
CMU-ITC-85-042

ITC Suggestions for 4.X BSD

David S. H. Rosenthal
Michael Leon Kazar

David Nichols

_/Iahadev Satyanarayanan
Bob Sidebotham

Information Technology Center
Carnegie- Mellon University

Introduction

The mission of the Information Technology Center, which is funded by
IBM, is to develop the software infrastructure for a campus-wide deploy-
ment of powerful personal workstations at C-MU. To this end, we have
been working with a large number of 4.2 workstations of various kinds to:

I. Support remote file systems.

2. Support advanced user interfaces.

3. Support the SNA address family.

4. Support dynamic linking and shared libraries.

5. Support authentication in a hostile environment.

This experience leads us to suggest some directions in which we would like
4.X BSD to evolve, none of which are particularly original. Some,
indeed, may be addressed in 4.3 BSD. We provide a brief survey of our
experience, and then cover each of the directions in some detail.

Experience

Remote File Systems

The ITC has developed a remote file system that uses a workstation's local
disk as a cache of recently used files and provides a large collection of un-
trusted workstations with the illusion of unifl)rm access to a single vast
Unix file systeml- The files are actually stored on many cooperating trust-

ed servers, which collaborate to appear as a single file system to clients.
Two such file systems have been in production use since the fall of 1984,
combined they support 115 clients using 6 servers.

The clients of this service run a modified kernel; open(), close() anti
some other calls are intercepted and turned into messa,.:cs that appear in a
special file. These messages are read bv the user-levetcache manager pro-

-2-

cess, which fetches files from the servers, stores them in a cache directory,
and replies via the same special file. The replies contain the inode number
of the cached copy, which is substituted in the remote inode and used by
read() and write() calls.

The cache manager communicates with the file servers using an RPC
mechanism on top of TCP/IP stream sockets. Each client has an individu-
al server process on each server it uses.

The current revision of the file system is changing:

1. to UDP-based RPC, to avoid running out of file decriptors in the
server process.

2. to a single file server process, to avoid the cost of communicating
between server processes.

3. To have the server use special openi(), readi(), writei()
system calls, to avoid namei() wherever possible.

Advanced User Interfaces

-)

The ITC has developed a user-level window server _, which is highly port-
able between displays and workstations (the most recent port took 4 hours
55 minutes; it runs on 7 different displays on 3 different workstations). It
has been in production use since the end of 1983, and supports a user in-
terface toolkit including a reformat-on-the-fly multi-font editor 3. The
toolkit has been used to develop a large collection of utilities and educa-
tional applications, including browsers for the file system, mail, and
news, diagram and equation editors, and an implementation of the
micro-Tutor CAI language.

The server needs to have the pixels on the display (and, preferably, the
mouse position registers) in its address space. Depending on tile particular
workstation, some form of mmap() may be available to control this ac-
cess, or it may have to be provided for all processes (as on the micro-
VAX).

Clients communicate with the server using a special-purpose RPC protocol
over TCP/IP stream sockets. The normal stdio buffering is used to
batch calls until one needs a reply; this provides adequate performance
only because care is taken to avoid replies wherever possible.

Conventional Unix applicationsr-equirea ttvofsome kind. This is provid-
ed using either a 24*,";0 emulator or a reformat-on-the-fly tvpescript
manager. Both use pt:ys, but the typescript manager has problems with
this approach. It wants to generate echoes, manage rub-out and kill pro-

-3-

cessing, and so on, so it uses TIOCRENIOTE mode. But it cannot find

OUt about ±octl()s the application does, so it cannot disable echo
correctly.

Surprisingly, this approach gives adequate performance. But the combi-
nation of paging and the 4.2 scheduler means that response is not very
predictable. The window manager has much information about the
processes likely to be interactive, but cannot transmit it to the scheduler
and pager.

SNA

The ITC has developed an implementation of the LU6.2 version of SNA
for 4.2. It has been in production use since the spring of 1985, driving
IBM3S20 laser printers at 19.2Kbaud via the Sun UARTS.

Dynamic Linking

The ITC is developing its user interface toolkit to support display, editing,
storage and transmission of documents, files containing objects such as
text, diagrams, equations, and others defined by particular applications.
To permit applications to define new objects and, for example, to include
them in mail, mail readers and writers must be able to locate and use
newly defined editing and display code. The ITC has experimented with
several dynamic linking schemes, including a compiler that generates pure
position-independent code _, and is currently using one that involves run-
ning an ld-equivalent over normal .o liles at run-time. Other planned uses
for dynamic linking at the ITC include user extensions to the window

manager, for example special-purpose mouse tracking and curve drawing.

Authentication

The ITC has developed an authentication mechanism that can operate in a
hostile environment, complementing the security t'eaturcs or" the remote file
system. Login, su, and other programs have been modified to consult a
network authentication server, using a three-phase handshake, to obtain
authentication tokens. Among these is a session key that encrypts the
RPC headers between the local file system daemon and the iile servers.

Suggestions
-.

Virtual _lemory Enhancements

The most important development oI 4.X from the ITC's viewpoint would
be an implementation or" mmap(), substantially as spccilicd. Nlapping
devices is essential to support bitmap displays, and is \err uset'ul l_r mice
and up-down keyboards.

-4-

Shared libraries are becoming essential, and their implementation requires
either:

1. A compiler that generates position-independent code.

2. The ability to map libraries at fixed positions into sparse pieces of a
large address space.

--%

In either case, copy-on-write semantics for the private variables of library
routines is almost essential. Shared public writable pages, or a mechanism
for sending pages to another process, would be useful as part of a high-
speed RPC mechanism. They would avoid copying the RPC data twice
across the user/kernel boundary.

