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Abstract

A key trend in the world—especially in electronic commerce—is a demand for higher levels of
expressiveness in the mechanisms that mediate interactions, such as the allocation of resources,
matching of peers, and elicitation of opinions from large and diverse communities. Intuitively, one
would think that this increase in expressiveness would leadto more efficient mechanisms (e.g.,
due to better matching of supply and demand). However, untilnow we have lacked a general way
of characterizing the expressiveness of these mechanisms,analyzing how it impacts the actions
taken by rational agents—and ultimately the outcome of the mechanism. In this technical report
we introduce a general model of expressiveness for mechanisms. Our model is based on a new
measure which we refer to as themaximum impact dimension. The measure captures the number
of different ways that an agent can impact the outcome of a mechanism. We proceed to uncover
a fundamental connection between this measure and the concept of shatteringfrom computational
learning theory.

We also provide a way to determine an upper bound on the expected efficiency of any mech-
anism under its most efficient Nash equilibrium which, remarkably, depends only on the mech-
anism’s expressiveness. We show that for any setting and anyprior over agent preferences, the
bound on efficiency of a mechanism designed optimally under aconstraint on expressiveness in-
creasesstrictly as more expressiveness is allowed (until the bound reaches full efficiency). In
addition, we prove that a small increase in expressiveness can potentially lead to an arbitrarily
large increase in the efficiency bound, depending on the prior.

We conclude with a study of a restricted class of mechanisms which we callchannel based.
The restriction is that these mechanisms take expressions of value through channels from agents
to outcomes, and select the outcome with the largest sum. (Channel-based mechanisms subsume
most combinatorial and multi-attribute auctions, any Vickrey-Clarke-Groves mechanism, etc.) In
this class, a natural measure of expressiveness is the number of channels allowed (this generalizes
the k-wise dependence measure of expressiveness traditionally used in the combinatorial auction
literature). As a sanity check of our general domain-independent measure of expressiveness, we
show that it appropriately relates to the number of channelswhen applied to channel-based mech-
anisms. This allows us to transfer all of our results regarding efficiency to this domain.





1 Introduction

Mechanism design is the science of generating rules of interaction so that desirable outcomes result
despite the participating agents (human or computational)acting based on rational self-interest.
A mechanismtakes as input some expressions of preference from the agents, and based on that
information imposes anoutcome(such as an allocation of items and potentially also payments).
By carefully crafting mechanisms, it is possible to design better auctions, exchanges, catalog offers,
voting systems, and so on.

A recent trend in the world—especially in electronic commerce—is a demand for higher levels
of expressiveness in the mechanisms that mediate interactions such as the allocation of resources,
matching of peers, or elicitation of opinions. This trend has already manifested itself in combina-
torial auctions, multi-attribute auctions, and generalizations thereof, which are used to trade tens
of billions of dollars worth of items annually [28, 55, 56, 39, 19]. It is also reflected in the richness
of preference expression offered by businesses as diverse as matchmaking sites, sites like Amazon
and Netflix, and services like Google’s AdSense. It is also emerging in the context of security and
privacy interfaces developed in different application domains (e.g., [53, 52]). In Web 2.0 parlance,
this demand for increasingly diverse offerings is called the Long Tail [4].

The most famous expressive mechanism is acombinatorial auction (CA), which allows par-
ticipants to express valuations overpackagesof items. CAs have the recognized benefit of re-
moving the “exposure” problems that bidders face when they have preferences over packages but
in traditional auctions are allowed to submit bids on individual items only. They also have other
acknowledged benefits, and preference expression forms significantly more compact and more
natural than package bidding have been developed (e.g., [57, 28, 55, 56, 19]). Expressiveness also
plays a key role inmulti-attributesettings where the participants can express preferences over vec-
tors of attributes of the item—or, more generally, of the outcome. Some market designs are both
combinatorial and multi-attribute (e.g., [57, 55, 56, 19]).

Intuitively, one would think that more expressiveness leads to higher efficiency (sum of the
agents’ utilities) of the outcome (e.g., better matching ofsupply and demand). Efficiency improve-
ments have indeed been reported from combinatorial and multi-attribute auctions (e.g., [54, 55, 56,
37, 19]). However, until now, we have lacked a general way of characterizing the expressiveness
of different mechanisms, the impact that it has on the agents’ strategies, and thereby ultimately
the outcome. It was not even known whether, in any settings, more expressiveness always leads
to more efficiency. (In fact, on the contrary, it has been observed that in certain settings additional
expressiveness can give rise to additional equilibria of poor efficiency [40].)

Short of empirical tweaking, participants in the scenarioswe described lacked results they can
rely on to determine how much—and what forms of—expressiveness they need. These questions
have vexed mechanism design theorists, but are not only theoretical. Answers could ensure that
ballots are expressed in a form that matches the issues voters care about, that companies are able to
identify suppliers that best match their needs, that supplyand demand are better matched in B2C
and C2C markets, that users of a cell phone-based Friend Finder application can express those
privacy preferences that really matter, and so on.

In this paper we introduce a general model of expressivenessfor mechanisms (Section 2). This
includes a new expressiveness measure, which we refer to as themaximum impact dimension. The
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measure captures the number of different ways that an agent can impact the outcome of a mech-
anism. We proceed to uncover a fundamental connection between this measure and the concept
of shatteringfrom computational learning theory. (We say that a mechanism allows an agent to
shatter a set of outcomes if the agent can cause every possible (ordered) combination of those
outcomes to be chosen.)

We proceed, in Section 3, to describe perhaps the most important property of our domain-
independent measure of expressiveness: how it relates to the efficiency of the mechanism’s out-
come. We provide a way to determine an upper bound on the expected efficiency of any mechanism
under its most efficient Nash equilibrium which, remarkably, depends only on the mechanism’s
expressiveness. This enables us to sidestep two major classic hurdles in studying the relation-
ship between expressiveness and efficiency: 1) it can be analyzed without having to solve for
an equilibrium of the mechanism (something that has proved extremely difficult for inexpressive
mechanisms [50, 64, 61, 46, 66, 43]), and 2) since it bounds the most efficient equilibrium it can be
meaningfully applied to mechanisms with multiple (or infinite) equilibria, e.g., CAs [9]. We show
that for any setting and any prior over agent preferences, the bound on efficiency of a mechanism
designed optimally under a constraint on expressiveness increasesstrictly as more expressiveness
is allowed (until the bound reaches full efficiency). In addition, we prove that a small increase in
expressiveness can potentially lead to an arbitrarily large increase in the efficiency bound, depend-
ing on the prior.

Finally, in Section 4, we instantiate our model of expressiveness for a restricted class of mech-
anisms which we callchannel based. The restriction is that these mechanisms take expressions
of value through channels from agents to outcomes, and select the outcome with the largest
sum. (Channel-based mechanisms subsume most combinatorial and multi-attribute auctions, any
Vickrey-Clarke-Groves [63, 14, 23] mechanism, etc.) In this class, a natural measure of expres-
siveness is the number of channels allowed (this generalizes thek-wise dependence measure of
expressiveness traditionally used in the combinatorial auction literature). As a sanity check of our
general domain-independent measure of expressiveness, weshow that it appropriately relates to
the number of channels when applied to channel-based mechanisms. By studying these mecha-
nisms within our framework we are able to prove that increasing their expressiveness by a small
amount (i.e., adding a single channel) cannot decrease our bound on expected efficiency for the
mechanism, and under some preference distributions leads to an arbitrarily large increase in this
bound.

We conclude with a discussion of related work (Section 5) anda summary of our results (Sec-
tion 6).

1.1 Preliminaries

The basic setting we study is that of standard mechanism design. In the model there aren agents.
Each agenti has some private information (not known by the mechanism or any other agent)
denoted by a type,ti, (e.g., the value of the item to the agent in an auction; or, ina CA, a vector
of values, potentially one value for each package of items) from the space of the agent’s possible
types,Ti. Settings where each agent has a utility function,ui(ti, O), that depends only on its
own type and the outcome,O ∈ O, chosen by the mechanism (e.g., the allocation of items to
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agents in a CA) are calledprivate valuessettings. We also discuss more general settings where
ui = ui(t

n, O), i.e., an agent’s utility depends on the others’ private signals. These settings are
called interdependent valuessettings. In both types of settings, agents report expressions to the
mechanism, denotedθi, and based on them the mechanism chooses an outcome.

The mechanism itself consists of an outcome function,f(θn), which aggregates the expressions
of all the agents and chooses an outcome fromO. It also consists of a payment function,π(θn),
which determines how much each agent must pay. For analysis purposes, we assume that the
expression of each agent in a Nash equilibrium can be described by a function that takes as input its
type and the parameters of the mechanism,bi(ti, f, π). We do not restrict these equilibrium reports
to be deterministic: we allowbi to be a random variable where the agent specifies a probability
distribution over possible reports.

To summarize, we use the following notation.

• ti ∈ Ti is the true type of an agenti. θi is the expression that agenti reports to the mechanism,
the subscriptθ−i is used to denote the set of expressions by all the agents other thani, and
the superscriptθn is used to denote a collection ofn expressions.

• O ∈ O is an outcome from the set of all possible outcomes imposableby the mechanism,O.

• ui : Ti,O → R is agenti’s utility function. It takes as input the agent’s true type and an
outcome and returns the real-valued utility of the agent if that outcome were to be chosen.
(We also discuss results that apply interdependent values settings whereui = ui(t

n, O), i.e.,
an agent’s utility also depends on the others’ private signals.)

• f : Θn → O is the outcome function of the mechanism. It takes as input the expression of
each agent and returns an outcome from the set of all possibleoutcomes.

• π : Θn → R
n is the payment function of the mechanism. It takes as input the expression of

each agent and returns the payment to be made by each agent.

• bi : Ti, f, π → P (θi) is the expression of agenti in a particular equilibrium. It takes as input
agenti’s true type, the outcome function and payment function of the mechanism. It returns
a (potentially randomized) expression, in the case of a mixed equilibrium,bi is a random
variable with an underlying probability distribution. (Note that this function cannot depend
on the private types of the other agents, even if agenti’s utility does.)

Using this formalism we can describe the expected efficiency, E(f, π), of a mechanism (where
expectation is taken over the true types of the agents, and their randomized equilibrium expres-
sions) as

(1) E [E(f, π)] =

∫

tn∈T n

P (T n = tn)

∫

θn∈Θn

P (b(tn, f, π) = θn)
∑

i

ui(t
n, f(θn))

The following example shows how this formalism can be used tomodel a combinatorial auction.
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Example 1. In a fully expressive combinatorial auction withm items, each of the agents is a
bidder whose type represents his or her private valuation for each of the2m different combinations
of items. The outcome space includes all of thenm different ways the goods can be allocated
amongst the bidders. Agents are allowed to express their entire type to the mechanism and the
outcome function chooses the allocation that maximizes thesum of the bidders’ valuations.

