CMU-ITC-90-090
August 1990

Building Hypertext on a Multimedia Toolkit:

An Overview of Andrew Toolkit Hypermedia Facilities

Mark SHERMAN, Wilfred J. HANSEN,
Michael MCINERNY, and Tom NEUENDORFFER

Information Technology Center*
Carnegie Mellon University

4910 Forbes Ave

Pittsburgh, PA 15213, USA

Internet: mss+echt90@andrew.cmu.edu

ABSTRACT: This paper discusses several hypermedia facilities built on top of the An-
drew Toolkit (ATK) and their use in ATK applications. As a general-purpose, multimedia,
application-development system, ATK permits many kinds of links, references and other
connections to be made within pieces of content and between pieces of content, regardless
of the content’s medium. We argue that starting with a multimedia architecture facil-
itates the construction of all forms of hypermedia. Four specific hypermedia facilities
implemented with ATK are discussed: an integrated web and indexing system (Help), a
simple multimedia link facility (Link), a cross reference (Textref) capability, and a link-
supporting embedded object language (Ness). As a toolkit, ATK is used to build other
applications which inherit ATK’s hypermedia facilities. Therefore we consider briefly the
way that hypermedia facilities are used in conventional applications, such as mail systems.

KEY WORDS: Hypertext, Implementation, Multimedia.

1 Introduction

Considerable effort has been devoted to cataloging dozens of different forms
of links for hypertext [Meyrowitz 1989]. Unfortunately, if one sets out to
build a system incorporating each as a special case, the implementation effort
becomes unwieldy before the benefits become apparent. In this paper we
argue that it is preferable to begin by building a general-purpose multimedia
architecture; it is then trivial to integrate a variety of link types.

*This work was performed as a joint project of Carnegie Mellon University and the
IBM Corporation. Some of the work was supported by the National Science Foundation
under contract ASC-8617695. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies of
the IBM Corporation, the National Science Foundation, or Carnegie Mellon University.

2 Sherman, Hansen, Mclnerny, and Neuendorffer

The Andrew Toolkit (ATK) [ITC 1990, Palay et al. 1988] is a multi-
media application development system with which system builders can cre-
ate applications quickly. Its applications are in daily use by thousands of
people on the CMU campus, other universities, and several industrial re-
search laboratories. In its current release, the system provides support for
many media, including multifont text, raster images, structured graphics,
animations, spreadsheets, equations and audio. The system also provides
facilities for composing and connecting media, such as screen layout objects,
buttons, sliders, knobs, and linking facilities of various kinds. The linking
facilities provide the same service as hypertext links.

The Andrew Toolkit has three features that distinguish it from hyper-
text systems. First, ATK is a true multimedia architecture. The presence
of media other than simple text is commonplace. Second, ATK is a toolkit
for building other applications. Thus, it is not a hypertext system per se.
Instead, ATK allows any application built with it to use linking facilities.
Third, link facilities are optional and are implemented on top of the toolkit.
Even in the absence of linking facilities, ATK is a fully operational multi-
media authoring system, so both developers and users can ignore gratuitous
linking facilities. People may choose other hypertext systems precisely be-
cause of their linking facilities, but people choose ATK for its editing and
application construction capabilities and, as an added attraction, they can
use linking facilities as well. Therefore, ATK provides one of the few test
beds for empirical measurement of the utility of linking. In this paper, we
provide some preliminary statistics of hypermedia use in one ATK applica-
tion.

2 Multimedia Facilities

The primary composition mechanism in the Andrew Toolkit is inset nesting,
as can be observed on the right side of figure 1. The entire figure shows the
screen of an IBM RT running three ATK applications under the X Window
System. The upper-left displays console, a system monitoring application;
beneath it is typescript, a shell interface. To the right of both is the generic
object editor, in this case editing a spreadsheet object. Within which, the
left-side cells have been connected together to hold a multifont text object,
which in turn contains a raster image. Some right-side cells have been
grouped in two sections holding a collection of equations, and an animation.
The rest of the right column is used as a spreadsheet.

