
• CMU-iTC-91-107

Distributed Multimedia:

How Can the Necessary Data Rates be Supported?

Michael Pasieka (msp@andrew.cmu.edu)

Paul Crumley (pgc@andrew.cmu.edu)

Ann Marks (annm@andrew.cmu.edu)
Ann Infortuna (aiOd@andrew.cmu.edu)

Information Technology Center
Carnegie Mellon University

Abstract

At the Information Technology Center at Carnegie Mellon University 1, we have been developing a

system in which it is possible to deliver data to a presentation machine from a remote machine across a

public network at a sustained high rate. We have called this system a Continuous Time Media System

(CTMS). We have found that the UNIX 2 model used for transfer of data between two devices, the network

transport protocols, and the ability of adapters to transfer data between themselves are insufficient to do

this. We have made modifications to each of these system in order to create a prototype system that we can

measure to help define a CTMS protocol. We present the results of this work in this paper.

1. Introduction
The word multimedia has been widely used and misused in referring to a computer's capability to

present and manipulate non-textual data. A multimedia system often implies a system that can manipulate

only text and graphic. Such a system may be incapable of displaying both types of information

simultaneously. There may be no method for linking the text with the graphic and no means of accessing

the information from a remote machine, but the system may still be called multimedia. An ideal

multimedia system might include text, graphic and tabular data (including spreadsheets), vector drawings,

animations, still images, full motion full color video, Compact Disc quality audio and whole interactive

programs (such as a full functional calculator or piano keyboard), all of which could be included within

one document. The system might also allow for arbitrarily complex linking of data, and distributed data.

Although, few systems exist that approach this ideal, when we discuss multimedia systems we want to

consider this whole system.

One key limitation of systems that include full motion, full color video (of NTSC quality) or

Compact Disc quality audio is that they are stand alone systems or systems that use private networks to

transport the multimedia data. Until now, no one has been able to bring to the market or the lab a real time,

public local area networked system for such high data rate media.

We define a Continuous Time Media System (CTMS) as a system in which the data to be presented

must be received at a reliable, continuous high rate. This presents concurrently the problems of high

volume data transport and real time response to the transmission and reception of the data. For example,

with Compact Disc audio, the transfer rate is 176.4KBytes/sec (44.1K samples, 16 bits per sample, 2

channels). The source machine must read a disc and redirect the data flow onto the local area network. The

destination machine must then receive the data from the network and redirect the flow to the subsystem

1Thisworkwasperformedasajointprojectof CarnegieMellonUniversityandthe IBMCorporation.Theviewsandconclusions
containedin this documentare thoseof theauthorsandshouldnotbe interpretedasrepresentingtheofficialpoliciesof Carnegie
MellonUniversityor the IBMCorporation.

2UNIXis a registeredtrademark of AT&T. RT/PCandTokenRing are registeredtrademarksof IBM.AFS is a trademarkof
TransareCorporation.

that is converting the digital data to audio in a such a way that no discernible glitches are heard. This

presentation is not simple, even in a stand alone system.

Our groupworkswithinthe followingoperationalenvironment.Thebaseoperatingsystemis
Academic Operating System (AOS) 4.3, a variation of BSD 4.3 UNIX that runs on the IBM RT/PC

machines. The system is also an Andrew File System (AFS) client [Morris86]. The local area network is a

4Mbit Token Ring with 70 machines of which several arc file servers running AFS. Note that this paper

only addresses the problems associated with data wansport of CTMS over a Token Ring network in which

the source and destination machines are on the same local network (i.e. source and destination are not

separated by a muter). Although we could have chosen other operating systems and other machines,

availability and established expertise were a major factor in these decisions.

Our goal was to support the data rates needed by CTMS over a 4Mbit Token Ring local area

network while the ring was in use for other data transport. We ran several tests of the current UNIX

system, described above. The initial test was to transport 16KBytes/sec of audio data (SK samples/see, 12

bit/sample). This worked extremely well within the current UNIX model. We then tested the use of

150KBytes/sec to simulate compressed video or Compact Disc quality audio. This test of data wansport

failed completely. In this paper, we present our proposed changes, the measurement tools we used to

measure the modified system, as well as some of our thoughts about the actual measurement data. With

our proposed changes, we created a prototype for successfully transporting CTMS data over a 4Mbit

Token Ring local area network, which was loaded with other data.

2. The UNIX Model of Device to Device Transfer and CTMS
In the current UNIX model of data transfer, the only method of transfer between two devices is to

create a user level process that reads the data from one device and writes the data to a second device. This

leads to having too many data copy operations, which then leads to the CPU's inability to maintain the

necessary data rate.