The payment function can charge each agent its bid (aka. the first-price payment rule) or
the difference in utility of the other agents had the agent inquestion not participated (aka. the
Vickrey-Clarke-Groves (VCG)payment rule). Under the VCG payment rule, each agent has a
(weakly) dominant strategy to tell the truth, so one equilibrium distribution,b, over expressions is
a point mass on the agents’ true valuations.

2 Characterizing the expressiveness of mechanisms

The primary goal of this technical report is to better understand the tradeoffs associated with mak-
ing mechanisms more or less expressive. In order to accomplish this, we must first come up with
meaningful (and general) definitions of a mechanism’s expressiveness. First we will demonstrate
that two seemingly natural ways of characterizing the expressiveness of different mechanisms,
the dimensionality of their expressions and the granularity of their outcomes, do not capture the
fundamental difference between expressive and inexpressive mechanisms.

If we consider mechanisms that allow expressions from the set of multi-dimensional real num-
bers, such as CAs and combinatorial exchanges, one seemingly natural way of characterizing their
expressiveness is the dimensionality of the expressions they allow (this is one key difference be-
tween fully expressive CAs and auctions that only allow per-item-bids, for example). However,
not only does this limit our notion of expressiveness to mechanisms with real-valued expressions,
it also does not adequately differentiate between expressive and inexpressive mechanisms. This is
because the cardinality of< is the same as the cardinality of<n as proved by Cantor in 1890 [13].

Proposition 1. For any mechanism that allows multi-dimensional real-valued expressions, (i.e.,
whereΘ ⊆ R

d), there exists anequivalentmechanism that only allows the expression of a single
real value (i.e., whereΘ = R).1

This illustrates that the fundamental difference between expressive and inexpressive mecha-
nisms cannot be captured simply by the dimensionality of theexpressions they allow. It is not the
number of real-valued questions that a mechanism can ask that truly characterizes expressiveness,
it is how the answers are used!

Another natural way in which mechanisms can differ is in the granularity of their outcome
spaces. For example, auction mechanisms that are restricted to allocating certain items together
(e.g., blocks of neighboring wireless spectra) have coarser outcome spaces than those which can
allocate them to different agents. Some prior work addresses the impact of a mechanism’soutcome
spaceon its efficiency. For example, it has been shown that in private values settings VCG mecha-
nisms with finer-grained outcome spaces have more efficient dominant-strategy equilibria [29, 44].

1All proofs can be found in the appendix at the end of this technical report.
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Proposition 2. In any private values setting, the expected efficiency of theVCG mechanism with
outcome spaceO (when all agents play the weakly dominant truthful equilibrium) is greater than
or equal to the expected efficiency of the VCG mechanism with outcome spaceO′ ⊂ O.

In contrast, we are interested in studying the impact of a mechanism’s expressiveness on its
efficiency—by comparing more versus less expressive mechanisms with thesameoutcome space
(e.g., fully expressive CAs and multi-item auctions that allow bids on individual items only). In
our approach the outcome space can be unrestricted or restricted; thus our results can be used in
conjunction with those stating that larger outcome spaces beget greater efficiency. Furthermore, in
many practical applications there is no reason to restrict the outcome space,2 but there may be a
prohibitive burden on agents if they are asked to express a huge amount of information; thus it is
limited expressiveness that is the crucial issue.

2.1 A measure of expressiveness: the maximum impact dimension

In order to properly differentiate between expressive and inexpressive mechanisms with the same
outcome space, we propose to measure the extent to which an agent can impact the outcome that
is chosen. In this technical report we will limit ourselves to studying the mechanism’s outcome
function rather than also studying the payment function. Inour view, the outcome function is
primarily responsible for determining an agent’s expressiveness level. In settings where agents do
not care about each others’ payments, this is basically without loss of generality because if an agent
could choose between paying more or less for the same outcome, choosing to pay more would be
a dominated strategy. Thus that extra expressiveness has novalue. (In settings where agents care
about each others’ payments, expressiveness related to payments may be an interesting area for
future research.)

The fundamental way in which a mechanism allows an agent to express different preferences
is by allowing it to cause differentimpact vectorsof outcomes to be chosen. An impact vector
captures the impact of a particular expression by an agent under each of the joint types that the
other agents may have.

Definition 1 (impact vector). An impact vectorfor agent i is a function,gi : T−i → O. To
represent the function as a vector, we order the joint types in T−i from t

(1)
−i to t

(|T−i|)
−i ; thengi can be

represented as a vector of outcomes
[

o1, o2, . . . , o|T−i|

]

.

In some cases an agent,i, may wish to impact the mechanism differently under each ofi’s own
types. However,i can only actually express an impact vector if there exists some pure strategy
profileof the other agents such thati can cause the mechanism to choose the correct mapping from
the others’ types to outcomes.

Definition 2 (pure strategy). A pure strategyfor an agenti is a mapping,hi : Ti → Θi, that is, it
selects an expression for each ofi’s types. Apure strategy profileis a list of pure strategies, one

2This is the case as long as the mechanism designer’s goal is efficiency, but this is not always the case for revenue
maximization, for example.
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strategy per agent, i.e.,hI ≡
[

h1, h2, . . . , h|I|

]

. For shorthand, we often refer tohI as a mapping
from types of the agents inI to an expression for each agent,

hI(tI) =
[

h1(t1), h2(t2), . . . , h|I|(t|I|)
]

=
[

θ1, θ2, . . . , θ|I|
]

We say that agenti canexpressan impact vector against a pure strategy profile of the other
agents if there exists some expression byi that causes each of the outcomes in the impact vector to
occur when paired with the expressions made by the other agents under the pure strategy mapping.

Definition 3 (expressability). Agenti canexpressan impact vector,gi, if

∃h−i, ∃θi, ∀t−i, f(θi, h−i(t−i)) = gi(t−i)

Figure 1 illustrates how an agent can express certain impactvectors against a particular pure
strategy profile of the other agents. In this example, the agents other thani are playing the pure

strategy profile,
[

θ
(x)
−i , θ

(y)
−i

]

. Against this pure strategy profile, agenti can express the impact

vectors[A, B] and[C, D] by choosing between expressionsθ
(1)
i andθ

(2)
i .

θ
(x)
−i

C D

θ
(y)
−i

A B

θ
(2)
i

θ
(1)
i

θ
(x)
−i

θ
(y)
−i

i

−i −i

Figure 1: By choosing between two expressions,θ
(1)
i andθ

(2)
i , agenti can distinguish between

the the impact vectors[A, B] and[C, D] (enclosed in rectangles). The other agents have two joint

types and are playing the pure strategy profile
[

θ
(x)
−i , θ

(y)
−i

]

.

Agent i can only distinguish among a set of impact vectors if it can express each of them
against the same pure strategy profile of the other agents. Ifno pure strategy profile exists that
allows the agent to simultaneously express each of the impact vectors in the set, then we say that
the agent cannotdistinguishbetween those impact vectors. In other words, the agent should be
able to express each of the vectors by altering its own expression.

Definition 4 (distinguishability). Agenti candistinguishbetween a set of impact vectors,Gi, if

∃h−i, ∀gi ∈ Gi, ∃θi, ∀t−i, f(θi, h−i(t−i)) = gi(t−i)

When this is the case, we write
Di(Gi)
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Intuitively, more expressive mechanisms allow agents to distinguish among larger sets of im-
pact vectors. We will now define our primary measure of expressiveness based on this intuition.
Since mechanisms can allow different levels of expressiveness for different agents, we will define
our expressiveness measure in terms of one agent. The measure captures the number of different
impact vectors the agent can distinguish among. Since this depends on what the others express,
we measure the best case where the others happen to submit expressions that maximize the agent’s
control. We call this the agent’smaximum impact dimension.

Definition 5 (maximum impact dimension). Agenti has maximum impact dimensiondi if the
largest set of impact vectors,G∗

i , that i can distinguish among has sizedi. Formally,3

di = max
Gi

{

|Gi|
∣

∣

∣
Di(Gi)

}

We will show in Section 3 that every agent’s maximum impact dimension ties directly to an
upper bound on the expected efficiency of the mechanism’s most efficient Nash equilibrium. In
particular, the upper bound increasesstrictly monotonically as the maximum impact dimension for
any agenti increases from1 to d∗

i , whered∗
i is the smallest maximum impact dimension needed by

the agent in order for the bound to reach full efficiency.
The maximum impact dimension also has some drawbacks as a measure. First, it does not

capture the way in which an agent’s impact vectors are distributed. For example, it is possible
that a mechanism that allows a smaller maximum impact dimension can be designed to allow an
agent to distinguish among a more important (e.g., for efficiency) set of impact vectors than a
mechanism that allows the agent a larger maximum impact dimension. Second, it is not clear that
the maximum impact dimension can be measured, numerically or analytically, in settings where
even a single agent has an infinite type space.

2.2 Shattering-based expressiveness

We will now proceed to discussing another kind of measure of expressiveness which we will call
theshatterable outcome dimension. As we will discuss later, it has somewhat different uses than
does the maximum impact dimension. The two are closely related, however, as we will discuss.

The shatterable outcome dimension is based on a notion called shatteringwhich we adapt from
the field of computational learning theory (c.f., pp. 215-216 [41],[62, 10]). The shatterable out-
come dimension measure addresses both of the concerns with maximum impact dimension that
we raised at the end of the previous section. Unlike the maximum impact dimension, which pro-
vides no information as to how the distinguishable impact vectors are distributed, the shatterable
outcome dimension measures thenumber of different outcomesthat an agent can shatter (i.e., ex-
press every possible impact vector over). In addition, as wewill show at the end of this section, it
has the advantage that we can rule out the shatterability of aset of outcomes over any number of
expressions (of the other agents) by merely ruling out the existence of anypair of expressions (of
the other agents) that allow the agent to shatter the set of outcomes. This enables us to analyze the

3For any agenti, di ≤ |O||T−i| since this is the maximum number of impact vectors overO of length|T−i|.
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measure even when agents have infinite type spaces (and can report infinitely many different ex-
pressions), and may help one operationalize expressiveness for automated mechanism design [15]
in the future.

We will begin by defining what it means for an agent to be able toshatter a set of outcomes. In
learning theory, a class of binary classification functions4 is said to shatter a set ofk instances if
there is at least one function in the class that assigns each of the possible2k dichotomies of labels
to the set of instances. Intuitively, a class of functions that can shatter larger sets of instances is
more expressive. To illustrate this idea consider the following example taken from Mitchell pp.
215-216 [41].

Example 2. Consider the class of binary classification functions that assign a 1 to points only if
they fall in an interval on the real number line between two constantsa and b. Now we can ask
whether or not this class of functions has enough expressivepower to shatter the set of instances
S = {3.1, 5.7}? Yes, for example the four functions(1 < x < 2), (1 < x < 4), (4 < x < 7) and
(1 < x < 7) will assign all possible labels to the instances inS.