The nesting of one object in another, such as a raster in the text in

Building Hypertezt on a Multimedia Toolkit 3

X L] G e
A7
F ot
c| 2 (2 D [t (reen 1 2] 4 [
Puscal’s Triangle

Ths tbls cmtains wveral|m; = vy =0
S awtwng pravenr (VIreon 1 8. ATR M $). wad. (32728 PM) -)
e et (Ve 3 7. ATR o4 3T povems wad. | { Fou 30 Pk e Pt T3l
& E o of U trlesgin R oim| " 7 U F

3 od Aypartent
2 Fear/Binve
7w3t/bin/snapehot :
L /ec/om

tabies-marris. res 39
Conaand not fousd.

™
/uar/coatrin/via/seapenot: Seapehot vill be
MR i g pese

3
ol ofaf ot]

]

Figure 1: Three ATK applications: console, typescript, and ez editor.

the spreadsheet, can continue as deeply as desired. This nesting is the
central feature of ATK and is implemented as a set of protocols by which
a surrounding object can completely control the environment perceived by
an embedded object. In general terms, the protocols provide that events
propagate inward so the surrounding object can determine, for instance,
whether or not an inner object receives mouse hits.

The generic object editor does not understand the details of any object.
If no object type is specified, a multifont text object is used by default—
many casual users rely on this default and believe the object editor to be a
word processing system. Since the object editor works on any object, the
same program can be used to manipulate any medium, and thus forms the
basis of multimedia applications.

On top of these basic facilities, one can build many different, linking
paradigms, such as those described in the next section.

3 Hypermedia Facilities

In this section, we discuss four kinds of linking facilities that have been
implemented in ATK: an integrated web, simple links, cross references in
text, and fully programmable links.

4 Sherman, Hansen, McInerny, and Neuendorffer

3.1 Webs (Help)

The concept of webs was made popular by Intermedia [Meyrowitz 1986].
Webs define a collection of documents connected by references. In ATK, the
impetus for developing a web subsystem was to support the Help applica-
tion, which organizes and cross references help from many sources, including
locally written help files and Unix manual pages. Figure 2 shows Help with
the main area of the window—on the left—displaying one of the help docu-
ments. The top two panes in the right column list predefined collections of
articles, with general help on top, above help for commonly used programs.
Both panes represent precompiled collections of references and act as start-
ing points within a web. One can put together dynamically a collection of
references, as shown in the bottom-most pane in the right column where
we show the authors’ attempts to learn how to make screen snapshots for
this paper. As various help information is found, bookmarks to locations in
specific documents may be added so that we can move from document to
document quickly to collate the necessary information.! Users can add or
remove the panes in the right-hand column as desired.

nmu—

A \ine-daley voapsho b tikan vy wpecityy

T R B ey B o
t

l
s2isive *1ile ik 10w lwasasdic inaication dngevw Towr
EEITATE nes'occurred 1 Bewrse

A The outpul rester my be pristed ul-‘ prucu-p E::.,,‘""‘""
The output file may be Lraster Fdos o Obuciorios
toraat" (€ gasires Mo comwrsrarcer, ‘i Py Bocumers
ored the “snapster in the {ile st fea Thea o "
Tou couie crenie s sev Tile conts nq » comverted Puciing Phet ana
Roraion Caiied syraater. rastor ‘o8 v e Comonors
o1 a4 Prec

covertraster < syrester.res > -n“ur Tester

o A L g

Sitoer toe inesiate oytpet file or the ATX .cus -
file x4y 2e viewsd. _ediled, Lasartad ‘tato]
ocusents vaing the AT "uan- rastel

| R

Related tesls

Sclact G Telp o
Seiscad Ward” frasm the pup-p 2aeaut 09 me the haip By far:

ee avectrester

Curt Echowell (ca2é+@uadrov.cuy.odn

FUSR/CONTRISUTED CAVEAT

The
oo ihe Suppart Farmen Do o¢ (o o (20 dorummcie o e
paraculer Wl

Figure 2: The Help application documenting the snapshot program.