Referring to Figure 2-1, if a user level process reads data from a device, at least two data copies are

performed. The first is normally a Direct Memory Access (DMA) transfer between the device and kernel

LoevicIT.1KemcSp o1UserSpaceI
DMA Copy by CPU

Figure 2-1: Data Copies From Device to User

space 3. If we can ignore the loading of the system bus while the transfer is in progress, there is no loading

of the CPU to do this particular transfer. If the CPU is executing a memory intensive computation at the

time, the arbiu'ation between the DMA and the CPU access will degrade the execution speed of both. This

DMA transfer always occurs into kernel space.

3"I'hereis at leastonedeviceoarrentlyavailable,theAudioCaptureandPlaybackAdapterproducedby IBM,whichdoesnotuse
DMA.In fact,the interfaceis a bytewideinterface.I mustassumethat the designersof the adapterexpectedthatthe audiodata
wouldbecompressedin softwareontheadapterbesombeingtransferredto thehostsystem.Of course,thisrequiresthedevicedriver
builderto alsoprogramthe DSP(in thiscasea "1732025)to dothiscompression.Itshouldbe notedthattherealsoexistadaptersthat
useon-cardmemorymappedintosystemmemoryas themethodfordatatransfer.

The second copy is performed by the CPU to transfer the data between kemd space and user space.

Unfortunately, the implementation of most device drivers includes a third copy of the data. This third copy

is done by the CPU. Referring to Figure 2-2, device drivers normally use fixed DMA buffers in kernel

system memory. This forces the device driver to copy the data out of the fixed DMA buffers into a linked

list of kernel buffers called mbufs.

DMA Copyby CPU Copy by CPU

Figure 2-2: Expanded Data Copies From Device to User

The UNIX model uses mbufs as a pool of buffers to transfer data between the various layers of

protocols. The device driver allocates mbufs and copies the packet into these mbufs. It should be noted that

the allocation of a mbuf can be delayed an arbitrarily long time if the pool is exhausted at the time of the

request. To transfer the data back to the second device requires three additional data copies. Two of these

copies are performed by the CPU and one is performed via DMA.

In total, the number of copies performed to effect the transfer of data between two devices can be as

many as six and as few as four. The difference of two copies can be accounted for by the devices' DMA

capabilities. There will always be four copies made by the CPU. At a minimum, two of these copies are
unnecessary.

We propose a change to the UNIX model of data transfer between two devices. Specifically, direct

driver to driver data transfers should be done. This completely eliminates two of the data copies. This

change requires that the source device be given a function which when executed will effect the transfer of

data between the two devices. In the case where the network is the source of data, an additional function is

needed. This function needs an argument of a linked list of mbufs that is a newly received packet. This

function returns true when the packet should be directly transferred to the device. Handles to these two

function calls can be transferred by a user process between the two devices by using newly created ioctl

calls. We implemented this change of direct driver to driver data transfers in the prototype system for
CTMS.

There is one further change that can be made if the model of UNIX data transfers is extended to

include transfers by pointer manipulation rather than by data copy. Given that both devices are capable of

DMA, all C'PU data copies can be eliminated by transferring pointers to DMA buffers between the two

devices. If only one of the two devices is capable of DMA, then only one copy can be eliminated.

3. Local Area Network Protocols and CTMS

The currently available standards of Transmission Control Protocol (TCP) and Internet Protocol (l'P)

as local area network protocols for data transport are insufficient for the data transport of CTMS. Several

guarantees are needed from the protocol used to transport the data. These include:
• Bandwidth across the network

• Delivery of a packet within preset time bounds

• Preservation of packet sequence

These guarantees are necessary so that both the amount of buffer space used and the amount of

processing time for any single packet are bounded. Of the three guarantees, TCP/IP only provides for one:

the preservation of packet sequence. These protocols can guarantee the preservation only by creating more

network traffic in the form of acknowledgments and requests for retransmission of lost packets. The model

of the network that was used when these protocols were developed included the idea that the physical

network was unreliable. Times have changed.

If a Token Ring network is used, it is possible for the transmitter at a hardware interrupt level to
know if the packet was succcssfuUy received at the destination 4. Given this, the levels of software

previously used to guarantee packet delivery can be pushed down into the interrupt handler. If the Token

Ring device driver is also constrained to send one packet completely before attempting to start sending

another, a guarantee of preservation of packet sequence can be accomplished by giving the device driver

the packets in the order required.

