
CMU-ITC-88-069

ITC Window. Ianager
rrogrammers lu anuar

James Gosling

This document is a guide for programmers to the facilities of
the ITC window manager. It describes all that one needs to
know to be able to write programs that produce graphical im-
ages in witutows.

A window used by a client of the graphics package is a rectangular patch of
pixels. The upper left pixel is at coordinate (0,0) and coordinates increase
down and to the right. The width and height of the window may be interro-
gated by calling wm_GetDimensions. Performing operations at coordinates
outside of the window area causes the operation to be properly clipped. One
unit in the horizontal or vertical direction corresponds to one pixel. There is
a current position which moves around as operations are performed.

This extremely simple coordinate system was explicitly chosen in preference
to a more general one with full homogenous transformations. Many client
programs are insensitive to which coordinate system is chosen: any one is
good as any other; others have such specialized requirements that they need
to do their own coordinate transformations themselves, anyway.

When the dimensions or real position of a window are changed by the user
the window manager will request the client program to redraw. This appears
to the client as an asyncronous call on a procedure called FlagRedraw. This
procedure should only set a flag indicating that a redraw needs to be done, it
should not actually do the redraw. This is because it is called asynchronously
via the signal mechanism. Any system calls that were in progress at the time
of the flagging will be aborted by the system and will return an error with
errno= =EINTR.

The window manager provides no other support for handling window resizing
other than the notification described. This is because only the client program
can know the right way for its image to respond.

To compile a C program, the invocation of cc that compiles a client of the
window manager should have the switch 'kt/usr/local/include" and the pro-
gram should contain the line '_¢include <usergraphics.h> ". When linking
the program, include '_litc" in the list of libraries.

struct wm_window *wm_NewWindow (host)
Creates a window on the desired host. If host is zero and the environment

variable 'WMHOST' is set then the window will be created on hast
WMHOST. Otherwise the window will be created on the current host. A
pointer to the window is returned and that window is selected as the current
one. If a window cannot be created, a null pointer will be returned. The
window will be automatically be assigned space on the screen using magic:
the user will not be queried.

wm_SetectWindow (struct wm_window *w)
Makes w be the current user window. All subsequent operations are per-

formed on the current window. Normally, in a client program that creates

-2-

only one window no window selection need be done since wm_NewWindow
does it automatically.

wm_MoveTo (x, y)
Move the current position to the point (x,y).

wm._DrawTo (x, y)
Draws a line from the current position to the point (x,y) and leaves the

current position there.

wm_SetFunction (f)
Sets the rasterop combination function to f. This function is used whenever

a graphics operation is performed. For example,

wm_S etFunction(f_black);
wm__.MoveTo(0, 0);
wm_.DrawTo(100, 100);

will draw a black line. The following permit functions to be expressed as
Boolean combinations of the three primitive functions 'source', 'mask', and
'de_st'.

f__black
f_white
f_invert
f_copy Only makes sense with wm_RasterOp (and it's probably the

only opcode that does make sense with wm_RasterOp)
f_BlackOnWhite
f_WhiteOnBlack

wm__SetTitle (char *s)
Sets the title line for the current window to s. Each window has a title line

at its top which describes the entity being viewed through the window. For
example, if the client program is an editor, then it should be the name of the
file being edited.

wm__SetProgramName (char *s)
Sets the program name field in the current window's title line to s. Normal-

ly, programs don't set this, instead they use the program macro to declare the
name of the program. Program(name) is placed in the main program, some-
where where global variables may be declared. It sets up a data structure
which gets used by wm__NewWindow when a window is created and by get-
profile when a preference option is being looked up.

wm_GetDimensions (int *width, int *height)
Sets *width and *height to the width and height of the current window.

wm__SetDimensions (MinWidth, MaxWidth, Minlleight, MaxHeight)
Sets the preferred minimum and maximum height and width for the current

window. This does not change the actual dimensions of the window, it only
provides hints to the window manager to guide its automatic selection of win-
dow sizes.

wm_SetRawInput ()

-3-

Sets the current window into raw input mode: each time that the user types
a character it will immediatly be shipped down to the client, rather than sav-
ing up a line and waiting for newline to be typed.

m_DisableInput ()
Disables input from the current window. If the user types in this window, it

will be ignored.

wm__ErmbleInput ()
Enables input from the current window. Characters that the user types will

be passed to the client program. This is the default state.

