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Abstract

Understanding how species have arisen, dispersed, amthirégl over time is
a fundamental question in population genetics with numenaiplications for basic
and applied research. It is also only by studying the ditsersihuman and differ-
ent species that we can understand what makes us differéntlzat differentiates
us from other species. More importantly, such analysisccgide us insights into
applied biomedical questions such as why some people argratater risk for dis-
eases and why people respond differently to pharmacetrtgzments. While there
are a number of methods available for the analysis of popul&istory, most state-
of-the-art algorithms only look at certain aspects of theol@tpopulation history.
For example, phylogenetic approaches typically look ohlyan-admixed data in a
small region of a chromosome while other alternatives erarmanly specific details
of admixture events or their influence on the genome.

We first describe a basic model of learning population hystmder the assump-
tion that there was no mixing of individuals from differerdggulations. The work
presents the first model that jointly identifies populatiobstructures and the rela-
tionships between the substructures directly from gemneati@ation data. The model
presents a novel approach to learning population trees laoge genetic datasets
that collectively converts the data into a set of small ppglretic trees and learns
the robust population features across the tree set to fgéiné population history.

We further develop a method to accurately infer quantiéaparameters, such
as the precise times of the evolutionary events of a populdtistory from genetic
data. We first propose a basic coalescent-based MCMC modzwfisplty for learn-
ing time and admixture parameters from two-parental andaameixed population
scenarios. As a natural extension, we then expanded thhboh&i identify popula-
tion substructures and learn population models and thefgpig&me and admixture
parameters pertaining to the population history for thremore populations. Anal-
ysis on simulated and real data shows the effectivenessdagproach in working
toward unifying the learning of different aspect of popigdathistory into single al-
gorithm.

Finally, as a proof of concept, we propose a novel structtestl statistic us-
ing the historic information learned from our prior methodrhprove demographic
control in association testing. The success of the stradtassociation test demon-
strates the practical value of population histories ledrfinem genetic data for ap-
plied biomedical research.
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Chapter 1

| ntroduction

For centuries, understanding how species have arisererdesgh and intermixed over time has
been one of the most sought-after questions man has trieffitess. Since the publication©h
the Origin of Speciem 1859, tremendous efforts have been made to characthazelationship
and significance of the diversity between and within speeigshe problem seems to possess an
irresistible aesthetic appeal to mankind. It is also onlystudying the diversity in humans and
other species that we can understand what makes us diff@nenivhat differentiates us from
other species. More importantly, such analysis could gs/msights as to why some people are
at a greater risk for diseases and why people respond diffgtt® pharmaceutical treatments.
Before the discovery of genetic material, works on the infeeeof the phylogenetic re-
lationships between organisms largely relied on morphoddgphysiological, and phenotypic
differences 70]. By quantifying the similarity and dissimilarity betweeiffdrent organisms,
one can infer the relationships among organisms. Analyassdon morphological, physiolog-
ical, and phenotypic differences have worked particulad}l for quantifying the relationships
between species that long ago diverged and evolved intotedynelated species with distinct
physical features, but are limited in close-species orimiipecies differentiations where phys-
ical appearances may be highly similar. Advances in ancésfierence did not significantly

progress until the development of tools for detecting gemnetriations P7, 104, 107]. The large
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amount of genetic differences between organisms provid#itient resolution to infer precise
and accurate relations between closely related speciexe $ien, a large number of studies
utilizing genetic data have been publish@®,[36, 44, 79, 107, 129. However, close-species
and within-species analyses of genetic variations werdullgtrealized due to the difficulties
in obtaining large quantities of genetic data until the digmment of high-throughput sequence
techniques in the late 199087, 123 130. With ongoing efforts of high-throughput sequencing
jump started by the Human Genome Projd@d, we are now at an unprecedented stage where
genetic variations are gathering at an exponential rateh §uantities of genetic data provide
enormous opportunities for us to examine and understandishery of human population as
well as the rise of diseases in unprecedented detail. Hoyweith such enormous amounts of
genetic data, we face the challenge of developing efficiedteecurate algorithms for analyzing
large-scale datasets. Therefore, one of the intents ofttegss is to develop a way to solve some
of the problems in the inference of population history in toatext of large genetic variation

datasets.

1.1 Genetic Variations

Variations can occur within and among populations, withmal detween species, and in phe-
notypic features as well as in genetic materials. When vanaiccurs at the DNA level, we
call such variation genetic variation. Genetic variatisiiportant because it is what makes us
different and it provides clues to a number of questions frmw we arise as a species to how
a disease may have arisen. Genetic variation is typicatiygint by different mutational forces
that can be largely categorized into two groups: point nmatand structural variations (Fig-
ure 1.1). Point mutation occurs when a DNA base is substituted witbtfzer base. Structural
variation occurs when a DNA sequence is inserted, deletgaicdted, or inverted.

Before high-throughput technologies were developed, tleteaf point mutations was mainly

achieved through restriction enzyme assays that idergsyriction fragment length polymor-
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Figure 1.1: Genetic variations can largely be divided imto groups: Point mutations and struc-
tural variations. Point mutations are genetic variatioassed by substitutions of bases while
structural variations are genetic variations due to insest deletions, duplications, inversions,

and translocations.

phisms (RFLPs) 36, 44, 107]. RFLP employs a technique for fragmenting a DNA sample
by restriction enzymes that can recognize and cut DNA atiBpéacations. Once DNAs are
fragmented by the restriction enzyme into different leniglgments, gel electrophoresis then
separates the fragments by their lengths. If a mutationreaesithin one of the cleavage sites,
the restriction enzyme would no longer able to cleave thes sitsulting in longer fragments on
samples with such a mutation. By comparing the lengths of Did§rhents resulting from re-
striction enzyme cleavage on gel electrophoresis betwaemple and control groups, one can

identify if a particular point mutation occurs.

In addition to RFLP, traditional sequencing techniquesugtoautomated chain-termination
DNA sequencing were also used to identify single nuclegdiolgmorphisms (SNPs). SNPs are
single point mutations that occur throughout the genomeaevtie bases are switched from one
nucleotide to another. These variations can result in oemmgprotein sequence that may lead to
certain diseases. After high-throughput techniques wereduced, detecting and typing SNPs
through microarray chips became very popular. To detectsSbife would first sequence a small

region or the entire genome from a small sample of indivisluBl aligning the sequences, one
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can then identify the bases that are polymorphic. SNPs @anlié typed by running samples on
microarray chips with probes representing short sequearcemd each polymorphic site. While
SNPs genotyping using microarrays known as tiling arrayisesmost common approach today,
efforts to sequence the entire genome for all samples amirg more and more popular today

as the cost of whole-genome sequencing becomes affordable.

A second group of genetic variations is known as structusahtions. Although structural
variation was initially believed to be of lesser importanesearchers have begun to recognize
its importance in disease associati®2]] One way to detect a type of structural variation is
through polymerase chain reaction (PC&J[that identifies microsatellite polymorphisnq.
Microsatellite polymorphisms are short repeating seqesmanging between 2 and 6 base pairs
that vary in the number of repeat copies. These polymorphisam be detected and typed by
amplifying the microsatellite region using PCR with specgiamers outside the microsatellite
region and then separating different lengths of the mid¢edliga using gel electrophoresis. Those
individuals with heterozygous allele would have two diffiet bands on the gel, while those with

homozygous major or minor alleles would have just a singtedlan the gel.

In addition to microsatellite polymorphism, detection dher structural variations can be
achieved through high-throughput techniques via sequgraritiling arrays. Although there are
fewer structural variations compared to SNPs, researdteess shown that structural variations
can also result in disease phenotyp#8g 128. Detections of larger structural variations are
commonly conducted through array comparative genome thyltion (aCHG) 82| by mea-
suring a sample’s florescent intensity compared to a reéeresample, but a recent advances
in sequencing technology have led to a newer approach knevpaieed-end mapping that not
only enables detection of insertion/deletion polymorptsdut also translocations and inversions

[56].