Additionally, the TCP/IP protocols make the assumption that the network can be dynamically

reconfigured. As a consequence of this assumption, IP requests the Token Ring header be recomputed for
each packet transmitted. In our case, the transmitter and receiver are always on the same local area

network 5. If we use IP, this would add an additional delay and load on the CPU for no reason, since we

know that the route never changes.

Given the requirements that were not met, and other limitations, we decided that TCP/IP would be

insufficient as network protocols. We propose that a new protocol be created, CTMS Protocol (CTMSP),

and added to the same layer as ARP and IP. This protocol is specifically designed for and limited to the

assist of data transfers between the network and other devices. The protocol assumes a static point-to-point

connection between two machines. The implementation changes required to add CTMSP to the Token

Ring device driver include:

• Adding the ability to specify the priority of the packet sent over the Token Ring. CTMSP uses
a Token Ring priority above any other traffic on our Token Ring.

• Adding packet priority within the Token Ring device driver. CTMSP uses a packet priority
above both ARP aad IP packets.

• Splitting out the function that computes the Token Ring header. This allows for precomputing
the header once for the life of the connection.

• Adding code to the split point of ARP and IP packets in order to split out the CTMSP packets
and correctly handle them.

We implemented these changes in the prototype system for data transport using CTMSP on a Token Ring
network.

4. Adapters and CTMS
Current adapters load the CPU too heavily. There are several sources of this load. If the adapter is

capable of DMA and the DMA is done into system memory, this DMA can interfere with the CPU's

access to system memory. A second source of loading comes from most adapters' use of interrupts. Once

the CPU is interrupted, the amount of delay between the start and end of servicing the interrupt is

completely dependent on the implementation of the interrupt handler. If this implementation includes long

sections of protected code, the problem becomes more acute.

Critical code segments cause another problem with implementation modifications. Given that we

want to have interaction of device drivers at interrupt handler execution time, we must protect the critical

sections at the highest possible level. By introducing another source of interrupts, the interactions in the

4Aslongas thedestinationwasonthesamephysicalTokenRing.

51fwedidnotdothis thenwe wouldhavetheadditionalproblemof creatinga routerthatcouldkeepupwiththedataratesthatwe
wereusing.Thisispossiblebuthasnotbeenimplemented.

UNIX kernel can be nearly impossible to track.

A shortcoming of current Token Ring hardware is its inability to give back an interrupt when a Ring

Purge is detected on the network. This leads to the sole source of dropped packets for which no correction

can be made. To be able to correct for this, the Token Ring adapter would have to be put in a mode to read

all Medium Access Control (MAC) frames that are seen on the ring 6. This adds yet another loading to the

system's ability to respond to interrupts. From observation, the amount of MAC frame traffic on the Token

Ring we use is between 0.2% and 1.0%. The MAC frame packets are on the order of 20 bytes of data.

Given a 4Mbit Token Ring, there would be between 50 and 250 interrupts to handle MAC frames per

second. This additional interrupt and software decoding of packet headers would add an unacceptable

amount of overhead to detect the small number of Ring Purges that occur on the Token Ring. Other than

this single source of dropped packets, we found that the Token Ring was completely reliable for sending

packets between two machines on the same ring.

On IBM RT/PC machines, we can make a change to reduce the loading on the CPU. That is to

modify the Token Ring device driver so that it does not use system memory for the fixed DMA buffers.

This change is specific to the architecture of the IBM RT/PC. This architecture has two separate buses that
transfer address and data information within the machine. The first is between the CPU and the main

system memory. The second, normally called the Input/Output (IO) Channel Bus, interconnects all of the

attached adapters. The arbiter for accesses between these two bus structures is the Input/Output Channel

Controller (IOCC). An adapter is available that is solely memory, called IO Channel Memory. DMA

between another adapter and IO Channel Memory can occur on the IO Channel Bus and not cause

interference with accesses by the CPU to main system memory. We implemented this change to the Token

Ring device driver to use IO Channel Memory in order to reduce the loading on the CPU in the prototype

system for data transport using CTMS.

If adapters were designed and manufactured to do data transfers using DMA or directly transfer data
between two devices, the load on CPU could be reduced further.

5. Measurement Tools

Once we built the prototype system, we needed tools to measure both the packet activity on the

network, as well as several points with the kernel. Commercial products exist that measure the load on a

Token Ring and capture packets for later examination quite well. After examining several, we used IBM's

Trace and Analysis Program CLAP). This tool allowed for the recording and time stamping of all packets

seen on the network, including all MAC frames. The tool also recorded the tast Token Ring adapter's

buffer of actual packet data (up to 96 bytes) as well as the Token Ring's Access Control byte, Frame

Control byte and total length. However, there are limitations of the tool's ability to record all packets 7.