wm_.RasterOp (sx,sy,dx,dy,w,h)
Performs a RasterOp operation using the current function. (sx,sy) is the

origin of the source rectangle and (dx,dy) is the origin of the destination rec-
tangle. (w,h) is the width and height of both rectangles.

wm_RasterSmash (dx,dy,w,h)
Performs a RasterOp without a source rectangle. The meaningful operations

are f_black, f_white and vjnvert.

wm__FillTrapezoid (xl, yl, wl, x2, y2, w2, f, c)
Fills the trapezoid with xl,yl as its upper left corner, wl as the width of the

top, x2,y2 as its lower left comer, and w2 as its width. The trapezoid will be
filled with character c from font f. If f is -1 then the default shape font
(shapel0) will be used. Bogosity" fis a font index, not a font pointer.

wm_CIearWindow ()
Clears (to white) the current window.

wm_SawMouse (int *action, int *x, int *y)
If you've see a wm._MouselnputToken on the window input stream then

wm_SawMouse will return in action, x and y the event that occurred on the
mouse and its coordinates at the time. wm_MouseInputToken is a simple
character. When a client program is reading characters from its window in-
put it should be checking for occurences of wm_MouseInputToken. If one is
seen, then wm_SawMouse should be called to decode the action and coordi-
nate information. The action parameter tells the client what sort of event has
occurred. For an explanation of the interpretation of action, read the section
on wm_SetMouselnterest.

wm_SetMouseInterest (mask)
Defines a mask which describes the mouse events in which the client is in-

terested. The mask is constructed by or ing together several values from
MouseMask .

MouseMask (event)
Constructs a constant which represents the event occuring on the button.

-4-

Values for
button event

LeftButton UpMovement
MiddleButton DownTransition
RightButton UpTransition

DownMovement

wm_SetMouseGrid (n)
Causes the window manager to report mouse movements only when the

mouse moves at least n pixcls from its last reported tx_ition.

wm__SetMousePrefix(char *string)
Causes the window manager to prefix all mouse position reports with string

instead of wm_MouseInputToken.

wm_AddMenu (char *string)
Adds the given string to the menu for the current window. Each window

has associated with it one hierarchic menu: menu entries may have submenus,
which in turn may have yet more submenus. String consists of a series of
comma separated entry names, followed by a colon, followed by the response
string. The response string is the string which will be transmitted back to the
client program when that menu entry is selected. For example:

wm_AddMenu('Directory,List:ls -1,/n');
wm_.AddM enu(' Directory,Name:pwdCn');

The first call to wm_AddMenu will add an entry in the root menu named
'Directory". This entry will have a submenu, and in that submenu will be de-
fined an entry named 'List". This entry will be a leaf of the menu hierarchy
and will have associated with it the string 'Is --In". If the user selects 'List"in
the 'Directory" submenu then this string ('Is An') will be transmitted back to
the client program through its window input channel (winin).

The second call to wm_AddMenu simply adds a 'Name" entry to the 'Direc-
tory" menu and associates the string '_wdn' with it.

The colon and rresponse string may be omitted, in which case the menu entry
will be removed.

wm_SetMenuPrefix (char *string)
Causes all fo'dowing menu sel_tions to be prefixed by string. The string de-

faults to the empty string.

wm_DisableNewlines ()
Normally when a newline character is written to a window it will cause

scrolling ff occurs at the bottom of the window, wm_DisableNewlines dis-
ables this behaviour --newlines will simply move the text pointer off the bot-
tom of the window and subsequent text will be clipped and not displayed.

struet wm_window *CurrentUserWindow
A pointer to the currently selected window.

FILE *winout
An output file corresponding to the current window. Writing text here

causes the text to appear in the window just as though it were a glass tele-

-5-

type. The text will be drawn with the upper left hand corner of the first
character being placed at the current position. The current position will be
left just past the upper right hand corner of the last character.

FILE *_inin

An input file corresponding to the current window. Reading from here re-
turns characters typed by the user while pointing at this window.

