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Abstract

A key trend in the world—especially in electronic commerds-a demand for higher levels of
expressiveness in the mechanisms that mediate interacgach as the allocation of resources,
matching of peers, and elicitation of opinions from largd diverse communities. Intuitively, one
would think that this increase in expressiveness would teamore efficient mechanisms (e.g.,
due to better matching of supply and demand). However, natil we have lacked a general way
of characterizing the expressiveness of these mechanamabjzing how it impacts the actions
taken by rational agents—and ultimately the outcome of tkehanism. In this technical report
we introduce a general model of expressiveness for meahani©ur model is based on a new
measure which we refer to as theaximum impact dimensioithe measure captures the number
of different ways that an agent can impact the outcome of eham@sm. We proceed to uncover
a fundamental connection between this measure and theparfahatteringfrom computational
learning theory.

We also provide a way to determine an upper bound on the eeghedficiency of any mech-
anism under its most efficient Nash equilibrium which, rekabty, depends only on the mech-
anism’s expressiveness. We show that for any setting angaor over agent preferences, the
bound on efficiency of a mechanism designed optimally und&mstraint on expressiveness in-
creasesstrictly as more expressiveness is allowed (until the bound reacltiesfficiency). In
addition, we prove that a small increase in expressivenasgotentially lead to an arbitrarily
large increase in the efficiency bound, depending on the.prio

We conclude with a study of a restricted class of mechanishishave callchannel based
The restriction is that these mechanisms take expressforaue through channels from agents
to outcomes, and select the outcome with the largest sumanf@t-based mechanisms subsume
most combinatorial and multi-attribute auctions, any VegkClarke-Groves mechanism, etc.) In
this class, a natural measure of expressiveness is the mafnttgannels allowed (this generalizes
the k-wise dependence measure of expressiveness tradlifiosed in the combinatorial auction
literature). As a sanity check of our general domain-indejleat measure of expressiveness, we
show that it appropriately relates to the number of chanwbkn applied to channel-based mech-
anisms. This allows us to transfer all of our results regaydifficiency to this domain.






1 Introduction

Mechanism design is the science of generating rules ofdotien so that desirable outcomes result
despite the participating agents (human or computaticawihg based on rational self-interest.
A mechanisntakes as input some expressions of preference from thesagent based on that
information imposes anutcome(such as an allocation of items and potentially also pays)ent
By carefully crafting mechanisms, itis possible to desigtidr auctions, exchanges, catalog offers,
voting systems, and so on.

A recent trend in the world—especially in electronic comeoeeris a demand for higher levels
of expressiveness in the mechanisms that mediate intensciuch as the allocation of resources,
matching of peers, or elicitation of opinions. This trend lafready manifested itself in combina-
torial auctions, multi-attribute auctions, and genegdlans thereof, which are used to trade tens
of billions of dollars worth of items annually [28, 55, 56,,39)]. It is also reflected in the richness
of preference expression offered by businesses as diversat@hmaking sites, sites like Amazon
and Netflix, and services like Google’s AdSense. It is alsergng in the context of security and
privacy interfaces developed in different application éams (e.g., [53, 52]). In Web 2.0 parlance,
this demand for increasingly diverse offerings is calleglltbng Tail [4].

The most famous expressive mechanism gombinatorial auction (CA)which allows par-
ticipants to express valuations oveaickagef items. CAs have the recognized benefit of re-
moving the “exposure” problems that bidders face when ttasepreferences over packages but
in traditional auctions are allowed to submit bids on indual items only. They also have other
acknowledged benefits, and preference expression formsisamntly more compact and more
natural than package bidding have been developed (e.g28 55, 56, 19]). Expressiveness also
plays a key role imulti-attributesettings where the participants can express prefereneeves-
tors of attributes of the item—or, more generally, of thecome. Some market designs are both
combinatorial and multi-attribute (e.qg., [57, 55, 56, 19])

Intuitively, one would think that more expressiveness $etalhigher efficiency (sum of the
agents’ utilities) of the outcome (e.g., better matchingugdply and demand). Efficiency improve-
ments have indeed been reported from combinatorial and-attribbute auctions (e.g., [54, 55, 56,
37, 19]). However, until now, we have lacked a general wayhaifracterizing the expressiveness
of different mechanisms, the impact that it has on the agetrtstegies, and thereby ultimately
the outcome. It was not even known whether, in any settingseraxpressiveness always leads
to more efficiency. (In fact, on the contrary, it has been olekthat in certain settings additional
expressiveness can give rise to additional equilibria o gdficiency [40].)

Short of empirical tweaking, participants in the scenawesdescribed lacked results they can
rely on to determine how much—and what forms of—expressssithey need. These questions
have vexed mechanism design theorists, but are not onlyaties. Answers could ensure that
ballots are expressed in a form that matches the issues\ater about, that companies are able to
identify suppliers that best match their needs, that supptydemand are better matched in B2C
and C2C markets, that users of a cell phone-based Friengfapplication can express those
privacy preferences that really matter, and so on.

In this paper we introduce a general model of expressivdoessechanisms (Section 2). This
includes a new expressiveness measure, which we refer he asmkimum impact dimensioiihe
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measure captures the number of different ways that an agentgact the outcome of a mech-
anism. We proceed to uncover a fundamental connection ketifes measure and the concept
of shatteringfrom computational learning theory. (We say that a mecmar@Bows an agent to
shatter a set of outcomes if the agent can cause every pogsiblered) combination of those
outcomes to be chosen.)

We proceed, in Section 3, to describe perhaps the most ianggoroperty of our domain-
independent measure of expressiveness: how it relate® teffiniency of the mechanism’s out-
come. We provide a way to determine an upper bound on the #gefficiency of any mechanism
under its most efficient Nash equilibrium which, remarkalolgpends only on the mechanism’s
expressiveness. This enables us to sidestep two majoicctasslles in studying the relation-
ship between expressiveness and efficiency: 1) it can bgzethlWwithout having to solve for
an equilibrium of the mechanism (something that has proxé@mely difficult for inexpressive
mechanisms [50, 64, 61, 46, 66, 43]), and 2) since it bourelsitbst efficient equilibrium it can be
meaningfully applied to mechanisms with multiple (or inf@)iequilibria, e.g., CAs [9]. We show
that for any setting and any prior over agent preferenceshbtiund on efficiency of a mechanism
designed optimally under a constraint on expressivenessasestrictly as more expressiveness
is allowed (until the bound reaches full efficiency). In adufi, we prove that a small increase in
expressiveness can potentially lead to an arbitrarilygl@mgrease in the efficiency bound, depend-
ing on the prior.

Finally, in Section 4, we instantiate our model of expressass for a restricted class of mech-
anisms which we calkthannel based The restriction is that these mechanisms take expressions
of value through channels from agents to outcomes, andtsilecoutcome with the largest
sum. (Channel-based mechanisms subsume most combihatatianulti-attribute auctions, any
Vickrey-Clarke-Groves [63, 14, 23] mechanism, etc.) Irstblass, a natural measure of expres-
siveness is the number of channels allowed (this genesaliz-wise dependence measure of
expressiveness traditionally used in the combinatoriefian literature). As a sanity check of our
general domain-independent measure of expressivenesshamethat it appropriately relates to
the number of channels when applied to channel-based mieam&anBy studying these mecha-
nisms within our framework we are able to prove that incregsgheir expressiveness by a small
amount (i.e., adding a single channel) cannot decreaseamndoon expected efficiency for the
mechanism, and under some preference distributions leaals arbitrarily large increase in this
bound.

We conclude with a discussion of related work (Section 5)asdmmary of our results (Sec-
tion 6).

1.1 Preliminaries

The basic setting we study is that of standard mechanisngrlelsi the model there areagents.
Each agent has some private information (not known by the mechanismngraher agent)
denoted by a type,, (e.g., the value of the item to the agent in an auction; oa @A, a vector

of values, potentially one value for each package of itemmshfthe space of the agent’s possible
types,T;. Settings where each agent has a utility functioyit;, O), that depends only on its
own type and the outcomé&) € O, chosen by the mechanism (e.g., the allocation of items to
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agents in a CA) are callgorivate valuessettings. We also discuss more general settings where
u; = u;(t", 0), i.e., an agent’s utility depends on the others’ privatealg. These settings are
calledinterdependent valuesettings. In both types of settings, agents report expressb the
mechanism, denotet], and based on them the mechanism chooses an outcome.

The mechanism itself consists of an outcome functfdf’ ), which aggregates the expressions
of all the agents and chooses an outcome ff@mit also consists of a payment function,6™),
which determines how much each agent must pay. For analysmges, we assume that the
expression of each agent in a Nash equilibrium can be destby a function that takes as input its
type and the parameters of the mechanisin;, f, 7). We do not restrict these equilibrium reports
to be deterministic: we allow; to be a random variable where the agent specifies a prolyabilit
distribution over possible reports.

To summarize, we use the following notation.

e t; € T;isthe true type of an agentd; is the expression that ageneports to the mechanism,
the subscript_; is used to denote the set of expressions by all the agentstotoei, and
the superscripd” is used to denote a collection nfexpressions.

e O € Ois an outcome from the set of all possible outcomes impodabilee mechanisn®.

e u; : T;,O — R is agenti’s utility function. It takes as input the agent’s true typedaan
outcome and returns the real-valued utility of the agentat butcome were to be chosen.
(We also discuss results that apply interdependent vaétéags wherey; = u;(t", O), i.e.,
an agent’s utility also depends on the others’ private $gypa

e f: 0" — (O is the outcome function of the mechanism. It takes as inpuekpression of
each agent and returns an outcome from the set of all possibtemes.

e 7 : 0" — R"is the payment function of the mechanism. It takes as inpueRpression of
each agent and returns the payment to be made by each agent.

e b, :T;, f,m — P(0,) is the expression of ageiin a particular equilibrium. It takes as input
agent;'s true type, the outcome function and payment function efrttechanism. It returns
a (potentially randomized) expression, in the case of a dheguilibrium,b; is a random
variable with an underlying probability distribution. (Mothat this function cannot depend
on the private types of the other agents, even if agenitility does.)

Using this formalism we can describe the expected efficieficy, =), of a mechanism (where
expectation is taken over the true types of the agents, aidrdndomized equilibrium expres-
sions) as

Q) EE(f) = /

tneTn

P =) [P £ =) S 6)

The following example shows how this formalism can be usedadel a combinatorial auction.