Using the TAP tool, we were able to detect when packets were out of order and lost. In the fast

case, out of order packets were a direct result of the Token Ring device driver implementation. Once the

critical sections of code were more carefully protected, the problem of out of order packets completely

disappeared. Thus, we found that we were working with a network that would transmit packets in order

and do so reliably with only one exception: Ring Purge on the Token Ring.

Ring Purges occur on the network primarily due to new stations inserting into the network or old

stations reinserting into the network. If a packet is being transmitted at the time of insertion, it is possible

that the packet will be lost. Ring Purge is transmitted by the Token Ring's Active Monitor after such an

eThiscompletelyignoresthe fact that to get a TokenRingadapterthatwouldpassup the MAC framesrequiresproprietary
softwareintheROMsontheadapter.

7Forspecificdetails,pleaseseethedocumentationof theproduct[IBM90].

event has occurred 8.

If the adapter is programmed to interrupt the transmitter when a Ring Purge is seen on the ring, then

the transmitter can attempt to correct for a possible lost packet by reuansmitting the last packet that is still

in the fixed DMA buffer. The receiver, in this case, might need to ignore a duplicate packet if the

transmitter incorrectly remansmits a packet. Unfortunately, the adapter does not interrupt the processor

with the information that a Ring Purge has occurred. As was mentioned earlier, the only way to detect this

occurrencewould be to settheadaptertoreceiveallMAC framesand passthem on totheinterrupt

handler.But,thesoftwareon theadapterdoesnotallowforpassingMAC framestothehostprocessor.

Even ifthesoftwaredidallowforthis,theoverheadinhandlinginterruptsand parsingMAC framesto

detecta Ring Purgewould be unacceptable.We decidedtoallowforthelossofa singlepacketand to

measurethefrequencyofthisoccurrence.MeasurementrevealedthatRingPurgesarenormallyaresultof

astationinsertion,and occuron theorderof20 timesa day.We decidedthatwe couldsafelyignorethis

leveloflostpacketsby addingcodetorecover.

Even thoughtheTAP toolwas veryusefulforthemacroscalemeasurementsoftheToken Ring,it

was notsufficienttomeasuretheactualdevicedriver.We wereinterestedingatheringeventsand time

stampingthem withI00 microsecondaccuracy.We neededtobe abletocorrelatethetimestampsof

severalotherpointswithinthedevicedriver,on possiblymore thanone machine simultaneously,to

determinethecorrecttransmissionand receptionof packets.These typesofmicroscalemeasurements

were neededtofindtheworstcasedelayof packetsas wellasthemean and standarddeviationof

inter-packetdepartureandarrivaltimes.The availablecommercialproductsfellfarshortofbeingableto

do allofthis.The mostcriticalpartmissingwas atimestampingfacilitywiththeaccuracyrequired.

5.1.Source ofCTMS Data

At thispoint,we needashortdiscussionofthesourceofdataforthefollowingmeasurements.What

we requiredwas a stablesourceofinterrupts.We usedIBM's VoiceCommunicationsAdapter0/CA).

Briefly,theadapterhasa TI32010DSP, 2k by 16 bitmemory, which isbyteaccessibleby thehost

processor, can be interrupted by the host and can interrupt the host. We created a program to run on the

adapter that would interrupt the host every 12 milliseconds. We added several ioctl calls to set up the

device in this special mode, to request the Token Ring header and keep this header as part of the state of

the device, and to request handles to functions needed by the modified Token Ring device driver. We hard

coded in the VCA's device driver calls to the Token Ring device driver for calculation of the Token Ring

header and for the sending of a packet.

We modified the VCA's interrupt handler to create a CTMSP packet by allocating a linked list of

mbufs for the packet and then copying the static precomputed Token Ring header, a destination device

number, and a packet number into the packet. We then appended the packet with data to create a packet of

2000 bytes in length (including the header information but excluding the Token Ring protocol bytes). We

then sent this packet via the modified Token Ring device driver. The result of this modification was to

create a CTMSP data transport stream of approximately 150KBytes/sec.

5.2. Tools Used and Built to Measure the Modified System

After discovering the lack of measurement tools that existed to measure device driver performance

on multiple machines at the same time, we decided to look into building our own tools. We used several

methods to measure both the VCA and the Token Ring device drivers. We will discuss the error

SForspecificdetailsonthis.pleasesee[IBM891.

introducedby the various methods of measurementwithin the description of each method. The points of
measurementwithin the totalsystemwere as follows:

• The InterruptRequest Line (IRQ)of the VCA adapter

• Entryinto the VCA's interrupthandler

• Immediately afterthe packet is copied into the fixed DMA bufferand immediatelybefore the
Token Ring adapteris given the transmit command.