Text

struct font *wm_DefineFont (fontname) Defines a font, given a fontname, and
returns a pointer to be used by subsequent wm__SelectFont's. Fontname
is a string which names a font. For example, 'TimesRomanl0i" speci-
fies Times Roman 10 point italic; 'tCMR10b" specifies Computer
Modern Roman 10 point boldface. If the font specified doesn't exist,
one which is 'blose" will be used instead.

wm__SdectFont (struct font *font-pointer) Causes the font specified by the
fontpointer to be used for subsequent character printing. Fontpointer
is created by calling wm__DefineFont.

wm_SelectFont(wm_DefineFont ('TimesRoman 10i'))

causes all further printing to use Times Roman 10 point italic. The
reason for separating the wm_DefineFont and wm__SelectFont is to
avoid having to do many repeated font lookups --the client program is
expected to save the value returned from wm__DefineFont and reuse it.

wm__StringWidth (string, int *x, int *y) Finds the width of the given string in
the current font in the current window. The x--width is returned in x,
and the y--width in y. For normal left--to-right fonts, y will be zero
and x will be the width of the string. The width is measured starting
at the origin of the leftmost character up to the origin of the character
which would immediatly follow the rightmost character.

wm_DrawString (x, y, flags, string) Draws the given string relative to the
given coordinates, according to the flags. The flags control alignment
of the string relative to the height and width of the string.

Height alignment nntions
i_, ,f

wm_AtTop wm_AtRight
wrn_AtBottom wm__AtLeft

wm_AtBaseline wm_BetweenLeftAndRight
wm BetweenTor_AndBottcrm wm t_etweenTor_Andlqaseline

The flags argument is constructed by oring together one height align-
ment option and one width alignment option. Either may be omitted
and wm_AtBaseline and wm__AtLeft will be taken as defaults.

A slight confusion is possible in understanding the differences between
wm_BetweenTopAndBottom and wrn_BetweenTopAndBaseline. The
former properly centers, taking into account descenders (Like the tail
on a lowercase 'y'), where the latter ignores descenders. The latter is

-6-

likely to be more aesthetically pleasing.

For example:

wm_DrawStfing (WindowWidth/2,

WindowHeight/2,
wm_Betv_enT opAndBaseline @m_Betv0eenLef tAndRight,
'Don't Panic');

will print the string 'Don't Panic" correctly centered in the current
window using the current font.

wm_printf (x, y, flags, format, args) This procedure is similar to
wm_DrawString except that instead of taking a single string as an ar-
gument, it takes a full '_rintf" format and arguments.

wm_SetCursor (struct font *f; char c) Sets the cursor that is used in follow-
ing the mouse to character 'c' from font 'f'. The cursor will only have
this shape when it is inside the current window.

wm_SetStandardCursor (c) Sets the cursor from the standard icon font
(iconl2). The following cursor names and shapes are defined in
usergraphics.h:

wm_GunsightCursor
wm_CrossCursor

wm..HourglassCursor
_ghtFingerCursor
wm_H orizontal BarsCursor

wm_LowerRi ght CornerCursor
wm._PaintbrushCursor

wm__UpperI._ftCorner Cursor
wm_VerticalBars Cursor

vart_DangerousBendCursor
wm_CaretCursor

You can look at the available standard cursors by typing:
samplefont icon12

wm._SetSpaceShim (n) Sets the space shim value to rL A shim is some pad-
ding that is added on to the right of a character. The space shim ap-
plies only to space characters. After calling wrn_SetSpaceShlm all fol-
lowing space characters will have n added to their width.

wm__SetCharShim (n) is similar to wm_SetSpaceShim except that it applies to
all characters, including spaces.

Color
This section needs to be written. But first, we should figure out what we're
doing...

Window Manipulation

-7-

wm_HideMe() Hide the current window. Has no effect if the current
window is currently hidden.

wm_ExposeaMe () Expose the current window. Has no effect if the current
window is currently exposed.

wm_DeleteWindow () Deletes the current window from the screen. Further
operations on that window will fail.

wm_AcquireInputFocus () Acquires the input focus for the current window.
When the input focus is 'acquired' by a window, all subsequent char-
acters typed by the user are send to that window. This will continue
until the input focus is acquired by some other window. The acquisi-
tion of the input focus only affects characters typed by the user, it
does not affect mouse hits or menu selections.

wm_GiveUpInputFocus () Gives the input focus back to the last window
that had the input focus.

wm_IHandleAcquisition () Declares to the window manager that the client is
willing and able to hadle input focus acquisition for himself. Normal-
ly, if no client is handling input focus acquisition, if the user wants to
change the input focus he points the mouse at it and clicks a button.
This mouse event will be thrown away and the input focus will shift.
The user can then type at that window and use the mouse. If the
client has executed _m_IHandleAcquisition, then all mouse clicks get
sent to the client and the window manager will not automatically shift
the input focus. That client can then (for example) acquire the input
focus whenever it sees that first mouse event. The posession of the in-
put focus will be encoded in recieved mouse events.