The predefined lists provide starting points within the web; users navigate
from document to document through the use of marked links. In figure 3, we
see another help document with a link marked. When the link is followed,
the new document is displayed in the main part of the Help window. The
system uses auxiliary files to map link-names to help documents. Different

! Currently, Help does not remember a user’s bookmarks from one session to the next.

Building Hypertezt on a Multimedia Toolkit 5

auxiliary files can be used to provide different mappings and thus different
webs. For example, the mapping files used by ATK developers contain
references to local, obscure system programs while the mapping files used
by the main campus provide information on stable, released systems. Thus,
the use of new auxiliary files allows one to create webs of information for
any application, not just help files.

Copy

Show Help on ...
Show Help on Selected Word

Send Comment On Help

Quit

Figure 3: Following a link in the Help application.

3.2 Simple Links (Link)

The most common form of linking is a reference from one document to an-
other. The special object that contains a reference is called a link. When
followed, the link causes the reference to be displayed in a new window
employing the generic object editor, similar to the way a link works in Note-
Cards [Halasz 1987].

Figure 4 shows a document with three links in it. One link is contained
in the spreadsheet, another in the text and the third is within the drawing.
As an ATK object, a link can be placed anywhere other objects may be
placed. The link is followed by clicking the left mouse button on the link
symbol. Since it is a separate entity, the link object has no global knowledge
about the containing document or further links in referenced documents.
Consequently, there is no way to get global information about the web in
which the link is embedded, although a history of visited documents could
be built. Links are also unidirectional and contained only in the source
document: the target document has no way of knowing that it is a target of
a link.

The destination of a link is a filename.? Since our site uses a wide area

?We have several designs for pointing to a target within a file, but the simple solutions

6 Sherman, Hansen, McInerny, and Neuendorffer

[ez ~eentsrecoer.s |
i Budget Proposal for Network Gateway Interface
{Part Supplier Cost image |
[Cabling|Ace Electronics q
Boards {CMU Comp. Store 100
[Total 104
This budget is based on the made by the
(m) ‘When everything 15 put together, it should look
samething ilke,

-

[Wrore Ble A6 cmu edussrs S0/budgeed’,

Figure 4: Simple links embedded in a spreadsheet, text, and drawing insets,
which comprise one document.

network distributed file system [Howard 1988], links can refer to documents
that exist across the country as easily as documents on the local worksta-
tion. However, moving a set of linked documents is difficult, since absolute
pathnames are encoded in the document.?

3.3 Cross References (Textref)

While simple links provide a reference from one point in a document to
another file, cross references are used to provide references from within a
document to another point in the same document. Traditionally in printed
text, a cross reference appears as a label at the target, with an indication of
the target page and label at the source of the cross reference.

ATK provides support for the traditional use of cross references, but
also allows the user to interact with a reference when the document is on
the screen. Users define tags that denote destinations and references that
denote links. Clicking the left mouse button on a reference will make the
target (tag) visible and move the text caret to the target. In figure 5, we
show a document with its tags and references exposed so that the names are
visible. Normally, only icons indicating tags or references would be visible.*

While cross references work only in text, this is not a serious limitation.
Since our text object can embed other objects arbitrarily, one simply places

are clumsy, and the better solutions would require modification of the toolkit, the target
documents, or both.
3For example, we use sed to install the help documents describing the link inset!
*The visibility of the name for a tag or a reference is toggled by clicking on the icon
with the right mouse button.

Building Hypertezt oﬁ a Multimedia Toolkit 7

may define tags by placing an approgriate object at the desired the
reference target, such as here by the boxed at sign
Taxurtica Of course, oump&wwﬂuﬁmwmuhermm
as well, such as a raster:

1n addition, pne needs a way to reference a tag, such as the first tag
shown. We do this with a box that has a question mark: ([Tig
[5Gt for the first teg or (ReFe Targe for the raster tog.
Nacurally, cne can bave many references to the same tag, such as
angther introductian reference to the first tag: 373 Tncodeciion.
One can compose tags and references. For example, here is a tag
that references the intreduction (@K eapeing Tigi e Twosaud
Thus after a reference gets you here, wum]mpummm
jwq Within the ag.