• Immediatelyafter the receivedpacketis determined to be a CTMSPpacket.
Given that we wanted to measurethese points, whatwe needed was to add extremely smallpieces of code
in the appropriateplaces that would cause the events to be timestampedand recorded.

5.2.1. IBM RT/PC Used as Measurement Tool
We madethe fast attemptat time stampingevents by using a pseudo device driver.We modifiedthe

Token Ring device driver to call a procedurewithin this pseudo device driver.A UNIX open call to this
device set a flag in the Token Ring device driverthat enabled these event time stampingprocedure calls.
We added an ioctl call within the pseudodevice to readout therecordeddata.We could only measure the
last threepoints mentionedabove since this was all done in software.

We were able to coordinate the activities of the transmitter,receiver and the TAP tool under a

centralized control point. The end result was a set of computers that recordedand analyzed data in real
time. If a packet was lost, had an extremely long inter-departure or inter-arrivaltime, or there was an

incorrectorderingof packets on the transmitterand/or receiver,all machineswere halted and a snapshotof
the data was taken. We then examined the snapshots to decide what errorhad occurred. Histograms as
well as means and standarddeviationswere computed for the inter-packetdepartureand arrivaltimes from
this data.

The main problem with recordingdata using this method was the potential for interactionbetween
the data recordingmechanism and the rest of the activityof the machines.The errorintroduced in the time
stamps due to this method was a direct result of this interaction. If the time stamping procedure was done
with interrupts disabled, then the procedure itself might delay unacceptably another point of measurement.
If interrupts were enabled during the procedure, then the time stamp could be significantly in error due to

the possibility that another interrupt occurred while executing the recording procedure. In addition, the
clock granularity was only 122 microseconds. All in all, this was a poor method of recording data on

inter-packet arrival and departure times, but was extremely good at helping to find bugs in the Token Ring
device driver, bugs in the system as a whole, as well as debugging our modifications to the system.

5.2.2. Logic Analyzer and Oscilloscope as Measurement Tools
The use of a logic analyzer is the least obtrusive way of measuring the values of interest, since we

could program the analyzer to trigger on any memory read or write access or on any edge of any signal.
We used this to determine the degree of accuracy of the VCA interrupt source. The result was that the

VCA could interrupt the host processor every 12 milliseconds as desired with no detectable variation. We
made further measurements using an oscilloscope to look at the second pulse of the Interrupt Request

(IRQ) line given that we were triggering on the leading edge of the first pulse. The second pulse varied on
the order of 500 nanoseconds from 12 milliseconds. We considered this conclusive proof that the VCA

interrupt source was completely solid and that we need not consider that there was any error introduced by

the source of interrupts.

The second use of the logic analyzer was to measure the variation between the IRQ pulse and the
start of the VCA interrupt handler. Even while loading the Token Ring and the local disk, the largest
variation seen was 440 microseconds.

We discarded using the logic analyzer to measure any of the other parameters due to the limitations

of the device and our own expertise. Specifically, we needed a complete histogram of all of the intervals

described above so that the total shape of the histogram curves could be examined. The logic analyzer was

not capable of this functionality.

5.2.3. IBM PC/AT Used as Measurement Tool

Figure 5-1 shows how we delegated the time stamping of events to a pair of external machines. We

used an IBM PC/AT machine with a parallel interface board consisting of eight separate 8-bit wide

interfaces. We installed a serial/parallel interface board in each machine on which we wanted to time

stamp events. Within the Token Ring device driver, we replaced the calls to the pseudo device driver

procedure with in-line code to write specific values into the parallel port and toggle the strobe output line.

In the case of transmission or reception of packets, we devised the shortest possible test to determine ff the

packet was an CI'MSP packet. If so, the last 7 bits of the packet number were written to the parallel port

and then the strobe output line was toggled.

Sender Receiver
#1 #1

s

• 4 Mbit/Sec Token Ring

I ITAPTooI , (< 500Kbyt'e/Sec),,' ,'

I li'_{_ 1Monitor

Control _1I_ Collection
Processor Event Processor

L,. • SpecialEventSignals
/SecStrea150Kbyte ms

Figure 5-1: Machine Interconnections While Using PC as Measurement Tool

We then collected the data on the PC/AT within an interrupt handler infinite loop. This loop time

stamped the data with a 16 bit clock value where the resolution of the clock was two microseconds. We

used another timer within the PC/AT to generate a signal with a period of 50 Hz. We then fled this signal

to the eighth parallel input port. This guaranteed that the programs that later analyzed the data could

correctly detect the roll over of the 16 bit clock time intervals, even if no other datum occurred between

two roll over periods of the clock.