1.2 Genetic Variation Datasets

With different types of genetic variations data and difféargenotyping and sequencing efforts
managed by different groups, locating specific genetic databe difficult. Luckily, efforts to
collect data from multiple studies into a centralized lamathave been initiated. A database
known as dbSNP was initiated by National Center for Biotecbgwlinformation (NCBI) in
1998 to enable researchers to submit newly identified gewnatiations 9. To search for
existing genetic variations submitted to dbSNP, one cosklthe NCBI's Entrez SNP search
tool to learn about a particular genetic variatigiZ]| a set of SNPs within a particular gene, or
even the set of SNPs within an entire chromosome. Alterelgtione could also utilize a genome
browser, such as the UCSC genome browser, to learn about@eagations across different

regions of the genomé»5, 69.

While dbSNP and associated browsers allow one to search fatigevariations identified
by various studies, data genotyped and sequenced for knbi&s 8n cohorts of samples needed
for actual analyses are typically deposited on differenbsites and databases. For small and
medium scale studies on collecting genetic variation datden fdifferent cohorts of individu-
als, one can often find the sample data in National Center faieBimology Center’'s (NCBI)
database of genotype and phenotype (dbG&4#) [The database contains information on each
genetic variation study listed, including the study docatagon, phenotypic data, genetic data,
and statistical results. While aggregated information saglstatistical analysis and summary
descriptions are available publicly, access to individeaél information including genotypic

data requires one to apply for access.

As an alternative to dbGaP, large-scale whole genome geraetation data are also available
from a number of resources as summarized in TaldleAmong the databases listed in Tallé,
HapMap is perhaps the most well-known whole genome genatiation dataset, consisting of
over 1.6 million SNPs from 1,184 reference individuals fridinglobal populations in its phase

3 release?, 4, 5]. In addition to HapMap, a number of large scale datasetsgugenotyping
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technologies have emerged including Human Genome DiyePsibject (HGDP) $0], Popu-
lation Reference Sample (POPRES3¥)]| Japanese Single Nucleotide Polymorphism (JSNPA)
[46], and Pan-Asian SNP (PASNP24]. While most large scale projects employ genotyping
technologies, a newer project known as 1,000 Genome Prigj#uet first large scale project to

sequenced entire genomes on more than 1,000 individélals [

Table 1.1: List of Some Important L arge-Scale Genetic Variation Datasets

Database Data Types Populations | Samples
HapMapp4] SNP (1.6M), CNV 11 1184
HGDP[95] SNP(500K), CNV (1k) 29 485
1000 Genom¢]3] | SNP (38M), CNV, Ins/Del/Inv 14 1092
POPRESTH)| SNP(500K), CNV 7 5886
PASNP[] SNP (56K), CNV 71 1982
JSNPF1] SNP(500K) 1 934

1.3 Inference of Population History

Past work on population history inference has essentiaiglved two inference problems: iden-
tifying meaningful population groups and ancestry infeeeamong them. In this section, we

survey major methods for these separate inference problems

1.3.1 Population Substructure

Population groups or substructures may be assumed in aglw@sed on common conceptions
of ethnic groupings, although the field increasingly degema computational analysis to make
such inferences automatic. Probably the most well-knovstesy for identifying population

substructure is STRUCTURBY]. STRUCTURE infers population substructures from genetic
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variation data using a probabilistic model that assumehl papulation is characterized by a
set of frequencies for each variant form, or allele, acr@sgtion sites, or loci, in the dataset.
Assuming that the allele of each locus for each individualependent on the allele frequency
of the subpopulations the individual belongs to, STRUCTUR&stto identify the probability
distribution of the ancestral origi@ of each individual and the allele frequencigsof each
subpopulation given the observed genetic variation dataNamely, STRUCTURE aims to

learn the distribution

Pr(Z,P|X) < Pr(X|Z, P)Pr(Z)Pr(P)

using a Markov Chain Monte Carlo (MCMC) method to group sequeimteds ancestral pop-
ulation groups each with its own allele frequency profile.

Another well known program is EIGENSOF8]], which uses principal components analy-
sis (PCA) to identify a set of distinguishing vectors of adkethat allow one to spatially separate
a set of individuals into subgroups. Recently, two additiaalgorithms known as Spectrum
[105 and mStruct 101] have been proposed by Sohn and Xing and Shringarpure argir&in
spectively. While both algorithms are similar in nature t(RRICTURE, Spectrum constructs a
more realistic model by incorporating recombinations andations into their statistical model
and avoids the specification of ancestral population nural@iori by modeling genetic poly-
morphism based on the Dirichlet process. On the other haSttuct proposes a new admixture
model to identify subgroups by representing each popula®mixtures of ancestral alleles

rather than a single ancestral allele profile.

1.3.2 Phylogenetic Analysisfor Ancestry Inference

Traditionally, analysis of ancestry between individuaés targely been done through the use
of classic phylogenetic algorithms. Defined as methods fer ievolutionary relationship be-

tween different taxa or individuals using a tree and, in sonoee complicated cases, a graph,
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phylogenetic algorithms can be largely divided into two gyah classes of algorithm: distance-
based and character-based. Distance-based phylogelgetithans aim to piece together the
relationships between taxa or individuals by using a measfievolutionary distances between
taxa or individuals. Pairwise distances are typically cated between every pair of taxon or
individual and are then used to construct a tree in which thgogenetic distances between
taxa or individuals closely resemble the computed distan@éhile a number of distance-based
methods exist, they can largely be grouped into non-oledtased and objective based meth-
ods. Among non-objective based methods, two of the mostkmelvn are the Unweighted
Pair-Group Method Using Arithmetic Averages (UPGMAIL] and Neighbor Joining (NJ)3f].
Both methods compute a tree progressively from the bottotoyypining two closest taxa into a
single tree node and updating the distance matrix at eaphusté all taxa are joined into a tree.
While the two methods are similar, NJ differs from UPGMA inuggdates of distance matrix in
that NJ incorporates different mutation rate at differeeétbranches into distance calculations.
This makes NJ a better choice of algorithm when the mutatida is variable. While NJ and
UPGMA are popular distance-based methods, a second gradiptahce-based methods using
an objective function are also gaining popularity. Objtbased methods, such as minimum
evolution, aim to optimize for the best tree using objectiugctions such as the sum of the edge
weights. Although with higher computational cost, objeetbased methods have the advan-
tage of having theoretical guarantees of identifying thénogl tree by some precise criteria by
searching through all possible trees rather than greealilkihg at a subset of all possible trees

in the case of non-objective based methods.

A second class of phylogenetic algorithms is the chardsdsed approach. A character-
based algorithm takes an aligned set of characters, sucNAsBguences, and constructs a tree
describing the changes in individual characters neederbtiupe the observed set of characters.
Each node in the tree would represent a unique string of cteasaand each edge connected to

a node would describe the changes to the character thatdemdéw string of character from
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another node. Character-based algorithms can largely lediinto three groups: maximum
parsimony, maximum likelihood, and Bayesian. In maximunspaony, the goal of the algo-
rithms is to identify the tree that minimizes the total numbgchanges or mutations occurred
along the edges of the tree. The intuition behind maximursipany is that repeated or recur-
rent mutations are typically rare. Thus, by optimizing fbe tminimum number of mutations
that have occurred throughout history, maximum parsimooyld/give us a tree satisfying such
assumption. Because maximum parsimony is one of the firss cdasethods introduced, a
number of well-known software suites have utilized thisrapgh, including Phylip, PAUP, and
more recent mixed-ILP method8(Q, 96, 109. The advantage of the maximum parsimony is
that the method utilizes a simple but informative model otenalar evolution that can provide
correct evolutionary trees in some regions of the genomentlag be under selective pressures
that prevents frequent mutation or for short time scales/feav mutations would be expected.
However, the method is generally much more computatiortahsive than most distance-based

methods and can produce incorrect tree when the assumgtaoiated.