Our adaptation of shattering for mechanisms captures an agent’s ability to distinguish among
each of the|O′||T−i| impact vectors that include only outcomes from a given setO′.

Definition 6 (outcome shattering). A mechanism allows agenti to shatter a set of outcomes,O′ ⊆
O, if i can distinguish among each of the|O′||T−i| different possible impact vectors that involve
only outcomes fromO′. Formally, let

GO′

i =
{

gi

∣

∣gi =
[

o1, o2, . . . , o|T−i|

]

, oj ∈ O′
}

Then,i can shatter outcomesO′ if Di(G
O′

i ).

Example 3. If agenti can distinguish among the following set of impact vectors,Gi, then it can
shatter a set of outcomes,{A, B, C, D}, over a set of two different joint types of the other agents,
t
(1)
−i andt

(2)
−i (note that rows and columns have no particular significance,they are used for presen-

tation only):

Gi =















[A, A], [B, A], [C, A], [D, A],
[A, B], [B, B], [C, B], [D, B],
[A, C], [B, C], [C, C], [D, C],
[A, D], [B, D], [C, D], [D, D]















We now introduce a slightly weaker adaptation of shatteringfor mechanisms. It will be a
pairwise notion that involves an agent being able to cause every pair of outcomes to be chosen
under every pair of types of the other agents, but without being able to control theorder of the
outcomes (i.e., which outcome happens against which type)5. We call thissemi-shatteringan
outcome space.

4Binary classification functions are functions that assign each possible input a binary output label of either0 or 1.
5There are many ways to generalize the shattering notion to functions that can return more than two outcomes,

c.f. [8]. We have adapted the two most natural ones for our work on expressiveness in mechanism design.
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As we will show in Section 3, semi-shattering is more important when designing mechanisms
for private values settings (i.e., settings where an agent’s utility for each outcome depends only
on its own type, and not on the private types of the other agents). In such settings the mecha-
nism designer can build a fully efficient mechanism while only allowing agents to semi-shatter the
outcome space; it is not necessary to allow them to fully shatter any of the outcomes (Lemma 3).

Definition 7 (outcome semi-shattering). A mechanism allows agenti to semi-shatter a set of out-
comes,O′ ⊆ O, if i can distinguish among a set of impact vectors that assigns each of the

(

|O′|+1
2

)

unordered pairs of outcomes (with replacement) to each pairof the other agents’ types. Formally,
i can semi-shatterO′ if i can distinguish among a set of impact vectors,GO′

i , such that

∀
{{

t
(1)
−i , t

(2)
−i

}
∣

∣

∣
t
(1)
−i 6= t

(2)
−i

}

, ∀
{{

o1, o2

}
∣

∣

∣
o1, o2 ∈ O′

}

, ∃gi ∈ GO′

i ,

[

gi

(

t
(1)
−i

)

= o1 and gi

(

t
(2)
−i

)

= o2

]

or
[

gi

(

t
(1)
−i

)

= o2 and gi

(

t
(2)
−i

)

= o1

]

Example 4. If agenti can distinguish among the following set of impact vectors,Gi, then it can
semi-shatter a set of outcomes,{A, B, C, D}, over a set of two different joint types of the other
agents,t(1)−i andt

(2)
−i (note that the order of the pairs that are included does not matter, for example

AB could be replaced withBA):

Gi =















[A, A],
[A, B], [B, B],
[A, C], [B, C], [C, C],
[A, D], [B, D], [C, D], [D, D]















Since semi-shattering is a pairwise notion, it does not always include the entire bottom left half
of a matrix of impact vectors as in the previous example. For example, the following set of impact
vectors constitutes semi-shattering a set of 3 outcomes.

Example 5. If agenti can distinguish among the following set of impact vectors,Gi, then it can
semi-shatter the set of outcomes{A, B, C} over a set of three different joint types of the other
agents,t(1)−i , t

(2)
−i , andt

(3)
−i :

Gi =























































[A, A, A],
[A, A, B],
[A, A, C],

[A, B, B], [B, B, B],
[A, B, C], [B, B, C],

[A, C, C], [B, C, C], [C, C, C]























































Notice that every pair of outcomes appears in every pair of slots at least once. That is exactly the
requirement for semi-shattering.
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Now we can define a notion of expressiveness based on the size of the largest outcome space
that an agent can (semi-)shatter.6 It captures the number of outcomes that the mechanism can sup-
port full expressiveness over for that agent. We call this the agent’sshatterable outcome dimension.

Definition 8 ((semi-)shatterable outcome dimension). Agenti has (semi-)shatterable outcome di-
mensionki if the largest set of outcomes thati can (semi-)shatter,O∗

i ⊆ O, has sizeki.

The shatterable and semi-shatterable outcome dimension measures are closely related to the
maximum impact dimension. For example, whenever an agent’s(semi-)shatterable outcome di-
mension goes up, so does its maximum impact dimension.

Proposition 3. The most expressive mechanism for agenti (i.e., the mechanism allowing the agent
the largest maximum impact dimension) when it has (semi-)shatterable outcome dimensionki <

|O|, has a strictly greater maximum impact dimension than that of any mechanism where agenti

has (semi-)shatterable outcome dimensionki − 1.

While the two measures are related, the shatterable outcomedimension can be thought of as
more of a measure of the breadth of an agent’s expressiveness. The maximum impact dimension
necessary for an agent to shatterk outcomes increases geometrically in the number of types of the
other agents. This illustrates the relationship between expressiveness and uncertainty, since the
number of types that the other agents have can be thought of asa support-based measure of agent
i’s uncertainty. The more uncertainty an agent has about the other agents, the more expressiveness
the agent needs to shatter a given set of outcomes.

Proposition 4. Any mechanism that allows agenti to shatterki outcomes has maximum impact
dimension at least|T−i|

ki for i.

Because shattering (and semi-shattering) require agents to have a greater amount of control,
we have been able to analyze these measures more easily in domains where agents have infinitely
many types. In particular, we have derived the following necessary pairwise condition, which can
be checked analytically or experimentally to determine whether a mechanism allows an agent to
(semi-)shatter a set of outcomes. We actually use this insight throughout our study of channel-
based mechanisms in Section 4.

Proposition 5. Agenti can (semi-)shatter an outcome spaceO′ only if there exists at least one
pair of expressions by the other agents,θ

(1)
−i and θ

(2)
−i , which allowsi to (semi-)shatterO′. (In

other words, there exists a pair of fixed expressions by the other agents such thati can cause any
(un-ordered) pair of outcomes fromO′ to be chosen.)

2.3 Uses of the expressiveness measures

The expressiveness measures introduced above enable us to understand mechanisms from a new
perspective. The measures being so new, we undoubtedly failto see all of their possible uses at
this time. However, we already see two uses.

6Our measure deals with the size of this space, rather than thespecific outcomes it contains, because a designer
can always re-label the outcomes in the set to transform it into any other set of the same size.
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First, we can measure the expressiveness of an existing mechanism, and thereby bound how
well the mechanism can do in terms of the designer’s objective. For example, in the next section,
we show how our expressiveness measures directly determinean upper bound on the efficiency of
any mechanism.

Second, one may be able to use the expressiveness measures indesigning new mechanisms.
For example, if there are some constraints on what—and how much—information the agents can
submit to the mechanism (for example, in a CA, allowing bids on packages of no more thank
items), then our measures can be used to design the most expressive mechanism subject to those
constraints. This, in turn, hopefully maximizes the mechanism designer’s objective subject to the
constraints. For example, this approach can be used to yieldthe highest upper bound on efficiency.

We can also ask which of the expressiveness measures—maximum impact dimension, shatter-
able outcome dimension, and semi-shatterable outcome dimension—are most appropriate under
which settings and purposes. If the designer knows which impact vectors are (most) important,
then the maximum impact dimension is the measure of choice. If, instead, the designer knows
which outcomes are (most) important but not which impact vectors are (most) important, then the
other two measures can be used to make sure that the agents canfully express themselves over
those outcomes. As we will show in Section 3, in private values settings the appropriate measure
is semi-shatterable outcome dimension (for one, full semi-shatterability is enough to guarantee
that lack of expressiveness will not limit the mechanism’s efficiency at all), and in interdependent
values settings the appropriate measure is shatterable outcome dimension. Also, we will show that
less than full (semi-)shatterability necessarily leads toinefficiency in any setting under some prior
over agent preferences.

Another use of the semi-shatterable outcome dimension is toanalyze a broad subclass of mech-
anisms which we will call channel based. This will be discussed in Section 4.

3 Relationship between expressiveness and efficiency

Perhaps the most important property of our domain-independent measures of expressiveness is
how they relate to efficiency of the mechanism’s outcome. We will now present an upper bound on
the expected efficiency of the mechanism’smost efficientequilibrium, which remarkably depends
only on the extent to which agents can impact the mechanism’soutcome. Using this bound allows
us to sidestep two of the major roadblocks in analyzing the relationship between expressiveness
and efficiency: 1) it can be studied without having to solve for any of the mechanism’s equilibria
(attempts at doing this have proved extremely difficult for inexpressive mechanisms [50, 64, 61, 46,
66, 43]), and 2) since it bounds themost efficientequilibrium it can be used to study mechanisms
with multiple—or an infinite number of—equilibria, e.g., first price CAs [9].

We achieve these goals by making an optimistic assumption that leads to easier analysis and
guarantees that the result is an upper bound. Specifically, we assume that the agents play strategies
which, taken together, attempt to maximize social welfare.This allows us to avoid the difficulty
involved in calculating equilibrium strategies when agents need to speculate and counter-speculate
about each other. It also implies that we can restrict our analysis to pure strategies rather than
considering the infinite space of mixed strategies. This is because under our assumption, a pure
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strategy always exists that achieves at least as much expected efficiency as any mixture. (This
is analogous to the fact that there exists a pure strategy providing at least as much utility as any
mixture in general games.) For convenience, letW (tn, o) denote the total social welfare of outcome
o when agents have private types (or private signals)tn,

W (tn, o) =
∑

i

ui(t
n, o)

Proposition 6. The following quantity,E [E(f)]+, is an upper bound on the expected efficiency of
the most efficient equilibrium in any mechanism with outcomefunctionf ,

(2) E [E(f)]+ = max
B̂(·)

∫

tn∈T n

P (T n = tn) W
(

tn, f({B̂1(t1), B̂2(t2), . . . , B̂n(tn)})
)

The maximum is taken over̂B(·), a pure strategy profile that maps every joint type vector to an
expression for each agent.7

We will now demonstrate that the bound from Equation 2 is closely tied to our notions of
expressiveness. First we will prove that the boundstrictly increases for the best outcome function
that can be designed with maximum impact dimensiondi for agenti, asdi goes from1 tod∗

i (where
d∗

i is the maximum impact dimension needed by the agent for the bound to reach full efficiency).
Since we prove this for thebestoutcome function, it also holds true for an upper bound on any
mechanism that allows maximum impact dimensiondi for any agenti.