Within the interrupt handler infinite loop, we polled the register that held the bits indicating which

channels had an interrupt pending. If any bit was set, we read the clock as well as those ports that had

interrupt bits set (excluding the eighthport).We thenqueuedthe value of the interruptregister,along with
16 bits of clock time and the values of the ports which were read. If no bits were set in the read of the
interruptregister and ff the_ewas any queued data, the data was sent out a separateparallelport to a
secondPC/AT machine.Thisoutputtothesecondmachinewas fullyhandshaked.We savedthedata
receivedbythesecondPC/AToverthisparallelconnectionontoalocaldiskofthesecondmachine.

To determinethe errorintroducedby this method of measurement,we measuredthe worstcase time

for the execution of the interrupthandler loop. We foundthis numberby pulling out the VCA's Interrupt
Request Line and time stamping occurrencesof these events. By using a logic analyzer, we determined
that the VCA was able to dependably interrupton 12 millisecond boundaries within negligible error.
Therefore,any variationwas due to the measurementtool. Upon examining the spread of the histogram
curve generated by this test, we found thatthere was a 120 microsecondspread on both sides of the 12

millisecond mean.We conducteda second test by using the logic analyzerto measure the loop execution
time in the best and worst case conditions. The results were that the interrupthandlerloop had a 60
microsecond worst case execution time. Considering both sets of measurements,we concluded that the
tool had acceptableerrorto measurethe restof the system.

5.3. Measurements of the Modified System
Given all of the errors,we wondered at times ff we would be able to say anything aboutwhat we

were doing beyond the obvious; "Sending this amount of data is hardand one must be very careful." We
decidedthatwe could.

In all cases, we used a point-to-point static network connection between the transmitter and receiver.
Beyond the measurements discussed earlier, the following differences will alter the results:

• Transmitter uses IO Channel Memory vs. System Memory for fixed DMA buffers

• Transmittercopies only headerinto f'LXedDMA buffervs. copying both headerand data

• Transmitter copies data from the VCA device buffer to mbufs vs. direct copy of data from the
VCA device buffer to fixed DMA buffers

• Receiver copies header and data from a fixed DMA buffer into mbufs before passing to the
VCA device vs. VCA examining the packet while still in a fixed DMA buffer

* Receiver copies data out of mbufs into the VCA device buffer vs. no copy of the data
(dropping the packe0

• Use of priority within the Token Ring device driver vs. use of same level of priority as all
other packets being sent by the local machine

• Use of priority on the Token Ring vs. use of the same level of priority as all other packets on
the ring

• Method of measurement: Local (RT/PC), remote (PC/AT), monitoring of network flAP),
logic analyzer

• Private vs. Public Network

* Level of background load on network

• Transmitter/Receiver in stand alone vs. multiprocessing modes

We selected the following scenarios for the presentation of the data in this paper:
Test Case A)Transmitter uses IO Channel Memory for fixed DMA buffers; transmitter

copies both the header and data into fixed DMA buffers; transmitter does not
copy data from VCA device into mbufs; receiver copies data from fixed DMA
buffer into mbufs; receiver does not copy data from mbufs into the VCA
device buffer; priority within the Token Ring device driver of CTMSP
packets; Token Ring priority; remote measurement; private network; no

loading of network; transmitter and receiver in stand alone mode.

Test Case B) Transmitter uses IO Channel Memory for f'LxedDMA buffers; full copying of
data on Transmitter and Receiver, priority within the Token Ring device
driver of CTMSP packets; Token Ring priority; remote measurement; public
network; normal loading of network; transmitter and receiver in
multiprocessing mode but not heavily loaded.