Figure 5: Active cross references within a document: “@” is for targets, “?” is
for their references.

references adjacent to non-text objects.

3.4 Programmed Links (Ness)

The most sophisticated linking facilities in the Andrew Toolkit are provid-
ed by the embedded object language Ness [Hansen 1990]. This is essen-
tially an advanced Hypertalk-like language [Atkinson 1987], where the ele-
ments of an application are laid out utilizing the ADEW application builder
[Neuendorffer 1990]. The language can be used to extend objects in docu-
ments or to build entire applications, such as the quotation browser shown
in figure 6. The main portion of the window is devoted to a scrollable docu-
ment containing a number of quotations about birth. Across the bottom of
the window are buttons which perform various operations such as moving to
the next or previous quotation. These buttons are similar to the Next and
Previous buttons often found in Hypercard applications. Unlike Hypercard
stacks, the document is a normal text object and has all the behaviors that
users have come to expect from text; they can scroll, search for strings, and
copy text.

Within each entry, a mouse click on a reference in a “CF:” line scrolls
the text to display the referenced message. For example, if the mouse is
clicked on “Macbeth” in the middle of figure 6, the text scrolls to the entry
for Macbeth shown in figure 7. The cross referencing is accomplished with a
Ness routine which checks each mouse click to see if it is in a line beginning

with “CF:”.

8 Sherman, Hansen, McInerny, and Neuendorffer

thrust his g arm (ar Inwerks and upwards, and @ heuled sut sue P
vy wvorred. that upem Arst thrasting (o fr him, a Iy woe gremmtm; Wt wall
2 LBAT 2t W6 30t 2 GUEIC (3 be A tnight wrxasien et Erwble;- e had thrust hack
] tenpanyy spum che lasiaa; m ihat
A Mt 0l Mt Catae arth i Ch g o wep--bed fareman. A¢ b the groat hamd ksl that wes
doing o0 well s cowid be cxpucied.

: 3
[T roetly Uwibind ot the mying, ok comsidarss ta har mind whet sert of grovcing this mgh b

77 30 Aad the angul s o har, * Do nat be airaid, Mary, o you have fvund faver wich God 33 And

ef et you you [ropaniyiank

32wt e e, aad wil b calbd che um of the M Highi
ané the Lard Ged wil give t him 12¢ thrvns of Ais ucivar David,

Figure 6: A hypertext database driven by a Ness script.

The linking performed by the embedded language is simple and quite
general. If desired, one can use the full facility of an object-oriented, multi-
media manipulation language. For example, one can move within a docu-
ment, move to another document, move to multiple documents in multiple
windows, and search and link based on media type and content. With a full
programming language, many tricks are possible.

3.5 Documents with a Variety of Link Types

The linking facilities we have discussed are not mutually exclusive. For
example, a document within the Help system can provide simple links to
other documents. The link facility itself is documented this way. Figure 8
shows the Help system in the top window displaying the documentation
for the link object, which contains a link to supplemental materials which
have been brought up in the bottom window. Another example is shown in
figure 9, which shows a database of articles on hypermedia and hypertext.
There are programmed links that connect together pieces of information,
supplemented by simple links that point to other collections of information.

4 Hypermedia Applications

All applications built with the Andrew Toolkit can utilize the above link

facilities. To get a feeling for how these features are used, we consider briefly

two applications now in general use: the Help and the Messages systems.
As used on the CMU campus, the Help system [Langston 1988,

Ogura & Robertson 1989] provides help on all aspects of the computing

environment, not just the Andrew system or programs on high-function

Building Hypertezt on a Multimedia Toolkit 9

Mackach. {uar & charmed e, which mast et yield {Eea
To ena of wwmas bova.

] CF: Macirh V; Moky Dick LEXVIIL
1 Chren: 1404

S Brvws: B £
1.