Fonts

This section describes the font mechanism used by the window manager.
Most writers of client programs don't need to know much of what is
described here.

A .font is a collection of icons . An icon is a thing which can be drawn to
make a mark. The mark can have any shape. A font has two parts: a header
which contains the name of the font and some summary information, and an
array of icons. An icon also has two parts: One of generic information and
one of specific information. The generic information describes the properties
of the icon that are independant of its represenation: information about the
bounding box and spacing. The specific information describes the properties
that are dependant on the representation of the icon --those that are interest-
ing only to a routine that is actually drawing the icon. At the moment, the
specific information will either be a bitmap or a list of vectors.

-8-

An icon represents some shape en-
• , , P 7

closed within a bounding box. , [,
Typically the icons are characters . _ / _,
like those in this illustration. TheB°undingu""- ', / ,
bounding box for each character Boxes\ ', / ',
is at least large enough to com- \ ' / '
pletely enclose the character, and r---,--_----_.--_ ! ["
it is usually a tight fit. Within , /f _ , ',
that bounding box is a dis- ', // \',, / /_
tinguished point called the Origin. ,. _] : / /1
The origin is a point which is on ', /_ _ If [',
the character'.s baseline and which ', / \ /' ,,J I ,
is at the optical left edge of the --'--L-_J-[........ J-;--Baseline
character. The optical left edge I [_-..._ ', "_...
of a character is often at the left , ! _ _

edge of its bounding box. For ',[_ _Character Origins
italic characters with descenders, ',[',
like the 'p' here it is inset from ,[
the left edge. The bounding boxes _ ,'
of successivly drawn characters may or may not overlap. The bounding box
of an italic 'y' or 'p' will typically overlap the bounding box of the preceeding
character so that their decender can sweep under it. Similarly, the ascender
of an italic 'f' usually extends over the following character.

Associated with each character are five vectors: WtoE

NWtoOrigin is a vector which goes from the north ,_...........]west corner of the bounding box to the origin. ,_,
WtoE goes from the west edge to the east edge. I\ '
NtoS goes from the north edge to the south edge. I_N'WtoOrigin ',
Wbasegoes from the origin due west to the west edge ',\I I

of the character, i___, ,
! ' " I

Spacing goes from the origin of the character to - Origin • NtoS
the place where the origin of the next charac-
ter should be placed when this character is
drawn with one following it.

These five paramaters could have been scalars, but
were done as vectors instead in order to make mani-
pulating rotated fonts easier. L

W_°se Spacing
A font file is laid out according to the following declarations. The file will
start with a single instance of struct font . This contains the vector of icons.
Each icon contains two offset pointers: one to the generic part and one to the
specific part for the icon. All of the generic parts occur in the file before the
specific parts. Charracters with matching generic or specific parts will share
the corresponding space.

slxuct SVector { /* Short Vector */

short x, y;
};

/* Given a pointer to an icon, GenericPart returns a pointer to its lconGenericPart
./

-9-

#define GenericPart(icon) ((struct IconGenericPart *) (((int) (icon)) + (icon) ->
OffsetToGeneric))

[* Given a character and a font, GenericPartOfChar returns the corresponding
IconGenericPart "/

define GenericPartOfChar(f,c) GenericPart(& ((f)-> chars[c]))

struct IconGenericPart {/* information relating to this icon that is of general in-
terest */

struct SVector Spacing; /* The vector which when added to the origin of
this character will give the origin of the next char-
acter to follow it *[

siruct SVector NWtoOrigin; [* Vector from the origin to the North
West corner of the characters bounding box */

struct SVector NtoS; [* North to south vector *[
struet SVector WtoE; [* West to East vector *[
struct SVector Wbase; /* Vector from the origin to the West edge paral-

lel to the baseline */

1;
struct BitmaplconSpecificPart { ,/* information relating to an icon that is necessary

only if you intend to draw it *[
char type; I/* The type of representation used for this

icon. (= BitmapIcon)*/
unsigned char rows, /* rows and columns in this bitmap */
unsigned char cols;
char orow, /1" row and column of the origin */
char ocol; /* Note that these are signed */

unsigned short bits[I]; /* The bitmap associated with this icon */
t;

struet icon { /* An icon is made up of a generic and a
specific part. The address of each is "Offset" bytes from
the "icori' structure */

short OffsetToGeneric;

short OffsetToSpecifie;
l;