Another group of character-based method is the maximuritiked (ML) approach, where
finding the optimal tree is proposed in a probabilistic framk. In a maximum likelihood
approach, the method finds the optimal tree by maximizindikedihood function, P(D|M),
where data D) is the observed sequences and the mogi€) is the set consisting of the tree
topology, ancestral sequences, and other parameters.a8ugbproach can provide a finer and
generally more accurate depiction of the evolutionaryonisthan the maximum parsimony ap-
proach when the parsimony assumption no longer holds, byegngrally more computational

costly than the maximum parsimony approach.

In addition to maximum likelihood, a third group of charadt@sed methods is the Bayesian
approach49]. Rather than maximizing the probability functid®(D|M ), a Bayesian method
tries to learn the posterior distributiaR(1/) over possible trees, sequences, and parameters.

While the Bayesian approach is generally harder computdlypritahas the advantage of not
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requiring the users to specify parameters that can biasdbertference.

When comparing the two main classes of phylogenetic treenstaaction algorithm, there is
a general consensus that character-based approach paowdee realistic and generally more
accurate and detailed depiction of the evolutionary hysbart suffers from high computational
cost that limits its usefulness on large genomic datasets result, distance-based methods are
still currently the only feasible choice in building evatutary trees from large genome-scale
datasets. Therefore, part of this thesis is to provide aoiefii solution in learning population

history using character-based methods.

1.4 Ancestry Inferencein the Presence of Admixture

While ancestry inference through traditional phylogenafgorithms generally works well when
the populations rarely interact with one another, tradaigohylogenetic methods can fail when
there are interactions between individuals from diffengeopulations. When individuals from
one population migrate and come into contact with anothpulation that was long separated,
incorporation of genetic materials from one distinct p@pioin into another can result. This pro-
cess of mixing genetic material from different populatismknown as admixture. This process
is believed to be common in human populations, where mmmnatof peoples have repeatedly
brought together populations that were historically relpiaively isolated from one another.
When one is interested in detecting and learning ancesstirkiiin the presence of admixed
individuals, traditional phylogenetic analyses may natassarily produce correct results. Imag-
ine if we have a group of admixed individuals that have a mmextef genetic materials from two
different populations in the same dataset. In the best-s@segario, the traditional phylogenetic
tree algorithm would simply attach the admixed individuedsa sub-branch to one of the parental
populations. However, it is more likely that the algorithrowld return an evolutionary tree that
is far from the true evolutionary history, where the topglag the tree is reshuffled due to the

mixing of genetic materials from admixed individuals. Asesult, a different set of tools and
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algorithms are needed to learn about admixture.

One popular approach for analyzing admixture is principahponent analysis (PCABL].
PCA is a type of techniques for taking high-dimensional dai ansform them into a more
tractable, lower-dimensional form, without losing too rhucformation. Mathematically, PCA
tries to minimize the projection residuals when transfoignp-dimensional data into lower-

dimension form:

wherez; is the p-dimensional vector ofh data point andv; is thejth orthonormal vector. The
minimization can be achieved by finding the eigenvectors @gdnvalues of the data where
each eigenvector is associated with an eigenvalue. The dlthe eigenvalue indicates how
large the variance of the data is when projecting onto theesponding eigenvector. The idea
behind PCA for ancestry analysis is that user would take thetgevariation data as a matrix,
learn the eigenvalues and eigenvectors of the matrix, asjdgireach individual onto the largest k
eigenvectors to visualize individuals’ genetic varianceas populations. Since variances across
populations are usually the largest, individuals from eagpulation should nicely project into
different population clusters using the first few eigengeswith the largest eigenvalues. When
applying PCA on a dataset with admixed individuals, the aeuahixdividuals would generally
be projected linearly between the centers of two or morerpar@opulations. This approach
is popular due to its low computational cost and its abilityeasily visualize the separation and
intermixing of populations. Nonetheless, the PCA-basedaggh generally does not have an
easy and accurate way to quantify the separation or theminterg of populations.

To quantify the amount of admixtures between populatiorsneong individuals, one com-
mon approach is the admixture model-based methods thatImutieiduals as probabilistic
mixtures fromk ancestral population. Such an approach can typically perfdetailed esti-

mations of the admixture proportions at the individual lemeeven at the loci level for each
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individual. While a number of likelihood-based methods £j&§], one common implementa-
tion is the hidden Markov model (HMHBH, 111]. An HMM is a probabilistic graphical model
that assumes a Markov process with hidden states. A genét®d Hamework for inferring
admixture generally models the ancestry composition ohdividual at each genetic variation
site as the hidden state that must be inferred from the gpastyEach hidden state is connected
to its neighbors by a chain where the probability of the hiddtate is conditionally dependent
on the states of its neighbors. By using the observed gemoigpe the correlations between
the nearby markers, the HMM can then produce a probability quantifying the ancestry of
each individual. While there are a number of different HMMs&a methods introduced in re-
cent years, they are mainly based on the same framework ddlti@nal improvements such as
inclusion of linkage disequilibrium (LD) or other hyperpaneters. In addition to HMM, other
likelihood methods such as LAMP§], FRAPP [L10, and ADMIXTURE [8] are also popular

for quantifying admixture.

Despite success in learning admixture using PCA and adneixtwdel-based approaches,
neither approach provides a way to fully illustrate the ctatgoevolutionary history, such as the
relationships between the non-admixed populations or teeige time at which the admixture
happened. To learn about the time of admixture and the des®lationships between popula-
tions, a third type of admixture inference algorithm knoventlae coalescent-based algorithms
can be used. In coalescent-based algorithms, models ofajgmgulation history with different
time and admixture parameters are evaluated by enumegdtipgssible trees generated from a
coalescent model consistent with the general populatiodetn@and then computing the proba-
bility of observing the data given the generated coalestees [L7, 77, 126. Coalescent-based
methods generally have the advantage that these methoge@ade additional evolutionary
information, such as the time of the admixture and time oédjence in which one may be
interested in phylogenetic analysis. While coalescenétasethods can provide additional evo-

lutionary information, existing methods suffer from expme computational cost as well as the
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requirement to know the model of population history befarahinstead of learning it from the
data directly. Despite the limitations of current coalegdsased methods, the ability to learn
additional evolutionary information is desirable. Theref addressing the limitations of the

coalescent-based methods will be a focus in this thesis.

1.5 Limitationsof Existing Approachesfor Learning Popula-

tion History

Efforts at learning the history of populations from geneteta remain a problem solved in
bits and pieces: from population assignments to evolutioesaents inferences to parameter
estimation. While there have been significant advances tigcensubpopulation detection
[84, 85, 101], in phylogenetic inference3fl], and in parameter estimatioaq, 126, there is no
single method that learns all the information needed to gigletailed depiction of how different
populations emerged over time and, perhaps more impoytdrdlv long ago the populations
emerged. Methods for identifying substructure in a date@etprovide highly accurate mapping
of an ancestral origin for each region of the individual’'sarhosome 98, 111] but leave out
information regarding the relationships between anckstigins. On the other hand, classical
phylogenetic method$3)] provide highly detailed evolutionary relationships beem individu-
als but are mostly limited to tree-like structures. Funthere, phylogenetic inferences frequently
require large datasets to achieve statistical significandeconfidence but become computational
infeasible when given large datasets. Similarly, algonghor estimating parameters of evolu-
tionary events can be computational intensi/g [L7] and require a restrictive assumption that
the history of the population is known or assumed beforeh&uine parameter estimators cir-
cumvented the computational issue but, in exchange, otilya® a subset of the parameters,

such as admixturesg, 85].
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1.6 Contributions