Multiple File System Type Support

Many groups are developing remote file systems for Unix; what is needed
is a common interface behind which they can all compete, analogous to
SUN's vnode interface. Almost any interface that expressed file system
calls in terms of operations on objects free of details about how they were
represented on a medium would be acceptable. We believe, in particular,
that the ITC's file system could be implemented behind the vnode inter-
face. Doing so would save us the considerable effort involved in re-
installing our file system hooks in multiple new versions of Unix.

It seems inevitable that stat()-ing a file in a remote file system that real-
ly implements Unix semantics is expensive. A major cause of stat()
calls is getwd(), and as file systems become larger and people work
further and further from the root getwd() will become steadily more ex-
pensive. It is fairly simple for the kernel to maintain the path used to get
to the current working directory, and implement an efficient:

n = getcwd(buf, size, offset);

Intercepting System Calls

There are a number of cases in which it is desirable for uscr-le\'el processes
to intercept and process system calls issued bv some other process. For ex-
ample:

. 1. Remote file systems (for example VICE).

2. Emulating obsolete function (t'or example the TTY driver in a
workstation environment).

Limited facilities of this kind were implemented as the Stream [0 s\stem
in the 8 th Edition_, alld provided a more ellicient and flexible replacement

-5-

for the TTY driver.

A full implementation would provide:

a) a bi-directional channel for transport of data and control blocks.

b) end modules controlled by a mask specifying which system calls are
to be converted into protocol bloc_ (and vice versa). The modules
should specify protocol for all descriptor-oriented system calls.

c) an interface for adding new processing modules into the channel.

d) Both block and character streams. Block streams could be mounted
to support remote file sy,'stems.

Fast RPC Mechanism

Most of the new services we are developing use an RPC package to com-
municate with their servers. We use several different RPC packages:

a) a special TCP-based buffered implementation for the window
manager.

b) a general TCP-based synchronous implementation for the initial
version of tl_e rite and autt_cntication systems.

c) a general UDP-based synchronous implementation for the re-
implementaion or" the file and authentication systems.

Performance of RPC is critical to the overall performance of the system,
and is in general inadequate. There are two cases that need improvement:

1. On-machine RPC, which should be implemented using shared writ-
able pages and an cIIicicnt semaphore mechanism, instead of file-
based communication. This woutd avoid copying the arguments
and return \alucs twice across the kernel/user boundary.

2. Off-machine RPC. which should use a faster UDP send().

Timing one-byte writes on a typical 4.2 implementation, we lind:

760 ms. for 1_000 /dev/nul1- writes (0.76 ms/ca1-1)
1800 ms. for 1,000 l_±le wr±t:es (1.80 ms/call)
/+360 ms. for 1.000 sendtos (/+.36 ms/call)
3720 ms. for 1000 sends (3.72 ins/call)

It seems unreasonable that send(), which does not need any handshak-

-6-

ing, should be more than twice aa expensive as a file write.

The 15% margin between send0 and sendto0 suggests that sendto()
should cache the connection information and re-use it (i.e. postpone the
2n_pcbdisconnect() until the socket is used with a different address).
We estimate that perhaps 80% of sendto()s refer to the same address "
as their predecessors. The route information should be cached in a similar
fashion, -,-

UDP is checksumming all output datagrams, even though these check-
sums are almost never checked.

Authentication Services

The 16-bit uid is too short. A scheme that enabled uids to act as public
keys would be interesting. The ITC's experience in trying to develop a sys-
tem in which the workstations trust only the file servers, and not each

other, indicates that some further support tbr authentication is needed,
but no definite suggestions have been agreed. One that has been imple-
mented is the Process Authentication Group, an un-changeable (except by
root) token stored in the proc structure that is inherited by the children of
a process except if they are SUID. This allows the processes inheriting
rights as a result of a single authentication handshake to be identified.

Lightweight Process Support

For most 1TC programs, the only mechanism that is used for waiting is
select(), and the 4.2 select() is far too expensive. In particutar,
applications such as the new file system servers and the SNA daemons
which use the ITC's lightweight process support spend unreasonably large
amounts of time in select ().

An mmap() that supported sparse address spaces would help with the
management of multiple stacks.

Scheduling & Process Groups

Processes, process group leaders, and super-user processes should be able
to raise and lower their priority and that of the group within the limits set
by the priority inherited from their parents. This would enable the win-

. dow manager to raise the priority ()f processes with the input lbcus.

References

1. b¢l. Satyanarayanan et al. Tlzc ITC Distrit, ztted File Srsrem: Princi-

ples & Design, to be prcsentcd at the AC,X,I Syrup. on Operating
Systems Principles, East Orcas, \VA. December 1_,)85.

-7-

2. J.A. Gosling & D. S. H. Rosenthal, A IVindow Manager for Bit-
mapped Displays and Unix. to appear in ,_lethodology of IVindow
Managers, North- Holland.

3. J.A. Gosling, An Editor-Based User Interface Toolkit, Proceedings
of PROTEXT 1984, Dublin October 1984.

4. M.L. Kazar, Camphor: .4 Programming Environment for Extensible
Systems, Proceedings of USEN[X, Portland OR, June 1985.

5. D.M. Ritchie, A Stream Input-Output System, Bell Labs Tech. J.,

63(8), October 1984 pp. 1897-1910.