The way we approach this problem is to consider calculating the bound from the fixed perspec-
tive of a particular agenti (the value of the bound does not depend on which agent we choose
to consider). Based on our assumption, we know that the otheragents will choose whatever
pure strategies are best for maximizing the mechanism’s expected efficiency. Thus from agent
i’s perspective, the maximization problem comes down to finding the set of distinguishable impact
vectors that lead to the highest expected efficiency.

Observe that there is an impact vector,gti
i , for each of agenti’s types,ti, that represents the

vector of efficient outcomes whenti is matched with each of the joint types of the other agents. In
order to achieve full efficiency, agenti must be able to distinguish among all of these vectors. We
call a set that contains all of these vectors afully efficient set.

Definition 9 (fully efficient set). G∗
i is a fully efficient setif

∀ti, ∃gi ∈ G∗
i , ∀{t−i | P (ti, t−i) > 0}, W ({ti, t−i}, gi(t−i)) = max

o∈O
W ({ti, t−i}, o)

The first two results regarding our efficiency bound address the conditions under which the
mechanism has enough expressiveness for it to reach full expected efficiency. (Our bound never
exceeds full efficiency.)

7Recall that an agent’s strategy can only depend on its own private type, even if its utility depends on the private
signals of others.
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Proposition 7. The upper bound,E[E(f)]+, for any outcome functionf reaches full expected
efficiency ifff allows at least one agent to distinguish among each of the impact vectors in at least
one of its fully efficient sets.

Our next result demonstrates that allowing any one agent enough expressiveness to make the
bound achieve full efficiency, is functionally equivalent to doing so for all agents.

Proposition 8. If any agenti can distinguish among each of the impact vectors in at least one of its
fully efficient sets, then every other agentj can also distinguish among each of the impact vectors
in at least one of its fully efficient sets.

In settings where upon learning its own type an agent knows for sure what the types of the other
agents are, the agent only needs an impact dimension of|O| to bring the bound to full efficiency.
(Note that this is slightly more general than assuming the agent has perfect information about the
types of the other agentsa priori, since it need only have this information once its own type is
revealed.)

Proposition 9. If agenti has full information about the types of the other agents based on its own
private type, it has a fully efficient set of size≤ |O|. Formally, letG∗

i be agenti’s smallest fully
efficient set,

(

∀ti, ∃t−i

∣

∣ P (ti, t−i) = 1
)

⇒ |G∗
i | ≤ |O|

Corollary 1. In any setting where an agenti has full information about the types of the other
agents based on its own type, there exists an outcome function for which the upper bound reaches
full efficiency while limiting agenti to maximum impact dimensiondi ≤ |O|.

3.1 The efficiency bound increases strictly with expressiveness

We will now present the main result relating our notion of expressiveness, maximum impact di-
mension, to our upper bound on expected efficiency. It demonstrates that a mechanism designer can
strictly increase the upper bound on expected efficiency by allowing any agent more expressive-
ness (until the bound reaches full efficiency). The result applies to the mechanism that maximizes
the bound subject to the constraint that the agent’s expressiveness is less than or equal to that level.
The bound attained by such a mechanism also serves as an upperbound on the expected efficiency
that is attainable by any outcome function with that expressiveness level.

Theorem 1. The upper bound on expected efficiency,E[E(f)]+, of the best outcome function that
limits agenti’s expressiveness to a maximum impact dimensiondi increasesstrictly monotonically
asdi goes from1 to d∗

i , whered∗
i is the size of agenti’s smallest fully efficient set.

From this result we can also derive the following corollary related to our other two measures
of expressiveness.

Corollary 2. The upper bound on expected efficiency,E[E(f)]+, of the best outcome function
that limits agenti’s expressiveness to a (semi-)shatterable outcome dimensionki increasesstrictly
monotonically aski goes from1 to k∗

i , wherek∗
i is the (semi-)shatterable outcome dimension

necessary for the bound to reach full efficiency.
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3.2 Inadequate expressiveness can lead to arbitrarily low efficiency in any
setting

The next three lemmas provide the foundation for our second main theorem regarding the efficiency
bound. They demonstrate that inanysetting there are distributions over agent preferences under
which any increase in allowed expressiveness leads to an arbitrary improvement in the upper bound
on expected efficiency. We prove that the arbitrary increaseis possible by constructing an example
under which it is inevitable. We keep these constructions asgeneral as possible: our constructions
allow for any number of outcomes, any number of agents, and any number of types.

Lemma 1. Consider a setting where an agent’s utility for any outcome may depend on the private
signals of the other agents. For any agenti, in any such setting (with any number of outcomes,
any number of other agents, and any number of joint types for those agents) there exist priors over
preferences under which the upper bound on expected efficiency, E[E(f)]+, of the best outcome
function that limits agenti’s expressiveness to a maximum impact dimension ofdi, such that2 ≤
di ≤ |O||T−i|, is arbitrarily larger than that of any outcome function that limits i’s expressiveness
to di − 1.

The next lemma deals with the arbitrary improvement that canbe achieved by allowing an agent
to shatter a single additional outcome. Here we distinguishbetween an increase in shatterable
outcome dimension for interdependent values settings (where an agent’s utility for any outcome
can depend on its own type and the signals of the other agents), and semi-shatterable outcome
dimension for private values settings. As we will see, in private values settings there is no need to
allow full shattering in order to achieve efficiency.

Lemma 2. For any agenti, in any setting (with any number of outcomes, any number of other
agents, and any number of joint types for those agents) thereexist priors over preferences under
which the upper bound on expected efficiency,E[E(f)]+, of the best outcome function that limits
agenti’s expressiveness to

• shatterableoutcome dimensionki for interdependent values settings, or

• semi-shatterableoutcome dimensionki for private values settings

such that2 ≤ ki ≤ |O|, is arbitrarily larger than that of any outcome function that limits i’s
expressiveness toki − 1.

Private values settings place restrictions on the utility functions that agent’s can have and there-
fore on the outcomes that maximize efficiency under different combinations of types. We will now
prove that in such settings it is never necessary for an agentto have the ability to fully shatter any
set of outcomes in order to achieve full efficiency.

Lemma 3. In a private values setting, for any agenti, any pair of outcomes,o1 ando2, and any
pair of types for the other agents,t

(1)
−i andt

(2)
−i , if there issome type of agenti, ti, where it is strictly

more efficient foro1 to happen under typet(1)−i ando2 to happen under typet(2)−i than the other way

around (i.e.,o1 for t
(2)
−i ando2 for t

(1)
−i ) then it cannot be more efficient for the outcomes to happen

in the other order forany type of agenti.
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We conclude this section with a result that integrates the three lemmas above. The theorem adds
the fact that an arbitrary loss in efficiency canonly happen if the shatterable (for interdependent
values) or semi-shatterable (for private values) outcome dimension is less than the number of
outcomes in the mechanism. Thus these dimensions can be usedto provide a guarantee that a
mechanism has enough expressiveness to avoid arbitrary inefficiency in any setting under any
prior over preferences.

Theorem 2. For any agenti, in any setting (with any number of outcomes, any number of other
agents, and any number of joint types for those agents) thereexist priors over preferences for which
the upper bound,E[E(f)]+, of the best outcome function is arbitrarily lower than fullexpected
efficiency iff

• agenti’s shatterableoutcome dimension,ki, in an interdependent values setting, or

• agenti’s semi-shatterableoutcome dimension,ki, in a private values setting

is less than the number of outcomes,ki < |O|.

4 An instantiation to illustrate expressiveness: channel-based
mechanisms

We will now instantiate our measure of expressiveness for animportant class of mechanisms,
which we callchannel based. Channel-based mechanisms are defined by the following (a small
example is also presented in Figure 2),

Definition 10 (channel-based mechanism). Each outcome is assigned a set of channels potentially
coming from a number of different agents (e.g., outcomeA may be assigned channelsx1 and y1

from Agent1 and x2 from Agent2). Each agent, simultaneously with the other agents, reports
real values on each of its channels to the mechanism. The mechanism chooses the outcome whose
channels have the largest sum8. Formally, a channel-based mechanism has the following proper-
ties:

• The expression space of agenti is a vector of real numbers with dimensionci, (i.e., Θi ≡
R

ki). Each dimension is called a channel.

• For each agenti there is a set of channels associated with each outcomeo, SO
i , such that the

mechanism’s outcome function chooses the outcome with associated channels that have the
greatest reported sum:

f(θ) = arg max
O∈O

∑

i

∑

j∈SO
i

θij

8We assume that ties are broken consistently according to some strict ordering on the outcomes. This prevents an
agent from using the mechanism’s tie breaking behavior as artificial expressiveness.

15



x1
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B C D

Fully expressive combinatorial auction. Auction that onlyallows bids on items.

Figure 2:Channel-based representations of two auctions. The items auctioned are an apple (a) and
an orange (o). The channels for each agenti are denotedxi, yi, andzi. The possible allocations
are A, B, C, and D. In each one, the items that Agent 1 gets are inthe first braces, and the items
Agent 2 gets are in the second braces.

Many different mechanisms for trading goods, information,and services, such as CAs, ex-
changes, and multi-attribute settings can be cast as channel-based mechanisms. (This class is even
more general than CAs because it can model settings where agents care about how the items that
they do not win get allocated across the other agents.)

A natural measure of expressiveness in channel-based mechanisms is the number of channels
allowed. In CAs, it is able to capture the difference betweenfully expressive CAs, multi-item
auctions that allow bids on individual items only (Fig. 2), and an entire spectrum in between. In
fact, it generalizes a classic measure of expressiveness inCAs calledk-wise dependence [17].

As a sanity check of our domain-independent measures of expressiveness, we will now demon-
strate that they appropriately relate to the number of channels allowed in channel-based domains.
Our first result deals with the number of channels an agent needs to shatter an outcome space when
it has full information about the other agents.

Proposition 10. If agenti has full information about the types of the other agents (based on its own
private type), in a channel-based mechanism it needs onlydlog2(|O|)e channels to semi-shatter the
entire outcome space. Furthermore, fewer channels do not suffice.

The intuition behind this result is that when an agent knows exactly what the other agents
want (and thus what they are going to say) then the agent does not have to express what it would
want to happen if they were to say something different. The most important takeaway of this
is that perfect information about the other agents’ types basically does away with the need for
expressiveness. This implies that in prior research that shows that in certain settings even quite
inexpressive mechanisms yield full efficiency (e.g., [1]),the assumption that the agents have no
private information is essential.

If an agent has fewer thandlog2(|O|)e channels, it will be unable to express a preference for at
least one outcome no matter how much the agent likes that outcome. Thus there exist distributions
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over agent preferences that lead to an arbitrary loss of efficiency (even if the agent has perfect
information about the others).