Despite different types of methods excelling in learninifedent aspects of the population his-
tory, no single method of which we are aware can provide gfature of the population history,
which not only can be informative and time-saving to redears but also helpful in enhanc-
ing the accuracy of the estimations. For example, when usidigergence time estimator that
did not take admixture into account, the time estimatedasignificantly deviate from the true
divergence time if admixture events have actually occurfesia result, given the potential ad-
vantages of joint learning of multiple aspects of populatiistory, the goal of this thesis is to
work toward unifying different aspects of the inference opplation history into one algorith-
mic package. Since inference of population history can empass a broad range of problems,
we here specifically try to unify the problem of populatiorbsuucture, the inference of evo-
lutionary events involving divergence events and/or adunexevents, and the exact times and

admixture fractions describing the events given largestdsa

The key contribution of this thesis is the development ofat@lgorithms for automatically
learning detailed descriptions of population history frtarge scale genetic variation datasets
with and without the presence of admixture. The thesis fiestcdbes a model to learn pop-
ulation trees from large genomic datasets under the assumgbiat no admixtures occurred
throughout the history of the populations. The method diesdrhere employs a character-based
algorithm to take advantage of its better modeling of thdwdianary processes but avoids the
high computational cost by generating small phylogeneteg on fragments of the complete
dataset and then infers robust tree branches across thsetrde addition to solving the compu-
tational issue for learning evolutionary history from lardatasets, another contribution of this
work is to combine the inference of the population substmgst along with the history of the
populations as both problems depend on similar data soarwtsn principle can help inform
the decisions of one another. Through a series of tests ¢ndmulated and real datasets, this

thesis demonstrates the feasibility of automaticallyriesy of population substructures and their
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relationships in a reasonable time frame.

Analysis on the evolutionary history of human populatignsdally assumes a tree-like struc-
ture and ignores the migratory nature of human populativvisile a tree assumption has long
worked for evolutionary analysis on distance species, simcassumption may not always hold
for closely-related species or intra-species analysisniitlires, a result of the migratory nature
of human populations, have been proven to be a crucial factbe analysis of human population
history and an important step in understanding the etiolufgyiseases. Methods for detecting
and quantifying admixtures are on the rise in recent yeassthese methods usually look at a
limited aspect of the whole admixture history or lack theatality to analyze large quantities
of data to provide a fuller picture of the evolutionary hrstof human populations. To resolve
these issues, the second contribution of this thesis isatelobment of a novel algorithm capa-
ble of running on large-scale datasets for learning the &nmeadmixture parameters describing
a population history involving two non-admixed populas@and one admixed population.

As a natural extension to automatic learning of parametepopulation history involving
two non-admixed and one admixed populations, a third daution of this thesis is to expand
previous algorithm of learning parameters of populatiastdry for two non-admixed popula-
tion and one admixed population to learn the precise paemhand population model for any
arbitrary number of subpopulations.

Finally, to explore the possible applications of learnirgpplation history from large ge-
nomic datasets, one final contribution in this thesis is tmppse and test a simple structured
association test statistic that effectively removes tliecefof population substructure learned

from our prior algorithms.

1.7 ThesisOrganization

Chapter2 gives a detail description of the computational method damtjinference of popu-

lation substructures and their evolutionary history frargé scale genomic datasets under the
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assumption that there is no admixture. A series of valigatidone through simulated and real
datasets are also conducted and detailed in the chapterteCBajescribes a coalescent-based
algorithm involving a two-step process for learning thegpaeters of a population history from
large-scale genomic data involving two non-admixed pdpuia and one admixed population.
As a natural extension of the algorithm described in Chapt&hapterd details a generalized
algorithm for automatic identification of population substures, their evolutionary histories,
and the specific parameters pertaining to each evolutiomnagt from large-scale datasets with
or without the presence of admixture for any arbitrary nundfesubpopulations in the dataset.
In Chapter5, we describe a simple structured test statistic to testppécability of population
history learned from genomic datasets. Finally, Chapsermmaries the findings of these studies

and their conclusions and outlines possible direction$uiare work on this topic.
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Chapter 2

L earning Population Histories From
L arge-Scale Datasets in the Absence of

Admixtur?!

The recent completion of the human geno2g [L24 and the subsequent discovery of millions
of common genetic variations in the human genod@(] has created an exciting opportunity
to examine and understand how modern human population &@®eour common ancestor
at unprecedented detail. Several major studies have redem@n undertaken to assess genetic
variation in human population groups, thus enabling thaitket reconstruction of the ancestry
of human population groupg[ 10, 50, 76]. In addition to its importance as a basic research
problem, human ancestry inference has great practicalaete to the discovery of genetic risk
factors of disease due to the confounding effect of unreizegrsubstructure on genetic associ-
ation tests114].

As discussed in Chaptéy past work on human ancestry inference has treated andattra
ence as two distinct inference problems: identifying megful population groups and inferring
evolutionary trees among them. While most earlier worksgeréd the task of identifying

This chapter was developed from material published i
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meaningful population groups manually by assuming in adedhe groups based on common
conceptions of ethnic groupings, the field has increasingly on computational analysis to
make such inferences automatically. Two popular appraafdrdearning population substruc-
tures are STRUCTUREBP] and EIGENSOFT §1] that uses probabilistic model and principal

component anaylsis (PCA) to identify fine population struetitom genetic dataset.

A separate literature has arisen on the inference of rekstiips between populations, typi-
cally based on phylogenetic reconstruction of limited sétgenetic markers — such as classic
restriction fragment length polymorphism#4], mtDNA genotypes 14, 52], short tandem re-
peats 2, 116, and Y chromosome polymorphism]] — supplemented by extensive manual
analysis informed by population genetics theory. While enriphylogenetic reconstruction al-
gorithms, such as maximum parsimony or maximum likelihaaatk well on small datasets with
little recombination, most do not work well when utilizingrgome wide datasets. Furthermore,
there has thus far been little cross-talk between the twblenas of inferring population sub-
structure and inferring phylogenetics of subgroups, dedpe fact that both problems depend

on similar data sources and in principle can help inform #ha@sions of one another.

To unify these two inference problems, this chapter intoedua novel approach for recon-
structing a species history conceptually based on the ilearsensus tree§ 8], which repre-
sent inferences as to the robust features of a family of trébe approach takes advantage of
the fact that the availability of large-scale variationala¢ts, combined with new algorithms for
fast phylogeny inference on these data s@, [has made it possible to infer likely phylogenies
on millions of small regions spanning the human genome. Mhation behind this method is
that each such phylogeny will represent a distorted versidime global evolutionary history and
population structure of the species, with many trees sujpgpthe major splits or subdivisions
between population groups while few support any particsidits independent of those groups.
By detecting precisely the robust features of these treesawassemble a model of the true evo-

lutionary history and population structure that can be madestant to overfitting and to noise
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in the SNP data or tree inferences.

For the remainder of this chapter, Sectia will present a detailed description of the math-
ematical model of the consensus tree problem and a set oftalgs for finding consensus trees
from families of local phylogenies. Sectidh2 presents strategies for evaluating the method
on a set of simulated data and two real datasets from the HapNMase Il 4] and the Human
Genome Diversity Projecb]. Section2.3then shows the results of the validation experiments.
Finally, Sectior2.5 considers some of the implications of the results and fytuospects of the

consensus tree approach for evolutionary history and sudigte inference.

2.1 Methods

2.1.1 Consensus Tree Model

Assume we are given a s6tof m taxa representing the paired haplotypes from each indwidu
in a population sample. If we I6t be the set of all possible labeled trees connecting thes,
where each node of anye 7' may be labeled by any subset of zero or mere S without
repetition, then our input will consist of some setofreesD = (73,...,7,,) C 7. Our desired
output will also be some labeled trég, € T, intended to represent a consensugyof . ., 7,,.