Example 1. In a fully expressive combinatorial auction with items, each of the agents is a
bidder whose type represents his or her private valuatioe&zh of the2™ different combinations
of items. The outcome space includes all of tHedifferent ways the goods can be allocated
amongst the bidders. Agents are allowed to express theiredype to the mechanism and the
outcome function chooses the allocation that maximizesuheof the bidders’ valuations.

The payment function can charge each agent its bid (aka. tbepiiice payment rule) or
the difference in utility of the other agents had the agenguestion not participated (aka. the
Vickrey-Clarke-Groves (VCGpayment rule). Under the VCG payment rule, each agent has a
(weakly) dominant strategy to tell the truth, so one eqtiilitm distribution,b, over expressions is
a point mass on the agents’ true valuations.

2 Characterizing the expressiveness of mechanisms

The primary goal of this technical report is to better unthard the tradeoffs associated with mak-
ing mechanisms more or less expressive. In order to accempiis, we must first come up with
meaningful (and general) definitions of a mechanism’s esgiveness. First we will demonstrate
that two seemingly natural ways of characterizing the esqiveness of different mechanisms,
the dimensionality of their expressions and the granylarfittheir outcomes, do not capture the
fundamental difference between expressive and inexpeessechanisms.

If we consider mechanisms that allow expressions from thefsaulti-dimensional real num-
bers, such as CAs and combinatorial exchanges, one segmatgral way of characterizing their
expressiveness is the dimensionality of the expressiaysaliow (this is one key difference be-
tween fully expressive CAs and auctions that only allow ipem-bids, for example). However,
not only does this limit our notion of expressiveness to naacdms with real-valued expressions,
it also does not adequately differentiate between expressid inexpressive mechanisms. This is
because the cardinality & is the same as the cardinality 8f as proved by Cantor in 1890 [13].

Proposition 1. For any mechanism that allows multi-dimensional real-ealexpressions, (i.e.,
where® C R%), there exists arquivalentmechanism that only allows the expression of a single
real value (i.e., wher® = R).

This illustrates that the fundamental difference betwegressive and inexpressive mecha-
nisms cannot be captured simply by the dimensionality okttpgressions they allow. It is not the
number of real-valued questions that a mechanism can asttuhacharacterizes expressiveness,
it is how the answers are used!

Another natural way in which mechanisms can differ is in thanglarity of their outcome
spaces. For example, auction mechanisms that are redttectdlocating certain items together
(e.g., blocks of neighboring wireless spectra) have coanseome spaces than those which can
allocate them to different agents. Some prior work addeefseimpact of a mechanisngsitcome
spaceon its efficiency. For example, it has been shown that in pgivalues settings VCG mecha-
nisms with finer-grained outcome spaces have more effic@ntrtant-strategy equilibria [29, 44].

LAl proofs can be found in the appendix at the end of this tézdimeport.



Proposition 2. In any private values setting, the expected efficiency o¥/tb& mechanism with
outcome spacé® (when all agents play the weakly dominant truthful equilibm) is greater than
or equal to the expected efficiency of the VCG mechanism wittome spac®’ C O.

In contrast, we are interested in studying the impact of ahaeism’s expressiveness on its
efficiency—by comparing more versus less expressive mesmarnwith thesameoutcome space
(e.g., fully expressive CAs and multi-item auctions thddwalbids on individual items only). In
our approach the outcome space can be unrestricted orctedtrthus our results can be used in
conjunction with those stating that larger outcome spaegstgreater efficiency. Furthermore, in
many practical applications there is no reason to restigtoutcome spacebut there may be a
prohibitive burden on agents if they are asked to expresga hmount of information; thus it is
limited expressiveness that is the crucial issue.

2.1 A measure of expressiveness: the maximum impact dimeposi

In order to properly differentiate between expressive aeatpressive mechanisms with the same
outcome space, we propose to measure the extent to whicheah @ impact the outcome that
is chosen. In this technical report we will limit ourselvesstudying the mechanism’s outcome
function rather than also studying the payment function.odin view, the outcome function is
primarily responsible for determining an agent’s expressess level. In settings where agents do
not care about each others’ payments, this is basicallyowttloss of generality because if an agent
could choose between paying more or less for the same ouf@bhmesing to pay more would be
a dominated strategy. Thus that extra expressiveness hadu® (In settings where agents care
about each others’ payments, expressiveness related hogpéy may be an interesting area for
future research.)

The fundamental way in which a mechanism allows an agentpcess different preferences
is by allowing it to cause differeritnpact vectorsof outcomes to be chosen. An impact vector
captures the impact of a particular expression by an agefgruzach of the joint types that the
other agents may have.

Definition 1 (impact vector) An impact vectorfor agent: is a function,g; : T, — O. To
represent the function as a vector, we order the joint typés i fromt(_li) to tf*”); theng; can be

represented as a vector of outcones, os, ..., o7, |.

In some cases an agefitmay wish to impact the mechanism differently under eacfsaiwn
types. However; can only actually express an impact vector if there existsesoure strategy
profile of the other agents such thiatan cause the mechanism to choose the correct mapping from
the others’ types to outcomes.

Definition 2 (pure strategy)A pure strategyor an agent; is a mappingh; : 1; — ©;, thatis, it
selects an expression for eachisftypes. Apure strategy profilés a list of pure strategies, one

°This is the case as long as the mechanism designer’s gofitisedy, but this is not always the case for revenue
maximization, for example.



strategy per agent, i.eh; = [hi, ho, ..., hyy]. For shorthand, we often refer to; as a mapping
from types of the agents ihto an expression for each agent,

hi(tr) = [Pa(ty), ho(ta), - lyn ()] = (61,62, Oyr]

We say that agent canexpressan impact vector against a pure strategy profile of the other
agents if there exists some expressiorn tat causes each of the outcomes in the impact vector to
occur when paired with the expressions made by the othetsigader the pure strategy mapping.

Definition 3 (expressability) Agenti canexpressan impact vectory;, if
3h_s, 30;, Vt_s, [0, hoi(ts)) = gi(t—s)
Figure 1 illustrates how an agent can express certain im@tors against a particular pure

strategy profile of the other agents. In this example, thesgether than are playing the pure
strategy profile, [6("” 0 y>]. Against this pure strategy profile, agentan express the impact

-1 3

vectors[A, B] and[C, D] by choosing between expressiaﬂﬁ@ and@l@)

o) 6\
e Q 0w @ Q o)
A B

Figure 1: By choosing between two expressio@jé), and 9§2), agent; can distinguish between
the the impact vectorisA, B] and[C, D] (enclosed in rectangles). The other agents have two joint

types and are playing the pure strategy proﬁﬁgg, 6(}’2] :

Agent: can only distinguish among a set of impact vectors if it capregs each of them
against the same pure strategy profile of the other agentso [fure strategy profile exists that
allows the agent to simultaneously express each of the inveators in the set, then we say that
the agent canndlistinguishbetween those impact vectors. In other words, the agenticieu
able to express each of the vectors by altering its own egfmes

Definition 4 (distinguishability) Agent: candistinguishbetween a set of impact vecto(s,, if
3h_i, Vg € Gy, 30, Yty f(0i, hoi(t=)) = gi(t—:)
When this is the case, we write
Di(G;)
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Intuitively, more expressive mechanisms allow agents stirdjuish among larger sets of im-
pact vectors. We will now define our primary measure of exgivesness based on this intuition.
Since mechanisms can allow different levels of expressiseffor different agents, we will define
our expressiveness measure in terms of one agent. The reeagiures the number of different
impact vectors the agent can distinguish among. Since #psrtdls on what the others express,
we measure the best case where the others happen to subregsgps that maximize the agent’s
control. We call this the agentfeaximum impact dimension

Definition 5 (maximum impact dimension)Agenti has maximum impact dimension; if the
largest set of impact vector§;?, thati can distinguish among has side Formally?

0

d; = max{\Gi|
G;

Di(Gi)}

We will show in Section 3 that every agent’s maximum impacteision ties directly to an
upper bound on the expected efficiency of the mechanism’s effisient Nash equilibrium. In
particular, the upper bound increasgsctly monotonically as the maximum impact dimension for
any agent increases from to d;, whered; is the smallest maximum impact dimension needed by
the agent in order for the bound to reach full efficiency.

The maximum impact dimension also has some drawbacks as sureedFirst, it does not
capture the way in which an agent’s impact vectors are Higed. For example, it is possible
that a mechanism that allows a smaller maximum impact difoartan be designed to allow an
agent to distinguish among a more important (e.g., for efficy) set of impact vectors than a
mechanism that allows the agent a larger maximum impactrBioa. Second, it is not clear that
the maximum impact dimension can be measured, numericabiyalytically, in settings where
even a single agent has an infinite type space.

2.2 Shattering-based expressiveness

We will now proceed to discussing another kind of measurexpfessiveness which we will call
the shatterable outcome dimensioAs we will discuss later, it has somewhat different uses tha
does the maximum impact dimension. The two are closelya@)dtowever, as we will discuss.
The shatterable outcome dimension is based on a notiomcilédteringwhich we adapt from
the field of computational learning theory (c.f., pp. 21%341],[62, 10]). The shatterable out-
come dimension measure addresses both of the concerns waiiimom impact dimension that
we raised at the end of the previous section. Unlike the maminmpact dimension, which pro-
vides no information as to how the distinguishable impactaes are distributed, the shatterable
outcome dimension measures thember of different outcoméisat an agent can shatter (i.e., ex-
press every possible impact vector over). In addition, asvilleshow at the end of this section, it
has the advantage that we can rule out the shatterabilityset af outcomes over any number of
expressions (of the other agents) by merely ruling out thgt@xce of anyair of expressions (of
the other agents) that allow the agent to shatter the settobmes. This enables us to analyze the

3For any agent, d; < |O|!T-#! since this is the maximum number of impact vectors @ef length|T"_;]|.



measure even when agents have infinite type spaces (andpmhirginitely many different ex-
pressions), and may help one operationalize expressiwémesutomated mechanism design [15]
in the future.

We will begin by defining what it means for an agent to be ablehiatter a set of outcomes. In
learning theory, a class of binary classification functfosssaid to shatter a set éfinstances if
there is at least one function in the class that assigns ddbk possible” dichotomies of labels
to the set of instances. Intuitively, a class of functioret ttean shatter larger sets of instances is
more expressive. To illustrate this idea consider the ¥ahg example taken from Mitchell pp.
215-216 [41].