On the other end of the spectrum, the VCG mechanism, which is fully efficient even in private
values settings, can be emulated by a channel-based mechanism with|O| − 1 channels per agent.

Proposition 11. A channel-based mechanism can emulate the VCG mechanism iffit provides each
agent with at least|O| − 1 channels.

The next result shows that in a channel-based mechanism an agent cannot fully shatter any set
of two or more outcomes if the agent has even slightly less than perfect information (i.e., when
at least one other agent has more than one type). However, these mechanisms are typically used
in private values settings where (as demonstrated by Lemma 3) semi-shattering is more important
than full shattering for efficiency.

Proposition 12. No channel-based mechanism allows any agent toshatterany set of two or more
outcomes when the other agents have two or more types.

Since channel-based mechanisms do not allow agents to shatter outcomes, our results from
Section 3 imply that in some interdependent values settingsany channel-based mechanism, even
the VCG mechanism, will be arbitrarily inefficient. That such mechanisms cannot always get full
efficiency in interdependent values settings is already known [33].

Corollary 3. In any interdependent values setting there exists preference distributions for which
any channel-based mechanism (even one that emulates the VCGmechanism) results in arbitrarily
less than full expected efficiency.

Our next result deals with a configuration of channels that prevents an agent from being able to
semi-shattera set of outcomes. When this configuration is present in a mechanism it can lead to
arbitrary inefficiency even in private values settings.

Theorem 3. Consider a set of outcomes,{A, B, C, D}, connected to different sets of channels
for agenti, {SA

i , SB
i , SC

i , SD
i }, respectively. Agenti cannot semi-shatterboth pairs of outcomes

{A, B} and{C, D} if the channels that differ betweenSA
i andSC

i are the same as those that differ
betweenSB

i andSD
i . Formally, agenti cannot semi-shatter either pair of outcomes if,

(

SA
i \ SC

i = SB
i \ SD

i

)

and
(

SC
i \ SA

i = SD
i \ SB

i

)

The channel configuration discussed in Theorem 3 generalizes one that appears in the channel-
based representation of a multi-item auction where bids areallowed on items only. In fact, it is
present in any multi-item auction whenever it is assumed that an agent’s bid for a bundle is the sum
of its bid on two other non-overlapping bundles (e.g., sub-bundles that compose the full bundle).
This is true even if the bids on the sub-bundles are complex themselves, (i.e., assumed to be the
sum of bids on other bundles). This fact, along with our results from Section 3, imply that such
auctions can be arbitrarily inefficient even in private values settings.
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Proposition 13. Any multi-item auction which can be represented as a channel-based mechanism
that treats agenti’s bid on a bundleQ to be the sum of its bids on some two other non-overlapping
bundles,q1 and q2, (additive valuations are a special case of this), does not allow the agent to
semi-shatter the set of outcomes under which it winsQ, q1, q2 or nothing.

Corollary 4. Any multi-item auction which can be represented as a channel-based mechanism
that treats agenti’s bid on a bundleQ to be the sum of its bids on some two other non-overlapping
bundles,q1 andq2, (additive valuations are a special case of this), has some prior over preferences
even in private values settings such that the mechanism is arbitrarily inefficient.

Finally, we will show that as the number of allowed channels for an agent increases, the agent’s
expressiveness in the most expressive channel-based mechanismstrictly increases as well (until full
expressiveness is reached). Each time a channel is added, the agent can semi-shatter over at least
one more outcome. From Lemma 2 we know that this can lead to an arbitrary increase in our upper
bound on expected efficiency, even in private values settings.

Proposition 14. For any agenti, its semi-shatterable outcome dimension,ki, and maximum impact
dimension,di, in the most expressive channel-based mechanism strictly increase (untilki = |O|)
as the number of channels assigned to the agent,ci, increases.

We conclude with the following corollary to this result (andthe results in Section 3) regarding
the upper bound on the expected efficiency of the most efficient Nash equilibria in channel-based
mechanisms.

Corollary 5. The upper bound on expected efficiency,E[E(f)]+, of the best channel-based mech-
anism that allowsci channels for agenti is greater than or equal to (and can be arbitrarily larger
than) that of any mechanism that allows that agentc′i < ci channels.

5 Related work

There has been relatively little work on expressiveness specifically. We discussed some related
papers in the body of this technical report. Here we will briefly summarize other work on the
most closely related topics. This work started in economicsand has more recently been studied in
computer science.

5.1 Informational complexity

At a high level, related questions go back at least to the 1940s when Hayek argued that in dis-
tributed resource allocation, it is not practical to communicate all the distributed information to a
central decision maker [27]. In the 1970s, Mount and Reiter [42] and Hurwicz [30, 31] formal-
ized this in their theory ofinformational complexity, which asked the question: at a minimum,
how much information must a mechanism’s message space be able to carry in order to accomplish
some design goal? That work focused primarily on the number of real-valued dimensions that were
needed. Our Proposition 1 shows that, trivially, the numberis always one. To get around Cantor’s
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theorem that begets Proposition 1, the economists made sometechnical assumptions (such as lo-
cal threadedness [42] or Lipschitz continuity [32]) that precluded a general mapping between<n

and<m. Under these assumptions Proposition 1 does not apply, and the economists proceeded to
compare the informational requirements in different economic settings by comparing the number
of dimensions in each agent’s expression. In contrast, our work does not rely on such assumptions.
In fact, one of our key points is that the dimensionality of the message space is not the essence of
expressiveness. Rather, the essence is how the mechanism iswired to use the different inputs.

5.2 Work based on finding or characterizing equilibria

Another thread of related work has tried to characterize theequilibrium behavior in inexpressive
mechanisms in specific settings. The challenge here is that determining equilibrium behavior is
usually prohibitively difficult even for the simplest non-trivial mechanisms. Furthermore, when a
particular equilibrium is found to have certain properties, one often cannot rule out the possibility
of additional equilibria that do not share those properties.

For example, Rosenthal and Wang [50] examined an auction setting where a series of globally
interested (with nonlinear preferences over different items) and locally interested bidders (with
linear preferences for different items) participate in a set of simultaneous first-price sealed-bid
auctions where each auction is about a single item. Taken together, the auctions constitute an
inexpressive mechanism. The authors were able to constructan equilibrium for each of two regions
of the space of parameter values for the bidder type distributions in their model. They found that
these equilibria were inefficient for most of their model parameter space. However, they were not
able to rule out the possibility that other equilibria exist(although they have not found any) and
they were unable to construct equilibria for some parametervalues of their model.

Another example is work by Szentes and Rosenthal [61]. They characterized simple efficient
equilibria in large inexpressive mechanisms when bidders are identical and each wants to win a
specified fraction (more than a half) of the items. The simplicity of this domain illustrates the
difficulty in finding equilibria in inexpressive mechanisms. Problems must typically be severely
simplified in order to gain traction with analytical or computational techniques.

As further illustration of the difficulty of equilibrium finding, Wilenius and Andersson [64]
described a heuristic method for computing approximate equilibrium strategies in first-price sealed
bid CAs when bidders either bid on all combinations of items,or on one specific combination and
the remaining items individually. They demonstrated the difficulty in finding equilibrium strategies
for CAs when they are not dominant-strategy implementable.

All of the work discussed here suggests that there is little hope for a clear general characteriza-
tion of equilibrium strategies in inexpressive mechanisms.

5.3 Expressiveness issues in dominant-strategy mechanisms

There has been some research related to expressiveness issues in dominant-strategy mechanisms.
For example, Blumrosen and Feldman [11] studied the problemof designing a dominant-

strategy mechanism with a limited number of discrete actions. They showed a tradeoff between
the efficiency of the best possible dominant-strategy mechanism and the number of discrete actions
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available to the designer. Similarly, Ronen [49] describedmethods for achieving near efficiency
with limited bidding languages in dominant strategies.

Holzmanet al.[29] studied CAs where bidders can only bid on restricted sets of bundles. (This
is the restricted outcome setting mentioned in Section 2.) Their work shows that truthful bidding is
a dominant strategy if and only if the restricted bundle set that agents can bid on forms a quasi-field
(and VCG payments are used). They defined a worst-case measure of the economic inefficiency
that may result from restricting bids to smaller and smallerquasi-fields. Parkes [48] and Nisan and
Segal [45] showed that in order to implement VCG payments, a mechanism must elicit enough
information to verify the corresponding universal competitive equilibrium prices.

The restriction to studying dominant-strategy mechanismsimposes severe limitations on which
questions about expressiveness arise. In particular, uncertainty about others’ private information
becomes an issue only when considering mechanisms that do not have dominant strategies. As we
showed, the larger the possible type space of others, the more expressiveness an agent may need
for efficiency. Our results apply to settings where agents donot have dominant strategies (and to
settings where they do). Also, our results are not specific toany application, such as a CA.

5.4 Applications of expressiveness in mechanisms

One of the first applications to benefit from expressiveness was strategic sourcing. Sandholm [55,
56] described how building more expressive mechanisms—that generalize both CAs and multi-
attribute auctions—for supply chains has saved billions ofdollars that would have been lost due to
inefficiency. Success with expressive auctions in sourcinghas also been reported by others [28, 39,
19]. Schoenherr and Marbert [59] discussed the difficulty faced by business-to-business auction
participants in choosing bundles to put up for auction aheadof time. This is a problem that exists
because these mechanisms are typically inexpressive: theyallow bids on predetermined lots only.
If a CA were used instead, the sellers would not have to choosebundlesa priori: the mechanism
would determine the bundles based on the (expressive) bids.

Some work on expressiveness has begun to appear in the context of search keyword auctions
(aka sponsored search). Even-Dar, Kearns and Wortman examined an extension of sponsored
search auctions, whereby bidders can purchase keywords associated with specific contexts [21].
Under certain probabilistic assumptions they are able to prove that the system becomes more effi-
cient when this extra level of expressiveness is allowed. Ina working paper, Milgrom explores the
equilibria of sponsored search auctions with limited expressive power (specifically, where bidders
submit a single bid to indicate how much they will pay for an adspot regardless of where it appears
on the page) [40]. He finds that bylimiting expressiveness the auction excludes some bad equilib-
ria. This raises an important counterpoint to our work. We hope that our framework will help us
better understand the circumstances under which expressiveness actually helps and when it does
not. In another recent paper on sponsored search auctions, Abrams et. al. studied the impact of
inexpressive bids on efficiency [1]. They found that in a specific auction mechanism, inexpressive-
ness can lead to an arbitrary amount of inefficiency when all bidders are assumed to play the same
pure strategy (regardless of what the strategy is). They proceed to show that the same inexpres-
sive mechanism has an efficientfull informationNash equilibrium even when bidder valuations are
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more complex. They consider this surprising, but it is consistent with our general result that very
little expressiveness is needed for efficiency when agents have no uncertainty (Proposition 9).