Chaptar: Lade t
u-t‘“-“'h-hmwnm.-ﬂlﬂ’-'ﬁ

14 And o w0 have joy

15 tar s witl be grens defhry the Lare,
and be shall drsak wo wine nar srawy drink,
it dut wi b il with the Hely Setrtt,
wven snachar s wemb.

e
146 And be Wil arn many of the swms of loresl che Lard their Gu,
ke 17 aad b il g hefors A 1a Tha spr% ad powar of DYaD,
% W DUPR L s o L fnhery oo Ui Chuldewm,

o S Che Eimbadont ® the windens of the just,

G Iz e R sz
g‘. v dsece by Tiuied]

heyimim]

Figure 7: The Macbeth quote referenced by the Moby Dick quote in figure 6.

workstations. Because users requesting help from low-function workstation-
s (IBM PCs and Macintoshes) and terminals would not have access to the
multimedia features of the Andrew Toolkit, the generally available help doc-
umentation does not contain multimedia information. The exceptions are
documentation used only by the developers, such as the link documenta-
tion illustrated in figure 8. Of the approximately 200 documentation files
written by our organization, there are over 3000 cross references and over
600 mappings between cross references and documentation files. Since these
files occupy about 1.8 megabytes of space, there is a reference for every 300
characters, or about 5 lines of documentation. In addition, the system au-
tomatically links together general documentation and Unix manual pages.
The Help system was designed, and the documentation was written, with
links in mind, so the prevalence of references is not surprising.

However, the message system built atop ATK [Borenstein et al. 1988]
had no a priori design for hypertext information. Indeed, the overwhelm-
ing majority of the 2500 bulletin boards it offers are generated by non-ATK
sources, and hence do not exploit any multimedia or linking facilities. Fortu-
nately, the private bulletin board used by our organization of 30 researchers
consists of posts made almost entirely by an ATK program. Because mem-
bers of our organization have both the knowledge of how to use the linking
features of ATK and access to ATK-based message creation programs, we
have an opportunity to examine the prevalence of linking.

Over a two month period, 369 messages were posted on our private bul-
letin board. Of those posted, 290 messages had some multimedia feature
in them. The most popular feature was multifont text—258 or 88% of the

10 Sherman, Hansen, McInerny, and Neuendorffer

(S) Mty Actiubmry naipstens Sosty
e g macting “Antallod Ovarviaws
3 Autalink: Seloct this menu opcen en the mures Hak, and thes yr——
P —utymwr-\;mnu"uuu‘fk Target Hare™ "'g.;:-::w
meav sption. If you con't find “Autelink argst Hewe™, pou
nend W matily yoar seinit fle. o [y rmesdainged
oy
Sot Liak: Specify the seme of the arget Nls Sor this Hak Fove ot
masunlly (aasiocnt b7 the compivtion et
Sot Ladek: Specity
k- —
How Link werks, Using Link, Link Conoepts, The @
u—uu-hwu—'-—.h-p—-n.u.x ";;n-
1 For mare intarmation e these spics, PN i':"_
B e ———— [Z]
| Link

Figure 8: The Help application documenting the link inset, and the window
brought up by following the link.

multimedia messages used only that feature. However, of the 32 multimedia
messages that used more than multifont text, 22 contained some linking fea-
ture. While not an overwhelming endorsement of hypertext or hypermedia,
a 6% casual usage rate indicates some appreciation for linking.

. N
5 Conclusions

The Andrew Toolkit effort began not as a hypertext effort, but as a general
architecture for multimedia documents and applications. We have shown in
this paper that the resulting system is an excellent medium for hypertext
and hypermedia. Several linking styles have already been utilized in ATK
applications. Web-based linking was chosen for an application—the Help
system—which is large, but changes slowly enough to permit a perdefinition
of access paths. Simple links and cross references are used for casual refer-
ences, as might appear on a bulletin board, while computed links are used for
database-like applications. There does not appear to be a universal choice
for a linking mechanism and, even within the Andrew Toolkit, other choices
are possible. For example, a group at Olivetti has independently developed
a hypermedia system on top of the Andrew Toolkit [Olivetti undated].