Example 2. Consider the class of binary classification functions thegign a 1 to points only if
they fall in an interval on the real number line between twostantsa andb. Now we can ask
whether or not this class of functions has enough expregsiver to shatter the set of instances
S = {3.1,5.7}? Yes, for example the four functiofis< = < 2), (1 <z < 4), (4 <z < 7) and

(1 <z < 7) will assign all possible labels to the instancesSn

Our adaptation of shattering for mechanisms captures am’agility to distinguish among
each of the©’|I"-:l impact vectors that include only outcomes from a givern¥et

Definition 6 (outcome shattering)A mechanism allows agento shatter a set of outcoma8; C
O, if i can distinguish among each of th@’|/”-: different possible impact vectors that involve
only outcomes fror@’. Formally, let

G2 = {giloi = [or,00, - ) 0 € O')
Then,i can shatter outcome®’ if D;(G?").

Example 3. If agenti can distinguish among the following set of impact vect6fs,then it can
shatter a set of outcomeg4, B, C, D}, over a set of two different joint types of the other agents,
t(_lz) andt(j) (note that rows and columns have no particular significativey are used for presen-
tation only):

(A, AL [B, Al [C AL [D, A
a ) [AB] B.B). [C.B]. [D.B]
) e [B.Cl (e [D,C,
A, D1, B, D], [C,D], [D,D]

Y 9 Y

We now introduce a slightly weaker adaptation of shatteforgmechanisms. It will be a
pairwise notion that involves an agent being able to causeygvair of outcomes to be chosen
under every pair of types of the other agents, but withoutdpaible to control therder of the
outcomes (i.e., which outcome happens against which typéje call thissemi-shatteringan
outcome space.

“4Binary classification functions are functions that assigohepossible input a binary output label of eitheor 1.
SThere are many ways to generalize the shattering notionrtetifins that can return more than two outcomes,
c.f. [8]. We have adapted the two most natural ones for oukwarexpressiveness in mechanism design.



As we will show in Section 3, semi-shattering is more impotrtahen designing mechanisms
for private values settings (i.e., settings where an agauriifity for each outcome depends only
on its own type, and not on the private types of the other ayenh such settings the mecha-
nism designer can build a fully efficient mechanism whileyaadlowing agents to semi-shatter the
outcome space; it is not necessary to allow them to fullytehany of the outcomes (Lemma 3).

Definition 7 (outcome semi-shatteringA mechanism allows ageinto semi-shatter a set of out-
comes(’ C O, if i can distinguish among a set of impact vectors that assigas etthe('“] ")
unordered pairs of outcomes (with replacement) to each faine other agents’ types. Formally,
i can semi-shatte®’ if i can distinguish among a set of impact vecta¥$,, such that

v{{tﬂﬂ?,t@} )A_lg ” t@} ,v{{ol,oz})ol,oz e O'}, 39, € GO,

[gi (t(_12)> =0, and g; (t(_zl)) = 02] or [gi (t(_12)> =0, and g; (t(_QZ)) = 01]

Example 4. If agent: can distinguish among the following set of impact vect6fs,then it can
semi-shatter a set of outcomégsi, B, C, D}, over a set of two different joint types of the other
agents;t(_li) andt(_i) (note that the order of the pairs that are included does nattengor example
AB could be replaced witlB A):

A

(A, B, [B,B

A.c), [B.C), [C,0),
A.Dl, [B.D], [C,D], [D.D]

)
Y

Since semi-shattering is a pairwise notion, it does notdvireclude the entire bottom left half
of a matrix of impact vectors as in the previous example. kangle, the following set of impact
vectors constitutes semi-shattering a set of 3 outcomes.

Example 5. If agenti can distinguish among the following set of impact vect6fs,then it can
semi-shatter the set of outcomgs, B, C'} over a set of three different joint types of the other
agentsy"), ) andt®):

—7 1

[ [A A A] )
[A7A7B]7
[A,A,C],
G, = A, B, B], [B,B,B],
(A, B,C], [B,B,C],
[A,C,C], [B,C,C], [C,C,C]

\ J

Notice that every pair of outcomes appears in every pairaissit least once. That is exactly the
requirement for semi-shattering.



Now we can define a notion of expressiveness based on thefdize largest outcome space
that an agent can (semi-)shaftdt.captures the number of outcomes that the mechanism can sup
port full expressiveness over for that agent. We call tresathpent’shatterable outcome dimension

Definition 8 ((semi-)shatterable outcome dimensioAjent: has (semi-)shatterable outcome di-
mensior¥; if the largest set of outcomes thatan (semi-)shatte); C O, has sizé;.

The shatterable and semi-shatterable outcome dimensiasures are closely related to the
maximum impact dimension. For example, whenever an agéseiwi-)shatterable outcome di-
mension goes up, so does its maximum impact dimension.

Proposition 3. The most expressive mechanism for ag€ne., the mechanism allowing the agent
the largest maximum impact dimension) when it has (senaifstable outcome dimensidn <
|O], has a strictly greater maximum impact dimension than ttiany mechanism where agent
has (semi-)shatterable outcome dimengipn 1.

While the two measures are related, the shatterable outdomension can be thought of as
more of a measure of the breadth of an agent’s expressivefireanaximum impact dimension
necessary for an agent to shattesutcomes increases geometrically in the number of typdseof t
other agents. This illustrates the relationship betwegmessiveness and uncertainty, since the
number of types that the other agents have can be thoughteo$@sport-based measure of agent
1's uncertainty. The more uncertainty an agent has aboutttter agents, the more expressiveness
the agent needs to shatter a given set of outcomes.

Proposition 4. Any mechanism that allows ageinto shatterk; outcomes has maximum impact
dimension at leasfr_;|*: for i.

Because shattering (and semi-shattering) require agerfitave a greater amount of control,
we have been able to analyze these measures more easily ardomwhere agents have infinitely
many types. In particular, we have derived the followingessary pairwise condition, which can
be checked analytically or experimentally to determine twbea mechanism allows an agent to
(semi-)shatter a set of outcomes. We actually use thishhsigoughout our study of channel-
based mechanisms in Section 4.

Proposition 5. Agenti can (semi-)shatter an outcome spa@étonly if there exists at least one
pair of expressions by the other agerﬁéli) and 9(_22, which allowsi to (semi-)shatte®?’. (In

other words, there exists a pair of fixed expressions by ther@gents such thatcan cause any
(un-ordered) pair of outcomes fro6Y to be chosen.)

2.3 Uses of the expressiveness measures

The expressiveness measures introduced above enable ndeistand mechanisms from a new
perspective. The measures being so new, we undoubtediyp fadle all of their possible uses at
this time. However, we already see two uses.

60ur measure deals with the size of this space, rather thaspific outcomes it contains, because a designer
can always re-label the outcomes in the set to transforntatany other set of the same size.
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First, we can measure the expressiveness of an existingamisah, and thereby bound how
well the mechanism can do in terms of the designer’s objector example, in the next section,
we show how our expressiveness measures directly deteeminpper bound on the efficiency of
any mechanism.

Second, one may be able to use the expressiveness measdesigining new mechanisms.
For example, if there are some constraints on what—and hoghsinformation the agents can
submit to the mechanism (for example, in a CA, allowing bidspackages of no more than
items), then our measures can be used to design the mostsxgrenechanism subject to those
constraints. This, in turn, hopefully maximizes the measimndesigner’s objective subject to the
constraints. For example, this approach can be used tothieliighest upper bound on efficiency.

We can also ask which of the expressiveness measures—maximpact dimension, shatter-
able outcome dimension, and semi-shatterable outcomendiore—are most appropriate under
which settings and purposes. If the designer knows whichaghpectors are (most) important,
then the maximum impact dimension is the measure of choiganstead, the designer knows
which outcomes are (most) important but not which impactamscare (most) important, then the
other two measures can be used to make sure that the agerftdlgaxpress themselves over
those outcomes. As we will show in Section 3, in private valsgttings the appropriate measure
is semi-shatterable outcome dimension (for one, full sgmaitterability is enough to guarantee
that lack of expressiveness will not limit the mechanisnffieiency at all), and in interdependent
values settings the appropriate measure is shatteraldernatdimension. Also, we will show that
less than full (semi-)shatterability necessarily leadsédficiency in any setting under some prior
over agent preferences.

Another use of the semi-shatterable outcome dimensioraisdtyze a broad subclass of mech-
anisms which we will call channel based. This will be diseass Section 4.

3 Relationship between expressiveness and efficiency

Perhaps the most important property of our domain-indepeincheasures of expressiveness is
how they relate to efficiency of the mechanism’s outcome. \lllenaw present an upper bound on
the expected efficiency of the mechanismsst efficienequilibrium, which remarkably depends
only on the extent to which agents can impact the mechanisattme. Using this bound allows
us to sidestep two of the major roadblocks in analyzing thegicmship between expressiveness
and efficiency: 1) it can be studied without having to solveany of the mechanism’s equilibria
(attempts at doing this have proved extremely difficult f@nipressive mechanisms [50, 64, 61, 46,
66, 43]), and 2) since it bounds theost efficienequilibrium it can be used to study mechanisms
with multiple—or an infinite number of—equilibria, e.g.,dirprice CAs [9].

We achieve these goals by making an optimistic assumptani¢hads to easier analysis and
guarantees that the result is an upper bound. Specificalgssume that the agents play strategies
which, taken together, attempt to maximize social welfareis allows us to avoid the difficulty
involved in calculating equilibrium strategies when agamed to speculate and counter-speculate
about each other. It also implies that we can restrict oulyaisato pure strategies rather than
considering the infinite space of mixed strategies. Thisesabse under our assumption, a pure
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strategy always exists that achieves at least as much epefficiency as any mixture. (This

is analogous to the fact that there exists a pure strategydang at least as much utility as any

mixture in general games.) For conveniencelllét™, o) denote the total social welfare of outcome
o when agents have private types (or private signéls)

W(t", 0) = Zui(t", 0)

Proposition 6. The following quantityZ [£(f)], is an upper bound on the expected efficiency of
the most efficient equilibrium in any mechanism with outcmetion f,

2 EE(f)]" = max /tnETan:t“) W (%, f({Bu(t), Balta). ... Ba(t)}))

B()

The maximum is taken ové(-), a pure strategy profile that maps every joint type vectorrio a
expression for each ageht.