Another application area that has received recent attention with regard to expressiveness is
wireless spectrum trading. For example, Gandhiet al. [22] described a prototype wireless spec-
trum market mechanism. They stressed the importance of allowing spectrum bidders enough ex-
pressiveness to communicate their needs, and demonstrated—using synthetic demand distributions
and variousad hocbidder behavior models—that their mechanism has good efficiency properties.

The concept of expressiveness has been studied in single-agent applications as well. For exam-
ple, results from recent studies of user security and privacy policies showed that, in many cases,
these policies can be extremely rich and that it is unrealistic to expect users to fully specify them
(e.g., [53, 18]). Tradeoffs between expressiveness and simple ease of use are therefore important
as well.

5.5 A specific related sub-literature: bundle pricing

There is an extensive literature on bundle pricing. Allowing a seller to price bundles, rather than
just individual items, can be seen as increasing the seller’s expressiveness. This is also related
to our work on expressiveness. In this subsection we will briefly review some of the bundling
literature.

The first mention of being able to increase revenue via bundling is attributed to Stigler in his
1963 discussion of anti-trust Supreme Court rulings over price discrimination via bundling [60].
Bundle pricing in economics has often focused on analyzing two-product settings to provide insight
into the way monopolies can improve profits by offering goodsin bundles [2, 20, 24, 38, 58]. (One
exception is that Armstrong examinedn-product settings, but placed severe restrictions on buyers’
utility functions [5].) This work provided sufficient conditions on when bundling is profitable
and optimal pricing strategies under various assumptions.However, it did not provide generalized
algorithms for determining how to price the bundles. Nor didit typically answer the question of
how the increase in expressiveness affects the buyers utility or the efficiency of the market as a
whole. There have also been some human subject experiments that explored how people actually
perceive savings in bundles [65].

Some work on bundle pricing has been done from an operations research perspective as well.
For example, Hason and Martin [26] presented a mixed integerprogram for optimizing bundle
prices for a handful of market segments. They assumed that each of the segments can be described
by a single value for each bundle, and that the value of every bundle for every market segment
is known in advance. They also did not describe how their bundle pricing strategy compared to
using item prices. Rusmevichientong et. al. investigated the problem of pricing different car
configurations based on data collected by GM’s Auto Choice Advisor web site [51].

There has also been work on pricing bundles of information goods, where it is usually assumed
that customers care only about how many goods are bundled together (i.e., their valuation for a
bundle depends only on its size, not its contents). For example, Kephartet al. [35] and Brooks
and Durfee [12] described online approaches to pricing in this domain. Additionally, Bakos and
Brynjolfsson provided an analytical treatment of this problem with some valuable insights about
when bundling is profitable [6].
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Finally, computer science work on pricing has focused primarily on pricing items rather than
bundles, and for “single-minded” customers that desire only one bundle. For example, Balcan and
Blum [7] provided online and approximate algorithms for this setting, and Guruswami et. al. [25]
showed that finding the optimal pricing isAPX -Hard. Some work from this community, such
as the work by Aggarwalet al. [3], considered a more restrictive class of pricing problems called
MAX -BUYING, where customers buy the most expensive goods they can afford. Such restricted
classes have been shown to be solvable in polynomial time.

Related to bundle pricing, there has recently also been significant work on designing high-
revenue CAs (e.g., [47, 16, 36, 37, 34]). Designing for revenue turns out to be much more difficult
than designing for efficiency.

6 Conclusions and future research

A recent trend in (electronic) commerce is a demand for higher levels of expressiveness in the
mechanisms that mediate interactions such as the allocation of resources, matching of peers, or
elicitation of opinions. In this paper we provided the first general model of expressiveness for
mechanisms. Our model included a new expressiveness measure, maximum impact dimension,
that captures the number of different ways that an agent can impact the outcome of a mechanism.
We also introduced two related measures of expressiveness based on the concept of shattering from
computational learning theory.

We then described perhaps the most important property of ourdomain-independent expressive-
ness notions: how they relate to the efficiency of the mechanism’s outcome. We derived an upper
bound on the expected efficiency of a mechanism’s most efficient Nash equilibrium which depends
only on the extent to which agents can impact the mechanism’soutcome. This bound enables us to
study the relationship between expressiveness and efficieny by avoiding two major classic hurdles:
1) our bound can be analyzed without having to solve for an equilibrium of the mechanism, and 2)
our bound applies to the most efficient equilibrium so it can be used to analyze mechanisms with
multiple (or an infinite number of) equilibria. We proved that this bound increasesstrictly mono-
tonically for the best mechanism that can be designed as the limit on any agent’s expressiveness
increases (until the bound reaches full efficiency). In addition, we proved that a small increase in
expressiveness can potentially lead to arbitrarily large increases in the efficiency bound, depending
on the prior over agents’ preferences.

Finally, we instantiated our model of expressiveness for a class of mechanisms which we call
channel based. This class involves mechanisms that take expressions of value through channels
from agents to outcomes, and select the outcome with the largest sum. Many mechanisms for
trading goods, information, and services—such as combinatorial auctions, exchanges, and multi-
attribute auctions—can be cast as channel-based mechanisms. As a sanity check, we showed
that our domain-independent measures of expressiveness appropriately relate to a natural notion
of expressiveness in channel-based mechanisms, the numberof channels allowed (which already
generalizes a traditional measure of expressiveness in CAscalledk-wise dependence [17]). Using
our general measures of expressiveness and our results on how they relate to efficiency, we were
able to prove that in channel-based mechanisms 1) increasing expressiveness by adding a single

22



channel cannot decrease our upper bound on expected efficiency for the mechanism, and 2) under
some preference distributions this leads to an arbitrarilylarge increase in the bound.

The framework we developed enables one to understand mechanisms from a new perspective.
This opens the door for a possible new avenue of research within mechanism design. On the
practical side, we already see two uses of our expressiveness measures. They can be used to bound
the efficiency—and therefore provide a lower bound on inefficiency—of existing mechanisms.
They can also potentially be used in the design of new mechanisms, whether the design is done by
hand or by computer.
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7 Appendix

Proof of Proposition 1.Given a mechanism with reportable type space inRd we can construct an
equivalent mechanism with reportable type spaceR by constructing an injective mapping fromRd

to<. Then, when an agent makes a report in<, we use the reverse mapping and act as if the agent
had expressed the corresponding point in<n in the original mechanism.

One way to construct the injective mapping is as follows. Letσ
j
i be theith bit (or digit) of

the real number that the agent expresses for dimensionj ∈ {1, 2, . . . , n}. Let pk be thekth prime
number. Our desired number in< is

∏

i

∏

j

(p(i−1)n+j)
σ

j
i

Proof of Proposition 2.This follows trivially from the fact that both mechanisms have welfare
maximizing truthful dominant-strategy equilibria and forany particular group of participants the
welfare maximizing alternative in the larger set has efficiency equal to or greater than the welfare
maximizing alternative in the smaller set.

Let M = 〈f, π〉 be the mechanism with the larger outcome space andM ′ = 〈f ′, π′〉 be the
one with the smaller outcome space. Equation 1 describes theexpected efficiency of a mechanism,
thus we wish to show that for population with types drawn fromany distributionP (T n) with any
utility functions the following inequality holds,

E(f, π) =

∫

tn∈T n

P (T n = tn)

∫

θn∈Θn

P (b(tn, f, π) = θn)
∑

i

ui(ti, f(θn)) ≥

E (f ′, π′) =

∫

tn∈T n

P (T n = tn)

∫

θn∈Θn

P (b(tn, f ′, π′) = θn)
∑

i

ui(ti, f
′(θn))

We know that the equilibria of the two mechanisms are truthful since they are both VCGs therefore
the above inequality simplifies to,

∫

tn∈T n

P (T n = tn)
∑

i

ui(ti, f(tn)) ≥

∫

tn∈T n

P (T n = tn)
∑

i

ui(ti, f
′(tn))

Since both mechanisms are choosing welfare maximizing outcomes andO′ ⊆ O for any particular
type vector,tn, for the agents we have,
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∀tn
∑

i

ui(ti, f(tn)) ≥
∑

i

ui(ti, f
′(tn))

Proof of Proposition 3.Every time we allow agenti to (semi-)shatter a new outcome the most
expressive mechanism allows the agent to distinguish amongall of the impact vectors it had pre-
viously distinguished between plus one additional impact vector (the impact vector that was pre-
venting it from (semi-)shattering that outcome).

Proof of Proposition 4.This is fairly straight forward. The number of impact vectors over|T−i|
involving k different outcomes is|T−i|

k. Shattering requires that an agent be able to distinguish
among each of these vectors, thus its maximum impact dimension must be greater than or equal to
this amount.

Proof of Proposition 5.If there exists a pair of types,t
(1)
−i andt

(2)
−i , that agenti cannot (semi-)shatter

over, then then there is at least one (un-ordered in the case of semi-shattering) pair of outcomes,A

andB, that agenti cannot force the mechanism to choose when the other agents have typest(1)−i and

t
(2)
−i . This means that agenti cannot express any impact vector whereA andB (in either order for

semi-shattering) happen againstt
(1)
−i andt

(2)
−i (i.e., wheregi(t

(1)
−i ) = A andgi(t

(2)
−i ) = B). Without

being able to express these preference vectors agenti cannot fully (semi-)shatter outcome space
O.

Proof of Proposition 6.The following reasoning demonstrates that Equation 2 is a valid upper
bound on the maximum attainable expected efficiency by any mechanism using the outcome func-
tion f in equilibrium:

Etn [E(f, π)]+ =

∫

tn∈T n

P (T n = tn)

∫

θn∈Θn

P (b(tn, f, π) = θn)W (tn, f(θn))

≤ max
B(·)

∫

tn∈T n

P (T n = tn)

∫

θn∈Θn

P (B(tn) = θn)W (tn, f(θn))

= max
B̂(·)

∫

tn∈T n

P (T n = tn)W (tn, f(B̂(tn)))

= max
B̂(·)

∫

tn∈T n

P (T n = tn)W (tn, f({B̂1(t1), . . . , B̂n(tn)}))

The step between the second and third equations follows fromthe fact that one of the maxima
of the function in the second equation must have each entry ofB(·) (a function that maps every
type vector to a mixed strategy profile) as a point mass. This is because there is at least one single
pure strategy combination for each type vector that leads tothe outcome with highest welfare, so
there is no reason to consider mixed strategies in this bound. The last step is valid because the
strategy of each agent can depend only on its own private type.
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Proof of Proposition 7.First we will prove the forward implication, namely that theupper bound
reaches full efficiency if any agenti can distinguish among each of the impact vectors in at least
one of its fully efficient sets.