In both cases, we examined histograms of the following measurements:

1) The inter-occurrence of pulses of the VCA's Interrupt Request Line

2) The inter-occurrence of the entry into the VCA's interrupt handler

3) The inter-occurrence of the point immediately after the packet is copied into the fixed DMA
buffer and immediately before the Token Ring adapter is given the transmit command

4) The inter-occurrence of the point immediately after the received packet is determined to be a
CTMSP packet

5) The differences between like occurrences of (1) and (2)

6) The differences between like occurrences of (2) and (3)

7) The differences between like occurrences of (3) and (4)

Test cases A and B, histograms 1 through 5 as well as test case A, histogram 6 all showed values

which could easily be explained given the total system and its interactions. Test case B, histogram 6 is

shown in Figure 5-2. This particular histogram is interesting because of the bi-model curve. The

explanation for this is simply that there is interaction between the transmission of CTMSP packets and the

transmission of other system packets. The other traffic includes AFS keep alive packets, ARP traffic and
socket keep alive packets. The socket packet traffic is an artifact of the test set up. All of the machines in

the test are being directed by a central control machine. The communications link between the control

machine and each of the other machines in the test is via UNIX sockets. All of this system traffic causes

some of the CTMSP packets to be queued rather than sent immediately. The system then plays catch up

for tens of CTMSP packets. There are 68% of the data points within 500 microseconds of 2600
microseconds, 15% within 500 microseconds of 9400 microseconds, 16.5% between 2800 and 9300

microseconds with the remaining 2% in the tails of the graph which extend from 100 microseconds to

14000 microseconds. The 2600 microsecond mean of the fwst peak in the histogram gives the mean

latency of sending a 2000 byte packet. The transfer rate of copying data from the system memory where

the mbufsare located to the IO Channel Memory, where the fixed DMA buffers are located, is on the order

of 1 microsecond per byte. This leads to 2000 microseconds of latency specifically attributable to copying

the packet. The additional 600 microseconds can be attributed to the execution of the code between the

two points of measurement.

Test ease A, histogram 7 is shown in Figure 5-3. This graph shows that the minimum latency of a

2000 byte packet is 10740 microseconds. Specifically, 98% of the data points fall within 160

microseconds of the 10894 microsecond mean with the remaining 2% spread to the right of the mean

extending to 14600 microseconds. The latency seen can be attributed to DMA'ing the data on both ends,

transmission time across the Token Ring, delay of the receiver's interrupt handler being entered and

execution of the receiver's interrupt handler code. The spread of the curve can be attributed to other

interrupt sources and the execution of protected code segments throughout the kernel. Additionally, there

is delay if a packet is on the Token Ring at the time of transmission. The only type of packet other than the

CTMSP packets in this test case is the normal MAC frame traffic, which uses 0.2% of the network in this

completely unloaded test case.

Test case B, histogram 7 is shown in Figure 5-4. This graph shows that the minimum latency of a

2000 byte packet is 10750 microseconds. Specifically, 76% of the data points fall within 160

100000 •

=_ 10000 _

1000 _i lOO .., ",
-_ 10

0 2000 4000 6000 8000 10000 12000 14000

Time in uSeconds

Figure 5-2: VCA Interrupt Handler Entered to Just Prior to Transmission

100000

10000
¢J
e.-

U
1000

_ 100

_ 10

A _ _ • • •

1 --- II ;

10000 11000 12000 13000 14000 15000

Time in uSeconds

Figure 5-3: Transmitter to Receiver Times, Test Case A

microseconds of the 10900 microsecond peak, 21.5% fall within the range from 11060 to 15000

microseconds, 2.49% fall within the range from 15000 to 40050 microseconds, with the remaining two

points falling in the range from 120 to 130 milliseconds. These last two exceptional points are not in the

histogram as shown. Examining the normal traffic on the network shows that there are three different sizes

of packets. The first size consists of MAC frame packets of approximately 20 bytes in total length. The

second size consist of ARP packets and those packets which comprise the keep alive packets for AFS.

Each of this second class of packets are approximately 60 to 300 bytes in total length. Lastly, there are the

f'tle transfer packets sent while a compile is done or during UNIX kernel copying activity. These packets

are 1522 bytes in total length. The traffic associated with these three sets of packets can justify some of the

spread of the curve as well as some of the secondary peaks. Most of the remaining points can be attributed

to the interaction of the reception and transmission of packets other than the CTMSP packets. The two

\

100000 i
10000

C

U
o 1000O

" 100E
,-i

z

-_ 10

1

10000 15000 20000 25000 30000 35000 40000 45000 50000

Time in uSeconds

Figure 54: Transmitter to Receiver Times, Test Case B

exceptional points in the range of 120 to 130 milliseconds can not be completely accounted for. We can

only speculate that a large number of circumstances occurred at the same instance. The majority of this

time can be attributed to both a soft error on the Token Ring and the Token Ring timing out and resetting

of the network. Unfortunately, this can only account for 10 milliseconds. If we speculate that a ring

insertion would cause multiple Ring Purges, then we could completely account for this activity.