We will now demonstrate that the bound from Equation 2 isallpsied to our notions of
expressiveness. First we will prove that the bostrettly increases for the best outcome function
that can be designed with maximum impact dimengidor agent;, asd; goes froml tod! (where
d; is the maximum impact dimension needed by the agent for tbedto reach full efficiency).
Since we prove this for thbestoutcome function, it also holds true for an upper bound on any
mechanism that allows maximum impact dimensipfor any agent.

The way we approach this problem is to consider calculatiedbund from the fixed perspec-
tive of a particular agent (the value of the bound does not depend on which agent we ehoos
to consider). Based on our assumption, we know that the @gents will choose whatever
pure strategies are best for maximizing the mechanism’sagg efficiency. Thus from agent
1's perspective, the maximization problem comes down toffigdine set of distinguishable impact
vectors that lead to the highest expected efficiency.

Observe that there is an impact vectgt, for each of agent’s types,t;, that represents the
vector of efficient outcomes whenis matched with each of the joint types of the other agents. In
order to achieve full efficiency, agenmust be able to distinguish among all of these vectors. We
call a set that contains all of these vectofslly efficient set

Definition 9 (fully efficient set) G is afully efficient setif
Vti, Jg; € Gi, V{ti | P(ti,t) > 0}, W({ti,t-i}, gi(t-i)) = max W({titi},0)

The first two results regarding our efficiency bound addrasscbnditions under which the
mechanism has enough expressiveness for it to reach fudlceaqb efficiency. (Our bound never
exceeds full efficiency.)

’Recall that an agent’s strategy can only depend on its owstertype, even if its utility depends on the private
signals of others.
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Proposition 7. The upper boundE[E(f)]", for any outcome functioyf reaches full expected
efficiency ifff allows at least one agent to distinguish among each of thaatnectors in at least
one of its fully efficient sets.

Our next result demonstrates that allowing any one agenigimexpressiveness to make the
bound achieve full efficiency, is functionally equivaleatdoing so for all agents.

Proposition 8. If any agent can distinguish among each of the impact vectors in at leastad its
fully efficient sets, then every other aggman also distinguish among each of the impact vectors
in at least one of its fully efficient sets.

In settings where upon learning its own type an agent knonsUie what the types of the other
agents are, the agent only needs an impact dimensi@fl|dab bring the bound to full efficiency.
(Note that this is slightly more general than assuming tlentbas perfect information about the
types of the other agengspriori, since it need only have this information once its own type is
revealed.)

Proposition 9. If agent: has full information about the types of the other agents Baseits own
private type, it has a fully efficient set of size|O|. Formally, letG? be agent’s smallest fully
efficient set,

(Vti, 3t | P(ti, i) = 1) = |G;| <|O|

Corollary 1. In any setting where an agemthas full information about the types of the other
agents based on its own type, there exists an outcome farfotievhich the upper bound reaches
full efficiency while limiting agentto maximum impact dimensiah < |O|.

3.1 The efficiency bound increases strictly with expressivess

We will now present the main result relating our notion of egsiveness, maximum impact di-
mension, to our upper bound on expected efficiency. It detrates that a mechanism designer can
strictly increase the upper bound on expected efficiency by allowygagent more expressive-
ness (until the bound reaches full efficiency). The resyliep to the mechanism that maximizes
the bound subject to the constraint that the agent’s expesssss is less than or equal to that level.
The bound attained by such a mechanism also serves as anogoel on the expected efficiency
that is attainable by any outcome function with that expvesess level.

Theorem 1. The upper bound on expected efficieri€i£ ()], of the best outcome function that
limits agenti’s expressiveness to a maximum impact dimengiamcreasesstrictly monotonically
asd; goes froml to d}, whered} is the size of agerits smallest fully efficient set.

%
From this result we can also derive the following corollaglated to our other two measures
of expressiveness.

Corollary 2. The upper bound on expected efficieneYE (f)]*, of the best outcome function
that limits agent’s expressiveness to a (semi-)shatterable outcome diovehsincreasesstrictly
monotonically ask; goes froml to £}, wherek; is the (semi-)shatterable outcome dimension
necessary for the bound to reach full efficiency.
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3.2 Inadequate expressiveness can lead to arbitrarily lowficiency in any
setting

The next three lemmas provide the foundation for our secaaid theorem regarding the efficiency
bound. They demonstrate thatany setting there are distributions over agent preferencesrund
which any increase in allowed expressiveness leads to @reaymprovement in the upper bound
on expected efficiency. We prove that the arbitrary incréapessible by constructing an example
under which it is inevitable. We keep these constructiorges®ral as possible: our constructions
allow for any number of outcomes, any number of agents, apchamber of types.

Lemma 1. Consider a setting where an agent’s utility for any outconag skepend on the private
signals of the other agents. For any ageéntn any such setting (with any number of outcomes,
any number of other agents, and any number of joint typesfisd agents) there exist priors over
preferences under which the upper bound on expected efficiei€ (f)]*, of the best outcome
function that limits agent’s expressiveness to a maximum impact dimensieh, ¢uch that2 <

d; < |0|I"™=, is arbitrarily larger than that of any outcome function tHamits i’s expressiveness
tod; — 1.

The next lemma deals with the arbitrary improvement thateaachieved by allowing an agent
to shatter a single additional outcome. Here we distingbestfween an increase in shatterable
outcome dimension for interdependent values settingsr@vae agent’s utility for any outcome
can depend on its own type and the signals of the other agemd)semi-shatterable outcome
dimension for private values settings. As we will see, ivae values settings there is no need to
allow full shattering in order to achieve efficiency.

Lemma 2. For any agent, in any setting (with any number of outcomes, any numberharot
agents, and any number of joint types for those agents) #yast priors over preferences under
which the upper bound on expected efficiert); ()], of the best outcome function that limits
agenti's expressiveness to

¢ shatterableutcome dimensiok; for interdependent values settings, or

e semi-shatterableutcome dimensiok; for private values settings

such that2 < k; < |O
expressiveness g — 1.

, Is arbitrarily larger than that of any outcome function thiamits i’s

Private values settings place restrictions on the utilityctions that agent’s can have and there-
fore on the outcomes that maximize efficiency under diffecembinations of types. We will now
prove that in such settings it is never necessary for an dgdratve the ability to fully shatter any
set of outcomes in order to achieve full efficiency.

Lemma 3. In a private values setting, for any agentany pair of outcomes;; ando,, and any
pair of types for the other agentzéji) andt(_zi), if there issometype of agent, ¢;, where it is strictly
more efficient fop; to happen under typé_li) ando, to happen under typé_zi) than the other way
around (i.e.,o; for t(_22 ando, for t(_li)) then it cannot be more efficient for the outcomes to happen

in the other order folany type of agent.
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We conclude this section with a result that integrates treetlemmas above. The theorem adds
the fact that an arbitrary loss in efficiency canly happen if the shatterable (for interdependent
values) or semi-shatterable (for private values) outcomeedsion is less than the number of
outcomes in the mechanism. Thus these dimensions can beaageovide a guarantee that a
mechanism has enough expressiveness to avoid arbitrdificiercy in any setting under any
prior over preferences.

Theorem 2. For any agent, in any setting (with any number of outcomes, any numbertarot
agents, and any number of joint types for those agents) theésepriors over preferences for which
the upper boundFE[E(f)]™, of the best outcome function is arbitrarily lower than feXpected
efficiency iff

e agent:’s shatterabl®utcome dimensiort,, in an interdependent values setting, or
e agent:;’s semi-shatterableutcome dimensiort,, in a private values setting

is less than the number of outcomes< |O|.

4 An instantiation to illustrate expressiveness: channebased
mechanisms

We will now instantiate our measure of expressiveness foingortant class of mechanisms,
which we callchannel basedChannel-based mechanisms are defined by the following &i sm
example is also presented in Figure 2),

Definition 10 (channel-based mechanisniach outcome is assigned a set of channels potentially
coming from a number of different agents (e.g., outcehmaay be assigned channets and v,

from Agentl and z, from Agent2). Each agent, simultaneously with the other agents, report
real values on each of its channels to the mechanism. Theanisth chooses the outcome whose
channels have the largest stinFormally, a channel-based mechanism has the followinggro
ties:

e The expression space of agéns a vector of real numbers with dimension (i.e.,©; =
R¥%). Each dimension is called a channel.

e For each agent there is a set of channels associated with each outegrfig, such that the
mechanism’s outcome function chooses the outcome witliagst channels that have the

greatest reported sum:
f(o) = argergaxz Z 0,

i jes?

8We assume that ties are broken consistently according te strst ordering on the outcomes. This prevents an
agent from using the mechanism'’s tie breaking behaviort#&ml expressiveness.
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Fully expressive combinatorial auction. Auction that oallpws bids on items.

Figure 2:Channel-based representations of two auctions. The itelctsoged are an apple (a) and
an orange (0). The channels for each agéeate denoted;, y;, andz;. The possible allocations
are A, B, C, and D. In each one, the items that Agent 1 gets atteeifirst braces, and the items
Agent 2 gets are in the second braces.

Many different mechanisms for trading goods, informatiangd services, such as CAs, ex-
changes, and multi-attribute settings can be cast as chaased mechanisms. (This class is even
more general than CAs because it can model settings whenesaggre about how the items that
they do not win get allocated across the other agents.)

A natural measure of expressiveness in channel-based msgtsis the number of channels
allowed. In CAs, it is able to capture the difference betwédly expressive CAs, multi-item
auctions that allow bids on individual items only (Fig. 2hdaan entire spectrum in between. In
fact, it generalizes a classic measure of expressivené&sAsrcalledk-wise dependence [17].

As a sanity check of our domain-independent measures oésspeness, we will now demon-
strate that they appropriately relate to the number of célsradlowed in channel-based domains.
Our first result deals with the number of channels an agemts#eeshatter an outcome space when
it has full information about the other agents.

Proposition 10. If agenti has full information about the types of the other agents€dam its own
private type), in a channel-based mechanism it needs|ésdy(|O|) | channels to semi-shatter the
entire outcome space. Furthermore, fewer channels do rifitsu

The intuition behind this result is that when an agent knowacty what the other agents
want (and thus what they are going to say) then the agent dudsaxe to express what it would
want to happen if they were to say something different. Thetnmaportant takeaway of this
is that perfect information about the other agents’ typesidadly does away with the need for
expressiveness. This implies that in prior research thavstihat in certain settings even quite
inexpressive mechanisms yield full efficiency (e.g., [1he assumption that the agents have no
private information is essential.