The objective function for choosirifj, is based on the task of finding a consensus & [
from a set of phylogenies each describing inferred ancesdtaysmall region of a genome. The
consensus tree problem aims to identify tree structureigh@drsistent across a set of trees. The
typical approach for finding the optimal consensus treelii@gcounting occurrences of each
edge across the set of trees. If the frequency of the edgedss®me threshold, the edge will
be incorporated into the consensus tree. The present appiids, however, fairly different
from standard uses of consensus tree algorithms in thatylegenies are derived from many
variant markers, each only minimally informative, withirsiagle species. Standard consensus

tree approaches, such as majority conser®bjof Adam consensug], would not be expected
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to be effective in this situation as it is likely there is nagle subdivision of a population that
is consistently preserved across more than a small fractidhe local intraspecies trees and
that many similar but incompatible subdivisions are sufgmbby different subsets of the trees.
We therefore require an alternative representation of timsensus tree problem designed to be
robust to large numbers of trees and high levels of noise andrtainty in data.

Given such criterion, a model of the problem based on thecimi of minimum description
length (MDL)[38] was chosen. The principle of minimum discription lengttaistandard tech-
nique for avoiding overfitting when making inferences frooisy data sets. An MDL method
models an observed data set by seeking to minimize the anodumfiormation needed to en-
code the model and to encode the data set given knowledges ohtldel. Suppose we have
some function. : 7 — R that computes a description lengihy,7;), for any treeT;. We will
assume the existence of another function, which for natatioonvenience we will also call,

L : T xT — R, which computes a description length(7;|7}), of a treeT; given that we
have reference to a model trée Then, given a set of observed tre@s= {1, 15, ..., T, } for

T; € T, our objective function is

L(Ta, T, ..., Ty) =

arg min (L(TM) + Z L(T;|Twr) + f(TM)>

TveT P

The first term computes the description length of the modehgensus) tre&),;. The sum
computes the cost of explaining the set of observed (inpa8stD. The functionf(Ty,) =
c|Ty|log, m defines an additional penalty on model edges whésea constant used to define
a minimum confidence level on edge predictions. The highept#nalty term, the stronger the
support for each edge must be for it to be incorporated irgctnsensus tree.

We next need to specify how to compute the description lenfthtree. For this purpose,
this method use the fact that a phylogeny can be encoded asfggartitions (orsplits) of the
taxa with which it is labeled, each specifying the set of tigkag on either side of a single edge

of the tree. The algorithm represent the observed treesamtidate consensus trees as sets of
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e,;: 1,3,56,9,10|0,2,4,7,8 e,: 01010110011
e,: 0,1,2,3,4,6,7,89,10|5 e, 00000100000
e: 01,3,45,6,78,910|2 e: 00100000000
e 0,1,2,3,56,7,89,10/4 ey 00001000000

(b) (c)
Figure 2.1: (a) A maximum parsimony (MP) tree consisting bidbeled individuals or haplo-
types. (b) The set of bipartitions induced by edgesd;, e., e4) in the tree. (c) 0-1 bit sequence

representation for each bipartition.

bipartitions for the purpose of calculating descriptiomgéhs. Once the method identified a set of
bipartitions representing the desired consensus treendtieod then apply a tree reconstruction
algorithm to convert those bipartitions into a tree.

A bipartition b can in turn be represented as a string of bits by arbitras$ygming elements
in one part of the bipartition the label “0” and the other e label “1”. As an example, in
the tree of Fig2.1(a) the edge labeledinduces the bipartitiok1, 3,5,6,9, 10} : {0,2,4,7, 8}.
This edge would have the bit representation “10101001180c¢h a representation allows us to
compute the encoding length of a bipartitibas the entropyd8] of its corresponding bit string.

If we define H (b) to be the entropy of the corresponding bit stripgto be the fraction of bits

of b that are zero ang, as the fraction that are one, then:

L(b) = mH(b)
= m (—po logy po — p1log, p1)

Similarly, we can encode the representation of one bipamti; given anothem, using the
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concept of conditional entropy. If we |éf(b,|b2) be the conditional entropy of bit string éf
given bit string ofb,, pyo be the fraction of bits for which both bipartitions have \v&al@,” py, be

the fraction for which the first bipartition has value “0” atiee second “1,” and so forth, then:

L(b1|b2) = mH(b1|b2)

= m[H(by,by) — H(b)]

= m Z —Pst 108y por +
s,te{0,1}

> (Pou+ P1u) 1085 (Pou + P1a)
ue{0,1}

where the first term is the joint entropy &f andb, and the second term is the entropybef

We can use these definitions to specify the minimum encodisgaf a treel.(7;) or of one
tree given anothek (7;|7),). We first convert the tree into a set of bipartitidns. . ., b,. We can
then observe that each bipartitibycan be encoded either as an entity to itself, with cost egual t
its own entropyL(b;), or by reference to some other bipartitiprwith costL(b;|b,). In addition,
we must add a cost for specifying whether eaak explained by reference to another bipartition
and, if so, which one. The total minimum encoding co&t&l,) and L(7;|Ty,), can then be
computed by summing the minimum encoding cost for each tijearin the tree. Specifically,
let b, ; andb, »; be elements from the bipartition sBt of 7T; and B, of T, respectively. We
can then computé(7),) and L(T;|Ty) by optimizing for the following objectives over possible

reference bipartitions, if any, for each bipartition in kaee:

[Ba|

L(Ty) = argmin Y [L(bsubs) +logy (| By + 1)]
bs€BapU{0} s—1

|B;]
L(TyTy) =  argmin Y [L(bylb) +log, (|Bul + [Bil +1)]

thijuBiU{m} t=1
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2.1.2 Algorithms

Encoding Algorithm To optimize the objectives for computing7),) and L(T;|Ty,), we can
pose the problem as a weighted directed minimum spanniad@®& ST) problem by construct-
ing a graph, illustrated in Fig2.2, such that finding a directed minimum spanning tree allows
us to compute.(Ty,) and L(7T;|Ty). We construct a grapty = (V, £) in which each node
represents either a bipartition or a single “empty” root@edexplained below. Each directed
edge(b;, b;) represents a possible reference relationship by wiiexplainsb;. If a bipartition
b; is to be encoded from another bipartitibyy the weight of the edge;; would be given by
wj; = L (b;|b;) + log, |V'| where the terntog, |V| represents the bits we need to specify the ref-
erence bipartition (including no bipartition) from whiéhmight be chosen. This term introduces
a penalty to avoid overfitting. We add an additional edgectlyedrom the empty node to each
node to be encoded whose weight is the cost of encoding the willy reference to no other
edge wempty,; = L(b;) +log, |V

To computeL (7)), the bipartitionsB,, of T, and the single root node collectively specify
the complete node set of the directed graph. One edge is teated from every nodB,, U {r}
to every node of3,,. To computel(T;|T),), the node set will include the bipartitiord$ of 73,
the bipartitionsB,, of T,;, and the root node. The edge set will consist of two parts. Part
one consists of one edge from each nodépt B,, U {r} to each node oB;, with weights
corresponding to the cost of possible encoding®ofPart two will consist of a zero-cost edge
from r to each node irB,,, representing the fact that the presumed cost of the maglelhas
already been computed. F@2illustrates the construction for a hypothetical model ffgeand
observed tre&; (Fig. 2.2(a)), showing the graph of possible reference relatiorss{im.2.2(b)),
a possible solution corresponding to a specific explanatidn in terms of7T, (Fig. 2.2(c)), and

the graph of possible reference relationshipsitgrby itself (Fig.2.2(d)).