Experimentally, we have seen on the order of l0 Ring Purges back to back. We conclude that this is

precisely what is occurring. We then measured the number of insertions seen in one day. The number was

under 20, approximately one an hour. The test data shown for Test Case B was run for 117 minutes. We

conclude that the two exceptional data points are two insertions into the Token Ring.

6. Conclusions

In order to transport 150KBytes/sec of CTMS data, two modifications are necessary. The UNIX

model of device to device data transfers must be changed to eliminate a minimum of two data copies. This

can be done by transferring the data directly between two devices rather than indirectly via a user process.

Secondly, a new network protocol must be used. It should be noted that the intent of this work was not to

define the architecture of this new protocol but rather to build a prototype system that could be measured

to help with the later definition of the protocol. Finally, a third modification is useful. This third

modification is the use of IO Channel Memory for the fixed DMA buffers.

As for conclusions on the measurement of the prototype system, the worst case times between

transmission and reception of a single packet is 40 milliseconds. There are two exceptional data points

within the 120 to 130 millisecond range. Both of these points are explained by the Token Ring timing out

and resetting itself during a ring insertion or reinsertion by a station. Even with these exceptional data

points, the buffer space needed for 150KBytes/sec CTMSP data transfer is under 25KBytes. This amount

of buffer space is well within a reasonable range to support the functionality of data transport of

Continuous Time Media Systems.

References

Comer88. D. E. Comer, Internetworking with TCP/IP: Principles_ Protocols Tand Architecture, Prentice
Hail, Englewood Cliffs, NJ, 1988.

IBM89. IBM Token Ring Network Architecture Reference, SC30-3374-02, third edition 1989.

IBM90. IBM Token Ring Network 16/4 Trace and Performance Program User's Guide, 93X5688, first
edition June 1990.

Leffer89. Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, John S. Quarterman, The Design
and Implementation of the 4.3BSD UNIX Opertating System, Addison-Wesley Publishing
Company, 1989

Morris86. James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H. Howard, David
S. H. Rosenthal, F. Donelson Smith, Andrew: A Distributed Personal Computing Environment,
Communications of the ACM, Volume 29, Number 3, March 1986.

Stevens90. W. Richard Stevens, UNIX Network Programming, Prentice Hall, 1990.

Tevanian87A. Avadis Tevanian, Jr., Richard F. Rashid, Michael W. Young, David B. Golub, Mary
R. Thompson, William Bolosky, Richard Sanzi, A Unix Interface for Shared Memory and
Memory Mapped Files Under Mach, Carnegie Mellon University, Department of Computer
Science, July 1987.

Trevanian87B. Avadis Tevanian, Jr., Architecture-Independent Virtual Memory Management for Parallel
and Distributed Environments: The Mach Approach, Carnegie Mellon University, Department of
Computer Science, CMU-CS-88-106, December 1987.

TI88. First-Generation TMS320 User's Guide, Technical Report, Texas Instrutments.

Biographies
Michael Pasieka received his BS degree in Computer Science and MS degree in Electrical

Engineering and Computer Science from MIT in June, 1984. He has worked for Texas Instruments,

Amdahl, Symbolics and is currently working for the Information Technology Center at Carnegie Mellon

University. He has specialized in inter-computer communications, working on such projects as serial links,

input/output testing for Amdahl class machines, and currently transport of data at a sustained high rate in

support of distributed multimedia.

Paul G. Crumley has worked in the field of computing systems for about 15 years. Though he has an

Electrical Engineering degree from Carnegie Mellon University (BS EE 1983) he can appreciate a well

designed and implemented piece of software. Paul has been a member of the Information Technology

Center at CMU for seven years where he currently leads the Continuous Time Media System group. Paul

is interested in architectures for parallel processing of data, the implementation of distributed systems and

photography.

Ann Marks received her BS in Electrical Engineering in May, 1976, Masters of Engineering

(Electrical) in May, 1977, and Ph.D. Electrical Engineering/Computer Science in August, 1980, from

Comell University. She is a member of IEEE and ACM and has worked at the Information Technology

Center at Carnegie Mellon University since July 1987. Her current research interests are the transport of

continuous time media and server design for continuous time media. Prior work includes document

interchange using ODA for the Expres Project. She is a co-author of a book on document interchange

entitled Mulit-media Document Translation ODA and the Expres Project (Springer-Verlag, 1991).

Ann Infortuna received a BS degree in ComputerEngineeringfrom Lehigh University, in 1984, and
an MS degree in Electrical Engineering from the University of Rochester in 1988. She previously worked

in system design and development of new products for the Xerox Corp., and is currently working for the
Information Technology Center at Carnegie Mellon University where she is invovled with the design of an
execution environment for distributed multimedia.