If an agent has fewer thdriog. (|O|)| channels, it will be unable to express a preference for at
least one outcome no matter how much the agent likes thabimgtcThus there exist distributions
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over agent preferences that lead to an arbitrary loss ofiezifig (even if the agent has perfect
information about the others).

On the other end of the spectrum, the VCG mechanism, whiahlisdfficient even in private
values settings, can be emulated by a channel-based mechaith |O| — 1 channels per agent.

Proposition 11. A channel-based mechanism can emulate the VCG mechanispnoffides each
agent with at leasfO| — 1 channels.

The next result shows that in a channel-based mechanismeauh @@nnot fully shatter any set
of two or more outcomes if the agent has even slightly less gaafect information (i.e., when
at least one other agent has more than one type). Howeveg thechanisms are typically used
in private values settings where (as demonstrated by Lemman3i-shattering is more important
than full shattering for efficiency.

Proposition 12. No channel-based mechanism allows any ageshtdterany set of two or more
outcomes when the other agents have two or more types.

Since channel-based mechanisms do not allow agents teisbatcomes, our results from
Section 3 imply that in some interdependent values setangschannel-based mechanism, even
the VCG mechanism, will be arbitrarily inefficient. That fumechanisms cannot always get full
efficiency in interdependent values settings is alreadywn@3].

Corollary 3. In any interdependent values setting there exists prederelistributions for which
any channel-based mechanism (even one that emulates thenéClaanism) results in arbitrarily
less than full expected efficiency.

Our next result deals with a configuration of channels thegmts an agent from being able to
semi-shattel set of outcomes. When this configuration is present in a amgsim it can lead to
arbitrary inefficiency even in private values settings.

Theorem 3. Consider a set of outcome§A, B, C, D}, connected to different sets of channels
for agenti, {SA, SB, SC, SP}, respectively. Agentcannot semi-shattdyoth pairs of outcomes
{A, B} and{C, D} if the channels that differ betweétt and S are the same as those that differ
betweens? and SP. Formally, agent cannot semi-shatter either pair of outcomes if,

(SP\ST=57\57) and (S7\ S =SP\S7)

The channel configuration discussed in Theorem 3 genesalize that appears in the channel-
based representation of a multi-item auction where bidsabogved on items only. In fact, it is
present in any multi-item auction whenever it is assumetahagent’s bid for a bundle is the sum
of its bid on two other non-overlapping bundles (e.g., subebes that compose the full bundle).
This is true even if the bids on the sub-bundles are complemsgelves, (i.e., assumed to be the
sum of bids on other bundles). This fact, along with our rssiuibm Section 3, imply that such
auctions can be arbitrarily inefficient even in private \essettings.
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Proposition 13. Any multi-item auction which can be represented as a chabaséd mechanism
that treats agent's bid on a bundl&) to be the sum of its bids on some two other non-overlapping
bundles,q; and ¢, (additive valuations are a special case of this), does iotnathe agent to
semi-shatter the set of outcomes under which it Wng;, ¢; or nothing.

Corollary 4. Any multi-item auction which can be represented as a chabaséd mechanism
that treats agent’s bid on a bundl&) to be the sum of its bids on some two other non-overlapping
bundlesy, andg,, (additive valuations are a special case of this), has soriog pver preferences
even in private values settings such that the mechanisnbigauily inefficient.

Finally, we will show that as the number of allowed channetsaih agent increases, the agent’s
expressiveness in the most expressive channel-based msolstrictly increases as well (until full
expressiveness is reached). Each time a channel is adeealjéht can semi-shatter over at least
one more outcome. From Lemma 2 we know that this can lead tdo@nealy increase in our upper
bound on expected efficiency, even in private values seitting

Proposition 14. For any agent, its semi-shatterable outcome dimensibnand maximum impact
dimensiong;, in the most expressive channel-based mechanism stmnctlgase (untik; = |O|)
as the number of channels assigned to the aggntjcreases.

We conclude with the following corollary to this result (athe results in Section 3) regarding
the upper bound on the expected efficiency of the most effibNash equilibria in channel-based
mechanisms.

Corollary 5. The upper bound on expected efficieric}£ (f)]*, of the best channel-based mech-
anism that allows:;; channels for agentis greater than or equal to (and can be arbitrarily larger
than) that of any mechanism that allows that ageént ¢; channels.

5 Related work

There has been relatively little work on expressivenessipally. We discussed some related
papers in the body of this technical report. Here we will fiyisummarize other work on the
most closely related topics. This work started in econorame$has more recently been studied in
computer science.

5.1 Informational complexity

At a high level, related questions go back at least to the 494ten Hayek argued that in dis-
tributed resource allocation, it is not practical to commoate all the distributed information to a
central decision maker [27]. In the 1970s, Mount and Re#@i fnd Hurwicz [30, 31] formal-
ized this in their theory ofnformational complexitywhich asked the question: at a minimum,
how much information must a mechanism’s message space ®&oatarry in order to accomplish
some design goal? That work focused primarily on the numbeab-valued dimensions that were
needed. Our Proposition 1 shows that, trivially, the nunibaiways one. To get around Cantor’s
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theorem that begets Proposition 1, the economists made temmecal assumptions (such as lo-
cal threadedness [42] or Lipschitz continuity [32]) thaeéguded a general mapping betweeh
andR™. Under these assumptions Proposition 1 does not applyha&ngiconomists proceeded to
compare the informational requirements in different ecoigosettings by comparing the number
of dimensions in each agent’s expression. In contrast, ouk does not rely on such assumptions.
In fact, one of our key points is that the dimensionality af thessage space is not the essence of
expressiveness. Rather, the essence is how the mechanigmddo use the different inputs.

5.2 Work based on finding or characterizing equilibria

Another thread of related work has tried to characterizestinglibrium behavior in inexpressive
mechanisms in specific settings. The challenge here is #tatrdining equilibrium behavior is
usually prohibitively difficult even for the simplest nonvial mechanisms. Furthermore, when a
particular equilibrium is found to have certain properti@se often cannot rule out the possibility
of additional equilibria that do not share those properties

For example, Rosenthal and Wang [50] examined an auctitingethere a series of globally
interested (with nonlinear preferences over differenngg and locally interested bidders (with
linear preferences for different items) participate in & afesimultaneous first-price sealed-bid
auctions where each auction is about a single item. Takegtheg the auctions constitute an
inexpressive mechanism. The authors were able to consmwegjuilibrium for each of two regions
of the space of parameter values for the bidder type didtobs in their model. They found that
these equilibria were inefficient for most of their modelaaeter space. However, they were not
able to rule out the possibility that other equilibria eXsithough they have not found any) and
they were unable to construct equilibria for some parametieres of their model.

Another example is work by Szentes and Rosenthal [61]. Thayacterized simple efficient
equilibria in large inexpressive mechanisms when biddezsdentical and each wants to win a
specified fraction (more than a half) of the items. The siniliof this domain illustrates the
difficulty in finding equilibria in inexpressive mechanismBroblems must typically be severely
simplified in order to gain traction with analytical or comational techniques.

As further illustration of the difficulty of equilibrium findg, Wilenius and Andersson [64]
described a heuristic method for computing approximatdiegum strategies in first-price sealed
bid CAs when bidders either bid on all combinations of itearsgn one specific combination and
the remaining items individually. They demonstrated th#adilty in finding equilibrium strategies
for CAs when they are not dominant-strategy implementable.

All of the work discussed here suggests that there is littlgefor a clear general characteriza-
tion of equilibrium strategies in inexpressive mechanisms

5.3 EXxpressiveness issues in dominant-strategy mechanism

There has been some research related to expressivenessirssominant-strategy mechanisms.
For example, Blumrosen and Feldman [11] studied the proldémesigning a dominant-

strategy mechanism with a limited number of discrete astiothey showed a tradeoff between

the efficiency of the best possible dominant-strategy n@shaand the number of discrete actions
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available to the designer. Similarly, Ronen [49] describezthods for achieving near efficiency
with limited bidding languages in dominant strategies.

Holzmanet al.[29] studied CAs where bidders can only bid on restricted sebundles. (This
is the restricted outcome setting mentioned in Section Beirfiwork shows that truthful bidding is
a dominant strategy if and only if the restricted bundlelsat &gents can bid on forms a quasi-field
(and VCG payments are used). They defined a worst-case reeafsiine economic inefficiency
that may result from restricting bids to smaller and smajleasi-fields. Parkes [48] and Nisan and
Segal [45] showed that in order to implement VCG paymentsgahanism must elicit enough
information to verify the corresponding universal cometiequilibrium prices.

The restriction to studying dominant-strategy mechanismp®ses severe limitations on which
guestions about expressiveness arise. In particularrianty about others’ private information
becomes an issue only when considering mechanisms that dave@dominant strategies. As we
showed, the larger the possible type space of others, the expressiveness an agent may need
for efficiency. Our results apply to settings where agentaatchave dominant strategies (and to
settings where they do). Also, our results are not specifamyoapplication, such as a CA.

5.4 Applications of expressiveness in mechanisms

One of the first applications to benefit from expressivenessstrategic sourcing. Sandholm [55,
56] described how building more expressive mechanismst-giaeralize both CAs and multi-
attribute auctions—for supply chains has saved billiondadifars that would have been lost due to
inefficiency. Success with expressive auctions in sourcaggalso been reported by others [28, 39,
19]. Schoenherr and Marbert [59] discussed the difficuloethby business-to-business auction
participants in choosing bundles to put up for auction aleddone. This is a problem that exists
because these mechanisms are typically inexpressiveatiosy bids on predetermined lots only.
If a CA were used instead, the sellers would not have to chbosdlesa priori: the mechanism
would determine the bundles based on the (expressive) bids.