Given the graph construction, the minimum encoding lengthbbth constructions is found

by solving for the DMST with the algorithm of Chiu and Lia§] and summing the weights of
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Figure 2.2: lllustration of the DMST construction for detening model description length. (a)
Hypothetical model tre&), (gray) and observed trée (white). (b) Graph of possible reference
relationships for explaining’; (white nodes) by reference t6,, (gray nodes). (c) A possible
resolution of the graph of (b). (d) Graph of possible refeeerelationships for explaining),

by itself.

the edges. This cost is computed for a candidate modelltyeand for each observed trég,
fori =1,...,n, to give the total costC(T), 11, - .., T5,)]-

Tree Search While the preceding algorithm gives us a way to evalddg,, ), L(T;|T),), and
L(Ty, Ty, ..., T,) for any possible consensus tfEg, we still require a means of finding a high-
quality (low-scoring) tree. The space of possible treegaddrge to permit exhaustive search and
we are unaware of an efficient algorithm for finding a globdlrapm of our objective function.
We therefore employ a heuristic search strategy based ameaed annealing. The algorithm
relies on the intuition that the bipartitions to be found myaigh-quality consensus tree are
likely to be the same as or similar to bipartitions frequgmibserved in the input trees. The
algorithm runs for a total of iterations and at each iterationvill either insert a new bipartition

chosen uniformly at random from the observed (non-unigipgrbitions with probabilityl —i /¢
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or delete an existing bipartition chosen uniformly at ramdoom the current’,; with probability
i/t to create a candidate model trég. This strategy is intended to encourage the addition of
new bipartitions at the beginning of the search and the diear redundant bipartitions at the

end of search cycle.

If the algorithm chooses to insert a new bipartitigit then performs an additional expectation-
maximization-like (EM) local optimization to improve thé,fas many of the bipartitions in the
observed trees will be similar but not exact matches to thbailsplits inferred for the popula-
tions. The EM-like local optimization repeatedly identfithe setB, of observed bipartitions
explained by and then locally improves by iteratively flipping any bits that lower the cost of
explaining B,,, continuing until it converges on some locally optinhalThis final bipartition is
then added td’, to yield the new candidate tr&,. Once a new candidate trég, has been
established, the algorithm tests the difference in costéenT),, and7},. If T}, has reduced

cost then the move is accepted drjgd becomes the new starting tree. Otherwise, the method ac-

ceptsT’, with probabilityp = exp £ ) whereT = 400/t is the simulated

T

annealing temperature parameter.

Tree Reconstruction A final step in the algorithm is the reconstruction of the nsus tree
from its bipartitions. Given the bipartitions found by thied search heuristics, we first sort the
model bipartitions; < bs... < by, in decreasing order of numbers of splits they explain (ite,
number of out-edges from their corresponding nodes in th&IDMThe method then initialize a
treeT;, with a single node containing all haplotype sequences amd introduce the successive
bipartitions in sorted order into this tree. The intuitianthat bipartitions that explain a greater
fraction of the observed variation should generally cqroesl to earlier divergence events. For
eachh; = 1to k, the method subdivide any nodethat contains elements with label 0tin(5?)
and elements labeled as 1n(b}) into nodesv;; andv;, corresponding to the subpopulations
of v; in b or b;. The method also introduce a Steiner neddor each node; to represent

the ancestral population from whiely, andv;, diverged. The method then replace the prior tree
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E—l with T‘z = (V;, Ez) Where‘/; = ‘/i—l — {Uj}+{Uj1, Vj2, Sj} andEZ‘ = Ei—l — {6 = (t, Uj>|6 -
E;_1,t € parent(v;)} + {e = (¢, s;)|t € parent(v;)} + {(s;,vj1), (s}, v;2)}. After introducing

all £ bipartitions, T}, is the final consensus tree.

2.2 Validation Experiments

2.2.1 Simulated Dataset

Evaluation of the method is initially performed on a simathtlataset consisting of three inde-
pendent populations, each with 150 individuals (300 chsontes). To generate the sequence
data, we first generated the genealogies, or trees thatitsaethe possible lineages and history
between observed individuals, for each population usiegctialescent simulator M37] on
sequence of length)” base pair long with a mutation rate of—, a recombination rate df)—3,

and an effective population size of 25,000. The resultingutated branch length between the
root node of each population and the leaves was 1,600 gereyaln order to simulate the effect
of three populations diverging from a common ancestor, vibssguently merged the genealogy
trees from each population. We first defined a common anckesttbre root nodes of populations
one and two as shown in Fig@.3(b)with branch length 1,000 generations between their most
recent common ancestor (MRCA) and the root nodes of the twolatigos. We then defined a
common ancestor between the MRCA of populations one and twdéhenaot node of popula-
tion three, with branch length 1,000 generations to the MRCpagfulations one and two, and
2,000 generations to the root node of population three. Thed branch lengths between any
leaf and the MRCA of all of the populations was thus estimatejJ&10 generations. Given this
defined tree structure, we generated sequence for eaciduaivusing Seq-Ger8p]. We used a
mutation rate ofl0~? per site to generate a 10 million base pair sequence witl8ZB8P sites

in order to accommodate the branch lengths simulated from W&8g the 83,948 SNP sites,

we constructed 83,944 trees from 5 consecutive SNPs sgpaninss the sequences. Given the
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dataset, we ran the algorithms on 10,000 randomly selexted or their corresponding 33,295

unique SNPs.

2.2.2 Real Data

We further evaluated the method by applying it to samples ftwo real SNP variation datasets.
We first used the Phase Il HapMap data set (phased, relea$d] 2&)ich consists of over 3.1
million SNP sites genotyped for 270 individuals from foumpptations: 90 Utah residents with
ancestry from Northern and Western Europe (CEU); 90 indadslwith African ancestry from
Ibadan, Nigeria (YRI); 45 Han Chinese from Beijing, China (CHB)J &5 Japanese in Tokyo,
Japan (JPT). For the CEU and YRI groups, which consist of tria @@arents and a child),
we used only the 60 unrelated parents with haplotypes agédfdy the HapMap consortium.
For each run, we randomly sampled 10,000 trees each cotestrirom 5 consecutive SNPs
uniformly at random from 45,092 trees generated from chsone 21, which represented an
average of 28,080 unique SNPs. For the purpose of compamg®mnised 10,000 trees or the
corresponding 28,080 SNPs as inputs to the method and thpacative algorithms. We next
used phased data (version 1.3) from the Human Genome Dwémwject (HGDP) $0], which
genotyped 525,910 SNP sites in 597 individuals from 29 patprs categorized into seven
region of origin: Central South Asia (50 individuals), Afi¢159 individuals), Oceania (33
individuals), Middle East (146 individuals), America (3idividuals), East Asia (90 individuals),
and Europe (88 individuals). For each test with the HGDP,da¢asampled 10,000 trees from
a set of 39,654 trees uniformly at random from chromosome He 10,000 trees on average

consisted of 30,419 unique SNPs.

2.2.3 Benchmarks

There are no known existing method that perform the joirgr@fce of population substructure

and the evolutionary tree, and therefore the method camadiemchmarked directly against
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any competitor. Consequently, the method was assessed byriteva. We first assessed the
guality of the inferred population histories from the siateld data using the gold standard tree
and assessed the quality of the inferred population hetdrom the real data by reference to
a expert-curated model of human evolution derived from &vreby Shriver and Kittles[02,
which we treat as a “gold standard.” Shriver and Kittles uaetkfined set of known human
population groups rather than the coarser grouping infelosethe consensus-tree method. To
allow comparison with either of the inferred trees, we tfenemerged any subgroups that were
joined in our tree but distinct in the Shriver tree and deleday subgroups corresponding to
populations not represented in the samples from which eestwere inferred. (For example, for
the HapMap Phase Il dataset, we removed Melanesian, Paynédiddle Eastern, American,
and Central South Asian subgroups from the tree, as indilsduam those populations were
not typed in the Phase Il HapMap). We also ignored inferredigmire events in the Shriver
and Kittles tree. We then manually compared our tree to theltiag condensed version of the

Shriver and Kittles “gold standard” tree.