The fact that some agenti can distinguish among each of the impact vectors in some fully
efficient set,G∗

i , implies that there is a pure strategy for agenti, hi, which is a mapping from its
types to expressions, and a pure strategy profile for the agents other thani, h−i, mapping from each
of their types to expressions that causes the most efficient outcome to be chosen by the mechanism
for every possible combination of types. If we setB̂(tn) = {hi(ti), h−i(t−i)} thenE[E(f)]+ will
reach full efficiency.

Now we will prove the backwards implication, namely that if any agenti cannot distinguish
among each of the impact vectors in at least one of its fully efficient sets then the upper bound
cannot be fully efficient.

Let agenti be an agent that cannot distinguish among each of its impact vectors in any of its
fully efficient sets. Consider any set of impact vectors thatagenti can distinguish among,Gi.
Based on the predicate of the proposition, at least one of theimpact vectors,g∗

i corresponding to
fully efficient outcomes when agenti has typet∗i , in any fully efficient set cannot be expressed by
agenti.

This means that no matter what strategies the agents other than i choose, agenti will not be
able to express someg∗

i and at least one of the outcomes chosen by the mechanism when agenti
has typet∗i will be less than fully efficient.

Proof of Proposition 8.This proof is relatively straightforward. We know that the predicate im-
plies there is some pure strategy for agenti, hi that achieves full efficiency when played against
some pure strategy profile,h−i for the other agents. Lethj be agentj’s pure strategy in the profile
h−i. Construct a new pure strategy profile,h−j , by starting withh−i and removing agentj’s pure
strategy. Now add agenti’s pure strategyhi to complete the profile. Since we have not changed the
strategies played in any circumstanceshj will achieve full efficiency againsth−j , thus completing
our proof.

Proof of Proposition 9.In these settings, as soon as agenti knows its own type it knows for certain
the single most efficient outcome. It never needs to distinguish between more than one-dimensional
preference vectors and there are only|O| such vectors.

Proof of Corollary 1. This follows directly from Proposition 9 and Proposition 7

Proof of Theorem 1.The set of mechanisms allowing agenti maximum preference dimensiondi

is a super-set of the mechanisms allowing agenti maximum preference dimensiond′
i < di. Thus

the fact that the bound for the best mechanism increases weakly monotonically is trivially true for
any increase indi. The challenge is proving the strictness of the monotonicity.

Consider increasingdi from d
(1)
i < d∗

i to d
(2)
i > d

(1)
i . Let G

(1)
i be the best set of preference

vectors that agenti distinguishes between when restricted tod
(1)
i vectors (i.e., the set of preference

vectors that maximize the upper bound on expected efficiency). We know that there are at least
d∗

i − d
(1)
i ≥ 1 preference vectors corresponding to fully efficient sets ofoutcomes with non-zero

probability that cannot be expressed by agenti, and thus at least that many preference vectors
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corresponding to fully efficient sets of outcomes that are absent fromG
(1)
i . When we increase our

expressiveness limit fromd(1)
i to d

(2)
i , we can add one of those missing vectors toG

(1)
i to getG(2)

i .
SinceG(2)

i allows agenti to distinguish among all the same vectors asG
(1)
i andan additional vector

which corresponds to a fully efficient set of outcomes (recall that these outcomes must be strictly
more efficient), the new mechanism with maximum preference dimensiond(2)

i has a strictly higher
expected efficiency bound.

Proof of Corollary 2. This follows directly from Theorem 1 and Proposition 3.

Proof of Lemma 1.Start with any number of outcomes and any number of types for the agents
other thani with equal likelihood (and let the probability of any particular set of types for the
agents other thani be independent ofi’s type). Choose a set,Gi, of unique impact vectors for
agenti with sizedi. Construct one non-zero probability type for agenti for each impact vector in
Gi, t

g(j)

i . Set the total welfare of all agents to an arbitrarily large number for every combination of
joint types according to the impact vectors corresponding to i’s type, (in an interdependent values
setting their are no restrictions on the agent’s utility functions parametrized on the full joint type
space, so the welfare function for each set of joint types canbe constructed arbitrarily):

∀gi ∈ Gi, ∀t−i, W ({t
(gi)
i , t−i}, gi(t−i)) = M

If agenti cannot distinguish among all of thedi impact vectors then the efficiency bound will be
arbitrarily smaller than if it can. Thus for the best outcomefunction the move fromdi − 1 to di

necessarily results in an arbitrary increase.

Proof of Lemma 2.The part that applies to the interdependent values setting follows directly from
Lemma 1 since decreasingki by one also decreasesdi by at least1.

Next we will prove the implication in the private value setting. To prove this we will construct
a setting (i.e., utilities, types and outcomes), such that agenti must be able to semi-shatter an out-
come space of sizeki in order to avoid our upper bound being arbitrarily lower than full efficiency.
Our constructed setting can have any number of outcomes, anynumber of other agents and any
number of joint types for the other agents. However, in orderto assign the total utility of the other
agents for each of their joint types in an arbitrary way, we will limit every other agent except for
one, agentj, to a single type (agentj will have |T−i| types). We will set the utility of every agent
other thani andj to 0 in all circumstances and build our construction using only these two agents.

We will start with a set of outcomesO′ that has sizeki (if ki = 1 the rest of this proof is trivial,
if every single outcome provides an arbitrary amount of welfare then not being able to make any
one of them happen will lead to arbitrary inefficiency). We will assume the outcomes inO′ are the
only outcomes that any of the agents derive any utility from.We will assume that there is some
strict ordering on the outcomes fromo1 to oki

and on agentj’s types fromt
(1)
j to t

(|Tj |)
j . We will now

set the utility of agentj for every outcome under every one of its types. (Recall that in a private
value setting the utility of the agents other thani cannot depend oni’s type, and vice versa).

Our construction sets agentj’s utility for outcomeom under each of its types to be arbitrarily
larger than for the outcome preceding it in the strict ordering,om−1 (with the first outcome always
leading to utility0). Under a single type, all of the gaps between successive outcomes will be the
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same size, however this gap amount will increase by an arbitrary amount for each successive type.
This will result in agentj’s utility under each of its types being a step function over the strictly
ordered outcomes inO′, with the step sizes increasing under each successive type.Formally we
will set agentj’s utility function in the following way (letM be an arbitrarily large number),

(∀m, ∀l) uj(t
(m)
j , ol) = (l − 1 × ((m − 1) × 2 × M)

Now for each of the
(

|O′|
2

)

un-ordered pairs of outcomes,oa andob (wherea is always beforeb

in our strict ordering), we will construct a set of|Tj| types for agenti, which we will call T (a,b)
i .

Agenti’s utility under all of the types inT (a,b)
i will be hugely negative for all outcomes other than

oa andob (note that this value does not have to be negative infinity, itjust has to be arbitrarily lower
than the total welfare of any outcome under any circumstance), thus causing an arbitrary loss of
efficiency if either of these outcomes is not chosen. Again, we will assume a strict ordering on
the types inT (a,b)

i , from 1 to |Tj|. Agenti’s utility for ob under each of these types will be set to
the arbitrarily large numberM , and foroa (the typically less preferred outcome by agentj, since
it comes earlier in the ordering) will be set to successivelyincreasing multiples of the distance
between the outcomes in the strict ordering times twice the arbitrarily large number used above,
(b − a) × 2 × M . In other words,oa will provide successively more utility to agenti as its type
from the pair selecting set increases from1 to |Tj|. Formally we will set agenti’s utility under the
types inT

(a,b)
i to be the following,

(

∀m | t
(m)
i ∈ T

(a,b)
i

)

ui(t
(m)
i , ob) = M

(

∀m | t
(m)
i ∈ T

(a,b)
i

)

ui(t
(m)
i , oa) = (m − 1) × (b − a) × 2 × M

(

∀oj ∈ O \ O′, ∀m | t
(m)
i ∈ T

(a,b)
i

)

uj(t
(m)
i , oj) = −∞

Whent
(m)
i is matched witht(m)

j the total welfare of outcomeob will be at leastM larger than the
total welfare ofoa. However, for all ofj’s types smaller thanm the opposite will be true.

W ({t
(m)
i , t

(m)
j }, ob) = M + [(b − 1) × (m − 1) × 2 × M ]

W ({t
(m)
i , t

(m)
j }, oa) = [(b − a) × (m − 1) × 2 × M ] + [(a − 1) × (m − 1) × 2 × M ]

= [(b − 1) × (m − 1) × 2 × M ]

By constructing the utility functions in this way we have guaranteed that for any pair of agentj’s
types,t(m)

j andt
(m′)
j (wherem < m′ in our strict ordering), there is a type for agenti requiring

ob to happen againstt(m)
j andoa againstt(m

′)
j to avoid an arbitrary loss in efficiency (because the

second best outcome always leads to at leastM less welfare).
Now we can simply repeat this process for every pair of outcomes inO′ by constructing types

for agenti that select that pair. We can also construct one type for agent i for each outcome inO′,
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where it prefers that outcome hugely more than any other outcome. This will guarantee that agent
i must be able to make every pair of outcomes happen against every pair of agentj’s types, and
must be able to make every single outcome happen against every pair of agentj’s types, in order
to avoid an arbitrary loss of efficiency in some non-zero probability combination of types. This
is equivalent to saying that agenti must be able to semi-shatter the outcome spaceO′ in order to
avoid an arbitrary decrease in the expected efficiency bound.

Proof of Lemma 3.Let agenti’s utility for outcomeso1 ando2 under typet(1)i and be denoted as
X andY . For the agents other thani, let the sum of their utilities for the outcomeso1 ando2 under
typest

(1)
−i andt

(2)
−i , be denoted as,a andb, and,a′ andb′, respectively. We wish to show that the

ordering on efficient outcomes imposed by this collection oftypes cannot be reversed. Formally,

(X + a > Y + b) and (Y + b′ > X + a′) ⇒

¬ (∃X ′, Y ′) (X ′ + a < Y ′ + b) and (Y ′ + b′ < X ′ + a′)

We will proceed by assuming this is true, namely that there exists anX ′ andY ′ that satisfy the
second set of inequalities, and show that it leads to a contradiction. If all of the inequalities held
we would have the following,

b − a < X − Y < b′ − a′

b′ − a′ < X ′ − Y ′ < b − a

which leads to a contradiction.

Proof of Theorem 2.The forward implication in both settings follows directly from Lemma 2. The
backward implication in the interdependent values settingfollows from Lemma 1 and Proposition 7
(since there will always be a fully efficient set that contains every possible impact vector). In the
private value setting the backward implication is implied by Lemma 3, since it proves that it is
never necessary for full efficiency in this setting to shatter any pair of outcomes (only semi-shatter
them).

Proof of Proposition 10.This proof is based on a pigeon hole argument. With fewer thandlog2(|O|)e
channels there will be at least 2 outcomes connected to the exact same set of channels. If agenti

hasCi channels then it has2|Ci| sets of channels. WhenCi is small the number of sets of channels
will be less than the number of outcomes.