Some work on expressiveness has begun to appear in the toht®arch keyword auctions
(aka sponsored search). Even-Dar, Kearns and Wortman egdnain extension of sponsored
search auctions, whereby bidders can purchase keywordsia®gsl with specific contexts [21].
Under certain probabilistic assumptions they are able dogthat the system becomes more effi-
cient when this extra level of expressiveness is allowea. \Working paper, Milgrom explores the
equilibria of sponsored search auctions with limited egpree power (specifically, where bidders
submit a single bid to indicate how much they will pay for arspdt regardless of where it appears
on the page) [40]. He finds that liyniting expressiveness the auction excludes some bad equilib-
ria. This raises an important counterpoint to our work. Wpéhthat our framework will help us
better understand the circumstances under which expesssg actually helps and when it does
not. In another recent paper on sponsored search auctitnam& et. al. studied the impact of
inexpressive bids on efficiency [1]. They found that in a gjieauction mechanism, inexpressive-
ness can lead to an arbitrary amount of inefficiency wheniddldrs are assumed to play the same
pure strategy (regardless of what the strategy is). Theggaw to show that the same inexpres-
sive mechanism has an efficidatl informationNash equilibrium even when bidder valuations are
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more complex. They consider this surprising, but it is cetesit with our general result that very
little expressiveness is needed for efficiency when ageaws ho uncertainty (Proposition 9).

Another application area that has received recent attenath regard to expressiveness is
wireless spectrum trading. For example, Ganethal. [22] described a prototype wireless spec-
trum market mechanism. They stressed the importance ofialijpspectrum bidders enough ex-
pressiveness to communicate their needs, and demonstrasaag synthetic demand distributions
and variousd hocbidder behavior models—that their mechanism has goodeffigi properties.

The concept of expressiveness has been studied in singig-agplications as well. For exam-
ple, results from recent studies of user security and pyiyadicies showed that, in many cases,
these policies can be extremely rich and that it is unreéalistexpect users to fully specify them
(e.g., [63, 18]). Tradeoffs between expressiveness anplsiease of use are therefore important
as well.

5.5 A specific related sub-literature: bundle pricing

There is an extensive literature on bundle pricing. Allagvanseller to price bundles, rather than
just individual items, can be seen as increasing the selépressiveness. This is also related
to our work on expressiveness. In this subsection we witflyrireview some of the bundling
literature.

The first mention of being able to increase revenue via bogds attributed to Stigler in his
1963 discussion of anti-trust Supreme Court rulings overepdiscrimination via bundling [60].
Bundle pricing in economics has often focused on analyzimggroduct settings to provide insight
into the way monopolies can improve profits by offering gomdsundles [2, 20, 24, 38, 58]. (One
exception is that Armstrong examineeproduct settings, but placed severe restrictions on Isuyer
utility functions [5].) This work provided sufficient cortebns on when bundling is profitable
and optimal pricing strategies under various assumptidosever, it did not provide generalized
algorithms for determining how to price the bundles. Nor itliiypically answer the question of
how the increase in expressiveness affects the buyerty utilithe efficiency of the market as a
whole. There have also been some human subject experinhah&sxplored how people actually
perceive savings in bundles [65].

Some work on bundle pricing has been done from an operatesearch perspective as well.
For example, Hason and Martin [26] presented a mixed intpgagram for optimizing bundle
prices for a handful of market segments. They assumed tbhatedhe segments can be described
by a single value for each bundle, and that the value of evenglle for every market segment
is known in advance. They also did not describe how their lupdcing strategy compared to
using item prices. Rusmevichientong et. al. investigatedproblem of pricing different car
configurations based on data collected by GM’s Auto Choiceigat web site [51].

There has also been work on pricing bundles of informatiadgowhere it is usually assumed
that customers care only about how many goods are bundledhig(i.e., their valuation for a
bundle depends only on its size, not its contents). For el@nkephartet al. [35] and Brooks
and Durfee [12] described online approaches to pricing imdlomain. Additionally, Bakos and
Brynjolfsson provided an analytical treatment of this penb with some valuable insights about
when bundling is profitable [6].
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Finally, computer science work on pricing has focused prilpan pricing items rather than
bundles, and for “single-minded” customers that desirg onk bundle. For example, Balcan and
Blum [7] provided online and approximate algorithms foisthetting, and Guruswami et. al. [25]
showed that finding the optimal pricing i$PX-Hard. Some work from this community, such
as the work by Aggarwatdt al.[3], considered a more restrictive class of pricing prolderalled
MAX-BUYING, where customers buy the most expensive goods they canl affarch restricted
classes have been shown to be solvable in polynomial time.

Related to bundle pricing, there has recently also beerifsignt work on designing high-
revenue CAs (e.g., [47, 16, 36, 37, 34]). Designing for rexeturns out to be much more difficult
than designing for efficiency.

6 Conclusions and future research

A recent trend in (electronic) commerce is a demand for hidgnels of expressiveness in the
mechanisms that mediate interactions such as the allocaticesources, matching of peers, or
elicitation of opinions. In this paper we provided the firgingral model of expressiveness for
mechanisms. Our model included a new expressiveness reeasaximum impact dimension,
that captures the number of different ways that an agentmpadt the outcome of a mechanism.
We also introduced two related measures of expressiveasss lon the concept of shattering from
computational learning theory.

We then described perhaps the most important property af@ugin-independent expressive-
ness notions: how they relate to the efficiency of the meamasioutcome. We derived an upper
bound on the expected efficiency of a mechanism’s most aftiblash equilibrium which depends
only on the extent to which agents can impact the mechansu¢ome. This bound enables us to
study the relationship between expressiveness and effibyeavoiding two major classic hurdles:
1) our bound can be analyzed without having to solve for ailibgum of the mechanism, and 2)
our bound applies to the most efficient equilibrium so it carubed to analyze mechanisms with
multiple (or an infinite number of) equilibria. We proved thiais bound increasestrictly mono-
tonically for the best mechanism that can be designed asntiieon any agent’'s expressiveness
increases (until the bound reaches full efficiency). In addj we proved that a small increase in
expressiveness can potentially lead to arbitrarily langedases in the efficiency bound, depending
on the prior over agents’ preferences.

Finally, we instantiated our model of expressiveness fdaascof mechanisms which we call
channel based. This class involves mechanisms that takesstpns of value through channels
from agents to outcomes, and select the outcome with thedagum. Many mechanisms for
trading goods, information, and services—such as commightiuctions, exchanges, and multi-
attribute auctions—can be cast as channel-based meclgani8ma sanity check, we showed
that our domain-independent measures of expressivenpsspajately relate to a natural notion
of expressiveness in channel-based mechanisms, the nwintlesnnels allowed (which already
generalizes a traditional measure of expressiveness irc@llexl k-wise dependence [17]). Using
our general measures of expressiveness and our resultsiothéy relate to efficiency, we were
able to prove that in channel-based mechanisms 1) incigpasipressiveness by adding a single
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channel cannot decrease our upper bound on expected affid@rthe mechanism, and 2) under
some preference distributions this leads to an arbitréaitye increase in the bound.

The framework we developed enables one to understand meoi&afiom a new perspective.
This opens the door for a possible new avenue of researchnwitechanism design. On the
practical side, we already see two uses of our expressiseneasures. They can be used to bound
the efficiency—and therefore provide a lower bound on iniefficy—of existing mechanisms.
They can also potentially be used in the design of new meshemiwhether the design is done by
hand or by computer.
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7 Appendix

Proof of Proposition 1.Given a mechanism with reportable type spac&fwe can construct an
equivalent mechanism with reportable type spRday constructing an injective mapping froRY
to ®. Then, when an agent makes a repofRirwe use the reverse mapping and act as if the agent
had expressed the corresponding poirikinin the original mechanism.

One way to construct the injective mapping is as follows. d:{ebe theith bit (or digit) of
the real number that the agent expresses for dimens®q1,2,...,n}. Letp, be thekth prime
number. Our desired numberhis

T TI®wenes)™
? J

0

Proof of Proposition 2.This follows trivially from the fact that both mechanismsvieawvelfare
maximizing truthful dominant-strategy equilibria and fomy particular group of participants the
welfare maximizing alternative in the larger set has efficieequal to or greater than the welfare
maximizing alternative in the smaller set.

Let M = (f,m) be the mechanism with the larger outcome spacehd= (f’, ') be the
one with the smaller outcome space. Equation 1 describextrected efficiency of a mechanism,
thus we wish to show that for population with types drawn framy distributionP(7™) with any
utility functions the following inequality holds,

e = [ p@ery [ e =) S w0 >
e = [ pam=my [ Paw s =) Y e @)

We know that the equilibria of the two mechanisms are trutifice they are both VCGs therefore
the above inequality simplifies to,

/t"eT" P(I" =1") Z u(ts, f(t")) > /tnETn P(T" =1t") Z wi(t;, f(t"))

Since both mechanisms are choosing welfare maximizingooues and?’ C O for any particular
type vectorz™, for the agents we have,
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vt Zui(ti, FE) = it f1(E)

0

Proof of Proposition 3.Every time we allow agent to (semi-)shatter a new outcome the most
expressive mechanism allows the agent to distinguish aratrd the impact vectors it had pre-
viously distinguished between plus one additional impacter (the impact vector that was pre-
venting it from (semi-)shattering that outcome). 0J

Proof of Proposition 4.This is fairly straight forward. The number of impact vestaver|7T";|
involving k different outcomes i$I"_;|*. Shattering requires that an agent be able to distinguish
among each of these vectors, thus its maximum impact dimemsust be greater than or equal to
this amount. 0J

Proof of Proposition 5.1f there exists a pair of types(fl.) andt(_zi), that agent cannot (semi-)shatter
over, then then there is at least one (un-ordered in the ¢asaro-shattering) pair of outcomes,

andB, that agent cannot force the mechanism to choose when the other age/raﬂ;y{pmsf(_lz and

t(_22 This means that agentannot express any impact vector wherand B (in either order for
semi-shattering) happen agaimgi andt(_QZ.) (i.e., wheregl-(t(_li)) =A andgz-(t(_i.)) = B). Without
being able to express these preference vectors agmmtnot fully (semi-)shatter outcome space
0. O

Proof of Proposition 6.The following reasoning demonstrates that Equation 2 isla vepper
bound on the maximum attainable expected efficiency by arghar@sm using the outcome func-
tion f in equilibrium:

Eele(fm) = [ par=e) [ PO fm) = oW o)

< max/tn P =) /6 (B = W, f(0)

B(")
= max/ P(T" =t")W(t", f(B(t")))
B(-) Jinern

A

= wax [P = W S Bt B(t)))
B(-) JineTn

The step between the second and third equations follows tinerfact that one of the maxima
of the function in the second equation must have each ent#(of (a function that maps every
type vector to a mixed strategy profile) as a point mass. Bhigcause there is at least one single
pure strategy combination for each type vector that leadse¢@utcome with highest welfare, so
there is no reason to consider mixed strategies in this holihe last step is valid because the
strategy of each agent can depend only on its own private type O
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Proof of Proposition 7.First we will prove the forward implication, namely that tapper bound
reaches full efficiency if any agenttan distinguish among each of the impact vectors in at least
one of its fully efficient sets.