/* A font name description block. These are used in font definitions and in font
directories */

struct FontName {
char FarnilyNarne[16]; /* eg. "TimesRomad' */
short rotation; i/* The rotation of this font (degrees;

+ re= > clockwise) */
char height; [* font height in points */
char FaceCode; /* eg. "Italid' or "Bold' or "Bold Italid'

./
l;

[* Possible icon types:*/
define Assortedlcon 0 [* Not used in icons, only in fonts: the icons have an as-

sortment of types */

define Bitmaplcon 1 /* The icon is represented by a bitmap */
define Vectorlcon 2 /* The icon is represented as vectors */

-10-

/* A font. This structure is at the front of every font file. The icon generic and
specific parts follow. They are pointed to by offsets in the
icon structures */

slxuet font {

short magic; /* used to detect invalid font files "/

short NonSpecificLength; /* number of bytes in the font and generic
parts */

struct FontName fn; /* The name of this font */

struct SVector NWtoOrigin; /* These are "maximat' versions of the
variables by the same names in each constituent
icon */

struct SVector NtoS; /* North to South */
struct SVector WtoE; /* West to East */

struct SVector Wbase; i1"From the origin along the baseline to the West
edge */

r " " " "struct SVector newline; /* The app oprlate newhne vector, its just NtoS
with an appropriate fudge factor added */

char type; /* The type of representation used for the
icons within this font. 1fall icons within the font
share the same type, then type is that type, other-
wise it is "Assortedlcon" */

short NIcons; i/* The number of icons actually in this
font. The constant "CharsPerFont" doesn't actually
restrict the size of the following array; it's just
used to specify the local common case */

struct icon chars[CharsPerFont];
/* at the end of the font structure come the bits for each character */

1;

/* The value of font-> magic is set to FONTMA GIC. This is used to check that a

file does indeed contain a font */
define FONTMAGIC 0xlfd

/* FaceCode flags */
define BoldFace 1
define ItalicFace 2
define ShadowFace 4

define FixedWidthFace 010

struct font *getpfont0; /* get font given name to parse */
struct font *getfont0; /* get font given parsed name */
struct icon *geticon(); /1"get an icon given a font and a slot */

int LastX, LastY; /* coordinates following the end of the last string
drawn */

Program Template

The following is a template for simple programs that use the window
manager:

include < usergraphics.h>

-11 -

program(f oo)

main () {
wrn..NewWindow 0;
..,,

t

Sample Client Program

This is a simple clock which was written to test out user level graphics. It
draws a face which consists of 12 tick marks arranged in a circle and the
hour, minute and second hands. The clock face is updated every second.

include < stdio.h>

include 'hsergraphics.h"This library contains all of the definitions for the client in-
terface to the window manager

include 'blocktable.h" This library contains a table of sines and cosines
include < time.h>

struet tm LastTimeDisplayed;

int MidpointX,
int MidpointY;
int FaceRadius;
int RedrawRequested = O;

FlagRedraw 0 {
RedrawRequested+ +;

}

program (clock)

main () {
int FaceI nnerRingRadius;
int n;
int HourRadius, Hourlnner,

MinRadius, Minlnner,
SecRadius, Seclnner;

register struct tm *CurrentTime;
if (fork O)

exit (0);

FlagRedraw O;
while(I) l

long now - time (0);
CurrentTime = (struct tm *) Ioca]time (& now);

if (RedrawRequested) {
while(1) {

wm_GetDim& MidpointX, & MidpointY);

-12 -

if (MidpointY)
break;

pause0;
l
wm_ClearWindow 0;

MidpointX/= 2;
MidpointY/= 2;
FaeeRadius -- MidpointX;
if (MidpointY < FaceRadius)

FaceRadius = MidpointY;
FacelnnerRingRadius -- FaceRadius * 19 / 20;
HourRadius = FaceRadius * 12 /20;
Hoarlnner -- FaceRadius * 9 /20;
MinRadius _- FaeeRadius * 16 /20;
Minlnner = FaceRadius * 9 /20;
SecRadius -- FaceRadius * 18 /20;

Seclnner = FaceRadius *(-6)/20;
for (n --- 0; n < 60;n+=5) {

wna_JVloveTo (FacelnnerRingRadius * angtbl[n].xf
/SCALEANG + Mid-
pointX, Faeelnner-