We believe that our investigations indicate that one should not concen-
trate one’s efforts on a single linking system or on trying to extend a simple
hypertext system into a hypermedia system. A better path is to investigate
different linking mechanisms within a general-purpose multimedia system,
such as ATK. This gives the hypertext implementor a clean architecture

Building Hypertexzt on a Multimedia Toolkit 11

il
I
1

i

T
i
i
IEE
i
i
|

Figure 9: A Ness-driven hypertext with embedded simple links.

for embedding hypertext within documents and applications while freeing
the implementor from having to build a multimedia document authoring
system. By investigating many different linking mechanisms, we may find
the best ways that hypermedia can be used and add linking as another tool
in our arsenal for organizing information.

References

[Atkinson 1987] Atkinson, B., HyperCard, Version 1.0.1, M0556 / 690-5181-A,
Apple Computer, Cupertino, CA, 1987.

[Borenstein et al. 1988] Borenstein, Nathaniel, Craig Everhart, Jonathan
Rosenberg, Adam Stoller, “A Multi-media Message System for Andrew”, Pro-
ceedings of the USENIX Winter Conference, Dallas, February, 1988, pp. 37-42.

[Halasz 1987] Halasz, Frank G., “Reflections on Notecards: Seven Issues for the

Next Generation of Hypermedia Systems,” Hypertext ‘87 Proceedings, Nov. 13—
15, 1987, Chapel Hill, NC, pp. 345-365.

{Hansen 1990] Hansen, Wilfred J., “Enhancing documents with embedded pro-
grams: How Ness extends insets in the Andrew ToolKit,” Proceedings of 1990
International Conference on Computer Languages, March 12-15, 1990, New Or-
leans, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 23-32.

[Howard 1988] Howard, John. H., “An Overview of the Andrew File System,”

Proceedings of the USENIX Winter Conference, Dallas, February, 1988, pPpP- 23-
26.

[ITC 1990] Andrew Toolkit Programmer’s Manual, Information Technology Cen-
ter, Carnegie Mellon University, Pittsburgh, PA. 15213, USA, January 1990.

12 Sherman, Hansen, McInerny, and Neuendorffer

[Langston 1988] Langston, Diane, “Background and Initial Problems for the An-
drew Help System,” Proceedings of the 35th ITCC, Society for Technical Com-
munications, 1988, pp. ATA-47-ATA-50.

[Meyrowitz 1986] Meyrowitz, N., “Intermedia: The Architecture and Construc-
tion of an Object-Oriented Hypermedia System and Applications Framework”,
OOPSLA ’86 Proceedings, Portland, OR, 1986, pp. 186-201.

[Meyrowitz 1989] Meyrowitz, N., “Hypertext—Does it Reduce Cholesterol,
too?”, presented at Hypertext 89, Pittsburgh, PA, November, 1989, IRIS Tech-
nical Report 89-9, Brown University, Providence, RI, 1989.

[Neuendorffer 1990] Neuendorffer, Thomas P., “The Andrew Development En-
vironment Workbench: An Overview”, The Andrew Project, Technical Report,

Information Technology Center, Carnegie Mellon University, 4910 Forbes Ave.,
Pittsburgh, PA 15213, 1990, pp. 65~72.

[Ogura & Robertson 1989] Ogura, Ayami, Jennifer Robertson, “Designing Hy-
permedia Help Systems: Problems and Issues”, Conference Proceedings, SIG-
DOC 89, Pittsburgh, PA, November 8-10, 1989, pp. 5-12.

[Olivetti undated] “Hypermedia Help System”, Olivetti Internal Memo, Olivetti
S&N DOR, Advanced Software Laboratory, via Palestro 30, 56100 Pisa, Italy,
undated.

[Palay et al. 1988] Palay, A. J., et al., “The Andrew Toolkit—An Overview”,

Proceedings of the USENIX Winter Conference, Dallas, February, 1988, pp. 9-
21.