Ci < dlog2(|O|)e ⇒ 2Ci < |O|

This will prevent the agent from forcing the mechanism to choose both of those outcomes
against with different plays since the agent’s own contribution to the two outcomes will always be
identical.
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Proof of Proposition 11.With that many channels we can construct a VCG outcome function in
the following manner. For each agenti, connect each ofi’s channels to a different outcome, leaving
one outcome with no channel from that agent. The agent then reports its utility under each outcome
relative to the outcome with no channels. The mechanism chooses outcome whose channels have
the largest sum, which is equivalent to choosing the welfare-maximizing outcome. The payment
rule will not be affected by the fact that each agent is reporting its utility relative to a particular
outcome. To see this consider the VCG (i.e., Clarke tax) payment of any agenti. This payment
is equal to the total difference in utility of the other agents, had agenti not participated. Let the
outcome with agenti in the mechanism beA and the outcome without agenti be B. Let the
outcome with no channels attached beoj for every agentj. Then we have the payment for agenti

as,

πi =
∑

j

(uj(tj, A) − uj(tj , oj)) −
∑

j

(uj(tj, B) − uj(tj , oj))

=
∑

j

(uj(tj, A) − uj(tj , B)) −
∑

j

(uj(tj , oj) − uj(tj , oj))

=
∑

j

(uj(tj, A) − uj(tj , B))

Since theuj(tj , oj) terms drop out of this equation, having every agent report their utility for every
outcome minus their utility for one particular outcome doesnot effect the payment calculation.
This shows that the payment rule can be properly calculated even when each agent is left with a
single outcome with no channels.

Using a pigeon hole argument we can see that an agent with fewer than|O| − 1 channels will
either have at least 2 outcomes sharing a channel, making it impossible for that agent to express
arbitrary non-linear utility for every outcome (somethingthat is required in order to implement a
VCG), or it will have 2 outcomes without a channel, making it impossible for that agent to express
any preference for one of the outcomes (if the agent had only one outcome with no channel, then
it could express its preferences relative to that outcome, as described above).

Proof of Proposition 12.We will show that no agent can shatter any set of2 outcomes against any
2 types, even when it has a channel dedicated solely to each of the two outcomes (so that it can
place an arbitrary amount of value on either outcome). This implies that it is impossible for any
larger set of outcomes or types in any channel-based mechanism.

We will assume for contradiction that there is some agenti that can shatter a pair of outcomes
A andB in a channel-based mechanism. Let agenti’s channel value connected to outcomeA be
X and let its channel value connected toB beY . Consider two types for the agents other thani,
t
(1)
−i andt

(2)
−i , and the reports mapped to them inanypure strategy,θ(1)

−i andθ
(2)
−i . Let the sum of the

reports by the other agents on the channels connected toA be denoteda1 anda2 under the first
and second expressions, respectively. Likewise letb1 andb2 be the sum of the reports onB. We
have assumed (for contradiction) that there exists anX, Y , X ′ andY ′ that satisfy the following
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inequalities,

A against 1,B against 2

{

X + a1 > Y + b1

Y + a2 > X + b2

B against 1,A against 2

{

Y ′ + b1 > X ′ + a1

X ′ + a2 > Y ′ + b2

This leads directly to the contradiction,

b1 − a1 < X − Y < b2 − a2

b2 − a2 < X ′ − Y ′ < b1 − a1

Proof of Corollary 3. This follows directly from Proposition 12 and Lemmas 1 and 2.

Proof of Theorem 3.We will first present a lemma regarding an implication of the predicate based
on set algebra.

Lemma 4. For any sets,A, B, C, andD, the following bi-directional implication holds,

(A \ C = B \ D) and (C \ A = D \ B) ⇔ (A \ D = C \ B) and (D \ A = B \ C)

Proof. We will prove the forward implication, once that is proved the backward implication is
trivial since we can just switch the labels ofC andD. From the predicate we know that the only
part ofA that is not inD must be contained completely inC (since(A \C) ⊆ D), in particular we
know that,

A \ D = C \ (C \ A)

= C \ (B \ D)

= C \ B

The last step is valid because we know that no elements fromD can be in the set on the right
hand side (since we are removing them fromA). Thus it cannot make a difference if we leave them
in B before subtracting it fromC. This same logic can be repeated for the other side,

D \ A = B \ (B \ D)

= B \ (C \ A)

= B \ C
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From Lemma 4 in addition to our predicate we know that the following must also be true (we
drop thei subscript on the channel sets for shorthand, since all sets of channels discussed in this
proof belong to agenti),

(

SA \ SD = SC \ SB
)

and
(

SD \ SA = SB \ SC
)

Now we will assume for contradiction that agenti can semi-shatter both pairs of outcomes,
{A, B} and{C, D}. From Proposition 5, we know that in order fori to be able to semi-shatter a
set of outcomes, it must be able to semi-shatter it for anypair of types of the other agents. Thus,
there must be at least one pair of reports by the agents other thani, θ

(1)
−i andθ

(2)
−i , such that agenti

can cause all four outcomes to happen (although we are dealing with semi-shattering so the order in
which they happen does not matter). Let the sum of the reported channels under the first (second)
profile for the other agents connected to outcomeA bea1 (a2), to outcomeB beb1 (b2), and so on.

Lets assume (without loss of generality) thatb1 − a1 < b2 − a2 and thatA will happen against
θ

(1)
−i andB will happen againstθ(2)

−i (if the inequality does not hold, we can reverse the labels onthe
θ−i’s). In order to causeA to happen against the first opponent profile andB against the second
the following inequalities must hold (from here on we use theshorthandSA to denote the sum of
agenti’s report on the channels inSA, and we assume that ties are broken consistently so that an
agent cannot use them to semi-shatter),

A happens against 1











SA + a1 > SB + b1

SA + a1 > SC + c1

SA + a1 > SD + d1

B happens against 2











SB + b2 > SA + a2

SB + b2 > SC + c2

SB + b2 > SD + d2

Now let the difference between the sum of channels inSA − SC = S1, and notice from the
predicate thatSD − SB = S1. This is because the channels that are inSA and notSC are the same
as those that are inSD and notSB, and also the channels inSC that are not inSA are the same
as those that are inSB and notSD. In addition, let the difference in the sum of the channels in
SA − SD = SC − SB = S2 (this equality is also implied by the predicate). Now the equations
above simplify to,

b1 − a1 < SA − SB < b2 − a2

c1 − a1 < S1 < b2 − d2

a1 − d1 < S2 < b2 − c2

In order to semi-shatterC andD with C happening against the first report by the other agents and
D against the second we have the following inequalities generated in the same fashion,

36



c1 − d1 < SC − SD < c2 − d2

b2 − d2 < S1 < c1 − a1

b1 − c1 < S2 < a2 − d2

In order to semi-shatter overC andD in the opposite direction (withD first andC second) the
constraints would change to the following,

c2 − d2 < SC − SD < c1 − d1

b1 − d1 < S1 < c2 − a2

b2 − c2 < S2 < a1 − d1

Now we can see that our assumption that we can semi-shatter both sets of outcomes under even a
single pair of types leads to a contradiction since the following sets of constraints would have to
be satisfied,

c1 − a1 < b2 − d2

b2 − d2 < c1 − a1

or,

c2 − b2 < a1 − d1

a1 − d1 < c2 − b2

Proof of Proposition 13.Let A be an outcome under which agenti is allocated bundleQ, let B

be an outcome under which it is allocatedq1, C for q2 andD for nothing (also letSA, SB, SC ,
andSD be the sets of channels connected to those outcomes for agenti). Since agenti’s bid onQ

equals the sum of its bid onq1 andq2, we have thatSA = SB ∪ SC and its bid for the outcome
where it wins nothing is always0, so we haveSD = ∅. Notice that these sets of channels meet the
conditions of Theorem 3,

(

SA \ SC = SB \ SD
)

and
(

SC \ SA = SD \ SB
)

(

(SB ∪ SC) \ SC = SB \ ∅
)

and
(

SC \ (SB ∪ SC) = ∅ \ SB
)

Proof of Corollary 4. This follows trivially from Proposition 13 and Lemma 2.
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Proof of Proposition 14.We will prove this statement for the semi-shatterable outcome dimension,
ki, which will imply it is true for maximum impact dimensiondi as well (based on Proposition 3).

Consider any channel-based mechanism that assignsci channels to agenti, and allows it a
semi-shatterable outcome dimensionki < |O|. We will assume from here on thatki ≥ 2, since
if ki = 1 the theorem is trivially true (we can build a fully expressive VCG mechanism over2
outcomes with a single channel and thus adding a channel willdefinitely increaseki to at least2).

Let the largest set of outcomes that agenti can shatter over in this mechanism beO′ (if there
are ties just choose one arbitrarily). Note that there is a non-empty set of outcomes missing from
O′, we will call thatO∗ = O \O′. Now consider adding one channel for agenti to the mechanism
and connecting it to one of the outcomeso∗ ∈ O∗. Clearly the agent can still semi-shatter over
O′, since it can just ignore the new channel. However, it can nowalso semi-shatter a larger set,
O′ ∪ {o∗}.

To verify this notice that with the additional channel connected too∗ the agent can control the
amount of utility it reports on this outcome arbitrarily (without affecting its reports on any other
outcomes). Consider any pair of outcomes in the original set, o′1, o

′
2 ∈ O′. Agenti can now makeo∗

happen against any type where either of those outcomes happened in the old mechanism by setting
its report on the new channel to beε greater than the sum of its reports on the channels connected
to the outcome it chooses. Formally, ifCi is the channel mapping from the original mechanism,
then we can translate any report in the old mechanism,θi, to a report in the new mechanism,θ∗i ,
which causeso∗ to happen whenever anyo′ did previously,

(∀j | 1 ≤ j ≤ ci) θ∗i,j = θi,j

θ∗i,c1+1 =
∑

j∈Ci(o′)

θij + ε

Since agenti can do that with both outcomes from the original semi-shatterable set we have
confirmed that it has reports in the new mechanism that makeo∗ happen with every pair of out-
comes inO′ (this is an inductive argument, since each of those outcomeshad this property before)9

Thus agenti can semi-shatter the new larger outcome set.

Proof of Corollary 5. The fact that the bound is weakly monotonic is true because the extra chan-
nel can always be ignored. The fact that the increase can be arbitrarily large follows directly from
Proposition 14 above and Lemma 2 (since increasing the number of channels by1 can increase the
agent’s semi-shatterable outcome dimension).

9Note that we have assumed the agent was not using the tie-breaking properties of the original mechanism to shatter
the outcomes. If this assumption does not hold, the proof is still valid as long as the mechanism always breaks ties
consistently (i.e., when the channels connected to outcomeso1 ando2 have the same sum it always chooses eithero1

or o2).
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