RingRadius * angtbl[n].yf
/SCALEANG + Mid-

pointY);
wm..DrawTo (FaceRadius * angtbl[n].xf /

SCALEANG + Mid-

pointX, Fac_Radius *
angtbl[n].yf /
SCALEANG + Midpoin-
tY);

}
}
UpdateHand (CurrentTime-> tm_sec,

& LastTimeDisplayed.tm_sec, SecRadius,
SecI nner);

UpdateHand (CurrentTime -> ml.jnin,
& LastTimeDisplay_l.tm_min, MinRadius,
Mini nner);

UpdateHand (((CurrentTime -> tm_hour * 5) %60) + Current-
Time -> tm_min / 12,

&LastTimeDisplayed.tm_hour, HourRa-
dius, HourInner);

wm_Mov_To(MidpointX< < 1, MidpointY< < 1);
fflush (winout);

if (RedrawRequested-- =0)
sleep (1);

else

RedrawRequested-_,
}

}

UpdateHand (NewTime, OldTime, OuterRadius, InnerRadius)
int *OldTime; {

-13 -

if (*OldTime != NewTime [RedrawRequested) {
if (RedrawRequested==0 && *OldTime != NewTime) {

wm_SetFunction (f_white);
DisplayHand(* OldTime, OuterRadius, InnerRadius);

!
wm_S etFunction (f_black);
DisplayHand(NewTime, OuterRadius, InnerRadius);
*OldTime = NewTime;

1
l

DisplayHand(Time, OuterRadius, InnerRadius) {
int OuterX = OuterRadius * angtbl[Time].xf /SCALEANG + MidpointX;
int OuterY = OuterRadius * angtbl[Time].yf /SCALEANG + MidpointY;
if (InnerRadius> 0) {

int LastTime = (Time== 0 ? 59 : Time-D;
int NextTime = (Time==59 ? 0 : Time+ 1);
_an_M oveTo (MidpointX, MidpointY);
wm_DrawTo (InnerRadius * angtbl[NextTime].xf /SCALEANG

+ MidpointX, InnerRadius *
angtbl[NextTime].yf /SCALEANG +
MidpointY);

wm_DrawTo (OuterX, OuterY);
wrn._o_To (MidpointX, MidpointY);
wm..DrawTo (IrmerRadius * angtbl[LastTime].xf / SCALEANG +

MidpointX, InnerRadius *
angtbl[LastTime].yf /SCALEANG +
MidpointY);

]
else if (InnerRadius< 0)

wm_MoveTo (InnerRadius * angtbl[Time].xf /SCALEANG +
MidpoimX,

InnerRadius * angtbl[Time].yf /SCALEANG + MidpointY);
else

wm..MoveTo (MidpointX, MidpointY);
wm_DmWTo (OuterX, OuterY);

hnplementation notes

- 14 -

Window

Window
C

Mouse and Keyboard< _ -,)''" _

The Window manager is a process that is connected to all a'T-i_I_l_lcr/_nt_ ztions
socket-to-socket IPC channels. All graphics operations cause messages to be
sent between the client and the window manager. The remote procedure call
protocol has beed especially crafted for this application. Each procedure call
turns into a sequence of bytes. The first is the opcode and the rest (the
count is determined by looking up the opcode in a table) are the arguments.
Opcodes 0-127 are reserved for the ASCII characters, the rest are in the
range 128--255. Many procedure call may be packed into a packet and a pro-
cedure call may be split across packet boundaries. If the call doesn't return a
value, then it isn't issued immediatly, rather it is just queued up until either
the buffer is filled or an explicit fflush(winout) is executed.

I- "3

' Process ,

L.J

p/

i

" Ethernet

I
F -1

"" ' Process ,
_'- _ A 'I I

I_J

-15 -

Processes on any machine, whether or not they are workstations, can create
windows on any display.

Still to be documented:
wm_StdioWindow0
wm_S howBits (x,y,w,h,b)
wm._DefineRegion(id,x,y,w,h)
wm_S electRegion(id)
wm_ZapRegions()
wm__SetClipRectangle(x,y,w,h)
wm_WriteToCutBuffer()
wm_ReadFromCutBuffer(n)
wm_RotateCutRing(n)
wm__SaveRegion(id,x,y,w,h)
wm___RestoreRegion(id,x,y)
wm_ForgetRegion(id)
wm__t-IereIsRegion(id,w,h)
wm_ZoomFrom(x,y,w,h)
wm_LinkRegion (newid,oldid)
wm__NameRegion (id,narne)

