 
averaged over 1,000 randomly picked queries). The parameters for the tested datasets 
were as follows: r-value = 1,000 and γ = 0.8. The observed average response time was 
within 100 milliseconds for SYN data and in an order of 1 millisecond for ED and OTC 

15 



datasets. The results indicate that T-Cubes need only milliseconds to respond to even 
highly complex queries. 
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Figure 9. Average response time to complex queries. 
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4.2.6 Comparison with Commercial Tools 
We also compared performance of T-Cube against other data cube tools available 
commercially. Due to privacy concerns we do not list the names of these tools here, but 
most of these tools are commonly used in many practical OLAP applications involving 
time series data. The data used for these tests had three demographic attributes with 
arities of 1,000, 10, and 5 respectively, 12 million records of daily transactions and 
covered a period of one year. The experiments were performed on a system with 2.4 GHz 
CPU ands 2 GB memory, running Windows XP operating system. 
 Table 5 shows the results of the comparison. Each of the commercial tools required a 
different amount of memory to represent the test data, however for all tools, the response 
time improved with the increase of the amount of used memory. Still though, the 
commercial tools require seconds to respond to a complex query. T-Cube on the other 
hand is able to respond in milliseconds, i.e. 1,000 times faster than the commercial tools. 
The two versions of T-Cubes (row 4 & 5) differ in the value of γ, the MCV fraction. The 
first one uses γ = 1,000 and in the second γ was set to 10 in order to illustrate the trade-
off between memory consumption and response time attainable with the T-Cubes. 

 
 

Table 5. Performance comparison: T-Cube vs. commercial tools. 

Query Engine Type Memory Response Time 
Tool 1 RDMS 330 MB 6.8 sec 
Tool 2 In memory 231 MB 7.6 sec 
Tool 3 In memory 1+ GB 3.5 sec 
T-Cube In memory 236 MB 22 milliseconds 
T-Cube In memory 845 MB 5 milliseconds 
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4.2.7 Early Observations from Fielded Applications 
The authors had a chance to see T-Cubes used in practice as enabling technology in 
applications requiring massive screening of multidimensional temporal data. These 
applications include systems to support monitoring of food and agriculture safety 
developed at the US Department of Agriculture and the Food and Drug Administration, 
as well as a system to monitor maintenance and supply data operated by the US Air 
Force.  
 One of these projects involved a data base consisting of datasets each with about 25 
demographic attributes of arities varying from 2 to 80, about 12 thousand records of 
transactions, covering 6 years at a daily resolution. The application called for a massive 
screening through all combinations of attribute-value pairs of size = 1 and 2, the total 
number of such combinations exceeding 4.3 million. The involved analytics was based on 
an expectation-based temporal scan used to detect unusual short-term increases in counts 
of specific aggregate time series. The total number of individual temporal scan tests for 
one such data set exceeded 9.3 billion. Each such test involved a Chi-square test of 
independence performed on a 2-by-2 contingency table formed by the counts 
corresponding to the time series of interest (one of the 4.3 million series) and the baseline 
counts, within the current temporal window of interest (one of 2,000+) and outside of it. 
The complete set of computations, including the time necessary to retrieve and aggregate 
all the involved time series, compute and store the test results, load source data and build 
the T-Cube structure, etc., took about 8 hours of time when executed on a dual CPU 
AMD Opteron 242 1,600 MHz machine, in the 64 bit mode, using 1MB per CPU level 2 
cache and 4 GB of main memory, running under Cent OS 4 Linux operating system. If 
the users used one of the commercial database tools, the time needed to retrieve a time 
series data corresponding to one of the involved queries would approach 180 
milliseconds. Therefore, without the T-Cube, it would take about 9 days to just to pull all 
the required time series data from the database, not including any processing or executing 
statistical tests. That kind of analysis would be considered infeasible without the 
efficiencies provided by the T-Cube representation. 
 
5 Conclusions 
T-Cube is an efficient tool for representing additive time-series data labeled with a set of 
symbolic attributes. It is especially useful for retrieving responses to ad-hoc queries 
against large datasets of that kind. We showed that typically a T-Cube performs that task 
around 1,000 times faster than currently available commercial tools. This efficiency is 
very useful both in on-line investigation and in statistical data mining application 
scenarios. Rapid aggregation of time series across large sets of data made possible by T-
Cubes becomes an enabling capability which makes manual lookups as well as many 
complex analyses feasible. T-Cube can be used as a general tool for any application 
requiring access to time series data from a database. From the application’s perspective it 
is transparent: it acts just like the database itself, but an incredibly quickly responding 
one.  
 The size of memory used by T-Cube can be finely controlled by managing the tree-
depth or using the MCV trick. There is trade-off between memory usage and the average 
query response time, and allowing more memory to be used by T-Cube leads to shorter 
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response times. The experiments indicate that by selecting the right set of parameters one 
can achieve considerable memory savings at only linear increases in response time. The 
realistically-sized datasets we have tested so far were manageable in that their T-Cube 
representation would fit in less than 1GB of memory. This shows that T-Cubes can be 
used in practice to speed up access to large sets of time series data even on regular 
personal computers, alleviating the need for large and expensive servers. 
 T-Cubes are simple to setup and easy to use. Typically, it takes only minutes to build 
one from data. Database users do not need to define any stored procedures, or 
materialized views in order to make that happen. Once a T-Cube is built, it is ready to 
respond to any simple or complex query. The power of quickly retrieving any ad-hoc 
query makes T-Cubes potentially very useful in a range of applications, including a few 
specifically known to the authors. They have a potential to change the way users (people 
as well as analytic software systems) deal with the time series datasets.  
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