The fact that some agemtcan distinguish among each of the impact vectors in somg full
efficient set,G}, implies that there is a pure strategy for aggrit;, which is a mapping from its
types to expressions, and a pure strategy profile for thetegémer than, ~_;, mapping from each
of their types to expressions that causes the most efficignbme to be chosen by the mechanism
for every possible combination of types. If we $&t™) = {h;(t;), h_;(t_;)} thenE[E(f)]* will
reach full efficiency.

Now we will prove the backwards implication, namely that myaagenti cannot distinguish
among each of the impact vectors in at least one of its fulligient sets then the upper bound
cannot be fully efficient.

Let agent; be an agent that cannot distinguish among each of its imetoss in any of its
fully efficient sets. Consider any set of impact vectors #gent; can distinguish amond7;.
Based on the predicate of the proposition, at least one afripact vectorsg; corresponding to
fully efficient outcomes when agenhas type}, in any fully efficient set cannot be expressed by
agent.

This means that no matter what strategies the agents oter thoose, agent will not be
able to express somg and at least one of the outcomes chosen by the mechanism \wheti a
has type; will be less than fully efficient. O

Proof of Proposition 8.This proof is relatively straightforward. We know that theegicate im-
plies there is some pure strategy for agerit; that achieves full efficiency when played against
some pure strategy profilg, ; for the other agents. Leét; be agentj’s pure strategy in the profile
h_;. Construct a new pure strategy profile,;, by starting withz_; and removing agents pure
strategy. Now add aget¥is pure strategy,; to complete the profile. Since we have not changed the
strategies played in any circumstanéesvill achieve full efficiency against_;, thus completing
our proof. O

Proof of Proposition 9.In these settings, as soon as ageéatows its own type it knows for certain
the single most efficient outcome. It never needs to distsigoetween more than one-dimensional
preference vectors and there are ojdly such vectors. O

Proof of Corollary 1. This follows directly from Proposition 9 and Proposition 7 O

Proof of Theorem 1The set of mechanisms allowing agémhaximum preference dimensiah
is a super-set of the mechanisms allowing agenaximum preference dimensiafi < d;. Thus
the fact that the bound for the best mechanism increasedyvaakotonically is trivially true for
any increase id;. The challenge is proving the strictness of the monotopicit

Consider increasing; from d\" < d: to d'” > d\". Let G\" be the best set of preference
vectors that agentdistinguishes between when restrictedlfd vectors (i.e., the set of preference
vectors that maximize the upper bound on expected efficjendfe know that there are at least
d; — dﬁl) > 1 preference vectors corresponding to fully efficient setsudtomes with non-zero
probability that cannot be expressed by agerdnd thus at least that many preference vectors
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corresponding to fully efficient sets of outcomes that a@abfromGgl). When we increase our
expressiveness limit from)ﬁl) to dl@), we can add one of those missing vectoré?ﬁ& to getGEz).
SinceGEQ) allows agent to distinguish among all the same vector@é@ andan additional vector
which corresponds to a fully efficient set of outcomes (febat these outcomes must be strictly
more efficient), the new mechanism with maximum prefererimedsiondf.?) has a strictly higher
expected efficiency bound. O

Proof of Corollary 2. This follows directly from Theorem 1 and Proposition 3. 0J

Proof of Lemma 1Start with any number of outcomes and any number of typeshi®ragents
other thani with equal likelihood (and let the probability of any pattiar set of types for the
agents other thanbe independent afs type). Choose a seg;;, of unique impact vectors for
agent; with sized;. Construct one non-zero probability type for agefdr each impact vector in

G, t§’(j). Set the total welfare of all agents to an arbitrarily largenter for every combination of
joint types according to the impact vectors correspondingsttype, (in an interdependent values
setting their are no restrictions on the agent’s utilitydtions parametrized on the full joint type

space, so the welfare function for each set of joint typesbeaconstructed arbitrarily):

ng- € Gi, \V/t_i, W({tEgZ)at—z}vgz(t—l)) =M

If agent: cannot distinguish among all of thk impact vectors then the efficiency bound will be
arbitrarily smaller than if it can. Thus for the best outcofuection the move fromi; — 1 to d;
necessarily results in an arbitrary increase. O

Proof of Lemma 2.The part that applies to the interdependent values settitayfs directly from
Lemma 1 since decreasiigby one also decreaséshy at leastl.

Next we will prove the implication in the private value setti To prove this we will construct
a setting (i.e., utilities, types and outcomes), such tgah&y must be able to semi-shatter an out-
come space of size in order to avoid our upper bound being arbitrarily lowentffial efficiency.
Our constructed setting can have any number of outcomespamper of other agents and any
number of joint types for the other agents. However, in otdexssign the total utility of the other
agents for each of their joint types in an arbitrary way, wé hvhit every other agent except for
one, ageny, to a single type (agentwill have |T__;| types). We will set the utility of every agent
other than and; to 0 in all circumstances and build our construction using ohgse two agents.

We will start with a set of outcome®’ that has sizé; (if k; = 1 the rest of this proof is trivial,
if every single outcome provides an arbitrary amount of arelfthen not being able to make any
one of them happen will lead to arbitrary inefficiency). W wssume the outcomes &' are the
only outcomes that any of the agents derive any utility fraMe will assume that there is some
strict ordering on the outcomes framto o, and on agent's types fromtg.l) to tg‘T"‘). We will now
set the utility of ageny for every outcome under every one of its types. (Recall that private
value setting the utility of the agents other thazannot depend oi's type, and vice versa).

Our construction sets agejis utility for outcomeo,, under each of its types to be arbitrarily
larger than for the outcome preceding it in the strict omlgr,,,_; (with the first outcome always
leading to utility0). Under a single type, all of the gaps between successivomds will be the
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same size, however this gap amount will increase by an arpiamount for each successive type.

This will result in agentj’s utility under each of its types being a step function ovex strictly

ordered outcomes i@’, with the step sizes increasing under each successive Bgeally we

will set agent;’s utility function in the following way (letV/ be an arbitrarily large number),
(Ym0 w; (8 o) = (1—1 x ((m —1) x 2 x M)

J

Now for each of the(‘(g") un-ordered pairs of outcomes, ando, (wherea is always before

in our strict ordering), we will construct a set [@f;| types for agent, which we will caIITi(a’b).
Agenti’s utility under all of the types irTZ.(“’b) will be hugely negative for all outcomes other than
0, andoy, (note that this value does not have to be negative infinipysithas to be arbitrarily lower
than the total welfare of any outcome under any circumsdarisas causing an arbitrary loss of
efficiency if either of these outcomes is not chosen. Agaia will assume a strict ordering on
the types inl;*", from 1 to |T}|. Agenti’s utility for o, under each of these types will be set to
the arbitrarily large numbet/, and foro, (the typically less preferred outcome by agg¢nsince

it comes earlier in the ordering) will be set to successivetyeasing multiples of the distance
between the outcomes in the strict ordering times twice therarily large number used above,
(b —a) x 2 x M. In other wordsp, will provide successively more utility to agenas its type
from the pair selecting set increases frono |7};|. Formally we will set agents utility under the

types inTi(a’b) to be the following,

(vm |7 e T)  wi(t™, 0) = M
(vm |t e T}‘“b)) Wit 0) = (m—1) x (b—a) x 2 x M
(Voj cO\O vm|t™ e Tl-(a’b)) w; (™ 0;) = —c0

Whentﬁm) is matched Withﬁ§m) the total welfare of outcome, will be at least) larger than the
total welfare ofo,. However, for all of;’s types smaller tham the opposite will be true.

W™, 1", 00) = M+ [(b—1)x (m—1) x 2 x M]
WHE™, 7}, 0) = [(b—a) x (m—1) x2x M]+[(a—1) x (m — 1) x 2 x M|
= [(b=1)x (m—1)x2x M]

By constructing the utility functions in this way we have garsteed that for any pair of agejis
types,tg.m) andt§m) (wherem < m' in our strict ordering), there is a type for agenequiring

op to happen again$§m) ando, againsttg.m/) to avoid an arbitrary loss in efficiency (because the
second best outcome always leads to at |éasess welfare).

Now we can simply repeat this process for every pair of oug®m?’ by constructing types
for agent; that select that pair. We can also construct one type fortageneach outcome i,
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where it prefers that outcome hugely more than any otheoowgc This will guarantee that agent
1 must be able to make every pair of outcomes happen against gae of agent;’s types, and
must be able to make every single outcome happen againgt gaerof agent;’s types, in order
to avoid an arbitrary loss of efficiency in some non-zero piolity combination of types. This
is equivalent to saying that agenmust be able to semi-shatter the outcome sg2ice order to
avoid an arbitrary decrease in the expected efficiency hound O

Proof of Lemma 3Let agent:’s utility for outcomeso; ando, under typetgl) and be denoted as
X andY'. For the agents other thanlet the sum of their utilities for the outcomesando, under
typest'") andt”®), be denoted as, andb, and,a’ and¥/, respectively. We wish to show that the

ordering on efficient outcomes imposed by this collectiotypes cannot be reversed. Formally,

(X+a>Y+b)and (Y +0 > X +d) =
S(3AXY) (X' +a<Y' +b)and (Y +V < X' +d)

We will proceed by assuming this is true, namely that theist&xanX’ andY”’ that satisfy the
second set of inequalities, and show that it leads to a adintran. If all of the inequalities held
we would have the following,

b—a< X-Y <V—-d
V—d < X' =Y <b-—a

which leads to a contradiction. O

Proof of Theorem 2The forward implication in both settings follows directhpfn Lemma 2. The
backward implication in the interdependent values sefoligws from Lemma 1 and Proposition 7
(since there will always be a fully efficient set that consag@very possible impact vector). In the
private value setting the backward implication is impligdleemma 3, since it proves that it is
never necessary for full efficiency in this setting to shredtey pair of outcomes (only semi-shatter
them). O

Proof of Proposition 10.This proof is based on a pigeon hole argument. With fewer than(|O|)]
channels there will be at least 2 outcomes connected to e same set of channels. If agent
hasC; channels then it ha&¢:! sets of channels. Whef is small the number of sets of channels
will be less than the number of outcomes.