As a secondary validation, we also assessed the qualityrofifaured population subgroups
relative to those inferred by two of the leading substrueigorithms: STRUCTURE (version
2.2) [89] and SpectrumJ05. We selected these programs because of they are well accapt
leading methods for the substructure problem and are ablatdle comparable sizes of data set
to the method. We chose to omit EIGENSOFT, despite its wigaruthis field, as the program is
mainly used to visualize substructure and does not leadtmambiguous definition of substruc-
ture to which we can compare. STRUCTURE requires that the pseifg a desired number of
populations, for which we supplied the true number for eaatia det (three for simulated data,
four for HapMap, and seven for HGDP). For each run of STRUCTURE performed 10,000
iterations of burn-in and 10,000 iterations of the STRUCTURENC sampling. We did not
make use of STRUCTURE's capacity to infer admixture or to ugditimhal data on linkage

disequilibrium between sites. Spectrum did not require @sgr inputs other than the dataset
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itself.

We first visualize the cluster assignments by plotting eadividual in each population as
a vertical line showing the population(s) to which he or shassigned. Because the clusters
assigned by the algorithms have arbitrarily labels, wegassolors to these labels so as to best
capture their correspondence to the true population grolgpdo so, we first arbitrarily assign a
color to each population group in the gold standard. For éimsensus tree method, all sequences
found in a common node of the consensus tree are considenegl@ duster; we assign to each
such cluster the color of the gold standard group that hasmrmam overlap with that cluster.
For STRUCTURE, which assigns each individual a probabilitipeifig in each cluster, we color
each cluster according to the gold standard populationh@smaximum overlap with the most
probable cluster assignments for all individuals. For 8pee, which assigns each individual a
fractional ancestry from a set of inferred founder haplegjpve choose an arbitrary color for
each founder haplotype and color each individual to refle&t individual’s inferred fractional
ancestries. If we were to use the same assignment protac8pfectrum as for STRUCTURE,
all individuals would be assigned to the same subgroup.

We quantify clustering quality using variation of infornaat [67], a measure commonly used
to assess accuracy of a clustering method relative to agfreed “ground truth.” Variation of

information is defined as

VI(X,Y) = 2H(X,Y) — H(X) — H(Y)

whereH (X,Y) is the joint entropy of the two labels (inferred clusterimglaground truth) and
H(X) and H(Y") are their individual entropies. Given that most algorithregirns the frac-
tion or probability that each individual belongs to popidatk, for the purpose of evaluation,
we assigned each individual to the population group of tigaést likelihood as determined by
STRUCTURE. While Spectrum also provided a fraction or proligirofile for each individ-

ual, the number specifies probability or fraction a persogiated from a ancestral haplotype
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rather than the ancestral population. As a result, arbdytrassigning each individual by the
likelihood fraction will lead to poor clustering results. &&equently, we chose not to evaluate

Spectrum by this criterion.

For the three comparative algorithms (STRUCTURE, Spectrurd,@onsensus Tree), we
also assessed robustness of the method to repeated subsarfRpt each pair of individuals
(4, j) across five independent samples, we computed the numbempfes;; in which those
individuals were grouped in the same cluster and the nuibér which they were grouped in

different clusters. Each method was assigned an overalhsistency score:

i 2b;; 2ai;
min {1 - L(aiﬁiim 1 - L(az‘jH}’z‘j)J }

2]: ()

Inconsistency =

The measure will be zero if clusters are perfectly considt®m run-to-run and approach
one for completely inconsistent clustering. We defined tloeigd truth for HapMap as the four
population groups. For the HGDP data, we treated the grourd &s the seven regions of
origin rather than the 29 populations, because many papuolgtoups are genetically similar

and cannot be distinguished with limited numbers of SNPs.

2.2.4 Sensitivity Test

To characterize the relationship between data quantityaandracy of the inference, we further
performed the analysis for a variable number of tree sizes.rdll the consensus-tree method,
STRUCTURE, and Spectrum for 4 different data sizes — 10,0@®01,100, and 10 trees (or
the corresponding SNPs) — and computed the variation ofnmdition and the inconsistency

score for each.
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2.3 Results

Fig. 2.3 shows the trees inferred by the consensus-tree method ainthbated data and the
two real datasets alongside their corresponding true siteditree or the condensed Shriver and
Kittles “gold standard” trees. Fi@.3(a) shows the inferred tree produced by the consensus-tree
model on the simulated dataset. Based on the numbers of eldskipartitions explained by
each model bipartition, the tree reconstruction correictigrs the key divergence events across
the 3 populations when compared to RRg3(b). The method also picks up some additional splits
below the division into three subgroups that representtautisre within the defined subgroups.
The fractions of mutations assigned to each edge roughhggpond to the number of genera-
tions simulated on that edge, although with the edge fronMR&EA of all populations to the
MRCA of populations one and two assigned slightly fewer matetiand the two edges below

that somewhat more mutations than would be proportiondigo tlivergence times.

Fig. 2.3(c) shows the inferred tree from the HapMap dataset. Theré@enstruction infers
there to be an initial separation of the YRI (African) sub-plapion from the others (CEU+JPT+CHB)
followed by a subsequent separation of CEU (European) from+@PIB (East Asian). When
collapsed to the same three populations (African, Europgast Asian), the gold standard tree
(Fig. 2.3(d)) shows an identical structure. Furthermore, thesdtseate consistent with many
independent lines of evidence for the out-of-Africa hy@sils of human originsSd, 102, 117].
The edge weights indicate that a comparable number of gemesaelapsed between the di-
vergence of African and non-African subgroups and the dmmece of Asian from European
subgroups, consistent with a single migration of both gsooynt of Africa long before the two
separated from one another.

For the HGDP dataset, the trees differ slightly from run to, g0 we arbitrarily provide the
first run, Fig.2.3(e), as a representative. The tree infers the most ancieertgéince to be that
between Africans and the rest of the population groupsoviad by a separation of Oceanian

from other non-Africans, a separation of Asian+AmericamfrEuropean+Middle Eastern (and
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a subset of Central South Asian), and then a more recent §pgliherican from Asian. Finally,

a small cluster of just two Middle Eastern individuals isenmkd to have separated recently from
the rest of the Middle Eastern, European, and subset of C&utdh Asian. The tree is nearly
identical to the that derived from Shriver and Kittles foe ftame population groups (F&3(f)).
The only notable distinctions are that gold standard treenmaequivalent to the purely Middle
Eastern node identified by consensus-tree method; thatalldestpndard does not distinguish
between the divergence times of Oceanian and other nogakfpopulations from the African,
while the consensus-tree method predicts a divergence edrden and European/Asian well
after the African/non-African split; and that the gold sdard groups Central South Asian with
East Asians while the consensus-tree method splits CenttghSAsian groups between Eu-
ropean and East Asian subgroups (an interpretation siggpbst more recent analyses1]).
The results are also consistent with the simpler pictureigeal by the HapMap data as well
as with a general consensus in the field derived from manypem#ent phylogenetic analyses
[54, 118. The relative edge weights provide a qualitatively simgacture to that of the HapMap
data regarding relative divergence times of their commdpspulations, although the HGDP
data suggests a proportionally longer gap between thegdimee of African from non-African

subgroups and further divergence between the non-Africagrsups.

Fig. 2.4 visualizes the corresponding cluster assignments, asibleddn Methods, in order
to provide a secondary assessment of our method’s utilithhsimpler sub-problem of subpop-
ulation inference. Note that STRUCTURE and the consensesnatiethod assign sequences to
clusters while Spectrum assigns each sequence a distnlnftancestral haplotypes, accounting

for the very different appearance of the Spectrum output.