Ci < [logz(|O])] = 2% < (O]

This will prevent the agent from forcing the mechanism toageboth of those outcomes
against with different plays since the agent’s own contrdsuto the two outcomes will always be
identical. O
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Proof of Proposition 11.With that many channels we can construct a VCG outcome fomati
the following manner. For each ageéntonnect each afs channels to a different outcome, leaving
one outcome with no channel from that agent. The agent thpemtseits utility under each outcome
relative to the outcome with no channels. The mechanismsgwoutcome whose channels have
the largest sum, which is equivalent to choosing the welfaagimizing outcome. The payment
rule will not be affected by the fact that each agent is repgrits utility relative to a particular
outcome. To see this consider the VCG (i.e., Clarke tax) mantrof any agent. This payment
is equal to the total difference in utility of the other agertiad agent not participated. Let the
outcome with agent in the mechanism bel and the outcome without agehte B. Let the
outcome with no channels attacheddydor every agenj. Then we have the payment for ageént
as,

o= Z (uj(t;, A) —u;(t;, 05)) — Z (u;(t, B) = u;(t;,05))
= Z (u;(ts, A) — u;(t;, B)) — Z (uj(t;, 05) —u;(t;, 05))
= > (u;(t;, A) — uy(t;, B))

J

Since theu;(t;, 0;) terms drop out of this equation, having every agent repeit thility for every
outcome minus their utility for one particular outcome does effect the payment calculation.
This shows that the payment rule can be properly calculated when each agent is left with a
single outcome with no channels.

Using a pigeon hole argument we can see that an agent with teaue|O| — 1 channels will
either have at least 2 outcomes sharing a channel, makingpisgsible for that agent to express
arbitrary non-linear utility for every outcome (somethithgt is required in order to implement a
VCG), or it will have 2 outcomes without a channel, makingnpiossible for that agent to express
any preference for one of the outcomes (if the agent had ardyooitcome with no channel, then
it could express its preferences relative to that outcomegeacribed above). O

Proof of Proposition 12 We will show that no agent can shatter any set ofitcomes against any
2 types, even when it has a channel dedicated solely to eadtedivb outcomes (so that it can
place an arbitrary amount of value on either outcome). Thigies that it is impossible for any
larger set of outcomes or types in any channel-based mesrhani

We will assume for contradiction that there is some age¢nat can shatter a pair of outcomes
A and B in a channel-based mechanism. Let ag&nthannel value connected to outcomde
X and let its channel value connectedRde Y. Consider two types for the agents other than
") andt®), and the reports mapped to therrgimy pure strategyy") and6®. Let the sum of the
reports by the other agents on the channels connectddbi® denoted:; anda, under the first
and second expressions, respectively. Likewisé,l@ndb, be the sum of the reports dp. We
have assumed (for contradiction) that there existstary’, X’ andY”’ that satisfy the following
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inequalities,

. . X >Y +b
A against 1,8 against2 © 4 o
Y +ay > X+ by

. . Y'+b > X'
B against 1 A against 2 T At
X'+ ay > Y’ + ba

This leads directly to the contradiction,

b —a1 <X-Y< by—as
by — as <X -Y' < by — ay

]
Proof of Corollary 3. This follows directly from Proposition 12 and Lemmas 1 and 2. O
Proof of Theorem 3We will first present a lemma regarding an implication of thedicate based
on set algebra.

Lemma 4. For any setsA, B, C, and D, the following bi-directional implication holds,
(AN\C=B\D)and (C\A=D\B) < (A\D=C\B)and(D\A=DB\C(C)

Proof. We will prove the forward implication, once that is provec thackward implication is
trivial since we can just switch the labels ©fand D. From the predicate we know that the only
part of A that is not inD must be contained completely@ni(since(A\ C) C D), in particular we
know that,

A\D = C\(C\A)
= C\(B\D)
— C\B

The last step is valid because we know that no elements fdaran be in the set on the right
hand side (since we are removing them frdin Thus it cannot make a difference if we leave them
in B before subtracting it fromd’. This same logic can be repeated for the other side,

D\A = B\ (B\D)
= B\ (C\4)
— B\C
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From Lemma 4 in addition to our predicate we know that theofeihg must also be true (we
drop the: subscript on the channel sets for shorthand, since all $etsamnels discussed in this
proof belong to ageny,

(S4\ 8P =57\ SP) and (S7\ 54 =57\ S9)

Now we will assume for contradiction that agentan semi-shatter both pairs of outcomes,
{A, B} and{C, D}. From Proposition 5, we know that in order foto be able to semi-shatter a
set of outcomes, it must be able to semi-shatter it forgaiy of types of the other agents. Thus,
there must be at least one pair of reports by the agents dfthﬂf,t@(_li) ande(_zi), such that agent
can cause all four outcomes to happen (although we are dewilin semi-shattering so the order in
which they happen does not matter). Let the sum of the regpattannels under the first (second)
profile for the other agents connected to outcotrige a; (a3), to outcomeB beb; (b2), and so on.

Lets assume (without loss of generality) that- a; < b, — a, and thatA will happen against
6'") and B will happen against® (if the inequality does not hold, we can reverse the labekhien
6_;'s). In order to causel to happen against the first opponent profile &hdgainst the second
the following inequalities must hold (from here on we usegherthandS“ to denote the sum of
agenti’s report on the channels ifi, and we assume that ties are broken consistently so that an
agent cannot use them to semi-shatter),

(54 +a; > SP + b
A happens against{d 54 + a; > S¢ + ¢
SA+a; > SP +d,

(S8 + by > S 4 ay
B happens against2 5% + b, > S¢ + ¢,
SB 4+ by > SP +dy

Now let the difference between the sum of channel§in— S¢ = S;, and notice from the
predicate thab” — SP = S,. This is because the channels that ar§fnand notS¢ are the same
as those that are if” and notS?, and also the channels B that are not in54 are the same
as those that are i62 and notS”. In addition, let the difference in the sum of the channels in
sS4 - 8P = §¢ 8B = G, (this equality is also implied by the predicate). Now the @épns
above simplify to,

by — ay <S4 -8B < by — as
1 — aq <51 < by — ds
a; — dp <S5 < by — ¢

In order to semi-shatter’ and D with C' happening against the first report by the other agents and
D against the second we have the following inequalities geadrin the same fashion,
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Cl—dl <SC—SD< Cg—dg
bg—dg <Sl< C1 — ap
bl—Cl <52< ag—d2

In order to semi-shatter ovér and D in the opposite direction (witlD first andC' second) the
constraints would change to the following,

cy — doy <S¢ - 8P < ¢y — dy
by — dy <5 < Co — Q9
bg—Cg <52< al—dl
Now we can see that our assumption that we can semi-shatteséts of outcomes under even a

single pair of types leads to a contradiction since the Valhg sets of constraints would have to
be satisfied,

A\

G — by — d

bg—dg < 1 —a

or,

A\

cy — by a; — dy

&1—d1 < Cg—bg
]

Proof of Proposition 13.Let A be an outcome under which agent allocated bundl€), let B

be an outcome under which it is allocated C for ¢, and D for nothing (also lets4, S&, S¢,
andS? be the sets of channels connected to those outcomes forg8itce agent's bid onQ
equals the sum of its bid op andg,, we have thas4 = S U S¢ and its bid for the outcome
where it wins nothing is alway® so we haves” = (). Notice that these sets of channels meet the
conditions of Theorem 3,

(S4\ 5S¢ =95\ SP) and (S7\ 54 = 5"\ SP)
((SPUS)\ S°=55\0) and (S°\(S%US) =0\ 5"

Proof of Corollary 4. This follows trivially from Proposition 13 and Lemma 2. O
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Proof of Proposition 14 We will prove this statement for the semi-shatterable amedimension,
k;, which will imply it is true for maximum impact dimensiaf) as well (based on Proposition 3).

Consider any channel-based mechanism that assjgeisannels to agent and allows it a
semi-shatterable outcome dimensign< |O|. We will assume from here on that > 2, since
if k; = 1 the theorem is trivially true (we can build a fully expreessMCG mechanism over
outcomes with a single channel and thus adding a channeali@filiitely increasé; to at leas®).

Let the largest set of outcomes that agecan shatter over in this mechanism®é(if there
are ties just choose one arbitrarily). Note that there israempty set of outcomes missing from
O', we will call thatO* = O\ O’. Now consider adding one channel for agéett the mechanism
and connecting it to one of the outcomgse O*. Clearly the agent can still semi-shatter over
O', since it can just ignore the new channel. However, it can al®o semi-shatter a larger set,
O U{o*}.

To verify this notice that with the additional channel cocteel too* the agent can control the
amount of utility it reports on this outcome arbitrarily ¢iwout affecting its reports on any other
outcomes). Consider any pair of outcomes in the originab$et, € O’. Agenti can now make*
happen against any type where either of those outcomes heghpethe old mechanism by setting
its report on the new channel to bgreater than the sum of its reports on the channels connected
to the outcome it chooses. Formally(f is the channel mapping from the original mechanism,
then we can translate any report in the old mechanésno a report in the new mechanisHj,
which causes* to happen whenever amydid previously,

Vil1<j<ea)0i; = 0

* J—
el = 0ij + €
jeCi(o’)

Since agent can do that with both outcomes from the original semi-shaltle set we have
confirmed that it has reports in the new mechanism that makeappen with every pair of out-
comes in?’ (this is an inductive argument, since each of those outcdvaeshis property beforg)
Thus agent can semi-shatter the new larger outcome set. O

Proof of Corollary 5. The fact that the bound is weakly monotonic is true becausextra chan-
nel can always be ignored. The fact that the increase carbiteaaity large follows directly from

Proposition 14 above and Lemma 2 (since increasing the nuofilsbannels byl can increase the
agent’s semi-shatterable outcome dimension). O

®Note that we have assumed the agent was not using the tikitggmaoperties of the original mechanism to shatter
the outcomes. If this assumption does not hold, the prodilis/alid as long as the mechanism always breaks ties
consistently (i.e., when the channels connected to outsomando, have the same sum it always chooses either
or 07).
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