The three methods produced essentially equivalent outpuihe simulated and HapMap
data. For the simulated data (Fi&4(a)), all of the methods were able to separate the three
population groups. For HapMap (Fig.4(b)), all three methods consistently identified YRI and
CEU as distinct subpopulations but failed to separate CHB @gnand JPT (Japanese).
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Results were more ambiguous for HGDP (R2g4(c)). The consensus tree method reliably
finds five of the seven populations, usually conflating Midétestern and European and failing to
recognize Central South Asians, consistent with a similécaue from Heet al.[45]. STRUC-
TURE showed generally greater sensitivity but slightly veorsnsistency than our method, usu-
ally at least approximately finding six of the annotated sgvapulation groups and having dif-
ficulty only in identifying Central South Asians as a distigcoup. Spectrum showed a pattern
similar to STRUCTURE but the individual ancestral profile sedrto be similar in several pop-
ulation subgroups. For example, the African subgroup sddmbave a similar ancestral profile

to the European subgroup.

We further quantified the quality of the cluster inferenaarirthe consensus-tree method and
STRUCTURE by converting the result to the most likely clus&signment and computing VI
scores and inconsistency scores. Fdh shows the VI and inconsistency scores of the three
algorithms using inputs with different number of trees alNPS. When examining the variation
of information across different data sets, we can see iseceaccuracy for both STRUCTURE
and consensus tree as we increase the number of trees or BINEs.we compare the inconsis-
tency scores, neither of the algorithms showed a clear tnétidincreasing numbers of trees or
SNPs. When the number of trees or SNPs is large, however, tisecsus-tree method typically

becomes more consistent than STRUCTURE.

We also measured the runtimes of the algorithms using 10, 1,000, and 10,000 trees or
the corresponding SNPs (F&.6). In all cases, the consensus-tree method consistentfasser

than both STRUCTURE and Spectrum, which both use similar G3ab#pling approaches.

Fig. 2.7 shows the consensus trees constructed using differerst giz#ataset subsampled
from the simulated data. From the figure, we can see thateles trever infer substructure that
cuts across the true groups, but that as the data set sieagas, the method yields increasingly
refined tree structures. This observation is what we woubeéetxfor the chosen MDL approach.

The method identifies the separation of populations one wodniith 100 trees but not with
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10, and can discriminate substructure within the indivicagpulations when provided 10,000
trees but not 1,000 or fewer. The number of mutations asdigmeach edge increases as we
increased the number of observed trees, but the fractiofl ofuaations assigned to each edge

remains nearly constant with increasing data set size.

2.4 Discussion

While population substructure inference is only one fac¢teproblem solved by the consensus-
tree method, it nonetheless provides for a convenientgbasiidation. Comparison with lead-
ing population substructure algorithms shows that the@osiss-tree method provides very good
performance on the substructure problem. The consensesfproach shows equal or slightly
superior VI scores relative to STRUCTURE on both simulatedtdapMap data while showing
slightly worse VI scores in HGDP. The consensus-tree methatso quite competitive on run
time with these alternatives, although other substruatueéhods that were not amenable to a
direct comparison, such as mStrut0f], can yield substantially superior run times for closely
related analyses. The consensus-tree method also showslignta automatically adjust to
varying amounts of data while avoiding over-fitting, as destoated by the consistency scores,
as would be expected for the chosen MDL approach.

One key advantage of the consensus-tree approach is thegdtyg substructure inference
as a phylogenetic rather than a clustering problem, it camige additional information about
relationships between subgroups. Such information mayelgi in better completing our pic-
ture of how modern human populations arose and may provideniation of use in correcting
for population stratification during association testiBgcause we are aware of no comparable
methods for this problem, we must resort to validation onusated data and by comparison to
our best current models of true human population histooevaluate its performance on the full
population history inference problem. The consensusrretod correctly infers tree structures

from the simulated data using as few as 100 trees. Furthetnapplication to HapMap and
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HGDP data also shows that the method produces a portraitro&hwevolution consistent with
our best current understanding. The basic qualitative mafdeuman population history that
emerges is further consistent between the two independeasets, despite different individu-

als, populations represented, and markers selected.

The consensus-tree model also provides information abowtrhany mutations one can
attribute to each edge of a given tree. These edge lengthBecarierpreted to approximately
correspond to divergence times along different edges ofrées. In particular, provided one
assumes that mutations accumulate at a constant rate denoss lineages then one would
expect that mutations would accumulate in any subpopulatica rate proportional to the size
of that subpopulation and to become fixed with a probabititaersely proportional to the size of
that subpopulation. To a first approximation, then, edgeyhtaiormalized by the total number
of mutations used in the model should be approximately ptapwl to the time elapsed along
a given edge independent of the size of the population repted or the number of input trees.
The quantitative results do approximately fit this expectator the simulated data. There is,
however, some apparent bias towards lengthening the edgadtie MRCA of subpopulations
one and two to the MRCAs of the two individual subpopulations stmorting the edge from their
MRCA to that of all three subpopulations. This observation medlgct imprecision in the rough
approximation that edge length should be proportional &psdd time. Alternatively, it may
derive from misattribution of some SNPs formed within thbmapulations to the edges leading
to those subpopulations. While the method can provide e relative times elapsed along
edges, it does not have sufficient information to conveéhmimbers of mutations into absolute
elapsed time. In principle, one could make inferences oblals elapsed time along tree edges
given more detailed population genetics models and a cdejplabiased set of variant markers
from which to construct phylogenies. Similarly, having soabsolute time assigned to even a

single edge would allow one to estimate absolute times airggher edges in a tree.

Given that edge weights can be expected to be approximatepogional to elapsed time,
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we can use those derived on the real data to gain some additnsnght into how the inferred
human subgroups may be related. The two data sets yieldatiadly similar models supporting
a single emergence of an Asian/European ancestral groopAfaca followed by divergence
of that ancestral subgroup into Asian and European subgrotpere are, however, some no-
table quantitative differences between relative divecgetimes of various subgroups between
the two data sets. In particular, the HGDP data suggest aogiopally longer gap between
separation of African from non-African and separation ofaiisfrom European. For example,
if we assume that the African/non-African divergence ooedi60 thousand years ago (60 kya),
around the middle of the range of recent estimalds][ then the HapMap data would place
the Asian/European divergence at 32.7 kya while the HGDPdviead to an estimate of 19.5
kya. This observation could reflect an inherent bias in tlgedength estimates, as noted for the
simulated data, or biases intrinsic to the data sets. Sgweraous studies estimating divergence
times have found that inferences can be sensitive to theelbipopulation groups, the specific

genetic regions examined, or the particular individualdhose populationshl, 92, 132,.

While the results show that the consensus-tree method ibleapbmaking robust but sen-
sitive inferences of population structure as well as treectiire, the consensus-tree method
does nonetheless have some significant limitations. Onle lgudation is runtime; while the
consensus-tree method is superior in this regard to STRUCT&RESpectrum, its runtime is
still considerable and far worse other algorithms such agunSand EIGENSOFT. Although
this compute time is still a trivial cost compared to the tireguired to collect and genotype
the data, it may nonetheless be an inconvenience to usetbeFRuore, it prevents us from pro-
cessing the full HapMap or HGDP data sets in a single run, pesgd to the subsamples done
in the present work, likely preventing discovery of fineralesions of population substructure.
This high run-time is largely due to the many calls the comsesfiree method must make to
the DMST algorithm to repeatedly evaluate the MDL objecfivection and may be addressed

in future work by more sophisticated optimization methoaseduce the number of function
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evaluations or by introducing a more highly optimized suibiree for evaluating MDL costs. In
addition, the computations should be easily amenable tiphzation.

Another limitation, noted above, is that the current versod the consensus tree metho